1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 tcp_scaling_ratio_init(sk); 461 462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 463 sk_sockets_allocated_inc(sk); 464 } 465 EXPORT_SYMBOL(tcp_init_sock); 466 467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 468 { 469 struct sk_buff *skb = tcp_write_queue_tail(sk); 470 471 if (tsflags && skb) { 472 struct skb_shared_info *shinfo = skb_shinfo(skb); 473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 474 475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 476 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 477 tcb->txstamp_ack = 1; 478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 480 } 481 } 482 483 static bool tcp_stream_is_readable(struct sock *sk, int target) 484 { 485 if (tcp_epollin_ready(sk, target)) 486 return true; 487 return sk_is_readable(sk); 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 u8 shutdown; 503 int state; 504 505 sock_poll_wait(file, sock, wait); 506 507 state = inet_sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * EPOLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that EPOLLHUP is incompatible 524 * with the EPOLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 shutdown = READ_ONCE(sk->sk_shutdown); 546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 547 mask |= EPOLLHUP; 548 if (shutdown & RCV_SHUTDOWN) 549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 550 551 /* Connected or passive Fast Open socket? */ 552 if (state != TCP_SYN_SENT && 553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 554 int target = sock_rcvlowat(sk, 0, INT_MAX); 555 u16 urg_data = READ_ONCE(tp->urg_data); 556 557 if (unlikely(urg_data) && 558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE)) 560 target++; 561 562 if (tcp_stream_is_readable(sk, target)) 563 mask |= EPOLLIN | EPOLLRDNORM; 564 565 if (!(shutdown & SEND_SHUTDOWN)) { 566 if (__sk_stream_is_writeable(sk, 1)) { 567 mask |= EPOLLOUT | EPOLLWRNORM; 568 } else { /* send SIGIO later */ 569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 571 572 /* Race breaker. If space is freed after 573 * wspace test but before the flags are set, 574 * IO signal will be lost. Memory barrier 575 * pairs with the input side. 576 */ 577 smp_mb__after_atomic(); 578 if (__sk_stream_is_writeable(sk, 1)) 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 } 581 } else 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 584 if (urg_data & TCP_URG_VALID) 585 mask |= EPOLLPRI; 586 } else if (state == TCP_SYN_SENT && 587 inet_test_bit(DEFER_CONNECT, sk)) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 595 smp_rmb(); 596 if (READ_ONCE(sk->sk_err) || 597 !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = READ_ONCE(tp->urg_data) && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 *karg = answ; 647 return 0; 648 } 649 EXPORT_SYMBOL(tcp_ioctl); 650 651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 652 { 653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 654 tp->pushed_seq = tp->write_seq; 655 } 656 657 static inline bool forced_push(const struct tcp_sock *tp) 658 { 659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 660 } 661 662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 666 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 702 tcp_skb_can_collapse_to(skb); 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 smp_mb__after_atomic(); 726 } 727 /* It is possible TX completion already happened 728 * before we set TSQ_THROTTLED. 729 */ 730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 731 return; 732 } 733 734 if (flags & MSG_MORE) 735 nonagle = TCP_NAGLE_CORK; 736 737 __tcp_push_pending_frames(sk, mss_now, nonagle); 738 } 739 740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 741 unsigned int offset, size_t len) 742 { 743 struct tcp_splice_state *tss = rd_desc->arg.data; 744 int ret; 745 746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 747 min(rd_desc->count, len), tss->flags); 748 if (ret > 0) 749 rd_desc->count -= ret; 750 return ret; 751 } 752 753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 754 { 755 /* Store TCP splice context information in read_descriptor_t. */ 756 read_descriptor_t rd_desc = { 757 .arg.data = tss, 758 .count = tss->len, 759 }; 760 761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 762 } 763 764 /** 765 * tcp_splice_read - splice data from TCP socket to a pipe 766 * @sock: socket to splice from 767 * @ppos: position (not valid) 768 * @pipe: pipe to splice to 769 * @len: number of bytes to splice 770 * @flags: splice modifier flags 771 * 772 * Description: 773 * Will read pages from given socket and fill them into a pipe. 774 * 775 **/ 776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 777 struct pipe_inode_info *pipe, size_t len, 778 unsigned int flags) 779 { 780 struct sock *sk = sock->sk; 781 struct tcp_splice_state tss = { 782 .pipe = pipe, 783 .len = len, 784 .flags = flags, 785 }; 786 long timeo; 787 ssize_t spliced; 788 int ret; 789 790 sock_rps_record_flow(sk); 791 /* 792 * We can't seek on a socket input 793 */ 794 if (unlikely(*ppos)) 795 return -ESPIPE; 796 797 ret = spliced = 0; 798 799 lock_sock(sk); 800 801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 802 while (tss.len) { 803 ret = __tcp_splice_read(sk, &tss); 804 if (ret < 0) 805 break; 806 else if (!ret) { 807 if (spliced) 808 break; 809 if (sock_flag(sk, SOCK_DONE)) 810 break; 811 if (sk->sk_err) { 812 ret = sock_error(sk); 813 break; 814 } 815 if (sk->sk_shutdown & RCV_SHUTDOWN) 816 break; 817 if (sk->sk_state == TCP_CLOSE) { 818 /* 819 * This occurs when user tries to read 820 * from never connected socket. 821 */ 822 ret = -ENOTCONN; 823 break; 824 } 825 if (!timeo) { 826 ret = -EAGAIN; 827 break; 828 } 829 /* if __tcp_splice_read() got nothing while we have 830 * an skb in receive queue, we do not want to loop. 831 * This might happen with URG data. 832 */ 833 if (!skb_queue_empty(&sk->sk_receive_queue)) 834 break; 835 ret = sk_wait_data(sk, &timeo, NULL); 836 if (ret < 0) 837 break; 838 if (signal_pending(current)) { 839 ret = sock_intr_errno(timeo); 840 break; 841 } 842 continue; 843 } 844 tss.len -= ret; 845 spliced += ret; 846 847 if (!tss.len || !timeo) 848 break; 849 release_sock(sk); 850 lock_sock(sk); 851 852 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 853 (sk->sk_shutdown & RCV_SHUTDOWN) || 854 signal_pending(current)) 855 break; 856 } 857 858 release_sock(sk); 859 860 if (spliced) 861 return spliced; 862 863 return ret; 864 } 865 EXPORT_SYMBOL(tcp_splice_read); 866 867 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 868 bool force_schedule) 869 { 870 struct sk_buff *skb; 871 872 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 873 if (likely(skb)) { 874 bool mem_scheduled; 875 876 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 877 if (force_schedule) { 878 mem_scheduled = true; 879 sk_forced_mem_schedule(sk, skb->truesize); 880 } else { 881 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 882 } 883 if (likely(mem_scheduled)) { 884 skb_reserve(skb, MAX_TCP_HEADER); 885 skb->ip_summed = CHECKSUM_PARTIAL; 886 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 887 return skb; 888 } 889 __kfree_skb(skb); 890 } else { 891 sk->sk_prot->enter_memory_pressure(sk); 892 sk_stream_moderate_sndbuf(sk); 893 } 894 return NULL; 895 } 896 897 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 898 int large_allowed) 899 { 900 struct tcp_sock *tp = tcp_sk(sk); 901 u32 new_size_goal, size_goal; 902 903 if (!large_allowed) 904 return mss_now; 905 906 /* Note : tcp_tso_autosize() will eventually split this later */ 907 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 908 909 /* We try hard to avoid divides here */ 910 size_goal = tp->gso_segs * mss_now; 911 if (unlikely(new_size_goal < size_goal || 912 new_size_goal >= size_goal + mss_now)) { 913 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 914 sk->sk_gso_max_segs); 915 size_goal = tp->gso_segs * mss_now; 916 } 917 918 return max(size_goal, mss_now); 919 } 920 921 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 922 { 923 int mss_now; 924 925 mss_now = tcp_current_mss(sk); 926 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 927 928 return mss_now; 929 } 930 931 /* In some cases, sendmsg() could have added an skb to the write queue, 932 * but failed adding payload on it. We need to remove it to consume less 933 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 934 * epoll() users. Another reason is that tcp_write_xmit() does not like 935 * finding an empty skb in the write queue. 936 */ 937 void tcp_remove_empty_skb(struct sock *sk) 938 { 939 struct sk_buff *skb = tcp_write_queue_tail(sk); 940 941 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 942 tcp_unlink_write_queue(skb, sk); 943 if (tcp_write_queue_empty(sk)) 944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 945 tcp_wmem_free_skb(sk, skb); 946 } 947 } 948 949 /* skb changing from pure zc to mixed, must charge zc */ 950 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 951 { 952 if (unlikely(skb_zcopy_pure(skb))) { 953 u32 extra = skb->truesize - 954 SKB_TRUESIZE(skb_end_offset(skb)); 955 956 if (!sk_wmem_schedule(sk, extra)) 957 return -ENOMEM; 958 959 sk_mem_charge(sk, extra); 960 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 961 } 962 return 0; 963 } 964 965 966 int tcp_wmem_schedule(struct sock *sk, int copy) 967 { 968 int left; 969 970 if (likely(sk_wmem_schedule(sk, copy))) 971 return copy; 972 973 /* We could be in trouble if we have nothing queued. 974 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 975 * to guarantee some progress. 976 */ 977 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 978 if (left > 0) 979 sk_forced_mem_schedule(sk, min(left, copy)); 980 return min(copy, sk->sk_forward_alloc); 981 } 982 983 void tcp_free_fastopen_req(struct tcp_sock *tp) 984 { 985 if (tp->fastopen_req) { 986 kfree(tp->fastopen_req); 987 tp->fastopen_req = NULL; 988 } 989 } 990 991 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 992 size_t size, struct ubuf_info *uarg) 993 { 994 struct tcp_sock *tp = tcp_sk(sk); 995 struct inet_sock *inet = inet_sk(sk); 996 struct sockaddr *uaddr = msg->msg_name; 997 int err, flags; 998 999 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1000 TFO_CLIENT_ENABLE) || 1001 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1002 uaddr->sa_family == AF_UNSPEC)) 1003 return -EOPNOTSUPP; 1004 if (tp->fastopen_req) 1005 return -EALREADY; /* Another Fast Open is in progress */ 1006 1007 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1008 sk->sk_allocation); 1009 if (unlikely(!tp->fastopen_req)) 1010 return -ENOBUFS; 1011 tp->fastopen_req->data = msg; 1012 tp->fastopen_req->size = size; 1013 tp->fastopen_req->uarg = uarg; 1014 1015 if (inet_test_bit(DEFER_CONNECT, sk)) { 1016 err = tcp_connect(sk); 1017 /* Same failure procedure as in tcp_v4/6_connect */ 1018 if (err) { 1019 tcp_set_state(sk, TCP_CLOSE); 1020 inet->inet_dport = 0; 1021 sk->sk_route_caps = 0; 1022 } 1023 } 1024 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1025 err = __inet_stream_connect(sk->sk_socket, uaddr, 1026 msg->msg_namelen, flags, 1); 1027 /* fastopen_req could already be freed in __inet_stream_connect 1028 * if the connection times out or gets rst 1029 */ 1030 if (tp->fastopen_req) { 1031 *copied = tp->fastopen_req->copied; 1032 tcp_free_fastopen_req(tp); 1033 inet_clear_bit(DEFER_CONNECT, sk); 1034 } 1035 return err; 1036 } 1037 1038 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 struct ubuf_info *uarg = NULL; 1042 struct sk_buff *skb; 1043 struct sockcm_cookie sockc; 1044 int flags, err, copied = 0; 1045 int mss_now = 0, size_goal, copied_syn = 0; 1046 int process_backlog = 0; 1047 int zc = 0; 1048 long timeo; 1049 1050 flags = msg->msg_flags; 1051 1052 if ((flags & MSG_ZEROCOPY) && size) { 1053 if (msg->msg_ubuf) { 1054 uarg = msg->msg_ubuf; 1055 if (sk->sk_route_caps & NETIF_F_SG) 1056 zc = MSG_ZEROCOPY; 1057 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1058 skb = tcp_write_queue_tail(sk); 1059 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1060 if (!uarg) { 1061 err = -ENOBUFS; 1062 goto out_err; 1063 } 1064 if (sk->sk_route_caps & NETIF_F_SG) 1065 zc = MSG_ZEROCOPY; 1066 else 1067 uarg_to_msgzc(uarg)->zerocopy = 0; 1068 } 1069 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1070 if (sk->sk_route_caps & NETIF_F_SG) 1071 zc = MSG_SPLICE_PAGES; 1072 } 1073 1074 if (unlikely(flags & MSG_FASTOPEN || 1075 inet_test_bit(DEFER_CONNECT, sk)) && 1076 !tp->repair) { 1077 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1078 if (err == -EINPROGRESS && copied_syn > 0) 1079 goto out; 1080 else if (err) 1081 goto out_err; 1082 } 1083 1084 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1085 1086 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1087 1088 /* Wait for a connection to finish. One exception is TCP Fast Open 1089 * (passive side) where data is allowed to be sent before a connection 1090 * is fully established. 1091 */ 1092 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1093 !tcp_passive_fastopen(sk)) { 1094 err = sk_stream_wait_connect(sk, &timeo); 1095 if (err != 0) 1096 goto do_error; 1097 } 1098 1099 if (unlikely(tp->repair)) { 1100 if (tp->repair_queue == TCP_RECV_QUEUE) { 1101 copied = tcp_send_rcvq(sk, msg, size); 1102 goto out_nopush; 1103 } 1104 1105 err = -EINVAL; 1106 if (tp->repair_queue == TCP_NO_QUEUE) 1107 goto out_err; 1108 1109 /* 'common' sending to sendq */ 1110 } 1111 1112 sockcm_init(&sockc, sk); 1113 if (msg->msg_controllen) { 1114 err = sock_cmsg_send(sk, msg, &sockc); 1115 if (unlikely(err)) { 1116 err = -EINVAL; 1117 goto out_err; 1118 } 1119 } 1120 1121 /* This should be in poll */ 1122 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1123 1124 /* Ok commence sending. */ 1125 copied = 0; 1126 1127 restart: 1128 mss_now = tcp_send_mss(sk, &size_goal, flags); 1129 1130 err = -EPIPE; 1131 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1132 goto do_error; 1133 1134 while (msg_data_left(msg)) { 1135 ssize_t copy = 0; 1136 1137 skb = tcp_write_queue_tail(sk); 1138 if (skb) 1139 copy = size_goal - skb->len; 1140 1141 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1142 bool first_skb; 1143 1144 new_segment: 1145 if (!sk_stream_memory_free(sk)) 1146 goto wait_for_space; 1147 1148 if (unlikely(process_backlog >= 16)) { 1149 process_backlog = 0; 1150 if (sk_flush_backlog(sk)) 1151 goto restart; 1152 } 1153 first_skb = tcp_rtx_and_write_queues_empty(sk); 1154 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1155 first_skb); 1156 if (!skb) 1157 goto wait_for_space; 1158 1159 process_backlog++; 1160 1161 tcp_skb_entail(sk, skb); 1162 copy = size_goal; 1163 1164 /* All packets are restored as if they have 1165 * already been sent. skb_mstamp_ns isn't set to 1166 * avoid wrong rtt estimation. 1167 */ 1168 if (tp->repair) 1169 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1170 } 1171 1172 /* Try to append data to the end of skb. */ 1173 if (copy > msg_data_left(msg)) 1174 copy = msg_data_left(msg); 1175 1176 if (zc == 0) { 1177 bool merge = true; 1178 int i = skb_shinfo(skb)->nr_frags; 1179 struct page_frag *pfrag = sk_page_frag(sk); 1180 1181 if (!sk_page_frag_refill(sk, pfrag)) 1182 goto wait_for_space; 1183 1184 if (!skb_can_coalesce(skb, i, pfrag->page, 1185 pfrag->offset)) { 1186 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1187 tcp_mark_push(tp, skb); 1188 goto new_segment; 1189 } 1190 merge = false; 1191 } 1192 1193 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1194 1195 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1196 if (tcp_downgrade_zcopy_pure(sk, skb)) 1197 goto wait_for_space; 1198 skb_zcopy_downgrade_managed(skb); 1199 } 1200 1201 copy = tcp_wmem_schedule(sk, copy); 1202 if (!copy) 1203 goto wait_for_space; 1204 1205 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1206 pfrag->page, 1207 pfrag->offset, 1208 copy); 1209 if (err) 1210 goto do_error; 1211 1212 /* Update the skb. */ 1213 if (merge) { 1214 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1215 } else { 1216 skb_fill_page_desc(skb, i, pfrag->page, 1217 pfrag->offset, copy); 1218 page_ref_inc(pfrag->page); 1219 } 1220 pfrag->offset += copy; 1221 } else if (zc == MSG_ZEROCOPY) { 1222 /* First append to a fragless skb builds initial 1223 * pure zerocopy skb 1224 */ 1225 if (!skb->len) 1226 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1227 1228 if (!skb_zcopy_pure(skb)) { 1229 copy = tcp_wmem_schedule(sk, copy); 1230 if (!copy) 1231 goto wait_for_space; 1232 } 1233 1234 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1235 if (err == -EMSGSIZE || err == -EEXIST) { 1236 tcp_mark_push(tp, skb); 1237 goto new_segment; 1238 } 1239 if (err < 0) 1240 goto do_error; 1241 copy = err; 1242 } else if (zc == MSG_SPLICE_PAGES) { 1243 /* Splice in data if we can; copy if we can't. */ 1244 if (tcp_downgrade_zcopy_pure(sk, skb)) 1245 goto wait_for_space; 1246 copy = tcp_wmem_schedule(sk, copy); 1247 if (!copy) 1248 goto wait_for_space; 1249 1250 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1251 sk->sk_allocation); 1252 if (err < 0) { 1253 if (err == -EMSGSIZE) { 1254 tcp_mark_push(tp, skb); 1255 goto new_segment; 1256 } 1257 goto do_error; 1258 } 1259 copy = err; 1260 1261 if (!(flags & MSG_NO_SHARED_FRAGS)) 1262 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1263 1264 sk_wmem_queued_add(sk, copy); 1265 sk_mem_charge(sk, copy); 1266 } 1267 1268 if (!copied) 1269 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1270 1271 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1272 TCP_SKB_CB(skb)->end_seq += copy; 1273 tcp_skb_pcount_set(skb, 0); 1274 1275 copied += copy; 1276 if (!msg_data_left(msg)) { 1277 if (unlikely(flags & MSG_EOR)) 1278 TCP_SKB_CB(skb)->eor = 1; 1279 goto out; 1280 } 1281 1282 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1283 continue; 1284 1285 if (forced_push(tp)) { 1286 tcp_mark_push(tp, skb); 1287 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1288 } else if (skb == tcp_send_head(sk)) 1289 tcp_push_one(sk, mss_now); 1290 continue; 1291 1292 wait_for_space: 1293 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1294 tcp_remove_empty_skb(sk); 1295 if (copied) 1296 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1297 TCP_NAGLE_PUSH, size_goal); 1298 1299 err = sk_stream_wait_memory(sk, &timeo); 1300 if (err != 0) 1301 goto do_error; 1302 1303 mss_now = tcp_send_mss(sk, &size_goal, flags); 1304 } 1305 1306 out: 1307 if (copied) { 1308 tcp_tx_timestamp(sk, sockc.tsflags); 1309 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1310 } 1311 out_nopush: 1312 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1313 if (uarg && !msg->msg_ubuf) 1314 net_zcopy_put(uarg); 1315 return copied + copied_syn; 1316 1317 do_error: 1318 tcp_remove_empty_skb(sk); 1319 1320 if (copied + copied_syn) 1321 goto out; 1322 out_err: 1323 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1324 if (uarg && !msg->msg_ubuf) 1325 net_zcopy_put_abort(uarg, true); 1326 err = sk_stream_error(sk, flags, err); 1327 /* make sure we wake any epoll edge trigger waiter */ 1328 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1329 sk->sk_write_space(sk); 1330 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1331 } 1332 return err; 1333 } 1334 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1335 1336 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1337 { 1338 int ret; 1339 1340 lock_sock(sk); 1341 ret = tcp_sendmsg_locked(sk, msg, size); 1342 release_sock(sk); 1343 1344 return ret; 1345 } 1346 EXPORT_SYMBOL(tcp_sendmsg); 1347 1348 void tcp_splice_eof(struct socket *sock) 1349 { 1350 struct sock *sk = sock->sk; 1351 struct tcp_sock *tp = tcp_sk(sk); 1352 int mss_now, size_goal; 1353 1354 if (!tcp_write_queue_tail(sk)) 1355 return; 1356 1357 lock_sock(sk); 1358 mss_now = tcp_send_mss(sk, &size_goal, 0); 1359 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1360 release_sock(sk); 1361 } 1362 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1363 1364 /* 1365 * Handle reading urgent data. BSD has very simple semantics for 1366 * this, no blocking and very strange errors 8) 1367 */ 1368 1369 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1370 { 1371 struct tcp_sock *tp = tcp_sk(sk); 1372 1373 /* No URG data to read. */ 1374 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1375 tp->urg_data == TCP_URG_READ) 1376 return -EINVAL; /* Yes this is right ! */ 1377 1378 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1379 return -ENOTCONN; 1380 1381 if (tp->urg_data & TCP_URG_VALID) { 1382 int err = 0; 1383 char c = tp->urg_data; 1384 1385 if (!(flags & MSG_PEEK)) 1386 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1387 1388 /* Read urgent data. */ 1389 msg->msg_flags |= MSG_OOB; 1390 1391 if (len > 0) { 1392 if (!(flags & MSG_TRUNC)) 1393 err = memcpy_to_msg(msg, &c, 1); 1394 len = 1; 1395 } else 1396 msg->msg_flags |= MSG_TRUNC; 1397 1398 return err ? -EFAULT : len; 1399 } 1400 1401 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1402 return 0; 1403 1404 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1405 * the available implementations agree in this case: 1406 * this call should never block, independent of the 1407 * blocking state of the socket. 1408 * Mike <pall@rz.uni-karlsruhe.de> 1409 */ 1410 return -EAGAIN; 1411 } 1412 1413 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1414 { 1415 struct sk_buff *skb; 1416 int copied = 0, err = 0; 1417 1418 /* XXX -- need to support SO_PEEK_OFF */ 1419 1420 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1421 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1422 if (err) 1423 return err; 1424 copied += skb->len; 1425 } 1426 1427 skb_queue_walk(&sk->sk_write_queue, skb) { 1428 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1429 if (err) 1430 break; 1431 1432 copied += skb->len; 1433 } 1434 1435 return err ?: copied; 1436 } 1437 1438 /* Clean up the receive buffer for full frames taken by the user, 1439 * then send an ACK if necessary. COPIED is the number of bytes 1440 * tcp_recvmsg has given to the user so far, it speeds up the 1441 * calculation of whether or not we must ACK for the sake of 1442 * a window update. 1443 */ 1444 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1445 { 1446 struct tcp_sock *tp = tcp_sk(sk); 1447 bool time_to_ack = false; 1448 1449 if (inet_csk_ack_scheduled(sk)) { 1450 const struct inet_connection_sock *icsk = inet_csk(sk); 1451 1452 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1453 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1454 /* 1455 * If this read emptied read buffer, we send ACK, if 1456 * connection is not bidirectional, user drained 1457 * receive buffer and there was a small segment 1458 * in queue. 1459 */ 1460 (copied > 0 && 1461 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1462 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1463 !inet_csk_in_pingpong_mode(sk))) && 1464 !atomic_read(&sk->sk_rmem_alloc))) 1465 time_to_ack = true; 1466 } 1467 1468 /* We send an ACK if we can now advertise a non-zero window 1469 * which has been raised "significantly". 1470 * 1471 * Even if window raised up to infinity, do not send window open ACK 1472 * in states, where we will not receive more. It is useless. 1473 */ 1474 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1475 __u32 rcv_window_now = tcp_receive_window(tp); 1476 1477 /* Optimize, __tcp_select_window() is not cheap. */ 1478 if (2*rcv_window_now <= tp->window_clamp) { 1479 __u32 new_window = __tcp_select_window(sk); 1480 1481 /* Send ACK now, if this read freed lots of space 1482 * in our buffer. Certainly, new_window is new window. 1483 * We can advertise it now, if it is not less than current one. 1484 * "Lots" means "at least twice" here. 1485 */ 1486 if (new_window && new_window >= 2 * rcv_window_now) 1487 time_to_ack = true; 1488 } 1489 } 1490 if (time_to_ack) 1491 tcp_send_ack(sk); 1492 } 1493 1494 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1495 { 1496 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1497 struct tcp_sock *tp = tcp_sk(sk); 1498 1499 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1500 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1501 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1502 __tcp_cleanup_rbuf(sk, copied); 1503 } 1504 1505 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1506 { 1507 __skb_unlink(skb, &sk->sk_receive_queue); 1508 if (likely(skb->destructor == sock_rfree)) { 1509 sock_rfree(skb); 1510 skb->destructor = NULL; 1511 skb->sk = NULL; 1512 return skb_attempt_defer_free(skb); 1513 } 1514 __kfree_skb(skb); 1515 } 1516 1517 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1518 { 1519 struct sk_buff *skb; 1520 u32 offset; 1521 1522 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1523 offset = seq - TCP_SKB_CB(skb)->seq; 1524 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1525 pr_err_once("%s: found a SYN, please report !\n", __func__); 1526 offset--; 1527 } 1528 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1529 *off = offset; 1530 return skb; 1531 } 1532 /* This looks weird, but this can happen if TCP collapsing 1533 * splitted a fat GRO packet, while we released socket lock 1534 * in skb_splice_bits() 1535 */ 1536 tcp_eat_recv_skb(sk, skb); 1537 } 1538 return NULL; 1539 } 1540 EXPORT_SYMBOL(tcp_recv_skb); 1541 1542 /* 1543 * This routine provides an alternative to tcp_recvmsg() for routines 1544 * that would like to handle copying from skbuffs directly in 'sendfile' 1545 * fashion. 1546 * Note: 1547 * - It is assumed that the socket was locked by the caller. 1548 * - The routine does not block. 1549 * - At present, there is no support for reading OOB data 1550 * or for 'peeking' the socket using this routine 1551 * (although both would be easy to implement). 1552 */ 1553 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1554 sk_read_actor_t recv_actor) 1555 { 1556 struct sk_buff *skb; 1557 struct tcp_sock *tp = tcp_sk(sk); 1558 u32 seq = tp->copied_seq; 1559 u32 offset; 1560 int copied = 0; 1561 1562 if (sk->sk_state == TCP_LISTEN) 1563 return -ENOTCONN; 1564 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1565 if (offset < skb->len) { 1566 int used; 1567 size_t len; 1568 1569 len = skb->len - offset; 1570 /* Stop reading if we hit a patch of urgent data */ 1571 if (unlikely(tp->urg_data)) { 1572 u32 urg_offset = tp->urg_seq - seq; 1573 if (urg_offset < len) 1574 len = urg_offset; 1575 if (!len) 1576 break; 1577 } 1578 used = recv_actor(desc, skb, offset, len); 1579 if (used <= 0) { 1580 if (!copied) 1581 copied = used; 1582 break; 1583 } 1584 if (WARN_ON_ONCE(used > len)) 1585 used = len; 1586 seq += used; 1587 copied += used; 1588 offset += used; 1589 1590 /* If recv_actor drops the lock (e.g. TCP splice 1591 * receive) the skb pointer might be invalid when 1592 * getting here: tcp_collapse might have deleted it 1593 * while aggregating skbs from the socket queue. 1594 */ 1595 skb = tcp_recv_skb(sk, seq - 1, &offset); 1596 if (!skb) 1597 break; 1598 /* TCP coalescing might have appended data to the skb. 1599 * Try to splice more frags 1600 */ 1601 if (offset + 1 != skb->len) 1602 continue; 1603 } 1604 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1605 tcp_eat_recv_skb(sk, skb); 1606 ++seq; 1607 break; 1608 } 1609 tcp_eat_recv_skb(sk, skb); 1610 if (!desc->count) 1611 break; 1612 WRITE_ONCE(tp->copied_seq, seq); 1613 } 1614 WRITE_ONCE(tp->copied_seq, seq); 1615 1616 tcp_rcv_space_adjust(sk); 1617 1618 /* Clean up data we have read: This will do ACK frames. */ 1619 if (copied > 0) { 1620 tcp_recv_skb(sk, seq, &offset); 1621 tcp_cleanup_rbuf(sk, copied); 1622 } 1623 return copied; 1624 } 1625 EXPORT_SYMBOL(tcp_read_sock); 1626 1627 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1628 { 1629 struct sk_buff *skb; 1630 int copied = 0; 1631 1632 if (sk->sk_state == TCP_LISTEN) 1633 return -ENOTCONN; 1634 1635 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1636 u8 tcp_flags; 1637 int used; 1638 1639 __skb_unlink(skb, &sk->sk_receive_queue); 1640 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1641 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1642 used = recv_actor(sk, skb); 1643 if (used < 0) { 1644 if (!copied) 1645 copied = used; 1646 break; 1647 } 1648 copied += used; 1649 1650 if (tcp_flags & TCPHDR_FIN) 1651 break; 1652 } 1653 return copied; 1654 } 1655 EXPORT_SYMBOL(tcp_read_skb); 1656 1657 void tcp_read_done(struct sock *sk, size_t len) 1658 { 1659 struct tcp_sock *tp = tcp_sk(sk); 1660 u32 seq = tp->copied_seq; 1661 struct sk_buff *skb; 1662 size_t left; 1663 u32 offset; 1664 1665 if (sk->sk_state == TCP_LISTEN) 1666 return; 1667 1668 left = len; 1669 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1670 int used; 1671 1672 used = min_t(size_t, skb->len - offset, left); 1673 seq += used; 1674 left -= used; 1675 1676 if (skb->len > offset + used) 1677 break; 1678 1679 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1680 tcp_eat_recv_skb(sk, skb); 1681 ++seq; 1682 break; 1683 } 1684 tcp_eat_recv_skb(sk, skb); 1685 } 1686 WRITE_ONCE(tp->copied_seq, seq); 1687 1688 tcp_rcv_space_adjust(sk); 1689 1690 /* Clean up data we have read: This will do ACK frames. */ 1691 if (left != len) 1692 tcp_cleanup_rbuf(sk, len - left); 1693 } 1694 EXPORT_SYMBOL(tcp_read_done); 1695 1696 int tcp_peek_len(struct socket *sock) 1697 { 1698 return tcp_inq(sock->sk); 1699 } 1700 EXPORT_SYMBOL(tcp_peek_len); 1701 1702 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1703 int tcp_set_rcvlowat(struct sock *sk, int val) 1704 { 1705 int space, cap; 1706 1707 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1708 cap = sk->sk_rcvbuf >> 1; 1709 else 1710 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1711 val = min(val, cap); 1712 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1713 1714 /* Check if we need to signal EPOLLIN right now */ 1715 tcp_data_ready(sk); 1716 1717 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1718 return 0; 1719 1720 space = tcp_space_from_win(sk, val); 1721 if (space > sk->sk_rcvbuf) { 1722 WRITE_ONCE(sk->sk_rcvbuf, space); 1723 tcp_sk(sk)->window_clamp = val; 1724 } 1725 return 0; 1726 } 1727 EXPORT_SYMBOL(tcp_set_rcvlowat); 1728 1729 void tcp_update_recv_tstamps(struct sk_buff *skb, 1730 struct scm_timestamping_internal *tss) 1731 { 1732 if (skb->tstamp) 1733 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1734 else 1735 tss->ts[0] = (struct timespec64) {0}; 1736 1737 if (skb_hwtstamps(skb)->hwtstamp) 1738 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1739 else 1740 tss->ts[2] = (struct timespec64) {0}; 1741 } 1742 1743 #ifdef CONFIG_MMU 1744 static const struct vm_operations_struct tcp_vm_ops = { 1745 }; 1746 1747 int tcp_mmap(struct file *file, struct socket *sock, 1748 struct vm_area_struct *vma) 1749 { 1750 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1751 return -EPERM; 1752 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1753 1754 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1755 vm_flags_set(vma, VM_MIXEDMAP); 1756 1757 vma->vm_ops = &tcp_vm_ops; 1758 return 0; 1759 } 1760 EXPORT_SYMBOL(tcp_mmap); 1761 1762 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1763 u32 *offset_frag) 1764 { 1765 skb_frag_t *frag; 1766 1767 if (unlikely(offset_skb >= skb->len)) 1768 return NULL; 1769 1770 offset_skb -= skb_headlen(skb); 1771 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1772 return NULL; 1773 1774 frag = skb_shinfo(skb)->frags; 1775 while (offset_skb) { 1776 if (skb_frag_size(frag) > offset_skb) { 1777 *offset_frag = offset_skb; 1778 return frag; 1779 } 1780 offset_skb -= skb_frag_size(frag); 1781 ++frag; 1782 } 1783 *offset_frag = 0; 1784 return frag; 1785 } 1786 1787 static bool can_map_frag(const skb_frag_t *frag) 1788 { 1789 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag); 1790 } 1791 1792 static int find_next_mappable_frag(const skb_frag_t *frag, 1793 int remaining_in_skb) 1794 { 1795 int offset = 0; 1796 1797 if (likely(can_map_frag(frag))) 1798 return 0; 1799 1800 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1801 offset += skb_frag_size(frag); 1802 ++frag; 1803 } 1804 return offset; 1805 } 1806 1807 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1808 struct tcp_zerocopy_receive *zc, 1809 struct sk_buff *skb, u32 offset) 1810 { 1811 u32 frag_offset, partial_frag_remainder = 0; 1812 int mappable_offset; 1813 skb_frag_t *frag; 1814 1815 /* worst case: skip to next skb. try to improve on this case below */ 1816 zc->recv_skip_hint = skb->len - offset; 1817 1818 /* Find the frag containing this offset (and how far into that frag) */ 1819 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1820 if (!frag) 1821 return; 1822 1823 if (frag_offset) { 1824 struct skb_shared_info *info = skb_shinfo(skb); 1825 1826 /* We read part of the last frag, must recvmsg() rest of skb. */ 1827 if (frag == &info->frags[info->nr_frags - 1]) 1828 return; 1829 1830 /* Else, we must at least read the remainder in this frag. */ 1831 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1832 zc->recv_skip_hint -= partial_frag_remainder; 1833 ++frag; 1834 } 1835 1836 /* partial_frag_remainder: If part way through a frag, must read rest. 1837 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1838 * in partial_frag_remainder. 1839 */ 1840 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1841 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1842 } 1843 1844 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1845 int flags, struct scm_timestamping_internal *tss, 1846 int *cmsg_flags); 1847 static int receive_fallback_to_copy(struct sock *sk, 1848 struct tcp_zerocopy_receive *zc, int inq, 1849 struct scm_timestamping_internal *tss) 1850 { 1851 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1852 struct msghdr msg = {}; 1853 struct iovec iov; 1854 int err; 1855 1856 zc->length = 0; 1857 zc->recv_skip_hint = 0; 1858 1859 if (copy_address != zc->copybuf_address) 1860 return -EINVAL; 1861 1862 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1863 inq, &iov, &msg.msg_iter); 1864 if (err) 1865 return err; 1866 1867 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1868 tss, &zc->msg_flags); 1869 if (err < 0) 1870 return err; 1871 1872 zc->copybuf_len = err; 1873 if (likely(zc->copybuf_len)) { 1874 struct sk_buff *skb; 1875 u32 offset; 1876 1877 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1878 if (skb) 1879 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1880 } 1881 return 0; 1882 } 1883 1884 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1885 struct sk_buff *skb, u32 copylen, 1886 u32 *offset, u32 *seq) 1887 { 1888 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1889 struct msghdr msg = {}; 1890 struct iovec iov; 1891 int err; 1892 1893 if (copy_address != zc->copybuf_address) 1894 return -EINVAL; 1895 1896 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1897 copylen, &iov, &msg.msg_iter); 1898 if (err) 1899 return err; 1900 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1901 if (err) 1902 return err; 1903 zc->recv_skip_hint -= copylen; 1904 *offset += copylen; 1905 *seq += copylen; 1906 return (__s32)copylen; 1907 } 1908 1909 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1910 struct sock *sk, 1911 struct sk_buff *skb, 1912 u32 *seq, 1913 s32 copybuf_len, 1914 struct scm_timestamping_internal *tss) 1915 { 1916 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1917 1918 if (!copylen) 1919 return 0; 1920 /* skb is null if inq < PAGE_SIZE. */ 1921 if (skb) { 1922 offset = *seq - TCP_SKB_CB(skb)->seq; 1923 } else { 1924 skb = tcp_recv_skb(sk, *seq, &offset); 1925 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1926 tcp_update_recv_tstamps(skb, tss); 1927 zc->msg_flags |= TCP_CMSG_TS; 1928 } 1929 } 1930 1931 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1932 seq); 1933 return zc->copybuf_len < 0 ? 0 : copylen; 1934 } 1935 1936 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1937 struct page **pending_pages, 1938 unsigned long pages_remaining, 1939 unsigned long *address, 1940 u32 *length, 1941 u32 *seq, 1942 struct tcp_zerocopy_receive *zc, 1943 u32 total_bytes_to_map, 1944 int err) 1945 { 1946 /* At least one page did not map. Try zapping if we skipped earlier. */ 1947 if (err == -EBUSY && 1948 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1949 u32 maybe_zap_len; 1950 1951 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1952 *length + /* Mapped or pending */ 1953 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1954 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1955 err = 0; 1956 } 1957 1958 if (!err) { 1959 unsigned long leftover_pages = pages_remaining; 1960 int bytes_mapped; 1961 1962 /* We called zap_page_range_single, try to reinsert. */ 1963 err = vm_insert_pages(vma, *address, 1964 pending_pages, 1965 &pages_remaining); 1966 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1967 *seq += bytes_mapped; 1968 *address += bytes_mapped; 1969 } 1970 if (err) { 1971 /* Either we were unable to zap, OR we zapped, retried an 1972 * insert, and still had an issue. Either ways, pages_remaining 1973 * is the number of pages we were unable to map, and we unroll 1974 * some state we speculatively touched before. 1975 */ 1976 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 1977 1978 *length -= bytes_not_mapped; 1979 zc->recv_skip_hint += bytes_not_mapped; 1980 } 1981 return err; 1982 } 1983 1984 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 1985 struct page **pages, 1986 unsigned int pages_to_map, 1987 unsigned long *address, 1988 u32 *length, 1989 u32 *seq, 1990 struct tcp_zerocopy_receive *zc, 1991 u32 total_bytes_to_map) 1992 { 1993 unsigned long pages_remaining = pages_to_map; 1994 unsigned int pages_mapped; 1995 unsigned int bytes_mapped; 1996 int err; 1997 1998 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 1999 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2000 bytes_mapped = PAGE_SIZE * pages_mapped; 2001 /* Even if vm_insert_pages fails, it may have partially succeeded in 2002 * mapping (some but not all of the pages). 2003 */ 2004 *seq += bytes_mapped; 2005 *address += bytes_mapped; 2006 2007 if (likely(!err)) 2008 return 0; 2009 2010 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2011 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2012 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2013 err); 2014 } 2015 2016 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2017 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2018 struct tcp_zerocopy_receive *zc, 2019 struct scm_timestamping_internal *tss) 2020 { 2021 unsigned long msg_control_addr; 2022 struct msghdr cmsg_dummy; 2023 2024 msg_control_addr = (unsigned long)zc->msg_control; 2025 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2026 cmsg_dummy.msg_controllen = 2027 (__kernel_size_t)zc->msg_controllen; 2028 cmsg_dummy.msg_flags = in_compat_syscall() 2029 ? MSG_CMSG_COMPAT : 0; 2030 cmsg_dummy.msg_control_is_user = true; 2031 zc->msg_flags = 0; 2032 if (zc->msg_control == msg_control_addr && 2033 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2034 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2035 zc->msg_control = (__u64) 2036 ((uintptr_t)cmsg_dummy.msg_control_user); 2037 zc->msg_controllen = 2038 (__u64)cmsg_dummy.msg_controllen; 2039 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2040 } 2041 } 2042 2043 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2044 unsigned long address, 2045 bool *mmap_locked) 2046 { 2047 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2048 2049 if (vma) { 2050 if (vma->vm_ops != &tcp_vm_ops) { 2051 vma_end_read(vma); 2052 return NULL; 2053 } 2054 *mmap_locked = false; 2055 return vma; 2056 } 2057 2058 mmap_read_lock(mm); 2059 vma = vma_lookup(mm, address); 2060 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2061 mmap_read_unlock(mm); 2062 return NULL; 2063 } 2064 *mmap_locked = true; 2065 return vma; 2066 } 2067 2068 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2069 static int tcp_zerocopy_receive(struct sock *sk, 2070 struct tcp_zerocopy_receive *zc, 2071 struct scm_timestamping_internal *tss) 2072 { 2073 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2074 unsigned long address = (unsigned long)zc->address; 2075 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2076 s32 copybuf_len = zc->copybuf_len; 2077 struct tcp_sock *tp = tcp_sk(sk); 2078 const skb_frag_t *frags = NULL; 2079 unsigned int pages_to_map = 0; 2080 struct vm_area_struct *vma; 2081 struct sk_buff *skb = NULL; 2082 u32 seq = tp->copied_seq; 2083 u32 total_bytes_to_map; 2084 int inq = tcp_inq(sk); 2085 bool mmap_locked; 2086 int ret; 2087 2088 zc->copybuf_len = 0; 2089 zc->msg_flags = 0; 2090 2091 if (address & (PAGE_SIZE - 1) || address != zc->address) 2092 return -EINVAL; 2093 2094 if (sk->sk_state == TCP_LISTEN) 2095 return -ENOTCONN; 2096 2097 sock_rps_record_flow(sk); 2098 2099 if (inq && inq <= copybuf_len) 2100 return receive_fallback_to_copy(sk, zc, inq, tss); 2101 2102 if (inq < PAGE_SIZE) { 2103 zc->length = 0; 2104 zc->recv_skip_hint = inq; 2105 if (!inq && sock_flag(sk, SOCK_DONE)) 2106 return -EIO; 2107 return 0; 2108 } 2109 2110 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2111 if (!vma) 2112 return -EINVAL; 2113 2114 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2115 avail_len = min_t(u32, vma_len, inq); 2116 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2117 if (total_bytes_to_map) { 2118 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2119 zap_page_range_single(vma, address, total_bytes_to_map, 2120 NULL); 2121 zc->length = total_bytes_to_map; 2122 zc->recv_skip_hint = 0; 2123 } else { 2124 zc->length = avail_len; 2125 zc->recv_skip_hint = avail_len; 2126 } 2127 ret = 0; 2128 while (length + PAGE_SIZE <= zc->length) { 2129 int mappable_offset; 2130 struct page *page; 2131 2132 if (zc->recv_skip_hint < PAGE_SIZE) { 2133 u32 offset_frag; 2134 2135 if (skb) { 2136 if (zc->recv_skip_hint > 0) 2137 break; 2138 skb = skb->next; 2139 offset = seq - TCP_SKB_CB(skb)->seq; 2140 } else { 2141 skb = tcp_recv_skb(sk, seq, &offset); 2142 } 2143 2144 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2145 tcp_update_recv_tstamps(skb, tss); 2146 zc->msg_flags |= TCP_CMSG_TS; 2147 } 2148 zc->recv_skip_hint = skb->len - offset; 2149 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2150 if (!frags || offset_frag) 2151 break; 2152 } 2153 2154 mappable_offset = find_next_mappable_frag(frags, 2155 zc->recv_skip_hint); 2156 if (mappable_offset) { 2157 zc->recv_skip_hint = mappable_offset; 2158 break; 2159 } 2160 page = skb_frag_page(frags); 2161 prefetchw(page); 2162 pages[pages_to_map++] = page; 2163 length += PAGE_SIZE; 2164 zc->recv_skip_hint -= PAGE_SIZE; 2165 frags++; 2166 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2167 zc->recv_skip_hint < PAGE_SIZE) { 2168 /* Either full batch, or we're about to go to next skb 2169 * (and we cannot unroll failed ops across skbs). 2170 */ 2171 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2172 pages_to_map, 2173 &address, &length, 2174 &seq, zc, 2175 total_bytes_to_map); 2176 if (ret) 2177 goto out; 2178 pages_to_map = 0; 2179 } 2180 } 2181 if (pages_to_map) { 2182 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2183 &address, &length, &seq, 2184 zc, total_bytes_to_map); 2185 } 2186 out: 2187 if (mmap_locked) 2188 mmap_read_unlock(current->mm); 2189 else 2190 vma_end_read(vma); 2191 /* Try to copy straggler data. */ 2192 if (!ret) 2193 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2194 2195 if (length + copylen) { 2196 WRITE_ONCE(tp->copied_seq, seq); 2197 tcp_rcv_space_adjust(sk); 2198 2199 /* Clean up data we have read: This will do ACK frames. */ 2200 tcp_recv_skb(sk, seq, &offset); 2201 tcp_cleanup_rbuf(sk, length + copylen); 2202 ret = 0; 2203 if (length == zc->length) 2204 zc->recv_skip_hint = 0; 2205 } else { 2206 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2207 ret = -EIO; 2208 } 2209 zc->length = length; 2210 return ret; 2211 } 2212 #endif 2213 2214 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2215 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2216 struct scm_timestamping_internal *tss) 2217 { 2218 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2219 bool has_timestamping = false; 2220 2221 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2222 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2223 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2224 if (new_tstamp) { 2225 struct __kernel_timespec kts = { 2226 .tv_sec = tss->ts[0].tv_sec, 2227 .tv_nsec = tss->ts[0].tv_nsec, 2228 }; 2229 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2230 sizeof(kts), &kts); 2231 } else { 2232 struct __kernel_old_timespec ts_old = { 2233 .tv_sec = tss->ts[0].tv_sec, 2234 .tv_nsec = tss->ts[0].tv_nsec, 2235 }; 2236 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2237 sizeof(ts_old), &ts_old); 2238 } 2239 } else { 2240 if (new_tstamp) { 2241 struct __kernel_sock_timeval stv = { 2242 .tv_sec = tss->ts[0].tv_sec, 2243 .tv_usec = tss->ts[0].tv_nsec / 1000, 2244 }; 2245 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2246 sizeof(stv), &stv); 2247 } else { 2248 struct __kernel_old_timeval tv = { 2249 .tv_sec = tss->ts[0].tv_sec, 2250 .tv_usec = tss->ts[0].tv_nsec / 1000, 2251 }; 2252 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2253 sizeof(tv), &tv); 2254 } 2255 } 2256 } 2257 2258 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2259 has_timestamping = true; 2260 else 2261 tss->ts[0] = (struct timespec64) {0}; 2262 } 2263 2264 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2265 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2266 has_timestamping = true; 2267 else 2268 tss->ts[2] = (struct timespec64) {0}; 2269 } 2270 2271 if (has_timestamping) { 2272 tss->ts[1] = (struct timespec64) {0}; 2273 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2274 put_cmsg_scm_timestamping64(msg, tss); 2275 else 2276 put_cmsg_scm_timestamping(msg, tss); 2277 } 2278 } 2279 2280 static int tcp_inq_hint(struct sock *sk) 2281 { 2282 const struct tcp_sock *tp = tcp_sk(sk); 2283 u32 copied_seq = READ_ONCE(tp->copied_seq); 2284 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2285 int inq; 2286 2287 inq = rcv_nxt - copied_seq; 2288 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2289 lock_sock(sk); 2290 inq = tp->rcv_nxt - tp->copied_seq; 2291 release_sock(sk); 2292 } 2293 /* After receiving a FIN, tell the user-space to continue reading 2294 * by returning a non-zero inq. 2295 */ 2296 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2297 inq = 1; 2298 return inq; 2299 } 2300 2301 /* 2302 * This routine copies from a sock struct into the user buffer. 2303 * 2304 * Technical note: in 2.3 we work on _locked_ socket, so that 2305 * tricks with *seq access order and skb->users are not required. 2306 * Probably, code can be easily improved even more. 2307 */ 2308 2309 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2310 int flags, struct scm_timestamping_internal *tss, 2311 int *cmsg_flags) 2312 { 2313 struct tcp_sock *tp = tcp_sk(sk); 2314 int copied = 0; 2315 u32 peek_seq; 2316 u32 *seq; 2317 unsigned long used; 2318 int err; 2319 int target; /* Read at least this many bytes */ 2320 long timeo; 2321 struct sk_buff *skb, *last; 2322 u32 urg_hole = 0; 2323 2324 err = -ENOTCONN; 2325 if (sk->sk_state == TCP_LISTEN) 2326 goto out; 2327 2328 if (tp->recvmsg_inq) { 2329 *cmsg_flags = TCP_CMSG_INQ; 2330 msg->msg_get_inq = 1; 2331 } 2332 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2333 2334 /* Urgent data needs to be handled specially. */ 2335 if (flags & MSG_OOB) 2336 goto recv_urg; 2337 2338 if (unlikely(tp->repair)) { 2339 err = -EPERM; 2340 if (!(flags & MSG_PEEK)) 2341 goto out; 2342 2343 if (tp->repair_queue == TCP_SEND_QUEUE) 2344 goto recv_sndq; 2345 2346 err = -EINVAL; 2347 if (tp->repair_queue == TCP_NO_QUEUE) 2348 goto out; 2349 2350 /* 'common' recv queue MSG_PEEK-ing */ 2351 } 2352 2353 seq = &tp->copied_seq; 2354 if (flags & MSG_PEEK) { 2355 peek_seq = tp->copied_seq; 2356 seq = &peek_seq; 2357 } 2358 2359 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2360 2361 do { 2362 u32 offset; 2363 2364 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2365 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2366 if (copied) 2367 break; 2368 if (signal_pending(current)) { 2369 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2370 break; 2371 } 2372 } 2373 2374 /* Next get a buffer. */ 2375 2376 last = skb_peek_tail(&sk->sk_receive_queue); 2377 skb_queue_walk(&sk->sk_receive_queue, skb) { 2378 last = skb; 2379 /* Now that we have two receive queues this 2380 * shouldn't happen. 2381 */ 2382 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2383 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2384 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2385 flags)) 2386 break; 2387 2388 offset = *seq - TCP_SKB_CB(skb)->seq; 2389 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2390 pr_err_once("%s: found a SYN, please report !\n", __func__); 2391 offset--; 2392 } 2393 if (offset < skb->len) 2394 goto found_ok_skb; 2395 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2396 goto found_fin_ok; 2397 WARN(!(flags & MSG_PEEK), 2398 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2399 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2400 } 2401 2402 /* Well, if we have backlog, try to process it now yet. */ 2403 2404 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2405 break; 2406 2407 if (copied) { 2408 if (!timeo || 2409 sk->sk_err || 2410 sk->sk_state == TCP_CLOSE || 2411 (sk->sk_shutdown & RCV_SHUTDOWN) || 2412 signal_pending(current)) 2413 break; 2414 } else { 2415 if (sock_flag(sk, SOCK_DONE)) 2416 break; 2417 2418 if (sk->sk_err) { 2419 copied = sock_error(sk); 2420 break; 2421 } 2422 2423 if (sk->sk_shutdown & RCV_SHUTDOWN) 2424 break; 2425 2426 if (sk->sk_state == TCP_CLOSE) { 2427 /* This occurs when user tries to read 2428 * from never connected socket. 2429 */ 2430 copied = -ENOTCONN; 2431 break; 2432 } 2433 2434 if (!timeo) { 2435 copied = -EAGAIN; 2436 break; 2437 } 2438 2439 if (signal_pending(current)) { 2440 copied = sock_intr_errno(timeo); 2441 break; 2442 } 2443 } 2444 2445 if (copied >= target) { 2446 /* Do not sleep, just process backlog. */ 2447 __sk_flush_backlog(sk); 2448 } else { 2449 tcp_cleanup_rbuf(sk, copied); 2450 err = sk_wait_data(sk, &timeo, last); 2451 if (err < 0) { 2452 err = copied ? : err; 2453 goto out; 2454 } 2455 } 2456 2457 if ((flags & MSG_PEEK) && 2458 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2459 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2460 current->comm, 2461 task_pid_nr(current)); 2462 peek_seq = tp->copied_seq; 2463 } 2464 continue; 2465 2466 found_ok_skb: 2467 /* Ok so how much can we use? */ 2468 used = skb->len - offset; 2469 if (len < used) 2470 used = len; 2471 2472 /* Do we have urgent data here? */ 2473 if (unlikely(tp->urg_data)) { 2474 u32 urg_offset = tp->urg_seq - *seq; 2475 if (urg_offset < used) { 2476 if (!urg_offset) { 2477 if (!sock_flag(sk, SOCK_URGINLINE)) { 2478 WRITE_ONCE(*seq, *seq + 1); 2479 urg_hole++; 2480 offset++; 2481 used--; 2482 if (!used) 2483 goto skip_copy; 2484 } 2485 } else 2486 used = urg_offset; 2487 } 2488 } 2489 2490 if (!(flags & MSG_TRUNC)) { 2491 err = skb_copy_datagram_msg(skb, offset, msg, used); 2492 if (err) { 2493 /* Exception. Bailout! */ 2494 if (!copied) 2495 copied = -EFAULT; 2496 break; 2497 } 2498 } 2499 2500 WRITE_ONCE(*seq, *seq + used); 2501 copied += used; 2502 len -= used; 2503 2504 tcp_rcv_space_adjust(sk); 2505 2506 skip_copy: 2507 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2508 WRITE_ONCE(tp->urg_data, 0); 2509 tcp_fast_path_check(sk); 2510 } 2511 2512 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2513 tcp_update_recv_tstamps(skb, tss); 2514 *cmsg_flags |= TCP_CMSG_TS; 2515 } 2516 2517 if (used + offset < skb->len) 2518 continue; 2519 2520 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2521 goto found_fin_ok; 2522 if (!(flags & MSG_PEEK)) 2523 tcp_eat_recv_skb(sk, skb); 2524 continue; 2525 2526 found_fin_ok: 2527 /* Process the FIN. */ 2528 WRITE_ONCE(*seq, *seq + 1); 2529 if (!(flags & MSG_PEEK)) 2530 tcp_eat_recv_skb(sk, skb); 2531 break; 2532 } while (len > 0); 2533 2534 /* According to UNIX98, msg_name/msg_namelen are ignored 2535 * on connected socket. I was just happy when found this 8) --ANK 2536 */ 2537 2538 /* Clean up data we have read: This will do ACK frames. */ 2539 tcp_cleanup_rbuf(sk, copied); 2540 return copied; 2541 2542 out: 2543 return err; 2544 2545 recv_urg: 2546 err = tcp_recv_urg(sk, msg, len, flags); 2547 goto out; 2548 2549 recv_sndq: 2550 err = tcp_peek_sndq(sk, msg, len); 2551 goto out; 2552 } 2553 2554 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2555 int *addr_len) 2556 { 2557 int cmsg_flags = 0, ret; 2558 struct scm_timestamping_internal tss; 2559 2560 if (unlikely(flags & MSG_ERRQUEUE)) 2561 return inet_recv_error(sk, msg, len, addr_len); 2562 2563 if (sk_can_busy_loop(sk) && 2564 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2565 sk->sk_state == TCP_ESTABLISHED) 2566 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2567 2568 lock_sock(sk); 2569 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2570 release_sock(sk); 2571 2572 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2573 if (cmsg_flags & TCP_CMSG_TS) 2574 tcp_recv_timestamp(msg, sk, &tss); 2575 if (msg->msg_get_inq) { 2576 msg->msg_inq = tcp_inq_hint(sk); 2577 if (cmsg_flags & TCP_CMSG_INQ) 2578 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2579 sizeof(msg->msg_inq), &msg->msg_inq); 2580 } 2581 } 2582 return ret; 2583 } 2584 EXPORT_SYMBOL(tcp_recvmsg); 2585 2586 void tcp_set_state(struct sock *sk, int state) 2587 { 2588 int oldstate = sk->sk_state; 2589 2590 /* We defined a new enum for TCP states that are exported in BPF 2591 * so as not force the internal TCP states to be frozen. The 2592 * following checks will detect if an internal state value ever 2593 * differs from the BPF value. If this ever happens, then we will 2594 * need to remap the internal value to the BPF value before calling 2595 * tcp_call_bpf_2arg. 2596 */ 2597 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2598 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2599 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2600 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2601 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2602 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2603 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2604 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2605 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2606 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2607 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2608 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2609 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2610 2611 /* bpf uapi header bpf.h defines an anonymous enum with values 2612 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2613 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2614 * But clang built vmlinux does not have this enum in DWARF 2615 * since clang removes the above code before generating IR/debuginfo. 2616 * Let us explicitly emit the type debuginfo to ensure the 2617 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2618 * regardless of which compiler is used. 2619 */ 2620 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2621 2622 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2623 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2624 2625 switch (state) { 2626 case TCP_ESTABLISHED: 2627 if (oldstate != TCP_ESTABLISHED) 2628 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2629 break; 2630 2631 case TCP_CLOSE: 2632 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2633 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2634 2635 sk->sk_prot->unhash(sk); 2636 if (inet_csk(sk)->icsk_bind_hash && 2637 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2638 inet_put_port(sk); 2639 fallthrough; 2640 default: 2641 if (oldstate == TCP_ESTABLISHED) 2642 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2643 } 2644 2645 /* Change state AFTER socket is unhashed to avoid closed 2646 * socket sitting in hash tables. 2647 */ 2648 inet_sk_state_store(sk, state); 2649 } 2650 EXPORT_SYMBOL_GPL(tcp_set_state); 2651 2652 /* 2653 * State processing on a close. This implements the state shift for 2654 * sending our FIN frame. Note that we only send a FIN for some 2655 * states. A shutdown() may have already sent the FIN, or we may be 2656 * closed. 2657 */ 2658 2659 static const unsigned char new_state[16] = { 2660 /* current state: new state: action: */ 2661 [0 /* (Invalid) */] = TCP_CLOSE, 2662 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2663 [TCP_SYN_SENT] = TCP_CLOSE, 2664 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2665 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2666 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2667 [TCP_TIME_WAIT] = TCP_CLOSE, 2668 [TCP_CLOSE] = TCP_CLOSE, 2669 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2670 [TCP_LAST_ACK] = TCP_LAST_ACK, 2671 [TCP_LISTEN] = TCP_CLOSE, 2672 [TCP_CLOSING] = TCP_CLOSING, 2673 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2674 }; 2675 2676 static int tcp_close_state(struct sock *sk) 2677 { 2678 int next = (int)new_state[sk->sk_state]; 2679 int ns = next & TCP_STATE_MASK; 2680 2681 tcp_set_state(sk, ns); 2682 2683 return next & TCP_ACTION_FIN; 2684 } 2685 2686 /* 2687 * Shutdown the sending side of a connection. Much like close except 2688 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2689 */ 2690 2691 void tcp_shutdown(struct sock *sk, int how) 2692 { 2693 /* We need to grab some memory, and put together a FIN, 2694 * and then put it into the queue to be sent. 2695 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2696 */ 2697 if (!(how & SEND_SHUTDOWN)) 2698 return; 2699 2700 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2701 if ((1 << sk->sk_state) & 2702 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2703 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2704 /* Clear out any half completed packets. FIN if needed. */ 2705 if (tcp_close_state(sk)) 2706 tcp_send_fin(sk); 2707 } 2708 } 2709 EXPORT_SYMBOL(tcp_shutdown); 2710 2711 int tcp_orphan_count_sum(void) 2712 { 2713 int i, total = 0; 2714 2715 for_each_possible_cpu(i) 2716 total += per_cpu(tcp_orphan_count, i); 2717 2718 return max(total, 0); 2719 } 2720 2721 static int tcp_orphan_cache; 2722 static struct timer_list tcp_orphan_timer; 2723 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2724 2725 static void tcp_orphan_update(struct timer_list *unused) 2726 { 2727 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2728 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2729 } 2730 2731 static bool tcp_too_many_orphans(int shift) 2732 { 2733 return READ_ONCE(tcp_orphan_cache) << shift > 2734 READ_ONCE(sysctl_tcp_max_orphans); 2735 } 2736 2737 bool tcp_check_oom(struct sock *sk, int shift) 2738 { 2739 bool too_many_orphans, out_of_socket_memory; 2740 2741 too_many_orphans = tcp_too_many_orphans(shift); 2742 out_of_socket_memory = tcp_out_of_memory(sk); 2743 2744 if (too_many_orphans) 2745 net_info_ratelimited("too many orphaned sockets\n"); 2746 if (out_of_socket_memory) 2747 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2748 return too_many_orphans || out_of_socket_memory; 2749 } 2750 2751 void __tcp_close(struct sock *sk, long timeout) 2752 { 2753 struct sk_buff *skb; 2754 int data_was_unread = 0; 2755 int state; 2756 2757 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2758 2759 if (sk->sk_state == TCP_LISTEN) { 2760 tcp_set_state(sk, TCP_CLOSE); 2761 2762 /* Special case. */ 2763 inet_csk_listen_stop(sk); 2764 2765 goto adjudge_to_death; 2766 } 2767 2768 /* We need to flush the recv. buffs. We do this only on the 2769 * descriptor close, not protocol-sourced closes, because the 2770 * reader process may not have drained the data yet! 2771 */ 2772 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2773 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2774 2775 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2776 len--; 2777 data_was_unread += len; 2778 __kfree_skb(skb); 2779 } 2780 2781 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2782 if (sk->sk_state == TCP_CLOSE) 2783 goto adjudge_to_death; 2784 2785 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2786 * data was lost. To witness the awful effects of the old behavior of 2787 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2788 * GET in an FTP client, suspend the process, wait for the client to 2789 * advertise a zero window, then kill -9 the FTP client, wheee... 2790 * Note: timeout is always zero in such a case. 2791 */ 2792 if (unlikely(tcp_sk(sk)->repair)) { 2793 sk->sk_prot->disconnect(sk, 0); 2794 } else if (data_was_unread) { 2795 /* Unread data was tossed, zap the connection. */ 2796 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2797 tcp_set_state(sk, TCP_CLOSE); 2798 tcp_send_active_reset(sk, sk->sk_allocation); 2799 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2800 /* Check zero linger _after_ checking for unread data. */ 2801 sk->sk_prot->disconnect(sk, 0); 2802 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2803 } else if (tcp_close_state(sk)) { 2804 /* We FIN if the application ate all the data before 2805 * zapping the connection. 2806 */ 2807 2808 /* RED-PEN. Formally speaking, we have broken TCP state 2809 * machine. State transitions: 2810 * 2811 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2812 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2813 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2814 * 2815 * are legal only when FIN has been sent (i.e. in window), 2816 * rather than queued out of window. Purists blame. 2817 * 2818 * F.e. "RFC state" is ESTABLISHED, 2819 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2820 * 2821 * The visible declinations are that sometimes 2822 * we enter time-wait state, when it is not required really 2823 * (harmless), do not send active resets, when they are 2824 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2825 * they look as CLOSING or LAST_ACK for Linux) 2826 * Probably, I missed some more holelets. 2827 * --ANK 2828 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2829 * in a single packet! (May consider it later but will 2830 * probably need API support or TCP_CORK SYN-ACK until 2831 * data is written and socket is closed.) 2832 */ 2833 tcp_send_fin(sk); 2834 } 2835 2836 sk_stream_wait_close(sk, timeout); 2837 2838 adjudge_to_death: 2839 state = sk->sk_state; 2840 sock_hold(sk); 2841 sock_orphan(sk); 2842 2843 local_bh_disable(); 2844 bh_lock_sock(sk); 2845 /* remove backlog if any, without releasing ownership. */ 2846 __release_sock(sk); 2847 2848 this_cpu_inc(tcp_orphan_count); 2849 2850 /* Have we already been destroyed by a softirq or backlog? */ 2851 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2852 goto out; 2853 2854 /* This is a (useful) BSD violating of the RFC. There is a 2855 * problem with TCP as specified in that the other end could 2856 * keep a socket open forever with no application left this end. 2857 * We use a 1 minute timeout (about the same as BSD) then kill 2858 * our end. If they send after that then tough - BUT: long enough 2859 * that we won't make the old 4*rto = almost no time - whoops 2860 * reset mistake. 2861 * 2862 * Nope, it was not mistake. It is really desired behaviour 2863 * f.e. on http servers, when such sockets are useless, but 2864 * consume significant resources. Let's do it with special 2865 * linger2 option. --ANK 2866 */ 2867 2868 if (sk->sk_state == TCP_FIN_WAIT2) { 2869 struct tcp_sock *tp = tcp_sk(sk); 2870 if (READ_ONCE(tp->linger2) < 0) { 2871 tcp_set_state(sk, TCP_CLOSE); 2872 tcp_send_active_reset(sk, GFP_ATOMIC); 2873 __NET_INC_STATS(sock_net(sk), 2874 LINUX_MIB_TCPABORTONLINGER); 2875 } else { 2876 const int tmo = tcp_fin_time(sk); 2877 2878 if (tmo > TCP_TIMEWAIT_LEN) { 2879 inet_csk_reset_keepalive_timer(sk, 2880 tmo - TCP_TIMEWAIT_LEN); 2881 } else { 2882 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2883 goto out; 2884 } 2885 } 2886 } 2887 if (sk->sk_state != TCP_CLOSE) { 2888 if (tcp_check_oom(sk, 0)) { 2889 tcp_set_state(sk, TCP_CLOSE); 2890 tcp_send_active_reset(sk, GFP_ATOMIC); 2891 __NET_INC_STATS(sock_net(sk), 2892 LINUX_MIB_TCPABORTONMEMORY); 2893 } else if (!check_net(sock_net(sk))) { 2894 /* Not possible to send reset; just close */ 2895 tcp_set_state(sk, TCP_CLOSE); 2896 } 2897 } 2898 2899 if (sk->sk_state == TCP_CLOSE) { 2900 struct request_sock *req; 2901 2902 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2903 lockdep_sock_is_held(sk)); 2904 /* We could get here with a non-NULL req if the socket is 2905 * aborted (e.g., closed with unread data) before 3WHS 2906 * finishes. 2907 */ 2908 if (req) 2909 reqsk_fastopen_remove(sk, req, false); 2910 inet_csk_destroy_sock(sk); 2911 } 2912 /* Otherwise, socket is reprieved until protocol close. */ 2913 2914 out: 2915 bh_unlock_sock(sk); 2916 local_bh_enable(); 2917 } 2918 2919 void tcp_close(struct sock *sk, long timeout) 2920 { 2921 lock_sock(sk); 2922 __tcp_close(sk, timeout); 2923 release_sock(sk); 2924 sock_put(sk); 2925 } 2926 EXPORT_SYMBOL(tcp_close); 2927 2928 /* These states need RST on ABORT according to RFC793 */ 2929 2930 static inline bool tcp_need_reset(int state) 2931 { 2932 return (1 << state) & 2933 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2934 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2935 } 2936 2937 static void tcp_rtx_queue_purge(struct sock *sk) 2938 { 2939 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2940 2941 tcp_sk(sk)->highest_sack = NULL; 2942 while (p) { 2943 struct sk_buff *skb = rb_to_skb(p); 2944 2945 p = rb_next(p); 2946 /* Since we are deleting whole queue, no need to 2947 * list_del(&skb->tcp_tsorted_anchor) 2948 */ 2949 tcp_rtx_queue_unlink(skb, sk); 2950 tcp_wmem_free_skb(sk, skb); 2951 } 2952 } 2953 2954 void tcp_write_queue_purge(struct sock *sk) 2955 { 2956 struct sk_buff *skb; 2957 2958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2959 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2960 tcp_skb_tsorted_anchor_cleanup(skb); 2961 tcp_wmem_free_skb(sk, skb); 2962 } 2963 tcp_rtx_queue_purge(sk); 2964 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2965 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2966 tcp_sk(sk)->packets_out = 0; 2967 inet_csk(sk)->icsk_backoff = 0; 2968 } 2969 2970 int tcp_disconnect(struct sock *sk, int flags) 2971 { 2972 struct inet_sock *inet = inet_sk(sk); 2973 struct inet_connection_sock *icsk = inet_csk(sk); 2974 struct tcp_sock *tp = tcp_sk(sk); 2975 int old_state = sk->sk_state; 2976 u32 seq; 2977 2978 if (old_state != TCP_CLOSE) 2979 tcp_set_state(sk, TCP_CLOSE); 2980 2981 /* ABORT function of RFC793 */ 2982 if (old_state == TCP_LISTEN) { 2983 inet_csk_listen_stop(sk); 2984 } else if (unlikely(tp->repair)) { 2985 WRITE_ONCE(sk->sk_err, ECONNABORTED); 2986 } else if (tcp_need_reset(old_state) || 2987 (tp->snd_nxt != tp->write_seq && 2988 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2989 /* The last check adjusts for discrepancy of Linux wrt. RFC 2990 * states 2991 */ 2992 tcp_send_active_reset(sk, gfp_any()); 2993 WRITE_ONCE(sk->sk_err, ECONNRESET); 2994 } else if (old_state == TCP_SYN_SENT) 2995 WRITE_ONCE(sk->sk_err, ECONNRESET); 2996 2997 tcp_clear_xmit_timers(sk); 2998 __skb_queue_purge(&sk->sk_receive_queue); 2999 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3000 WRITE_ONCE(tp->urg_data, 0); 3001 tcp_write_queue_purge(sk); 3002 tcp_fastopen_active_disable_ofo_check(sk); 3003 skb_rbtree_purge(&tp->out_of_order_queue); 3004 3005 inet->inet_dport = 0; 3006 3007 inet_bhash2_reset_saddr(sk); 3008 3009 WRITE_ONCE(sk->sk_shutdown, 0); 3010 sock_reset_flag(sk, SOCK_DONE); 3011 tp->srtt_us = 0; 3012 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3013 tp->rcv_rtt_last_tsecr = 0; 3014 3015 seq = tp->write_seq + tp->max_window + 2; 3016 if (!seq) 3017 seq = 1; 3018 WRITE_ONCE(tp->write_seq, seq); 3019 3020 icsk->icsk_backoff = 0; 3021 icsk->icsk_probes_out = 0; 3022 icsk->icsk_probes_tstamp = 0; 3023 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3024 icsk->icsk_rto_min = TCP_RTO_MIN; 3025 icsk->icsk_delack_max = TCP_DELACK_MAX; 3026 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3027 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3028 tp->snd_cwnd_cnt = 0; 3029 tp->is_cwnd_limited = 0; 3030 tp->max_packets_out = 0; 3031 tp->window_clamp = 0; 3032 tp->delivered = 0; 3033 tp->delivered_ce = 0; 3034 if (icsk->icsk_ca_ops->release) 3035 icsk->icsk_ca_ops->release(sk); 3036 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3037 icsk->icsk_ca_initialized = 0; 3038 tcp_set_ca_state(sk, TCP_CA_Open); 3039 tp->is_sack_reneg = 0; 3040 tcp_clear_retrans(tp); 3041 tp->total_retrans = 0; 3042 inet_csk_delack_init(sk); 3043 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3044 * issue in __tcp_select_window() 3045 */ 3046 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3047 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3048 __sk_dst_reset(sk); 3049 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL)); 3050 tcp_saved_syn_free(tp); 3051 tp->compressed_ack = 0; 3052 tp->segs_in = 0; 3053 tp->segs_out = 0; 3054 tp->bytes_sent = 0; 3055 tp->bytes_acked = 0; 3056 tp->bytes_received = 0; 3057 tp->bytes_retrans = 0; 3058 tp->data_segs_in = 0; 3059 tp->data_segs_out = 0; 3060 tp->duplicate_sack[0].start_seq = 0; 3061 tp->duplicate_sack[0].end_seq = 0; 3062 tp->dsack_dups = 0; 3063 tp->reord_seen = 0; 3064 tp->retrans_out = 0; 3065 tp->sacked_out = 0; 3066 tp->tlp_high_seq = 0; 3067 tp->last_oow_ack_time = 0; 3068 tp->plb_rehash = 0; 3069 /* There's a bubble in the pipe until at least the first ACK. */ 3070 tp->app_limited = ~0U; 3071 tp->rate_app_limited = 1; 3072 tp->rack.mstamp = 0; 3073 tp->rack.advanced = 0; 3074 tp->rack.reo_wnd_steps = 1; 3075 tp->rack.last_delivered = 0; 3076 tp->rack.reo_wnd_persist = 0; 3077 tp->rack.dsack_seen = 0; 3078 tp->syn_data_acked = 0; 3079 tp->rx_opt.saw_tstamp = 0; 3080 tp->rx_opt.dsack = 0; 3081 tp->rx_opt.num_sacks = 0; 3082 tp->rcv_ooopack = 0; 3083 3084 3085 /* Clean up fastopen related fields */ 3086 tcp_free_fastopen_req(tp); 3087 inet_clear_bit(DEFER_CONNECT, sk); 3088 tp->fastopen_client_fail = 0; 3089 3090 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3091 3092 if (sk->sk_frag.page) { 3093 put_page(sk->sk_frag.page); 3094 sk->sk_frag.page = NULL; 3095 sk->sk_frag.offset = 0; 3096 } 3097 sk_error_report(sk); 3098 return 0; 3099 } 3100 EXPORT_SYMBOL(tcp_disconnect); 3101 3102 static inline bool tcp_can_repair_sock(const struct sock *sk) 3103 { 3104 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3105 (sk->sk_state != TCP_LISTEN); 3106 } 3107 3108 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3109 { 3110 struct tcp_repair_window opt; 3111 3112 if (!tp->repair) 3113 return -EPERM; 3114 3115 if (len != sizeof(opt)) 3116 return -EINVAL; 3117 3118 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3119 return -EFAULT; 3120 3121 if (opt.max_window < opt.snd_wnd) 3122 return -EINVAL; 3123 3124 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3125 return -EINVAL; 3126 3127 if (after(opt.rcv_wup, tp->rcv_nxt)) 3128 return -EINVAL; 3129 3130 tp->snd_wl1 = opt.snd_wl1; 3131 tp->snd_wnd = opt.snd_wnd; 3132 tp->max_window = opt.max_window; 3133 3134 tp->rcv_wnd = opt.rcv_wnd; 3135 tp->rcv_wup = opt.rcv_wup; 3136 3137 return 0; 3138 } 3139 3140 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3141 unsigned int len) 3142 { 3143 struct tcp_sock *tp = tcp_sk(sk); 3144 struct tcp_repair_opt opt; 3145 size_t offset = 0; 3146 3147 while (len >= sizeof(opt)) { 3148 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3149 return -EFAULT; 3150 3151 offset += sizeof(opt); 3152 len -= sizeof(opt); 3153 3154 switch (opt.opt_code) { 3155 case TCPOPT_MSS: 3156 tp->rx_opt.mss_clamp = opt.opt_val; 3157 tcp_mtup_init(sk); 3158 break; 3159 case TCPOPT_WINDOW: 3160 { 3161 u16 snd_wscale = opt.opt_val & 0xFFFF; 3162 u16 rcv_wscale = opt.opt_val >> 16; 3163 3164 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3165 return -EFBIG; 3166 3167 tp->rx_opt.snd_wscale = snd_wscale; 3168 tp->rx_opt.rcv_wscale = rcv_wscale; 3169 tp->rx_opt.wscale_ok = 1; 3170 } 3171 break; 3172 case TCPOPT_SACK_PERM: 3173 if (opt.opt_val != 0) 3174 return -EINVAL; 3175 3176 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3177 break; 3178 case TCPOPT_TIMESTAMP: 3179 if (opt.opt_val != 0) 3180 return -EINVAL; 3181 3182 tp->rx_opt.tstamp_ok = 1; 3183 break; 3184 } 3185 } 3186 3187 return 0; 3188 } 3189 3190 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3191 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3192 3193 static void tcp_enable_tx_delay(void) 3194 { 3195 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3196 static int __tcp_tx_delay_enabled = 0; 3197 3198 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3199 static_branch_enable(&tcp_tx_delay_enabled); 3200 pr_info("TCP_TX_DELAY enabled\n"); 3201 } 3202 } 3203 } 3204 3205 /* When set indicates to always queue non-full frames. Later the user clears 3206 * this option and we transmit any pending partial frames in the queue. This is 3207 * meant to be used alongside sendfile() to get properly filled frames when the 3208 * user (for example) must write out headers with a write() call first and then 3209 * use sendfile to send out the data parts. 3210 * 3211 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3212 * TCP_NODELAY. 3213 */ 3214 void __tcp_sock_set_cork(struct sock *sk, bool on) 3215 { 3216 struct tcp_sock *tp = tcp_sk(sk); 3217 3218 if (on) { 3219 tp->nonagle |= TCP_NAGLE_CORK; 3220 } else { 3221 tp->nonagle &= ~TCP_NAGLE_CORK; 3222 if (tp->nonagle & TCP_NAGLE_OFF) 3223 tp->nonagle |= TCP_NAGLE_PUSH; 3224 tcp_push_pending_frames(sk); 3225 } 3226 } 3227 3228 void tcp_sock_set_cork(struct sock *sk, bool on) 3229 { 3230 lock_sock(sk); 3231 __tcp_sock_set_cork(sk, on); 3232 release_sock(sk); 3233 } 3234 EXPORT_SYMBOL(tcp_sock_set_cork); 3235 3236 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3237 * remembered, but it is not activated until cork is cleared. 3238 * 3239 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3240 * even TCP_CORK for currently queued segments. 3241 */ 3242 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3243 { 3244 if (on) { 3245 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3246 tcp_push_pending_frames(sk); 3247 } else { 3248 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3249 } 3250 } 3251 3252 void tcp_sock_set_nodelay(struct sock *sk) 3253 { 3254 lock_sock(sk); 3255 __tcp_sock_set_nodelay(sk, true); 3256 release_sock(sk); 3257 } 3258 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3259 3260 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3261 { 3262 if (!val) { 3263 inet_csk_enter_pingpong_mode(sk); 3264 return; 3265 } 3266 3267 inet_csk_exit_pingpong_mode(sk); 3268 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3269 inet_csk_ack_scheduled(sk)) { 3270 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3271 tcp_cleanup_rbuf(sk, 1); 3272 if (!(val & 1)) 3273 inet_csk_enter_pingpong_mode(sk); 3274 } 3275 } 3276 3277 void tcp_sock_set_quickack(struct sock *sk, int val) 3278 { 3279 lock_sock(sk); 3280 __tcp_sock_set_quickack(sk, val); 3281 release_sock(sk); 3282 } 3283 EXPORT_SYMBOL(tcp_sock_set_quickack); 3284 3285 int tcp_sock_set_syncnt(struct sock *sk, int val) 3286 { 3287 if (val < 1 || val > MAX_TCP_SYNCNT) 3288 return -EINVAL; 3289 3290 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3291 return 0; 3292 } 3293 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3294 3295 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3296 { 3297 /* Cap the max time in ms TCP will retry or probe the window 3298 * before giving up and aborting (ETIMEDOUT) a connection. 3299 */ 3300 if (val < 0) 3301 return -EINVAL; 3302 3303 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3304 return 0; 3305 } 3306 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3307 3308 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3309 { 3310 struct tcp_sock *tp = tcp_sk(sk); 3311 3312 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3313 return -EINVAL; 3314 3315 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3316 WRITE_ONCE(tp->keepalive_time, val * HZ); 3317 if (sock_flag(sk, SOCK_KEEPOPEN) && 3318 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3319 u32 elapsed = keepalive_time_elapsed(tp); 3320 3321 if (tp->keepalive_time > elapsed) 3322 elapsed = tp->keepalive_time - elapsed; 3323 else 3324 elapsed = 0; 3325 inet_csk_reset_keepalive_timer(sk, elapsed); 3326 } 3327 3328 return 0; 3329 } 3330 3331 int tcp_sock_set_keepidle(struct sock *sk, int val) 3332 { 3333 int err; 3334 3335 lock_sock(sk); 3336 err = tcp_sock_set_keepidle_locked(sk, val); 3337 release_sock(sk); 3338 return err; 3339 } 3340 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3341 3342 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3343 { 3344 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3345 return -EINVAL; 3346 3347 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3348 return 0; 3349 } 3350 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3351 3352 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3353 { 3354 if (val < 1 || val > MAX_TCP_KEEPCNT) 3355 return -EINVAL; 3356 3357 /* Paired with READ_ONCE() in keepalive_probes() */ 3358 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3359 return 0; 3360 } 3361 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3362 3363 int tcp_set_window_clamp(struct sock *sk, int val) 3364 { 3365 struct tcp_sock *tp = tcp_sk(sk); 3366 3367 if (!val) { 3368 if (sk->sk_state != TCP_CLOSE) 3369 return -EINVAL; 3370 tp->window_clamp = 0; 3371 } else { 3372 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3373 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3374 SOCK_MIN_RCVBUF / 2 : val; 3375 3376 if (new_window_clamp == old_window_clamp) 3377 return 0; 3378 3379 tp->window_clamp = new_window_clamp; 3380 if (new_window_clamp < old_window_clamp) { 3381 /* need to apply the reserved mem provisioning only 3382 * when shrinking the window clamp 3383 */ 3384 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3385 3386 } else { 3387 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3388 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3389 tp->rcv_ssthresh); 3390 } 3391 } 3392 return 0; 3393 } 3394 3395 /* 3396 * Socket option code for TCP. 3397 */ 3398 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3399 sockptr_t optval, unsigned int optlen) 3400 { 3401 struct tcp_sock *tp = tcp_sk(sk); 3402 struct inet_connection_sock *icsk = inet_csk(sk); 3403 struct net *net = sock_net(sk); 3404 int val; 3405 int err = 0; 3406 3407 /* These are data/string values, all the others are ints */ 3408 switch (optname) { 3409 case TCP_CONGESTION: { 3410 char name[TCP_CA_NAME_MAX]; 3411 3412 if (optlen < 1) 3413 return -EINVAL; 3414 3415 val = strncpy_from_sockptr(name, optval, 3416 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3417 if (val < 0) 3418 return -EFAULT; 3419 name[val] = 0; 3420 3421 sockopt_lock_sock(sk); 3422 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3423 sockopt_ns_capable(sock_net(sk)->user_ns, 3424 CAP_NET_ADMIN)); 3425 sockopt_release_sock(sk); 3426 return err; 3427 } 3428 case TCP_ULP: { 3429 char name[TCP_ULP_NAME_MAX]; 3430 3431 if (optlen < 1) 3432 return -EINVAL; 3433 3434 val = strncpy_from_sockptr(name, optval, 3435 min_t(long, TCP_ULP_NAME_MAX - 1, 3436 optlen)); 3437 if (val < 0) 3438 return -EFAULT; 3439 name[val] = 0; 3440 3441 sockopt_lock_sock(sk); 3442 err = tcp_set_ulp(sk, name); 3443 sockopt_release_sock(sk); 3444 return err; 3445 } 3446 case TCP_FASTOPEN_KEY: { 3447 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3448 __u8 *backup_key = NULL; 3449 3450 /* Allow a backup key as well to facilitate key rotation 3451 * First key is the active one. 3452 */ 3453 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3454 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3455 return -EINVAL; 3456 3457 if (copy_from_sockptr(key, optval, optlen)) 3458 return -EFAULT; 3459 3460 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3461 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3462 3463 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3464 } 3465 default: 3466 /* fallthru */ 3467 break; 3468 } 3469 3470 if (optlen < sizeof(int)) 3471 return -EINVAL; 3472 3473 if (copy_from_sockptr(&val, optval, sizeof(val))) 3474 return -EFAULT; 3475 3476 /* Handle options that can be set without locking the socket. */ 3477 switch (optname) { 3478 case TCP_SYNCNT: 3479 return tcp_sock_set_syncnt(sk, val); 3480 case TCP_USER_TIMEOUT: 3481 return tcp_sock_set_user_timeout(sk, val); 3482 case TCP_KEEPINTVL: 3483 return tcp_sock_set_keepintvl(sk, val); 3484 case TCP_KEEPCNT: 3485 return tcp_sock_set_keepcnt(sk, val); 3486 case TCP_LINGER2: 3487 if (val < 0) 3488 WRITE_ONCE(tp->linger2, -1); 3489 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3490 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3491 else 3492 WRITE_ONCE(tp->linger2, val * HZ); 3493 return 0; 3494 case TCP_DEFER_ACCEPT: 3495 /* Translate value in seconds to number of retransmits */ 3496 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3497 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3498 TCP_RTO_MAX / HZ)); 3499 return 0; 3500 } 3501 3502 sockopt_lock_sock(sk); 3503 3504 switch (optname) { 3505 case TCP_MAXSEG: 3506 /* Values greater than interface MTU won't take effect. However 3507 * at the point when this call is done we typically don't yet 3508 * know which interface is going to be used 3509 */ 3510 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3511 err = -EINVAL; 3512 break; 3513 } 3514 tp->rx_opt.user_mss = val; 3515 break; 3516 3517 case TCP_NODELAY: 3518 __tcp_sock_set_nodelay(sk, val); 3519 break; 3520 3521 case TCP_THIN_LINEAR_TIMEOUTS: 3522 if (val < 0 || val > 1) 3523 err = -EINVAL; 3524 else 3525 tp->thin_lto = val; 3526 break; 3527 3528 case TCP_THIN_DUPACK: 3529 if (val < 0 || val > 1) 3530 err = -EINVAL; 3531 break; 3532 3533 case TCP_REPAIR: 3534 if (!tcp_can_repair_sock(sk)) 3535 err = -EPERM; 3536 else if (val == TCP_REPAIR_ON) { 3537 tp->repair = 1; 3538 sk->sk_reuse = SK_FORCE_REUSE; 3539 tp->repair_queue = TCP_NO_QUEUE; 3540 } else if (val == TCP_REPAIR_OFF) { 3541 tp->repair = 0; 3542 sk->sk_reuse = SK_NO_REUSE; 3543 tcp_send_window_probe(sk); 3544 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3545 tp->repair = 0; 3546 sk->sk_reuse = SK_NO_REUSE; 3547 } else 3548 err = -EINVAL; 3549 3550 break; 3551 3552 case TCP_REPAIR_QUEUE: 3553 if (!tp->repair) 3554 err = -EPERM; 3555 else if ((unsigned int)val < TCP_QUEUES_NR) 3556 tp->repair_queue = val; 3557 else 3558 err = -EINVAL; 3559 break; 3560 3561 case TCP_QUEUE_SEQ: 3562 if (sk->sk_state != TCP_CLOSE) { 3563 err = -EPERM; 3564 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3565 if (!tcp_rtx_queue_empty(sk)) 3566 err = -EPERM; 3567 else 3568 WRITE_ONCE(tp->write_seq, val); 3569 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3570 if (tp->rcv_nxt != tp->copied_seq) { 3571 err = -EPERM; 3572 } else { 3573 WRITE_ONCE(tp->rcv_nxt, val); 3574 WRITE_ONCE(tp->copied_seq, val); 3575 } 3576 } else { 3577 err = -EINVAL; 3578 } 3579 break; 3580 3581 case TCP_REPAIR_OPTIONS: 3582 if (!tp->repair) 3583 err = -EINVAL; 3584 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3585 err = tcp_repair_options_est(sk, optval, optlen); 3586 else 3587 err = -EPERM; 3588 break; 3589 3590 case TCP_CORK: 3591 __tcp_sock_set_cork(sk, val); 3592 break; 3593 3594 case TCP_KEEPIDLE: 3595 err = tcp_sock_set_keepidle_locked(sk, val); 3596 break; 3597 case TCP_SAVE_SYN: 3598 /* 0: disable, 1: enable, 2: start from ether_header */ 3599 if (val < 0 || val > 2) 3600 err = -EINVAL; 3601 else 3602 tp->save_syn = val; 3603 break; 3604 3605 case TCP_WINDOW_CLAMP: 3606 err = tcp_set_window_clamp(sk, val); 3607 break; 3608 3609 case TCP_QUICKACK: 3610 __tcp_sock_set_quickack(sk, val); 3611 break; 3612 3613 #ifdef CONFIG_TCP_MD5SIG 3614 case TCP_MD5SIG: 3615 case TCP_MD5SIG_EXT: 3616 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3617 break; 3618 #endif 3619 case TCP_FASTOPEN: 3620 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3621 TCPF_LISTEN))) { 3622 tcp_fastopen_init_key_once(net); 3623 3624 fastopen_queue_tune(sk, val); 3625 } else { 3626 err = -EINVAL; 3627 } 3628 break; 3629 case TCP_FASTOPEN_CONNECT: 3630 if (val > 1 || val < 0) { 3631 err = -EINVAL; 3632 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3633 TFO_CLIENT_ENABLE) { 3634 if (sk->sk_state == TCP_CLOSE) 3635 tp->fastopen_connect = val; 3636 else 3637 err = -EINVAL; 3638 } else { 3639 err = -EOPNOTSUPP; 3640 } 3641 break; 3642 case TCP_FASTOPEN_NO_COOKIE: 3643 if (val > 1 || val < 0) 3644 err = -EINVAL; 3645 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3646 err = -EINVAL; 3647 else 3648 tp->fastopen_no_cookie = val; 3649 break; 3650 case TCP_TIMESTAMP: 3651 if (!tp->repair) 3652 err = -EPERM; 3653 else 3654 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw()); 3655 break; 3656 case TCP_REPAIR_WINDOW: 3657 err = tcp_repair_set_window(tp, optval, optlen); 3658 break; 3659 case TCP_NOTSENT_LOWAT: 3660 WRITE_ONCE(tp->notsent_lowat, val); 3661 sk->sk_write_space(sk); 3662 break; 3663 case TCP_INQ: 3664 if (val > 1 || val < 0) 3665 err = -EINVAL; 3666 else 3667 tp->recvmsg_inq = val; 3668 break; 3669 case TCP_TX_DELAY: 3670 if (val) 3671 tcp_enable_tx_delay(); 3672 WRITE_ONCE(tp->tcp_tx_delay, val); 3673 break; 3674 default: 3675 err = -ENOPROTOOPT; 3676 break; 3677 } 3678 3679 sockopt_release_sock(sk); 3680 return err; 3681 } 3682 3683 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3684 unsigned int optlen) 3685 { 3686 const struct inet_connection_sock *icsk = inet_csk(sk); 3687 3688 if (level != SOL_TCP) 3689 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3690 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3691 optval, optlen); 3692 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3693 } 3694 EXPORT_SYMBOL(tcp_setsockopt); 3695 3696 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3697 struct tcp_info *info) 3698 { 3699 u64 stats[__TCP_CHRONO_MAX], total = 0; 3700 enum tcp_chrono i; 3701 3702 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3703 stats[i] = tp->chrono_stat[i - 1]; 3704 if (i == tp->chrono_type) 3705 stats[i] += tcp_jiffies32 - tp->chrono_start; 3706 stats[i] *= USEC_PER_SEC / HZ; 3707 total += stats[i]; 3708 } 3709 3710 info->tcpi_busy_time = total; 3711 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3712 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3713 } 3714 3715 /* Return information about state of tcp endpoint in API format. */ 3716 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3717 { 3718 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3719 const struct inet_connection_sock *icsk = inet_csk(sk); 3720 unsigned long rate; 3721 u32 now; 3722 u64 rate64; 3723 bool slow; 3724 3725 memset(info, 0, sizeof(*info)); 3726 if (sk->sk_type != SOCK_STREAM) 3727 return; 3728 3729 info->tcpi_state = inet_sk_state_load(sk); 3730 3731 /* Report meaningful fields for all TCP states, including listeners */ 3732 rate = READ_ONCE(sk->sk_pacing_rate); 3733 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3734 info->tcpi_pacing_rate = rate64; 3735 3736 rate = READ_ONCE(sk->sk_max_pacing_rate); 3737 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3738 info->tcpi_max_pacing_rate = rate64; 3739 3740 info->tcpi_reordering = tp->reordering; 3741 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3742 3743 if (info->tcpi_state == TCP_LISTEN) { 3744 /* listeners aliased fields : 3745 * tcpi_unacked -> Number of children ready for accept() 3746 * tcpi_sacked -> max backlog 3747 */ 3748 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3749 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3750 return; 3751 } 3752 3753 slow = lock_sock_fast(sk); 3754 3755 info->tcpi_ca_state = icsk->icsk_ca_state; 3756 info->tcpi_retransmits = icsk->icsk_retransmits; 3757 info->tcpi_probes = icsk->icsk_probes_out; 3758 info->tcpi_backoff = icsk->icsk_backoff; 3759 3760 if (tp->rx_opt.tstamp_ok) 3761 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3762 if (tcp_is_sack(tp)) 3763 info->tcpi_options |= TCPI_OPT_SACK; 3764 if (tp->rx_opt.wscale_ok) { 3765 info->tcpi_options |= TCPI_OPT_WSCALE; 3766 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3767 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3768 } 3769 3770 if (tp->ecn_flags & TCP_ECN_OK) 3771 info->tcpi_options |= TCPI_OPT_ECN; 3772 if (tp->ecn_flags & TCP_ECN_SEEN) 3773 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3774 if (tp->syn_data_acked) 3775 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3776 3777 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3778 info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato, 3779 tcp_delack_max(sk))); 3780 info->tcpi_snd_mss = tp->mss_cache; 3781 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3782 3783 info->tcpi_unacked = tp->packets_out; 3784 info->tcpi_sacked = tp->sacked_out; 3785 3786 info->tcpi_lost = tp->lost_out; 3787 info->tcpi_retrans = tp->retrans_out; 3788 3789 now = tcp_jiffies32; 3790 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3791 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3792 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3793 3794 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3795 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3796 info->tcpi_rtt = tp->srtt_us >> 3; 3797 info->tcpi_rttvar = tp->mdev_us >> 2; 3798 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3799 info->tcpi_advmss = tp->advmss; 3800 3801 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3802 info->tcpi_rcv_space = tp->rcvq_space.space; 3803 3804 info->tcpi_total_retrans = tp->total_retrans; 3805 3806 info->tcpi_bytes_acked = tp->bytes_acked; 3807 info->tcpi_bytes_received = tp->bytes_received; 3808 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3809 tcp_get_info_chrono_stats(tp, info); 3810 3811 info->tcpi_segs_out = tp->segs_out; 3812 3813 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3814 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3815 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3816 3817 info->tcpi_min_rtt = tcp_min_rtt(tp); 3818 info->tcpi_data_segs_out = tp->data_segs_out; 3819 3820 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3821 rate64 = tcp_compute_delivery_rate(tp); 3822 if (rate64) 3823 info->tcpi_delivery_rate = rate64; 3824 info->tcpi_delivered = tp->delivered; 3825 info->tcpi_delivered_ce = tp->delivered_ce; 3826 info->tcpi_bytes_sent = tp->bytes_sent; 3827 info->tcpi_bytes_retrans = tp->bytes_retrans; 3828 info->tcpi_dsack_dups = tp->dsack_dups; 3829 info->tcpi_reord_seen = tp->reord_seen; 3830 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3831 info->tcpi_snd_wnd = tp->snd_wnd; 3832 info->tcpi_rcv_wnd = tp->rcv_wnd; 3833 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3834 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3835 unlock_sock_fast(sk, slow); 3836 } 3837 EXPORT_SYMBOL_GPL(tcp_get_info); 3838 3839 static size_t tcp_opt_stats_get_size(void) 3840 { 3841 return 3842 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3843 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3844 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3845 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3846 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3847 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3848 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3849 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3850 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3851 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3852 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3853 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3854 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3855 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3856 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3857 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3858 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3859 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3860 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3861 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3862 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3863 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3864 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3865 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3866 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3867 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3868 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3869 0; 3870 } 3871 3872 /* Returns TTL or hop limit of an incoming packet from skb. */ 3873 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3874 { 3875 if (skb->protocol == htons(ETH_P_IP)) 3876 return ip_hdr(skb)->ttl; 3877 else if (skb->protocol == htons(ETH_P_IPV6)) 3878 return ipv6_hdr(skb)->hop_limit; 3879 else 3880 return 0; 3881 } 3882 3883 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3884 const struct sk_buff *orig_skb, 3885 const struct sk_buff *ack_skb) 3886 { 3887 const struct tcp_sock *tp = tcp_sk(sk); 3888 struct sk_buff *stats; 3889 struct tcp_info info; 3890 unsigned long rate; 3891 u64 rate64; 3892 3893 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3894 if (!stats) 3895 return NULL; 3896 3897 tcp_get_info_chrono_stats(tp, &info); 3898 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3899 info.tcpi_busy_time, TCP_NLA_PAD); 3900 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3901 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3902 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3903 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3904 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3905 tp->data_segs_out, TCP_NLA_PAD); 3906 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3907 tp->total_retrans, TCP_NLA_PAD); 3908 3909 rate = READ_ONCE(sk->sk_pacing_rate); 3910 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3911 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3912 3913 rate64 = tcp_compute_delivery_rate(tp); 3914 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3915 3916 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3917 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3918 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3919 3920 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3921 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3922 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3923 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3924 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3925 3926 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3927 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3928 3929 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3930 TCP_NLA_PAD); 3931 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3932 TCP_NLA_PAD); 3933 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3934 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3935 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3936 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3937 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3938 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3939 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3940 TCP_NLA_PAD); 3941 if (ack_skb) 3942 nla_put_u8(stats, TCP_NLA_TTL, 3943 tcp_skb_ttl_or_hop_limit(ack_skb)); 3944 3945 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3946 return stats; 3947 } 3948 3949 int do_tcp_getsockopt(struct sock *sk, int level, 3950 int optname, sockptr_t optval, sockptr_t optlen) 3951 { 3952 struct inet_connection_sock *icsk = inet_csk(sk); 3953 struct tcp_sock *tp = tcp_sk(sk); 3954 struct net *net = sock_net(sk); 3955 int val, len; 3956 3957 if (copy_from_sockptr(&len, optlen, sizeof(int))) 3958 return -EFAULT; 3959 3960 len = min_t(unsigned int, len, sizeof(int)); 3961 3962 if (len < 0) 3963 return -EINVAL; 3964 3965 switch (optname) { 3966 case TCP_MAXSEG: 3967 val = tp->mss_cache; 3968 if (tp->rx_opt.user_mss && 3969 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3970 val = tp->rx_opt.user_mss; 3971 if (tp->repair) 3972 val = tp->rx_opt.mss_clamp; 3973 break; 3974 case TCP_NODELAY: 3975 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3976 break; 3977 case TCP_CORK: 3978 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3979 break; 3980 case TCP_KEEPIDLE: 3981 val = keepalive_time_when(tp) / HZ; 3982 break; 3983 case TCP_KEEPINTVL: 3984 val = keepalive_intvl_when(tp) / HZ; 3985 break; 3986 case TCP_KEEPCNT: 3987 val = keepalive_probes(tp); 3988 break; 3989 case TCP_SYNCNT: 3990 val = READ_ONCE(icsk->icsk_syn_retries) ? : 3991 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 3992 break; 3993 case TCP_LINGER2: 3994 val = READ_ONCE(tp->linger2); 3995 if (val >= 0) 3996 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 3997 break; 3998 case TCP_DEFER_ACCEPT: 3999 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4000 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4001 TCP_RTO_MAX / HZ); 4002 break; 4003 case TCP_WINDOW_CLAMP: 4004 val = tp->window_clamp; 4005 break; 4006 case TCP_INFO: { 4007 struct tcp_info info; 4008 4009 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4010 return -EFAULT; 4011 4012 tcp_get_info(sk, &info); 4013 4014 len = min_t(unsigned int, len, sizeof(info)); 4015 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4016 return -EFAULT; 4017 if (copy_to_sockptr(optval, &info, len)) 4018 return -EFAULT; 4019 return 0; 4020 } 4021 case TCP_CC_INFO: { 4022 const struct tcp_congestion_ops *ca_ops; 4023 union tcp_cc_info info; 4024 size_t sz = 0; 4025 int attr; 4026 4027 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4028 return -EFAULT; 4029 4030 ca_ops = icsk->icsk_ca_ops; 4031 if (ca_ops && ca_ops->get_info) 4032 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4033 4034 len = min_t(unsigned int, len, sz); 4035 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4036 return -EFAULT; 4037 if (copy_to_sockptr(optval, &info, len)) 4038 return -EFAULT; 4039 return 0; 4040 } 4041 case TCP_QUICKACK: 4042 val = !inet_csk_in_pingpong_mode(sk); 4043 break; 4044 4045 case TCP_CONGESTION: 4046 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4047 return -EFAULT; 4048 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4049 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4050 return -EFAULT; 4051 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4052 return -EFAULT; 4053 return 0; 4054 4055 case TCP_ULP: 4056 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4057 return -EFAULT; 4058 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4059 if (!icsk->icsk_ulp_ops) { 4060 len = 0; 4061 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4062 return -EFAULT; 4063 return 0; 4064 } 4065 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4066 return -EFAULT; 4067 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4068 return -EFAULT; 4069 return 0; 4070 4071 case TCP_FASTOPEN_KEY: { 4072 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4073 unsigned int key_len; 4074 4075 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4076 return -EFAULT; 4077 4078 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4079 TCP_FASTOPEN_KEY_LENGTH; 4080 len = min_t(unsigned int, len, key_len); 4081 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4082 return -EFAULT; 4083 if (copy_to_sockptr(optval, key, len)) 4084 return -EFAULT; 4085 return 0; 4086 } 4087 case TCP_THIN_LINEAR_TIMEOUTS: 4088 val = tp->thin_lto; 4089 break; 4090 4091 case TCP_THIN_DUPACK: 4092 val = 0; 4093 break; 4094 4095 case TCP_REPAIR: 4096 val = tp->repair; 4097 break; 4098 4099 case TCP_REPAIR_QUEUE: 4100 if (tp->repair) 4101 val = tp->repair_queue; 4102 else 4103 return -EINVAL; 4104 break; 4105 4106 case TCP_REPAIR_WINDOW: { 4107 struct tcp_repair_window opt; 4108 4109 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4110 return -EFAULT; 4111 4112 if (len != sizeof(opt)) 4113 return -EINVAL; 4114 4115 if (!tp->repair) 4116 return -EPERM; 4117 4118 opt.snd_wl1 = tp->snd_wl1; 4119 opt.snd_wnd = tp->snd_wnd; 4120 opt.max_window = tp->max_window; 4121 opt.rcv_wnd = tp->rcv_wnd; 4122 opt.rcv_wup = tp->rcv_wup; 4123 4124 if (copy_to_sockptr(optval, &opt, len)) 4125 return -EFAULT; 4126 return 0; 4127 } 4128 case TCP_QUEUE_SEQ: 4129 if (tp->repair_queue == TCP_SEND_QUEUE) 4130 val = tp->write_seq; 4131 else if (tp->repair_queue == TCP_RECV_QUEUE) 4132 val = tp->rcv_nxt; 4133 else 4134 return -EINVAL; 4135 break; 4136 4137 case TCP_USER_TIMEOUT: 4138 val = READ_ONCE(icsk->icsk_user_timeout); 4139 break; 4140 4141 case TCP_FASTOPEN: 4142 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4143 break; 4144 4145 case TCP_FASTOPEN_CONNECT: 4146 val = tp->fastopen_connect; 4147 break; 4148 4149 case TCP_FASTOPEN_NO_COOKIE: 4150 val = tp->fastopen_no_cookie; 4151 break; 4152 4153 case TCP_TX_DELAY: 4154 val = READ_ONCE(tp->tcp_tx_delay); 4155 break; 4156 4157 case TCP_TIMESTAMP: 4158 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset); 4159 break; 4160 case TCP_NOTSENT_LOWAT: 4161 val = READ_ONCE(tp->notsent_lowat); 4162 break; 4163 case TCP_INQ: 4164 val = tp->recvmsg_inq; 4165 break; 4166 case TCP_SAVE_SYN: 4167 val = tp->save_syn; 4168 break; 4169 case TCP_SAVED_SYN: { 4170 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4171 return -EFAULT; 4172 4173 sockopt_lock_sock(sk); 4174 if (tp->saved_syn) { 4175 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4176 len = tcp_saved_syn_len(tp->saved_syn); 4177 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4178 sockopt_release_sock(sk); 4179 return -EFAULT; 4180 } 4181 sockopt_release_sock(sk); 4182 return -EINVAL; 4183 } 4184 len = tcp_saved_syn_len(tp->saved_syn); 4185 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4186 sockopt_release_sock(sk); 4187 return -EFAULT; 4188 } 4189 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4190 sockopt_release_sock(sk); 4191 return -EFAULT; 4192 } 4193 tcp_saved_syn_free(tp); 4194 sockopt_release_sock(sk); 4195 } else { 4196 sockopt_release_sock(sk); 4197 len = 0; 4198 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4199 return -EFAULT; 4200 } 4201 return 0; 4202 } 4203 #ifdef CONFIG_MMU 4204 case TCP_ZEROCOPY_RECEIVE: { 4205 struct scm_timestamping_internal tss; 4206 struct tcp_zerocopy_receive zc = {}; 4207 int err; 4208 4209 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4210 return -EFAULT; 4211 if (len < 0 || 4212 len < offsetofend(struct tcp_zerocopy_receive, length)) 4213 return -EINVAL; 4214 if (unlikely(len > sizeof(zc))) { 4215 err = check_zeroed_sockptr(optval, sizeof(zc), 4216 len - sizeof(zc)); 4217 if (err < 1) 4218 return err == 0 ? -EINVAL : err; 4219 len = sizeof(zc); 4220 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4221 return -EFAULT; 4222 } 4223 if (copy_from_sockptr(&zc, optval, len)) 4224 return -EFAULT; 4225 if (zc.reserved) 4226 return -EINVAL; 4227 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4228 return -EINVAL; 4229 sockopt_lock_sock(sk); 4230 err = tcp_zerocopy_receive(sk, &zc, &tss); 4231 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4232 &zc, &len, err); 4233 sockopt_release_sock(sk); 4234 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4235 goto zerocopy_rcv_cmsg; 4236 switch (len) { 4237 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4238 goto zerocopy_rcv_cmsg; 4239 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4240 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4241 case offsetofend(struct tcp_zerocopy_receive, flags): 4242 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4243 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4244 case offsetofend(struct tcp_zerocopy_receive, err): 4245 goto zerocopy_rcv_sk_err; 4246 case offsetofend(struct tcp_zerocopy_receive, inq): 4247 goto zerocopy_rcv_inq; 4248 case offsetofend(struct tcp_zerocopy_receive, length): 4249 default: 4250 goto zerocopy_rcv_out; 4251 } 4252 zerocopy_rcv_cmsg: 4253 if (zc.msg_flags & TCP_CMSG_TS) 4254 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4255 else 4256 zc.msg_flags = 0; 4257 zerocopy_rcv_sk_err: 4258 if (!err) 4259 zc.err = sock_error(sk); 4260 zerocopy_rcv_inq: 4261 zc.inq = tcp_inq_hint(sk); 4262 zerocopy_rcv_out: 4263 if (!err && copy_to_sockptr(optval, &zc, len)) 4264 err = -EFAULT; 4265 return err; 4266 } 4267 #endif 4268 default: 4269 return -ENOPROTOOPT; 4270 } 4271 4272 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4273 return -EFAULT; 4274 if (copy_to_sockptr(optval, &val, len)) 4275 return -EFAULT; 4276 return 0; 4277 } 4278 4279 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4280 { 4281 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4282 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4283 */ 4284 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4285 return true; 4286 4287 return false; 4288 } 4289 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4290 4291 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4292 int __user *optlen) 4293 { 4294 struct inet_connection_sock *icsk = inet_csk(sk); 4295 4296 if (level != SOL_TCP) 4297 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4298 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4299 optval, optlen); 4300 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4301 USER_SOCKPTR(optlen)); 4302 } 4303 EXPORT_SYMBOL(tcp_getsockopt); 4304 4305 #ifdef CONFIG_TCP_MD5SIG 4306 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4307 static DEFINE_MUTEX(tcp_md5sig_mutex); 4308 static bool tcp_md5sig_pool_populated = false; 4309 4310 static void __tcp_alloc_md5sig_pool(void) 4311 { 4312 struct crypto_ahash *hash; 4313 int cpu; 4314 4315 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4316 if (IS_ERR(hash)) 4317 return; 4318 4319 for_each_possible_cpu(cpu) { 4320 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4321 struct ahash_request *req; 4322 4323 if (!scratch) { 4324 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4325 sizeof(struct tcphdr), 4326 GFP_KERNEL, 4327 cpu_to_node(cpu)); 4328 if (!scratch) 4329 return; 4330 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4331 } 4332 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4333 continue; 4334 4335 req = ahash_request_alloc(hash, GFP_KERNEL); 4336 if (!req) 4337 return; 4338 4339 ahash_request_set_callback(req, 0, NULL, NULL); 4340 4341 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4342 } 4343 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4344 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4345 */ 4346 smp_wmb(); 4347 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4348 * and tcp_get_md5sig_pool(). 4349 */ 4350 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4351 } 4352 4353 bool tcp_alloc_md5sig_pool(void) 4354 { 4355 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4356 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4357 mutex_lock(&tcp_md5sig_mutex); 4358 4359 if (!tcp_md5sig_pool_populated) 4360 __tcp_alloc_md5sig_pool(); 4361 4362 mutex_unlock(&tcp_md5sig_mutex); 4363 } 4364 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4365 return READ_ONCE(tcp_md5sig_pool_populated); 4366 } 4367 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4368 4369 4370 /** 4371 * tcp_get_md5sig_pool - get md5sig_pool for this user 4372 * 4373 * We use percpu structure, so if we succeed, we exit with preemption 4374 * and BH disabled, to make sure another thread or softirq handling 4375 * wont try to get same context. 4376 */ 4377 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4378 { 4379 local_bh_disable(); 4380 4381 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4382 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4383 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4384 smp_rmb(); 4385 return this_cpu_ptr(&tcp_md5sig_pool); 4386 } 4387 local_bh_enable(); 4388 return NULL; 4389 } 4390 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4391 4392 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4393 const struct sk_buff *skb, unsigned int header_len) 4394 { 4395 struct scatterlist sg; 4396 const struct tcphdr *tp = tcp_hdr(skb); 4397 struct ahash_request *req = hp->md5_req; 4398 unsigned int i; 4399 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4400 skb_headlen(skb) - header_len : 0; 4401 const struct skb_shared_info *shi = skb_shinfo(skb); 4402 struct sk_buff *frag_iter; 4403 4404 sg_init_table(&sg, 1); 4405 4406 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4407 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4408 if (crypto_ahash_update(req)) 4409 return 1; 4410 4411 for (i = 0; i < shi->nr_frags; ++i) { 4412 const skb_frag_t *f = &shi->frags[i]; 4413 unsigned int offset = skb_frag_off(f); 4414 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4415 4416 sg_set_page(&sg, page, skb_frag_size(f), 4417 offset_in_page(offset)); 4418 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4419 if (crypto_ahash_update(req)) 4420 return 1; 4421 } 4422 4423 skb_walk_frags(skb, frag_iter) 4424 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4425 return 1; 4426 4427 return 0; 4428 } 4429 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4430 4431 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4432 { 4433 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4434 struct scatterlist sg; 4435 4436 sg_init_one(&sg, key->key, keylen); 4437 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4438 4439 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4440 return data_race(crypto_ahash_update(hp->md5_req)); 4441 } 4442 EXPORT_SYMBOL(tcp_md5_hash_key); 4443 4444 /* Called with rcu_read_lock() */ 4445 enum skb_drop_reason 4446 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4447 const void *saddr, const void *daddr, 4448 int family, int dif, int sdif) 4449 { 4450 /* 4451 * This gets called for each TCP segment that arrives 4452 * so we want to be efficient. 4453 * We have 3 drop cases: 4454 * o No MD5 hash and one expected. 4455 * o MD5 hash and we're not expecting one. 4456 * o MD5 hash and its wrong. 4457 */ 4458 const __u8 *hash_location = NULL; 4459 struct tcp_md5sig_key *hash_expected; 4460 const struct tcphdr *th = tcp_hdr(skb); 4461 const struct tcp_sock *tp = tcp_sk(sk); 4462 int genhash, l3index; 4463 u8 newhash[16]; 4464 4465 /* sdif set, means packet ingressed via a device 4466 * in an L3 domain and dif is set to the l3mdev 4467 */ 4468 l3index = sdif ? dif : 0; 4469 4470 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4471 hash_location = tcp_parse_md5sig_option(th); 4472 4473 /* We've parsed the options - do we have a hash? */ 4474 if (!hash_expected && !hash_location) 4475 return SKB_NOT_DROPPED_YET; 4476 4477 if (hash_expected && !hash_location) { 4478 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4479 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4480 } 4481 4482 if (!hash_expected && hash_location) { 4483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4484 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4485 } 4486 4487 /* Check the signature. 4488 * To support dual stack listeners, we need to handle 4489 * IPv4-mapped case. 4490 */ 4491 if (family == AF_INET) 4492 genhash = tcp_v4_md5_hash_skb(newhash, 4493 hash_expected, 4494 NULL, skb); 4495 else 4496 genhash = tp->af_specific->calc_md5_hash(newhash, 4497 hash_expected, 4498 NULL, skb); 4499 4500 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4501 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4502 if (family == AF_INET) { 4503 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4504 saddr, ntohs(th->source), 4505 daddr, ntohs(th->dest), 4506 genhash ? " tcp_v4_calc_md5_hash failed" 4507 : "", l3index); 4508 } else { 4509 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4510 genhash ? "failed" : "mismatch", 4511 saddr, ntohs(th->source), 4512 daddr, ntohs(th->dest), l3index); 4513 } 4514 return SKB_DROP_REASON_TCP_MD5FAILURE; 4515 } 4516 return SKB_NOT_DROPPED_YET; 4517 } 4518 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4519 4520 #endif 4521 4522 void tcp_done(struct sock *sk) 4523 { 4524 struct request_sock *req; 4525 4526 /* We might be called with a new socket, after 4527 * inet_csk_prepare_forced_close() has been called 4528 * so we can not use lockdep_sock_is_held(sk) 4529 */ 4530 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4531 4532 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4533 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4534 4535 tcp_set_state(sk, TCP_CLOSE); 4536 tcp_clear_xmit_timers(sk); 4537 if (req) 4538 reqsk_fastopen_remove(sk, req, false); 4539 4540 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4541 4542 if (!sock_flag(sk, SOCK_DEAD)) 4543 sk->sk_state_change(sk); 4544 else 4545 inet_csk_destroy_sock(sk); 4546 } 4547 EXPORT_SYMBOL_GPL(tcp_done); 4548 4549 int tcp_abort(struct sock *sk, int err) 4550 { 4551 int state = inet_sk_state_load(sk); 4552 4553 if (state == TCP_NEW_SYN_RECV) { 4554 struct request_sock *req = inet_reqsk(sk); 4555 4556 local_bh_disable(); 4557 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4558 local_bh_enable(); 4559 return 0; 4560 } 4561 if (state == TCP_TIME_WAIT) { 4562 struct inet_timewait_sock *tw = inet_twsk(sk); 4563 4564 refcount_inc(&tw->tw_refcnt); 4565 local_bh_disable(); 4566 inet_twsk_deschedule_put(tw); 4567 local_bh_enable(); 4568 return 0; 4569 } 4570 4571 /* BPF context ensures sock locking. */ 4572 if (!has_current_bpf_ctx()) 4573 /* Don't race with userspace socket closes such as tcp_close. */ 4574 lock_sock(sk); 4575 4576 if (sk->sk_state == TCP_LISTEN) { 4577 tcp_set_state(sk, TCP_CLOSE); 4578 inet_csk_listen_stop(sk); 4579 } 4580 4581 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4582 local_bh_disable(); 4583 bh_lock_sock(sk); 4584 4585 if (!sock_flag(sk, SOCK_DEAD)) { 4586 WRITE_ONCE(sk->sk_err, err); 4587 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4588 smp_wmb(); 4589 sk_error_report(sk); 4590 if (tcp_need_reset(sk->sk_state)) 4591 tcp_send_active_reset(sk, GFP_ATOMIC); 4592 tcp_done(sk); 4593 } 4594 4595 bh_unlock_sock(sk); 4596 local_bh_enable(); 4597 tcp_write_queue_purge(sk); 4598 if (!has_current_bpf_ctx()) 4599 release_sock(sk); 4600 return 0; 4601 } 4602 EXPORT_SYMBOL_GPL(tcp_abort); 4603 4604 extern struct tcp_congestion_ops tcp_reno; 4605 4606 static __initdata unsigned long thash_entries; 4607 static int __init set_thash_entries(char *str) 4608 { 4609 ssize_t ret; 4610 4611 if (!str) 4612 return 0; 4613 4614 ret = kstrtoul(str, 0, &thash_entries); 4615 if (ret) 4616 return 0; 4617 4618 return 1; 4619 } 4620 __setup("thash_entries=", set_thash_entries); 4621 4622 static void __init tcp_init_mem(void) 4623 { 4624 unsigned long limit = nr_free_buffer_pages() / 16; 4625 4626 limit = max(limit, 128UL); 4627 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4628 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4629 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4630 } 4631 4632 void __init tcp_init(void) 4633 { 4634 int max_rshare, max_wshare, cnt; 4635 unsigned long limit; 4636 unsigned int i; 4637 4638 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4639 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4640 sizeof_field(struct sk_buff, cb)); 4641 4642 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4643 4644 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4645 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4646 4647 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4648 thash_entries, 21, /* one slot per 2 MB*/ 4649 0, 64 * 1024); 4650 tcp_hashinfo.bind_bucket_cachep = 4651 kmem_cache_create("tcp_bind_bucket", 4652 sizeof(struct inet_bind_bucket), 0, 4653 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4654 SLAB_ACCOUNT, 4655 NULL); 4656 tcp_hashinfo.bind2_bucket_cachep = 4657 kmem_cache_create("tcp_bind2_bucket", 4658 sizeof(struct inet_bind2_bucket), 0, 4659 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4660 SLAB_ACCOUNT, 4661 NULL); 4662 4663 /* Size and allocate the main established and bind bucket 4664 * hash tables. 4665 * 4666 * The methodology is similar to that of the buffer cache. 4667 */ 4668 tcp_hashinfo.ehash = 4669 alloc_large_system_hash("TCP established", 4670 sizeof(struct inet_ehash_bucket), 4671 thash_entries, 4672 17, /* one slot per 128 KB of memory */ 4673 0, 4674 NULL, 4675 &tcp_hashinfo.ehash_mask, 4676 0, 4677 thash_entries ? 0 : 512 * 1024); 4678 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4679 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4680 4681 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4682 panic("TCP: failed to alloc ehash_locks"); 4683 tcp_hashinfo.bhash = 4684 alloc_large_system_hash("TCP bind", 4685 2 * sizeof(struct inet_bind_hashbucket), 4686 tcp_hashinfo.ehash_mask + 1, 4687 17, /* one slot per 128 KB of memory */ 4688 0, 4689 &tcp_hashinfo.bhash_size, 4690 NULL, 4691 0, 4692 64 * 1024); 4693 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4694 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4695 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4696 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4697 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4698 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4699 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4700 } 4701 4702 tcp_hashinfo.pernet = false; 4703 4704 cnt = tcp_hashinfo.ehash_mask + 1; 4705 sysctl_tcp_max_orphans = cnt / 2; 4706 4707 tcp_init_mem(); 4708 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4709 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4710 max_wshare = min(4UL*1024*1024, limit); 4711 max_rshare = min(6UL*1024*1024, limit); 4712 4713 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4714 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4715 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4716 4717 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4718 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4719 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4720 4721 pr_info("Hash tables configured (established %u bind %u)\n", 4722 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4723 4724 tcp_v4_init(); 4725 tcp_metrics_init(); 4726 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4727 tcp_tasklet_init(); 4728 mptcp_init(); 4729 } 4730