1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presnce of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/config.h> 67 #include <linux/mm.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 75 int sysctl_tcp_timestamps = 1; 76 int sysctl_tcp_window_scaling = 1; 77 int sysctl_tcp_sack = 1; 78 int sysctl_tcp_fack = 1; 79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn; 81 int sysctl_tcp_dsack = 1; 82 int sysctl_tcp_app_win = 31; 83 int sysctl_tcp_adv_win_scale = 2; 84 85 int sysctl_tcp_stdurg; 86 int sysctl_tcp_rfc1337; 87 int sysctl_tcp_max_orphans = NR_FILE; 88 int sysctl_tcp_frto; 89 int sysctl_tcp_nometrics_save; 90 91 int sysctl_tcp_moderate_rcvbuf = 1; 92 93 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 94 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 95 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 96 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 97 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 98 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 99 #define FLAG_ECE 0x40 /* ECE in this ACK */ 100 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 101 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 111 112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 113 114 /* Adapt the MSS value used to make delayed ack decision to the 115 * real world. 116 */ 117 static inline void tcp_measure_rcv_mss(struct tcp_sock *tp, 118 struct sk_buff *skb) 119 { 120 unsigned int len, lss; 121 122 lss = tp->ack.last_seg_size; 123 tp->ack.last_seg_size = 0; 124 125 /* skb->len may jitter because of SACKs, even if peer 126 * sends good full-sized frames. 127 */ 128 len = skb->len; 129 if (len >= tp->ack.rcv_mss) { 130 tp->ack.rcv_mss = len; 131 } else { 132 /* Otherwise, we make more careful check taking into account, 133 * that SACKs block is variable. 134 * 135 * "len" is invariant segment length, including TCP header. 136 */ 137 len += skb->data - skb->h.raw; 138 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 139 /* If PSH is not set, packet should be 140 * full sized, provided peer TCP is not badly broken. 141 * This observation (if it is correct 8)) allows 142 * to handle super-low mtu links fairly. 143 */ 144 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 145 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) { 146 /* Subtract also invariant (if peer is RFC compliant), 147 * tcp header plus fixed timestamp option length. 148 * Resulting "len" is MSS free of SACK jitter. 149 */ 150 len -= tp->tcp_header_len; 151 tp->ack.last_seg_size = len; 152 if (len == lss) { 153 tp->ack.rcv_mss = len; 154 return; 155 } 156 } 157 tp->ack.pending |= TCP_ACK_PUSHED; 158 } 159 } 160 161 static void tcp_incr_quickack(struct tcp_sock *tp) 162 { 163 unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss); 164 165 if (quickacks==0) 166 quickacks=2; 167 if (quickacks > tp->ack.quick) 168 tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 169 } 170 171 void tcp_enter_quickack_mode(struct tcp_sock *tp) 172 { 173 tcp_incr_quickack(tp); 174 tp->ack.pingpong = 0; 175 tp->ack.ato = TCP_ATO_MIN; 176 } 177 178 /* Send ACKs quickly, if "quick" count is not exhausted 179 * and the session is not interactive. 180 */ 181 182 static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp) 183 { 184 return (tp->ack.quick && !tp->ack.pingpong); 185 } 186 187 /* Buffer size and advertised window tuning. 188 * 189 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 190 */ 191 192 static void tcp_fixup_sndbuf(struct sock *sk) 193 { 194 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 195 sizeof(struct sk_buff); 196 197 if (sk->sk_sndbuf < 3 * sndmem) 198 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 199 } 200 201 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 202 * 203 * All tcp_full_space() is split to two parts: "network" buffer, allocated 204 * forward and advertised in receiver window (tp->rcv_wnd) and 205 * "application buffer", required to isolate scheduling/application 206 * latencies from network. 207 * window_clamp is maximal advertised window. It can be less than 208 * tcp_full_space(), in this case tcp_full_space() - window_clamp 209 * is reserved for "application" buffer. The less window_clamp is 210 * the smoother our behaviour from viewpoint of network, but the lower 211 * throughput and the higher sensitivity of the connection to losses. 8) 212 * 213 * rcv_ssthresh is more strict window_clamp used at "slow start" 214 * phase to predict further behaviour of this connection. 215 * It is used for two goals: 216 * - to enforce header prediction at sender, even when application 217 * requires some significant "application buffer". It is check #1. 218 * - to prevent pruning of receive queue because of misprediction 219 * of receiver window. Check #2. 220 * 221 * The scheme does not work when sender sends good segments opening 222 * window and then starts to feed us spagetti. But it should work 223 * in common situations. Otherwise, we have to rely on queue collapsing. 224 */ 225 226 /* Slow part of check#2. */ 227 static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 228 struct sk_buff *skb) 229 { 230 /* Optimize this! */ 231 int truesize = tcp_win_from_space(skb->truesize)/2; 232 int window = tcp_full_space(sk)/2; 233 234 while (tp->rcv_ssthresh <= window) { 235 if (truesize <= skb->len) 236 return 2*tp->ack.rcv_mss; 237 238 truesize >>= 1; 239 window >>= 1; 240 } 241 return 0; 242 } 243 244 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 245 struct sk_buff *skb) 246 { 247 /* Check #1 */ 248 if (tp->rcv_ssthresh < tp->window_clamp && 249 (int)tp->rcv_ssthresh < tcp_space(sk) && 250 !tcp_memory_pressure) { 251 int incr; 252 253 /* Check #2. Increase window, if skb with such overhead 254 * will fit to rcvbuf in future. 255 */ 256 if (tcp_win_from_space(skb->truesize) <= skb->len) 257 incr = 2*tp->advmss; 258 else 259 incr = __tcp_grow_window(sk, tp, skb); 260 261 if (incr) { 262 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 263 tp->ack.quick |= 1; 264 } 265 } 266 } 267 268 /* 3. Tuning rcvbuf, when connection enters established state. */ 269 270 static void tcp_fixup_rcvbuf(struct sock *sk) 271 { 272 struct tcp_sock *tp = tcp_sk(sk); 273 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 274 275 /* Try to select rcvbuf so that 4 mss-sized segments 276 * will fit to window and correspoding skbs will fit to our rcvbuf. 277 * (was 3; 4 is minimum to allow fast retransmit to work.) 278 */ 279 while (tcp_win_from_space(rcvmem) < tp->advmss) 280 rcvmem += 128; 281 if (sk->sk_rcvbuf < 4 * rcvmem) 282 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 283 } 284 285 /* 4. Try to fixup all. It is made iimediately after connection enters 286 * established state. 287 */ 288 static void tcp_init_buffer_space(struct sock *sk) 289 { 290 struct tcp_sock *tp = tcp_sk(sk); 291 int maxwin; 292 293 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 294 tcp_fixup_rcvbuf(sk); 295 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 296 tcp_fixup_sndbuf(sk); 297 298 tp->rcvq_space.space = tp->rcv_wnd; 299 300 maxwin = tcp_full_space(sk); 301 302 if (tp->window_clamp >= maxwin) { 303 tp->window_clamp = maxwin; 304 305 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 306 tp->window_clamp = max(maxwin - 307 (maxwin >> sysctl_tcp_app_win), 308 4 * tp->advmss); 309 } 310 311 /* Force reservation of one segment. */ 312 if (sysctl_tcp_app_win && 313 tp->window_clamp > 2 * tp->advmss && 314 tp->window_clamp + tp->advmss > maxwin) 315 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 316 317 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 318 tp->snd_cwnd_stamp = tcp_time_stamp; 319 } 320 321 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 322 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp) 323 { 324 struct sk_buff *skb; 325 unsigned int app_win = tp->rcv_nxt - tp->copied_seq; 326 int ofo_win = 0; 327 328 tp->ack.quick = 0; 329 330 skb_queue_walk(&tp->out_of_order_queue, skb) { 331 ofo_win += skb->len; 332 } 333 334 /* If overcommit is due to out of order segments, 335 * do not clamp window. Try to expand rcvbuf instead. 336 */ 337 if (ofo_win) { 338 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 339 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 340 !tcp_memory_pressure && 341 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) 342 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 343 sysctl_tcp_rmem[2]); 344 } 345 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) { 346 app_win += ofo_win; 347 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf) 348 app_win >>= 1; 349 if (app_win > tp->ack.rcv_mss) 350 app_win -= tp->ack.rcv_mss; 351 app_win = max(app_win, 2U*tp->advmss); 352 353 if (!ofo_win) 354 tp->window_clamp = min(tp->window_clamp, app_win); 355 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 356 } 357 } 358 359 /* Receiver "autotuning" code. 360 * 361 * The algorithm for RTT estimation w/o timestamps is based on 362 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 363 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 364 * 365 * More detail on this code can be found at 366 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 367 * though this reference is out of date. A new paper 368 * is pending. 369 */ 370 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 371 { 372 u32 new_sample = tp->rcv_rtt_est.rtt; 373 long m = sample; 374 375 if (m == 0) 376 m = 1; 377 378 if (new_sample != 0) { 379 /* If we sample in larger samples in the non-timestamp 380 * case, we could grossly overestimate the RTT especially 381 * with chatty applications or bulk transfer apps which 382 * are stalled on filesystem I/O. 383 * 384 * Also, since we are only going for a minimum in the 385 * non-timestamp case, we do not smoothe things out 386 * else with timestamps disabled convergance takes too 387 * long. 388 */ 389 if (!win_dep) { 390 m -= (new_sample >> 3); 391 new_sample += m; 392 } else if (m < new_sample) 393 new_sample = m << 3; 394 } else { 395 /* No previous mesaure. */ 396 new_sample = m << 3; 397 } 398 399 if (tp->rcv_rtt_est.rtt != new_sample) 400 tp->rcv_rtt_est.rtt = new_sample; 401 } 402 403 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 404 { 405 if (tp->rcv_rtt_est.time == 0) 406 goto new_measure; 407 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 408 return; 409 tcp_rcv_rtt_update(tp, 410 jiffies - tp->rcv_rtt_est.time, 411 1); 412 413 new_measure: 414 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 415 tp->rcv_rtt_est.time = tcp_time_stamp; 416 } 417 418 static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb) 419 { 420 if (tp->rx_opt.rcv_tsecr && 421 (TCP_SKB_CB(skb)->end_seq - 422 TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss)) 423 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 424 } 425 426 /* 427 * This function should be called every time data is copied to user space. 428 * It calculates the appropriate TCP receive buffer space. 429 */ 430 void tcp_rcv_space_adjust(struct sock *sk) 431 { 432 struct tcp_sock *tp = tcp_sk(sk); 433 int time; 434 int space; 435 436 if (tp->rcvq_space.time == 0) 437 goto new_measure; 438 439 time = tcp_time_stamp - tp->rcvq_space.time; 440 if (time < (tp->rcv_rtt_est.rtt >> 3) || 441 tp->rcv_rtt_est.rtt == 0) 442 return; 443 444 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 445 446 space = max(tp->rcvq_space.space, space); 447 448 if (tp->rcvq_space.space != space) { 449 int rcvmem; 450 451 tp->rcvq_space.space = space; 452 453 if (sysctl_tcp_moderate_rcvbuf) { 454 int new_clamp = space; 455 456 /* Receive space grows, normalize in order to 457 * take into account packet headers and sk_buff 458 * structure overhead. 459 */ 460 space /= tp->advmss; 461 if (!space) 462 space = 1; 463 rcvmem = (tp->advmss + MAX_TCP_HEADER + 464 16 + sizeof(struct sk_buff)); 465 while (tcp_win_from_space(rcvmem) < tp->advmss) 466 rcvmem += 128; 467 space *= rcvmem; 468 space = min(space, sysctl_tcp_rmem[2]); 469 if (space > sk->sk_rcvbuf) { 470 sk->sk_rcvbuf = space; 471 472 /* Make the window clamp follow along. */ 473 tp->window_clamp = new_clamp; 474 } 475 } 476 } 477 478 new_measure: 479 tp->rcvq_space.seq = tp->copied_seq; 480 tp->rcvq_space.time = tcp_time_stamp; 481 } 482 483 /* There is something which you must keep in mind when you analyze the 484 * behavior of the tp->ato delayed ack timeout interval. When a 485 * connection starts up, we want to ack as quickly as possible. The 486 * problem is that "good" TCP's do slow start at the beginning of data 487 * transmission. The means that until we send the first few ACK's the 488 * sender will sit on his end and only queue most of his data, because 489 * he can only send snd_cwnd unacked packets at any given time. For 490 * each ACK we send, he increments snd_cwnd and transmits more of his 491 * queue. -DaveM 492 */ 493 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 494 { 495 u32 now; 496 497 tcp_schedule_ack(tp); 498 499 tcp_measure_rcv_mss(tp, skb); 500 501 tcp_rcv_rtt_measure(tp); 502 503 now = tcp_time_stamp; 504 505 if (!tp->ack.ato) { 506 /* The _first_ data packet received, initialize 507 * delayed ACK engine. 508 */ 509 tcp_incr_quickack(tp); 510 tp->ack.ato = TCP_ATO_MIN; 511 } else { 512 int m = now - tp->ack.lrcvtime; 513 514 if (m <= TCP_ATO_MIN/2) { 515 /* The fastest case is the first. */ 516 tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2; 517 } else if (m < tp->ack.ato) { 518 tp->ack.ato = (tp->ack.ato>>1) + m; 519 if (tp->ack.ato > tp->rto) 520 tp->ack.ato = tp->rto; 521 } else if (m > tp->rto) { 522 /* Too long gap. Apparently sender falled to 523 * restart window, so that we send ACKs quickly. 524 */ 525 tcp_incr_quickack(tp); 526 sk_stream_mem_reclaim(sk); 527 } 528 } 529 tp->ack.lrcvtime = now; 530 531 TCP_ECN_check_ce(tp, skb); 532 533 if (skb->len >= 128) 534 tcp_grow_window(sk, tp, skb); 535 } 536 537 /* Called to compute a smoothed rtt estimate. The data fed to this 538 * routine either comes from timestamps, or from segments that were 539 * known _not_ to have been retransmitted [see Karn/Partridge 540 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 541 * piece by Van Jacobson. 542 * NOTE: the next three routines used to be one big routine. 543 * To save cycles in the RFC 1323 implementation it was better to break 544 * it up into three procedures. -- erics 545 */ 546 static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt, u32 *usrtt) 547 { 548 long m = mrtt; /* RTT */ 549 550 /* The following amusing code comes from Jacobson's 551 * article in SIGCOMM '88. Note that rtt and mdev 552 * are scaled versions of rtt and mean deviation. 553 * This is designed to be as fast as possible 554 * m stands for "measurement". 555 * 556 * On a 1990 paper the rto value is changed to: 557 * RTO = rtt + 4 * mdev 558 * 559 * Funny. This algorithm seems to be very broken. 560 * These formulae increase RTO, when it should be decreased, increase 561 * too slowly, when it should be incresed fastly, decrease too fastly 562 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 563 * does not matter how to _calculate_ it. Seems, it was trap 564 * that VJ failed to avoid. 8) 565 */ 566 if(m == 0) 567 m = 1; 568 if (tp->srtt != 0) { 569 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 570 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 571 if (m < 0) { 572 m = -m; /* m is now abs(error) */ 573 m -= (tp->mdev >> 2); /* similar update on mdev */ 574 /* This is similar to one of Eifel findings. 575 * Eifel blocks mdev updates when rtt decreases. 576 * This solution is a bit different: we use finer gain 577 * for mdev in this case (alpha*beta). 578 * Like Eifel it also prevents growth of rto, 579 * but also it limits too fast rto decreases, 580 * happening in pure Eifel. 581 */ 582 if (m > 0) 583 m >>= 3; 584 } else { 585 m -= (tp->mdev >> 2); /* similar update on mdev */ 586 } 587 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 588 if (tp->mdev > tp->mdev_max) { 589 tp->mdev_max = tp->mdev; 590 if (tp->mdev_max > tp->rttvar) 591 tp->rttvar = tp->mdev_max; 592 } 593 if (after(tp->snd_una, tp->rtt_seq)) { 594 if (tp->mdev_max < tp->rttvar) 595 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 596 tp->rtt_seq = tp->snd_nxt; 597 tp->mdev_max = TCP_RTO_MIN; 598 } 599 } else { 600 /* no previous measure. */ 601 tp->srtt = m<<3; /* take the measured time to be rtt */ 602 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 603 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 604 tp->rtt_seq = tp->snd_nxt; 605 } 606 607 if (tp->ca_ops->rtt_sample) 608 tp->ca_ops->rtt_sample(tp, *usrtt); 609 } 610 611 /* Calculate rto without backoff. This is the second half of Van Jacobson's 612 * routine referred to above. 613 */ 614 static inline void tcp_set_rto(struct tcp_sock *tp) 615 { 616 /* Old crap is replaced with new one. 8) 617 * 618 * More seriously: 619 * 1. If rtt variance happened to be less 50msec, it is hallucination. 620 * It cannot be less due to utterly erratic ACK generation made 621 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 622 * to do with delayed acks, because at cwnd>2 true delack timeout 623 * is invisible. Actually, Linux-2.4 also generates erratic 624 * ACKs in some curcumstances. 625 */ 626 tp->rto = (tp->srtt >> 3) + tp->rttvar; 627 628 /* 2. Fixups made earlier cannot be right. 629 * If we do not estimate RTO correctly without them, 630 * all the algo is pure shit and should be replaced 631 * with correct one. It is exaclty, which we pretend to do. 632 */ 633 } 634 635 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 636 * guarantees that rto is higher. 637 */ 638 static inline void tcp_bound_rto(struct tcp_sock *tp) 639 { 640 if (tp->rto > TCP_RTO_MAX) 641 tp->rto = TCP_RTO_MAX; 642 } 643 644 /* Save metrics learned by this TCP session. 645 This function is called only, when TCP finishes successfully 646 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 647 */ 648 void tcp_update_metrics(struct sock *sk) 649 { 650 struct tcp_sock *tp = tcp_sk(sk); 651 struct dst_entry *dst = __sk_dst_get(sk); 652 653 if (sysctl_tcp_nometrics_save) 654 return; 655 656 dst_confirm(dst); 657 658 if (dst && (dst->flags&DST_HOST)) { 659 int m; 660 661 if (tp->backoff || !tp->srtt) { 662 /* This session failed to estimate rtt. Why? 663 * Probably, no packets returned in time. 664 * Reset our results. 665 */ 666 if (!(dst_metric_locked(dst, RTAX_RTT))) 667 dst->metrics[RTAX_RTT-1] = 0; 668 return; 669 } 670 671 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 672 673 /* If newly calculated rtt larger than stored one, 674 * store new one. Otherwise, use EWMA. Remember, 675 * rtt overestimation is always better than underestimation. 676 */ 677 if (!(dst_metric_locked(dst, RTAX_RTT))) { 678 if (m <= 0) 679 dst->metrics[RTAX_RTT-1] = tp->srtt; 680 else 681 dst->metrics[RTAX_RTT-1] -= (m>>3); 682 } 683 684 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 685 if (m < 0) 686 m = -m; 687 688 /* Scale deviation to rttvar fixed point */ 689 m >>= 1; 690 if (m < tp->mdev) 691 m = tp->mdev; 692 693 if (m >= dst_metric(dst, RTAX_RTTVAR)) 694 dst->metrics[RTAX_RTTVAR-1] = m; 695 else 696 dst->metrics[RTAX_RTTVAR-1] -= 697 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 698 } 699 700 if (tp->snd_ssthresh >= 0xFFFF) { 701 /* Slow start still did not finish. */ 702 if (dst_metric(dst, RTAX_SSTHRESH) && 703 !dst_metric_locked(dst, RTAX_SSTHRESH) && 704 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 705 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 706 if (!dst_metric_locked(dst, RTAX_CWND) && 707 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 708 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 709 } else if (tp->snd_cwnd > tp->snd_ssthresh && 710 tp->ca_state == TCP_CA_Open) { 711 /* Cong. avoidance phase, cwnd is reliable. */ 712 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 713 dst->metrics[RTAX_SSTHRESH-1] = 714 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 715 if (!dst_metric_locked(dst, RTAX_CWND)) 716 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 717 } else { 718 /* Else slow start did not finish, cwnd is non-sense, 719 ssthresh may be also invalid. 720 */ 721 if (!dst_metric_locked(dst, RTAX_CWND)) 722 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 723 if (dst->metrics[RTAX_SSTHRESH-1] && 724 !dst_metric_locked(dst, RTAX_SSTHRESH) && 725 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 726 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 727 } 728 729 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 730 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 731 tp->reordering != sysctl_tcp_reordering) 732 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 733 } 734 } 735 } 736 737 /* Numbers are taken from RFC2414. */ 738 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 739 { 740 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 741 742 if (!cwnd) { 743 if (tp->mss_cache > 1460) 744 cwnd = 2; 745 else 746 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 747 } 748 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 749 } 750 751 /* Initialize metrics on socket. */ 752 753 static void tcp_init_metrics(struct sock *sk) 754 { 755 struct tcp_sock *tp = tcp_sk(sk); 756 struct dst_entry *dst = __sk_dst_get(sk); 757 758 if (dst == NULL) 759 goto reset; 760 761 dst_confirm(dst); 762 763 if (dst_metric_locked(dst, RTAX_CWND)) 764 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 765 if (dst_metric(dst, RTAX_SSTHRESH)) { 766 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 767 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 768 tp->snd_ssthresh = tp->snd_cwnd_clamp; 769 } 770 if (dst_metric(dst, RTAX_REORDERING) && 771 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 772 tp->rx_opt.sack_ok &= ~2; 773 tp->reordering = dst_metric(dst, RTAX_REORDERING); 774 } 775 776 if (dst_metric(dst, RTAX_RTT) == 0) 777 goto reset; 778 779 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 780 goto reset; 781 782 /* Initial rtt is determined from SYN,SYN-ACK. 783 * The segment is small and rtt may appear much 784 * less than real one. Use per-dst memory 785 * to make it more realistic. 786 * 787 * A bit of theory. RTT is time passed after "normal" sized packet 788 * is sent until it is ACKed. In normal curcumstances sending small 789 * packets force peer to delay ACKs and calculation is correct too. 790 * The algorithm is adaptive and, provided we follow specs, it 791 * NEVER underestimate RTT. BUT! If peer tries to make some clever 792 * tricks sort of "quick acks" for time long enough to decrease RTT 793 * to low value, and then abruptly stops to do it and starts to delay 794 * ACKs, wait for troubles. 795 */ 796 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 797 tp->srtt = dst_metric(dst, RTAX_RTT); 798 tp->rtt_seq = tp->snd_nxt; 799 } 800 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 801 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 802 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 803 } 804 tcp_set_rto(tp); 805 tcp_bound_rto(tp); 806 if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 807 goto reset; 808 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 809 tp->snd_cwnd_stamp = tcp_time_stamp; 810 return; 811 812 reset: 813 /* Play conservative. If timestamps are not 814 * supported, TCP will fail to recalculate correct 815 * rtt, if initial rto is too small. FORGET ALL AND RESET! 816 */ 817 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 818 tp->srtt = 0; 819 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 820 tp->rto = TCP_TIMEOUT_INIT; 821 } 822 } 823 824 static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts) 825 { 826 if (metric > tp->reordering) { 827 tp->reordering = min(TCP_MAX_REORDERING, metric); 828 829 /* This exciting event is worth to be remembered. 8) */ 830 if (ts) 831 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 832 else if (IsReno(tp)) 833 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 834 else if (IsFack(tp)) 835 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 836 else 837 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 838 #if FASTRETRANS_DEBUG > 1 839 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 840 tp->rx_opt.sack_ok, tp->ca_state, 841 tp->reordering, 842 tp->fackets_out, 843 tp->sacked_out, 844 tp->undo_marker ? tp->undo_retrans : 0); 845 #endif 846 /* Disable FACK yet. */ 847 tp->rx_opt.sack_ok &= ~2; 848 } 849 } 850 851 /* This procedure tags the retransmission queue when SACKs arrive. 852 * 853 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 854 * Packets in queue with these bits set are counted in variables 855 * sacked_out, retrans_out and lost_out, correspondingly. 856 * 857 * Valid combinations are: 858 * Tag InFlight Description 859 * 0 1 - orig segment is in flight. 860 * S 0 - nothing flies, orig reached receiver. 861 * L 0 - nothing flies, orig lost by net. 862 * R 2 - both orig and retransmit are in flight. 863 * L|R 1 - orig is lost, retransmit is in flight. 864 * S|R 1 - orig reached receiver, retrans is still in flight. 865 * (L|S|R is logically valid, it could occur when L|R is sacked, 866 * but it is equivalent to plain S and code short-curcuits it to S. 867 * L|S is logically invalid, it would mean -1 packet in flight 8)) 868 * 869 * These 6 states form finite state machine, controlled by the following events: 870 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 871 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 872 * 3. Loss detection event of one of three flavors: 873 * A. Scoreboard estimator decided the packet is lost. 874 * A'. Reno "three dupacks" marks head of queue lost. 875 * A''. Its FACK modfication, head until snd.fack is lost. 876 * B. SACK arrives sacking data transmitted after never retransmitted 877 * hole was sent out. 878 * C. SACK arrives sacking SND.NXT at the moment, when the 879 * segment was retransmitted. 880 * 4. D-SACK added new rule: D-SACK changes any tag to S. 881 * 882 * It is pleasant to note, that state diagram turns out to be commutative, 883 * so that we are allowed not to be bothered by order of our actions, 884 * when multiple events arrive simultaneously. (see the function below). 885 * 886 * Reordering detection. 887 * -------------------- 888 * Reordering metric is maximal distance, which a packet can be displaced 889 * in packet stream. With SACKs we can estimate it: 890 * 891 * 1. SACK fills old hole and the corresponding segment was not 892 * ever retransmitted -> reordering. Alas, we cannot use it 893 * when segment was retransmitted. 894 * 2. The last flaw is solved with D-SACK. D-SACK arrives 895 * for retransmitted and already SACKed segment -> reordering.. 896 * Both of these heuristics are not used in Loss state, when we cannot 897 * account for retransmits accurately. 898 */ 899 static int 900 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 901 { 902 struct tcp_sock *tp = tcp_sk(sk); 903 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked; 904 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2); 905 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 906 int reord = tp->packets_out; 907 int prior_fackets; 908 u32 lost_retrans = 0; 909 int flag = 0; 910 int i; 911 912 /* So, SACKs for already sent large segments will be lost. 913 * Not good, but alternative is to resegment the queue. */ 914 if (sk->sk_route_caps & NETIF_F_TSO) { 915 sk->sk_route_caps &= ~NETIF_F_TSO; 916 sock_set_flag(sk, SOCK_NO_LARGESEND); 917 tp->mss_cache = tp->mss_cache; 918 } 919 920 if (!tp->sacked_out) 921 tp->fackets_out = 0; 922 prior_fackets = tp->fackets_out; 923 924 for (i=0; i<num_sacks; i++, sp++) { 925 struct sk_buff *skb; 926 __u32 start_seq = ntohl(sp->start_seq); 927 __u32 end_seq = ntohl(sp->end_seq); 928 int fack_count = 0; 929 int dup_sack = 0; 930 931 /* Check for D-SACK. */ 932 if (i == 0) { 933 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq; 934 935 if (before(start_seq, ack)) { 936 dup_sack = 1; 937 tp->rx_opt.sack_ok |= 4; 938 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 939 } else if (num_sacks > 1 && 940 !after(end_seq, ntohl(sp[1].end_seq)) && 941 !before(start_seq, ntohl(sp[1].start_seq))) { 942 dup_sack = 1; 943 tp->rx_opt.sack_ok |= 4; 944 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 945 } 946 947 /* D-SACK for already forgotten data... 948 * Do dumb counting. */ 949 if (dup_sack && 950 !after(end_seq, prior_snd_una) && 951 after(end_seq, tp->undo_marker)) 952 tp->undo_retrans--; 953 954 /* Eliminate too old ACKs, but take into 955 * account more or less fresh ones, they can 956 * contain valid SACK info. 957 */ 958 if (before(ack, prior_snd_una - tp->max_window)) 959 return 0; 960 } 961 962 /* Event "B" in the comment above. */ 963 if (after(end_seq, tp->high_seq)) 964 flag |= FLAG_DATA_LOST; 965 966 sk_stream_for_retrans_queue(skb, sk) { 967 u8 sacked = TCP_SKB_CB(skb)->sacked; 968 int in_sack; 969 970 /* The retransmission queue is always in order, so 971 * we can short-circuit the walk early. 972 */ 973 if(!before(TCP_SKB_CB(skb)->seq, end_seq)) 974 break; 975 976 fack_count += tcp_skb_pcount(skb); 977 978 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 979 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 980 981 /* Account D-SACK for retransmitted packet. */ 982 if ((dup_sack && in_sack) && 983 (sacked & TCPCB_RETRANS) && 984 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 985 tp->undo_retrans--; 986 987 /* The frame is ACKed. */ 988 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 989 if (sacked&TCPCB_RETRANS) { 990 if ((dup_sack && in_sack) && 991 (sacked&TCPCB_SACKED_ACKED)) 992 reord = min(fack_count, reord); 993 } else { 994 /* If it was in a hole, we detected reordering. */ 995 if (fack_count < prior_fackets && 996 !(sacked&TCPCB_SACKED_ACKED)) 997 reord = min(fack_count, reord); 998 } 999 1000 /* Nothing to do; acked frame is about to be dropped. */ 1001 continue; 1002 } 1003 1004 if ((sacked&TCPCB_SACKED_RETRANS) && 1005 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1006 (!lost_retrans || after(end_seq, lost_retrans))) 1007 lost_retrans = end_seq; 1008 1009 if (!in_sack) 1010 continue; 1011 1012 if (!(sacked&TCPCB_SACKED_ACKED)) { 1013 if (sacked & TCPCB_SACKED_RETRANS) { 1014 /* If the segment is not tagged as lost, 1015 * we do not clear RETRANS, believing 1016 * that retransmission is still in flight. 1017 */ 1018 if (sacked & TCPCB_LOST) { 1019 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1020 tp->lost_out -= tcp_skb_pcount(skb); 1021 tp->retrans_out -= tcp_skb_pcount(skb); 1022 } 1023 } else { 1024 /* New sack for not retransmitted frame, 1025 * which was in hole. It is reordering. 1026 */ 1027 if (!(sacked & TCPCB_RETRANS) && 1028 fack_count < prior_fackets) 1029 reord = min(fack_count, reord); 1030 1031 if (sacked & TCPCB_LOST) { 1032 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1033 tp->lost_out -= tcp_skb_pcount(skb); 1034 } 1035 } 1036 1037 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1038 flag |= FLAG_DATA_SACKED; 1039 tp->sacked_out += tcp_skb_pcount(skb); 1040 1041 if (fack_count > tp->fackets_out) 1042 tp->fackets_out = fack_count; 1043 } else { 1044 if (dup_sack && (sacked&TCPCB_RETRANS)) 1045 reord = min(fack_count, reord); 1046 } 1047 1048 /* D-SACK. We can detect redundant retransmission 1049 * in S|R and plain R frames and clear it. 1050 * undo_retrans is decreased above, L|R frames 1051 * are accounted above as well. 1052 */ 1053 if (dup_sack && 1054 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1055 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1056 tp->retrans_out -= tcp_skb_pcount(skb); 1057 } 1058 } 1059 } 1060 1061 /* Check for lost retransmit. This superb idea is 1062 * borrowed from "ratehalving". Event "C". 1063 * Later note: FACK people cheated me again 8), 1064 * we have to account for reordering! Ugly, 1065 * but should help. 1066 */ 1067 if (lost_retrans && tp->ca_state == TCP_CA_Recovery) { 1068 struct sk_buff *skb; 1069 1070 sk_stream_for_retrans_queue(skb, sk) { 1071 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1072 break; 1073 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1074 continue; 1075 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1076 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1077 (IsFack(tp) || 1078 !before(lost_retrans, 1079 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1080 tp->mss_cache))) { 1081 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1082 tp->retrans_out -= tcp_skb_pcount(skb); 1083 1084 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1085 tp->lost_out += tcp_skb_pcount(skb); 1086 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1087 flag |= FLAG_DATA_SACKED; 1088 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1089 } 1090 } 1091 } 1092 } 1093 1094 tp->left_out = tp->sacked_out + tp->lost_out; 1095 1096 if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss) 1097 tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0); 1098 1099 #if FASTRETRANS_DEBUG > 0 1100 BUG_TRAP((int)tp->sacked_out >= 0); 1101 BUG_TRAP((int)tp->lost_out >= 0); 1102 BUG_TRAP((int)tp->retrans_out >= 0); 1103 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1104 #endif 1105 return flag; 1106 } 1107 1108 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new 1109 * segments to see from the next ACKs whether any data was really missing. 1110 * If the RTO was spurious, new ACKs should arrive. 1111 */ 1112 void tcp_enter_frto(struct sock *sk) 1113 { 1114 struct tcp_sock *tp = tcp_sk(sk); 1115 struct sk_buff *skb; 1116 1117 tp->frto_counter = 1; 1118 1119 if (tp->ca_state <= TCP_CA_Disorder || 1120 tp->snd_una == tp->high_seq || 1121 (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) { 1122 tp->prior_ssthresh = tcp_current_ssthresh(tp); 1123 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp); 1124 tcp_ca_event(tp, CA_EVENT_FRTO); 1125 } 1126 1127 /* Have to clear retransmission markers here to keep the bookkeeping 1128 * in shape, even though we are not yet in Loss state. 1129 * If something was really lost, it is eventually caught up 1130 * in tcp_enter_frto_loss. 1131 */ 1132 tp->retrans_out = 0; 1133 tp->undo_marker = tp->snd_una; 1134 tp->undo_retrans = 0; 1135 1136 sk_stream_for_retrans_queue(skb, sk) { 1137 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS; 1138 } 1139 tcp_sync_left_out(tp); 1140 1141 tcp_set_ca_state(tp, TCP_CA_Open); 1142 tp->frto_highmark = tp->snd_nxt; 1143 } 1144 1145 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1146 * which indicates that we should follow the traditional RTO recovery, 1147 * i.e. mark everything lost and do go-back-N retransmission. 1148 */ 1149 static void tcp_enter_frto_loss(struct sock *sk) 1150 { 1151 struct tcp_sock *tp = tcp_sk(sk); 1152 struct sk_buff *skb; 1153 int cnt = 0; 1154 1155 tp->sacked_out = 0; 1156 tp->lost_out = 0; 1157 tp->fackets_out = 0; 1158 1159 sk_stream_for_retrans_queue(skb, sk) { 1160 cnt += tcp_skb_pcount(skb); 1161 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1162 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1163 1164 /* Do not mark those segments lost that were 1165 * forward transmitted after RTO 1166 */ 1167 if (!after(TCP_SKB_CB(skb)->end_seq, 1168 tp->frto_highmark)) { 1169 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1170 tp->lost_out += tcp_skb_pcount(skb); 1171 } 1172 } else { 1173 tp->sacked_out += tcp_skb_pcount(skb); 1174 tp->fackets_out = cnt; 1175 } 1176 } 1177 tcp_sync_left_out(tp); 1178 1179 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1; 1180 tp->snd_cwnd_cnt = 0; 1181 tp->snd_cwnd_stamp = tcp_time_stamp; 1182 tp->undo_marker = 0; 1183 tp->frto_counter = 0; 1184 1185 tp->reordering = min_t(unsigned int, tp->reordering, 1186 sysctl_tcp_reordering); 1187 tcp_set_ca_state(tp, TCP_CA_Loss); 1188 tp->high_seq = tp->frto_highmark; 1189 TCP_ECN_queue_cwr(tp); 1190 } 1191 1192 void tcp_clear_retrans(struct tcp_sock *tp) 1193 { 1194 tp->left_out = 0; 1195 tp->retrans_out = 0; 1196 1197 tp->fackets_out = 0; 1198 tp->sacked_out = 0; 1199 tp->lost_out = 0; 1200 1201 tp->undo_marker = 0; 1202 tp->undo_retrans = 0; 1203 } 1204 1205 /* Enter Loss state. If "how" is not zero, forget all SACK information 1206 * and reset tags completely, otherwise preserve SACKs. If receiver 1207 * dropped its ofo queue, we will know this due to reneging detection. 1208 */ 1209 void tcp_enter_loss(struct sock *sk, int how) 1210 { 1211 struct tcp_sock *tp = tcp_sk(sk); 1212 struct sk_buff *skb; 1213 int cnt = 0; 1214 1215 /* Reduce ssthresh if it has not yet been made inside this window. */ 1216 if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1217 (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) { 1218 tp->prior_ssthresh = tcp_current_ssthresh(tp); 1219 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp); 1220 tcp_ca_event(tp, CA_EVENT_LOSS); 1221 } 1222 tp->snd_cwnd = 1; 1223 tp->snd_cwnd_cnt = 0; 1224 tp->snd_cwnd_stamp = tcp_time_stamp; 1225 1226 tcp_clear_retrans(tp); 1227 1228 /* Push undo marker, if it was plain RTO and nothing 1229 * was retransmitted. */ 1230 if (!how) 1231 tp->undo_marker = tp->snd_una; 1232 1233 sk_stream_for_retrans_queue(skb, sk) { 1234 cnt += tcp_skb_pcount(skb); 1235 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1236 tp->undo_marker = 0; 1237 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1238 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1239 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1240 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1241 tp->lost_out += tcp_skb_pcount(skb); 1242 } else { 1243 tp->sacked_out += tcp_skb_pcount(skb); 1244 tp->fackets_out = cnt; 1245 } 1246 } 1247 tcp_sync_left_out(tp); 1248 1249 tp->reordering = min_t(unsigned int, tp->reordering, 1250 sysctl_tcp_reordering); 1251 tcp_set_ca_state(tp, TCP_CA_Loss); 1252 tp->high_seq = tp->snd_nxt; 1253 TCP_ECN_queue_cwr(tp); 1254 } 1255 1256 static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp) 1257 { 1258 struct sk_buff *skb; 1259 1260 /* If ACK arrived pointing to a remembered SACK, 1261 * it means that our remembered SACKs do not reflect 1262 * real state of receiver i.e. 1263 * receiver _host_ is heavily congested (or buggy). 1264 * Do processing similar to RTO timeout. 1265 */ 1266 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL && 1267 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1268 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1269 1270 tcp_enter_loss(sk, 1); 1271 tp->retransmits++; 1272 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue)); 1273 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); 1274 return 1; 1275 } 1276 return 0; 1277 } 1278 1279 static inline int tcp_fackets_out(struct tcp_sock *tp) 1280 { 1281 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1282 } 1283 1284 static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb) 1285 { 1286 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto); 1287 } 1288 1289 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp) 1290 { 1291 return tp->packets_out && 1292 tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue)); 1293 } 1294 1295 /* Linux NewReno/SACK/FACK/ECN state machine. 1296 * -------------------------------------- 1297 * 1298 * "Open" Normal state, no dubious events, fast path. 1299 * "Disorder" In all the respects it is "Open", 1300 * but requires a bit more attention. It is entered when 1301 * we see some SACKs or dupacks. It is split of "Open" 1302 * mainly to move some processing from fast path to slow one. 1303 * "CWR" CWND was reduced due to some Congestion Notification event. 1304 * It can be ECN, ICMP source quench, local device congestion. 1305 * "Recovery" CWND was reduced, we are fast-retransmitting. 1306 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1307 * 1308 * tcp_fastretrans_alert() is entered: 1309 * - each incoming ACK, if state is not "Open" 1310 * - when arrived ACK is unusual, namely: 1311 * * SACK 1312 * * Duplicate ACK. 1313 * * ECN ECE. 1314 * 1315 * Counting packets in flight is pretty simple. 1316 * 1317 * in_flight = packets_out - left_out + retrans_out 1318 * 1319 * packets_out is SND.NXT-SND.UNA counted in packets. 1320 * 1321 * retrans_out is number of retransmitted segments. 1322 * 1323 * left_out is number of segments left network, but not ACKed yet. 1324 * 1325 * left_out = sacked_out + lost_out 1326 * 1327 * sacked_out: Packets, which arrived to receiver out of order 1328 * and hence not ACKed. With SACKs this number is simply 1329 * amount of SACKed data. Even without SACKs 1330 * it is easy to give pretty reliable estimate of this number, 1331 * counting duplicate ACKs. 1332 * 1333 * lost_out: Packets lost by network. TCP has no explicit 1334 * "loss notification" feedback from network (for now). 1335 * It means that this number can be only _guessed_. 1336 * Actually, it is the heuristics to predict lossage that 1337 * distinguishes different algorithms. 1338 * 1339 * F.e. after RTO, when all the queue is considered as lost, 1340 * lost_out = packets_out and in_flight = retrans_out. 1341 * 1342 * Essentially, we have now two algorithms counting 1343 * lost packets. 1344 * 1345 * FACK: It is the simplest heuristics. As soon as we decided 1346 * that something is lost, we decide that _all_ not SACKed 1347 * packets until the most forward SACK are lost. I.e. 1348 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1349 * It is absolutely correct estimate, if network does not reorder 1350 * packets. And it loses any connection to reality when reordering 1351 * takes place. We use FACK by default until reordering 1352 * is suspected on the path to this destination. 1353 * 1354 * NewReno: when Recovery is entered, we assume that one segment 1355 * is lost (classic Reno). While we are in Recovery and 1356 * a partial ACK arrives, we assume that one more packet 1357 * is lost (NewReno). This heuristics are the same in NewReno 1358 * and SACK. 1359 * 1360 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1361 * deflation etc. CWND is real congestion window, never inflated, changes 1362 * only according to classic VJ rules. 1363 * 1364 * Really tricky (and requiring careful tuning) part of algorithm 1365 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1366 * The first determines the moment _when_ we should reduce CWND and, 1367 * hence, slow down forward transmission. In fact, it determines the moment 1368 * when we decide that hole is caused by loss, rather than by a reorder. 1369 * 1370 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1371 * holes, caused by lost packets. 1372 * 1373 * And the most logically complicated part of algorithm is undo 1374 * heuristics. We detect false retransmits due to both too early 1375 * fast retransmit (reordering) and underestimated RTO, analyzing 1376 * timestamps and D-SACKs. When we detect that some segments were 1377 * retransmitted by mistake and CWND reduction was wrong, we undo 1378 * window reduction and abort recovery phase. This logic is hidden 1379 * inside several functions named tcp_try_undo_<something>. 1380 */ 1381 1382 /* This function decides, when we should leave Disordered state 1383 * and enter Recovery phase, reducing congestion window. 1384 * 1385 * Main question: may we further continue forward transmission 1386 * with the same cwnd? 1387 */ 1388 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp) 1389 { 1390 __u32 packets_out; 1391 1392 /* Trick#1: The loss is proven. */ 1393 if (tp->lost_out) 1394 return 1; 1395 1396 /* Not-A-Trick#2 : Classic rule... */ 1397 if (tcp_fackets_out(tp) > tp->reordering) 1398 return 1; 1399 1400 /* Trick#3 : when we use RFC2988 timer restart, fast 1401 * retransmit can be triggered by timeout of queue head. 1402 */ 1403 if (tcp_head_timedout(sk, tp)) 1404 return 1; 1405 1406 /* Trick#4: It is still not OK... But will it be useful to delay 1407 * recovery more? 1408 */ 1409 packets_out = tp->packets_out; 1410 if (packets_out <= tp->reordering && 1411 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1412 !tcp_may_send_now(sk, tp)) { 1413 /* We have nothing to send. This connection is limited 1414 * either by receiver window or by application. 1415 */ 1416 return 1; 1417 } 1418 1419 return 0; 1420 } 1421 1422 /* If we receive more dupacks than we expected counting segments 1423 * in assumption of absent reordering, interpret this as reordering. 1424 * The only another reason could be bug in receiver TCP. 1425 */ 1426 static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend) 1427 { 1428 u32 holes; 1429 1430 holes = max(tp->lost_out, 1U); 1431 holes = min(holes, tp->packets_out); 1432 1433 if ((tp->sacked_out + holes) > tp->packets_out) { 1434 tp->sacked_out = tp->packets_out - holes; 1435 tcp_update_reordering(tp, tp->packets_out+addend, 0); 1436 } 1437 } 1438 1439 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1440 1441 static void tcp_add_reno_sack(struct tcp_sock *tp) 1442 { 1443 tp->sacked_out++; 1444 tcp_check_reno_reordering(tp, 0); 1445 tcp_sync_left_out(tp); 1446 } 1447 1448 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1449 1450 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked) 1451 { 1452 if (acked > 0) { 1453 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1454 if (acked-1 >= tp->sacked_out) 1455 tp->sacked_out = 0; 1456 else 1457 tp->sacked_out -= acked-1; 1458 } 1459 tcp_check_reno_reordering(tp, acked); 1460 tcp_sync_left_out(tp); 1461 } 1462 1463 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1464 { 1465 tp->sacked_out = 0; 1466 tp->left_out = tp->lost_out; 1467 } 1468 1469 /* Mark head of queue up as lost. */ 1470 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp, 1471 int packets, u32 high_seq) 1472 { 1473 struct sk_buff *skb; 1474 int cnt = packets; 1475 1476 BUG_TRAP(cnt <= tp->packets_out); 1477 1478 sk_stream_for_retrans_queue(skb, sk) { 1479 cnt -= tcp_skb_pcount(skb); 1480 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1481 break; 1482 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1483 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1484 tp->lost_out += tcp_skb_pcount(skb); 1485 } 1486 } 1487 tcp_sync_left_out(tp); 1488 } 1489 1490 /* Account newly detected lost packet(s) */ 1491 1492 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp) 1493 { 1494 if (IsFack(tp)) { 1495 int lost = tp->fackets_out - tp->reordering; 1496 if (lost <= 0) 1497 lost = 1; 1498 tcp_mark_head_lost(sk, tp, lost, tp->high_seq); 1499 } else { 1500 tcp_mark_head_lost(sk, tp, 1, tp->high_seq); 1501 } 1502 1503 /* New heuristics: it is possible only after we switched 1504 * to restart timer each time when something is ACKed. 1505 * Hence, we can detect timed out packets during fast 1506 * retransmit without falling to slow start. 1507 */ 1508 if (tcp_head_timedout(sk, tp)) { 1509 struct sk_buff *skb; 1510 1511 sk_stream_for_retrans_queue(skb, sk) { 1512 if (tcp_skb_timedout(tp, skb) && 1513 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1514 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1515 tp->lost_out += tcp_skb_pcount(skb); 1516 } 1517 } 1518 tcp_sync_left_out(tp); 1519 } 1520 } 1521 1522 /* CWND moderation, preventing bursts due to too big ACKs 1523 * in dubious situations. 1524 */ 1525 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1526 { 1527 tp->snd_cwnd = min(tp->snd_cwnd, 1528 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1529 tp->snd_cwnd_stamp = tcp_time_stamp; 1530 } 1531 1532 /* Decrease cwnd each second ack. */ 1533 static void tcp_cwnd_down(struct tcp_sock *tp) 1534 { 1535 int decr = tp->snd_cwnd_cnt + 1; 1536 1537 tp->snd_cwnd_cnt = decr&1; 1538 decr >>= 1; 1539 1540 if (decr && tp->snd_cwnd > tp->ca_ops->min_cwnd(tp)) 1541 tp->snd_cwnd -= decr; 1542 1543 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1544 tp->snd_cwnd_stamp = tcp_time_stamp; 1545 } 1546 1547 /* Nothing was retransmitted or returned timestamp is less 1548 * than timestamp of the first retransmission. 1549 */ 1550 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1551 { 1552 return !tp->retrans_stamp || 1553 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1554 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1555 } 1556 1557 /* Undo procedures. */ 1558 1559 #if FASTRETRANS_DEBUG > 1 1560 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg) 1561 { 1562 struct inet_sock *inet = inet_sk(sk); 1563 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1564 msg, 1565 NIPQUAD(inet->daddr), ntohs(inet->dport), 1566 tp->snd_cwnd, tp->left_out, 1567 tp->snd_ssthresh, tp->prior_ssthresh, 1568 tp->packets_out); 1569 } 1570 #else 1571 #define DBGUNDO(x...) do { } while (0) 1572 #endif 1573 1574 static void tcp_undo_cwr(struct tcp_sock *tp, int undo) 1575 { 1576 if (tp->prior_ssthresh) { 1577 if (tp->ca_ops->undo_cwnd) 1578 tp->snd_cwnd = tp->ca_ops->undo_cwnd(tp); 1579 else 1580 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1581 1582 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1583 tp->snd_ssthresh = tp->prior_ssthresh; 1584 TCP_ECN_withdraw_cwr(tp); 1585 } 1586 } else { 1587 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1588 } 1589 tcp_moderate_cwnd(tp); 1590 tp->snd_cwnd_stamp = tcp_time_stamp; 1591 } 1592 1593 static inline int tcp_may_undo(struct tcp_sock *tp) 1594 { 1595 return tp->undo_marker && 1596 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1597 } 1598 1599 /* People celebrate: "We love our President!" */ 1600 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp) 1601 { 1602 if (tcp_may_undo(tp)) { 1603 /* Happy end! We did not retransmit anything 1604 * or our original transmission succeeded. 1605 */ 1606 DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1607 tcp_undo_cwr(tp, 1); 1608 if (tp->ca_state == TCP_CA_Loss) 1609 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1610 else 1611 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1612 tp->undo_marker = 0; 1613 } 1614 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1615 /* Hold old state until something *above* high_seq 1616 * is ACKed. For Reno it is MUST to prevent false 1617 * fast retransmits (RFC2582). SACK TCP is safe. */ 1618 tcp_moderate_cwnd(tp); 1619 return 1; 1620 } 1621 tcp_set_ca_state(tp, TCP_CA_Open); 1622 return 0; 1623 } 1624 1625 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1626 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp) 1627 { 1628 if (tp->undo_marker && !tp->undo_retrans) { 1629 DBGUNDO(sk, tp, "D-SACK"); 1630 tcp_undo_cwr(tp, 1); 1631 tp->undo_marker = 0; 1632 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1633 } 1634 } 1635 1636 /* Undo during fast recovery after partial ACK. */ 1637 1638 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp, 1639 int acked) 1640 { 1641 /* Partial ACK arrived. Force Hoe's retransmit. */ 1642 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1643 1644 if (tcp_may_undo(tp)) { 1645 /* Plain luck! Hole if filled with delayed 1646 * packet, rather than with a retransmit. 1647 */ 1648 if (tp->retrans_out == 0) 1649 tp->retrans_stamp = 0; 1650 1651 tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1); 1652 1653 DBGUNDO(sk, tp, "Hoe"); 1654 tcp_undo_cwr(tp, 0); 1655 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1656 1657 /* So... Do not make Hoe's retransmit yet. 1658 * If the first packet was delayed, the rest 1659 * ones are most probably delayed as well. 1660 */ 1661 failed = 0; 1662 } 1663 return failed; 1664 } 1665 1666 /* Undo during loss recovery after partial ACK. */ 1667 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp) 1668 { 1669 if (tcp_may_undo(tp)) { 1670 struct sk_buff *skb; 1671 sk_stream_for_retrans_queue(skb, sk) { 1672 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1673 } 1674 DBGUNDO(sk, tp, "partial loss"); 1675 tp->lost_out = 0; 1676 tp->left_out = tp->sacked_out; 1677 tcp_undo_cwr(tp, 1); 1678 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1679 tp->retransmits = 0; 1680 tp->undo_marker = 0; 1681 if (!IsReno(tp)) 1682 tcp_set_ca_state(tp, TCP_CA_Open); 1683 return 1; 1684 } 1685 return 0; 1686 } 1687 1688 static inline void tcp_complete_cwr(struct tcp_sock *tp) 1689 { 1690 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 1691 tp->snd_cwnd_stamp = tcp_time_stamp; 1692 tcp_ca_event(tp, CA_EVENT_COMPLETE_CWR); 1693 } 1694 1695 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag) 1696 { 1697 tp->left_out = tp->sacked_out; 1698 1699 if (tp->retrans_out == 0) 1700 tp->retrans_stamp = 0; 1701 1702 if (flag&FLAG_ECE) 1703 tcp_enter_cwr(tp); 1704 1705 if (tp->ca_state != TCP_CA_CWR) { 1706 int state = TCP_CA_Open; 1707 1708 if (tp->left_out || tp->retrans_out || tp->undo_marker) 1709 state = TCP_CA_Disorder; 1710 1711 if (tp->ca_state != state) { 1712 tcp_set_ca_state(tp, state); 1713 tp->high_seq = tp->snd_nxt; 1714 } 1715 tcp_moderate_cwnd(tp); 1716 } else { 1717 tcp_cwnd_down(tp); 1718 } 1719 } 1720 1721 /* Process an event, which can update packets-in-flight not trivially. 1722 * Main goal of this function is to calculate new estimate for left_out, 1723 * taking into account both packets sitting in receiver's buffer and 1724 * packets lost by network. 1725 * 1726 * Besides that it does CWND reduction, when packet loss is detected 1727 * and changes state of machine. 1728 * 1729 * It does _not_ decide what to send, it is made in function 1730 * tcp_xmit_retransmit_queue(). 1731 */ 1732 static void 1733 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 1734 int prior_packets, int flag) 1735 { 1736 struct tcp_sock *tp = tcp_sk(sk); 1737 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 1738 1739 /* Some technical things: 1740 * 1. Reno does not count dupacks (sacked_out) automatically. */ 1741 if (!tp->packets_out) 1742 tp->sacked_out = 0; 1743 /* 2. SACK counts snd_fack in packets inaccurately. */ 1744 if (tp->sacked_out == 0) 1745 tp->fackets_out = 0; 1746 1747 /* Now state machine starts. 1748 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 1749 if (flag&FLAG_ECE) 1750 tp->prior_ssthresh = 0; 1751 1752 /* B. In all the states check for reneging SACKs. */ 1753 if (tp->sacked_out && tcp_check_sack_reneging(sk, tp)) 1754 return; 1755 1756 /* C. Process data loss notification, provided it is valid. */ 1757 if ((flag&FLAG_DATA_LOST) && 1758 before(tp->snd_una, tp->high_seq) && 1759 tp->ca_state != TCP_CA_Open && 1760 tp->fackets_out > tp->reordering) { 1761 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq); 1762 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 1763 } 1764 1765 /* D. Synchronize left_out to current state. */ 1766 tcp_sync_left_out(tp); 1767 1768 /* E. Check state exit conditions. State can be terminated 1769 * when high_seq is ACKed. */ 1770 if (tp->ca_state == TCP_CA_Open) { 1771 if (!sysctl_tcp_frto) 1772 BUG_TRAP(tp->retrans_out == 0); 1773 tp->retrans_stamp = 0; 1774 } else if (!before(tp->snd_una, tp->high_seq)) { 1775 switch (tp->ca_state) { 1776 case TCP_CA_Loss: 1777 tp->retransmits = 0; 1778 if (tcp_try_undo_recovery(sk, tp)) 1779 return; 1780 break; 1781 1782 case TCP_CA_CWR: 1783 /* CWR is to be held something *above* high_seq 1784 * is ACKed for CWR bit to reach receiver. */ 1785 if (tp->snd_una != tp->high_seq) { 1786 tcp_complete_cwr(tp); 1787 tcp_set_ca_state(tp, TCP_CA_Open); 1788 } 1789 break; 1790 1791 case TCP_CA_Disorder: 1792 tcp_try_undo_dsack(sk, tp); 1793 if (!tp->undo_marker || 1794 /* For SACK case do not Open to allow to undo 1795 * catching for all duplicate ACKs. */ 1796 IsReno(tp) || tp->snd_una != tp->high_seq) { 1797 tp->undo_marker = 0; 1798 tcp_set_ca_state(tp, TCP_CA_Open); 1799 } 1800 break; 1801 1802 case TCP_CA_Recovery: 1803 if (IsReno(tp)) 1804 tcp_reset_reno_sack(tp); 1805 if (tcp_try_undo_recovery(sk, tp)) 1806 return; 1807 tcp_complete_cwr(tp); 1808 break; 1809 } 1810 } 1811 1812 /* F. Process state. */ 1813 switch (tp->ca_state) { 1814 case TCP_CA_Recovery: 1815 if (prior_snd_una == tp->snd_una) { 1816 if (IsReno(tp) && is_dupack) 1817 tcp_add_reno_sack(tp); 1818 } else { 1819 int acked = prior_packets - tp->packets_out; 1820 if (IsReno(tp)) 1821 tcp_remove_reno_sacks(sk, tp, acked); 1822 is_dupack = tcp_try_undo_partial(sk, tp, acked); 1823 } 1824 break; 1825 case TCP_CA_Loss: 1826 if (flag&FLAG_DATA_ACKED) 1827 tp->retransmits = 0; 1828 if (!tcp_try_undo_loss(sk, tp)) { 1829 tcp_moderate_cwnd(tp); 1830 tcp_xmit_retransmit_queue(sk); 1831 return; 1832 } 1833 if (tp->ca_state != TCP_CA_Open) 1834 return; 1835 /* Loss is undone; fall through to processing in Open state. */ 1836 default: 1837 if (IsReno(tp)) { 1838 if (tp->snd_una != prior_snd_una) 1839 tcp_reset_reno_sack(tp); 1840 if (is_dupack) 1841 tcp_add_reno_sack(tp); 1842 } 1843 1844 if (tp->ca_state == TCP_CA_Disorder) 1845 tcp_try_undo_dsack(sk, tp); 1846 1847 if (!tcp_time_to_recover(sk, tp)) { 1848 tcp_try_to_open(sk, tp, flag); 1849 return; 1850 } 1851 1852 /* Otherwise enter Recovery state */ 1853 1854 if (IsReno(tp)) 1855 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 1856 else 1857 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 1858 1859 tp->high_seq = tp->snd_nxt; 1860 tp->prior_ssthresh = 0; 1861 tp->undo_marker = tp->snd_una; 1862 tp->undo_retrans = tp->retrans_out; 1863 1864 if (tp->ca_state < TCP_CA_CWR) { 1865 if (!(flag&FLAG_ECE)) 1866 tp->prior_ssthresh = tcp_current_ssthresh(tp); 1867 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp); 1868 TCP_ECN_queue_cwr(tp); 1869 } 1870 1871 tp->snd_cwnd_cnt = 0; 1872 tcp_set_ca_state(tp, TCP_CA_Recovery); 1873 } 1874 1875 if (is_dupack || tcp_head_timedout(sk, tp)) 1876 tcp_update_scoreboard(sk, tp); 1877 tcp_cwnd_down(tp); 1878 tcp_xmit_retransmit_queue(sk); 1879 } 1880 1881 /* Read draft-ietf-tcplw-high-performance before mucking 1882 * with this code. (Superceeds RFC1323) 1883 */ 1884 static void tcp_ack_saw_tstamp(struct tcp_sock *tp, u32 *usrtt, int flag) 1885 { 1886 __u32 seq_rtt; 1887 1888 /* RTTM Rule: A TSecr value received in a segment is used to 1889 * update the averaged RTT measurement only if the segment 1890 * acknowledges some new data, i.e., only if it advances the 1891 * left edge of the send window. 1892 * 1893 * See draft-ietf-tcplw-high-performance-00, section 3.3. 1894 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 1895 * 1896 * Changed: reset backoff as soon as we see the first valid sample. 1897 * If we do not, we get strongly overstimated rto. With timestamps 1898 * samples are accepted even from very old segments: f.e., when rtt=1 1899 * increases to 8, we retransmit 5 times and after 8 seconds delayed 1900 * answer arrives rto becomes 120 seconds! If at least one of segments 1901 * in window is lost... Voila. --ANK (010210) 1902 */ 1903 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 1904 tcp_rtt_estimator(tp, seq_rtt, usrtt); 1905 tcp_set_rto(tp); 1906 tp->backoff = 0; 1907 tcp_bound_rto(tp); 1908 } 1909 1910 static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, u32 *usrtt, int flag) 1911 { 1912 /* We don't have a timestamp. Can only use 1913 * packets that are not retransmitted to determine 1914 * rtt estimates. Also, we must not reset the 1915 * backoff for rto until we get a non-retransmitted 1916 * packet. This allows us to deal with a situation 1917 * where the network delay has increased suddenly. 1918 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 1919 */ 1920 1921 if (flag & FLAG_RETRANS_DATA_ACKED) 1922 return; 1923 1924 tcp_rtt_estimator(tp, seq_rtt, usrtt); 1925 tcp_set_rto(tp); 1926 tp->backoff = 0; 1927 tcp_bound_rto(tp); 1928 } 1929 1930 static inline void tcp_ack_update_rtt(struct tcp_sock *tp, 1931 int flag, s32 seq_rtt, u32 *usrtt) 1932 { 1933 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 1934 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 1935 tcp_ack_saw_tstamp(tp, usrtt, flag); 1936 else if (seq_rtt >= 0) 1937 tcp_ack_no_tstamp(tp, seq_rtt, usrtt, flag); 1938 } 1939 1940 static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt, 1941 u32 in_flight, int good) 1942 { 1943 tp->ca_ops->cong_avoid(tp, ack, rtt, in_flight, good); 1944 tp->snd_cwnd_stamp = tcp_time_stamp; 1945 } 1946 1947 /* Restart timer after forward progress on connection. 1948 * RFC2988 recommends to restart timer to now+rto. 1949 */ 1950 1951 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp) 1952 { 1953 if (!tp->packets_out) { 1954 tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS); 1955 } else { 1956 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); 1957 } 1958 } 1959 1960 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 1961 __u32 now, __s32 *seq_rtt) 1962 { 1963 struct tcp_sock *tp = tcp_sk(sk); 1964 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 1965 __u32 seq = tp->snd_una; 1966 __u32 packets_acked; 1967 int acked = 0; 1968 1969 /* If we get here, the whole TSO packet has not been 1970 * acked. 1971 */ 1972 BUG_ON(!after(scb->end_seq, seq)); 1973 1974 packets_acked = tcp_skb_pcount(skb); 1975 if (tcp_trim_head(sk, skb, seq - scb->seq)) 1976 return 0; 1977 packets_acked -= tcp_skb_pcount(skb); 1978 1979 if (packets_acked) { 1980 __u8 sacked = scb->sacked; 1981 1982 acked |= FLAG_DATA_ACKED; 1983 if (sacked) { 1984 if (sacked & TCPCB_RETRANS) { 1985 if (sacked & TCPCB_SACKED_RETRANS) 1986 tp->retrans_out -= packets_acked; 1987 acked |= FLAG_RETRANS_DATA_ACKED; 1988 *seq_rtt = -1; 1989 } else if (*seq_rtt < 0) 1990 *seq_rtt = now - scb->when; 1991 if (sacked & TCPCB_SACKED_ACKED) 1992 tp->sacked_out -= packets_acked; 1993 if (sacked & TCPCB_LOST) 1994 tp->lost_out -= packets_acked; 1995 if (sacked & TCPCB_URG) { 1996 if (tp->urg_mode && 1997 !before(seq, tp->snd_up)) 1998 tp->urg_mode = 0; 1999 } 2000 } else if (*seq_rtt < 0) 2001 *seq_rtt = now - scb->when; 2002 2003 if (tp->fackets_out) { 2004 __u32 dval = min(tp->fackets_out, packets_acked); 2005 tp->fackets_out -= dval; 2006 } 2007 tp->packets_out -= packets_acked; 2008 2009 BUG_ON(tcp_skb_pcount(skb) == 0); 2010 BUG_ON(!before(scb->seq, scb->end_seq)); 2011 } 2012 2013 return acked; 2014 } 2015 2016 2017 /* Remove acknowledged frames from the retransmission queue. */ 2018 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt) 2019 { 2020 struct tcp_sock *tp = tcp_sk(sk); 2021 struct sk_buff *skb; 2022 __u32 now = tcp_time_stamp; 2023 int acked = 0; 2024 __s32 seq_rtt = -1; 2025 struct timeval usnow; 2026 u32 pkts_acked = 0; 2027 2028 if (seq_usrtt) 2029 do_gettimeofday(&usnow); 2030 2031 while ((skb = skb_peek(&sk->sk_write_queue)) && 2032 skb != sk->sk_send_head) { 2033 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2034 __u8 sacked = scb->sacked; 2035 2036 /* If our packet is before the ack sequence we can 2037 * discard it as it's confirmed to have arrived at 2038 * the other end. 2039 */ 2040 if (after(scb->end_seq, tp->snd_una)) { 2041 if (tcp_skb_pcount(skb) > 1 && 2042 after(tp->snd_una, scb->seq)) 2043 acked |= tcp_tso_acked(sk, skb, 2044 now, &seq_rtt); 2045 break; 2046 } 2047 2048 /* Initial outgoing SYN's get put onto the write_queue 2049 * just like anything else we transmit. It is not 2050 * true data, and if we misinform our callers that 2051 * this ACK acks real data, we will erroneously exit 2052 * connection startup slow start one packet too 2053 * quickly. This is severely frowned upon behavior. 2054 */ 2055 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2056 acked |= FLAG_DATA_ACKED; 2057 ++pkts_acked; 2058 } else { 2059 acked |= FLAG_SYN_ACKED; 2060 tp->retrans_stamp = 0; 2061 } 2062 2063 if (sacked) { 2064 if (sacked & TCPCB_RETRANS) { 2065 if(sacked & TCPCB_SACKED_RETRANS) 2066 tp->retrans_out -= tcp_skb_pcount(skb); 2067 acked |= FLAG_RETRANS_DATA_ACKED; 2068 seq_rtt = -1; 2069 } else if (seq_rtt < 0) 2070 seq_rtt = now - scb->when; 2071 if (seq_usrtt) 2072 *seq_usrtt = (usnow.tv_sec - skb->stamp.tv_sec) * 1000000 2073 + (usnow.tv_usec - skb->stamp.tv_usec); 2074 2075 if (sacked & TCPCB_SACKED_ACKED) 2076 tp->sacked_out -= tcp_skb_pcount(skb); 2077 if (sacked & TCPCB_LOST) 2078 tp->lost_out -= tcp_skb_pcount(skb); 2079 if (sacked & TCPCB_URG) { 2080 if (tp->urg_mode && 2081 !before(scb->end_seq, tp->snd_up)) 2082 tp->urg_mode = 0; 2083 } 2084 } else if (seq_rtt < 0) 2085 seq_rtt = now - scb->when; 2086 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2087 tcp_packets_out_dec(tp, skb); 2088 __skb_unlink(skb, skb->list); 2089 sk_stream_free_skb(sk, skb); 2090 } 2091 2092 if (acked&FLAG_ACKED) { 2093 tcp_ack_update_rtt(tp, acked, seq_rtt, seq_usrtt); 2094 tcp_ack_packets_out(sk, tp); 2095 2096 if (tp->ca_ops->pkts_acked) 2097 tp->ca_ops->pkts_acked(tp, pkts_acked); 2098 } 2099 2100 #if FASTRETRANS_DEBUG > 0 2101 BUG_TRAP((int)tp->sacked_out >= 0); 2102 BUG_TRAP((int)tp->lost_out >= 0); 2103 BUG_TRAP((int)tp->retrans_out >= 0); 2104 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2105 if (tp->lost_out) { 2106 printk(KERN_DEBUG "Leak l=%u %d\n", 2107 tp->lost_out, tp->ca_state); 2108 tp->lost_out = 0; 2109 } 2110 if (tp->sacked_out) { 2111 printk(KERN_DEBUG "Leak s=%u %d\n", 2112 tp->sacked_out, tp->ca_state); 2113 tp->sacked_out = 0; 2114 } 2115 if (tp->retrans_out) { 2116 printk(KERN_DEBUG "Leak r=%u %d\n", 2117 tp->retrans_out, tp->ca_state); 2118 tp->retrans_out = 0; 2119 } 2120 } 2121 #endif 2122 *seq_rtt_p = seq_rtt; 2123 return acked; 2124 } 2125 2126 static void tcp_ack_probe(struct sock *sk) 2127 { 2128 struct tcp_sock *tp = tcp_sk(sk); 2129 2130 /* Was it a usable window open? */ 2131 2132 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq, 2133 tp->snd_una + tp->snd_wnd)) { 2134 tp->backoff = 0; 2135 tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0); 2136 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2137 * This function is not for random using! 2138 */ 2139 } else { 2140 tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0, 2141 min(tp->rto << tp->backoff, TCP_RTO_MAX)); 2142 } 2143 } 2144 2145 static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag) 2146 { 2147 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2148 tp->ca_state != TCP_CA_Open); 2149 } 2150 2151 static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag) 2152 { 2153 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2154 !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR)); 2155 } 2156 2157 /* Check that window update is acceptable. 2158 * The function assumes that snd_una<=ack<=snd_next. 2159 */ 2160 static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack, 2161 u32 ack_seq, u32 nwin) 2162 { 2163 return (after(ack, tp->snd_una) || 2164 after(ack_seq, tp->snd_wl1) || 2165 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2166 } 2167 2168 /* Update our send window. 2169 * 2170 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2171 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2172 */ 2173 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp, 2174 struct sk_buff *skb, u32 ack, u32 ack_seq) 2175 { 2176 int flag = 0; 2177 u32 nwin = ntohs(skb->h.th->window); 2178 2179 if (likely(!skb->h.th->syn)) 2180 nwin <<= tp->rx_opt.snd_wscale; 2181 2182 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2183 flag |= FLAG_WIN_UPDATE; 2184 tcp_update_wl(tp, ack, ack_seq); 2185 2186 if (tp->snd_wnd != nwin) { 2187 tp->snd_wnd = nwin; 2188 2189 /* Note, it is the only place, where 2190 * fast path is recovered for sending TCP. 2191 */ 2192 tcp_fast_path_check(sk, tp); 2193 2194 if (nwin > tp->max_window) { 2195 tp->max_window = nwin; 2196 tcp_sync_mss(sk, tp->pmtu_cookie); 2197 } 2198 } 2199 } 2200 2201 tp->snd_una = ack; 2202 2203 return flag; 2204 } 2205 2206 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una) 2207 { 2208 struct tcp_sock *tp = tcp_sk(sk); 2209 2210 tcp_sync_left_out(tp); 2211 2212 if (tp->snd_una == prior_snd_una || 2213 !before(tp->snd_una, tp->frto_highmark)) { 2214 /* RTO was caused by loss, start retransmitting in 2215 * go-back-N slow start 2216 */ 2217 tcp_enter_frto_loss(sk); 2218 return; 2219 } 2220 2221 if (tp->frto_counter == 1) { 2222 /* First ACK after RTO advances the window: allow two new 2223 * segments out. 2224 */ 2225 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2226 } else { 2227 /* Also the second ACK after RTO advances the window. 2228 * The RTO was likely spurious. Reduce cwnd and continue 2229 * in congestion avoidance 2230 */ 2231 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2232 tcp_moderate_cwnd(tp); 2233 } 2234 2235 /* F-RTO affects on two new ACKs following RTO. 2236 * At latest on third ACK the TCP behavor is back to normal. 2237 */ 2238 tp->frto_counter = (tp->frto_counter + 1) % 3; 2239 } 2240 2241 /* This routine deals with incoming acks, but not outgoing ones. */ 2242 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2243 { 2244 struct tcp_sock *tp = tcp_sk(sk); 2245 u32 prior_snd_una = tp->snd_una; 2246 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2247 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2248 u32 prior_in_flight; 2249 s32 seq_rtt; 2250 s32 seq_usrtt = 0; 2251 int prior_packets; 2252 2253 /* If the ack is newer than sent or older than previous acks 2254 * then we can probably ignore it. 2255 */ 2256 if (after(ack, tp->snd_nxt)) 2257 goto uninteresting_ack; 2258 2259 if (before(ack, prior_snd_una)) 2260 goto old_ack; 2261 2262 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2263 /* Window is constant, pure forward advance. 2264 * No more checks are required. 2265 * Note, we use the fact that SND.UNA>=SND.WL2. 2266 */ 2267 tcp_update_wl(tp, ack, ack_seq); 2268 tp->snd_una = ack; 2269 flag |= FLAG_WIN_UPDATE; 2270 2271 tcp_ca_event(tp, CA_EVENT_FAST_ACK); 2272 2273 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2274 } else { 2275 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2276 flag |= FLAG_DATA; 2277 else 2278 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2279 2280 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq); 2281 2282 if (TCP_SKB_CB(skb)->sacked) 2283 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2284 2285 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th)) 2286 flag |= FLAG_ECE; 2287 2288 tcp_ca_event(tp, CA_EVENT_SLOW_ACK); 2289 } 2290 2291 /* We passed data and got it acked, remove any soft error 2292 * log. Something worked... 2293 */ 2294 sk->sk_err_soft = 0; 2295 tp->rcv_tstamp = tcp_time_stamp; 2296 prior_packets = tp->packets_out; 2297 if (!prior_packets) 2298 goto no_queue; 2299 2300 prior_in_flight = tcp_packets_in_flight(tp); 2301 2302 /* See if we can take anything off of the retransmit queue. */ 2303 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, 2304 tp->ca_ops->rtt_sample ? &seq_usrtt : NULL); 2305 2306 if (tp->frto_counter) 2307 tcp_process_frto(sk, prior_snd_una); 2308 2309 if (tcp_ack_is_dubious(tp, flag)) { 2310 /* Advanve CWND, if state allows this. */ 2311 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(tp, flag)) 2312 tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 0); 2313 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2314 } else { 2315 if ((flag & FLAG_DATA_ACKED)) 2316 tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 1); 2317 } 2318 2319 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2320 dst_confirm(sk->sk_dst_cache); 2321 2322 return 1; 2323 2324 no_queue: 2325 tp->probes_out = 0; 2326 2327 /* If this ack opens up a zero window, clear backoff. It was 2328 * being used to time the probes, and is probably far higher than 2329 * it needs to be for normal retransmission. 2330 */ 2331 if (sk->sk_send_head) 2332 tcp_ack_probe(sk); 2333 return 1; 2334 2335 old_ack: 2336 if (TCP_SKB_CB(skb)->sacked) 2337 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2338 2339 uninteresting_ack: 2340 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2341 return 0; 2342 } 2343 2344 2345 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2346 * But, this can also be called on packets in the established flow when 2347 * the fast version below fails. 2348 */ 2349 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2350 { 2351 unsigned char *ptr; 2352 struct tcphdr *th = skb->h.th; 2353 int length=(th->doff*4)-sizeof(struct tcphdr); 2354 2355 ptr = (unsigned char *)(th + 1); 2356 opt_rx->saw_tstamp = 0; 2357 2358 while(length>0) { 2359 int opcode=*ptr++; 2360 int opsize; 2361 2362 switch (opcode) { 2363 case TCPOPT_EOL: 2364 return; 2365 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2366 length--; 2367 continue; 2368 default: 2369 opsize=*ptr++; 2370 if (opsize < 2) /* "silly options" */ 2371 return; 2372 if (opsize > length) 2373 return; /* don't parse partial options */ 2374 switch(opcode) { 2375 case TCPOPT_MSS: 2376 if(opsize==TCPOLEN_MSS && th->syn && !estab) { 2377 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr)); 2378 if (in_mss) { 2379 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2380 in_mss = opt_rx->user_mss; 2381 opt_rx->mss_clamp = in_mss; 2382 } 2383 } 2384 break; 2385 case TCPOPT_WINDOW: 2386 if(opsize==TCPOLEN_WINDOW && th->syn && !estab) 2387 if (sysctl_tcp_window_scaling) { 2388 __u8 snd_wscale = *(__u8 *) ptr; 2389 opt_rx->wscale_ok = 1; 2390 if (snd_wscale > 14) { 2391 if(net_ratelimit()) 2392 printk(KERN_INFO "tcp_parse_options: Illegal window " 2393 "scaling value %d >14 received.\n", 2394 snd_wscale); 2395 snd_wscale = 14; 2396 } 2397 opt_rx->snd_wscale = snd_wscale; 2398 } 2399 break; 2400 case TCPOPT_TIMESTAMP: 2401 if(opsize==TCPOLEN_TIMESTAMP) { 2402 if ((estab && opt_rx->tstamp_ok) || 2403 (!estab && sysctl_tcp_timestamps)) { 2404 opt_rx->saw_tstamp = 1; 2405 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr)); 2406 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4))); 2407 } 2408 } 2409 break; 2410 case TCPOPT_SACK_PERM: 2411 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2412 if (sysctl_tcp_sack) { 2413 opt_rx->sack_ok = 1; 2414 tcp_sack_reset(opt_rx); 2415 } 2416 } 2417 break; 2418 2419 case TCPOPT_SACK: 2420 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2421 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2422 opt_rx->sack_ok) { 2423 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2424 } 2425 }; 2426 ptr+=opsize-2; 2427 length-=opsize; 2428 }; 2429 } 2430 } 2431 2432 /* Fast parse options. This hopes to only see timestamps. 2433 * If it is wrong it falls back on tcp_parse_options(). 2434 */ 2435 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2436 struct tcp_sock *tp) 2437 { 2438 if (th->doff == sizeof(struct tcphdr)>>2) { 2439 tp->rx_opt.saw_tstamp = 0; 2440 return 0; 2441 } else if (tp->rx_opt.tstamp_ok && 2442 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2443 __u32 *ptr = (__u32 *)(th + 1); 2444 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2445 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2446 tp->rx_opt.saw_tstamp = 1; 2447 ++ptr; 2448 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2449 ++ptr; 2450 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2451 return 1; 2452 } 2453 } 2454 tcp_parse_options(skb, &tp->rx_opt, 1); 2455 return 1; 2456 } 2457 2458 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2459 { 2460 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2461 tp->rx_opt.ts_recent_stamp = xtime.tv_sec; 2462 } 2463 2464 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2465 { 2466 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2467 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2468 * extra check below makes sure this can only happen 2469 * for pure ACK frames. -DaveM 2470 * 2471 * Not only, also it occurs for expired timestamps. 2472 */ 2473 2474 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 2475 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 2476 tcp_store_ts_recent(tp); 2477 } 2478 } 2479 2480 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 2481 * 2482 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 2483 * it can pass through stack. So, the following predicate verifies that 2484 * this segment is not used for anything but congestion avoidance or 2485 * fast retransmit. Moreover, we even are able to eliminate most of such 2486 * second order effects, if we apply some small "replay" window (~RTO) 2487 * to timestamp space. 2488 * 2489 * All these measures still do not guarantee that we reject wrapped ACKs 2490 * on networks with high bandwidth, when sequence space is recycled fastly, 2491 * but it guarantees that such events will be very rare and do not affect 2492 * connection seriously. This doesn't look nice, but alas, PAWS is really 2493 * buggy extension. 2494 * 2495 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 2496 * states that events when retransmit arrives after original data are rare. 2497 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 2498 * the biggest problem on large power networks even with minor reordering. 2499 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 2500 * up to bandwidth of 18Gigabit/sec. 8) ] 2501 */ 2502 2503 static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb) 2504 { 2505 struct tcphdr *th = skb->h.th; 2506 u32 seq = TCP_SKB_CB(skb)->seq; 2507 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2508 2509 return (/* 1. Pure ACK with correct sequence number. */ 2510 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 2511 2512 /* 2. ... and duplicate ACK. */ 2513 ack == tp->snd_una && 2514 2515 /* 3. ... and does not update window. */ 2516 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 2517 2518 /* 4. ... and sits in replay window. */ 2519 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ); 2520 } 2521 2522 static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb) 2523 { 2524 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 2525 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 2526 !tcp_disordered_ack(tp, skb)); 2527 } 2528 2529 /* Check segment sequence number for validity. 2530 * 2531 * Segment controls are considered valid, if the segment 2532 * fits to the window after truncation to the window. Acceptability 2533 * of data (and SYN, FIN, of course) is checked separately. 2534 * See tcp_data_queue(), for example. 2535 * 2536 * Also, controls (RST is main one) are accepted using RCV.WUP instead 2537 * of RCV.NXT. Peer still did not advance his SND.UNA when we 2538 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 2539 * (borrowed from freebsd) 2540 */ 2541 2542 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 2543 { 2544 return !before(end_seq, tp->rcv_wup) && 2545 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 2546 } 2547 2548 /* When we get a reset we do this. */ 2549 static void tcp_reset(struct sock *sk) 2550 { 2551 /* We want the right error as BSD sees it (and indeed as we do). */ 2552 switch (sk->sk_state) { 2553 case TCP_SYN_SENT: 2554 sk->sk_err = ECONNREFUSED; 2555 break; 2556 case TCP_CLOSE_WAIT: 2557 sk->sk_err = EPIPE; 2558 break; 2559 case TCP_CLOSE: 2560 return; 2561 default: 2562 sk->sk_err = ECONNRESET; 2563 } 2564 2565 if (!sock_flag(sk, SOCK_DEAD)) 2566 sk->sk_error_report(sk); 2567 2568 tcp_done(sk); 2569 } 2570 2571 /* 2572 * Process the FIN bit. This now behaves as it is supposed to work 2573 * and the FIN takes effect when it is validly part of sequence 2574 * space. Not before when we get holes. 2575 * 2576 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 2577 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 2578 * TIME-WAIT) 2579 * 2580 * If we are in FINWAIT-1, a received FIN indicates simultaneous 2581 * close and we go into CLOSING (and later onto TIME-WAIT) 2582 * 2583 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 2584 */ 2585 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 2586 { 2587 struct tcp_sock *tp = tcp_sk(sk); 2588 2589 tcp_schedule_ack(tp); 2590 2591 sk->sk_shutdown |= RCV_SHUTDOWN; 2592 sock_set_flag(sk, SOCK_DONE); 2593 2594 switch (sk->sk_state) { 2595 case TCP_SYN_RECV: 2596 case TCP_ESTABLISHED: 2597 /* Move to CLOSE_WAIT */ 2598 tcp_set_state(sk, TCP_CLOSE_WAIT); 2599 tp->ack.pingpong = 1; 2600 break; 2601 2602 case TCP_CLOSE_WAIT: 2603 case TCP_CLOSING: 2604 /* Received a retransmission of the FIN, do 2605 * nothing. 2606 */ 2607 break; 2608 case TCP_LAST_ACK: 2609 /* RFC793: Remain in the LAST-ACK state. */ 2610 break; 2611 2612 case TCP_FIN_WAIT1: 2613 /* This case occurs when a simultaneous close 2614 * happens, we must ack the received FIN and 2615 * enter the CLOSING state. 2616 */ 2617 tcp_send_ack(sk); 2618 tcp_set_state(sk, TCP_CLOSING); 2619 break; 2620 case TCP_FIN_WAIT2: 2621 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 2622 tcp_send_ack(sk); 2623 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 2624 break; 2625 default: 2626 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 2627 * cases we should never reach this piece of code. 2628 */ 2629 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 2630 __FUNCTION__, sk->sk_state); 2631 break; 2632 }; 2633 2634 /* It _is_ possible, that we have something out-of-order _after_ FIN. 2635 * Probably, we should reset in this case. For now drop them. 2636 */ 2637 __skb_queue_purge(&tp->out_of_order_queue); 2638 if (tp->rx_opt.sack_ok) 2639 tcp_sack_reset(&tp->rx_opt); 2640 sk_stream_mem_reclaim(sk); 2641 2642 if (!sock_flag(sk, SOCK_DEAD)) { 2643 sk->sk_state_change(sk); 2644 2645 /* Do not send POLL_HUP for half duplex close. */ 2646 if (sk->sk_shutdown == SHUTDOWN_MASK || 2647 sk->sk_state == TCP_CLOSE) 2648 sk_wake_async(sk, 1, POLL_HUP); 2649 else 2650 sk_wake_async(sk, 1, POLL_IN); 2651 } 2652 } 2653 2654 static __inline__ int 2655 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 2656 { 2657 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 2658 if (before(seq, sp->start_seq)) 2659 sp->start_seq = seq; 2660 if (after(end_seq, sp->end_seq)) 2661 sp->end_seq = end_seq; 2662 return 1; 2663 } 2664 return 0; 2665 } 2666 2667 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 2668 { 2669 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2670 if (before(seq, tp->rcv_nxt)) 2671 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 2672 else 2673 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 2674 2675 tp->rx_opt.dsack = 1; 2676 tp->duplicate_sack[0].start_seq = seq; 2677 tp->duplicate_sack[0].end_seq = end_seq; 2678 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 2679 } 2680 } 2681 2682 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 2683 { 2684 if (!tp->rx_opt.dsack) 2685 tcp_dsack_set(tp, seq, end_seq); 2686 else 2687 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 2688 } 2689 2690 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 2691 { 2692 struct tcp_sock *tp = tcp_sk(sk); 2693 2694 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 2695 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 2696 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 2697 tcp_enter_quickack_mode(tp); 2698 2699 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2700 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2701 2702 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 2703 end_seq = tp->rcv_nxt; 2704 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 2705 } 2706 } 2707 2708 tcp_send_ack(sk); 2709 } 2710 2711 /* These routines update the SACK block as out-of-order packets arrive or 2712 * in-order packets close up the sequence space. 2713 */ 2714 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 2715 { 2716 int this_sack; 2717 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2718 struct tcp_sack_block *swalk = sp+1; 2719 2720 /* See if the recent change to the first SACK eats into 2721 * or hits the sequence space of other SACK blocks, if so coalesce. 2722 */ 2723 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 2724 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 2725 int i; 2726 2727 /* Zap SWALK, by moving every further SACK up by one slot. 2728 * Decrease num_sacks. 2729 */ 2730 tp->rx_opt.num_sacks--; 2731 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2732 for(i=this_sack; i < tp->rx_opt.num_sacks; i++) 2733 sp[i] = sp[i+1]; 2734 continue; 2735 } 2736 this_sack++, swalk++; 2737 } 2738 } 2739 2740 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 2741 { 2742 __u32 tmp; 2743 2744 tmp = sack1->start_seq; 2745 sack1->start_seq = sack2->start_seq; 2746 sack2->start_seq = tmp; 2747 2748 tmp = sack1->end_seq; 2749 sack1->end_seq = sack2->end_seq; 2750 sack2->end_seq = tmp; 2751 } 2752 2753 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 2754 { 2755 struct tcp_sock *tp = tcp_sk(sk); 2756 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2757 int cur_sacks = tp->rx_opt.num_sacks; 2758 int this_sack; 2759 2760 if (!cur_sacks) 2761 goto new_sack; 2762 2763 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 2764 if (tcp_sack_extend(sp, seq, end_seq)) { 2765 /* Rotate this_sack to the first one. */ 2766 for (; this_sack>0; this_sack--, sp--) 2767 tcp_sack_swap(sp, sp-1); 2768 if (cur_sacks > 1) 2769 tcp_sack_maybe_coalesce(tp); 2770 return; 2771 } 2772 } 2773 2774 /* Could not find an adjacent existing SACK, build a new one, 2775 * put it at the front, and shift everyone else down. We 2776 * always know there is at least one SACK present already here. 2777 * 2778 * If the sack array is full, forget about the last one. 2779 */ 2780 if (this_sack >= 4) { 2781 this_sack--; 2782 tp->rx_opt.num_sacks--; 2783 sp--; 2784 } 2785 for(; this_sack > 0; this_sack--, sp--) 2786 *sp = *(sp-1); 2787 2788 new_sack: 2789 /* Build the new head SACK, and we're done. */ 2790 sp->start_seq = seq; 2791 sp->end_seq = end_seq; 2792 tp->rx_opt.num_sacks++; 2793 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2794 } 2795 2796 /* RCV.NXT advances, some SACKs should be eaten. */ 2797 2798 static void tcp_sack_remove(struct tcp_sock *tp) 2799 { 2800 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2801 int num_sacks = tp->rx_opt.num_sacks; 2802 int this_sack; 2803 2804 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 2805 if (skb_queue_len(&tp->out_of_order_queue) == 0) { 2806 tp->rx_opt.num_sacks = 0; 2807 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 2808 return; 2809 } 2810 2811 for(this_sack = 0; this_sack < num_sacks; ) { 2812 /* Check if the start of the sack is covered by RCV.NXT. */ 2813 if (!before(tp->rcv_nxt, sp->start_seq)) { 2814 int i; 2815 2816 /* RCV.NXT must cover all the block! */ 2817 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 2818 2819 /* Zap this SACK, by moving forward any other SACKS. */ 2820 for (i=this_sack+1; i < num_sacks; i++) 2821 tp->selective_acks[i-1] = tp->selective_acks[i]; 2822 num_sacks--; 2823 continue; 2824 } 2825 this_sack++; 2826 sp++; 2827 } 2828 if (num_sacks != tp->rx_opt.num_sacks) { 2829 tp->rx_opt.num_sacks = num_sacks; 2830 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2831 } 2832 } 2833 2834 /* This one checks to see if we can put data from the 2835 * out_of_order queue into the receive_queue. 2836 */ 2837 static void tcp_ofo_queue(struct sock *sk) 2838 { 2839 struct tcp_sock *tp = tcp_sk(sk); 2840 __u32 dsack_high = tp->rcv_nxt; 2841 struct sk_buff *skb; 2842 2843 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 2844 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 2845 break; 2846 2847 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 2848 __u32 dsack = dsack_high; 2849 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 2850 dsack_high = TCP_SKB_CB(skb)->end_seq; 2851 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 2852 } 2853 2854 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 2855 SOCK_DEBUG(sk, "ofo packet was already received \n"); 2856 __skb_unlink(skb, skb->list); 2857 __kfree_skb(skb); 2858 continue; 2859 } 2860 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 2861 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 2862 TCP_SKB_CB(skb)->end_seq); 2863 2864 __skb_unlink(skb, skb->list); 2865 __skb_queue_tail(&sk->sk_receive_queue, skb); 2866 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 2867 if(skb->h.th->fin) 2868 tcp_fin(skb, sk, skb->h.th); 2869 } 2870 } 2871 2872 static int tcp_prune_queue(struct sock *sk); 2873 2874 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 2875 { 2876 struct tcphdr *th = skb->h.th; 2877 struct tcp_sock *tp = tcp_sk(sk); 2878 int eaten = -1; 2879 2880 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 2881 goto drop; 2882 2883 __skb_pull(skb, th->doff*4); 2884 2885 TCP_ECN_accept_cwr(tp, skb); 2886 2887 if (tp->rx_opt.dsack) { 2888 tp->rx_opt.dsack = 0; 2889 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 2890 4 - tp->rx_opt.tstamp_ok); 2891 } 2892 2893 /* Queue data for delivery to the user. 2894 * Packets in sequence go to the receive queue. 2895 * Out of sequence packets to the out_of_order_queue. 2896 */ 2897 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 2898 if (tcp_receive_window(tp) == 0) 2899 goto out_of_window; 2900 2901 /* Ok. In sequence. In window. */ 2902 if (tp->ucopy.task == current && 2903 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 2904 sock_owned_by_user(sk) && !tp->urg_data) { 2905 int chunk = min_t(unsigned int, skb->len, 2906 tp->ucopy.len); 2907 2908 __set_current_state(TASK_RUNNING); 2909 2910 local_bh_enable(); 2911 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 2912 tp->ucopy.len -= chunk; 2913 tp->copied_seq += chunk; 2914 eaten = (chunk == skb->len && !th->fin); 2915 tcp_rcv_space_adjust(sk); 2916 } 2917 local_bh_disable(); 2918 } 2919 2920 if (eaten <= 0) { 2921 queue_and_out: 2922 if (eaten < 0 && 2923 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 2924 !sk_stream_rmem_schedule(sk, skb))) { 2925 if (tcp_prune_queue(sk) < 0 || 2926 !sk_stream_rmem_schedule(sk, skb)) 2927 goto drop; 2928 } 2929 sk_stream_set_owner_r(skb, sk); 2930 __skb_queue_tail(&sk->sk_receive_queue, skb); 2931 } 2932 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 2933 if(skb->len) 2934 tcp_event_data_recv(sk, tp, skb); 2935 if(th->fin) 2936 tcp_fin(skb, sk, th); 2937 2938 if (skb_queue_len(&tp->out_of_order_queue)) { 2939 tcp_ofo_queue(sk); 2940 2941 /* RFC2581. 4.2. SHOULD send immediate ACK, when 2942 * gap in queue is filled. 2943 */ 2944 if (!skb_queue_len(&tp->out_of_order_queue)) 2945 tp->ack.pingpong = 0; 2946 } 2947 2948 if (tp->rx_opt.num_sacks) 2949 tcp_sack_remove(tp); 2950 2951 tcp_fast_path_check(sk, tp); 2952 2953 if (eaten > 0) 2954 __kfree_skb(skb); 2955 else if (!sock_flag(sk, SOCK_DEAD)) 2956 sk->sk_data_ready(sk, 0); 2957 return; 2958 } 2959 2960 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 2961 /* A retransmit, 2nd most common case. Force an immediate ack. */ 2962 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 2963 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 2964 2965 out_of_window: 2966 tcp_enter_quickack_mode(tp); 2967 tcp_schedule_ack(tp); 2968 drop: 2969 __kfree_skb(skb); 2970 return; 2971 } 2972 2973 /* Out of window. F.e. zero window probe. */ 2974 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 2975 goto out_of_window; 2976 2977 tcp_enter_quickack_mode(tp); 2978 2979 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 2980 /* Partial packet, seq < rcv_next < end_seq */ 2981 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 2982 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 2983 TCP_SKB_CB(skb)->end_seq); 2984 2985 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 2986 2987 /* If window is closed, drop tail of packet. But after 2988 * remembering D-SACK for its head made in previous line. 2989 */ 2990 if (!tcp_receive_window(tp)) 2991 goto out_of_window; 2992 goto queue_and_out; 2993 } 2994 2995 TCP_ECN_check_ce(tp, skb); 2996 2997 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 2998 !sk_stream_rmem_schedule(sk, skb)) { 2999 if (tcp_prune_queue(sk) < 0 || 3000 !sk_stream_rmem_schedule(sk, skb)) 3001 goto drop; 3002 } 3003 3004 /* Disable header prediction. */ 3005 tp->pred_flags = 0; 3006 tcp_schedule_ack(tp); 3007 3008 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3009 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3010 3011 sk_stream_set_owner_r(skb, sk); 3012 3013 if (!skb_peek(&tp->out_of_order_queue)) { 3014 /* Initial out of order segment, build 1 SACK. */ 3015 if (tp->rx_opt.sack_ok) { 3016 tp->rx_opt.num_sacks = 1; 3017 tp->rx_opt.dsack = 0; 3018 tp->rx_opt.eff_sacks = 1; 3019 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3020 tp->selective_acks[0].end_seq = 3021 TCP_SKB_CB(skb)->end_seq; 3022 } 3023 __skb_queue_head(&tp->out_of_order_queue,skb); 3024 } else { 3025 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3026 u32 seq = TCP_SKB_CB(skb)->seq; 3027 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3028 3029 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3030 __skb_append(skb1, skb); 3031 3032 if (!tp->rx_opt.num_sacks || 3033 tp->selective_acks[0].end_seq != seq) 3034 goto add_sack; 3035 3036 /* Common case: data arrive in order after hole. */ 3037 tp->selective_acks[0].end_seq = end_seq; 3038 return; 3039 } 3040 3041 /* Find place to insert this segment. */ 3042 do { 3043 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3044 break; 3045 } while ((skb1 = skb1->prev) != 3046 (struct sk_buff*)&tp->out_of_order_queue); 3047 3048 /* Do skb overlap to previous one? */ 3049 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3050 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3051 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3052 /* All the bits are present. Drop. */ 3053 __kfree_skb(skb); 3054 tcp_dsack_set(tp, seq, end_seq); 3055 goto add_sack; 3056 } 3057 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3058 /* Partial overlap. */ 3059 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3060 } else { 3061 skb1 = skb1->prev; 3062 } 3063 } 3064 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3065 3066 /* And clean segments covered by new one as whole. */ 3067 while ((skb1 = skb->next) != 3068 (struct sk_buff*)&tp->out_of_order_queue && 3069 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3070 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3071 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3072 break; 3073 } 3074 __skb_unlink(skb1, skb1->list); 3075 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3076 __kfree_skb(skb1); 3077 } 3078 3079 add_sack: 3080 if (tp->rx_opt.sack_ok) 3081 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3082 } 3083 } 3084 3085 /* Collapse contiguous sequence of skbs head..tail with 3086 * sequence numbers start..end. 3087 * Segments with FIN/SYN are not collapsed (only because this 3088 * simplifies code) 3089 */ 3090 static void 3091 tcp_collapse(struct sock *sk, struct sk_buff *head, 3092 struct sk_buff *tail, u32 start, u32 end) 3093 { 3094 struct sk_buff *skb; 3095 3096 /* First, check that queue is collapsable and find 3097 * the point where collapsing can be useful. */ 3098 for (skb = head; skb != tail; ) { 3099 /* No new bits? It is possible on ofo queue. */ 3100 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3101 struct sk_buff *next = skb->next; 3102 __skb_unlink(skb, skb->list); 3103 __kfree_skb(skb); 3104 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3105 skb = next; 3106 continue; 3107 } 3108 3109 /* The first skb to collapse is: 3110 * - not SYN/FIN and 3111 * - bloated or contains data before "start" or 3112 * overlaps to the next one. 3113 */ 3114 if (!skb->h.th->syn && !skb->h.th->fin && 3115 (tcp_win_from_space(skb->truesize) > skb->len || 3116 before(TCP_SKB_CB(skb)->seq, start) || 3117 (skb->next != tail && 3118 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3119 break; 3120 3121 /* Decided to skip this, advance start seq. */ 3122 start = TCP_SKB_CB(skb)->end_seq; 3123 skb = skb->next; 3124 } 3125 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3126 return; 3127 3128 while (before(start, end)) { 3129 struct sk_buff *nskb; 3130 int header = skb_headroom(skb); 3131 int copy = SKB_MAX_ORDER(header, 0); 3132 3133 /* Too big header? This can happen with IPv6. */ 3134 if (copy < 0) 3135 return; 3136 if (end-start < copy) 3137 copy = end-start; 3138 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3139 if (!nskb) 3140 return; 3141 skb_reserve(nskb, header); 3142 memcpy(nskb->head, skb->head, header); 3143 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head); 3144 nskb->h.raw = nskb->head + (skb->h.raw-skb->head); 3145 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head); 3146 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3147 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3148 __skb_insert(nskb, skb->prev, skb, skb->list); 3149 sk_stream_set_owner_r(nskb, sk); 3150 3151 /* Copy data, releasing collapsed skbs. */ 3152 while (copy > 0) { 3153 int offset = start - TCP_SKB_CB(skb)->seq; 3154 int size = TCP_SKB_CB(skb)->end_seq - start; 3155 3156 if (offset < 0) BUG(); 3157 if (size > 0) { 3158 size = min(copy, size); 3159 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3160 BUG(); 3161 TCP_SKB_CB(nskb)->end_seq += size; 3162 copy -= size; 3163 start += size; 3164 } 3165 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3166 struct sk_buff *next = skb->next; 3167 __skb_unlink(skb, skb->list); 3168 __kfree_skb(skb); 3169 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3170 skb = next; 3171 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3172 return; 3173 } 3174 } 3175 } 3176 } 3177 3178 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3179 * and tcp_collapse() them until all the queue is collapsed. 3180 */ 3181 static void tcp_collapse_ofo_queue(struct sock *sk) 3182 { 3183 struct tcp_sock *tp = tcp_sk(sk); 3184 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3185 struct sk_buff *head; 3186 u32 start, end; 3187 3188 if (skb == NULL) 3189 return; 3190 3191 start = TCP_SKB_CB(skb)->seq; 3192 end = TCP_SKB_CB(skb)->end_seq; 3193 head = skb; 3194 3195 for (;;) { 3196 skb = skb->next; 3197 3198 /* Segment is terminated when we see gap or when 3199 * we are at the end of all the queue. */ 3200 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3201 after(TCP_SKB_CB(skb)->seq, end) || 3202 before(TCP_SKB_CB(skb)->end_seq, start)) { 3203 tcp_collapse(sk, head, skb, start, end); 3204 head = skb; 3205 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3206 break; 3207 /* Start new segment */ 3208 start = TCP_SKB_CB(skb)->seq; 3209 end = TCP_SKB_CB(skb)->end_seq; 3210 } else { 3211 if (before(TCP_SKB_CB(skb)->seq, start)) 3212 start = TCP_SKB_CB(skb)->seq; 3213 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3214 end = TCP_SKB_CB(skb)->end_seq; 3215 } 3216 } 3217 } 3218 3219 /* Reduce allocated memory if we can, trying to get 3220 * the socket within its memory limits again. 3221 * 3222 * Return less than zero if we should start dropping frames 3223 * until the socket owning process reads some of the data 3224 * to stabilize the situation. 3225 */ 3226 static int tcp_prune_queue(struct sock *sk) 3227 { 3228 struct tcp_sock *tp = tcp_sk(sk); 3229 3230 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3231 3232 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3233 3234 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3235 tcp_clamp_window(sk, tp); 3236 else if (tcp_memory_pressure) 3237 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3238 3239 tcp_collapse_ofo_queue(sk); 3240 tcp_collapse(sk, sk->sk_receive_queue.next, 3241 (struct sk_buff*)&sk->sk_receive_queue, 3242 tp->copied_seq, tp->rcv_nxt); 3243 sk_stream_mem_reclaim(sk); 3244 3245 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3246 return 0; 3247 3248 /* Collapsing did not help, destructive actions follow. 3249 * This must not ever occur. */ 3250 3251 /* First, purge the out_of_order queue. */ 3252 if (skb_queue_len(&tp->out_of_order_queue)) { 3253 NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED, 3254 skb_queue_len(&tp->out_of_order_queue)); 3255 __skb_queue_purge(&tp->out_of_order_queue); 3256 3257 /* Reset SACK state. A conforming SACK implementation will 3258 * do the same at a timeout based retransmit. When a connection 3259 * is in a sad state like this, we care only about integrity 3260 * of the connection not performance. 3261 */ 3262 if (tp->rx_opt.sack_ok) 3263 tcp_sack_reset(&tp->rx_opt); 3264 sk_stream_mem_reclaim(sk); 3265 } 3266 3267 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3268 return 0; 3269 3270 /* If we are really being abused, tell the caller to silently 3271 * drop receive data on the floor. It will get retransmitted 3272 * and hopefully then we'll have sufficient space. 3273 */ 3274 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3275 3276 /* Massive buffer overcommit. */ 3277 tp->pred_flags = 0; 3278 return -1; 3279 } 3280 3281 3282 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3283 * As additional protections, we do not touch cwnd in retransmission phases, 3284 * and if application hit its sndbuf limit recently. 3285 */ 3286 void tcp_cwnd_application_limited(struct sock *sk) 3287 { 3288 struct tcp_sock *tp = tcp_sk(sk); 3289 3290 if (tp->ca_state == TCP_CA_Open && 3291 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3292 /* Limited by application or receiver window. */ 3293 u32 win_used = max(tp->snd_cwnd_used, 2U); 3294 if (win_used < tp->snd_cwnd) { 3295 tp->snd_ssthresh = tcp_current_ssthresh(tp); 3296 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3297 } 3298 tp->snd_cwnd_used = 0; 3299 } 3300 tp->snd_cwnd_stamp = tcp_time_stamp; 3301 } 3302 3303 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp) 3304 { 3305 /* If the user specified a specific send buffer setting, do 3306 * not modify it. 3307 */ 3308 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3309 return 0; 3310 3311 /* If we are under global TCP memory pressure, do not expand. */ 3312 if (tcp_memory_pressure) 3313 return 0; 3314 3315 /* If we are under soft global TCP memory pressure, do not expand. */ 3316 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3317 return 0; 3318 3319 /* If we filled the congestion window, do not expand. */ 3320 if (tp->packets_out >= tp->snd_cwnd) 3321 return 0; 3322 3323 return 1; 3324 } 3325 3326 /* When incoming ACK allowed to free some skb from write_queue, 3327 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3328 * on the exit from tcp input handler. 3329 * 3330 * PROBLEM: sndbuf expansion does not work well with largesend. 3331 */ 3332 static void tcp_new_space(struct sock *sk) 3333 { 3334 struct tcp_sock *tp = tcp_sk(sk); 3335 3336 if (tcp_should_expand_sndbuf(sk, tp)) { 3337 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3338 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3339 demanded = max_t(unsigned int, tp->snd_cwnd, 3340 tp->reordering + 1); 3341 sndmem *= 2*demanded; 3342 if (sndmem > sk->sk_sndbuf) 3343 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3344 tp->snd_cwnd_stamp = tcp_time_stamp; 3345 } 3346 3347 sk->sk_write_space(sk); 3348 } 3349 3350 static inline void tcp_check_space(struct sock *sk) 3351 { 3352 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3353 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3354 if (sk->sk_socket && 3355 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3356 tcp_new_space(sk); 3357 } 3358 } 3359 3360 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp) 3361 { 3362 tcp_push_pending_frames(sk, tp); 3363 tcp_check_space(sk); 3364 } 3365 3366 /* 3367 * Check if sending an ack is needed. 3368 */ 3369 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3370 { 3371 struct tcp_sock *tp = tcp_sk(sk); 3372 3373 /* More than one full frame received... */ 3374 if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss 3375 /* ... and right edge of window advances far enough. 3376 * (tcp_recvmsg() will send ACK otherwise). Or... 3377 */ 3378 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3379 /* We ACK each frame or... */ 3380 tcp_in_quickack_mode(tp) || 3381 /* We have out of order data. */ 3382 (ofo_possible && 3383 skb_peek(&tp->out_of_order_queue))) { 3384 /* Then ack it now */ 3385 tcp_send_ack(sk); 3386 } else { 3387 /* Else, send delayed ack. */ 3388 tcp_send_delayed_ack(sk); 3389 } 3390 } 3391 3392 static __inline__ void tcp_ack_snd_check(struct sock *sk) 3393 { 3394 struct tcp_sock *tp = tcp_sk(sk); 3395 if (!tcp_ack_scheduled(tp)) { 3396 /* We sent a data segment already. */ 3397 return; 3398 } 3399 __tcp_ack_snd_check(sk, 1); 3400 } 3401 3402 /* 3403 * This routine is only called when we have urgent data 3404 * signalled. Its the 'slow' part of tcp_urg. It could be 3405 * moved inline now as tcp_urg is only called from one 3406 * place. We handle URGent data wrong. We have to - as 3407 * BSD still doesn't use the correction from RFC961. 3408 * For 1003.1g we should support a new option TCP_STDURG to permit 3409 * either form (or just set the sysctl tcp_stdurg). 3410 */ 3411 3412 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3413 { 3414 struct tcp_sock *tp = tcp_sk(sk); 3415 u32 ptr = ntohs(th->urg_ptr); 3416 3417 if (ptr && !sysctl_tcp_stdurg) 3418 ptr--; 3419 ptr += ntohl(th->seq); 3420 3421 /* Ignore urgent data that we've already seen and read. */ 3422 if (after(tp->copied_seq, ptr)) 3423 return; 3424 3425 /* Do not replay urg ptr. 3426 * 3427 * NOTE: interesting situation not covered by specs. 3428 * Misbehaving sender may send urg ptr, pointing to segment, 3429 * which we already have in ofo queue. We are not able to fetch 3430 * such data and will stay in TCP_URG_NOTYET until will be eaten 3431 * by recvmsg(). Seems, we are not obliged to handle such wicked 3432 * situations. But it is worth to think about possibility of some 3433 * DoSes using some hypothetical application level deadlock. 3434 */ 3435 if (before(ptr, tp->rcv_nxt)) 3436 return; 3437 3438 /* Do we already have a newer (or duplicate) urgent pointer? */ 3439 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3440 return; 3441 3442 /* Tell the world about our new urgent pointer. */ 3443 sk_send_sigurg(sk); 3444 3445 /* We may be adding urgent data when the last byte read was 3446 * urgent. To do this requires some care. We cannot just ignore 3447 * tp->copied_seq since we would read the last urgent byte again 3448 * as data, nor can we alter copied_seq until this data arrives 3449 * or we break the sematics of SIOCATMARK (and thus sockatmark()) 3450 * 3451 * NOTE. Double Dutch. Rendering to plain English: author of comment 3452 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3453 * and expect that both A and B disappear from stream. This is _wrong_. 3454 * Though this happens in BSD with high probability, this is occasional. 3455 * Any application relying on this is buggy. Note also, that fix "works" 3456 * only in this artificial test. Insert some normal data between A and B and we will 3457 * decline of BSD again. Verdict: it is better to remove to trap 3458 * buggy users. 3459 */ 3460 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3461 !sock_flag(sk, SOCK_URGINLINE) && 3462 tp->copied_seq != tp->rcv_nxt) { 3463 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 3464 tp->copied_seq++; 3465 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 3466 __skb_unlink(skb, skb->list); 3467 __kfree_skb(skb); 3468 } 3469 } 3470 3471 tp->urg_data = TCP_URG_NOTYET; 3472 tp->urg_seq = ptr; 3473 3474 /* Disable header prediction. */ 3475 tp->pred_flags = 0; 3476 } 3477 3478 /* This is the 'fast' part of urgent handling. */ 3479 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 3480 { 3481 struct tcp_sock *tp = tcp_sk(sk); 3482 3483 /* Check if we get a new urgent pointer - normally not. */ 3484 if (th->urg) 3485 tcp_check_urg(sk,th); 3486 3487 /* Do we wait for any urgent data? - normally not... */ 3488 if (tp->urg_data == TCP_URG_NOTYET) { 3489 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 3490 th->syn; 3491 3492 /* Is the urgent pointer pointing into this packet? */ 3493 if (ptr < skb->len) { 3494 u8 tmp; 3495 if (skb_copy_bits(skb, ptr, &tmp, 1)) 3496 BUG(); 3497 tp->urg_data = TCP_URG_VALID | tmp; 3498 if (!sock_flag(sk, SOCK_DEAD)) 3499 sk->sk_data_ready(sk, 0); 3500 } 3501 } 3502 } 3503 3504 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 3505 { 3506 struct tcp_sock *tp = tcp_sk(sk); 3507 int chunk = skb->len - hlen; 3508 int err; 3509 3510 local_bh_enable(); 3511 if (skb->ip_summed==CHECKSUM_UNNECESSARY) 3512 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 3513 else 3514 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 3515 tp->ucopy.iov); 3516 3517 if (!err) { 3518 tp->ucopy.len -= chunk; 3519 tp->copied_seq += chunk; 3520 tcp_rcv_space_adjust(sk); 3521 } 3522 3523 local_bh_disable(); 3524 return err; 3525 } 3526 3527 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3528 { 3529 int result; 3530 3531 if (sock_owned_by_user(sk)) { 3532 local_bh_enable(); 3533 result = __tcp_checksum_complete(skb); 3534 local_bh_disable(); 3535 } else { 3536 result = __tcp_checksum_complete(skb); 3537 } 3538 return result; 3539 } 3540 3541 static __inline__ int 3542 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3543 { 3544 return skb->ip_summed != CHECKSUM_UNNECESSARY && 3545 __tcp_checksum_complete_user(sk, skb); 3546 } 3547 3548 /* 3549 * TCP receive function for the ESTABLISHED state. 3550 * 3551 * It is split into a fast path and a slow path. The fast path is 3552 * disabled when: 3553 * - A zero window was announced from us - zero window probing 3554 * is only handled properly in the slow path. 3555 * - Out of order segments arrived. 3556 * - Urgent data is expected. 3557 * - There is no buffer space left 3558 * - Unexpected TCP flags/window values/header lengths are received 3559 * (detected by checking the TCP header against pred_flags) 3560 * - Data is sent in both directions. Fast path only supports pure senders 3561 * or pure receivers (this means either the sequence number or the ack 3562 * value must stay constant) 3563 * - Unexpected TCP option. 3564 * 3565 * When these conditions are not satisfied it drops into a standard 3566 * receive procedure patterned after RFC793 to handle all cases. 3567 * The first three cases are guaranteed by proper pred_flags setting, 3568 * the rest is checked inline. Fast processing is turned on in 3569 * tcp_data_queue when everything is OK. 3570 */ 3571 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 3572 struct tcphdr *th, unsigned len) 3573 { 3574 struct tcp_sock *tp = tcp_sk(sk); 3575 3576 /* 3577 * Header prediction. 3578 * The code loosely follows the one in the famous 3579 * "30 instruction TCP receive" Van Jacobson mail. 3580 * 3581 * Van's trick is to deposit buffers into socket queue 3582 * on a device interrupt, to call tcp_recv function 3583 * on the receive process context and checksum and copy 3584 * the buffer to user space. smart... 3585 * 3586 * Our current scheme is not silly either but we take the 3587 * extra cost of the net_bh soft interrupt processing... 3588 * We do checksum and copy also but from device to kernel. 3589 */ 3590 3591 tp->rx_opt.saw_tstamp = 0; 3592 3593 /* pred_flags is 0xS?10 << 16 + snd_wnd 3594 * if header_predition is to be made 3595 * 'S' will always be tp->tcp_header_len >> 2 3596 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 3597 * turn it off (when there are holes in the receive 3598 * space for instance) 3599 * PSH flag is ignored. 3600 */ 3601 3602 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 3603 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3604 int tcp_header_len = tp->tcp_header_len; 3605 3606 /* Timestamp header prediction: tcp_header_len 3607 * is automatically equal to th->doff*4 due to pred_flags 3608 * match. 3609 */ 3610 3611 /* Check timestamp */ 3612 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 3613 __u32 *ptr = (__u32 *)(th + 1); 3614 3615 /* No? Slow path! */ 3616 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3617 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 3618 goto slow_path; 3619 3620 tp->rx_opt.saw_tstamp = 1; 3621 ++ptr; 3622 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3623 ++ptr; 3624 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3625 3626 /* If PAWS failed, check it more carefully in slow path */ 3627 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 3628 goto slow_path; 3629 3630 /* DO NOT update ts_recent here, if checksum fails 3631 * and timestamp was corrupted part, it will result 3632 * in a hung connection since we will drop all 3633 * future packets due to the PAWS test. 3634 */ 3635 } 3636 3637 if (len <= tcp_header_len) { 3638 /* Bulk data transfer: sender */ 3639 if (len == tcp_header_len) { 3640 /* Predicted packet is in window by definition. 3641 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3642 * Hence, check seq<=rcv_wup reduces to: 3643 */ 3644 if (tcp_header_len == 3645 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3646 tp->rcv_nxt == tp->rcv_wup) 3647 tcp_store_ts_recent(tp); 3648 3649 tcp_rcv_rtt_measure_ts(tp, skb); 3650 3651 /* We know that such packets are checksummed 3652 * on entry. 3653 */ 3654 tcp_ack(sk, skb, 0); 3655 __kfree_skb(skb); 3656 tcp_data_snd_check(sk, tp); 3657 return 0; 3658 } else { /* Header too small */ 3659 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3660 goto discard; 3661 } 3662 } else { 3663 int eaten = 0; 3664 3665 if (tp->ucopy.task == current && 3666 tp->copied_seq == tp->rcv_nxt && 3667 len - tcp_header_len <= tp->ucopy.len && 3668 sock_owned_by_user(sk)) { 3669 __set_current_state(TASK_RUNNING); 3670 3671 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 3672 /* Predicted packet is in window by definition. 3673 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3674 * Hence, check seq<=rcv_wup reduces to: 3675 */ 3676 if (tcp_header_len == 3677 (sizeof(struct tcphdr) + 3678 TCPOLEN_TSTAMP_ALIGNED) && 3679 tp->rcv_nxt == tp->rcv_wup) 3680 tcp_store_ts_recent(tp); 3681 3682 tcp_rcv_rtt_measure_ts(tp, skb); 3683 3684 __skb_pull(skb, tcp_header_len); 3685 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3686 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 3687 eaten = 1; 3688 } 3689 } 3690 if (!eaten) { 3691 if (tcp_checksum_complete_user(sk, skb)) 3692 goto csum_error; 3693 3694 /* Predicted packet is in window by definition. 3695 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3696 * Hence, check seq<=rcv_wup reduces to: 3697 */ 3698 if (tcp_header_len == 3699 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3700 tp->rcv_nxt == tp->rcv_wup) 3701 tcp_store_ts_recent(tp); 3702 3703 tcp_rcv_rtt_measure_ts(tp, skb); 3704 3705 if ((int)skb->truesize > sk->sk_forward_alloc) 3706 goto step5; 3707 3708 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 3709 3710 /* Bulk data transfer: receiver */ 3711 __skb_pull(skb,tcp_header_len); 3712 __skb_queue_tail(&sk->sk_receive_queue, skb); 3713 sk_stream_set_owner_r(skb, sk); 3714 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3715 } 3716 3717 tcp_event_data_recv(sk, tp, skb); 3718 3719 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 3720 /* Well, only one small jumplet in fast path... */ 3721 tcp_ack(sk, skb, FLAG_DATA); 3722 tcp_data_snd_check(sk, tp); 3723 if (!tcp_ack_scheduled(tp)) 3724 goto no_ack; 3725 } 3726 3727 __tcp_ack_snd_check(sk, 0); 3728 no_ack: 3729 if (eaten) 3730 __kfree_skb(skb); 3731 else 3732 sk->sk_data_ready(sk, 0); 3733 return 0; 3734 } 3735 } 3736 3737 slow_path: 3738 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 3739 goto csum_error; 3740 3741 /* 3742 * RFC1323: H1. Apply PAWS check first. 3743 */ 3744 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 3745 tcp_paws_discard(tp, skb)) { 3746 if (!th->rst) { 3747 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 3748 tcp_send_dupack(sk, skb); 3749 goto discard; 3750 } 3751 /* Resets are accepted even if PAWS failed. 3752 3753 ts_recent update must be made after we are sure 3754 that the packet is in window. 3755 */ 3756 } 3757 3758 /* 3759 * Standard slow path. 3760 */ 3761 3762 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 3763 /* RFC793, page 37: "In all states except SYN-SENT, all reset 3764 * (RST) segments are validated by checking their SEQ-fields." 3765 * And page 69: "If an incoming segment is not acceptable, 3766 * an acknowledgment should be sent in reply (unless the RST bit 3767 * is set, if so drop the segment and return)". 3768 */ 3769 if (!th->rst) 3770 tcp_send_dupack(sk, skb); 3771 goto discard; 3772 } 3773 3774 if(th->rst) { 3775 tcp_reset(sk); 3776 goto discard; 3777 } 3778 3779 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3780 3781 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3782 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3783 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 3784 tcp_reset(sk); 3785 return 1; 3786 } 3787 3788 step5: 3789 if(th->ack) 3790 tcp_ack(sk, skb, FLAG_SLOWPATH); 3791 3792 tcp_rcv_rtt_measure_ts(tp, skb); 3793 3794 /* Process urgent data. */ 3795 tcp_urg(sk, skb, th); 3796 3797 /* step 7: process the segment text */ 3798 tcp_data_queue(sk, skb); 3799 3800 tcp_data_snd_check(sk, tp); 3801 tcp_ack_snd_check(sk); 3802 return 0; 3803 3804 csum_error: 3805 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3806 3807 discard: 3808 __kfree_skb(skb); 3809 return 0; 3810 } 3811 3812 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 3813 struct tcphdr *th, unsigned len) 3814 { 3815 struct tcp_sock *tp = tcp_sk(sk); 3816 int saved_clamp = tp->rx_opt.mss_clamp; 3817 3818 tcp_parse_options(skb, &tp->rx_opt, 0); 3819 3820 if (th->ack) { 3821 /* rfc793: 3822 * "If the state is SYN-SENT then 3823 * first check the ACK bit 3824 * If the ACK bit is set 3825 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 3826 * a reset (unless the RST bit is set, if so drop 3827 * the segment and return)" 3828 * 3829 * We do not send data with SYN, so that RFC-correct 3830 * test reduces to: 3831 */ 3832 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 3833 goto reset_and_undo; 3834 3835 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3836 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 3837 tcp_time_stamp)) { 3838 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 3839 goto reset_and_undo; 3840 } 3841 3842 /* Now ACK is acceptable. 3843 * 3844 * "If the RST bit is set 3845 * If the ACK was acceptable then signal the user "error: 3846 * connection reset", drop the segment, enter CLOSED state, 3847 * delete TCB, and return." 3848 */ 3849 3850 if (th->rst) { 3851 tcp_reset(sk); 3852 goto discard; 3853 } 3854 3855 /* rfc793: 3856 * "fifth, if neither of the SYN or RST bits is set then 3857 * drop the segment and return." 3858 * 3859 * See note below! 3860 * --ANK(990513) 3861 */ 3862 if (!th->syn) 3863 goto discard_and_undo; 3864 3865 /* rfc793: 3866 * "If the SYN bit is on ... 3867 * are acceptable then ... 3868 * (our SYN has been ACKed), change the connection 3869 * state to ESTABLISHED..." 3870 */ 3871 3872 TCP_ECN_rcv_synack(tp, th); 3873 if (tp->ecn_flags&TCP_ECN_OK) 3874 sock_set_flag(sk, SOCK_NO_LARGESEND); 3875 3876 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 3877 tcp_ack(sk, skb, FLAG_SLOWPATH); 3878 3879 /* Ok.. it's good. Set up sequence numbers and 3880 * move to established. 3881 */ 3882 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 3883 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 3884 3885 /* RFC1323: The window in SYN & SYN/ACK segments is 3886 * never scaled. 3887 */ 3888 tp->snd_wnd = ntohs(th->window); 3889 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 3890 3891 if (!tp->rx_opt.wscale_ok) { 3892 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 3893 tp->window_clamp = min(tp->window_clamp, 65535U); 3894 } 3895 3896 if (tp->rx_opt.saw_tstamp) { 3897 tp->rx_opt.tstamp_ok = 1; 3898 tp->tcp_header_len = 3899 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 3900 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 3901 tcp_store_ts_recent(tp); 3902 } else { 3903 tp->tcp_header_len = sizeof(struct tcphdr); 3904 } 3905 3906 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 3907 tp->rx_opt.sack_ok |= 2; 3908 3909 tcp_sync_mss(sk, tp->pmtu_cookie); 3910 tcp_initialize_rcv_mss(sk); 3911 3912 /* Remember, tcp_poll() does not lock socket! 3913 * Change state from SYN-SENT only after copied_seq 3914 * is initialized. */ 3915 tp->copied_seq = tp->rcv_nxt; 3916 mb(); 3917 tcp_set_state(sk, TCP_ESTABLISHED); 3918 3919 /* Make sure socket is routed, for correct metrics. */ 3920 tp->af_specific->rebuild_header(sk); 3921 3922 tcp_init_metrics(sk); 3923 3924 tcp_init_congestion_control(tp); 3925 3926 /* Prevent spurious tcp_cwnd_restart() on first data 3927 * packet. 3928 */ 3929 tp->lsndtime = tcp_time_stamp; 3930 3931 tcp_init_buffer_space(sk); 3932 3933 if (sock_flag(sk, SOCK_KEEPOPEN)) 3934 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 3935 3936 if (!tp->rx_opt.snd_wscale) 3937 __tcp_fast_path_on(tp, tp->snd_wnd); 3938 else 3939 tp->pred_flags = 0; 3940 3941 if (!sock_flag(sk, SOCK_DEAD)) { 3942 sk->sk_state_change(sk); 3943 sk_wake_async(sk, 0, POLL_OUT); 3944 } 3945 3946 if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) { 3947 /* Save one ACK. Data will be ready after 3948 * several ticks, if write_pending is set. 3949 * 3950 * It may be deleted, but with this feature tcpdumps 3951 * look so _wonderfully_ clever, that I was not able 3952 * to stand against the temptation 8) --ANK 3953 */ 3954 tcp_schedule_ack(tp); 3955 tp->ack.lrcvtime = tcp_time_stamp; 3956 tp->ack.ato = TCP_ATO_MIN; 3957 tcp_incr_quickack(tp); 3958 tcp_enter_quickack_mode(tp); 3959 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX); 3960 3961 discard: 3962 __kfree_skb(skb); 3963 return 0; 3964 } else { 3965 tcp_send_ack(sk); 3966 } 3967 return -1; 3968 } 3969 3970 /* No ACK in the segment */ 3971 3972 if (th->rst) { 3973 /* rfc793: 3974 * "If the RST bit is set 3975 * 3976 * Otherwise (no ACK) drop the segment and return." 3977 */ 3978 3979 goto discard_and_undo; 3980 } 3981 3982 /* PAWS check. */ 3983 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 3984 goto discard_and_undo; 3985 3986 if (th->syn) { 3987 /* We see SYN without ACK. It is attempt of 3988 * simultaneous connect with crossed SYNs. 3989 * Particularly, it can be connect to self. 3990 */ 3991 tcp_set_state(sk, TCP_SYN_RECV); 3992 3993 if (tp->rx_opt.saw_tstamp) { 3994 tp->rx_opt.tstamp_ok = 1; 3995 tcp_store_ts_recent(tp); 3996 tp->tcp_header_len = 3997 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 3998 } else { 3999 tp->tcp_header_len = sizeof(struct tcphdr); 4000 } 4001 4002 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4003 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4004 4005 /* RFC1323: The window in SYN & SYN/ACK segments is 4006 * never scaled. 4007 */ 4008 tp->snd_wnd = ntohs(th->window); 4009 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4010 tp->max_window = tp->snd_wnd; 4011 4012 TCP_ECN_rcv_syn(tp, th); 4013 if (tp->ecn_flags&TCP_ECN_OK) 4014 sock_set_flag(sk, SOCK_NO_LARGESEND); 4015 4016 tcp_sync_mss(sk, tp->pmtu_cookie); 4017 tcp_initialize_rcv_mss(sk); 4018 4019 4020 tcp_send_synack(sk); 4021 #if 0 4022 /* Note, we could accept data and URG from this segment. 4023 * There are no obstacles to make this. 4024 * 4025 * However, if we ignore data in ACKless segments sometimes, 4026 * we have no reasons to accept it sometimes. 4027 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4028 * is not flawless. So, discard packet for sanity. 4029 * Uncomment this return to process the data. 4030 */ 4031 return -1; 4032 #else 4033 goto discard; 4034 #endif 4035 } 4036 /* "fifth, if neither of the SYN or RST bits is set then 4037 * drop the segment and return." 4038 */ 4039 4040 discard_and_undo: 4041 tcp_clear_options(&tp->rx_opt); 4042 tp->rx_opt.mss_clamp = saved_clamp; 4043 goto discard; 4044 4045 reset_and_undo: 4046 tcp_clear_options(&tp->rx_opt); 4047 tp->rx_opt.mss_clamp = saved_clamp; 4048 return 1; 4049 } 4050 4051 4052 /* 4053 * This function implements the receiving procedure of RFC 793 for 4054 * all states except ESTABLISHED and TIME_WAIT. 4055 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4056 * address independent. 4057 */ 4058 4059 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4060 struct tcphdr *th, unsigned len) 4061 { 4062 struct tcp_sock *tp = tcp_sk(sk); 4063 int queued = 0; 4064 4065 tp->rx_opt.saw_tstamp = 0; 4066 4067 switch (sk->sk_state) { 4068 case TCP_CLOSE: 4069 goto discard; 4070 4071 case TCP_LISTEN: 4072 if(th->ack) 4073 return 1; 4074 4075 if(th->rst) 4076 goto discard; 4077 4078 if(th->syn) { 4079 if(tp->af_specific->conn_request(sk, skb) < 0) 4080 return 1; 4081 4082 /* Now we have several options: In theory there is 4083 * nothing else in the frame. KA9Q has an option to 4084 * send data with the syn, BSD accepts data with the 4085 * syn up to the [to be] advertised window and 4086 * Solaris 2.1 gives you a protocol error. For now 4087 * we just ignore it, that fits the spec precisely 4088 * and avoids incompatibilities. It would be nice in 4089 * future to drop through and process the data. 4090 * 4091 * Now that TTCP is starting to be used we ought to 4092 * queue this data. 4093 * But, this leaves one open to an easy denial of 4094 * service attack, and SYN cookies can't defend 4095 * against this problem. So, we drop the data 4096 * in the interest of security over speed. 4097 */ 4098 goto discard; 4099 } 4100 goto discard; 4101 4102 case TCP_SYN_SENT: 4103 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4104 if (queued >= 0) 4105 return queued; 4106 4107 /* Do step6 onward by hand. */ 4108 tcp_urg(sk, skb, th); 4109 __kfree_skb(skb); 4110 tcp_data_snd_check(sk, tp); 4111 return 0; 4112 } 4113 4114 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4115 tcp_paws_discard(tp, skb)) { 4116 if (!th->rst) { 4117 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4118 tcp_send_dupack(sk, skb); 4119 goto discard; 4120 } 4121 /* Reset is accepted even if it did not pass PAWS. */ 4122 } 4123 4124 /* step 1: check sequence number */ 4125 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4126 if (!th->rst) 4127 tcp_send_dupack(sk, skb); 4128 goto discard; 4129 } 4130 4131 /* step 2: check RST bit */ 4132 if(th->rst) { 4133 tcp_reset(sk); 4134 goto discard; 4135 } 4136 4137 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4138 4139 /* step 3: check security and precedence [ignored] */ 4140 4141 /* step 4: 4142 * 4143 * Check for a SYN in window. 4144 */ 4145 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4146 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4147 tcp_reset(sk); 4148 return 1; 4149 } 4150 4151 /* step 5: check the ACK field */ 4152 if (th->ack) { 4153 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4154 4155 switch(sk->sk_state) { 4156 case TCP_SYN_RECV: 4157 if (acceptable) { 4158 tp->copied_seq = tp->rcv_nxt; 4159 mb(); 4160 tcp_set_state(sk, TCP_ESTABLISHED); 4161 sk->sk_state_change(sk); 4162 4163 /* Note, that this wakeup is only for marginal 4164 * crossed SYN case. Passively open sockets 4165 * are not waked up, because sk->sk_sleep == 4166 * NULL and sk->sk_socket == NULL. 4167 */ 4168 if (sk->sk_socket) { 4169 sk_wake_async(sk,0,POLL_OUT); 4170 } 4171 4172 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4173 tp->snd_wnd = ntohs(th->window) << 4174 tp->rx_opt.snd_wscale; 4175 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4176 TCP_SKB_CB(skb)->seq); 4177 4178 /* tcp_ack considers this ACK as duplicate 4179 * and does not calculate rtt. 4180 * Fix it at least with timestamps. 4181 */ 4182 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4183 !tp->srtt) 4184 tcp_ack_saw_tstamp(tp, 0, 0); 4185 4186 if (tp->rx_opt.tstamp_ok) 4187 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4188 4189 /* Make sure socket is routed, for 4190 * correct metrics. 4191 */ 4192 tp->af_specific->rebuild_header(sk); 4193 4194 tcp_init_metrics(sk); 4195 4196 tcp_init_congestion_control(tp); 4197 4198 /* Prevent spurious tcp_cwnd_restart() on 4199 * first data packet. 4200 */ 4201 tp->lsndtime = tcp_time_stamp; 4202 4203 tcp_initialize_rcv_mss(sk); 4204 tcp_init_buffer_space(sk); 4205 tcp_fast_path_on(tp); 4206 } else { 4207 return 1; 4208 } 4209 break; 4210 4211 case TCP_FIN_WAIT1: 4212 if (tp->snd_una == tp->write_seq) { 4213 tcp_set_state(sk, TCP_FIN_WAIT2); 4214 sk->sk_shutdown |= SEND_SHUTDOWN; 4215 dst_confirm(sk->sk_dst_cache); 4216 4217 if (!sock_flag(sk, SOCK_DEAD)) 4218 /* Wake up lingering close() */ 4219 sk->sk_state_change(sk); 4220 else { 4221 int tmo; 4222 4223 if (tp->linger2 < 0 || 4224 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4225 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4226 tcp_done(sk); 4227 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4228 return 1; 4229 } 4230 4231 tmo = tcp_fin_time(tp); 4232 if (tmo > TCP_TIMEWAIT_LEN) { 4233 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4234 } else if (th->fin || sock_owned_by_user(sk)) { 4235 /* Bad case. We could lose such FIN otherwise. 4236 * It is not a big problem, but it looks confusing 4237 * and not so rare event. We still can lose it now, 4238 * if it spins in bh_lock_sock(), but it is really 4239 * marginal case. 4240 */ 4241 tcp_reset_keepalive_timer(sk, tmo); 4242 } else { 4243 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4244 goto discard; 4245 } 4246 } 4247 } 4248 break; 4249 4250 case TCP_CLOSING: 4251 if (tp->snd_una == tp->write_seq) { 4252 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4253 goto discard; 4254 } 4255 break; 4256 4257 case TCP_LAST_ACK: 4258 if (tp->snd_una == tp->write_seq) { 4259 tcp_update_metrics(sk); 4260 tcp_done(sk); 4261 goto discard; 4262 } 4263 break; 4264 } 4265 } else 4266 goto discard; 4267 4268 /* step 6: check the URG bit */ 4269 tcp_urg(sk, skb, th); 4270 4271 /* step 7: process the segment text */ 4272 switch (sk->sk_state) { 4273 case TCP_CLOSE_WAIT: 4274 case TCP_CLOSING: 4275 case TCP_LAST_ACK: 4276 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4277 break; 4278 case TCP_FIN_WAIT1: 4279 case TCP_FIN_WAIT2: 4280 /* RFC 793 says to queue data in these states, 4281 * RFC 1122 says we MUST send a reset. 4282 * BSD 4.4 also does reset. 4283 */ 4284 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4285 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4286 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4287 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4288 tcp_reset(sk); 4289 return 1; 4290 } 4291 } 4292 /* Fall through */ 4293 case TCP_ESTABLISHED: 4294 tcp_data_queue(sk, skb); 4295 queued = 1; 4296 break; 4297 } 4298 4299 /* tcp_data could move socket to TIME-WAIT */ 4300 if (sk->sk_state != TCP_CLOSE) { 4301 tcp_data_snd_check(sk, tp); 4302 tcp_ack_snd_check(sk); 4303 } 4304 4305 if (!queued) { 4306 discard: 4307 __kfree_skb(skb); 4308 } 4309 return 0; 4310 } 4311 4312 EXPORT_SYMBOL(sysctl_tcp_ecn); 4313 EXPORT_SYMBOL(sysctl_tcp_reordering); 4314 EXPORT_SYMBOL(tcp_parse_options); 4315 EXPORT_SYMBOL(tcp_rcv_established); 4316 EXPORT_SYMBOL(tcp_rcv_state_process); 4317