xref: /openbmc/linux/net/ipv4/tcp_input.c (revision a71d77e6be1e29ec809cc7c85d9594e7769406cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
142 			     unsigned int len)
143 {
144 	static bool __once __read_mostly;
145 
146 	if (!__once) {
147 		struct net_device *dev;
148 
149 		__once = true;
150 
151 		rcu_read_lock();
152 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
153 		if (!dev || len >= dev->mtu)
154 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 				dev ? dev->name : "Unknown driver");
156 		rcu_read_unlock();
157 	}
158 }
159 
160 /* Adapt the MSS value used to make delayed ack decision to the
161  * real world.
162  */
163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
167 	unsigned int len;
168 
169 	icsk->icsk_ack.last_seg_size = 0;
170 
171 	/* skb->len may jitter because of SACKs, even if peer
172 	 * sends good full-sized frames.
173 	 */
174 	len = skb_shinfo(skb)->gso_size ? : skb->len;
175 	if (len >= icsk->icsk_ack.rcv_mss) {
176 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
177 					       tcp_sk(sk)->advmss);
178 		/* Account for possibly-removed options */
179 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
180 				   MAX_TCP_OPTION_SPACE))
181 			tcp_gro_dev_warn(sk, skb, len);
182 	} else {
183 		/* Otherwise, we make more careful check taking into account,
184 		 * that SACKs block is variable.
185 		 *
186 		 * "len" is invariant segment length, including TCP header.
187 		 */
188 		len += skb->data - skb_transport_header(skb);
189 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
190 		    /* If PSH is not set, packet should be
191 		     * full sized, provided peer TCP is not badly broken.
192 		     * This observation (if it is correct 8)) allows
193 		     * to handle super-low mtu links fairly.
194 		     */
195 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
196 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
197 			/* Subtract also invariant (if peer is RFC compliant),
198 			 * tcp header plus fixed timestamp option length.
199 			 * Resulting "len" is MSS free of SACK jitter.
200 			 */
201 			len -= tcp_sk(sk)->tcp_header_len;
202 			icsk->icsk_ack.last_seg_size = len;
203 			if (len == lss) {
204 				icsk->icsk_ack.rcv_mss = len;
205 				return;
206 			}
207 		}
208 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
209 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
210 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
211 	}
212 }
213 
214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
215 {
216 	struct inet_connection_sock *icsk = inet_csk(sk);
217 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
218 
219 	if (quickacks == 0)
220 		quickacks = 2;
221 	quickacks = min(quickacks, max_quickacks);
222 	if (quickacks > icsk->icsk_ack.quick)
223 		icsk->icsk_ack.quick = quickacks;
224 }
225 
226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 
230 	tcp_incr_quickack(sk, max_quickacks);
231 	inet_csk_exit_pingpong_mode(sk);
232 	icsk->icsk_ack.ato = TCP_ATO_MIN;
233 }
234 EXPORT_SYMBOL(tcp_enter_quickack_mode);
235 
236 /* Send ACKs quickly, if "quick" count is not exhausted
237  * and the session is not interactive.
238  */
239 
240 static bool tcp_in_quickack_mode(struct sock *sk)
241 {
242 	const struct inet_connection_sock *icsk = inet_csk(sk);
243 	const struct dst_entry *dst = __sk_dst_get(sk);
244 
245 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
246 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
247 }
248 
249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
250 {
251 	if (tp->ecn_flags & TCP_ECN_OK)
252 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
253 }
254 
255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
256 {
257 	if (tcp_hdr(skb)->cwr) {
258 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
259 
260 		/* If the sender is telling us it has entered CWR, then its
261 		 * cwnd may be very low (even just 1 packet), so we should ACK
262 		 * immediately.
263 		 */
264 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
265 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
266 	}
267 }
268 
269 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
270 {
271 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
272 }
273 
274 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
275 {
276 	struct tcp_sock *tp = tcp_sk(sk);
277 
278 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
279 	case INET_ECN_NOT_ECT:
280 		/* Funny extension: if ECT is not set on a segment,
281 		 * and we already seen ECT on a previous segment,
282 		 * it is probably a retransmit.
283 		 */
284 		if (tp->ecn_flags & TCP_ECN_SEEN)
285 			tcp_enter_quickack_mode(sk, 2);
286 		break;
287 	case INET_ECN_CE:
288 		if (tcp_ca_needs_ecn(sk))
289 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
290 
291 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
292 			/* Better not delay acks, sender can have a very low cwnd */
293 			tcp_enter_quickack_mode(sk, 2);
294 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
295 		}
296 		tp->ecn_flags |= TCP_ECN_SEEN;
297 		break;
298 	default:
299 		if (tcp_ca_needs_ecn(sk))
300 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
301 		tp->ecn_flags |= TCP_ECN_SEEN;
302 		break;
303 	}
304 }
305 
306 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
307 {
308 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
309 		__tcp_ecn_check_ce(sk, skb);
310 }
311 
312 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
313 {
314 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
315 		tp->ecn_flags &= ~TCP_ECN_OK;
316 }
317 
318 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
319 {
320 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
321 		tp->ecn_flags &= ~TCP_ECN_OK;
322 }
323 
324 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
325 {
326 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
327 		return true;
328 	return false;
329 }
330 
331 /* Buffer size and advertised window tuning.
332  *
333  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
334  */
335 
336 static void tcp_sndbuf_expand(struct sock *sk)
337 {
338 	const struct tcp_sock *tp = tcp_sk(sk);
339 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
340 	int sndmem, per_mss;
341 	u32 nr_segs;
342 
343 	/* Worst case is non GSO/TSO : each frame consumes one skb
344 	 * and skb->head is kmalloced using power of two area of memory
345 	 */
346 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
347 		  MAX_TCP_HEADER +
348 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
349 
350 	per_mss = roundup_pow_of_two(per_mss) +
351 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
352 
353 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
354 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
355 
356 	/* Fast Recovery (RFC 5681 3.2) :
357 	 * Cubic needs 1.7 factor, rounded to 2 to include
358 	 * extra cushion (application might react slowly to EPOLLOUT)
359 	 */
360 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
361 	sndmem *= nr_segs * per_mss;
362 
363 	if (sk->sk_sndbuf < sndmem)
364 		WRITE_ONCE(sk->sk_sndbuf,
365 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
366 }
367 
368 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
369  *
370  * All tcp_full_space() is split to two parts: "network" buffer, allocated
371  * forward and advertised in receiver window (tp->rcv_wnd) and
372  * "application buffer", required to isolate scheduling/application
373  * latencies from network.
374  * window_clamp is maximal advertised window. It can be less than
375  * tcp_full_space(), in this case tcp_full_space() - window_clamp
376  * is reserved for "application" buffer. The less window_clamp is
377  * the smoother our behaviour from viewpoint of network, but the lower
378  * throughput and the higher sensitivity of the connection to losses. 8)
379  *
380  * rcv_ssthresh is more strict window_clamp used at "slow start"
381  * phase to predict further behaviour of this connection.
382  * It is used for two goals:
383  * - to enforce header prediction at sender, even when application
384  *   requires some significant "application buffer". It is check #1.
385  * - to prevent pruning of receive queue because of misprediction
386  *   of receiver window. Check #2.
387  *
388  * The scheme does not work when sender sends good segments opening
389  * window and then starts to feed us spaghetti. But it should work
390  * in common situations. Otherwise, we have to rely on queue collapsing.
391  */
392 
393 /* Slow part of check#2. */
394 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
395 {
396 	struct tcp_sock *tp = tcp_sk(sk);
397 	/* Optimize this! */
398 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
399 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
400 
401 	while (tp->rcv_ssthresh <= window) {
402 		if (truesize <= skb->len)
403 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
404 
405 		truesize >>= 1;
406 		window >>= 1;
407 	}
408 	return 0;
409 }
410 
411 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
412 {
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	int room;
415 
416 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
417 
418 	/* Check #1 */
419 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
420 		int incr;
421 
422 		/* Check #2. Increase window, if skb with such overhead
423 		 * will fit to rcvbuf in future.
424 		 */
425 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
426 			incr = 2 * tp->advmss;
427 		else
428 			incr = __tcp_grow_window(sk, skb);
429 
430 		if (incr) {
431 			incr = max_t(int, incr, 2 * skb->len);
432 			tp->rcv_ssthresh += min(room, incr);
433 			inet_csk(sk)->icsk_ack.quick |= 1;
434 		}
435 	}
436 }
437 
438 /* 3. Try to fixup all. It is made immediately after connection enters
439  *    established state.
440  */
441 static void tcp_init_buffer_space(struct sock *sk)
442 {
443 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
444 	struct tcp_sock *tp = tcp_sk(sk);
445 	int maxwin;
446 
447 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
448 		tcp_sndbuf_expand(sk);
449 
450 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
451 	tcp_mstamp_refresh(tp);
452 	tp->rcvq_space.time = tp->tcp_mstamp;
453 	tp->rcvq_space.seq = tp->copied_seq;
454 
455 	maxwin = tcp_full_space(sk);
456 
457 	if (tp->window_clamp >= maxwin) {
458 		tp->window_clamp = maxwin;
459 
460 		if (tcp_app_win && maxwin > 4 * tp->advmss)
461 			tp->window_clamp = max(maxwin -
462 					       (maxwin >> tcp_app_win),
463 					       4 * tp->advmss);
464 	}
465 
466 	/* Force reservation of one segment. */
467 	if (tcp_app_win &&
468 	    tp->window_clamp > 2 * tp->advmss &&
469 	    tp->window_clamp + tp->advmss > maxwin)
470 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
471 
472 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
473 	tp->snd_cwnd_stamp = tcp_jiffies32;
474 }
475 
476 /* 4. Recalculate window clamp after socket hit its memory bounds. */
477 static void tcp_clamp_window(struct sock *sk)
478 {
479 	struct tcp_sock *tp = tcp_sk(sk);
480 	struct inet_connection_sock *icsk = inet_csk(sk);
481 	struct net *net = sock_net(sk);
482 
483 	icsk->icsk_ack.quick = 0;
484 
485 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
486 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
487 	    !tcp_under_memory_pressure(sk) &&
488 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
489 		WRITE_ONCE(sk->sk_rcvbuf,
490 			   min(atomic_read(&sk->sk_rmem_alloc),
491 			       net->ipv4.sysctl_tcp_rmem[2]));
492 	}
493 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
494 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
495 }
496 
497 /* Initialize RCV_MSS value.
498  * RCV_MSS is an our guess about MSS used by the peer.
499  * We haven't any direct information about the MSS.
500  * It's better to underestimate the RCV_MSS rather than overestimate.
501  * Overestimations make us ACKing less frequently than needed.
502  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
503  */
504 void tcp_initialize_rcv_mss(struct sock *sk)
505 {
506 	const struct tcp_sock *tp = tcp_sk(sk);
507 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
508 
509 	hint = min(hint, tp->rcv_wnd / 2);
510 	hint = min(hint, TCP_MSS_DEFAULT);
511 	hint = max(hint, TCP_MIN_MSS);
512 
513 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
514 }
515 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
516 
517 /* Receiver "autotuning" code.
518  *
519  * The algorithm for RTT estimation w/o timestamps is based on
520  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
521  * <https://public.lanl.gov/radiant/pubs.html#DRS>
522  *
523  * More detail on this code can be found at
524  * <http://staff.psc.edu/jheffner/>,
525  * though this reference is out of date.  A new paper
526  * is pending.
527  */
528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
529 {
530 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
531 	long m = sample;
532 
533 	if (new_sample != 0) {
534 		/* If we sample in larger samples in the non-timestamp
535 		 * case, we could grossly overestimate the RTT especially
536 		 * with chatty applications or bulk transfer apps which
537 		 * are stalled on filesystem I/O.
538 		 *
539 		 * Also, since we are only going for a minimum in the
540 		 * non-timestamp case, we do not smooth things out
541 		 * else with timestamps disabled convergence takes too
542 		 * long.
543 		 */
544 		if (!win_dep) {
545 			m -= (new_sample >> 3);
546 			new_sample += m;
547 		} else {
548 			m <<= 3;
549 			if (m < new_sample)
550 				new_sample = m;
551 		}
552 	} else {
553 		/* No previous measure. */
554 		new_sample = m << 3;
555 	}
556 
557 	tp->rcv_rtt_est.rtt_us = new_sample;
558 }
559 
560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
561 {
562 	u32 delta_us;
563 
564 	if (tp->rcv_rtt_est.time == 0)
565 		goto new_measure;
566 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
567 		return;
568 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
569 	if (!delta_us)
570 		delta_us = 1;
571 	tcp_rcv_rtt_update(tp, delta_us, 1);
572 
573 new_measure:
574 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
575 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
576 }
577 
578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
579 					  const struct sk_buff *skb)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 
583 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
584 		return;
585 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
586 
587 	if (TCP_SKB_CB(skb)->end_seq -
588 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
589 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
590 		u32 delta_us;
591 
592 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
593 			if (!delta)
594 				delta = 1;
595 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
596 			tcp_rcv_rtt_update(tp, delta_us, 0);
597 		}
598 	}
599 }
600 
601 /*
602  * This function should be called every time data is copied to user space.
603  * It calculates the appropriate TCP receive buffer space.
604  */
605 void tcp_rcv_space_adjust(struct sock *sk)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	u32 copied;
609 	int time;
610 
611 	trace_tcp_rcv_space_adjust(sk);
612 
613 	tcp_mstamp_refresh(tp);
614 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
615 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
616 		return;
617 
618 	/* Number of bytes copied to user in last RTT */
619 	copied = tp->copied_seq - tp->rcvq_space.seq;
620 	if (copied <= tp->rcvq_space.space)
621 		goto new_measure;
622 
623 	/* A bit of theory :
624 	 * copied = bytes received in previous RTT, our base window
625 	 * To cope with packet losses, we need a 2x factor
626 	 * To cope with slow start, and sender growing its cwin by 100 %
627 	 * every RTT, we need a 4x factor, because the ACK we are sending
628 	 * now is for the next RTT, not the current one :
629 	 * <prev RTT . ><current RTT .. ><next RTT .... >
630 	 */
631 
632 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
633 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
634 		int rcvmem, rcvbuf;
635 		u64 rcvwin, grow;
636 
637 		/* minimal window to cope with packet losses, assuming
638 		 * steady state. Add some cushion because of small variations.
639 		 */
640 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
641 
642 		/* Accommodate for sender rate increase (eg. slow start) */
643 		grow = rcvwin * (copied - tp->rcvq_space.space);
644 		do_div(grow, tp->rcvq_space.space);
645 		rcvwin += (grow << 1);
646 
647 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
648 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
649 			rcvmem += 128;
650 
651 		do_div(rcvwin, tp->advmss);
652 		rcvbuf = min_t(u64, rcvwin * rcvmem,
653 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
654 		if (rcvbuf > sk->sk_rcvbuf) {
655 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
656 
657 			/* Make the window clamp follow along.  */
658 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
659 		}
660 	}
661 	tp->rcvq_space.space = copied;
662 
663 new_measure:
664 	tp->rcvq_space.seq = tp->copied_seq;
665 	tp->rcvq_space.time = tp->tcp_mstamp;
666 }
667 
668 /* There is something which you must keep in mind when you analyze the
669  * behavior of the tp->ato delayed ack timeout interval.  When a
670  * connection starts up, we want to ack as quickly as possible.  The
671  * problem is that "good" TCP's do slow start at the beginning of data
672  * transmission.  The means that until we send the first few ACK's the
673  * sender will sit on his end and only queue most of his data, because
674  * he can only send snd_cwnd unacked packets at any given time.  For
675  * each ACK we send, he increments snd_cwnd and transmits more of his
676  * queue.  -DaveM
677  */
678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	struct inet_connection_sock *icsk = inet_csk(sk);
682 	u32 now;
683 
684 	inet_csk_schedule_ack(sk);
685 
686 	tcp_measure_rcv_mss(sk, skb);
687 
688 	tcp_rcv_rtt_measure(tp);
689 
690 	now = tcp_jiffies32;
691 
692 	if (!icsk->icsk_ack.ato) {
693 		/* The _first_ data packet received, initialize
694 		 * delayed ACK engine.
695 		 */
696 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
697 		icsk->icsk_ack.ato = TCP_ATO_MIN;
698 	} else {
699 		int m = now - icsk->icsk_ack.lrcvtime;
700 
701 		if (m <= TCP_ATO_MIN / 2) {
702 			/* The fastest case is the first. */
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
704 		} else if (m < icsk->icsk_ack.ato) {
705 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
706 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
707 				icsk->icsk_ack.ato = icsk->icsk_rto;
708 		} else if (m > icsk->icsk_rto) {
709 			/* Too long gap. Apparently sender failed to
710 			 * restart window, so that we send ACKs quickly.
711 			 */
712 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
713 			sk_mem_reclaim(sk);
714 		}
715 	}
716 	icsk->icsk_ack.lrcvtime = now;
717 
718 	tcp_ecn_check_ce(sk, skb);
719 
720 	if (skb->len >= 128)
721 		tcp_grow_window(sk, skb);
722 }
723 
724 /* Called to compute a smoothed rtt estimate. The data fed to this
725  * routine either comes from timestamps, or from segments that were
726  * known _not_ to have been retransmitted [see Karn/Partridge
727  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
728  * piece by Van Jacobson.
729  * NOTE: the next three routines used to be one big routine.
730  * To save cycles in the RFC 1323 implementation it was better to break
731  * it up into three procedures. -- erics
732  */
733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
734 {
735 	struct tcp_sock *tp = tcp_sk(sk);
736 	long m = mrtt_us; /* RTT */
737 	u32 srtt = tp->srtt_us;
738 
739 	/*	The following amusing code comes from Jacobson's
740 	 *	article in SIGCOMM '88.  Note that rtt and mdev
741 	 *	are scaled versions of rtt and mean deviation.
742 	 *	This is designed to be as fast as possible
743 	 *	m stands for "measurement".
744 	 *
745 	 *	On a 1990 paper the rto value is changed to:
746 	 *	RTO = rtt + 4 * mdev
747 	 *
748 	 * Funny. This algorithm seems to be very broken.
749 	 * These formulae increase RTO, when it should be decreased, increase
750 	 * too slowly, when it should be increased quickly, decrease too quickly
751 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
752 	 * does not matter how to _calculate_ it. Seems, it was trap
753 	 * that VJ failed to avoid. 8)
754 	 */
755 	if (srtt != 0) {
756 		m -= (srtt >> 3);	/* m is now error in rtt est */
757 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
758 		if (m < 0) {
759 			m = -m;		/* m is now abs(error) */
760 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
761 			/* This is similar to one of Eifel findings.
762 			 * Eifel blocks mdev updates when rtt decreases.
763 			 * This solution is a bit different: we use finer gain
764 			 * for mdev in this case (alpha*beta).
765 			 * Like Eifel it also prevents growth of rto,
766 			 * but also it limits too fast rto decreases,
767 			 * happening in pure Eifel.
768 			 */
769 			if (m > 0)
770 				m >>= 3;
771 		} else {
772 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
773 		}
774 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
775 		if (tp->mdev_us > tp->mdev_max_us) {
776 			tp->mdev_max_us = tp->mdev_us;
777 			if (tp->mdev_max_us > tp->rttvar_us)
778 				tp->rttvar_us = tp->mdev_max_us;
779 		}
780 		if (after(tp->snd_una, tp->rtt_seq)) {
781 			if (tp->mdev_max_us < tp->rttvar_us)
782 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
783 			tp->rtt_seq = tp->snd_nxt;
784 			tp->mdev_max_us = tcp_rto_min_us(sk);
785 
786 			tcp_bpf_rtt(sk);
787 		}
788 	} else {
789 		/* no previous measure. */
790 		srtt = m << 3;		/* take the measured time to be rtt */
791 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
792 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
793 		tp->mdev_max_us = tp->rttvar_us;
794 		tp->rtt_seq = tp->snd_nxt;
795 
796 		tcp_bpf_rtt(sk);
797 	}
798 	tp->srtt_us = max(1U, srtt);
799 }
800 
801 static void tcp_update_pacing_rate(struct sock *sk)
802 {
803 	const struct tcp_sock *tp = tcp_sk(sk);
804 	u64 rate;
805 
806 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
807 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
808 
809 	/* current rate is (cwnd * mss) / srtt
810 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
811 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
812 	 *
813 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
814 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
815 	 *	 end of slow start and should slow down.
816 	 */
817 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
818 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
819 	else
820 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
821 
822 	rate *= max(tp->snd_cwnd, tp->packets_out);
823 
824 	if (likely(tp->srtt_us))
825 		do_div(rate, tp->srtt_us);
826 
827 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
828 	 * without any lock. We want to make sure compiler wont store
829 	 * intermediate values in this location.
830 	 */
831 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
832 					     sk->sk_max_pacing_rate));
833 }
834 
835 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
836  * routine referred to above.
837  */
838 static void tcp_set_rto(struct sock *sk)
839 {
840 	const struct tcp_sock *tp = tcp_sk(sk);
841 	/* Old crap is replaced with new one. 8)
842 	 *
843 	 * More seriously:
844 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
845 	 *    It cannot be less due to utterly erratic ACK generation made
846 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
847 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
848 	 *    is invisible. Actually, Linux-2.4 also generates erratic
849 	 *    ACKs in some circumstances.
850 	 */
851 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
852 
853 	/* 2. Fixups made earlier cannot be right.
854 	 *    If we do not estimate RTO correctly without them,
855 	 *    all the algo is pure shit and should be replaced
856 	 *    with correct one. It is exactly, which we pretend to do.
857 	 */
858 
859 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
860 	 * guarantees that rto is higher.
861 	 */
862 	tcp_bound_rto(sk);
863 }
864 
865 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
866 {
867 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
868 
869 	if (!cwnd)
870 		cwnd = TCP_INIT_CWND;
871 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
872 }
873 
874 struct tcp_sacktag_state {
875 	/* Timestamps for earliest and latest never-retransmitted segment
876 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
877 	 * but congestion control should still get an accurate delay signal.
878 	 */
879 	u64	first_sackt;
880 	u64	last_sackt;
881 	u32	reord;
882 	u32	sack_delivered;
883 	int	flag;
884 	unsigned int mss_now;
885 	struct rate_sample *rate;
886 };
887 
888 /* Take a notice that peer is sending D-SACKs */
889 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
890 			  u32 end_seq, struct tcp_sacktag_state *state)
891 {
892 	u32 seq_len, dup_segs = 1;
893 
894 	if (before(start_seq, end_seq)) {
895 		seq_len = end_seq - start_seq;
896 		if (seq_len > tp->mss_cache)
897 			dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
898 	}
899 
900 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
901 	tp->rack.dsack_seen = 1;
902 	tp->dsack_dups += dup_segs;
903 
904 	state->flag |= FLAG_DSACKING_ACK;
905 	/* A spurious retransmission is delivered */
906 	state->sack_delivered += dup_segs;
907 
908 	return dup_segs;
909 }
910 
911 /* It's reordering when higher sequence was delivered (i.e. sacked) before
912  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
913  * distance is approximated in full-mss packet distance ("reordering").
914  */
915 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
916 				      const int ts)
917 {
918 	struct tcp_sock *tp = tcp_sk(sk);
919 	const u32 mss = tp->mss_cache;
920 	u32 fack, metric;
921 
922 	fack = tcp_highest_sack_seq(tp);
923 	if (!before(low_seq, fack))
924 		return;
925 
926 	metric = fack - low_seq;
927 	if ((metric > tp->reordering * mss) && mss) {
928 #if FASTRETRANS_DEBUG > 1
929 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
930 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
931 			 tp->reordering,
932 			 0,
933 			 tp->sacked_out,
934 			 tp->undo_marker ? tp->undo_retrans : 0);
935 #endif
936 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
937 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
938 	}
939 
940 	/* This exciting event is worth to be remembered. 8) */
941 	tp->reord_seen++;
942 	NET_INC_STATS(sock_net(sk),
943 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
944 }
945 
946 /* This must be called before lost_out is incremented */
947 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
948 {
949 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
950 	    (tp->retransmit_skb_hint &&
951 	     before(TCP_SKB_CB(skb)->seq,
952 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
953 		tp->retransmit_skb_hint = skb;
954 }
955 
956 /* Sum the number of packets on the wire we have marked as lost.
957  * There are two cases we care about here:
958  * a) Packet hasn't been marked lost (nor retransmitted),
959  *    and this is the first loss.
960  * b) Packet has been marked both lost and retransmitted,
961  *    and this means we think it was lost again.
962  */
963 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
964 {
965 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
966 
967 	if (!(sacked & TCPCB_LOST) ||
968 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
969 		tp->lost += tcp_skb_pcount(skb);
970 }
971 
972 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
973 {
974 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
975 		tcp_verify_retransmit_hint(tp, skb);
976 
977 		tp->lost_out += tcp_skb_pcount(skb);
978 		tcp_sum_lost(tp, skb);
979 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
980 	}
981 }
982 
983 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
984 {
985 	tcp_verify_retransmit_hint(tp, skb);
986 
987 	tcp_sum_lost(tp, skb);
988 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
989 		tp->lost_out += tcp_skb_pcount(skb);
990 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
991 	}
992 }
993 
994 /* Updates the delivered and delivered_ce counts */
995 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
996 				bool ece_ack)
997 {
998 	tp->delivered += delivered;
999 	if (ece_ack)
1000 		tp->delivered_ce += delivered;
1001 }
1002 
1003 /* This procedure tags the retransmission queue when SACKs arrive.
1004  *
1005  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1006  * Packets in queue with these bits set are counted in variables
1007  * sacked_out, retrans_out and lost_out, correspondingly.
1008  *
1009  * Valid combinations are:
1010  * Tag  InFlight	Description
1011  * 0	1		- orig segment is in flight.
1012  * S	0		- nothing flies, orig reached receiver.
1013  * L	0		- nothing flies, orig lost by net.
1014  * R	2		- both orig and retransmit are in flight.
1015  * L|R	1		- orig is lost, retransmit is in flight.
1016  * S|R  1		- orig reached receiver, retrans is still in flight.
1017  * (L|S|R is logically valid, it could occur when L|R is sacked,
1018  *  but it is equivalent to plain S and code short-curcuits it to S.
1019  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1020  *
1021  * These 6 states form finite state machine, controlled by the following events:
1022  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1023  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1024  * 3. Loss detection event of two flavors:
1025  *	A. Scoreboard estimator decided the packet is lost.
1026  *	   A'. Reno "three dupacks" marks head of queue lost.
1027  *	B. SACK arrives sacking SND.NXT at the moment, when the
1028  *	   segment was retransmitted.
1029  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1030  *
1031  * It is pleasant to note, that state diagram turns out to be commutative,
1032  * so that we are allowed not to be bothered by order of our actions,
1033  * when multiple events arrive simultaneously. (see the function below).
1034  *
1035  * Reordering detection.
1036  * --------------------
1037  * Reordering metric is maximal distance, which a packet can be displaced
1038  * in packet stream. With SACKs we can estimate it:
1039  *
1040  * 1. SACK fills old hole and the corresponding segment was not
1041  *    ever retransmitted -> reordering. Alas, we cannot use it
1042  *    when segment was retransmitted.
1043  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1044  *    for retransmitted and already SACKed segment -> reordering..
1045  * Both of these heuristics are not used in Loss state, when we cannot
1046  * account for retransmits accurately.
1047  *
1048  * SACK block validation.
1049  * ----------------------
1050  *
1051  * SACK block range validation checks that the received SACK block fits to
1052  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1053  * Note that SND.UNA is not included to the range though being valid because
1054  * it means that the receiver is rather inconsistent with itself reporting
1055  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1056  * perfectly valid, however, in light of RFC2018 which explicitly states
1057  * that "SACK block MUST reflect the newest segment.  Even if the newest
1058  * segment is going to be discarded ...", not that it looks very clever
1059  * in case of head skb. Due to potentional receiver driven attacks, we
1060  * choose to avoid immediate execution of a walk in write queue due to
1061  * reneging and defer head skb's loss recovery to standard loss recovery
1062  * procedure that will eventually trigger (nothing forbids us doing this).
1063  *
1064  * Implements also blockage to start_seq wrap-around. Problem lies in the
1065  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1066  * there's no guarantee that it will be before snd_nxt (n). The problem
1067  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1068  * wrap (s_w):
1069  *
1070  *         <- outs wnd ->                          <- wrapzone ->
1071  *         u     e      n                         u_w   e_w  s n_w
1072  *         |     |      |                          |     |   |  |
1073  * |<------------+------+----- TCP seqno space --------------+---------->|
1074  * ...-- <2^31 ->|                                           |<--------...
1075  * ...---- >2^31 ------>|                                    |<--------...
1076  *
1077  * Current code wouldn't be vulnerable but it's better still to discard such
1078  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1079  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1080  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1081  * equal to the ideal case (infinite seqno space without wrap caused issues).
1082  *
1083  * With D-SACK the lower bound is extended to cover sequence space below
1084  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1085  * again, D-SACK block must not to go across snd_una (for the same reason as
1086  * for the normal SACK blocks, explained above). But there all simplicity
1087  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1088  * fully below undo_marker they do not affect behavior in anyway and can
1089  * therefore be safely ignored. In rare cases (which are more or less
1090  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1091  * fragmentation and packet reordering past skb's retransmission. To consider
1092  * them correctly, the acceptable range must be extended even more though
1093  * the exact amount is rather hard to quantify. However, tp->max_window can
1094  * be used as an exaggerated estimate.
1095  */
1096 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1097 				   u32 start_seq, u32 end_seq)
1098 {
1099 	/* Too far in future, or reversed (interpretation is ambiguous) */
1100 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1101 		return false;
1102 
1103 	/* Nasty start_seq wrap-around check (see comments above) */
1104 	if (!before(start_seq, tp->snd_nxt))
1105 		return false;
1106 
1107 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1108 	 * start_seq == snd_una is non-sensical (see comments above)
1109 	 */
1110 	if (after(start_seq, tp->snd_una))
1111 		return true;
1112 
1113 	if (!is_dsack || !tp->undo_marker)
1114 		return false;
1115 
1116 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1117 	if (after(end_seq, tp->snd_una))
1118 		return false;
1119 
1120 	if (!before(start_seq, tp->undo_marker))
1121 		return true;
1122 
1123 	/* Too old */
1124 	if (!after(end_seq, tp->undo_marker))
1125 		return false;
1126 
1127 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1128 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1129 	 */
1130 	return !before(start_seq, end_seq - tp->max_window);
1131 }
1132 
1133 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1134 			    struct tcp_sack_block_wire *sp, int num_sacks,
1135 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1136 {
1137 	struct tcp_sock *tp = tcp_sk(sk);
1138 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1139 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1140 	u32 dup_segs;
1141 
1142 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1143 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1144 	} else if (num_sacks > 1) {
1145 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1146 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1147 
1148 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1149 			return false;
1150 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1151 	} else {
1152 		return false;
1153 	}
1154 
1155 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1156 
1157 	/* D-SACK for already forgotten data... Do dumb counting. */
1158 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1159 	    !after(end_seq_0, prior_snd_una) &&
1160 	    after(end_seq_0, tp->undo_marker))
1161 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1162 
1163 	return true;
1164 }
1165 
1166 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1167  * the incoming SACK may not exactly match but we can find smaller MSS
1168  * aligned portion of it that matches. Therefore we might need to fragment
1169  * which may fail and creates some hassle (caller must handle error case
1170  * returns).
1171  *
1172  * FIXME: this could be merged to shift decision code
1173  */
1174 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1175 				  u32 start_seq, u32 end_seq)
1176 {
1177 	int err;
1178 	bool in_sack;
1179 	unsigned int pkt_len;
1180 	unsigned int mss;
1181 
1182 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1183 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1184 
1185 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1186 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1187 		mss = tcp_skb_mss(skb);
1188 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1189 
1190 		if (!in_sack) {
1191 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1192 			if (pkt_len < mss)
1193 				pkt_len = mss;
1194 		} else {
1195 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1196 			if (pkt_len < mss)
1197 				return -EINVAL;
1198 		}
1199 
1200 		/* Round if necessary so that SACKs cover only full MSSes
1201 		 * and/or the remaining small portion (if present)
1202 		 */
1203 		if (pkt_len > mss) {
1204 			unsigned int new_len = (pkt_len / mss) * mss;
1205 			if (!in_sack && new_len < pkt_len)
1206 				new_len += mss;
1207 			pkt_len = new_len;
1208 		}
1209 
1210 		if (pkt_len >= skb->len && !in_sack)
1211 			return 0;
1212 
1213 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1214 				   pkt_len, mss, GFP_ATOMIC);
1215 		if (err < 0)
1216 			return err;
1217 	}
1218 
1219 	return in_sack;
1220 }
1221 
1222 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1223 static u8 tcp_sacktag_one(struct sock *sk,
1224 			  struct tcp_sacktag_state *state, u8 sacked,
1225 			  u32 start_seq, u32 end_seq,
1226 			  int dup_sack, int pcount,
1227 			  u64 xmit_time)
1228 {
1229 	struct tcp_sock *tp = tcp_sk(sk);
1230 
1231 	/* Account D-SACK for retransmitted packet. */
1232 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1233 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1234 		    after(end_seq, tp->undo_marker))
1235 			tp->undo_retrans--;
1236 		if ((sacked & TCPCB_SACKED_ACKED) &&
1237 		    before(start_seq, state->reord))
1238 				state->reord = start_seq;
1239 	}
1240 
1241 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1242 	if (!after(end_seq, tp->snd_una))
1243 		return sacked;
1244 
1245 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1246 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1247 
1248 		if (sacked & TCPCB_SACKED_RETRANS) {
1249 			/* If the segment is not tagged as lost,
1250 			 * we do not clear RETRANS, believing
1251 			 * that retransmission is still in flight.
1252 			 */
1253 			if (sacked & TCPCB_LOST) {
1254 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1255 				tp->lost_out -= pcount;
1256 				tp->retrans_out -= pcount;
1257 			}
1258 		} else {
1259 			if (!(sacked & TCPCB_RETRANS)) {
1260 				/* New sack for not retransmitted frame,
1261 				 * which was in hole. It is reordering.
1262 				 */
1263 				if (before(start_seq,
1264 					   tcp_highest_sack_seq(tp)) &&
1265 				    before(start_seq, state->reord))
1266 					state->reord = start_seq;
1267 
1268 				if (!after(end_seq, tp->high_seq))
1269 					state->flag |= FLAG_ORIG_SACK_ACKED;
1270 				if (state->first_sackt == 0)
1271 					state->first_sackt = xmit_time;
1272 				state->last_sackt = xmit_time;
1273 			}
1274 
1275 			if (sacked & TCPCB_LOST) {
1276 				sacked &= ~TCPCB_LOST;
1277 				tp->lost_out -= pcount;
1278 			}
1279 		}
1280 
1281 		sacked |= TCPCB_SACKED_ACKED;
1282 		state->flag |= FLAG_DATA_SACKED;
1283 		tp->sacked_out += pcount;
1284 		/* Out-of-order packets delivered */
1285 		state->sack_delivered += pcount;
1286 
1287 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1288 		if (tp->lost_skb_hint &&
1289 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1290 			tp->lost_cnt_hint += pcount;
1291 	}
1292 
1293 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1294 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1295 	 * are accounted above as well.
1296 	 */
1297 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1298 		sacked &= ~TCPCB_SACKED_RETRANS;
1299 		tp->retrans_out -= pcount;
1300 	}
1301 
1302 	return sacked;
1303 }
1304 
1305 /* Shift newly-SACKed bytes from this skb to the immediately previous
1306  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1307  */
1308 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1309 			    struct sk_buff *skb,
1310 			    struct tcp_sacktag_state *state,
1311 			    unsigned int pcount, int shifted, int mss,
1312 			    bool dup_sack)
1313 {
1314 	struct tcp_sock *tp = tcp_sk(sk);
1315 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1316 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1317 
1318 	BUG_ON(!pcount);
1319 
1320 	/* Adjust counters and hints for the newly sacked sequence
1321 	 * range but discard the return value since prev is already
1322 	 * marked. We must tag the range first because the seq
1323 	 * advancement below implicitly advances
1324 	 * tcp_highest_sack_seq() when skb is highest_sack.
1325 	 */
1326 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1327 			start_seq, end_seq, dup_sack, pcount,
1328 			tcp_skb_timestamp_us(skb));
1329 	tcp_rate_skb_delivered(sk, skb, state->rate);
1330 
1331 	if (skb == tp->lost_skb_hint)
1332 		tp->lost_cnt_hint += pcount;
1333 
1334 	TCP_SKB_CB(prev)->end_seq += shifted;
1335 	TCP_SKB_CB(skb)->seq += shifted;
1336 
1337 	tcp_skb_pcount_add(prev, pcount);
1338 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1339 	tcp_skb_pcount_add(skb, -pcount);
1340 
1341 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1342 	 * in theory this shouldn't be necessary but as long as DSACK
1343 	 * code can come after this skb later on it's better to keep
1344 	 * setting gso_size to something.
1345 	 */
1346 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1347 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1348 
1349 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1350 	if (tcp_skb_pcount(skb) <= 1)
1351 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1352 
1353 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1354 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1355 
1356 	if (skb->len > 0) {
1357 		BUG_ON(!tcp_skb_pcount(skb));
1358 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1359 		return false;
1360 	}
1361 
1362 	/* Whole SKB was eaten :-) */
1363 
1364 	if (skb == tp->retransmit_skb_hint)
1365 		tp->retransmit_skb_hint = prev;
1366 	if (skb == tp->lost_skb_hint) {
1367 		tp->lost_skb_hint = prev;
1368 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1369 	}
1370 
1371 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1372 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1373 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1374 		TCP_SKB_CB(prev)->end_seq++;
1375 
1376 	if (skb == tcp_highest_sack(sk))
1377 		tcp_advance_highest_sack(sk, skb);
1378 
1379 	tcp_skb_collapse_tstamp(prev, skb);
1380 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1381 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1382 
1383 	tcp_rtx_queue_unlink_and_free(skb, sk);
1384 
1385 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1386 
1387 	return true;
1388 }
1389 
1390 /* I wish gso_size would have a bit more sane initialization than
1391  * something-or-zero which complicates things
1392  */
1393 static int tcp_skb_seglen(const struct sk_buff *skb)
1394 {
1395 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1396 }
1397 
1398 /* Shifting pages past head area doesn't work */
1399 static int skb_can_shift(const struct sk_buff *skb)
1400 {
1401 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1402 }
1403 
1404 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1405 		  int pcount, int shiftlen)
1406 {
1407 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1408 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1409 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1410 	 * even if current MSS is bigger.
1411 	 */
1412 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1413 		return 0;
1414 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1415 		return 0;
1416 	return skb_shift(to, from, shiftlen);
1417 }
1418 
1419 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1420  * skb.
1421  */
1422 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1423 					  struct tcp_sacktag_state *state,
1424 					  u32 start_seq, u32 end_seq,
1425 					  bool dup_sack)
1426 {
1427 	struct tcp_sock *tp = tcp_sk(sk);
1428 	struct sk_buff *prev;
1429 	int mss;
1430 	int pcount = 0;
1431 	int len;
1432 	int in_sack;
1433 
1434 	/* Normally R but no L won't result in plain S */
1435 	if (!dup_sack &&
1436 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1437 		goto fallback;
1438 	if (!skb_can_shift(skb))
1439 		goto fallback;
1440 	/* This frame is about to be dropped (was ACKed). */
1441 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1442 		goto fallback;
1443 
1444 	/* Can only happen with delayed DSACK + discard craziness */
1445 	prev = skb_rb_prev(skb);
1446 	if (!prev)
1447 		goto fallback;
1448 
1449 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1450 		goto fallback;
1451 
1452 	if (!tcp_skb_can_collapse(prev, skb))
1453 		goto fallback;
1454 
1455 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1456 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1457 
1458 	if (in_sack) {
1459 		len = skb->len;
1460 		pcount = tcp_skb_pcount(skb);
1461 		mss = tcp_skb_seglen(skb);
1462 
1463 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1464 		 * drop this restriction as unnecessary
1465 		 */
1466 		if (mss != tcp_skb_seglen(prev))
1467 			goto fallback;
1468 	} else {
1469 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1470 			goto noop;
1471 		/* CHECKME: This is non-MSS split case only?, this will
1472 		 * cause skipped skbs due to advancing loop btw, original
1473 		 * has that feature too
1474 		 */
1475 		if (tcp_skb_pcount(skb) <= 1)
1476 			goto noop;
1477 
1478 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1479 		if (!in_sack) {
1480 			/* TODO: head merge to next could be attempted here
1481 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1482 			 * though it might not be worth of the additional hassle
1483 			 *
1484 			 * ...we can probably just fallback to what was done
1485 			 * previously. We could try merging non-SACKed ones
1486 			 * as well but it probably isn't going to buy off
1487 			 * because later SACKs might again split them, and
1488 			 * it would make skb timestamp tracking considerably
1489 			 * harder problem.
1490 			 */
1491 			goto fallback;
1492 		}
1493 
1494 		len = end_seq - TCP_SKB_CB(skb)->seq;
1495 		BUG_ON(len < 0);
1496 		BUG_ON(len > skb->len);
1497 
1498 		/* MSS boundaries should be honoured or else pcount will
1499 		 * severely break even though it makes things bit trickier.
1500 		 * Optimize common case to avoid most of the divides
1501 		 */
1502 		mss = tcp_skb_mss(skb);
1503 
1504 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1505 		 * drop this restriction as unnecessary
1506 		 */
1507 		if (mss != tcp_skb_seglen(prev))
1508 			goto fallback;
1509 
1510 		if (len == mss) {
1511 			pcount = 1;
1512 		} else if (len < mss) {
1513 			goto noop;
1514 		} else {
1515 			pcount = len / mss;
1516 			len = pcount * mss;
1517 		}
1518 	}
1519 
1520 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1521 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1522 		goto fallback;
1523 
1524 	if (!tcp_skb_shift(prev, skb, pcount, len))
1525 		goto fallback;
1526 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1527 		goto out;
1528 
1529 	/* Hole filled allows collapsing with the next as well, this is very
1530 	 * useful when hole on every nth skb pattern happens
1531 	 */
1532 	skb = skb_rb_next(prev);
1533 	if (!skb)
1534 		goto out;
1535 
1536 	if (!skb_can_shift(skb) ||
1537 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1538 	    (mss != tcp_skb_seglen(skb)))
1539 		goto out;
1540 
1541 	len = skb->len;
1542 	pcount = tcp_skb_pcount(skb);
1543 	if (tcp_skb_shift(prev, skb, pcount, len))
1544 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1545 				len, mss, 0);
1546 
1547 out:
1548 	return prev;
1549 
1550 noop:
1551 	return skb;
1552 
1553 fallback:
1554 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1555 	return NULL;
1556 }
1557 
1558 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1559 					struct tcp_sack_block *next_dup,
1560 					struct tcp_sacktag_state *state,
1561 					u32 start_seq, u32 end_seq,
1562 					bool dup_sack_in)
1563 {
1564 	struct tcp_sock *tp = tcp_sk(sk);
1565 	struct sk_buff *tmp;
1566 
1567 	skb_rbtree_walk_from(skb) {
1568 		int in_sack = 0;
1569 		bool dup_sack = dup_sack_in;
1570 
1571 		/* queue is in-order => we can short-circuit the walk early */
1572 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1573 			break;
1574 
1575 		if (next_dup  &&
1576 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1577 			in_sack = tcp_match_skb_to_sack(sk, skb,
1578 							next_dup->start_seq,
1579 							next_dup->end_seq);
1580 			if (in_sack > 0)
1581 				dup_sack = true;
1582 		}
1583 
1584 		/* skb reference here is a bit tricky to get right, since
1585 		 * shifting can eat and free both this skb and the next,
1586 		 * so not even _safe variant of the loop is enough.
1587 		 */
1588 		if (in_sack <= 0) {
1589 			tmp = tcp_shift_skb_data(sk, skb, state,
1590 						 start_seq, end_seq, dup_sack);
1591 			if (tmp) {
1592 				if (tmp != skb) {
1593 					skb = tmp;
1594 					continue;
1595 				}
1596 
1597 				in_sack = 0;
1598 			} else {
1599 				in_sack = tcp_match_skb_to_sack(sk, skb,
1600 								start_seq,
1601 								end_seq);
1602 			}
1603 		}
1604 
1605 		if (unlikely(in_sack < 0))
1606 			break;
1607 
1608 		if (in_sack) {
1609 			TCP_SKB_CB(skb)->sacked =
1610 				tcp_sacktag_one(sk,
1611 						state,
1612 						TCP_SKB_CB(skb)->sacked,
1613 						TCP_SKB_CB(skb)->seq,
1614 						TCP_SKB_CB(skb)->end_seq,
1615 						dup_sack,
1616 						tcp_skb_pcount(skb),
1617 						tcp_skb_timestamp_us(skb));
1618 			tcp_rate_skb_delivered(sk, skb, state->rate);
1619 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1620 				list_del_init(&skb->tcp_tsorted_anchor);
1621 
1622 			if (!before(TCP_SKB_CB(skb)->seq,
1623 				    tcp_highest_sack_seq(tp)))
1624 				tcp_advance_highest_sack(sk, skb);
1625 		}
1626 	}
1627 	return skb;
1628 }
1629 
1630 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1631 {
1632 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1633 	struct sk_buff *skb;
1634 
1635 	while (*p) {
1636 		parent = *p;
1637 		skb = rb_to_skb(parent);
1638 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1639 			p = &parent->rb_left;
1640 			continue;
1641 		}
1642 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1643 			p = &parent->rb_right;
1644 			continue;
1645 		}
1646 		return skb;
1647 	}
1648 	return NULL;
1649 }
1650 
1651 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1652 					u32 skip_to_seq)
1653 {
1654 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1655 		return skb;
1656 
1657 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1658 }
1659 
1660 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1661 						struct sock *sk,
1662 						struct tcp_sack_block *next_dup,
1663 						struct tcp_sacktag_state *state,
1664 						u32 skip_to_seq)
1665 {
1666 	if (!next_dup)
1667 		return skb;
1668 
1669 	if (before(next_dup->start_seq, skip_to_seq)) {
1670 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1671 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1672 				       next_dup->start_seq, next_dup->end_seq,
1673 				       1);
1674 	}
1675 
1676 	return skb;
1677 }
1678 
1679 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1680 {
1681 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1682 }
1683 
1684 static int
1685 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1686 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1687 {
1688 	struct tcp_sock *tp = tcp_sk(sk);
1689 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1690 				    TCP_SKB_CB(ack_skb)->sacked);
1691 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1692 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1693 	struct tcp_sack_block *cache;
1694 	struct sk_buff *skb;
1695 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1696 	int used_sacks;
1697 	bool found_dup_sack = false;
1698 	int i, j;
1699 	int first_sack_index;
1700 
1701 	state->flag = 0;
1702 	state->reord = tp->snd_nxt;
1703 
1704 	if (!tp->sacked_out)
1705 		tcp_highest_sack_reset(sk);
1706 
1707 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1708 					 num_sacks, prior_snd_una, state);
1709 
1710 	/* Eliminate too old ACKs, but take into
1711 	 * account more or less fresh ones, they can
1712 	 * contain valid SACK info.
1713 	 */
1714 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1715 		return 0;
1716 
1717 	if (!tp->packets_out)
1718 		goto out;
1719 
1720 	used_sacks = 0;
1721 	first_sack_index = 0;
1722 	for (i = 0; i < num_sacks; i++) {
1723 		bool dup_sack = !i && found_dup_sack;
1724 
1725 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1726 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1727 
1728 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1729 					    sp[used_sacks].start_seq,
1730 					    sp[used_sacks].end_seq)) {
1731 			int mib_idx;
1732 
1733 			if (dup_sack) {
1734 				if (!tp->undo_marker)
1735 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1736 				else
1737 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1738 			} else {
1739 				/* Don't count olds caused by ACK reordering */
1740 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1741 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1742 					continue;
1743 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1744 			}
1745 
1746 			NET_INC_STATS(sock_net(sk), mib_idx);
1747 			if (i == 0)
1748 				first_sack_index = -1;
1749 			continue;
1750 		}
1751 
1752 		/* Ignore very old stuff early */
1753 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1754 			if (i == 0)
1755 				first_sack_index = -1;
1756 			continue;
1757 		}
1758 
1759 		used_sacks++;
1760 	}
1761 
1762 	/* order SACK blocks to allow in order walk of the retrans queue */
1763 	for (i = used_sacks - 1; i > 0; i--) {
1764 		for (j = 0; j < i; j++) {
1765 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1766 				swap(sp[j], sp[j + 1]);
1767 
1768 				/* Track where the first SACK block goes to */
1769 				if (j == first_sack_index)
1770 					first_sack_index = j + 1;
1771 			}
1772 		}
1773 	}
1774 
1775 	state->mss_now = tcp_current_mss(sk);
1776 	skb = NULL;
1777 	i = 0;
1778 
1779 	if (!tp->sacked_out) {
1780 		/* It's already past, so skip checking against it */
1781 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1782 	} else {
1783 		cache = tp->recv_sack_cache;
1784 		/* Skip empty blocks in at head of the cache */
1785 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1786 		       !cache->end_seq)
1787 			cache++;
1788 	}
1789 
1790 	while (i < used_sacks) {
1791 		u32 start_seq = sp[i].start_seq;
1792 		u32 end_seq = sp[i].end_seq;
1793 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1794 		struct tcp_sack_block *next_dup = NULL;
1795 
1796 		if (found_dup_sack && ((i + 1) == first_sack_index))
1797 			next_dup = &sp[i + 1];
1798 
1799 		/* Skip too early cached blocks */
1800 		while (tcp_sack_cache_ok(tp, cache) &&
1801 		       !before(start_seq, cache->end_seq))
1802 			cache++;
1803 
1804 		/* Can skip some work by looking recv_sack_cache? */
1805 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1806 		    after(end_seq, cache->start_seq)) {
1807 
1808 			/* Head todo? */
1809 			if (before(start_seq, cache->start_seq)) {
1810 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1811 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1812 						       state,
1813 						       start_seq,
1814 						       cache->start_seq,
1815 						       dup_sack);
1816 			}
1817 
1818 			/* Rest of the block already fully processed? */
1819 			if (!after(end_seq, cache->end_seq))
1820 				goto advance_sp;
1821 
1822 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1823 						       state,
1824 						       cache->end_seq);
1825 
1826 			/* ...tail remains todo... */
1827 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1828 				/* ...but better entrypoint exists! */
1829 				skb = tcp_highest_sack(sk);
1830 				if (!skb)
1831 					break;
1832 				cache++;
1833 				goto walk;
1834 			}
1835 
1836 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1837 			/* Check overlap against next cached too (past this one already) */
1838 			cache++;
1839 			continue;
1840 		}
1841 
1842 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1843 			skb = tcp_highest_sack(sk);
1844 			if (!skb)
1845 				break;
1846 		}
1847 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1848 
1849 walk:
1850 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1851 				       start_seq, end_seq, dup_sack);
1852 
1853 advance_sp:
1854 		i++;
1855 	}
1856 
1857 	/* Clear the head of the cache sack blocks so we can skip it next time */
1858 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1859 		tp->recv_sack_cache[i].start_seq = 0;
1860 		tp->recv_sack_cache[i].end_seq = 0;
1861 	}
1862 	for (j = 0; j < used_sacks; j++)
1863 		tp->recv_sack_cache[i++] = sp[j];
1864 
1865 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1866 		tcp_check_sack_reordering(sk, state->reord, 0);
1867 
1868 	tcp_verify_left_out(tp);
1869 out:
1870 
1871 #if FASTRETRANS_DEBUG > 0
1872 	WARN_ON((int)tp->sacked_out < 0);
1873 	WARN_ON((int)tp->lost_out < 0);
1874 	WARN_ON((int)tp->retrans_out < 0);
1875 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1876 #endif
1877 	return state->flag;
1878 }
1879 
1880 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1881  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1882  */
1883 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1884 {
1885 	u32 holes;
1886 
1887 	holes = max(tp->lost_out, 1U);
1888 	holes = min(holes, tp->packets_out);
1889 
1890 	if ((tp->sacked_out + holes) > tp->packets_out) {
1891 		tp->sacked_out = tp->packets_out - holes;
1892 		return true;
1893 	}
1894 	return false;
1895 }
1896 
1897 /* If we receive more dupacks than we expected counting segments
1898  * in assumption of absent reordering, interpret this as reordering.
1899  * The only another reason could be bug in receiver TCP.
1900  */
1901 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1902 {
1903 	struct tcp_sock *tp = tcp_sk(sk);
1904 
1905 	if (!tcp_limit_reno_sacked(tp))
1906 		return;
1907 
1908 	tp->reordering = min_t(u32, tp->packets_out + addend,
1909 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1910 	tp->reord_seen++;
1911 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1912 }
1913 
1914 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1915 
1916 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1917 {
1918 	if (num_dupack) {
1919 		struct tcp_sock *tp = tcp_sk(sk);
1920 		u32 prior_sacked = tp->sacked_out;
1921 		s32 delivered;
1922 
1923 		tp->sacked_out += num_dupack;
1924 		tcp_check_reno_reordering(sk, 0);
1925 		delivered = tp->sacked_out - prior_sacked;
1926 		if (delivered > 0)
1927 			tcp_count_delivered(tp, delivered, ece_ack);
1928 		tcp_verify_left_out(tp);
1929 	}
1930 }
1931 
1932 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1933 
1934 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
1935 {
1936 	struct tcp_sock *tp = tcp_sk(sk);
1937 
1938 	if (acked > 0) {
1939 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1940 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
1941 				    ece_ack);
1942 		if (acked - 1 >= tp->sacked_out)
1943 			tp->sacked_out = 0;
1944 		else
1945 			tp->sacked_out -= acked - 1;
1946 	}
1947 	tcp_check_reno_reordering(sk, acked);
1948 	tcp_verify_left_out(tp);
1949 }
1950 
1951 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1952 {
1953 	tp->sacked_out = 0;
1954 }
1955 
1956 void tcp_clear_retrans(struct tcp_sock *tp)
1957 {
1958 	tp->retrans_out = 0;
1959 	tp->lost_out = 0;
1960 	tp->undo_marker = 0;
1961 	tp->undo_retrans = -1;
1962 	tp->sacked_out = 0;
1963 }
1964 
1965 static inline void tcp_init_undo(struct tcp_sock *tp)
1966 {
1967 	tp->undo_marker = tp->snd_una;
1968 	/* Retransmission still in flight may cause DSACKs later. */
1969 	tp->undo_retrans = tp->retrans_out ? : -1;
1970 }
1971 
1972 static bool tcp_is_rack(const struct sock *sk)
1973 {
1974 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1975 }
1976 
1977 /* If we detect SACK reneging, forget all SACK information
1978  * and reset tags completely, otherwise preserve SACKs. If receiver
1979  * dropped its ofo queue, we will know this due to reneging detection.
1980  */
1981 static void tcp_timeout_mark_lost(struct sock *sk)
1982 {
1983 	struct tcp_sock *tp = tcp_sk(sk);
1984 	struct sk_buff *skb, *head;
1985 	bool is_reneg;			/* is receiver reneging on SACKs? */
1986 
1987 	head = tcp_rtx_queue_head(sk);
1988 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1989 	if (is_reneg) {
1990 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1991 		tp->sacked_out = 0;
1992 		/* Mark SACK reneging until we recover from this loss event. */
1993 		tp->is_sack_reneg = 1;
1994 	} else if (tcp_is_reno(tp)) {
1995 		tcp_reset_reno_sack(tp);
1996 	}
1997 
1998 	skb = head;
1999 	skb_rbtree_walk_from(skb) {
2000 		if (is_reneg)
2001 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2002 		else if (tcp_is_rack(sk) && skb != head &&
2003 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2004 			continue; /* Don't mark recently sent ones lost yet */
2005 		tcp_mark_skb_lost(sk, skb);
2006 	}
2007 	tcp_verify_left_out(tp);
2008 	tcp_clear_all_retrans_hints(tp);
2009 }
2010 
2011 /* Enter Loss state. */
2012 void tcp_enter_loss(struct sock *sk)
2013 {
2014 	const struct inet_connection_sock *icsk = inet_csk(sk);
2015 	struct tcp_sock *tp = tcp_sk(sk);
2016 	struct net *net = sock_net(sk);
2017 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2018 
2019 	tcp_timeout_mark_lost(sk);
2020 
2021 	/* Reduce ssthresh if it has not yet been made inside this window. */
2022 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2023 	    !after(tp->high_seq, tp->snd_una) ||
2024 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2025 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2026 		tp->prior_cwnd = tp->snd_cwnd;
2027 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2028 		tcp_ca_event(sk, CA_EVENT_LOSS);
2029 		tcp_init_undo(tp);
2030 	}
2031 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2032 	tp->snd_cwnd_cnt   = 0;
2033 	tp->snd_cwnd_stamp = tcp_jiffies32;
2034 
2035 	/* Timeout in disordered state after receiving substantial DUPACKs
2036 	 * suggests that the degree of reordering is over-estimated.
2037 	 */
2038 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2039 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2040 		tp->reordering = min_t(unsigned int, tp->reordering,
2041 				       net->ipv4.sysctl_tcp_reordering);
2042 	tcp_set_ca_state(sk, TCP_CA_Loss);
2043 	tp->high_seq = tp->snd_nxt;
2044 	tcp_ecn_queue_cwr(tp);
2045 
2046 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2047 	 * loss recovery is underway except recurring timeout(s) on
2048 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2049 	 */
2050 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2051 		   (new_recovery || icsk->icsk_retransmits) &&
2052 		   !inet_csk(sk)->icsk_mtup.probe_size;
2053 }
2054 
2055 /* If ACK arrived pointing to a remembered SACK, it means that our
2056  * remembered SACKs do not reflect real state of receiver i.e.
2057  * receiver _host_ is heavily congested (or buggy).
2058  *
2059  * To avoid big spurious retransmission bursts due to transient SACK
2060  * scoreboard oddities that look like reneging, we give the receiver a
2061  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2062  * restore sanity to the SACK scoreboard. If the apparent reneging
2063  * persists until this RTO then we'll clear the SACK scoreboard.
2064  */
2065 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2066 {
2067 	if (flag & FLAG_SACK_RENEGING) {
2068 		struct tcp_sock *tp = tcp_sk(sk);
2069 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2070 					  msecs_to_jiffies(10));
2071 
2072 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2073 					  delay, TCP_RTO_MAX);
2074 		return true;
2075 	}
2076 	return false;
2077 }
2078 
2079 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2080  * counter when SACK is enabled (without SACK, sacked_out is used for
2081  * that purpose).
2082  *
2083  * With reordering, holes may still be in flight, so RFC3517 recovery
2084  * uses pure sacked_out (total number of SACKed segments) even though
2085  * it violates the RFC that uses duplicate ACKs, often these are equal
2086  * but when e.g. out-of-window ACKs or packet duplication occurs,
2087  * they differ. Since neither occurs due to loss, TCP should really
2088  * ignore them.
2089  */
2090 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2091 {
2092 	return tp->sacked_out + 1;
2093 }
2094 
2095 /* Linux NewReno/SACK/ECN state machine.
2096  * --------------------------------------
2097  *
2098  * "Open"	Normal state, no dubious events, fast path.
2099  * "Disorder"   In all the respects it is "Open",
2100  *		but requires a bit more attention. It is entered when
2101  *		we see some SACKs or dupacks. It is split of "Open"
2102  *		mainly to move some processing from fast path to slow one.
2103  * "CWR"	CWND was reduced due to some Congestion Notification event.
2104  *		It can be ECN, ICMP source quench, local device congestion.
2105  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2106  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2107  *
2108  * tcp_fastretrans_alert() is entered:
2109  * - each incoming ACK, if state is not "Open"
2110  * - when arrived ACK is unusual, namely:
2111  *	* SACK
2112  *	* Duplicate ACK.
2113  *	* ECN ECE.
2114  *
2115  * Counting packets in flight is pretty simple.
2116  *
2117  *	in_flight = packets_out - left_out + retrans_out
2118  *
2119  *	packets_out is SND.NXT-SND.UNA counted in packets.
2120  *
2121  *	retrans_out is number of retransmitted segments.
2122  *
2123  *	left_out is number of segments left network, but not ACKed yet.
2124  *
2125  *		left_out = sacked_out + lost_out
2126  *
2127  *     sacked_out: Packets, which arrived to receiver out of order
2128  *		   and hence not ACKed. With SACKs this number is simply
2129  *		   amount of SACKed data. Even without SACKs
2130  *		   it is easy to give pretty reliable estimate of this number,
2131  *		   counting duplicate ACKs.
2132  *
2133  *       lost_out: Packets lost by network. TCP has no explicit
2134  *		   "loss notification" feedback from network (for now).
2135  *		   It means that this number can be only _guessed_.
2136  *		   Actually, it is the heuristics to predict lossage that
2137  *		   distinguishes different algorithms.
2138  *
2139  *	F.e. after RTO, when all the queue is considered as lost,
2140  *	lost_out = packets_out and in_flight = retrans_out.
2141  *
2142  *		Essentially, we have now a few algorithms detecting
2143  *		lost packets.
2144  *
2145  *		If the receiver supports SACK:
2146  *
2147  *		RFC6675/3517: It is the conventional algorithm. A packet is
2148  *		considered lost if the number of higher sequence packets
2149  *		SACKed is greater than or equal the DUPACK thoreshold
2150  *		(reordering). This is implemented in tcp_mark_head_lost and
2151  *		tcp_update_scoreboard.
2152  *
2153  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2154  *		(2017-) that checks timing instead of counting DUPACKs.
2155  *		Essentially a packet is considered lost if it's not S/ACKed
2156  *		after RTT + reordering_window, where both metrics are
2157  *		dynamically measured and adjusted. This is implemented in
2158  *		tcp_rack_mark_lost.
2159  *
2160  *		If the receiver does not support SACK:
2161  *
2162  *		NewReno (RFC6582): in Recovery we assume that one segment
2163  *		is lost (classic Reno). While we are in Recovery and
2164  *		a partial ACK arrives, we assume that one more packet
2165  *		is lost (NewReno). This heuristics are the same in NewReno
2166  *		and SACK.
2167  *
2168  * Really tricky (and requiring careful tuning) part of algorithm
2169  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2170  * The first determines the moment _when_ we should reduce CWND and,
2171  * hence, slow down forward transmission. In fact, it determines the moment
2172  * when we decide that hole is caused by loss, rather than by a reorder.
2173  *
2174  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2175  * holes, caused by lost packets.
2176  *
2177  * And the most logically complicated part of algorithm is undo
2178  * heuristics. We detect false retransmits due to both too early
2179  * fast retransmit (reordering) and underestimated RTO, analyzing
2180  * timestamps and D-SACKs. When we detect that some segments were
2181  * retransmitted by mistake and CWND reduction was wrong, we undo
2182  * window reduction and abort recovery phase. This logic is hidden
2183  * inside several functions named tcp_try_undo_<something>.
2184  */
2185 
2186 /* This function decides, when we should leave Disordered state
2187  * and enter Recovery phase, reducing congestion window.
2188  *
2189  * Main question: may we further continue forward transmission
2190  * with the same cwnd?
2191  */
2192 static bool tcp_time_to_recover(struct sock *sk, int flag)
2193 {
2194 	struct tcp_sock *tp = tcp_sk(sk);
2195 
2196 	/* Trick#1: The loss is proven. */
2197 	if (tp->lost_out)
2198 		return true;
2199 
2200 	/* Not-A-Trick#2 : Classic rule... */
2201 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2202 		return true;
2203 
2204 	return false;
2205 }
2206 
2207 /* Detect loss in event "A" above by marking head of queue up as lost.
2208  * For RFC3517 SACK, a segment is considered lost if it
2209  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2210  * the maximum SACKed segments to pass before reaching this limit.
2211  */
2212 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2213 {
2214 	struct tcp_sock *tp = tcp_sk(sk);
2215 	struct sk_buff *skb;
2216 	int cnt;
2217 	/* Use SACK to deduce losses of new sequences sent during recovery */
2218 	const u32 loss_high = tp->snd_nxt;
2219 
2220 	WARN_ON(packets > tp->packets_out);
2221 	skb = tp->lost_skb_hint;
2222 	if (skb) {
2223 		/* Head already handled? */
2224 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2225 			return;
2226 		cnt = tp->lost_cnt_hint;
2227 	} else {
2228 		skb = tcp_rtx_queue_head(sk);
2229 		cnt = 0;
2230 	}
2231 
2232 	skb_rbtree_walk_from(skb) {
2233 		/* TODO: do this better */
2234 		/* this is not the most efficient way to do this... */
2235 		tp->lost_skb_hint = skb;
2236 		tp->lost_cnt_hint = cnt;
2237 
2238 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2239 			break;
2240 
2241 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2242 			cnt += tcp_skb_pcount(skb);
2243 
2244 		if (cnt > packets)
2245 			break;
2246 
2247 		tcp_skb_mark_lost(tp, skb);
2248 
2249 		if (mark_head)
2250 			break;
2251 	}
2252 	tcp_verify_left_out(tp);
2253 }
2254 
2255 /* Account newly detected lost packet(s) */
2256 
2257 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2258 {
2259 	struct tcp_sock *tp = tcp_sk(sk);
2260 
2261 	if (tcp_is_sack(tp)) {
2262 		int sacked_upto = tp->sacked_out - tp->reordering;
2263 		if (sacked_upto >= 0)
2264 			tcp_mark_head_lost(sk, sacked_upto, 0);
2265 		else if (fast_rexmit)
2266 			tcp_mark_head_lost(sk, 1, 1);
2267 	}
2268 }
2269 
2270 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2271 {
2272 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2273 	       before(tp->rx_opt.rcv_tsecr, when);
2274 }
2275 
2276 /* skb is spurious retransmitted if the returned timestamp echo
2277  * reply is prior to the skb transmission time
2278  */
2279 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2280 				     const struct sk_buff *skb)
2281 {
2282 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2283 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2284 }
2285 
2286 /* Nothing was retransmitted or returned timestamp is less
2287  * than timestamp of the first retransmission.
2288  */
2289 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2290 {
2291 	return tp->retrans_stamp &&
2292 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2293 }
2294 
2295 /* Undo procedures. */
2296 
2297 /* We can clear retrans_stamp when there are no retransmissions in the
2298  * window. It would seem that it is trivially available for us in
2299  * tp->retrans_out, however, that kind of assumptions doesn't consider
2300  * what will happen if errors occur when sending retransmission for the
2301  * second time. ...It could the that such segment has only
2302  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2303  * the head skb is enough except for some reneging corner cases that
2304  * are not worth the effort.
2305  *
2306  * Main reason for all this complexity is the fact that connection dying
2307  * time now depends on the validity of the retrans_stamp, in particular,
2308  * that successive retransmissions of a segment must not advance
2309  * retrans_stamp under any conditions.
2310  */
2311 static bool tcp_any_retrans_done(const struct sock *sk)
2312 {
2313 	const struct tcp_sock *tp = tcp_sk(sk);
2314 	struct sk_buff *skb;
2315 
2316 	if (tp->retrans_out)
2317 		return true;
2318 
2319 	skb = tcp_rtx_queue_head(sk);
2320 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2321 		return true;
2322 
2323 	return false;
2324 }
2325 
2326 static void DBGUNDO(struct sock *sk, const char *msg)
2327 {
2328 #if FASTRETRANS_DEBUG > 1
2329 	struct tcp_sock *tp = tcp_sk(sk);
2330 	struct inet_sock *inet = inet_sk(sk);
2331 
2332 	if (sk->sk_family == AF_INET) {
2333 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2334 			 msg,
2335 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2336 			 tp->snd_cwnd, tcp_left_out(tp),
2337 			 tp->snd_ssthresh, tp->prior_ssthresh,
2338 			 tp->packets_out);
2339 	}
2340 #if IS_ENABLED(CONFIG_IPV6)
2341 	else if (sk->sk_family == AF_INET6) {
2342 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2343 			 msg,
2344 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2345 			 tp->snd_cwnd, tcp_left_out(tp),
2346 			 tp->snd_ssthresh, tp->prior_ssthresh,
2347 			 tp->packets_out);
2348 	}
2349 #endif
2350 #endif
2351 }
2352 
2353 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2354 {
2355 	struct tcp_sock *tp = tcp_sk(sk);
2356 
2357 	if (unmark_loss) {
2358 		struct sk_buff *skb;
2359 
2360 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2361 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2362 		}
2363 		tp->lost_out = 0;
2364 		tcp_clear_all_retrans_hints(tp);
2365 	}
2366 
2367 	if (tp->prior_ssthresh) {
2368 		const struct inet_connection_sock *icsk = inet_csk(sk);
2369 
2370 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2371 
2372 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2373 			tp->snd_ssthresh = tp->prior_ssthresh;
2374 			tcp_ecn_withdraw_cwr(tp);
2375 		}
2376 	}
2377 	tp->snd_cwnd_stamp = tcp_jiffies32;
2378 	tp->undo_marker = 0;
2379 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2380 }
2381 
2382 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2383 {
2384 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2385 }
2386 
2387 /* People celebrate: "We love our President!" */
2388 static bool tcp_try_undo_recovery(struct sock *sk)
2389 {
2390 	struct tcp_sock *tp = tcp_sk(sk);
2391 
2392 	if (tcp_may_undo(tp)) {
2393 		int mib_idx;
2394 
2395 		/* Happy end! We did not retransmit anything
2396 		 * or our original transmission succeeded.
2397 		 */
2398 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2399 		tcp_undo_cwnd_reduction(sk, false);
2400 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2401 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2402 		else
2403 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2404 
2405 		NET_INC_STATS(sock_net(sk), mib_idx);
2406 	} else if (tp->rack.reo_wnd_persist) {
2407 		tp->rack.reo_wnd_persist--;
2408 	}
2409 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2410 		/* Hold old state until something *above* high_seq
2411 		 * is ACKed. For Reno it is MUST to prevent false
2412 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2413 		if (!tcp_any_retrans_done(sk))
2414 			tp->retrans_stamp = 0;
2415 		return true;
2416 	}
2417 	tcp_set_ca_state(sk, TCP_CA_Open);
2418 	tp->is_sack_reneg = 0;
2419 	return false;
2420 }
2421 
2422 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2423 static bool tcp_try_undo_dsack(struct sock *sk)
2424 {
2425 	struct tcp_sock *tp = tcp_sk(sk);
2426 
2427 	if (tp->undo_marker && !tp->undo_retrans) {
2428 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2429 					       tp->rack.reo_wnd_persist + 1);
2430 		DBGUNDO(sk, "D-SACK");
2431 		tcp_undo_cwnd_reduction(sk, false);
2432 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2433 		return true;
2434 	}
2435 	return false;
2436 }
2437 
2438 /* Undo during loss recovery after partial ACK or using F-RTO. */
2439 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2440 {
2441 	struct tcp_sock *tp = tcp_sk(sk);
2442 
2443 	if (frto_undo || tcp_may_undo(tp)) {
2444 		tcp_undo_cwnd_reduction(sk, true);
2445 
2446 		DBGUNDO(sk, "partial loss");
2447 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2448 		if (frto_undo)
2449 			NET_INC_STATS(sock_net(sk),
2450 					LINUX_MIB_TCPSPURIOUSRTOS);
2451 		inet_csk(sk)->icsk_retransmits = 0;
2452 		if (frto_undo || tcp_is_sack(tp)) {
2453 			tcp_set_ca_state(sk, TCP_CA_Open);
2454 			tp->is_sack_reneg = 0;
2455 		}
2456 		return true;
2457 	}
2458 	return false;
2459 }
2460 
2461 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2462  * It computes the number of packets to send (sndcnt) based on packets newly
2463  * delivered:
2464  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2465  *	cwnd reductions across a full RTT.
2466  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2467  *      But when the retransmits are acked without further losses, PRR
2468  *      slow starts cwnd up to ssthresh to speed up the recovery.
2469  */
2470 static void tcp_init_cwnd_reduction(struct sock *sk)
2471 {
2472 	struct tcp_sock *tp = tcp_sk(sk);
2473 
2474 	tp->high_seq = tp->snd_nxt;
2475 	tp->tlp_high_seq = 0;
2476 	tp->snd_cwnd_cnt = 0;
2477 	tp->prior_cwnd = tp->snd_cwnd;
2478 	tp->prr_delivered = 0;
2479 	tp->prr_out = 0;
2480 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2481 	tcp_ecn_queue_cwr(tp);
2482 }
2483 
2484 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2485 {
2486 	struct tcp_sock *tp = tcp_sk(sk);
2487 	int sndcnt = 0;
2488 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2489 
2490 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2491 		return;
2492 
2493 	tp->prr_delivered += newly_acked_sacked;
2494 	if (delta < 0) {
2495 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2496 			       tp->prior_cwnd - 1;
2497 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2498 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2499 		   FLAG_RETRANS_DATA_ACKED) {
2500 		sndcnt = min_t(int, delta,
2501 			       max_t(int, tp->prr_delivered - tp->prr_out,
2502 				     newly_acked_sacked) + 1);
2503 	} else {
2504 		sndcnt = min(delta, newly_acked_sacked);
2505 	}
2506 	/* Force a fast retransmit upon entering fast recovery */
2507 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2508 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2509 }
2510 
2511 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 
2515 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2516 		return;
2517 
2518 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2519 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2520 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2521 		tp->snd_cwnd = tp->snd_ssthresh;
2522 		tp->snd_cwnd_stamp = tcp_jiffies32;
2523 	}
2524 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2525 }
2526 
2527 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2528 void tcp_enter_cwr(struct sock *sk)
2529 {
2530 	struct tcp_sock *tp = tcp_sk(sk);
2531 
2532 	tp->prior_ssthresh = 0;
2533 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2534 		tp->undo_marker = 0;
2535 		tcp_init_cwnd_reduction(sk);
2536 		tcp_set_ca_state(sk, TCP_CA_CWR);
2537 	}
2538 }
2539 EXPORT_SYMBOL(tcp_enter_cwr);
2540 
2541 static void tcp_try_keep_open(struct sock *sk)
2542 {
2543 	struct tcp_sock *tp = tcp_sk(sk);
2544 	int state = TCP_CA_Open;
2545 
2546 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2547 		state = TCP_CA_Disorder;
2548 
2549 	if (inet_csk(sk)->icsk_ca_state != state) {
2550 		tcp_set_ca_state(sk, state);
2551 		tp->high_seq = tp->snd_nxt;
2552 	}
2553 }
2554 
2555 static void tcp_try_to_open(struct sock *sk, int flag)
2556 {
2557 	struct tcp_sock *tp = tcp_sk(sk);
2558 
2559 	tcp_verify_left_out(tp);
2560 
2561 	if (!tcp_any_retrans_done(sk))
2562 		tp->retrans_stamp = 0;
2563 
2564 	if (flag & FLAG_ECE)
2565 		tcp_enter_cwr(sk);
2566 
2567 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2568 		tcp_try_keep_open(sk);
2569 	}
2570 }
2571 
2572 static void tcp_mtup_probe_failed(struct sock *sk)
2573 {
2574 	struct inet_connection_sock *icsk = inet_csk(sk);
2575 
2576 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2577 	icsk->icsk_mtup.probe_size = 0;
2578 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2579 }
2580 
2581 static void tcp_mtup_probe_success(struct sock *sk)
2582 {
2583 	struct tcp_sock *tp = tcp_sk(sk);
2584 	struct inet_connection_sock *icsk = inet_csk(sk);
2585 
2586 	/* FIXME: breaks with very large cwnd */
2587 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2588 	tp->snd_cwnd = tp->snd_cwnd *
2589 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2590 		       icsk->icsk_mtup.probe_size;
2591 	tp->snd_cwnd_cnt = 0;
2592 	tp->snd_cwnd_stamp = tcp_jiffies32;
2593 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2594 
2595 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2596 	icsk->icsk_mtup.probe_size = 0;
2597 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2598 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2599 }
2600 
2601 /* Do a simple retransmit without using the backoff mechanisms in
2602  * tcp_timer. This is used for path mtu discovery.
2603  * The socket is already locked here.
2604  */
2605 void tcp_simple_retransmit(struct sock *sk)
2606 {
2607 	const struct inet_connection_sock *icsk = inet_csk(sk);
2608 	struct tcp_sock *tp = tcp_sk(sk);
2609 	struct sk_buff *skb;
2610 	unsigned int mss = tcp_current_mss(sk);
2611 
2612 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2613 		if (tcp_skb_seglen(skb) > mss &&
2614 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2615 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2616 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2617 				tp->retrans_out -= tcp_skb_pcount(skb);
2618 			}
2619 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2620 		}
2621 	}
2622 
2623 	tcp_clear_retrans_hints_partial(tp);
2624 
2625 	if (!tp->lost_out)
2626 		return;
2627 
2628 	if (tcp_is_reno(tp))
2629 		tcp_limit_reno_sacked(tp);
2630 
2631 	tcp_verify_left_out(tp);
2632 
2633 	/* Don't muck with the congestion window here.
2634 	 * Reason is that we do not increase amount of _data_
2635 	 * in network, but units changed and effective
2636 	 * cwnd/ssthresh really reduced now.
2637 	 */
2638 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2639 		tp->high_seq = tp->snd_nxt;
2640 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2641 		tp->prior_ssthresh = 0;
2642 		tp->undo_marker = 0;
2643 		tcp_set_ca_state(sk, TCP_CA_Loss);
2644 	}
2645 	tcp_xmit_retransmit_queue(sk);
2646 }
2647 EXPORT_SYMBOL(tcp_simple_retransmit);
2648 
2649 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2650 {
2651 	struct tcp_sock *tp = tcp_sk(sk);
2652 	int mib_idx;
2653 
2654 	if (tcp_is_reno(tp))
2655 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2656 	else
2657 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2658 
2659 	NET_INC_STATS(sock_net(sk), mib_idx);
2660 
2661 	tp->prior_ssthresh = 0;
2662 	tcp_init_undo(tp);
2663 
2664 	if (!tcp_in_cwnd_reduction(sk)) {
2665 		if (!ece_ack)
2666 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2667 		tcp_init_cwnd_reduction(sk);
2668 	}
2669 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2670 }
2671 
2672 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2673  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2674  */
2675 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2676 			     int *rexmit)
2677 {
2678 	struct tcp_sock *tp = tcp_sk(sk);
2679 	bool recovered = !before(tp->snd_una, tp->high_seq);
2680 
2681 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2682 	    tcp_try_undo_loss(sk, false))
2683 		return;
2684 
2685 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2686 		/* Step 3.b. A timeout is spurious if not all data are
2687 		 * lost, i.e., never-retransmitted data are (s)acked.
2688 		 */
2689 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2690 		    tcp_try_undo_loss(sk, true))
2691 			return;
2692 
2693 		if (after(tp->snd_nxt, tp->high_seq)) {
2694 			if (flag & FLAG_DATA_SACKED || num_dupack)
2695 				tp->frto = 0; /* Step 3.a. loss was real */
2696 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2697 			tp->high_seq = tp->snd_nxt;
2698 			/* Step 2.b. Try send new data (but deferred until cwnd
2699 			 * is updated in tcp_ack()). Otherwise fall back to
2700 			 * the conventional recovery.
2701 			 */
2702 			if (!tcp_write_queue_empty(sk) &&
2703 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2704 				*rexmit = REXMIT_NEW;
2705 				return;
2706 			}
2707 			tp->frto = 0;
2708 		}
2709 	}
2710 
2711 	if (recovered) {
2712 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2713 		tcp_try_undo_recovery(sk);
2714 		return;
2715 	}
2716 	if (tcp_is_reno(tp)) {
2717 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2718 		 * delivered. Lower inflight to clock out (re)tranmissions.
2719 		 */
2720 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2721 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2722 		else if (flag & FLAG_SND_UNA_ADVANCED)
2723 			tcp_reset_reno_sack(tp);
2724 	}
2725 	*rexmit = REXMIT_LOST;
2726 }
2727 
2728 /* Undo during fast recovery after partial ACK. */
2729 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2730 {
2731 	struct tcp_sock *tp = tcp_sk(sk);
2732 
2733 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2734 		/* Plain luck! Hole if filled with delayed
2735 		 * packet, rather than with a retransmit. Check reordering.
2736 		 */
2737 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2738 
2739 		/* We are getting evidence that the reordering degree is higher
2740 		 * than we realized. If there are no retransmits out then we
2741 		 * can undo. Otherwise we clock out new packets but do not
2742 		 * mark more packets lost or retransmit more.
2743 		 */
2744 		if (tp->retrans_out)
2745 			return true;
2746 
2747 		if (!tcp_any_retrans_done(sk))
2748 			tp->retrans_stamp = 0;
2749 
2750 		DBGUNDO(sk, "partial recovery");
2751 		tcp_undo_cwnd_reduction(sk, true);
2752 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2753 		tcp_try_keep_open(sk);
2754 		return true;
2755 	}
2756 	return false;
2757 }
2758 
2759 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2760 {
2761 	struct tcp_sock *tp = tcp_sk(sk);
2762 
2763 	if (tcp_rtx_queue_empty(sk))
2764 		return;
2765 
2766 	if (unlikely(tcp_is_reno(tp))) {
2767 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2768 	} else if (tcp_is_rack(sk)) {
2769 		u32 prior_retrans = tp->retrans_out;
2770 
2771 		tcp_rack_mark_lost(sk);
2772 		if (prior_retrans > tp->retrans_out)
2773 			*ack_flag |= FLAG_LOST_RETRANS;
2774 	}
2775 }
2776 
2777 static bool tcp_force_fast_retransmit(struct sock *sk)
2778 {
2779 	struct tcp_sock *tp = tcp_sk(sk);
2780 
2781 	return after(tcp_highest_sack_seq(tp),
2782 		     tp->snd_una + tp->reordering * tp->mss_cache);
2783 }
2784 
2785 /* Process an event, which can update packets-in-flight not trivially.
2786  * Main goal of this function is to calculate new estimate for left_out,
2787  * taking into account both packets sitting in receiver's buffer and
2788  * packets lost by network.
2789  *
2790  * Besides that it updates the congestion state when packet loss or ECN
2791  * is detected. But it does not reduce the cwnd, it is done by the
2792  * congestion control later.
2793  *
2794  * It does _not_ decide what to send, it is made in function
2795  * tcp_xmit_retransmit_queue().
2796  */
2797 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2798 				  int num_dupack, int *ack_flag, int *rexmit)
2799 {
2800 	struct inet_connection_sock *icsk = inet_csk(sk);
2801 	struct tcp_sock *tp = tcp_sk(sk);
2802 	int fast_rexmit = 0, flag = *ack_flag;
2803 	bool ece_ack = flag & FLAG_ECE;
2804 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2805 				      tcp_force_fast_retransmit(sk));
2806 
2807 	if (!tp->packets_out && tp->sacked_out)
2808 		tp->sacked_out = 0;
2809 
2810 	/* Now state machine starts.
2811 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2812 	if (ece_ack)
2813 		tp->prior_ssthresh = 0;
2814 
2815 	/* B. In all the states check for reneging SACKs. */
2816 	if (tcp_check_sack_reneging(sk, flag))
2817 		return;
2818 
2819 	/* C. Check consistency of the current state. */
2820 	tcp_verify_left_out(tp);
2821 
2822 	/* D. Check state exit conditions. State can be terminated
2823 	 *    when high_seq is ACKed. */
2824 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2825 		WARN_ON(tp->retrans_out != 0);
2826 		tp->retrans_stamp = 0;
2827 	} else if (!before(tp->snd_una, tp->high_seq)) {
2828 		switch (icsk->icsk_ca_state) {
2829 		case TCP_CA_CWR:
2830 			/* CWR is to be held something *above* high_seq
2831 			 * is ACKed for CWR bit to reach receiver. */
2832 			if (tp->snd_una != tp->high_seq) {
2833 				tcp_end_cwnd_reduction(sk);
2834 				tcp_set_ca_state(sk, TCP_CA_Open);
2835 			}
2836 			break;
2837 
2838 		case TCP_CA_Recovery:
2839 			if (tcp_is_reno(tp))
2840 				tcp_reset_reno_sack(tp);
2841 			if (tcp_try_undo_recovery(sk))
2842 				return;
2843 			tcp_end_cwnd_reduction(sk);
2844 			break;
2845 		}
2846 	}
2847 
2848 	/* E. Process state. */
2849 	switch (icsk->icsk_ca_state) {
2850 	case TCP_CA_Recovery:
2851 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2852 			if (tcp_is_reno(tp))
2853 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2854 		} else {
2855 			if (tcp_try_undo_partial(sk, prior_snd_una))
2856 				return;
2857 			/* Partial ACK arrived. Force fast retransmit. */
2858 			do_lost = tcp_force_fast_retransmit(sk);
2859 		}
2860 		if (tcp_try_undo_dsack(sk)) {
2861 			tcp_try_keep_open(sk);
2862 			return;
2863 		}
2864 		tcp_identify_packet_loss(sk, ack_flag);
2865 		break;
2866 	case TCP_CA_Loss:
2867 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2868 		tcp_identify_packet_loss(sk, ack_flag);
2869 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2870 		      (*ack_flag & FLAG_LOST_RETRANS)))
2871 			return;
2872 		/* Change state if cwnd is undone or retransmits are lost */
2873 		fallthrough;
2874 	default:
2875 		if (tcp_is_reno(tp)) {
2876 			if (flag & FLAG_SND_UNA_ADVANCED)
2877 				tcp_reset_reno_sack(tp);
2878 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
2879 		}
2880 
2881 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2882 			tcp_try_undo_dsack(sk);
2883 
2884 		tcp_identify_packet_loss(sk, ack_flag);
2885 		if (!tcp_time_to_recover(sk, flag)) {
2886 			tcp_try_to_open(sk, flag);
2887 			return;
2888 		}
2889 
2890 		/* MTU probe failure: don't reduce cwnd */
2891 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2892 		    icsk->icsk_mtup.probe_size &&
2893 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2894 			tcp_mtup_probe_failed(sk);
2895 			/* Restores the reduction we did in tcp_mtup_probe() */
2896 			tp->snd_cwnd++;
2897 			tcp_simple_retransmit(sk);
2898 			return;
2899 		}
2900 
2901 		/* Otherwise enter Recovery state */
2902 		tcp_enter_recovery(sk, ece_ack);
2903 		fast_rexmit = 1;
2904 	}
2905 
2906 	if (!tcp_is_rack(sk) && do_lost)
2907 		tcp_update_scoreboard(sk, fast_rexmit);
2908 	*rexmit = REXMIT_LOST;
2909 }
2910 
2911 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2912 {
2913 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2914 	struct tcp_sock *tp = tcp_sk(sk);
2915 
2916 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2917 		/* If the remote keeps returning delayed ACKs, eventually
2918 		 * the min filter would pick it up and overestimate the
2919 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2920 		 */
2921 		return;
2922 	}
2923 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2924 			   rtt_us ? : jiffies_to_usecs(1));
2925 }
2926 
2927 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2928 			       long seq_rtt_us, long sack_rtt_us,
2929 			       long ca_rtt_us, struct rate_sample *rs)
2930 {
2931 	const struct tcp_sock *tp = tcp_sk(sk);
2932 
2933 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2934 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2935 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2936 	 * is acked (RFC6298).
2937 	 */
2938 	if (seq_rtt_us < 0)
2939 		seq_rtt_us = sack_rtt_us;
2940 
2941 	/* RTTM Rule: A TSecr value received in a segment is used to
2942 	 * update the averaged RTT measurement only if the segment
2943 	 * acknowledges some new data, i.e., only if it advances the
2944 	 * left edge of the send window.
2945 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2946 	 */
2947 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2948 	    flag & FLAG_ACKED) {
2949 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2950 
2951 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2952 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2953 			ca_rtt_us = seq_rtt_us;
2954 		}
2955 	}
2956 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2957 	if (seq_rtt_us < 0)
2958 		return false;
2959 
2960 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2961 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2962 	 * values will be skipped with the seq_rtt_us < 0 check above.
2963 	 */
2964 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2965 	tcp_rtt_estimator(sk, seq_rtt_us);
2966 	tcp_set_rto(sk);
2967 
2968 	/* RFC6298: only reset backoff on valid RTT measurement. */
2969 	inet_csk(sk)->icsk_backoff = 0;
2970 	return true;
2971 }
2972 
2973 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2974 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2975 {
2976 	struct rate_sample rs;
2977 	long rtt_us = -1L;
2978 
2979 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2980 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2981 
2982 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2983 }
2984 
2985 
2986 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2987 {
2988 	const struct inet_connection_sock *icsk = inet_csk(sk);
2989 
2990 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2991 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2992 }
2993 
2994 /* Restart timer after forward progress on connection.
2995  * RFC2988 recommends to restart timer to now+rto.
2996  */
2997 void tcp_rearm_rto(struct sock *sk)
2998 {
2999 	const struct inet_connection_sock *icsk = inet_csk(sk);
3000 	struct tcp_sock *tp = tcp_sk(sk);
3001 
3002 	/* If the retrans timer is currently being used by Fast Open
3003 	 * for SYN-ACK retrans purpose, stay put.
3004 	 */
3005 	if (rcu_access_pointer(tp->fastopen_rsk))
3006 		return;
3007 
3008 	if (!tp->packets_out) {
3009 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3010 	} else {
3011 		u32 rto = inet_csk(sk)->icsk_rto;
3012 		/* Offset the time elapsed after installing regular RTO */
3013 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3014 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3015 			s64 delta_us = tcp_rto_delta_us(sk);
3016 			/* delta_us may not be positive if the socket is locked
3017 			 * when the retrans timer fires and is rescheduled.
3018 			 */
3019 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3020 		}
3021 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3022 				     TCP_RTO_MAX);
3023 	}
3024 }
3025 
3026 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3027 static void tcp_set_xmit_timer(struct sock *sk)
3028 {
3029 	if (!tcp_schedule_loss_probe(sk, true))
3030 		tcp_rearm_rto(sk);
3031 }
3032 
3033 /* If we get here, the whole TSO packet has not been acked. */
3034 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3035 {
3036 	struct tcp_sock *tp = tcp_sk(sk);
3037 	u32 packets_acked;
3038 
3039 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3040 
3041 	packets_acked = tcp_skb_pcount(skb);
3042 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3043 		return 0;
3044 	packets_acked -= tcp_skb_pcount(skb);
3045 
3046 	if (packets_acked) {
3047 		BUG_ON(tcp_skb_pcount(skb) == 0);
3048 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3049 	}
3050 
3051 	return packets_acked;
3052 }
3053 
3054 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3055 			   u32 prior_snd_una)
3056 {
3057 	const struct skb_shared_info *shinfo;
3058 
3059 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3060 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3061 		return;
3062 
3063 	shinfo = skb_shinfo(skb);
3064 	if (!before(shinfo->tskey, prior_snd_una) &&
3065 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3066 		tcp_skb_tsorted_save(skb) {
3067 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3068 		} tcp_skb_tsorted_restore(skb);
3069 	}
3070 }
3071 
3072 /* Remove acknowledged frames from the retransmission queue. If our packet
3073  * is before the ack sequence we can discard it as it's confirmed to have
3074  * arrived at the other end.
3075  */
3076 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3077 			       u32 prior_snd_una,
3078 			       struct tcp_sacktag_state *sack, bool ece_ack)
3079 {
3080 	const struct inet_connection_sock *icsk = inet_csk(sk);
3081 	u64 first_ackt, last_ackt;
3082 	struct tcp_sock *tp = tcp_sk(sk);
3083 	u32 prior_sacked = tp->sacked_out;
3084 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3085 	struct sk_buff *skb, *next;
3086 	bool fully_acked = true;
3087 	long sack_rtt_us = -1L;
3088 	long seq_rtt_us = -1L;
3089 	long ca_rtt_us = -1L;
3090 	u32 pkts_acked = 0;
3091 	u32 last_in_flight = 0;
3092 	bool rtt_update;
3093 	int flag = 0;
3094 
3095 	first_ackt = 0;
3096 
3097 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3098 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3099 		const u32 start_seq = scb->seq;
3100 		u8 sacked = scb->sacked;
3101 		u32 acked_pcount;
3102 
3103 		/* Determine how many packets and what bytes were acked, tso and else */
3104 		if (after(scb->end_seq, tp->snd_una)) {
3105 			if (tcp_skb_pcount(skb) == 1 ||
3106 			    !after(tp->snd_una, scb->seq))
3107 				break;
3108 
3109 			acked_pcount = tcp_tso_acked(sk, skb);
3110 			if (!acked_pcount)
3111 				break;
3112 			fully_acked = false;
3113 		} else {
3114 			acked_pcount = tcp_skb_pcount(skb);
3115 		}
3116 
3117 		if (unlikely(sacked & TCPCB_RETRANS)) {
3118 			if (sacked & TCPCB_SACKED_RETRANS)
3119 				tp->retrans_out -= acked_pcount;
3120 			flag |= FLAG_RETRANS_DATA_ACKED;
3121 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3122 			last_ackt = tcp_skb_timestamp_us(skb);
3123 			WARN_ON_ONCE(last_ackt == 0);
3124 			if (!first_ackt)
3125 				first_ackt = last_ackt;
3126 
3127 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3128 			if (before(start_seq, reord))
3129 				reord = start_seq;
3130 			if (!after(scb->end_seq, tp->high_seq))
3131 				flag |= FLAG_ORIG_SACK_ACKED;
3132 		}
3133 
3134 		if (sacked & TCPCB_SACKED_ACKED) {
3135 			tp->sacked_out -= acked_pcount;
3136 		} else if (tcp_is_sack(tp)) {
3137 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3138 			if (!tcp_skb_spurious_retrans(tp, skb))
3139 				tcp_rack_advance(tp, sacked, scb->end_seq,
3140 						 tcp_skb_timestamp_us(skb));
3141 		}
3142 		if (sacked & TCPCB_LOST)
3143 			tp->lost_out -= acked_pcount;
3144 
3145 		tp->packets_out -= acked_pcount;
3146 		pkts_acked += acked_pcount;
3147 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3148 
3149 		/* Initial outgoing SYN's get put onto the write_queue
3150 		 * just like anything else we transmit.  It is not
3151 		 * true data, and if we misinform our callers that
3152 		 * this ACK acks real data, we will erroneously exit
3153 		 * connection startup slow start one packet too
3154 		 * quickly.  This is severely frowned upon behavior.
3155 		 */
3156 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3157 			flag |= FLAG_DATA_ACKED;
3158 		} else {
3159 			flag |= FLAG_SYN_ACKED;
3160 			tp->retrans_stamp = 0;
3161 		}
3162 
3163 		if (!fully_acked)
3164 			break;
3165 
3166 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3167 
3168 		next = skb_rb_next(skb);
3169 		if (unlikely(skb == tp->retransmit_skb_hint))
3170 			tp->retransmit_skb_hint = NULL;
3171 		if (unlikely(skb == tp->lost_skb_hint))
3172 			tp->lost_skb_hint = NULL;
3173 		tcp_highest_sack_replace(sk, skb, next);
3174 		tcp_rtx_queue_unlink_and_free(skb, sk);
3175 	}
3176 
3177 	if (!skb)
3178 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3179 
3180 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3181 		tp->snd_up = tp->snd_una;
3182 
3183 	if (skb) {
3184 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3185 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3186 			flag |= FLAG_SACK_RENEGING;
3187 	}
3188 
3189 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3190 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3191 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3192 
3193 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3194 		    last_in_flight && !prior_sacked && fully_acked &&
3195 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3196 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3197 			/* Conservatively mark a delayed ACK. It's typically
3198 			 * from a lone runt packet over the round trip to
3199 			 * a receiver w/o out-of-order or CE events.
3200 			 */
3201 			flag |= FLAG_ACK_MAYBE_DELAYED;
3202 		}
3203 	}
3204 	if (sack->first_sackt) {
3205 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3206 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3207 	}
3208 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3209 					ca_rtt_us, sack->rate);
3210 
3211 	if (flag & FLAG_ACKED) {
3212 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3213 		if (unlikely(icsk->icsk_mtup.probe_size &&
3214 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3215 			tcp_mtup_probe_success(sk);
3216 		}
3217 
3218 		if (tcp_is_reno(tp)) {
3219 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3220 
3221 			/* If any of the cumulatively ACKed segments was
3222 			 * retransmitted, non-SACK case cannot confirm that
3223 			 * progress was due to original transmission due to
3224 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3225 			 * the packets may have been never retransmitted.
3226 			 */
3227 			if (flag & FLAG_RETRANS_DATA_ACKED)
3228 				flag &= ~FLAG_ORIG_SACK_ACKED;
3229 		} else {
3230 			int delta;
3231 
3232 			/* Non-retransmitted hole got filled? That's reordering */
3233 			if (before(reord, prior_fack))
3234 				tcp_check_sack_reordering(sk, reord, 0);
3235 
3236 			delta = prior_sacked - tp->sacked_out;
3237 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3238 		}
3239 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3240 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3241 						    tcp_skb_timestamp_us(skb))) {
3242 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3243 		 * after when the head was last (re)transmitted. Otherwise the
3244 		 * timeout may continue to extend in loss recovery.
3245 		 */
3246 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3247 	}
3248 
3249 	if (icsk->icsk_ca_ops->pkts_acked) {
3250 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3251 					     .rtt_us = sack->rate->rtt_us,
3252 					     .in_flight = last_in_flight };
3253 
3254 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3255 	}
3256 
3257 #if FASTRETRANS_DEBUG > 0
3258 	WARN_ON((int)tp->sacked_out < 0);
3259 	WARN_ON((int)tp->lost_out < 0);
3260 	WARN_ON((int)tp->retrans_out < 0);
3261 	if (!tp->packets_out && tcp_is_sack(tp)) {
3262 		icsk = inet_csk(sk);
3263 		if (tp->lost_out) {
3264 			pr_debug("Leak l=%u %d\n",
3265 				 tp->lost_out, icsk->icsk_ca_state);
3266 			tp->lost_out = 0;
3267 		}
3268 		if (tp->sacked_out) {
3269 			pr_debug("Leak s=%u %d\n",
3270 				 tp->sacked_out, icsk->icsk_ca_state);
3271 			tp->sacked_out = 0;
3272 		}
3273 		if (tp->retrans_out) {
3274 			pr_debug("Leak r=%u %d\n",
3275 				 tp->retrans_out, icsk->icsk_ca_state);
3276 			tp->retrans_out = 0;
3277 		}
3278 	}
3279 #endif
3280 	return flag;
3281 }
3282 
3283 static void tcp_ack_probe(struct sock *sk)
3284 {
3285 	struct inet_connection_sock *icsk = inet_csk(sk);
3286 	struct sk_buff *head = tcp_send_head(sk);
3287 	const struct tcp_sock *tp = tcp_sk(sk);
3288 
3289 	/* Was it a usable window open? */
3290 	if (!head)
3291 		return;
3292 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3293 		icsk->icsk_backoff = 0;
3294 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3295 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3296 		 * This function is not for random using!
3297 		 */
3298 	} else {
3299 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3300 
3301 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3302 				     when, TCP_RTO_MAX);
3303 	}
3304 }
3305 
3306 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3307 {
3308 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3309 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3310 }
3311 
3312 /* Decide wheather to run the increase function of congestion control. */
3313 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3314 {
3315 	/* If reordering is high then always grow cwnd whenever data is
3316 	 * delivered regardless of its ordering. Otherwise stay conservative
3317 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3318 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3319 	 * cwnd in tcp_fastretrans_alert() based on more states.
3320 	 */
3321 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3322 		return flag & FLAG_FORWARD_PROGRESS;
3323 
3324 	return flag & FLAG_DATA_ACKED;
3325 }
3326 
3327 /* The "ultimate" congestion control function that aims to replace the rigid
3328  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3329  * It's called toward the end of processing an ACK with precise rate
3330  * information. All transmission or retransmission are delayed afterwards.
3331  */
3332 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3333 			     int flag, const struct rate_sample *rs)
3334 {
3335 	const struct inet_connection_sock *icsk = inet_csk(sk);
3336 
3337 	if (icsk->icsk_ca_ops->cong_control) {
3338 		icsk->icsk_ca_ops->cong_control(sk, rs);
3339 		return;
3340 	}
3341 
3342 	if (tcp_in_cwnd_reduction(sk)) {
3343 		/* Reduce cwnd if state mandates */
3344 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3345 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3346 		/* Advance cwnd if state allows */
3347 		tcp_cong_avoid(sk, ack, acked_sacked);
3348 	}
3349 	tcp_update_pacing_rate(sk);
3350 }
3351 
3352 /* Check that window update is acceptable.
3353  * The function assumes that snd_una<=ack<=snd_next.
3354  */
3355 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3356 					const u32 ack, const u32 ack_seq,
3357 					const u32 nwin)
3358 {
3359 	return	after(ack, tp->snd_una) ||
3360 		after(ack_seq, tp->snd_wl1) ||
3361 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3362 }
3363 
3364 /* If we update tp->snd_una, also update tp->bytes_acked */
3365 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3366 {
3367 	u32 delta = ack - tp->snd_una;
3368 
3369 	sock_owned_by_me((struct sock *)tp);
3370 	tp->bytes_acked += delta;
3371 	tp->snd_una = ack;
3372 }
3373 
3374 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3375 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3376 {
3377 	u32 delta = seq - tp->rcv_nxt;
3378 
3379 	sock_owned_by_me((struct sock *)tp);
3380 	tp->bytes_received += delta;
3381 	WRITE_ONCE(tp->rcv_nxt, seq);
3382 }
3383 
3384 /* Update our send window.
3385  *
3386  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3387  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3388  */
3389 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3390 				 u32 ack_seq)
3391 {
3392 	struct tcp_sock *tp = tcp_sk(sk);
3393 	int flag = 0;
3394 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3395 
3396 	if (likely(!tcp_hdr(skb)->syn))
3397 		nwin <<= tp->rx_opt.snd_wscale;
3398 
3399 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3400 		flag |= FLAG_WIN_UPDATE;
3401 		tcp_update_wl(tp, ack_seq);
3402 
3403 		if (tp->snd_wnd != nwin) {
3404 			tp->snd_wnd = nwin;
3405 
3406 			/* Note, it is the only place, where
3407 			 * fast path is recovered for sending TCP.
3408 			 */
3409 			tp->pred_flags = 0;
3410 			tcp_fast_path_check(sk);
3411 
3412 			if (!tcp_write_queue_empty(sk))
3413 				tcp_slow_start_after_idle_check(sk);
3414 
3415 			if (nwin > tp->max_window) {
3416 				tp->max_window = nwin;
3417 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3418 			}
3419 		}
3420 	}
3421 
3422 	tcp_snd_una_update(tp, ack);
3423 
3424 	return flag;
3425 }
3426 
3427 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3428 				   u32 *last_oow_ack_time)
3429 {
3430 	if (*last_oow_ack_time) {
3431 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3432 
3433 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3434 			NET_INC_STATS(net, mib_idx);
3435 			return true;	/* rate-limited: don't send yet! */
3436 		}
3437 	}
3438 
3439 	*last_oow_ack_time = tcp_jiffies32;
3440 
3441 	return false;	/* not rate-limited: go ahead, send dupack now! */
3442 }
3443 
3444 /* Return true if we're currently rate-limiting out-of-window ACKs and
3445  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3446  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3447  * attacks that send repeated SYNs or ACKs for the same connection. To
3448  * do this, we do not send a duplicate SYNACK or ACK if the remote
3449  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3450  */
3451 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3452 			  int mib_idx, u32 *last_oow_ack_time)
3453 {
3454 	/* Data packets without SYNs are not likely part of an ACK loop. */
3455 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3456 	    !tcp_hdr(skb)->syn)
3457 		return false;
3458 
3459 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3460 }
3461 
3462 /* RFC 5961 7 [ACK Throttling] */
3463 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3464 {
3465 	/* unprotected vars, we dont care of overwrites */
3466 	static u32 challenge_timestamp;
3467 	static unsigned int challenge_count;
3468 	struct tcp_sock *tp = tcp_sk(sk);
3469 	struct net *net = sock_net(sk);
3470 	u32 count, now;
3471 
3472 	/* First check our per-socket dupack rate limit. */
3473 	if (__tcp_oow_rate_limited(net,
3474 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3475 				   &tp->last_oow_ack_time))
3476 		return;
3477 
3478 	/* Then check host-wide RFC 5961 rate limit. */
3479 	now = jiffies / HZ;
3480 	if (now != challenge_timestamp) {
3481 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3482 		u32 half = (ack_limit + 1) >> 1;
3483 
3484 		challenge_timestamp = now;
3485 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3486 	}
3487 	count = READ_ONCE(challenge_count);
3488 	if (count > 0) {
3489 		WRITE_ONCE(challenge_count, count - 1);
3490 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3491 		tcp_send_ack(sk);
3492 	}
3493 }
3494 
3495 static void tcp_store_ts_recent(struct tcp_sock *tp)
3496 {
3497 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3498 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3499 }
3500 
3501 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3502 {
3503 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3504 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3505 		 * extra check below makes sure this can only happen
3506 		 * for pure ACK frames.  -DaveM
3507 		 *
3508 		 * Not only, also it occurs for expired timestamps.
3509 		 */
3510 
3511 		if (tcp_paws_check(&tp->rx_opt, 0))
3512 			tcp_store_ts_recent(tp);
3513 	}
3514 }
3515 
3516 /* This routine deals with acks during a TLP episode.
3517  * We mark the end of a TLP episode on receiving TLP dupack or when
3518  * ack is after tlp_high_seq.
3519  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3520  */
3521 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3522 {
3523 	struct tcp_sock *tp = tcp_sk(sk);
3524 
3525 	if (before(ack, tp->tlp_high_seq))
3526 		return;
3527 
3528 	if (flag & FLAG_DSACKING_ACK) {
3529 		/* This DSACK means original and TLP probe arrived; no loss */
3530 		tp->tlp_high_seq = 0;
3531 	} else if (after(ack, tp->tlp_high_seq)) {
3532 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3533 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3534 		 */
3535 		tcp_init_cwnd_reduction(sk);
3536 		tcp_set_ca_state(sk, TCP_CA_CWR);
3537 		tcp_end_cwnd_reduction(sk);
3538 		tcp_try_keep_open(sk);
3539 		NET_INC_STATS(sock_net(sk),
3540 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3541 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3542 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3543 		/* Pure dupack: original and TLP probe arrived; no loss */
3544 		tp->tlp_high_seq = 0;
3545 	}
3546 }
3547 
3548 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3549 {
3550 	const struct inet_connection_sock *icsk = inet_csk(sk);
3551 
3552 	if (icsk->icsk_ca_ops->in_ack_event)
3553 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3554 }
3555 
3556 /* Congestion control has updated the cwnd already. So if we're in
3557  * loss recovery then now we do any new sends (for FRTO) or
3558  * retransmits (for CA_Loss or CA_recovery) that make sense.
3559  */
3560 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3561 {
3562 	struct tcp_sock *tp = tcp_sk(sk);
3563 
3564 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3565 		return;
3566 
3567 	if (unlikely(rexmit == REXMIT_NEW)) {
3568 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3569 					  TCP_NAGLE_OFF);
3570 		if (after(tp->snd_nxt, tp->high_seq))
3571 			return;
3572 		tp->frto = 0;
3573 	}
3574 	tcp_xmit_retransmit_queue(sk);
3575 }
3576 
3577 /* Returns the number of packets newly acked or sacked by the current ACK */
3578 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3579 {
3580 	const struct net *net = sock_net(sk);
3581 	struct tcp_sock *tp = tcp_sk(sk);
3582 	u32 delivered;
3583 
3584 	delivered = tp->delivered - prior_delivered;
3585 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3586 	if (flag & FLAG_ECE)
3587 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3588 
3589 	return delivered;
3590 }
3591 
3592 /* This routine deals with incoming acks, but not outgoing ones. */
3593 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3594 {
3595 	struct inet_connection_sock *icsk = inet_csk(sk);
3596 	struct tcp_sock *tp = tcp_sk(sk);
3597 	struct tcp_sacktag_state sack_state;
3598 	struct rate_sample rs = { .prior_delivered = 0 };
3599 	u32 prior_snd_una = tp->snd_una;
3600 	bool is_sack_reneg = tp->is_sack_reneg;
3601 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3602 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3603 	int num_dupack = 0;
3604 	int prior_packets = tp->packets_out;
3605 	u32 delivered = tp->delivered;
3606 	u32 lost = tp->lost;
3607 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3608 	u32 prior_fack;
3609 
3610 	sack_state.first_sackt = 0;
3611 	sack_state.rate = &rs;
3612 	sack_state.sack_delivered = 0;
3613 
3614 	/* We very likely will need to access rtx queue. */
3615 	prefetch(sk->tcp_rtx_queue.rb_node);
3616 
3617 	/* If the ack is older than previous acks
3618 	 * then we can probably ignore it.
3619 	 */
3620 	if (before(ack, prior_snd_una)) {
3621 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3622 		if (before(ack, prior_snd_una - tp->max_window)) {
3623 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3624 				tcp_send_challenge_ack(sk, skb);
3625 			return -1;
3626 		}
3627 		goto old_ack;
3628 	}
3629 
3630 	/* If the ack includes data we haven't sent yet, discard
3631 	 * this segment (RFC793 Section 3.9).
3632 	 */
3633 	if (after(ack, tp->snd_nxt))
3634 		return -1;
3635 
3636 	if (after(ack, prior_snd_una)) {
3637 		flag |= FLAG_SND_UNA_ADVANCED;
3638 		icsk->icsk_retransmits = 0;
3639 
3640 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3641 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3642 			if (icsk->icsk_clean_acked)
3643 				icsk->icsk_clean_acked(sk, ack);
3644 #endif
3645 	}
3646 
3647 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3648 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3649 
3650 	/* ts_recent update must be made after we are sure that the packet
3651 	 * is in window.
3652 	 */
3653 	if (flag & FLAG_UPDATE_TS_RECENT)
3654 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3655 
3656 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3657 	    FLAG_SND_UNA_ADVANCED) {
3658 		/* Window is constant, pure forward advance.
3659 		 * No more checks are required.
3660 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3661 		 */
3662 		tcp_update_wl(tp, ack_seq);
3663 		tcp_snd_una_update(tp, ack);
3664 		flag |= FLAG_WIN_UPDATE;
3665 
3666 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3667 
3668 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3669 	} else {
3670 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3671 
3672 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3673 			flag |= FLAG_DATA;
3674 		else
3675 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3676 
3677 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3678 
3679 		if (TCP_SKB_CB(skb)->sacked)
3680 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3681 							&sack_state);
3682 
3683 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3684 			flag |= FLAG_ECE;
3685 			ack_ev_flags |= CA_ACK_ECE;
3686 		}
3687 
3688 		if (sack_state.sack_delivered)
3689 			tcp_count_delivered(tp, sack_state.sack_delivered,
3690 					    flag & FLAG_ECE);
3691 
3692 		if (flag & FLAG_WIN_UPDATE)
3693 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3694 
3695 		tcp_in_ack_event(sk, ack_ev_flags);
3696 	}
3697 
3698 	/* This is a deviation from RFC3168 since it states that:
3699 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3700 	 * the congestion window, it SHOULD set the CWR bit only on the first
3701 	 * new data packet that it transmits."
3702 	 * We accept CWR on pure ACKs to be more robust
3703 	 * with widely-deployed TCP implementations that do this.
3704 	 */
3705 	tcp_ecn_accept_cwr(sk, skb);
3706 
3707 	/* We passed data and got it acked, remove any soft error
3708 	 * log. Something worked...
3709 	 */
3710 	sk->sk_err_soft = 0;
3711 	icsk->icsk_probes_out = 0;
3712 	tp->rcv_tstamp = tcp_jiffies32;
3713 	if (!prior_packets)
3714 		goto no_queue;
3715 
3716 	/* See if we can take anything off of the retransmit queue. */
3717 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3718 				    flag & FLAG_ECE);
3719 
3720 	tcp_rack_update_reo_wnd(sk, &rs);
3721 
3722 	if (tp->tlp_high_seq)
3723 		tcp_process_tlp_ack(sk, ack, flag);
3724 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3725 	if (flag & FLAG_SET_XMIT_TIMER)
3726 		tcp_set_xmit_timer(sk);
3727 
3728 	if (tcp_ack_is_dubious(sk, flag)) {
3729 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3730 			num_dupack = 1;
3731 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3732 			if (!(flag & FLAG_DATA))
3733 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3734 		}
3735 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3736 				      &rexmit);
3737 	}
3738 
3739 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3740 		sk_dst_confirm(sk);
3741 
3742 	delivered = tcp_newly_delivered(sk, delivered, flag);
3743 	lost = tp->lost - lost;			/* freshly marked lost */
3744 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3745 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3746 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3747 	tcp_xmit_recovery(sk, rexmit);
3748 	return 1;
3749 
3750 no_queue:
3751 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3752 	if (flag & FLAG_DSACKING_ACK) {
3753 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3754 				      &rexmit);
3755 		tcp_newly_delivered(sk, delivered, flag);
3756 	}
3757 	/* If this ack opens up a zero window, clear backoff.  It was
3758 	 * being used to time the probes, and is probably far higher than
3759 	 * it needs to be for normal retransmission.
3760 	 */
3761 	tcp_ack_probe(sk);
3762 
3763 	if (tp->tlp_high_seq)
3764 		tcp_process_tlp_ack(sk, ack, flag);
3765 	return 1;
3766 
3767 old_ack:
3768 	/* If data was SACKed, tag it and see if we should send more data.
3769 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3770 	 */
3771 	if (TCP_SKB_CB(skb)->sacked) {
3772 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3773 						&sack_state);
3774 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3775 				      &rexmit);
3776 		tcp_newly_delivered(sk, delivered, flag);
3777 		tcp_xmit_recovery(sk, rexmit);
3778 	}
3779 
3780 	return 0;
3781 }
3782 
3783 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3784 				      bool syn, struct tcp_fastopen_cookie *foc,
3785 				      bool exp_opt)
3786 {
3787 	/* Valid only in SYN or SYN-ACK with an even length.  */
3788 	if (!foc || !syn || len < 0 || (len & 1))
3789 		return;
3790 
3791 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3792 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3793 		memcpy(foc->val, cookie, len);
3794 	else if (len != 0)
3795 		len = -1;
3796 	foc->len = len;
3797 	foc->exp = exp_opt;
3798 }
3799 
3800 static void smc_parse_options(const struct tcphdr *th,
3801 			      struct tcp_options_received *opt_rx,
3802 			      const unsigned char *ptr,
3803 			      int opsize)
3804 {
3805 #if IS_ENABLED(CONFIG_SMC)
3806 	if (static_branch_unlikely(&tcp_have_smc)) {
3807 		if (th->syn && !(opsize & 1) &&
3808 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3809 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3810 			opt_rx->smc_ok = 1;
3811 	}
3812 #endif
3813 }
3814 
3815 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3816  * value on success.
3817  */
3818 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3819 {
3820 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3821 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3822 	u16 mss = 0;
3823 
3824 	while (length > 0) {
3825 		int opcode = *ptr++;
3826 		int opsize;
3827 
3828 		switch (opcode) {
3829 		case TCPOPT_EOL:
3830 			return mss;
3831 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3832 			length--;
3833 			continue;
3834 		default:
3835 			if (length < 2)
3836 				return mss;
3837 			opsize = *ptr++;
3838 			if (opsize < 2) /* "silly options" */
3839 				return mss;
3840 			if (opsize > length)
3841 				return mss;	/* fail on partial options */
3842 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3843 				u16 in_mss = get_unaligned_be16(ptr);
3844 
3845 				if (in_mss) {
3846 					if (user_mss && user_mss < in_mss)
3847 						in_mss = user_mss;
3848 					mss = in_mss;
3849 				}
3850 			}
3851 			ptr += opsize - 2;
3852 			length -= opsize;
3853 		}
3854 	}
3855 	return mss;
3856 }
3857 
3858 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3859  * But, this can also be called on packets in the established flow when
3860  * the fast version below fails.
3861  */
3862 void tcp_parse_options(const struct net *net,
3863 		       const struct sk_buff *skb,
3864 		       struct tcp_options_received *opt_rx, int estab,
3865 		       struct tcp_fastopen_cookie *foc)
3866 {
3867 	const unsigned char *ptr;
3868 	const struct tcphdr *th = tcp_hdr(skb);
3869 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3870 
3871 	ptr = (const unsigned char *)(th + 1);
3872 	opt_rx->saw_tstamp = 0;
3873 
3874 	while (length > 0) {
3875 		int opcode = *ptr++;
3876 		int opsize;
3877 
3878 		switch (opcode) {
3879 		case TCPOPT_EOL:
3880 			return;
3881 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3882 			length--;
3883 			continue;
3884 		default:
3885 			if (length < 2)
3886 				return;
3887 			opsize = *ptr++;
3888 			if (opsize < 2) /* "silly options" */
3889 				return;
3890 			if (opsize > length)
3891 				return;	/* don't parse partial options */
3892 			switch (opcode) {
3893 			case TCPOPT_MSS:
3894 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3895 					u16 in_mss = get_unaligned_be16(ptr);
3896 					if (in_mss) {
3897 						if (opt_rx->user_mss &&
3898 						    opt_rx->user_mss < in_mss)
3899 							in_mss = opt_rx->user_mss;
3900 						opt_rx->mss_clamp = in_mss;
3901 					}
3902 				}
3903 				break;
3904 			case TCPOPT_WINDOW:
3905 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3906 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3907 					__u8 snd_wscale = *(__u8 *)ptr;
3908 					opt_rx->wscale_ok = 1;
3909 					if (snd_wscale > TCP_MAX_WSCALE) {
3910 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3911 								     __func__,
3912 								     snd_wscale,
3913 								     TCP_MAX_WSCALE);
3914 						snd_wscale = TCP_MAX_WSCALE;
3915 					}
3916 					opt_rx->snd_wscale = snd_wscale;
3917 				}
3918 				break;
3919 			case TCPOPT_TIMESTAMP:
3920 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3921 				    ((estab && opt_rx->tstamp_ok) ||
3922 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3923 					opt_rx->saw_tstamp = 1;
3924 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3925 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3926 				}
3927 				break;
3928 			case TCPOPT_SACK_PERM:
3929 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3930 				    !estab && net->ipv4.sysctl_tcp_sack) {
3931 					opt_rx->sack_ok = TCP_SACK_SEEN;
3932 					tcp_sack_reset(opt_rx);
3933 				}
3934 				break;
3935 
3936 			case TCPOPT_SACK:
3937 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3938 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3939 				   opt_rx->sack_ok) {
3940 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3941 				}
3942 				break;
3943 #ifdef CONFIG_TCP_MD5SIG
3944 			case TCPOPT_MD5SIG:
3945 				/*
3946 				 * The MD5 Hash has already been
3947 				 * checked (see tcp_v{4,6}_do_rcv()).
3948 				 */
3949 				break;
3950 #endif
3951 			case TCPOPT_FASTOPEN:
3952 				tcp_parse_fastopen_option(
3953 					opsize - TCPOLEN_FASTOPEN_BASE,
3954 					ptr, th->syn, foc, false);
3955 				break;
3956 
3957 			case TCPOPT_EXP:
3958 				/* Fast Open option shares code 254 using a
3959 				 * 16 bits magic number.
3960 				 */
3961 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3962 				    get_unaligned_be16(ptr) ==
3963 				    TCPOPT_FASTOPEN_MAGIC)
3964 					tcp_parse_fastopen_option(opsize -
3965 						TCPOLEN_EXP_FASTOPEN_BASE,
3966 						ptr + 2, th->syn, foc, true);
3967 				else
3968 					smc_parse_options(th, opt_rx, ptr,
3969 							  opsize);
3970 				break;
3971 
3972 			}
3973 			ptr += opsize-2;
3974 			length -= opsize;
3975 		}
3976 	}
3977 }
3978 EXPORT_SYMBOL(tcp_parse_options);
3979 
3980 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3981 {
3982 	const __be32 *ptr = (const __be32 *)(th + 1);
3983 
3984 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3985 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3986 		tp->rx_opt.saw_tstamp = 1;
3987 		++ptr;
3988 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3989 		++ptr;
3990 		if (*ptr)
3991 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3992 		else
3993 			tp->rx_opt.rcv_tsecr = 0;
3994 		return true;
3995 	}
3996 	return false;
3997 }
3998 
3999 /* Fast parse options. This hopes to only see timestamps.
4000  * If it is wrong it falls back on tcp_parse_options().
4001  */
4002 static bool tcp_fast_parse_options(const struct net *net,
4003 				   const struct sk_buff *skb,
4004 				   const struct tcphdr *th, struct tcp_sock *tp)
4005 {
4006 	/* In the spirit of fast parsing, compare doff directly to constant
4007 	 * values.  Because equality is used, short doff can be ignored here.
4008 	 */
4009 	if (th->doff == (sizeof(*th) / 4)) {
4010 		tp->rx_opt.saw_tstamp = 0;
4011 		return false;
4012 	} else if (tp->rx_opt.tstamp_ok &&
4013 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4014 		if (tcp_parse_aligned_timestamp(tp, th))
4015 			return true;
4016 	}
4017 
4018 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4019 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4020 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4021 
4022 	return true;
4023 }
4024 
4025 #ifdef CONFIG_TCP_MD5SIG
4026 /*
4027  * Parse MD5 Signature option
4028  */
4029 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4030 {
4031 	int length = (th->doff << 2) - sizeof(*th);
4032 	const u8 *ptr = (const u8 *)(th + 1);
4033 
4034 	/* If not enough data remaining, we can short cut */
4035 	while (length >= TCPOLEN_MD5SIG) {
4036 		int opcode = *ptr++;
4037 		int opsize;
4038 
4039 		switch (opcode) {
4040 		case TCPOPT_EOL:
4041 			return NULL;
4042 		case TCPOPT_NOP:
4043 			length--;
4044 			continue;
4045 		default:
4046 			opsize = *ptr++;
4047 			if (opsize < 2 || opsize > length)
4048 				return NULL;
4049 			if (opcode == TCPOPT_MD5SIG)
4050 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4051 		}
4052 		ptr += opsize - 2;
4053 		length -= opsize;
4054 	}
4055 	return NULL;
4056 }
4057 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4058 #endif
4059 
4060 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4061  *
4062  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4063  * it can pass through stack. So, the following predicate verifies that
4064  * this segment is not used for anything but congestion avoidance or
4065  * fast retransmit. Moreover, we even are able to eliminate most of such
4066  * second order effects, if we apply some small "replay" window (~RTO)
4067  * to timestamp space.
4068  *
4069  * All these measures still do not guarantee that we reject wrapped ACKs
4070  * on networks with high bandwidth, when sequence space is recycled fastly,
4071  * but it guarantees that such events will be very rare and do not affect
4072  * connection seriously. This doesn't look nice, but alas, PAWS is really
4073  * buggy extension.
4074  *
4075  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4076  * states that events when retransmit arrives after original data are rare.
4077  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4078  * the biggest problem on large power networks even with minor reordering.
4079  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4080  * up to bandwidth of 18Gigabit/sec. 8) ]
4081  */
4082 
4083 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4084 {
4085 	const struct tcp_sock *tp = tcp_sk(sk);
4086 	const struct tcphdr *th = tcp_hdr(skb);
4087 	u32 seq = TCP_SKB_CB(skb)->seq;
4088 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4089 
4090 	return (/* 1. Pure ACK with correct sequence number. */
4091 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4092 
4093 		/* 2. ... and duplicate ACK. */
4094 		ack == tp->snd_una &&
4095 
4096 		/* 3. ... and does not update window. */
4097 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4098 
4099 		/* 4. ... and sits in replay window. */
4100 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4101 }
4102 
4103 static inline bool tcp_paws_discard(const struct sock *sk,
4104 				   const struct sk_buff *skb)
4105 {
4106 	const struct tcp_sock *tp = tcp_sk(sk);
4107 
4108 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4109 	       !tcp_disordered_ack(sk, skb);
4110 }
4111 
4112 /* Check segment sequence number for validity.
4113  *
4114  * Segment controls are considered valid, if the segment
4115  * fits to the window after truncation to the window. Acceptability
4116  * of data (and SYN, FIN, of course) is checked separately.
4117  * See tcp_data_queue(), for example.
4118  *
4119  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4120  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4121  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4122  * (borrowed from freebsd)
4123  */
4124 
4125 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4126 {
4127 	return	!before(end_seq, tp->rcv_wup) &&
4128 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4129 }
4130 
4131 /* When we get a reset we do this. */
4132 void tcp_reset(struct sock *sk)
4133 {
4134 	trace_tcp_receive_reset(sk);
4135 
4136 	/* We want the right error as BSD sees it (and indeed as we do). */
4137 	switch (sk->sk_state) {
4138 	case TCP_SYN_SENT:
4139 		sk->sk_err = ECONNREFUSED;
4140 		break;
4141 	case TCP_CLOSE_WAIT:
4142 		sk->sk_err = EPIPE;
4143 		break;
4144 	case TCP_CLOSE:
4145 		return;
4146 	default:
4147 		sk->sk_err = ECONNRESET;
4148 	}
4149 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4150 	smp_wmb();
4151 
4152 	tcp_write_queue_purge(sk);
4153 	tcp_done(sk);
4154 
4155 	if (!sock_flag(sk, SOCK_DEAD))
4156 		sk->sk_error_report(sk);
4157 }
4158 
4159 /*
4160  * 	Process the FIN bit. This now behaves as it is supposed to work
4161  *	and the FIN takes effect when it is validly part of sequence
4162  *	space. Not before when we get holes.
4163  *
4164  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4165  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4166  *	TIME-WAIT)
4167  *
4168  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4169  *	close and we go into CLOSING (and later onto TIME-WAIT)
4170  *
4171  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4172  */
4173 void tcp_fin(struct sock *sk)
4174 {
4175 	struct tcp_sock *tp = tcp_sk(sk);
4176 
4177 	inet_csk_schedule_ack(sk);
4178 
4179 	sk->sk_shutdown |= RCV_SHUTDOWN;
4180 	sock_set_flag(sk, SOCK_DONE);
4181 
4182 	switch (sk->sk_state) {
4183 	case TCP_SYN_RECV:
4184 	case TCP_ESTABLISHED:
4185 		/* Move to CLOSE_WAIT */
4186 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4187 		inet_csk_enter_pingpong_mode(sk);
4188 		break;
4189 
4190 	case TCP_CLOSE_WAIT:
4191 	case TCP_CLOSING:
4192 		/* Received a retransmission of the FIN, do
4193 		 * nothing.
4194 		 */
4195 		break;
4196 	case TCP_LAST_ACK:
4197 		/* RFC793: Remain in the LAST-ACK state. */
4198 		break;
4199 
4200 	case TCP_FIN_WAIT1:
4201 		/* This case occurs when a simultaneous close
4202 		 * happens, we must ack the received FIN and
4203 		 * enter the CLOSING state.
4204 		 */
4205 		tcp_send_ack(sk);
4206 		tcp_set_state(sk, TCP_CLOSING);
4207 		break;
4208 	case TCP_FIN_WAIT2:
4209 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4210 		tcp_send_ack(sk);
4211 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4212 		break;
4213 	default:
4214 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4215 		 * cases we should never reach this piece of code.
4216 		 */
4217 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4218 		       __func__, sk->sk_state);
4219 		break;
4220 	}
4221 
4222 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4223 	 * Probably, we should reset in this case. For now drop them.
4224 	 */
4225 	skb_rbtree_purge(&tp->out_of_order_queue);
4226 	if (tcp_is_sack(tp))
4227 		tcp_sack_reset(&tp->rx_opt);
4228 	sk_mem_reclaim(sk);
4229 
4230 	if (!sock_flag(sk, SOCK_DEAD)) {
4231 		sk->sk_state_change(sk);
4232 
4233 		/* Do not send POLL_HUP for half duplex close. */
4234 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4235 		    sk->sk_state == TCP_CLOSE)
4236 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4237 		else
4238 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4239 	}
4240 }
4241 
4242 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4243 				  u32 end_seq)
4244 {
4245 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4246 		if (before(seq, sp->start_seq))
4247 			sp->start_seq = seq;
4248 		if (after(end_seq, sp->end_seq))
4249 			sp->end_seq = end_seq;
4250 		return true;
4251 	}
4252 	return false;
4253 }
4254 
4255 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4256 {
4257 	struct tcp_sock *tp = tcp_sk(sk);
4258 
4259 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4260 		int mib_idx;
4261 
4262 		if (before(seq, tp->rcv_nxt))
4263 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4264 		else
4265 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4266 
4267 		NET_INC_STATS(sock_net(sk), mib_idx);
4268 
4269 		tp->rx_opt.dsack = 1;
4270 		tp->duplicate_sack[0].start_seq = seq;
4271 		tp->duplicate_sack[0].end_seq = end_seq;
4272 	}
4273 }
4274 
4275 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4276 {
4277 	struct tcp_sock *tp = tcp_sk(sk);
4278 
4279 	if (!tp->rx_opt.dsack)
4280 		tcp_dsack_set(sk, seq, end_seq);
4281 	else
4282 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4283 }
4284 
4285 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4286 {
4287 	/* When the ACK path fails or drops most ACKs, the sender would
4288 	 * timeout and spuriously retransmit the same segment repeatedly.
4289 	 * The receiver remembers and reflects via DSACKs. Leverage the
4290 	 * DSACK state and change the txhash to re-route speculatively.
4291 	 */
4292 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4293 		sk_rethink_txhash(sk);
4294 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4295 	}
4296 }
4297 
4298 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4299 {
4300 	struct tcp_sock *tp = tcp_sk(sk);
4301 
4302 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4303 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4304 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4305 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4306 
4307 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4308 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4309 
4310 			tcp_rcv_spurious_retrans(sk, skb);
4311 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4312 				end_seq = tp->rcv_nxt;
4313 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4314 		}
4315 	}
4316 
4317 	tcp_send_ack(sk);
4318 }
4319 
4320 /* These routines update the SACK block as out-of-order packets arrive or
4321  * in-order packets close up the sequence space.
4322  */
4323 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4324 {
4325 	int this_sack;
4326 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4327 	struct tcp_sack_block *swalk = sp + 1;
4328 
4329 	/* See if the recent change to the first SACK eats into
4330 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4331 	 */
4332 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4333 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4334 			int i;
4335 
4336 			/* Zap SWALK, by moving every further SACK up by one slot.
4337 			 * Decrease num_sacks.
4338 			 */
4339 			tp->rx_opt.num_sacks--;
4340 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4341 				sp[i] = sp[i + 1];
4342 			continue;
4343 		}
4344 		this_sack++, swalk++;
4345 	}
4346 }
4347 
4348 static void tcp_sack_compress_send_ack(struct sock *sk)
4349 {
4350 	struct tcp_sock *tp = tcp_sk(sk);
4351 
4352 	if (!tp->compressed_ack)
4353 		return;
4354 
4355 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4356 		__sock_put(sk);
4357 
4358 	/* Since we have to send one ack finally,
4359 	 * substract one from tp->compressed_ack to keep
4360 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4361 	 */
4362 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4363 		      tp->compressed_ack - 1);
4364 
4365 	tp->compressed_ack = 0;
4366 	tcp_send_ack(sk);
4367 }
4368 
4369 /* Reasonable amount of sack blocks included in TCP SACK option
4370  * The max is 4, but this becomes 3 if TCP timestamps are there.
4371  * Given that SACK packets might be lost, be conservative and use 2.
4372  */
4373 #define TCP_SACK_BLOCKS_EXPECTED 2
4374 
4375 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4376 {
4377 	struct tcp_sock *tp = tcp_sk(sk);
4378 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4379 	int cur_sacks = tp->rx_opt.num_sacks;
4380 	int this_sack;
4381 
4382 	if (!cur_sacks)
4383 		goto new_sack;
4384 
4385 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4386 		if (tcp_sack_extend(sp, seq, end_seq)) {
4387 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4388 				tcp_sack_compress_send_ack(sk);
4389 			/* Rotate this_sack to the first one. */
4390 			for (; this_sack > 0; this_sack--, sp--)
4391 				swap(*sp, *(sp - 1));
4392 			if (cur_sacks > 1)
4393 				tcp_sack_maybe_coalesce(tp);
4394 			return;
4395 		}
4396 	}
4397 
4398 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4399 		tcp_sack_compress_send_ack(sk);
4400 
4401 	/* Could not find an adjacent existing SACK, build a new one,
4402 	 * put it at the front, and shift everyone else down.  We
4403 	 * always know there is at least one SACK present already here.
4404 	 *
4405 	 * If the sack array is full, forget about the last one.
4406 	 */
4407 	if (this_sack >= TCP_NUM_SACKS) {
4408 		this_sack--;
4409 		tp->rx_opt.num_sacks--;
4410 		sp--;
4411 	}
4412 	for (; this_sack > 0; this_sack--, sp--)
4413 		*sp = *(sp - 1);
4414 
4415 new_sack:
4416 	/* Build the new head SACK, and we're done. */
4417 	sp->start_seq = seq;
4418 	sp->end_seq = end_seq;
4419 	tp->rx_opt.num_sacks++;
4420 }
4421 
4422 /* RCV.NXT advances, some SACKs should be eaten. */
4423 
4424 static void tcp_sack_remove(struct tcp_sock *tp)
4425 {
4426 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4427 	int num_sacks = tp->rx_opt.num_sacks;
4428 	int this_sack;
4429 
4430 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4431 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4432 		tp->rx_opt.num_sacks = 0;
4433 		return;
4434 	}
4435 
4436 	for (this_sack = 0; this_sack < num_sacks;) {
4437 		/* Check if the start of the sack is covered by RCV.NXT. */
4438 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4439 			int i;
4440 
4441 			/* RCV.NXT must cover all the block! */
4442 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4443 
4444 			/* Zap this SACK, by moving forward any other SACKS. */
4445 			for (i = this_sack+1; i < num_sacks; i++)
4446 				tp->selective_acks[i-1] = tp->selective_acks[i];
4447 			num_sacks--;
4448 			continue;
4449 		}
4450 		this_sack++;
4451 		sp++;
4452 	}
4453 	tp->rx_opt.num_sacks = num_sacks;
4454 }
4455 
4456 /**
4457  * tcp_try_coalesce - try to merge skb to prior one
4458  * @sk: socket
4459  * @to: prior buffer
4460  * @from: buffer to add in queue
4461  * @fragstolen: pointer to boolean
4462  *
4463  * Before queueing skb @from after @to, try to merge them
4464  * to reduce overall memory use and queue lengths, if cost is small.
4465  * Packets in ofo or receive queues can stay a long time.
4466  * Better try to coalesce them right now to avoid future collapses.
4467  * Returns true if caller should free @from instead of queueing it
4468  */
4469 static bool tcp_try_coalesce(struct sock *sk,
4470 			     struct sk_buff *to,
4471 			     struct sk_buff *from,
4472 			     bool *fragstolen)
4473 {
4474 	int delta;
4475 
4476 	*fragstolen = false;
4477 
4478 	/* Its possible this segment overlaps with prior segment in queue */
4479 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4480 		return false;
4481 
4482 	if (!mptcp_skb_can_collapse(to, from))
4483 		return false;
4484 
4485 #ifdef CONFIG_TLS_DEVICE
4486 	if (from->decrypted != to->decrypted)
4487 		return false;
4488 #endif
4489 
4490 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4491 		return false;
4492 
4493 	atomic_add(delta, &sk->sk_rmem_alloc);
4494 	sk_mem_charge(sk, delta);
4495 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4496 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4497 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4498 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4499 
4500 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4501 		TCP_SKB_CB(to)->has_rxtstamp = true;
4502 		to->tstamp = from->tstamp;
4503 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4504 	}
4505 
4506 	return true;
4507 }
4508 
4509 static bool tcp_ooo_try_coalesce(struct sock *sk,
4510 			     struct sk_buff *to,
4511 			     struct sk_buff *from,
4512 			     bool *fragstolen)
4513 {
4514 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4515 
4516 	/* In case tcp_drop() is called later, update to->gso_segs */
4517 	if (res) {
4518 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4519 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4520 
4521 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4522 	}
4523 	return res;
4524 }
4525 
4526 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4527 {
4528 	sk_drops_add(sk, skb);
4529 	__kfree_skb(skb);
4530 }
4531 
4532 /* This one checks to see if we can put data from the
4533  * out_of_order queue into the receive_queue.
4534  */
4535 static void tcp_ofo_queue(struct sock *sk)
4536 {
4537 	struct tcp_sock *tp = tcp_sk(sk);
4538 	__u32 dsack_high = tp->rcv_nxt;
4539 	bool fin, fragstolen, eaten;
4540 	struct sk_buff *skb, *tail;
4541 	struct rb_node *p;
4542 
4543 	p = rb_first(&tp->out_of_order_queue);
4544 	while (p) {
4545 		skb = rb_to_skb(p);
4546 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4547 			break;
4548 
4549 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4550 			__u32 dsack = dsack_high;
4551 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4552 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4553 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4554 		}
4555 		p = rb_next(p);
4556 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4557 
4558 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4559 			tcp_drop(sk, skb);
4560 			continue;
4561 		}
4562 
4563 		tail = skb_peek_tail(&sk->sk_receive_queue);
4564 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4565 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4566 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4567 		if (!eaten)
4568 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4569 		else
4570 			kfree_skb_partial(skb, fragstolen);
4571 
4572 		if (unlikely(fin)) {
4573 			tcp_fin(sk);
4574 			/* tcp_fin() purges tp->out_of_order_queue,
4575 			 * so we must end this loop right now.
4576 			 */
4577 			break;
4578 		}
4579 	}
4580 }
4581 
4582 static bool tcp_prune_ofo_queue(struct sock *sk);
4583 static int tcp_prune_queue(struct sock *sk);
4584 
4585 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4586 				 unsigned int size)
4587 {
4588 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4589 	    !sk_rmem_schedule(sk, skb, size)) {
4590 
4591 		if (tcp_prune_queue(sk) < 0)
4592 			return -1;
4593 
4594 		while (!sk_rmem_schedule(sk, skb, size)) {
4595 			if (!tcp_prune_ofo_queue(sk))
4596 				return -1;
4597 		}
4598 	}
4599 	return 0;
4600 }
4601 
4602 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4603 {
4604 	struct tcp_sock *tp = tcp_sk(sk);
4605 	struct rb_node **p, *parent;
4606 	struct sk_buff *skb1;
4607 	u32 seq, end_seq;
4608 	bool fragstolen;
4609 
4610 	tcp_ecn_check_ce(sk, skb);
4611 
4612 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4613 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4614 		sk->sk_data_ready(sk);
4615 		tcp_drop(sk, skb);
4616 		return;
4617 	}
4618 
4619 	/* Disable header prediction. */
4620 	tp->pred_flags = 0;
4621 	inet_csk_schedule_ack(sk);
4622 
4623 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4624 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4625 	seq = TCP_SKB_CB(skb)->seq;
4626 	end_seq = TCP_SKB_CB(skb)->end_seq;
4627 
4628 	p = &tp->out_of_order_queue.rb_node;
4629 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4630 		/* Initial out of order segment, build 1 SACK. */
4631 		if (tcp_is_sack(tp)) {
4632 			tp->rx_opt.num_sacks = 1;
4633 			tp->selective_acks[0].start_seq = seq;
4634 			tp->selective_acks[0].end_seq = end_seq;
4635 		}
4636 		rb_link_node(&skb->rbnode, NULL, p);
4637 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4638 		tp->ooo_last_skb = skb;
4639 		goto end;
4640 	}
4641 
4642 	/* In the typical case, we are adding an skb to the end of the list.
4643 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4644 	 */
4645 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4646 				 skb, &fragstolen)) {
4647 coalesce_done:
4648 		/* For non sack flows, do not grow window to force DUPACK
4649 		 * and trigger fast retransmit.
4650 		 */
4651 		if (tcp_is_sack(tp))
4652 			tcp_grow_window(sk, skb);
4653 		kfree_skb_partial(skb, fragstolen);
4654 		skb = NULL;
4655 		goto add_sack;
4656 	}
4657 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4658 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4659 		parent = &tp->ooo_last_skb->rbnode;
4660 		p = &parent->rb_right;
4661 		goto insert;
4662 	}
4663 
4664 	/* Find place to insert this segment. Handle overlaps on the way. */
4665 	parent = NULL;
4666 	while (*p) {
4667 		parent = *p;
4668 		skb1 = rb_to_skb(parent);
4669 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4670 			p = &parent->rb_left;
4671 			continue;
4672 		}
4673 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4674 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4675 				/* All the bits are present. Drop. */
4676 				NET_INC_STATS(sock_net(sk),
4677 					      LINUX_MIB_TCPOFOMERGE);
4678 				tcp_drop(sk, skb);
4679 				skb = NULL;
4680 				tcp_dsack_set(sk, seq, end_seq);
4681 				goto add_sack;
4682 			}
4683 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4684 				/* Partial overlap. */
4685 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4686 			} else {
4687 				/* skb's seq == skb1's seq and skb covers skb1.
4688 				 * Replace skb1 with skb.
4689 				 */
4690 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4691 						&tp->out_of_order_queue);
4692 				tcp_dsack_extend(sk,
4693 						 TCP_SKB_CB(skb1)->seq,
4694 						 TCP_SKB_CB(skb1)->end_seq);
4695 				NET_INC_STATS(sock_net(sk),
4696 					      LINUX_MIB_TCPOFOMERGE);
4697 				tcp_drop(sk, skb1);
4698 				goto merge_right;
4699 			}
4700 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4701 						skb, &fragstolen)) {
4702 			goto coalesce_done;
4703 		}
4704 		p = &parent->rb_right;
4705 	}
4706 insert:
4707 	/* Insert segment into RB tree. */
4708 	rb_link_node(&skb->rbnode, parent, p);
4709 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4710 
4711 merge_right:
4712 	/* Remove other segments covered by skb. */
4713 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4714 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4715 			break;
4716 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4717 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4718 					 end_seq);
4719 			break;
4720 		}
4721 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4722 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4723 				 TCP_SKB_CB(skb1)->end_seq);
4724 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4725 		tcp_drop(sk, skb1);
4726 	}
4727 	/* If there is no skb after us, we are the last_skb ! */
4728 	if (!skb1)
4729 		tp->ooo_last_skb = skb;
4730 
4731 add_sack:
4732 	if (tcp_is_sack(tp))
4733 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4734 end:
4735 	if (skb) {
4736 		/* For non sack flows, do not grow window to force DUPACK
4737 		 * and trigger fast retransmit.
4738 		 */
4739 		if (tcp_is_sack(tp))
4740 			tcp_grow_window(sk, skb);
4741 		skb_condense(skb);
4742 		skb_set_owner_r(skb, sk);
4743 	}
4744 }
4745 
4746 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4747 				      bool *fragstolen)
4748 {
4749 	int eaten;
4750 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4751 
4752 	eaten = (tail &&
4753 		 tcp_try_coalesce(sk, tail,
4754 				  skb, fragstolen)) ? 1 : 0;
4755 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4756 	if (!eaten) {
4757 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4758 		skb_set_owner_r(skb, sk);
4759 	}
4760 	return eaten;
4761 }
4762 
4763 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4764 {
4765 	struct sk_buff *skb;
4766 	int err = -ENOMEM;
4767 	int data_len = 0;
4768 	bool fragstolen;
4769 
4770 	if (size == 0)
4771 		return 0;
4772 
4773 	if (size > PAGE_SIZE) {
4774 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4775 
4776 		data_len = npages << PAGE_SHIFT;
4777 		size = data_len + (size & ~PAGE_MASK);
4778 	}
4779 	skb = alloc_skb_with_frags(size - data_len, data_len,
4780 				   PAGE_ALLOC_COSTLY_ORDER,
4781 				   &err, sk->sk_allocation);
4782 	if (!skb)
4783 		goto err;
4784 
4785 	skb_put(skb, size - data_len);
4786 	skb->data_len = data_len;
4787 	skb->len = size;
4788 
4789 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4790 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4791 		goto err_free;
4792 	}
4793 
4794 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4795 	if (err)
4796 		goto err_free;
4797 
4798 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4799 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4800 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4801 
4802 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4803 		WARN_ON_ONCE(fragstolen); /* should not happen */
4804 		__kfree_skb(skb);
4805 	}
4806 	return size;
4807 
4808 err_free:
4809 	kfree_skb(skb);
4810 err:
4811 	return err;
4812 
4813 }
4814 
4815 void tcp_data_ready(struct sock *sk)
4816 {
4817 	const struct tcp_sock *tp = tcp_sk(sk);
4818 	int avail = tp->rcv_nxt - tp->copied_seq;
4819 
4820 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4821 	    !sock_flag(sk, SOCK_DONE))
4822 		return;
4823 
4824 	sk->sk_data_ready(sk);
4825 }
4826 
4827 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4828 {
4829 	struct tcp_sock *tp = tcp_sk(sk);
4830 	bool fragstolen;
4831 	int eaten;
4832 
4833 	if (sk_is_mptcp(sk))
4834 		mptcp_incoming_options(sk, skb, &tp->rx_opt);
4835 
4836 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4837 		__kfree_skb(skb);
4838 		return;
4839 	}
4840 	skb_dst_drop(skb);
4841 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4842 
4843 	tp->rx_opt.dsack = 0;
4844 
4845 	/*  Queue data for delivery to the user.
4846 	 *  Packets in sequence go to the receive queue.
4847 	 *  Out of sequence packets to the out_of_order_queue.
4848 	 */
4849 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4850 		if (tcp_receive_window(tp) == 0) {
4851 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4852 			goto out_of_window;
4853 		}
4854 
4855 		/* Ok. In sequence. In window. */
4856 queue_and_out:
4857 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4858 			sk_forced_mem_schedule(sk, skb->truesize);
4859 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4860 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4861 			sk->sk_data_ready(sk);
4862 			goto drop;
4863 		}
4864 
4865 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4866 		if (skb->len)
4867 			tcp_event_data_recv(sk, skb);
4868 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4869 			tcp_fin(sk);
4870 
4871 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4872 			tcp_ofo_queue(sk);
4873 
4874 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4875 			 * gap in queue is filled.
4876 			 */
4877 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4878 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4879 		}
4880 
4881 		if (tp->rx_opt.num_sacks)
4882 			tcp_sack_remove(tp);
4883 
4884 		tcp_fast_path_check(sk);
4885 
4886 		if (eaten > 0)
4887 			kfree_skb_partial(skb, fragstolen);
4888 		if (!sock_flag(sk, SOCK_DEAD))
4889 			tcp_data_ready(sk);
4890 		return;
4891 	}
4892 
4893 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4894 		tcp_rcv_spurious_retrans(sk, skb);
4895 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4896 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4897 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4898 
4899 out_of_window:
4900 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4901 		inet_csk_schedule_ack(sk);
4902 drop:
4903 		tcp_drop(sk, skb);
4904 		return;
4905 	}
4906 
4907 	/* Out of window. F.e. zero window probe. */
4908 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4909 		goto out_of_window;
4910 
4911 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4912 		/* Partial packet, seq < rcv_next < end_seq */
4913 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4914 
4915 		/* If window is closed, drop tail of packet. But after
4916 		 * remembering D-SACK for its head made in previous line.
4917 		 */
4918 		if (!tcp_receive_window(tp)) {
4919 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4920 			goto out_of_window;
4921 		}
4922 		goto queue_and_out;
4923 	}
4924 
4925 	tcp_data_queue_ofo(sk, skb);
4926 }
4927 
4928 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4929 {
4930 	if (list)
4931 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4932 
4933 	return skb_rb_next(skb);
4934 }
4935 
4936 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4937 					struct sk_buff_head *list,
4938 					struct rb_root *root)
4939 {
4940 	struct sk_buff *next = tcp_skb_next(skb, list);
4941 
4942 	if (list)
4943 		__skb_unlink(skb, list);
4944 	else
4945 		rb_erase(&skb->rbnode, root);
4946 
4947 	__kfree_skb(skb);
4948 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4949 
4950 	return next;
4951 }
4952 
4953 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4954 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4955 {
4956 	struct rb_node **p = &root->rb_node;
4957 	struct rb_node *parent = NULL;
4958 	struct sk_buff *skb1;
4959 
4960 	while (*p) {
4961 		parent = *p;
4962 		skb1 = rb_to_skb(parent);
4963 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4964 			p = &parent->rb_left;
4965 		else
4966 			p = &parent->rb_right;
4967 	}
4968 	rb_link_node(&skb->rbnode, parent, p);
4969 	rb_insert_color(&skb->rbnode, root);
4970 }
4971 
4972 /* Collapse contiguous sequence of skbs head..tail with
4973  * sequence numbers start..end.
4974  *
4975  * If tail is NULL, this means until the end of the queue.
4976  *
4977  * Segments with FIN/SYN are not collapsed (only because this
4978  * simplifies code)
4979  */
4980 static void
4981 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4982 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4983 {
4984 	struct sk_buff *skb = head, *n;
4985 	struct sk_buff_head tmp;
4986 	bool end_of_skbs;
4987 
4988 	/* First, check that queue is collapsible and find
4989 	 * the point where collapsing can be useful.
4990 	 */
4991 restart:
4992 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4993 		n = tcp_skb_next(skb, list);
4994 
4995 		/* No new bits? It is possible on ofo queue. */
4996 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4997 			skb = tcp_collapse_one(sk, skb, list, root);
4998 			if (!skb)
4999 				break;
5000 			goto restart;
5001 		}
5002 
5003 		/* The first skb to collapse is:
5004 		 * - not SYN/FIN and
5005 		 * - bloated or contains data before "start" or
5006 		 *   overlaps to the next one and mptcp allow collapsing.
5007 		 */
5008 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5009 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5010 		     before(TCP_SKB_CB(skb)->seq, start))) {
5011 			end_of_skbs = false;
5012 			break;
5013 		}
5014 
5015 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5016 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5017 			end_of_skbs = false;
5018 			break;
5019 		}
5020 
5021 		/* Decided to skip this, advance start seq. */
5022 		start = TCP_SKB_CB(skb)->end_seq;
5023 	}
5024 	if (end_of_skbs ||
5025 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5026 		return;
5027 
5028 	__skb_queue_head_init(&tmp);
5029 
5030 	while (before(start, end)) {
5031 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5032 		struct sk_buff *nskb;
5033 
5034 		nskb = alloc_skb(copy, GFP_ATOMIC);
5035 		if (!nskb)
5036 			break;
5037 
5038 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5039 #ifdef CONFIG_TLS_DEVICE
5040 		nskb->decrypted = skb->decrypted;
5041 #endif
5042 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5043 		if (list)
5044 			__skb_queue_before(list, skb, nskb);
5045 		else
5046 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5047 		skb_set_owner_r(nskb, sk);
5048 		mptcp_skb_ext_move(nskb, skb);
5049 
5050 		/* Copy data, releasing collapsed skbs. */
5051 		while (copy > 0) {
5052 			int offset = start - TCP_SKB_CB(skb)->seq;
5053 			int size = TCP_SKB_CB(skb)->end_seq - start;
5054 
5055 			BUG_ON(offset < 0);
5056 			if (size > 0) {
5057 				size = min(copy, size);
5058 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5059 					BUG();
5060 				TCP_SKB_CB(nskb)->end_seq += size;
5061 				copy -= size;
5062 				start += size;
5063 			}
5064 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5065 				skb = tcp_collapse_one(sk, skb, list, root);
5066 				if (!skb ||
5067 				    skb == tail ||
5068 				    !mptcp_skb_can_collapse(nskb, skb) ||
5069 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5070 					goto end;
5071 #ifdef CONFIG_TLS_DEVICE
5072 				if (skb->decrypted != nskb->decrypted)
5073 					goto end;
5074 #endif
5075 			}
5076 		}
5077 	}
5078 end:
5079 	skb_queue_walk_safe(&tmp, skb, n)
5080 		tcp_rbtree_insert(root, skb);
5081 }
5082 
5083 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5084  * and tcp_collapse() them until all the queue is collapsed.
5085  */
5086 static void tcp_collapse_ofo_queue(struct sock *sk)
5087 {
5088 	struct tcp_sock *tp = tcp_sk(sk);
5089 	u32 range_truesize, sum_tiny = 0;
5090 	struct sk_buff *skb, *head;
5091 	u32 start, end;
5092 
5093 	skb = skb_rb_first(&tp->out_of_order_queue);
5094 new_range:
5095 	if (!skb) {
5096 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5097 		return;
5098 	}
5099 	start = TCP_SKB_CB(skb)->seq;
5100 	end = TCP_SKB_CB(skb)->end_seq;
5101 	range_truesize = skb->truesize;
5102 
5103 	for (head = skb;;) {
5104 		skb = skb_rb_next(skb);
5105 
5106 		/* Range is terminated when we see a gap or when
5107 		 * we are at the queue end.
5108 		 */
5109 		if (!skb ||
5110 		    after(TCP_SKB_CB(skb)->seq, end) ||
5111 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5112 			/* Do not attempt collapsing tiny skbs */
5113 			if (range_truesize != head->truesize ||
5114 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5115 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5116 					     head, skb, start, end);
5117 			} else {
5118 				sum_tiny += range_truesize;
5119 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5120 					return;
5121 			}
5122 			goto new_range;
5123 		}
5124 
5125 		range_truesize += skb->truesize;
5126 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5127 			start = TCP_SKB_CB(skb)->seq;
5128 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5129 			end = TCP_SKB_CB(skb)->end_seq;
5130 	}
5131 }
5132 
5133 /*
5134  * Clean the out-of-order queue to make room.
5135  * We drop high sequences packets to :
5136  * 1) Let a chance for holes to be filled.
5137  * 2) not add too big latencies if thousands of packets sit there.
5138  *    (But if application shrinks SO_RCVBUF, we could still end up
5139  *     freeing whole queue here)
5140  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5141  *
5142  * Return true if queue has shrunk.
5143  */
5144 static bool tcp_prune_ofo_queue(struct sock *sk)
5145 {
5146 	struct tcp_sock *tp = tcp_sk(sk);
5147 	struct rb_node *node, *prev;
5148 	int goal;
5149 
5150 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5151 		return false;
5152 
5153 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5154 	goal = sk->sk_rcvbuf >> 3;
5155 	node = &tp->ooo_last_skb->rbnode;
5156 	do {
5157 		prev = rb_prev(node);
5158 		rb_erase(node, &tp->out_of_order_queue);
5159 		goal -= rb_to_skb(node)->truesize;
5160 		tcp_drop(sk, rb_to_skb(node));
5161 		if (!prev || goal <= 0) {
5162 			sk_mem_reclaim(sk);
5163 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5164 			    !tcp_under_memory_pressure(sk))
5165 				break;
5166 			goal = sk->sk_rcvbuf >> 3;
5167 		}
5168 		node = prev;
5169 	} while (node);
5170 	tp->ooo_last_skb = rb_to_skb(prev);
5171 
5172 	/* Reset SACK state.  A conforming SACK implementation will
5173 	 * do the same at a timeout based retransmit.  When a connection
5174 	 * is in a sad state like this, we care only about integrity
5175 	 * of the connection not performance.
5176 	 */
5177 	if (tp->rx_opt.sack_ok)
5178 		tcp_sack_reset(&tp->rx_opt);
5179 	return true;
5180 }
5181 
5182 /* Reduce allocated memory if we can, trying to get
5183  * the socket within its memory limits again.
5184  *
5185  * Return less than zero if we should start dropping frames
5186  * until the socket owning process reads some of the data
5187  * to stabilize the situation.
5188  */
5189 static int tcp_prune_queue(struct sock *sk)
5190 {
5191 	struct tcp_sock *tp = tcp_sk(sk);
5192 
5193 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5194 
5195 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5196 		tcp_clamp_window(sk);
5197 	else if (tcp_under_memory_pressure(sk))
5198 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5199 
5200 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5201 		return 0;
5202 
5203 	tcp_collapse_ofo_queue(sk);
5204 	if (!skb_queue_empty(&sk->sk_receive_queue))
5205 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5206 			     skb_peek(&sk->sk_receive_queue),
5207 			     NULL,
5208 			     tp->copied_seq, tp->rcv_nxt);
5209 	sk_mem_reclaim(sk);
5210 
5211 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5212 		return 0;
5213 
5214 	/* Collapsing did not help, destructive actions follow.
5215 	 * This must not ever occur. */
5216 
5217 	tcp_prune_ofo_queue(sk);
5218 
5219 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5220 		return 0;
5221 
5222 	/* If we are really being abused, tell the caller to silently
5223 	 * drop receive data on the floor.  It will get retransmitted
5224 	 * and hopefully then we'll have sufficient space.
5225 	 */
5226 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5227 
5228 	/* Massive buffer overcommit. */
5229 	tp->pred_flags = 0;
5230 	return -1;
5231 }
5232 
5233 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5234 {
5235 	const struct tcp_sock *tp = tcp_sk(sk);
5236 
5237 	/* If the user specified a specific send buffer setting, do
5238 	 * not modify it.
5239 	 */
5240 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5241 		return false;
5242 
5243 	/* If we are under global TCP memory pressure, do not expand.  */
5244 	if (tcp_under_memory_pressure(sk))
5245 		return false;
5246 
5247 	/* If we are under soft global TCP memory pressure, do not expand.  */
5248 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5249 		return false;
5250 
5251 	/* If we filled the congestion window, do not expand.  */
5252 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5253 		return false;
5254 
5255 	return true;
5256 }
5257 
5258 /* When incoming ACK allowed to free some skb from write_queue,
5259  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5260  * on the exit from tcp input handler.
5261  *
5262  * PROBLEM: sndbuf expansion does not work well with largesend.
5263  */
5264 static void tcp_new_space(struct sock *sk)
5265 {
5266 	struct tcp_sock *tp = tcp_sk(sk);
5267 
5268 	if (tcp_should_expand_sndbuf(sk)) {
5269 		tcp_sndbuf_expand(sk);
5270 		tp->snd_cwnd_stamp = tcp_jiffies32;
5271 	}
5272 
5273 	sk->sk_write_space(sk);
5274 }
5275 
5276 static void tcp_check_space(struct sock *sk)
5277 {
5278 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5279 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5280 		/* pairs with tcp_poll() */
5281 		smp_mb();
5282 		if (sk->sk_socket &&
5283 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5284 			tcp_new_space(sk);
5285 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5286 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5287 		}
5288 	}
5289 }
5290 
5291 static inline void tcp_data_snd_check(struct sock *sk)
5292 {
5293 	tcp_push_pending_frames(sk);
5294 	tcp_check_space(sk);
5295 }
5296 
5297 /*
5298  * Check if sending an ack is needed.
5299  */
5300 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5301 {
5302 	struct tcp_sock *tp = tcp_sk(sk);
5303 	unsigned long rtt, delay;
5304 
5305 	    /* More than one full frame received... */
5306 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5307 	     /* ... and right edge of window advances far enough.
5308 	      * (tcp_recvmsg() will send ACK otherwise).
5309 	      * If application uses SO_RCVLOWAT, we want send ack now if
5310 	      * we have not received enough bytes to satisfy the condition.
5311 	      */
5312 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5313 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5314 	    /* We ACK each frame or... */
5315 	    tcp_in_quickack_mode(sk) ||
5316 	    /* Protocol state mandates a one-time immediate ACK */
5317 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5318 send_now:
5319 		tcp_send_ack(sk);
5320 		return;
5321 	}
5322 
5323 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5324 		tcp_send_delayed_ack(sk);
5325 		return;
5326 	}
5327 
5328 	if (!tcp_is_sack(tp) ||
5329 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5330 		goto send_now;
5331 
5332 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5333 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5334 		tp->dup_ack_counter = 0;
5335 	}
5336 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5337 		tp->dup_ack_counter++;
5338 		goto send_now;
5339 	}
5340 	tp->compressed_ack++;
5341 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5342 		return;
5343 
5344 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5345 
5346 	rtt = tp->rcv_rtt_est.rtt_us;
5347 	if (tp->srtt_us && tp->srtt_us < rtt)
5348 		rtt = tp->srtt_us;
5349 
5350 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5351 		      rtt * (NSEC_PER_USEC >> 3)/20);
5352 	sock_hold(sk);
5353 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5354 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5355 			       HRTIMER_MODE_REL_PINNED_SOFT);
5356 }
5357 
5358 static inline void tcp_ack_snd_check(struct sock *sk)
5359 {
5360 	if (!inet_csk_ack_scheduled(sk)) {
5361 		/* We sent a data segment already. */
5362 		return;
5363 	}
5364 	__tcp_ack_snd_check(sk, 1);
5365 }
5366 
5367 /*
5368  *	This routine is only called when we have urgent data
5369  *	signaled. Its the 'slow' part of tcp_urg. It could be
5370  *	moved inline now as tcp_urg is only called from one
5371  *	place. We handle URGent data wrong. We have to - as
5372  *	BSD still doesn't use the correction from RFC961.
5373  *	For 1003.1g we should support a new option TCP_STDURG to permit
5374  *	either form (or just set the sysctl tcp_stdurg).
5375  */
5376 
5377 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5378 {
5379 	struct tcp_sock *tp = tcp_sk(sk);
5380 	u32 ptr = ntohs(th->urg_ptr);
5381 
5382 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5383 		ptr--;
5384 	ptr += ntohl(th->seq);
5385 
5386 	/* Ignore urgent data that we've already seen and read. */
5387 	if (after(tp->copied_seq, ptr))
5388 		return;
5389 
5390 	/* Do not replay urg ptr.
5391 	 *
5392 	 * NOTE: interesting situation not covered by specs.
5393 	 * Misbehaving sender may send urg ptr, pointing to segment,
5394 	 * which we already have in ofo queue. We are not able to fetch
5395 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5396 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5397 	 * situations. But it is worth to think about possibility of some
5398 	 * DoSes using some hypothetical application level deadlock.
5399 	 */
5400 	if (before(ptr, tp->rcv_nxt))
5401 		return;
5402 
5403 	/* Do we already have a newer (or duplicate) urgent pointer? */
5404 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5405 		return;
5406 
5407 	/* Tell the world about our new urgent pointer. */
5408 	sk_send_sigurg(sk);
5409 
5410 	/* We may be adding urgent data when the last byte read was
5411 	 * urgent. To do this requires some care. We cannot just ignore
5412 	 * tp->copied_seq since we would read the last urgent byte again
5413 	 * as data, nor can we alter copied_seq until this data arrives
5414 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5415 	 *
5416 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5417 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5418 	 * and expect that both A and B disappear from stream. This is _wrong_.
5419 	 * Though this happens in BSD with high probability, this is occasional.
5420 	 * Any application relying on this is buggy. Note also, that fix "works"
5421 	 * only in this artificial test. Insert some normal data between A and B and we will
5422 	 * decline of BSD again. Verdict: it is better to remove to trap
5423 	 * buggy users.
5424 	 */
5425 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5426 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5427 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5428 		tp->copied_seq++;
5429 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5430 			__skb_unlink(skb, &sk->sk_receive_queue);
5431 			__kfree_skb(skb);
5432 		}
5433 	}
5434 
5435 	tp->urg_data = TCP_URG_NOTYET;
5436 	WRITE_ONCE(tp->urg_seq, ptr);
5437 
5438 	/* Disable header prediction. */
5439 	tp->pred_flags = 0;
5440 }
5441 
5442 /* This is the 'fast' part of urgent handling. */
5443 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5444 {
5445 	struct tcp_sock *tp = tcp_sk(sk);
5446 
5447 	/* Check if we get a new urgent pointer - normally not. */
5448 	if (th->urg)
5449 		tcp_check_urg(sk, th);
5450 
5451 	/* Do we wait for any urgent data? - normally not... */
5452 	if (tp->urg_data == TCP_URG_NOTYET) {
5453 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5454 			  th->syn;
5455 
5456 		/* Is the urgent pointer pointing into this packet? */
5457 		if (ptr < skb->len) {
5458 			u8 tmp;
5459 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5460 				BUG();
5461 			tp->urg_data = TCP_URG_VALID | tmp;
5462 			if (!sock_flag(sk, SOCK_DEAD))
5463 				sk->sk_data_ready(sk);
5464 		}
5465 	}
5466 }
5467 
5468 /* Accept RST for rcv_nxt - 1 after a FIN.
5469  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5470  * FIN is sent followed by a RST packet. The RST is sent with the same
5471  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5472  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5473  * ACKs on the closed socket. In addition middleboxes can drop either the
5474  * challenge ACK or a subsequent RST.
5475  */
5476 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5477 {
5478 	struct tcp_sock *tp = tcp_sk(sk);
5479 
5480 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5481 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5482 					       TCPF_CLOSING));
5483 }
5484 
5485 /* Does PAWS and seqno based validation of an incoming segment, flags will
5486  * play significant role here.
5487  */
5488 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5489 				  const struct tcphdr *th, int syn_inerr)
5490 {
5491 	struct tcp_sock *tp = tcp_sk(sk);
5492 	bool rst_seq_match = false;
5493 
5494 	/* RFC1323: H1. Apply PAWS check first. */
5495 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5496 	    tp->rx_opt.saw_tstamp &&
5497 	    tcp_paws_discard(sk, skb)) {
5498 		if (!th->rst) {
5499 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5500 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5501 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5502 						  &tp->last_oow_ack_time))
5503 				tcp_send_dupack(sk, skb);
5504 			goto discard;
5505 		}
5506 		/* Reset is accepted even if it did not pass PAWS. */
5507 	}
5508 
5509 	/* Step 1: check sequence number */
5510 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5511 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5512 		 * (RST) segments are validated by checking their SEQ-fields."
5513 		 * And page 69: "If an incoming segment is not acceptable,
5514 		 * an acknowledgment should be sent in reply (unless the RST
5515 		 * bit is set, if so drop the segment and return)".
5516 		 */
5517 		if (!th->rst) {
5518 			if (th->syn)
5519 				goto syn_challenge;
5520 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5521 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5522 						  &tp->last_oow_ack_time))
5523 				tcp_send_dupack(sk, skb);
5524 		} else if (tcp_reset_check(sk, skb)) {
5525 			tcp_reset(sk);
5526 		}
5527 		goto discard;
5528 	}
5529 
5530 	/* Step 2: check RST bit */
5531 	if (th->rst) {
5532 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5533 		 * FIN and SACK too if available):
5534 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5535 		 * the right-most SACK block,
5536 		 * then
5537 		 *     RESET the connection
5538 		 * else
5539 		 *     Send a challenge ACK
5540 		 */
5541 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5542 		    tcp_reset_check(sk, skb)) {
5543 			rst_seq_match = true;
5544 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5545 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5546 			int max_sack = sp[0].end_seq;
5547 			int this_sack;
5548 
5549 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5550 			     ++this_sack) {
5551 				max_sack = after(sp[this_sack].end_seq,
5552 						 max_sack) ?
5553 					sp[this_sack].end_seq : max_sack;
5554 			}
5555 
5556 			if (TCP_SKB_CB(skb)->seq == max_sack)
5557 				rst_seq_match = true;
5558 		}
5559 
5560 		if (rst_seq_match)
5561 			tcp_reset(sk);
5562 		else {
5563 			/* Disable TFO if RST is out-of-order
5564 			 * and no data has been received
5565 			 * for current active TFO socket
5566 			 */
5567 			if (tp->syn_fastopen && !tp->data_segs_in &&
5568 			    sk->sk_state == TCP_ESTABLISHED)
5569 				tcp_fastopen_active_disable(sk);
5570 			tcp_send_challenge_ack(sk, skb);
5571 		}
5572 		goto discard;
5573 	}
5574 
5575 	/* step 3: check security and precedence [ignored] */
5576 
5577 	/* step 4: Check for a SYN
5578 	 * RFC 5961 4.2 : Send a challenge ack
5579 	 */
5580 	if (th->syn) {
5581 syn_challenge:
5582 		if (syn_inerr)
5583 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5584 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5585 		tcp_send_challenge_ack(sk, skb);
5586 		goto discard;
5587 	}
5588 
5589 	return true;
5590 
5591 discard:
5592 	tcp_drop(sk, skb);
5593 	return false;
5594 }
5595 
5596 /*
5597  *	TCP receive function for the ESTABLISHED state.
5598  *
5599  *	It is split into a fast path and a slow path. The fast path is
5600  * 	disabled when:
5601  *	- A zero window was announced from us - zero window probing
5602  *        is only handled properly in the slow path.
5603  *	- Out of order segments arrived.
5604  *	- Urgent data is expected.
5605  *	- There is no buffer space left
5606  *	- Unexpected TCP flags/window values/header lengths are received
5607  *	  (detected by checking the TCP header against pred_flags)
5608  *	- Data is sent in both directions. Fast path only supports pure senders
5609  *	  or pure receivers (this means either the sequence number or the ack
5610  *	  value must stay constant)
5611  *	- Unexpected TCP option.
5612  *
5613  *	When these conditions are not satisfied it drops into a standard
5614  *	receive procedure patterned after RFC793 to handle all cases.
5615  *	The first three cases are guaranteed by proper pred_flags setting,
5616  *	the rest is checked inline. Fast processing is turned on in
5617  *	tcp_data_queue when everything is OK.
5618  */
5619 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5620 {
5621 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5622 	struct tcp_sock *tp = tcp_sk(sk);
5623 	unsigned int len = skb->len;
5624 
5625 	/* TCP congestion window tracking */
5626 	trace_tcp_probe(sk, skb);
5627 
5628 	tcp_mstamp_refresh(tp);
5629 	if (unlikely(!sk->sk_rx_dst))
5630 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5631 	/*
5632 	 *	Header prediction.
5633 	 *	The code loosely follows the one in the famous
5634 	 *	"30 instruction TCP receive" Van Jacobson mail.
5635 	 *
5636 	 *	Van's trick is to deposit buffers into socket queue
5637 	 *	on a device interrupt, to call tcp_recv function
5638 	 *	on the receive process context and checksum and copy
5639 	 *	the buffer to user space. smart...
5640 	 *
5641 	 *	Our current scheme is not silly either but we take the
5642 	 *	extra cost of the net_bh soft interrupt processing...
5643 	 *	We do checksum and copy also but from device to kernel.
5644 	 */
5645 
5646 	tp->rx_opt.saw_tstamp = 0;
5647 
5648 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5649 	 *	if header_prediction is to be made
5650 	 *	'S' will always be tp->tcp_header_len >> 2
5651 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5652 	 *  turn it off	(when there are holes in the receive
5653 	 *	 space for instance)
5654 	 *	PSH flag is ignored.
5655 	 */
5656 
5657 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5658 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5659 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5660 		int tcp_header_len = tp->tcp_header_len;
5661 
5662 		/* Timestamp header prediction: tcp_header_len
5663 		 * is automatically equal to th->doff*4 due to pred_flags
5664 		 * match.
5665 		 */
5666 
5667 		/* Check timestamp */
5668 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5669 			/* No? Slow path! */
5670 			if (!tcp_parse_aligned_timestamp(tp, th))
5671 				goto slow_path;
5672 
5673 			/* If PAWS failed, check it more carefully in slow path */
5674 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5675 				goto slow_path;
5676 
5677 			/* DO NOT update ts_recent here, if checksum fails
5678 			 * and timestamp was corrupted part, it will result
5679 			 * in a hung connection since we will drop all
5680 			 * future packets due to the PAWS test.
5681 			 */
5682 		}
5683 
5684 		if (len <= tcp_header_len) {
5685 			/* Bulk data transfer: sender */
5686 			if (len == tcp_header_len) {
5687 				/* Predicted packet is in window by definition.
5688 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5689 				 * Hence, check seq<=rcv_wup reduces to:
5690 				 */
5691 				if (tcp_header_len ==
5692 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5693 				    tp->rcv_nxt == tp->rcv_wup)
5694 					tcp_store_ts_recent(tp);
5695 
5696 				/* We know that such packets are checksummed
5697 				 * on entry.
5698 				 */
5699 				tcp_ack(sk, skb, 0);
5700 				__kfree_skb(skb);
5701 				tcp_data_snd_check(sk);
5702 				/* When receiving pure ack in fast path, update
5703 				 * last ts ecr directly instead of calling
5704 				 * tcp_rcv_rtt_measure_ts()
5705 				 */
5706 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5707 				return;
5708 			} else { /* Header too small */
5709 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5710 				goto discard;
5711 			}
5712 		} else {
5713 			int eaten = 0;
5714 			bool fragstolen = false;
5715 
5716 			if (tcp_checksum_complete(skb))
5717 				goto csum_error;
5718 
5719 			if ((int)skb->truesize > sk->sk_forward_alloc)
5720 				goto step5;
5721 
5722 			/* Predicted packet is in window by definition.
5723 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5724 			 * Hence, check seq<=rcv_wup reduces to:
5725 			 */
5726 			if (tcp_header_len ==
5727 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5728 			    tp->rcv_nxt == tp->rcv_wup)
5729 				tcp_store_ts_recent(tp);
5730 
5731 			tcp_rcv_rtt_measure_ts(sk, skb);
5732 
5733 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5734 
5735 			/* Bulk data transfer: receiver */
5736 			__skb_pull(skb, tcp_header_len);
5737 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5738 
5739 			tcp_event_data_recv(sk, skb);
5740 
5741 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5742 				/* Well, only one small jumplet in fast path... */
5743 				tcp_ack(sk, skb, FLAG_DATA);
5744 				tcp_data_snd_check(sk);
5745 				if (!inet_csk_ack_scheduled(sk))
5746 					goto no_ack;
5747 			}
5748 
5749 			__tcp_ack_snd_check(sk, 0);
5750 no_ack:
5751 			if (eaten)
5752 				kfree_skb_partial(skb, fragstolen);
5753 			tcp_data_ready(sk);
5754 			return;
5755 		}
5756 	}
5757 
5758 slow_path:
5759 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5760 		goto csum_error;
5761 
5762 	if (!th->ack && !th->rst && !th->syn)
5763 		goto discard;
5764 
5765 	/*
5766 	 *	Standard slow path.
5767 	 */
5768 
5769 	if (!tcp_validate_incoming(sk, skb, th, 1))
5770 		return;
5771 
5772 step5:
5773 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5774 		goto discard;
5775 
5776 	tcp_rcv_rtt_measure_ts(sk, skb);
5777 
5778 	/* Process urgent data. */
5779 	tcp_urg(sk, skb, th);
5780 
5781 	/* step 7: process the segment text */
5782 	tcp_data_queue(sk, skb);
5783 
5784 	tcp_data_snd_check(sk);
5785 	tcp_ack_snd_check(sk);
5786 	return;
5787 
5788 csum_error:
5789 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5790 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5791 
5792 discard:
5793 	tcp_drop(sk, skb);
5794 }
5795 EXPORT_SYMBOL(tcp_rcv_established);
5796 
5797 void tcp_init_transfer(struct sock *sk, int bpf_op)
5798 {
5799 	struct inet_connection_sock *icsk = inet_csk(sk);
5800 	struct tcp_sock *tp = tcp_sk(sk);
5801 
5802 	tcp_mtup_init(sk);
5803 	icsk->icsk_af_ops->rebuild_header(sk);
5804 	tcp_init_metrics(sk);
5805 
5806 	/* Initialize the congestion window to start the transfer.
5807 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5808 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5809 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5810 	 * retransmission has occurred.
5811 	 */
5812 	if (tp->total_retrans > 1 && tp->undo_marker)
5813 		tp->snd_cwnd = 1;
5814 	else
5815 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5816 	tp->snd_cwnd_stamp = tcp_jiffies32;
5817 
5818 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5819 	tcp_init_congestion_control(sk);
5820 	tcp_init_buffer_space(sk);
5821 }
5822 
5823 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5824 {
5825 	struct tcp_sock *tp = tcp_sk(sk);
5826 	struct inet_connection_sock *icsk = inet_csk(sk);
5827 
5828 	tcp_set_state(sk, TCP_ESTABLISHED);
5829 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5830 
5831 	if (skb) {
5832 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5833 		security_inet_conn_established(sk, skb);
5834 		sk_mark_napi_id(sk, skb);
5835 	}
5836 
5837 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5838 
5839 	/* Prevent spurious tcp_cwnd_restart() on first data
5840 	 * packet.
5841 	 */
5842 	tp->lsndtime = tcp_jiffies32;
5843 
5844 	if (sock_flag(sk, SOCK_KEEPOPEN))
5845 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5846 
5847 	if (!tp->rx_opt.snd_wscale)
5848 		__tcp_fast_path_on(tp, tp->snd_wnd);
5849 	else
5850 		tp->pred_flags = 0;
5851 }
5852 
5853 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5854 				    struct tcp_fastopen_cookie *cookie)
5855 {
5856 	struct tcp_sock *tp = tcp_sk(sk);
5857 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5858 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5859 	bool syn_drop = false;
5860 
5861 	if (mss == tp->rx_opt.user_mss) {
5862 		struct tcp_options_received opt;
5863 
5864 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5865 		tcp_clear_options(&opt);
5866 		opt.user_mss = opt.mss_clamp = 0;
5867 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5868 		mss = opt.mss_clamp;
5869 	}
5870 
5871 	if (!tp->syn_fastopen) {
5872 		/* Ignore an unsolicited cookie */
5873 		cookie->len = -1;
5874 	} else if (tp->total_retrans) {
5875 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5876 		 * acknowledges data. Presumably the remote received only
5877 		 * the retransmitted (regular) SYNs: either the original
5878 		 * SYN-data or the corresponding SYN-ACK was dropped.
5879 		 */
5880 		syn_drop = (cookie->len < 0 && data);
5881 	} else if (cookie->len < 0 && !tp->syn_data) {
5882 		/* We requested a cookie but didn't get it. If we did not use
5883 		 * the (old) exp opt format then try so next time (try_exp=1).
5884 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5885 		 */
5886 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5887 	}
5888 
5889 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5890 
5891 	if (data) { /* Retransmit unacked data in SYN */
5892 		if (tp->total_retrans)
5893 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5894 		else
5895 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5896 		skb_rbtree_walk_from(data) {
5897 			if (__tcp_retransmit_skb(sk, data, 1))
5898 				break;
5899 		}
5900 		tcp_rearm_rto(sk);
5901 		NET_INC_STATS(sock_net(sk),
5902 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5903 		return true;
5904 	}
5905 	tp->syn_data_acked = tp->syn_data;
5906 	if (tp->syn_data_acked) {
5907 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5908 		/* SYN-data is counted as two separate packets in tcp_ack() */
5909 		if (tp->delivered > 1)
5910 			--tp->delivered;
5911 	}
5912 
5913 	tcp_fastopen_add_skb(sk, synack);
5914 
5915 	return false;
5916 }
5917 
5918 static void smc_check_reset_syn(struct tcp_sock *tp)
5919 {
5920 #if IS_ENABLED(CONFIG_SMC)
5921 	if (static_branch_unlikely(&tcp_have_smc)) {
5922 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5923 			tp->syn_smc = 0;
5924 	}
5925 #endif
5926 }
5927 
5928 static void tcp_try_undo_spurious_syn(struct sock *sk)
5929 {
5930 	struct tcp_sock *tp = tcp_sk(sk);
5931 	u32 syn_stamp;
5932 
5933 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5934 	 * spurious if the ACK's timestamp option echo value matches the
5935 	 * original SYN timestamp.
5936 	 */
5937 	syn_stamp = tp->retrans_stamp;
5938 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5939 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5940 		tp->undo_marker = 0;
5941 }
5942 
5943 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5944 					 const struct tcphdr *th)
5945 {
5946 	struct inet_connection_sock *icsk = inet_csk(sk);
5947 	struct tcp_sock *tp = tcp_sk(sk);
5948 	struct tcp_fastopen_cookie foc = { .len = -1 };
5949 	int saved_clamp = tp->rx_opt.mss_clamp;
5950 	bool fastopen_fail;
5951 
5952 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5953 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5954 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5955 
5956 	if (th->ack) {
5957 		/* rfc793:
5958 		 * "If the state is SYN-SENT then
5959 		 *    first check the ACK bit
5960 		 *      If the ACK bit is set
5961 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5962 		 *        a reset (unless the RST bit is set, if so drop
5963 		 *        the segment and return)"
5964 		 */
5965 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5966 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5967 			/* Previous FIN/ACK or RST/ACK might be ignored. */
5968 			if (icsk->icsk_retransmits == 0)
5969 				inet_csk_reset_xmit_timer(sk,
5970 						ICSK_TIME_RETRANS,
5971 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
5972 			goto reset_and_undo;
5973 		}
5974 
5975 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5976 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5977 			     tcp_time_stamp(tp))) {
5978 			NET_INC_STATS(sock_net(sk),
5979 					LINUX_MIB_PAWSACTIVEREJECTED);
5980 			goto reset_and_undo;
5981 		}
5982 
5983 		/* Now ACK is acceptable.
5984 		 *
5985 		 * "If the RST bit is set
5986 		 *    If the ACK was acceptable then signal the user "error:
5987 		 *    connection reset", drop the segment, enter CLOSED state,
5988 		 *    delete TCB, and return."
5989 		 */
5990 
5991 		if (th->rst) {
5992 			tcp_reset(sk);
5993 			goto discard;
5994 		}
5995 
5996 		/* rfc793:
5997 		 *   "fifth, if neither of the SYN or RST bits is set then
5998 		 *    drop the segment and return."
5999 		 *
6000 		 *    See note below!
6001 		 *                                        --ANK(990513)
6002 		 */
6003 		if (!th->syn)
6004 			goto discard_and_undo;
6005 
6006 		/* rfc793:
6007 		 *   "If the SYN bit is on ...
6008 		 *    are acceptable then ...
6009 		 *    (our SYN has been ACKed), change the connection
6010 		 *    state to ESTABLISHED..."
6011 		 */
6012 
6013 		tcp_ecn_rcv_synack(tp, th);
6014 
6015 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6016 		tcp_try_undo_spurious_syn(sk);
6017 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6018 
6019 		/* Ok.. it's good. Set up sequence numbers and
6020 		 * move to established.
6021 		 */
6022 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6023 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6024 
6025 		/* RFC1323: The window in SYN & SYN/ACK segments is
6026 		 * never scaled.
6027 		 */
6028 		tp->snd_wnd = ntohs(th->window);
6029 
6030 		if (!tp->rx_opt.wscale_ok) {
6031 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6032 			tp->window_clamp = min(tp->window_clamp, 65535U);
6033 		}
6034 
6035 		if (tp->rx_opt.saw_tstamp) {
6036 			tp->rx_opt.tstamp_ok	   = 1;
6037 			tp->tcp_header_len =
6038 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6039 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6040 			tcp_store_ts_recent(tp);
6041 		} else {
6042 			tp->tcp_header_len = sizeof(struct tcphdr);
6043 		}
6044 
6045 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6046 		tcp_initialize_rcv_mss(sk);
6047 
6048 		/* Remember, tcp_poll() does not lock socket!
6049 		 * Change state from SYN-SENT only after copied_seq
6050 		 * is initialized. */
6051 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6052 
6053 		smc_check_reset_syn(tp);
6054 
6055 		smp_mb();
6056 
6057 		tcp_finish_connect(sk, skb);
6058 
6059 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6060 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6061 
6062 		if (!sock_flag(sk, SOCK_DEAD)) {
6063 			sk->sk_state_change(sk);
6064 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6065 		}
6066 		if (fastopen_fail)
6067 			return -1;
6068 		if (sk->sk_write_pending ||
6069 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6070 		    inet_csk_in_pingpong_mode(sk)) {
6071 			/* Save one ACK. Data will be ready after
6072 			 * several ticks, if write_pending is set.
6073 			 *
6074 			 * It may be deleted, but with this feature tcpdumps
6075 			 * look so _wonderfully_ clever, that I was not able
6076 			 * to stand against the temptation 8)     --ANK
6077 			 */
6078 			inet_csk_schedule_ack(sk);
6079 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6080 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6081 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6082 
6083 discard:
6084 			tcp_drop(sk, skb);
6085 			return 0;
6086 		} else {
6087 			tcp_send_ack(sk);
6088 		}
6089 		return -1;
6090 	}
6091 
6092 	/* No ACK in the segment */
6093 
6094 	if (th->rst) {
6095 		/* rfc793:
6096 		 * "If the RST bit is set
6097 		 *
6098 		 *      Otherwise (no ACK) drop the segment and return."
6099 		 */
6100 
6101 		goto discard_and_undo;
6102 	}
6103 
6104 	/* PAWS check. */
6105 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6106 	    tcp_paws_reject(&tp->rx_opt, 0))
6107 		goto discard_and_undo;
6108 
6109 	if (th->syn) {
6110 		/* We see SYN without ACK. It is attempt of
6111 		 * simultaneous connect with crossed SYNs.
6112 		 * Particularly, it can be connect to self.
6113 		 */
6114 		tcp_set_state(sk, TCP_SYN_RECV);
6115 
6116 		if (tp->rx_opt.saw_tstamp) {
6117 			tp->rx_opt.tstamp_ok = 1;
6118 			tcp_store_ts_recent(tp);
6119 			tp->tcp_header_len =
6120 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6121 		} else {
6122 			tp->tcp_header_len = sizeof(struct tcphdr);
6123 		}
6124 
6125 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6126 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6127 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6128 
6129 		/* RFC1323: The window in SYN & SYN/ACK segments is
6130 		 * never scaled.
6131 		 */
6132 		tp->snd_wnd    = ntohs(th->window);
6133 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6134 		tp->max_window = tp->snd_wnd;
6135 
6136 		tcp_ecn_rcv_syn(tp, th);
6137 
6138 		tcp_mtup_init(sk);
6139 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6140 		tcp_initialize_rcv_mss(sk);
6141 
6142 		tcp_send_synack(sk);
6143 #if 0
6144 		/* Note, we could accept data and URG from this segment.
6145 		 * There are no obstacles to make this (except that we must
6146 		 * either change tcp_recvmsg() to prevent it from returning data
6147 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6148 		 *
6149 		 * However, if we ignore data in ACKless segments sometimes,
6150 		 * we have no reasons to accept it sometimes.
6151 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6152 		 * is not flawless. So, discard packet for sanity.
6153 		 * Uncomment this return to process the data.
6154 		 */
6155 		return -1;
6156 #else
6157 		goto discard;
6158 #endif
6159 	}
6160 	/* "fifth, if neither of the SYN or RST bits is set then
6161 	 * drop the segment and return."
6162 	 */
6163 
6164 discard_and_undo:
6165 	tcp_clear_options(&tp->rx_opt);
6166 	tp->rx_opt.mss_clamp = saved_clamp;
6167 	goto discard;
6168 
6169 reset_and_undo:
6170 	tcp_clear_options(&tp->rx_opt);
6171 	tp->rx_opt.mss_clamp = saved_clamp;
6172 	return 1;
6173 }
6174 
6175 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6176 {
6177 	struct request_sock *req;
6178 
6179 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6180 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6181 	 */
6182 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6183 		tcp_try_undo_loss(sk, false);
6184 
6185 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6186 	tcp_sk(sk)->retrans_stamp = 0;
6187 	inet_csk(sk)->icsk_retransmits = 0;
6188 
6189 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6190 	 * we no longer need req so release it.
6191 	 */
6192 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6193 					lockdep_sock_is_held(sk));
6194 	reqsk_fastopen_remove(sk, req, false);
6195 
6196 	/* Re-arm the timer because data may have been sent out.
6197 	 * This is similar to the regular data transmission case
6198 	 * when new data has just been ack'ed.
6199 	 *
6200 	 * (TFO) - we could try to be more aggressive and
6201 	 * retransmitting any data sooner based on when they
6202 	 * are sent out.
6203 	 */
6204 	tcp_rearm_rto(sk);
6205 }
6206 
6207 /*
6208  *	This function implements the receiving procedure of RFC 793 for
6209  *	all states except ESTABLISHED and TIME_WAIT.
6210  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6211  *	address independent.
6212  */
6213 
6214 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6215 {
6216 	struct tcp_sock *tp = tcp_sk(sk);
6217 	struct inet_connection_sock *icsk = inet_csk(sk);
6218 	const struct tcphdr *th = tcp_hdr(skb);
6219 	struct request_sock *req;
6220 	int queued = 0;
6221 	bool acceptable;
6222 
6223 	switch (sk->sk_state) {
6224 	case TCP_CLOSE:
6225 		goto discard;
6226 
6227 	case TCP_LISTEN:
6228 		if (th->ack)
6229 			return 1;
6230 
6231 		if (th->rst)
6232 			goto discard;
6233 
6234 		if (th->syn) {
6235 			if (th->fin)
6236 				goto discard;
6237 			/* It is possible that we process SYN packets from backlog,
6238 			 * so we need to make sure to disable BH and RCU right there.
6239 			 */
6240 			rcu_read_lock();
6241 			local_bh_disable();
6242 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6243 			local_bh_enable();
6244 			rcu_read_unlock();
6245 
6246 			if (!acceptable)
6247 				return 1;
6248 			consume_skb(skb);
6249 			return 0;
6250 		}
6251 		goto discard;
6252 
6253 	case TCP_SYN_SENT:
6254 		tp->rx_opt.saw_tstamp = 0;
6255 		tcp_mstamp_refresh(tp);
6256 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6257 		if (queued >= 0)
6258 			return queued;
6259 
6260 		/* Do step6 onward by hand. */
6261 		tcp_urg(sk, skb, th);
6262 		__kfree_skb(skb);
6263 		tcp_data_snd_check(sk);
6264 		return 0;
6265 	}
6266 
6267 	tcp_mstamp_refresh(tp);
6268 	tp->rx_opt.saw_tstamp = 0;
6269 	req = rcu_dereference_protected(tp->fastopen_rsk,
6270 					lockdep_sock_is_held(sk));
6271 	if (req) {
6272 		bool req_stolen;
6273 
6274 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6275 		    sk->sk_state != TCP_FIN_WAIT1);
6276 
6277 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6278 			goto discard;
6279 	}
6280 
6281 	if (!th->ack && !th->rst && !th->syn)
6282 		goto discard;
6283 
6284 	if (!tcp_validate_incoming(sk, skb, th, 0))
6285 		return 0;
6286 
6287 	/* step 5: check the ACK field */
6288 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6289 				      FLAG_UPDATE_TS_RECENT |
6290 				      FLAG_NO_CHALLENGE_ACK) > 0;
6291 
6292 	if (!acceptable) {
6293 		if (sk->sk_state == TCP_SYN_RECV)
6294 			return 1;	/* send one RST */
6295 		tcp_send_challenge_ack(sk, skb);
6296 		goto discard;
6297 	}
6298 	switch (sk->sk_state) {
6299 	case TCP_SYN_RECV:
6300 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6301 		if (!tp->srtt_us)
6302 			tcp_synack_rtt_meas(sk, req);
6303 
6304 		if (req) {
6305 			tcp_rcv_synrecv_state_fastopen(sk);
6306 		} else {
6307 			tcp_try_undo_spurious_syn(sk);
6308 			tp->retrans_stamp = 0;
6309 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6310 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6311 		}
6312 		smp_mb();
6313 		tcp_set_state(sk, TCP_ESTABLISHED);
6314 		sk->sk_state_change(sk);
6315 
6316 		/* Note, that this wakeup is only for marginal crossed SYN case.
6317 		 * Passively open sockets are not waked up, because
6318 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6319 		 */
6320 		if (sk->sk_socket)
6321 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6322 
6323 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6324 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6325 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6326 
6327 		if (tp->rx_opt.tstamp_ok)
6328 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6329 
6330 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6331 			tcp_update_pacing_rate(sk);
6332 
6333 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6334 		tp->lsndtime = tcp_jiffies32;
6335 
6336 		tcp_initialize_rcv_mss(sk);
6337 		tcp_fast_path_on(tp);
6338 		break;
6339 
6340 	case TCP_FIN_WAIT1: {
6341 		int tmo;
6342 
6343 		if (req)
6344 			tcp_rcv_synrecv_state_fastopen(sk);
6345 
6346 		if (tp->snd_una != tp->write_seq)
6347 			break;
6348 
6349 		tcp_set_state(sk, TCP_FIN_WAIT2);
6350 		sk->sk_shutdown |= SEND_SHUTDOWN;
6351 
6352 		sk_dst_confirm(sk);
6353 
6354 		if (!sock_flag(sk, SOCK_DEAD)) {
6355 			/* Wake up lingering close() */
6356 			sk->sk_state_change(sk);
6357 			break;
6358 		}
6359 
6360 		if (tp->linger2 < 0) {
6361 			tcp_done(sk);
6362 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6363 			return 1;
6364 		}
6365 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6366 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6367 			/* Receive out of order FIN after close() */
6368 			if (tp->syn_fastopen && th->fin)
6369 				tcp_fastopen_active_disable(sk);
6370 			tcp_done(sk);
6371 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6372 			return 1;
6373 		}
6374 
6375 		tmo = tcp_fin_time(sk);
6376 		if (tmo > TCP_TIMEWAIT_LEN) {
6377 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6378 		} else if (th->fin || sock_owned_by_user(sk)) {
6379 			/* Bad case. We could lose such FIN otherwise.
6380 			 * It is not a big problem, but it looks confusing
6381 			 * and not so rare event. We still can lose it now,
6382 			 * if it spins in bh_lock_sock(), but it is really
6383 			 * marginal case.
6384 			 */
6385 			inet_csk_reset_keepalive_timer(sk, tmo);
6386 		} else {
6387 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6388 			goto discard;
6389 		}
6390 		break;
6391 	}
6392 
6393 	case TCP_CLOSING:
6394 		if (tp->snd_una == tp->write_seq) {
6395 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6396 			goto discard;
6397 		}
6398 		break;
6399 
6400 	case TCP_LAST_ACK:
6401 		if (tp->snd_una == tp->write_seq) {
6402 			tcp_update_metrics(sk);
6403 			tcp_done(sk);
6404 			goto discard;
6405 		}
6406 		break;
6407 	}
6408 
6409 	/* step 6: check the URG bit */
6410 	tcp_urg(sk, skb, th);
6411 
6412 	/* step 7: process the segment text */
6413 	switch (sk->sk_state) {
6414 	case TCP_CLOSE_WAIT:
6415 	case TCP_CLOSING:
6416 	case TCP_LAST_ACK:
6417 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6418 			if (sk_is_mptcp(sk))
6419 				mptcp_incoming_options(sk, skb, &tp->rx_opt);
6420 			break;
6421 		}
6422 		fallthrough;
6423 	case TCP_FIN_WAIT1:
6424 	case TCP_FIN_WAIT2:
6425 		/* RFC 793 says to queue data in these states,
6426 		 * RFC 1122 says we MUST send a reset.
6427 		 * BSD 4.4 also does reset.
6428 		 */
6429 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6430 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6431 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6432 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6433 				tcp_reset(sk);
6434 				return 1;
6435 			}
6436 		}
6437 		fallthrough;
6438 	case TCP_ESTABLISHED:
6439 		tcp_data_queue(sk, skb);
6440 		queued = 1;
6441 		break;
6442 	}
6443 
6444 	/* tcp_data could move socket to TIME-WAIT */
6445 	if (sk->sk_state != TCP_CLOSE) {
6446 		tcp_data_snd_check(sk);
6447 		tcp_ack_snd_check(sk);
6448 	}
6449 
6450 	if (!queued) {
6451 discard:
6452 		tcp_drop(sk, skb);
6453 	}
6454 	return 0;
6455 }
6456 EXPORT_SYMBOL(tcp_rcv_state_process);
6457 
6458 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6459 {
6460 	struct inet_request_sock *ireq = inet_rsk(req);
6461 
6462 	if (family == AF_INET)
6463 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6464 				    &ireq->ir_rmt_addr, port);
6465 #if IS_ENABLED(CONFIG_IPV6)
6466 	else if (family == AF_INET6)
6467 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6468 				    &ireq->ir_v6_rmt_addr, port);
6469 #endif
6470 }
6471 
6472 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6473  *
6474  * If we receive a SYN packet with these bits set, it means a
6475  * network is playing bad games with TOS bits. In order to
6476  * avoid possible false congestion notifications, we disable
6477  * TCP ECN negotiation.
6478  *
6479  * Exception: tcp_ca wants ECN. This is required for DCTCP
6480  * congestion control: Linux DCTCP asserts ECT on all packets,
6481  * including SYN, which is most optimal solution; however,
6482  * others, such as FreeBSD do not.
6483  *
6484  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6485  * set, indicating the use of a future TCP extension (such as AccECN). See
6486  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6487  * extensions.
6488  */
6489 static void tcp_ecn_create_request(struct request_sock *req,
6490 				   const struct sk_buff *skb,
6491 				   const struct sock *listen_sk,
6492 				   const struct dst_entry *dst)
6493 {
6494 	const struct tcphdr *th = tcp_hdr(skb);
6495 	const struct net *net = sock_net(listen_sk);
6496 	bool th_ecn = th->ece && th->cwr;
6497 	bool ect, ecn_ok;
6498 	u32 ecn_ok_dst;
6499 
6500 	if (!th_ecn)
6501 		return;
6502 
6503 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6504 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6505 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6506 
6507 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6508 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6509 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6510 		inet_rsk(req)->ecn_ok = 1;
6511 }
6512 
6513 static void tcp_openreq_init(struct request_sock *req,
6514 			     const struct tcp_options_received *rx_opt,
6515 			     struct sk_buff *skb, const struct sock *sk)
6516 {
6517 	struct inet_request_sock *ireq = inet_rsk(req);
6518 
6519 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6520 	req->cookie_ts = 0;
6521 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6522 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6523 	tcp_rsk(req)->snt_synack = 0;
6524 	tcp_rsk(req)->last_oow_ack_time = 0;
6525 	req->mss = rx_opt->mss_clamp;
6526 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6527 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6528 	ireq->sack_ok = rx_opt->sack_ok;
6529 	ireq->snd_wscale = rx_opt->snd_wscale;
6530 	ireq->wscale_ok = rx_opt->wscale_ok;
6531 	ireq->acked = 0;
6532 	ireq->ecn_ok = 0;
6533 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6534 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6535 	ireq->ir_mark = inet_request_mark(sk, skb);
6536 #if IS_ENABLED(CONFIG_SMC)
6537 	ireq->smc_ok = rx_opt->smc_ok;
6538 #endif
6539 }
6540 
6541 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6542 				      struct sock *sk_listener,
6543 				      bool attach_listener)
6544 {
6545 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6546 					       attach_listener);
6547 
6548 	if (req) {
6549 		struct inet_request_sock *ireq = inet_rsk(req);
6550 
6551 		ireq->ireq_opt = NULL;
6552 #if IS_ENABLED(CONFIG_IPV6)
6553 		ireq->pktopts = NULL;
6554 #endif
6555 		atomic64_set(&ireq->ir_cookie, 0);
6556 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6557 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6558 		ireq->ireq_family = sk_listener->sk_family;
6559 	}
6560 
6561 	return req;
6562 }
6563 EXPORT_SYMBOL(inet_reqsk_alloc);
6564 
6565 /*
6566  * Return true if a syncookie should be sent
6567  */
6568 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6569 {
6570 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6571 	const char *msg = "Dropping request";
6572 	bool want_cookie = false;
6573 	struct net *net = sock_net(sk);
6574 
6575 #ifdef CONFIG_SYN_COOKIES
6576 	if (net->ipv4.sysctl_tcp_syncookies) {
6577 		msg = "Sending cookies";
6578 		want_cookie = true;
6579 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6580 	} else
6581 #endif
6582 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6583 
6584 	if (!queue->synflood_warned &&
6585 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6586 	    xchg(&queue->synflood_warned, 1) == 0)
6587 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6588 				     proto, sk->sk_num, msg);
6589 
6590 	return want_cookie;
6591 }
6592 
6593 static void tcp_reqsk_record_syn(const struct sock *sk,
6594 				 struct request_sock *req,
6595 				 const struct sk_buff *skb)
6596 {
6597 	if (tcp_sk(sk)->save_syn) {
6598 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6599 		u32 *copy;
6600 
6601 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6602 		if (copy) {
6603 			copy[0] = len;
6604 			memcpy(&copy[1], skb_network_header(skb), len);
6605 			req->saved_syn = copy;
6606 		}
6607 	}
6608 }
6609 
6610 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6611  * used for SYN cookie generation.
6612  */
6613 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6614 			  const struct tcp_request_sock_ops *af_ops,
6615 			  struct sock *sk, struct tcphdr *th)
6616 {
6617 	struct tcp_sock *tp = tcp_sk(sk);
6618 	u16 mss;
6619 
6620 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6621 	    !inet_csk_reqsk_queue_is_full(sk))
6622 		return 0;
6623 
6624 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6625 		return 0;
6626 
6627 	if (sk_acceptq_is_full(sk)) {
6628 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6629 		return 0;
6630 	}
6631 
6632 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6633 	if (!mss)
6634 		mss = af_ops->mss_clamp;
6635 
6636 	return mss;
6637 }
6638 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6639 
6640 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6641 		     const struct tcp_request_sock_ops *af_ops,
6642 		     struct sock *sk, struct sk_buff *skb)
6643 {
6644 	struct tcp_fastopen_cookie foc = { .len = -1 };
6645 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6646 	struct tcp_options_received tmp_opt;
6647 	struct tcp_sock *tp = tcp_sk(sk);
6648 	struct net *net = sock_net(sk);
6649 	struct sock *fastopen_sk = NULL;
6650 	struct request_sock *req;
6651 	bool want_cookie = false;
6652 	struct dst_entry *dst;
6653 	struct flowi fl;
6654 
6655 	/* TW buckets are converted to open requests without
6656 	 * limitations, they conserve resources and peer is
6657 	 * evidently real one.
6658 	 */
6659 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6660 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6661 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6662 		if (!want_cookie)
6663 			goto drop;
6664 	}
6665 
6666 	if (sk_acceptq_is_full(sk)) {
6667 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6668 		goto drop;
6669 	}
6670 
6671 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6672 	if (!req)
6673 		goto drop;
6674 
6675 	tcp_rsk(req)->af_specific = af_ops;
6676 	tcp_rsk(req)->ts_off = 0;
6677 #if IS_ENABLED(CONFIG_MPTCP)
6678 	tcp_rsk(req)->is_mptcp = 0;
6679 #endif
6680 
6681 	tcp_clear_options(&tmp_opt);
6682 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6683 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6684 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6685 			  want_cookie ? NULL : &foc);
6686 
6687 	if (want_cookie && !tmp_opt.saw_tstamp)
6688 		tcp_clear_options(&tmp_opt);
6689 
6690 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6691 		tmp_opt.smc_ok = 0;
6692 
6693 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6694 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6695 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6696 
6697 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6698 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6699 
6700 	af_ops->init_req(req, sk, skb);
6701 
6702 	if (IS_ENABLED(CONFIG_MPTCP) && want_cookie)
6703 		tcp_rsk(req)->is_mptcp = 0;
6704 
6705 	if (security_inet_conn_request(sk, skb, req))
6706 		goto drop_and_free;
6707 
6708 	if (tmp_opt.tstamp_ok)
6709 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6710 
6711 	dst = af_ops->route_req(sk, &fl, req);
6712 	if (!dst)
6713 		goto drop_and_free;
6714 
6715 	if (!want_cookie && !isn) {
6716 		/* Kill the following clause, if you dislike this way. */
6717 		if (!net->ipv4.sysctl_tcp_syncookies &&
6718 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6719 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6720 		    !tcp_peer_is_proven(req, dst)) {
6721 			/* Without syncookies last quarter of
6722 			 * backlog is filled with destinations,
6723 			 * proven to be alive.
6724 			 * It means that we continue to communicate
6725 			 * to destinations, already remembered
6726 			 * to the moment of synflood.
6727 			 */
6728 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6729 				    rsk_ops->family);
6730 			goto drop_and_release;
6731 		}
6732 
6733 		isn = af_ops->init_seq(skb);
6734 	}
6735 
6736 	tcp_ecn_create_request(req, skb, sk, dst);
6737 
6738 	if (want_cookie) {
6739 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6740 		req->cookie_ts = tmp_opt.tstamp_ok;
6741 		if (!tmp_opt.tstamp_ok)
6742 			inet_rsk(req)->ecn_ok = 0;
6743 	}
6744 
6745 	tcp_rsk(req)->snt_isn = isn;
6746 	tcp_rsk(req)->txhash = net_tx_rndhash();
6747 	tcp_openreq_init_rwin(req, sk, dst);
6748 	sk_rx_queue_set(req_to_sk(req), skb);
6749 	if (!want_cookie) {
6750 		tcp_reqsk_record_syn(sk, req, skb);
6751 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6752 	}
6753 	if (fastopen_sk) {
6754 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6755 				    &foc, TCP_SYNACK_FASTOPEN);
6756 		/* Add the child socket directly into the accept queue */
6757 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6758 			reqsk_fastopen_remove(fastopen_sk, req, false);
6759 			bh_unlock_sock(fastopen_sk);
6760 			sock_put(fastopen_sk);
6761 			goto drop_and_free;
6762 		}
6763 		sk->sk_data_ready(sk);
6764 		bh_unlock_sock(fastopen_sk);
6765 		sock_put(fastopen_sk);
6766 	} else {
6767 		tcp_rsk(req)->tfo_listener = false;
6768 		if (!want_cookie)
6769 			inet_csk_reqsk_queue_hash_add(sk, req,
6770 				tcp_timeout_init((struct sock *)req));
6771 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6772 				    !want_cookie ? TCP_SYNACK_NORMAL :
6773 						   TCP_SYNACK_COOKIE);
6774 		if (want_cookie) {
6775 			reqsk_free(req);
6776 			return 0;
6777 		}
6778 	}
6779 	reqsk_put(req);
6780 	return 0;
6781 
6782 drop_and_release:
6783 	dst_release(dst);
6784 drop_and_free:
6785 	__reqsk_free(req);
6786 drop:
6787 	tcp_listendrop(sk);
6788 	return 0;
6789 }
6790 EXPORT_SYMBOL(tcp_conn_request);
6791