1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 84 int sysctl_tcp_max_reordering __read_mostly = 300; 85 EXPORT_SYMBOL(sysctl_tcp_reordering); 86 int sysctl_tcp_dsack __read_mostly = 1; 87 int sysctl_tcp_app_win __read_mostly = 31; 88 int sysctl_tcp_adv_win_scale __read_mostly = 1; 89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91 /* rfc5961 challenge ack rate limiting */ 92 int sysctl_tcp_challenge_ack_limit = 100; 93 94 int sysctl_tcp_stdurg __read_mostly; 95 int sysctl_tcp_rfc1337 __read_mostly; 96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 97 int sysctl_tcp_frto __read_mostly = 2; 98 99 int sysctl_tcp_thin_dupack __read_mostly; 100 101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 102 int sysctl_tcp_early_retrans __read_mostly = 3; 103 104 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 105 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 106 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 107 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 108 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 109 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 110 #define FLAG_ECE 0x40 /* ECE in this ACK */ 111 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 112 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 113 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 114 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 116 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 117 118 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 119 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 120 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 121 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 122 123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 125 126 /* Adapt the MSS value used to make delayed ack decision to the 127 * real world. 128 */ 129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 130 { 131 struct inet_connection_sock *icsk = inet_csk(sk); 132 const unsigned int lss = icsk->icsk_ack.last_seg_size; 133 unsigned int len; 134 135 icsk->icsk_ack.last_seg_size = 0; 136 137 /* skb->len may jitter because of SACKs, even if peer 138 * sends good full-sized frames. 139 */ 140 len = skb_shinfo(skb)->gso_size ? : skb->len; 141 if (len >= icsk->icsk_ack.rcv_mss) { 142 icsk->icsk_ack.rcv_mss = len; 143 } else { 144 /* Otherwise, we make more careful check taking into account, 145 * that SACKs block is variable. 146 * 147 * "len" is invariant segment length, including TCP header. 148 */ 149 len += skb->data - skb_transport_header(skb); 150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 151 /* If PSH is not set, packet should be 152 * full sized, provided peer TCP is not badly broken. 153 * This observation (if it is correct 8)) allows 154 * to handle super-low mtu links fairly. 155 */ 156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 158 /* Subtract also invariant (if peer is RFC compliant), 159 * tcp header plus fixed timestamp option length. 160 * Resulting "len" is MSS free of SACK jitter. 161 */ 162 len -= tcp_sk(sk)->tcp_header_len; 163 icsk->icsk_ack.last_seg_size = len; 164 if (len == lss) { 165 icsk->icsk_ack.rcv_mss = len; 166 return; 167 } 168 } 169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 172 } 173 } 174 175 static void tcp_incr_quickack(struct sock *sk) 176 { 177 struct inet_connection_sock *icsk = inet_csk(sk); 178 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 179 180 if (quickacks == 0) 181 quickacks = 2; 182 if (quickacks > icsk->icsk_ack.quick) 183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 184 } 185 186 static void tcp_enter_quickack_mode(struct sock *sk) 187 { 188 struct inet_connection_sock *icsk = inet_csk(sk); 189 tcp_incr_quickack(sk); 190 icsk->icsk_ack.pingpong = 0; 191 icsk->icsk_ack.ato = TCP_ATO_MIN; 192 } 193 194 /* Send ACKs quickly, if "quick" count is not exhausted 195 * and the session is not interactive. 196 */ 197 198 static inline bool tcp_in_quickack_mode(const struct sock *sk) 199 { 200 const struct inet_connection_sock *icsk = inet_csk(sk); 201 202 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 203 } 204 205 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 206 { 207 if (tp->ecn_flags & TCP_ECN_OK) 208 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 209 } 210 211 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 212 { 213 if (tcp_hdr(skb)->cwr) 214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 215 } 216 217 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 218 { 219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 220 } 221 222 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 223 { 224 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 225 case INET_ECN_NOT_ECT: 226 /* Funny extension: if ECT is not set on a segment, 227 * and we already seen ECT on a previous segment, 228 * it is probably a retransmit. 229 */ 230 if (tp->ecn_flags & TCP_ECN_SEEN) 231 tcp_enter_quickack_mode((struct sock *)tp); 232 break; 233 case INET_ECN_CE: 234 if (tcp_ca_needs_ecn((struct sock *)tp)) 235 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 236 237 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 238 /* Better not delay acks, sender can have a very low cwnd */ 239 tcp_enter_quickack_mode((struct sock *)tp); 240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 241 } 242 tp->ecn_flags |= TCP_ECN_SEEN; 243 break; 244 default: 245 if (tcp_ca_needs_ecn((struct sock *)tp)) 246 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 247 tp->ecn_flags |= TCP_ECN_SEEN; 248 break; 249 } 250 } 251 252 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 253 { 254 if (tp->ecn_flags & TCP_ECN_OK) 255 __tcp_ecn_check_ce(tp, skb); 256 } 257 258 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 259 { 260 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 261 tp->ecn_flags &= ~TCP_ECN_OK; 262 } 263 264 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 265 { 266 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 267 tp->ecn_flags &= ~TCP_ECN_OK; 268 } 269 270 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 271 { 272 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 273 return true; 274 return false; 275 } 276 277 /* Buffer size and advertised window tuning. 278 * 279 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 280 */ 281 282 static void tcp_sndbuf_expand(struct sock *sk) 283 { 284 const struct tcp_sock *tp = tcp_sk(sk); 285 int sndmem, per_mss; 286 u32 nr_segs; 287 288 /* Worst case is non GSO/TSO : each frame consumes one skb 289 * and skb->head is kmalloced using power of two area of memory 290 */ 291 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 292 MAX_TCP_HEADER + 293 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 294 295 per_mss = roundup_pow_of_two(per_mss) + 296 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 297 298 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 299 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 300 301 /* Fast Recovery (RFC 5681 3.2) : 302 * Cubic needs 1.7 factor, rounded to 2 to include 303 * extra cushion (application might react slowly to POLLOUT) 304 */ 305 sndmem = 2 * nr_segs * per_mss; 306 307 if (sk->sk_sndbuf < sndmem) 308 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 309 } 310 311 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 312 * 313 * All tcp_full_space() is split to two parts: "network" buffer, allocated 314 * forward and advertised in receiver window (tp->rcv_wnd) and 315 * "application buffer", required to isolate scheduling/application 316 * latencies from network. 317 * window_clamp is maximal advertised window. It can be less than 318 * tcp_full_space(), in this case tcp_full_space() - window_clamp 319 * is reserved for "application" buffer. The less window_clamp is 320 * the smoother our behaviour from viewpoint of network, but the lower 321 * throughput and the higher sensitivity of the connection to losses. 8) 322 * 323 * rcv_ssthresh is more strict window_clamp used at "slow start" 324 * phase to predict further behaviour of this connection. 325 * It is used for two goals: 326 * - to enforce header prediction at sender, even when application 327 * requires some significant "application buffer". It is check #1. 328 * - to prevent pruning of receive queue because of misprediction 329 * of receiver window. Check #2. 330 * 331 * The scheme does not work when sender sends good segments opening 332 * window and then starts to feed us spaghetti. But it should work 333 * in common situations. Otherwise, we have to rely on queue collapsing. 334 */ 335 336 /* Slow part of check#2. */ 337 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 338 { 339 struct tcp_sock *tp = tcp_sk(sk); 340 /* Optimize this! */ 341 int truesize = tcp_win_from_space(skb->truesize) >> 1; 342 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 343 344 while (tp->rcv_ssthresh <= window) { 345 if (truesize <= skb->len) 346 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 347 348 truesize >>= 1; 349 window >>= 1; 350 } 351 return 0; 352 } 353 354 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 355 { 356 struct tcp_sock *tp = tcp_sk(sk); 357 358 /* Check #1 */ 359 if (tp->rcv_ssthresh < tp->window_clamp && 360 (int)tp->rcv_ssthresh < tcp_space(sk) && 361 !sk_under_memory_pressure(sk)) { 362 int incr; 363 364 /* Check #2. Increase window, if skb with such overhead 365 * will fit to rcvbuf in future. 366 */ 367 if (tcp_win_from_space(skb->truesize) <= skb->len) 368 incr = 2 * tp->advmss; 369 else 370 incr = __tcp_grow_window(sk, skb); 371 372 if (incr) { 373 incr = max_t(int, incr, 2 * skb->len); 374 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 375 tp->window_clamp); 376 inet_csk(sk)->icsk_ack.quick |= 1; 377 } 378 } 379 } 380 381 /* 3. Tuning rcvbuf, when connection enters established state. */ 382 static void tcp_fixup_rcvbuf(struct sock *sk) 383 { 384 u32 mss = tcp_sk(sk)->advmss; 385 int rcvmem; 386 387 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 388 tcp_default_init_rwnd(mss); 389 390 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 391 * Allow enough cushion so that sender is not limited by our window 392 */ 393 if (sysctl_tcp_moderate_rcvbuf) 394 rcvmem <<= 2; 395 396 if (sk->sk_rcvbuf < rcvmem) 397 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 398 } 399 400 /* 4. Try to fixup all. It is made immediately after connection enters 401 * established state. 402 */ 403 void tcp_init_buffer_space(struct sock *sk) 404 { 405 struct tcp_sock *tp = tcp_sk(sk); 406 int maxwin; 407 408 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 409 tcp_fixup_rcvbuf(sk); 410 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 411 tcp_sndbuf_expand(sk); 412 413 tp->rcvq_space.space = tp->rcv_wnd; 414 tp->rcvq_space.time = tcp_time_stamp; 415 tp->rcvq_space.seq = tp->copied_seq; 416 417 maxwin = tcp_full_space(sk); 418 419 if (tp->window_clamp >= maxwin) { 420 tp->window_clamp = maxwin; 421 422 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 423 tp->window_clamp = max(maxwin - 424 (maxwin >> sysctl_tcp_app_win), 425 4 * tp->advmss); 426 } 427 428 /* Force reservation of one segment. */ 429 if (sysctl_tcp_app_win && 430 tp->window_clamp > 2 * tp->advmss && 431 tp->window_clamp + tp->advmss > maxwin) 432 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 433 434 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 435 tp->snd_cwnd_stamp = tcp_time_stamp; 436 } 437 438 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 439 static void tcp_clamp_window(struct sock *sk) 440 { 441 struct tcp_sock *tp = tcp_sk(sk); 442 struct inet_connection_sock *icsk = inet_csk(sk); 443 444 icsk->icsk_ack.quick = 0; 445 446 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 447 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 448 !sk_under_memory_pressure(sk) && 449 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 450 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 451 sysctl_tcp_rmem[2]); 452 } 453 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 454 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 455 } 456 457 /* Initialize RCV_MSS value. 458 * RCV_MSS is an our guess about MSS used by the peer. 459 * We haven't any direct information about the MSS. 460 * It's better to underestimate the RCV_MSS rather than overestimate. 461 * Overestimations make us ACKing less frequently than needed. 462 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 463 */ 464 void tcp_initialize_rcv_mss(struct sock *sk) 465 { 466 const struct tcp_sock *tp = tcp_sk(sk); 467 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 468 469 hint = min(hint, tp->rcv_wnd / 2); 470 hint = min(hint, TCP_MSS_DEFAULT); 471 hint = max(hint, TCP_MIN_MSS); 472 473 inet_csk(sk)->icsk_ack.rcv_mss = hint; 474 } 475 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 476 477 /* Receiver "autotuning" code. 478 * 479 * The algorithm for RTT estimation w/o timestamps is based on 480 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 481 * <http://public.lanl.gov/radiant/pubs.html#DRS> 482 * 483 * More detail on this code can be found at 484 * <http://staff.psc.edu/jheffner/>, 485 * though this reference is out of date. A new paper 486 * is pending. 487 */ 488 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 489 { 490 u32 new_sample = tp->rcv_rtt_est.rtt; 491 long m = sample; 492 493 if (m == 0) 494 m = 1; 495 496 if (new_sample != 0) { 497 /* If we sample in larger samples in the non-timestamp 498 * case, we could grossly overestimate the RTT especially 499 * with chatty applications or bulk transfer apps which 500 * are stalled on filesystem I/O. 501 * 502 * Also, since we are only going for a minimum in the 503 * non-timestamp case, we do not smooth things out 504 * else with timestamps disabled convergence takes too 505 * long. 506 */ 507 if (!win_dep) { 508 m -= (new_sample >> 3); 509 new_sample += m; 510 } else { 511 m <<= 3; 512 if (m < new_sample) 513 new_sample = m; 514 } 515 } else { 516 /* No previous measure. */ 517 new_sample = m << 3; 518 } 519 520 if (tp->rcv_rtt_est.rtt != new_sample) 521 tp->rcv_rtt_est.rtt = new_sample; 522 } 523 524 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 525 { 526 if (tp->rcv_rtt_est.time == 0) 527 goto new_measure; 528 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 529 return; 530 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 531 532 new_measure: 533 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 534 tp->rcv_rtt_est.time = tcp_time_stamp; 535 } 536 537 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 538 const struct sk_buff *skb) 539 { 540 struct tcp_sock *tp = tcp_sk(sk); 541 if (tp->rx_opt.rcv_tsecr && 542 (TCP_SKB_CB(skb)->end_seq - 543 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 544 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 545 } 546 547 /* 548 * This function should be called every time data is copied to user space. 549 * It calculates the appropriate TCP receive buffer space. 550 */ 551 void tcp_rcv_space_adjust(struct sock *sk) 552 { 553 struct tcp_sock *tp = tcp_sk(sk); 554 int time; 555 int copied; 556 557 time = tcp_time_stamp - tp->rcvq_space.time; 558 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 559 return; 560 561 /* Number of bytes copied to user in last RTT */ 562 copied = tp->copied_seq - tp->rcvq_space.seq; 563 if (copied <= tp->rcvq_space.space) 564 goto new_measure; 565 566 /* A bit of theory : 567 * copied = bytes received in previous RTT, our base window 568 * To cope with packet losses, we need a 2x factor 569 * To cope with slow start, and sender growing its cwin by 100 % 570 * every RTT, we need a 4x factor, because the ACK we are sending 571 * now is for the next RTT, not the current one : 572 * <prev RTT . ><current RTT .. ><next RTT .... > 573 */ 574 575 if (sysctl_tcp_moderate_rcvbuf && 576 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 577 int rcvwin, rcvmem, rcvbuf; 578 579 /* minimal window to cope with packet losses, assuming 580 * steady state. Add some cushion because of small variations. 581 */ 582 rcvwin = (copied << 1) + 16 * tp->advmss; 583 584 /* If rate increased by 25%, 585 * assume slow start, rcvwin = 3 * copied 586 * If rate increased by 50%, 587 * assume sender can use 2x growth, rcvwin = 4 * copied 588 */ 589 if (copied >= 590 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 591 if (copied >= 592 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 593 rcvwin <<= 1; 594 else 595 rcvwin += (rcvwin >> 1); 596 } 597 598 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 599 while (tcp_win_from_space(rcvmem) < tp->advmss) 600 rcvmem += 128; 601 602 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 603 if (rcvbuf > sk->sk_rcvbuf) { 604 sk->sk_rcvbuf = rcvbuf; 605 606 /* Make the window clamp follow along. */ 607 tp->window_clamp = rcvwin; 608 } 609 } 610 tp->rcvq_space.space = copied; 611 612 new_measure: 613 tp->rcvq_space.seq = tp->copied_seq; 614 tp->rcvq_space.time = tcp_time_stamp; 615 } 616 617 /* There is something which you must keep in mind when you analyze the 618 * behavior of the tp->ato delayed ack timeout interval. When a 619 * connection starts up, we want to ack as quickly as possible. The 620 * problem is that "good" TCP's do slow start at the beginning of data 621 * transmission. The means that until we send the first few ACK's the 622 * sender will sit on his end and only queue most of his data, because 623 * he can only send snd_cwnd unacked packets at any given time. For 624 * each ACK we send, he increments snd_cwnd and transmits more of his 625 * queue. -DaveM 626 */ 627 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 628 { 629 struct tcp_sock *tp = tcp_sk(sk); 630 struct inet_connection_sock *icsk = inet_csk(sk); 631 u32 now; 632 633 inet_csk_schedule_ack(sk); 634 635 tcp_measure_rcv_mss(sk, skb); 636 637 tcp_rcv_rtt_measure(tp); 638 639 now = tcp_time_stamp; 640 641 if (!icsk->icsk_ack.ato) { 642 /* The _first_ data packet received, initialize 643 * delayed ACK engine. 644 */ 645 tcp_incr_quickack(sk); 646 icsk->icsk_ack.ato = TCP_ATO_MIN; 647 } else { 648 int m = now - icsk->icsk_ack.lrcvtime; 649 650 if (m <= TCP_ATO_MIN / 2) { 651 /* The fastest case is the first. */ 652 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 653 } else if (m < icsk->icsk_ack.ato) { 654 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 655 if (icsk->icsk_ack.ato > icsk->icsk_rto) 656 icsk->icsk_ack.ato = icsk->icsk_rto; 657 } else if (m > icsk->icsk_rto) { 658 /* Too long gap. Apparently sender failed to 659 * restart window, so that we send ACKs quickly. 660 */ 661 tcp_incr_quickack(sk); 662 sk_mem_reclaim(sk); 663 } 664 } 665 icsk->icsk_ack.lrcvtime = now; 666 667 tcp_ecn_check_ce(tp, skb); 668 669 if (skb->len >= 128) 670 tcp_grow_window(sk, skb); 671 } 672 673 /* Called to compute a smoothed rtt estimate. The data fed to this 674 * routine either comes from timestamps, or from segments that were 675 * known _not_ to have been retransmitted [see Karn/Partridge 676 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 677 * piece by Van Jacobson. 678 * NOTE: the next three routines used to be one big routine. 679 * To save cycles in the RFC 1323 implementation it was better to break 680 * it up into three procedures. -- erics 681 */ 682 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 683 { 684 struct tcp_sock *tp = tcp_sk(sk); 685 long m = mrtt_us; /* RTT */ 686 u32 srtt = tp->srtt_us; 687 688 /* The following amusing code comes from Jacobson's 689 * article in SIGCOMM '88. Note that rtt and mdev 690 * are scaled versions of rtt and mean deviation. 691 * This is designed to be as fast as possible 692 * m stands for "measurement". 693 * 694 * On a 1990 paper the rto value is changed to: 695 * RTO = rtt + 4 * mdev 696 * 697 * Funny. This algorithm seems to be very broken. 698 * These formulae increase RTO, when it should be decreased, increase 699 * too slowly, when it should be increased quickly, decrease too quickly 700 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 701 * does not matter how to _calculate_ it. Seems, it was trap 702 * that VJ failed to avoid. 8) 703 */ 704 if (srtt != 0) { 705 m -= (srtt >> 3); /* m is now error in rtt est */ 706 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 707 if (m < 0) { 708 m = -m; /* m is now abs(error) */ 709 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 710 /* This is similar to one of Eifel findings. 711 * Eifel blocks mdev updates when rtt decreases. 712 * This solution is a bit different: we use finer gain 713 * for mdev in this case (alpha*beta). 714 * Like Eifel it also prevents growth of rto, 715 * but also it limits too fast rto decreases, 716 * happening in pure Eifel. 717 */ 718 if (m > 0) 719 m >>= 3; 720 } else { 721 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 722 } 723 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 724 if (tp->mdev_us > tp->mdev_max_us) { 725 tp->mdev_max_us = tp->mdev_us; 726 if (tp->mdev_max_us > tp->rttvar_us) 727 tp->rttvar_us = tp->mdev_max_us; 728 } 729 if (after(tp->snd_una, tp->rtt_seq)) { 730 if (tp->mdev_max_us < tp->rttvar_us) 731 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 732 tp->rtt_seq = tp->snd_nxt; 733 tp->mdev_max_us = tcp_rto_min_us(sk); 734 } 735 } else { 736 /* no previous measure. */ 737 srtt = m << 3; /* take the measured time to be rtt */ 738 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 739 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 740 tp->mdev_max_us = tp->rttvar_us; 741 tp->rtt_seq = tp->snd_nxt; 742 } 743 tp->srtt_us = max(1U, srtt); 744 } 745 746 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 747 * Note: TCP stack does not yet implement pacing. 748 * FQ packet scheduler can be used to implement cheap but effective 749 * TCP pacing, to smooth the burst on large writes when packets 750 * in flight is significantly lower than cwnd (or rwin) 751 */ 752 static void tcp_update_pacing_rate(struct sock *sk) 753 { 754 const struct tcp_sock *tp = tcp_sk(sk); 755 u64 rate; 756 757 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 758 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); 759 760 rate *= max(tp->snd_cwnd, tp->packets_out); 761 762 if (likely(tp->srtt_us)) 763 do_div(rate, tp->srtt_us); 764 765 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 766 * without any lock. We want to make sure compiler wont store 767 * intermediate values in this location. 768 */ 769 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 770 sk->sk_max_pacing_rate); 771 } 772 773 /* Calculate rto without backoff. This is the second half of Van Jacobson's 774 * routine referred to above. 775 */ 776 static void tcp_set_rto(struct sock *sk) 777 { 778 const struct tcp_sock *tp = tcp_sk(sk); 779 /* Old crap is replaced with new one. 8) 780 * 781 * More seriously: 782 * 1. If rtt variance happened to be less 50msec, it is hallucination. 783 * It cannot be less due to utterly erratic ACK generation made 784 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 785 * to do with delayed acks, because at cwnd>2 true delack timeout 786 * is invisible. Actually, Linux-2.4 also generates erratic 787 * ACKs in some circumstances. 788 */ 789 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 790 791 /* 2. Fixups made earlier cannot be right. 792 * If we do not estimate RTO correctly without them, 793 * all the algo is pure shit and should be replaced 794 * with correct one. It is exactly, which we pretend to do. 795 */ 796 797 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 798 * guarantees that rto is higher. 799 */ 800 tcp_bound_rto(sk); 801 } 802 803 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 804 { 805 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 806 807 if (!cwnd) 808 cwnd = TCP_INIT_CWND; 809 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 810 } 811 812 /* 813 * Packet counting of FACK is based on in-order assumptions, therefore TCP 814 * disables it when reordering is detected 815 */ 816 void tcp_disable_fack(struct tcp_sock *tp) 817 { 818 /* RFC3517 uses different metric in lost marker => reset on change */ 819 if (tcp_is_fack(tp)) 820 tp->lost_skb_hint = NULL; 821 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 822 } 823 824 /* Take a notice that peer is sending D-SACKs */ 825 static void tcp_dsack_seen(struct tcp_sock *tp) 826 { 827 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 828 } 829 830 static void tcp_update_reordering(struct sock *sk, const int metric, 831 const int ts) 832 { 833 struct tcp_sock *tp = tcp_sk(sk); 834 if (metric > tp->reordering) { 835 int mib_idx; 836 837 tp->reordering = min(sysctl_tcp_max_reordering, metric); 838 839 /* This exciting event is worth to be remembered. 8) */ 840 if (ts) 841 mib_idx = LINUX_MIB_TCPTSREORDER; 842 else if (tcp_is_reno(tp)) 843 mib_idx = LINUX_MIB_TCPRENOREORDER; 844 else if (tcp_is_fack(tp)) 845 mib_idx = LINUX_MIB_TCPFACKREORDER; 846 else 847 mib_idx = LINUX_MIB_TCPSACKREORDER; 848 849 NET_INC_STATS_BH(sock_net(sk), mib_idx); 850 #if FASTRETRANS_DEBUG > 1 851 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 852 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 853 tp->reordering, 854 tp->fackets_out, 855 tp->sacked_out, 856 tp->undo_marker ? tp->undo_retrans : 0); 857 #endif 858 tcp_disable_fack(tp); 859 } 860 861 if (metric > 0) 862 tcp_disable_early_retrans(tp); 863 } 864 865 /* This must be called before lost_out is incremented */ 866 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 867 { 868 if ((tp->retransmit_skb_hint == NULL) || 869 before(TCP_SKB_CB(skb)->seq, 870 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 871 tp->retransmit_skb_hint = skb; 872 873 if (!tp->lost_out || 874 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 875 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 876 } 877 878 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 879 { 880 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 881 tcp_verify_retransmit_hint(tp, skb); 882 883 tp->lost_out += tcp_skb_pcount(skb); 884 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 885 } 886 } 887 888 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 889 struct sk_buff *skb) 890 { 891 tcp_verify_retransmit_hint(tp, skb); 892 893 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 894 tp->lost_out += tcp_skb_pcount(skb); 895 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 896 } 897 } 898 899 /* This procedure tags the retransmission queue when SACKs arrive. 900 * 901 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 902 * Packets in queue with these bits set are counted in variables 903 * sacked_out, retrans_out and lost_out, correspondingly. 904 * 905 * Valid combinations are: 906 * Tag InFlight Description 907 * 0 1 - orig segment is in flight. 908 * S 0 - nothing flies, orig reached receiver. 909 * L 0 - nothing flies, orig lost by net. 910 * R 2 - both orig and retransmit are in flight. 911 * L|R 1 - orig is lost, retransmit is in flight. 912 * S|R 1 - orig reached receiver, retrans is still in flight. 913 * (L|S|R is logically valid, it could occur when L|R is sacked, 914 * but it is equivalent to plain S and code short-curcuits it to S. 915 * L|S is logically invalid, it would mean -1 packet in flight 8)) 916 * 917 * These 6 states form finite state machine, controlled by the following events: 918 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 919 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 920 * 3. Loss detection event of two flavors: 921 * A. Scoreboard estimator decided the packet is lost. 922 * A'. Reno "three dupacks" marks head of queue lost. 923 * A''. Its FACK modification, head until snd.fack is lost. 924 * B. SACK arrives sacking SND.NXT at the moment, when the 925 * segment was retransmitted. 926 * 4. D-SACK added new rule: D-SACK changes any tag to S. 927 * 928 * It is pleasant to note, that state diagram turns out to be commutative, 929 * so that we are allowed not to be bothered by order of our actions, 930 * when multiple events arrive simultaneously. (see the function below). 931 * 932 * Reordering detection. 933 * -------------------- 934 * Reordering metric is maximal distance, which a packet can be displaced 935 * in packet stream. With SACKs we can estimate it: 936 * 937 * 1. SACK fills old hole and the corresponding segment was not 938 * ever retransmitted -> reordering. Alas, we cannot use it 939 * when segment was retransmitted. 940 * 2. The last flaw is solved with D-SACK. D-SACK arrives 941 * for retransmitted and already SACKed segment -> reordering.. 942 * Both of these heuristics are not used in Loss state, when we cannot 943 * account for retransmits accurately. 944 * 945 * SACK block validation. 946 * ---------------------- 947 * 948 * SACK block range validation checks that the received SACK block fits to 949 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 950 * Note that SND.UNA is not included to the range though being valid because 951 * it means that the receiver is rather inconsistent with itself reporting 952 * SACK reneging when it should advance SND.UNA. Such SACK block this is 953 * perfectly valid, however, in light of RFC2018 which explicitly states 954 * that "SACK block MUST reflect the newest segment. Even if the newest 955 * segment is going to be discarded ...", not that it looks very clever 956 * in case of head skb. Due to potentional receiver driven attacks, we 957 * choose to avoid immediate execution of a walk in write queue due to 958 * reneging and defer head skb's loss recovery to standard loss recovery 959 * procedure that will eventually trigger (nothing forbids us doing this). 960 * 961 * Implements also blockage to start_seq wrap-around. Problem lies in the 962 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 963 * there's no guarantee that it will be before snd_nxt (n). The problem 964 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 965 * wrap (s_w): 966 * 967 * <- outs wnd -> <- wrapzone -> 968 * u e n u_w e_w s n_w 969 * | | | | | | | 970 * |<------------+------+----- TCP seqno space --------------+---------->| 971 * ...-- <2^31 ->| |<--------... 972 * ...---- >2^31 ------>| |<--------... 973 * 974 * Current code wouldn't be vulnerable but it's better still to discard such 975 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 976 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 977 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 978 * equal to the ideal case (infinite seqno space without wrap caused issues). 979 * 980 * With D-SACK the lower bound is extended to cover sequence space below 981 * SND.UNA down to undo_marker, which is the last point of interest. Yet 982 * again, D-SACK block must not to go across snd_una (for the same reason as 983 * for the normal SACK blocks, explained above). But there all simplicity 984 * ends, TCP might receive valid D-SACKs below that. As long as they reside 985 * fully below undo_marker they do not affect behavior in anyway and can 986 * therefore be safely ignored. In rare cases (which are more or less 987 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 988 * fragmentation and packet reordering past skb's retransmission. To consider 989 * them correctly, the acceptable range must be extended even more though 990 * the exact amount is rather hard to quantify. However, tp->max_window can 991 * be used as an exaggerated estimate. 992 */ 993 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 994 u32 start_seq, u32 end_seq) 995 { 996 /* Too far in future, or reversed (interpretation is ambiguous) */ 997 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 998 return false; 999 1000 /* Nasty start_seq wrap-around check (see comments above) */ 1001 if (!before(start_seq, tp->snd_nxt)) 1002 return false; 1003 1004 /* In outstanding window? ...This is valid exit for D-SACKs too. 1005 * start_seq == snd_una is non-sensical (see comments above) 1006 */ 1007 if (after(start_seq, tp->snd_una)) 1008 return true; 1009 1010 if (!is_dsack || !tp->undo_marker) 1011 return false; 1012 1013 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1014 if (after(end_seq, tp->snd_una)) 1015 return false; 1016 1017 if (!before(start_seq, tp->undo_marker)) 1018 return true; 1019 1020 /* Too old */ 1021 if (!after(end_seq, tp->undo_marker)) 1022 return false; 1023 1024 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1025 * start_seq < undo_marker and end_seq >= undo_marker. 1026 */ 1027 return !before(start_seq, end_seq - tp->max_window); 1028 } 1029 1030 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1031 * Event "B". Later note: FACK people cheated me again 8), we have to account 1032 * for reordering! Ugly, but should help. 1033 * 1034 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1035 * less than what is now known to be received by the other end (derived from 1036 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1037 * retransmitted skbs to avoid some costly processing per ACKs. 1038 */ 1039 static void tcp_mark_lost_retrans(struct sock *sk) 1040 { 1041 const struct inet_connection_sock *icsk = inet_csk(sk); 1042 struct tcp_sock *tp = tcp_sk(sk); 1043 struct sk_buff *skb; 1044 int cnt = 0; 1045 u32 new_low_seq = tp->snd_nxt; 1046 u32 received_upto = tcp_highest_sack_seq(tp); 1047 1048 if (!tcp_is_fack(tp) || !tp->retrans_out || 1049 !after(received_upto, tp->lost_retrans_low) || 1050 icsk->icsk_ca_state != TCP_CA_Recovery) 1051 return; 1052 1053 tcp_for_write_queue(skb, sk) { 1054 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1055 1056 if (skb == tcp_send_head(sk)) 1057 break; 1058 if (cnt == tp->retrans_out) 1059 break; 1060 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1061 continue; 1062 1063 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1064 continue; 1065 1066 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1067 * constraint here (see above) but figuring out that at 1068 * least tp->reordering SACK blocks reside between ack_seq 1069 * and received_upto is not easy task to do cheaply with 1070 * the available datastructures. 1071 * 1072 * Whether FACK should check here for tp->reordering segs 1073 * in-between one could argue for either way (it would be 1074 * rather simple to implement as we could count fack_count 1075 * during the walk and do tp->fackets_out - fack_count). 1076 */ 1077 if (after(received_upto, ack_seq)) { 1078 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1079 tp->retrans_out -= tcp_skb_pcount(skb); 1080 1081 tcp_skb_mark_lost_uncond_verify(tp, skb); 1082 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1083 } else { 1084 if (before(ack_seq, new_low_seq)) 1085 new_low_seq = ack_seq; 1086 cnt += tcp_skb_pcount(skb); 1087 } 1088 } 1089 1090 if (tp->retrans_out) 1091 tp->lost_retrans_low = new_low_seq; 1092 } 1093 1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1095 struct tcp_sack_block_wire *sp, int num_sacks, 1096 u32 prior_snd_una) 1097 { 1098 struct tcp_sock *tp = tcp_sk(sk); 1099 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1100 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1101 bool dup_sack = false; 1102 1103 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1104 dup_sack = true; 1105 tcp_dsack_seen(tp); 1106 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1107 } else if (num_sacks > 1) { 1108 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1109 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1110 1111 if (!after(end_seq_0, end_seq_1) && 1112 !before(start_seq_0, start_seq_1)) { 1113 dup_sack = true; 1114 tcp_dsack_seen(tp); 1115 NET_INC_STATS_BH(sock_net(sk), 1116 LINUX_MIB_TCPDSACKOFORECV); 1117 } 1118 } 1119 1120 /* D-SACK for already forgotten data... Do dumb counting. */ 1121 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1122 !after(end_seq_0, prior_snd_una) && 1123 after(end_seq_0, tp->undo_marker)) 1124 tp->undo_retrans--; 1125 1126 return dup_sack; 1127 } 1128 1129 struct tcp_sacktag_state { 1130 int reord; 1131 int fack_count; 1132 long rtt_us; /* RTT measured by SACKing never-retransmitted data */ 1133 int flag; 1134 }; 1135 1136 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1137 * the incoming SACK may not exactly match but we can find smaller MSS 1138 * aligned portion of it that matches. Therefore we might need to fragment 1139 * which may fail and creates some hassle (caller must handle error case 1140 * returns). 1141 * 1142 * FIXME: this could be merged to shift decision code 1143 */ 1144 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1145 u32 start_seq, u32 end_seq) 1146 { 1147 int err; 1148 bool in_sack; 1149 unsigned int pkt_len; 1150 unsigned int mss; 1151 1152 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1153 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1154 1155 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1156 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1157 mss = tcp_skb_mss(skb); 1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1159 1160 if (!in_sack) { 1161 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1162 if (pkt_len < mss) 1163 pkt_len = mss; 1164 } else { 1165 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1166 if (pkt_len < mss) 1167 return -EINVAL; 1168 } 1169 1170 /* Round if necessary so that SACKs cover only full MSSes 1171 * and/or the remaining small portion (if present) 1172 */ 1173 if (pkt_len > mss) { 1174 unsigned int new_len = (pkt_len / mss) * mss; 1175 if (!in_sack && new_len < pkt_len) { 1176 new_len += mss; 1177 if (new_len >= skb->len) 1178 return 0; 1179 } 1180 pkt_len = new_len; 1181 } 1182 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1183 if (err < 0) 1184 return err; 1185 } 1186 1187 return in_sack; 1188 } 1189 1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1191 static u8 tcp_sacktag_one(struct sock *sk, 1192 struct tcp_sacktag_state *state, u8 sacked, 1193 u32 start_seq, u32 end_seq, 1194 int dup_sack, int pcount, 1195 const struct skb_mstamp *xmit_time) 1196 { 1197 struct tcp_sock *tp = tcp_sk(sk); 1198 int fack_count = state->fack_count; 1199 1200 /* Account D-SACK for retransmitted packet. */ 1201 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1202 if (tp->undo_marker && tp->undo_retrans > 0 && 1203 after(end_seq, tp->undo_marker)) 1204 tp->undo_retrans--; 1205 if (sacked & TCPCB_SACKED_ACKED) 1206 state->reord = min(fack_count, state->reord); 1207 } 1208 1209 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1210 if (!after(end_seq, tp->snd_una)) 1211 return sacked; 1212 1213 if (!(sacked & TCPCB_SACKED_ACKED)) { 1214 if (sacked & TCPCB_SACKED_RETRANS) { 1215 /* If the segment is not tagged as lost, 1216 * we do not clear RETRANS, believing 1217 * that retransmission is still in flight. 1218 */ 1219 if (sacked & TCPCB_LOST) { 1220 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1221 tp->lost_out -= pcount; 1222 tp->retrans_out -= pcount; 1223 } 1224 } else { 1225 if (!(sacked & TCPCB_RETRANS)) { 1226 /* New sack for not retransmitted frame, 1227 * which was in hole. It is reordering. 1228 */ 1229 if (before(start_seq, 1230 tcp_highest_sack_seq(tp))) 1231 state->reord = min(fack_count, 1232 state->reord); 1233 if (!after(end_seq, tp->high_seq)) 1234 state->flag |= FLAG_ORIG_SACK_ACKED; 1235 /* Pick the earliest sequence sacked for RTT */ 1236 if (state->rtt_us < 0) { 1237 struct skb_mstamp now; 1238 1239 skb_mstamp_get(&now); 1240 state->rtt_us = skb_mstamp_us_delta(&now, 1241 xmit_time); 1242 } 1243 } 1244 1245 if (sacked & TCPCB_LOST) { 1246 sacked &= ~TCPCB_LOST; 1247 tp->lost_out -= pcount; 1248 } 1249 } 1250 1251 sacked |= TCPCB_SACKED_ACKED; 1252 state->flag |= FLAG_DATA_SACKED; 1253 tp->sacked_out += pcount; 1254 1255 fack_count += pcount; 1256 1257 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1258 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1259 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1260 tp->lost_cnt_hint += pcount; 1261 1262 if (fack_count > tp->fackets_out) 1263 tp->fackets_out = fack_count; 1264 } 1265 1266 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1267 * frames and clear it. undo_retrans is decreased above, L|R frames 1268 * are accounted above as well. 1269 */ 1270 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1271 sacked &= ~TCPCB_SACKED_RETRANS; 1272 tp->retrans_out -= pcount; 1273 } 1274 1275 return sacked; 1276 } 1277 1278 /* Shift newly-SACKed bytes from this skb to the immediately previous 1279 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1280 */ 1281 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1282 struct tcp_sacktag_state *state, 1283 unsigned int pcount, int shifted, int mss, 1284 bool dup_sack) 1285 { 1286 struct tcp_sock *tp = tcp_sk(sk); 1287 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1288 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1289 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1290 1291 BUG_ON(!pcount); 1292 1293 /* Adjust counters and hints for the newly sacked sequence 1294 * range but discard the return value since prev is already 1295 * marked. We must tag the range first because the seq 1296 * advancement below implicitly advances 1297 * tcp_highest_sack_seq() when skb is highest_sack. 1298 */ 1299 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1300 start_seq, end_seq, dup_sack, pcount, 1301 &skb->skb_mstamp); 1302 1303 if (skb == tp->lost_skb_hint) 1304 tp->lost_cnt_hint += pcount; 1305 1306 TCP_SKB_CB(prev)->end_seq += shifted; 1307 TCP_SKB_CB(skb)->seq += shifted; 1308 1309 tcp_skb_pcount_add(prev, pcount); 1310 BUG_ON(tcp_skb_pcount(skb) < pcount); 1311 tcp_skb_pcount_add(skb, -pcount); 1312 1313 /* When we're adding to gso_segs == 1, gso_size will be zero, 1314 * in theory this shouldn't be necessary but as long as DSACK 1315 * code can come after this skb later on it's better to keep 1316 * setting gso_size to something. 1317 */ 1318 if (!skb_shinfo(prev)->gso_size) { 1319 skb_shinfo(prev)->gso_size = mss; 1320 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1321 } 1322 1323 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1324 if (tcp_skb_pcount(skb) <= 1) { 1325 skb_shinfo(skb)->gso_size = 0; 1326 skb_shinfo(skb)->gso_type = 0; 1327 } 1328 1329 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1330 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1331 1332 if (skb->len > 0) { 1333 BUG_ON(!tcp_skb_pcount(skb)); 1334 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1335 return false; 1336 } 1337 1338 /* Whole SKB was eaten :-) */ 1339 1340 if (skb == tp->retransmit_skb_hint) 1341 tp->retransmit_skb_hint = prev; 1342 if (skb == tp->lost_skb_hint) { 1343 tp->lost_skb_hint = prev; 1344 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1345 } 1346 1347 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1349 TCP_SKB_CB(prev)->end_seq++; 1350 1351 if (skb == tcp_highest_sack(sk)) 1352 tcp_advance_highest_sack(sk, skb); 1353 1354 tcp_unlink_write_queue(skb, sk); 1355 sk_wmem_free_skb(sk, skb); 1356 1357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1358 1359 return true; 1360 } 1361 1362 /* I wish gso_size would have a bit more sane initialization than 1363 * something-or-zero which complicates things 1364 */ 1365 static int tcp_skb_seglen(const struct sk_buff *skb) 1366 { 1367 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1368 } 1369 1370 /* Shifting pages past head area doesn't work */ 1371 static int skb_can_shift(const struct sk_buff *skb) 1372 { 1373 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1374 } 1375 1376 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1377 * skb. 1378 */ 1379 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1380 struct tcp_sacktag_state *state, 1381 u32 start_seq, u32 end_seq, 1382 bool dup_sack) 1383 { 1384 struct tcp_sock *tp = tcp_sk(sk); 1385 struct sk_buff *prev; 1386 int mss; 1387 int pcount = 0; 1388 int len; 1389 int in_sack; 1390 1391 if (!sk_can_gso(sk)) 1392 goto fallback; 1393 1394 /* Normally R but no L won't result in plain S */ 1395 if (!dup_sack && 1396 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1397 goto fallback; 1398 if (!skb_can_shift(skb)) 1399 goto fallback; 1400 /* This frame is about to be dropped (was ACKed). */ 1401 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1402 goto fallback; 1403 1404 /* Can only happen with delayed DSACK + discard craziness */ 1405 if (unlikely(skb == tcp_write_queue_head(sk))) 1406 goto fallback; 1407 prev = tcp_write_queue_prev(sk, skb); 1408 1409 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1410 goto fallback; 1411 1412 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1413 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1414 1415 if (in_sack) { 1416 len = skb->len; 1417 pcount = tcp_skb_pcount(skb); 1418 mss = tcp_skb_seglen(skb); 1419 1420 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1421 * drop this restriction as unnecessary 1422 */ 1423 if (mss != tcp_skb_seglen(prev)) 1424 goto fallback; 1425 } else { 1426 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1427 goto noop; 1428 /* CHECKME: This is non-MSS split case only?, this will 1429 * cause skipped skbs due to advancing loop btw, original 1430 * has that feature too 1431 */ 1432 if (tcp_skb_pcount(skb) <= 1) 1433 goto noop; 1434 1435 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1436 if (!in_sack) { 1437 /* TODO: head merge to next could be attempted here 1438 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1439 * though it might not be worth of the additional hassle 1440 * 1441 * ...we can probably just fallback to what was done 1442 * previously. We could try merging non-SACKed ones 1443 * as well but it probably isn't going to buy off 1444 * because later SACKs might again split them, and 1445 * it would make skb timestamp tracking considerably 1446 * harder problem. 1447 */ 1448 goto fallback; 1449 } 1450 1451 len = end_seq - TCP_SKB_CB(skb)->seq; 1452 BUG_ON(len < 0); 1453 BUG_ON(len > skb->len); 1454 1455 /* MSS boundaries should be honoured or else pcount will 1456 * severely break even though it makes things bit trickier. 1457 * Optimize common case to avoid most of the divides 1458 */ 1459 mss = tcp_skb_mss(skb); 1460 1461 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1462 * drop this restriction as unnecessary 1463 */ 1464 if (mss != tcp_skb_seglen(prev)) 1465 goto fallback; 1466 1467 if (len == mss) { 1468 pcount = 1; 1469 } else if (len < mss) { 1470 goto noop; 1471 } else { 1472 pcount = len / mss; 1473 len = pcount * mss; 1474 } 1475 } 1476 1477 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1478 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1479 goto fallback; 1480 1481 if (!skb_shift(prev, skb, len)) 1482 goto fallback; 1483 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1484 goto out; 1485 1486 /* Hole filled allows collapsing with the next as well, this is very 1487 * useful when hole on every nth skb pattern happens 1488 */ 1489 if (prev == tcp_write_queue_tail(sk)) 1490 goto out; 1491 skb = tcp_write_queue_next(sk, prev); 1492 1493 if (!skb_can_shift(skb) || 1494 (skb == tcp_send_head(sk)) || 1495 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1496 (mss != tcp_skb_seglen(skb))) 1497 goto out; 1498 1499 len = skb->len; 1500 if (skb_shift(prev, skb, len)) { 1501 pcount += tcp_skb_pcount(skb); 1502 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1503 } 1504 1505 out: 1506 state->fack_count += pcount; 1507 return prev; 1508 1509 noop: 1510 return skb; 1511 1512 fallback: 1513 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1514 return NULL; 1515 } 1516 1517 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1518 struct tcp_sack_block *next_dup, 1519 struct tcp_sacktag_state *state, 1520 u32 start_seq, u32 end_seq, 1521 bool dup_sack_in) 1522 { 1523 struct tcp_sock *tp = tcp_sk(sk); 1524 struct sk_buff *tmp; 1525 1526 tcp_for_write_queue_from(skb, sk) { 1527 int in_sack = 0; 1528 bool dup_sack = dup_sack_in; 1529 1530 if (skb == tcp_send_head(sk)) 1531 break; 1532 1533 /* queue is in-order => we can short-circuit the walk early */ 1534 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1535 break; 1536 1537 if ((next_dup != NULL) && 1538 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1539 in_sack = tcp_match_skb_to_sack(sk, skb, 1540 next_dup->start_seq, 1541 next_dup->end_seq); 1542 if (in_sack > 0) 1543 dup_sack = true; 1544 } 1545 1546 /* skb reference here is a bit tricky to get right, since 1547 * shifting can eat and free both this skb and the next, 1548 * so not even _safe variant of the loop is enough. 1549 */ 1550 if (in_sack <= 0) { 1551 tmp = tcp_shift_skb_data(sk, skb, state, 1552 start_seq, end_seq, dup_sack); 1553 if (tmp != NULL) { 1554 if (tmp != skb) { 1555 skb = tmp; 1556 continue; 1557 } 1558 1559 in_sack = 0; 1560 } else { 1561 in_sack = tcp_match_skb_to_sack(sk, skb, 1562 start_seq, 1563 end_seq); 1564 } 1565 } 1566 1567 if (unlikely(in_sack < 0)) 1568 break; 1569 1570 if (in_sack) { 1571 TCP_SKB_CB(skb)->sacked = 1572 tcp_sacktag_one(sk, 1573 state, 1574 TCP_SKB_CB(skb)->sacked, 1575 TCP_SKB_CB(skb)->seq, 1576 TCP_SKB_CB(skb)->end_seq, 1577 dup_sack, 1578 tcp_skb_pcount(skb), 1579 &skb->skb_mstamp); 1580 1581 if (!before(TCP_SKB_CB(skb)->seq, 1582 tcp_highest_sack_seq(tp))) 1583 tcp_advance_highest_sack(sk, skb); 1584 } 1585 1586 state->fack_count += tcp_skb_pcount(skb); 1587 } 1588 return skb; 1589 } 1590 1591 /* Avoid all extra work that is being done by sacktag while walking in 1592 * a normal way 1593 */ 1594 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1595 struct tcp_sacktag_state *state, 1596 u32 skip_to_seq) 1597 { 1598 tcp_for_write_queue_from(skb, sk) { 1599 if (skb == tcp_send_head(sk)) 1600 break; 1601 1602 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1603 break; 1604 1605 state->fack_count += tcp_skb_pcount(skb); 1606 } 1607 return skb; 1608 } 1609 1610 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1611 struct sock *sk, 1612 struct tcp_sack_block *next_dup, 1613 struct tcp_sacktag_state *state, 1614 u32 skip_to_seq) 1615 { 1616 if (next_dup == NULL) 1617 return skb; 1618 1619 if (before(next_dup->start_seq, skip_to_seq)) { 1620 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1621 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1622 next_dup->start_seq, next_dup->end_seq, 1623 1); 1624 } 1625 1626 return skb; 1627 } 1628 1629 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1630 { 1631 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1632 } 1633 1634 static int 1635 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1636 u32 prior_snd_una, long *sack_rtt_us) 1637 { 1638 struct tcp_sock *tp = tcp_sk(sk); 1639 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1640 TCP_SKB_CB(ack_skb)->sacked); 1641 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1642 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1643 struct tcp_sack_block *cache; 1644 struct tcp_sacktag_state state; 1645 struct sk_buff *skb; 1646 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1647 int used_sacks; 1648 bool found_dup_sack = false; 1649 int i, j; 1650 int first_sack_index; 1651 1652 state.flag = 0; 1653 state.reord = tp->packets_out; 1654 state.rtt_us = -1L; 1655 1656 if (!tp->sacked_out) { 1657 if (WARN_ON(tp->fackets_out)) 1658 tp->fackets_out = 0; 1659 tcp_highest_sack_reset(sk); 1660 } 1661 1662 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1663 num_sacks, prior_snd_una); 1664 if (found_dup_sack) 1665 state.flag |= FLAG_DSACKING_ACK; 1666 1667 /* Eliminate too old ACKs, but take into 1668 * account more or less fresh ones, they can 1669 * contain valid SACK info. 1670 */ 1671 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1672 return 0; 1673 1674 if (!tp->packets_out) 1675 goto out; 1676 1677 used_sacks = 0; 1678 first_sack_index = 0; 1679 for (i = 0; i < num_sacks; i++) { 1680 bool dup_sack = !i && found_dup_sack; 1681 1682 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1683 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1684 1685 if (!tcp_is_sackblock_valid(tp, dup_sack, 1686 sp[used_sacks].start_seq, 1687 sp[used_sacks].end_seq)) { 1688 int mib_idx; 1689 1690 if (dup_sack) { 1691 if (!tp->undo_marker) 1692 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1693 else 1694 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1695 } else { 1696 /* Don't count olds caused by ACK reordering */ 1697 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1698 !after(sp[used_sacks].end_seq, tp->snd_una)) 1699 continue; 1700 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1701 } 1702 1703 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1704 if (i == 0) 1705 first_sack_index = -1; 1706 continue; 1707 } 1708 1709 /* Ignore very old stuff early */ 1710 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1711 continue; 1712 1713 used_sacks++; 1714 } 1715 1716 /* order SACK blocks to allow in order walk of the retrans queue */ 1717 for (i = used_sacks - 1; i > 0; i--) { 1718 for (j = 0; j < i; j++) { 1719 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1720 swap(sp[j], sp[j + 1]); 1721 1722 /* Track where the first SACK block goes to */ 1723 if (j == first_sack_index) 1724 first_sack_index = j + 1; 1725 } 1726 } 1727 } 1728 1729 skb = tcp_write_queue_head(sk); 1730 state.fack_count = 0; 1731 i = 0; 1732 1733 if (!tp->sacked_out) { 1734 /* It's already past, so skip checking against it */ 1735 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1736 } else { 1737 cache = tp->recv_sack_cache; 1738 /* Skip empty blocks in at head of the cache */ 1739 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1740 !cache->end_seq) 1741 cache++; 1742 } 1743 1744 while (i < used_sacks) { 1745 u32 start_seq = sp[i].start_seq; 1746 u32 end_seq = sp[i].end_seq; 1747 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1748 struct tcp_sack_block *next_dup = NULL; 1749 1750 if (found_dup_sack && ((i + 1) == first_sack_index)) 1751 next_dup = &sp[i + 1]; 1752 1753 /* Skip too early cached blocks */ 1754 while (tcp_sack_cache_ok(tp, cache) && 1755 !before(start_seq, cache->end_seq)) 1756 cache++; 1757 1758 /* Can skip some work by looking recv_sack_cache? */ 1759 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1760 after(end_seq, cache->start_seq)) { 1761 1762 /* Head todo? */ 1763 if (before(start_seq, cache->start_seq)) { 1764 skb = tcp_sacktag_skip(skb, sk, &state, 1765 start_seq); 1766 skb = tcp_sacktag_walk(skb, sk, next_dup, 1767 &state, 1768 start_seq, 1769 cache->start_seq, 1770 dup_sack); 1771 } 1772 1773 /* Rest of the block already fully processed? */ 1774 if (!after(end_seq, cache->end_seq)) 1775 goto advance_sp; 1776 1777 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1778 &state, 1779 cache->end_seq); 1780 1781 /* ...tail remains todo... */ 1782 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1783 /* ...but better entrypoint exists! */ 1784 skb = tcp_highest_sack(sk); 1785 if (skb == NULL) 1786 break; 1787 state.fack_count = tp->fackets_out; 1788 cache++; 1789 goto walk; 1790 } 1791 1792 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1793 /* Check overlap against next cached too (past this one already) */ 1794 cache++; 1795 continue; 1796 } 1797 1798 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1799 skb = tcp_highest_sack(sk); 1800 if (skb == NULL) 1801 break; 1802 state.fack_count = tp->fackets_out; 1803 } 1804 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1805 1806 walk: 1807 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1808 start_seq, end_seq, dup_sack); 1809 1810 advance_sp: 1811 i++; 1812 } 1813 1814 /* Clear the head of the cache sack blocks so we can skip it next time */ 1815 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1816 tp->recv_sack_cache[i].start_seq = 0; 1817 tp->recv_sack_cache[i].end_seq = 0; 1818 } 1819 for (j = 0; j < used_sacks; j++) 1820 tp->recv_sack_cache[i++] = sp[j]; 1821 1822 tcp_mark_lost_retrans(sk); 1823 1824 tcp_verify_left_out(tp); 1825 1826 if ((state.reord < tp->fackets_out) && 1827 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1828 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1829 1830 out: 1831 1832 #if FASTRETRANS_DEBUG > 0 1833 WARN_ON((int)tp->sacked_out < 0); 1834 WARN_ON((int)tp->lost_out < 0); 1835 WARN_ON((int)tp->retrans_out < 0); 1836 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1837 #endif 1838 *sack_rtt_us = state.rtt_us; 1839 return state.flag; 1840 } 1841 1842 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1843 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1844 */ 1845 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1846 { 1847 u32 holes; 1848 1849 holes = max(tp->lost_out, 1U); 1850 holes = min(holes, tp->packets_out); 1851 1852 if ((tp->sacked_out + holes) > tp->packets_out) { 1853 tp->sacked_out = tp->packets_out - holes; 1854 return true; 1855 } 1856 return false; 1857 } 1858 1859 /* If we receive more dupacks than we expected counting segments 1860 * in assumption of absent reordering, interpret this as reordering. 1861 * The only another reason could be bug in receiver TCP. 1862 */ 1863 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1864 { 1865 struct tcp_sock *tp = tcp_sk(sk); 1866 if (tcp_limit_reno_sacked(tp)) 1867 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1868 } 1869 1870 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1871 1872 static void tcp_add_reno_sack(struct sock *sk) 1873 { 1874 struct tcp_sock *tp = tcp_sk(sk); 1875 tp->sacked_out++; 1876 tcp_check_reno_reordering(sk, 0); 1877 tcp_verify_left_out(tp); 1878 } 1879 1880 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1881 1882 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1883 { 1884 struct tcp_sock *tp = tcp_sk(sk); 1885 1886 if (acked > 0) { 1887 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1888 if (acked - 1 >= tp->sacked_out) 1889 tp->sacked_out = 0; 1890 else 1891 tp->sacked_out -= acked - 1; 1892 } 1893 tcp_check_reno_reordering(sk, acked); 1894 tcp_verify_left_out(tp); 1895 } 1896 1897 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1898 { 1899 tp->sacked_out = 0; 1900 } 1901 1902 void tcp_clear_retrans(struct tcp_sock *tp) 1903 { 1904 tp->retrans_out = 0; 1905 tp->lost_out = 0; 1906 tp->undo_marker = 0; 1907 tp->undo_retrans = -1; 1908 tp->fackets_out = 0; 1909 tp->sacked_out = 0; 1910 } 1911 1912 static inline void tcp_init_undo(struct tcp_sock *tp) 1913 { 1914 tp->undo_marker = tp->snd_una; 1915 /* Retransmission still in flight may cause DSACKs later. */ 1916 tp->undo_retrans = tp->retrans_out ? : -1; 1917 } 1918 1919 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1920 * and reset tags completely, otherwise preserve SACKs. If receiver 1921 * dropped its ofo queue, we will know this due to reneging detection. 1922 */ 1923 void tcp_enter_loss(struct sock *sk) 1924 { 1925 const struct inet_connection_sock *icsk = inet_csk(sk); 1926 struct tcp_sock *tp = tcp_sk(sk); 1927 struct sk_buff *skb; 1928 bool new_recovery = false; 1929 bool is_reneg; /* is receiver reneging on SACKs? */ 1930 1931 /* Reduce ssthresh if it has not yet been made inside this window. */ 1932 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1933 !after(tp->high_seq, tp->snd_una) || 1934 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1935 new_recovery = true; 1936 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1937 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1938 tcp_ca_event(sk, CA_EVENT_LOSS); 1939 tcp_init_undo(tp); 1940 } 1941 tp->snd_cwnd = 1; 1942 tp->snd_cwnd_cnt = 0; 1943 tp->snd_cwnd_stamp = tcp_time_stamp; 1944 1945 tp->retrans_out = 0; 1946 tp->lost_out = 0; 1947 1948 if (tcp_is_reno(tp)) 1949 tcp_reset_reno_sack(tp); 1950 1951 skb = tcp_write_queue_head(sk); 1952 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1953 if (is_reneg) { 1954 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1955 tp->sacked_out = 0; 1956 tp->fackets_out = 0; 1957 } 1958 tcp_clear_all_retrans_hints(tp); 1959 1960 tcp_for_write_queue(skb, sk) { 1961 if (skb == tcp_send_head(sk)) 1962 break; 1963 1964 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1965 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1966 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1967 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1968 tp->lost_out += tcp_skb_pcount(skb); 1969 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1970 } 1971 } 1972 tcp_verify_left_out(tp); 1973 1974 /* Timeout in disordered state after receiving substantial DUPACKs 1975 * suggests that the degree of reordering is over-estimated. 1976 */ 1977 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1978 tp->sacked_out >= sysctl_tcp_reordering) 1979 tp->reordering = min_t(unsigned int, tp->reordering, 1980 sysctl_tcp_reordering); 1981 tcp_set_ca_state(sk, TCP_CA_Loss); 1982 tp->high_seq = tp->snd_nxt; 1983 tcp_ecn_queue_cwr(tp); 1984 1985 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1986 * loss recovery is underway except recurring timeout(s) on 1987 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1988 */ 1989 tp->frto = sysctl_tcp_frto && 1990 (new_recovery || icsk->icsk_retransmits) && 1991 !inet_csk(sk)->icsk_mtup.probe_size; 1992 } 1993 1994 /* If ACK arrived pointing to a remembered SACK, it means that our 1995 * remembered SACKs do not reflect real state of receiver i.e. 1996 * receiver _host_ is heavily congested (or buggy). 1997 * 1998 * To avoid big spurious retransmission bursts due to transient SACK 1999 * scoreboard oddities that look like reneging, we give the receiver a 2000 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2001 * restore sanity to the SACK scoreboard. If the apparent reneging 2002 * persists until this RTO then we'll clear the SACK scoreboard. 2003 */ 2004 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2005 { 2006 if (flag & FLAG_SACK_RENEGING) { 2007 struct tcp_sock *tp = tcp_sk(sk); 2008 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2009 msecs_to_jiffies(10)); 2010 2011 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2012 delay, TCP_RTO_MAX); 2013 return true; 2014 } 2015 return false; 2016 } 2017 2018 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2019 { 2020 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2021 } 2022 2023 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2024 * counter when SACK is enabled (without SACK, sacked_out is used for 2025 * that purpose). 2026 * 2027 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2028 * segments up to the highest received SACK block so far and holes in 2029 * between them. 2030 * 2031 * With reordering, holes may still be in flight, so RFC3517 recovery 2032 * uses pure sacked_out (total number of SACKed segments) even though 2033 * it violates the RFC that uses duplicate ACKs, often these are equal 2034 * but when e.g. out-of-window ACKs or packet duplication occurs, 2035 * they differ. Since neither occurs due to loss, TCP should really 2036 * ignore them. 2037 */ 2038 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2039 { 2040 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2041 } 2042 2043 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2044 { 2045 struct tcp_sock *tp = tcp_sk(sk); 2046 unsigned long delay; 2047 2048 /* Delay early retransmit and entering fast recovery for 2049 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2050 * available, or RTO is scheduled to fire first. 2051 */ 2052 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2053 (flag & FLAG_ECE) || !tp->srtt_us) 2054 return false; 2055 2056 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2057 msecs_to_jiffies(2)); 2058 2059 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2060 return false; 2061 2062 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2063 TCP_RTO_MAX); 2064 return true; 2065 } 2066 2067 /* Linux NewReno/SACK/FACK/ECN state machine. 2068 * -------------------------------------- 2069 * 2070 * "Open" Normal state, no dubious events, fast path. 2071 * "Disorder" In all the respects it is "Open", 2072 * but requires a bit more attention. It is entered when 2073 * we see some SACKs or dupacks. It is split of "Open" 2074 * mainly to move some processing from fast path to slow one. 2075 * "CWR" CWND was reduced due to some Congestion Notification event. 2076 * It can be ECN, ICMP source quench, local device congestion. 2077 * "Recovery" CWND was reduced, we are fast-retransmitting. 2078 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2079 * 2080 * tcp_fastretrans_alert() is entered: 2081 * - each incoming ACK, if state is not "Open" 2082 * - when arrived ACK is unusual, namely: 2083 * * SACK 2084 * * Duplicate ACK. 2085 * * ECN ECE. 2086 * 2087 * Counting packets in flight is pretty simple. 2088 * 2089 * in_flight = packets_out - left_out + retrans_out 2090 * 2091 * packets_out is SND.NXT-SND.UNA counted in packets. 2092 * 2093 * retrans_out is number of retransmitted segments. 2094 * 2095 * left_out is number of segments left network, but not ACKed yet. 2096 * 2097 * left_out = sacked_out + lost_out 2098 * 2099 * sacked_out: Packets, which arrived to receiver out of order 2100 * and hence not ACKed. With SACKs this number is simply 2101 * amount of SACKed data. Even without SACKs 2102 * it is easy to give pretty reliable estimate of this number, 2103 * counting duplicate ACKs. 2104 * 2105 * lost_out: Packets lost by network. TCP has no explicit 2106 * "loss notification" feedback from network (for now). 2107 * It means that this number can be only _guessed_. 2108 * Actually, it is the heuristics to predict lossage that 2109 * distinguishes different algorithms. 2110 * 2111 * F.e. after RTO, when all the queue is considered as lost, 2112 * lost_out = packets_out and in_flight = retrans_out. 2113 * 2114 * Essentially, we have now two algorithms counting 2115 * lost packets. 2116 * 2117 * FACK: It is the simplest heuristics. As soon as we decided 2118 * that something is lost, we decide that _all_ not SACKed 2119 * packets until the most forward SACK are lost. I.e. 2120 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2121 * It is absolutely correct estimate, if network does not reorder 2122 * packets. And it loses any connection to reality when reordering 2123 * takes place. We use FACK by default until reordering 2124 * is suspected on the path to this destination. 2125 * 2126 * NewReno: when Recovery is entered, we assume that one segment 2127 * is lost (classic Reno). While we are in Recovery and 2128 * a partial ACK arrives, we assume that one more packet 2129 * is lost (NewReno). This heuristics are the same in NewReno 2130 * and SACK. 2131 * 2132 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2133 * deflation etc. CWND is real congestion window, never inflated, changes 2134 * only according to classic VJ rules. 2135 * 2136 * Really tricky (and requiring careful tuning) part of algorithm 2137 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2138 * The first determines the moment _when_ we should reduce CWND and, 2139 * hence, slow down forward transmission. In fact, it determines the moment 2140 * when we decide that hole is caused by loss, rather than by a reorder. 2141 * 2142 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2143 * holes, caused by lost packets. 2144 * 2145 * And the most logically complicated part of algorithm is undo 2146 * heuristics. We detect false retransmits due to both too early 2147 * fast retransmit (reordering) and underestimated RTO, analyzing 2148 * timestamps and D-SACKs. When we detect that some segments were 2149 * retransmitted by mistake and CWND reduction was wrong, we undo 2150 * window reduction and abort recovery phase. This logic is hidden 2151 * inside several functions named tcp_try_undo_<something>. 2152 */ 2153 2154 /* This function decides, when we should leave Disordered state 2155 * and enter Recovery phase, reducing congestion window. 2156 * 2157 * Main question: may we further continue forward transmission 2158 * with the same cwnd? 2159 */ 2160 static bool tcp_time_to_recover(struct sock *sk, int flag) 2161 { 2162 struct tcp_sock *tp = tcp_sk(sk); 2163 __u32 packets_out; 2164 2165 /* Trick#1: The loss is proven. */ 2166 if (tp->lost_out) 2167 return true; 2168 2169 /* Not-A-Trick#2 : Classic rule... */ 2170 if (tcp_dupack_heuristics(tp) > tp->reordering) 2171 return true; 2172 2173 /* Trick#4: It is still not OK... But will it be useful to delay 2174 * recovery more? 2175 */ 2176 packets_out = tp->packets_out; 2177 if (packets_out <= tp->reordering && 2178 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2179 !tcp_may_send_now(sk)) { 2180 /* We have nothing to send. This connection is limited 2181 * either by receiver window or by application. 2182 */ 2183 return true; 2184 } 2185 2186 /* If a thin stream is detected, retransmit after first 2187 * received dupack. Employ only if SACK is supported in order 2188 * to avoid possible corner-case series of spurious retransmissions 2189 * Use only if there are no unsent data. 2190 */ 2191 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2192 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2193 tcp_is_sack(tp) && !tcp_send_head(sk)) 2194 return true; 2195 2196 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2197 * retransmissions due to small network reorderings, we implement 2198 * Mitigation A.3 in the RFC and delay the retransmission for a short 2199 * interval if appropriate. 2200 */ 2201 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2202 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2203 !tcp_may_send_now(sk)) 2204 return !tcp_pause_early_retransmit(sk, flag); 2205 2206 return false; 2207 } 2208 2209 /* Detect loss in event "A" above by marking head of queue up as lost. 2210 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2211 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2212 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2213 * the maximum SACKed segments to pass before reaching this limit. 2214 */ 2215 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2216 { 2217 struct tcp_sock *tp = tcp_sk(sk); 2218 struct sk_buff *skb; 2219 int cnt, oldcnt; 2220 int err; 2221 unsigned int mss; 2222 /* Use SACK to deduce losses of new sequences sent during recovery */ 2223 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2224 2225 WARN_ON(packets > tp->packets_out); 2226 if (tp->lost_skb_hint) { 2227 skb = tp->lost_skb_hint; 2228 cnt = tp->lost_cnt_hint; 2229 /* Head already handled? */ 2230 if (mark_head && skb != tcp_write_queue_head(sk)) 2231 return; 2232 } else { 2233 skb = tcp_write_queue_head(sk); 2234 cnt = 0; 2235 } 2236 2237 tcp_for_write_queue_from(skb, sk) { 2238 if (skb == tcp_send_head(sk)) 2239 break; 2240 /* TODO: do this better */ 2241 /* this is not the most efficient way to do this... */ 2242 tp->lost_skb_hint = skb; 2243 tp->lost_cnt_hint = cnt; 2244 2245 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2246 break; 2247 2248 oldcnt = cnt; 2249 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2250 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2251 cnt += tcp_skb_pcount(skb); 2252 2253 if (cnt > packets) { 2254 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2255 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2256 (oldcnt >= packets)) 2257 break; 2258 2259 mss = skb_shinfo(skb)->gso_size; 2260 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, 2261 mss, GFP_ATOMIC); 2262 if (err < 0) 2263 break; 2264 cnt = packets; 2265 } 2266 2267 tcp_skb_mark_lost(tp, skb); 2268 2269 if (mark_head) 2270 break; 2271 } 2272 tcp_verify_left_out(tp); 2273 } 2274 2275 /* Account newly detected lost packet(s) */ 2276 2277 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2278 { 2279 struct tcp_sock *tp = tcp_sk(sk); 2280 2281 if (tcp_is_reno(tp)) { 2282 tcp_mark_head_lost(sk, 1, 1); 2283 } else if (tcp_is_fack(tp)) { 2284 int lost = tp->fackets_out - tp->reordering; 2285 if (lost <= 0) 2286 lost = 1; 2287 tcp_mark_head_lost(sk, lost, 0); 2288 } else { 2289 int sacked_upto = tp->sacked_out - tp->reordering; 2290 if (sacked_upto >= 0) 2291 tcp_mark_head_lost(sk, sacked_upto, 0); 2292 else if (fast_rexmit) 2293 tcp_mark_head_lost(sk, 1, 1); 2294 } 2295 } 2296 2297 /* CWND moderation, preventing bursts due to too big ACKs 2298 * in dubious situations. 2299 */ 2300 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2301 { 2302 tp->snd_cwnd = min(tp->snd_cwnd, 2303 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2304 tp->snd_cwnd_stamp = tcp_time_stamp; 2305 } 2306 2307 /* Nothing was retransmitted or returned timestamp is less 2308 * than timestamp of the first retransmission. 2309 */ 2310 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2311 { 2312 return !tp->retrans_stamp || 2313 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2314 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2315 } 2316 2317 /* Undo procedures. */ 2318 2319 #if FASTRETRANS_DEBUG > 1 2320 static void DBGUNDO(struct sock *sk, const char *msg) 2321 { 2322 struct tcp_sock *tp = tcp_sk(sk); 2323 struct inet_sock *inet = inet_sk(sk); 2324 2325 if (sk->sk_family == AF_INET) { 2326 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2327 msg, 2328 &inet->inet_daddr, ntohs(inet->inet_dport), 2329 tp->snd_cwnd, tcp_left_out(tp), 2330 tp->snd_ssthresh, tp->prior_ssthresh, 2331 tp->packets_out); 2332 } 2333 #if IS_ENABLED(CONFIG_IPV6) 2334 else if (sk->sk_family == AF_INET6) { 2335 struct ipv6_pinfo *np = inet6_sk(sk); 2336 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2337 msg, 2338 &np->daddr, ntohs(inet->inet_dport), 2339 tp->snd_cwnd, tcp_left_out(tp), 2340 tp->snd_ssthresh, tp->prior_ssthresh, 2341 tp->packets_out); 2342 } 2343 #endif 2344 } 2345 #else 2346 #define DBGUNDO(x...) do { } while (0) 2347 #endif 2348 2349 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2350 { 2351 struct tcp_sock *tp = tcp_sk(sk); 2352 2353 if (unmark_loss) { 2354 struct sk_buff *skb; 2355 2356 tcp_for_write_queue(skb, sk) { 2357 if (skb == tcp_send_head(sk)) 2358 break; 2359 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2360 } 2361 tp->lost_out = 0; 2362 tcp_clear_all_retrans_hints(tp); 2363 } 2364 2365 if (tp->prior_ssthresh) { 2366 const struct inet_connection_sock *icsk = inet_csk(sk); 2367 2368 if (icsk->icsk_ca_ops->undo_cwnd) 2369 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2370 else 2371 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2372 2373 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2374 tp->snd_ssthresh = tp->prior_ssthresh; 2375 tcp_ecn_withdraw_cwr(tp); 2376 } 2377 } else { 2378 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2379 } 2380 tp->snd_cwnd_stamp = tcp_time_stamp; 2381 tp->undo_marker = 0; 2382 } 2383 2384 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2385 { 2386 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2387 } 2388 2389 /* People celebrate: "We love our President!" */ 2390 static bool tcp_try_undo_recovery(struct sock *sk) 2391 { 2392 struct tcp_sock *tp = tcp_sk(sk); 2393 2394 if (tcp_may_undo(tp)) { 2395 int mib_idx; 2396 2397 /* Happy end! We did not retransmit anything 2398 * or our original transmission succeeded. 2399 */ 2400 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2401 tcp_undo_cwnd_reduction(sk, false); 2402 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2403 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2404 else 2405 mib_idx = LINUX_MIB_TCPFULLUNDO; 2406 2407 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2408 } 2409 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2410 /* Hold old state until something *above* high_seq 2411 * is ACKed. For Reno it is MUST to prevent false 2412 * fast retransmits (RFC2582). SACK TCP is safe. */ 2413 tcp_moderate_cwnd(tp); 2414 return true; 2415 } 2416 tcp_set_ca_state(sk, TCP_CA_Open); 2417 return false; 2418 } 2419 2420 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2421 static bool tcp_try_undo_dsack(struct sock *sk) 2422 { 2423 struct tcp_sock *tp = tcp_sk(sk); 2424 2425 if (tp->undo_marker && !tp->undo_retrans) { 2426 DBGUNDO(sk, "D-SACK"); 2427 tcp_undo_cwnd_reduction(sk, false); 2428 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2429 return true; 2430 } 2431 return false; 2432 } 2433 2434 /* We can clear retrans_stamp when there are no retransmissions in the 2435 * window. It would seem that it is trivially available for us in 2436 * tp->retrans_out, however, that kind of assumptions doesn't consider 2437 * what will happen if errors occur when sending retransmission for the 2438 * second time. ...It could the that such segment has only 2439 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2440 * the head skb is enough except for some reneging corner cases that 2441 * are not worth the effort. 2442 * 2443 * Main reason for all this complexity is the fact that connection dying 2444 * time now depends on the validity of the retrans_stamp, in particular, 2445 * that successive retransmissions of a segment must not advance 2446 * retrans_stamp under any conditions. 2447 */ 2448 static bool tcp_any_retrans_done(const struct sock *sk) 2449 { 2450 const struct tcp_sock *tp = tcp_sk(sk); 2451 struct sk_buff *skb; 2452 2453 if (tp->retrans_out) 2454 return true; 2455 2456 skb = tcp_write_queue_head(sk); 2457 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2458 return true; 2459 2460 return false; 2461 } 2462 2463 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2464 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2465 { 2466 struct tcp_sock *tp = tcp_sk(sk); 2467 2468 if (frto_undo || tcp_may_undo(tp)) { 2469 tcp_undo_cwnd_reduction(sk, true); 2470 2471 DBGUNDO(sk, "partial loss"); 2472 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2473 if (frto_undo) 2474 NET_INC_STATS_BH(sock_net(sk), 2475 LINUX_MIB_TCPSPURIOUSRTOS); 2476 inet_csk(sk)->icsk_retransmits = 0; 2477 if (frto_undo || tcp_is_sack(tp)) 2478 tcp_set_ca_state(sk, TCP_CA_Open); 2479 return true; 2480 } 2481 return false; 2482 } 2483 2484 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2485 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2486 * It computes the number of packets to send (sndcnt) based on packets newly 2487 * delivered: 2488 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2489 * cwnd reductions across a full RTT. 2490 * 2) If packets in flight is lower than ssthresh (such as due to excess 2491 * losses and/or application stalls), do not perform any further cwnd 2492 * reductions, but instead slow start up to ssthresh. 2493 */ 2494 static void tcp_init_cwnd_reduction(struct sock *sk) 2495 { 2496 struct tcp_sock *tp = tcp_sk(sk); 2497 2498 tp->high_seq = tp->snd_nxt; 2499 tp->tlp_high_seq = 0; 2500 tp->snd_cwnd_cnt = 0; 2501 tp->prior_cwnd = tp->snd_cwnd; 2502 tp->prr_delivered = 0; 2503 tp->prr_out = 0; 2504 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2505 tcp_ecn_queue_cwr(tp); 2506 } 2507 2508 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2509 int fast_rexmit) 2510 { 2511 struct tcp_sock *tp = tcp_sk(sk); 2512 int sndcnt = 0; 2513 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2514 int newly_acked_sacked = prior_unsacked - 2515 (tp->packets_out - tp->sacked_out); 2516 2517 tp->prr_delivered += newly_acked_sacked; 2518 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2519 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2520 tp->prior_cwnd - 1; 2521 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2522 } else { 2523 sndcnt = min_t(int, delta, 2524 max_t(int, tp->prr_delivered - tp->prr_out, 2525 newly_acked_sacked) + 1); 2526 } 2527 2528 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2529 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2530 } 2531 2532 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2533 { 2534 struct tcp_sock *tp = tcp_sk(sk); 2535 2536 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2537 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2538 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2539 tp->snd_cwnd = tp->snd_ssthresh; 2540 tp->snd_cwnd_stamp = tcp_time_stamp; 2541 } 2542 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2543 } 2544 2545 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2546 void tcp_enter_cwr(struct sock *sk) 2547 { 2548 struct tcp_sock *tp = tcp_sk(sk); 2549 2550 tp->prior_ssthresh = 0; 2551 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2552 tp->undo_marker = 0; 2553 tcp_init_cwnd_reduction(sk); 2554 tcp_set_ca_state(sk, TCP_CA_CWR); 2555 } 2556 } 2557 2558 static void tcp_try_keep_open(struct sock *sk) 2559 { 2560 struct tcp_sock *tp = tcp_sk(sk); 2561 int state = TCP_CA_Open; 2562 2563 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2564 state = TCP_CA_Disorder; 2565 2566 if (inet_csk(sk)->icsk_ca_state != state) { 2567 tcp_set_ca_state(sk, state); 2568 tp->high_seq = tp->snd_nxt; 2569 } 2570 } 2571 2572 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2573 { 2574 struct tcp_sock *tp = tcp_sk(sk); 2575 2576 tcp_verify_left_out(tp); 2577 2578 if (!tcp_any_retrans_done(sk)) 2579 tp->retrans_stamp = 0; 2580 2581 if (flag & FLAG_ECE) 2582 tcp_enter_cwr(sk); 2583 2584 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2585 tcp_try_keep_open(sk); 2586 } else { 2587 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2588 } 2589 } 2590 2591 static void tcp_mtup_probe_failed(struct sock *sk) 2592 { 2593 struct inet_connection_sock *icsk = inet_csk(sk); 2594 2595 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2596 icsk->icsk_mtup.probe_size = 0; 2597 } 2598 2599 static void tcp_mtup_probe_success(struct sock *sk) 2600 { 2601 struct tcp_sock *tp = tcp_sk(sk); 2602 struct inet_connection_sock *icsk = inet_csk(sk); 2603 2604 /* FIXME: breaks with very large cwnd */ 2605 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2606 tp->snd_cwnd = tp->snd_cwnd * 2607 tcp_mss_to_mtu(sk, tp->mss_cache) / 2608 icsk->icsk_mtup.probe_size; 2609 tp->snd_cwnd_cnt = 0; 2610 tp->snd_cwnd_stamp = tcp_time_stamp; 2611 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2612 2613 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2614 icsk->icsk_mtup.probe_size = 0; 2615 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2616 } 2617 2618 /* Do a simple retransmit without using the backoff mechanisms in 2619 * tcp_timer. This is used for path mtu discovery. 2620 * The socket is already locked here. 2621 */ 2622 void tcp_simple_retransmit(struct sock *sk) 2623 { 2624 const struct inet_connection_sock *icsk = inet_csk(sk); 2625 struct tcp_sock *tp = tcp_sk(sk); 2626 struct sk_buff *skb; 2627 unsigned int mss = tcp_current_mss(sk); 2628 u32 prior_lost = tp->lost_out; 2629 2630 tcp_for_write_queue(skb, sk) { 2631 if (skb == tcp_send_head(sk)) 2632 break; 2633 if (tcp_skb_seglen(skb) > mss && 2634 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2635 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2636 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2637 tp->retrans_out -= tcp_skb_pcount(skb); 2638 } 2639 tcp_skb_mark_lost_uncond_verify(tp, skb); 2640 } 2641 } 2642 2643 tcp_clear_retrans_hints_partial(tp); 2644 2645 if (prior_lost == tp->lost_out) 2646 return; 2647 2648 if (tcp_is_reno(tp)) 2649 tcp_limit_reno_sacked(tp); 2650 2651 tcp_verify_left_out(tp); 2652 2653 /* Don't muck with the congestion window here. 2654 * Reason is that we do not increase amount of _data_ 2655 * in network, but units changed and effective 2656 * cwnd/ssthresh really reduced now. 2657 */ 2658 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2659 tp->high_seq = tp->snd_nxt; 2660 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2661 tp->prior_ssthresh = 0; 2662 tp->undo_marker = 0; 2663 tcp_set_ca_state(sk, TCP_CA_Loss); 2664 } 2665 tcp_xmit_retransmit_queue(sk); 2666 } 2667 EXPORT_SYMBOL(tcp_simple_retransmit); 2668 2669 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2670 { 2671 struct tcp_sock *tp = tcp_sk(sk); 2672 int mib_idx; 2673 2674 if (tcp_is_reno(tp)) 2675 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2676 else 2677 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2678 2679 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2680 2681 tp->prior_ssthresh = 0; 2682 tcp_init_undo(tp); 2683 2684 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2685 if (!ece_ack) 2686 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2687 tcp_init_cwnd_reduction(sk); 2688 } 2689 tcp_set_ca_state(sk, TCP_CA_Recovery); 2690 } 2691 2692 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2693 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2694 */ 2695 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 bool recovered = !before(tp->snd_una, tp->high_seq); 2699 2700 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2701 /* Step 3.b. A timeout is spurious if not all data are 2702 * lost, i.e., never-retransmitted data are (s)acked. 2703 */ 2704 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED)) 2705 return; 2706 2707 if (after(tp->snd_nxt, tp->high_seq) && 2708 (flag & FLAG_DATA_SACKED || is_dupack)) { 2709 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2710 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2711 tp->high_seq = tp->snd_nxt; 2712 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2713 TCP_NAGLE_OFF); 2714 if (after(tp->snd_nxt, tp->high_seq)) 2715 return; /* Step 2.b */ 2716 tp->frto = 0; 2717 } 2718 } 2719 2720 if (recovered) { 2721 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2722 tcp_try_undo_recovery(sk); 2723 return; 2724 } 2725 if (tcp_is_reno(tp)) { 2726 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2727 * delivered. Lower inflight to clock out (re)tranmissions. 2728 */ 2729 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2730 tcp_add_reno_sack(sk); 2731 else if (flag & FLAG_SND_UNA_ADVANCED) 2732 tcp_reset_reno_sack(tp); 2733 } 2734 if (tcp_try_undo_loss(sk, false)) 2735 return; 2736 tcp_xmit_retransmit_queue(sk); 2737 } 2738 2739 /* Undo during fast recovery after partial ACK. */ 2740 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2741 const int prior_unsacked) 2742 { 2743 struct tcp_sock *tp = tcp_sk(sk); 2744 2745 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2746 /* Plain luck! Hole if filled with delayed 2747 * packet, rather than with a retransmit. 2748 */ 2749 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2750 2751 /* We are getting evidence that the reordering degree is higher 2752 * than we realized. If there are no retransmits out then we 2753 * can undo. Otherwise we clock out new packets but do not 2754 * mark more packets lost or retransmit more. 2755 */ 2756 if (tp->retrans_out) { 2757 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2758 return true; 2759 } 2760 2761 if (!tcp_any_retrans_done(sk)) 2762 tp->retrans_stamp = 0; 2763 2764 DBGUNDO(sk, "partial recovery"); 2765 tcp_undo_cwnd_reduction(sk, true); 2766 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2767 tcp_try_keep_open(sk); 2768 return true; 2769 } 2770 return false; 2771 } 2772 2773 /* Process an event, which can update packets-in-flight not trivially. 2774 * Main goal of this function is to calculate new estimate for left_out, 2775 * taking into account both packets sitting in receiver's buffer and 2776 * packets lost by network. 2777 * 2778 * Besides that it does CWND reduction, when packet loss is detected 2779 * and changes state of machine. 2780 * 2781 * It does _not_ decide what to send, it is made in function 2782 * tcp_xmit_retransmit_queue(). 2783 */ 2784 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2785 const int prior_unsacked, 2786 bool is_dupack, int flag) 2787 { 2788 struct inet_connection_sock *icsk = inet_csk(sk); 2789 struct tcp_sock *tp = tcp_sk(sk); 2790 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2791 (tcp_fackets_out(tp) > tp->reordering)); 2792 int fast_rexmit = 0; 2793 2794 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2795 tp->sacked_out = 0; 2796 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2797 tp->fackets_out = 0; 2798 2799 /* Now state machine starts. 2800 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2801 if (flag & FLAG_ECE) 2802 tp->prior_ssthresh = 0; 2803 2804 /* B. In all the states check for reneging SACKs. */ 2805 if (tcp_check_sack_reneging(sk, flag)) 2806 return; 2807 2808 /* C. Check consistency of the current state. */ 2809 tcp_verify_left_out(tp); 2810 2811 /* D. Check state exit conditions. State can be terminated 2812 * when high_seq is ACKed. */ 2813 if (icsk->icsk_ca_state == TCP_CA_Open) { 2814 WARN_ON(tp->retrans_out != 0); 2815 tp->retrans_stamp = 0; 2816 } else if (!before(tp->snd_una, tp->high_seq)) { 2817 switch (icsk->icsk_ca_state) { 2818 case TCP_CA_CWR: 2819 /* CWR is to be held something *above* high_seq 2820 * is ACKed for CWR bit to reach receiver. */ 2821 if (tp->snd_una != tp->high_seq) { 2822 tcp_end_cwnd_reduction(sk); 2823 tcp_set_ca_state(sk, TCP_CA_Open); 2824 } 2825 break; 2826 2827 case TCP_CA_Recovery: 2828 if (tcp_is_reno(tp)) 2829 tcp_reset_reno_sack(tp); 2830 if (tcp_try_undo_recovery(sk)) 2831 return; 2832 tcp_end_cwnd_reduction(sk); 2833 break; 2834 } 2835 } 2836 2837 /* E. Process state. */ 2838 switch (icsk->icsk_ca_state) { 2839 case TCP_CA_Recovery: 2840 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2841 if (tcp_is_reno(tp) && is_dupack) 2842 tcp_add_reno_sack(sk); 2843 } else { 2844 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2845 return; 2846 /* Partial ACK arrived. Force fast retransmit. */ 2847 do_lost = tcp_is_reno(tp) || 2848 tcp_fackets_out(tp) > tp->reordering; 2849 } 2850 if (tcp_try_undo_dsack(sk)) { 2851 tcp_try_keep_open(sk); 2852 return; 2853 } 2854 break; 2855 case TCP_CA_Loss: 2856 tcp_process_loss(sk, flag, is_dupack); 2857 if (icsk->icsk_ca_state != TCP_CA_Open) 2858 return; 2859 /* Fall through to processing in Open state. */ 2860 default: 2861 if (tcp_is_reno(tp)) { 2862 if (flag & FLAG_SND_UNA_ADVANCED) 2863 tcp_reset_reno_sack(tp); 2864 if (is_dupack) 2865 tcp_add_reno_sack(sk); 2866 } 2867 2868 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2869 tcp_try_undo_dsack(sk); 2870 2871 if (!tcp_time_to_recover(sk, flag)) { 2872 tcp_try_to_open(sk, flag, prior_unsacked); 2873 return; 2874 } 2875 2876 /* MTU probe failure: don't reduce cwnd */ 2877 if (icsk->icsk_ca_state < TCP_CA_CWR && 2878 icsk->icsk_mtup.probe_size && 2879 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2880 tcp_mtup_probe_failed(sk); 2881 /* Restores the reduction we did in tcp_mtup_probe() */ 2882 tp->snd_cwnd++; 2883 tcp_simple_retransmit(sk); 2884 return; 2885 } 2886 2887 /* Otherwise enter Recovery state */ 2888 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2889 fast_rexmit = 1; 2890 } 2891 2892 if (do_lost) 2893 tcp_update_scoreboard(sk, fast_rexmit); 2894 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2895 tcp_xmit_retransmit_queue(sk); 2896 } 2897 2898 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2899 long seq_rtt_us, long sack_rtt_us) 2900 { 2901 const struct tcp_sock *tp = tcp_sk(sk); 2902 2903 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2904 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2905 * Karn's algorithm forbids taking RTT if some retransmitted data 2906 * is acked (RFC6298). 2907 */ 2908 if (flag & FLAG_RETRANS_DATA_ACKED) 2909 seq_rtt_us = -1L; 2910 2911 if (seq_rtt_us < 0) 2912 seq_rtt_us = sack_rtt_us; 2913 2914 /* RTTM Rule: A TSecr value received in a segment is used to 2915 * update the averaged RTT measurement only if the segment 2916 * acknowledges some new data, i.e., only if it advances the 2917 * left edge of the send window. 2918 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2919 */ 2920 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2921 flag & FLAG_ACKED) 2922 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2923 2924 if (seq_rtt_us < 0) 2925 return false; 2926 2927 tcp_rtt_estimator(sk, seq_rtt_us); 2928 tcp_set_rto(sk); 2929 2930 /* RFC6298: only reset backoff on valid RTT measurement. */ 2931 inet_csk(sk)->icsk_backoff = 0; 2932 return true; 2933 } 2934 2935 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2936 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2937 { 2938 struct tcp_sock *tp = tcp_sk(sk); 2939 long seq_rtt_us = -1L; 2940 2941 if (synack_stamp && !tp->total_retrans) 2942 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2943 2944 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2945 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2946 */ 2947 if (!tp->srtt_us) 2948 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2949 } 2950 2951 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2952 { 2953 const struct inet_connection_sock *icsk = inet_csk(sk); 2954 2955 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2956 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2957 } 2958 2959 /* Restart timer after forward progress on connection. 2960 * RFC2988 recommends to restart timer to now+rto. 2961 */ 2962 void tcp_rearm_rto(struct sock *sk) 2963 { 2964 const struct inet_connection_sock *icsk = inet_csk(sk); 2965 struct tcp_sock *tp = tcp_sk(sk); 2966 2967 /* If the retrans timer is currently being used by Fast Open 2968 * for SYN-ACK retrans purpose, stay put. 2969 */ 2970 if (tp->fastopen_rsk) 2971 return; 2972 2973 if (!tp->packets_out) { 2974 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2975 } else { 2976 u32 rto = inet_csk(sk)->icsk_rto; 2977 /* Offset the time elapsed after installing regular RTO */ 2978 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2979 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2980 struct sk_buff *skb = tcp_write_queue_head(sk); 2981 const u32 rto_time_stamp = 2982 tcp_skb_timestamp(skb) + rto; 2983 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2984 /* delta may not be positive if the socket is locked 2985 * when the retrans timer fires and is rescheduled. 2986 */ 2987 if (delta > 0) 2988 rto = delta; 2989 } 2990 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2991 TCP_RTO_MAX); 2992 } 2993 } 2994 2995 /* This function is called when the delayed ER timer fires. TCP enters 2996 * fast recovery and performs fast-retransmit. 2997 */ 2998 void tcp_resume_early_retransmit(struct sock *sk) 2999 { 3000 struct tcp_sock *tp = tcp_sk(sk); 3001 3002 tcp_rearm_rto(sk); 3003 3004 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3005 if (!tp->do_early_retrans) 3006 return; 3007 3008 tcp_enter_recovery(sk, false); 3009 tcp_update_scoreboard(sk, 1); 3010 tcp_xmit_retransmit_queue(sk); 3011 } 3012 3013 /* If we get here, the whole TSO packet has not been acked. */ 3014 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3015 { 3016 struct tcp_sock *tp = tcp_sk(sk); 3017 u32 packets_acked; 3018 3019 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3020 3021 packets_acked = tcp_skb_pcount(skb); 3022 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3023 return 0; 3024 packets_acked -= tcp_skb_pcount(skb); 3025 3026 if (packets_acked) { 3027 BUG_ON(tcp_skb_pcount(skb) == 0); 3028 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3029 } 3030 3031 return packets_acked; 3032 } 3033 3034 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3035 u32 prior_snd_una) 3036 { 3037 const struct skb_shared_info *shinfo; 3038 3039 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3040 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) 3041 return; 3042 3043 shinfo = skb_shinfo(skb); 3044 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && 3045 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) 3046 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3047 } 3048 3049 /* Remove acknowledged frames from the retransmission queue. If our packet 3050 * is before the ack sequence we can discard it as it's confirmed to have 3051 * arrived at the other end. 3052 */ 3053 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3054 u32 prior_snd_una, long sack_rtt_us) 3055 { 3056 const struct inet_connection_sock *icsk = inet_csk(sk); 3057 struct skb_mstamp first_ackt, last_ackt, now; 3058 struct tcp_sock *tp = tcp_sk(sk); 3059 u32 prior_sacked = tp->sacked_out; 3060 u32 reord = tp->packets_out; 3061 bool fully_acked = true; 3062 long ca_seq_rtt_us = -1L; 3063 long seq_rtt_us = -1L; 3064 struct sk_buff *skb; 3065 u32 pkts_acked = 0; 3066 bool rtt_update; 3067 int flag = 0; 3068 3069 first_ackt.v64 = 0; 3070 3071 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3072 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3073 u8 sacked = scb->sacked; 3074 u32 acked_pcount; 3075 3076 tcp_ack_tstamp(sk, skb, prior_snd_una); 3077 3078 /* Determine how many packets and what bytes were acked, tso and else */ 3079 if (after(scb->end_seq, tp->snd_una)) { 3080 if (tcp_skb_pcount(skb) == 1 || 3081 !after(tp->snd_una, scb->seq)) 3082 break; 3083 3084 acked_pcount = tcp_tso_acked(sk, skb); 3085 if (!acked_pcount) 3086 break; 3087 3088 fully_acked = false; 3089 } else { 3090 /* Speedup tcp_unlink_write_queue() and next loop */ 3091 prefetchw(skb->next); 3092 acked_pcount = tcp_skb_pcount(skb); 3093 } 3094 3095 if (unlikely(sacked & TCPCB_RETRANS)) { 3096 if (sacked & TCPCB_SACKED_RETRANS) 3097 tp->retrans_out -= acked_pcount; 3098 flag |= FLAG_RETRANS_DATA_ACKED; 3099 } else { 3100 last_ackt = skb->skb_mstamp; 3101 WARN_ON_ONCE(last_ackt.v64 == 0); 3102 if (!first_ackt.v64) 3103 first_ackt = last_ackt; 3104 3105 if (!(sacked & TCPCB_SACKED_ACKED)) 3106 reord = min(pkts_acked, reord); 3107 if (!after(scb->end_seq, tp->high_seq)) 3108 flag |= FLAG_ORIG_SACK_ACKED; 3109 } 3110 3111 if (sacked & TCPCB_SACKED_ACKED) 3112 tp->sacked_out -= acked_pcount; 3113 if (sacked & TCPCB_LOST) 3114 tp->lost_out -= acked_pcount; 3115 3116 tp->packets_out -= acked_pcount; 3117 pkts_acked += acked_pcount; 3118 3119 /* Initial outgoing SYN's get put onto the write_queue 3120 * just like anything else we transmit. It is not 3121 * true data, and if we misinform our callers that 3122 * this ACK acks real data, we will erroneously exit 3123 * connection startup slow start one packet too 3124 * quickly. This is severely frowned upon behavior. 3125 */ 3126 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3127 flag |= FLAG_DATA_ACKED; 3128 } else { 3129 flag |= FLAG_SYN_ACKED; 3130 tp->retrans_stamp = 0; 3131 } 3132 3133 if (!fully_acked) 3134 break; 3135 3136 tcp_unlink_write_queue(skb, sk); 3137 sk_wmem_free_skb(sk, skb); 3138 if (unlikely(skb == tp->retransmit_skb_hint)) 3139 tp->retransmit_skb_hint = NULL; 3140 if (unlikely(skb == tp->lost_skb_hint)) 3141 tp->lost_skb_hint = NULL; 3142 } 3143 3144 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3145 tp->snd_up = tp->snd_una; 3146 3147 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3148 flag |= FLAG_SACK_RENEGING; 3149 3150 skb_mstamp_get(&now); 3151 if (likely(first_ackt.v64)) { 3152 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3153 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3154 } 3155 3156 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3157 3158 if (flag & FLAG_ACKED) { 3159 const struct tcp_congestion_ops *ca_ops 3160 = inet_csk(sk)->icsk_ca_ops; 3161 3162 tcp_rearm_rto(sk); 3163 if (unlikely(icsk->icsk_mtup.probe_size && 3164 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3165 tcp_mtup_probe_success(sk); 3166 } 3167 3168 if (tcp_is_reno(tp)) { 3169 tcp_remove_reno_sacks(sk, pkts_acked); 3170 } else { 3171 int delta; 3172 3173 /* Non-retransmitted hole got filled? That's reordering */ 3174 if (reord < prior_fackets) 3175 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3176 3177 delta = tcp_is_fack(tp) ? pkts_acked : 3178 prior_sacked - tp->sacked_out; 3179 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3180 } 3181 3182 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3183 3184 if (ca_ops->pkts_acked) 3185 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us); 3186 3187 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3188 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3189 /* Do not re-arm RTO if the sack RTT is measured from data sent 3190 * after when the head was last (re)transmitted. Otherwise the 3191 * timeout may continue to extend in loss recovery. 3192 */ 3193 tcp_rearm_rto(sk); 3194 } 3195 3196 #if FASTRETRANS_DEBUG > 0 3197 WARN_ON((int)tp->sacked_out < 0); 3198 WARN_ON((int)tp->lost_out < 0); 3199 WARN_ON((int)tp->retrans_out < 0); 3200 if (!tp->packets_out && tcp_is_sack(tp)) { 3201 icsk = inet_csk(sk); 3202 if (tp->lost_out) { 3203 pr_debug("Leak l=%u %d\n", 3204 tp->lost_out, icsk->icsk_ca_state); 3205 tp->lost_out = 0; 3206 } 3207 if (tp->sacked_out) { 3208 pr_debug("Leak s=%u %d\n", 3209 tp->sacked_out, icsk->icsk_ca_state); 3210 tp->sacked_out = 0; 3211 } 3212 if (tp->retrans_out) { 3213 pr_debug("Leak r=%u %d\n", 3214 tp->retrans_out, icsk->icsk_ca_state); 3215 tp->retrans_out = 0; 3216 } 3217 } 3218 #endif 3219 return flag; 3220 } 3221 3222 static void tcp_ack_probe(struct sock *sk) 3223 { 3224 const struct tcp_sock *tp = tcp_sk(sk); 3225 struct inet_connection_sock *icsk = inet_csk(sk); 3226 3227 /* Was it a usable window open? */ 3228 3229 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3230 icsk->icsk_backoff = 0; 3231 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3232 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3233 * This function is not for random using! 3234 */ 3235 } else { 3236 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 3237 3238 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3239 when, TCP_RTO_MAX); 3240 } 3241 } 3242 3243 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3244 { 3245 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3246 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3247 } 3248 3249 /* Decide wheather to run the increase function of congestion control. */ 3250 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3251 { 3252 if (tcp_in_cwnd_reduction(sk)) 3253 return false; 3254 3255 /* If reordering is high then always grow cwnd whenever data is 3256 * delivered regardless of its ordering. Otherwise stay conservative 3257 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3258 * new SACK or ECE mark may first advance cwnd here and later reduce 3259 * cwnd in tcp_fastretrans_alert() based on more states. 3260 */ 3261 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3262 return flag & FLAG_FORWARD_PROGRESS; 3263 3264 return flag & FLAG_DATA_ACKED; 3265 } 3266 3267 /* Check that window update is acceptable. 3268 * The function assumes that snd_una<=ack<=snd_next. 3269 */ 3270 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3271 const u32 ack, const u32 ack_seq, 3272 const u32 nwin) 3273 { 3274 return after(ack, tp->snd_una) || 3275 after(ack_seq, tp->snd_wl1) || 3276 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3277 } 3278 3279 /* Update our send window. 3280 * 3281 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3282 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3283 */ 3284 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3285 u32 ack_seq) 3286 { 3287 struct tcp_sock *tp = tcp_sk(sk); 3288 int flag = 0; 3289 u32 nwin = ntohs(tcp_hdr(skb)->window); 3290 3291 if (likely(!tcp_hdr(skb)->syn)) 3292 nwin <<= tp->rx_opt.snd_wscale; 3293 3294 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3295 flag |= FLAG_WIN_UPDATE; 3296 tcp_update_wl(tp, ack_seq); 3297 3298 if (tp->snd_wnd != nwin) { 3299 tp->snd_wnd = nwin; 3300 3301 /* Note, it is the only place, where 3302 * fast path is recovered for sending TCP. 3303 */ 3304 tp->pred_flags = 0; 3305 tcp_fast_path_check(sk); 3306 3307 if (nwin > tp->max_window) { 3308 tp->max_window = nwin; 3309 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3310 } 3311 } 3312 } 3313 3314 tp->snd_una = ack; 3315 3316 return flag; 3317 } 3318 3319 /* RFC 5961 7 [ACK Throttling] */ 3320 static void tcp_send_challenge_ack(struct sock *sk) 3321 { 3322 /* unprotected vars, we dont care of overwrites */ 3323 static u32 challenge_timestamp; 3324 static unsigned int challenge_count; 3325 u32 now = jiffies / HZ; 3326 3327 if (now != challenge_timestamp) { 3328 challenge_timestamp = now; 3329 challenge_count = 0; 3330 } 3331 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3332 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3333 tcp_send_ack(sk); 3334 } 3335 } 3336 3337 static void tcp_store_ts_recent(struct tcp_sock *tp) 3338 { 3339 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3340 tp->rx_opt.ts_recent_stamp = get_seconds(); 3341 } 3342 3343 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3344 { 3345 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3346 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3347 * extra check below makes sure this can only happen 3348 * for pure ACK frames. -DaveM 3349 * 3350 * Not only, also it occurs for expired timestamps. 3351 */ 3352 3353 if (tcp_paws_check(&tp->rx_opt, 0)) 3354 tcp_store_ts_recent(tp); 3355 } 3356 } 3357 3358 /* This routine deals with acks during a TLP episode. 3359 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3360 */ 3361 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3362 { 3363 struct tcp_sock *tp = tcp_sk(sk); 3364 bool is_tlp_dupack = (ack == tp->tlp_high_seq) && 3365 !(flag & (FLAG_SND_UNA_ADVANCED | 3366 FLAG_NOT_DUP | FLAG_DATA_SACKED)); 3367 3368 /* Mark the end of TLP episode on receiving TLP dupack or when 3369 * ack is after tlp_high_seq. 3370 */ 3371 if (is_tlp_dupack) { 3372 tp->tlp_high_seq = 0; 3373 return; 3374 } 3375 3376 if (after(ack, tp->tlp_high_seq)) { 3377 tp->tlp_high_seq = 0; 3378 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */ 3379 if (!(flag & FLAG_DSACKING_ACK)) { 3380 tcp_init_cwnd_reduction(sk); 3381 tcp_set_ca_state(sk, TCP_CA_CWR); 3382 tcp_end_cwnd_reduction(sk); 3383 tcp_try_keep_open(sk); 3384 NET_INC_STATS_BH(sock_net(sk), 3385 LINUX_MIB_TCPLOSSPROBERECOVERY); 3386 } 3387 } 3388 } 3389 3390 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3391 { 3392 const struct inet_connection_sock *icsk = inet_csk(sk); 3393 3394 if (icsk->icsk_ca_ops->in_ack_event) 3395 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3396 } 3397 3398 /* This routine deals with incoming acks, but not outgoing ones. */ 3399 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3400 { 3401 struct inet_connection_sock *icsk = inet_csk(sk); 3402 struct tcp_sock *tp = tcp_sk(sk); 3403 u32 prior_snd_una = tp->snd_una; 3404 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3405 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3406 bool is_dupack = false; 3407 u32 prior_fackets; 3408 int prior_packets = tp->packets_out; 3409 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3410 int acked = 0; /* Number of packets newly acked */ 3411 long sack_rtt_us = -1L; 3412 3413 /* We very likely will need to access write queue head. */ 3414 prefetchw(sk->sk_write_queue.next); 3415 3416 /* If the ack is older than previous acks 3417 * then we can probably ignore it. 3418 */ 3419 if (before(ack, prior_snd_una)) { 3420 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3421 if (before(ack, prior_snd_una - tp->max_window)) { 3422 tcp_send_challenge_ack(sk); 3423 return -1; 3424 } 3425 goto old_ack; 3426 } 3427 3428 /* If the ack includes data we haven't sent yet, discard 3429 * this segment (RFC793 Section 3.9). 3430 */ 3431 if (after(ack, tp->snd_nxt)) 3432 goto invalid_ack; 3433 3434 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3435 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3436 tcp_rearm_rto(sk); 3437 3438 if (after(ack, prior_snd_una)) { 3439 flag |= FLAG_SND_UNA_ADVANCED; 3440 icsk->icsk_retransmits = 0; 3441 } 3442 3443 prior_fackets = tp->fackets_out; 3444 3445 /* ts_recent update must be made after we are sure that the packet 3446 * is in window. 3447 */ 3448 if (flag & FLAG_UPDATE_TS_RECENT) 3449 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3450 3451 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3452 /* Window is constant, pure forward advance. 3453 * No more checks are required. 3454 * Note, we use the fact that SND.UNA>=SND.WL2. 3455 */ 3456 tcp_update_wl(tp, ack_seq); 3457 tp->snd_una = ack; 3458 flag |= FLAG_WIN_UPDATE; 3459 3460 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3461 3462 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3463 } else { 3464 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3465 3466 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3467 flag |= FLAG_DATA; 3468 else 3469 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3470 3471 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3472 3473 if (TCP_SKB_CB(skb)->sacked) 3474 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3475 &sack_rtt_us); 3476 3477 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3478 flag |= FLAG_ECE; 3479 ack_ev_flags |= CA_ACK_ECE; 3480 } 3481 3482 if (flag & FLAG_WIN_UPDATE) 3483 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3484 3485 tcp_in_ack_event(sk, ack_ev_flags); 3486 } 3487 3488 /* We passed data and got it acked, remove any soft error 3489 * log. Something worked... 3490 */ 3491 sk->sk_err_soft = 0; 3492 icsk->icsk_probes_out = 0; 3493 tp->rcv_tstamp = tcp_time_stamp; 3494 if (!prior_packets) 3495 goto no_queue; 3496 3497 /* See if we can take anything off of the retransmit queue. */ 3498 acked = tp->packets_out; 3499 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3500 sack_rtt_us); 3501 acked -= tp->packets_out; 3502 3503 /* Advance cwnd if state allows */ 3504 if (tcp_may_raise_cwnd(sk, flag)) 3505 tcp_cong_avoid(sk, ack, acked); 3506 3507 if (tcp_ack_is_dubious(sk, flag)) { 3508 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3509 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3510 is_dupack, flag); 3511 } 3512 if (tp->tlp_high_seq) 3513 tcp_process_tlp_ack(sk, ack, flag); 3514 3515 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3516 struct dst_entry *dst = __sk_dst_get(sk); 3517 if (dst) 3518 dst_confirm(dst); 3519 } 3520 3521 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3522 tcp_schedule_loss_probe(sk); 3523 tcp_update_pacing_rate(sk); 3524 return 1; 3525 3526 no_queue: 3527 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3528 if (flag & FLAG_DSACKING_ACK) 3529 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3530 is_dupack, flag); 3531 /* If this ack opens up a zero window, clear backoff. It was 3532 * being used to time the probes, and is probably far higher than 3533 * it needs to be for normal retransmission. 3534 */ 3535 if (tcp_send_head(sk)) 3536 tcp_ack_probe(sk); 3537 3538 if (tp->tlp_high_seq) 3539 tcp_process_tlp_ack(sk, ack, flag); 3540 return 1; 3541 3542 invalid_ack: 3543 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3544 return -1; 3545 3546 old_ack: 3547 /* If data was SACKed, tag it and see if we should send more data. 3548 * If data was DSACKed, see if we can undo a cwnd reduction. 3549 */ 3550 if (TCP_SKB_CB(skb)->sacked) { 3551 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3552 &sack_rtt_us); 3553 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3554 is_dupack, flag); 3555 } 3556 3557 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3558 return 0; 3559 } 3560 3561 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3562 * But, this can also be called on packets in the established flow when 3563 * the fast version below fails. 3564 */ 3565 void tcp_parse_options(const struct sk_buff *skb, 3566 struct tcp_options_received *opt_rx, int estab, 3567 struct tcp_fastopen_cookie *foc) 3568 { 3569 const unsigned char *ptr; 3570 const struct tcphdr *th = tcp_hdr(skb); 3571 int length = (th->doff * 4) - sizeof(struct tcphdr); 3572 3573 ptr = (const unsigned char *)(th + 1); 3574 opt_rx->saw_tstamp = 0; 3575 3576 while (length > 0) { 3577 int opcode = *ptr++; 3578 int opsize; 3579 3580 switch (opcode) { 3581 case TCPOPT_EOL: 3582 return; 3583 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3584 length--; 3585 continue; 3586 default: 3587 opsize = *ptr++; 3588 if (opsize < 2) /* "silly options" */ 3589 return; 3590 if (opsize > length) 3591 return; /* don't parse partial options */ 3592 switch (opcode) { 3593 case TCPOPT_MSS: 3594 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3595 u16 in_mss = get_unaligned_be16(ptr); 3596 if (in_mss) { 3597 if (opt_rx->user_mss && 3598 opt_rx->user_mss < in_mss) 3599 in_mss = opt_rx->user_mss; 3600 opt_rx->mss_clamp = in_mss; 3601 } 3602 } 3603 break; 3604 case TCPOPT_WINDOW: 3605 if (opsize == TCPOLEN_WINDOW && th->syn && 3606 !estab && sysctl_tcp_window_scaling) { 3607 __u8 snd_wscale = *(__u8 *)ptr; 3608 opt_rx->wscale_ok = 1; 3609 if (snd_wscale > 14) { 3610 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3611 __func__, 3612 snd_wscale); 3613 snd_wscale = 14; 3614 } 3615 opt_rx->snd_wscale = snd_wscale; 3616 } 3617 break; 3618 case TCPOPT_TIMESTAMP: 3619 if ((opsize == TCPOLEN_TIMESTAMP) && 3620 ((estab && opt_rx->tstamp_ok) || 3621 (!estab && sysctl_tcp_timestamps))) { 3622 opt_rx->saw_tstamp = 1; 3623 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3624 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3625 } 3626 break; 3627 case TCPOPT_SACK_PERM: 3628 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3629 !estab && sysctl_tcp_sack) { 3630 opt_rx->sack_ok = TCP_SACK_SEEN; 3631 tcp_sack_reset(opt_rx); 3632 } 3633 break; 3634 3635 case TCPOPT_SACK: 3636 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3637 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3638 opt_rx->sack_ok) { 3639 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3640 } 3641 break; 3642 #ifdef CONFIG_TCP_MD5SIG 3643 case TCPOPT_MD5SIG: 3644 /* 3645 * The MD5 Hash has already been 3646 * checked (see tcp_v{4,6}_do_rcv()). 3647 */ 3648 break; 3649 #endif 3650 case TCPOPT_EXP: 3651 /* Fast Open option shares code 254 using a 3652 * 16 bits magic number. It's valid only in 3653 * SYN or SYN-ACK with an even size. 3654 */ 3655 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3656 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3657 foc == NULL || !th->syn || (opsize & 1)) 3658 break; 3659 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3660 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3661 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3662 memcpy(foc->val, ptr + 2, foc->len); 3663 else if (foc->len != 0) 3664 foc->len = -1; 3665 break; 3666 3667 } 3668 ptr += opsize-2; 3669 length -= opsize; 3670 } 3671 } 3672 } 3673 EXPORT_SYMBOL(tcp_parse_options); 3674 3675 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3676 { 3677 const __be32 *ptr = (const __be32 *)(th + 1); 3678 3679 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3680 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3681 tp->rx_opt.saw_tstamp = 1; 3682 ++ptr; 3683 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3684 ++ptr; 3685 if (*ptr) 3686 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3687 else 3688 tp->rx_opt.rcv_tsecr = 0; 3689 return true; 3690 } 3691 return false; 3692 } 3693 3694 /* Fast parse options. This hopes to only see timestamps. 3695 * If it is wrong it falls back on tcp_parse_options(). 3696 */ 3697 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3698 const struct tcphdr *th, struct tcp_sock *tp) 3699 { 3700 /* In the spirit of fast parsing, compare doff directly to constant 3701 * values. Because equality is used, short doff can be ignored here. 3702 */ 3703 if (th->doff == (sizeof(*th) / 4)) { 3704 tp->rx_opt.saw_tstamp = 0; 3705 return false; 3706 } else if (tp->rx_opt.tstamp_ok && 3707 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3708 if (tcp_parse_aligned_timestamp(tp, th)) 3709 return true; 3710 } 3711 3712 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3713 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3714 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3715 3716 return true; 3717 } 3718 3719 #ifdef CONFIG_TCP_MD5SIG 3720 /* 3721 * Parse MD5 Signature option 3722 */ 3723 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3724 { 3725 int length = (th->doff << 2) - sizeof(*th); 3726 const u8 *ptr = (const u8 *)(th + 1); 3727 3728 /* If the TCP option is too short, we can short cut */ 3729 if (length < TCPOLEN_MD5SIG) 3730 return NULL; 3731 3732 while (length > 0) { 3733 int opcode = *ptr++; 3734 int opsize; 3735 3736 switch (opcode) { 3737 case TCPOPT_EOL: 3738 return NULL; 3739 case TCPOPT_NOP: 3740 length--; 3741 continue; 3742 default: 3743 opsize = *ptr++; 3744 if (opsize < 2 || opsize > length) 3745 return NULL; 3746 if (opcode == TCPOPT_MD5SIG) 3747 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3748 } 3749 ptr += opsize - 2; 3750 length -= opsize; 3751 } 3752 return NULL; 3753 } 3754 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3755 #endif 3756 3757 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3758 * 3759 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3760 * it can pass through stack. So, the following predicate verifies that 3761 * this segment is not used for anything but congestion avoidance or 3762 * fast retransmit. Moreover, we even are able to eliminate most of such 3763 * second order effects, if we apply some small "replay" window (~RTO) 3764 * to timestamp space. 3765 * 3766 * All these measures still do not guarantee that we reject wrapped ACKs 3767 * on networks with high bandwidth, when sequence space is recycled fastly, 3768 * but it guarantees that such events will be very rare and do not affect 3769 * connection seriously. This doesn't look nice, but alas, PAWS is really 3770 * buggy extension. 3771 * 3772 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3773 * states that events when retransmit arrives after original data are rare. 3774 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3775 * the biggest problem on large power networks even with minor reordering. 3776 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3777 * up to bandwidth of 18Gigabit/sec. 8) ] 3778 */ 3779 3780 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3781 { 3782 const struct tcp_sock *tp = tcp_sk(sk); 3783 const struct tcphdr *th = tcp_hdr(skb); 3784 u32 seq = TCP_SKB_CB(skb)->seq; 3785 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3786 3787 return (/* 1. Pure ACK with correct sequence number. */ 3788 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3789 3790 /* 2. ... and duplicate ACK. */ 3791 ack == tp->snd_una && 3792 3793 /* 3. ... and does not update window. */ 3794 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3795 3796 /* 4. ... and sits in replay window. */ 3797 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3798 } 3799 3800 static inline bool tcp_paws_discard(const struct sock *sk, 3801 const struct sk_buff *skb) 3802 { 3803 const struct tcp_sock *tp = tcp_sk(sk); 3804 3805 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3806 !tcp_disordered_ack(sk, skb); 3807 } 3808 3809 /* Check segment sequence number for validity. 3810 * 3811 * Segment controls are considered valid, if the segment 3812 * fits to the window after truncation to the window. Acceptability 3813 * of data (and SYN, FIN, of course) is checked separately. 3814 * See tcp_data_queue(), for example. 3815 * 3816 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3817 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3818 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3819 * (borrowed from freebsd) 3820 */ 3821 3822 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3823 { 3824 return !before(end_seq, tp->rcv_wup) && 3825 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3826 } 3827 3828 /* When we get a reset we do this. */ 3829 void tcp_reset(struct sock *sk) 3830 { 3831 /* We want the right error as BSD sees it (and indeed as we do). */ 3832 switch (sk->sk_state) { 3833 case TCP_SYN_SENT: 3834 sk->sk_err = ECONNREFUSED; 3835 break; 3836 case TCP_CLOSE_WAIT: 3837 sk->sk_err = EPIPE; 3838 break; 3839 case TCP_CLOSE: 3840 return; 3841 default: 3842 sk->sk_err = ECONNRESET; 3843 } 3844 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3845 smp_wmb(); 3846 3847 if (!sock_flag(sk, SOCK_DEAD)) 3848 sk->sk_error_report(sk); 3849 3850 tcp_done(sk); 3851 } 3852 3853 /* 3854 * Process the FIN bit. This now behaves as it is supposed to work 3855 * and the FIN takes effect when it is validly part of sequence 3856 * space. Not before when we get holes. 3857 * 3858 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3859 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3860 * TIME-WAIT) 3861 * 3862 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3863 * close and we go into CLOSING (and later onto TIME-WAIT) 3864 * 3865 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3866 */ 3867 static void tcp_fin(struct sock *sk) 3868 { 3869 struct tcp_sock *tp = tcp_sk(sk); 3870 const struct dst_entry *dst; 3871 3872 inet_csk_schedule_ack(sk); 3873 3874 sk->sk_shutdown |= RCV_SHUTDOWN; 3875 sock_set_flag(sk, SOCK_DONE); 3876 3877 switch (sk->sk_state) { 3878 case TCP_SYN_RECV: 3879 case TCP_ESTABLISHED: 3880 /* Move to CLOSE_WAIT */ 3881 tcp_set_state(sk, TCP_CLOSE_WAIT); 3882 dst = __sk_dst_get(sk); 3883 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3884 inet_csk(sk)->icsk_ack.pingpong = 1; 3885 break; 3886 3887 case TCP_CLOSE_WAIT: 3888 case TCP_CLOSING: 3889 /* Received a retransmission of the FIN, do 3890 * nothing. 3891 */ 3892 break; 3893 case TCP_LAST_ACK: 3894 /* RFC793: Remain in the LAST-ACK state. */ 3895 break; 3896 3897 case TCP_FIN_WAIT1: 3898 /* This case occurs when a simultaneous close 3899 * happens, we must ack the received FIN and 3900 * enter the CLOSING state. 3901 */ 3902 tcp_send_ack(sk); 3903 tcp_set_state(sk, TCP_CLOSING); 3904 break; 3905 case TCP_FIN_WAIT2: 3906 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3907 tcp_send_ack(sk); 3908 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3909 break; 3910 default: 3911 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3912 * cases we should never reach this piece of code. 3913 */ 3914 pr_err("%s: Impossible, sk->sk_state=%d\n", 3915 __func__, sk->sk_state); 3916 break; 3917 } 3918 3919 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3920 * Probably, we should reset in this case. For now drop them. 3921 */ 3922 __skb_queue_purge(&tp->out_of_order_queue); 3923 if (tcp_is_sack(tp)) 3924 tcp_sack_reset(&tp->rx_opt); 3925 sk_mem_reclaim(sk); 3926 3927 if (!sock_flag(sk, SOCK_DEAD)) { 3928 sk->sk_state_change(sk); 3929 3930 /* Do not send POLL_HUP for half duplex close. */ 3931 if (sk->sk_shutdown == SHUTDOWN_MASK || 3932 sk->sk_state == TCP_CLOSE) 3933 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3934 else 3935 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3936 } 3937 } 3938 3939 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3940 u32 end_seq) 3941 { 3942 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3943 if (before(seq, sp->start_seq)) 3944 sp->start_seq = seq; 3945 if (after(end_seq, sp->end_seq)) 3946 sp->end_seq = end_seq; 3947 return true; 3948 } 3949 return false; 3950 } 3951 3952 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3953 { 3954 struct tcp_sock *tp = tcp_sk(sk); 3955 3956 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3957 int mib_idx; 3958 3959 if (before(seq, tp->rcv_nxt)) 3960 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3961 else 3962 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3963 3964 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3965 3966 tp->rx_opt.dsack = 1; 3967 tp->duplicate_sack[0].start_seq = seq; 3968 tp->duplicate_sack[0].end_seq = end_seq; 3969 } 3970 } 3971 3972 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3973 { 3974 struct tcp_sock *tp = tcp_sk(sk); 3975 3976 if (!tp->rx_opt.dsack) 3977 tcp_dsack_set(sk, seq, end_seq); 3978 else 3979 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3980 } 3981 3982 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3983 { 3984 struct tcp_sock *tp = tcp_sk(sk); 3985 3986 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3987 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3988 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3989 tcp_enter_quickack_mode(sk); 3990 3991 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3992 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3993 3994 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3995 end_seq = tp->rcv_nxt; 3996 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3997 } 3998 } 3999 4000 tcp_send_ack(sk); 4001 } 4002 4003 /* These routines update the SACK block as out-of-order packets arrive or 4004 * in-order packets close up the sequence space. 4005 */ 4006 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4007 { 4008 int this_sack; 4009 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4010 struct tcp_sack_block *swalk = sp + 1; 4011 4012 /* See if the recent change to the first SACK eats into 4013 * or hits the sequence space of other SACK blocks, if so coalesce. 4014 */ 4015 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4016 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4017 int i; 4018 4019 /* Zap SWALK, by moving every further SACK up by one slot. 4020 * Decrease num_sacks. 4021 */ 4022 tp->rx_opt.num_sacks--; 4023 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4024 sp[i] = sp[i + 1]; 4025 continue; 4026 } 4027 this_sack++, swalk++; 4028 } 4029 } 4030 4031 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4032 { 4033 struct tcp_sock *tp = tcp_sk(sk); 4034 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4035 int cur_sacks = tp->rx_opt.num_sacks; 4036 int this_sack; 4037 4038 if (!cur_sacks) 4039 goto new_sack; 4040 4041 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4042 if (tcp_sack_extend(sp, seq, end_seq)) { 4043 /* Rotate this_sack to the first one. */ 4044 for (; this_sack > 0; this_sack--, sp--) 4045 swap(*sp, *(sp - 1)); 4046 if (cur_sacks > 1) 4047 tcp_sack_maybe_coalesce(tp); 4048 return; 4049 } 4050 } 4051 4052 /* Could not find an adjacent existing SACK, build a new one, 4053 * put it at the front, and shift everyone else down. We 4054 * always know there is at least one SACK present already here. 4055 * 4056 * If the sack array is full, forget about the last one. 4057 */ 4058 if (this_sack >= TCP_NUM_SACKS) { 4059 this_sack--; 4060 tp->rx_opt.num_sacks--; 4061 sp--; 4062 } 4063 for (; this_sack > 0; this_sack--, sp--) 4064 *sp = *(sp - 1); 4065 4066 new_sack: 4067 /* Build the new head SACK, and we're done. */ 4068 sp->start_seq = seq; 4069 sp->end_seq = end_seq; 4070 tp->rx_opt.num_sacks++; 4071 } 4072 4073 /* RCV.NXT advances, some SACKs should be eaten. */ 4074 4075 static void tcp_sack_remove(struct tcp_sock *tp) 4076 { 4077 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4078 int num_sacks = tp->rx_opt.num_sacks; 4079 int this_sack; 4080 4081 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4082 if (skb_queue_empty(&tp->out_of_order_queue)) { 4083 tp->rx_opt.num_sacks = 0; 4084 return; 4085 } 4086 4087 for (this_sack = 0; this_sack < num_sacks;) { 4088 /* Check if the start of the sack is covered by RCV.NXT. */ 4089 if (!before(tp->rcv_nxt, sp->start_seq)) { 4090 int i; 4091 4092 /* RCV.NXT must cover all the block! */ 4093 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4094 4095 /* Zap this SACK, by moving forward any other SACKS. */ 4096 for (i = this_sack+1; i < num_sacks; i++) 4097 tp->selective_acks[i-1] = tp->selective_acks[i]; 4098 num_sacks--; 4099 continue; 4100 } 4101 this_sack++; 4102 sp++; 4103 } 4104 tp->rx_opt.num_sacks = num_sacks; 4105 } 4106 4107 /** 4108 * tcp_try_coalesce - try to merge skb to prior one 4109 * @sk: socket 4110 * @to: prior buffer 4111 * @from: buffer to add in queue 4112 * @fragstolen: pointer to boolean 4113 * 4114 * Before queueing skb @from after @to, try to merge them 4115 * to reduce overall memory use and queue lengths, if cost is small. 4116 * Packets in ofo or receive queues can stay a long time. 4117 * Better try to coalesce them right now to avoid future collapses. 4118 * Returns true if caller should free @from instead of queueing it 4119 */ 4120 static bool tcp_try_coalesce(struct sock *sk, 4121 struct sk_buff *to, 4122 struct sk_buff *from, 4123 bool *fragstolen) 4124 { 4125 int delta; 4126 4127 *fragstolen = false; 4128 4129 /* Its possible this segment overlaps with prior segment in queue */ 4130 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4131 return false; 4132 4133 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4134 return false; 4135 4136 atomic_add(delta, &sk->sk_rmem_alloc); 4137 sk_mem_charge(sk, delta); 4138 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4139 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4140 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4141 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4142 return true; 4143 } 4144 4145 /* This one checks to see if we can put data from the 4146 * out_of_order queue into the receive_queue. 4147 */ 4148 static void tcp_ofo_queue(struct sock *sk) 4149 { 4150 struct tcp_sock *tp = tcp_sk(sk); 4151 __u32 dsack_high = tp->rcv_nxt; 4152 struct sk_buff *skb, *tail; 4153 bool fragstolen, eaten; 4154 4155 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4156 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4157 break; 4158 4159 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4160 __u32 dsack = dsack_high; 4161 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4162 dsack_high = TCP_SKB_CB(skb)->end_seq; 4163 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4164 } 4165 4166 __skb_unlink(skb, &tp->out_of_order_queue); 4167 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4168 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4169 __kfree_skb(skb); 4170 continue; 4171 } 4172 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4173 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4174 TCP_SKB_CB(skb)->end_seq); 4175 4176 tail = skb_peek_tail(&sk->sk_receive_queue); 4177 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4178 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4179 if (!eaten) 4180 __skb_queue_tail(&sk->sk_receive_queue, skb); 4181 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4182 tcp_fin(sk); 4183 if (eaten) 4184 kfree_skb_partial(skb, fragstolen); 4185 } 4186 } 4187 4188 static bool tcp_prune_ofo_queue(struct sock *sk); 4189 static int tcp_prune_queue(struct sock *sk); 4190 4191 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4192 unsigned int size) 4193 { 4194 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4195 !sk_rmem_schedule(sk, skb, size)) { 4196 4197 if (tcp_prune_queue(sk) < 0) 4198 return -1; 4199 4200 if (!sk_rmem_schedule(sk, skb, size)) { 4201 if (!tcp_prune_ofo_queue(sk)) 4202 return -1; 4203 4204 if (!sk_rmem_schedule(sk, skb, size)) 4205 return -1; 4206 } 4207 } 4208 return 0; 4209 } 4210 4211 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4212 { 4213 struct tcp_sock *tp = tcp_sk(sk); 4214 struct sk_buff *skb1; 4215 u32 seq, end_seq; 4216 4217 tcp_ecn_check_ce(tp, skb); 4218 4219 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4220 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4221 __kfree_skb(skb); 4222 return; 4223 } 4224 4225 /* Disable header prediction. */ 4226 tp->pred_flags = 0; 4227 inet_csk_schedule_ack(sk); 4228 4229 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4230 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4231 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4232 4233 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4234 if (!skb1) { 4235 /* Initial out of order segment, build 1 SACK. */ 4236 if (tcp_is_sack(tp)) { 4237 tp->rx_opt.num_sacks = 1; 4238 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4239 tp->selective_acks[0].end_seq = 4240 TCP_SKB_CB(skb)->end_seq; 4241 } 4242 __skb_queue_head(&tp->out_of_order_queue, skb); 4243 goto end; 4244 } 4245 4246 seq = TCP_SKB_CB(skb)->seq; 4247 end_seq = TCP_SKB_CB(skb)->end_seq; 4248 4249 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4250 bool fragstolen; 4251 4252 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4253 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4254 } else { 4255 tcp_grow_window(sk, skb); 4256 kfree_skb_partial(skb, fragstolen); 4257 skb = NULL; 4258 } 4259 4260 if (!tp->rx_opt.num_sacks || 4261 tp->selective_acks[0].end_seq != seq) 4262 goto add_sack; 4263 4264 /* Common case: data arrive in order after hole. */ 4265 tp->selective_acks[0].end_seq = end_seq; 4266 goto end; 4267 } 4268 4269 /* Find place to insert this segment. */ 4270 while (1) { 4271 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4272 break; 4273 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4274 skb1 = NULL; 4275 break; 4276 } 4277 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4278 } 4279 4280 /* Do skb overlap to previous one? */ 4281 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4282 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4283 /* All the bits are present. Drop. */ 4284 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4285 __kfree_skb(skb); 4286 skb = NULL; 4287 tcp_dsack_set(sk, seq, end_seq); 4288 goto add_sack; 4289 } 4290 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4291 /* Partial overlap. */ 4292 tcp_dsack_set(sk, seq, 4293 TCP_SKB_CB(skb1)->end_seq); 4294 } else { 4295 if (skb_queue_is_first(&tp->out_of_order_queue, 4296 skb1)) 4297 skb1 = NULL; 4298 else 4299 skb1 = skb_queue_prev( 4300 &tp->out_of_order_queue, 4301 skb1); 4302 } 4303 } 4304 if (!skb1) 4305 __skb_queue_head(&tp->out_of_order_queue, skb); 4306 else 4307 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4308 4309 /* And clean segments covered by new one as whole. */ 4310 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4311 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4312 4313 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4314 break; 4315 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4316 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4317 end_seq); 4318 break; 4319 } 4320 __skb_unlink(skb1, &tp->out_of_order_queue); 4321 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4322 TCP_SKB_CB(skb1)->end_seq); 4323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4324 __kfree_skb(skb1); 4325 } 4326 4327 add_sack: 4328 if (tcp_is_sack(tp)) 4329 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4330 end: 4331 if (skb) { 4332 tcp_grow_window(sk, skb); 4333 skb_set_owner_r(skb, sk); 4334 } 4335 } 4336 4337 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4338 bool *fragstolen) 4339 { 4340 int eaten; 4341 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4342 4343 __skb_pull(skb, hdrlen); 4344 eaten = (tail && 4345 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4346 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4347 if (!eaten) { 4348 __skb_queue_tail(&sk->sk_receive_queue, skb); 4349 skb_set_owner_r(skb, sk); 4350 } 4351 return eaten; 4352 } 4353 4354 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4355 { 4356 struct sk_buff *skb; 4357 bool fragstolen; 4358 4359 if (size == 0) 4360 return 0; 4361 4362 skb = alloc_skb(size, sk->sk_allocation); 4363 if (!skb) 4364 goto err; 4365 4366 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4367 goto err_free; 4368 4369 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4370 goto err_free; 4371 4372 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4373 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4374 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4375 4376 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4377 WARN_ON_ONCE(fragstolen); /* should not happen */ 4378 __kfree_skb(skb); 4379 } 4380 return size; 4381 4382 err_free: 4383 kfree_skb(skb); 4384 err: 4385 return -ENOMEM; 4386 } 4387 4388 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4389 { 4390 struct tcp_sock *tp = tcp_sk(sk); 4391 int eaten = -1; 4392 bool fragstolen = false; 4393 4394 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4395 goto drop; 4396 4397 skb_dst_drop(skb); 4398 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4399 4400 tcp_ecn_accept_cwr(tp, skb); 4401 4402 tp->rx_opt.dsack = 0; 4403 4404 /* Queue data for delivery to the user. 4405 * Packets in sequence go to the receive queue. 4406 * Out of sequence packets to the out_of_order_queue. 4407 */ 4408 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4409 if (tcp_receive_window(tp) == 0) 4410 goto out_of_window; 4411 4412 /* Ok. In sequence. In window. */ 4413 if (tp->ucopy.task == current && 4414 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4415 sock_owned_by_user(sk) && !tp->urg_data) { 4416 int chunk = min_t(unsigned int, skb->len, 4417 tp->ucopy.len); 4418 4419 __set_current_state(TASK_RUNNING); 4420 4421 local_bh_enable(); 4422 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4423 tp->ucopy.len -= chunk; 4424 tp->copied_seq += chunk; 4425 eaten = (chunk == skb->len); 4426 tcp_rcv_space_adjust(sk); 4427 } 4428 local_bh_disable(); 4429 } 4430 4431 if (eaten <= 0) { 4432 queue_and_out: 4433 if (eaten < 0 && 4434 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4435 goto drop; 4436 4437 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4438 } 4439 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4440 if (skb->len) 4441 tcp_event_data_recv(sk, skb); 4442 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4443 tcp_fin(sk); 4444 4445 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4446 tcp_ofo_queue(sk); 4447 4448 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4449 * gap in queue is filled. 4450 */ 4451 if (skb_queue_empty(&tp->out_of_order_queue)) 4452 inet_csk(sk)->icsk_ack.pingpong = 0; 4453 } 4454 4455 if (tp->rx_opt.num_sacks) 4456 tcp_sack_remove(tp); 4457 4458 tcp_fast_path_check(sk); 4459 4460 if (eaten > 0) 4461 kfree_skb_partial(skb, fragstolen); 4462 if (!sock_flag(sk, SOCK_DEAD)) 4463 sk->sk_data_ready(sk); 4464 return; 4465 } 4466 4467 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4468 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4469 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4470 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4471 4472 out_of_window: 4473 tcp_enter_quickack_mode(sk); 4474 inet_csk_schedule_ack(sk); 4475 drop: 4476 __kfree_skb(skb); 4477 return; 4478 } 4479 4480 /* Out of window. F.e. zero window probe. */ 4481 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4482 goto out_of_window; 4483 4484 tcp_enter_quickack_mode(sk); 4485 4486 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4487 /* Partial packet, seq < rcv_next < end_seq */ 4488 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4489 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4490 TCP_SKB_CB(skb)->end_seq); 4491 4492 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4493 4494 /* If window is closed, drop tail of packet. But after 4495 * remembering D-SACK for its head made in previous line. 4496 */ 4497 if (!tcp_receive_window(tp)) 4498 goto out_of_window; 4499 goto queue_and_out; 4500 } 4501 4502 tcp_data_queue_ofo(sk, skb); 4503 } 4504 4505 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4506 struct sk_buff_head *list) 4507 { 4508 struct sk_buff *next = NULL; 4509 4510 if (!skb_queue_is_last(list, skb)) 4511 next = skb_queue_next(list, skb); 4512 4513 __skb_unlink(skb, list); 4514 __kfree_skb(skb); 4515 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4516 4517 return next; 4518 } 4519 4520 /* Collapse contiguous sequence of skbs head..tail with 4521 * sequence numbers start..end. 4522 * 4523 * If tail is NULL, this means until the end of the list. 4524 * 4525 * Segments with FIN/SYN are not collapsed (only because this 4526 * simplifies code) 4527 */ 4528 static void 4529 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4530 struct sk_buff *head, struct sk_buff *tail, 4531 u32 start, u32 end) 4532 { 4533 struct sk_buff *skb, *n; 4534 bool end_of_skbs; 4535 4536 /* First, check that queue is collapsible and find 4537 * the point where collapsing can be useful. */ 4538 skb = head; 4539 restart: 4540 end_of_skbs = true; 4541 skb_queue_walk_from_safe(list, skb, n) { 4542 if (skb == tail) 4543 break; 4544 /* No new bits? It is possible on ofo queue. */ 4545 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4546 skb = tcp_collapse_one(sk, skb, list); 4547 if (!skb) 4548 break; 4549 goto restart; 4550 } 4551 4552 /* The first skb to collapse is: 4553 * - not SYN/FIN and 4554 * - bloated or contains data before "start" or 4555 * overlaps to the next one. 4556 */ 4557 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4558 (tcp_win_from_space(skb->truesize) > skb->len || 4559 before(TCP_SKB_CB(skb)->seq, start))) { 4560 end_of_skbs = false; 4561 break; 4562 } 4563 4564 if (!skb_queue_is_last(list, skb)) { 4565 struct sk_buff *next = skb_queue_next(list, skb); 4566 if (next != tail && 4567 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4568 end_of_skbs = false; 4569 break; 4570 } 4571 } 4572 4573 /* Decided to skip this, advance start seq. */ 4574 start = TCP_SKB_CB(skb)->end_seq; 4575 } 4576 if (end_of_skbs || 4577 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4578 return; 4579 4580 while (before(start, end)) { 4581 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4582 struct sk_buff *nskb; 4583 4584 nskb = alloc_skb(copy, GFP_ATOMIC); 4585 if (!nskb) 4586 return; 4587 4588 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4589 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4590 __skb_queue_before(list, skb, nskb); 4591 skb_set_owner_r(nskb, sk); 4592 4593 /* Copy data, releasing collapsed skbs. */ 4594 while (copy > 0) { 4595 int offset = start - TCP_SKB_CB(skb)->seq; 4596 int size = TCP_SKB_CB(skb)->end_seq - start; 4597 4598 BUG_ON(offset < 0); 4599 if (size > 0) { 4600 size = min(copy, size); 4601 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4602 BUG(); 4603 TCP_SKB_CB(nskb)->end_seq += size; 4604 copy -= size; 4605 start += size; 4606 } 4607 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4608 skb = tcp_collapse_one(sk, skb, list); 4609 if (!skb || 4610 skb == tail || 4611 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4612 return; 4613 } 4614 } 4615 } 4616 } 4617 4618 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4619 * and tcp_collapse() them until all the queue is collapsed. 4620 */ 4621 static void tcp_collapse_ofo_queue(struct sock *sk) 4622 { 4623 struct tcp_sock *tp = tcp_sk(sk); 4624 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4625 struct sk_buff *head; 4626 u32 start, end; 4627 4628 if (skb == NULL) 4629 return; 4630 4631 start = TCP_SKB_CB(skb)->seq; 4632 end = TCP_SKB_CB(skb)->end_seq; 4633 head = skb; 4634 4635 for (;;) { 4636 struct sk_buff *next = NULL; 4637 4638 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4639 next = skb_queue_next(&tp->out_of_order_queue, skb); 4640 skb = next; 4641 4642 /* Segment is terminated when we see gap or when 4643 * we are at the end of all the queue. */ 4644 if (!skb || 4645 after(TCP_SKB_CB(skb)->seq, end) || 4646 before(TCP_SKB_CB(skb)->end_seq, start)) { 4647 tcp_collapse(sk, &tp->out_of_order_queue, 4648 head, skb, start, end); 4649 head = skb; 4650 if (!skb) 4651 break; 4652 /* Start new segment */ 4653 start = TCP_SKB_CB(skb)->seq; 4654 end = TCP_SKB_CB(skb)->end_seq; 4655 } else { 4656 if (before(TCP_SKB_CB(skb)->seq, start)) 4657 start = TCP_SKB_CB(skb)->seq; 4658 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4659 end = TCP_SKB_CB(skb)->end_seq; 4660 } 4661 } 4662 } 4663 4664 /* 4665 * Purge the out-of-order queue. 4666 * Return true if queue was pruned. 4667 */ 4668 static bool tcp_prune_ofo_queue(struct sock *sk) 4669 { 4670 struct tcp_sock *tp = tcp_sk(sk); 4671 bool res = false; 4672 4673 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4674 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4675 __skb_queue_purge(&tp->out_of_order_queue); 4676 4677 /* Reset SACK state. A conforming SACK implementation will 4678 * do the same at a timeout based retransmit. When a connection 4679 * is in a sad state like this, we care only about integrity 4680 * of the connection not performance. 4681 */ 4682 if (tp->rx_opt.sack_ok) 4683 tcp_sack_reset(&tp->rx_opt); 4684 sk_mem_reclaim(sk); 4685 res = true; 4686 } 4687 return res; 4688 } 4689 4690 /* Reduce allocated memory if we can, trying to get 4691 * the socket within its memory limits again. 4692 * 4693 * Return less than zero if we should start dropping frames 4694 * until the socket owning process reads some of the data 4695 * to stabilize the situation. 4696 */ 4697 static int tcp_prune_queue(struct sock *sk) 4698 { 4699 struct tcp_sock *tp = tcp_sk(sk); 4700 4701 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4702 4703 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4704 4705 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4706 tcp_clamp_window(sk); 4707 else if (sk_under_memory_pressure(sk)) 4708 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4709 4710 tcp_collapse_ofo_queue(sk); 4711 if (!skb_queue_empty(&sk->sk_receive_queue)) 4712 tcp_collapse(sk, &sk->sk_receive_queue, 4713 skb_peek(&sk->sk_receive_queue), 4714 NULL, 4715 tp->copied_seq, tp->rcv_nxt); 4716 sk_mem_reclaim(sk); 4717 4718 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4719 return 0; 4720 4721 /* Collapsing did not help, destructive actions follow. 4722 * This must not ever occur. */ 4723 4724 tcp_prune_ofo_queue(sk); 4725 4726 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4727 return 0; 4728 4729 /* If we are really being abused, tell the caller to silently 4730 * drop receive data on the floor. It will get retransmitted 4731 * and hopefully then we'll have sufficient space. 4732 */ 4733 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4734 4735 /* Massive buffer overcommit. */ 4736 tp->pred_flags = 0; 4737 return -1; 4738 } 4739 4740 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4741 { 4742 const struct tcp_sock *tp = tcp_sk(sk); 4743 4744 /* If the user specified a specific send buffer setting, do 4745 * not modify it. 4746 */ 4747 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4748 return false; 4749 4750 /* If we are under global TCP memory pressure, do not expand. */ 4751 if (sk_under_memory_pressure(sk)) 4752 return false; 4753 4754 /* If we are under soft global TCP memory pressure, do not expand. */ 4755 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4756 return false; 4757 4758 /* If we filled the congestion window, do not expand. */ 4759 if (tp->packets_out >= tp->snd_cwnd) 4760 return false; 4761 4762 return true; 4763 } 4764 4765 /* When incoming ACK allowed to free some skb from write_queue, 4766 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4767 * on the exit from tcp input handler. 4768 * 4769 * PROBLEM: sndbuf expansion does not work well with largesend. 4770 */ 4771 static void tcp_new_space(struct sock *sk) 4772 { 4773 struct tcp_sock *tp = tcp_sk(sk); 4774 4775 if (tcp_should_expand_sndbuf(sk)) { 4776 tcp_sndbuf_expand(sk); 4777 tp->snd_cwnd_stamp = tcp_time_stamp; 4778 } 4779 4780 sk->sk_write_space(sk); 4781 } 4782 4783 static void tcp_check_space(struct sock *sk) 4784 { 4785 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4786 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4787 if (sk->sk_socket && 4788 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4789 tcp_new_space(sk); 4790 } 4791 } 4792 4793 static inline void tcp_data_snd_check(struct sock *sk) 4794 { 4795 tcp_push_pending_frames(sk); 4796 tcp_check_space(sk); 4797 } 4798 4799 /* 4800 * Check if sending an ack is needed. 4801 */ 4802 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4803 { 4804 struct tcp_sock *tp = tcp_sk(sk); 4805 4806 /* More than one full frame received... */ 4807 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4808 /* ... and right edge of window advances far enough. 4809 * (tcp_recvmsg() will send ACK otherwise). Or... 4810 */ 4811 __tcp_select_window(sk) >= tp->rcv_wnd) || 4812 /* We ACK each frame or... */ 4813 tcp_in_quickack_mode(sk) || 4814 /* We have out of order data. */ 4815 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4816 /* Then ack it now */ 4817 tcp_send_ack(sk); 4818 } else { 4819 /* Else, send delayed ack. */ 4820 tcp_send_delayed_ack(sk); 4821 } 4822 } 4823 4824 static inline void tcp_ack_snd_check(struct sock *sk) 4825 { 4826 if (!inet_csk_ack_scheduled(sk)) { 4827 /* We sent a data segment already. */ 4828 return; 4829 } 4830 __tcp_ack_snd_check(sk, 1); 4831 } 4832 4833 /* 4834 * This routine is only called when we have urgent data 4835 * signaled. Its the 'slow' part of tcp_urg. It could be 4836 * moved inline now as tcp_urg is only called from one 4837 * place. We handle URGent data wrong. We have to - as 4838 * BSD still doesn't use the correction from RFC961. 4839 * For 1003.1g we should support a new option TCP_STDURG to permit 4840 * either form (or just set the sysctl tcp_stdurg). 4841 */ 4842 4843 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4844 { 4845 struct tcp_sock *tp = tcp_sk(sk); 4846 u32 ptr = ntohs(th->urg_ptr); 4847 4848 if (ptr && !sysctl_tcp_stdurg) 4849 ptr--; 4850 ptr += ntohl(th->seq); 4851 4852 /* Ignore urgent data that we've already seen and read. */ 4853 if (after(tp->copied_seq, ptr)) 4854 return; 4855 4856 /* Do not replay urg ptr. 4857 * 4858 * NOTE: interesting situation not covered by specs. 4859 * Misbehaving sender may send urg ptr, pointing to segment, 4860 * which we already have in ofo queue. We are not able to fetch 4861 * such data and will stay in TCP_URG_NOTYET until will be eaten 4862 * by recvmsg(). Seems, we are not obliged to handle such wicked 4863 * situations. But it is worth to think about possibility of some 4864 * DoSes using some hypothetical application level deadlock. 4865 */ 4866 if (before(ptr, tp->rcv_nxt)) 4867 return; 4868 4869 /* Do we already have a newer (or duplicate) urgent pointer? */ 4870 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4871 return; 4872 4873 /* Tell the world about our new urgent pointer. */ 4874 sk_send_sigurg(sk); 4875 4876 /* We may be adding urgent data when the last byte read was 4877 * urgent. To do this requires some care. We cannot just ignore 4878 * tp->copied_seq since we would read the last urgent byte again 4879 * as data, nor can we alter copied_seq until this data arrives 4880 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4881 * 4882 * NOTE. Double Dutch. Rendering to plain English: author of comment 4883 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4884 * and expect that both A and B disappear from stream. This is _wrong_. 4885 * Though this happens in BSD with high probability, this is occasional. 4886 * Any application relying on this is buggy. Note also, that fix "works" 4887 * only in this artificial test. Insert some normal data between A and B and we will 4888 * decline of BSD again. Verdict: it is better to remove to trap 4889 * buggy users. 4890 */ 4891 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4892 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4893 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4894 tp->copied_seq++; 4895 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4896 __skb_unlink(skb, &sk->sk_receive_queue); 4897 __kfree_skb(skb); 4898 } 4899 } 4900 4901 tp->urg_data = TCP_URG_NOTYET; 4902 tp->urg_seq = ptr; 4903 4904 /* Disable header prediction. */ 4905 tp->pred_flags = 0; 4906 } 4907 4908 /* This is the 'fast' part of urgent handling. */ 4909 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4910 { 4911 struct tcp_sock *tp = tcp_sk(sk); 4912 4913 /* Check if we get a new urgent pointer - normally not. */ 4914 if (th->urg) 4915 tcp_check_urg(sk, th); 4916 4917 /* Do we wait for any urgent data? - normally not... */ 4918 if (tp->urg_data == TCP_URG_NOTYET) { 4919 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4920 th->syn; 4921 4922 /* Is the urgent pointer pointing into this packet? */ 4923 if (ptr < skb->len) { 4924 u8 tmp; 4925 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4926 BUG(); 4927 tp->urg_data = TCP_URG_VALID | tmp; 4928 if (!sock_flag(sk, SOCK_DEAD)) 4929 sk->sk_data_ready(sk); 4930 } 4931 } 4932 } 4933 4934 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4935 { 4936 struct tcp_sock *tp = tcp_sk(sk); 4937 int chunk = skb->len - hlen; 4938 int err; 4939 4940 local_bh_enable(); 4941 if (skb_csum_unnecessary(skb)) 4942 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4943 else 4944 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4945 tp->ucopy.iov); 4946 4947 if (!err) { 4948 tp->ucopy.len -= chunk; 4949 tp->copied_seq += chunk; 4950 tcp_rcv_space_adjust(sk); 4951 } 4952 4953 local_bh_disable(); 4954 return err; 4955 } 4956 4957 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4958 struct sk_buff *skb) 4959 { 4960 __sum16 result; 4961 4962 if (sock_owned_by_user(sk)) { 4963 local_bh_enable(); 4964 result = __tcp_checksum_complete(skb); 4965 local_bh_disable(); 4966 } else { 4967 result = __tcp_checksum_complete(skb); 4968 } 4969 return result; 4970 } 4971 4972 static inline bool tcp_checksum_complete_user(struct sock *sk, 4973 struct sk_buff *skb) 4974 { 4975 return !skb_csum_unnecessary(skb) && 4976 __tcp_checksum_complete_user(sk, skb); 4977 } 4978 4979 /* Does PAWS and seqno based validation of an incoming segment, flags will 4980 * play significant role here. 4981 */ 4982 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 4983 const struct tcphdr *th, int syn_inerr) 4984 { 4985 struct tcp_sock *tp = tcp_sk(sk); 4986 4987 /* RFC1323: H1. Apply PAWS check first. */ 4988 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4989 tcp_paws_discard(sk, skb)) { 4990 if (!th->rst) { 4991 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 4992 tcp_send_dupack(sk, skb); 4993 goto discard; 4994 } 4995 /* Reset is accepted even if it did not pass PAWS. */ 4996 } 4997 4998 /* Step 1: check sequence number */ 4999 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5000 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5001 * (RST) segments are validated by checking their SEQ-fields." 5002 * And page 69: "If an incoming segment is not acceptable, 5003 * an acknowledgment should be sent in reply (unless the RST 5004 * bit is set, if so drop the segment and return)". 5005 */ 5006 if (!th->rst) { 5007 if (th->syn) 5008 goto syn_challenge; 5009 tcp_send_dupack(sk, skb); 5010 } 5011 goto discard; 5012 } 5013 5014 /* Step 2: check RST bit */ 5015 if (th->rst) { 5016 /* RFC 5961 3.2 : 5017 * If sequence number exactly matches RCV.NXT, then 5018 * RESET the connection 5019 * else 5020 * Send a challenge ACK 5021 */ 5022 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5023 tcp_reset(sk); 5024 else 5025 tcp_send_challenge_ack(sk); 5026 goto discard; 5027 } 5028 5029 /* step 3: check security and precedence [ignored] */ 5030 5031 /* step 4: Check for a SYN 5032 * RFC 5961 4.2 : Send a challenge ack 5033 */ 5034 if (th->syn) { 5035 syn_challenge: 5036 if (syn_inerr) 5037 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5038 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5039 tcp_send_challenge_ack(sk); 5040 goto discard; 5041 } 5042 5043 return true; 5044 5045 discard: 5046 __kfree_skb(skb); 5047 return false; 5048 } 5049 5050 /* 5051 * TCP receive function for the ESTABLISHED state. 5052 * 5053 * It is split into a fast path and a slow path. The fast path is 5054 * disabled when: 5055 * - A zero window was announced from us - zero window probing 5056 * is only handled properly in the slow path. 5057 * - Out of order segments arrived. 5058 * - Urgent data is expected. 5059 * - There is no buffer space left 5060 * - Unexpected TCP flags/window values/header lengths are received 5061 * (detected by checking the TCP header against pred_flags) 5062 * - Data is sent in both directions. Fast path only supports pure senders 5063 * or pure receivers (this means either the sequence number or the ack 5064 * value must stay constant) 5065 * - Unexpected TCP option. 5066 * 5067 * When these conditions are not satisfied it drops into a standard 5068 * receive procedure patterned after RFC793 to handle all cases. 5069 * The first three cases are guaranteed by proper pred_flags setting, 5070 * the rest is checked inline. Fast processing is turned on in 5071 * tcp_data_queue when everything is OK. 5072 */ 5073 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5074 const struct tcphdr *th, unsigned int len) 5075 { 5076 struct tcp_sock *tp = tcp_sk(sk); 5077 5078 if (unlikely(sk->sk_rx_dst == NULL)) 5079 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5080 /* 5081 * Header prediction. 5082 * The code loosely follows the one in the famous 5083 * "30 instruction TCP receive" Van Jacobson mail. 5084 * 5085 * Van's trick is to deposit buffers into socket queue 5086 * on a device interrupt, to call tcp_recv function 5087 * on the receive process context and checksum and copy 5088 * the buffer to user space. smart... 5089 * 5090 * Our current scheme is not silly either but we take the 5091 * extra cost of the net_bh soft interrupt processing... 5092 * We do checksum and copy also but from device to kernel. 5093 */ 5094 5095 tp->rx_opt.saw_tstamp = 0; 5096 5097 /* pred_flags is 0xS?10 << 16 + snd_wnd 5098 * if header_prediction is to be made 5099 * 'S' will always be tp->tcp_header_len >> 2 5100 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5101 * turn it off (when there are holes in the receive 5102 * space for instance) 5103 * PSH flag is ignored. 5104 */ 5105 5106 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5107 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5108 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5109 int tcp_header_len = tp->tcp_header_len; 5110 5111 /* Timestamp header prediction: tcp_header_len 5112 * is automatically equal to th->doff*4 due to pred_flags 5113 * match. 5114 */ 5115 5116 /* Check timestamp */ 5117 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5118 /* No? Slow path! */ 5119 if (!tcp_parse_aligned_timestamp(tp, th)) 5120 goto slow_path; 5121 5122 /* If PAWS failed, check it more carefully in slow path */ 5123 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5124 goto slow_path; 5125 5126 /* DO NOT update ts_recent here, if checksum fails 5127 * and timestamp was corrupted part, it will result 5128 * in a hung connection since we will drop all 5129 * future packets due to the PAWS test. 5130 */ 5131 } 5132 5133 if (len <= tcp_header_len) { 5134 /* Bulk data transfer: sender */ 5135 if (len == tcp_header_len) { 5136 /* Predicted packet is in window by definition. 5137 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5138 * Hence, check seq<=rcv_wup reduces to: 5139 */ 5140 if (tcp_header_len == 5141 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5142 tp->rcv_nxt == tp->rcv_wup) 5143 tcp_store_ts_recent(tp); 5144 5145 /* We know that such packets are checksummed 5146 * on entry. 5147 */ 5148 tcp_ack(sk, skb, 0); 5149 __kfree_skb(skb); 5150 tcp_data_snd_check(sk); 5151 return; 5152 } else { /* Header too small */ 5153 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5154 goto discard; 5155 } 5156 } else { 5157 int eaten = 0; 5158 bool fragstolen = false; 5159 5160 if (tp->ucopy.task == current && 5161 tp->copied_seq == tp->rcv_nxt && 5162 len - tcp_header_len <= tp->ucopy.len && 5163 sock_owned_by_user(sk)) { 5164 __set_current_state(TASK_RUNNING); 5165 5166 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5167 /* Predicted packet is in window by definition. 5168 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5169 * Hence, check seq<=rcv_wup reduces to: 5170 */ 5171 if (tcp_header_len == 5172 (sizeof(struct tcphdr) + 5173 TCPOLEN_TSTAMP_ALIGNED) && 5174 tp->rcv_nxt == tp->rcv_wup) 5175 tcp_store_ts_recent(tp); 5176 5177 tcp_rcv_rtt_measure_ts(sk, skb); 5178 5179 __skb_pull(skb, tcp_header_len); 5180 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5181 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5182 eaten = 1; 5183 } 5184 } 5185 if (!eaten) { 5186 if (tcp_checksum_complete_user(sk, skb)) 5187 goto csum_error; 5188 5189 if ((int)skb->truesize > sk->sk_forward_alloc) 5190 goto step5; 5191 5192 /* Predicted packet is in window by definition. 5193 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5194 * Hence, check seq<=rcv_wup reduces to: 5195 */ 5196 if (tcp_header_len == 5197 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5198 tp->rcv_nxt == tp->rcv_wup) 5199 tcp_store_ts_recent(tp); 5200 5201 tcp_rcv_rtt_measure_ts(sk, skb); 5202 5203 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5204 5205 /* Bulk data transfer: receiver */ 5206 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5207 &fragstolen); 5208 } 5209 5210 tcp_event_data_recv(sk, skb); 5211 5212 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5213 /* Well, only one small jumplet in fast path... */ 5214 tcp_ack(sk, skb, FLAG_DATA); 5215 tcp_data_snd_check(sk); 5216 if (!inet_csk_ack_scheduled(sk)) 5217 goto no_ack; 5218 } 5219 5220 __tcp_ack_snd_check(sk, 0); 5221 no_ack: 5222 if (eaten) 5223 kfree_skb_partial(skb, fragstolen); 5224 sk->sk_data_ready(sk); 5225 return; 5226 } 5227 } 5228 5229 slow_path: 5230 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5231 goto csum_error; 5232 5233 if (!th->ack && !th->rst) 5234 goto discard; 5235 5236 /* 5237 * Standard slow path. 5238 */ 5239 5240 if (!tcp_validate_incoming(sk, skb, th, 1)) 5241 return; 5242 5243 step5: 5244 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5245 goto discard; 5246 5247 tcp_rcv_rtt_measure_ts(sk, skb); 5248 5249 /* Process urgent data. */ 5250 tcp_urg(sk, skb, th); 5251 5252 /* step 7: process the segment text */ 5253 tcp_data_queue(sk, skb); 5254 5255 tcp_data_snd_check(sk); 5256 tcp_ack_snd_check(sk); 5257 return; 5258 5259 csum_error: 5260 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5261 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5262 5263 discard: 5264 __kfree_skb(skb); 5265 } 5266 EXPORT_SYMBOL(tcp_rcv_established); 5267 5268 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5269 { 5270 struct tcp_sock *tp = tcp_sk(sk); 5271 struct inet_connection_sock *icsk = inet_csk(sk); 5272 5273 tcp_set_state(sk, TCP_ESTABLISHED); 5274 5275 if (skb != NULL) { 5276 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5277 security_inet_conn_established(sk, skb); 5278 } 5279 5280 /* Make sure socket is routed, for correct metrics. */ 5281 icsk->icsk_af_ops->rebuild_header(sk); 5282 5283 tcp_init_metrics(sk); 5284 5285 tcp_init_congestion_control(sk); 5286 5287 /* Prevent spurious tcp_cwnd_restart() on first data 5288 * packet. 5289 */ 5290 tp->lsndtime = tcp_time_stamp; 5291 5292 tcp_init_buffer_space(sk); 5293 5294 if (sock_flag(sk, SOCK_KEEPOPEN)) 5295 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5296 5297 if (!tp->rx_opt.snd_wscale) 5298 __tcp_fast_path_on(tp, tp->snd_wnd); 5299 else 5300 tp->pred_flags = 0; 5301 5302 if (!sock_flag(sk, SOCK_DEAD)) { 5303 sk->sk_state_change(sk); 5304 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5305 } 5306 } 5307 5308 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5309 struct tcp_fastopen_cookie *cookie) 5310 { 5311 struct tcp_sock *tp = tcp_sk(sk); 5312 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5313 u16 mss = tp->rx_opt.mss_clamp; 5314 bool syn_drop; 5315 5316 if (mss == tp->rx_opt.user_mss) { 5317 struct tcp_options_received opt; 5318 5319 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5320 tcp_clear_options(&opt); 5321 opt.user_mss = opt.mss_clamp = 0; 5322 tcp_parse_options(synack, &opt, 0, NULL); 5323 mss = opt.mss_clamp; 5324 } 5325 5326 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5327 cookie->len = -1; 5328 5329 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5330 * the remote receives only the retransmitted (regular) SYNs: either 5331 * the original SYN-data or the corresponding SYN-ACK is lost. 5332 */ 5333 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5334 5335 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5336 5337 if (data) { /* Retransmit unacked data in SYN */ 5338 tcp_for_write_queue_from(data, sk) { 5339 if (data == tcp_send_head(sk) || 5340 __tcp_retransmit_skb(sk, data)) 5341 break; 5342 } 5343 tcp_rearm_rto(sk); 5344 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5345 return true; 5346 } 5347 tp->syn_data_acked = tp->syn_data; 5348 if (tp->syn_data_acked) 5349 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5350 return false; 5351 } 5352 5353 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5354 const struct tcphdr *th, unsigned int len) 5355 { 5356 struct inet_connection_sock *icsk = inet_csk(sk); 5357 struct tcp_sock *tp = tcp_sk(sk); 5358 struct tcp_fastopen_cookie foc = { .len = -1 }; 5359 int saved_clamp = tp->rx_opt.mss_clamp; 5360 5361 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5362 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5363 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5364 5365 if (th->ack) { 5366 /* rfc793: 5367 * "If the state is SYN-SENT then 5368 * first check the ACK bit 5369 * If the ACK bit is set 5370 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5371 * a reset (unless the RST bit is set, if so drop 5372 * the segment and return)" 5373 */ 5374 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5375 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5376 goto reset_and_undo; 5377 5378 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5379 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5380 tcp_time_stamp)) { 5381 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5382 goto reset_and_undo; 5383 } 5384 5385 /* Now ACK is acceptable. 5386 * 5387 * "If the RST bit is set 5388 * If the ACK was acceptable then signal the user "error: 5389 * connection reset", drop the segment, enter CLOSED state, 5390 * delete TCB, and return." 5391 */ 5392 5393 if (th->rst) { 5394 tcp_reset(sk); 5395 goto discard; 5396 } 5397 5398 /* rfc793: 5399 * "fifth, if neither of the SYN or RST bits is set then 5400 * drop the segment and return." 5401 * 5402 * See note below! 5403 * --ANK(990513) 5404 */ 5405 if (!th->syn) 5406 goto discard_and_undo; 5407 5408 /* rfc793: 5409 * "If the SYN bit is on ... 5410 * are acceptable then ... 5411 * (our SYN has been ACKed), change the connection 5412 * state to ESTABLISHED..." 5413 */ 5414 5415 tcp_ecn_rcv_synack(tp, th); 5416 5417 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5418 tcp_ack(sk, skb, FLAG_SLOWPATH); 5419 5420 /* Ok.. it's good. Set up sequence numbers and 5421 * move to established. 5422 */ 5423 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5424 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5425 5426 /* RFC1323: The window in SYN & SYN/ACK segments is 5427 * never scaled. 5428 */ 5429 tp->snd_wnd = ntohs(th->window); 5430 5431 if (!tp->rx_opt.wscale_ok) { 5432 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5433 tp->window_clamp = min(tp->window_clamp, 65535U); 5434 } 5435 5436 if (tp->rx_opt.saw_tstamp) { 5437 tp->rx_opt.tstamp_ok = 1; 5438 tp->tcp_header_len = 5439 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5440 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5441 tcp_store_ts_recent(tp); 5442 } else { 5443 tp->tcp_header_len = sizeof(struct tcphdr); 5444 } 5445 5446 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5447 tcp_enable_fack(tp); 5448 5449 tcp_mtup_init(sk); 5450 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5451 tcp_initialize_rcv_mss(sk); 5452 5453 /* Remember, tcp_poll() does not lock socket! 5454 * Change state from SYN-SENT only after copied_seq 5455 * is initialized. */ 5456 tp->copied_seq = tp->rcv_nxt; 5457 5458 smp_mb(); 5459 5460 tcp_finish_connect(sk, skb); 5461 5462 if ((tp->syn_fastopen || tp->syn_data) && 5463 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5464 return -1; 5465 5466 if (sk->sk_write_pending || 5467 icsk->icsk_accept_queue.rskq_defer_accept || 5468 icsk->icsk_ack.pingpong) { 5469 /* Save one ACK. Data will be ready after 5470 * several ticks, if write_pending is set. 5471 * 5472 * It may be deleted, but with this feature tcpdumps 5473 * look so _wonderfully_ clever, that I was not able 5474 * to stand against the temptation 8) --ANK 5475 */ 5476 inet_csk_schedule_ack(sk); 5477 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5478 tcp_enter_quickack_mode(sk); 5479 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5480 TCP_DELACK_MAX, TCP_RTO_MAX); 5481 5482 discard: 5483 __kfree_skb(skb); 5484 return 0; 5485 } else { 5486 tcp_send_ack(sk); 5487 } 5488 return -1; 5489 } 5490 5491 /* No ACK in the segment */ 5492 5493 if (th->rst) { 5494 /* rfc793: 5495 * "If the RST bit is set 5496 * 5497 * Otherwise (no ACK) drop the segment and return." 5498 */ 5499 5500 goto discard_and_undo; 5501 } 5502 5503 /* PAWS check. */ 5504 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5505 tcp_paws_reject(&tp->rx_opt, 0)) 5506 goto discard_and_undo; 5507 5508 if (th->syn) { 5509 /* We see SYN without ACK. It is attempt of 5510 * simultaneous connect with crossed SYNs. 5511 * Particularly, it can be connect to self. 5512 */ 5513 tcp_set_state(sk, TCP_SYN_RECV); 5514 5515 if (tp->rx_opt.saw_tstamp) { 5516 tp->rx_opt.tstamp_ok = 1; 5517 tcp_store_ts_recent(tp); 5518 tp->tcp_header_len = 5519 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5520 } else { 5521 tp->tcp_header_len = sizeof(struct tcphdr); 5522 } 5523 5524 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5525 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5526 5527 /* RFC1323: The window in SYN & SYN/ACK segments is 5528 * never scaled. 5529 */ 5530 tp->snd_wnd = ntohs(th->window); 5531 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5532 tp->max_window = tp->snd_wnd; 5533 5534 tcp_ecn_rcv_syn(tp, th); 5535 5536 tcp_mtup_init(sk); 5537 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5538 tcp_initialize_rcv_mss(sk); 5539 5540 tcp_send_synack(sk); 5541 #if 0 5542 /* Note, we could accept data and URG from this segment. 5543 * There are no obstacles to make this (except that we must 5544 * either change tcp_recvmsg() to prevent it from returning data 5545 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5546 * 5547 * However, if we ignore data in ACKless segments sometimes, 5548 * we have no reasons to accept it sometimes. 5549 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5550 * is not flawless. So, discard packet for sanity. 5551 * Uncomment this return to process the data. 5552 */ 5553 return -1; 5554 #else 5555 goto discard; 5556 #endif 5557 } 5558 /* "fifth, if neither of the SYN or RST bits is set then 5559 * drop the segment and return." 5560 */ 5561 5562 discard_and_undo: 5563 tcp_clear_options(&tp->rx_opt); 5564 tp->rx_opt.mss_clamp = saved_clamp; 5565 goto discard; 5566 5567 reset_and_undo: 5568 tcp_clear_options(&tp->rx_opt); 5569 tp->rx_opt.mss_clamp = saved_clamp; 5570 return 1; 5571 } 5572 5573 /* 5574 * This function implements the receiving procedure of RFC 793 for 5575 * all states except ESTABLISHED and TIME_WAIT. 5576 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5577 * address independent. 5578 */ 5579 5580 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5581 const struct tcphdr *th, unsigned int len) 5582 { 5583 struct tcp_sock *tp = tcp_sk(sk); 5584 struct inet_connection_sock *icsk = inet_csk(sk); 5585 struct request_sock *req; 5586 int queued = 0; 5587 bool acceptable; 5588 u32 synack_stamp; 5589 5590 tp->rx_opt.saw_tstamp = 0; 5591 5592 switch (sk->sk_state) { 5593 case TCP_CLOSE: 5594 goto discard; 5595 5596 case TCP_LISTEN: 5597 if (th->ack) 5598 return 1; 5599 5600 if (th->rst) 5601 goto discard; 5602 5603 if (th->syn) { 5604 if (th->fin) 5605 goto discard; 5606 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5607 return 1; 5608 5609 /* Now we have several options: In theory there is 5610 * nothing else in the frame. KA9Q has an option to 5611 * send data with the syn, BSD accepts data with the 5612 * syn up to the [to be] advertised window and 5613 * Solaris 2.1 gives you a protocol error. For now 5614 * we just ignore it, that fits the spec precisely 5615 * and avoids incompatibilities. It would be nice in 5616 * future to drop through and process the data. 5617 * 5618 * Now that TTCP is starting to be used we ought to 5619 * queue this data. 5620 * But, this leaves one open to an easy denial of 5621 * service attack, and SYN cookies can't defend 5622 * against this problem. So, we drop the data 5623 * in the interest of security over speed unless 5624 * it's still in use. 5625 */ 5626 kfree_skb(skb); 5627 return 0; 5628 } 5629 goto discard; 5630 5631 case TCP_SYN_SENT: 5632 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5633 if (queued >= 0) 5634 return queued; 5635 5636 /* Do step6 onward by hand. */ 5637 tcp_urg(sk, skb, th); 5638 __kfree_skb(skb); 5639 tcp_data_snd_check(sk); 5640 return 0; 5641 } 5642 5643 req = tp->fastopen_rsk; 5644 if (req != NULL) { 5645 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5646 sk->sk_state != TCP_FIN_WAIT1); 5647 5648 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5649 goto discard; 5650 } 5651 5652 if (!th->ack && !th->rst) 5653 goto discard; 5654 5655 if (!tcp_validate_incoming(sk, skb, th, 0)) 5656 return 0; 5657 5658 /* step 5: check the ACK field */ 5659 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5660 FLAG_UPDATE_TS_RECENT) > 0; 5661 5662 switch (sk->sk_state) { 5663 case TCP_SYN_RECV: 5664 if (!acceptable) 5665 return 1; 5666 5667 /* Once we leave TCP_SYN_RECV, we no longer need req 5668 * so release it. 5669 */ 5670 if (req) { 5671 synack_stamp = tcp_rsk(req)->snt_synack; 5672 tp->total_retrans = req->num_retrans; 5673 reqsk_fastopen_remove(sk, req, false); 5674 } else { 5675 synack_stamp = tp->lsndtime; 5676 /* Make sure socket is routed, for correct metrics. */ 5677 icsk->icsk_af_ops->rebuild_header(sk); 5678 tcp_init_congestion_control(sk); 5679 5680 tcp_mtup_init(sk); 5681 tp->copied_seq = tp->rcv_nxt; 5682 tcp_init_buffer_space(sk); 5683 } 5684 smp_mb(); 5685 tcp_set_state(sk, TCP_ESTABLISHED); 5686 sk->sk_state_change(sk); 5687 5688 /* Note, that this wakeup is only for marginal crossed SYN case. 5689 * Passively open sockets are not waked up, because 5690 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5691 */ 5692 if (sk->sk_socket) 5693 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5694 5695 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5696 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5697 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5698 tcp_synack_rtt_meas(sk, synack_stamp); 5699 5700 if (tp->rx_opt.tstamp_ok) 5701 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5702 5703 if (req) { 5704 /* Re-arm the timer because data may have been sent out. 5705 * This is similar to the regular data transmission case 5706 * when new data has just been ack'ed. 5707 * 5708 * (TFO) - we could try to be more aggressive and 5709 * retransmitting any data sooner based on when they 5710 * are sent out. 5711 */ 5712 tcp_rearm_rto(sk); 5713 } else 5714 tcp_init_metrics(sk); 5715 5716 tcp_update_pacing_rate(sk); 5717 5718 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5719 tp->lsndtime = tcp_time_stamp; 5720 5721 tcp_initialize_rcv_mss(sk); 5722 tcp_fast_path_on(tp); 5723 break; 5724 5725 case TCP_FIN_WAIT1: { 5726 struct dst_entry *dst; 5727 int tmo; 5728 5729 /* If we enter the TCP_FIN_WAIT1 state and we are a 5730 * Fast Open socket and this is the first acceptable 5731 * ACK we have received, this would have acknowledged 5732 * our SYNACK so stop the SYNACK timer. 5733 */ 5734 if (req != NULL) { 5735 /* Return RST if ack_seq is invalid. 5736 * Note that RFC793 only says to generate a 5737 * DUPACK for it but for TCP Fast Open it seems 5738 * better to treat this case like TCP_SYN_RECV 5739 * above. 5740 */ 5741 if (!acceptable) 5742 return 1; 5743 /* We no longer need the request sock. */ 5744 reqsk_fastopen_remove(sk, req, false); 5745 tcp_rearm_rto(sk); 5746 } 5747 if (tp->snd_una != tp->write_seq) 5748 break; 5749 5750 tcp_set_state(sk, TCP_FIN_WAIT2); 5751 sk->sk_shutdown |= SEND_SHUTDOWN; 5752 5753 dst = __sk_dst_get(sk); 5754 if (dst) 5755 dst_confirm(dst); 5756 5757 if (!sock_flag(sk, SOCK_DEAD)) { 5758 /* Wake up lingering close() */ 5759 sk->sk_state_change(sk); 5760 break; 5761 } 5762 5763 if (tp->linger2 < 0 || 5764 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5765 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5766 tcp_done(sk); 5767 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5768 return 1; 5769 } 5770 5771 tmo = tcp_fin_time(sk); 5772 if (tmo > TCP_TIMEWAIT_LEN) { 5773 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5774 } else if (th->fin || sock_owned_by_user(sk)) { 5775 /* Bad case. We could lose such FIN otherwise. 5776 * It is not a big problem, but it looks confusing 5777 * and not so rare event. We still can lose it now, 5778 * if it spins in bh_lock_sock(), but it is really 5779 * marginal case. 5780 */ 5781 inet_csk_reset_keepalive_timer(sk, tmo); 5782 } else { 5783 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5784 goto discard; 5785 } 5786 break; 5787 } 5788 5789 case TCP_CLOSING: 5790 if (tp->snd_una == tp->write_seq) { 5791 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5792 goto discard; 5793 } 5794 break; 5795 5796 case TCP_LAST_ACK: 5797 if (tp->snd_una == tp->write_seq) { 5798 tcp_update_metrics(sk); 5799 tcp_done(sk); 5800 goto discard; 5801 } 5802 break; 5803 } 5804 5805 /* step 6: check the URG bit */ 5806 tcp_urg(sk, skb, th); 5807 5808 /* step 7: process the segment text */ 5809 switch (sk->sk_state) { 5810 case TCP_CLOSE_WAIT: 5811 case TCP_CLOSING: 5812 case TCP_LAST_ACK: 5813 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5814 break; 5815 case TCP_FIN_WAIT1: 5816 case TCP_FIN_WAIT2: 5817 /* RFC 793 says to queue data in these states, 5818 * RFC 1122 says we MUST send a reset. 5819 * BSD 4.4 also does reset. 5820 */ 5821 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5822 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5823 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5824 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5825 tcp_reset(sk); 5826 return 1; 5827 } 5828 } 5829 /* Fall through */ 5830 case TCP_ESTABLISHED: 5831 tcp_data_queue(sk, skb); 5832 queued = 1; 5833 break; 5834 } 5835 5836 /* tcp_data could move socket to TIME-WAIT */ 5837 if (sk->sk_state != TCP_CLOSE) { 5838 tcp_data_snd_check(sk); 5839 tcp_ack_snd_check(sk); 5840 } 5841 5842 if (!queued) { 5843 discard: 5844 __kfree_skb(skb); 5845 } 5846 return 0; 5847 } 5848 EXPORT_SYMBOL(tcp_rcv_state_process); 5849 5850 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5851 { 5852 struct inet_request_sock *ireq = inet_rsk(req); 5853 5854 if (family == AF_INET) 5855 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"), 5856 &ireq->ir_rmt_addr, port); 5857 #if IS_ENABLED(CONFIG_IPV6) 5858 else if (family == AF_INET6) 5859 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"), 5860 &ireq->ir_v6_rmt_addr, port); 5861 #endif 5862 } 5863 5864 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5865 * 5866 * If we receive a SYN packet with these bits set, it means a 5867 * network is playing bad games with TOS bits. In order to 5868 * avoid possible false congestion notifications, we disable 5869 * TCP ECN negotiation. 5870 * 5871 * Exception: tcp_ca wants ECN. This is required for DCTCP 5872 * congestion control; it requires setting ECT on all packets, 5873 * including SYN. We inverse the test in this case: If our 5874 * local socket wants ECN, but peer only set ece/cwr (but not 5875 * ECT in IP header) its probably a non-DCTCP aware sender. 5876 */ 5877 static void tcp_ecn_create_request(struct request_sock *req, 5878 const struct sk_buff *skb, 5879 const struct sock *listen_sk) 5880 { 5881 const struct tcphdr *th = tcp_hdr(skb); 5882 const struct net *net = sock_net(listen_sk); 5883 bool th_ecn = th->ece && th->cwr; 5884 bool ect, need_ecn; 5885 5886 if (!th_ecn) 5887 return; 5888 5889 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 5890 need_ecn = tcp_ca_needs_ecn(listen_sk); 5891 5892 if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn) 5893 inet_rsk(req)->ecn_ok = 1; 5894 else if (ect && need_ecn) 5895 inet_rsk(req)->ecn_ok = 1; 5896 } 5897 5898 int tcp_conn_request(struct request_sock_ops *rsk_ops, 5899 const struct tcp_request_sock_ops *af_ops, 5900 struct sock *sk, struct sk_buff *skb) 5901 { 5902 struct tcp_options_received tmp_opt; 5903 struct request_sock *req; 5904 struct tcp_sock *tp = tcp_sk(sk); 5905 struct dst_entry *dst = NULL; 5906 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 5907 bool want_cookie = false, fastopen; 5908 struct flowi fl; 5909 struct tcp_fastopen_cookie foc = { .len = -1 }; 5910 int err; 5911 5912 5913 /* TW buckets are converted to open requests without 5914 * limitations, they conserve resources and peer is 5915 * evidently real one. 5916 */ 5917 if ((sysctl_tcp_syncookies == 2 || 5918 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 5919 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 5920 if (!want_cookie) 5921 goto drop; 5922 } 5923 5924 5925 /* Accept backlog is full. If we have already queued enough 5926 * of warm entries in syn queue, drop request. It is better than 5927 * clogging syn queue with openreqs with exponentially increasing 5928 * timeout. 5929 */ 5930 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 5931 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 5932 goto drop; 5933 } 5934 5935 req = inet_reqsk_alloc(rsk_ops); 5936 if (!req) 5937 goto drop; 5938 5939 tcp_rsk(req)->af_specific = af_ops; 5940 5941 tcp_clear_options(&tmp_opt); 5942 tmp_opt.mss_clamp = af_ops->mss_clamp; 5943 tmp_opt.user_mss = tp->rx_opt.user_mss; 5944 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 5945 5946 if (want_cookie && !tmp_opt.saw_tstamp) 5947 tcp_clear_options(&tmp_opt); 5948 5949 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 5950 tcp_openreq_init(req, &tmp_opt, skb, sk); 5951 5952 af_ops->init_req(req, sk, skb); 5953 5954 if (security_inet_conn_request(sk, skb, req)) 5955 goto drop_and_free; 5956 5957 if (!want_cookie || tmp_opt.tstamp_ok) 5958 tcp_ecn_create_request(req, skb, sk); 5959 5960 if (want_cookie) { 5961 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 5962 req->cookie_ts = tmp_opt.tstamp_ok; 5963 } else if (!isn) { 5964 /* VJ's idea. We save last timestamp seen 5965 * from the destination in peer table, when entering 5966 * state TIME-WAIT, and check against it before 5967 * accepting new connection request. 5968 * 5969 * If "isn" is not zero, this request hit alive 5970 * timewait bucket, so that all the necessary checks 5971 * are made in the function processing timewait state. 5972 */ 5973 if (tcp_death_row.sysctl_tw_recycle) { 5974 bool strict; 5975 5976 dst = af_ops->route_req(sk, &fl, req, &strict); 5977 5978 if (dst && strict && 5979 !tcp_peer_is_proven(req, dst, true, 5980 tmp_opt.saw_tstamp)) { 5981 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 5982 goto drop_and_release; 5983 } 5984 } 5985 /* Kill the following clause, if you dislike this way. */ 5986 else if (!sysctl_tcp_syncookies && 5987 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 5988 (sysctl_max_syn_backlog >> 2)) && 5989 !tcp_peer_is_proven(req, dst, false, 5990 tmp_opt.saw_tstamp)) { 5991 /* Without syncookies last quarter of 5992 * backlog is filled with destinations, 5993 * proven to be alive. 5994 * It means that we continue to communicate 5995 * to destinations, already remembered 5996 * to the moment of synflood. 5997 */ 5998 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 5999 rsk_ops->family); 6000 goto drop_and_release; 6001 } 6002 6003 isn = af_ops->init_seq(skb); 6004 } 6005 if (!dst) { 6006 dst = af_ops->route_req(sk, &fl, req, NULL); 6007 if (!dst) 6008 goto drop_and_free; 6009 } 6010 6011 tcp_rsk(req)->snt_isn = isn; 6012 tcp_openreq_init_rwin(req, sk, dst); 6013 fastopen = !want_cookie && 6014 tcp_try_fastopen(sk, skb, req, &foc, dst); 6015 err = af_ops->send_synack(sk, dst, &fl, req, 6016 skb_get_queue_mapping(skb), &foc); 6017 if (!fastopen) { 6018 if (err || want_cookie) 6019 goto drop_and_free; 6020 6021 tcp_rsk(req)->listener = NULL; 6022 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6023 } 6024 6025 return 0; 6026 6027 drop_and_release: 6028 dst_release(dst); 6029 drop_and_free: 6030 reqsk_free(req); 6031 drop: 6032 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 6033 return 0; 6034 } 6035 EXPORT_SYMBOL(tcp_conn_request); 6036