xref: /openbmc/linux/net/ipv4/tcp_input.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro, <bir7@leland.Stanford.Edu>
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presnce of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  *		Angelo Dell'Aera:	TCP Westwood+ support
65  */
66 
67 #include <linux/config.h>
68 #include <linux/mm.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <net/tcp.h>
72 #include <net/inet_common.h>
73 #include <linux/ipsec.h>
74 #include <asm/unaligned.h>
75 
76 int sysctl_tcp_timestamps = 1;
77 int sysctl_tcp_window_scaling = 1;
78 int sysctl_tcp_sack = 1;
79 int sysctl_tcp_fack = 1;
80 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn;
82 int sysctl_tcp_dsack = 1;
83 int sysctl_tcp_app_win = 31;
84 int sysctl_tcp_adv_win_scale = 2;
85 
86 int sysctl_tcp_stdurg;
87 int sysctl_tcp_rfc1337;
88 int sysctl_tcp_max_orphans = NR_FILE;
89 int sysctl_tcp_frto;
90 int sysctl_tcp_nometrics_save;
91 int sysctl_tcp_westwood;
92 int sysctl_tcp_vegas_cong_avoid;
93 
94 int sysctl_tcp_moderate_rcvbuf = 1;
95 
96 /* Default values of the Vegas variables, in fixed-point representation
97  * with V_PARAM_SHIFT bits to the right of the binary point.
98  */
99 #define V_PARAM_SHIFT 1
100 int sysctl_tcp_vegas_alpha = 1<<V_PARAM_SHIFT;
101 int sysctl_tcp_vegas_beta  = 3<<V_PARAM_SHIFT;
102 int sysctl_tcp_vegas_gamma = 1<<V_PARAM_SHIFT;
103 int sysctl_tcp_bic = 1;
104 int sysctl_tcp_bic_fast_convergence = 1;
105 int sysctl_tcp_bic_low_window = 14;
106 int sysctl_tcp_bic_beta = 819;		/* = 819/1024 (BICTCP_BETA_SCALE) */
107 
108 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
109 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
110 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
111 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
112 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
113 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
114 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
115 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
116 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
117 
118 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
122 
123 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
124 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
125 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
126 
127 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
128 
129 /* Adapt the MSS value used to make delayed ack decision to the
130  * real world.
131  */
132 static inline void tcp_measure_rcv_mss(struct tcp_sock *tp,
133 				       struct sk_buff *skb)
134 {
135 	unsigned int len, lss;
136 
137 	lss = tp->ack.last_seg_size;
138 	tp->ack.last_seg_size = 0;
139 
140 	/* skb->len may jitter because of SACKs, even if peer
141 	 * sends good full-sized frames.
142 	 */
143 	len = skb->len;
144 	if (len >= tp->ack.rcv_mss) {
145 		tp->ack.rcv_mss = len;
146 	} else {
147 		/* Otherwise, we make more careful check taking into account,
148 		 * that SACKs block is variable.
149 		 *
150 		 * "len" is invariant segment length, including TCP header.
151 		 */
152 		len += skb->data - skb->h.raw;
153 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
154 		    /* If PSH is not set, packet should be
155 		     * full sized, provided peer TCP is not badly broken.
156 		     * This observation (if it is correct 8)) allows
157 		     * to handle super-low mtu links fairly.
158 		     */
159 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
161 			/* Subtract also invariant (if peer is RFC compliant),
162 			 * tcp header plus fixed timestamp option length.
163 			 * Resulting "len" is MSS free of SACK jitter.
164 			 */
165 			len -= tp->tcp_header_len;
166 			tp->ack.last_seg_size = len;
167 			if (len == lss) {
168 				tp->ack.rcv_mss = len;
169 				return;
170 			}
171 		}
172 		tp->ack.pending |= TCP_ACK_PUSHED;
173 	}
174 }
175 
176 static void tcp_incr_quickack(struct tcp_sock *tp)
177 {
178 	unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
179 
180 	if (quickacks==0)
181 		quickacks=2;
182 	if (quickacks > tp->ack.quick)
183 		tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185 
186 void tcp_enter_quickack_mode(struct tcp_sock *tp)
187 {
188 	tcp_incr_quickack(tp);
189 	tp->ack.pingpong = 0;
190 	tp->ack.ato = TCP_ATO_MIN;
191 }
192 
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196 
197 static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp)
198 {
199 	return (tp->ack.quick && !tp->ack.pingpong);
200 }
201 
202 /* Buffer size and advertised window tuning.
203  *
204  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
205  */
206 
207 static void tcp_fixup_sndbuf(struct sock *sk)
208 {
209 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
210 		     sizeof(struct sk_buff);
211 
212 	if (sk->sk_sndbuf < 3 * sndmem)
213 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
214 }
215 
216 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
217  *
218  * All tcp_full_space() is split to two parts: "network" buffer, allocated
219  * forward and advertised in receiver window (tp->rcv_wnd) and
220  * "application buffer", required to isolate scheduling/application
221  * latencies from network.
222  * window_clamp is maximal advertised window. It can be less than
223  * tcp_full_space(), in this case tcp_full_space() - window_clamp
224  * is reserved for "application" buffer. The less window_clamp is
225  * the smoother our behaviour from viewpoint of network, but the lower
226  * throughput and the higher sensitivity of the connection to losses. 8)
227  *
228  * rcv_ssthresh is more strict window_clamp used at "slow start"
229  * phase to predict further behaviour of this connection.
230  * It is used for two goals:
231  * - to enforce header prediction at sender, even when application
232  *   requires some significant "application buffer". It is check #1.
233  * - to prevent pruning of receive queue because of misprediction
234  *   of receiver window. Check #2.
235  *
236  * The scheme does not work when sender sends good segments opening
237  * window and then starts to feed us spagetti. But it should work
238  * in common situations. Otherwise, we have to rely on queue collapsing.
239  */
240 
241 /* Slow part of check#2. */
242 static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
243 			     struct sk_buff *skb)
244 {
245 	/* Optimize this! */
246 	int truesize = tcp_win_from_space(skb->truesize)/2;
247 	int window = tcp_full_space(sk)/2;
248 
249 	while (tp->rcv_ssthresh <= window) {
250 		if (truesize <= skb->len)
251 			return 2*tp->ack.rcv_mss;
252 
253 		truesize >>= 1;
254 		window >>= 1;
255 	}
256 	return 0;
257 }
258 
259 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
260 				   struct sk_buff *skb)
261 {
262 	/* Check #1 */
263 	if (tp->rcv_ssthresh < tp->window_clamp &&
264 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
265 	    !tcp_memory_pressure) {
266 		int incr;
267 
268 		/* Check #2. Increase window, if skb with such overhead
269 		 * will fit to rcvbuf in future.
270 		 */
271 		if (tcp_win_from_space(skb->truesize) <= skb->len)
272 			incr = 2*tp->advmss;
273 		else
274 			incr = __tcp_grow_window(sk, tp, skb);
275 
276 		if (incr) {
277 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
278 			tp->ack.quick |= 1;
279 		}
280 	}
281 }
282 
283 /* 3. Tuning rcvbuf, when connection enters established state. */
284 
285 static void tcp_fixup_rcvbuf(struct sock *sk)
286 {
287 	struct tcp_sock *tp = tcp_sk(sk);
288 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
289 
290 	/* Try to select rcvbuf so that 4 mss-sized segments
291 	 * will fit to window and correspoding skbs will fit to our rcvbuf.
292 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
293 	 */
294 	while (tcp_win_from_space(rcvmem) < tp->advmss)
295 		rcvmem += 128;
296 	if (sk->sk_rcvbuf < 4 * rcvmem)
297 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
298 }
299 
300 /* 4. Try to fixup all. It is made iimediately after connection enters
301  *    established state.
302  */
303 static void tcp_init_buffer_space(struct sock *sk)
304 {
305 	struct tcp_sock *tp = tcp_sk(sk);
306 	int maxwin;
307 
308 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
309 		tcp_fixup_rcvbuf(sk);
310 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
311 		tcp_fixup_sndbuf(sk);
312 
313 	tp->rcvq_space.space = tp->rcv_wnd;
314 
315 	maxwin = tcp_full_space(sk);
316 
317 	if (tp->window_clamp >= maxwin) {
318 		tp->window_clamp = maxwin;
319 
320 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
321 			tp->window_clamp = max(maxwin -
322 					       (maxwin >> sysctl_tcp_app_win),
323 					       4 * tp->advmss);
324 	}
325 
326 	/* Force reservation of one segment. */
327 	if (sysctl_tcp_app_win &&
328 	    tp->window_clamp > 2 * tp->advmss &&
329 	    tp->window_clamp + tp->advmss > maxwin)
330 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
331 
332 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
333 	tp->snd_cwnd_stamp = tcp_time_stamp;
334 }
335 
336 static void init_bictcp(struct tcp_sock *tp)
337 {
338 	tp->bictcp.cnt = 0;
339 
340 	tp->bictcp.last_max_cwnd = 0;
341 	tp->bictcp.last_cwnd = 0;
342 	tp->bictcp.last_stamp = 0;
343 }
344 
345 /* 5. Recalculate window clamp after socket hit its memory bounds. */
346 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
347 {
348 	struct sk_buff *skb;
349 	unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
350 	int ofo_win = 0;
351 
352 	tp->ack.quick = 0;
353 
354 	skb_queue_walk(&tp->out_of_order_queue, skb) {
355 		ofo_win += skb->len;
356 	}
357 
358 	/* If overcommit is due to out of order segments,
359 	 * do not clamp window. Try to expand rcvbuf instead.
360 	 */
361 	if (ofo_win) {
362 		if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
363 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
364 		    !tcp_memory_pressure &&
365 		    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
366 			sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
367 					    sysctl_tcp_rmem[2]);
368 	}
369 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
370 		app_win += ofo_win;
371 		if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
372 			app_win >>= 1;
373 		if (app_win > tp->ack.rcv_mss)
374 			app_win -= tp->ack.rcv_mss;
375 		app_win = max(app_win, 2U*tp->advmss);
376 
377 		if (!ofo_win)
378 			tp->window_clamp = min(tp->window_clamp, app_win);
379 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
380 	}
381 }
382 
383 /* Receiver "autotuning" code.
384  *
385  * The algorithm for RTT estimation w/o timestamps is based on
386  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
387  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
388  *
389  * More detail on this code can be found at
390  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
391  * though this reference is out of date.  A new paper
392  * is pending.
393  */
394 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
395 {
396 	u32 new_sample = tp->rcv_rtt_est.rtt;
397 	long m = sample;
398 
399 	if (m == 0)
400 		m = 1;
401 
402 	if (new_sample != 0) {
403 		/* If we sample in larger samples in the non-timestamp
404 		 * case, we could grossly overestimate the RTT especially
405 		 * with chatty applications or bulk transfer apps which
406 		 * are stalled on filesystem I/O.
407 		 *
408 		 * Also, since we are only going for a minimum in the
409 		 * non-timestamp case, we do not smoothe things out
410 		 * else with timestamps disabled convergance takes too
411 		 * long.
412 		 */
413 		if (!win_dep) {
414 			m -= (new_sample >> 3);
415 			new_sample += m;
416 		} else if (m < new_sample)
417 			new_sample = m << 3;
418 	} else {
419 		/* No previous mesaure. */
420 		new_sample = m << 3;
421 	}
422 
423 	if (tp->rcv_rtt_est.rtt != new_sample)
424 		tp->rcv_rtt_est.rtt = new_sample;
425 }
426 
427 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
428 {
429 	if (tp->rcv_rtt_est.time == 0)
430 		goto new_measure;
431 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
432 		return;
433 	tcp_rcv_rtt_update(tp,
434 			   jiffies - tp->rcv_rtt_est.time,
435 			   1);
436 
437 new_measure:
438 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
439 	tp->rcv_rtt_est.time = tcp_time_stamp;
440 }
441 
442 static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb)
443 {
444 	if (tp->rx_opt.rcv_tsecr &&
445 	    (TCP_SKB_CB(skb)->end_seq -
446 	     TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss))
447 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
448 }
449 
450 /*
451  * This function should be called every time data is copied to user space.
452  * It calculates the appropriate TCP receive buffer space.
453  */
454 void tcp_rcv_space_adjust(struct sock *sk)
455 {
456 	struct tcp_sock *tp = tcp_sk(sk);
457 	int time;
458 	int space;
459 
460 	if (tp->rcvq_space.time == 0)
461 		goto new_measure;
462 
463 	time = tcp_time_stamp - tp->rcvq_space.time;
464 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
465 	    tp->rcv_rtt_est.rtt == 0)
466 		return;
467 
468 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
469 
470 	space = max(tp->rcvq_space.space, space);
471 
472 	if (tp->rcvq_space.space != space) {
473 		int rcvmem;
474 
475 		tp->rcvq_space.space = space;
476 
477 		if (sysctl_tcp_moderate_rcvbuf) {
478 			int new_clamp = space;
479 
480 			/* Receive space grows, normalize in order to
481 			 * take into account packet headers and sk_buff
482 			 * structure overhead.
483 			 */
484 			space /= tp->advmss;
485 			if (!space)
486 				space = 1;
487 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
488 				  16 + sizeof(struct sk_buff));
489 			while (tcp_win_from_space(rcvmem) < tp->advmss)
490 				rcvmem += 128;
491 			space *= rcvmem;
492 			space = min(space, sysctl_tcp_rmem[2]);
493 			if (space > sk->sk_rcvbuf) {
494 				sk->sk_rcvbuf = space;
495 
496 				/* Make the window clamp follow along.  */
497 				tp->window_clamp = new_clamp;
498 			}
499 		}
500 	}
501 
502 new_measure:
503 	tp->rcvq_space.seq = tp->copied_seq;
504 	tp->rcvq_space.time = tcp_time_stamp;
505 }
506 
507 /* There is something which you must keep in mind when you analyze the
508  * behavior of the tp->ato delayed ack timeout interval.  When a
509  * connection starts up, we want to ack as quickly as possible.  The
510  * problem is that "good" TCP's do slow start at the beginning of data
511  * transmission.  The means that until we send the first few ACK's the
512  * sender will sit on his end and only queue most of his data, because
513  * he can only send snd_cwnd unacked packets at any given time.  For
514  * each ACK we send, he increments snd_cwnd and transmits more of his
515  * queue.  -DaveM
516  */
517 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
518 {
519 	u32 now;
520 
521 	tcp_schedule_ack(tp);
522 
523 	tcp_measure_rcv_mss(tp, skb);
524 
525 	tcp_rcv_rtt_measure(tp);
526 
527 	now = tcp_time_stamp;
528 
529 	if (!tp->ack.ato) {
530 		/* The _first_ data packet received, initialize
531 		 * delayed ACK engine.
532 		 */
533 		tcp_incr_quickack(tp);
534 		tp->ack.ato = TCP_ATO_MIN;
535 	} else {
536 		int m = now - tp->ack.lrcvtime;
537 
538 		if (m <= TCP_ATO_MIN/2) {
539 			/* The fastest case is the first. */
540 			tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
541 		} else if (m < tp->ack.ato) {
542 			tp->ack.ato = (tp->ack.ato>>1) + m;
543 			if (tp->ack.ato > tp->rto)
544 				tp->ack.ato = tp->rto;
545 		} else if (m > tp->rto) {
546 			/* Too long gap. Apparently sender falled to
547 			 * restart window, so that we send ACKs quickly.
548 			 */
549 			tcp_incr_quickack(tp);
550 			sk_stream_mem_reclaim(sk);
551 		}
552 	}
553 	tp->ack.lrcvtime = now;
554 
555 	TCP_ECN_check_ce(tp, skb);
556 
557 	if (skb->len >= 128)
558 		tcp_grow_window(sk, tp, skb);
559 }
560 
561 /* When starting a new connection, pin down the current choice of
562  * congestion algorithm.
563  */
564 void tcp_ca_init(struct tcp_sock *tp)
565 {
566 	if (sysctl_tcp_westwood)
567 		tp->adv_cong = TCP_WESTWOOD;
568 	else if (sysctl_tcp_bic)
569 		tp->adv_cong = TCP_BIC;
570 	else if (sysctl_tcp_vegas_cong_avoid) {
571 		tp->adv_cong = TCP_VEGAS;
572 		tp->vegas.baseRTT = 0x7fffffff;
573 		tcp_vegas_enable(tp);
574 	}
575 }
576 
577 /* Do RTT sampling needed for Vegas.
578  * Basically we:
579  *   o min-filter RTT samples from within an RTT to get the current
580  *     propagation delay + queuing delay (we are min-filtering to try to
581  *     avoid the effects of delayed ACKs)
582  *   o min-filter RTT samples from a much longer window (forever for now)
583  *     to find the propagation delay (baseRTT)
584  */
585 static inline void vegas_rtt_calc(struct tcp_sock *tp, __u32 rtt)
586 {
587 	__u32 vrtt = rtt + 1; /* Never allow zero rtt or baseRTT */
588 
589 	/* Filter to find propagation delay: */
590 	if (vrtt < tp->vegas.baseRTT)
591 		tp->vegas.baseRTT = vrtt;
592 
593 	/* Find the min RTT during the last RTT to find
594 	 * the current prop. delay + queuing delay:
595 	 */
596 	tp->vegas.minRTT = min(tp->vegas.minRTT, vrtt);
597 	tp->vegas.cntRTT++;
598 }
599 
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601  * routine either comes from timestamps, or from segments that were
602  * known _not_ to have been retransmitted [see Karn/Partridge
603  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604  * piece by Van Jacobson.
605  * NOTE: the next three routines used to be one big routine.
606  * To save cycles in the RFC 1323 implementation it was better to break
607  * it up into three procedures. -- erics
608  */
609 static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt)
610 {
611 	long m = mrtt; /* RTT */
612 
613 	if (tcp_vegas_enabled(tp))
614 		vegas_rtt_calc(tp, mrtt);
615 
616 	/*	The following amusing code comes from Jacobson's
617 	 *	article in SIGCOMM '88.  Note that rtt and mdev
618 	 *	are scaled versions of rtt and mean deviation.
619 	 *	This is designed to be as fast as possible
620 	 *	m stands for "measurement".
621 	 *
622 	 *	On a 1990 paper the rto value is changed to:
623 	 *	RTO = rtt + 4 * mdev
624 	 *
625 	 * Funny. This algorithm seems to be very broken.
626 	 * These formulae increase RTO, when it should be decreased, increase
627 	 * too slowly, when it should be incresed fastly, decrease too fastly
628 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
629 	 * does not matter how to _calculate_ it. Seems, it was trap
630 	 * that VJ failed to avoid. 8)
631 	 */
632 	if(m == 0)
633 		m = 1;
634 	if (tp->srtt != 0) {
635 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
636 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
637 		if (m < 0) {
638 			m = -m;		/* m is now abs(error) */
639 			m -= (tp->mdev >> 2);   /* similar update on mdev */
640 			/* This is similar to one of Eifel findings.
641 			 * Eifel blocks mdev updates when rtt decreases.
642 			 * This solution is a bit different: we use finer gain
643 			 * for mdev in this case (alpha*beta).
644 			 * Like Eifel it also prevents growth of rto,
645 			 * but also it limits too fast rto decreases,
646 			 * happening in pure Eifel.
647 			 */
648 			if (m > 0)
649 				m >>= 3;
650 		} else {
651 			m -= (tp->mdev >> 2);   /* similar update on mdev */
652 		}
653 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
654 		if (tp->mdev > tp->mdev_max) {
655 			tp->mdev_max = tp->mdev;
656 			if (tp->mdev_max > tp->rttvar)
657 				tp->rttvar = tp->mdev_max;
658 		}
659 		if (after(tp->snd_una, tp->rtt_seq)) {
660 			if (tp->mdev_max < tp->rttvar)
661 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
662 			tp->rtt_seq = tp->snd_nxt;
663 			tp->mdev_max = TCP_RTO_MIN;
664 		}
665 	} else {
666 		/* no previous measure. */
667 		tp->srtt = m<<3;	/* take the measured time to be rtt */
668 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
669 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
670 		tp->rtt_seq = tp->snd_nxt;
671 	}
672 
673 	tcp_westwood_update_rtt(tp, tp->srtt >> 3);
674 }
675 
676 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
677  * routine referred to above.
678  */
679 static inline void tcp_set_rto(struct tcp_sock *tp)
680 {
681 	/* Old crap is replaced with new one. 8)
682 	 *
683 	 * More seriously:
684 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
685 	 *    It cannot be less due to utterly erratic ACK generation made
686 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
687 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
688 	 *    is invisible. Actually, Linux-2.4 also generates erratic
689 	 *    ACKs in some curcumstances.
690 	 */
691 	tp->rto = (tp->srtt >> 3) + tp->rttvar;
692 
693 	/* 2. Fixups made earlier cannot be right.
694 	 *    If we do not estimate RTO correctly without them,
695 	 *    all the algo is pure shit and should be replaced
696 	 *    with correct one. It is exaclty, which we pretend to do.
697 	 */
698 }
699 
700 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
701  * guarantees that rto is higher.
702  */
703 static inline void tcp_bound_rto(struct tcp_sock *tp)
704 {
705 	if (tp->rto > TCP_RTO_MAX)
706 		tp->rto = TCP_RTO_MAX;
707 }
708 
709 /* Save metrics learned by this TCP session.
710    This function is called only, when TCP finishes successfully
711    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
712  */
713 void tcp_update_metrics(struct sock *sk)
714 {
715 	struct tcp_sock *tp = tcp_sk(sk);
716 	struct dst_entry *dst = __sk_dst_get(sk);
717 
718 	if (sysctl_tcp_nometrics_save)
719 		return;
720 
721 	dst_confirm(dst);
722 
723 	if (dst && (dst->flags&DST_HOST)) {
724 		int m;
725 
726 		if (tp->backoff || !tp->srtt) {
727 			/* This session failed to estimate rtt. Why?
728 			 * Probably, no packets returned in time.
729 			 * Reset our results.
730 			 */
731 			if (!(dst_metric_locked(dst, RTAX_RTT)))
732 				dst->metrics[RTAX_RTT-1] = 0;
733 			return;
734 		}
735 
736 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
737 
738 		/* If newly calculated rtt larger than stored one,
739 		 * store new one. Otherwise, use EWMA. Remember,
740 		 * rtt overestimation is always better than underestimation.
741 		 */
742 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
743 			if (m <= 0)
744 				dst->metrics[RTAX_RTT-1] = tp->srtt;
745 			else
746 				dst->metrics[RTAX_RTT-1] -= (m>>3);
747 		}
748 
749 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
750 			if (m < 0)
751 				m = -m;
752 
753 			/* Scale deviation to rttvar fixed point */
754 			m >>= 1;
755 			if (m < tp->mdev)
756 				m = tp->mdev;
757 
758 			if (m >= dst_metric(dst, RTAX_RTTVAR))
759 				dst->metrics[RTAX_RTTVAR-1] = m;
760 			else
761 				dst->metrics[RTAX_RTTVAR-1] -=
762 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
763 		}
764 
765 		if (tp->snd_ssthresh >= 0xFFFF) {
766 			/* Slow start still did not finish. */
767 			if (dst_metric(dst, RTAX_SSTHRESH) &&
768 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
769 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
770 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
771 			if (!dst_metric_locked(dst, RTAX_CWND) &&
772 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
773 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
774 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
775 			   tp->ca_state == TCP_CA_Open) {
776 			/* Cong. avoidance phase, cwnd is reliable. */
777 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
778 				dst->metrics[RTAX_SSTHRESH-1] =
779 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
780 			if (!dst_metric_locked(dst, RTAX_CWND))
781 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
782 		} else {
783 			/* Else slow start did not finish, cwnd is non-sense,
784 			   ssthresh may be also invalid.
785 			 */
786 			if (!dst_metric_locked(dst, RTAX_CWND))
787 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
788 			if (dst->metrics[RTAX_SSTHRESH-1] &&
789 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
790 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
791 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
792 		}
793 
794 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
795 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
796 			    tp->reordering != sysctl_tcp_reordering)
797 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
798 		}
799 	}
800 }
801 
802 /* Numbers are taken from RFC2414.  */
803 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
804 {
805 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
806 
807 	if (!cwnd) {
808 		if (tp->mss_cache_std > 1460)
809 			cwnd = 2;
810 		else
811 			cwnd = (tp->mss_cache_std > 1095) ? 3 : 4;
812 	}
813 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
814 }
815 
816 /* Initialize metrics on socket. */
817 
818 static void tcp_init_metrics(struct sock *sk)
819 {
820 	struct tcp_sock *tp = tcp_sk(sk);
821 	struct dst_entry *dst = __sk_dst_get(sk);
822 
823 	if (dst == NULL)
824 		goto reset;
825 
826 	dst_confirm(dst);
827 
828 	if (dst_metric_locked(dst, RTAX_CWND))
829 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
830 	if (dst_metric(dst, RTAX_SSTHRESH)) {
831 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
832 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
833 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
834 	}
835 	if (dst_metric(dst, RTAX_REORDERING) &&
836 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
837 		tp->rx_opt.sack_ok &= ~2;
838 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
839 	}
840 
841 	if (dst_metric(dst, RTAX_RTT) == 0)
842 		goto reset;
843 
844 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
845 		goto reset;
846 
847 	/* Initial rtt is determined from SYN,SYN-ACK.
848 	 * The segment is small and rtt may appear much
849 	 * less than real one. Use per-dst memory
850 	 * to make it more realistic.
851 	 *
852 	 * A bit of theory. RTT is time passed after "normal" sized packet
853 	 * is sent until it is ACKed. In normal curcumstances sending small
854 	 * packets force peer to delay ACKs and calculation is correct too.
855 	 * The algorithm is adaptive and, provided we follow specs, it
856 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
857 	 * tricks sort of "quick acks" for time long enough to decrease RTT
858 	 * to low value, and then abruptly stops to do it and starts to delay
859 	 * ACKs, wait for troubles.
860 	 */
861 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
862 		tp->srtt = dst_metric(dst, RTAX_RTT);
863 		tp->rtt_seq = tp->snd_nxt;
864 	}
865 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
866 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
867 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
868 	}
869 	tcp_set_rto(tp);
870 	tcp_bound_rto(tp);
871 	if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
872 		goto reset;
873 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
874 	tp->snd_cwnd_stamp = tcp_time_stamp;
875 	return;
876 
877 reset:
878 	/* Play conservative. If timestamps are not
879 	 * supported, TCP will fail to recalculate correct
880 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
881 	 */
882 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
883 		tp->srtt = 0;
884 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
885 		tp->rto = TCP_TIMEOUT_INIT;
886 	}
887 }
888 
889 static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
890 {
891 	if (metric > tp->reordering) {
892 		tp->reordering = min(TCP_MAX_REORDERING, metric);
893 
894 		/* This exciting event is worth to be remembered. 8) */
895 		if (ts)
896 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
897 		else if (IsReno(tp))
898 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
899 		else if (IsFack(tp))
900 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
901 		else
902 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
903 #if FASTRETRANS_DEBUG > 1
904 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
905 		       tp->rx_opt.sack_ok, tp->ca_state,
906 		       tp->reordering,
907 		       tp->fackets_out,
908 		       tp->sacked_out,
909 		       tp->undo_marker ? tp->undo_retrans : 0);
910 #endif
911 		/* Disable FACK yet. */
912 		tp->rx_opt.sack_ok &= ~2;
913 	}
914 }
915 
916 /* This procedure tags the retransmission queue when SACKs arrive.
917  *
918  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
919  * Packets in queue with these bits set are counted in variables
920  * sacked_out, retrans_out and lost_out, correspondingly.
921  *
922  * Valid combinations are:
923  * Tag  InFlight	Description
924  * 0	1		- orig segment is in flight.
925  * S	0		- nothing flies, orig reached receiver.
926  * L	0		- nothing flies, orig lost by net.
927  * R	2		- both orig and retransmit are in flight.
928  * L|R	1		- orig is lost, retransmit is in flight.
929  * S|R  1		- orig reached receiver, retrans is still in flight.
930  * (L|S|R is logically valid, it could occur when L|R is sacked,
931  *  but it is equivalent to plain S and code short-curcuits it to S.
932  *  L|S is logically invalid, it would mean -1 packet in flight 8))
933  *
934  * These 6 states form finite state machine, controlled by the following events:
935  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
936  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
937  * 3. Loss detection event of one of three flavors:
938  *	A. Scoreboard estimator decided the packet is lost.
939  *	   A'. Reno "three dupacks" marks head of queue lost.
940  *	   A''. Its FACK modfication, head until snd.fack is lost.
941  *	B. SACK arrives sacking data transmitted after never retransmitted
942  *	   hole was sent out.
943  *	C. SACK arrives sacking SND.NXT at the moment, when the
944  *	   segment was retransmitted.
945  * 4. D-SACK added new rule: D-SACK changes any tag to S.
946  *
947  * It is pleasant to note, that state diagram turns out to be commutative,
948  * so that we are allowed not to be bothered by order of our actions,
949  * when multiple events arrive simultaneously. (see the function below).
950  *
951  * Reordering detection.
952  * --------------------
953  * Reordering metric is maximal distance, which a packet can be displaced
954  * in packet stream. With SACKs we can estimate it:
955  *
956  * 1. SACK fills old hole and the corresponding segment was not
957  *    ever retransmitted -> reordering. Alas, we cannot use it
958  *    when segment was retransmitted.
959  * 2. The last flaw is solved with D-SACK. D-SACK arrives
960  *    for retransmitted and already SACKed segment -> reordering..
961  * Both of these heuristics are not used in Loss state, when we cannot
962  * account for retransmits accurately.
963  */
964 static int
965 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
966 {
967 	struct tcp_sock *tp = tcp_sk(sk);
968 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
969 	struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
970 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
971 	int reord = tp->packets_out;
972 	int prior_fackets;
973 	u32 lost_retrans = 0;
974 	int flag = 0;
975 	int i;
976 
977 	/* So, SACKs for already sent large segments will be lost.
978 	 * Not good, but alternative is to resegment the queue. */
979 	if (sk->sk_route_caps & NETIF_F_TSO) {
980 		sk->sk_route_caps &= ~NETIF_F_TSO;
981 		sock_set_flag(sk, SOCK_NO_LARGESEND);
982 		tp->mss_cache = tp->mss_cache_std;
983 	}
984 
985 	if (!tp->sacked_out)
986 		tp->fackets_out = 0;
987 	prior_fackets = tp->fackets_out;
988 
989 	for (i=0; i<num_sacks; i++, sp++) {
990 		struct sk_buff *skb;
991 		__u32 start_seq = ntohl(sp->start_seq);
992 		__u32 end_seq = ntohl(sp->end_seq);
993 		int fack_count = 0;
994 		int dup_sack = 0;
995 
996 		/* Check for D-SACK. */
997 		if (i == 0) {
998 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
999 
1000 			if (before(start_seq, ack)) {
1001 				dup_sack = 1;
1002 				tp->rx_opt.sack_ok |= 4;
1003 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1004 			} else if (num_sacks > 1 &&
1005 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
1006 				   !before(start_seq, ntohl(sp[1].start_seq))) {
1007 				dup_sack = 1;
1008 				tp->rx_opt.sack_ok |= 4;
1009 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1010 			}
1011 
1012 			/* D-SACK for already forgotten data...
1013 			 * Do dumb counting. */
1014 			if (dup_sack &&
1015 			    !after(end_seq, prior_snd_una) &&
1016 			    after(end_seq, tp->undo_marker))
1017 				tp->undo_retrans--;
1018 
1019 			/* Eliminate too old ACKs, but take into
1020 			 * account more or less fresh ones, they can
1021 			 * contain valid SACK info.
1022 			 */
1023 			if (before(ack, prior_snd_una - tp->max_window))
1024 				return 0;
1025 		}
1026 
1027 		/* Event "B" in the comment above. */
1028 		if (after(end_seq, tp->high_seq))
1029 			flag |= FLAG_DATA_LOST;
1030 
1031 		sk_stream_for_retrans_queue(skb, sk) {
1032 			u8 sacked = TCP_SKB_CB(skb)->sacked;
1033 			int in_sack;
1034 
1035 			/* The retransmission queue is always in order, so
1036 			 * we can short-circuit the walk early.
1037 			 */
1038 			if(!before(TCP_SKB_CB(skb)->seq, end_seq))
1039 				break;
1040 
1041 			fack_count += tcp_skb_pcount(skb);
1042 
1043 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1044 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1045 
1046 			/* Account D-SACK for retransmitted packet. */
1047 			if ((dup_sack && in_sack) &&
1048 			    (sacked & TCPCB_RETRANS) &&
1049 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1050 				tp->undo_retrans--;
1051 
1052 			/* The frame is ACKed. */
1053 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1054 				if (sacked&TCPCB_RETRANS) {
1055 					if ((dup_sack && in_sack) &&
1056 					    (sacked&TCPCB_SACKED_ACKED))
1057 						reord = min(fack_count, reord);
1058 				} else {
1059 					/* If it was in a hole, we detected reordering. */
1060 					if (fack_count < prior_fackets &&
1061 					    !(sacked&TCPCB_SACKED_ACKED))
1062 						reord = min(fack_count, reord);
1063 				}
1064 
1065 				/* Nothing to do; acked frame is about to be dropped. */
1066 				continue;
1067 			}
1068 
1069 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1070 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1071 			    (!lost_retrans || after(end_seq, lost_retrans)))
1072 				lost_retrans = end_seq;
1073 
1074 			if (!in_sack)
1075 				continue;
1076 
1077 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1078 				if (sacked & TCPCB_SACKED_RETRANS) {
1079 					/* If the segment is not tagged as lost,
1080 					 * we do not clear RETRANS, believing
1081 					 * that retransmission is still in flight.
1082 					 */
1083 					if (sacked & TCPCB_LOST) {
1084 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1085 						tp->lost_out -= tcp_skb_pcount(skb);
1086 						tp->retrans_out -= tcp_skb_pcount(skb);
1087 					}
1088 				} else {
1089 					/* New sack for not retransmitted frame,
1090 					 * which was in hole. It is reordering.
1091 					 */
1092 					if (!(sacked & TCPCB_RETRANS) &&
1093 					    fack_count < prior_fackets)
1094 						reord = min(fack_count, reord);
1095 
1096 					if (sacked & TCPCB_LOST) {
1097 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1098 						tp->lost_out -= tcp_skb_pcount(skb);
1099 					}
1100 				}
1101 
1102 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1103 				flag |= FLAG_DATA_SACKED;
1104 				tp->sacked_out += tcp_skb_pcount(skb);
1105 
1106 				if (fack_count > tp->fackets_out)
1107 					tp->fackets_out = fack_count;
1108 			} else {
1109 				if (dup_sack && (sacked&TCPCB_RETRANS))
1110 					reord = min(fack_count, reord);
1111 			}
1112 
1113 			/* D-SACK. We can detect redundant retransmission
1114 			 * in S|R and plain R frames and clear it.
1115 			 * undo_retrans is decreased above, L|R frames
1116 			 * are accounted above as well.
1117 			 */
1118 			if (dup_sack &&
1119 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1120 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1121 				tp->retrans_out -= tcp_skb_pcount(skb);
1122 			}
1123 		}
1124 	}
1125 
1126 	/* Check for lost retransmit. This superb idea is
1127 	 * borrowed from "ratehalving". Event "C".
1128 	 * Later note: FACK people cheated me again 8),
1129 	 * we have to account for reordering! Ugly,
1130 	 * but should help.
1131 	 */
1132 	if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
1133 		struct sk_buff *skb;
1134 
1135 		sk_stream_for_retrans_queue(skb, sk) {
1136 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1137 				break;
1138 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1139 				continue;
1140 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1141 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1142 			    (IsFack(tp) ||
1143 			     !before(lost_retrans,
1144 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1145 				     tp->mss_cache_std))) {
1146 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1147 				tp->retrans_out -= tcp_skb_pcount(skb);
1148 
1149 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150 					tp->lost_out += tcp_skb_pcount(skb);
1151 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152 					flag |= FLAG_DATA_SACKED;
1153 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1154 				}
1155 			}
1156 		}
1157 	}
1158 
1159 	tp->left_out = tp->sacked_out + tp->lost_out;
1160 
1161 	if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
1162 		tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
1163 
1164 #if FASTRETRANS_DEBUG > 0
1165 	BUG_TRAP((int)tp->sacked_out >= 0);
1166 	BUG_TRAP((int)tp->lost_out >= 0);
1167 	BUG_TRAP((int)tp->retrans_out >= 0);
1168 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1169 #endif
1170 	return flag;
1171 }
1172 
1173 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1174  * segments to see from the next ACKs whether any data was really missing.
1175  * If the RTO was spurious, new ACKs should arrive.
1176  */
1177 void tcp_enter_frto(struct sock *sk)
1178 {
1179 	struct tcp_sock *tp = tcp_sk(sk);
1180 	struct sk_buff *skb;
1181 
1182 	tp->frto_counter = 1;
1183 
1184 	if (tp->ca_state <= TCP_CA_Disorder ||
1185             tp->snd_una == tp->high_seq ||
1186             (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
1187 		tp->prior_ssthresh = tcp_current_ssthresh(tp);
1188 		if (!tcp_westwood_ssthresh(tp))
1189 			tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
1190 	}
1191 
1192 	/* Have to clear retransmission markers here to keep the bookkeeping
1193 	 * in shape, even though we are not yet in Loss state.
1194 	 * If something was really lost, it is eventually caught up
1195 	 * in tcp_enter_frto_loss.
1196 	 */
1197 	tp->retrans_out = 0;
1198 	tp->undo_marker = tp->snd_una;
1199 	tp->undo_retrans = 0;
1200 
1201 	sk_stream_for_retrans_queue(skb, sk) {
1202 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1203 	}
1204 	tcp_sync_left_out(tp);
1205 
1206 	tcp_set_ca_state(tp, TCP_CA_Open);
1207 	tp->frto_highmark = tp->snd_nxt;
1208 }
1209 
1210 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1211  * which indicates that we should follow the traditional RTO recovery,
1212  * i.e. mark everything lost and do go-back-N retransmission.
1213  */
1214 static void tcp_enter_frto_loss(struct sock *sk)
1215 {
1216 	struct tcp_sock *tp = tcp_sk(sk);
1217 	struct sk_buff *skb;
1218 	int cnt = 0;
1219 
1220 	tp->sacked_out = 0;
1221 	tp->lost_out = 0;
1222 	tp->fackets_out = 0;
1223 
1224 	sk_stream_for_retrans_queue(skb, sk) {
1225 		cnt += tcp_skb_pcount(skb);
1226 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1227 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1228 
1229 			/* Do not mark those segments lost that were
1230 			 * forward transmitted after RTO
1231 			 */
1232 			if (!after(TCP_SKB_CB(skb)->end_seq,
1233 				   tp->frto_highmark)) {
1234 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1235 				tp->lost_out += tcp_skb_pcount(skb);
1236 			}
1237 		} else {
1238 			tp->sacked_out += tcp_skb_pcount(skb);
1239 			tp->fackets_out = cnt;
1240 		}
1241 	}
1242 	tcp_sync_left_out(tp);
1243 
1244 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1245 	tp->snd_cwnd_cnt = 0;
1246 	tp->snd_cwnd_stamp = tcp_time_stamp;
1247 	tp->undo_marker = 0;
1248 	tp->frto_counter = 0;
1249 
1250 	tp->reordering = min_t(unsigned int, tp->reordering,
1251 					     sysctl_tcp_reordering);
1252 	tcp_set_ca_state(tp, TCP_CA_Loss);
1253 	tp->high_seq = tp->frto_highmark;
1254 	TCP_ECN_queue_cwr(tp);
1255 
1256 	init_bictcp(tp);
1257 }
1258 
1259 void tcp_clear_retrans(struct tcp_sock *tp)
1260 {
1261 	tp->left_out = 0;
1262 	tp->retrans_out = 0;
1263 
1264 	tp->fackets_out = 0;
1265 	tp->sacked_out = 0;
1266 	tp->lost_out = 0;
1267 
1268 	tp->undo_marker = 0;
1269 	tp->undo_retrans = 0;
1270 }
1271 
1272 /* Enter Loss state. If "how" is not zero, forget all SACK information
1273  * and reset tags completely, otherwise preserve SACKs. If receiver
1274  * dropped its ofo queue, we will know this due to reneging detection.
1275  */
1276 void tcp_enter_loss(struct sock *sk, int how)
1277 {
1278 	struct tcp_sock *tp = tcp_sk(sk);
1279 	struct sk_buff *skb;
1280 	int cnt = 0;
1281 
1282 	/* Reduce ssthresh if it has not yet been made inside this window. */
1283 	if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1284 	    (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
1285 		tp->prior_ssthresh = tcp_current_ssthresh(tp);
1286 		tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
1287 	}
1288 	tp->snd_cwnd	   = 1;
1289 	tp->snd_cwnd_cnt   = 0;
1290 	tp->snd_cwnd_stamp = tcp_time_stamp;
1291 
1292 	tcp_clear_retrans(tp);
1293 
1294 	/* Push undo marker, if it was plain RTO and nothing
1295 	 * was retransmitted. */
1296 	if (!how)
1297 		tp->undo_marker = tp->snd_una;
1298 
1299 	sk_stream_for_retrans_queue(skb, sk) {
1300 		cnt += tcp_skb_pcount(skb);
1301 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1302 			tp->undo_marker = 0;
1303 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1304 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1305 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1306 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1307 			tp->lost_out += tcp_skb_pcount(skb);
1308 		} else {
1309 			tp->sacked_out += tcp_skb_pcount(skb);
1310 			tp->fackets_out = cnt;
1311 		}
1312 	}
1313 	tcp_sync_left_out(tp);
1314 
1315 	tp->reordering = min_t(unsigned int, tp->reordering,
1316 					     sysctl_tcp_reordering);
1317 	tcp_set_ca_state(tp, TCP_CA_Loss);
1318 	tp->high_seq = tp->snd_nxt;
1319 	TCP_ECN_queue_cwr(tp);
1320 }
1321 
1322 static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp)
1323 {
1324 	struct sk_buff *skb;
1325 
1326 	/* If ACK arrived pointing to a remembered SACK,
1327 	 * it means that our remembered SACKs do not reflect
1328 	 * real state of receiver i.e.
1329 	 * receiver _host_ is heavily congested (or buggy).
1330 	 * Do processing similar to RTO timeout.
1331 	 */
1332 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1333 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1334 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1335 
1336 		tcp_enter_loss(sk, 1);
1337 		tp->retransmits++;
1338 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1339 		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1340 		return 1;
1341 	}
1342 	return 0;
1343 }
1344 
1345 static inline int tcp_fackets_out(struct tcp_sock *tp)
1346 {
1347 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1348 }
1349 
1350 static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb)
1351 {
1352 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto);
1353 }
1354 
1355 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1356 {
1357 	return tp->packets_out &&
1358 	       tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue));
1359 }
1360 
1361 /* Linux NewReno/SACK/FACK/ECN state machine.
1362  * --------------------------------------
1363  *
1364  * "Open"	Normal state, no dubious events, fast path.
1365  * "Disorder"   In all the respects it is "Open",
1366  *		but requires a bit more attention. It is entered when
1367  *		we see some SACKs or dupacks. It is split of "Open"
1368  *		mainly to move some processing from fast path to slow one.
1369  * "CWR"	CWND was reduced due to some Congestion Notification event.
1370  *		It can be ECN, ICMP source quench, local device congestion.
1371  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1372  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1373  *
1374  * tcp_fastretrans_alert() is entered:
1375  * - each incoming ACK, if state is not "Open"
1376  * - when arrived ACK is unusual, namely:
1377  *	* SACK
1378  *	* Duplicate ACK.
1379  *	* ECN ECE.
1380  *
1381  * Counting packets in flight is pretty simple.
1382  *
1383  *	in_flight = packets_out - left_out + retrans_out
1384  *
1385  *	packets_out is SND.NXT-SND.UNA counted in packets.
1386  *
1387  *	retrans_out is number of retransmitted segments.
1388  *
1389  *	left_out is number of segments left network, but not ACKed yet.
1390  *
1391  *		left_out = sacked_out + lost_out
1392  *
1393  *     sacked_out: Packets, which arrived to receiver out of order
1394  *		   and hence not ACKed. With SACKs this number is simply
1395  *		   amount of SACKed data. Even without SACKs
1396  *		   it is easy to give pretty reliable estimate of this number,
1397  *		   counting duplicate ACKs.
1398  *
1399  *       lost_out: Packets lost by network. TCP has no explicit
1400  *		   "loss notification" feedback from network (for now).
1401  *		   It means that this number can be only _guessed_.
1402  *		   Actually, it is the heuristics to predict lossage that
1403  *		   distinguishes different algorithms.
1404  *
1405  *	F.e. after RTO, when all the queue is considered as lost,
1406  *	lost_out = packets_out and in_flight = retrans_out.
1407  *
1408  *		Essentially, we have now two algorithms counting
1409  *		lost packets.
1410  *
1411  *		FACK: It is the simplest heuristics. As soon as we decided
1412  *		that something is lost, we decide that _all_ not SACKed
1413  *		packets until the most forward SACK are lost. I.e.
1414  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1415  *		It is absolutely correct estimate, if network does not reorder
1416  *		packets. And it loses any connection to reality when reordering
1417  *		takes place. We use FACK by default until reordering
1418  *		is suspected on the path to this destination.
1419  *
1420  *		NewReno: when Recovery is entered, we assume that one segment
1421  *		is lost (classic Reno). While we are in Recovery and
1422  *		a partial ACK arrives, we assume that one more packet
1423  *		is lost (NewReno). This heuristics are the same in NewReno
1424  *		and SACK.
1425  *
1426  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1427  *  deflation etc. CWND is real congestion window, never inflated, changes
1428  *  only according to classic VJ rules.
1429  *
1430  * Really tricky (and requiring careful tuning) part of algorithm
1431  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1432  * The first determines the moment _when_ we should reduce CWND and,
1433  * hence, slow down forward transmission. In fact, it determines the moment
1434  * when we decide that hole is caused by loss, rather than by a reorder.
1435  *
1436  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1437  * holes, caused by lost packets.
1438  *
1439  * And the most logically complicated part of algorithm is undo
1440  * heuristics. We detect false retransmits due to both too early
1441  * fast retransmit (reordering) and underestimated RTO, analyzing
1442  * timestamps and D-SACKs. When we detect that some segments were
1443  * retransmitted by mistake and CWND reduction was wrong, we undo
1444  * window reduction and abort recovery phase. This logic is hidden
1445  * inside several functions named tcp_try_undo_<something>.
1446  */
1447 
1448 /* This function decides, when we should leave Disordered state
1449  * and enter Recovery phase, reducing congestion window.
1450  *
1451  * Main question: may we further continue forward transmission
1452  * with the same cwnd?
1453  */
1454 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1455 {
1456 	__u32 packets_out;
1457 
1458 	/* Trick#1: The loss is proven. */
1459 	if (tp->lost_out)
1460 		return 1;
1461 
1462 	/* Not-A-Trick#2 : Classic rule... */
1463 	if (tcp_fackets_out(tp) > tp->reordering)
1464 		return 1;
1465 
1466 	/* Trick#3 : when we use RFC2988 timer restart, fast
1467 	 * retransmit can be triggered by timeout of queue head.
1468 	 */
1469 	if (tcp_head_timedout(sk, tp))
1470 		return 1;
1471 
1472 	/* Trick#4: It is still not OK... But will it be useful to delay
1473 	 * recovery more?
1474 	 */
1475 	packets_out = tp->packets_out;
1476 	if (packets_out <= tp->reordering &&
1477 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1478 	    !tcp_may_send_now(sk, tp)) {
1479 		/* We have nothing to send. This connection is limited
1480 		 * either by receiver window or by application.
1481 		 */
1482 		return 1;
1483 	}
1484 
1485 	return 0;
1486 }
1487 
1488 /* If we receive more dupacks than we expected counting segments
1489  * in assumption of absent reordering, interpret this as reordering.
1490  * The only another reason could be bug in receiver TCP.
1491  */
1492 static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
1493 {
1494 	u32 holes;
1495 
1496 	holes = max(tp->lost_out, 1U);
1497 	holes = min(holes, tp->packets_out);
1498 
1499 	if ((tp->sacked_out + holes) > tp->packets_out) {
1500 		tp->sacked_out = tp->packets_out - holes;
1501 		tcp_update_reordering(tp, tp->packets_out+addend, 0);
1502 	}
1503 }
1504 
1505 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1506 
1507 static void tcp_add_reno_sack(struct tcp_sock *tp)
1508 {
1509 	tp->sacked_out++;
1510 	tcp_check_reno_reordering(tp, 0);
1511 	tcp_sync_left_out(tp);
1512 }
1513 
1514 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1515 
1516 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1517 {
1518 	if (acked > 0) {
1519 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1520 		if (acked-1 >= tp->sacked_out)
1521 			tp->sacked_out = 0;
1522 		else
1523 			tp->sacked_out -= acked-1;
1524 	}
1525 	tcp_check_reno_reordering(tp, acked);
1526 	tcp_sync_left_out(tp);
1527 }
1528 
1529 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1530 {
1531 	tp->sacked_out = 0;
1532 	tp->left_out = tp->lost_out;
1533 }
1534 
1535 /* Mark head of queue up as lost. */
1536 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1537 			       int packets, u32 high_seq)
1538 {
1539 	struct sk_buff *skb;
1540 	int cnt = packets;
1541 
1542 	BUG_TRAP(cnt <= tp->packets_out);
1543 
1544 	sk_stream_for_retrans_queue(skb, sk) {
1545 		cnt -= tcp_skb_pcount(skb);
1546 		if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1547 			break;
1548 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1549 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1550 			tp->lost_out += tcp_skb_pcount(skb);
1551 		}
1552 	}
1553 	tcp_sync_left_out(tp);
1554 }
1555 
1556 /* Account newly detected lost packet(s) */
1557 
1558 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1559 {
1560 	if (IsFack(tp)) {
1561 		int lost = tp->fackets_out - tp->reordering;
1562 		if (lost <= 0)
1563 			lost = 1;
1564 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1565 	} else {
1566 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1567 	}
1568 
1569 	/* New heuristics: it is possible only after we switched
1570 	 * to restart timer each time when something is ACKed.
1571 	 * Hence, we can detect timed out packets during fast
1572 	 * retransmit without falling to slow start.
1573 	 */
1574 	if (tcp_head_timedout(sk, tp)) {
1575 		struct sk_buff *skb;
1576 
1577 		sk_stream_for_retrans_queue(skb, sk) {
1578 			if (tcp_skb_timedout(tp, skb) &&
1579 			    !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1580 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1581 				tp->lost_out += tcp_skb_pcount(skb);
1582 			}
1583 		}
1584 		tcp_sync_left_out(tp);
1585 	}
1586 }
1587 
1588 /* CWND moderation, preventing bursts due to too big ACKs
1589  * in dubious situations.
1590  */
1591 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1592 {
1593 	tp->snd_cwnd = min(tp->snd_cwnd,
1594 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1595 	tp->snd_cwnd_stamp = tcp_time_stamp;
1596 }
1597 
1598 /* Decrease cwnd each second ack. */
1599 
1600 static void tcp_cwnd_down(struct tcp_sock *tp)
1601 {
1602 	int decr = tp->snd_cwnd_cnt + 1;
1603 	__u32 limit;
1604 
1605 	/*
1606 	 * TCP Westwood
1607 	 * Here limit is evaluated as BWestimation*RTTmin (for obtaining it
1608 	 * in packets we use mss_cache). If sysctl_tcp_westwood is off
1609 	 * tcp_westwood_bw_rttmin() returns 0. In such case snd_ssthresh is
1610 	 * still used as usual. It prevents other strange cases in which
1611 	 * BWE*RTTmin could assume value 0. It should not happen but...
1612 	 */
1613 
1614 	if (!(limit = tcp_westwood_bw_rttmin(tp)))
1615 		limit = tp->snd_ssthresh/2;
1616 
1617 	tp->snd_cwnd_cnt = decr&1;
1618 	decr >>= 1;
1619 
1620 	if (decr && tp->snd_cwnd > limit)
1621 		tp->snd_cwnd -= decr;
1622 
1623 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1624 	tp->snd_cwnd_stamp = tcp_time_stamp;
1625 }
1626 
1627 /* Nothing was retransmitted or returned timestamp is less
1628  * than timestamp of the first retransmission.
1629  */
1630 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1631 {
1632 	return !tp->retrans_stamp ||
1633 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1634 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1635 }
1636 
1637 /* Undo procedures. */
1638 
1639 #if FASTRETRANS_DEBUG > 1
1640 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1641 {
1642 	struct inet_sock *inet = inet_sk(sk);
1643 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1644 	       msg,
1645 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1646 	       tp->snd_cwnd, tp->left_out,
1647 	       tp->snd_ssthresh, tp->prior_ssthresh,
1648 	       tp->packets_out);
1649 }
1650 #else
1651 #define DBGUNDO(x...) do { } while (0)
1652 #endif
1653 
1654 static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
1655 {
1656 	if (tp->prior_ssthresh) {
1657 		if (tcp_is_bic(tp))
1658 			tp->snd_cwnd = max(tp->snd_cwnd, tp->bictcp.last_max_cwnd);
1659 		else
1660 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1661 
1662 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1663 			tp->snd_ssthresh = tp->prior_ssthresh;
1664 			TCP_ECN_withdraw_cwr(tp);
1665 		}
1666 	} else {
1667 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1668 	}
1669 	tcp_moderate_cwnd(tp);
1670 	tp->snd_cwnd_stamp = tcp_time_stamp;
1671 }
1672 
1673 static inline int tcp_may_undo(struct tcp_sock *tp)
1674 {
1675 	return tp->undo_marker &&
1676 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1677 }
1678 
1679 /* People celebrate: "We love our President!" */
1680 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1681 {
1682 	if (tcp_may_undo(tp)) {
1683 		/* Happy end! We did not retransmit anything
1684 		 * or our original transmission succeeded.
1685 		 */
1686 		DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
1687 		tcp_undo_cwr(tp, 1);
1688 		if (tp->ca_state == TCP_CA_Loss)
1689 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1690 		else
1691 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1692 		tp->undo_marker = 0;
1693 	}
1694 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1695 		/* Hold old state until something *above* high_seq
1696 		 * is ACKed. For Reno it is MUST to prevent false
1697 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1698 		tcp_moderate_cwnd(tp);
1699 		return 1;
1700 	}
1701 	tcp_set_ca_state(tp, TCP_CA_Open);
1702 	return 0;
1703 }
1704 
1705 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1706 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1707 {
1708 	if (tp->undo_marker && !tp->undo_retrans) {
1709 		DBGUNDO(sk, tp, "D-SACK");
1710 		tcp_undo_cwr(tp, 1);
1711 		tp->undo_marker = 0;
1712 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1713 	}
1714 }
1715 
1716 /* Undo during fast recovery after partial ACK. */
1717 
1718 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1719 				int acked)
1720 {
1721 	/* Partial ACK arrived. Force Hoe's retransmit. */
1722 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1723 
1724 	if (tcp_may_undo(tp)) {
1725 		/* Plain luck! Hole if filled with delayed
1726 		 * packet, rather than with a retransmit.
1727 		 */
1728 		if (tp->retrans_out == 0)
1729 			tp->retrans_stamp = 0;
1730 
1731 		tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
1732 
1733 		DBGUNDO(sk, tp, "Hoe");
1734 		tcp_undo_cwr(tp, 0);
1735 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1736 
1737 		/* So... Do not make Hoe's retransmit yet.
1738 		 * If the first packet was delayed, the rest
1739 		 * ones are most probably delayed as well.
1740 		 */
1741 		failed = 0;
1742 	}
1743 	return failed;
1744 }
1745 
1746 /* Undo during loss recovery after partial ACK. */
1747 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1748 {
1749 	if (tcp_may_undo(tp)) {
1750 		struct sk_buff *skb;
1751 		sk_stream_for_retrans_queue(skb, sk) {
1752 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1753 		}
1754 		DBGUNDO(sk, tp, "partial loss");
1755 		tp->lost_out = 0;
1756 		tp->left_out = tp->sacked_out;
1757 		tcp_undo_cwr(tp, 1);
1758 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1759 		tp->retransmits = 0;
1760 		tp->undo_marker = 0;
1761 		if (!IsReno(tp))
1762 			tcp_set_ca_state(tp, TCP_CA_Open);
1763 		return 1;
1764 	}
1765 	return 0;
1766 }
1767 
1768 static inline void tcp_complete_cwr(struct tcp_sock *tp)
1769 {
1770 	if (tcp_westwood_cwnd(tp))
1771 		tp->snd_ssthresh = tp->snd_cwnd;
1772 	else
1773 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1774 	tp->snd_cwnd_stamp = tcp_time_stamp;
1775 }
1776 
1777 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1778 {
1779 	tp->left_out = tp->sacked_out;
1780 
1781 	if (tp->retrans_out == 0)
1782 		tp->retrans_stamp = 0;
1783 
1784 	if (flag&FLAG_ECE)
1785 		tcp_enter_cwr(tp);
1786 
1787 	if (tp->ca_state != TCP_CA_CWR) {
1788 		int state = TCP_CA_Open;
1789 
1790 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1791 			state = TCP_CA_Disorder;
1792 
1793 		if (tp->ca_state != state) {
1794 			tcp_set_ca_state(tp, state);
1795 			tp->high_seq = tp->snd_nxt;
1796 		}
1797 		tcp_moderate_cwnd(tp);
1798 	} else {
1799 		tcp_cwnd_down(tp);
1800 	}
1801 }
1802 
1803 /* Process an event, which can update packets-in-flight not trivially.
1804  * Main goal of this function is to calculate new estimate for left_out,
1805  * taking into account both packets sitting in receiver's buffer and
1806  * packets lost by network.
1807  *
1808  * Besides that it does CWND reduction, when packet loss is detected
1809  * and changes state of machine.
1810  *
1811  * It does _not_ decide what to send, it is made in function
1812  * tcp_xmit_retransmit_queue().
1813  */
1814 static void
1815 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1816 		      int prior_packets, int flag)
1817 {
1818 	struct tcp_sock *tp = tcp_sk(sk);
1819 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1820 
1821 	/* Some technical things:
1822 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1823 	if (!tp->packets_out)
1824 		tp->sacked_out = 0;
1825         /* 2. SACK counts snd_fack in packets inaccurately. */
1826 	if (tp->sacked_out == 0)
1827 		tp->fackets_out = 0;
1828 
1829         /* Now state machine starts.
1830 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1831 	if (flag&FLAG_ECE)
1832 		tp->prior_ssthresh = 0;
1833 
1834 	/* B. In all the states check for reneging SACKs. */
1835 	if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
1836 		return;
1837 
1838 	/* C. Process data loss notification, provided it is valid. */
1839 	if ((flag&FLAG_DATA_LOST) &&
1840 	    before(tp->snd_una, tp->high_seq) &&
1841 	    tp->ca_state != TCP_CA_Open &&
1842 	    tp->fackets_out > tp->reordering) {
1843 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1844 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1845 	}
1846 
1847 	/* D. Synchronize left_out to current state. */
1848 	tcp_sync_left_out(tp);
1849 
1850 	/* E. Check state exit conditions. State can be terminated
1851 	 *    when high_seq is ACKed. */
1852 	if (tp->ca_state == TCP_CA_Open) {
1853 		if (!sysctl_tcp_frto)
1854 			BUG_TRAP(tp->retrans_out == 0);
1855 		tp->retrans_stamp = 0;
1856 	} else if (!before(tp->snd_una, tp->high_seq)) {
1857 		switch (tp->ca_state) {
1858 		case TCP_CA_Loss:
1859 			tp->retransmits = 0;
1860 			if (tcp_try_undo_recovery(sk, tp))
1861 				return;
1862 			break;
1863 
1864 		case TCP_CA_CWR:
1865 			/* CWR is to be held something *above* high_seq
1866 			 * is ACKed for CWR bit to reach receiver. */
1867 			if (tp->snd_una != tp->high_seq) {
1868 				tcp_complete_cwr(tp);
1869 				tcp_set_ca_state(tp, TCP_CA_Open);
1870 			}
1871 			break;
1872 
1873 		case TCP_CA_Disorder:
1874 			tcp_try_undo_dsack(sk, tp);
1875 			if (!tp->undo_marker ||
1876 			    /* For SACK case do not Open to allow to undo
1877 			     * catching for all duplicate ACKs. */
1878 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
1879 				tp->undo_marker = 0;
1880 				tcp_set_ca_state(tp, TCP_CA_Open);
1881 			}
1882 			break;
1883 
1884 		case TCP_CA_Recovery:
1885 			if (IsReno(tp))
1886 				tcp_reset_reno_sack(tp);
1887 			if (tcp_try_undo_recovery(sk, tp))
1888 				return;
1889 			tcp_complete_cwr(tp);
1890 			break;
1891 		}
1892 	}
1893 
1894 	/* F. Process state. */
1895 	switch (tp->ca_state) {
1896 	case TCP_CA_Recovery:
1897 		if (prior_snd_una == tp->snd_una) {
1898 			if (IsReno(tp) && is_dupack)
1899 				tcp_add_reno_sack(tp);
1900 		} else {
1901 			int acked = prior_packets - tp->packets_out;
1902 			if (IsReno(tp))
1903 				tcp_remove_reno_sacks(sk, tp, acked);
1904 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
1905 		}
1906 		break;
1907 	case TCP_CA_Loss:
1908 		if (flag&FLAG_DATA_ACKED)
1909 			tp->retransmits = 0;
1910 		if (!tcp_try_undo_loss(sk, tp)) {
1911 			tcp_moderate_cwnd(tp);
1912 			tcp_xmit_retransmit_queue(sk);
1913 			return;
1914 		}
1915 		if (tp->ca_state != TCP_CA_Open)
1916 			return;
1917 		/* Loss is undone; fall through to processing in Open state. */
1918 	default:
1919 		if (IsReno(tp)) {
1920 			if (tp->snd_una != prior_snd_una)
1921 				tcp_reset_reno_sack(tp);
1922 			if (is_dupack)
1923 				tcp_add_reno_sack(tp);
1924 		}
1925 
1926 		if (tp->ca_state == TCP_CA_Disorder)
1927 			tcp_try_undo_dsack(sk, tp);
1928 
1929 		if (!tcp_time_to_recover(sk, tp)) {
1930 			tcp_try_to_open(sk, tp, flag);
1931 			return;
1932 		}
1933 
1934 		/* Otherwise enter Recovery state */
1935 
1936 		if (IsReno(tp))
1937 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1938 		else
1939 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1940 
1941 		tp->high_seq = tp->snd_nxt;
1942 		tp->prior_ssthresh = 0;
1943 		tp->undo_marker = tp->snd_una;
1944 		tp->undo_retrans = tp->retrans_out;
1945 
1946 		if (tp->ca_state < TCP_CA_CWR) {
1947 			if (!(flag&FLAG_ECE))
1948 				tp->prior_ssthresh = tcp_current_ssthresh(tp);
1949 			tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
1950 			TCP_ECN_queue_cwr(tp);
1951 		}
1952 
1953 		tp->snd_cwnd_cnt = 0;
1954 		tcp_set_ca_state(tp, TCP_CA_Recovery);
1955 	}
1956 
1957 	if (is_dupack || tcp_head_timedout(sk, tp))
1958 		tcp_update_scoreboard(sk, tp);
1959 	tcp_cwnd_down(tp);
1960 	tcp_xmit_retransmit_queue(sk);
1961 }
1962 
1963 /* Read draft-ietf-tcplw-high-performance before mucking
1964  * with this code. (Superceeds RFC1323)
1965  */
1966 static void tcp_ack_saw_tstamp(struct tcp_sock *tp, int flag)
1967 {
1968 	__u32 seq_rtt;
1969 
1970 	/* RTTM Rule: A TSecr value received in a segment is used to
1971 	 * update the averaged RTT measurement only if the segment
1972 	 * acknowledges some new data, i.e., only if it advances the
1973 	 * left edge of the send window.
1974 	 *
1975 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1976 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1977 	 *
1978 	 * Changed: reset backoff as soon as we see the first valid sample.
1979 	 * If we do not, we get strongly overstimated rto. With timestamps
1980 	 * samples are accepted even from very old segments: f.e., when rtt=1
1981 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1982 	 * answer arrives rto becomes 120 seconds! If at least one of segments
1983 	 * in window is lost... Voila.	 			--ANK (010210)
1984 	 */
1985 	seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1986 	tcp_rtt_estimator(tp, seq_rtt);
1987 	tcp_set_rto(tp);
1988 	tp->backoff = 0;
1989 	tcp_bound_rto(tp);
1990 }
1991 
1992 static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, int flag)
1993 {
1994 	/* We don't have a timestamp. Can only use
1995 	 * packets that are not retransmitted to determine
1996 	 * rtt estimates. Also, we must not reset the
1997 	 * backoff for rto until we get a non-retransmitted
1998 	 * packet. This allows us to deal with a situation
1999 	 * where the network delay has increased suddenly.
2000 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2001 	 */
2002 
2003 	if (flag & FLAG_RETRANS_DATA_ACKED)
2004 		return;
2005 
2006 	tcp_rtt_estimator(tp, seq_rtt);
2007 	tcp_set_rto(tp);
2008 	tp->backoff = 0;
2009 	tcp_bound_rto(tp);
2010 }
2011 
2012 static inline void tcp_ack_update_rtt(struct tcp_sock *tp,
2013 				      int flag, s32 seq_rtt)
2014 {
2015 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2016 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2017 		tcp_ack_saw_tstamp(tp, flag);
2018 	else if (seq_rtt >= 0)
2019 		tcp_ack_no_tstamp(tp, seq_rtt, flag);
2020 }
2021 
2022 /*
2023  * Compute congestion window to use.
2024  *
2025  * This is from the implementation of BICTCP in
2026  * Lison-Xu, Kahaled Harfoush, and Injog Rhee.
2027  *  "Binary Increase Congestion Control for Fast, Long Distance
2028  *  Networks" in InfoComm 2004
2029  * Available from:
2030  *  http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf
2031  *
2032  * Unless BIC is enabled and congestion window is large
2033  * this behaves the same as the original Reno.
2034  */
2035 static inline __u32 bictcp_cwnd(struct tcp_sock *tp)
2036 {
2037 	/* orignal Reno behaviour */
2038 	if (!tcp_is_bic(tp))
2039 		return tp->snd_cwnd;
2040 
2041 	if (tp->bictcp.last_cwnd == tp->snd_cwnd &&
2042 	   (s32)(tcp_time_stamp - tp->bictcp.last_stamp) <= (HZ>>5))
2043 		return tp->bictcp.cnt;
2044 
2045 	tp->bictcp.last_cwnd = tp->snd_cwnd;
2046 	tp->bictcp.last_stamp = tcp_time_stamp;
2047 
2048 	/* start off normal */
2049 	if (tp->snd_cwnd <= sysctl_tcp_bic_low_window)
2050 		tp->bictcp.cnt = tp->snd_cwnd;
2051 
2052 	/* binary increase */
2053 	else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd) {
2054 		__u32 	dist = (tp->bictcp.last_max_cwnd - tp->snd_cwnd)
2055 			/ BICTCP_B;
2056 
2057 		if (dist > BICTCP_MAX_INCREMENT)
2058 			/* linear increase */
2059 			tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT;
2060 		else if (dist <= 1U)
2061 			/* binary search increase */
2062 			tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR
2063 				/ BICTCP_B;
2064 		else
2065 			/* binary search increase */
2066 			tp->bictcp.cnt = tp->snd_cwnd / dist;
2067 	} else {
2068 		/* slow start amd linear increase */
2069 		if (tp->snd_cwnd < tp->bictcp.last_max_cwnd + BICTCP_B)
2070 			/* slow start */
2071 			tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR
2072 				/ BICTCP_B;
2073 		else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd
2074 			 		+ BICTCP_MAX_INCREMENT*(BICTCP_B-1))
2075 			/* slow start */
2076 			tp->bictcp.cnt = tp->snd_cwnd * (BICTCP_B-1)
2077 				/ (tp->snd_cwnd-tp->bictcp.last_max_cwnd);
2078 		else
2079 			/* linear increase */
2080 			tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT;
2081 	}
2082 	return tp->bictcp.cnt;
2083 }
2084 
2085 /* This is Jacobson's slow start and congestion avoidance.
2086  * SIGCOMM '88, p. 328.
2087  */
2088 static inline void reno_cong_avoid(struct tcp_sock *tp)
2089 {
2090         if (tp->snd_cwnd <= tp->snd_ssthresh) {
2091                 /* In "safe" area, increase. */
2092 		if (tp->snd_cwnd < tp->snd_cwnd_clamp)
2093 			tp->snd_cwnd++;
2094 	} else {
2095                 /* In dangerous area, increase slowly.
2096 		 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
2097 		 */
2098 		if (tp->snd_cwnd_cnt >= bictcp_cwnd(tp)) {
2099 			if (tp->snd_cwnd < tp->snd_cwnd_clamp)
2100 				tp->snd_cwnd++;
2101 			tp->snd_cwnd_cnt=0;
2102 		} else
2103 			tp->snd_cwnd_cnt++;
2104         }
2105 	tp->snd_cwnd_stamp = tcp_time_stamp;
2106 }
2107 
2108 /* This is based on the congestion detection/avoidance scheme described in
2109  *    Lawrence S. Brakmo and Larry L. Peterson.
2110  *    "TCP Vegas: End to end congestion avoidance on a global internet."
2111  *    IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
2112  *    October 1995. Available from:
2113  *	ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
2114  *
2115  * See http://www.cs.arizona.edu/xkernel/ for their implementation.
2116  * The main aspects that distinguish this implementation from the
2117  * Arizona Vegas implementation are:
2118  *   o We do not change the loss detection or recovery mechanisms of
2119  *     Linux in any way. Linux already recovers from losses quite well,
2120  *     using fine-grained timers, NewReno, and FACK.
2121  *   o To avoid the performance penalty imposed by increasing cwnd
2122  *     only every-other RTT during slow start, we increase during
2123  *     every RTT during slow start, just like Reno.
2124  *   o Largely to allow continuous cwnd growth during slow start,
2125  *     we use the rate at which ACKs come back as the "actual"
2126  *     rate, rather than the rate at which data is sent.
2127  *   o To speed convergence to the right rate, we set the cwnd
2128  *     to achieve the right ("actual") rate when we exit slow start.
2129  *   o To filter out the noise caused by delayed ACKs, we use the
2130  *     minimum RTT sample observed during the last RTT to calculate
2131  *     the actual rate.
2132  *   o When the sender re-starts from idle, it waits until it has
2133  *     received ACKs for an entire flight of new data before making
2134  *     a cwnd adjustment decision. The original Vegas implementation
2135  *     assumed senders never went idle.
2136  */
2137 static void vegas_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt)
2138 {
2139 	/* The key players are v_beg_snd_una and v_beg_snd_nxt.
2140 	 *
2141 	 * These are so named because they represent the approximate values
2142 	 * of snd_una and snd_nxt at the beginning of the current RTT. More
2143 	 * precisely, they represent the amount of data sent during the RTT.
2144 	 * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
2145 	 * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
2146 	 * bytes of data have been ACKed during the course of the RTT, giving
2147 	 * an "actual" rate of:
2148 	 *
2149 	 *     (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
2150 	 *
2151 	 * Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
2152 	 * because delayed ACKs can cover more than one segment, so they
2153 	 * don't line up nicely with the boundaries of RTTs.
2154 	 *
2155 	 * Another unfortunate fact of life is that delayed ACKs delay the
2156 	 * advance of the left edge of our send window, so that the number
2157 	 * of bytes we send in an RTT is often less than our cwnd will allow.
2158 	 * So we keep track of our cwnd separately, in v_beg_snd_cwnd.
2159 	 */
2160 
2161 	if (after(ack, tp->vegas.beg_snd_nxt)) {
2162 		/* Do the Vegas once-per-RTT cwnd adjustment. */
2163 		u32 old_wnd, old_snd_cwnd;
2164 
2165 
2166 		/* Here old_wnd is essentially the window of data that was
2167 		 * sent during the previous RTT, and has all
2168 		 * been acknowledged in the course of the RTT that ended
2169 		 * with the ACK we just received. Likewise, old_snd_cwnd
2170 		 * is the cwnd during the previous RTT.
2171 		 */
2172 		old_wnd = (tp->vegas.beg_snd_nxt - tp->vegas.beg_snd_una) /
2173 			tp->mss_cache_std;
2174 		old_snd_cwnd = tp->vegas.beg_snd_cwnd;
2175 
2176 		/* Save the extent of the current window so we can use this
2177 		 * at the end of the next RTT.
2178 		 */
2179 		tp->vegas.beg_snd_una  = tp->vegas.beg_snd_nxt;
2180 		tp->vegas.beg_snd_nxt  = tp->snd_nxt;
2181 		tp->vegas.beg_snd_cwnd = tp->snd_cwnd;
2182 
2183 		/* Take into account the current RTT sample too, to
2184 		 * decrease the impact of delayed acks. This double counts
2185 		 * this sample since we count it for the next window as well,
2186 		 * but that's not too awful, since we're taking the min,
2187 		 * rather than averaging.
2188 		 */
2189 		vegas_rtt_calc(tp, seq_rtt);
2190 
2191 		/* We do the Vegas calculations only if we got enough RTT
2192 		 * samples that we can be reasonably sure that we got
2193 		 * at least one RTT sample that wasn't from a delayed ACK.
2194 		 * If we only had 2 samples total,
2195 		 * then that means we're getting only 1 ACK per RTT, which
2196 		 * means they're almost certainly delayed ACKs.
2197 		 * If  we have 3 samples, we should be OK.
2198 		 */
2199 
2200 		if (tp->vegas.cntRTT <= 2) {
2201 			/* We don't have enough RTT samples to do the Vegas
2202 			 * calculation, so we'll behave like Reno.
2203 			 */
2204 			if (tp->snd_cwnd > tp->snd_ssthresh)
2205 				tp->snd_cwnd++;
2206 		} else {
2207 			u32 rtt, target_cwnd, diff;
2208 
2209 			/* We have enough RTT samples, so, using the Vegas
2210 			 * algorithm, we determine if we should increase or
2211 			 * decrease cwnd, and by how much.
2212 			 */
2213 
2214 			/* Pluck out the RTT we are using for the Vegas
2215 			 * calculations. This is the min RTT seen during the
2216 			 * last RTT. Taking the min filters out the effects
2217 			 * of delayed ACKs, at the cost of noticing congestion
2218 			 * a bit later.
2219 			 */
2220 			rtt = tp->vegas.minRTT;
2221 
2222 			/* Calculate the cwnd we should have, if we weren't
2223 			 * going too fast.
2224 			 *
2225 			 * This is:
2226 			 *     (actual rate in segments) * baseRTT
2227 			 * We keep it as a fixed point number with
2228 			 * V_PARAM_SHIFT bits to the right of the binary point.
2229 			 */
2230 			target_cwnd = ((old_wnd * tp->vegas.baseRTT)
2231 				       << V_PARAM_SHIFT) / rtt;
2232 
2233 			/* Calculate the difference between the window we had,
2234 			 * and the window we would like to have. This quantity
2235 			 * is the "Diff" from the Arizona Vegas papers.
2236 			 *
2237 			 * Again, this is a fixed point number with
2238 			 * V_PARAM_SHIFT bits to the right of the binary
2239 			 * point.
2240 			 */
2241 			diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd;
2242 
2243 			if (tp->snd_cwnd < tp->snd_ssthresh) {
2244 				/* Slow start.  */
2245 				if (diff > sysctl_tcp_vegas_gamma) {
2246 					/* Going too fast. Time to slow down
2247 					 * and switch to congestion avoidance.
2248 					 */
2249 					tp->snd_ssthresh = 2;
2250 
2251 					/* Set cwnd to match the actual rate
2252 					 * exactly:
2253 					 *   cwnd = (actual rate) * baseRTT
2254 					 * Then we add 1 because the integer
2255 					 * truncation robs us of full link
2256 					 * utilization.
2257 					 */
2258 					tp->snd_cwnd = min(tp->snd_cwnd,
2259 							   (target_cwnd >>
2260 							    V_PARAM_SHIFT)+1);
2261 
2262 				}
2263 			} else {
2264 				/* Congestion avoidance. */
2265 				u32 next_snd_cwnd;
2266 
2267 				/* Figure out where we would like cwnd
2268 				 * to be.
2269 				 */
2270 				if (diff > sysctl_tcp_vegas_beta) {
2271 					/* The old window was too fast, so
2272 					 * we slow down.
2273 					 */
2274 					next_snd_cwnd = old_snd_cwnd - 1;
2275 				} else if (diff < sysctl_tcp_vegas_alpha) {
2276 					/* We don't have enough extra packets
2277 					 * in the network, so speed up.
2278 					 */
2279 					next_snd_cwnd = old_snd_cwnd + 1;
2280 				} else {
2281 					/* Sending just as fast as we
2282 					 * should be.
2283 					 */
2284 					next_snd_cwnd = old_snd_cwnd;
2285 				}
2286 
2287 				/* Adjust cwnd upward or downward, toward the
2288 				 * desired value.
2289 				 */
2290 				if (next_snd_cwnd > tp->snd_cwnd)
2291 					tp->snd_cwnd++;
2292 				else if (next_snd_cwnd < tp->snd_cwnd)
2293 					tp->snd_cwnd--;
2294 			}
2295 		}
2296 
2297 		/* Wipe the slate clean for the next RTT. */
2298 		tp->vegas.cntRTT = 0;
2299 		tp->vegas.minRTT = 0x7fffffff;
2300 	}
2301 
2302 	/* The following code is executed for every ack we receive,
2303 	 * except for conditions checked in should_advance_cwnd()
2304 	 * before the call to tcp_cong_avoid(). Mainly this means that
2305 	 * we only execute this code if the ack actually acked some
2306 	 * data.
2307 	 */
2308 
2309 	/* If we are in slow start, increase our cwnd in response to this ACK.
2310 	 * (If we are not in slow start then we are in congestion avoidance,
2311 	 * and adjust our congestion window only once per RTT. See the code
2312 	 * above.)
2313 	 */
2314 	if (tp->snd_cwnd <= tp->snd_ssthresh)
2315 		tp->snd_cwnd++;
2316 
2317 	/* to keep cwnd from growing without bound */
2318 	tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp);
2319 
2320 	/* Make sure that we are never so timid as to reduce our cwnd below
2321 	 * 2 MSS.
2322 	 *
2323 	 * Going below 2 MSS would risk huge delayed ACKs from our receiver.
2324 	 */
2325 	tp->snd_cwnd = max(tp->snd_cwnd, 2U);
2326 
2327 	tp->snd_cwnd_stamp = tcp_time_stamp;
2328 }
2329 
2330 static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt)
2331 {
2332 	if (tcp_vegas_enabled(tp))
2333 		vegas_cong_avoid(tp, ack, seq_rtt);
2334 	else
2335 		reno_cong_avoid(tp);
2336 }
2337 
2338 /* Restart timer after forward progress on connection.
2339  * RFC2988 recommends to restart timer to now+rto.
2340  */
2341 
2342 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2343 {
2344 	if (!tp->packets_out) {
2345 		tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
2346 	} else {
2347 		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
2348 	}
2349 }
2350 
2351 /* There is one downside to this scheme.  Although we keep the
2352  * ACK clock ticking, adjusting packet counters and advancing
2353  * congestion window, we do not liberate socket send buffer
2354  * space.
2355  *
2356  * Mucking with skb->truesize and sk->sk_wmem_alloc et al.
2357  * then making a write space wakeup callback is a possible
2358  * future enhancement.  WARNING: it is not trivial to make.
2359  */
2360 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2361 			 __u32 now, __s32 *seq_rtt)
2362 {
2363 	struct tcp_sock *tp = tcp_sk(sk);
2364 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2365 	__u32 seq = tp->snd_una;
2366 	__u32 packets_acked;
2367 	int acked = 0;
2368 
2369 	/* If we get here, the whole TSO packet has not been
2370 	 * acked.
2371 	 */
2372 	BUG_ON(!after(scb->end_seq, seq));
2373 
2374 	packets_acked = tcp_skb_pcount(skb);
2375 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2376 		return 0;
2377 	packets_acked -= tcp_skb_pcount(skb);
2378 
2379 	if (packets_acked) {
2380 		__u8 sacked = scb->sacked;
2381 
2382 		acked |= FLAG_DATA_ACKED;
2383 		if (sacked) {
2384 			if (sacked & TCPCB_RETRANS) {
2385 				if (sacked & TCPCB_SACKED_RETRANS)
2386 					tp->retrans_out -= packets_acked;
2387 				acked |= FLAG_RETRANS_DATA_ACKED;
2388 				*seq_rtt = -1;
2389 			} else if (*seq_rtt < 0)
2390 				*seq_rtt = now - scb->when;
2391 			if (sacked & TCPCB_SACKED_ACKED)
2392 				tp->sacked_out -= packets_acked;
2393 			if (sacked & TCPCB_LOST)
2394 				tp->lost_out -= packets_acked;
2395 			if (sacked & TCPCB_URG) {
2396 				if (tp->urg_mode &&
2397 				    !before(seq, tp->snd_up))
2398 					tp->urg_mode = 0;
2399 			}
2400 		} else if (*seq_rtt < 0)
2401 			*seq_rtt = now - scb->when;
2402 
2403 		if (tp->fackets_out) {
2404 			__u32 dval = min(tp->fackets_out, packets_acked);
2405 			tp->fackets_out -= dval;
2406 		}
2407 		tp->packets_out -= packets_acked;
2408 
2409 		BUG_ON(tcp_skb_pcount(skb) == 0);
2410 		BUG_ON(!before(scb->seq, scb->end_seq));
2411 	}
2412 
2413 	return acked;
2414 }
2415 
2416 
2417 /* Remove acknowledged frames from the retransmission queue. */
2418 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2419 {
2420 	struct tcp_sock *tp = tcp_sk(sk);
2421 	struct sk_buff *skb;
2422 	__u32 now = tcp_time_stamp;
2423 	int acked = 0;
2424 	__s32 seq_rtt = -1;
2425 
2426 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2427 	       skb != sk->sk_send_head) {
2428 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2429 		__u8 sacked = scb->sacked;
2430 
2431 		/* If our packet is before the ack sequence we can
2432 		 * discard it as it's confirmed to have arrived at
2433 		 * the other end.
2434 		 */
2435 		if (after(scb->end_seq, tp->snd_una)) {
2436 			if (tcp_skb_pcount(skb) > 1)
2437 				acked |= tcp_tso_acked(sk, skb,
2438 						       now, &seq_rtt);
2439 			break;
2440 		}
2441 
2442 		/* Initial outgoing SYN's get put onto the write_queue
2443 		 * just like anything else we transmit.  It is not
2444 		 * true data, and if we misinform our callers that
2445 		 * this ACK acks real data, we will erroneously exit
2446 		 * connection startup slow start one packet too
2447 		 * quickly.  This is severely frowned upon behavior.
2448 		 */
2449 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2450 			acked |= FLAG_DATA_ACKED;
2451 		} else {
2452 			acked |= FLAG_SYN_ACKED;
2453 			tp->retrans_stamp = 0;
2454 		}
2455 
2456 		if (sacked) {
2457 			if (sacked & TCPCB_RETRANS) {
2458 				if(sacked & TCPCB_SACKED_RETRANS)
2459 					tp->retrans_out -= tcp_skb_pcount(skb);
2460 				acked |= FLAG_RETRANS_DATA_ACKED;
2461 				seq_rtt = -1;
2462 			} else if (seq_rtt < 0)
2463 				seq_rtt = now - scb->when;
2464 			if (sacked & TCPCB_SACKED_ACKED)
2465 				tp->sacked_out -= tcp_skb_pcount(skb);
2466 			if (sacked & TCPCB_LOST)
2467 				tp->lost_out -= tcp_skb_pcount(skb);
2468 			if (sacked & TCPCB_URG) {
2469 				if (tp->urg_mode &&
2470 				    !before(scb->end_seq, tp->snd_up))
2471 					tp->urg_mode = 0;
2472 			}
2473 		} else if (seq_rtt < 0)
2474 			seq_rtt = now - scb->when;
2475 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2476 		tcp_packets_out_dec(tp, skb);
2477 		__skb_unlink(skb, skb->list);
2478 		sk_stream_free_skb(sk, skb);
2479 	}
2480 
2481 	if (acked&FLAG_ACKED) {
2482 		tcp_ack_update_rtt(tp, acked, seq_rtt);
2483 		tcp_ack_packets_out(sk, tp);
2484 	}
2485 
2486 #if FASTRETRANS_DEBUG > 0
2487 	BUG_TRAP((int)tp->sacked_out >= 0);
2488 	BUG_TRAP((int)tp->lost_out >= 0);
2489 	BUG_TRAP((int)tp->retrans_out >= 0);
2490 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2491 		if (tp->lost_out) {
2492 			printk(KERN_DEBUG "Leak l=%u %d\n",
2493 			       tp->lost_out, tp->ca_state);
2494 			tp->lost_out = 0;
2495 		}
2496 		if (tp->sacked_out) {
2497 			printk(KERN_DEBUG "Leak s=%u %d\n",
2498 			       tp->sacked_out, tp->ca_state);
2499 			tp->sacked_out = 0;
2500 		}
2501 		if (tp->retrans_out) {
2502 			printk(KERN_DEBUG "Leak r=%u %d\n",
2503 			       tp->retrans_out, tp->ca_state);
2504 			tp->retrans_out = 0;
2505 		}
2506 	}
2507 #endif
2508 	*seq_rtt_p = seq_rtt;
2509 	return acked;
2510 }
2511 
2512 static void tcp_ack_probe(struct sock *sk)
2513 {
2514 	struct tcp_sock *tp = tcp_sk(sk);
2515 
2516 	/* Was it a usable window open? */
2517 
2518 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2519 		   tp->snd_una + tp->snd_wnd)) {
2520 		tp->backoff = 0;
2521 		tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
2522 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2523 		 * This function is not for random using!
2524 		 */
2525 	} else {
2526 		tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
2527 				     min(tp->rto << tp->backoff, TCP_RTO_MAX));
2528 	}
2529 }
2530 
2531 static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
2532 {
2533 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2534 		tp->ca_state != TCP_CA_Open);
2535 }
2536 
2537 static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
2538 {
2539 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2540 		!((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
2541 }
2542 
2543 /* Check that window update is acceptable.
2544  * The function assumes that snd_una<=ack<=snd_next.
2545  */
2546 static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack,
2547 					u32 ack_seq, u32 nwin)
2548 {
2549 	return (after(ack, tp->snd_una) ||
2550 		after(ack_seq, tp->snd_wl1) ||
2551 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2552 }
2553 
2554 /* Update our send window.
2555  *
2556  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2557  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2558  */
2559 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2560 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2561 {
2562 	int flag = 0;
2563 	u32 nwin = ntohs(skb->h.th->window);
2564 
2565 	if (likely(!skb->h.th->syn))
2566 		nwin <<= tp->rx_opt.snd_wscale;
2567 
2568 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2569 		flag |= FLAG_WIN_UPDATE;
2570 		tcp_update_wl(tp, ack, ack_seq);
2571 
2572 		if (tp->snd_wnd != nwin) {
2573 			tp->snd_wnd = nwin;
2574 
2575 			/* Note, it is the only place, where
2576 			 * fast path is recovered for sending TCP.
2577 			 */
2578 			tcp_fast_path_check(sk, tp);
2579 
2580 			if (nwin > tp->max_window) {
2581 				tp->max_window = nwin;
2582 				tcp_sync_mss(sk, tp->pmtu_cookie);
2583 			}
2584 		}
2585 	}
2586 
2587 	tp->snd_una = ack;
2588 
2589 	return flag;
2590 }
2591 
2592 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2593 {
2594 	struct tcp_sock *tp = tcp_sk(sk);
2595 
2596 	tcp_sync_left_out(tp);
2597 
2598 	if (tp->snd_una == prior_snd_una ||
2599 	    !before(tp->snd_una, tp->frto_highmark)) {
2600 		/* RTO was caused by loss, start retransmitting in
2601 		 * go-back-N slow start
2602 		 */
2603 		tcp_enter_frto_loss(sk);
2604 		return;
2605 	}
2606 
2607 	if (tp->frto_counter == 1) {
2608 		/* First ACK after RTO advances the window: allow two new
2609 		 * segments out.
2610 		 */
2611 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2612 	} else {
2613 		/* Also the second ACK after RTO advances the window.
2614 		 * The RTO was likely spurious. Reduce cwnd and continue
2615 		 * in congestion avoidance
2616 		 */
2617 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2618 		tcp_moderate_cwnd(tp);
2619 	}
2620 
2621 	/* F-RTO affects on two new ACKs following RTO.
2622 	 * At latest on third ACK the TCP behavor is back to normal.
2623 	 */
2624 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2625 }
2626 
2627 /*
2628  * TCP Westwood+
2629  */
2630 
2631 /*
2632  * @init_westwood
2633  * This function initializes fields used in TCP Westwood+. We can't
2634  * get no information about RTTmin at this time so we simply set it to
2635  * TCP_WESTWOOD_INIT_RTT. This value was chosen to be too conservative
2636  * since in this way we're sure it will be updated in a consistent
2637  * way as soon as possible. It will reasonably happen within the first
2638  * RTT period of the connection lifetime.
2639  */
2640 
2641 static void init_westwood(struct sock *sk)
2642 {
2643         struct tcp_sock *tp = tcp_sk(sk);
2644 
2645         tp->westwood.bw_ns_est = 0;
2646         tp->westwood.bw_est = 0;
2647         tp->westwood.accounted = 0;
2648         tp->westwood.cumul_ack = 0;
2649         tp->westwood.rtt_win_sx = tcp_time_stamp;
2650         tp->westwood.rtt = TCP_WESTWOOD_INIT_RTT;
2651         tp->westwood.rtt_min = TCP_WESTWOOD_INIT_RTT;
2652         tp->westwood.snd_una = tp->snd_una;
2653 }
2654 
2655 /*
2656  * @westwood_do_filter
2657  * Low-pass filter. Implemented using constant coeffients.
2658  */
2659 
2660 static inline __u32 westwood_do_filter(__u32 a, __u32 b)
2661 {
2662 	return (((7 * a) + b) >> 3);
2663 }
2664 
2665 static void westwood_filter(struct sock *sk, __u32 delta)
2666 {
2667 	struct tcp_sock *tp = tcp_sk(sk);
2668 
2669 	tp->westwood.bw_ns_est =
2670 		westwood_do_filter(tp->westwood.bw_ns_est,
2671 				   tp->westwood.bk / delta);
2672 	tp->westwood.bw_est =
2673 		westwood_do_filter(tp->westwood.bw_est,
2674 				   tp->westwood.bw_ns_est);
2675 }
2676 
2677 /*
2678  * @westwood_update_rttmin
2679  * It is used to update RTTmin. In this case we MUST NOT use
2680  * WESTWOOD_RTT_MIN minimum bound since we could be on a LAN!
2681  */
2682 
2683 static inline __u32 westwood_update_rttmin(const struct sock *sk)
2684 {
2685 	const struct tcp_sock *tp = tcp_sk(sk);
2686 	__u32 rttmin = tp->westwood.rtt_min;
2687 
2688 	if (tp->westwood.rtt != 0 &&
2689 	    (tp->westwood.rtt < tp->westwood.rtt_min || !rttmin))
2690 		rttmin = tp->westwood.rtt;
2691 
2692 	return rttmin;
2693 }
2694 
2695 /*
2696  * @westwood_acked
2697  * Evaluate increases for dk.
2698  */
2699 
2700 static inline __u32 westwood_acked(const struct sock *sk)
2701 {
2702 	const struct tcp_sock *tp = tcp_sk(sk);
2703 
2704 	return tp->snd_una - tp->westwood.snd_una;
2705 }
2706 
2707 /*
2708  * @westwood_new_window
2709  * It evaluates if we are receiving data inside the same RTT window as
2710  * when we started.
2711  * Return value:
2712  * It returns 0 if we are still evaluating samples in the same RTT
2713  * window, 1 if the sample has to be considered in the next window.
2714  */
2715 
2716 static int westwood_new_window(const struct sock *sk)
2717 {
2718 	const struct tcp_sock *tp = tcp_sk(sk);
2719 	__u32 left_bound;
2720 	__u32 rtt;
2721 	int ret = 0;
2722 
2723 	left_bound = tp->westwood.rtt_win_sx;
2724 	rtt = max(tp->westwood.rtt, (u32) TCP_WESTWOOD_RTT_MIN);
2725 
2726 	/*
2727 	 * A RTT-window has passed. Be careful since if RTT is less than
2728 	 * 50ms we don't filter but we continue 'building the sample'.
2729 	 * This minimum limit was choosen since an estimation on small
2730 	 * time intervals is better to avoid...
2731 	 * Obvioulsy on a LAN we reasonably will always have
2732 	 * right_bound = left_bound + WESTWOOD_RTT_MIN
2733          */
2734 
2735 	if ((left_bound + rtt) < tcp_time_stamp)
2736 		ret = 1;
2737 
2738 	return ret;
2739 }
2740 
2741 /*
2742  * @westwood_update_window
2743  * It updates RTT evaluation window if it is the right moment to do
2744  * it. If so it calls filter for evaluating bandwidth.
2745  */
2746 
2747 static void __westwood_update_window(struct sock *sk, __u32 now)
2748 {
2749 	struct tcp_sock *tp = tcp_sk(sk);
2750 	__u32 delta = now - tp->westwood.rtt_win_sx;
2751 
2752         if (delta) {
2753 		if (tp->westwood.rtt)
2754 			westwood_filter(sk, delta);
2755 
2756 		tp->westwood.bk = 0;
2757 		tp->westwood.rtt_win_sx = tcp_time_stamp;
2758 	}
2759 }
2760 
2761 
2762 static void westwood_update_window(struct sock *sk, __u32 now)
2763 {
2764 	if (westwood_new_window(sk))
2765 		__westwood_update_window(sk, now);
2766 }
2767 
2768 /*
2769  * @__tcp_westwood_fast_bw
2770  * It is called when we are in fast path. In particular it is called when
2771  * header prediction is successfull. In such case infact update is
2772  * straight forward and doesn't need any particular care.
2773  */
2774 
2775 static void __tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb)
2776 {
2777 	struct tcp_sock *tp = tcp_sk(sk);
2778 
2779 	westwood_update_window(sk, tcp_time_stamp);
2780 
2781 	tp->westwood.bk += westwood_acked(sk);
2782 	tp->westwood.snd_una = tp->snd_una;
2783 	tp->westwood.rtt_min = westwood_update_rttmin(sk);
2784 }
2785 
2786 static inline void tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb)
2787 {
2788         if (tcp_is_westwood(tcp_sk(sk)))
2789                 __tcp_westwood_fast_bw(sk, skb);
2790 }
2791 
2792 
2793 /*
2794  * @westwood_dupack_update
2795  * It updates accounted and cumul_ack when receiving a dupack.
2796  */
2797 
2798 static void westwood_dupack_update(struct sock *sk)
2799 {
2800 	struct tcp_sock *tp = tcp_sk(sk);
2801 
2802 	tp->westwood.accounted += tp->mss_cache_std;
2803 	tp->westwood.cumul_ack = tp->mss_cache_std;
2804 }
2805 
2806 static inline int westwood_may_change_cumul(struct tcp_sock *tp)
2807 {
2808 	return (tp->westwood.cumul_ack > tp->mss_cache_std);
2809 }
2810 
2811 static inline void westwood_partial_update(struct tcp_sock *tp)
2812 {
2813 	tp->westwood.accounted -= tp->westwood.cumul_ack;
2814 	tp->westwood.cumul_ack = tp->mss_cache_std;
2815 }
2816 
2817 static inline void westwood_complete_update(struct tcp_sock *tp)
2818 {
2819 	tp->westwood.cumul_ack -= tp->westwood.accounted;
2820 	tp->westwood.accounted = 0;
2821 }
2822 
2823 /*
2824  * @westwood_acked_count
2825  * This function evaluates cumul_ack for evaluating dk in case of
2826  * delayed or partial acks.
2827  */
2828 
2829 static inline __u32 westwood_acked_count(struct sock *sk)
2830 {
2831 	struct tcp_sock *tp = tcp_sk(sk);
2832 
2833 	tp->westwood.cumul_ack = westwood_acked(sk);
2834 
2835         /* If cumul_ack is 0 this is a dupack since it's not moving
2836          * tp->snd_una.
2837          */
2838         if (!(tp->westwood.cumul_ack))
2839                 westwood_dupack_update(sk);
2840 
2841         if (westwood_may_change_cumul(tp)) {
2842 		/* Partial or delayed ack */
2843 		if (tp->westwood.accounted >= tp->westwood.cumul_ack)
2844 			westwood_partial_update(tp);
2845 		else
2846 			westwood_complete_update(tp);
2847 	}
2848 
2849 	tp->westwood.snd_una = tp->snd_una;
2850 
2851 	return tp->westwood.cumul_ack;
2852 }
2853 
2854 
2855 /*
2856  * @__tcp_westwood_slow_bw
2857  * It is called when something is going wrong..even if there could
2858  * be no problems! Infact a simple delayed packet may trigger a
2859  * dupack. But we need to be careful in such case.
2860  */
2861 
2862 static void __tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb)
2863 {
2864 	struct tcp_sock *tp = tcp_sk(sk);
2865 
2866 	westwood_update_window(sk, tcp_time_stamp);
2867 
2868 	tp->westwood.bk += westwood_acked_count(sk);
2869 	tp->westwood.rtt_min = westwood_update_rttmin(sk);
2870 }
2871 
2872 static inline void tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb)
2873 {
2874         if (tcp_is_westwood(tcp_sk(sk)))
2875                 __tcp_westwood_slow_bw(sk, skb);
2876 }
2877 
2878 /* This routine deals with incoming acks, but not outgoing ones. */
2879 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2880 {
2881 	struct tcp_sock *tp = tcp_sk(sk);
2882 	u32 prior_snd_una = tp->snd_una;
2883 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2884 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2885 	u32 prior_in_flight;
2886 	s32 seq_rtt;
2887 	int prior_packets;
2888 
2889 	/* If the ack is newer than sent or older than previous acks
2890 	 * then we can probably ignore it.
2891 	 */
2892 	if (after(ack, tp->snd_nxt))
2893 		goto uninteresting_ack;
2894 
2895 	if (before(ack, prior_snd_una))
2896 		goto old_ack;
2897 
2898 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2899 		/* Window is constant, pure forward advance.
2900 		 * No more checks are required.
2901 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2902 		 */
2903 		tcp_update_wl(tp, ack, ack_seq);
2904 		tp->snd_una = ack;
2905 		tcp_westwood_fast_bw(sk, skb);
2906 		flag |= FLAG_WIN_UPDATE;
2907 
2908 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2909 	} else {
2910 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2911 			flag |= FLAG_DATA;
2912 		else
2913 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2914 
2915 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2916 
2917 		if (TCP_SKB_CB(skb)->sacked)
2918 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2919 
2920 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2921 			flag |= FLAG_ECE;
2922 
2923 		tcp_westwood_slow_bw(sk,skb);
2924 	}
2925 
2926 	/* We passed data and got it acked, remove any soft error
2927 	 * log. Something worked...
2928 	 */
2929 	sk->sk_err_soft = 0;
2930 	tp->rcv_tstamp = tcp_time_stamp;
2931 	prior_packets = tp->packets_out;
2932 	if (!prior_packets)
2933 		goto no_queue;
2934 
2935 	prior_in_flight = tcp_packets_in_flight(tp);
2936 
2937 	/* See if we can take anything off of the retransmit queue. */
2938 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2939 
2940 	if (tp->frto_counter)
2941 		tcp_process_frto(sk, prior_snd_una);
2942 
2943 	if (tcp_ack_is_dubious(tp, flag)) {
2944 		/* Advanve CWND, if state allows this. */
2945 		if ((flag & FLAG_DATA_ACKED) &&
2946 		    (tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd) &&
2947 		    tcp_may_raise_cwnd(tp, flag))
2948 			tcp_cong_avoid(tp, ack, seq_rtt);
2949 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2950 	} else {
2951 		if ((flag & FLAG_DATA_ACKED) &&
2952 		    (tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd))
2953 			tcp_cong_avoid(tp, ack, seq_rtt);
2954 	}
2955 
2956 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2957 		dst_confirm(sk->sk_dst_cache);
2958 
2959 	return 1;
2960 
2961 no_queue:
2962 	tp->probes_out = 0;
2963 
2964 	/* If this ack opens up a zero window, clear backoff.  It was
2965 	 * being used to time the probes, and is probably far higher than
2966 	 * it needs to be for normal retransmission.
2967 	 */
2968 	if (sk->sk_send_head)
2969 		tcp_ack_probe(sk);
2970 	return 1;
2971 
2972 old_ack:
2973 	if (TCP_SKB_CB(skb)->sacked)
2974 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2975 
2976 uninteresting_ack:
2977 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2978 	return 0;
2979 }
2980 
2981 
2982 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2983  * But, this can also be called on packets in the established flow when
2984  * the fast version below fails.
2985  */
2986 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2987 {
2988 	unsigned char *ptr;
2989 	struct tcphdr *th = skb->h.th;
2990 	int length=(th->doff*4)-sizeof(struct tcphdr);
2991 
2992 	ptr = (unsigned char *)(th + 1);
2993 	opt_rx->saw_tstamp = 0;
2994 
2995 	while(length>0) {
2996 	  	int opcode=*ptr++;
2997 		int opsize;
2998 
2999 		switch (opcode) {
3000 			case TCPOPT_EOL:
3001 				return;
3002 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3003 				length--;
3004 				continue;
3005 			default:
3006 				opsize=*ptr++;
3007 				if (opsize < 2) /* "silly options" */
3008 					return;
3009 				if (opsize > length)
3010 					return;	/* don't parse partial options */
3011 	  			switch(opcode) {
3012 				case TCPOPT_MSS:
3013 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
3014 						u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
3015 						if (in_mss) {
3016 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3017 								in_mss = opt_rx->user_mss;
3018 							opt_rx->mss_clamp = in_mss;
3019 						}
3020 					}
3021 					break;
3022 				case TCPOPT_WINDOW:
3023 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
3024 						if (sysctl_tcp_window_scaling) {
3025 							__u8 snd_wscale = *(__u8 *) ptr;
3026 							opt_rx->wscale_ok = 1;
3027 							if (snd_wscale > 14) {
3028 								if(net_ratelimit())
3029 									printk(KERN_INFO "tcp_parse_options: Illegal window "
3030 									       "scaling value %d >14 received.\n",
3031 									       snd_wscale);
3032 								snd_wscale = 14;
3033 							}
3034 							opt_rx->snd_wscale = snd_wscale;
3035 						}
3036 					break;
3037 				case TCPOPT_TIMESTAMP:
3038 					if(opsize==TCPOLEN_TIMESTAMP) {
3039 						if ((estab && opt_rx->tstamp_ok) ||
3040 						    (!estab && sysctl_tcp_timestamps)) {
3041 							opt_rx->saw_tstamp = 1;
3042 							opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
3043 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
3044 						}
3045 					}
3046 					break;
3047 				case TCPOPT_SACK_PERM:
3048 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3049 						if (sysctl_tcp_sack) {
3050 							opt_rx->sack_ok = 1;
3051 							tcp_sack_reset(opt_rx);
3052 						}
3053 					}
3054 					break;
3055 
3056 				case TCPOPT_SACK:
3057 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3058 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3059 					   opt_rx->sack_ok) {
3060 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3061 					}
3062 	  			};
3063 	  			ptr+=opsize-2;
3064 	  			length-=opsize;
3065 	  	};
3066 	}
3067 }
3068 
3069 /* Fast parse options. This hopes to only see timestamps.
3070  * If it is wrong it falls back on tcp_parse_options().
3071  */
3072 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3073 					 struct tcp_sock *tp)
3074 {
3075 	if (th->doff == sizeof(struct tcphdr)>>2) {
3076 		tp->rx_opt.saw_tstamp = 0;
3077 		return 0;
3078 	} else if (tp->rx_opt.tstamp_ok &&
3079 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3080 		__u32 *ptr = (__u32 *)(th + 1);
3081 		if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3082 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3083 			tp->rx_opt.saw_tstamp = 1;
3084 			++ptr;
3085 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3086 			++ptr;
3087 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3088 			return 1;
3089 		}
3090 	}
3091 	tcp_parse_options(skb, &tp->rx_opt, 1);
3092 	return 1;
3093 }
3094 
3095 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3096 {
3097 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3098 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
3099 }
3100 
3101 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3102 {
3103 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3104 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3105 		 * extra check below makes sure this can only happen
3106 		 * for pure ACK frames.  -DaveM
3107 		 *
3108 		 * Not only, also it occurs for expired timestamps.
3109 		 */
3110 
3111 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3112 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3113 			tcp_store_ts_recent(tp);
3114 	}
3115 }
3116 
3117 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3118  *
3119  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3120  * it can pass through stack. So, the following predicate verifies that
3121  * this segment is not used for anything but congestion avoidance or
3122  * fast retransmit. Moreover, we even are able to eliminate most of such
3123  * second order effects, if we apply some small "replay" window (~RTO)
3124  * to timestamp space.
3125  *
3126  * All these measures still do not guarantee that we reject wrapped ACKs
3127  * on networks with high bandwidth, when sequence space is recycled fastly,
3128  * but it guarantees that such events will be very rare and do not affect
3129  * connection seriously. This doesn't look nice, but alas, PAWS is really
3130  * buggy extension.
3131  *
3132  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3133  * states that events when retransmit arrives after original data are rare.
3134  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3135  * the biggest problem on large power networks even with minor reordering.
3136  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3137  * up to bandwidth of 18Gigabit/sec. 8) ]
3138  */
3139 
3140 static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb)
3141 {
3142 	struct tcphdr *th = skb->h.th;
3143 	u32 seq = TCP_SKB_CB(skb)->seq;
3144 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3145 
3146 	return (/* 1. Pure ACK with correct sequence number. */
3147 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3148 
3149 		/* 2. ... and duplicate ACK. */
3150 		ack == tp->snd_una &&
3151 
3152 		/* 3. ... and does not update window. */
3153 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3154 
3155 		/* 4. ... and sits in replay window. */
3156 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ);
3157 }
3158 
3159 static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb)
3160 {
3161 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3162 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3163 		!tcp_disordered_ack(tp, skb));
3164 }
3165 
3166 /* Check segment sequence number for validity.
3167  *
3168  * Segment controls are considered valid, if the segment
3169  * fits to the window after truncation to the window. Acceptability
3170  * of data (and SYN, FIN, of course) is checked separately.
3171  * See tcp_data_queue(), for example.
3172  *
3173  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3174  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3175  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3176  * (borrowed from freebsd)
3177  */
3178 
3179 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3180 {
3181 	return	!before(end_seq, tp->rcv_wup) &&
3182 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3183 }
3184 
3185 /* When we get a reset we do this. */
3186 static void tcp_reset(struct sock *sk)
3187 {
3188 	/* We want the right error as BSD sees it (and indeed as we do). */
3189 	switch (sk->sk_state) {
3190 		case TCP_SYN_SENT:
3191 			sk->sk_err = ECONNREFUSED;
3192 			break;
3193 		case TCP_CLOSE_WAIT:
3194 			sk->sk_err = EPIPE;
3195 			break;
3196 		case TCP_CLOSE:
3197 			return;
3198 		default:
3199 			sk->sk_err = ECONNRESET;
3200 	}
3201 
3202 	if (!sock_flag(sk, SOCK_DEAD))
3203 		sk->sk_error_report(sk);
3204 
3205 	tcp_done(sk);
3206 }
3207 
3208 /*
3209  * 	Process the FIN bit. This now behaves as it is supposed to work
3210  *	and the FIN takes effect when it is validly part of sequence
3211  *	space. Not before when we get holes.
3212  *
3213  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3214  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3215  *	TIME-WAIT)
3216  *
3217  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3218  *	close and we go into CLOSING (and later onto TIME-WAIT)
3219  *
3220  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3221  */
3222 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3223 {
3224 	struct tcp_sock *tp = tcp_sk(sk);
3225 
3226 	tcp_schedule_ack(tp);
3227 
3228 	sk->sk_shutdown |= RCV_SHUTDOWN;
3229 	sock_set_flag(sk, SOCK_DONE);
3230 
3231 	switch (sk->sk_state) {
3232 		case TCP_SYN_RECV:
3233 		case TCP_ESTABLISHED:
3234 			/* Move to CLOSE_WAIT */
3235 			tcp_set_state(sk, TCP_CLOSE_WAIT);
3236 			tp->ack.pingpong = 1;
3237 			break;
3238 
3239 		case TCP_CLOSE_WAIT:
3240 		case TCP_CLOSING:
3241 			/* Received a retransmission of the FIN, do
3242 			 * nothing.
3243 			 */
3244 			break;
3245 		case TCP_LAST_ACK:
3246 			/* RFC793: Remain in the LAST-ACK state. */
3247 			break;
3248 
3249 		case TCP_FIN_WAIT1:
3250 			/* This case occurs when a simultaneous close
3251 			 * happens, we must ack the received FIN and
3252 			 * enter the CLOSING state.
3253 			 */
3254 			tcp_send_ack(sk);
3255 			tcp_set_state(sk, TCP_CLOSING);
3256 			break;
3257 		case TCP_FIN_WAIT2:
3258 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3259 			tcp_send_ack(sk);
3260 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3261 			break;
3262 		default:
3263 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3264 			 * cases we should never reach this piece of code.
3265 			 */
3266 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3267 			       __FUNCTION__, sk->sk_state);
3268 			break;
3269 	};
3270 
3271 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3272 	 * Probably, we should reset in this case. For now drop them.
3273 	 */
3274 	__skb_queue_purge(&tp->out_of_order_queue);
3275 	if (tp->rx_opt.sack_ok)
3276 		tcp_sack_reset(&tp->rx_opt);
3277 	sk_stream_mem_reclaim(sk);
3278 
3279 	if (!sock_flag(sk, SOCK_DEAD)) {
3280 		sk->sk_state_change(sk);
3281 
3282 		/* Do not send POLL_HUP for half duplex close. */
3283 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3284 		    sk->sk_state == TCP_CLOSE)
3285 			sk_wake_async(sk, 1, POLL_HUP);
3286 		else
3287 			sk_wake_async(sk, 1, POLL_IN);
3288 	}
3289 }
3290 
3291 static __inline__ int
3292 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3293 {
3294 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3295 		if (before(seq, sp->start_seq))
3296 			sp->start_seq = seq;
3297 		if (after(end_seq, sp->end_seq))
3298 			sp->end_seq = end_seq;
3299 		return 1;
3300 	}
3301 	return 0;
3302 }
3303 
3304 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3305 {
3306 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3307 		if (before(seq, tp->rcv_nxt))
3308 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3309 		else
3310 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3311 
3312 		tp->rx_opt.dsack = 1;
3313 		tp->duplicate_sack[0].start_seq = seq;
3314 		tp->duplicate_sack[0].end_seq = end_seq;
3315 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3316 	}
3317 }
3318 
3319 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3320 {
3321 	if (!tp->rx_opt.dsack)
3322 		tcp_dsack_set(tp, seq, end_seq);
3323 	else
3324 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3325 }
3326 
3327 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3328 {
3329 	struct tcp_sock *tp = tcp_sk(sk);
3330 
3331 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3332 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3333 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3334 		tcp_enter_quickack_mode(tp);
3335 
3336 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3337 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3338 
3339 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3340 				end_seq = tp->rcv_nxt;
3341 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3342 		}
3343 	}
3344 
3345 	tcp_send_ack(sk);
3346 }
3347 
3348 /* These routines update the SACK block as out-of-order packets arrive or
3349  * in-order packets close up the sequence space.
3350  */
3351 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3352 {
3353 	int this_sack;
3354 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3355 	struct tcp_sack_block *swalk = sp+1;
3356 
3357 	/* See if the recent change to the first SACK eats into
3358 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3359 	 */
3360 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3361 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3362 			int i;
3363 
3364 			/* Zap SWALK, by moving every further SACK up by one slot.
3365 			 * Decrease num_sacks.
3366 			 */
3367 			tp->rx_opt.num_sacks--;
3368 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3369 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3370 				sp[i] = sp[i+1];
3371 			continue;
3372 		}
3373 		this_sack++, swalk++;
3374 	}
3375 }
3376 
3377 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3378 {
3379 	__u32 tmp;
3380 
3381 	tmp = sack1->start_seq;
3382 	sack1->start_seq = sack2->start_seq;
3383 	sack2->start_seq = tmp;
3384 
3385 	tmp = sack1->end_seq;
3386 	sack1->end_seq = sack2->end_seq;
3387 	sack2->end_seq = tmp;
3388 }
3389 
3390 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3391 {
3392 	struct tcp_sock *tp = tcp_sk(sk);
3393 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3394 	int cur_sacks = tp->rx_opt.num_sacks;
3395 	int this_sack;
3396 
3397 	if (!cur_sacks)
3398 		goto new_sack;
3399 
3400 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3401 		if (tcp_sack_extend(sp, seq, end_seq)) {
3402 			/* Rotate this_sack to the first one. */
3403 			for (; this_sack>0; this_sack--, sp--)
3404 				tcp_sack_swap(sp, sp-1);
3405 			if (cur_sacks > 1)
3406 				tcp_sack_maybe_coalesce(tp);
3407 			return;
3408 		}
3409 	}
3410 
3411 	/* Could not find an adjacent existing SACK, build a new one,
3412 	 * put it at the front, and shift everyone else down.  We
3413 	 * always know there is at least one SACK present already here.
3414 	 *
3415 	 * If the sack array is full, forget about the last one.
3416 	 */
3417 	if (this_sack >= 4) {
3418 		this_sack--;
3419 		tp->rx_opt.num_sacks--;
3420 		sp--;
3421 	}
3422 	for(; this_sack > 0; this_sack--, sp--)
3423 		*sp = *(sp-1);
3424 
3425 new_sack:
3426 	/* Build the new head SACK, and we're done. */
3427 	sp->start_seq = seq;
3428 	sp->end_seq = end_seq;
3429 	tp->rx_opt.num_sacks++;
3430 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3431 }
3432 
3433 /* RCV.NXT advances, some SACKs should be eaten. */
3434 
3435 static void tcp_sack_remove(struct tcp_sock *tp)
3436 {
3437 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3438 	int num_sacks = tp->rx_opt.num_sacks;
3439 	int this_sack;
3440 
3441 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3442 	if (skb_queue_len(&tp->out_of_order_queue) == 0) {
3443 		tp->rx_opt.num_sacks = 0;
3444 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3445 		return;
3446 	}
3447 
3448 	for(this_sack = 0; this_sack < num_sacks; ) {
3449 		/* Check if the start of the sack is covered by RCV.NXT. */
3450 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3451 			int i;
3452 
3453 			/* RCV.NXT must cover all the block! */
3454 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3455 
3456 			/* Zap this SACK, by moving forward any other SACKS. */
3457 			for (i=this_sack+1; i < num_sacks; i++)
3458 				tp->selective_acks[i-1] = tp->selective_acks[i];
3459 			num_sacks--;
3460 			continue;
3461 		}
3462 		this_sack++;
3463 		sp++;
3464 	}
3465 	if (num_sacks != tp->rx_opt.num_sacks) {
3466 		tp->rx_opt.num_sacks = num_sacks;
3467 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3468 	}
3469 }
3470 
3471 /* This one checks to see if we can put data from the
3472  * out_of_order queue into the receive_queue.
3473  */
3474 static void tcp_ofo_queue(struct sock *sk)
3475 {
3476 	struct tcp_sock *tp = tcp_sk(sk);
3477 	__u32 dsack_high = tp->rcv_nxt;
3478 	struct sk_buff *skb;
3479 
3480 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3481 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3482 			break;
3483 
3484 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3485 			__u32 dsack = dsack_high;
3486 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3487 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3488 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3489 		}
3490 
3491 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3492 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3493 			__skb_unlink(skb, skb->list);
3494 			__kfree_skb(skb);
3495 			continue;
3496 		}
3497 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3498 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3499 			   TCP_SKB_CB(skb)->end_seq);
3500 
3501 		__skb_unlink(skb, skb->list);
3502 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3503 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3504 		if(skb->h.th->fin)
3505 			tcp_fin(skb, sk, skb->h.th);
3506 	}
3507 }
3508 
3509 static int tcp_prune_queue(struct sock *sk);
3510 
3511 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3512 {
3513 	struct tcphdr *th = skb->h.th;
3514 	struct tcp_sock *tp = tcp_sk(sk);
3515 	int eaten = -1;
3516 
3517 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3518 		goto drop;
3519 
3520 	th = skb->h.th;
3521 	__skb_pull(skb, th->doff*4);
3522 
3523 	TCP_ECN_accept_cwr(tp, skb);
3524 
3525 	if (tp->rx_opt.dsack) {
3526 		tp->rx_opt.dsack = 0;
3527 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3528 						    4 - tp->rx_opt.tstamp_ok);
3529 	}
3530 
3531 	/*  Queue data for delivery to the user.
3532 	 *  Packets in sequence go to the receive queue.
3533 	 *  Out of sequence packets to the out_of_order_queue.
3534 	 */
3535 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3536 		if (tcp_receive_window(tp) == 0)
3537 			goto out_of_window;
3538 
3539 		/* Ok. In sequence. In window. */
3540 		if (tp->ucopy.task == current &&
3541 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3542 		    sock_owned_by_user(sk) && !tp->urg_data) {
3543 			int chunk = min_t(unsigned int, skb->len,
3544 							tp->ucopy.len);
3545 
3546 			__set_current_state(TASK_RUNNING);
3547 
3548 			local_bh_enable();
3549 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3550 				tp->ucopy.len -= chunk;
3551 				tp->copied_seq += chunk;
3552 				eaten = (chunk == skb->len && !th->fin);
3553 				tcp_rcv_space_adjust(sk);
3554 			}
3555 			local_bh_disable();
3556 		}
3557 
3558 		if (eaten <= 0) {
3559 queue_and_out:
3560 			if (eaten < 0 &&
3561 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3562 			     !sk_stream_rmem_schedule(sk, skb))) {
3563 				if (tcp_prune_queue(sk) < 0 ||
3564 				    !sk_stream_rmem_schedule(sk, skb))
3565 					goto drop;
3566 			}
3567 			sk_stream_set_owner_r(skb, sk);
3568 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3569 		}
3570 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3571 		if(skb->len)
3572 			tcp_event_data_recv(sk, tp, skb);
3573 		if(th->fin)
3574 			tcp_fin(skb, sk, th);
3575 
3576 		if (skb_queue_len(&tp->out_of_order_queue)) {
3577 			tcp_ofo_queue(sk);
3578 
3579 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3580 			 * gap in queue is filled.
3581 			 */
3582 			if (!skb_queue_len(&tp->out_of_order_queue))
3583 				tp->ack.pingpong = 0;
3584 		}
3585 
3586 		if (tp->rx_opt.num_sacks)
3587 			tcp_sack_remove(tp);
3588 
3589 		tcp_fast_path_check(sk, tp);
3590 
3591 		if (eaten > 0)
3592 			__kfree_skb(skb);
3593 		else if (!sock_flag(sk, SOCK_DEAD))
3594 			sk->sk_data_ready(sk, 0);
3595 		return;
3596 	}
3597 
3598 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3599 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3600 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3601 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3602 
3603 out_of_window:
3604 		tcp_enter_quickack_mode(tp);
3605 		tcp_schedule_ack(tp);
3606 drop:
3607 		__kfree_skb(skb);
3608 		return;
3609 	}
3610 
3611 	/* Out of window. F.e. zero window probe. */
3612 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3613 		goto out_of_window;
3614 
3615 	tcp_enter_quickack_mode(tp);
3616 
3617 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3618 		/* Partial packet, seq < rcv_next < end_seq */
3619 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3620 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3621 			   TCP_SKB_CB(skb)->end_seq);
3622 
3623 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3624 
3625 		/* If window is closed, drop tail of packet. But after
3626 		 * remembering D-SACK for its head made in previous line.
3627 		 */
3628 		if (!tcp_receive_window(tp))
3629 			goto out_of_window;
3630 		goto queue_and_out;
3631 	}
3632 
3633 	TCP_ECN_check_ce(tp, skb);
3634 
3635 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3636 	    !sk_stream_rmem_schedule(sk, skb)) {
3637 		if (tcp_prune_queue(sk) < 0 ||
3638 		    !sk_stream_rmem_schedule(sk, skb))
3639 			goto drop;
3640 	}
3641 
3642 	/* Disable header prediction. */
3643 	tp->pred_flags = 0;
3644 	tcp_schedule_ack(tp);
3645 
3646 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3647 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3648 
3649 	sk_stream_set_owner_r(skb, sk);
3650 
3651 	if (!skb_peek(&tp->out_of_order_queue)) {
3652 		/* Initial out of order segment, build 1 SACK. */
3653 		if (tp->rx_opt.sack_ok) {
3654 			tp->rx_opt.num_sacks = 1;
3655 			tp->rx_opt.dsack     = 0;
3656 			tp->rx_opt.eff_sacks = 1;
3657 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3658 			tp->selective_acks[0].end_seq =
3659 						TCP_SKB_CB(skb)->end_seq;
3660 		}
3661 		__skb_queue_head(&tp->out_of_order_queue,skb);
3662 	} else {
3663 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3664 		u32 seq = TCP_SKB_CB(skb)->seq;
3665 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3666 
3667 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3668 			__skb_append(skb1, skb);
3669 
3670 			if (!tp->rx_opt.num_sacks ||
3671 			    tp->selective_acks[0].end_seq != seq)
3672 				goto add_sack;
3673 
3674 			/* Common case: data arrive in order after hole. */
3675 			tp->selective_acks[0].end_seq = end_seq;
3676 			return;
3677 		}
3678 
3679 		/* Find place to insert this segment. */
3680 		do {
3681 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3682 				break;
3683 		} while ((skb1 = skb1->prev) !=
3684 			 (struct sk_buff*)&tp->out_of_order_queue);
3685 
3686 		/* Do skb overlap to previous one? */
3687 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3688 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3689 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3690 				/* All the bits are present. Drop. */
3691 				__kfree_skb(skb);
3692 				tcp_dsack_set(tp, seq, end_seq);
3693 				goto add_sack;
3694 			}
3695 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3696 				/* Partial overlap. */
3697 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3698 			} else {
3699 				skb1 = skb1->prev;
3700 			}
3701 		}
3702 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3703 
3704 		/* And clean segments covered by new one as whole. */
3705 		while ((skb1 = skb->next) !=
3706 		       (struct sk_buff*)&tp->out_of_order_queue &&
3707 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3708 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3709 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3710 			       break;
3711 		       }
3712 		       __skb_unlink(skb1, skb1->list);
3713 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3714 		       __kfree_skb(skb1);
3715 		}
3716 
3717 add_sack:
3718 		if (tp->rx_opt.sack_ok)
3719 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3720 	}
3721 }
3722 
3723 /* Collapse contiguous sequence of skbs head..tail with
3724  * sequence numbers start..end.
3725  * Segments with FIN/SYN are not collapsed (only because this
3726  * simplifies code)
3727  */
3728 static void
3729 tcp_collapse(struct sock *sk, struct sk_buff *head,
3730 	     struct sk_buff *tail, u32 start, u32 end)
3731 {
3732 	struct sk_buff *skb;
3733 
3734 	/* First, check that queue is collapsable and find
3735 	 * the point where collapsing can be useful. */
3736 	for (skb = head; skb != tail; ) {
3737 		/* No new bits? It is possible on ofo queue. */
3738 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3739 			struct sk_buff *next = skb->next;
3740 			__skb_unlink(skb, skb->list);
3741 			__kfree_skb(skb);
3742 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3743 			skb = next;
3744 			continue;
3745 		}
3746 
3747 		/* The first skb to collapse is:
3748 		 * - not SYN/FIN and
3749 		 * - bloated or contains data before "start" or
3750 		 *   overlaps to the next one.
3751 		 */
3752 		if (!skb->h.th->syn && !skb->h.th->fin &&
3753 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3754 		     before(TCP_SKB_CB(skb)->seq, start) ||
3755 		     (skb->next != tail &&
3756 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3757 			break;
3758 
3759 		/* Decided to skip this, advance start seq. */
3760 		start = TCP_SKB_CB(skb)->end_seq;
3761 		skb = skb->next;
3762 	}
3763 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3764 		return;
3765 
3766 	while (before(start, end)) {
3767 		struct sk_buff *nskb;
3768 		int header = skb_headroom(skb);
3769 		int copy = SKB_MAX_ORDER(header, 0);
3770 
3771 		/* Too big header? This can happen with IPv6. */
3772 		if (copy < 0)
3773 			return;
3774 		if (end-start < copy)
3775 			copy = end-start;
3776 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3777 		if (!nskb)
3778 			return;
3779 		skb_reserve(nskb, header);
3780 		memcpy(nskb->head, skb->head, header);
3781 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3782 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3783 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3784 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3785 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3786 		__skb_insert(nskb, skb->prev, skb, skb->list);
3787 		sk_stream_set_owner_r(nskb, sk);
3788 
3789 		/* Copy data, releasing collapsed skbs. */
3790 		while (copy > 0) {
3791 			int offset = start - TCP_SKB_CB(skb)->seq;
3792 			int size = TCP_SKB_CB(skb)->end_seq - start;
3793 
3794 			if (offset < 0) BUG();
3795 			if (size > 0) {
3796 				size = min(copy, size);
3797 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3798 					BUG();
3799 				TCP_SKB_CB(nskb)->end_seq += size;
3800 				copy -= size;
3801 				start += size;
3802 			}
3803 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3804 				struct sk_buff *next = skb->next;
3805 				__skb_unlink(skb, skb->list);
3806 				__kfree_skb(skb);
3807 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3808 				skb = next;
3809 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3810 					return;
3811 			}
3812 		}
3813 	}
3814 }
3815 
3816 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3817  * and tcp_collapse() them until all the queue is collapsed.
3818  */
3819 static void tcp_collapse_ofo_queue(struct sock *sk)
3820 {
3821 	struct tcp_sock *tp = tcp_sk(sk);
3822 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3823 	struct sk_buff *head;
3824 	u32 start, end;
3825 
3826 	if (skb == NULL)
3827 		return;
3828 
3829 	start = TCP_SKB_CB(skb)->seq;
3830 	end = TCP_SKB_CB(skb)->end_seq;
3831 	head = skb;
3832 
3833 	for (;;) {
3834 		skb = skb->next;
3835 
3836 		/* Segment is terminated when we see gap or when
3837 		 * we are at the end of all the queue. */
3838 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3839 		    after(TCP_SKB_CB(skb)->seq, end) ||
3840 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3841 			tcp_collapse(sk, head, skb, start, end);
3842 			head = skb;
3843 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3844 				break;
3845 			/* Start new segment */
3846 			start = TCP_SKB_CB(skb)->seq;
3847 			end = TCP_SKB_CB(skb)->end_seq;
3848 		} else {
3849 			if (before(TCP_SKB_CB(skb)->seq, start))
3850 				start = TCP_SKB_CB(skb)->seq;
3851 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3852 				end = TCP_SKB_CB(skb)->end_seq;
3853 		}
3854 	}
3855 }
3856 
3857 /* Reduce allocated memory if we can, trying to get
3858  * the socket within its memory limits again.
3859  *
3860  * Return less than zero if we should start dropping frames
3861  * until the socket owning process reads some of the data
3862  * to stabilize the situation.
3863  */
3864 static int tcp_prune_queue(struct sock *sk)
3865 {
3866 	struct tcp_sock *tp = tcp_sk(sk);
3867 
3868 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3869 
3870 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3871 
3872 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3873 		tcp_clamp_window(sk, tp);
3874 	else if (tcp_memory_pressure)
3875 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3876 
3877 	tcp_collapse_ofo_queue(sk);
3878 	tcp_collapse(sk, sk->sk_receive_queue.next,
3879 		     (struct sk_buff*)&sk->sk_receive_queue,
3880 		     tp->copied_seq, tp->rcv_nxt);
3881 	sk_stream_mem_reclaim(sk);
3882 
3883 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3884 		return 0;
3885 
3886 	/* Collapsing did not help, destructive actions follow.
3887 	 * This must not ever occur. */
3888 
3889 	/* First, purge the out_of_order queue. */
3890 	if (skb_queue_len(&tp->out_of_order_queue)) {
3891 		NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED,
3892 				 skb_queue_len(&tp->out_of_order_queue));
3893 		__skb_queue_purge(&tp->out_of_order_queue);
3894 
3895 		/* Reset SACK state.  A conforming SACK implementation will
3896 		 * do the same at a timeout based retransmit.  When a connection
3897 		 * is in a sad state like this, we care only about integrity
3898 		 * of the connection not performance.
3899 		 */
3900 		if (tp->rx_opt.sack_ok)
3901 			tcp_sack_reset(&tp->rx_opt);
3902 		sk_stream_mem_reclaim(sk);
3903 	}
3904 
3905 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3906 		return 0;
3907 
3908 	/* If we are really being abused, tell the caller to silently
3909 	 * drop receive data on the floor.  It will get retransmitted
3910 	 * and hopefully then we'll have sufficient space.
3911 	 */
3912 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3913 
3914 	/* Massive buffer overcommit. */
3915 	tp->pred_flags = 0;
3916 	return -1;
3917 }
3918 
3919 
3920 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3921  * As additional protections, we do not touch cwnd in retransmission phases,
3922  * and if application hit its sndbuf limit recently.
3923  */
3924 void tcp_cwnd_application_limited(struct sock *sk)
3925 {
3926 	struct tcp_sock *tp = tcp_sk(sk);
3927 
3928 	if (tp->ca_state == TCP_CA_Open &&
3929 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3930 		/* Limited by application or receiver window. */
3931 		u32 win_used = max(tp->snd_cwnd_used, 2U);
3932 		if (win_used < tp->snd_cwnd) {
3933 			tp->snd_ssthresh = tcp_current_ssthresh(tp);
3934 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3935 		}
3936 		tp->snd_cwnd_used = 0;
3937 	}
3938 	tp->snd_cwnd_stamp = tcp_time_stamp;
3939 }
3940 
3941 
3942 /* When incoming ACK allowed to free some skb from write_queue,
3943  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3944  * on the exit from tcp input handler.
3945  *
3946  * PROBLEM: sndbuf expansion does not work well with largesend.
3947  */
3948 static void tcp_new_space(struct sock *sk)
3949 {
3950 	struct tcp_sock *tp = tcp_sk(sk);
3951 
3952 	if (tp->packets_out < tp->snd_cwnd &&
3953 	    !(sk->sk_userlocks & SOCK_SNDBUF_LOCK) &&
3954 	    !tcp_memory_pressure &&
3955 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
3956  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache_std) +
3957 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3958 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3959 						   tp->reordering + 1);
3960 		sndmem *= 2*demanded;
3961 		if (sndmem > sk->sk_sndbuf)
3962 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3963 		tp->snd_cwnd_stamp = tcp_time_stamp;
3964 	}
3965 
3966 	sk->sk_write_space(sk);
3967 }
3968 
3969 static inline void tcp_check_space(struct sock *sk)
3970 {
3971 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3972 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3973 		if (sk->sk_socket &&
3974 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3975 			tcp_new_space(sk);
3976 	}
3977 }
3978 
3979 static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
3980 {
3981 	struct tcp_sock *tp = tcp_sk(sk);
3982 
3983 	if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
3984 	    tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
3985 	    tcp_write_xmit(sk, tp->nonagle))
3986 		tcp_check_probe_timer(sk, tp);
3987 }
3988 
3989 static __inline__ void tcp_data_snd_check(struct sock *sk)
3990 {
3991 	struct sk_buff *skb = sk->sk_send_head;
3992 
3993 	if (skb != NULL)
3994 		__tcp_data_snd_check(sk, skb);
3995 	tcp_check_space(sk);
3996 }
3997 
3998 /*
3999  * Check if sending an ack is needed.
4000  */
4001 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4002 {
4003 	struct tcp_sock *tp = tcp_sk(sk);
4004 
4005 	    /* More than one full frame received... */
4006 	if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
4007 	     /* ... and right edge of window advances far enough.
4008 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4009 	      */
4010 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4011 	    /* We ACK each frame or... */
4012 	    tcp_in_quickack_mode(tp) ||
4013 	    /* We have out of order data. */
4014 	    (ofo_possible &&
4015 	     skb_peek(&tp->out_of_order_queue))) {
4016 		/* Then ack it now */
4017 		tcp_send_ack(sk);
4018 	} else {
4019 		/* Else, send delayed ack. */
4020 		tcp_send_delayed_ack(sk);
4021 	}
4022 }
4023 
4024 static __inline__ void tcp_ack_snd_check(struct sock *sk)
4025 {
4026 	struct tcp_sock *tp = tcp_sk(sk);
4027 	if (!tcp_ack_scheduled(tp)) {
4028 		/* We sent a data segment already. */
4029 		return;
4030 	}
4031 	__tcp_ack_snd_check(sk, 1);
4032 }
4033 
4034 /*
4035  *	This routine is only called when we have urgent data
4036  *	signalled. Its the 'slow' part of tcp_urg. It could be
4037  *	moved inline now as tcp_urg is only called from one
4038  *	place. We handle URGent data wrong. We have to - as
4039  *	BSD still doesn't use the correction from RFC961.
4040  *	For 1003.1g we should support a new option TCP_STDURG to permit
4041  *	either form (or just set the sysctl tcp_stdurg).
4042  */
4043 
4044 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4045 {
4046 	struct tcp_sock *tp = tcp_sk(sk);
4047 	u32 ptr = ntohs(th->urg_ptr);
4048 
4049 	if (ptr && !sysctl_tcp_stdurg)
4050 		ptr--;
4051 	ptr += ntohl(th->seq);
4052 
4053 	/* Ignore urgent data that we've already seen and read. */
4054 	if (after(tp->copied_seq, ptr))
4055 		return;
4056 
4057 	/* Do not replay urg ptr.
4058 	 *
4059 	 * NOTE: interesting situation not covered by specs.
4060 	 * Misbehaving sender may send urg ptr, pointing to segment,
4061 	 * which we already have in ofo queue. We are not able to fetch
4062 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4063 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4064 	 * situations. But it is worth to think about possibility of some
4065 	 * DoSes using some hypothetical application level deadlock.
4066 	 */
4067 	if (before(ptr, tp->rcv_nxt))
4068 		return;
4069 
4070 	/* Do we already have a newer (or duplicate) urgent pointer? */
4071 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4072 		return;
4073 
4074 	/* Tell the world about our new urgent pointer. */
4075 	sk_send_sigurg(sk);
4076 
4077 	/* We may be adding urgent data when the last byte read was
4078 	 * urgent. To do this requires some care. We cannot just ignore
4079 	 * tp->copied_seq since we would read the last urgent byte again
4080 	 * as data, nor can we alter copied_seq until this data arrives
4081 	 * or we break the sematics of SIOCATMARK (and thus sockatmark())
4082 	 *
4083 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4084 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4085 	 * and expect that both A and B disappear from stream. This is _wrong_.
4086 	 * Though this happens in BSD with high probability, this is occasional.
4087 	 * Any application relying on this is buggy. Note also, that fix "works"
4088 	 * only in this artificial test. Insert some normal data between A and B and we will
4089 	 * decline of BSD again. Verdict: it is better to remove to trap
4090 	 * buggy users.
4091 	 */
4092 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4093 	    !sock_flag(sk, SOCK_URGINLINE) &&
4094 	    tp->copied_seq != tp->rcv_nxt) {
4095 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4096 		tp->copied_seq++;
4097 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4098 			__skb_unlink(skb, skb->list);
4099 			__kfree_skb(skb);
4100 		}
4101 	}
4102 
4103 	tp->urg_data   = TCP_URG_NOTYET;
4104 	tp->urg_seq    = ptr;
4105 
4106 	/* Disable header prediction. */
4107 	tp->pred_flags = 0;
4108 }
4109 
4110 /* This is the 'fast' part of urgent handling. */
4111 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4112 {
4113 	struct tcp_sock *tp = tcp_sk(sk);
4114 
4115 	/* Check if we get a new urgent pointer - normally not. */
4116 	if (th->urg)
4117 		tcp_check_urg(sk,th);
4118 
4119 	/* Do we wait for any urgent data? - normally not... */
4120 	if (tp->urg_data == TCP_URG_NOTYET) {
4121 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4122 			  th->syn;
4123 
4124 		/* Is the urgent pointer pointing into this packet? */
4125 		if (ptr < skb->len) {
4126 			u8 tmp;
4127 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4128 				BUG();
4129 			tp->urg_data = TCP_URG_VALID | tmp;
4130 			if (!sock_flag(sk, SOCK_DEAD))
4131 				sk->sk_data_ready(sk, 0);
4132 		}
4133 	}
4134 }
4135 
4136 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4137 {
4138 	struct tcp_sock *tp = tcp_sk(sk);
4139 	int chunk = skb->len - hlen;
4140 	int err;
4141 
4142 	local_bh_enable();
4143 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
4144 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4145 	else
4146 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4147 						       tp->ucopy.iov);
4148 
4149 	if (!err) {
4150 		tp->ucopy.len -= chunk;
4151 		tp->copied_seq += chunk;
4152 		tcp_rcv_space_adjust(sk);
4153 	}
4154 
4155 	local_bh_disable();
4156 	return err;
4157 }
4158 
4159 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4160 {
4161 	int result;
4162 
4163 	if (sock_owned_by_user(sk)) {
4164 		local_bh_enable();
4165 		result = __tcp_checksum_complete(skb);
4166 		local_bh_disable();
4167 	} else {
4168 		result = __tcp_checksum_complete(skb);
4169 	}
4170 	return result;
4171 }
4172 
4173 static __inline__ int
4174 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4175 {
4176 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
4177 		__tcp_checksum_complete_user(sk, skb);
4178 }
4179 
4180 /*
4181  *	TCP receive function for the ESTABLISHED state.
4182  *
4183  *	It is split into a fast path and a slow path. The fast path is
4184  * 	disabled when:
4185  *	- A zero window was announced from us - zero window probing
4186  *        is only handled properly in the slow path.
4187  *	- Out of order segments arrived.
4188  *	- Urgent data is expected.
4189  *	- There is no buffer space left
4190  *	- Unexpected TCP flags/window values/header lengths are received
4191  *	  (detected by checking the TCP header against pred_flags)
4192  *	- Data is sent in both directions. Fast path only supports pure senders
4193  *	  or pure receivers (this means either the sequence number or the ack
4194  *	  value must stay constant)
4195  *	- Unexpected TCP option.
4196  *
4197  *	When these conditions are not satisfied it drops into a standard
4198  *	receive procedure patterned after RFC793 to handle all cases.
4199  *	The first three cases are guaranteed by proper pred_flags setting,
4200  *	the rest is checked inline. Fast processing is turned on in
4201  *	tcp_data_queue when everything is OK.
4202  */
4203 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4204 			struct tcphdr *th, unsigned len)
4205 {
4206 	struct tcp_sock *tp = tcp_sk(sk);
4207 
4208 	/*
4209 	 *	Header prediction.
4210 	 *	The code loosely follows the one in the famous
4211 	 *	"30 instruction TCP receive" Van Jacobson mail.
4212 	 *
4213 	 *	Van's trick is to deposit buffers into socket queue
4214 	 *	on a device interrupt, to call tcp_recv function
4215 	 *	on the receive process context and checksum and copy
4216 	 *	the buffer to user space. smart...
4217 	 *
4218 	 *	Our current scheme is not silly either but we take the
4219 	 *	extra cost of the net_bh soft interrupt processing...
4220 	 *	We do checksum and copy also but from device to kernel.
4221 	 */
4222 
4223 	tp->rx_opt.saw_tstamp = 0;
4224 
4225 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4226 	 *	if header_predition is to be made
4227 	 *	'S' will always be tp->tcp_header_len >> 2
4228 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4229 	 *  turn it off	(when there are holes in the receive
4230 	 *	 space for instance)
4231 	 *	PSH flag is ignored.
4232 	 */
4233 
4234 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4235 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4236 		int tcp_header_len = tp->tcp_header_len;
4237 
4238 		/* Timestamp header prediction: tcp_header_len
4239 		 * is automatically equal to th->doff*4 due to pred_flags
4240 		 * match.
4241 		 */
4242 
4243 		/* Check timestamp */
4244 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4245 			__u32 *ptr = (__u32 *)(th + 1);
4246 
4247 			/* No? Slow path! */
4248 			if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4249 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4250 				goto slow_path;
4251 
4252 			tp->rx_opt.saw_tstamp = 1;
4253 			++ptr;
4254 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4255 			++ptr;
4256 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4257 
4258 			/* If PAWS failed, check it more carefully in slow path */
4259 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4260 				goto slow_path;
4261 
4262 			/* DO NOT update ts_recent here, if checksum fails
4263 			 * and timestamp was corrupted part, it will result
4264 			 * in a hung connection since we will drop all
4265 			 * future packets due to the PAWS test.
4266 			 */
4267 		}
4268 
4269 		if (len <= tcp_header_len) {
4270 			/* Bulk data transfer: sender */
4271 			if (len == tcp_header_len) {
4272 				/* Predicted packet is in window by definition.
4273 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4274 				 * Hence, check seq<=rcv_wup reduces to:
4275 				 */
4276 				if (tcp_header_len ==
4277 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4278 				    tp->rcv_nxt == tp->rcv_wup)
4279 					tcp_store_ts_recent(tp);
4280 
4281 				tcp_rcv_rtt_measure_ts(tp, skb);
4282 
4283 				/* We know that such packets are checksummed
4284 				 * on entry.
4285 				 */
4286 				tcp_ack(sk, skb, 0);
4287 				__kfree_skb(skb);
4288 				tcp_data_snd_check(sk);
4289 				return 0;
4290 			} else { /* Header too small */
4291 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4292 				goto discard;
4293 			}
4294 		} else {
4295 			int eaten = 0;
4296 
4297 			if (tp->ucopy.task == current &&
4298 			    tp->copied_seq == tp->rcv_nxt &&
4299 			    len - tcp_header_len <= tp->ucopy.len &&
4300 			    sock_owned_by_user(sk)) {
4301 				__set_current_state(TASK_RUNNING);
4302 
4303 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
4304 					/* Predicted packet is in window by definition.
4305 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4306 					 * Hence, check seq<=rcv_wup reduces to:
4307 					 */
4308 					if (tcp_header_len ==
4309 					    (sizeof(struct tcphdr) +
4310 					     TCPOLEN_TSTAMP_ALIGNED) &&
4311 					    tp->rcv_nxt == tp->rcv_wup)
4312 						tcp_store_ts_recent(tp);
4313 
4314 					tcp_rcv_rtt_measure_ts(tp, skb);
4315 
4316 					__skb_pull(skb, tcp_header_len);
4317 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4318 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4319 					eaten = 1;
4320 				}
4321 			}
4322 			if (!eaten) {
4323 				if (tcp_checksum_complete_user(sk, skb))
4324 					goto csum_error;
4325 
4326 				/* Predicted packet is in window by definition.
4327 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4328 				 * Hence, check seq<=rcv_wup reduces to:
4329 				 */
4330 				if (tcp_header_len ==
4331 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4332 				    tp->rcv_nxt == tp->rcv_wup)
4333 					tcp_store_ts_recent(tp);
4334 
4335 				tcp_rcv_rtt_measure_ts(tp, skb);
4336 
4337 				if ((int)skb->truesize > sk->sk_forward_alloc)
4338 					goto step5;
4339 
4340 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4341 
4342 				/* Bulk data transfer: receiver */
4343 				__skb_pull(skb,tcp_header_len);
4344 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4345 				sk_stream_set_owner_r(skb, sk);
4346 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4347 			}
4348 
4349 			tcp_event_data_recv(sk, tp, skb);
4350 
4351 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4352 				/* Well, only one small jumplet in fast path... */
4353 				tcp_ack(sk, skb, FLAG_DATA);
4354 				tcp_data_snd_check(sk);
4355 				if (!tcp_ack_scheduled(tp))
4356 					goto no_ack;
4357 			}
4358 
4359 			if (eaten) {
4360 				if (tcp_in_quickack_mode(tp)) {
4361 					tcp_send_ack(sk);
4362 				} else {
4363 					tcp_send_delayed_ack(sk);
4364 				}
4365 			} else {
4366 				__tcp_ack_snd_check(sk, 0);
4367 			}
4368 
4369 no_ack:
4370 			if (eaten)
4371 				__kfree_skb(skb);
4372 			else
4373 				sk->sk_data_ready(sk, 0);
4374 			return 0;
4375 		}
4376 	}
4377 
4378 slow_path:
4379 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4380 		goto csum_error;
4381 
4382 	/*
4383 	 * RFC1323: H1. Apply PAWS check first.
4384 	 */
4385 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4386 	    tcp_paws_discard(tp, skb)) {
4387 		if (!th->rst) {
4388 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4389 			tcp_send_dupack(sk, skb);
4390 			goto discard;
4391 		}
4392 		/* Resets are accepted even if PAWS failed.
4393 
4394 		   ts_recent update must be made after we are sure
4395 		   that the packet is in window.
4396 		 */
4397 	}
4398 
4399 	/*
4400 	 *	Standard slow path.
4401 	 */
4402 
4403 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4404 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4405 		 * (RST) segments are validated by checking their SEQ-fields."
4406 		 * And page 69: "If an incoming segment is not acceptable,
4407 		 * an acknowledgment should be sent in reply (unless the RST bit
4408 		 * is set, if so drop the segment and return)".
4409 		 */
4410 		if (!th->rst)
4411 			tcp_send_dupack(sk, skb);
4412 		goto discard;
4413 	}
4414 
4415 	if(th->rst) {
4416 		tcp_reset(sk);
4417 		goto discard;
4418 	}
4419 
4420 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4421 
4422 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4423 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4424 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4425 		tcp_reset(sk);
4426 		return 1;
4427 	}
4428 
4429 step5:
4430 	if(th->ack)
4431 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4432 
4433 	tcp_rcv_rtt_measure_ts(tp, skb);
4434 
4435 	/* Process urgent data. */
4436 	tcp_urg(sk, skb, th);
4437 
4438 	/* step 7: process the segment text */
4439 	tcp_data_queue(sk, skb);
4440 
4441 	tcp_data_snd_check(sk);
4442 	tcp_ack_snd_check(sk);
4443 	return 0;
4444 
4445 csum_error:
4446 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4447 
4448 discard:
4449 	__kfree_skb(skb);
4450 	return 0;
4451 }
4452 
4453 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4454 					 struct tcphdr *th, unsigned len)
4455 {
4456 	struct tcp_sock *tp = tcp_sk(sk);
4457 	int saved_clamp = tp->rx_opt.mss_clamp;
4458 
4459 	tcp_parse_options(skb, &tp->rx_opt, 0);
4460 
4461 	if (th->ack) {
4462 		/* rfc793:
4463 		 * "If the state is SYN-SENT then
4464 		 *    first check the ACK bit
4465 		 *      If the ACK bit is set
4466 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4467 		 *        a reset (unless the RST bit is set, if so drop
4468 		 *        the segment and return)"
4469 		 *
4470 		 *  We do not send data with SYN, so that RFC-correct
4471 		 *  test reduces to:
4472 		 */
4473 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4474 			goto reset_and_undo;
4475 
4476 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4477 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4478 			     tcp_time_stamp)) {
4479 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4480 			goto reset_and_undo;
4481 		}
4482 
4483 		/* Now ACK is acceptable.
4484 		 *
4485 		 * "If the RST bit is set
4486 		 *    If the ACK was acceptable then signal the user "error:
4487 		 *    connection reset", drop the segment, enter CLOSED state,
4488 		 *    delete TCB, and return."
4489 		 */
4490 
4491 		if (th->rst) {
4492 			tcp_reset(sk);
4493 			goto discard;
4494 		}
4495 
4496 		/* rfc793:
4497 		 *   "fifth, if neither of the SYN or RST bits is set then
4498 		 *    drop the segment and return."
4499 		 *
4500 		 *    See note below!
4501 		 *                                        --ANK(990513)
4502 		 */
4503 		if (!th->syn)
4504 			goto discard_and_undo;
4505 
4506 		/* rfc793:
4507 		 *   "If the SYN bit is on ...
4508 		 *    are acceptable then ...
4509 		 *    (our SYN has been ACKed), change the connection
4510 		 *    state to ESTABLISHED..."
4511 		 */
4512 
4513 		TCP_ECN_rcv_synack(tp, th);
4514 		if (tp->ecn_flags&TCP_ECN_OK)
4515 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4516 
4517 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4518 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4519 
4520 		/* Ok.. it's good. Set up sequence numbers and
4521 		 * move to established.
4522 		 */
4523 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4524 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4525 
4526 		/* RFC1323: The window in SYN & SYN/ACK segments is
4527 		 * never scaled.
4528 		 */
4529 		tp->snd_wnd = ntohs(th->window);
4530 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4531 
4532 		if (!tp->rx_opt.wscale_ok) {
4533 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4534 			tp->window_clamp = min(tp->window_clamp, 65535U);
4535 		}
4536 
4537 		if (tp->rx_opt.saw_tstamp) {
4538 			tp->rx_opt.tstamp_ok	   = 1;
4539 			tp->tcp_header_len =
4540 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4541 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4542 			tcp_store_ts_recent(tp);
4543 		} else {
4544 			tp->tcp_header_len = sizeof(struct tcphdr);
4545 		}
4546 
4547 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4548 			tp->rx_opt.sack_ok |= 2;
4549 
4550 		tcp_sync_mss(sk, tp->pmtu_cookie);
4551 		tcp_initialize_rcv_mss(sk);
4552 
4553 		/* Remember, tcp_poll() does not lock socket!
4554 		 * Change state from SYN-SENT only after copied_seq
4555 		 * is initialized. */
4556 		tp->copied_seq = tp->rcv_nxt;
4557 		mb();
4558 		tcp_set_state(sk, TCP_ESTABLISHED);
4559 
4560 		/* Make sure socket is routed, for correct metrics.  */
4561 		tp->af_specific->rebuild_header(sk);
4562 
4563 		tcp_init_metrics(sk);
4564 
4565 		/* Prevent spurious tcp_cwnd_restart() on first data
4566 		 * packet.
4567 		 */
4568 		tp->lsndtime = tcp_time_stamp;
4569 
4570 		tcp_init_buffer_space(sk);
4571 
4572 		if (sock_flag(sk, SOCK_KEEPOPEN))
4573 			tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
4574 
4575 		if (!tp->rx_opt.snd_wscale)
4576 			__tcp_fast_path_on(tp, tp->snd_wnd);
4577 		else
4578 			tp->pred_flags = 0;
4579 
4580 		if (!sock_flag(sk, SOCK_DEAD)) {
4581 			sk->sk_state_change(sk);
4582 			sk_wake_async(sk, 0, POLL_OUT);
4583 		}
4584 
4585 		if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) {
4586 			/* Save one ACK. Data will be ready after
4587 			 * several ticks, if write_pending is set.
4588 			 *
4589 			 * It may be deleted, but with this feature tcpdumps
4590 			 * look so _wonderfully_ clever, that I was not able
4591 			 * to stand against the temptation 8)     --ANK
4592 			 */
4593 			tcp_schedule_ack(tp);
4594 			tp->ack.lrcvtime = tcp_time_stamp;
4595 			tp->ack.ato	 = TCP_ATO_MIN;
4596 			tcp_incr_quickack(tp);
4597 			tcp_enter_quickack_mode(tp);
4598 			tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
4599 
4600 discard:
4601 			__kfree_skb(skb);
4602 			return 0;
4603 		} else {
4604 			tcp_send_ack(sk);
4605 		}
4606 		return -1;
4607 	}
4608 
4609 	/* No ACK in the segment */
4610 
4611 	if (th->rst) {
4612 		/* rfc793:
4613 		 * "If the RST bit is set
4614 		 *
4615 		 *      Otherwise (no ACK) drop the segment and return."
4616 		 */
4617 
4618 		goto discard_and_undo;
4619 	}
4620 
4621 	/* PAWS check. */
4622 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4623 		goto discard_and_undo;
4624 
4625 	if (th->syn) {
4626 		/* We see SYN without ACK. It is attempt of
4627 		 * simultaneous connect with crossed SYNs.
4628 		 * Particularly, it can be connect to self.
4629 		 */
4630 		tcp_set_state(sk, TCP_SYN_RECV);
4631 
4632 		if (tp->rx_opt.saw_tstamp) {
4633 			tp->rx_opt.tstamp_ok = 1;
4634 			tcp_store_ts_recent(tp);
4635 			tp->tcp_header_len =
4636 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4637 		} else {
4638 			tp->tcp_header_len = sizeof(struct tcphdr);
4639 		}
4640 
4641 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4642 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4643 
4644 		/* RFC1323: The window in SYN & SYN/ACK segments is
4645 		 * never scaled.
4646 		 */
4647 		tp->snd_wnd    = ntohs(th->window);
4648 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4649 		tp->max_window = tp->snd_wnd;
4650 
4651 		TCP_ECN_rcv_syn(tp, th);
4652 		if (tp->ecn_flags&TCP_ECN_OK)
4653 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4654 
4655 		tcp_sync_mss(sk, tp->pmtu_cookie);
4656 		tcp_initialize_rcv_mss(sk);
4657 
4658 
4659 		tcp_send_synack(sk);
4660 #if 0
4661 		/* Note, we could accept data and URG from this segment.
4662 		 * There are no obstacles to make this.
4663 		 *
4664 		 * However, if we ignore data in ACKless segments sometimes,
4665 		 * we have no reasons to accept it sometimes.
4666 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4667 		 * is not flawless. So, discard packet for sanity.
4668 		 * Uncomment this return to process the data.
4669 		 */
4670 		return -1;
4671 #else
4672 		goto discard;
4673 #endif
4674 	}
4675 	/* "fifth, if neither of the SYN or RST bits is set then
4676 	 * drop the segment and return."
4677 	 */
4678 
4679 discard_and_undo:
4680 	tcp_clear_options(&tp->rx_opt);
4681 	tp->rx_opt.mss_clamp = saved_clamp;
4682 	goto discard;
4683 
4684 reset_and_undo:
4685 	tcp_clear_options(&tp->rx_opt);
4686 	tp->rx_opt.mss_clamp = saved_clamp;
4687 	return 1;
4688 }
4689 
4690 
4691 /*
4692  *	This function implements the receiving procedure of RFC 793 for
4693  *	all states except ESTABLISHED and TIME_WAIT.
4694  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4695  *	address independent.
4696  */
4697 
4698 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4699 			  struct tcphdr *th, unsigned len)
4700 {
4701 	struct tcp_sock *tp = tcp_sk(sk);
4702 	int queued = 0;
4703 
4704 	tp->rx_opt.saw_tstamp = 0;
4705 
4706 	switch (sk->sk_state) {
4707 	case TCP_CLOSE:
4708 		goto discard;
4709 
4710 	case TCP_LISTEN:
4711 		if(th->ack)
4712 			return 1;
4713 
4714 		if(th->rst)
4715 			goto discard;
4716 
4717 		if(th->syn) {
4718 			if(tp->af_specific->conn_request(sk, skb) < 0)
4719 				return 1;
4720 
4721 			init_westwood(sk);
4722 			init_bictcp(tp);
4723 
4724 			/* Now we have several options: In theory there is
4725 			 * nothing else in the frame. KA9Q has an option to
4726 			 * send data with the syn, BSD accepts data with the
4727 			 * syn up to the [to be] advertised window and
4728 			 * Solaris 2.1 gives you a protocol error. For now
4729 			 * we just ignore it, that fits the spec precisely
4730 			 * and avoids incompatibilities. It would be nice in
4731 			 * future to drop through and process the data.
4732 			 *
4733 			 * Now that TTCP is starting to be used we ought to
4734 			 * queue this data.
4735 			 * But, this leaves one open to an easy denial of
4736 		 	 * service attack, and SYN cookies can't defend
4737 			 * against this problem. So, we drop the data
4738 			 * in the interest of security over speed.
4739 			 */
4740 			goto discard;
4741 		}
4742 		goto discard;
4743 
4744 	case TCP_SYN_SENT:
4745 		init_westwood(sk);
4746 		init_bictcp(tp);
4747 
4748 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4749 		if (queued >= 0)
4750 			return queued;
4751 
4752 		/* Do step6 onward by hand. */
4753 		tcp_urg(sk, skb, th);
4754 		__kfree_skb(skb);
4755 		tcp_data_snd_check(sk);
4756 		return 0;
4757 	}
4758 
4759 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4760 	    tcp_paws_discard(tp, skb)) {
4761 		if (!th->rst) {
4762 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4763 			tcp_send_dupack(sk, skb);
4764 			goto discard;
4765 		}
4766 		/* Reset is accepted even if it did not pass PAWS. */
4767 	}
4768 
4769 	/* step 1: check sequence number */
4770 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4771 		if (!th->rst)
4772 			tcp_send_dupack(sk, skb);
4773 		goto discard;
4774 	}
4775 
4776 	/* step 2: check RST bit */
4777 	if(th->rst) {
4778 		tcp_reset(sk);
4779 		goto discard;
4780 	}
4781 
4782 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4783 
4784 	/* step 3: check security and precedence [ignored] */
4785 
4786 	/*	step 4:
4787 	 *
4788 	 *	Check for a SYN in window.
4789 	 */
4790 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4791 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4792 		tcp_reset(sk);
4793 		return 1;
4794 	}
4795 
4796 	/* step 5: check the ACK field */
4797 	if (th->ack) {
4798 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4799 
4800 		switch(sk->sk_state) {
4801 		case TCP_SYN_RECV:
4802 			if (acceptable) {
4803 				tp->copied_seq = tp->rcv_nxt;
4804 				mb();
4805 				tcp_set_state(sk, TCP_ESTABLISHED);
4806 				sk->sk_state_change(sk);
4807 
4808 				/* Note, that this wakeup is only for marginal
4809 				 * crossed SYN case. Passively open sockets
4810 				 * are not waked up, because sk->sk_sleep ==
4811 				 * NULL and sk->sk_socket == NULL.
4812 				 */
4813 				if (sk->sk_socket) {
4814 					sk_wake_async(sk,0,POLL_OUT);
4815 				}
4816 
4817 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4818 				tp->snd_wnd = ntohs(th->window) <<
4819 					      tp->rx_opt.snd_wscale;
4820 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4821 					    TCP_SKB_CB(skb)->seq);
4822 
4823 				/* tcp_ack considers this ACK as duplicate
4824 				 * and does not calculate rtt.
4825 				 * Fix it at least with timestamps.
4826 				 */
4827 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4828 				    !tp->srtt)
4829 					tcp_ack_saw_tstamp(tp, 0);
4830 
4831 				if (tp->rx_opt.tstamp_ok)
4832 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4833 
4834 				/* Make sure socket is routed, for
4835 				 * correct metrics.
4836 				 */
4837 				tp->af_specific->rebuild_header(sk);
4838 
4839 				tcp_init_metrics(sk);
4840 
4841 				/* Prevent spurious tcp_cwnd_restart() on
4842 				 * first data packet.
4843 				 */
4844 				tp->lsndtime = tcp_time_stamp;
4845 
4846 				tcp_initialize_rcv_mss(sk);
4847 				tcp_init_buffer_space(sk);
4848 				tcp_fast_path_on(tp);
4849 			} else {
4850 				return 1;
4851 			}
4852 			break;
4853 
4854 		case TCP_FIN_WAIT1:
4855 			if (tp->snd_una == tp->write_seq) {
4856 				tcp_set_state(sk, TCP_FIN_WAIT2);
4857 				sk->sk_shutdown |= SEND_SHUTDOWN;
4858 				dst_confirm(sk->sk_dst_cache);
4859 
4860 				if (!sock_flag(sk, SOCK_DEAD))
4861 					/* Wake up lingering close() */
4862 					sk->sk_state_change(sk);
4863 				else {
4864 					int tmo;
4865 
4866 					if (tp->linger2 < 0 ||
4867 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4868 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4869 						tcp_done(sk);
4870 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4871 						return 1;
4872 					}
4873 
4874 					tmo = tcp_fin_time(tp);
4875 					if (tmo > TCP_TIMEWAIT_LEN) {
4876 						tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4877 					} else if (th->fin || sock_owned_by_user(sk)) {
4878 						/* Bad case. We could lose such FIN otherwise.
4879 						 * It is not a big problem, but it looks confusing
4880 						 * and not so rare event. We still can lose it now,
4881 						 * if it spins in bh_lock_sock(), but it is really
4882 						 * marginal case.
4883 						 */
4884 						tcp_reset_keepalive_timer(sk, tmo);
4885 					} else {
4886 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4887 						goto discard;
4888 					}
4889 				}
4890 			}
4891 			break;
4892 
4893 		case TCP_CLOSING:
4894 			if (tp->snd_una == tp->write_seq) {
4895 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4896 				goto discard;
4897 			}
4898 			break;
4899 
4900 		case TCP_LAST_ACK:
4901 			if (tp->snd_una == tp->write_seq) {
4902 				tcp_update_metrics(sk);
4903 				tcp_done(sk);
4904 				goto discard;
4905 			}
4906 			break;
4907 		}
4908 	} else
4909 		goto discard;
4910 
4911 	/* step 6: check the URG bit */
4912 	tcp_urg(sk, skb, th);
4913 
4914 	/* step 7: process the segment text */
4915 	switch (sk->sk_state) {
4916 	case TCP_CLOSE_WAIT:
4917 	case TCP_CLOSING:
4918 	case TCP_LAST_ACK:
4919 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4920 			break;
4921 	case TCP_FIN_WAIT1:
4922 	case TCP_FIN_WAIT2:
4923 		/* RFC 793 says to queue data in these states,
4924 		 * RFC 1122 says we MUST send a reset.
4925 		 * BSD 4.4 also does reset.
4926 		 */
4927 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4928 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4929 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4930 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4931 				tcp_reset(sk);
4932 				return 1;
4933 			}
4934 		}
4935 		/* Fall through */
4936 	case TCP_ESTABLISHED:
4937 		tcp_data_queue(sk, skb);
4938 		queued = 1;
4939 		break;
4940 	}
4941 
4942 	/* tcp_data could move socket to TIME-WAIT */
4943 	if (sk->sk_state != TCP_CLOSE) {
4944 		tcp_data_snd_check(sk);
4945 		tcp_ack_snd_check(sk);
4946 	}
4947 
4948 	if (!queued) {
4949 discard:
4950 		__kfree_skb(skb);
4951 	}
4952 	return 0;
4953 }
4954 
4955 EXPORT_SYMBOL(sysctl_tcp_ecn);
4956 EXPORT_SYMBOL(sysctl_tcp_reordering);
4957 EXPORT_SYMBOL(tcp_parse_options);
4958 EXPORT_SYMBOL(tcp_rcv_established);
4959 EXPORT_SYMBOL(tcp_rcv_state_process);
4960