1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro, <bir7@leland.Stanford.Edu> 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presnce of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 * Angelo Dell'Aera: TCP Westwood+ support 65 */ 66 67 #include <linux/config.h> 68 #include <linux/mm.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <net/tcp.h> 72 #include <net/inet_common.h> 73 #include <linux/ipsec.h> 74 #include <asm/unaligned.h> 75 76 int sysctl_tcp_timestamps = 1; 77 int sysctl_tcp_window_scaling = 1; 78 int sysctl_tcp_sack = 1; 79 int sysctl_tcp_fack = 1; 80 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 81 int sysctl_tcp_ecn; 82 int sysctl_tcp_dsack = 1; 83 int sysctl_tcp_app_win = 31; 84 int sysctl_tcp_adv_win_scale = 2; 85 86 int sysctl_tcp_stdurg; 87 int sysctl_tcp_rfc1337; 88 int sysctl_tcp_max_orphans = NR_FILE; 89 int sysctl_tcp_frto; 90 int sysctl_tcp_nometrics_save; 91 int sysctl_tcp_westwood; 92 int sysctl_tcp_vegas_cong_avoid; 93 94 int sysctl_tcp_moderate_rcvbuf = 1; 95 96 /* Default values of the Vegas variables, in fixed-point representation 97 * with V_PARAM_SHIFT bits to the right of the binary point. 98 */ 99 #define V_PARAM_SHIFT 1 100 int sysctl_tcp_vegas_alpha = 1<<V_PARAM_SHIFT; 101 int sysctl_tcp_vegas_beta = 3<<V_PARAM_SHIFT; 102 int sysctl_tcp_vegas_gamma = 1<<V_PARAM_SHIFT; 103 int sysctl_tcp_bic = 1; 104 int sysctl_tcp_bic_fast_convergence = 1; 105 int sysctl_tcp_bic_low_window = 14; 106 int sysctl_tcp_bic_beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */ 107 108 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 109 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 110 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 111 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 112 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 113 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 114 #define FLAG_ECE 0x40 /* ECE in this ACK */ 115 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 116 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 117 118 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 119 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 120 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 121 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 122 123 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 124 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 125 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 126 127 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 128 129 /* Adapt the MSS value used to make delayed ack decision to the 130 * real world. 131 */ 132 static inline void tcp_measure_rcv_mss(struct tcp_sock *tp, 133 struct sk_buff *skb) 134 { 135 unsigned int len, lss; 136 137 lss = tp->ack.last_seg_size; 138 tp->ack.last_seg_size = 0; 139 140 /* skb->len may jitter because of SACKs, even if peer 141 * sends good full-sized frames. 142 */ 143 len = skb->len; 144 if (len >= tp->ack.rcv_mss) { 145 tp->ack.rcv_mss = len; 146 } else { 147 /* Otherwise, we make more careful check taking into account, 148 * that SACKs block is variable. 149 * 150 * "len" is invariant segment length, including TCP header. 151 */ 152 len += skb->data - skb->h.raw; 153 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 154 /* If PSH is not set, packet should be 155 * full sized, provided peer TCP is not badly broken. 156 * This observation (if it is correct 8)) allows 157 * to handle super-low mtu links fairly. 158 */ 159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 160 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) { 161 /* Subtract also invariant (if peer is RFC compliant), 162 * tcp header plus fixed timestamp option length. 163 * Resulting "len" is MSS free of SACK jitter. 164 */ 165 len -= tp->tcp_header_len; 166 tp->ack.last_seg_size = len; 167 if (len == lss) { 168 tp->ack.rcv_mss = len; 169 return; 170 } 171 } 172 tp->ack.pending |= TCP_ACK_PUSHED; 173 } 174 } 175 176 static void tcp_incr_quickack(struct tcp_sock *tp) 177 { 178 unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss); 179 180 if (quickacks==0) 181 quickacks=2; 182 if (quickacks > tp->ack.quick) 183 tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 184 } 185 186 void tcp_enter_quickack_mode(struct tcp_sock *tp) 187 { 188 tcp_incr_quickack(tp); 189 tp->ack.pingpong = 0; 190 tp->ack.ato = TCP_ATO_MIN; 191 } 192 193 /* Send ACKs quickly, if "quick" count is not exhausted 194 * and the session is not interactive. 195 */ 196 197 static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp) 198 { 199 return (tp->ack.quick && !tp->ack.pingpong); 200 } 201 202 /* Buffer size and advertised window tuning. 203 * 204 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 205 */ 206 207 static void tcp_fixup_sndbuf(struct sock *sk) 208 { 209 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 210 sizeof(struct sk_buff); 211 212 if (sk->sk_sndbuf < 3 * sndmem) 213 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 214 } 215 216 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 217 * 218 * All tcp_full_space() is split to two parts: "network" buffer, allocated 219 * forward and advertised in receiver window (tp->rcv_wnd) and 220 * "application buffer", required to isolate scheduling/application 221 * latencies from network. 222 * window_clamp is maximal advertised window. It can be less than 223 * tcp_full_space(), in this case tcp_full_space() - window_clamp 224 * is reserved for "application" buffer. The less window_clamp is 225 * the smoother our behaviour from viewpoint of network, but the lower 226 * throughput and the higher sensitivity of the connection to losses. 8) 227 * 228 * rcv_ssthresh is more strict window_clamp used at "slow start" 229 * phase to predict further behaviour of this connection. 230 * It is used for two goals: 231 * - to enforce header prediction at sender, even when application 232 * requires some significant "application buffer". It is check #1. 233 * - to prevent pruning of receive queue because of misprediction 234 * of receiver window. Check #2. 235 * 236 * The scheme does not work when sender sends good segments opening 237 * window and then starts to feed us spagetti. But it should work 238 * in common situations. Otherwise, we have to rely on queue collapsing. 239 */ 240 241 /* Slow part of check#2. */ 242 static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 243 struct sk_buff *skb) 244 { 245 /* Optimize this! */ 246 int truesize = tcp_win_from_space(skb->truesize)/2; 247 int window = tcp_full_space(sk)/2; 248 249 while (tp->rcv_ssthresh <= window) { 250 if (truesize <= skb->len) 251 return 2*tp->ack.rcv_mss; 252 253 truesize >>= 1; 254 window >>= 1; 255 } 256 return 0; 257 } 258 259 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 260 struct sk_buff *skb) 261 { 262 /* Check #1 */ 263 if (tp->rcv_ssthresh < tp->window_clamp && 264 (int)tp->rcv_ssthresh < tcp_space(sk) && 265 !tcp_memory_pressure) { 266 int incr; 267 268 /* Check #2. Increase window, if skb with such overhead 269 * will fit to rcvbuf in future. 270 */ 271 if (tcp_win_from_space(skb->truesize) <= skb->len) 272 incr = 2*tp->advmss; 273 else 274 incr = __tcp_grow_window(sk, tp, skb); 275 276 if (incr) { 277 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 278 tp->ack.quick |= 1; 279 } 280 } 281 } 282 283 /* 3. Tuning rcvbuf, when connection enters established state. */ 284 285 static void tcp_fixup_rcvbuf(struct sock *sk) 286 { 287 struct tcp_sock *tp = tcp_sk(sk); 288 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 289 290 /* Try to select rcvbuf so that 4 mss-sized segments 291 * will fit to window and correspoding skbs will fit to our rcvbuf. 292 * (was 3; 4 is minimum to allow fast retransmit to work.) 293 */ 294 while (tcp_win_from_space(rcvmem) < tp->advmss) 295 rcvmem += 128; 296 if (sk->sk_rcvbuf < 4 * rcvmem) 297 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 298 } 299 300 /* 4. Try to fixup all. It is made iimediately after connection enters 301 * established state. 302 */ 303 static void tcp_init_buffer_space(struct sock *sk) 304 { 305 struct tcp_sock *tp = tcp_sk(sk); 306 int maxwin; 307 308 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 309 tcp_fixup_rcvbuf(sk); 310 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 311 tcp_fixup_sndbuf(sk); 312 313 tp->rcvq_space.space = tp->rcv_wnd; 314 315 maxwin = tcp_full_space(sk); 316 317 if (tp->window_clamp >= maxwin) { 318 tp->window_clamp = maxwin; 319 320 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 321 tp->window_clamp = max(maxwin - 322 (maxwin >> sysctl_tcp_app_win), 323 4 * tp->advmss); 324 } 325 326 /* Force reservation of one segment. */ 327 if (sysctl_tcp_app_win && 328 tp->window_clamp > 2 * tp->advmss && 329 tp->window_clamp + tp->advmss > maxwin) 330 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 331 332 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 333 tp->snd_cwnd_stamp = tcp_time_stamp; 334 } 335 336 static void init_bictcp(struct tcp_sock *tp) 337 { 338 tp->bictcp.cnt = 0; 339 340 tp->bictcp.last_max_cwnd = 0; 341 tp->bictcp.last_cwnd = 0; 342 tp->bictcp.last_stamp = 0; 343 } 344 345 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 346 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp) 347 { 348 struct sk_buff *skb; 349 unsigned int app_win = tp->rcv_nxt - tp->copied_seq; 350 int ofo_win = 0; 351 352 tp->ack.quick = 0; 353 354 skb_queue_walk(&tp->out_of_order_queue, skb) { 355 ofo_win += skb->len; 356 } 357 358 /* If overcommit is due to out of order segments, 359 * do not clamp window. Try to expand rcvbuf instead. 360 */ 361 if (ofo_win) { 362 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 363 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 364 !tcp_memory_pressure && 365 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) 366 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 367 sysctl_tcp_rmem[2]); 368 } 369 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) { 370 app_win += ofo_win; 371 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf) 372 app_win >>= 1; 373 if (app_win > tp->ack.rcv_mss) 374 app_win -= tp->ack.rcv_mss; 375 app_win = max(app_win, 2U*tp->advmss); 376 377 if (!ofo_win) 378 tp->window_clamp = min(tp->window_clamp, app_win); 379 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 380 } 381 } 382 383 /* Receiver "autotuning" code. 384 * 385 * The algorithm for RTT estimation w/o timestamps is based on 386 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 387 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 388 * 389 * More detail on this code can be found at 390 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 391 * though this reference is out of date. A new paper 392 * is pending. 393 */ 394 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 395 { 396 u32 new_sample = tp->rcv_rtt_est.rtt; 397 long m = sample; 398 399 if (m == 0) 400 m = 1; 401 402 if (new_sample != 0) { 403 /* If we sample in larger samples in the non-timestamp 404 * case, we could grossly overestimate the RTT especially 405 * with chatty applications or bulk transfer apps which 406 * are stalled on filesystem I/O. 407 * 408 * Also, since we are only going for a minimum in the 409 * non-timestamp case, we do not smoothe things out 410 * else with timestamps disabled convergance takes too 411 * long. 412 */ 413 if (!win_dep) { 414 m -= (new_sample >> 3); 415 new_sample += m; 416 } else if (m < new_sample) 417 new_sample = m << 3; 418 } else { 419 /* No previous mesaure. */ 420 new_sample = m << 3; 421 } 422 423 if (tp->rcv_rtt_est.rtt != new_sample) 424 tp->rcv_rtt_est.rtt = new_sample; 425 } 426 427 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 428 { 429 if (tp->rcv_rtt_est.time == 0) 430 goto new_measure; 431 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 432 return; 433 tcp_rcv_rtt_update(tp, 434 jiffies - tp->rcv_rtt_est.time, 435 1); 436 437 new_measure: 438 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 439 tp->rcv_rtt_est.time = tcp_time_stamp; 440 } 441 442 static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb) 443 { 444 if (tp->rx_opt.rcv_tsecr && 445 (TCP_SKB_CB(skb)->end_seq - 446 TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss)) 447 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 448 } 449 450 /* 451 * This function should be called every time data is copied to user space. 452 * It calculates the appropriate TCP receive buffer space. 453 */ 454 void tcp_rcv_space_adjust(struct sock *sk) 455 { 456 struct tcp_sock *tp = tcp_sk(sk); 457 int time; 458 int space; 459 460 if (tp->rcvq_space.time == 0) 461 goto new_measure; 462 463 time = tcp_time_stamp - tp->rcvq_space.time; 464 if (time < (tp->rcv_rtt_est.rtt >> 3) || 465 tp->rcv_rtt_est.rtt == 0) 466 return; 467 468 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 469 470 space = max(tp->rcvq_space.space, space); 471 472 if (tp->rcvq_space.space != space) { 473 int rcvmem; 474 475 tp->rcvq_space.space = space; 476 477 if (sysctl_tcp_moderate_rcvbuf) { 478 int new_clamp = space; 479 480 /* Receive space grows, normalize in order to 481 * take into account packet headers and sk_buff 482 * structure overhead. 483 */ 484 space /= tp->advmss; 485 if (!space) 486 space = 1; 487 rcvmem = (tp->advmss + MAX_TCP_HEADER + 488 16 + sizeof(struct sk_buff)); 489 while (tcp_win_from_space(rcvmem) < tp->advmss) 490 rcvmem += 128; 491 space *= rcvmem; 492 space = min(space, sysctl_tcp_rmem[2]); 493 if (space > sk->sk_rcvbuf) { 494 sk->sk_rcvbuf = space; 495 496 /* Make the window clamp follow along. */ 497 tp->window_clamp = new_clamp; 498 } 499 } 500 } 501 502 new_measure: 503 tp->rcvq_space.seq = tp->copied_seq; 504 tp->rcvq_space.time = tcp_time_stamp; 505 } 506 507 /* There is something which you must keep in mind when you analyze the 508 * behavior of the tp->ato delayed ack timeout interval. When a 509 * connection starts up, we want to ack as quickly as possible. The 510 * problem is that "good" TCP's do slow start at the beginning of data 511 * transmission. The means that until we send the first few ACK's the 512 * sender will sit on his end and only queue most of his data, because 513 * he can only send snd_cwnd unacked packets at any given time. For 514 * each ACK we send, he increments snd_cwnd and transmits more of his 515 * queue. -DaveM 516 */ 517 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 518 { 519 u32 now; 520 521 tcp_schedule_ack(tp); 522 523 tcp_measure_rcv_mss(tp, skb); 524 525 tcp_rcv_rtt_measure(tp); 526 527 now = tcp_time_stamp; 528 529 if (!tp->ack.ato) { 530 /* The _first_ data packet received, initialize 531 * delayed ACK engine. 532 */ 533 tcp_incr_quickack(tp); 534 tp->ack.ato = TCP_ATO_MIN; 535 } else { 536 int m = now - tp->ack.lrcvtime; 537 538 if (m <= TCP_ATO_MIN/2) { 539 /* The fastest case is the first. */ 540 tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2; 541 } else if (m < tp->ack.ato) { 542 tp->ack.ato = (tp->ack.ato>>1) + m; 543 if (tp->ack.ato > tp->rto) 544 tp->ack.ato = tp->rto; 545 } else if (m > tp->rto) { 546 /* Too long gap. Apparently sender falled to 547 * restart window, so that we send ACKs quickly. 548 */ 549 tcp_incr_quickack(tp); 550 sk_stream_mem_reclaim(sk); 551 } 552 } 553 tp->ack.lrcvtime = now; 554 555 TCP_ECN_check_ce(tp, skb); 556 557 if (skb->len >= 128) 558 tcp_grow_window(sk, tp, skb); 559 } 560 561 /* When starting a new connection, pin down the current choice of 562 * congestion algorithm. 563 */ 564 void tcp_ca_init(struct tcp_sock *tp) 565 { 566 if (sysctl_tcp_westwood) 567 tp->adv_cong = TCP_WESTWOOD; 568 else if (sysctl_tcp_bic) 569 tp->adv_cong = TCP_BIC; 570 else if (sysctl_tcp_vegas_cong_avoid) { 571 tp->adv_cong = TCP_VEGAS; 572 tp->vegas.baseRTT = 0x7fffffff; 573 tcp_vegas_enable(tp); 574 } 575 } 576 577 /* Do RTT sampling needed for Vegas. 578 * Basically we: 579 * o min-filter RTT samples from within an RTT to get the current 580 * propagation delay + queuing delay (we are min-filtering to try to 581 * avoid the effects of delayed ACKs) 582 * o min-filter RTT samples from a much longer window (forever for now) 583 * to find the propagation delay (baseRTT) 584 */ 585 static inline void vegas_rtt_calc(struct tcp_sock *tp, __u32 rtt) 586 { 587 __u32 vrtt = rtt + 1; /* Never allow zero rtt or baseRTT */ 588 589 /* Filter to find propagation delay: */ 590 if (vrtt < tp->vegas.baseRTT) 591 tp->vegas.baseRTT = vrtt; 592 593 /* Find the min RTT during the last RTT to find 594 * the current prop. delay + queuing delay: 595 */ 596 tp->vegas.minRTT = min(tp->vegas.minRTT, vrtt); 597 tp->vegas.cntRTT++; 598 } 599 600 /* Called to compute a smoothed rtt estimate. The data fed to this 601 * routine either comes from timestamps, or from segments that were 602 * known _not_ to have been retransmitted [see Karn/Partridge 603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 604 * piece by Van Jacobson. 605 * NOTE: the next three routines used to be one big routine. 606 * To save cycles in the RFC 1323 implementation it was better to break 607 * it up into three procedures. -- erics 608 */ 609 static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt) 610 { 611 long m = mrtt; /* RTT */ 612 613 if (tcp_vegas_enabled(tp)) 614 vegas_rtt_calc(tp, mrtt); 615 616 /* The following amusing code comes from Jacobson's 617 * article in SIGCOMM '88. Note that rtt and mdev 618 * are scaled versions of rtt and mean deviation. 619 * This is designed to be as fast as possible 620 * m stands for "measurement". 621 * 622 * On a 1990 paper the rto value is changed to: 623 * RTO = rtt + 4 * mdev 624 * 625 * Funny. This algorithm seems to be very broken. 626 * These formulae increase RTO, when it should be decreased, increase 627 * too slowly, when it should be incresed fastly, decrease too fastly 628 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 629 * does not matter how to _calculate_ it. Seems, it was trap 630 * that VJ failed to avoid. 8) 631 */ 632 if(m == 0) 633 m = 1; 634 if (tp->srtt != 0) { 635 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 636 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 637 if (m < 0) { 638 m = -m; /* m is now abs(error) */ 639 m -= (tp->mdev >> 2); /* similar update on mdev */ 640 /* This is similar to one of Eifel findings. 641 * Eifel blocks mdev updates when rtt decreases. 642 * This solution is a bit different: we use finer gain 643 * for mdev in this case (alpha*beta). 644 * Like Eifel it also prevents growth of rto, 645 * but also it limits too fast rto decreases, 646 * happening in pure Eifel. 647 */ 648 if (m > 0) 649 m >>= 3; 650 } else { 651 m -= (tp->mdev >> 2); /* similar update on mdev */ 652 } 653 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 654 if (tp->mdev > tp->mdev_max) { 655 tp->mdev_max = tp->mdev; 656 if (tp->mdev_max > tp->rttvar) 657 tp->rttvar = tp->mdev_max; 658 } 659 if (after(tp->snd_una, tp->rtt_seq)) { 660 if (tp->mdev_max < tp->rttvar) 661 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 662 tp->rtt_seq = tp->snd_nxt; 663 tp->mdev_max = TCP_RTO_MIN; 664 } 665 } else { 666 /* no previous measure. */ 667 tp->srtt = m<<3; /* take the measured time to be rtt */ 668 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 669 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 670 tp->rtt_seq = tp->snd_nxt; 671 } 672 673 tcp_westwood_update_rtt(tp, tp->srtt >> 3); 674 } 675 676 /* Calculate rto without backoff. This is the second half of Van Jacobson's 677 * routine referred to above. 678 */ 679 static inline void tcp_set_rto(struct tcp_sock *tp) 680 { 681 /* Old crap is replaced with new one. 8) 682 * 683 * More seriously: 684 * 1. If rtt variance happened to be less 50msec, it is hallucination. 685 * It cannot be less due to utterly erratic ACK generation made 686 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 687 * to do with delayed acks, because at cwnd>2 true delack timeout 688 * is invisible. Actually, Linux-2.4 also generates erratic 689 * ACKs in some curcumstances. 690 */ 691 tp->rto = (tp->srtt >> 3) + tp->rttvar; 692 693 /* 2. Fixups made earlier cannot be right. 694 * If we do not estimate RTO correctly without them, 695 * all the algo is pure shit and should be replaced 696 * with correct one. It is exaclty, which we pretend to do. 697 */ 698 } 699 700 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 701 * guarantees that rto is higher. 702 */ 703 static inline void tcp_bound_rto(struct tcp_sock *tp) 704 { 705 if (tp->rto > TCP_RTO_MAX) 706 tp->rto = TCP_RTO_MAX; 707 } 708 709 /* Save metrics learned by this TCP session. 710 This function is called only, when TCP finishes successfully 711 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 712 */ 713 void tcp_update_metrics(struct sock *sk) 714 { 715 struct tcp_sock *tp = tcp_sk(sk); 716 struct dst_entry *dst = __sk_dst_get(sk); 717 718 if (sysctl_tcp_nometrics_save) 719 return; 720 721 dst_confirm(dst); 722 723 if (dst && (dst->flags&DST_HOST)) { 724 int m; 725 726 if (tp->backoff || !tp->srtt) { 727 /* This session failed to estimate rtt. Why? 728 * Probably, no packets returned in time. 729 * Reset our results. 730 */ 731 if (!(dst_metric_locked(dst, RTAX_RTT))) 732 dst->metrics[RTAX_RTT-1] = 0; 733 return; 734 } 735 736 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 737 738 /* If newly calculated rtt larger than stored one, 739 * store new one. Otherwise, use EWMA. Remember, 740 * rtt overestimation is always better than underestimation. 741 */ 742 if (!(dst_metric_locked(dst, RTAX_RTT))) { 743 if (m <= 0) 744 dst->metrics[RTAX_RTT-1] = tp->srtt; 745 else 746 dst->metrics[RTAX_RTT-1] -= (m>>3); 747 } 748 749 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 750 if (m < 0) 751 m = -m; 752 753 /* Scale deviation to rttvar fixed point */ 754 m >>= 1; 755 if (m < tp->mdev) 756 m = tp->mdev; 757 758 if (m >= dst_metric(dst, RTAX_RTTVAR)) 759 dst->metrics[RTAX_RTTVAR-1] = m; 760 else 761 dst->metrics[RTAX_RTTVAR-1] -= 762 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 763 } 764 765 if (tp->snd_ssthresh >= 0xFFFF) { 766 /* Slow start still did not finish. */ 767 if (dst_metric(dst, RTAX_SSTHRESH) && 768 !dst_metric_locked(dst, RTAX_SSTHRESH) && 769 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 770 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 771 if (!dst_metric_locked(dst, RTAX_CWND) && 772 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 773 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 774 } else if (tp->snd_cwnd > tp->snd_ssthresh && 775 tp->ca_state == TCP_CA_Open) { 776 /* Cong. avoidance phase, cwnd is reliable. */ 777 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 778 dst->metrics[RTAX_SSTHRESH-1] = 779 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 780 if (!dst_metric_locked(dst, RTAX_CWND)) 781 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 782 } else { 783 /* Else slow start did not finish, cwnd is non-sense, 784 ssthresh may be also invalid. 785 */ 786 if (!dst_metric_locked(dst, RTAX_CWND)) 787 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 788 if (dst->metrics[RTAX_SSTHRESH-1] && 789 !dst_metric_locked(dst, RTAX_SSTHRESH) && 790 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 791 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 792 } 793 794 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 795 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 796 tp->reordering != sysctl_tcp_reordering) 797 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 798 } 799 } 800 } 801 802 /* Numbers are taken from RFC2414. */ 803 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 804 { 805 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 806 807 if (!cwnd) { 808 if (tp->mss_cache_std > 1460) 809 cwnd = 2; 810 else 811 cwnd = (tp->mss_cache_std > 1095) ? 3 : 4; 812 } 813 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 814 } 815 816 /* Initialize metrics on socket. */ 817 818 static void tcp_init_metrics(struct sock *sk) 819 { 820 struct tcp_sock *tp = tcp_sk(sk); 821 struct dst_entry *dst = __sk_dst_get(sk); 822 823 if (dst == NULL) 824 goto reset; 825 826 dst_confirm(dst); 827 828 if (dst_metric_locked(dst, RTAX_CWND)) 829 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 830 if (dst_metric(dst, RTAX_SSTHRESH)) { 831 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 832 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 833 tp->snd_ssthresh = tp->snd_cwnd_clamp; 834 } 835 if (dst_metric(dst, RTAX_REORDERING) && 836 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 837 tp->rx_opt.sack_ok &= ~2; 838 tp->reordering = dst_metric(dst, RTAX_REORDERING); 839 } 840 841 if (dst_metric(dst, RTAX_RTT) == 0) 842 goto reset; 843 844 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 845 goto reset; 846 847 /* Initial rtt is determined from SYN,SYN-ACK. 848 * The segment is small and rtt may appear much 849 * less than real one. Use per-dst memory 850 * to make it more realistic. 851 * 852 * A bit of theory. RTT is time passed after "normal" sized packet 853 * is sent until it is ACKed. In normal curcumstances sending small 854 * packets force peer to delay ACKs and calculation is correct too. 855 * The algorithm is adaptive and, provided we follow specs, it 856 * NEVER underestimate RTT. BUT! If peer tries to make some clever 857 * tricks sort of "quick acks" for time long enough to decrease RTT 858 * to low value, and then abruptly stops to do it and starts to delay 859 * ACKs, wait for troubles. 860 */ 861 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 862 tp->srtt = dst_metric(dst, RTAX_RTT); 863 tp->rtt_seq = tp->snd_nxt; 864 } 865 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 866 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 867 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 868 } 869 tcp_set_rto(tp); 870 tcp_bound_rto(tp); 871 if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 872 goto reset; 873 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 874 tp->snd_cwnd_stamp = tcp_time_stamp; 875 return; 876 877 reset: 878 /* Play conservative. If timestamps are not 879 * supported, TCP will fail to recalculate correct 880 * rtt, if initial rto is too small. FORGET ALL AND RESET! 881 */ 882 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 883 tp->srtt = 0; 884 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 885 tp->rto = TCP_TIMEOUT_INIT; 886 } 887 } 888 889 static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts) 890 { 891 if (metric > tp->reordering) { 892 tp->reordering = min(TCP_MAX_REORDERING, metric); 893 894 /* This exciting event is worth to be remembered. 8) */ 895 if (ts) 896 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 897 else if (IsReno(tp)) 898 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 899 else if (IsFack(tp)) 900 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 901 else 902 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 903 #if FASTRETRANS_DEBUG > 1 904 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 905 tp->rx_opt.sack_ok, tp->ca_state, 906 tp->reordering, 907 tp->fackets_out, 908 tp->sacked_out, 909 tp->undo_marker ? tp->undo_retrans : 0); 910 #endif 911 /* Disable FACK yet. */ 912 tp->rx_opt.sack_ok &= ~2; 913 } 914 } 915 916 /* This procedure tags the retransmission queue when SACKs arrive. 917 * 918 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 919 * Packets in queue with these bits set are counted in variables 920 * sacked_out, retrans_out and lost_out, correspondingly. 921 * 922 * Valid combinations are: 923 * Tag InFlight Description 924 * 0 1 - orig segment is in flight. 925 * S 0 - nothing flies, orig reached receiver. 926 * L 0 - nothing flies, orig lost by net. 927 * R 2 - both orig and retransmit are in flight. 928 * L|R 1 - orig is lost, retransmit is in flight. 929 * S|R 1 - orig reached receiver, retrans is still in flight. 930 * (L|S|R is logically valid, it could occur when L|R is sacked, 931 * but it is equivalent to plain S and code short-curcuits it to S. 932 * L|S is logically invalid, it would mean -1 packet in flight 8)) 933 * 934 * These 6 states form finite state machine, controlled by the following events: 935 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 936 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 937 * 3. Loss detection event of one of three flavors: 938 * A. Scoreboard estimator decided the packet is lost. 939 * A'. Reno "three dupacks" marks head of queue lost. 940 * A''. Its FACK modfication, head until snd.fack is lost. 941 * B. SACK arrives sacking data transmitted after never retransmitted 942 * hole was sent out. 943 * C. SACK arrives sacking SND.NXT at the moment, when the 944 * segment was retransmitted. 945 * 4. D-SACK added new rule: D-SACK changes any tag to S. 946 * 947 * It is pleasant to note, that state diagram turns out to be commutative, 948 * so that we are allowed not to be bothered by order of our actions, 949 * when multiple events arrive simultaneously. (see the function below). 950 * 951 * Reordering detection. 952 * -------------------- 953 * Reordering metric is maximal distance, which a packet can be displaced 954 * in packet stream. With SACKs we can estimate it: 955 * 956 * 1. SACK fills old hole and the corresponding segment was not 957 * ever retransmitted -> reordering. Alas, we cannot use it 958 * when segment was retransmitted. 959 * 2. The last flaw is solved with D-SACK. D-SACK arrives 960 * for retransmitted and already SACKed segment -> reordering.. 961 * Both of these heuristics are not used in Loss state, when we cannot 962 * account for retransmits accurately. 963 */ 964 static int 965 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 966 { 967 struct tcp_sock *tp = tcp_sk(sk); 968 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked; 969 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2); 970 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 971 int reord = tp->packets_out; 972 int prior_fackets; 973 u32 lost_retrans = 0; 974 int flag = 0; 975 int i; 976 977 /* So, SACKs for already sent large segments will be lost. 978 * Not good, but alternative is to resegment the queue. */ 979 if (sk->sk_route_caps & NETIF_F_TSO) { 980 sk->sk_route_caps &= ~NETIF_F_TSO; 981 sock_set_flag(sk, SOCK_NO_LARGESEND); 982 tp->mss_cache = tp->mss_cache_std; 983 } 984 985 if (!tp->sacked_out) 986 tp->fackets_out = 0; 987 prior_fackets = tp->fackets_out; 988 989 for (i=0; i<num_sacks; i++, sp++) { 990 struct sk_buff *skb; 991 __u32 start_seq = ntohl(sp->start_seq); 992 __u32 end_seq = ntohl(sp->end_seq); 993 int fack_count = 0; 994 int dup_sack = 0; 995 996 /* Check for D-SACK. */ 997 if (i == 0) { 998 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq; 999 1000 if (before(start_seq, ack)) { 1001 dup_sack = 1; 1002 tp->rx_opt.sack_ok |= 4; 1003 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 1004 } else if (num_sacks > 1 && 1005 !after(end_seq, ntohl(sp[1].end_seq)) && 1006 !before(start_seq, ntohl(sp[1].start_seq))) { 1007 dup_sack = 1; 1008 tp->rx_opt.sack_ok |= 4; 1009 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 1010 } 1011 1012 /* D-SACK for already forgotten data... 1013 * Do dumb counting. */ 1014 if (dup_sack && 1015 !after(end_seq, prior_snd_una) && 1016 after(end_seq, tp->undo_marker)) 1017 tp->undo_retrans--; 1018 1019 /* Eliminate too old ACKs, but take into 1020 * account more or less fresh ones, they can 1021 * contain valid SACK info. 1022 */ 1023 if (before(ack, prior_snd_una - tp->max_window)) 1024 return 0; 1025 } 1026 1027 /* Event "B" in the comment above. */ 1028 if (after(end_seq, tp->high_seq)) 1029 flag |= FLAG_DATA_LOST; 1030 1031 sk_stream_for_retrans_queue(skb, sk) { 1032 u8 sacked = TCP_SKB_CB(skb)->sacked; 1033 int in_sack; 1034 1035 /* The retransmission queue is always in order, so 1036 * we can short-circuit the walk early. 1037 */ 1038 if(!before(TCP_SKB_CB(skb)->seq, end_seq)) 1039 break; 1040 1041 fack_count += tcp_skb_pcount(skb); 1042 1043 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1044 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1045 1046 /* Account D-SACK for retransmitted packet. */ 1047 if ((dup_sack && in_sack) && 1048 (sacked & TCPCB_RETRANS) && 1049 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1050 tp->undo_retrans--; 1051 1052 /* The frame is ACKed. */ 1053 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1054 if (sacked&TCPCB_RETRANS) { 1055 if ((dup_sack && in_sack) && 1056 (sacked&TCPCB_SACKED_ACKED)) 1057 reord = min(fack_count, reord); 1058 } else { 1059 /* If it was in a hole, we detected reordering. */ 1060 if (fack_count < prior_fackets && 1061 !(sacked&TCPCB_SACKED_ACKED)) 1062 reord = min(fack_count, reord); 1063 } 1064 1065 /* Nothing to do; acked frame is about to be dropped. */ 1066 continue; 1067 } 1068 1069 if ((sacked&TCPCB_SACKED_RETRANS) && 1070 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1071 (!lost_retrans || after(end_seq, lost_retrans))) 1072 lost_retrans = end_seq; 1073 1074 if (!in_sack) 1075 continue; 1076 1077 if (!(sacked&TCPCB_SACKED_ACKED)) { 1078 if (sacked & TCPCB_SACKED_RETRANS) { 1079 /* If the segment is not tagged as lost, 1080 * we do not clear RETRANS, believing 1081 * that retransmission is still in flight. 1082 */ 1083 if (sacked & TCPCB_LOST) { 1084 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1085 tp->lost_out -= tcp_skb_pcount(skb); 1086 tp->retrans_out -= tcp_skb_pcount(skb); 1087 } 1088 } else { 1089 /* New sack for not retransmitted frame, 1090 * which was in hole. It is reordering. 1091 */ 1092 if (!(sacked & TCPCB_RETRANS) && 1093 fack_count < prior_fackets) 1094 reord = min(fack_count, reord); 1095 1096 if (sacked & TCPCB_LOST) { 1097 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1098 tp->lost_out -= tcp_skb_pcount(skb); 1099 } 1100 } 1101 1102 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1103 flag |= FLAG_DATA_SACKED; 1104 tp->sacked_out += tcp_skb_pcount(skb); 1105 1106 if (fack_count > tp->fackets_out) 1107 tp->fackets_out = fack_count; 1108 } else { 1109 if (dup_sack && (sacked&TCPCB_RETRANS)) 1110 reord = min(fack_count, reord); 1111 } 1112 1113 /* D-SACK. We can detect redundant retransmission 1114 * in S|R and plain R frames and clear it. 1115 * undo_retrans is decreased above, L|R frames 1116 * are accounted above as well. 1117 */ 1118 if (dup_sack && 1119 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1120 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1121 tp->retrans_out -= tcp_skb_pcount(skb); 1122 } 1123 } 1124 } 1125 1126 /* Check for lost retransmit. This superb idea is 1127 * borrowed from "ratehalving". Event "C". 1128 * Later note: FACK people cheated me again 8), 1129 * we have to account for reordering! Ugly, 1130 * but should help. 1131 */ 1132 if (lost_retrans && tp->ca_state == TCP_CA_Recovery) { 1133 struct sk_buff *skb; 1134 1135 sk_stream_for_retrans_queue(skb, sk) { 1136 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1137 break; 1138 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1139 continue; 1140 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1141 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1142 (IsFack(tp) || 1143 !before(lost_retrans, 1144 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1145 tp->mss_cache_std))) { 1146 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1147 tp->retrans_out -= tcp_skb_pcount(skb); 1148 1149 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1150 tp->lost_out += tcp_skb_pcount(skb); 1151 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1152 flag |= FLAG_DATA_SACKED; 1153 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1154 } 1155 } 1156 } 1157 } 1158 1159 tp->left_out = tp->sacked_out + tp->lost_out; 1160 1161 if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss) 1162 tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0); 1163 1164 #if FASTRETRANS_DEBUG > 0 1165 BUG_TRAP((int)tp->sacked_out >= 0); 1166 BUG_TRAP((int)tp->lost_out >= 0); 1167 BUG_TRAP((int)tp->retrans_out >= 0); 1168 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1169 #endif 1170 return flag; 1171 } 1172 1173 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new 1174 * segments to see from the next ACKs whether any data was really missing. 1175 * If the RTO was spurious, new ACKs should arrive. 1176 */ 1177 void tcp_enter_frto(struct sock *sk) 1178 { 1179 struct tcp_sock *tp = tcp_sk(sk); 1180 struct sk_buff *skb; 1181 1182 tp->frto_counter = 1; 1183 1184 if (tp->ca_state <= TCP_CA_Disorder || 1185 tp->snd_una == tp->high_seq || 1186 (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) { 1187 tp->prior_ssthresh = tcp_current_ssthresh(tp); 1188 if (!tcp_westwood_ssthresh(tp)) 1189 tp->snd_ssthresh = tcp_recalc_ssthresh(tp); 1190 } 1191 1192 /* Have to clear retransmission markers here to keep the bookkeeping 1193 * in shape, even though we are not yet in Loss state. 1194 * If something was really lost, it is eventually caught up 1195 * in tcp_enter_frto_loss. 1196 */ 1197 tp->retrans_out = 0; 1198 tp->undo_marker = tp->snd_una; 1199 tp->undo_retrans = 0; 1200 1201 sk_stream_for_retrans_queue(skb, sk) { 1202 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS; 1203 } 1204 tcp_sync_left_out(tp); 1205 1206 tcp_set_ca_state(tp, TCP_CA_Open); 1207 tp->frto_highmark = tp->snd_nxt; 1208 } 1209 1210 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1211 * which indicates that we should follow the traditional RTO recovery, 1212 * i.e. mark everything lost and do go-back-N retransmission. 1213 */ 1214 static void tcp_enter_frto_loss(struct sock *sk) 1215 { 1216 struct tcp_sock *tp = tcp_sk(sk); 1217 struct sk_buff *skb; 1218 int cnt = 0; 1219 1220 tp->sacked_out = 0; 1221 tp->lost_out = 0; 1222 tp->fackets_out = 0; 1223 1224 sk_stream_for_retrans_queue(skb, sk) { 1225 cnt += tcp_skb_pcount(skb); 1226 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1227 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1228 1229 /* Do not mark those segments lost that were 1230 * forward transmitted after RTO 1231 */ 1232 if (!after(TCP_SKB_CB(skb)->end_seq, 1233 tp->frto_highmark)) { 1234 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1235 tp->lost_out += tcp_skb_pcount(skb); 1236 } 1237 } else { 1238 tp->sacked_out += tcp_skb_pcount(skb); 1239 tp->fackets_out = cnt; 1240 } 1241 } 1242 tcp_sync_left_out(tp); 1243 1244 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1; 1245 tp->snd_cwnd_cnt = 0; 1246 tp->snd_cwnd_stamp = tcp_time_stamp; 1247 tp->undo_marker = 0; 1248 tp->frto_counter = 0; 1249 1250 tp->reordering = min_t(unsigned int, tp->reordering, 1251 sysctl_tcp_reordering); 1252 tcp_set_ca_state(tp, TCP_CA_Loss); 1253 tp->high_seq = tp->frto_highmark; 1254 TCP_ECN_queue_cwr(tp); 1255 1256 init_bictcp(tp); 1257 } 1258 1259 void tcp_clear_retrans(struct tcp_sock *tp) 1260 { 1261 tp->left_out = 0; 1262 tp->retrans_out = 0; 1263 1264 tp->fackets_out = 0; 1265 tp->sacked_out = 0; 1266 tp->lost_out = 0; 1267 1268 tp->undo_marker = 0; 1269 tp->undo_retrans = 0; 1270 } 1271 1272 /* Enter Loss state. If "how" is not zero, forget all SACK information 1273 * and reset tags completely, otherwise preserve SACKs. If receiver 1274 * dropped its ofo queue, we will know this due to reneging detection. 1275 */ 1276 void tcp_enter_loss(struct sock *sk, int how) 1277 { 1278 struct tcp_sock *tp = tcp_sk(sk); 1279 struct sk_buff *skb; 1280 int cnt = 0; 1281 1282 /* Reduce ssthresh if it has not yet been made inside this window. */ 1283 if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1284 (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) { 1285 tp->prior_ssthresh = tcp_current_ssthresh(tp); 1286 tp->snd_ssthresh = tcp_recalc_ssthresh(tp); 1287 } 1288 tp->snd_cwnd = 1; 1289 tp->snd_cwnd_cnt = 0; 1290 tp->snd_cwnd_stamp = tcp_time_stamp; 1291 1292 tcp_clear_retrans(tp); 1293 1294 /* Push undo marker, if it was plain RTO and nothing 1295 * was retransmitted. */ 1296 if (!how) 1297 tp->undo_marker = tp->snd_una; 1298 1299 sk_stream_for_retrans_queue(skb, sk) { 1300 cnt += tcp_skb_pcount(skb); 1301 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1302 tp->undo_marker = 0; 1303 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1304 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1305 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1306 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1307 tp->lost_out += tcp_skb_pcount(skb); 1308 } else { 1309 tp->sacked_out += tcp_skb_pcount(skb); 1310 tp->fackets_out = cnt; 1311 } 1312 } 1313 tcp_sync_left_out(tp); 1314 1315 tp->reordering = min_t(unsigned int, tp->reordering, 1316 sysctl_tcp_reordering); 1317 tcp_set_ca_state(tp, TCP_CA_Loss); 1318 tp->high_seq = tp->snd_nxt; 1319 TCP_ECN_queue_cwr(tp); 1320 } 1321 1322 static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp) 1323 { 1324 struct sk_buff *skb; 1325 1326 /* If ACK arrived pointing to a remembered SACK, 1327 * it means that our remembered SACKs do not reflect 1328 * real state of receiver i.e. 1329 * receiver _host_ is heavily congested (or buggy). 1330 * Do processing similar to RTO timeout. 1331 */ 1332 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL && 1333 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1334 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1335 1336 tcp_enter_loss(sk, 1); 1337 tp->retransmits++; 1338 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue)); 1339 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); 1340 return 1; 1341 } 1342 return 0; 1343 } 1344 1345 static inline int tcp_fackets_out(struct tcp_sock *tp) 1346 { 1347 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1348 } 1349 1350 static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb) 1351 { 1352 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto); 1353 } 1354 1355 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp) 1356 { 1357 return tp->packets_out && 1358 tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue)); 1359 } 1360 1361 /* Linux NewReno/SACK/FACK/ECN state machine. 1362 * -------------------------------------- 1363 * 1364 * "Open" Normal state, no dubious events, fast path. 1365 * "Disorder" In all the respects it is "Open", 1366 * but requires a bit more attention. It is entered when 1367 * we see some SACKs or dupacks. It is split of "Open" 1368 * mainly to move some processing from fast path to slow one. 1369 * "CWR" CWND was reduced due to some Congestion Notification event. 1370 * It can be ECN, ICMP source quench, local device congestion. 1371 * "Recovery" CWND was reduced, we are fast-retransmitting. 1372 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1373 * 1374 * tcp_fastretrans_alert() is entered: 1375 * - each incoming ACK, if state is not "Open" 1376 * - when arrived ACK is unusual, namely: 1377 * * SACK 1378 * * Duplicate ACK. 1379 * * ECN ECE. 1380 * 1381 * Counting packets in flight is pretty simple. 1382 * 1383 * in_flight = packets_out - left_out + retrans_out 1384 * 1385 * packets_out is SND.NXT-SND.UNA counted in packets. 1386 * 1387 * retrans_out is number of retransmitted segments. 1388 * 1389 * left_out is number of segments left network, but not ACKed yet. 1390 * 1391 * left_out = sacked_out + lost_out 1392 * 1393 * sacked_out: Packets, which arrived to receiver out of order 1394 * and hence not ACKed. With SACKs this number is simply 1395 * amount of SACKed data. Even without SACKs 1396 * it is easy to give pretty reliable estimate of this number, 1397 * counting duplicate ACKs. 1398 * 1399 * lost_out: Packets lost by network. TCP has no explicit 1400 * "loss notification" feedback from network (for now). 1401 * It means that this number can be only _guessed_. 1402 * Actually, it is the heuristics to predict lossage that 1403 * distinguishes different algorithms. 1404 * 1405 * F.e. after RTO, when all the queue is considered as lost, 1406 * lost_out = packets_out and in_flight = retrans_out. 1407 * 1408 * Essentially, we have now two algorithms counting 1409 * lost packets. 1410 * 1411 * FACK: It is the simplest heuristics. As soon as we decided 1412 * that something is lost, we decide that _all_ not SACKed 1413 * packets until the most forward SACK are lost. I.e. 1414 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1415 * It is absolutely correct estimate, if network does not reorder 1416 * packets. And it loses any connection to reality when reordering 1417 * takes place. We use FACK by default until reordering 1418 * is suspected on the path to this destination. 1419 * 1420 * NewReno: when Recovery is entered, we assume that one segment 1421 * is lost (classic Reno). While we are in Recovery and 1422 * a partial ACK arrives, we assume that one more packet 1423 * is lost (NewReno). This heuristics are the same in NewReno 1424 * and SACK. 1425 * 1426 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1427 * deflation etc. CWND is real congestion window, never inflated, changes 1428 * only according to classic VJ rules. 1429 * 1430 * Really tricky (and requiring careful tuning) part of algorithm 1431 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1432 * The first determines the moment _when_ we should reduce CWND and, 1433 * hence, slow down forward transmission. In fact, it determines the moment 1434 * when we decide that hole is caused by loss, rather than by a reorder. 1435 * 1436 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1437 * holes, caused by lost packets. 1438 * 1439 * And the most logically complicated part of algorithm is undo 1440 * heuristics. We detect false retransmits due to both too early 1441 * fast retransmit (reordering) and underestimated RTO, analyzing 1442 * timestamps and D-SACKs. When we detect that some segments were 1443 * retransmitted by mistake and CWND reduction was wrong, we undo 1444 * window reduction and abort recovery phase. This logic is hidden 1445 * inside several functions named tcp_try_undo_<something>. 1446 */ 1447 1448 /* This function decides, when we should leave Disordered state 1449 * and enter Recovery phase, reducing congestion window. 1450 * 1451 * Main question: may we further continue forward transmission 1452 * with the same cwnd? 1453 */ 1454 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp) 1455 { 1456 __u32 packets_out; 1457 1458 /* Trick#1: The loss is proven. */ 1459 if (tp->lost_out) 1460 return 1; 1461 1462 /* Not-A-Trick#2 : Classic rule... */ 1463 if (tcp_fackets_out(tp) > tp->reordering) 1464 return 1; 1465 1466 /* Trick#3 : when we use RFC2988 timer restart, fast 1467 * retransmit can be triggered by timeout of queue head. 1468 */ 1469 if (tcp_head_timedout(sk, tp)) 1470 return 1; 1471 1472 /* Trick#4: It is still not OK... But will it be useful to delay 1473 * recovery more? 1474 */ 1475 packets_out = tp->packets_out; 1476 if (packets_out <= tp->reordering && 1477 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1478 !tcp_may_send_now(sk, tp)) { 1479 /* We have nothing to send. This connection is limited 1480 * either by receiver window or by application. 1481 */ 1482 return 1; 1483 } 1484 1485 return 0; 1486 } 1487 1488 /* If we receive more dupacks than we expected counting segments 1489 * in assumption of absent reordering, interpret this as reordering. 1490 * The only another reason could be bug in receiver TCP. 1491 */ 1492 static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend) 1493 { 1494 u32 holes; 1495 1496 holes = max(tp->lost_out, 1U); 1497 holes = min(holes, tp->packets_out); 1498 1499 if ((tp->sacked_out + holes) > tp->packets_out) { 1500 tp->sacked_out = tp->packets_out - holes; 1501 tcp_update_reordering(tp, tp->packets_out+addend, 0); 1502 } 1503 } 1504 1505 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1506 1507 static void tcp_add_reno_sack(struct tcp_sock *tp) 1508 { 1509 tp->sacked_out++; 1510 tcp_check_reno_reordering(tp, 0); 1511 tcp_sync_left_out(tp); 1512 } 1513 1514 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1515 1516 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked) 1517 { 1518 if (acked > 0) { 1519 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1520 if (acked-1 >= tp->sacked_out) 1521 tp->sacked_out = 0; 1522 else 1523 tp->sacked_out -= acked-1; 1524 } 1525 tcp_check_reno_reordering(tp, acked); 1526 tcp_sync_left_out(tp); 1527 } 1528 1529 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1530 { 1531 tp->sacked_out = 0; 1532 tp->left_out = tp->lost_out; 1533 } 1534 1535 /* Mark head of queue up as lost. */ 1536 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp, 1537 int packets, u32 high_seq) 1538 { 1539 struct sk_buff *skb; 1540 int cnt = packets; 1541 1542 BUG_TRAP(cnt <= tp->packets_out); 1543 1544 sk_stream_for_retrans_queue(skb, sk) { 1545 cnt -= tcp_skb_pcount(skb); 1546 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1547 break; 1548 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1549 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1550 tp->lost_out += tcp_skb_pcount(skb); 1551 } 1552 } 1553 tcp_sync_left_out(tp); 1554 } 1555 1556 /* Account newly detected lost packet(s) */ 1557 1558 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp) 1559 { 1560 if (IsFack(tp)) { 1561 int lost = tp->fackets_out - tp->reordering; 1562 if (lost <= 0) 1563 lost = 1; 1564 tcp_mark_head_lost(sk, tp, lost, tp->high_seq); 1565 } else { 1566 tcp_mark_head_lost(sk, tp, 1, tp->high_seq); 1567 } 1568 1569 /* New heuristics: it is possible only after we switched 1570 * to restart timer each time when something is ACKed. 1571 * Hence, we can detect timed out packets during fast 1572 * retransmit without falling to slow start. 1573 */ 1574 if (tcp_head_timedout(sk, tp)) { 1575 struct sk_buff *skb; 1576 1577 sk_stream_for_retrans_queue(skb, sk) { 1578 if (tcp_skb_timedout(tp, skb) && 1579 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1580 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1581 tp->lost_out += tcp_skb_pcount(skb); 1582 } 1583 } 1584 tcp_sync_left_out(tp); 1585 } 1586 } 1587 1588 /* CWND moderation, preventing bursts due to too big ACKs 1589 * in dubious situations. 1590 */ 1591 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1592 { 1593 tp->snd_cwnd = min(tp->snd_cwnd, 1594 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1595 tp->snd_cwnd_stamp = tcp_time_stamp; 1596 } 1597 1598 /* Decrease cwnd each second ack. */ 1599 1600 static void tcp_cwnd_down(struct tcp_sock *tp) 1601 { 1602 int decr = tp->snd_cwnd_cnt + 1; 1603 __u32 limit; 1604 1605 /* 1606 * TCP Westwood 1607 * Here limit is evaluated as BWestimation*RTTmin (for obtaining it 1608 * in packets we use mss_cache). If sysctl_tcp_westwood is off 1609 * tcp_westwood_bw_rttmin() returns 0. In such case snd_ssthresh is 1610 * still used as usual. It prevents other strange cases in which 1611 * BWE*RTTmin could assume value 0. It should not happen but... 1612 */ 1613 1614 if (!(limit = tcp_westwood_bw_rttmin(tp))) 1615 limit = tp->snd_ssthresh/2; 1616 1617 tp->snd_cwnd_cnt = decr&1; 1618 decr >>= 1; 1619 1620 if (decr && tp->snd_cwnd > limit) 1621 tp->snd_cwnd -= decr; 1622 1623 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1624 tp->snd_cwnd_stamp = tcp_time_stamp; 1625 } 1626 1627 /* Nothing was retransmitted or returned timestamp is less 1628 * than timestamp of the first retransmission. 1629 */ 1630 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1631 { 1632 return !tp->retrans_stamp || 1633 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1634 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1635 } 1636 1637 /* Undo procedures. */ 1638 1639 #if FASTRETRANS_DEBUG > 1 1640 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg) 1641 { 1642 struct inet_sock *inet = inet_sk(sk); 1643 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1644 msg, 1645 NIPQUAD(inet->daddr), ntohs(inet->dport), 1646 tp->snd_cwnd, tp->left_out, 1647 tp->snd_ssthresh, tp->prior_ssthresh, 1648 tp->packets_out); 1649 } 1650 #else 1651 #define DBGUNDO(x...) do { } while (0) 1652 #endif 1653 1654 static void tcp_undo_cwr(struct tcp_sock *tp, int undo) 1655 { 1656 if (tp->prior_ssthresh) { 1657 if (tcp_is_bic(tp)) 1658 tp->snd_cwnd = max(tp->snd_cwnd, tp->bictcp.last_max_cwnd); 1659 else 1660 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1661 1662 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1663 tp->snd_ssthresh = tp->prior_ssthresh; 1664 TCP_ECN_withdraw_cwr(tp); 1665 } 1666 } else { 1667 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1668 } 1669 tcp_moderate_cwnd(tp); 1670 tp->snd_cwnd_stamp = tcp_time_stamp; 1671 } 1672 1673 static inline int tcp_may_undo(struct tcp_sock *tp) 1674 { 1675 return tp->undo_marker && 1676 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1677 } 1678 1679 /* People celebrate: "We love our President!" */ 1680 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp) 1681 { 1682 if (tcp_may_undo(tp)) { 1683 /* Happy end! We did not retransmit anything 1684 * or our original transmission succeeded. 1685 */ 1686 DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1687 tcp_undo_cwr(tp, 1); 1688 if (tp->ca_state == TCP_CA_Loss) 1689 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1690 else 1691 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1692 tp->undo_marker = 0; 1693 } 1694 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1695 /* Hold old state until something *above* high_seq 1696 * is ACKed. For Reno it is MUST to prevent false 1697 * fast retransmits (RFC2582). SACK TCP is safe. */ 1698 tcp_moderate_cwnd(tp); 1699 return 1; 1700 } 1701 tcp_set_ca_state(tp, TCP_CA_Open); 1702 return 0; 1703 } 1704 1705 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1706 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp) 1707 { 1708 if (tp->undo_marker && !tp->undo_retrans) { 1709 DBGUNDO(sk, tp, "D-SACK"); 1710 tcp_undo_cwr(tp, 1); 1711 tp->undo_marker = 0; 1712 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1713 } 1714 } 1715 1716 /* Undo during fast recovery after partial ACK. */ 1717 1718 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp, 1719 int acked) 1720 { 1721 /* Partial ACK arrived. Force Hoe's retransmit. */ 1722 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1723 1724 if (tcp_may_undo(tp)) { 1725 /* Plain luck! Hole if filled with delayed 1726 * packet, rather than with a retransmit. 1727 */ 1728 if (tp->retrans_out == 0) 1729 tp->retrans_stamp = 0; 1730 1731 tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1); 1732 1733 DBGUNDO(sk, tp, "Hoe"); 1734 tcp_undo_cwr(tp, 0); 1735 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1736 1737 /* So... Do not make Hoe's retransmit yet. 1738 * If the first packet was delayed, the rest 1739 * ones are most probably delayed as well. 1740 */ 1741 failed = 0; 1742 } 1743 return failed; 1744 } 1745 1746 /* Undo during loss recovery after partial ACK. */ 1747 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp) 1748 { 1749 if (tcp_may_undo(tp)) { 1750 struct sk_buff *skb; 1751 sk_stream_for_retrans_queue(skb, sk) { 1752 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1753 } 1754 DBGUNDO(sk, tp, "partial loss"); 1755 tp->lost_out = 0; 1756 tp->left_out = tp->sacked_out; 1757 tcp_undo_cwr(tp, 1); 1758 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1759 tp->retransmits = 0; 1760 tp->undo_marker = 0; 1761 if (!IsReno(tp)) 1762 tcp_set_ca_state(tp, TCP_CA_Open); 1763 return 1; 1764 } 1765 return 0; 1766 } 1767 1768 static inline void tcp_complete_cwr(struct tcp_sock *tp) 1769 { 1770 if (tcp_westwood_cwnd(tp)) 1771 tp->snd_ssthresh = tp->snd_cwnd; 1772 else 1773 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 1774 tp->snd_cwnd_stamp = tcp_time_stamp; 1775 } 1776 1777 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag) 1778 { 1779 tp->left_out = tp->sacked_out; 1780 1781 if (tp->retrans_out == 0) 1782 tp->retrans_stamp = 0; 1783 1784 if (flag&FLAG_ECE) 1785 tcp_enter_cwr(tp); 1786 1787 if (tp->ca_state != TCP_CA_CWR) { 1788 int state = TCP_CA_Open; 1789 1790 if (tp->left_out || tp->retrans_out || tp->undo_marker) 1791 state = TCP_CA_Disorder; 1792 1793 if (tp->ca_state != state) { 1794 tcp_set_ca_state(tp, state); 1795 tp->high_seq = tp->snd_nxt; 1796 } 1797 tcp_moderate_cwnd(tp); 1798 } else { 1799 tcp_cwnd_down(tp); 1800 } 1801 } 1802 1803 /* Process an event, which can update packets-in-flight not trivially. 1804 * Main goal of this function is to calculate new estimate for left_out, 1805 * taking into account both packets sitting in receiver's buffer and 1806 * packets lost by network. 1807 * 1808 * Besides that it does CWND reduction, when packet loss is detected 1809 * and changes state of machine. 1810 * 1811 * It does _not_ decide what to send, it is made in function 1812 * tcp_xmit_retransmit_queue(). 1813 */ 1814 static void 1815 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 1816 int prior_packets, int flag) 1817 { 1818 struct tcp_sock *tp = tcp_sk(sk); 1819 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 1820 1821 /* Some technical things: 1822 * 1. Reno does not count dupacks (sacked_out) automatically. */ 1823 if (!tp->packets_out) 1824 tp->sacked_out = 0; 1825 /* 2. SACK counts snd_fack in packets inaccurately. */ 1826 if (tp->sacked_out == 0) 1827 tp->fackets_out = 0; 1828 1829 /* Now state machine starts. 1830 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 1831 if (flag&FLAG_ECE) 1832 tp->prior_ssthresh = 0; 1833 1834 /* B. In all the states check for reneging SACKs. */ 1835 if (tp->sacked_out && tcp_check_sack_reneging(sk, tp)) 1836 return; 1837 1838 /* C. Process data loss notification, provided it is valid. */ 1839 if ((flag&FLAG_DATA_LOST) && 1840 before(tp->snd_una, tp->high_seq) && 1841 tp->ca_state != TCP_CA_Open && 1842 tp->fackets_out > tp->reordering) { 1843 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq); 1844 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 1845 } 1846 1847 /* D. Synchronize left_out to current state. */ 1848 tcp_sync_left_out(tp); 1849 1850 /* E. Check state exit conditions. State can be terminated 1851 * when high_seq is ACKed. */ 1852 if (tp->ca_state == TCP_CA_Open) { 1853 if (!sysctl_tcp_frto) 1854 BUG_TRAP(tp->retrans_out == 0); 1855 tp->retrans_stamp = 0; 1856 } else if (!before(tp->snd_una, tp->high_seq)) { 1857 switch (tp->ca_state) { 1858 case TCP_CA_Loss: 1859 tp->retransmits = 0; 1860 if (tcp_try_undo_recovery(sk, tp)) 1861 return; 1862 break; 1863 1864 case TCP_CA_CWR: 1865 /* CWR is to be held something *above* high_seq 1866 * is ACKed for CWR bit to reach receiver. */ 1867 if (tp->snd_una != tp->high_seq) { 1868 tcp_complete_cwr(tp); 1869 tcp_set_ca_state(tp, TCP_CA_Open); 1870 } 1871 break; 1872 1873 case TCP_CA_Disorder: 1874 tcp_try_undo_dsack(sk, tp); 1875 if (!tp->undo_marker || 1876 /* For SACK case do not Open to allow to undo 1877 * catching for all duplicate ACKs. */ 1878 IsReno(tp) || tp->snd_una != tp->high_seq) { 1879 tp->undo_marker = 0; 1880 tcp_set_ca_state(tp, TCP_CA_Open); 1881 } 1882 break; 1883 1884 case TCP_CA_Recovery: 1885 if (IsReno(tp)) 1886 tcp_reset_reno_sack(tp); 1887 if (tcp_try_undo_recovery(sk, tp)) 1888 return; 1889 tcp_complete_cwr(tp); 1890 break; 1891 } 1892 } 1893 1894 /* F. Process state. */ 1895 switch (tp->ca_state) { 1896 case TCP_CA_Recovery: 1897 if (prior_snd_una == tp->snd_una) { 1898 if (IsReno(tp) && is_dupack) 1899 tcp_add_reno_sack(tp); 1900 } else { 1901 int acked = prior_packets - tp->packets_out; 1902 if (IsReno(tp)) 1903 tcp_remove_reno_sacks(sk, tp, acked); 1904 is_dupack = tcp_try_undo_partial(sk, tp, acked); 1905 } 1906 break; 1907 case TCP_CA_Loss: 1908 if (flag&FLAG_DATA_ACKED) 1909 tp->retransmits = 0; 1910 if (!tcp_try_undo_loss(sk, tp)) { 1911 tcp_moderate_cwnd(tp); 1912 tcp_xmit_retransmit_queue(sk); 1913 return; 1914 } 1915 if (tp->ca_state != TCP_CA_Open) 1916 return; 1917 /* Loss is undone; fall through to processing in Open state. */ 1918 default: 1919 if (IsReno(tp)) { 1920 if (tp->snd_una != prior_snd_una) 1921 tcp_reset_reno_sack(tp); 1922 if (is_dupack) 1923 tcp_add_reno_sack(tp); 1924 } 1925 1926 if (tp->ca_state == TCP_CA_Disorder) 1927 tcp_try_undo_dsack(sk, tp); 1928 1929 if (!tcp_time_to_recover(sk, tp)) { 1930 tcp_try_to_open(sk, tp, flag); 1931 return; 1932 } 1933 1934 /* Otherwise enter Recovery state */ 1935 1936 if (IsReno(tp)) 1937 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 1938 else 1939 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 1940 1941 tp->high_seq = tp->snd_nxt; 1942 tp->prior_ssthresh = 0; 1943 tp->undo_marker = tp->snd_una; 1944 tp->undo_retrans = tp->retrans_out; 1945 1946 if (tp->ca_state < TCP_CA_CWR) { 1947 if (!(flag&FLAG_ECE)) 1948 tp->prior_ssthresh = tcp_current_ssthresh(tp); 1949 tp->snd_ssthresh = tcp_recalc_ssthresh(tp); 1950 TCP_ECN_queue_cwr(tp); 1951 } 1952 1953 tp->snd_cwnd_cnt = 0; 1954 tcp_set_ca_state(tp, TCP_CA_Recovery); 1955 } 1956 1957 if (is_dupack || tcp_head_timedout(sk, tp)) 1958 tcp_update_scoreboard(sk, tp); 1959 tcp_cwnd_down(tp); 1960 tcp_xmit_retransmit_queue(sk); 1961 } 1962 1963 /* Read draft-ietf-tcplw-high-performance before mucking 1964 * with this code. (Superceeds RFC1323) 1965 */ 1966 static void tcp_ack_saw_tstamp(struct tcp_sock *tp, int flag) 1967 { 1968 __u32 seq_rtt; 1969 1970 /* RTTM Rule: A TSecr value received in a segment is used to 1971 * update the averaged RTT measurement only if the segment 1972 * acknowledges some new data, i.e., only if it advances the 1973 * left edge of the send window. 1974 * 1975 * See draft-ietf-tcplw-high-performance-00, section 3.3. 1976 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 1977 * 1978 * Changed: reset backoff as soon as we see the first valid sample. 1979 * If we do not, we get strongly overstimated rto. With timestamps 1980 * samples are accepted even from very old segments: f.e., when rtt=1 1981 * increases to 8, we retransmit 5 times and after 8 seconds delayed 1982 * answer arrives rto becomes 120 seconds! If at least one of segments 1983 * in window is lost... Voila. --ANK (010210) 1984 */ 1985 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 1986 tcp_rtt_estimator(tp, seq_rtt); 1987 tcp_set_rto(tp); 1988 tp->backoff = 0; 1989 tcp_bound_rto(tp); 1990 } 1991 1992 static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, int flag) 1993 { 1994 /* We don't have a timestamp. Can only use 1995 * packets that are not retransmitted to determine 1996 * rtt estimates. Also, we must not reset the 1997 * backoff for rto until we get a non-retransmitted 1998 * packet. This allows us to deal with a situation 1999 * where the network delay has increased suddenly. 2000 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2001 */ 2002 2003 if (flag & FLAG_RETRANS_DATA_ACKED) 2004 return; 2005 2006 tcp_rtt_estimator(tp, seq_rtt); 2007 tcp_set_rto(tp); 2008 tp->backoff = 0; 2009 tcp_bound_rto(tp); 2010 } 2011 2012 static inline void tcp_ack_update_rtt(struct tcp_sock *tp, 2013 int flag, s32 seq_rtt) 2014 { 2015 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2016 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2017 tcp_ack_saw_tstamp(tp, flag); 2018 else if (seq_rtt >= 0) 2019 tcp_ack_no_tstamp(tp, seq_rtt, flag); 2020 } 2021 2022 /* 2023 * Compute congestion window to use. 2024 * 2025 * This is from the implementation of BICTCP in 2026 * Lison-Xu, Kahaled Harfoush, and Injog Rhee. 2027 * "Binary Increase Congestion Control for Fast, Long Distance 2028 * Networks" in InfoComm 2004 2029 * Available from: 2030 * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf 2031 * 2032 * Unless BIC is enabled and congestion window is large 2033 * this behaves the same as the original Reno. 2034 */ 2035 static inline __u32 bictcp_cwnd(struct tcp_sock *tp) 2036 { 2037 /* orignal Reno behaviour */ 2038 if (!tcp_is_bic(tp)) 2039 return tp->snd_cwnd; 2040 2041 if (tp->bictcp.last_cwnd == tp->snd_cwnd && 2042 (s32)(tcp_time_stamp - tp->bictcp.last_stamp) <= (HZ>>5)) 2043 return tp->bictcp.cnt; 2044 2045 tp->bictcp.last_cwnd = tp->snd_cwnd; 2046 tp->bictcp.last_stamp = tcp_time_stamp; 2047 2048 /* start off normal */ 2049 if (tp->snd_cwnd <= sysctl_tcp_bic_low_window) 2050 tp->bictcp.cnt = tp->snd_cwnd; 2051 2052 /* binary increase */ 2053 else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd) { 2054 __u32 dist = (tp->bictcp.last_max_cwnd - tp->snd_cwnd) 2055 / BICTCP_B; 2056 2057 if (dist > BICTCP_MAX_INCREMENT) 2058 /* linear increase */ 2059 tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT; 2060 else if (dist <= 1U) 2061 /* binary search increase */ 2062 tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR 2063 / BICTCP_B; 2064 else 2065 /* binary search increase */ 2066 tp->bictcp.cnt = tp->snd_cwnd / dist; 2067 } else { 2068 /* slow start amd linear increase */ 2069 if (tp->snd_cwnd < tp->bictcp.last_max_cwnd + BICTCP_B) 2070 /* slow start */ 2071 tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR 2072 / BICTCP_B; 2073 else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd 2074 + BICTCP_MAX_INCREMENT*(BICTCP_B-1)) 2075 /* slow start */ 2076 tp->bictcp.cnt = tp->snd_cwnd * (BICTCP_B-1) 2077 / (tp->snd_cwnd-tp->bictcp.last_max_cwnd); 2078 else 2079 /* linear increase */ 2080 tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT; 2081 } 2082 return tp->bictcp.cnt; 2083 } 2084 2085 /* This is Jacobson's slow start and congestion avoidance. 2086 * SIGCOMM '88, p. 328. 2087 */ 2088 static inline void reno_cong_avoid(struct tcp_sock *tp) 2089 { 2090 if (tp->snd_cwnd <= tp->snd_ssthresh) { 2091 /* In "safe" area, increase. */ 2092 if (tp->snd_cwnd < tp->snd_cwnd_clamp) 2093 tp->snd_cwnd++; 2094 } else { 2095 /* In dangerous area, increase slowly. 2096 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd 2097 */ 2098 if (tp->snd_cwnd_cnt >= bictcp_cwnd(tp)) { 2099 if (tp->snd_cwnd < tp->snd_cwnd_clamp) 2100 tp->snd_cwnd++; 2101 tp->snd_cwnd_cnt=0; 2102 } else 2103 tp->snd_cwnd_cnt++; 2104 } 2105 tp->snd_cwnd_stamp = tcp_time_stamp; 2106 } 2107 2108 /* This is based on the congestion detection/avoidance scheme described in 2109 * Lawrence S. Brakmo and Larry L. Peterson. 2110 * "TCP Vegas: End to end congestion avoidance on a global internet." 2111 * IEEE Journal on Selected Areas in Communication, 13(8):1465--1480, 2112 * October 1995. Available from: 2113 * ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps 2114 * 2115 * See http://www.cs.arizona.edu/xkernel/ for their implementation. 2116 * The main aspects that distinguish this implementation from the 2117 * Arizona Vegas implementation are: 2118 * o We do not change the loss detection or recovery mechanisms of 2119 * Linux in any way. Linux already recovers from losses quite well, 2120 * using fine-grained timers, NewReno, and FACK. 2121 * o To avoid the performance penalty imposed by increasing cwnd 2122 * only every-other RTT during slow start, we increase during 2123 * every RTT during slow start, just like Reno. 2124 * o Largely to allow continuous cwnd growth during slow start, 2125 * we use the rate at which ACKs come back as the "actual" 2126 * rate, rather than the rate at which data is sent. 2127 * o To speed convergence to the right rate, we set the cwnd 2128 * to achieve the right ("actual") rate when we exit slow start. 2129 * o To filter out the noise caused by delayed ACKs, we use the 2130 * minimum RTT sample observed during the last RTT to calculate 2131 * the actual rate. 2132 * o When the sender re-starts from idle, it waits until it has 2133 * received ACKs for an entire flight of new data before making 2134 * a cwnd adjustment decision. The original Vegas implementation 2135 * assumed senders never went idle. 2136 */ 2137 static void vegas_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt) 2138 { 2139 /* The key players are v_beg_snd_una and v_beg_snd_nxt. 2140 * 2141 * These are so named because they represent the approximate values 2142 * of snd_una and snd_nxt at the beginning of the current RTT. More 2143 * precisely, they represent the amount of data sent during the RTT. 2144 * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt, 2145 * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding 2146 * bytes of data have been ACKed during the course of the RTT, giving 2147 * an "actual" rate of: 2148 * 2149 * (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration) 2150 * 2151 * Unfortunately, v_beg_snd_una is not exactly equal to snd_una, 2152 * because delayed ACKs can cover more than one segment, so they 2153 * don't line up nicely with the boundaries of RTTs. 2154 * 2155 * Another unfortunate fact of life is that delayed ACKs delay the 2156 * advance of the left edge of our send window, so that the number 2157 * of bytes we send in an RTT is often less than our cwnd will allow. 2158 * So we keep track of our cwnd separately, in v_beg_snd_cwnd. 2159 */ 2160 2161 if (after(ack, tp->vegas.beg_snd_nxt)) { 2162 /* Do the Vegas once-per-RTT cwnd adjustment. */ 2163 u32 old_wnd, old_snd_cwnd; 2164 2165 2166 /* Here old_wnd is essentially the window of data that was 2167 * sent during the previous RTT, and has all 2168 * been acknowledged in the course of the RTT that ended 2169 * with the ACK we just received. Likewise, old_snd_cwnd 2170 * is the cwnd during the previous RTT. 2171 */ 2172 old_wnd = (tp->vegas.beg_snd_nxt - tp->vegas.beg_snd_una) / 2173 tp->mss_cache_std; 2174 old_snd_cwnd = tp->vegas.beg_snd_cwnd; 2175 2176 /* Save the extent of the current window so we can use this 2177 * at the end of the next RTT. 2178 */ 2179 tp->vegas.beg_snd_una = tp->vegas.beg_snd_nxt; 2180 tp->vegas.beg_snd_nxt = tp->snd_nxt; 2181 tp->vegas.beg_snd_cwnd = tp->snd_cwnd; 2182 2183 /* Take into account the current RTT sample too, to 2184 * decrease the impact of delayed acks. This double counts 2185 * this sample since we count it for the next window as well, 2186 * but that's not too awful, since we're taking the min, 2187 * rather than averaging. 2188 */ 2189 vegas_rtt_calc(tp, seq_rtt); 2190 2191 /* We do the Vegas calculations only if we got enough RTT 2192 * samples that we can be reasonably sure that we got 2193 * at least one RTT sample that wasn't from a delayed ACK. 2194 * If we only had 2 samples total, 2195 * then that means we're getting only 1 ACK per RTT, which 2196 * means they're almost certainly delayed ACKs. 2197 * If we have 3 samples, we should be OK. 2198 */ 2199 2200 if (tp->vegas.cntRTT <= 2) { 2201 /* We don't have enough RTT samples to do the Vegas 2202 * calculation, so we'll behave like Reno. 2203 */ 2204 if (tp->snd_cwnd > tp->snd_ssthresh) 2205 tp->snd_cwnd++; 2206 } else { 2207 u32 rtt, target_cwnd, diff; 2208 2209 /* We have enough RTT samples, so, using the Vegas 2210 * algorithm, we determine if we should increase or 2211 * decrease cwnd, and by how much. 2212 */ 2213 2214 /* Pluck out the RTT we are using for the Vegas 2215 * calculations. This is the min RTT seen during the 2216 * last RTT. Taking the min filters out the effects 2217 * of delayed ACKs, at the cost of noticing congestion 2218 * a bit later. 2219 */ 2220 rtt = tp->vegas.minRTT; 2221 2222 /* Calculate the cwnd we should have, if we weren't 2223 * going too fast. 2224 * 2225 * This is: 2226 * (actual rate in segments) * baseRTT 2227 * We keep it as a fixed point number with 2228 * V_PARAM_SHIFT bits to the right of the binary point. 2229 */ 2230 target_cwnd = ((old_wnd * tp->vegas.baseRTT) 2231 << V_PARAM_SHIFT) / rtt; 2232 2233 /* Calculate the difference between the window we had, 2234 * and the window we would like to have. This quantity 2235 * is the "Diff" from the Arizona Vegas papers. 2236 * 2237 * Again, this is a fixed point number with 2238 * V_PARAM_SHIFT bits to the right of the binary 2239 * point. 2240 */ 2241 diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd; 2242 2243 if (tp->snd_cwnd < tp->snd_ssthresh) { 2244 /* Slow start. */ 2245 if (diff > sysctl_tcp_vegas_gamma) { 2246 /* Going too fast. Time to slow down 2247 * and switch to congestion avoidance. 2248 */ 2249 tp->snd_ssthresh = 2; 2250 2251 /* Set cwnd to match the actual rate 2252 * exactly: 2253 * cwnd = (actual rate) * baseRTT 2254 * Then we add 1 because the integer 2255 * truncation robs us of full link 2256 * utilization. 2257 */ 2258 tp->snd_cwnd = min(tp->snd_cwnd, 2259 (target_cwnd >> 2260 V_PARAM_SHIFT)+1); 2261 2262 } 2263 } else { 2264 /* Congestion avoidance. */ 2265 u32 next_snd_cwnd; 2266 2267 /* Figure out where we would like cwnd 2268 * to be. 2269 */ 2270 if (diff > sysctl_tcp_vegas_beta) { 2271 /* The old window was too fast, so 2272 * we slow down. 2273 */ 2274 next_snd_cwnd = old_snd_cwnd - 1; 2275 } else if (diff < sysctl_tcp_vegas_alpha) { 2276 /* We don't have enough extra packets 2277 * in the network, so speed up. 2278 */ 2279 next_snd_cwnd = old_snd_cwnd + 1; 2280 } else { 2281 /* Sending just as fast as we 2282 * should be. 2283 */ 2284 next_snd_cwnd = old_snd_cwnd; 2285 } 2286 2287 /* Adjust cwnd upward or downward, toward the 2288 * desired value. 2289 */ 2290 if (next_snd_cwnd > tp->snd_cwnd) 2291 tp->snd_cwnd++; 2292 else if (next_snd_cwnd < tp->snd_cwnd) 2293 tp->snd_cwnd--; 2294 } 2295 } 2296 2297 /* Wipe the slate clean for the next RTT. */ 2298 tp->vegas.cntRTT = 0; 2299 tp->vegas.minRTT = 0x7fffffff; 2300 } 2301 2302 /* The following code is executed for every ack we receive, 2303 * except for conditions checked in should_advance_cwnd() 2304 * before the call to tcp_cong_avoid(). Mainly this means that 2305 * we only execute this code if the ack actually acked some 2306 * data. 2307 */ 2308 2309 /* If we are in slow start, increase our cwnd in response to this ACK. 2310 * (If we are not in slow start then we are in congestion avoidance, 2311 * and adjust our congestion window only once per RTT. See the code 2312 * above.) 2313 */ 2314 if (tp->snd_cwnd <= tp->snd_ssthresh) 2315 tp->snd_cwnd++; 2316 2317 /* to keep cwnd from growing without bound */ 2318 tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp); 2319 2320 /* Make sure that we are never so timid as to reduce our cwnd below 2321 * 2 MSS. 2322 * 2323 * Going below 2 MSS would risk huge delayed ACKs from our receiver. 2324 */ 2325 tp->snd_cwnd = max(tp->snd_cwnd, 2U); 2326 2327 tp->snd_cwnd_stamp = tcp_time_stamp; 2328 } 2329 2330 static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt) 2331 { 2332 if (tcp_vegas_enabled(tp)) 2333 vegas_cong_avoid(tp, ack, seq_rtt); 2334 else 2335 reno_cong_avoid(tp); 2336 } 2337 2338 /* Restart timer after forward progress on connection. 2339 * RFC2988 recommends to restart timer to now+rto. 2340 */ 2341 2342 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp) 2343 { 2344 if (!tp->packets_out) { 2345 tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS); 2346 } else { 2347 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); 2348 } 2349 } 2350 2351 /* There is one downside to this scheme. Although we keep the 2352 * ACK clock ticking, adjusting packet counters and advancing 2353 * congestion window, we do not liberate socket send buffer 2354 * space. 2355 * 2356 * Mucking with skb->truesize and sk->sk_wmem_alloc et al. 2357 * then making a write space wakeup callback is a possible 2358 * future enhancement. WARNING: it is not trivial to make. 2359 */ 2360 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2361 __u32 now, __s32 *seq_rtt) 2362 { 2363 struct tcp_sock *tp = tcp_sk(sk); 2364 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2365 __u32 seq = tp->snd_una; 2366 __u32 packets_acked; 2367 int acked = 0; 2368 2369 /* If we get here, the whole TSO packet has not been 2370 * acked. 2371 */ 2372 BUG_ON(!after(scb->end_seq, seq)); 2373 2374 packets_acked = tcp_skb_pcount(skb); 2375 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2376 return 0; 2377 packets_acked -= tcp_skb_pcount(skb); 2378 2379 if (packets_acked) { 2380 __u8 sacked = scb->sacked; 2381 2382 acked |= FLAG_DATA_ACKED; 2383 if (sacked) { 2384 if (sacked & TCPCB_RETRANS) { 2385 if (sacked & TCPCB_SACKED_RETRANS) 2386 tp->retrans_out -= packets_acked; 2387 acked |= FLAG_RETRANS_DATA_ACKED; 2388 *seq_rtt = -1; 2389 } else if (*seq_rtt < 0) 2390 *seq_rtt = now - scb->when; 2391 if (sacked & TCPCB_SACKED_ACKED) 2392 tp->sacked_out -= packets_acked; 2393 if (sacked & TCPCB_LOST) 2394 tp->lost_out -= packets_acked; 2395 if (sacked & TCPCB_URG) { 2396 if (tp->urg_mode && 2397 !before(seq, tp->snd_up)) 2398 tp->urg_mode = 0; 2399 } 2400 } else if (*seq_rtt < 0) 2401 *seq_rtt = now - scb->when; 2402 2403 if (tp->fackets_out) { 2404 __u32 dval = min(tp->fackets_out, packets_acked); 2405 tp->fackets_out -= dval; 2406 } 2407 tp->packets_out -= packets_acked; 2408 2409 BUG_ON(tcp_skb_pcount(skb) == 0); 2410 BUG_ON(!before(scb->seq, scb->end_seq)); 2411 } 2412 2413 return acked; 2414 } 2415 2416 2417 /* Remove acknowledged frames from the retransmission queue. */ 2418 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2419 { 2420 struct tcp_sock *tp = tcp_sk(sk); 2421 struct sk_buff *skb; 2422 __u32 now = tcp_time_stamp; 2423 int acked = 0; 2424 __s32 seq_rtt = -1; 2425 2426 while ((skb = skb_peek(&sk->sk_write_queue)) && 2427 skb != sk->sk_send_head) { 2428 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2429 __u8 sacked = scb->sacked; 2430 2431 /* If our packet is before the ack sequence we can 2432 * discard it as it's confirmed to have arrived at 2433 * the other end. 2434 */ 2435 if (after(scb->end_seq, tp->snd_una)) { 2436 if (tcp_skb_pcount(skb) > 1) 2437 acked |= tcp_tso_acked(sk, skb, 2438 now, &seq_rtt); 2439 break; 2440 } 2441 2442 /* Initial outgoing SYN's get put onto the write_queue 2443 * just like anything else we transmit. It is not 2444 * true data, and if we misinform our callers that 2445 * this ACK acks real data, we will erroneously exit 2446 * connection startup slow start one packet too 2447 * quickly. This is severely frowned upon behavior. 2448 */ 2449 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2450 acked |= FLAG_DATA_ACKED; 2451 } else { 2452 acked |= FLAG_SYN_ACKED; 2453 tp->retrans_stamp = 0; 2454 } 2455 2456 if (sacked) { 2457 if (sacked & TCPCB_RETRANS) { 2458 if(sacked & TCPCB_SACKED_RETRANS) 2459 tp->retrans_out -= tcp_skb_pcount(skb); 2460 acked |= FLAG_RETRANS_DATA_ACKED; 2461 seq_rtt = -1; 2462 } else if (seq_rtt < 0) 2463 seq_rtt = now - scb->when; 2464 if (sacked & TCPCB_SACKED_ACKED) 2465 tp->sacked_out -= tcp_skb_pcount(skb); 2466 if (sacked & TCPCB_LOST) 2467 tp->lost_out -= tcp_skb_pcount(skb); 2468 if (sacked & TCPCB_URG) { 2469 if (tp->urg_mode && 2470 !before(scb->end_seq, tp->snd_up)) 2471 tp->urg_mode = 0; 2472 } 2473 } else if (seq_rtt < 0) 2474 seq_rtt = now - scb->when; 2475 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2476 tcp_packets_out_dec(tp, skb); 2477 __skb_unlink(skb, skb->list); 2478 sk_stream_free_skb(sk, skb); 2479 } 2480 2481 if (acked&FLAG_ACKED) { 2482 tcp_ack_update_rtt(tp, acked, seq_rtt); 2483 tcp_ack_packets_out(sk, tp); 2484 } 2485 2486 #if FASTRETRANS_DEBUG > 0 2487 BUG_TRAP((int)tp->sacked_out >= 0); 2488 BUG_TRAP((int)tp->lost_out >= 0); 2489 BUG_TRAP((int)tp->retrans_out >= 0); 2490 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2491 if (tp->lost_out) { 2492 printk(KERN_DEBUG "Leak l=%u %d\n", 2493 tp->lost_out, tp->ca_state); 2494 tp->lost_out = 0; 2495 } 2496 if (tp->sacked_out) { 2497 printk(KERN_DEBUG "Leak s=%u %d\n", 2498 tp->sacked_out, tp->ca_state); 2499 tp->sacked_out = 0; 2500 } 2501 if (tp->retrans_out) { 2502 printk(KERN_DEBUG "Leak r=%u %d\n", 2503 tp->retrans_out, tp->ca_state); 2504 tp->retrans_out = 0; 2505 } 2506 } 2507 #endif 2508 *seq_rtt_p = seq_rtt; 2509 return acked; 2510 } 2511 2512 static void tcp_ack_probe(struct sock *sk) 2513 { 2514 struct tcp_sock *tp = tcp_sk(sk); 2515 2516 /* Was it a usable window open? */ 2517 2518 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq, 2519 tp->snd_una + tp->snd_wnd)) { 2520 tp->backoff = 0; 2521 tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0); 2522 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2523 * This function is not for random using! 2524 */ 2525 } else { 2526 tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0, 2527 min(tp->rto << tp->backoff, TCP_RTO_MAX)); 2528 } 2529 } 2530 2531 static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag) 2532 { 2533 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2534 tp->ca_state != TCP_CA_Open); 2535 } 2536 2537 static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag) 2538 { 2539 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2540 !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR)); 2541 } 2542 2543 /* Check that window update is acceptable. 2544 * The function assumes that snd_una<=ack<=snd_next. 2545 */ 2546 static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack, 2547 u32 ack_seq, u32 nwin) 2548 { 2549 return (after(ack, tp->snd_una) || 2550 after(ack_seq, tp->snd_wl1) || 2551 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2552 } 2553 2554 /* Update our send window. 2555 * 2556 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2557 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2558 */ 2559 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp, 2560 struct sk_buff *skb, u32 ack, u32 ack_seq) 2561 { 2562 int flag = 0; 2563 u32 nwin = ntohs(skb->h.th->window); 2564 2565 if (likely(!skb->h.th->syn)) 2566 nwin <<= tp->rx_opt.snd_wscale; 2567 2568 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2569 flag |= FLAG_WIN_UPDATE; 2570 tcp_update_wl(tp, ack, ack_seq); 2571 2572 if (tp->snd_wnd != nwin) { 2573 tp->snd_wnd = nwin; 2574 2575 /* Note, it is the only place, where 2576 * fast path is recovered for sending TCP. 2577 */ 2578 tcp_fast_path_check(sk, tp); 2579 2580 if (nwin > tp->max_window) { 2581 tp->max_window = nwin; 2582 tcp_sync_mss(sk, tp->pmtu_cookie); 2583 } 2584 } 2585 } 2586 2587 tp->snd_una = ack; 2588 2589 return flag; 2590 } 2591 2592 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una) 2593 { 2594 struct tcp_sock *tp = tcp_sk(sk); 2595 2596 tcp_sync_left_out(tp); 2597 2598 if (tp->snd_una == prior_snd_una || 2599 !before(tp->snd_una, tp->frto_highmark)) { 2600 /* RTO was caused by loss, start retransmitting in 2601 * go-back-N slow start 2602 */ 2603 tcp_enter_frto_loss(sk); 2604 return; 2605 } 2606 2607 if (tp->frto_counter == 1) { 2608 /* First ACK after RTO advances the window: allow two new 2609 * segments out. 2610 */ 2611 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2612 } else { 2613 /* Also the second ACK after RTO advances the window. 2614 * The RTO was likely spurious. Reduce cwnd and continue 2615 * in congestion avoidance 2616 */ 2617 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2618 tcp_moderate_cwnd(tp); 2619 } 2620 2621 /* F-RTO affects on two new ACKs following RTO. 2622 * At latest on third ACK the TCP behavor is back to normal. 2623 */ 2624 tp->frto_counter = (tp->frto_counter + 1) % 3; 2625 } 2626 2627 /* 2628 * TCP Westwood+ 2629 */ 2630 2631 /* 2632 * @init_westwood 2633 * This function initializes fields used in TCP Westwood+. We can't 2634 * get no information about RTTmin at this time so we simply set it to 2635 * TCP_WESTWOOD_INIT_RTT. This value was chosen to be too conservative 2636 * since in this way we're sure it will be updated in a consistent 2637 * way as soon as possible. It will reasonably happen within the first 2638 * RTT period of the connection lifetime. 2639 */ 2640 2641 static void init_westwood(struct sock *sk) 2642 { 2643 struct tcp_sock *tp = tcp_sk(sk); 2644 2645 tp->westwood.bw_ns_est = 0; 2646 tp->westwood.bw_est = 0; 2647 tp->westwood.accounted = 0; 2648 tp->westwood.cumul_ack = 0; 2649 tp->westwood.rtt_win_sx = tcp_time_stamp; 2650 tp->westwood.rtt = TCP_WESTWOOD_INIT_RTT; 2651 tp->westwood.rtt_min = TCP_WESTWOOD_INIT_RTT; 2652 tp->westwood.snd_una = tp->snd_una; 2653 } 2654 2655 /* 2656 * @westwood_do_filter 2657 * Low-pass filter. Implemented using constant coeffients. 2658 */ 2659 2660 static inline __u32 westwood_do_filter(__u32 a, __u32 b) 2661 { 2662 return (((7 * a) + b) >> 3); 2663 } 2664 2665 static void westwood_filter(struct sock *sk, __u32 delta) 2666 { 2667 struct tcp_sock *tp = tcp_sk(sk); 2668 2669 tp->westwood.bw_ns_est = 2670 westwood_do_filter(tp->westwood.bw_ns_est, 2671 tp->westwood.bk / delta); 2672 tp->westwood.bw_est = 2673 westwood_do_filter(tp->westwood.bw_est, 2674 tp->westwood.bw_ns_est); 2675 } 2676 2677 /* 2678 * @westwood_update_rttmin 2679 * It is used to update RTTmin. In this case we MUST NOT use 2680 * WESTWOOD_RTT_MIN minimum bound since we could be on a LAN! 2681 */ 2682 2683 static inline __u32 westwood_update_rttmin(const struct sock *sk) 2684 { 2685 const struct tcp_sock *tp = tcp_sk(sk); 2686 __u32 rttmin = tp->westwood.rtt_min; 2687 2688 if (tp->westwood.rtt != 0 && 2689 (tp->westwood.rtt < tp->westwood.rtt_min || !rttmin)) 2690 rttmin = tp->westwood.rtt; 2691 2692 return rttmin; 2693 } 2694 2695 /* 2696 * @westwood_acked 2697 * Evaluate increases for dk. 2698 */ 2699 2700 static inline __u32 westwood_acked(const struct sock *sk) 2701 { 2702 const struct tcp_sock *tp = tcp_sk(sk); 2703 2704 return tp->snd_una - tp->westwood.snd_una; 2705 } 2706 2707 /* 2708 * @westwood_new_window 2709 * It evaluates if we are receiving data inside the same RTT window as 2710 * when we started. 2711 * Return value: 2712 * It returns 0 if we are still evaluating samples in the same RTT 2713 * window, 1 if the sample has to be considered in the next window. 2714 */ 2715 2716 static int westwood_new_window(const struct sock *sk) 2717 { 2718 const struct tcp_sock *tp = tcp_sk(sk); 2719 __u32 left_bound; 2720 __u32 rtt; 2721 int ret = 0; 2722 2723 left_bound = tp->westwood.rtt_win_sx; 2724 rtt = max(tp->westwood.rtt, (u32) TCP_WESTWOOD_RTT_MIN); 2725 2726 /* 2727 * A RTT-window has passed. Be careful since if RTT is less than 2728 * 50ms we don't filter but we continue 'building the sample'. 2729 * This minimum limit was choosen since an estimation on small 2730 * time intervals is better to avoid... 2731 * Obvioulsy on a LAN we reasonably will always have 2732 * right_bound = left_bound + WESTWOOD_RTT_MIN 2733 */ 2734 2735 if ((left_bound + rtt) < tcp_time_stamp) 2736 ret = 1; 2737 2738 return ret; 2739 } 2740 2741 /* 2742 * @westwood_update_window 2743 * It updates RTT evaluation window if it is the right moment to do 2744 * it. If so it calls filter for evaluating bandwidth. 2745 */ 2746 2747 static void __westwood_update_window(struct sock *sk, __u32 now) 2748 { 2749 struct tcp_sock *tp = tcp_sk(sk); 2750 __u32 delta = now - tp->westwood.rtt_win_sx; 2751 2752 if (delta) { 2753 if (tp->westwood.rtt) 2754 westwood_filter(sk, delta); 2755 2756 tp->westwood.bk = 0; 2757 tp->westwood.rtt_win_sx = tcp_time_stamp; 2758 } 2759 } 2760 2761 2762 static void westwood_update_window(struct sock *sk, __u32 now) 2763 { 2764 if (westwood_new_window(sk)) 2765 __westwood_update_window(sk, now); 2766 } 2767 2768 /* 2769 * @__tcp_westwood_fast_bw 2770 * It is called when we are in fast path. In particular it is called when 2771 * header prediction is successfull. In such case infact update is 2772 * straight forward and doesn't need any particular care. 2773 */ 2774 2775 static void __tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb) 2776 { 2777 struct tcp_sock *tp = tcp_sk(sk); 2778 2779 westwood_update_window(sk, tcp_time_stamp); 2780 2781 tp->westwood.bk += westwood_acked(sk); 2782 tp->westwood.snd_una = tp->snd_una; 2783 tp->westwood.rtt_min = westwood_update_rttmin(sk); 2784 } 2785 2786 static inline void tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb) 2787 { 2788 if (tcp_is_westwood(tcp_sk(sk))) 2789 __tcp_westwood_fast_bw(sk, skb); 2790 } 2791 2792 2793 /* 2794 * @westwood_dupack_update 2795 * It updates accounted and cumul_ack when receiving a dupack. 2796 */ 2797 2798 static void westwood_dupack_update(struct sock *sk) 2799 { 2800 struct tcp_sock *tp = tcp_sk(sk); 2801 2802 tp->westwood.accounted += tp->mss_cache_std; 2803 tp->westwood.cumul_ack = tp->mss_cache_std; 2804 } 2805 2806 static inline int westwood_may_change_cumul(struct tcp_sock *tp) 2807 { 2808 return (tp->westwood.cumul_ack > tp->mss_cache_std); 2809 } 2810 2811 static inline void westwood_partial_update(struct tcp_sock *tp) 2812 { 2813 tp->westwood.accounted -= tp->westwood.cumul_ack; 2814 tp->westwood.cumul_ack = tp->mss_cache_std; 2815 } 2816 2817 static inline void westwood_complete_update(struct tcp_sock *tp) 2818 { 2819 tp->westwood.cumul_ack -= tp->westwood.accounted; 2820 tp->westwood.accounted = 0; 2821 } 2822 2823 /* 2824 * @westwood_acked_count 2825 * This function evaluates cumul_ack for evaluating dk in case of 2826 * delayed or partial acks. 2827 */ 2828 2829 static inline __u32 westwood_acked_count(struct sock *sk) 2830 { 2831 struct tcp_sock *tp = tcp_sk(sk); 2832 2833 tp->westwood.cumul_ack = westwood_acked(sk); 2834 2835 /* If cumul_ack is 0 this is a dupack since it's not moving 2836 * tp->snd_una. 2837 */ 2838 if (!(tp->westwood.cumul_ack)) 2839 westwood_dupack_update(sk); 2840 2841 if (westwood_may_change_cumul(tp)) { 2842 /* Partial or delayed ack */ 2843 if (tp->westwood.accounted >= tp->westwood.cumul_ack) 2844 westwood_partial_update(tp); 2845 else 2846 westwood_complete_update(tp); 2847 } 2848 2849 tp->westwood.snd_una = tp->snd_una; 2850 2851 return tp->westwood.cumul_ack; 2852 } 2853 2854 2855 /* 2856 * @__tcp_westwood_slow_bw 2857 * It is called when something is going wrong..even if there could 2858 * be no problems! Infact a simple delayed packet may trigger a 2859 * dupack. But we need to be careful in such case. 2860 */ 2861 2862 static void __tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb) 2863 { 2864 struct tcp_sock *tp = tcp_sk(sk); 2865 2866 westwood_update_window(sk, tcp_time_stamp); 2867 2868 tp->westwood.bk += westwood_acked_count(sk); 2869 tp->westwood.rtt_min = westwood_update_rttmin(sk); 2870 } 2871 2872 static inline void tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb) 2873 { 2874 if (tcp_is_westwood(tcp_sk(sk))) 2875 __tcp_westwood_slow_bw(sk, skb); 2876 } 2877 2878 /* This routine deals with incoming acks, but not outgoing ones. */ 2879 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2880 { 2881 struct tcp_sock *tp = tcp_sk(sk); 2882 u32 prior_snd_una = tp->snd_una; 2883 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2884 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2885 u32 prior_in_flight; 2886 s32 seq_rtt; 2887 int prior_packets; 2888 2889 /* If the ack is newer than sent or older than previous acks 2890 * then we can probably ignore it. 2891 */ 2892 if (after(ack, tp->snd_nxt)) 2893 goto uninteresting_ack; 2894 2895 if (before(ack, prior_snd_una)) 2896 goto old_ack; 2897 2898 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2899 /* Window is constant, pure forward advance. 2900 * No more checks are required. 2901 * Note, we use the fact that SND.UNA>=SND.WL2. 2902 */ 2903 tcp_update_wl(tp, ack, ack_seq); 2904 tp->snd_una = ack; 2905 tcp_westwood_fast_bw(sk, skb); 2906 flag |= FLAG_WIN_UPDATE; 2907 2908 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2909 } else { 2910 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2911 flag |= FLAG_DATA; 2912 else 2913 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2914 2915 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq); 2916 2917 if (TCP_SKB_CB(skb)->sacked) 2918 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2919 2920 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th)) 2921 flag |= FLAG_ECE; 2922 2923 tcp_westwood_slow_bw(sk,skb); 2924 } 2925 2926 /* We passed data and got it acked, remove any soft error 2927 * log. Something worked... 2928 */ 2929 sk->sk_err_soft = 0; 2930 tp->rcv_tstamp = tcp_time_stamp; 2931 prior_packets = tp->packets_out; 2932 if (!prior_packets) 2933 goto no_queue; 2934 2935 prior_in_flight = tcp_packets_in_flight(tp); 2936 2937 /* See if we can take anything off of the retransmit queue. */ 2938 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2939 2940 if (tp->frto_counter) 2941 tcp_process_frto(sk, prior_snd_una); 2942 2943 if (tcp_ack_is_dubious(tp, flag)) { 2944 /* Advanve CWND, if state allows this. */ 2945 if ((flag & FLAG_DATA_ACKED) && 2946 (tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd) && 2947 tcp_may_raise_cwnd(tp, flag)) 2948 tcp_cong_avoid(tp, ack, seq_rtt); 2949 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2950 } else { 2951 if ((flag & FLAG_DATA_ACKED) && 2952 (tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd)) 2953 tcp_cong_avoid(tp, ack, seq_rtt); 2954 } 2955 2956 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2957 dst_confirm(sk->sk_dst_cache); 2958 2959 return 1; 2960 2961 no_queue: 2962 tp->probes_out = 0; 2963 2964 /* If this ack opens up a zero window, clear backoff. It was 2965 * being used to time the probes, and is probably far higher than 2966 * it needs to be for normal retransmission. 2967 */ 2968 if (sk->sk_send_head) 2969 tcp_ack_probe(sk); 2970 return 1; 2971 2972 old_ack: 2973 if (TCP_SKB_CB(skb)->sacked) 2974 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2975 2976 uninteresting_ack: 2977 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2978 return 0; 2979 } 2980 2981 2982 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2983 * But, this can also be called on packets in the established flow when 2984 * the fast version below fails. 2985 */ 2986 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2987 { 2988 unsigned char *ptr; 2989 struct tcphdr *th = skb->h.th; 2990 int length=(th->doff*4)-sizeof(struct tcphdr); 2991 2992 ptr = (unsigned char *)(th + 1); 2993 opt_rx->saw_tstamp = 0; 2994 2995 while(length>0) { 2996 int opcode=*ptr++; 2997 int opsize; 2998 2999 switch (opcode) { 3000 case TCPOPT_EOL: 3001 return; 3002 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3003 length--; 3004 continue; 3005 default: 3006 opsize=*ptr++; 3007 if (opsize < 2) /* "silly options" */ 3008 return; 3009 if (opsize > length) 3010 return; /* don't parse partial options */ 3011 switch(opcode) { 3012 case TCPOPT_MSS: 3013 if(opsize==TCPOLEN_MSS && th->syn && !estab) { 3014 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr)); 3015 if (in_mss) { 3016 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 3017 in_mss = opt_rx->user_mss; 3018 opt_rx->mss_clamp = in_mss; 3019 } 3020 } 3021 break; 3022 case TCPOPT_WINDOW: 3023 if(opsize==TCPOLEN_WINDOW && th->syn && !estab) 3024 if (sysctl_tcp_window_scaling) { 3025 __u8 snd_wscale = *(__u8 *) ptr; 3026 opt_rx->wscale_ok = 1; 3027 if (snd_wscale > 14) { 3028 if(net_ratelimit()) 3029 printk(KERN_INFO "tcp_parse_options: Illegal window " 3030 "scaling value %d >14 received.\n", 3031 snd_wscale); 3032 snd_wscale = 14; 3033 } 3034 opt_rx->snd_wscale = snd_wscale; 3035 } 3036 break; 3037 case TCPOPT_TIMESTAMP: 3038 if(opsize==TCPOLEN_TIMESTAMP) { 3039 if ((estab && opt_rx->tstamp_ok) || 3040 (!estab && sysctl_tcp_timestamps)) { 3041 opt_rx->saw_tstamp = 1; 3042 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr)); 3043 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4))); 3044 } 3045 } 3046 break; 3047 case TCPOPT_SACK_PERM: 3048 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 3049 if (sysctl_tcp_sack) { 3050 opt_rx->sack_ok = 1; 3051 tcp_sack_reset(opt_rx); 3052 } 3053 } 3054 break; 3055 3056 case TCPOPT_SACK: 3057 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3058 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3059 opt_rx->sack_ok) { 3060 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3061 } 3062 }; 3063 ptr+=opsize-2; 3064 length-=opsize; 3065 }; 3066 } 3067 } 3068 3069 /* Fast parse options. This hopes to only see timestamps. 3070 * If it is wrong it falls back on tcp_parse_options(). 3071 */ 3072 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3073 struct tcp_sock *tp) 3074 { 3075 if (th->doff == sizeof(struct tcphdr)>>2) { 3076 tp->rx_opt.saw_tstamp = 0; 3077 return 0; 3078 } else if (tp->rx_opt.tstamp_ok && 3079 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 3080 __u32 *ptr = (__u32 *)(th + 1); 3081 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3082 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3083 tp->rx_opt.saw_tstamp = 1; 3084 ++ptr; 3085 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3086 ++ptr; 3087 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3088 return 1; 3089 } 3090 } 3091 tcp_parse_options(skb, &tp->rx_opt, 1); 3092 return 1; 3093 } 3094 3095 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3096 { 3097 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3098 tp->rx_opt.ts_recent_stamp = xtime.tv_sec; 3099 } 3100 3101 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3102 { 3103 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3104 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3105 * extra check below makes sure this can only happen 3106 * for pure ACK frames. -DaveM 3107 * 3108 * Not only, also it occurs for expired timestamps. 3109 */ 3110 3111 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 3112 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 3113 tcp_store_ts_recent(tp); 3114 } 3115 } 3116 3117 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3118 * 3119 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3120 * it can pass through stack. So, the following predicate verifies that 3121 * this segment is not used for anything but congestion avoidance or 3122 * fast retransmit. Moreover, we even are able to eliminate most of such 3123 * second order effects, if we apply some small "replay" window (~RTO) 3124 * to timestamp space. 3125 * 3126 * All these measures still do not guarantee that we reject wrapped ACKs 3127 * on networks with high bandwidth, when sequence space is recycled fastly, 3128 * but it guarantees that such events will be very rare and do not affect 3129 * connection seriously. This doesn't look nice, but alas, PAWS is really 3130 * buggy extension. 3131 * 3132 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3133 * states that events when retransmit arrives after original data are rare. 3134 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3135 * the biggest problem on large power networks even with minor reordering. 3136 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3137 * up to bandwidth of 18Gigabit/sec. 8) ] 3138 */ 3139 3140 static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb) 3141 { 3142 struct tcphdr *th = skb->h.th; 3143 u32 seq = TCP_SKB_CB(skb)->seq; 3144 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3145 3146 return (/* 1. Pure ACK with correct sequence number. */ 3147 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3148 3149 /* 2. ... and duplicate ACK. */ 3150 ack == tp->snd_una && 3151 3152 /* 3. ... and does not update window. */ 3153 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3154 3155 /* 4. ... and sits in replay window. */ 3156 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ); 3157 } 3158 3159 static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb) 3160 { 3161 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 3162 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 3163 !tcp_disordered_ack(tp, skb)); 3164 } 3165 3166 /* Check segment sequence number for validity. 3167 * 3168 * Segment controls are considered valid, if the segment 3169 * fits to the window after truncation to the window. Acceptability 3170 * of data (and SYN, FIN, of course) is checked separately. 3171 * See tcp_data_queue(), for example. 3172 * 3173 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3174 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3175 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3176 * (borrowed from freebsd) 3177 */ 3178 3179 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3180 { 3181 return !before(end_seq, tp->rcv_wup) && 3182 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3183 } 3184 3185 /* When we get a reset we do this. */ 3186 static void tcp_reset(struct sock *sk) 3187 { 3188 /* We want the right error as BSD sees it (and indeed as we do). */ 3189 switch (sk->sk_state) { 3190 case TCP_SYN_SENT: 3191 sk->sk_err = ECONNREFUSED; 3192 break; 3193 case TCP_CLOSE_WAIT: 3194 sk->sk_err = EPIPE; 3195 break; 3196 case TCP_CLOSE: 3197 return; 3198 default: 3199 sk->sk_err = ECONNRESET; 3200 } 3201 3202 if (!sock_flag(sk, SOCK_DEAD)) 3203 sk->sk_error_report(sk); 3204 3205 tcp_done(sk); 3206 } 3207 3208 /* 3209 * Process the FIN bit. This now behaves as it is supposed to work 3210 * and the FIN takes effect when it is validly part of sequence 3211 * space. Not before when we get holes. 3212 * 3213 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3214 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3215 * TIME-WAIT) 3216 * 3217 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3218 * close and we go into CLOSING (and later onto TIME-WAIT) 3219 * 3220 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3221 */ 3222 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3223 { 3224 struct tcp_sock *tp = tcp_sk(sk); 3225 3226 tcp_schedule_ack(tp); 3227 3228 sk->sk_shutdown |= RCV_SHUTDOWN; 3229 sock_set_flag(sk, SOCK_DONE); 3230 3231 switch (sk->sk_state) { 3232 case TCP_SYN_RECV: 3233 case TCP_ESTABLISHED: 3234 /* Move to CLOSE_WAIT */ 3235 tcp_set_state(sk, TCP_CLOSE_WAIT); 3236 tp->ack.pingpong = 1; 3237 break; 3238 3239 case TCP_CLOSE_WAIT: 3240 case TCP_CLOSING: 3241 /* Received a retransmission of the FIN, do 3242 * nothing. 3243 */ 3244 break; 3245 case TCP_LAST_ACK: 3246 /* RFC793: Remain in the LAST-ACK state. */ 3247 break; 3248 3249 case TCP_FIN_WAIT1: 3250 /* This case occurs when a simultaneous close 3251 * happens, we must ack the received FIN and 3252 * enter the CLOSING state. 3253 */ 3254 tcp_send_ack(sk); 3255 tcp_set_state(sk, TCP_CLOSING); 3256 break; 3257 case TCP_FIN_WAIT2: 3258 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3259 tcp_send_ack(sk); 3260 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3261 break; 3262 default: 3263 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3264 * cases we should never reach this piece of code. 3265 */ 3266 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 3267 __FUNCTION__, sk->sk_state); 3268 break; 3269 }; 3270 3271 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3272 * Probably, we should reset in this case. For now drop them. 3273 */ 3274 __skb_queue_purge(&tp->out_of_order_queue); 3275 if (tp->rx_opt.sack_ok) 3276 tcp_sack_reset(&tp->rx_opt); 3277 sk_stream_mem_reclaim(sk); 3278 3279 if (!sock_flag(sk, SOCK_DEAD)) { 3280 sk->sk_state_change(sk); 3281 3282 /* Do not send POLL_HUP for half duplex close. */ 3283 if (sk->sk_shutdown == SHUTDOWN_MASK || 3284 sk->sk_state == TCP_CLOSE) 3285 sk_wake_async(sk, 1, POLL_HUP); 3286 else 3287 sk_wake_async(sk, 1, POLL_IN); 3288 } 3289 } 3290 3291 static __inline__ int 3292 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 3293 { 3294 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3295 if (before(seq, sp->start_seq)) 3296 sp->start_seq = seq; 3297 if (after(end_seq, sp->end_seq)) 3298 sp->end_seq = end_seq; 3299 return 1; 3300 } 3301 return 0; 3302 } 3303 3304 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 3305 { 3306 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 3307 if (before(seq, tp->rcv_nxt)) 3308 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 3309 else 3310 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 3311 3312 tp->rx_opt.dsack = 1; 3313 tp->duplicate_sack[0].start_seq = seq; 3314 tp->duplicate_sack[0].end_seq = end_seq; 3315 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 3316 } 3317 } 3318 3319 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 3320 { 3321 if (!tp->rx_opt.dsack) 3322 tcp_dsack_set(tp, seq, end_seq); 3323 else 3324 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3325 } 3326 3327 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 3328 { 3329 struct tcp_sock *tp = tcp_sk(sk); 3330 3331 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3332 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3333 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3334 tcp_enter_quickack_mode(tp); 3335 3336 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 3337 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3338 3339 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3340 end_seq = tp->rcv_nxt; 3341 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 3342 } 3343 } 3344 3345 tcp_send_ack(sk); 3346 } 3347 3348 /* These routines update the SACK block as out-of-order packets arrive or 3349 * in-order packets close up the sequence space. 3350 */ 3351 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3352 { 3353 int this_sack; 3354 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3355 struct tcp_sack_block *swalk = sp+1; 3356 3357 /* See if the recent change to the first SACK eats into 3358 * or hits the sequence space of other SACK blocks, if so coalesce. 3359 */ 3360 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 3361 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3362 int i; 3363 3364 /* Zap SWALK, by moving every further SACK up by one slot. 3365 * Decrease num_sacks. 3366 */ 3367 tp->rx_opt.num_sacks--; 3368 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3369 for(i=this_sack; i < tp->rx_opt.num_sacks; i++) 3370 sp[i] = sp[i+1]; 3371 continue; 3372 } 3373 this_sack++, swalk++; 3374 } 3375 } 3376 3377 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 3378 { 3379 __u32 tmp; 3380 3381 tmp = sack1->start_seq; 3382 sack1->start_seq = sack2->start_seq; 3383 sack2->start_seq = tmp; 3384 3385 tmp = sack1->end_seq; 3386 sack1->end_seq = sack2->end_seq; 3387 sack2->end_seq = tmp; 3388 } 3389 3390 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3391 { 3392 struct tcp_sock *tp = tcp_sk(sk); 3393 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3394 int cur_sacks = tp->rx_opt.num_sacks; 3395 int this_sack; 3396 3397 if (!cur_sacks) 3398 goto new_sack; 3399 3400 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 3401 if (tcp_sack_extend(sp, seq, end_seq)) { 3402 /* Rotate this_sack to the first one. */ 3403 for (; this_sack>0; this_sack--, sp--) 3404 tcp_sack_swap(sp, sp-1); 3405 if (cur_sacks > 1) 3406 tcp_sack_maybe_coalesce(tp); 3407 return; 3408 } 3409 } 3410 3411 /* Could not find an adjacent existing SACK, build a new one, 3412 * put it at the front, and shift everyone else down. We 3413 * always know there is at least one SACK present already here. 3414 * 3415 * If the sack array is full, forget about the last one. 3416 */ 3417 if (this_sack >= 4) { 3418 this_sack--; 3419 tp->rx_opt.num_sacks--; 3420 sp--; 3421 } 3422 for(; this_sack > 0; this_sack--, sp--) 3423 *sp = *(sp-1); 3424 3425 new_sack: 3426 /* Build the new head SACK, and we're done. */ 3427 sp->start_seq = seq; 3428 sp->end_seq = end_seq; 3429 tp->rx_opt.num_sacks++; 3430 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3431 } 3432 3433 /* RCV.NXT advances, some SACKs should be eaten. */ 3434 3435 static void tcp_sack_remove(struct tcp_sock *tp) 3436 { 3437 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3438 int num_sacks = tp->rx_opt.num_sacks; 3439 int this_sack; 3440 3441 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3442 if (skb_queue_len(&tp->out_of_order_queue) == 0) { 3443 tp->rx_opt.num_sacks = 0; 3444 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3445 return; 3446 } 3447 3448 for(this_sack = 0; this_sack < num_sacks; ) { 3449 /* Check if the start of the sack is covered by RCV.NXT. */ 3450 if (!before(tp->rcv_nxt, sp->start_seq)) { 3451 int i; 3452 3453 /* RCV.NXT must cover all the block! */ 3454 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3455 3456 /* Zap this SACK, by moving forward any other SACKS. */ 3457 for (i=this_sack+1; i < num_sacks; i++) 3458 tp->selective_acks[i-1] = tp->selective_acks[i]; 3459 num_sacks--; 3460 continue; 3461 } 3462 this_sack++; 3463 sp++; 3464 } 3465 if (num_sacks != tp->rx_opt.num_sacks) { 3466 tp->rx_opt.num_sacks = num_sacks; 3467 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3468 } 3469 } 3470 3471 /* This one checks to see if we can put data from the 3472 * out_of_order queue into the receive_queue. 3473 */ 3474 static void tcp_ofo_queue(struct sock *sk) 3475 { 3476 struct tcp_sock *tp = tcp_sk(sk); 3477 __u32 dsack_high = tp->rcv_nxt; 3478 struct sk_buff *skb; 3479 3480 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3481 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3482 break; 3483 3484 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3485 __u32 dsack = dsack_high; 3486 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3487 dsack_high = TCP_SKB_CB(skb)->end_seq; 3488 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3489 } 3490 3491 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3492 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3493 __skb_unlink(skb, skb->list); 3494 __kfree_skb(skb); 3495 continue; 3496 } 3497 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3498 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3499 TCP_SKB_CB(skb)->end_seq); 3500 3501 __skb_unlink(skb, skb->list); 3502 __skb_queue_tail(&sk->sk_receive_queue, skb); 3503 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3504 if(skb->h.th->fin) 3505 tcp_fin(skb, sk, skb->h.th); 3506 } 3507 } 3508 3509 static int tcp_prune_queue(struct sock *sk); 3510 3511 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3512 { 3513 struct tcphdr *th = skb->h.th; 3514 struct tcp_sock *tp = tcp_sk(sk); 3515 int eaten = -1; 3516 3517 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3518 goto drop; 3519 3520 th = skb->h.th; 3521 __skb_pull(skb, th->doff*4); 3522 3523 TCP_ECN_accept_cwr(tp, skb); 3524 3525 if (tp->rx_opt.dsack) { 3526 tp->rx_opt.dsack = 0; 3527 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3528 4 - tp->rx_opt.tstamp_ok); 3529 } 3530 3531 /* Queue data for delivery to the user. 3532 * Packets in sequence go to the receive queue. 3533 * Out of sequence packets to the out_of_order_queue. 3534 */ 3535 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3536 if (tcp_receive_window(tp) == 0) 3537 goto out_of_window; 3538 3539 /* Ok. In sequence. In window. */ 3540 if (tp->ucopy.task == current && 3541 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3542 sock_owned_by_user(sk) && !tp->urg_data) { 3543 int chunk = min_t(unsigned int, skb->len, 3544 tp->ucopy.len); 3545 3546 __set_current_state(TASK_RUNNING); 3547 3548 local_bh_enable(); 3549 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3550 tp->ucopy.len -= chunk; 3551 tp->copied_seq += chunk; 3552 eaten = (chunk == skb->len && !th->fin); 3553 tcp_rcv_space_adjust(sk); 3554 } 3555 local_bh_disable(); 3556 } 3557 3558 if (eaten <= 0) { 3559 queue_and_out: 3560 if (eaten < 0 && 3561 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3562 !sk_stream_rmem_schedule(sk, skb))) { 3563 if (tcp_prune_queue(sk) < 0 || 3564 !sk_stream_rmem_schedule(sk, skb)) 3565 goto drop; 3566 } 3567 sk_stream_set_owner_r(skb, sk); 3568 __skb_queue_tail(&sk->sk_receive_queue, skb); 3569 } 3570 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3571 if(skb->len) 3572 tcp_event_data_recv(sk, tp, skb); 3573 if(th->fin) 3574 tcp_fin(skb, sk, th); 3575 3576 if (skb_queue_len(&tp->out_of_order_queue)) { 3577 tcp_ofo_queue(sk); 3578 3579 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3580 * gap in queue is filled. 3581 */ 3582 if (!skb_queue_len(&tp->out_of_order_queue)) 3583 tp->ack.pingpong = 0; 3584 } 3585 3586 if (tp->rx_opt.num_sacks) 3587 tcp_sack_remove(tp); 3588 3589 tcp_fast_path_check(sk, tp); 3590 3591 if (eaten > 0) 3592 __kfree_skb(skb); 3593 else if (!sock_flag(sk, SOCK_DEAD)) 3594 sk->sk_data_ready(sk, 0); 3595 return; 3596 } 3597 3598 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3599 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3600 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3601 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3602 3603 out_of_window: 3604 tcp_enter_quickack_mode(tp); 3605 tcp_schedule_ack(tp); 3606 drop: 3607 __kfree_skb(skb); 3608 return; 3609 } 3610 3611 /* Out of window. F.e. zero window probe. */ 3612 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3613 goto out_of_window; 3614 3615 tcp_enter_quickack_mode(tp); 3616 3617 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3618 /* Partial packet, seq < rcv_next < end_seq */ 3619 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3620 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3621 TCP_SKB_CB(skb)->end_seq); 3622 3623 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3624 3625 /* If window is closed, drop tail of packet. But after 3626 * remembering D-SACK for its head made in previous line. 3627 */ 3628 if (!tcp_receive_window(tp)) 3629 goto out_of_window; 3630 goto queue_and_out; 3631 } 3632 3633 TCP_ECN_check_ce(tp, skb); 3634 3635 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3636 !sk_stream_rmem_schedule(sk, skb)) { 3637 if (tcp_prune_queue(sk) < 0 || 3638 !sk_stream_rmem_schedule(sk, skb)) 3639 goto drop; 3640 } 3641 3642 /* Disable header prediction. */ 3643 tp->pred_flags = 0; 3644 tcp_schedule_ack(tp); 3645 3646 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3647 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3648 3649 sk_stream_set_owner_r(skb, sk); 3650 3651 if (!skb_peek(&tp->out_of_order_queue)) { 3652 /* Initial out of order segment, build 1 SACK. */ 3653 if (tp->rx_opt.sack_ok) { 3654 tp->rx_opt.num_sacks = 1; 3655 tp->rx_opt.dsack = 0; 3656 tp->rx_opt.eff_sacks = 1; 3657 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3658 tp->selective_acks[0].end_seq = 3659 TCP_SKB_CB(skb)->end_seq; 3660 } 3661 __skb_queue_head(&tp->out_of_order_queue,skb); 3662 } else { 3663 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3664 u32 seq = TCP_SKB_CB(skb)->seq; 3665 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3666 3667 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3668 __skb_append(skb1, skb); 3669 3670 if (!tp->rx_opt.num_sacks || 3671 tp->selective_acks[0].end_seq != seq) 3672 goto add_sack; 3673 3674 /* Common case: data arrive in order after hole. */ 3675 tp->selective_acks[0].end_seq = end_seq; 3676 return; 3677 } 3678 3679 /* Find place to insert this segment. */ 3680 do { 3681 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3682 break; 3683 } while ((skb1 = skb1->prev) != 3684 (struct sk_buff*)&tp->out_of_order_queue); 3685 3686 /* Do skb overlap to previous one? */ 3687 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3688 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3689 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3690 /* All the bits are present. Drop. */ 3691 __kfree_skb(skb); 3692 tcp_dsack_set(tp, seq, end_seq); 3693 goto add_sack; 3694 } 3695 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3696 /* Partial overlap. */ 3697 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3698 } else { 3699 skb1 = skb1->prev; 3700 } 3701 } 3702 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3703 3704 /* And clean segments covered by new one as whole. */ 3705 while ((skb1 = skb->next) != 3706 (struct sk_buff*)&tp->out_of_order_queue && 3707 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3708 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3709 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3710 break; 3711 } 3712 __skb_unlink(skb1, skb1->list); 3713 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3714 __kfree_skb(skb1); 3715 } 3716 3717 add_sack: 3718 if (tp->rx_opt.sack_ok) 3719 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3720 } 3721 } 3722 3723 /* Collapse contiguous sequence of skbs head..tail with 3724 * sequence numbers start..end. 3725 * Segments with FIN/SYN are not collapsed (only because this 3726 * simplifies code) 3727 */ 3728 static void 3729 tcp_collapse(struct sock *sk, struct sk_buff *head, 3730 struct sk_buff *tail, u32 start, u32 end) 3731 { 3732 struct sk_buff *skb; 3733 3734 /* First, check that queue is collapsable and find 3735 * the point where collapsing can be useful. */ 3736 for (skb = head; skb != tail; ) { 3737 /* No new bits? It is possible on ofo queue. */ 3738 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3739 struct sk_buff *next = skb->next; 3740 __skb_unlink(skb, skb->list); 3741 __kfree_skb(skb); 3742 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3743 skb = next; 3744 continue; 3745 } 3746 3747 /* The first skb to collapse is: 3748 * - not SYN/FIN and 3749 * - bloated or contains data before "start" or 3750 * overlaps to the next one. 3751 */ 3752 if (!skb->h.th->syn && !skb->h.th->fin && 3753 (tcp_win_from_space(skb->truesize) > skb->len || 3754 before(TCP_SKB_CB(skb)->seq, start) || 3755 (skb->next != tail && 3756 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3757 break; 3758 3759 /* Decided to skip this, advance start seq. */ 3760 start = TCP_SKB_CB(skb)->end_seq; 3761 skb = skb->next; 3762 } 3763 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3764 return; 3765 3766 while (before(start, end)) { 3767 struct sk_buff *nskb; 3768 int header = skb_headroom(skb); 3769 int copy = SKB_MAX_ORDER(header, 0); 3770 3771 /* Too big header? This can happen with IPv6. */ 3772 if (copy < 0) 3773 return; 3774 if (end-start < copy) 3775 copy = end-start; 3776 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3777 if (!nskb) 3778 return; 3779 skb_reserve(nskb, header); 3780 memcpy(nskb->head, skb->head, header); 3781 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head); 3782 nskb->h.raw = nskb->head + (skb->h.raw-skb->head); 3783 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head); 3784 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3785 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3786 __skb_insert(nskb, skb->prev, skb, skb->list); 3787 sk_stream_set_owner_r(nskb, sk); 3788 3789 /* Copy data, releasing collapsed skbs. */ 3790 while (copy > 0) { 3791 int offset = start - TCP_SKB_CB(skb)->seq; 3792 int size = TCP_SKB_CB(skb)->end_seq - start; 3793 3794 if (offset < 0) BUG(); 3795 if (size > 0) { 3796 size = min(copy, size); 3797 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3798 BUG(); 3799 TCP_SKB_CB(nskb)->end_seq += size; 3800 copy -= size; 3801 start += size; 3802 } 3803 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3804 struct sk_buff *next = skb->next; 3805 __skb_unlink(skb, skb->list); 3806 __kfree_skb(skb); 3807 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3808 skb = next; 3809 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3810 return; 3811 } 3812 } 3813 } 3814 } 3815 3816 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3817 * and tcp_collapse() them until all the queue is collapsed. 3818 */ 3819 static void tcp_collapse_ofo_queue(struct sock *sk) 3820 { 3821 struct tcp_sock *tp = tcp_sk(sk); 3822 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3823 struct sk_buff *head; 3824 u32 start, end; 3825 3826 if (skb == NULL) 3827 return; 3828 3829 start = TCP_SKB_CB(skb)->seq; 3830 end = TCP_SKB_CB(skb)->end_seq; 3831 head = skb; 3832 3833 for (;;) { 3834 skb = skb->next; 3835 3836 /* Segment is terminated when we see gap or when 3837 * we are at the end of all the queue. */ 3838 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3839 after(TCP_SKB_CB(skb)->seq, end) || 3840 before(TCP_SKB_CB(skb)->end_seq, start)) { 3841 tcp_collapse(sk, head, skb, start, end); 3842 head = skb; 3843 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3844 break; 3845 /* Start new segment */ 3846 start = TCP_SKB_CB(skb)->seq; 3847 end = TCP_SKB_CB(skb)->end_seq; 3848 } else { 3849 if (before(TCP_SKB_CB(skb)->seq, start)) 3850 start = TCP_SKB_CB(skb)->seq; 3851 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3852 end = TCP_SKB_CB(skb)->end_seq; 3853 } 3854 } 3855 } 3856 3857 /* Reduce allocated memory if we can, trying to get 3858 * the socket within its memory limits again. 3859 * 3860 * Return less than zero if we should start dropping frames 3861 * until the socket owning process reads some of the data 3862 * to stabilize the situation. 3863 */ 3864 static int tcp_prune_queue(struct sock *sk) 3865 { 3866 struct tcp_sock *tp = tcp_sk(sk); 3867 3868 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3869 3870 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3871 3872 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3873 tcp_clamp_window(sk, tp); 3874 else if (tcp_memory_pressure) 3875 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3876 3877 tcp_collapse_ofo_queue(sk); 3878 tcp_collapse(sk, sk->sk_receive_queue.next, 3879 (struct sk_buff*)&sk->sk_receive_queue, 3880 tp->copied_seq, tp->rcv_nxt); 3881 sk_stream_mem_reclaim(sk); 3882 3883 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3884 return 0; 3885 3886 /* Collapsing did not help, destructive actions follow. 3887 * This must not ever occur. */ 3888 3889 /* First, purge the out_of_order queue. */ 3890 if (skb_queue_len(&tp->out_of_order_queue)) { 3891 NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED, 3892 skb_queue_len(&tp->out_of_order_queue)); 3893 __skb_queue_purge(&tp->out_of_order_queue); 3894 3895 /* Reset SACK state. A conforming SACK implementation will 3896 * do the same at a timeout based retransmit. When a connection 3897 * is in a sad state like this, we care only about integrity 3898 * of the connection not performance. 3899 */ 3900 if (tp->rx_opt.sack_ok) 3901 tcp_sack_reset(&tp->rx_opt); 3902 sk_stream_mem_reclaim(sk); 3903 } 3904 3905 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3906 return 0; 3907 3908 /* If we are really being abused, tell the caller to silently 3909 * drop receive data on the floor. It will get retransmitted 3910 * and hopefully then we'll have sufficient space. 3911 */ 3912 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3913 3914 /* Massive buffer overcommit. */ 3915 tp->pred_flags = 0; 3916 return -1; 3917 } 3918 3919 3920 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3921 * As additional protections, we do not touch cwnd in retransmission phases, 3922 * and if application hit its sndbuf limit recently. 3923 */ 3924 void tcp_cwnd_application_limited(struct sock *sk) 3925 { 3926 struct tcp_sock *tp = tcp_sk(sk); 3927 3928 if (tp->ca_state == TCP_CA_Open && 3929 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3930 /* Limited by application or receiver window. */ 3931 u32 win_used = max(tp->snd_cwnd_used, 2U); 3932 if (win_used < tp->snd_cwnd) { 3933 tp->snd_ssthresh = tcp_current_ssthresh(tp); 3934 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3935 } 3936 tp->snd_cwnd_used = 0; 3937 } 3938 tp->snd_cwnd_stamp = tcp_time_stamp; 3939 } 3940 3941 3942 /* When incoming ACK allowed to free some skb from write_queue, 3943 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3944 * on the exit from tcp input handler. 3945 * 3946 * PROBLEM: sndbuf expansion does not work well with largesend. 3947 */ 3948 static void tcp_new_space(struct sock *sk) 3949 { 3950 struct tcp_sock *tp = tcp_sk(sk); 3951 3952 if (tp->packets_out < tp->snd_cwnd && 3953 !(sk->sk_userlocks & SOCK_SNDBUF_LOCK) && 3954 !tcp_memory_pressure && 3955 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 3956 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache_std) + 3957 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3958 demanded = max_t(unsigned int, tp->snd_cwnd, 3959 tp->reordering + 1); 3960 sndmem *= 2*demanded; 3961 if (sndmem > sk->sk_sndbuf) 3962 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3963 tp->snd_cwnd_stamp = tcp_time_stamp; 3964 } 3965 3966 sk->sk_write_space(sk); 3967 } 3968 3969 static inline void tcp_check_space(struct sock *sk) 3970 { 3971 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3972 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3973 if (sk->sk_socket && 3974 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3975 tcp_new_space(sk); 3976 } 3977 } 3978 3979 static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb) 3980 { 3981 struct tcp_sock *tp = tcp_sk(sk); 3982 3983 if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) || 3984 tcp_packets_in_flight(tp) >= tp->snd_cwnd || 3985 tcp_write_xmit(sk, tp->nonagle)) 3986 tcp_check_probe_timer(sk, tp); 3987 } 3988 3989 static __inline__ void tcp_data_snd_check(struct sock *sk) 3990 { 3991 struct sk_buff *skb = sk->sk_send_head; 3992 3993 if (skb != NULL) 3994 __tcp_data_snd_check(sk, skb); 3995 tcp_check_space(sk); 3996 } 3997 3998 /* 3999 * Check if sending an ack is needed. 4000 */ 4001 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4002 { 4003 struct tcp_sock *tp = tcp_sk(sk); 4004 4005 /* More than one full frame received... */ 4006 if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss 4007 /* ... and right edge of window advances far enough. 4008 * (tcp_recvmsg() will send ACK otherwise). Or... 4009 */ 4010 && __tcp_select_window(sk) >= tp->rcv_wnd) || 4011 /* We ACK each frame or... */ 4012 tcp_in_quickack_mode(tp) || 4013 /* We have out of order data. */ 4014 (ofo_possible && 4015 skb_peek(&tp->out_of_order_queue))) { 4016 /* Then ack it now */ 4017 tcp_send_ack(sk); 4018 } else { 4019 /* Else, send delayed ack. */ 4020 tcp_send_delayed_ack(sk); 4021 } 4022 } 4023 4024 static __inline__ void tcp_ack_snd_check(struct sock *sk) 4025 { 4026 struct tcp_sock *tp = tcp_sk(sk); 4027 if (!tcp_ack_scheduled(tp)) { 4028 /* We sent a data segment already. */ 4029 return; 4030 } 4031 __tcp_ack_snd_check(sk, 1); 4032 } 4033 4034 /* 4035 * This routine is only called when we have urgent data 4036 * signalled. Its the 'slow' part of tcp_urg. It could be 4037 * moved inline now as tcp_urg is only called from one 4038 * place. We handle URGent data wrong. We have to - as 4039 * BSD still doesn't use the correction from RFC961. 4040 * For 1003.1g we should support a new option TCP_STDURG to permit 4041 * either form (or just set the sysctl tcp_stdurg). 4042 */ 4043 4044 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 4045 { 4046 struct tcp_sock *tp = tcp_sk(sk); 4047 u32 ptr = ntohs(th->urg_ptr); 4048 4049 if (ptr && !sysctl_tcp_stdurg) 4050 ptr--; 4051 ptr += ntohl(th->seq); 4052 4053 /* Ignore urgent data that we've already seen and read. */ 4054 if (after(tp->copied_seq, ptr)) 4055 return; 4056 4057 /* Do not replay urg ptr. 4058 * 4059 * NOTE: interesting situation not covered by specs. 4060 * Misbehaving sender may send urg ptr, pointing to segment, 4061 * which we already have in ofo queue. We are not able to fetch 4062 * such data and will stay in TCP_URG_NOTYET until will be eaten 4063 * by recvmsg(). Seems, we are not obliged to handle such wicked 4064 * situations. But it is worth to think about possibility of some 4065 * DoSes using some hypothetical application level deadlock. 4066 */ 4067 if (before(ptr, tp->rcv_nxt)) 4068 return; 4069 4070 /* Do we already have a newer (or duplicate) urgent pointer? */ 4071 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4072 return; 4073 4074 /* Tell the world about our new urgent pointer. */ 4075 sk_send_sigurg(sk); 4076 4077 /* We may be adding urgent data when the last byte read was 4078 * urgent. To do this requires some care. We cannot just ignore 4079 * tp->copied_seq since we would read the last urgent byte again 4080 * as data, nor can we alter copied_seq until this data arrives 4081 * or we break the sematics of SIOCATMARK (and thus sockatmark()) 4082 * 4083 * NOTE. Double Dutch. Rendering to plain English: author of comment 4084 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4085 * and expect that both A and B disappear from stream. This is _wrong_. 4086 * Though this happens in BSD with high probability, this is occasional. 4087 * Any application relying on this is buggy. Note also, that fix "works" 4088 * only in this artificial test. Insert some normal data between A and B and we will 4089 * decline of BSD again. Verdict: it is better to remove to trap 4090 * buggy users. 4091 */ 4092 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4093 !sock_flag(sk, SOCK_URGINLINE) && 4094 tp->copied_seq != tp->rcv_nxt) { 4095 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4096 tp->copied_seq++; 4097 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4098 __skb_unlink(skb, skb->list); 4099 __kfree_skb(skb); 4100 } 4101 } 4102 4103 tp->urg_data = TCP_URG_NOTYET; 4104 tp->urg_seq = ptr; 4105 4106 /* Disable header prediction. */ 4107 tp->pred_flags = 0; 4108 } 4109 4110 /* This is the 'fast' part of urgent handling. */ 4111 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4112 { 4113 struct tcp_sock *tp = tcp_sk(sk); 4114 4115 /* Check if we get a new urgent pointer - normally not. */ 4116 if (th->urg) 4117 tcp_check_urg(sk,th); 4118 4119 /* Do we wait for any urgent data? - normally not... */ 4120 if (tp->urg_data == TCP_URG_NOTYET) { 4121 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4122 th->syn; 4123 4124 /* Is the urgent pointer pointing into this packet? */ 4125 if (ptr < skb->len) { 4126 u8 tmp; 4127 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4128 BUG(); 4129 tp->urg_data = TCP_URG_VALID | tmp; 4130 if (!sock_flag(sk, SOCK_DEAD)) 4131 sk->sk_data_ready(sk, 0); 4132 } 4133 } 4134 } 4135 4136 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4137 { 4138 struct tcp_sock *tp = tcp_sk(sk); 4139 int chunk = skb->len - hlen; 4140 int err; 4141 4142 local_bh_enable(); 4143 if (skb->ip_summed==CHECKSUM_UNNECESSARY) 4144 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4145 else 4146 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4147 tp->ucopy.iov); 4148 4149 if (!err) { 4150 tp->ucopy.len -= chunk; 4151 tp->copied_seq += chunk; 4152 tcp_rcv_space_adjust(sk); 4153 } 4154 4155 local_bh_disable(); 4156 return err; 4157 } 4158 4159 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 4160 { 4161 int result; 4162 4163 if (sock_owned_by_user(sk)) { 4164 local_bh_enable(); 4165 result = __tcp_checksum_complete(skb); 4166 local_bh_disable(); 4167 } else { 4168 result = __tcp_checksum_complete(skb); 4169 } 4170 return result; 4171 } 4172 4173 static __inline__ int 4174 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 4175 { 4176 return skb->ip_summed != CHECKSUM_UNNECESSARY && 4177 __tcp_checksum_complete_user(sk, skb); 4178 } 4179 4180 /* 4181 * TCP receive function for the ESTABLISHED state. 4182 * 4183 * It is split into a fast path and a slow path. The fast path is 4184 * disabled when: 4185 * - A zero window was announced from us - zero window probing 4186 * is only handled properly in the slow path. 4187 * - Out of order segments arrived. 4188 * - Urgent data is expected. 4189 * - There is no buffer space left 4190 * - Unexpected TCP flags/window values/header lengths are received 4191 * (detected by checking the TCP header against pred_flags) 4192 * - Data is sent in both directions. Fast path only supports pure senders 4193 * or pure receivers (this means either the sequence number or the ack 4194 * value must stay constant) 4195 * - Unexpected TCP option. 4196 * 4197 * When these conditions are not satisfied it drops into a standard 4198 * receive procedure patterned after RFC793 to handle all cases. 4199 * The first three cases are guaranteed by proper pred_flags setting, 4200 * the rest is checked inline. Fast processing is turned on in 4201 * tcp_data_queue when everything is OK. 4202 */ 4203 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 4204 struct tcphdr *th, unsigned len) 4205 { 4206 struct tcp_sock *tp = tcp_sk(sk); 4207 4208 /* 4209 * Header prediction. 4210 * The code loosely follows the one in the famous 4211 * "30 instruction TCP receive" Van Jacobson mail. 4212 * 4213 * Van's trick is to deposit buffers into socket queue 4214 * on a device interrupt, to call tcp_recv function 4215 * on the receive process context and checksum and copy 4216 * the buffer to user space. smart... 4217 * 4218 * Our current scheme is not silly either but we take the 4219 * extra cost of the net_bh soft interrupt processing... 4220 * We do checksum and copy also but from device to kernel. 4221 */ 4222 4223 tp->rx_opt.saw_tstamp = 0; 4224 4225 /* pred_flags is 0xS?10 << 16 + snd_wnd 4226 * if header_predition is to be made 4227 * 'S' will always be tp->tcp_header_len >> 2 4228 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 4229 * turn it off (when there are holes in the receive 4230 * space for instance) 4231 * PSH flag is ignored. 4232 */ 4233 4234 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 4235 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4236 int tcp_header_len = tp->tcp_header_len; 4237 4238 /* Timestamp header prediction: tcp_header_len 4239 * is automatically equal to th->doff*4 due to pred_flags 4240 * match. 4241 */ 4242 4243 /* Check timestamp */ 4244 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 4245 __u32 *ptr = (__u32 *)(th + 1); 4246 4247 /* No? Slow path! */ 4248 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4249 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 4250 goto slow_path; 4251 4252 tp->rx_opt.saw_tstamp = 1; 4253 ++ptr; 4254 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4255 ++ptr; 4256 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 4257 4258 /* If PAWS failed, check it more carefully in slow path */ 4259 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 4260 goto slow_path; 4261 4262 /* DO NOT update ts_recent here, if checksum fails 4263 * and timestamp was corrupted part, it will result 4264 * in a hung connection since we will drop all 4265 * future packets due to the PAWS test. 4266 */ 4267 } 4268 4269 if (len <= tcp_header_len) { 4270 /* Bulk data transfer: sender */ 4271 if (len == tcp_header_len) { 4272 /* Predicted packet is in window by definition. 4273 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4274 * Hence, check seq<=rcv_wup reduces to: 4275 */ 4276 if (tcp_header_len == 4277 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4278 tp->rcv_nxt == tp->rcv_wup) 4279 tcp_store_ts_recent(tp); 4280 4281 tcp_rcv_rtt_measure_ts(tp, skb); 4282 4283 /* We know that such packets are checksummed 4284 * on entry. 4285 */ 4286 tcp_ack(sk, skb, 0); 4287 __kfree_skb(skb); 4288 tcp_data_snd_check(sk); 4289 return 0; 4290 } else { /* Header too small */ 4291 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4292 goto discard; 4293 } 4294 } else { 4295 int eaten = 0; 4296 4297 if (tp->ucopy.task == current && 4298 tp->copied_seq == tp->rcv_nxt && 4299 len - tcp_header_len <= tp->ucopy.len && 4300 sock_owned_by_user(sk)) { 4301 __set_current_state(TASK_RUNNING); 4302 4303 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 4304 /* Predicted packet is in window by definition. 4305 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4306 * Hence, check seq<=rcv_wup reduces to: 4307 */ 4308 if (tcp_header_len == 4309 (sizeof(struct tcphdr) + 4310 TCPOLEN_TSTAMP_ALIGNED) && 4311 tp->rcv_nxt == tp->rcv_wup) 4312 tcp_store_ts_recent(tp); 4313 4314 tcp_rcv_rtt_measure_ts(tp, skb); 4315 4316 __skb_pull(skb, tcp_header_len); 4317 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4318 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 4319 eaten = 1; 4320 } 4321 } 4322 if (!eaten) { 4323 if (tcp_checksum_complete_user(sk, skb)) 4324 goto csum_error; 4325 4326 /* Predicted packet is in window by definition. 4327 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4328 * Hence, check seq<=rcv_wup reduces to: 4329 */ 4330 if (tcp_header_len == 4331 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4332 tp->rcv_nxt == tp->rcv_wup) 4333 tcp_store_ts_recent(tp); 4334 4335 tcp_rcv_rtt_measure_ts(tp, skb); 4336 4337 if ((int)skb->truesize > sk->sk_forward_alloc) 4338 goto step5; 4339 4340 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 4341 4342 /* Bulk data transfer: receiver */ 4343 __skb_pull(skb,tcp_header_len); 4344 __skb_queue_tail(&sk->sk_receive_queue, skb); 4345 sk_stream_set_owner_r(skb, sk); 4346 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4347 } 4348 4349 tcp_event_data_recv(sk, tp, skb); 4350 4351 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4352 /* Well, only one small jumplet in fast path... */ 4353 tcp_ack(sk, skb, FLAG_DATA); 4354 tcp_data_snd_check(sk); 4355 if (!tcp_ack_scheduled(tp)) 4356 goto no_ack; 4357 } 4358 4359 if (eaten) { 4360 if (tcp_in_quickack_mode(tp)) { 4361 tcp_send_ack(sk); 4362 } else { 4363 tcp_send_delayed_ack(sk); 4364 } 4365 } else { 4366 __tcp_ack_snd_check(sk, 0); 4367 } 4368 4369 no_ack: 4370 if (eaten) 4371 __kfree_skb(skb); 4372 else 4373 sk->sk_data_ready(sk, 0); 4374 return 0; 4375 } 4376 } 4377 4378 slow_path: 4379 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 4380 goto csum_error; 4381 4382 /* 4383 * RFC1323: H1. Apply PAWS check first. 4384 */ 4385 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4386 tcp_paws_discard(tp, skb)) { 4387 if (!th->rst) { 4388 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4389 tcp_send_dupack(sk, skb); 4390 goto discard; 4391 } 4392 /* Resets are accepted even if PAWS failed. 4393 4394 ts_recent update must be made after we are sure 4395 that the packet is in window. 4396 */ 4397 } 4398 4399 /* 4400 * Standard slow path. 4401 */ 4402 4403 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4404 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4405 * (RST) segments are validated by checking their SEQ-fields." 4406 * And page 69: "If an incoming segment is not acceptable, 4407 * an acknowledgment should be sent in reply (unless the RST bit 4408 * is set, if so drop the segment and return)". 4409 */ 4410 if (!th->rst) 4411 tcp_send_dupack(sk, skb); 4412 goto discard; 4413 } 4414 4415 if(th->rst) { 4416 tcp_reset(sk); 4417 goto discard; 4418 } 4419 4420 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4421 4422 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4423 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4424 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4425 tcp_reset(sk); 4426 return 1; 4427 } 4428 4429 step5: 4430 if(th->ack) 4431 tcp_ack(sk, skb, FLAG_SLOWPATH); 4432 4433 tcp_rcv_rtt_measure_ts(tp, skb); 4434 4435 /* Process urgent data. */ 4436 tcp_urg(sk, skb, th); 4437 4438 /* step 7: process the segment text */ 4439 tcp_data_queue(sk, skb); 4440 4441 tcp_data_snd_check(sk); 4442 tcp_ack_snd_check(sk); 4443 return 0; 4444 4445 csum_error: 4446 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4447 4448 discard: 4449 __kfree_skb(skb); 4450 return 0; 4451 } 4452 4453 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4454 struct tcphdr *th, unsigned len) 4455 { 4456 struct tcp_sock *tp = tcp_sk(sk); 4457 int saved_clamp = tp->rx_opt.mss_clamp; 4458 4459 tcp_parse_options(skb, &tp->rx_opt, 0); 4460 4461 if (th->ack) { 4462 /* rfc793: 4463 * "If the state is SYN-SENT then 4464 * first check the ACK bit 4465 * If the ACK bit is set 4466 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4467 * a reset (unless the RST bit is set, if so drop 4468 * the segment and return)" 4469 * 4470 * We do not send data with SYN, so that RFC-correct 4471 * test reduces to: 4472 */ 4473 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4474 goto reset_and_undo; 4475 4476 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4477 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4478 tcp_time_stamp)) { 4479 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4480 goto reset_and_undo; 4481 } 4482 4483 /* Now ACK is acceptable. 4484 * 4485 * "If the RST bit is set 4486 * If the ACK was acceptable then signal the user "error: 4487 * connection reset", drop the segment, enter CLOSED state, 4488 * delete TCB, and return." 4489 */ 4490 4491 if (th->rst) { 4492 tcp_reset(sk); 4493 goto discard; 4494 } 4495 4496 /* rfc793: 4497 * "fifth, if neither of the SYN or RST bits is set then 4498 * drop the segment and return." 4499 * 4500 * See note below! 4501 * --ANK(990513) 4502 */ 4503 if (!th->syn) 4504 goto discard_and_undo; 4505 4506 /* rfc793: 4507 * "If the SYN bit is on ... 4508 * are acceptable then ... 4509 * (our SYN has been ACKed), change the connection 4510 * state to ESTABLISHED..." 4511 */ 4512 4513 TCP_ECN_rcv_synack(tp, th); 4514 if (tp->ecn_flags&TCP_ECN_OK) 4515 sock_set_flag(sk, SOCK_NO_LARGESEND); 4516 4517 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4518 tcp_ack(sk, skb, FLAG_SLOWPATH); 4519 4520 /* Ok.. it's good. Set up sequence numbers and 4521 * move to established. 4522 */ 4523 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4524 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4525 4526 /* RFC1323: The window in SYN & SYN/ACK segments is 4527 * never scaled. 4528 */ 4529 tp->snd_wnd = ntohs(th->window); 4530 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4531 4532 if (!tp->rx_opt.wscale_ok) { 4533 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4534 tp->window_clamp = min(tp->window_clamp, 65535U); 4535 } 4536 4537 if (tp->rx_opt.saw_tstamp) { 4538 tp->rx_opt.tstamp_ok = 1; 4539 tp->tcp_header_len = 4540 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4541 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4542 tcp_store_ts_recent(tp); 4543 } else { 4544 tp->tcp_header_len = sizeof(struct tcphdr); 4545 } 4546 4547 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4548 tp->rx_opt.sack_ok |= 2; 4549 4550 tcp_sync_mss(sk, tp->pmtu_cookie); 4551 tcp_initialize_rcv_mss(sk); 4552 4553 /* Remember, tcp_poll() does not lock socket! 4554 * Change state from SYN-SENT only after copied_seq 4555 * is initialized. */ 4556 tp->copied_seq = tp->rcv_nxt; 4557 mb(); 4558 tcp_set_state(sk, TCP_ESTABLISHED); 4559 4560 /* Make sure socket is routed, for correct metrics. */ 4561 tp->af_specific->rebuild_header(sk); 4562 4563 tcp_init_metrics(sk); 4564 4565 /* Prevent spurious tcp_cwnd_restart() on first data 4566 * packet. 4567 */ 4568 tp->lsndtime = tcp_time_stamp; 4569 4570 tcp_init_buffer_space(sk); 4571 4572 if (sock_flag(sk, SOCK_KEEPOPEN)) 4573 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4574 4575 if (!tp->rx_opt.snd_wscale) 4576 __tcp_fast_path_on(tp, tp->snd_wnd); 4577 else 4578 tp->pred_flags = 0; 4579 4580 if (!sock_flag(sk, SOCK_DEAD)) { 4581 sk->sk_state_change(sk); 4582 sk_wake_async(sk, 0, POLL_OUT); 4583 } 4584 4585 if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) { 4586 /* Save one ACK. Data will be ready after 4587 * several ticks, if write_pending is set. 4588 * 4589 * It may be deleted, but with this feature tcpdumps 4590 * look so _wonderfully_ clever, that I was not able 4591 * to stand against the temptation 8) --ANK 4592 */ 4593 tcp_schedule_ack(tp); 4594 tp->ack.lrcvtime = tcp_time_stamp; 4595 tp->ack.ato = TCP_ATO_MIN; 4596 tcp_incr_quickack(tp); 4597 tcp_enter_quickack_mode(tp); 4598 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX); 4599 4600 discard: 4601 __kfree_skb(skb); 4602 return 0; 4603 } else { 4604 tcp_send_ack(sk); 4605 } 4606 return -1; 4607 } 4608 4609 /* No ACK in the segment */ 4610 4611 if (th->rst) { 4612 /* rfc793: 4613 * "If the RST bit is set 4614 * 4615 * Otherwise (no ACK) drop the segment and return." 4616 */ 4617 4618 goto discard_and_undo; 4619 } 4620 4621 /* PAWS check. */ 4622 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4623 goto discard_and_undo; 4624 4625 if (th->syn) { 4626 /* We see SYN without ACK. It is attempt of 4627 * simultaneous connect with crossed SYNs. 4628 * Particularly, it can be connect to self. 4629 */ 4630 tcp_set_state(sk, TCP_SYN_RECV); 4631 4632 if (tp->rx_opt.saw_tstamp) { 4633 tp->rx_opt.tstamp_ok = 1; 4634 tcp_store_ts_recent(tp); 4635 tp->tcp_header_len = 4636 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4637 } else { 4638 tp->tcp_header_len = sizeof(struct tcphdr); 4639 } 4640 4641 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4642 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4643 4644 /* RFC1323: The window in SYN & SYN/ACK segments is 4645 * never scaled. 4646 */ 4647 tp->snd_wnd = ntohs(th->window); 4648 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4649 tp->max_window = tp->snd_wnd; 4650 4651 TCP_ECN_rcv_syn(tp, th); 4652 if (tp->ecn_flags&TCP_ECN_OK) 4653 sock_set_flag(sk, SOCK_NO_LARGESEND); 4654 4655 tcp_sync_mss(sk, tp->pmtu_cookie); 4656 tcp_initialize_rcv_mss(sk); 4657 4658 4659 tcp_send_synack(sk); 4660 #if 0 4661 /* Note, we could accept data and URG from this segment. 4662 * There are no obstacles to make this. 4663 * 4664 * However, if we ignore data in ACKless segments sometimes, 4665 * we have no reasons to accept it sometimes. 4666 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4667 * is not flawless. So, discard packet for sanity. 4668 * Uncomment this return to process the data. 4669 */ 4670 return -1; 4671 #else 4672 goto discard; 4673 #endif 4674 } 4675 /* "fifth, if neither of the SYN or RST bits is set then 4676 * drop the segment and return." 4677 */ 4678 4679 discard_and_undo: 4680 tcp_clear_options(&tp->rx_opt); 4681 tp->rx_opt.mss_clamp = saved_clamp; 4682 goto discard; 4683 4684 reset_and_undo: 4685 tcp_clear_options(&tp->rx_opt); 4686 tp->rx_opt.mss_clamp = saved_clamp; 4687 return 1; 4688 } 4689 4690 4691 /* 4692 * This function implements the receiving procedure of RFC 793 for 4693 * all states except ESTABLISHED and TIME_WAIT. 4694 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4695 * address independent. 4696 */ 4697 4698 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4699 struct tcphdr *th, unsigned len) 4700 { 4701 struct tcp_sock *tp = tcp_sk(sk); 4702 int queued = 0; 4703 4704 tp->rx_opt.saw_tstamp = 0; 4705 4706 switch (sk->sk_state) { 4707 case TCP_CLOSE: 4708 goto discard; 4709 4710 case TCP_LISTEN: 4711 if(th->ack) 4712 return 1; 4713 4714 if(th->rst) 4715 goto discard; 4716 4717 if(th->syn) { 4718 if(tp->af_specific->conn_request(sk, skb) < 0) 4719 return 1; 4720 4721 init_westwood(sk); 4722 init_bictcp(tp); 4723 4724 /* Now we have several options: In theory there is 4725 * nothing else in the frame. KA9Q has an option to 4726 * send data with the syn, BSD accepts data with the 4727 * syn up to the [to be] advertised window and 4728 * Solaris 2.1 gives you a protocol error. For now 4729 * we just ignore it, that fits the spec precisely 4730 * and avoids incompatibilities. It would be nice in 4731 * future to drop through and process the data. 4732 * 4733 * Now that TTCP is starting to be used we ought to 4734 * queue this data. 4735 * But, this leaves one open to an easy denial of 4736 * service attack, and SYN cookies can't defend 4737 * against this problem. So, we drop the data 4738 * in the interest of security over speed. 4739 */ 4740 goto discard; 4741 } 4742 goto discard; 4743 4744 case TCP_SYN_SENT: 4745 init_westwood(sk); 4746 init_bictcp(tp); 4747 4748 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4749 if (queued >= 0) 4750 return queued; 4751 4752 /* Do step6 onward by hand. */ 4753 tcp_urg(sk, skb, th); 4754 __kfree_skb(skb); 4755 tcp_data_snd_check(sk); 4756 return 0; 4757 } 4758 4759 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4760 tcp_paws_discard(tp, skb)) { 4761 if (!th->rst) { 4762 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4763 tcp_send_dupack(sk, skb); 4764 goto discard; 4765 } 4766 /* Reset is accepted even if it did not pass PAWS. */ 4767 } 4768 4769 /* step 1: check sequence number */ 4770 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4771 if (!th->rst) 4772 tcp_send_dupack(sk, skb); 4773 goto discard; 4774 } 4775 4776 /* step 2: check RST bit */ 4777 if(th->rst) { 4778 tcp_reset(sk); 4779 goto discard; 4780 } 4781 4782 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4783 4784 /* step 3: check security and precedence [ignored] */ 4785 4786 /* step 4: 4787 * 4788 * Check for a SYN in window. 4789 */ 4790 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4791 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4792 tcp_reset(sk); 4793 return 1; 4794 } 4795 4796 /* step 5: check the ACK field */ 4797 if (th->ack) { 4798 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4799 4800 switch(sk->sk_state) { 4801 case TCP_SYN_RECV: 4802 if (acceptable) { 4803 tp->copied_seq = tp->rcv_nxt; 4804 mb(); 4805 tcp_set_state(sk, TCP_ESTABLISHED); 4806 sk->sk_state_change(sk); 4807 4808 /* Note, that this wakeup is only for marginal 4809 * crossed SYN case. Passively open sockets 4810 * are not waked up, because sk->sk_sleep == 4811 * NULL and sk->sk_socket == NULL. 4812 */ 4813 if (sk->sk_socket) { 4814 sk_wake_async(sk,0,POLL_OUT); 4815 } 4816 4817 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4818 tp->snd_wnd = ntohs(th->window) << 4819 tp->rx_opt.snd_wscale; 4820 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4821 TCP_SKB_CB(skb)->seq); 4822 4823 /* tcp_ack considers this ACK as duplicate 4824 * and does not calculate rtt. 4825 * Fix it at least with timestamps. 4826 */ 4827 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4828 !tp->srtt) 4829 tcp_ack_saw_tstamp(tp, 0); 4830 4831 if (tp->rx_opt.tstamp_ok) 4832 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4833 4834 /* Make sure socket is routed, for 4835 * correct metrics. 4836 */ 4837 tp->af_specific->rebuild_header(sk); 4838 4839 tcp_init_metrics(sk); 4840 4841 /* Prevent spurious tcp_cwnd_restart() on 4842 * first data packet. 4843 */ 4844 tp->lsndtime = tcp_time_stamp; 4845 4846 tcp_initialize_rcv_mss(sk); 4847 tcp_init_buffer_space(sk); 4848 tcp_fast_path_on(tp); 4849 } else { 4850 return 1; 4851 } 4852 break; 4853 4854 case TCP_FIN_WAIT1: 4855 if (tp->snd_una == tp->write_seq) { 4856 tcp_set_state(sk, TCP_FIN_WAIT2); 4857 sk->sk_shutdown |= SEND_SHUTDOWN; 4858 dst_confirm(sk->sk_dst_cache); 4859 4860 if (!sock_flag(sk, SOCK_DEAD)) 4861 /* Wake up lingering close() */ 4862 sk->sk_state_change(sk); 4863 else { 4864 int tmo; 4865 4866 if (tp->linger2 < 0 || 4867 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4868 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4869 tcp_done(sk); 4870 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4871 return 1; 4872 } 4873 4874 tmo = tcp_fin_time(tp); 4875 if (tmo > TCP_TIMEWAIT_LEN) { 4876 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4877 } else if (th->fin || sock_owned_by_user(sk)) { 4878 /* Bad case. We could lose such FIN otherwise. 4879 * It is not a big problem, but it looks confusing 4880 * and not so rare event. We still can lose it now, 4881 * if it spins in bh_lock_sock(), but it is really 4882 * marginal case. 4883 */ 4884 tcp_reset_keepalive_timer(sk, tmo); 4885 } else { 4886 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4887 goto discard; 4888 } 4889 } 4890 } 4891 break; 4892 4893 case TCP_CLOSING: 4894 if (tp->snd_una == tp->write_seq) { 4895 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4896 goto discard; 4897 } 4898 break; 4899 4900 case TCP_LAST_ACK: 4901 if (tp->snd_una == tp->write_seq) { 4902 tcp_update_metrics(sk); 4903 tcp_done(sk); 4904 goto discard; 4905 } 4906 break; 4907 } 4908 } else 4909 goto discard; 4910 4911 /* step 6: check the URG bit */ 4912 tcp_urg(sk, skb, th); 4913 4914 /* step 7: process the segment text */ 4915 switch (sk->sk_state) { 4916 case TCP_CLOSE_WAIT: 4917 case TCP_CLOSING: 4918 case TCP_LAST_ACK: 4919 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4920 break; 4921 case TCP_FIN_WAIT1: 4922 case TCP_FIN_WAIT2: 4923 /* RFC 793 says to queue data in these states, 4924 * RFC 1122 says we MUST send a reset. 4925 * BSD 4.4 also does reset. 4926 */ 4927 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4928 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4929 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4930 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4931 tcp_reset(sk); 4932 return 1; 4933 } 4934 } 4935 /* Fall through */ 4936 case TCP_ESTABLISHED: 4937 tcp_data_queue(sk, skb); 4938 queued = 1; 4939 break; 4940 } 4941 4942 /* tcp_data could move socket to TIME-WAIT */ 4943 if (sk->sk_state != TCP_CLOSE) { 4944 tcp_data_snd_check(sk); 4945 tcp_ack_snd_check(sk); 4946 } 4947 4948 if (!queued) { 4949 discard: 4950 __kfree_skb(skb); 4951 } 4952 return 0; 4953 } 4954 4955 EXPORT_SYMBOL(sysctl_tcp_ecn); 4956 EXPORT_SYMBOL(sysctl_tcp_reordering); 4957 EXPORT_SYMBOL(tcp_parse_options); 4958 EXPORT_SYMBOL(tcp_rcv_established); 4959 EXPORT_SYMBOL(tcp_rcv_state_process); 4960