xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 717cb906bd43a9ac00631d600adda5c6546843a6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presnce of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84 
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90 
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 
93 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
94 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
95 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
96 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
97 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
98 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
99 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
100 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
101 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
111 
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 
114 /* Adapt the MSS value used to make delayed ack decision to the
115  * real world.
116  */
117 static inline void tcp_measure_rcv_mss(struct tcp_sock *tp,
118 				       struct sk_buff *skb)
119 {
120 	unsigned int len, lss;
121 
122 	lss = tp->ack.last_seg_size;
123 	tp->ack.last_seg_size = 0;
124 
125 	/* skb->len may jitter because of SACKs, even if peer
126 	 * sends good full-sized frames.
127 	 */
128 	len = skb->len;
129 	if (len >= tp->ack.rcv_mss) {
130 		tp->ack.rcv_mss = len;
131 	} else {
132 		/* Otherwise, we make more careful check taking into account,
133 		 * that SACKs block is variable.
134 		 *
135 		 * "len" is invariant segment length, including TCP header.
136 		 */
137 		len += skb->data - skb->h.raw;
138 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
139 		    /* If PSH is not set, packet should be
140 		     * full sized, provided peer TCP is not badly broken.
141 		     * This observation (if it is correct 8)) allows
142 		     * to handle super-low mtu links fairly.
143 		     */
144 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
145 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
146 			/* Subtract also invariant (if peer is RFC compliant),
147 			 * tcp header plus fixed timestamp option length.
148 			 * Resulting "len" is MSS free of SACK jitter.
149 			 */
150 			len -= tp->tcp_header_len;
151 			tp->ack.last_seg_size = len;
152 			if (len == lss) {
153 				tp->ack.rcv_mss = len;
154 				return;
155 			}
156 		}
157 		tp->ack.pending |= TCP_ACK_PUSHED;
158 	}
159 }
160 
161 static void tcp_incr_quickack(struct tcp_sock *tp)
162 {
163 	unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
164 
165 	if (quickacks==0)
166 		quickacks=2;
167 	if (quickacks > tp->ack.quick)
168 		tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
169 }
170 
171 void tcp_enter_quickack_mode(struct tcp_sock *tp)
172 {
173 	tcp_incr_quickack(tp);
174 	tp->ack.pingpong = 0;
175 	tp->ack.ato = TCP_ATO_MIN;
176 }
177 
178 /* Send ACKs quickly, if "quick" count is not exhausted
179  * and the session is not interactive.
180  */
181 
182 static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp)
183 {
184 	return (tp->ack.quick && !tp->ack.pingpong);
185 }
186 
187 /* Buffer size and advertised window tuning.
188  *
189  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
190  */
191 
192 static void tcp_fixup_sndbuf(struct sock *sk)
193 {
194 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
195 		     sizeof(struct sk_buff);
196 
197 	if (sk->sk_sndbuf < 3 * sndmem)
198 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
199 }
200 
201 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
202  *
203  * All tcp_full_space() is split to two parts: "network" buffer, allocated
204  * forward and advertised in receiver window (tp->rcv_wnd) and
205  * "application buffer", required to isolate scheduling/application
206  * latencies from network.
207  * window_clamp is maximal advertised window. It can be less than
208  * tcp_full_space(), in this case tcp_full_space() - window_clamp
209  * is reserved for "application" buffer. The less window_clamp is
210  * the smoother our behaviour from viewpoint of network, but the lower
211  * throughput and the higher sensitivity of the connection to losses. 8)
212  *
213  * rcv_ssthresh is more strict window_clamp used at "slow start"
214  * phase to predict further behaviour of this connection.
215  * It is used for two goals:
216  * - to enforce header prediction at sender, even when application
217  *   requires some significant "application buffer". It is check #1.
218  * - to prevent pruning of receive queue because of misprediction
219  *   of receiver window. Check #2.
220  *
221  * The scheme does not work when sender sends good segments opening
222  * window and then starts to feed us spagetti. But it should work
223  * in common situations. Otherwise, we have to rely on queue collapsing.
224  */
225 
226 /* Slow part of check#2. */
227 static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
228 			     struct sk_buff *skb)
229 {
230 	/* Optimize this! */
231 	int truesize = tcp_win_from_space(skb->truesize)/2;
232 	int window = tcp_full_space(sk)/2;
233 
234 	while (tp->rcv_ssthresh <= window) {
235 		if (truesize <= skb->len)
236 			return 2*tp->ack.rcv_mss;
237 
238 		truesize >>= 1;
239 		window >>= 1;
240 	}
241 	return 0;
242 }
243 
244 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
245 				   struct sk_buff *skb)
246 {
247 	/* Check #1 */
248 	if (tp->rcv_ssthresh < tp->window_clamp &&
249 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
250 	    !tcp_memory_pressure) {
251 		int incr;
252 
253 		/* Check #2. Increase window, if skb with such overhead
254 		 * will fit to rcvbuf in future.
255 		 */
256 		if (tcp_win_from_space(skb->truesize) <= skb->len)
257 			incr = 2*tp->advmss;
258 		else
259 			incr = __tcp_grow_window(sk, tp, skb);
260 
261 		if (incr) {
262 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
263 			tp->ack.quick |= 1;
264 		}
265 	}
266 }
267 
268 /* 3. Tuning rcvbuf, when connection enters established state. */
269 
270 static void tcp_fixup_rcvbuf(struct sock *sk)
271 {
272 	struct tcp_sock *tp = tcp_sk(sk);
273 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
274 
275 	/* Try to select rcvbuf so that 4 mss-sized segments
276 	 * will fit to window and correspoding skbs will fit to our rcvbuf.
277 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
278 	 */
279 	while (tcp_win_from_space(rcvmem) < tp->advmss)
280 		rcvmem += 128;
281 	if (sk->sk_rcvbuf < 4 * rcvmem)
282 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
283 }
284 
285 /* 4. Try to fixup all. It is made iimediately after connection enters
286  *    established state.
287  */
288 static void tcp_init_buffer_space(struct sock *sk)
289 {
290 	struct tcp_sock *tp = tcp_sk(sk);
291 	int maxwin;
292 
293 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
294 		tcp_fixup_rcvbuf(sk);
295 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
296 		tcp_fixup_sndbuf(sk);
297 
298 	tp->rcvq_space.space = tp->rcv_wnd;
299 
300 	maxwin = tcp_full_space(sk);
301 
302 	if (tp->window_clamp >= maxwin) {
303 		tp->window_clamp = maxwin;
304 
305 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
306 			tp->window_clamp = max(maxwin -
307 					       (maxwin >> sysctl_tcp_app_win),
308 					       4 * tp->advmss);
309 	}
310 
311 	/* Force reservation of one segment. */
312 	if (sysctl_tcp_app_win &&
313 	    tp->window_clamp > 2 * tp->advmss &&
314 	    tp->window_clamp + tp->advmss > maxwin)
315 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
316 
317 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
318 	tp->snd_cwnd_stamp = tcp_time_stamp;
319 }
320 
321 /* 5. Recalculate window clamp after socket hit its memory bounds. */
322 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
323 {
324 	struct sk_buff *skb;
325 	unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
326 	int ofo_win = 0;
327 
328 	tp->ack.quick = 0;
329 
330 	skb_queue_walk(&tp->out_of_order_queue, skb) {
331 		ofo_win += skb->len;
332 	}
333 
334 	/* If overcommit is due to out of order segments,
335 	 * do not clamp window. Try to expand rcvbuf instead.
336 	 */
337 	if (ofo_win) {
338 		if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
339 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
340 		    !tcp_memory_pressure &&
341 		    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
342 			sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
343 					    sysctl_tcp_rmem[2]);
344 	}
345 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
346 		app_win += ofo_win;
347 		if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
348 			app_win >>= 1;
349 		if (app_win > tp->ack.rcv_mss)
350 			app_win -= tp->ack.rcv_mss;
351 		app_win = max(app_win, 2U*tp->advmss);
352 
353 		if (!ofo_win)
354 			tp->window_clamp = min(tp->window_clamp, app_win);
355 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
356 	}
357 }
358 
359 /* Receiver "autotuning" code.
360  *
361  * The algorithm for RTT estimation w/o timestamps is based on
362  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
363  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
364  *
365  * More detail on this code can be found at
366  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
367  * though this reference is out of date.  A new paper
368  * is pending.
369  */
370 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
371 {
372 	u32 new_sample = tp->rcv_rtt_est.rtt;
373 	long m = sample;
374 
375 	if (m == 0)
376 		m = 1;
377 
378 	if (new_sample != 0) {
379 		/* If we sample in larger samples in the non-timestamp
380 		 * case, we could grossly overestimate the RTT especially
381 		 * with chatty applications or bulk transfer apps which
382 		 * are stalled on filesystem I/O.
383 		 *
384 		 * Also, since we are only going for a minimum in the
385 		 * non-timestamp case, we do not smoothe things out
386 		 * else with timestamps disabled convergance takes too
387 		 * long.
388 		 */
389 		if (!win_dep) {
390 			m -= (new_sample >> 3);
391 			new_sample += m;
392 		} else if (m < new_sample)
393 			new_sample = m << 3;
394 	} else {
395 		/* No previous mesaure. */
396 		new_sample = m << 3;
397 	}
398 
399 	if (tp->rcv_rtt_est.rtt != new_sample)
400 		tp->rcv_rtt_est.rtt = new_sample;
401 }
402 
403 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
404 {
405 	if (tp->rcv_rtt_est.time == 0)
406 		goto new_measure;
407 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
408 		return;
409 	tcp_rcv_rtt_update(tp,
410 			   jiffies - tp->rcv_rtt_est.time,
411 			   1);
412 
413 new_measure:
414 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
415 	tp->rcv_rtt_est.time = tcp_time_stamp;
416 }
417 
418 static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb)
419 {
420 	if (tp->rx_opt.rcv_tsecr &&
421 	    (TCP_SKB_CB(skb)->end_seq -
422 	     TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss))
423 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
424 }
425 
426 /*
427  * This function should be called every time data is copied to user space.
428  * It calculates the appropriate TCP receive buffer space.
429  */
430 void tcp_rcv_space_adjust(struct sock *sk)
431 {
432 	struct tcp_sock *tp = tcp_sk(sk);
433 	int time;
434 	int space;
435 
436 	if (tp->rcvq_space.time == 0)
437 		goto new_measure;
438 
439 	time = tcp_time_stamp - tp->rcvq_space.time;
440 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
441 	    tp->rcv_rtt_est.rtt == 0)
442 		return;
443 
444 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
445 
446 	space = max(tp->rcvq_space.space, space);
447 
448 	if (tp->rcvq_space.space != space) {
449 		int rcvmem;
450 
451 		tp->rcvq_space.space = space;
452 
453 		if (sysctl_tcp_moderate_rcvbuf) {
454 			int new_clamp = space;
455 
456 			/* Receive space grows, normalize in order to
457 			 * take into account packet headers and sk_buff
458 			 * structure overhead.
459 			 */
460 			space /= tp->advmss;
461 			if (!space)
462 				space = 1;
463 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
464 				  16 + sizeof(struct sk_buff));
465 			while (tcp_win_from_space(rcvmem) < tp->advmss)
466 				rcvmem += 128;
467 			space *= rcvmem;
468 			space = min(space, sysctl_tcp_rmem[2]);
469 			if (space > sk->sk_rcvbuf) {
470 				sk->sk_rcvbuf = space;
471 
472 				/* Make the window clamp follow along.  */
473 				tp->window_clamp = new_clamp;
474 			}
475 		}
476 	}
477 
478 new_measure:
479 	tp->rcvq_space.seq = tp->copied_seq;
480 	tp->rcvq_space.time = tcp_time_stamp;
481 }
482 
483 /* There is something which you must keep in mind when you analyze the
484  * behavior of the tp->ato delayed ack timeout interval.  When a
485  * connection starts up, we want to ack as quickly as possible.  The
486  * problem is that "good" TCP's do slow start at the beginning of data
487  * transmission.  The means that until we send the first few ACK's the
488  * sender will sit on his end and only queue most of his data, because
489  * he can only send snd_cwnd unacked packets at any given time.  For
490  * each ACK we send, he increments snd_cwnd and transmits more of his
491  * queue.  -DaveM
492  */
493 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
494 {
495 	u32 now;
496 
497 	tcp_schedule_ack(tp);
498 
499 	tcp_measure_rcv_mss(tp, skb);
500 
501 	tcp_rcv_rtt_measure(tp);
502 
503 	now = tcp_time_stamp;
504 
505 	if (!tp->ack.ato) {
506 		/* The _first_ data packet received, initialize
507 		 * delayed ACK engine.
508 		 */
509 		tcp_incr_quickack(tp);
510 		tp->ack.ato = TCP_ATO_MIN;
511 	} else {
512 		int m = now - tp->ack.lrcvtime;
513 
514 		if (m <= TCP_ATO_MIN/2) {
515 			/* The fastest case is the first. */
516 			tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
517 		} else if (m < tp->ack.ato) {
518 			tp->ack.ato = (tp->ack.ato>>1) + m;
519 			if (tp->ack.ato > tp->rto)
520 				tp->ack.ato = tp->rto;
521 		} else if (m > tp->rto) {
522 			/* Too long gap. Apparently sender falled to
523 			 * restart window, so that we send ACKs quickly.
524 			 */
525 			tcp_incr_quickack(tp);
526 			sk_stream_mem_reclaim(sk);
527 		}
528 	}
529 	tp->ack.lrcvtime = now;
530 
531 	TCP_ECN_check_ce(tp, skb);
532 
533 	if (skb->len >= 128)
534 		tcp_grow_window(sk, tp, skb);
535 }
536 
537 /* Called to compute a smoothed rtt estimate. The data fed to this
538  * routine either comes from timestamps, or from segments that were
539  * known _not_ to have been retransmitted [see Karn/Partridge
540  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
541  * piece by Van Jacobson.
542  * NOTE: the next three routines used to be one big routine.
543  * To save cycles in the RFC 1323 implementation it was better to break
544  * it up into three procedures. -- erics
545  */
546 static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt, u32 *usrtt)
547 {
548 	long m = mrtt; /* RTT */
549 
550 	/*	The following amusing code comes from Jacobson's
551 	 *	article in SIGCOMM '88.  Note that rtt and mdev
552 	 *	are scaled versions of rtt and mean deviation.
553 	 *	This is designed to be as fast as possible
554 	 *	m stands for "measurement".
555 	 *
556 	 *	On a 1990 paper the rto value is changed to:
557 	 *	RTO = rtt + 4 * mdev
558 	 *
559 	 * Funny. This algorithm seems to be very broken.
560 	 * These formulae increase RTO, when it should be decreased, increase
561 	 * too slowly, when it should be incresed fastly, decrease too fastly
562 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
563 	 * does not matter how to _calculate_ it. Seems, it was trap
564 	 * that VJ failed to avoid. 8)
565 	 */
566 	if(m == 0)
567 		m = 1;
568 	if (tp->srtt != 0) {
569 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
570 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
571 		if (m < 0) {
572 			m = -m;		/* m is now abs(error) */
573 			m -= (tp->mdev >> 2);   /* similar update on mdev */
574 			/* This is similar to one of Eifel findings.
575 			 * Eifel blocks mdev updates when rtt decreases.
576 			 * This solution is a bit different: we use finer gain
577 			 * for mdev in this case (alpha*beta).
578 			 * Like Eifel it also prevents growth of rto,
579 			 * but also it limits too fast rto decreases,
580 			 * happening in pure Eifel.
581 			 */
582 			if (m > 0)
583 				m >>= 3;
584 		} else {
585 			m -= (tp->mdev >> 2);   /* similar update on mdev */
586 		}
587 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
588 		if (tp->mdev > tp->mdev_max) {
589 			tp->mdev_max = tp->mdev;
590 			if (tp->mdev_max > tp->rttvar)
591 				tp->rttvar = tp->mdev_max;
592 		}
593 		if (after(tp->snd_una, tp->rtt_seq)) {
594 			if (tp->mdev_max < tp->rttvar)
595 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
596 			tp->rtt_seq = tp->snd_nxt;
597 			tp->mdev_max = TCP_RTO_MIN;
598 		}
599 	} else {
600 		/* no previous measure. */
601 		tp->srtt = m<<3;	/* take the measured time to be rtt */
602 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
603 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
604 		tp->rtt_seq = tp->snd_nxt;
605 	}
606 
607 	if (tp->ca_ops->rtt_sample)
608 		tp->ca_ops->rtt_sample(tp, *usrtt);
609 }
610 
611 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
612  * routine referred to above.
613  */
614 static inline void tcp_set_rto(struct tcp_sock *tp)
615 {
616 	/* Old crap is replaced with new one. 8)
617 	 *
618 	 * More seriously:
619 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
620 	 *    It cannot be less due to utterly erratic ACK generation made
621 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
622 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
623 	 *    is invisible. Actually, Linux-2.4 also generates erratic
624 	 *    ACKs in some curcumstances.
625 	 */
626 	tp->rto = (tp->srtt >> 3) + tp->rttvar;
627 
628 	/* 2. Fixups made earlier cannot be right.
629 	 *    If we do not estimate RTO correctly without them,
630 	 *    all the algo is pure shit and should be replaced
631 	 *    with correct one. It is exaclty, which we pretend to do.
632 	 */
633 }
634 
635 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
636  * guarantees that rto is higher.
637  */
638 static inline void tcp_bound_rto(struct tcp_sock *tp)
639 {
640 	if (tp->rto > TCP_RTO_MAX)
641 		tp->rto = TCP_RTO_MAX;
642 }
643 
644 /* Save metrics learned by this TCP session.
645    This function is called only, when TCP finishes successfully
646    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
647  */
648 void tcp_update_metrics(struct sock *sk)
649 {
650 	struct tcp_sock *tp = tcp_sk(sk);
651 	struct dst_entry *dst = __sk_dst_get(sk);
652 
653 	if (sysctl_tcp_nometrics_save)
654 		return;
655 
656 	dst_confirm(dst);
657 
658 	if (dst && (dst->flags&DST_HOST)) {
659 		int m;
660 
661 		if (tp->backoff || !tp->srtt) {
662 			/* This session failed to estimate rtt. Why?
663 			 * Probably, no packets returned in time.
664 			 * Reset our results.
665 			 */
666 			if (!(dst_metric_locked(dst, RTAX_RTT)))
667 				dst->metrics[RTAX_RTT-1] = 0;
668 			return;
669 		}
670 
671 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
672 
673 		/* If newly calculated rtt larger than stored one,
674 		 * store new one. Otherwise, use EWMA. Remember,
675 		 * rtt overestimation is always better than underestimation.
676 		 */
677 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
678 			if (m <= 0)
679 				dst->metrics[RTAX_RTT-1] = tp->srtt;
680 			else
681 				dst->metrics[RTAX_RTT-1] -= (m>>3);
682 		}
683 
684 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
685 			if (m < 0)
686 				m = -m;
687 
688 			/* Scale deviation to rttvar fixed point */
689 			m >>= 1;
690 			if (m < tp->mdev)
691 				m = tp->mdev;
692 
693 			if (m >= dst_metric(dst, RTAX_RTTVAR))
694 				dst->metrics[RTAX_RTTVAR-1] = m;
695 			else
696 				dst->metrics[RTAX_RTTVAR-1] -=
697 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
698 		}
699 
700 		if (tp->snd_ssthresh >= 0xFFFF) {
701 			/* Slow start still did not finish. */
702 			if (dst_metric(dst, RTAX_SSTHRESH) &&
703 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
704 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
705 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
706 			if (!dst_metric_locked(dst, RTAX_CWND) &&
707 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
708 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
709 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
710 			   tp->ca_state == TCP_CA_Open) {
711 			/* Cong. avoidance phase, cwnd is reliable. */
712 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
713 				dst->metrics[RTAX_SSTHRESH-1] =
714 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
715 			if (!dst_metric_locked(dst, RTAX_CWND))
716 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
717 		} else {
718 			/* Else slow start did not finish, cwnd is non-sense,
719 			   ssthresh may be also invalid.
720 			 */
721 			if (!dst_metric_locked(dst, RTAX_CWND))
722 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
723 			if (dst->metrics[RTAX_SSTHRESH-1] &&
724 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
725 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
726 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
727 		}
728 
729 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
730 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
731 			    tp->reordering != sysctl_tcp_reordering)
732 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
733 		}
734 	}
735 }
736 
737 /* Numbers are taken from RFC2414.  */
738 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
739 {
740 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
741 
742 	if (!cwnd) {
743 		if (tp->mss_cache > 1460)
744 			cwnd = 2;
745 		else
746 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
747 	}
748 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
749 }
750 
751 /* Initialize metrics on socket. */
752 
753 static void tcp_init_metrics(struct sock *sk)
754 {
755 	struct tcp_sock *tp = tcp_sk(sk);
756 	struct dst_entry *dst = __sk_dst_get(sk);
757 
758 	if (dst == NULL)
759 		goto reset;
760 
761 	dst_confirm(dst);
762 
763 	if (dst_metric_locked(dst, RTAX_CWND))
764 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
765 	if (dst_metric(dst, RTAX_SSTHRESH)) {
766 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
767 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
768 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
769 	}
770 	if (dst_metric(dst, RTAX_REORDERING) &&
771 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
772 		tp->rx_opt.sack_ok &= ~2;
773 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
774 	}
775 
776 	if (dst_metric(dst, RTAX_RTT) == 0)
777 		goto reset;
778 
779 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
780 		goto reset;
781 
782 	/* Initial rtt is determined from SYN,SYN-ACK.
783 	 * The segment is small and rtt may appear much
784 	 * less than real one. Use per-dst memory
785 	 * to make it more realistic.
786 	 *
787 	 * A bit of theory. RTT is time passed after "normal" sized packet
788 	 * is sent until it is ACKed. In normal curcumstances sending small
789 	 * packets force peer to delay ACKs and calculation is correct too.
790 	 * The algorithm is adaptive and, provided we follow specs, it
791 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
792 	 * tricks sort of "quick acks" for time long enough to decrease RTT
793 	 * to low value, and then abruptly stops to do it and starts to delay
794 	 * ACKs, wait for troubles.
795 	 */
796 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
797 		tp->srtt = dst_metric(dst, RTAX_RTT);
798 		tp->rtt_seq = tp->snd_nxt;
799 	}
800 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
801 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
802 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
803 	}
804 	tcp_set_rto(tp);
805 	tcp_bound_rto(tp);
806 	if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
807 		goto reset;
808 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
809 	tp->snd_cwnd_stamp = tcp_time_stamp;
810 	return;
811 
812 reset:
813 	/* Play conservative. If timestamps are not
814 	 * supported, TCP will fail to recalculate correct
815 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
816 	 */
817 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
818 		tp->srtt = 0;
819 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
820 		tp->rto = TCP_TIMEOUT_INIT;
821 	}
822 }
823 
824 static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
825 {
826 	if (metric > tp->reordering) {
827 		tp->reordering = min(TCP_MAX_REORDERING, metric);
828 
829 		/* This exciting event is worth to be remembered. 8) */
830 		if (ts)
831 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
832 		else if (IsReno(tp))
833 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
834 		else if (IsFack(tp))
835 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
836 		else
837 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
838 #if FASTRETRANS_DEBUG > 1
839 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
840 		       tp->rx_opt.sack_ok, tp->ca_state,
841 		       tp->reordering,
842 		       tp->fackets_out,
843 		       tp->sacked_out,
844 		       tp->undo_marker ? tp->undo_retrans : 0);
845 #endif
846 		/* Disable FACK yet. */
847 		tp->rx_opt.sack_ok &= ~2;
848 	}
849 }
850 
851 /* This procedure tags the retransmission queue when SACKs arrive.
852  *
853  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
854  * Packets in queue with these bits set are counted in variables
855  * sacked_out, retrans_out and lost_out, correspondingly.
856  *
857  * Valid combinations are:
858  * Tag  InFlight	Description
859  * 0	1		- orig segment is in flight.
860  * S	0		- nothing flies, orig reached receiver.
861  * L	0		- nothing flies, orig lost by net.
862  * R	2		- both orig and retransmit are in flight.
863  * L|R	1		- orig is lost, retransmit is in flight.
864  * S|R  1		- orig reached receiver, retrans is still in flight.
865  * (L|S|R is logically valid, it could occur when L|R is sacked,
866  *  but it is equivalent to plain S and code short-curcuits it to S.
867  *  L|S is logically invalid, it would mean -1 packet in flight 8))
868  *
869  * These 6 states form finite state machine, controlled by the following events:
870  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
871  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
872  * 3. Loss detection event of one of three flavors:
873  *	A. Scoreboard estimator decided the packet is lost.
874  *	   A'. Reno "three dupacks" marks head of queue lost.
875  *	   A''. Its FACK modfication, head until snd.fack is lost.
876  *	B. SACK arrives sacking data transmitted after never retransmitted
877  *	   hole was sent out.
878  *	C. SACK arrives sacking SND.NXT at the moment, when the
879  *	   segment was retransmitted.
880  * 4. D-SACK added new rule: D-SACK changes any tag to S.
881  *
882  * It is pleasant to note, that state diagram turns out to be commutative,
883  * so that we are allowed not to be bothered by order of our actions,
884  * when multiple events arrive simultaneously. (see the function below).
885  *
886  * Reordering detection.
887  * --------------------
888  * Reordering metric is maximal distance, which a packet can be displaced
889  * in packet stream. With SACKs we can estimate it:
890  *
891  * 1. SACK fills old hole and the corresponding segment was not
892  *    ever retransmitted -> reordering. Alas, we cannot use it
893  *    when segment was retransmitted.
894  * 2. The last flaw is solved with D-SACK. D-SACK arrives
895  *    for retransmitted and already SACKed segment -> reordering..
896  * Both of these heuristics are not used in Loss state, when we cannot
897  * account for retransmits accurately.
898  */
899 static int
900 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
901 {
902 	struct tcp_sock *tp = tcp_sk(sk);
903 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
904 	struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
905 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
906 	int reord = tp->packets_out;
907 	int prior_fackets;
908 	u32 lost_retrans = 0;
909 	int flag = 0;
910 	int i;
911 
912 	/* So, SACKs for already sent large segments will be lost.
913 	 * Not good, but alternative is to resegment the queue. */
914 	if (sk->sk_route_caps & NETIF_F_TSO) {
915 		sk->sk_route_caps &= ~NETIF_F_TSO;
916 		sock_set_flag(sk, SOCK_NO_LARGESEND);
917 		tp->mss_cache = tp->mss_cache;
918 	}
919 
920 	if (!tp->sacked_out)
921 		tp->fackets_out = 0;
922 	prior_fackets = tp->fackets_out;
923 
924 	for (i=0; i<num_sacks; i++, sp++) {
925 		struct sk_buff *skb;
926 		__u32 start_seq = ntohl(sp->start_seq);
927 		__u32 end_seq = ntohl(sp->end_seq);
928 		int fack_count = 0;
929 		int dup_sack = 0;
930 
931 		/* Check for D-SACK. */
932 		if (i == 0) {
933 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
934 
935 			if (before(start_seq, ack)) {
936 				dup_sack = 1;
937 				tp->rx_opt.sack_ok |= 4;
938 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
939 			} else if (num_sacks > 1 &&
940 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
941 				   !before(start_seq, ntohl(sp[1].start_seq))) {
942 				dup_sack = 1;
943 				tp->rx_opt.sack_ok |= 4;
944 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
945 			}
946 
947 			/* D-SACK for already forgotten data...
948 			 * Do dumb counting. */
949 			if (dup_sack &&
950 			    !after(end_seq, prior_snd_una) &&
951 			    after(end_seq, tp->undo_marker))
952 				tp->undo_retrans--;
953 
954 			/* Eliminate too old ACKs, but take into
955 			 * account more or less fresh ones, they can
956 			 * contain valid SACK info.
957 			 */
958 			if (before(ack, prior_snd_una - tp->max_window))
959 				return 0;
960 		}
961 
962 		/* Event "B" in the comment above. */
963 		if (after(end_seq, tp->high_seq))
964 			flag |= FLAG_DATA_LOST;
965 
966 		sk_stream_for_retrans_queue(skb, sk) {
967 			u8 sacked = TCP_SKB_CB(skb)->sacked;
968 			int in_sack;
969 
970 			/* The retransmission queue is always in order, so
971 			 * we can short-circuit the walk early.
972 			 */
973 			if(!before(TCP_SKB_CB(skb)->seq, end_seq))
974 				break;
975 
976 			fack_count += tcp_skb_pcount(skb);
977 
978 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
979 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
980 
981 			/* Account D-SACK for retransmitted packet. */
982 			if ((dup_sack && in_sack) &&
983 			    (sacked & TCPCB_RETRANS) &&
984 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
985 				tp->undo_retrans--;
986 
987 			/* The frame is ACKed. */
988 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
989 				if (sacked&TCPCB_RETRANS) {
990 					if ((dup_sack && in_sack) &&
991 					    (sacked&TCPCB_SACKED_ACKED))
992 						reord = min(fack_count, reord);
993 				} else {
994 					/* If it was in a hole, we detected reordering. */
995 					if (fack_count < prior_fackets &&
996 					    !(sacked&TCPCB_SACKED_ACKED))
997 						reord = min(fack_count, reord);
998 				}
999 
1000 				/* Nothing to do; acked frame is about to be dropped. */
1001 				continue;
1002 			}
1003 
1004 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1005 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1006 			    (!lost_retrans || after(end_seq, lost_retrans)))
1007 				lost_retrans = end_seq;
1008 
1009 			if (!in_sack)
1010 				continue;
1011 
1012 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1013 				if (sacked & TCPCB_SACKED_RETRANS) {
1014 					/* If the segment is not tagged as lost,
1015 					 * we do not clear RETRANS, believing
1016 					 * that retransmission is still in flight.
1017 					 */
1018 					if (sacked & TCPCB_LOST) {
1019 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1020 						tp->lost_out -= tcp_skb_pcount(skb);
1021 						tp->retrans_out -= tcp_skb_pcount(skb);
1022 					}
1023 				} else {
1024 					/* New sack for not retransmitted frame,
1025 					 * which was in hole. It is reordering.
1026 					 */
1027 					if (!(sacked & TCPCB_RETRANS) &&
1028 					    fack_count < prior_fackets)
1029 						reord = min(fack_count, reord);
1030 
1031 					if (sacked & TCPCB_LOST) {
1032 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1033 						tp->lost_out -= tcp_skb_pcount(skb);
1034 					}
1035 				}
1036 
1037 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1038 				flag |= FLAG_DATA_SACKED;
1039 				tp->sacked_out += tcp_skb_pcount(skb);
1040 
1041 				if (fack_count > tp->fackets_out)
1042 					tp->fackets_out = fack_count;
1043 			} else {
1044 				if (dup_sack && (sacked&TCPCB_RETRANS))
1045 					reord = min(fack_count, reord);
1046 			}
1047 
1048 			/* D-SACK. We can detect redundant retransmission
1049 			 * in S|R and plain R frames and clear it.
1050 			 * undo_retrans is decreased above, L|R frames
1051 			 * are accounted above as well.
1052 			 */
1053 			if (dup_sack &&
1054 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1055 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1056 				tp->retrans_out -= tcp_skb_pcount(skb);
1057 			}
1058 		}
1059 	}
1060 
1061 	/* Check for lost retransmit. This superb idea is
1062 	 * borrowed from "ratehalving". Event "C".
1063 	 * Later note: FACK people cheated me again 8),
1064 	 * we have to account for reordering! Ugly,
1065 	 * but should help.
1066 	 */
1067 	if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
1068 		struct sk_buff *skb;
1069 
1070 		sk_stream_for_retrans_queue(skb, sk) {
1071 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1072 				break;
1073 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1074 				continue;
1075 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1076 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1077 			    (IsFack(tp) ||
1078 			     !before(lost_retrans,
1079 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1080 				     tp->mss_cache))) {
1081 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1082 				tp->retrans_out -= tcp_skb_pcount(skb);
1083 
1084 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1085 					tp->lost_out += tcp_skb_pcount(skb);
1086 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1087 					flag |= FLAG_DATA_SACKED;
1088 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1089 				}
1090 			}
1091 		}
1092 	}
1093 
1094 	tp->left_out = tp->sacked_out + tp->lost_out;
1095 
1096 	if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
1097 		tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
1098 
1099 #if FASTRETRANS_DEBUG > 0
1100 	BUG_TRAP((int)tp->sacked_out >= 0);
1101 	BUG_TRAP((int)tp->lost_out >= 0);
1102 	BUG_TRAP((int)tp->retrans_out >= 0);
1103 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1104 #endif
1105 	return flag;
1106 }
1107 
1108 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1109  * segments to see from the next ACKs whether any data was really missing.
1110  * If the RTO was spurious, new ACKs should arrive.
1111  */
1112 void tcp_enter_frto(struct sock *sk)
1113 {
1114 	struct tcp_sock *tp = tcp_sk(sk);
1115 	struct sk_buff *skb;
1116 
1117 	tp->frto_counter = 1;
1118 
1119 	if (tp->ca_state <= TCP_CA_Disorder ||
1120             tp->snd_una == tp->high_seq ||
1121             (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
1122 		tp->prior_ssthresh = tcp_current_ssthresh(tp);
1123 		tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1124 		tcp_ca_event(tp, CA_EVENT_FRTO);
1125 	}
1126 
1127 	/* Have to clear retransmission markers here to keep the bookkeeping
1128 	 * in shape, even though we are not yet in Loss state.
1129 	 * If something was really lost, it is eventually caught up
1130 	 * in tcp_enter_frto_loss.
1131 	 */
1132 	tp->retrans_out = 0;
1133 	tp->undo_marker = tp->snd_una;
1134 	tp->undo_retrans = 0;
1135 
1136 	sk_stream_for_retrans_queue(skb, sk) {
1137 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1138 	}
1139 	tcp_sync_left_out(tp);
1140 
1141 	tcp_set_ca_state(tp, TCP_CA_Open);
1142 	tp->frto_highmark = tp->snd_nxt;
1143 }
1144 
1145 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1146  * which indicates that we should follow the traditional RTO recovery,
1147  * i.e. mark everything lost and do go-back-N retransmission.
1148  */
1149 static void tcp_enter_frto_loss(struct sock *sk)
1150 {
1151 	struct tcp_sock *tp = tcp_sk(sk);
1152 	struct sk_buff *skb;
1153 	int cnt = 0;
1154 
1155 	tp->sacked_out = 0;
1156 	tp->lost_out = 0;
1157 	tp->fackets_out = 0;
1158 
1159 	sk_stream_for_retrans_queue(skb, sk) {
1160 		cnt += tcp_skb_pcount(skb);
1161 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1162 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1163 
1164 			/* Do not mark those segments lost that were
1165 			 * forward transmitted after RTO
1166 			 */
1167 			if (!after(TCP_SKB_CB(skb)->end_seq,
1168 				   tp->frto_highmark)) {
1169 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1170 				tp->lost_out += tcp_skb_pcount(skb);
1171 			}
1172 		} else {
1173 			tp->sacked_out += tcp_skb_pcount(skb);
1174 			tp->fackets_out = cnt;
1175 		}
1176 	}
1177 	tcp_sync_left_out(tp);
1178 
1179 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1180 	tp->snd_cwnd_cnt = 0;
1181 	tp->snd_cwnd_stamp = tcp_time_stamp;
1182 	tp->undo_marker = 0;
1183 	tp->frto_counter = 0;
1184 
1185 	tp->reordering = min_t(unsigned int, tp->reordering,
1186 					     sysctl_tcp_reordering);
1187 	tcp_set_ca_state(tp, TCP_CA_Loss);
1188 	tp->high_seq = tp->frto_highmark;
1189 	TCP_ECN_queue_cwr(tp);
1190 }
1191 
1192 void tcp_clear_retrans(struct tcp_sock *tp)
1193 {
1194 	tp->left_out = 0;
1195 	tp->retrans_out = 0;
1196 
1197 	tp->fackets_out = 0;
1198 	tp->sacked_out = 0;
1199 	tp->lost_out = 0;
1200 
1201 	tp->undo_marker = 0;
1202 	tp->undo_retrans = 0;
1203 }
1204 
1205 /* Enter Loss state. If "how" is not zero, forget all SACK information
1206  * and reset tags completely, otherwise preserve SACKs. If receiver
1207  * dropped its ofo queue, we will know this due to reneging detection.
1208  */
1209 void tcp_enter_loss(struct sock *sk, int how)
1210 {
1211 	struct tcp_sock *tp = tcp_sk(sk);
1212 	struct sk_buff *skb;
1213 	int cnt = 0;
1214 
1215 	/* Reduce ssthresh if it has not yet been made inside this window. */
1216 	if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1217 	    (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
1218 		tp->prior_ssthresh = tcp_current_ssthresh(tp);
1219 		tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1220 		tcp_ca_event(tp, CA_EVENT_LOSS);
1221 	}
1222 	tp->snd_cwnd	   = 1;
1223 	tp->snd_cwnd_cnt   = 0;
1224 	tp->snd_cwnd_stamp = tcp_time_stamp;
1225 
1226 	tcp_clear_retrans(tp);
1227 
1228 	/* Push undo marker, if it was plain RTO and nothing
1229 	 * was retransmitted. */
1230 	if (!how)
1231 		tp->undo_marker = tp->snd_una;
1232 
1233 	sk_stream_for_retrans_queue(skb, sk) {
1234 		cnt += tcp_skb_pcount(skb);
1235 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1236 			tp->undo_marker = 0;
1237 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1238 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1239 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1240 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1241 			tp->lost_out += tcp_skb_pcount(skb);
1242 		} else {
1243 			tp->sacked_out += tcp_skb_pcount(skb);
1244 			tp->fackets_out = cnt;
1245 		}
1246 	}
1247 	tcp_sync_left_out(tp);
1248 
1249 	tp->reordering = min_t(unsigned int, tp->reordering,
1250 					     sysctl_tcp_reordering);
1251 	tcp_set_ca_state(tp, TCP_CA_Loss);
1252 	tp->high_seq = tp->snd_nxt;
1253 	TCP_ECN_queue_cwr(tp);
1254 }
1255 
1256 static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp)
1257 {
1258 	struct sk_buff *skb;
1259 
1260 	/* If ACK arrived pointing to a remembered SACK,
1261 	 * it means that our remembered SACKs do not reflect
1262 	 * real state of receiver i.e.
1263 	 * receiver _host_ is heavily congested (or buggy).
1264 	 * Do processing similar to RTO timeout.
1265 	 */
1266 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1267 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1268 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1269 
1270 		tcp_enter_loss(sk, 1);
1271 		tp->retransmits++;
1272 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1273 		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1274 		return 1;
1275 	}
1276 	return 0;
1277 }
1278 
1279 static inline int tcp_fackets_out(struct tcp_sock *tp)
1280 {
1281 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1282 }
1283 
1284 static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb)
1285 {
1286 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto);
1287 }
1288 
1289 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1290 {
1291 	return tp->packets_out &&
1292 	       tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue));
1293 }
1294 
1295 /* Linux NewReno/SACK/FACK/ECN state machine.
1296  * --------------------------------------
1297  *
1298  * "Open"	Normal state, no dubious events, fast path.
1299  * "Disorder"   In all the respects it is "Open",
1300  *		but requires a bit more attention. It is entered when
1301  *		we see some SACKs or dupacks. It is split of "Open"
1302  *		mainly to move some processing from fast path to slow one.
1303  * "CWR"	CWND was reduced due to some Congestion Notification event.
1304  *		It can be ECN, ICMP source quench, local device congestion.
1305  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1306  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1307  *
1308  * tcp_fastretrans_alert() is entered:
1309  * - each incoming ACK, if state is not "Open"
1310  * - when arrived ACK is unusual, namely:
1311  *	* SACK
1312  *	* Duplicate ACK.
1313  *	* ECN ECE.
1314  *
1315  * Counting packets in flight is pretty simple.
1316  *
1317  *	in_flight = packets_out - left_out + retrans_out
1318  *
1319  *	packets_out is SND.NXT-SND.UNA counted in packets.
1320  *
1321  *	retrans_out is number of retransmitted segments.
1322  *
1323  *	left_out is number of segments left network, but not ACKed yet.
1324  *
1325  *		left_out = sacked_out + lost_out
1326  *
1327  *     sacked_out: Packets, which arrived to receiver out of order
1328  *		   and hence not ACKed. With SACKs this number is simply
1329  *		   amount of SACKed data. Even without SACKs
1330  *		   it is easy to give pretty reliable estimate of this number,
1331  *		   counting duplicate ACKs.
1332  *
1333  *       lost_out: Packets lost by network. TCP has no explicit
1334  *		   "loss notification" feedback from network (for now).
1335  *		   It means that this number can be only _guessed_.
1336  *		   Actually, it is the heuristics to predict lossage that
1337  *		   distinguishes different algorithms.
1338  *
1339  *	F.e. after RTO, when all the queue is considered as lost,
1340  *	lost_out = packets_out and in_flight = retrans_out.
1341  *
1342  *		Essentially, we have now two algorithms counting
1343  *		lost packets.
1344  *
1345  *		FACK: It is the simplest heuristics. As soon as we decided
1346  *		that something is lost, we decide that _all_ not SACKed
1347  *		packets until the most forward SACK are lost. I.e.
1348  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1349  *		It is absolutely correct estimate, if network does not reorder
1350  *		packets. And it loses any connection to reality when reordering
1351  *		takes place. We use FACK by default until reordering
1352  *		is suspected on the path to this destination.
1353  *
1354  *		NewReno: when Recovery is entered, we assume that one segment
1355  *		is lost (classic Reno). While we are in Recovery and
1356  *		a partial ACK arrives, we assume that one more packet
1357  *		is lost (NewReno). This heuristics are the same in NewReno
1358  *		and SACK.
1359  *
1360  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1361  *  deflation etc. CWND is real congestion window, never inflated, changes
1362  *  only according to classic VJ rules.
1363  *
1364  * Really tricky (and requiring careful tuning) part of algorithm
1365  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1366  * The first determines the moment _when_ we should reduce CWND and,
1367  * hence, slow down forward transmission. In fact, it determines the moment
1368  * when we decide that hole is caused by loss, rather than by a reorder.
1369  *
1370  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1371  * holes, caused by lost packets.
1372  *
1373  * And the most logically complicated part of algorithm is undo
1374  * heuristics. We detect false retransmits due to both too early
1375  * fast retransmit (reordering) and underestimated RTO, analyzing
1376  * timestamps and D-SACKs. When we detect that some segments were
1377  * retransmitted by mistake and CWND reduction was wrong, we undo
1378  * window reduction and abort recovery phase. This logic is hidden
1379  * inside several functions named tcp_try_undo_<something>.
1380  */
1381 
1382 /* This function decides, when we should leave Disordered state
1383  * and enter Recovery phase, reducing congestion window.
1384  *
1385  * Main question: may we further continue forward transmission
1386  * with the same cwnd?
1387  */
1388 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1389 {
1390 	__u32 packets_out;
1391 
1392 	/* Trick#1: The loss is proven. */
1393 	if (tp->lost_out)
1394 		return 1;
1395 
1396 	/* Not-A-Trick#2 : Classic rule... */
1397 	if (tcp_fackets_out(tp) > tp->reordering)
1398 		return 1;
1399 
1400 	/* Trick#3 : when we use RFC2988 timer restart, fast
1401 	 * retransmit can be triggered by timeout of queue head.
1402 	 */
1403 	if (tcp_head_timedout(sk, tp))
1404 		return 1;
1405 
1406 	/* Trick#4: It is still not OK... But will it be useful to delay
1407 	 * recovery more?
1408 	 */
1409 	packets_out = tp->packets_out;
1410 	if (packets_out <= tp->reordering &&
1411 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1412 	    !tcp_may_send_now(sk, tp)) {
1413 		/* We have nothing to send. This connection is limited
1414 		 * either by receiver window or by application.
1415 		 */
1416 		return 1;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 /* If we receive more dupacks than we expected counting segments
1423  * in assumption of absent reordering, interpret this as reordering.
1424  * The only another reason could be bug in receiver TCP.
1425  */
1426 static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
1427 {
1428 	u32 holes;
1429 
1430 	holes = max(tp->lost_out, 1U);
1431 	holes = min(holes, tp->packets_out);
1432 
1433 	if ((tp->sacked_out + holes) > tp->packets_out) {
1434 		tp->sacked_out = tp->packets_out - holes;
1435 		tcp_update_reordering(tp, tp->packets_out+addend, 0);
1436 	}
1437 }
1438 
1439 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1440 
1441 static void tcp_add_reno_sack(struct tcp_sock *tp)
1442 {
1443 	tp->sacked_out++;
1444 	tcp_check_reno_reordering(tp, 0);
1445 	tcp_sync_left_out(tp);
1446 }
1447 
1448 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1449 
1450 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1451 {
1452 	if (acked > 0) {
1453 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1454 		if (acked-1 >= tp->sacked_out)
1455 			tp->sacked_out = 0;
1456 		else
1457 			tp->sacked_out -= acked-1;
1458 	}
1459 	tcp_check_reno_reordering(tp, acked);
1460 	tcp_sync_left_out(tp);
1461 }
1462 
1463 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1464 {
1465 	tp->sacked_out = 0;
1466 	tp->left_out = tp->lost_out;
1467 }
1468 
1469 /* Mark head of queue up as lost. */
1470 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1471 			       int packets, u32 high_seq)
1472 {
1473 	struct sk_buff *skb;
1474 	int cnt = packets;
1475 
1476 	BUG_TRAP(cnt <= tp->packets_out);
1477 
1478 	sk_stream_for_retrans_queue(skb, sk) {
1479 		cnt -= tcp_skb_pcount(skb);
1480 		if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1481 			break;
1482 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1483 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1484 			tp->lost_out += tcp_skb_pcount(skb);
1485 		}
1486 	}
1487 	tcp_sync_left_out(tp);
1488 }
1489 
1490 /* Account newly detected lost packet(s) */
1491 
1492 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1493 {
1494 	if (IsFack(tp)) {
1495 		int lost = tp->fackets_out - tp->reordering;
1496 		if (lost <= 0)
1497 			lost = 1;
1498 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1499 	} else {
1500 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1501 	}
1502 
1503 	/* New heuristics: it is possible only after we switched
1504 	 * to restart timer each time when something is ACKed.
1505 	 * Hence, we can detect timed out packets during fast
1506 	 * retransmit without falling to slow start.
1507 	 */
1508 	if (tcp_head_timedout(sk, tp)) {
1509 		struct sk_buff *skb;
1510 
1511 		sk_stream_for_retrans_queue(skb, sk) {
1512 			if (tcp_skb_timedout(tp, skb) &&
1513 			    !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1514 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1515 				tp->lost_out += tcp_skb_pcount(skb);
1516 			}
1517 		}
1518 		tcp_sync_left_out(tp);
1519 	}
1520 }
1521 
1522 /* CWND moderation, preventing bursts due to too big ACKs
1523  * in dubious situations.
1524  */
1525 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1526 {
1527 	tp->snd_cwnd = min(tp->snd_cwnd,
1528 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1529 	tp->snd_cwnd_stamp = tcp_time_stamp;
1530 }
1531 
1532 /* Decrease cwnd each second ack. */
1533 static void tcp_cwnd_down(struct tcp_sock *tp)
1534 {
1535 	int decr = tp->snd_cwnd_cnt + 1;
1536 
1537 	tp->snd_cwnd_cnt = decr&1;
1538 	decr >>= 1;
1539 
1540 	if (decr && tp->snd_cwnd > tp->ca_ops->min_cwnd(tp))
1541 		tp->snd_cwnd -= decr;
1542 
1543 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1544 	tp->snd_cwnd_stamp = tcp_time_stamp;
1545 }
1546 
1547 /* Nothing was retransmitted or returned timestamp is less
1548  * than timestamp of the first retransmission.
1549  */
1550 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1551 {
1552 	return !tp->retrans_stamp ||
1553 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1554 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1555 }
1556 
1557 /* Undo procedures. */
1558 
1559 #if FASTRETRANS_DEBUG > 1
1560 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1561 {
1562 	struct inet_sock *inet = inet_sk(sk);
1563 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1564 	       msg,
1565 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1566 	       tp->snd_cwnd, tp->left_out,
1567 	       tp->snd_ssthresh, tp->prior_ssthresh,
1568 	       tp->packets_out);
1569 }
1570 #else
1571 #define DBGUNDO(x...) do { } while (0)
1572 #endif
1573 
1574 static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
1575 {
1576 	if (tp->prior_ssthresh) {
1577 		if (tp->ca_ops->undo_cwnd)
1578 			tp->snd_cwnd = tp->ca_ops->undo_cwnd(tp);
1579 		else
1580 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1581 
1582 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1583 			tp->snd_ssthresh = tp->prior_ssthresh;
1584 			TCP_ECN_withdraw_cwr(tp);
1585 		}
1586 	} else {
1587 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1588 	}
1589 	tcp_moderate_cwnd(tp);
1590 	tp->snd_cwnd_stamp = tcp_time_stamp;
1591 }
1592 
1593 static inline int tcp_may_undo(struct tcp_sock *tp)
1594 {
1595 	return tp->undo_marker &&
1596 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1597 }
1598 
1599 /* People celebrate: "We love our President!" */
1600 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1601 {
1602 	if (tcp_may_undo(tp)) {
1603 		/* Happy end! We did not retransmit anything
1604 		 * or our original transmission succeeded.
1605 		 */
1606 		DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
1607 		tcp_undo_cwr(tp, 1);
1608 		if (tp->ca_state == TCP_CA_Loss)
1609 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1610 		else
1611 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1612 		tp->undo_marker = 0;
1613 	}
1614 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1615 		/* Hold old state until something *above* high_seq
1616 		 * is ACKed. For Reno it is MUST to prevent false
1617 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1618 		tcp_moderate_cwnd(tp);
1619 		return 1;
1620 	}
1621 	tcp_set_ca_state(tp, TCP_CA_Open);
1622 	return 0;
1623 }
1624 
1625 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1626 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1627 {
1628 	if (tp->undo_marker && !tp->undo_retrans) {
1629 		DBGUNDO(sk, tp, "D-SACK");
1630 		tcp_undo_cwr(tp, 1);
1631 		tp->undo_marker = 0;
1632 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1633 	}
1634 }
1635 
1636 /* Undo during fast recovery after partial ACK. */
1637 
1638 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1639 				int acked)
1640 {
1641 	/* Partial ACK arrived. Force Hoe's retransmit. */
1642 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1643 
1644 	if (tcp_may_undo(tp)) {
1645 		/* Plain luck! Hole if filled with delayed
1646 		 * packet, rather than with a retransmit.
1647 		 */
1648 		if (tp->retrans_out == 0)
1649 			tp->retrans_stamp = 0;
1650 
1651 		tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
1652 
1653 		DBGUNDO(sk, tp, "Hoe");
1654 		tcp_undo_cwr(tp, 0);
1655 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1656 
1657 		/* So... Do not make Hoe's retransmit yet.
1658 		 * If the first packet was delayed, the rest
1659 		 * ones are most probably delayed as well.
1660 		 */
1661 		failed = 0;
1662 	}
1663 	return failed;
1664 }
1665 
1666 /* Undo during loss recovery after partial ACK. */
1667 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1668 {
1669 	if (tcp_may_undo(tp)) {
1670 		struct sk_buff *skb;
1671 		sk_stream_for_retrans_queue(skb, sk) {
1672 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1673 		}
1674 		DBGUNDO(sk, tp, "partial loss");
1675 		tp->lost_out = 0;
1676 		tp->left_out = tp->sacked_out;
1677 		tcp_undo_cwr(tp, 1);
1678 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1679 		tp->retransmits = 0;
1680 		tp->undo_marker = 0;
1681 		if (!IsReno(tp))
1682 			tcp_set_ca_state(tp, TCP_CA_Open);
1683 		return 1;
1684 	}
1685 	return 0;
1686 }
1687 
1688 static inline void tcp_complete_cwr(struct tcp_sock *tp)
1689 {
1690 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1691 	tp->snd_cwnd_stamp = tcp_time_stamp;
1692 	tcp_ca_event(tp, CA_EVENT_COMPLETE_CWR);
1693 }
1694 
1695 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1696 {
1697 	tp->left_out = tp->sacked_out;
1698 
1699 	if (tp->retrans_out == 0)
1700 		tp->retrans_stamp = 0;
1701 
1702 	if (flag&FLAG_ECE)
1703 		tcp_enter_cwr(tp);
1704 
1705 	if (tp->ca_state != TCP_CA_CWR) {
1706 		int state = TCP_CA_Open;
1707 
1708 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1709 			state = TCP_CA_Disorder;
1710 
1711 		if (tp->ca_state != state) {
1712 			tcp_set_ca_state(tp, state);
1713 			tp->high_seq = tp->snd_nxt;
1714 		}
1715 		tcp_moderate_cwnd(tp);
1716 	} else {
1717 		tcp_cwnd_down(tp);
1718 	}
1719 }
1720 
1721 /* Process an event, which can update packets-in-flight not trivially.
1722  * Main goal of this function is to calculate new estimate for left_out,
1723  * taking into account both packets sitting in receiver's buffer and
1724  * packets lost by network.
1725  *
1726  * Besides that it does CWND reduction, when packet loss is detected
1727  * and changes state of machine.
1728  *
1729  * It does _not_ decide what to send, it is made in function
1730  * tcp_xmit_retransmit_queue().
1731  */
1732 static void
1733 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1734 		      int prior_packets, int flag)
1735 {
1736 	struct tcp_sock *tp = tcp_sk(sk);
1737 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1738 
1739 	/* Some technical things:
1740 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1741 	if (!tp->packets_out)
1742 		tp->sacked_out = 0;
1743         /* 2. SACK counts snd_fack in packets inaccurately. */
1744 	if (tp->sacked_out == 0)
1745 		tp->fackets_out = 0;
1746 
1747         /* Now state machine starts.
1748 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1749 	if (flag&FLAG_ECE)
1750 		tp->prior_ssthresh = 0;
1751 
1752 	/* B. In all the states check for reneging SACKs. */
1753 	if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
1754 		return;
1755 
1756 	/* C. Process data loss notification, provided it is valid. */
1757 	if ((flag&FLAG_DATA_LOST) &&
1758 	    before(tp->snd_una, tp->high_seq) &&
1759 	    tp->ca_state != TCP_CA_Open &&
1760 	    tp->fackets_out > tp->reordering) {
1761 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1762 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1763 	}
1764 
1765 	/* D. Synchronize left_out to current state. */
1766 	tcp_sync_left_out(tp);
1767 
1768 	/* E. Check state exit conditions. State can be terminated
1769 	 *    when high_seq is ACKed. */
1770 	if (tp->ca_state == TCP_CA_Open) {
1771 		if (!sysctl_tcp_frto)
1772 			BUG_TRAP(tp->retrans_out == 0);
1773 		tp->retrans_stamp = 0;
1774 	} else if (!before(tp->snd_una, tp->high_seq)) {
1775 		switch (tp->ca_state) {
1776 		case TCP_CA_Loss:
1777 			tp->retransmits = 0;
1778 			if (tcp_try_undo_recovery(sk, tp))
1779 				return;
1780 			break;
1781 
1782 		case TCP_CA_CWR:
1783 			/* CWR is to be held something *above* high_seq
1784 			 * is ACKed for CWR bit to reach receiver. */
1785 			if (tp->snd_una != tp->high_seq) {
1786 				tcp_complete_cwr(tp);
1787 				tcp_set_ca_state(tp, TCP_CA_Open);
1788 			}
1789 			break;
1790 
1791 		case TCP_CA_Disorder:
1792 			tcp_try_undo_dsack(sk, tp);
1793 			if (!tp->undo_marker ||
1794 			    /* For SACK case do not Open to allow to undo
1795 			     * catching for all duplicate ACKs. */
1796 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
1797 				tp->undo_marker = 0;
1798 				tcp_set_ca_state(tp, TCP_CA_Open);
1799 			}
1800 			break;
1801 
1802 		case TCP_CA_Recovery:
1803 			if (IsReno(tp))
1804 				tcp_reset_reno_sack(tp);
1805 			if (tcp_try_undo_recovery(sk, tp))
1806 				return;
1807 			tcp_complete_cwr(tp);
1808 			break;
1809 		}
1810 	}
1811 
1812 	/* F. Process state. */
1813 	switch (tp->ca_state) {
1814 	case TCP_CA_Recovery:
1815 		if (prior_snd_una == tp->snd_una) {
1816 			if (IsReno(tp) && is_dupack)
1817 				tcp_add_reno_sack(tp);
1818 		} else {
1819 			int acked = prior_packets - tp->packets_out;
1820 			if (IsReno(tp))
1821 				tcp_remove_reno_sacks(sk, tp, acked);
1822 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
1823 		}
1824 		break;
1825 	case TCP_CA_Loss:
1826 		if (flag&FLAG_DATA_ACKED)
1827 			tp->retransmits = 0;
1828 		if (!tcp_try_undo_loss(sk, tp)) {
1829 			tcp_moderate_cwnd(tp);
1830 			tcp_xmit_retransmit_queue(sk);
1831 			return;
1832 		}
1833 		if (tp->ca_state != TCP_CA_Open)
1834 			return;
1835 		/* Loss is undone; fall through to processing in Open state. */
1836 	default:
1837 		if (IsReno(tp)) {
1838 			if (tp->snd_una != prior_snd_una)
1839 				tcp_reset_reno_sack(tp);
1840 			if (is_dupack)
1841 				tcp_add_reno_sack(tp);
1842 		}
1843 
1844 		if (tp->ca_state == TCP_CA_Disorder)
1845 			tcp_try_undo_dsack(sk, tp);
1846 
1847 		if (!tcp_time_to_recover(sk, tp)) {
1848 			tcp_try_to_open(sk, tp, flag);
1849 			return;
1850 		}
1851 
1852 		/* Otherwise enter Recovery state */
1853 
1854 		if (IsReno(tp))
1855 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1856 		else
1857 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1858 
1859 		tp->high_seq = tp->snd_nxt;
1860 		tp->prior_ssthresh = 0;
1861 		tp->undo_marker = tp->snd_una;
1862 		tp->undo_retrans = tp->retrans_out;
1863 
1864 		if (tp->ca_state < TCP_CA_CWR) {
1865 			if (!(flag&FLAG_ECE))
1866 				tp->prior_ssthresh = tcp_current_ssthresh(tp);
1867 			tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1868 			TCP_ECN_queue_cwr(tp);
1869 		}
1870 
1871 		tp->snd_cwnd_cnt = 0;
1872 		tcp_set_ca_state(tp, TCP_CA_Recovery);
1873 	}
1874 
1875 	if (is_dupack || tcp_head_timedout(sk, tp))
1876 		tcp_update_scoreboard(sk, tp);
1877 	tcp_cwnd_down(tp);
1878 	tcp_xmit_retransmit_queue(sk);
1879 }
1880 
1881 /* Read draft-ietf-tcplw-high-performance before mucking
1882  * with this code. (Superceeds RFC1323)
1883  */
1884 static void tcp_ack_saw_tstamp(struct tcp_sock *tp, u32 *usrtt, int flag)
1885 {
1886 	__u32 seq_rtt;
1887 
1888 	/* RTTM Rule: A TSecr value received in a segment is used to
1889 	 * update the averaged RTT measurement only if the segment
1890 	 * acknowledges some new data, i.e., only if it advances the
1891 	 * left edge of the send window.
1892 	 *
1893 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1894 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1895 	 *
1896 	 * Changed: reset backoff as soon as we see the first valid sample.
1897 	 * If we do not, we get strongly overstimated rto. With timestamps
1898 	 * samples are accepted even from very old segments: f.e., when rtt=1
1899 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1900 	 * answer arrives rto becomes 120 seconds! If at least one of segments
1901 	 * in window is lost... Voila.	 			--ANK (010210)
1902 	 */
1903 	seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1904 	tcp_rtt_estimator(tp, seq_rtt, usrtt);
1905 	tcp_set_rto(tp);
1906 	tp->backoff = 0;
1907 	tcp_bound_rto(tp);
1908 }
1909 
1910 static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, u32 *usrtt, int flag)
1911 {
1912 	/* We don't have a timestamp. Can only use
1913 	 * packets that are not retransmitted to determine
1914 	 * rtt estimates. Also, we must not reset the
1915 	 * backoff for rto until we get a non-retransmitted
1916 	 * packet. This allows us to deal with a situation
1917 	 * where the network delay has increased suddenly.
1918 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1919 	 */
1920 
1921 	if (flag & FLAG_RETRANS_DATA_ACKED)
1922 		return;
1923 
1924 	tcp_rtt_estimator(tp, seq_rtt, usrtt);
1925 	tcp_set_rto(tp);
1926 	tp->backoff = 0;
1927 	tcp_bound_rto(tp);
1928 }
1929 
1930 static inline void tcp_ack_update_rtt(struct tcp_sock *tp,
1931 				      int flag, s32 seq_rtt, u32 *usrtt)
1932 {
1933 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1934 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1935 		tcp_ack_saw_tstamp(tp, usrtt, flag);
1936 	else if (seq_rtt >= 0)
1937 		tcp_ack_no_tstamp(tp, seq_rtt, usrtt, flag);
1938 }
1939 
1940 static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
1941 				  u32 in_flight, int good)
1942 {
1943 	tp->ca_ops->cong_avoid(tp, ack, rtt, in_flight, good);
1944 	tp->snd_cwnd_stamp = tcp_time_stamp;
1945 }
1946 
1947 /* Restart timer after forward progress on connection.
1948  * RFC2988 recommends to restart timer to now+rto.
1949  */
1950 
1951 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1952 {
1953 	if (!tp->packets_out) {
1954 		tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
1955 	} else {
1956 		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1957 	}
1958 }
1959 
1960 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1961 			 __u32 now, __s32 *seq_rtt)
1962 {
1963 	struct tcp_sock *tp = tcp_sk(sk);
1964 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1965 	__u32 seq = tp->snd_una;
1966 	__u32 packets_acked;
1967 	int acked = 0;
1968 
1969 	/* If we get here, the whole TSO packet has not been
1970 	 * acked.
1971 	 */
1972 	BUG_ON(!after(scb->end_seq, seq));
1973 
1974 	packets_acked = tcp_skb_pcount(skb);
1975 	if (tcp_trim_head(sk, skb, seq - scb->seq))
1976 		return 0;
1977 	packets_acked -= tcp_skb_pcount(skb);
1978 
1979 	if (packets_acked) {
1980 		__u8 sacked = scb->sacked;
1981 
1982 		acked |= FLAG_DATA_ACKED;
1983 		if (sacked) {
1984 			if (sacked & TCPCB_RETRANS) {
1985 				if (sacked & TCPCB_SACKED_RETRANS)
1986 					tp->retrans_out -= packets_acked;
1987 				acked |= FLAG_RETRANS_DATA_ACKED;
1988 				*seq_rtt = -1;
1989 			} else if (*seq_rtt < 0)
1990 				*seq_rtt = now - scb->when;
1991 			if (sacked & TCPCB_SACKED_ACKED)
1992 				tp->sacked_out -= packets_acked;
1993 			if (sacked & TCPCB_LOST)
1994 				tp->lost_out -= packets_acked;
1995 			if (sacked & TCPCB_URG) {
1996 				if (tp->urg_mode &&
1997 				    !before(seq, tp->snd_up))
1998 					tp->urg_mode = 0;
1999 			}
2000 		} else if (*seq_rtt < 0)
2001 			*seq_rtt = now - scb->when;
2002 
2003 		if (tp->fackets_out) {
2004 			__u32 dval = min(tp->fackets_out, packets_acked);
2005 			tp->fackets_out -= dval;
2006 		}
2007 		tp->packets_out -= packets_acked;
2008 
2009 		BUG_ON(tcp_skb_pcount(skb) == 0);
2010 		BUG_ON(!before(scb->seq, scb->end_seq));
2011 	}
2012 
2013 	return acked;
2014 }
2015 
2016 
2017 /* Remove acknowledged frames from the retransmission queue. */
2018 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
2019 {
2020 	struct tcp_sock *tp = tcp_sk(sk);
2021 	struct sk_buff *skb;
2022 	__u32 now = tcp_time_stamp;
2023 	int acked = 0;
2024 	__s32 seq_rtt = -1;
2025 	struct timeval usnow;
2026 	u32 pkts_acked = 0;
2027 
2028 	if (seq_usrtt)
2029 		do_gettimeofday(&usnow);
2030 
2031 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2032 	       skb != sk->sk_send_head) {
2033 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2034 		__u8 sacked = scb->sacked;
2035 
2036 		/* If our packet is before the ack sequence we can
2037 		 * discard it as it's confirmed to have arrived at
2038 		 * the other end.
2039 		 */
2040 		if (after(scb->end_seq, tp->snd_una)) {
2041 			if (tcp_skb_pcount(skb) > 1 &&
2042 			    after(tp->snd_una, scb->seq))
2043 				acked |= tcp_tso_acked(sk, skb,
2044 						       now, &seq_rtt);
2045 			break;
2046 		}
2047 
2048 		/* Initial outgoing SYN's get put onto the write_queue
2049 		 * just like anything else we transmit.  It is not
2050 		 * true data, and if we misinform our callers that
2051 		 * this ACK acks real data, we will erroneously exit
2052 		 * connection startup slow start one packet too
2053 		 * quickly.  This is severely frowned upon behavior.
2054 		 */
2055 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2056 			acked |= FLAG_DATA_ACKED;
2057 			++pkts_acked;
2058 		} else {
2059 			acked |= FLAG_SYN_ACKED;
2060 			tp->retrans_stamp = 0;
2061 		}
2062 
2063 		if (sacked) {
2064 			if (sacked & TCPCB_RETRANS) {
2065 				if(sacked & TCPCB_SACKED_RETRANS)
2066 					tp->retrans_out -= tcp_skb_pcount(skb);
2067 				acked |= FLAG_RETRANS_DATA_ACKED;
2068 				seq_rtt = -1;
2069 			} else if (seq_rtt < 0)
2070 				seq_rtt = now - scb->when;
2071 			if (seq_usrtt)
2072 				*seq_usrtt = (usnow.tv_sec - skb->stamp.tv_sec) * 1000000
2073 					+ (usnow.tv_usec - skb->stamp.tv_usec);
2074 
2075 			if (sacked & TCPCB_SACKED_ACKED)
2076 				tp->sacked_out -= tcp_skb_pcount(skb);
2077 			if (sacked & TCPCB_LOST)
2078 				tp->lost_out -= tcp_skb_pcount(skb);
2079 			if (sacked & TCPCB_URG) {
2080 				if (tp->urg_mode &&
2081 				    !before(scb->end_seq, tp->snd_up))
2082 					tp->urg_mode = 0;
2083 			}
2084 		} else if (seq_rtt < 0)
2085 			seq_rtt = now - scb->when;
2086 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2087 		tcp_packets_out_dec(tp, skb);
2088 		__skb_unlink(skb, skb->list);
2089 		sk_stream_free_skb(sk, skb);
2090 	}
2091 
2092 	if (acked&FLAG_ACKED) {
2093 		tcp_ack_update_rtt(tp, acked, seq_rtt, seq_usrtt);
2094 		tcp_ack_packets_out(sk, tp);
2095 
2096 		if (tp->ca_ops->pkts_acked)
2097 			tp->ca_ops->pkts_acked(tp, pkts_acked);
2098 	}
2099 
2100 #if FASTRETRANS_DEBUG > 0
2101 	BUG_TRAP((int)tp->sacked_out >= 0);
2102 	BUG_TRAP((int)tp->lost_out >= 0);
2103 	BUG_TRAP((int)tp->retrans_out >= 0);
2104 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2105 		if (tp->lost_out) {
2106 			printk(KERN_DEBUG "Leak l=%u %d\n",
2107 			       tp->lost_out, tp->ca_state);
2108 			tp->lost_out = 0;
2109 		}
2110 		if (tp->sacked_out) {
2111 			printk(KERN_DEBUG "Leak s=%u %d\n",
2112 			       tp->sacked_out, tp->ca_state);
2113 			tp->sacked_out = 0;
2114 		}
2115 		if (tp->retrans_out) {
2116 			printk(KERN_DEBUG "Leak r=%u %d\n",
2117 			       tp->retrans_out, tp->ca_state);
2118 			tp->retrans_out = 0;
2119 		}
2120 	}
2121 #endif
2122 	*seq_rtt_p = seq_rtt;
2123 	return acked;
2124 }
2125 
2126 static void tcp_ack_probe(struct sock *sk)
2127 {
2128 	struct tcp_sock *tp = tcp_sk(sk);
2129 
2130 	/* Was it a usable window open? */
2131 
2132 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2133 		   tp->snd_una + tp->snd_wnd)) {
2134 		tp->backoff = 0;
2135 		tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
2136 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2137 		 * This function is not for random using!
2138 		 */
2139 	} else {
2140 		tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
2141 				     min(tp->rto << tp->backoff, TCP_RTO_MAX));
2142 	}
2143 }
2144 
2145 static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
2146 {
2147 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2148 		tp->ca_state != TCP_CA_Open);
2149 }
2150 
2151 static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
2152 {
2153 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2154 		!((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
2155 }
2156 
2157 /* Check that window update is acceptable.
2158  * The function assumes that snd_una<=ack<=snd_next.
2159  */
2160 static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack,
2161 					u32 ack_seq, u32 nwin)
2162 {
2163 	return (after(ack, tp->snd_una) ||
2164 		after(ack_seq, tp->snd_wl1) ||
2165 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2166 }
2167 
2168 /* Update our send window.
2169  *
2170  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2171  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2172  */
2173 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2174 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2175 {
2176 	int flag = 0;
2177 	u32 nwin = ntohs(skb->h.th->window);
2178 
2179 	if (likely(!skb->h.th->syn))
2180 		nwin <<= tp->rx_opt.snd_wscale;
2181 
2182 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2183 		flag |= FLAG_WIN_UPDATE;
2184 		tcp_update_wl(tp, ack, ack_seq);
2185 
2186 		if (tp->snd_wnd != nwin) {
2187 			tp->snd_wnd = nwin;
2188 
2189 			/* Note, it is the only place, where
2190 			 * fast path is recovered for sending TCP.
2191 			 */
2192 			tcp_fast_path_check(sk, tp);
2193 
2194 			if (nwin > tp->max_window) {
2195 				tp->max_window = nwin;
2196 				tcp_sync_mss(sk, tp->pmtu_cookie);
2197 			}
2198 		}
2199 	}
2200 
2201 	tp->snd_una = ack;
2202 
2203 	return flag;
2204 }
2205 
2206 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2207 {
2208 	struct tcp_sock *tp = tcp_sk(sk);
2209 
2210 	tcp_sync_left_out(tp);
2211 
2212 	if (tp->snd_una == prior_snd_una ||
2213 	    !before(tp->snd_una, tp->frto_highmark)) {
2214 		/* RTO was caused by loss, start retransmitting in
2215 		 * go-back-N slow start
2216 		 */
2217 		tcp_enter_frto_loss(sk);
2218 		return;
2219 	}
2220 
2221 	if (tp->frto_counter == 1) {
2222 		/* First ACK after RTO advances the window: allow two new
2223 		 * segments out.
2224 		 */
2225 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2226 	} else {
2227 		/* Also the second ACK after RTO advances the window.
2228 		 * The RTO was likely spurious. Reduce cwnd and continue
2229 		 * in congestion avoidance
2230 		 */
2231 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2232 		tcp_moderate_cwnd(tp);
2233 	}
2234 
2235 	/* F-RTO affects on two new ACKs following RTO.
2236 	 * At latest on third ACK the TCP behavor is back to normal.
2237 	 */
2238 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2239 }
2240 
2241 /* This routine deals with incoming acks, but not outgoing ones. */
2242 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2243 {
2244 	struct tcp_sock *tp = tcp_sk(sk);
2245 	u32 prior_snd_una = tp->snd_una;
2246 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2247 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2248 	u32 prior_in_flight;
2249 	s32 seq_rtt;
2250 	s32 seq_usrtt = 0;
2251 	int prior_packets;
2252 
2253 	/* If the ack is newer than sent or older than previous acks
2254 	 * then we can probably ignore it.
2255 	 */
2256 	if (after(ack, tp->snd_nxt))
2257 		goto uninteresting_ack;
2258 
2259 	if (before(ack, prior_snd_una))
2260 		goto old_ack;
2261 
2262 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2263 		/* Window is constant, pure forward advance.
2264 		 * No more checks are required.
2265 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2266 		 */
2267 		tcp_update_wl(tp, ack, ack_seq);
2268 		tp->snd_una = ack;
2269 		flag |= FLAG_WIN_UPDATE;
2270 
2271 		tcp_ca_event(tp, CA_EVENT_FAST_ACK);
2272 
2273 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2274 	} else {
2275 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2276 			flag |= FLAG_DATA;
2277 		else
2278 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2279 
2280 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2281 
2282 		if (TCP_SKB_CB(skb)->sacked)
2283 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2284 
2285 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2286 			flag |= FLAG_ECE;
2287 
2288 		tcp_ca_event(tp, CA_EVENT_SLOW_ACK);
2289 	}
2290 
2291 	/* We passed data and got it acked, remove any soft error
2292 	 * log. Something worked...
2293 	 */
2294 	sk->sk_err_soft = 0;
2295 	tp->rcv_tstamp = tcp_time_stamp;
2296 	prior_packets = tp->packets_out;
2297 	if (!prior_packets)
2298 		goto no_queue;
2299 
2300 	prior_in_flight = tcp_packets_in_flight(tp);
2301 
2302 	/* See if we can take anything off of the retransmit queue. */
2303 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
2304 				    tp->ca_ops->rtt_sample ? &seq_usrtt : NULL);
2305 
2306 	if (tp->frto_counter)
2307 		tcp_process_frto(sk, prior_snd_una);
2308 
2309 	if (tcp_ack_is_dubious(tp, flag)) {
2310 		/* Advanve CWND, if state allows this. */
2311 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(tp, flag))
2312 			tcp_cong_avoid(tp, ack,  seq_rtt, prior_in_flight, 0);
2313 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2314 	} else {
2315 		if ((flag & FLAG_DATA_ACKED))
2316 			tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 1);
2317 	}
2318 
2319 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2320 		dst_confirm(sk->sk_dst_cache);
2321 
2322 	return 1;
2323 
2324 no_queue:
2325 	tp->probes_out = 0;
2326 
2327 	/* If this ack opens up a zero window, clear backoff.  It was
2328 	 * being used to time the probes, and is probably far higher than
2329 	 * it needs to be for normal retransmission.
2330 	 */
2331 	if (sk->sk_send_head)
2332 		tcp_ack_probe(sk);
2333 	return 1;
2334 
2335 old_ack:
2336 	if (TCP_SKB_CB(skb)->sacked)
2337 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2338 
2339 uninteresting_ack:
2340 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2341 	return 0;
2342 }
2343 
2344 
2345 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2346  * But, this can also be called on packets in the established flow when
2347  * the fast version below fails.
2348  */
2349 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2350 {
2351 	unsigned char *ptr;
2352 	struct tcphdr *th = skb->h.th;
2353 	int length=(th->doff*4)-sizeof(struct tcphdr);
2354 
2355 	ptr = (unsigned char *)(th + 1);
2356 	opt_rx->saw_tstamp = 0;
2357 
2358 	while(length>0) {
2359 	  	int opcode=*ptr++;
2360 		int opsize;
2361 
2362 		switch (opcode) {
2363 			case TCPOPT_EOL:
2364 				return;
2365 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2366 				length--;
2367 				continue;
2368 			default:
2369 				opsize=*ptr++;
2370 				if (opsize < 2) /* "silly options" */
2371 					return;
2372 				if (opsize > length)
2373 					return;	/* don't parse partial options */
2374 	  			switch(opcode) {
2375 				case TCPOPT_MSS:
2376 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2377 						u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2378 						if (in_mss) {
2379 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2380 								in_mss = opt_rx->user_mss;
2381 							opt_rx->mss_clamp = in_mss;
2382 						}
2383 					}
2384 					break;
2385 				case TCPOPT_WINDOW:
2386 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2387 						if (sysctl_tcp_window_scaling) {
2388 							__u8 snd_wscale = *(__u8 *) ptr;
2389 							opt_rx->wscale_ok = 1;
2390 							if (snd_wscale > 14) {
2391 								if(net_ratelimit())
2392 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2393 									       "scaling value %d >14 received.\n",
2394 									       snd_wscale);
2395 								snd_wscale = 14;
2396 							}
2397 							opt_rx->snd_wscale = snd_wscale;
2398 						}
2399 					break;
2400 				case TCPOPT_TIMESTAMP:
2401 					if(opsize==TCPOLEN_TIMESTAMP) {
2402 						if ((estab && opt_rx->tstamp_ok) ||
2403 						    (!estab && sysctl_tcp_timestamps)) {
2404 							opt_rx->saw_tstamp = 1;
2405 							opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2406 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2407 						}
2408 					}
2409 					break;
2410 				case TCPOPT_SACK_PERM:
2411 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2412 						if (sysctl_tcp_sack) {
2413 							opt_rx->sack_ok = 1;
2414 							tcp_sack_reset(opt_rx);
2415 						}
2416 					}
2417 					break;
2418 
2419 				case TCPOPT_SACK:
2420 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2421 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2422 					   opt_rx->sack_ok) {
2423 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2424 					}
2425 	  			};
2426 	  			ptr+=opsize-2;
2427 	  			length-=opsize;
2428 	  	};
2429 	}
2430 }
2431 
2432 /* Fast parse options. This hopes to only see timestamps.
2433  * If it is wrong it falls back on tcp_parse_options().
2434  */
2435 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2436 					 struct tcp_sock *tp)
2437 {
2438 	if (th->doff == sizeof(struct tcphdr)>>2) {
2439 		tp->rx_opt.saw_tstamp = 0;
2440 		return 0;
2441 	} else if (tp->rx_opt.tstamp_ok &&
2442 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2443 		__u32 *ptr = (__u32 *)(th + 1);
2444 		if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2445 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2446 			tp->rx_opt.saw_tstamp = 1;
2447 			++ptr;
2448 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2449 			++ptr;
2450 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2451 			return 1;
2452 		}
2453 	}
2454 	tcp_parse_options(skb, &tp->rx_opt, 1);
2455 	return 1;
2456 }
2457 
2458 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2459 {
2460 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2461 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2462 }
2463 
2464 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2465 {
2466 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2467 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2468 		 * extra check below makes sure this can only happen
2469 		 * for pure ACK frames.  -DaveM
2470 		 *
2471 		 * Not only, also it occurs for expired timestamps.
2472 		 */
2473 
2474 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2475 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2476 			tcp_store_ts_recent(tp);
2477 	}
2478 }
2479 
2480 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2481  *
2482  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2483  * it can pass through stack. So, the following predicate verifies that
2484  * this segment is not used for anything but congestion avoidance or
2485  * fast retransmit. Moreover, we even are able to eliminate most of such
2486  * second order effects, if we apply some small "replay" window (~RTO)
2487  * to timestamp space.
2488  *
2489  * All these measures still do not guarantee that we reject wrapped ACKs
2490  * on networks with high bandwidth, when sequence space is recycled fastly,
2491  * but it guarantees that such events will be very rare and do not affect
2492  * connection seriously. This doesn't look nice, but alas, PAWS is really
2493  * buggy extension.
2494  *
2495  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2496  * states that events when retransmit arrives after original data are rare.
2497  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2498  * the biggest problem on large power networks even with minor reordering.
2499  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2500  * up to bandwidth of 18Gigabit/sec. 8) ]
2501  */
2502 
2503 static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb)
2504 {
2505 	struct tcphdr *th = skb->h.th;
2506 	u32 seq = TCP_SKB_CB(skb)->seq;
2507 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2508 
2509 	return (/* 1. Pure ACK with correct sequence number. */
2510 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2511 
2512 		/* 2. ... and duplicate ACK. */
2513 		ack == tp->snd_una &&
2514 
2515 		/* 3. ... and does not update window. */
2516 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2517 
2518 		/* 4. ... and sits in replay window. */
2519 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ);
2520 }
2521 
2522 static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb)
2523 {
2524 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2525 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2526 		!tcp_disordered_ack(tp, skb));
2527 }
2528 
2529 /* Check segment sequence number for validity.
2530  *
2531  * Segment controls are considered valid, if the segment
2532  * fits to the window after truncation to the window. Acceptability
2533  * of data (and SYN, FIN, of course) is checked separately.
2534  * See tcp_data_queue(), for example.
2535  *
2536  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2537  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2538  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2539  * (borrowed from freebsd)
2540  */
2541 
2542 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2543 {
2544 	return	!before(end_seq, tp->rcv_wup) &&
2545 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2546 }
2547 
2548 /* When we get a reset we do this. */
2549 static void tcp_reset(struct sock *sk)
2550 {
2551 	/* We want the right error as BSD sees it (and indeed as we do). */
2552 	switch (sk->sk_state) {
2553 		case TCP_SYN_SENT:
2554 			sk->sk_err = ECONNREFUSED;
2555 			break;
2556 		case TCP_CLOSE_WAIT:
2557 			sk->sk_err = EPIPE;
2558 			break;
2559 		case TCP_CLOSE:
2560 			return;
2561 		default:
2562 			sk->sk_err = ECONNRESET;
2563 	}
2564 
2565 	if (!sock_flag(sk, SOCK_DEAD))
2566 		sk->sk_error_report(sk);
2567 
2568 	tcp_done(sk);
2569 }
2570 
2571 /*
2572  * 	Process the FIN bit. This now behaves as it is supposed to work
2573  *	and the FIN takes effect when it is validly part of sequence
2574  *	space. Not before when we get holes.
2575  *
2576  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2577  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2578  *	TIME-WAIT)
2579  *
2580  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2581  *	close and we go into CLOSING (and later onto TIME-WAIT)
2582  *
2583  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2584  */
2585 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2586 {
2587 	struct tcp_sock *tp = tcp_sk(sk);
2588 
2589 	tcp_schedule_ack(tp);
2590 
2591 	sk->sk_shutdown |= RCV_SHUTDOWN;
2592 	sock_set_flag(sk, SOCK_DONE);
2593 
2594 	switch (sk->sk_state) {
2595 		case TCP_SYN_RECV:
2596 		case TCP_ESTABLISHED:
2597 			/* Move to CLOSE_WAIT */
2598 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2599 			tp->ack.pingpong = 1;
2600 			break;
2601 
2602 		case TCP_CLOSE_WAIT:
2603 		case TCP_CLOSING:
2604 			/* Received a retransmission of the FIN, do
2605 			 * nothing.
2606 			 */
2607 			break;
2608 		case TCP_LAST_ACK:
2609 			/* RFC793: Remain in the LAST-ACK state. */
2610 			break;
2611 
2612 		case TCP_FIN_WAIT1:
2613 			/* This case occurs when a simultaneous close
2614 			 * happens, we must ack the received FIN and
2615 			 * enter the CLOSING state.
2616 			 */
2617 			tcp_send_ack(sk);
2618 			tcp_set_state(sk, TCP_CLOSING);
2619 			break;
2620 		case TCP_FIN_WAIT2:
2621 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2622 			tcp_send_ack(sk);
2623 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2624 			break;
2625 		default:
2626 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2627 			 * cases we should never reach this piece of code.
2628 			 */
2629 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2630 			       __FUNCTION__, sk->sk_state);
2631 			break;
2632 	};
2633 
2634 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2635 	 * Probably, we should reset in this case. For now drop them.
2636 	 */
2637 	__skb_queue_purge(&tp->out_of_order_queue);
2638 	if (tp->rx_opt.sack_ok)
2639 		tcp_sack_reset(&tp->rx_opt);
2640 	sk_stream_mem_reclaim(sk);
2641 
2642 	if (!sock_flag(sk, SOCK_DEAD)) {
2643 		sk->sk_state_change(sk);
2644 
2645 		/* Do not send POLL_HUP for half duplex close. */
2646 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2647 		    sk->sk_state == TCP_CLOSE)
2648 			sk_wake_async(sk, 1, POLL_HUP);
2649 		else
2650 			sk_wake_async(sk, 1, POLL_IN);
2651 	}
2652 }
2653 
2654 static __inline__ int
2655 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2656 {
2657 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2658 		if (before(seq, sp->start_seq))
2659 			sp->start_seq = seq;
2660 		if (after(end_seq, sp->end_seq))
2661 			sp->end_seq = end_seq;
2662 		return 1;
2663 	}
2664 	return 0;
2665 }
2666 
2667 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2668 {
2669 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2670 		if (before(seq, tp->rcv_nxt))
2671 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2672 		else
2673 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2674 
2675 		tp->rx_opt.dsack = 1;
2676 		tp->duplicate_sack[0].start_seq = seq;
2677 		tp->duplicate_sack[0].end_seq = end_seq;
2678 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2679 	}
2680 }
2681 
2682 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2683 {
2684 	if (!tp->rx_opt.dsack)
2685 		tcp_dsack_set(tp, seq, end_seq);
2686 	else
2687 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2688 }
2689 
2690 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2691 {
2692 	struct tcp_sock *tp = tcp_sk(sk);
2693 
2694 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2695 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2696 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2697 		tcp_enter_quickack_mode(tp);
2698 
2699 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2700 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2701 
2702 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2703 				end_seq = tp->rcv_nxt;
2704 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2705 		}
2706 	}
2707 
2708 	tcp_send_ack(sk);
2709 }
2710 
2711 /* These routines update the SACK block as out-of-order packets arrive or
2712  * in-order packets close up the sequence space.
2713  */
2714 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2715 {
2716 	int this_sack;
2717 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2718 	struct tcp_sack_block *swalk = sp+1;
2719 
2720 	/* See if the recent change to the first SACK eats into
2721 	 * or hits the sequence space of other SACK blocks, if so coalesce.
2722 	 */
2723 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2724 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2725 			int i;
2726 
2727 			/* Zap SWALK, by moving every further SACK up by one slot.
2728 			 * Decrease num_sacks.
2729 			 */
2730 			tp->rx_opt.num_sacks--;
2731 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2732 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2733 				sp[i] = sp[i+1];
2734 			continue;
2735 		}
2736 		this_sack++, swalk++;
2737 	}
2738 }
2739 
2740 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2741 {
2742 	__u32 tmp;
2743 
2744 	tmp = sack1->start_seq;
2745 	sack1->start_seq = sack2->start_seq;
2746 	sack2->start_seq = tmp;
2747 
2748 	tmp = sack1->end_seq;
2749 	sack1->end_seq = sack2->end_seq;
2750 	sack2->end_seq = tmp;
2751 }
2752 
2753 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2754 {
2755 	struct tcp_sock *tp = tcp_sk(sk);
2756 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2757 	int cur_sacks = tp->rx_opt.num_sacks;
2758 	int this_sack;
2759 
2760 	if (!cur_sacks)
2761 		goto new_sack;
2762 
2763 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2764 		if (tcp_sack_extend(sp, seq, end_seq)) {
2765 			/* Rotate this_sack to the first one. */
2766 			for (; this_sack>0; this_sack--, sp--)
2767 				tcp_sack_swap(sp, sp-1);
2768 			if (cur_sacks > 1)
2769 				tcp_sack_maybe_coalesce(tp);
2770 			return;
2771 		}
2772 	}
2773 
2774 	/* Could not find an adjacent existing SACK, build a new one,
2775 	 * put it at the front, and shift everyone else down.  We
2776 	 * always know there is at least one SACK present already here.
2777 	 *
2778 	 * If the sack array is full, forget about the last one.
2779 	 */
2780 	if (this_sack >= 4) {
2781 		this_sack--;
2782 		tp->rx_opt.num_sacks--;
2783 		sp--;
2784 	}
2785 	for(; this_sack > 0; this_sack--, sp--)
2786 		*sp = *(sp-1);
2787 
2788 new_sack:
2789 	/* Build the new head SACK, and we're done. */
2790 	sp->start_seq = seq;
2791 	sp->end_seq = end_seq;
2792 	tp->rx_opt.num_sacks++;
2793 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2794 }
2795 
2796 /* RCV.NXT advances, some SACKs should be eaten. */
2797 
2798 static void tcp_sack_remove(struct tcp_sock *tp)
2799 {
2800 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2801 	int num_sacks = tp->rx_opt.num_sacks;
2802 	int this_sack;
2803 
2804 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2805 	if (skb_queue_len(&tp->out_of_order_queue) == 0) {
2806 		tp->rx_opt.num_sacks = 0;
2807 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2808 		return;
2809 	}
2810 
2811 	for(this_sack = 0; this_sack < num_sacks; ) {
2812 		/* Check if the start of the sack is covered by RCV.NXT. */
2813 		if (!before(tp->rcv_nxt, sp->start_seq)) {
2814 			int i;
2815 
2816 			/* RCV.NXT must cover all the block! */
2817 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2818 
2819 			/* Zap this SACK, by moving forward any other SACKS. */
2820 			for (i=this_sack+1; i < num_sacks; i++)
2821 				tp->selective_acks[i-1] = tp->selective_acks[i];
2822 			num_sacks--;
2823 			continue;
2824 		}
2825 		this_sack++;
2826 		sp++;
2827 	}
2828 	if (num_sacks != tp->rx_opt.num_sacks) {
2829 		tp->rx_opt.num_sacks = num_sacks;
2830 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2831 	}
2832 }
2833 
2834 /* This one checks to see if we can put data from the
2835  * out_of_order queue into the receive_queue.
2836  */
2837 static void tcp_ofo_queue(struct sock *sk)
2838 {
2839 	struct tcp_sock *tp = tcp_sk(sk);
2840 	__u32 dsack_high = tp->rcv_nxt;
2841 	struct sk_buff *skb;
2842 
2843 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2844 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2845 			break;
2846 
2847 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2848 			__u32 dsack = dsack_high;
2849 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2850 				dsack_high = TCP_SKB_CB(skb)->end_seq;
2851 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2852 		}
2853 
2854 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2855 			SOCK_DEBUG(sk, "ofo packet was already received \n");
2856 			__skb_unlink(skb, skb->list);
2857 			__kfree_skb(skb);
2858 			continue;
2859 		}
2860 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2861 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2862 			   TCP_SKB_CB(skb)->end_seq);
2863 
2864 		__skb_unlink(skb, skb->list);
2865 		__skb_queue_tail(&sk->sk_receive_queue, skb);
2866 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2867 		if(skb->h.th->fin)
2868 			tcp_fin(skb, sk, skb->h.th);
2869 	}
2870 }
2871 
2872 static int tcp_prune_queue(struct sock *sk);
2873 
2874 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2875 {
2876 	struct tcphdr *th = skb->h.th;
2877 	struct tcp_sock *tp = tcp_sk(sk);
2878 	int eaten = -1;
2879 
2880 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2881 		goto drop;
2882 
2883 	__skb_pull(skb, th->doff*4);
2884 
2885 	TCP_ECN_accept_cwr(tp, skb);
2886 
2887 	if (tp->rx_opt.dsack) {
2888 		tp->rx_opt.dsack = 0;
2889 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2890 						    4 - tp->rx_opt.tstamp_ok);
2891 	}
2892 
2893 	/*  Queue data for delivery to the user.
2894 	 *  Packets in sequence go to the receive queue.
2895 	 *  Out of sequence packets to the out_of_order_queue.
2896 	 */
2897 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2898 		if (tcp_receive_window(tp) == 0)
2899 			goto out_of_window;
2900 
2901 		/* Ok. In sequence. In window. */
2902 		if (tp->ucopy.task == current &&
2903 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2904 		    sock_owned_by_user(sk) && !tp->urg_data) {
2905 			int chunk = min_t(unsigned int, skb->len,
2906 							tp->ucopy.len);
2907 
2908 			__set_current_state(TASK_RUNNING);
2909 
2910 			local_bh_enable();
2911 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2912 				tp->ucopy.len -= chunk;
2913 				tp->copied_seq += chunk;
2914 				eaten = (chunk == skb->len && !th->fin);
2915 				tcp_rcv_space_adjust(sk);
2916 			}
2917 			local_bh_disable();
2918 		}
2919 
2920 		if (eaten <= 0) {
2921 queue_and_out:
2922 			if (eaten < 0 &&
2923 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2924 			     !sk_stream_rmem_schedule(sk, skb))) {
2925 				if (tcp_prune_queue(sk) < 0 ||
2926 				    !sk_stream_rmem_schedule(sk, skb))
2927 					goto drop;
2928 			}
2929 			sk_stream_set_owner_r(skb, sk);
2930 			__skb_queue_tail(&sk->sk_receive_queue, skb);
2931 		}
2932 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2933 		if(skb->len)
2934 			tcp_event_data_recv(sk, tp, skb);
2935 		if(th->fin)
2936 			tcp_fin(skb, sk, th);
2937 
2938 		if (skb_queue_len(&tp->out_of_order_queue)) {
2939 			tcp_ofo_queue(sk);
2940 
2941 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
2942 			 * gap in queue is filled.
2943 			 */
2944 			if (!skb_queue_len(&tp->out_of_order_queue))
2945 				tp->ack.pingpong = 0;
2946 		}
2947 
2948 		if (tp->rx_opt.num_sacks)
2949 			tcp_sack_remove(tp);
2950 
2951 		tcp_fast_path_check(sk, tp);
2952 
2953 		if (eaten > 0)
2954 			__kfree_skb(skb);
2955 		else if (!sock_flag(sk, SOCK_DEAD))
2956 			sk->sk_data_ready(sk, 0);
2957 		return;
2958 	}
2959 
2960 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2961 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
2962 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2963 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
2964 
2965 out_of_window:
2966 		tcp_enter_quickack_mode(tp);
2967 		tcp_schedule_ack(tp);
2968 drop:
2969 		__kfree_skb(skb);
2970 		return;
2971 	}
2972 
2973 	/* Out of window. F.e. zero window probe. */
2974 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
2975 		goto out_of_window;
2976 
2977 	tcp_enter_quickack_mode(tp);
2978 
2979 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2980 		/* Partial packet, seq < rcv_next < end_seq */
2981 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
2982 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2983 			   TCP_SKB_CB(skb)->end_seq);
2984 
2985 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
2986 
2987 		/* If window is closed, drop tail of packet. But after
2988 		 * remembering D-SACK for its head made in previous line.
2989 		 */
2990 		if (!tcp_receive_window(tp))
2991 			goto out_of_window;
2992 		goto queue_and_out;
2993 	}
2994 
2995 	TCP_ECN_check_ce(tp, skb);
2996 
2997 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2998 	    !sk_stream_rmem_schedule(sk, skb)) {
2999 		if (tcp_prune_queue(sk) < 0 ||
3000 		    !sk_stream_rmem_schedule(sk, skb))
3001 			goto drop;
3002 	}
3003 
3004 	/* Disable header prediction. */
3005 	tp->pred_flags = 0;
3006 	tcp_schedule_ack(tp);
3007 
3008 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3009 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3010 
3011 	sk_stream_set_owner_r(skb, sk);
3012 
3013 	if (!skb_peek(&tp->out_of_order_queue)) {
3014 		/* Initial out of order segment, build 1 SACK. */
3015 		if (tp->rx_opt.sack_ok) {
3016 			tp->rx_opt.num_sacks = 1;
3017 			tp->rx_opt.dsack     = 0;
3018 			tp->rx_opt.eff_sacks = 1;
3019 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3020 			tp->selective_acks[0].end_seq =
3021 						TCP_SKB_CB(skb)->end_seq;
3022 		}
3023 		__skb_queue_head(&tp->out_of_order_queue,skb);
3024 	} else {
3025 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3026 		u32 seq = TCP_SKB_CB(skb)->seq;
3027 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3028 
3029 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3030 			__skb_append(skb1, skb);
3031 
3032 			if (!tp->rx_opt.num_sacks ||
3033 			    tp->selective_acks[0].end_seq != seq)
3034 				goto add_sack;
3035 
3036 			/* Common case: data arrive in order after hole. */
3037 			tp->selective_acks[0].end_seq = end_seq;
3038 			return;
3039 		}
3040 
3041 		/* Find place to insert this segment. */
3042 		do {
3043 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3044 				break;
3045 		} while ((skb1 = skb1->prev) !=
3046 			 (struct sk_buff*)&tp->out_of_order_queue);
3047 
3048 		/* Do skb overlap to previous one? */
3049 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3050 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3051 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3052 				/* All the bits are present. Drop. */
3053 				__kfree_skb(skb);
3054 				tcp_dsack_set(tp, seq, end_seq);
3055 				goto add_sack;
3056 			}
3057 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3058 				/* Partial overlap. */
3059 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3060 			} else {
3061 				skb1 = skb1->prev;
3062 			}
3063 		}
3064 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3065 
3066 		/* And clean segments covered by new one as whole. */
3067 		while ((skb1 = skb->next) !=
3068 		       (struct sk_buff*)&tp->out_of_order_queue &&
3069 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3070 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3071 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3072 			       break;
3073 		       }
3074 		       __skb_unlink(skb1, skb1->list);
3075 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3076 		       __kfree_skb(skb1);
3077 		}
3078 
3079 add_sack:
3080 		if (tp->rx_opt.sack_ok)
3081 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3082 	}
3083 }
3084 
3085 /* Collapse contiguous sequence of skbs head..tail with
3086  * sequence numbers start..end.
3087  * Segments with FIN/SYN are not collapsed (only because this
3088  * simplifies code)
3089  */
3090 static void
3091 tcp_collapse(struct sock *sk, struct sk_buff *head,
3092 	     struct sk_buff *tail, u32 start, u32 end)
3093 {
3094 	struct sk_buff *skb;
3095 
3096 	/* First, check that queue is collapsable and find
3097 	 * the point where collapsing can be useful. */
3098 	for (skb = head; skb != tail; ) {
3099 		/* No new bits? It is possible on ofo queue. */
3100 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3101 			struct sk_buff *next = skb->next;
3102 			__skb_unlink(skb, skb->list);
3103 			__kfree_skb(skb);
3104 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3105 			skb = next;
3106 			continue;
3107 		}
3108 
3109 		/* The first skb to collapse is:
3110 		 * - not SYN/FIN and
3111 		 * - bloated or contains data before "start" or
3112 		 *   overlaps to the next one.
3113 		 */
3114 		if (!skb->h.th->syn && !skb->h.th->fin &&
3115 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3116 		     before(TCP_SKB_CB(skb)->seq, start) ||
3117 		     (skb->next != tail &&
3118 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3119 			break;
3120 
3121 		/* Decided to skip this, advance start seq. */
3122 		start = TCP_SKB_CB(skb)->end_seq;
3123 		skb = skb->next;
3124 	}
3125 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3126 		return;
3127 
3128 	while (before(start, end)) {
3129 		struct sk_buff *nskb;
3130 		int header = skb_headroom(skb);
3131 		int copy = SKB_MAX_ORDER(header, 0);
3132 
3133 		/* Too big header? This can happen with IPv6. */
3134 		if (copy < 0)
3135 			return;
3136 		if (end-start < copy)
3137 			copy = end-start;
3138 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3139 		if (!nskb)
3140 			return;
3141 		skb_reserve(nskb, header);
3142 		memcpy(nskb->head, skb->head, header);
3143 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3144 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3145 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3146 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3147 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3148 		__skb_insert(nskb, skb->prev, skb, skb->list);
3149 		sk_stream_set_owner_r(nskb, sk);
3150 
3151 		/* Copy data, releasing collapsed skbs. */
3152 		while (copy > 0) {
3153 			int offset = start - TCP_SKB_CB(skb)->seq;
3154 			int size = TCP_SKB_CB(skb)->end_seq - start;
3155 
3156 			if (offset < 0) BUG();
3157 			if (size > 0) {
3158 				size = min(copy, size);
3159 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3160 					BUG();
3161 				TCP_SKB_CB(nskb)->end_seq += size;
3162 				copy -= size;
3163 				start += size;
3164 			}
3165 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3166 				struct sk_buff *next = skb->next;
3167 				__skb_unlink(skb, skb->list);
3168 				__kfree_skb(skb);
3169 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3170 				skb = next;
3171 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3172 					return;
3173 			}
3174 		}
3175 	}
3176 }
3177 
3178 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3179  * and tcp_collapse() them until all the queue is collapsed.
3180  */
3181 static void tcp_collapse_ofo_queue(struct sock *sk)
3182 {
3183 	struct tcp_sock *tp = tcp_sk(sk);
3184 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3185 	struct sk_buff *head;
3186 	u32 start, end;
3187 
3188 	if (skb == NULL)
3189 		return;
3190 
3191 	start = TCP_SKB_CB(skb)->seq;
3192 	end = TCP_SKB_CB(skb)->end_seq;
3193 	head = skb;
3194 
3195 	for (;;) {
3196 		skb = skb->next;
3197 
3198 		/* Segment is terminated when we see gap or when
3199 		 * we are at the end of all the queue. */
3200 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3201 		    after(TCP_SKB_CB(skb)->seq, end) ||
3202 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3203 			tcp_collapse(sk, head, skb, start, end);
3204 			head = skb;
3205 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3206 				break;
3207 			/* Start new segment */
3208 			start = TCP_SKB_CB(skb)->seq;
3209 			end = TCP_SKB_CB(skb)->end_seq;
3210 		} else {
3211 			if (before(TCP_SKB_CB(skb)->seq, start))
3212 				start = TCP_SKB_CB(skb)->seq;
3213 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3214 				end = TCP_SKB_CB(skb)->end_seq;
3215 		}
3216 	}
3217 }
3218 
3219 /* Reduce allocated memory if we can, trying to get
3220  * the socket within its memory limits again.
3221  *
3222  * Return less than zero if we should start dropping frames
3223  * until the socket owning process reads some of the data
3224  * to stabilize the situation.
3225  */
3226 static int tcp_prune_queue(struct sock *sk)
3227 {
3228 	struct tcp_sock *tp = tcp_sk(sk);
3229 
3230 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3231 
3232 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3233 
3234 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3235 		tcp_clamp_window(sk, tp);
3236 	else if (tcp_memory_pressure)
3237 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3238 
3239 	tcp_collapse_ofo_queue(sk);
3240 	tcp_collapse(sk, sk->sk_receive_queue.next,
3241 		     (struct sk_buff*)&sk->sk_receive_queue,
3242 		     tp->copied_seq, tp->rcv_nxt);
3243 	sk_stream_mem_reclaim(sk);
3244 
3245 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3246 		return 0;
3247 
3248 	/* Collapsing did not help, destructive actions follow.
3249 	 * This must not ever occur. */
3250 
3251 	/* First, purge the out_of_order queue. */
3252 	if (skb_queue_len(&tp->out_of_order_queue)) {
3253 		NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED,
3254 				 skb_queue_len(&tp->out_of_order_queue));
3255 		__skb_queue_purge(&tp->out_of_order_queue);
3256 
3257 		/* Reset SACK state.  A conforming SACK implementation will
3258 		 * do the same at a timeout based retransmit.  When a connection
3259 		 * is in a sad state like this, we care only about integrity
3260 		 * of the connection not performance.
3261 		 */
3262 		if (tp->rx_opt.sack_ok)
3263 			tcp_sack_reset(&tp->rx_opt);
3264 		sk_stream_mem_reclaim(sk);
3265 	}
3266 
3267 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3268 		return 0;
3269 
3270 	/* If we are really being abused, tell the caller to silently
3271 	 * drop receive data on the floor.  It will get retransmitted
3272 	 * and hopefully then we'll have sufficient space.
3273 	 */
3274 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3275 
3276 	/* Massive buffer overcommit. */
3277 	tp->pred_flags = 0;
3278 	return -1;
3279 }
3280 
3281 
3282 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3283  * As additional protections, we do not touch cwnd in retransmission phases,
3284  * and if application hit its sndbuf limit recently.
3285  */
3286 void tcp_cwnd_application_limited(struct sock *sk)
3287 {
3288 	struct tcp_sock *tp = tcp_sk(sk);
3289 
3290 	if (tp->ca_state == TCP_CA_Open &&
3291 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3292 		/* Limited by application or receiver window. */
3293 		u32 win_used = max(tp->snd_cwnd_used, 2U);
3294 		if (win_used < tp->snd_cwnd) {
3295 			tp->snd_ssthresh = tcp_current_ssthresh(tp);
3296 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3297 		}
3298 		tp->snd_cwnd_used = 0;
3299 	}
3300 	tp->snd_cwnd_stamp = tcp_time_stamp;
3301 }
3302 
3303 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3304 {
3305 	/* If the user specified a specific send buffer setting, do
3306 	 * not modify it.
3307 	 */
3308 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3309 		return 0;
3310 
3311 	/* If we are under global TCP memory pressure, do not expand.  */
3312 	if (tcp_memory_pressure)
3313 		return 0;
3314 
3315 	/* If we are under soft global TCP memory pressure, do not expand.  */
3316 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3317 		return 0;
3318 
3319 	/* If we filled the congestion window, do not expand.  */
3320 	if (tp->packets_out >= tp->snd_cwnd)
3321 		return 0;
3322 
3323 	return 1;
3324 }
3325 
3326 /* When incoming ACK allowed to free some skb from write_queue,
3327  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3328  * on the exit from tcp input handler.
3329  *
3330  * PROBLEM: sndbuf expansion does not work well with largesend.
3331  */
3332 static void tcp_new_space(struct sock *sk)
3333 {
3334 	struct tcp_sock *tp = tcp_sk(sk);
3335 
3336 	if (tcp_should_expand_sndbuf(sk, tp)) {
3337  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3338 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3339 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3340 						   tp->reordering + 1);
3341 		sndmem *= 2*demanded;
3342 		if (sndmem > sk->sk_sndbuf)
3343 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3344 		tp->snd_cwnd_stamp = tcp_time_stamp;
3345 	}
3346 
3347 	sk->sk_write_space(sk);
3348 }
3349 
3350 static inline void tcp_check_space(struct sock *sk)
3351 {
3352 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3353 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3354 		if (sk->sk_socket &&
3355 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3356 			tcp_new_space(sk);
3357 	}
3358 }
3359 
3360 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3361 {
3362 	tcp_push_pending_frames(sk, tp);
3363 	tcp_check_space(sk);
3364 }
3365 
3366 /*
3367  * Check if sending an ack is needed.
3368  */
3369 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3370 {
3371 	struct tcp_sock *tp = tcp_sk(sk);
3372 
3373 	    /* More than one full frame received... */
3374 	if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
3375 	     /* ... and right edge of window advances far enough.
3376 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3377 	      */
3378 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3379 	    /* We ACK each frame or... */
3380 	    tcp_in_quickack_mode(tp) ||
3381 	    /* We have out of order data. */
3382 	    (ofo_possible &&
3383 	     skb_peek(&tp->out_of_order_queue))) {
3384 		/* Then ack it now */
3385 		tcp_send_ack(sk);
3386 	} else {
3387 		/* Else, send delayed ack. */
3388 		tcp_send_delayed_ack(sk);
3389 	}
3390 }
3391 
3392 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3393 {
3394 	struct tcp_sock *tp = tcp_sk(sk);
3395 	if (!tcp_ack_scheduled(tp)) {
3396 		/* We sent a data segment already. */
3397 		return;
3398 	}
3399 	__tcp_ack_snd_check(sk, 1);
3400 }
3401 
3402 /*
3403  *	This routine is only called when we have urgent data
3404  *	signalled. Its the 'slow' part of tcp_urg. It could be
3405  *	moved inline now as tcp_urg is only called from one
3406  *	place. We handle URGent data wrong. We have to - as
3407  *	BSD still doesn't use the correction from RFC961.
3408  *	For 1003.1g we should support a new option TCP_STDURG to permit
3409  *	either form (or just set the sysctl tcp_stdurg).
3410  */
3411 
3412 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3413 {
3414 	struct tcp_sock *tp = tcp_sk(sk);
3415 	u32 ptr = ntohs(th->urg_ptr);
3416 
3417 	if (ptr && !sysctl_tcp_stdurg)
3418 		ptr--;
3419 	ptr += ntohl(th->seq);
3420 
3421 	/* Ignore urgent data that we've already seen and read. */
3422 	if (after(tp->copied_seq, ptr))
3423 		return;
3424 
3425 	/* Do not replay urg ptr.
3426 	 *
3427 	 * NOTE: interesting situation not covered by specs.
3428 	 * Misbehaving sender may send urg ptr, pointing to segment,
3429 	 * which we already have in ofo queue. We are not able to fetch
3430 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3431 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3432 	 * situations. But it is worth to think about possibility of some
3433 	 * DoSes using some hypothetical application level deadlock.
3434 	 */
3435 	if (before(ptr, tp->rcv_nxt))
3436 		return;
3437 
3438 	/* Do we already have a newer (or duplicate) urgent pointer? */
3439 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3440 		return;
3441 
3442 	/* Tell the world about our new urgent pointer. */
3443 	sk_send_sigurg(sk);
3444 
3445 	/* We may be adding urgent data when the last byte read was
3446 	 * urgent. To do this requires some care. We cannot just ignore
3447 	 * tp->copied_seq since we would read the last urgent byte again
3448 	 * as data, nor can we alter copied_seq until this data arrives
3449 	 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3450 	 *
3451 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3452 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3453 	 * and expect that both A and B disappear from stream. This is _wrong_.
3454 	 * Though this happens in BSD with high probability, this is occasional.
3455 	 * Any application relying on this is buggy. Note also, that fix "works"
3456 	 * only in this artificial test. Insert some normal data between A and B and we will
3457 	 * decline of BSD again. Verdict: it is better to remove to trap
3458 	 * buggy users.
3459 	 */
3460 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3461 	    !sock_flag(sk, SOCK_URGINLINE) &&
3462 	    tp->copied_seq != tp->rcv_nxt) {
3463 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3464 		tp->copied_seq++;
3465 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3466 			__skb_unlink(skb, skb->list);
3467 			__kfree_skb(skb);
3468 		}
3469 	}
3470 
3471 	tp->urg_data   = TCP_URG_NOTYET;
3472 	tp->urg_seq    = ptr;
3473 
3474 	/* Disable header prediction. */
3475 	tp->pred_flags = 0;
3476 }
3477 
3478 /* This is the 'fast' part of urgent handling. */
3479 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3480 {
3481 	struct tcp_sock *tp = tcp_sk(sk);
3482 
3483 	/* Check if we get a new urgent pointer - normally not. */
3484 	if (th->urg)
3485 		tcp_check_urg(sk,th);
3486 
3487 	/* Do we wait for any urgent data? - normally not... */
3488 	if (tp->urg_data == TCP_URG_NOTYET) {
3489 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3490 			  th->syn;
3491 
3492 		/* Is the urgent pointer pointing into this packet? */
3493 		if (ptr < skb->len) {
3494 			u8 tmp;
3495 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3496 				BUG();
3497 			tp->urg_data = TCP_URG_VALID | tmp;
3498 			if (!sock_flag(sk, SOCK_DEAD))
3499 				sk->sk_data_ready(sk, 0);
3500 		}
3501 	}
3502 }
3503 
3504 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3505 {
3506 	struct tcp_sock *tp = tcp_sk(sk);
3507 	int chunk = skb->len - hlen;
3508 	int err;
3509 
3510 	local_bh_enable();
3511 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3512 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3513 	else
3514 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3515 						       tp->ucopy.iov);
3516 
3517 	if (!err) {
3518 		tp->ucopy.len -= chunk;
3519 		tp->copied_seq += chunk;
3520 		tcp_rcv_space_adjust(sk);
3521 	}
3522 
3523 	local_bh_disable();
3524 	return err;
3525 }
3526 
3527 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3528 {
3529 	int result;
3530 
3531 	if (sock_owned_by_user(sk)) {
3532 		local_bh_enable();
3533 		result = __tcp_checksum_complete(skb);
3534 		local_bh_disable();
3535 	} else {
3536 		result = __tcp_checksum_complete(skb);
3537 	}
3538 	return result;
3539 }
3540 
3541 static __inline__ int
3542 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3543 {
3544 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3545 		__tcp_checksum_complete_user(sk, skb);
3546 }
3547 
3548 /*
3549  *	TCP receive function for the ESTABLISHED state.
3550  *
3551  *	It is split into a fast path and a slow path. The fast path is
3552  * 	disabled when:
3553  *	- A zero window was announced from us - zero window probing
3554  *        is only handled properly in the slow path.
3555  *	- Out of order segments arrived.
3556  *	- Urgent data is expected.
3557  *	- There is no buffer space left
3558  *	- Unexpected TCP flags/window values/header lengths are received
3559  *	  (detected by checking the TCP header against pred_flags)
3560  *	- Data is sent in both directions. Fast path only supports pure senders
3561  *	  or pure receivers (this means either the sequence number or the ack
3562  *	  value must stay constant)
3563  *	- Unexpected TCP option.
3564  *
3565  *	When these conditions are not satisfied it drops into a standard
3566  *	receive procedure patterned after RFC793 to handle all cases.
3567  *	The first three cases are guaranteed by proper pred_flags setting,
3568  *	the rest is checked inline. Fast processing is turned on in
3569  *	tcp_data_queue when everything is OK.
3570  */
3571 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3572 			struct tcphdr *th, unsigned len)
3573 {
3574 	struct tcp_sock *tp = tcp_sk(sk);
3575 
3576 	/*
3577 	 *	Header prediction.
3578 	 *	The code loosely follows the one in the famous
3579 	 *	"30 instruction TCP receive" Van Jacobson mail.
3580 	 *
3581 	 *	Van's trick is to deposit buffers into socket queue
3582 	 *	on a device interrupt, to call tcp_recv function
3583 	 *	on the receive process context and checksum and copy
3584 	 *	the buffer to user space. smart...
3585 	 *
3586 	 *	Our current scheme is not silly either but we take the
3587 	 *	extra cost of the net_bh soft interrupt processing...
3588 	 *	We do checksum and copy also but from device to kernel.
3589 	 */
3590 
3591 	tp->rx_opt.saw_tstamp = 0;
3592 
3593 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3594 	 *	if header_predition is to be made
3595 	 *	'S' will always be tp->tcp_header_len >> 2
3596 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3597 	 *  turn it off	(when there are holes in the receive
3598 	 *	 space for instance)
3599 	 *	PSH flag is ignored.
3600 	 */
3601 
3602 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3603 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3604 		int tcp_header_len = tp->tcp_header_len;
3605 
3606 		/* Timestamp header prediction: tcp_header_len
3607 		 * is automatically equal to th->doff*4 due to pred_flags
3608 		 * match.
3609 		 */
3610 
3611 		/* Check timestamp */
3612 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3613 			__u32 *ptr = (__u32 *)(th + 1);
3614 
3615 			/* No? Slow path! */
3616 			if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3617 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3618 				goto slow_path;
3619 
3620 			tp->rx_opt.saw_tstamp = 1;
3621 			++ptr;
3622 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3623 			++ptr;
3624 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3625 
3626 			/* If PAWS failed, check it more carefully in slow path */
3627 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3628 				goto slow_path;
3629 
3630 			/* DO NOT update ts_recent here, if checksum fails
3631 			 * and timestamp was corrupted part, it will result
3632 			 * in a hung connection since we will drop all
3633 			 * future packets due to the PAWS test.
3634 			 */
3635 		}
3636 
3637 		if (len <= tcp_header_len) {
3638 			/* Bulk data transfer: sender */
3639 			if (len == tcp_header_len) {
3640 				/* Predicted packet is in window by definition.
3641 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3642 				 * Hence, check seq<=rcv_wup reduces to:
3643 				 */
3644 				if (tcp_header_len ==
3645 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3646 				    tp->rcv_nxt == tp->rcv_wup)
3647 					tcp_store_ts_recent(tp);
3648 
3649 				tcp_rcv_rtt_measure_ts(tp, skb);
3650 
3651 				/* We know that such packets are checksummed
3652 				 * on entry.
3653 				 */
3654 				tcp_ack(sk, skb, 0);
3655 				__kfree_skb(skb);
3656 				tcp_data_snd_check(sk, tp);
3657 				return 0;
3658 			} else { /* Header too small */
3659 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3660 				goto discard;
3661 			}
3662 		} else {
3663 			int eaten = 0;
3664 
3665 			if (tp->ucopy.task == current &&
3666 			    tp->copied_seq == tp->rcv_nxt &&
3667 			    len - tcp_header_len <= tp->ucopy.len &&
3668 			    sock_owned_by_user(sk)) {
3669 				__set_current_state(TASK_RUNNING);
3670 
3671 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3672 					/* Predicted packet is in window by definition.
3673 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3674 					 * Hence, check seq<=rcv_wup reduces to:
3675 					 */
3676 					if (tcp_header_len ==
3677 					    (sizeof(struct tcphdr) +
3678 					     TCPOLEN_TSTAMP_ALIGNED) &&
3679 					    tp->rcv_nxt == tp->rcv_wup)
3680 						tcp_store_ts_recent(tp);
3681 
3682 					tcp_rcv_rtt_measure_ts(tp, skb);
3683 
3684 					__skb_pull(skb, tcp_header_len);
3685 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3686 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3687 					eaten = 1;
3688 				}
3689 			}
3690 			if (!eaten) {
3691 				if (tcp_checksum_complete_user(sk, skb))
3692 					goto csum_error;
3693 
3694 				/* Predicted packet is in window by definition.
3695 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3696 				 * Hence, check seq<=rcv_wup reduces to:
3697 				 */
3698 				if (tcp_header_len ==
3699 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3700 				    tp->rcv_nxt == tp->rcv_wup)
3701 					tcp_store_ts_recent(tp);
3702 
3703 				tcp_rcv_rtt_measure_ts(tp, skb);
3704 
3705 				if ((int)skb->truesize > sk->sk_forward_alloc)
3706 					goto step5;
3707 
3708 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3709 
3710 				/* Bulk data transfer: receiver */
3711 				__skb_pull(skb,tcp_header_len);
3712 				__skb_queue_tail(&sk->sk_receive_queue, skb);
3713 				sk_stream_set_owner_r(skb, sk);
3714 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3715 			}
3716 
3717 			tcp_event_data_recv(sk, tp, skb);
3718 
3719 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3720 				/* Well, only one small jumplet in fast path... */
3721 				tcp_ack(sk, skb, FLAG_DATA);
3722 				tcp_data_snd_check(sk, tp);
3723 				if (!tcp_ack_scheduled(tp))
3724 					goto no_ack;
3725 			}
3726 
3727 			__tcp_ack_snd_check(sk, 0);
3728 no_ack:
3729 			if (eaten)
3730 				__kfree_skb(skb);
3731 			else
3732 				sk->sk_data_ready(sk, 0);
3733 			return 0;
3734 		}
3735 	}
3736 
3737 slow_path:
3738 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3739 		goto csum_error;
3740 
3741 	/*
3742 	 * RFC1323: H1. Apply PAWS check first.
3743 	 */
3744 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3745 	    tcp_paws_discard(tp, skb)) {
3746 		if (!th->rst) {
3747 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3748 			tcp_send_dupack(sk, skb);
3749 			goto discard;
3750 		}
3751 		/* Resets are accepted even if PAWS failed.
3752 
3753 		   ts_recent update must be made after we are sure
3754 		   that the packet is in window.
3755 		 */
3756 	}
3757 
3758 	/*
3759 	 *	Standard slow path.
3760 	 */
3761 
3762 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3763 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
3764 		 * (RST) segments are validated by checking their SEQ-fields."
3765 		 * And page 69: "If an incoming segment is not acceptable,
3766 		 * an acknowledgment should be sent in reply (unless the RST bit
3767 		 * is set, if so drop the segment and return)".
3768 		 */
3769 		if (!th->rst)
3770 			tcp_send_dupack(sk, skb);
3771 		goto discard;
3772 	}
3773 
3774 	if(th->rst) {
3775 		tcp_reset(sk);
3776 		goto discard;
3777 	}
3778 
3779 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3780 
3781 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3782 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
3783 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3784 		tcp_reset(sk);
3785 		return 1;
3786 	}
3787 
3788 step5:
3789 	if(th->ack)
3790 		tcp_ack(sk, skb, FLAG_SLOWPATH);
3791 
3792 	tcp_rcv_rtt_measure_ts(tp, skb);
3793 
3794 	/* Process urgent data. */
3795 	tcp_urg(sk, skb, th);
3796 
3797 	/* step 7: process the segment text */
3798 	tcp_data_queue(sk, skb);
3799 
3800 	tcp_data_snd_check(sk, tp);
3801 	tcp_ack_snd_check(sk);
3802 	return 0;
3803 
3804 csum_error:
3805 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
3806 
3807 discard:
3808 	__kfree_skb(skb);
3809 	return 0;
3810 }
3811 
3812 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3813 					 struct tcphdr *th, unsigned len)
3814 {
3815 	struct tcp_sock *tp = tcp_sk(sk);
3816 	int saved_clamp = tp->rx_opt.mss_clamp;
3817 
3818 	tcp_parse_options(skb, &tp->rx_opt, 0);
3819 
3820 	if (th->ack) {
3821 		/* rfc793:
3822 		 * "If the state is SYN-SENT then
3823 		 *    first check the ACK bit
3824 		 *      If the ACK bit is set
3825 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3826 		 *        a reset (unless the RST bit is set, if so drop
3827 		 *        the segment and return)"
3828 		 *
3829 		 *  We do not send data with SYN, so that RFC-correct
3830 		 *  test reduces to:
3831 		 */
3832 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3833 			goto reset_and_undo;
3834 
3835 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3836 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3837 			     tcp_time_stamp)) {
3838 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3839 			goto reset_and_undo;
3840 		}
3841 
3842 		/* Now ACK is acceptable.
3843 		 *
3844 		 * "If the RST bit is set
3845 		 *    If the ACK was acceptable then signal the user "error:
3846 		 *    connection reset", drop the segment, enter CLOSED state,
3847 		 *    delete TCB, and return."
3848 		 */
3849 
3850 		if (th->rst) {
3851 			tcp_reset(sk);
3852 			goto discard;
3853 		}
3854 
3855 		/* rfc793:
3856 		 *   "fifth, if neither of the SYN or RST bits is set then
3857 		 *    drop the segment and return."
3858 		 *
3859 		 *    See note below!
3860 		 *                                        --ANK(990513)
3861 		 */
3862 		if (!th->syn)
3863 			goto discard_and_undo;
3864 
3865 		/* rfc793:
3866 		 *   "If the SYN bit is on ...
3867 		 *    are acceptable then ...
3868 		 *    (our SYN has been ACKed), change the connection
3869 		 *    state to ESTABLISHED..."
3870 		 */
3871 
3872 		TCP_ECN_rcv_synack(tp, th);
3873 		if (tp->ecn_flags&TCP_ECN_OK)
3874 			sock_set_flag(sk, SOCK_NO_LARGESEND);
3875 
3876 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3877 		tcp_ack(sk, skb, FLAG_SLOWPATH);
3878 
3879 		/* Ok.. it's good. Set up sequence numbers and
3880 		 * move to established.
3881 		 */
3882 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3883 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3884 
3885 		/* RFC1323: The window in SYN & SYN/ACK segments is
3886 		 * never scaled.
3887 		 */
3888 		tp->snd_wnd = ntohs(th->window);
3889 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3890 
3891 		if (!tp->rx_opt.wscale_ok) {
3892 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3893 			tp->window_clamp = min(tp->window_clamp, 65535U);
3894 		}
3895 
3896 		if (tp->rx_opt.saw_tstamp) {
3897 			tp->rx_opt.tstamp_ok	   = 1;
3898 			tp->tcp_header_len =
3899 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3900 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
3901 			tcp_store_ts_recent(tp);
3902 		} else {
3903 			tp->tcp_header_len = sizeof(struct tcphdr);
3904 		}
3905 
3906 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3907 			tp->rx_opt.sack_ok |= 2;
3908 
3909 		tcp_sync_mss(sk, tp->pmtu_cookie);
3910 		tcp_initialize_rcv_mss(sk);
3911 
3912 		/* Remember, tcp_poll() does not lock socket!
3913 		 * Change state from SYN-SENT only after copied_seq
3914 		 * is initialized. */
3915 		tp->copied_seq = tp->rcv_nxt;
3916 		mb();
3917 		tcp_set_state(sk, TCP_ESTABLISHED);
3918 
3919 		/* Make sure socket is routed, for correct metrics.  */
3920 		tp->af_specific->rebuild_header(sk);
3921 
3922 		tcp_init_metrics(sk);
3923 
3924 		tcp_init_congestion_control(tp);
3925 
3926 		/* Prevent spurious tcp_cwnd_restart() on first data
3927 		 * packet.
3928 		 */
3929 		tp->lsndtime = tcp_time_stamp;
3930 
3931 		tcp_init_buffer_space(sk);
3932 
3933 		if (sock_flag(sk, SOCK_KEEPOPEN))
3934 			tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
3935 
3936 		if (!tp->rx_opt.snd_wscale)
3937 			__tcp_fast_path_on(tp, tp->snd_wnd);
3938 		else
3939 			tp->pred_flags = 0;
3940 
3941 		if (!sock_flag(sk, SOCK_DEAD)) {
3942 			sk->sk_state_change(sk);
3943 			sk_wake_async(sk, 0, POLL_OUT);
3944 		}
3945 
3946 		if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) {
3947 			/* Save one ACK. Data will be ready after
3948 			 * several ticks, if write_pending is set.
3949 			 *
3950 			 * It may be deleted, but with this feature tcpdumps
3951 			 * look so _wonderfully_ clever, that I was not able
3952 			 * to stand against the temptation 8)     --ANK
3953 			 */
3954 			tcp_schedule_ack(tp);
3955 			tp->ack.lrcvtime = tcp_time_stamp;
3956 			tp->ack.ato	 = TCP_ATO_MIN;
3957 			tcp_incr_quickack(tp);
3958 			tcp_enter_quickack_mode(tp);
3959 			tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
3960 
3961 discard:
3962 			__kfree_skb(skb);
3963 			return 0;
3964 		} else {
3965 			tcp_send_ack(sk);
3966 		}
3967 		return -1;
3968 	}
3969 
3970 	/* No ACK in the segment */
3971 
3972 	if (th->rst) {
3973 		/* rfc793:
3974 		 * "If the RST bit is set
3975 		 *
3976 		 *      Otherwise (no ACK) drop the segment and return."
3977 		 */
3978 
3979 		goto discard_and_undo;
3980 	}
3981 
3982 	/* PAWS check. */
3983 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
3984 		goto discard_and_undo;
3985 
3986 	if (th->syn) {
3987 		/* We see SYN without ACK. It is attempt of
3988 		 * simultaneous connect with crossed SYNs.
3989 		 * Particularly, it can be connect to self.
3990 		 */
3991 		tcp_set_state(sk, TCP_SYN_RECV);
3992 
3993 		if (tp->rx_opt.saw_tstamp) {
3994 			tp->rx_opt.tstamp_ok = 1;
3995 			tcp_store_ts_recent(tp);
3996 			tp->tcp_header_len =
3997 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3998 		} else {
3999 			tp->tcp_header_len = sizeof(struct tcphdr);
4000 		}
4001 
4002 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4003 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4004 
4005 		/* RFC1323: The window in SYN & SYN/ACK segments is
4006 		 * never scaled.
4007 		 */
4008 		tp->snd_wnd    = ntohs(th->window);
4009 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4010 		tp->max_window = tp->snd_wnd;
4011 
4012 		TCP_ECN_rcv_syn(tp, th);
4013 		if (tp->ecn_flags&TCP_ECN_OK)
4014 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4015 
4016 		tcp_sync_mss(sk, tp->pmtu_cookie);
4017 		tcp_initialize_rcv_mss(sk);
4018 
4019 
4020 		tcp_send_synack(sk);
4021 #if 0
4022 		/* Note, we could accept data and URG from this segment.
4023 		 * There are no obstacles to make this.
4024 		 *
4025 		 * However, if we ignore data in ACKless segments sometimes,
4026 		 * we have no reasons to accept it sometimes.
4027 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4028 		 * is not flawless. So, discard packet for sanity.
4029 		 * Uncomment this return to process the data.
4030 		 */
4031 		return -1;
4032 #else
4033 		goto discard;
4034 #endif
4035 	}
4036 	/* "fifth, if neither of the SYN or RST bits is set then
4037 	 * drop the segment and return."
4038 	 */
4039 
4040 discard_and_undo:
4041 	tcp_clear_options(&tp->rx_opt);
4042 	tp->rx_opt.mss_clamp = saved_clamp;
4043 	goto discard;
4044 
4045 reset_and_undo:
4046 	tcp_clear_options(&tp->rx_opt);
4047 	tp->rx_opt.mss_clamp = saved_clamp;
4048 	return 1;
4049 }
4050 
4051 
4052 /*
4053  *	This function implements the receiving procedure of RFC 793 for
4054  *	all states except ESTABLISHED and TIME_WAIT.
4055  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4056  *	address independent.
4057  */
4058 
4059 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4060 			  struct tcphdr *th, unsigned len)
4061 {
4062 	struct tcp_sock *tp = tcp_sk(sk);
4063 	int queued = 0;
4064 
4065 	tp->rx_opt.saw_tstamp = 0;
4066 
4067 	switch (sk->sk_state) {
4068 	case TCP_CLOSE:
4069 		goto discard;
4070 
4071 	case TCP_LISTEN:
4072 		if(th->ack)
4073 			return 1;
4074 
4075 		if(th->rst)
4076 			goto discard;
4077 
4078 		if(th->syn) {
4079 			if(tp->af_specific->conn_request(sk, skb) < 0)
4080 				return 1;
4081 
4082 			/* Now we have several options: In theory there is
4083 			 * nothing else in the frame. KA9Q has an option to
4084 			 * send data with the syn, BSD accepts data with the
4085 			 * syn up to the [to be] advertised window and
4086 			 * Solaris 2.1 gives you a protocol error. For now
4087 			 * we just ignore it, that fits the spec precisely
4088 			 * and avoids incompatibilities. It would be nice in
4089 			 * future to drop through and process the data.
4090 			 *
4091 			 * Now that TTCP is starting to be used we ought to
4092 			 * queue this data.
4093 			 * But, this leaves one open to an easy denial of
4094 		 	 * service attack, and SYN cookies can't defend
4095 			 * against this problem. So, we drop the data
4096 			 * in the interest of security over speed.
4097 			 */
4098 			goto discard;
4099 		}
4100 		goto discard;
4101 
4102 	case TCP_SYN_SENT:
4103 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4104 		if (queued >= 0)
4105 			return queued;
4106 
4107 		/* Do step6 onward by hand. */
4108 		tcp_urg(sk, skb, th);
4109 		__kfree_skb(skb);
4110 		tcp_data_snd_check(sk, tp);
4111 		return 0;
4112 	}
4113 
4114 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4115 	    tcp_paws_discard(tp, skb)) {
4116 		if (!th->rst) {
4117 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4118 			tcp_send_dupack(sk, skb);
4119 			goto discard;
4120 		}
4121 		/* Reset is accepted even if it did not pass PAWS. */
4122 	}
4123 
4124 	/* step 1: check sequence number */
4125 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4126 		if (!th->rst)
4127 			tcp_send_dupack(sk, skb);
4128 		goto discard;
4129 	}
4130 
4131 	/* step 2: check RST bit */
4132 	if(th->rst) {
4133 		tcp_reset(sk);
4134 		goto discard;
4135 	}
4136 
4137 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4138 
4139 	/* step 3: check security and precedence [ignored] */
4140 
4141 	/*	step 4:
4142 	 *
4143 	 *	Check for a SYN in window.
4144 	 */
4145 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4146 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4147 		tcp_reset(sk);
4148 		return 1;
4149 	}
4150 
4151 	/* step 5: check the ACK field */
4152 	if (th->ack) {
4153 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4154 
4155 		switch(sk->sk_state) {
4156 		case TCP_SYN_RECV:
4157 			if (acceptable) {
4158 				tp->copied_seq = tp->rcv_nxt;
4159 				mb();
4160 				tcp_set_state(sk, TCP_ESTABLISHED);
4161 				sk->sk_state_change(sk);
4162 
4163 				/* Note, that this wakeup is only for marginal
4164 				 * crossed SYN case. Passively open sockets
4165 				 * are not waked up, because sk->sk_sleep ==
4166 				 * NULL and sk->sk_socket == NULL.
4167 				 */
4168 				if (sk->sk_socket) {
4169 					sk_wake_async(sk,0,POLL_OUT);
4170 				}
4171 
4172 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4173 				tp->snd_wnd = ntohs(th->window) <<
4174 					      tp->rx_opt.snd_wscale;
4175 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4176 					    TCP_SKB_CB(skb)->seq);
4177 
4178 				/* tcp_ack considers this ACK as duplicate
4179 				 * and does not calculate rtt.
4180 				 * Fix it at least with timestamps.
4181 				 */
4182 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4183 				    !tp->srtt)
4184 					tcp_ack_saw_tstamp(tp, 0, 0);
4185 
4186 				if (tp->rx_opt.tstamp_ok)
4187 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4188 
4189 				/* Make sure socket is routed, for
4190 				 * correct metrics.
4191 				 */
4192 				tp->af_specific->rebuild_header(sk);
4193 
4194 				tcp_init_metrics(sk);
4195 
4196 				tcp_init_congestion_control(tp);
4197 
4198 				/* Prevent spurious tcp_cwnd_restart() on
4199 				 * first data packet.
4200 				 */
4201 				tp->lsndtime = tcp_time_stamp;
4202 
4203 				tcp_initialize_rcv_mss(sk);
4204 				tcp_init_buffer_space(sk);
4205 				tcp_fast_path_on(tp);
4206 			} else {
4207 				return 1;
4208 			}
4209 			break;
4210 
4211 		case TCP_FIN_WAIT1:
4212 			if (tp->snd_una == tp->write_seq) {
4213 				tcp_set_state(sk, TCP_FIN_WAIT2);
4214 				sk->sk_shutdown |= SEND_SHUTDOWN;
4215 				dst_confirm(sk->sk_dst_cache);
4216 
4217 				if (!sock_flag(sk, SOCK_DEAD))
4218 					/* Wake up lingering close() */
4219 					sk->sk_state_change(sk);
4220 				else {
4221 					int tmo;
4222 
4223 					if (tp->linger2 < 0 ||
4224 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4225 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4226 						tcp_done(sk);
4227 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4228 						return 1;
4229 					}
4230 
4231 					tmo = tcp_fin_time(tp);
4232 					if (tmo > TCP_TIMEWAIT_LEN) {
4233 						tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4234 					} else if (th->fin || sock_owned_by_user(sk)) {
4235 						/* Bad case. We could lose such FIN otherwise.
4236 						 * It is not a big problem, but it looks confusing
4237 						 * and not so rare event. We still can lose it now,
4238 						 * if it spins in bh_lock_sock(), but it is really
4239 						 * marginal case.
4240 						 */
4241 						tcp_reset_keepalive_timer(sk, tmo);
4242 					} else {
4243 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4244 						goto discard;
4245 					}
4246 				}
4247 			}
4248 			break;
4249 
4250 		case TCP_CLOSING:
4251 			if (tp->snd_una == tp->write_seq) {
4252 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4253 				goto discard;
4254 			}
4255 			break;
4256 
4257 		case TCP_LAST_ACK:
4258 			if (tp->snd_una == tp->write_seq) {
4259 				tcp_update_metrics(sk);
4260 				tcp_done(sk);
4261 				goto discard;
4262 			}
4263 			break;
4264 		}
4265 	} else
4266 		goto discard;
4267 
4268 	/* step 6: check the URG bit */
4269 	tcp_urg(sk, skb, th);
4270 
4271 	/* step 7: process the segment text */
4272 	switch (sk->sk_state) {
4273 	case TCP_CLOSE_WAIT:
4274 	case TCP_CLOSING:
4275 	case TCP_LAST_ACK:
4276 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4277 			break;
4278 	case TCP_FIN_WAIT1:
4279 	case TCP_FIN_WAIT2:
4280 		/* RFC 793 says to queue data in these states,
4281 		 * RFC 1122 says we MUST send a reset.
4282 		 * BSD 4.4 also does reset.
4283 		 */
4284 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4285 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4286 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4287 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4288 				tcp_reset(sk);
4289 				return 1;
4290 			}
4291 		}
4292 		/* Fall through */
4293 	case TCP_ESTABLISHED:
4294 		tcp_data_queue(sk, skb);
4295 		queued = 1;
4296 		break;
4297 	}
4298 
4299 	/* tcp_data could move socket to TIME-WAIT */
4300 	if (sk->sk_state != TCP_CLOSE) {
4301 		tcp_data_snd_check(sk, tp);
4302 		tcp_ack_snd_check(sk);
4303 	}
4304 
4305 	if (!queued) {
4306 discard:
4307 		__kfree_skb(skb);
4308 	}
4309 	return 0;
4310 }
4311 
4312 EXPORT_SYMBOL(sysctl_tcp_ecn);
4313 EXPORT_SYMBOL(sysctl_tcp_reordering);
4314 EXPORT_SYMBOL(tcp_parse_options);
4315 EXPORT_SYMBOL(tcp_rcv_established);
4316 EXPORT_SYMBOL(tcp_rcv_state_process);
4317