1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 273 #include <net/icmp.h> 274 #include <net/inet_common.h> 275 #include <net/tcp.h> 276 #include <net/xfrm.h> 277 #include <net/ip.h> 278 #include <net/sock.h> 279 280 #include <asm/uaccess.h> 281 #include <asm/ioctls.h> 282 #include <asm/unaligned.h> 283 #include <net/busy_poll.h> 284 285 int sysctl_tcp_min_tso_segs __read_mostly = 2; 286 287 int sysctl_tcp_autocorking __read_mostly = 1; 288 289 struct percpu_counter tcp_orphan_count; 290 EXPORT_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 int sysctl_tcp_wmem[3] __read_mostly; 294 int sysctl_tcp_rmem[3] __read_mostly; 295 296 EXPORT_SYMBOL(sysctl_tcp_mem); 297 EXPORT_SYMBOL(sysctl_tcp_rmem); 298 EXPORT_SYMBOL(sysctl_tcp_wmem); 299 300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 301 EXPORT_SYMBOL(tcp_memory_allocated); 302 303 /* 304 * Current number of TCP sockets. 305 */ 306 struct percpu_counter tcp_sockets_allocated; 307 EXPORT_SYMBOL(tcp_sockets_allocated); 308 309 /* 310 * TCP splice context 311 */ 312 struct tcp_splice_state { 313 struct pipe_inode_info *pipe; 314 size_t len; 315 unsigned int flags; 316 }; 317 318 /* 319 * Pressure flag: try to collapse. 320 * Technical note: it is used by multiple contexts non atomically. 321 * All the __sk_mem_schedule() is of this nature: accounting 322 * is strict, actions are advisory and have some latency. 323 */ 324 int tcp_memory_pressure __read_mostly; 325 EXPORT_SYMBOL(tcp_memory_pressure); 326 327 void tcp_enter_memory_pressure(struct sock *sk) 328 { 329 if (!tcp_memory_pressure) { 330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 331 tcp_memory_pressure = 1; 332 } 333 } 334 EXPORT_SYMBOL(tcp_enter_memory_pressure); 335 336 /* Convert seconds to retransmits based on initial and max timeout */ 337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 338 { 339 u8 res = 0; 340 341 if (seconds > 0) { 342 int period = timeout; 343 344 res = 1; 345 while (seconds > period && res < 255) { 346 res++; 347 timeout <<= 1; 348 if (timeout > rto_max) 349 timeout = rto_max; 350 period += timeout; 351 } 352 } 353 return res; 354 } 355 356 /* Convert retransmits to seconds based on initial and max timeout */ 357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 358 { 359 int period = 0; 360 361 if (retrans > 0) { 362 period = timeout; 363 while (--retrans) { 364 timeout <<= 1; 365 if (timeout > rto_max) 366 timeout = rto_max; 367 period += timeout; 368 } 369 } 370 return period; 371 } 372 373 /* Address-family independent initialization for a tcp_sock. 374 * 375 * NOTE: A lot of things set to zero explicitly by call to 376 * sk_alloc() so need not be done here. 377 */ 378 void tcp_init_sock(struct sock *sk) 379 { 380 struct inet_connection_sock *icsk = inet_csk(sk); 381 struct tcp_sock *tp = tcp_sk(sk); 382 383 __skb_queue_head_init(&tp->out_of_order_queue); 384 tcp_init_xmit_timers(sk); 385 tcp_prequeue_init(tp); 386 INIT_LIST_HEAD(&tp->tsq_node); 387 388 icsk->icsk_rto = TCP_TIMEOUT_INIT; 389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 390 tp->rtt_min[0].rtt = ~0U; 391 392 /* So many TCP implementations out there (incorrectly) count the 393 * initial SYN frame in their delayed-ACK and congestion control 394 * algorithms that we must have the following bandaid to talk 395 * efficiently to them. -DaveM 396 */ 397 tp->snd_cwnd = TCP_INIT_CWND; 398 399 /* See draft-stevens-tcpca-spec-01 for discussion of the 400 * initialization of these values. 401 */ 402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 403 tp->snd_cwnd_clamp = ~0; 404 tp->mss_cache = TCP_MSS_DEFAULT; 405 u64_stats_init(&tp->syncp); 406 407 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 408 tcp_enable_early_retrans(tp); 409 tcp_assign_congestion_control(sk); 410 411 tp->tsoffset = 0; 412 413 sk->sk_state = TCP_CLOSE; 414 415 sk->sk_write_space = sk_stream_write_space; 416 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 417 418 icsk->icsk_sync_mss = tcp_sync_mss; 419 420 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 421 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 422 423 local_bh_disable(); 424 if (mem_cgroup_sockets_enabled) 425 sock_update_memcg(sk); 426 sk_sockets_allocated_inc(sk); 427 local_bh_enable(); 428 } 429 EXPORT_SYMBOL(tcp_init_sock); 430 431 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb) 432 { 433 if (sk->sk_tsflags || tsflags) { 434 struct skb_shared_info *shinfo = skb_shinfo(skb); 435 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 436 437 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 438 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP) 439 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 440 tcb->txstamp_ack = !!(shinfo->tx_flags & SKBTX_ACK_TSTAMP); 441 } 442 } 443 444 /* 445 * Wait for a TCP event. 446 * 447 * Note that we don't need to lock the socket, as the upper poll layers 448 * take care of normal races (between the test and the event) and we don't 449 * go look at any of the socket buffers directly. 450 */ 451 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 452 { 453 unsigned int mask; 454 struct sock *sk = sock->sk; 455 const struct tcp_sock *tp = tcp_sk(sk); 456 int state; 457 458 sock_rps_record_flow(sk); 459 460 sock_poll_wait(file, sk_sleep(sk), wait); 461 462 state = sk_state_load(sk); 463 if (state == TCP_LISTEN) 464 return inet_csk_listen_poll(sk); 465 466 /* Socket is not locked. We are protected from async events 467 * by poll logic and correct handling of state changes 468 * made by other threads is impossible in any case. 469 */ 470 471 mask = 0; 472 473 /* 474 * POLLHUP is certainly not done right. But poll() doesn't 475 * have a notion of HUP in just one direction, and for a 476 * socket the read side is more interesting. 477 * 478 * Some poll() documentation says that POLLHUP is incompatible 479 * with the POLLOUT/POLLWR flags, so somebody should check this 480 * all. But careful, it tends to be safer to return too many 481 * bits than too few, and you can easily break real applications 482 * if you don't tell them that something has hung up! 483 * 484 * Check-me. 485 * 486 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 487 * our fs/select.c). It means that after we received EOF, 488 * poll always returns immediately, making impossible poll() on write() 489 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 490 * if and only if shutdown has been made in both directions. 491 * Actually, it is interesting to look how Solaris and DUX 492 * solve this dilemma. I would prefer, if POLLHUP were maskable, 493 * then we could set it on SND_SHUTDOWN. BTW examples given 494 * in Stevens' books assume exactly this behaviour, it explains 495 * why POLLHUP is incompatible with POLLOUT. --ANK 496 * 497 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 498 * blocking on fresh not-connected or disconnected socket. --ANK 499 */ 500 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 501 mask |= POLLHUP; 502 if (sk->sk_shutdown & RCV_SHUTDOWN) 503 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 504 505 /* Connected or passive Fast Open socket? */ 506 if (state != TCP_SYN_SENT && 507 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 508 int target = sock_rcvlowat(sk, 0, INT_MAX); 509 510 if (tp->urg_seq == tp->copied_seq && 511 !sock_flag(sk, SOCK_URGINLINE) && 512 tp->urg_data) 513 target++; 514 515 if (tp->rcv_nxt - tp->copied_seq >= target) 516 mask |= POLLIN | POLLRDNORM; 517 518 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 519 if (sk_stream_is_writeable(sk)) { 520 mask |= POLLOUT | POLLWRNORM; 521 } else { /* send SIGIO later */ 522 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 523 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 524 525 /* Race breaker. If space is freed after 526 * wspace test but before the flags are set, 527 * IO signal will be lost. Memory barrier 528 * pairs with the input side. 529 */ 530 smp_mb__after_atomic(); 531 if (sk_stream_is_writeable(sk)) 532 mask |= POLLOUT | POLLWRNORM; 533 } 534 } else 535 mask |= POLLOUT | POLLWRNORM; 536 537 if (tp->urg_data & TCP_URG_VALID) 538 mask |= POLLPRI; 539 } 540 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 541 smp_rmb(); 542 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 543 mask |= POLLERR; 544 545 return mask; 546 } 547 EXPORT_SYMBOL(tcp_poll); 548 549 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 550 { 551 struct tcp_sock *tp = tcp_sk(sk); 552 int answ; 553 bool slow; 554 555 switch (cmd) { 556 case SIOCINQ: 557 if (sk->sk_state == TCP_LISTEN) 558 return -EINVAL; 559 560 slow = lock_sock_fast(sk); 561 answ = tcp_inq(sk); 562 unlock_sock_fast(sk, slow); 563 break; 564 case SIOCATMARK: 565 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 566 break; 567 case SIOCOUTQ: 568 if (sk->sk_state == TCP_LISTEN) 569 return -EINVAL; 570 571 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 572 answ = 0; 573 else 574 answ = tp->write_seq - tp->snd_una; 575 break; 576 case SIOCOUTQNSD: 577 if (sk->sk_state == TCP_LISTEN) 578 return -EINVAL; 579 580 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 581 answ = 0; 582 else 583 answ = tp->write_seq - tp->snd_nxt; 584 break; 585 default: 586 return -ENOIOCTLCMD; 587 } 588 589 return put_user(answ, (int __user *)arg); 590 } 591 EXPORT_SYMBOL(tcp_ioctl); 592 593 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 594 { 595 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 596 tp->pushed_seq = tp->write_seq; 597 } 598 599 static inline bool forced_push(const struct tcp_sock *tp) 600 { 601 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 602 } 603 604 static void skb_entail(struct sock *sk, struct sk_buff *skb) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 608 609 skb->csum = 0; 610 tcb->seq = tcb->end_seq = tp->write_seq; 611 tcb->tcp_flags = TCPHDR_ACK; 612 tcb->sacked = 0; 613 __skb_header_release(skb); 614 tcp_add_write_queue_tail(sk, skb); 615 sk->sk_wmem_queued += skb->truesize; 616 sk_mem_charge(sk, skb->truesize); 617 if (tp->nonagle & TCP_NAGLE_PUSH) 618 tp->nonagle &= ~TCP_NAGLE_PUSH; 619 620 tcp_slow_start_after_idle_check(sk); 621 } 622 623 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 624 { 625 if (flags & MSG_OOB) 626 tp->snd_up = tp->write_seq; 627 } 628 629 /* If a not yet filled skb is pushed, do not send it if 630 * we have data packets in Qdisc or NIC queues : 631 * Because TX completion will happen shortly, it gives a chance 632 * to coalesce future sendmsg() payload into this skb, without 633 * need for a timer, and with no latency trade off. 634 * As packets containing data payload have a bigger truesize 635 * than pure acks (dataless) packets, the last checks prevent 636 * autocorking if we only have an ACK in Qdisc/NIC queues, 637 * or if TX completion was delayed after we processed ACK packet. 638 */ 639 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 640 int size_goal) 641 { 642 return skb->len < size_goal && 643 sysctl_tcp_autocorking && 644 skb != tcp_write_queue_head(sk) && 645 atomic_read(&sk->sk_wmem_alloc) > skb->truesize; 646 } 647 648 static void tcp_push(struct sock *sk, int flags, int mss_now, 649 int nonagle, int size_goal) 650 { 651 struct tcp_sock *tp = tcp_sk(sk); 652 struct sk_buff *skb; 653 654 if (!tcp_send_head(sk)) 655 return; 656 657 skb = tcp_write_queue_tail(sk); 658 if (!(flags & MSG_MORE) || forced_push(tp)) 659 tcp_mark_push(tp, skb); 660 661 tcp_mark_urg(tp, flags); 662 663 if (tcp_should_autocork(sk, skb, size_goal)) { 664 665 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 666 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) { 667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 668 set_bit(TSQ_THROTTLED, &tp->tsq_flags); 669 } 670 /* It is possible TX completion already happened 671 * before we set TSQ_THROTTLED. 672 */ 673 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize) 674 return; 675 } 676 677 if (flags & MSG_MORE) 678 nonagle = TCP_NAGLE_CORK; 679 680 __tcp_push_pending_frames(sk, mss_now, nonagle); 681 } 682 683 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 684 unsigned int offset, size_t len) 685 { 686 struct tcp_splice_state *tss = rd_desc->arg.data; 687 int ret; 688 689 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 690 min(rd_desc->count, len), tss->flags, 691 skb_socket_splice); 692 if (ret > 0) 693 rd_desc->count -= ret; 694 return ret; 695 } 696 697 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 698 { 699 /* Store TCP splice context information in read_descriptor_t. */ 700 read_descriptor_t rd_desc = { 701 .arg.data = tss, 702 .count = tss->len, 703 }; 704 705 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 706 } 707 708 /** 709 * tcp_splice_read - splice data from TCP socket to a pipe 710 * @sock: socket to splice from 711 * @ppos: position (not valid) 712 * @pipe: pipe to splice to 713 * @len: number of bytes to splice 714 * @flags: splice modifier flags 715 * 716 * Description: 717 * Will read pages from given socket and fill them into a pipe. 718 * 719 **/ 720 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 721 struct pipe_inode_info *pipe, size_t len, 722 unsigned int flags) 723 { 724 struct sock *sk = sock->sk; 725 struct tcp_splice_state tss = { 726 .pipe = pipe, 727 .len = len, 728 .flags = flags, 729 }; 730 long timeo; 731 ssize_t spliced; 732 int ret; 733 734 sock_rps_record_flow(sk); 735 /* 736 * We can't seek on a socket input 737 */ 738 if (unlikely(*ppos)) 739 return -ESPIPE; 740 741 ret = spliced = 0; 742 743 lock_sock(sk); 744 745 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 746 while (tss.len) { 747 ret = __tcp_splice_read(sk, &tss); 748 if (ret < 0) 749 break; 750 else if (!ret) { 751 if (spliced) 752 break; 753 if (sock_flag(sk, SOCK_DONE)) 754 break; 755 if (sk->sk_err) { 756 ret = sock_error(sk); 757 break; 758 } 759 if (sk->sk_shutdown & RCV_SHUTDOWN) 760 break; 761 if (sk->sk_state == TCP_CLOSE) { 762 /* 763 * This occurs when user tries to read 764 * from never connected socket. 765 */ 766 if (!sock_flag(sk, SOCK_DONE)) 767 ret = -ENOTCONN; 768 break; 769 } 770 if (!timeo) { 771 ret = -EAGAIN; 772 break; 773 } 774 sk_wait_data(sk, &timeo, NULL); 775 if (signal_pending(current)) { 776 ret = sock_intr_errno(timeo); 777 break; 778 } 779 continue; 780 } 781 tss.len -= ret; 782 spliced += ret; 783 784 if (!timeo) 785 break; 786 release_sock(sk); 787 lock_sock(sk); 788 789 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 790 (sk->sk_shutdown & RCV_SHUTDOWN) || 791 signal_pending(current)) 792 break; 793 } 794 795 release_sock(sk); 796 797 if (spliced) 798 return spliced; 799 800 return ret; 801 } 802 EXPORT_SYMBOL(tcp_splice_read); 803 804 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 805 bool force_schedule) 806 { 807 struct sk_buff *skb; 808 809 /* The TCP header must be at least 32-bit aligned. */ 810 size = ALIGN(size, 4); 811 812 if (unlikely(tcp_under_memory_pressure(sk))) 813 sk_mem_reclaim_partial(sk); 814 815 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 816 if (likely(skb)) { 817 bool mem_scheduled; 818 819 if (force_schedule) { 820 mem_scheduled = true; 821 sk_forced_mem_schedule(sk, skb->truesize); 822 } else { 823 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 824 } 825 if (likely(mem_scheduled)) { 826 skb_reserve(skb, sk->sk_prot->max_header); 827 /* 828 * Make sure that we have exactly size bytes 829 * available to the caller, no more, no less. 830 */ 831 skb->reserved_tailroom = skb->end - skb->tail - size; 832 return skb; 833 } 834 __kfree_skb(skb); 835 } else { 836 sk->sk_prot->enter_memory_pressure(sk); 837 sk_stream_moderate_sndbuf(sk); 838 } 839 return NULL; 840 } 841 842 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 843 int large_allowed) 844 { 845 struct tcp_sock *tp = tcp_sk(sk); 846 u32 new_size_goal, size_goal; 847 848 if (!large_allowed || !sk_can_gso(sk)) 849 return mss_now; 850 851 /* Note : tcp_tso_autosize() will eventually split this later */ 852 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 853 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 854 855 /* We try hard to avoid divides here */ 856 size_goal = tp->gso_segs * mss_now; 857 if (unlikely(new_size_goal < size_goal || 858 new_size_goal >= size_goal + mss_now)) { 859 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 860 sk->sk_gso_max_segs); 861 size_goal = tp->gso_segs * mss_now; 862 } 863 864 return max(size_goal, mss_now); 865 } 866 867 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 868 { 869 int mss_now; 870 871 mss_now = tcp_current_mss(sk); 872 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 873 874 return mss_now; 875 } 876 877 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 878 size_t size, int flags) 879 { 880 struct tcp_sock *tp = tcp_sk(sk); 881 int mss_now, size_goal; 882 int err; 883 ssize_t copied; 884 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 885 886 /* Wait for a connection to finish. One exception is TCP Fast Open 887 * (passive side) where data is allowed to be sent before a connection 888 * is fully established. 889 */ 890 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 891 !tcp_passive_fastopen(sk)) { 892 err = sk_stream_wait_connect(sk, &timeo); 893 if (err != 0) 894 goto out_err; 895 } 896 897 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 898 899 mss_now = tcp_send_mss(sk, &size_goal, flags); 900 copied = 0; 901 902 err = -EPIPE; 903 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 904 goto out_err; 905 906 while (size > 0) { 907 struct sk_buff *skb = tcp_write_queue_tail(sk); 908 int copy, i; 909 bool can_coalesce; 910 911 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 912 new_segment: 913 if (!sk_stream_memory_free(sk)) 914 goto wait_for_sndbuf; 915 916 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 917 skb_queue_empty(&sk->sk_write_queue)); 918 if (!skb) 919 goto wait_for_memory; 920 921 skb_entail(sk, skb); 922 copy = size_goal; 923 } 924 925 if (copy > size) 926 copy = size; 927 928 i = skb_shinfo(skb)->nr_frags; 929 can_coalesce = skb_can_coalesce(skb, i, page, offset); 930 if (!can_coalesce && i >= sysctl_max_skb_frags) { 931 tcp_mark_push(tp, skb); 932 goto new_segment; 933 } 934 if (!sk_wmem_schedule(sk, copy)) 935 goto wait_for_memory; 936 937 if (can_coalesce) { 938 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 939 } else { 940 get_page(page); 941 skb_fill_page_desc(skb, i, page, offset, copy); 942 } 943 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 944 945 skb->len += copy; 946 skb->data_len += copy; 947 skb->truesize += copy; 948 sk->sk_wmem_queued += copy; 949 sk_mem_charge(sk, copy); 950 skb->ip_summed = CHECKSUM_PARTIAL; 951 tp->write_seq += copy; 952 TCP_SKB_CB(skb)->end_seq += copy; 953 tcp_skb_pcount_set(skb, 0); 954 955 if (!copied) 956 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 957 958 copied += copy; 959 offset += copy; 960 size -= copy; 961 if (!size) { 962 tcp_tx_timestamp(sk, sk->sk_tsflags, skb); 963 goto out; 964 } 965 966 if (skb->len < size_goal || (flags & MSG_OOB)) 967 continue; 968 969 if (forced_push(tp)) { 970 tcp_mark_push(tp, skb); 971 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 972 } else if (skb == tcp_send_head(sk)) 973 tcp_push_one(sk, mss_now); 974 continue; 975 976 wait_for_sndbuf: 977 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 978 wait_for_memory: 979 tcp_push(sk, flags & ~MSG_MORE, mss_now, 980 TCP_NAGLE_PUSH, size_goal); 981 982 err = sk_stream_wait_memory(sk, &timeo); 983 if (err != 0) 984 goto do_error; 985 986 mss_now = tcp_send_mss(sk, &size_goal, flags); 987 } 988 989 out: 990 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 991 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 992 return copied; 993 994 do_error: 995 if (copied) 996 goto out; 997 out_err: 998 /* make sure we wake any epoll edge trigger waiter */ 999 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1000 sk->sk_write_space(sk); 1001 return sk_stream_error(sk, flags, err); 1002 } 1003 1004 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1005 size_t size, int flags) 1006 { 1007 ssize_t res; 1008 1009 if (!(sk->sk_route_caps & NETIF_F_SG) || 1010 !sk_check_csum_caps(sk)) 1011 return sock_no_sendpage(sk->sk_socket, page, offset, size, 1012 flags); 1013 1014 lock_sock(sk); 1015 res = do_tcp_sendpages(sk, page, offset, size, flags); 1016 release_sock(sk); 1017 return res; 1018 } 1019 EXPORT_SYMBOL(tcp_sendpage); 1020 1021 static inline int select_size(const struct sock *sk, bool sg) 1022 { 1023 const struct tcp_sock *tp = tcp_sk(sk); 1024 int tmp = tp->mss_cache; 1025 1026 if (sg) { 1027 if (sk_can_gso(sk)) { 1028 /* Small frames wont use a full page: 1029 * Payload will immediately follow tcp header. 1030 */ 1031 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1032 } else { 1033 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 1034 1035 if (tmp >= pgbreak && 1036 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 1037 tmp = pgbreak; 1038 } 1039 } 1040 1041 return tmp; 1042 } 1043 1044 void tcp_free_fastopen_req(struct tcp_sock *tp) 1045 { 1046 if (tp->fastopen_req) { 1047 kfree(tp->fastopen_req); 1048 tp->fastopen_req = NULL; 1049 } 1050 } 1051 1052 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1053 int *copied, size_t size) 1054 { 1055 struct tcp_sock *tp = tcp_sk(sk); 1056 int err, flags; 1057 1058 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE)) 1059 return -EOPNOTSUPP; 1060 if (tp->fastopen_req) 1061 return -EALREADY; /* Another Fast Open is in progress */ 1062 1063 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1064 sk->sk_allocation); 1065 if (unlikely(!tp->fastopen_req)) 1066 return -ENOBUFS; 1067 tp->fastopen_req->data = msg; 1068 tp->fastopen_req->size = size; 1069 1070 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1071 err = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1072 msg->msg_namelen, flags); 1073 *copied = tp->fastopen_req->copied; 1074 tcp_free_fastopen_req(tp); 1075 return err; 1076 } 1077 1078 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1079 { 1080 struct tcp_sock *tp = tcp_sk(sk); 1081 struct sk_buff *skb; 1082 struct sockcm_cookie sockc; 1083 int flags, err, copied = 0; 1084 int mss_now = 0, size_goal, copied_syn = 0; 1085 bool sg; 1086 long timeo; 1087 1088 lock_sock(sk); 1089 1090 flags = msg->msg_flags; 1091 if (flags & MSG_FASTOPEN) { 1092 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1093 if (err == -EINPROGRESS && copied_syn > 0) 1094 goto out; 1095 else if (err) 1096 goto out_err; 1097 } 1098 1099 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1100 1101 /* Wait for a connection to finish. One exception is TCP Fast Open 1102 * (passive side) where data is allowed to be sent before a connection 1103 * is fully established. 1104 */ 1105 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1106 !tcp_passive_fastopen(sk)) { 1107 err = sk_stream_wait_connect(sk, &timeo); 1108 if (err != 0) 1109 goto do_error; 1110 } 1111 1112 if (unlikely(tp->repair)) { 1113 if (tp->repair_queue == TCP_RECV_QUEUE) { 1114 copied = tcp_send_rcvq(sk, msg, size); 1115 goto out_nopush; 1116 } 1117 1118 err = -EINVAL; 1119 if (tp->repair_queue == TCP_NO_QUEUE) 1120 goto out_err; 1121 1122 /* 'common' sending to sendq */ 1123 } 1124 1125 sockc.tsflags = sk->sk_tsflags; 1126 if (msg->msg_controllen) { 1127 err = sock_cmsg_send(sk, msg, &sockc); 1128 if (unlikely(err)) { 1129 err = -EINVAL; 1130 goto out_err; 1131 } 1132 } 1133 1134 /* This should be in poll */ 1135 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1136 1137 mss_now = tcp_send_mss(sk, &size_goal, flags); 1138 1139 /* Ok commence sending. */ 1140 copied = 0; 1141 1142 err = -EPIPE; 1143 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1144 goto out_err; 1145 1146 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1147 1148 while (msg_data_left(msg)) { 1149 int copy = 0; 1150 int max = size_goal; 1151 1152 skb = tcp_write_queue_tail(sk); 1153 if (tcp_send_head(sk)) { 1154 if (skb->ip_summed == CHECKSUM_NONE) 1155 max = mss_now; 1156 copy = max - skb->len; 1157 } 1158 1159 if (copy <= 0) { 1160 new_segment: 1161 /* Allocate new segment. If the interface is SG, 1162 * allocate skb fitting to single page. 1163 */ 1164 if (!sk_stream_memory_free(sk)) 1165 goto wait_for_sndbuf; 1166 1167 skb = sk_stream_alloc_skb(sk, 1168 select_size(sk, sg), 1169 sk->sk_allocation, 1170 skb_queue_empty(&sk->sk_write_queue)); 1171 if (!skb) 1172 goto wait_for_memory; 1173 1174 /* 1175 * Check whether we can use HW checksum. 1176 */ 1177 if (sk_check_csum_caps(sk)) 1178 skb->ip_summed = CHECKSUM_PARTIAL; 1179 1180 skb_entail(sk, skb); 1181 copy = size_goal; 1182 max = size_goal; 1183 1184 /* All packets are restored as if they have 1185 * already been sent. skb_mstamp isn't set to 1186 * avoid wrong rtt estimation. 1187 */ 1188 if (tp->repair) 1189 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1190 } 1191 1192 /* Try to append data to the end of skb. */ 1193 if (copy > msg_data_left(msg)) 1194 copy = msg_data_left(msg); 1195 1196 /* Where to copy to? */ 1197 if (skb_availroom(skb) > 0) { 1198 /* We have some space in skb head. Superb! */ 1199 copy = min_t(int, copy, skb_availroom(skb)); 1200 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1201 if (err) 1202 goto do_fault; 1203 } else { 1204 bool merge = true; 1205 int i = skb_shinfo(skb)->nr_frags; 1206 struct page_frag *pfrag = sk_page_frag(sk); 1207 1208 if (!sk_page_frag_refill(sk, pfrag)) 1209 goto wait_for_memory; 1210 1211 if (!skb_can_coalesce(skb, i, pfrag->page, 1212 pfrag->offset)) { 1213 if (i == sysctl_max_skb_frags || !sg) { 1214 tcp_mark_push(tp, skb); 1215 goto new_segment; 1216 } 1217 merge = false; 1218 } 1219 1220 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1221 1222 if (!sk_wmem_schedule(sk, copy)) 1223 goto wait_for_memory; 1224 1225 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1226 pfrag->page, 1227 pfrag->offset, 1228 copy); 1229 if (err) 1230 goto do_error; 1231 1232 /* Update the skb. */ 1233 if (merge) { 1234 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1235 } else { 1236 skb_fill_page_desc(skb, i, pfrag->page, 1237 pfrag->offset, copy); 1238 get_page(pfrag->page); 1239 } 1240 pfrag->offset += copy; 1241 } 1242 1243 if (!copied) 1244 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1245 1246 tp->write_seq += copy; 1247 TCP_SKB_CB(skb)->end_seq += copy; 1248 tcp_skb_pcount_set(skb, 0); 1249 1250 copied += copy; 1251 if (!msg_data_left(msg)) { 1252 tcp_tx_timestamp(sk, sockc.tsflags, skb); 1253 goto out; 1254 } 1255 1256 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1257 continue; 1258 1259 if (forced_push(tp)) { 1260 tcp_mark_push(tp, skb); 1261 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1262 } else if (skb == tcp_send_head(sk)) 1263 tcp_push_one(sk, mss_now); 1264 continue; 1265 1266 wait_for_sndbuf: 1267 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1268 wait_for_memory: 1269 if (copied) 1270 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1271 TCP_NAGLE_PUSH, size_goal); 1272 1273 err = sk_stream_wait_memory(sk, &timeo); 1274 if (err != 0) 1275 goto do_error; 1276 1277 mss_now = tcp_send_mss(sk, &size_goal, flags); 1278 } 1279 1280 out: 1281 if (copied) 1282 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1283 out_nopush: 1284 release_sock(sk); 1285 return copied + copied_syn; 1286 1287 do_fault: 1288 if (!skb->len) { 1289 tcp_unlink_write_queue(skb, sk); 1290 /* It is the one place in all of TCP, except connection 1291 * reset, where we can be unlinking the send_head. 1292 */ 1293 tcp_check_send_head(sk, skb); 1294 sk_wmem_free_skb(sk, skb); 1295 } 1296 1297 do_error: 1298 if (copied + copied_syn) 1299 goto out; 1300 out_err: 1301 err = sk_stream_error(sk, flags, err); 1302 /* make sure we wake any epoll edge trigger waiter */ 1303 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN)) 1304 sk->sk_write_space(sk); 1305 release_sock(sk); 1306 return err; 1307 } 1308 EXPORT_SYMBOL(tcp_sendmsg); 1309 1310 /* 1311 * Handle reading urgent data. BSD has very simple semantics for 1312 * this, no blocking and very strange errors 8) 1313 */ 1314 1315 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1316 { 1317 struct tcp_sock *tp = tcp_sk(sk); 1318 1319 /* No URG data to read. */ 1320 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1321 tp->urg_data == TCP_URG_READ) 1322 return -EINVAL; /* Yes this is right ! */ 1323 1324 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1325 return -ENOTCONN; 1326 1327 if (tp->urg_data & TCP_URG_VALID) { 1328 int err = 0; 1329 char c = tp->urg_data; 1330 1331 if (!(flags & MSG_PEEK)) 1332 tp->urg_data = TCP_URG_READ; 1333 1334 /* Read urgent data. */ 1335 msg->msg_flags |= MSG_OOB; 1336 1337 if (len > 0) { 1338 if (!(flags & MSG_TRUNC)) 1339 err = memcpy_to_msg(msg, &c, 1); 1340 len = 1; 1341 } else 1342 msg->msg_flags |= MSG_TRUNC; 1343 1344 return err ? -EFAULT : len; 1345 } 1346 1347 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1348 return 0; 1349 1350 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1351 * the available implementations agree in this case: 1352 * this call should never block, independent of the 1353 * blocking state of the socket. 1354 * Mike <pall@rz.uni-karlsruhe.de> 1355 */ 1356 return -EAGAIN; 1357 } 1358 1359 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1360 { 1361 struct sk_buff *skb; 1362 int copied = 0, err = 0; 1363 1364 /* XXX -- need to support SO_PEEK_OFF */ 1365 1366 skb_queue_walk(&sk->sk_write_queue, skb) { 1367 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1368 if (err) 1369 break; 1370 1371 copied += skb->len; 1372 } 1373 1374 return err ?: copied; 1375 } 1376 1377 /* Clean up the receive buffer for full frames taken by the user, 1378 * then send an ACK if necessary. COPIED is the number of bytes 1379 * tcp_recvmsg has given to the user so far, it speeds up the 1380 * calculation of whether or not we must ACK for the sake of 1381 * a window update. 1382 */ 1383 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1384 { 1385 struct tcp_sock *tp = tcp_sk(sk); 1386 bool time_to_ack = false; 1387 1388 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1389 1390 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1391 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1392 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1393 1394 if (inet_csk_ack_scheduled(sk)) { 1395 const struct inet_connection_sock *icsk = inet_csk(sk); 1396 /* Delayed ACKs frequently hit locked sockets during bulk 1397 * receive. */ 1398 if (icsk->icsk_ack.blocked || 1399 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1400 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1401 /* 1402 * If this read emptied read buffer, we send ACK, if 1403 * connection is not bidirectional, user drained 1404 * receive buffer and there was a small segment 1405 * in queue. 1406 */ 1407 (copied > 0 && 1408 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1409 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1410 !icsk->icsk_ack.pingpong)) && 1411 !atomic_read(&sk->sk_rmem_alloc))) 1412 time_to_ack = true; 1413 } 1414 1415 /* We send an ACK if we can now advertise a non-zero window 1416 * which has been raised "significantly". 1417 * 1418 * Even if window raised up to infinity, do not send window open ACK 1419 * in states, where we will not receive more. It is useless. 1420 */ 1421 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1422 __u32 rcv_window_now = tcp_receive_window(tp); 1423 1424 /* Optimize, __tcp_select_window() is not cheap. */ 1425 if (2*rcv_window_now <= tp->window_clamp) { 1426 __u32 new_window = __tcp_select_window(sk); 1427 1428 /* Send ACK now, if this read freed lots of space 1429 * in our buffer. Certainly, new_window is new window. 1430 * We can advertise it now, if it is not less than current one. 1431 * "Lots" means "at least twice" here. 1432 */ 1433 if (new_window && new_window >= 2 * rcv_window_now) 1434 time_to_ack = true; 1435 } 1436 } 1437 if (time_to_ack) 1438 tcp_send_ack(sk); 1439 } 1440 1441 static void tcp_prequeue_process(struct sock *sk) 1442 { 1443 struct sk_buff *skb; 1444 struct tcp_sock *tp = tcp_sk(sk); 1445 1446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1447 1448 /* RX process wants to run with disabled BHs, though it is not 1449 * necessary */ 1450 local_bh_disable(); 1451 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1452 sk_backlog_rcv(sk, skb); 1453 local_bh_enable(); 1454 1455 /* Clear memory counter. */ 1456 tp->ucopy.memory = 0; 1457 } 1458 1459 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1460 { 1461 struct sk_buff *skb; 1462 u32 offset; 1463 1464 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1465 offset = seq - TCP_SKB_CB(skb)->seq; 1466 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1467 pr_err_once("%s: found a SYN, please report !\n", __func__); 1468 offset--; 1469 } 1470 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1471 *off = offset; 1472 return skb; 1473 } 1474 /* This looks weird, but this can happen if TCP collapsing 1475 * splitted a fat GRO packet, while we released socket lock 1476 * in skb_splice_bits() 1477 */ 1478 sk_eat_skb(sk, skb); 1479 } 1480 return NULL; 1481 } 1482 1483 /* 1484 * This routine provides an alternative to tcp_recvmsg() for routines 1485 * that would like to handle copying from skbuffs directly in 'sendfile' 1486 * fashion. 1487 * Note: 1488 * - It is assumed that the socket was locked by the caller. 1489 * - The routine does not block. 1490 * - At present, there is no support for reading OOB data 1491 * or for 'peeking' the socket using this routine 1492 * (although both would be easy to implement). 1493 */ 1494 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1495 sk_read_actor_t recv_actor) 1496 { 1497 struct sk_buff *skb; 1498 struct tcp_sock *tp = tcp_sk(sk); 1499 u32 seq = tp->copied_seq; 1500 u32 offset; 1501 int copied = 0; 1502 1503 if (sk->sk_state == TCP_LISTEN) 1504 return -ENOTCONN; 1505 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1506 if (offset < skb->len) { 1507 int used; 1508 size_t len; 1509 1510 len = skb->len - offset; 1511 /* Stop reading if we hit a patch of urgent data */ 1512 if (tp->urg_data) { 1513 u32 urg_offset = tp->urg_seq - seq; 1514 if (urg_offset < len) 1515 len = urg_offset; 1516 if (!len) 1517 break; 1518 } 1519 used = recv_actor(desc, skb, offset, len); 1520 if (used <= 0) { 1521 if (!copied) 1522 copied = used; 1523 break; 1524 } else if (used <= len) { 1525 seq += used; 1526 copied += used; 1527 offset += used; 1528 } 1529 /* If recv_actor drops the lock (e.g. TCP splice 1530 * receive) the skb pointer might be invalid when 1531 * getting here: tcp_collapse might have deleted it 1532 * while aggregating skbs from the socket queue. 1533 */ 1534 skb = tcp_recv_skb(sk, seq - 1, &offset); 1535 if (!skb) 1536 break; 1537 /* TCP coalescing might have appended data to the skb. 1538 * Try to splice more frags 1539 */ 1540 if (offset + 1 != skb->len) 1541 continue; 1542 } 1543 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1544 sk_eat_skb(sk, skb); 1545 ++seq; 1546 break; 1547 } 1548 sk_eat_skb(sk, skb); 1549 if (!desc->count) 1550 break; 1551 tp->copied_seq = seq; 1552 } 1553 tp->copied_seq = seq; 1554 1555 tcp_rcv_space_adjust(sk); 1556 1557 /* Clean up data we have read: This will do ACK frames. */ 1558 if (copied > 0) { 1559 tcp_recv_skb(sk, seq, &offset); 1560 tcp_cleanup_rbuf(sk, copied); 1561 } 1562 return copied; 1563 } 1564 EXPORT_SYMBOL(tcp_read_sock); 1565 1566 /* 1567 * This routine copies from a sock struct into the user buffer. 1568 * 1569 * Technical note: in 2.3 we work on _locked_ socket, so that 1570 * tricks with *seq access order and skb->users are not required. 1571 * Probably, code can be easily improved even more. 1572 */ 1573 1574 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1575 int flags, int *addr_len) 1576 { 1577 struct tcp_sock *tp = tcp_sk(sk); 1578 int copied = 0; 1579 u32 peek_seq; 1580 u32 *seq; 1581 unsigned long used; 1582 int err; 1583 int target; /* Read at least this many bytes */ 1584 long timeo; 1585 struct task_struct *user_recv = NULL; 1586 struct sk_buff *skb, *last; 1587 u32 urg_hole = 0; 1588 1589 if (unlikely(flags & MSG_ERRQUEUE)) 1590 return inet_recv_error(sk, msg, len, addr_len); 1591 1592 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1593 (sk->sk_state == TCP_ESTABLISHED)) 1594 sk_busy_loop(sk, nonblock); 1595 1596 lock_sock(sk); 1597 1598 err = -ENOTCONN; 1599 if (sk->sk_state == TCP_LISTEN) 1600 goto out; 1601 1602 timeo = sock_rcvtimeo(sk, nonblock); 1603 1604 /* Urgent data needs to be handled specially. */ 1605 if (flags & MSG_OOB) 1606 goto recv_urg; 1607 1608 if (unlikely(tp->repair)) { 1609 err = -EPERM; 1610 if (!(flags & MSG_PEEK)) 1611 goto out; 1612 1613 if (tp->repair_queue == TCP_SEND_QUEUE) 1614 goto recv_sndq; 1615 1616 err = -EINVAL; 1617 if (tp->repair_queue == TCP_NO_QUEUE) 1618 goto out; 1619 1620 /* 'common' recv queue MSG_PEEK-ing */ 1621 } 1622 1623 seq = &tp->copied_seq; 1624 if (flags & MSG_PEEK) { 1625 peek_seq = tp->copied_seq; 1626 seq = &peek_seq; 1627 } 1628 1629 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1630 1631 do { 1632 u32 offset; 1633 1634 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1635 if (tp->urg_data && tp->urg_seq == *seq) { 1636 if (copied) 1637 break; 1638 if (signal_pending(current)) { 1639 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1640 break; 1641 } 1642 } 1643 1644 /* Next get a buffer. */ 1645 1646 last = skb_peek_tail(&sk->sk_receive_queue); 1647 skb_queue_walk(&sk->sk_receive_queue, skb) { 1648 last = skb; 1649 /* Now that we have two receive queues this 1650 * shouldn't happen. 1651 */ 1652 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1653 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1654 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1655 flags)) 1656 break; 1657 1658 offset = *seq - TCP_SKB_CB(skb)->seq; 1659 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1660 pr_err_once("%s: found a SYN, please report !\n", __func__); 1661 offset--; 1662 } 1663 if (offset < skb->len) 1664 goto found_ok_skb; 1665 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1666 goto found_fin_ok; 1667 WARN(!(flags & MSG_PEEK), 1668 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1669 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1670 } 1671 1672 /* Well, if we have backlog, try to process it now yet. */ 1673 1674 if (copied >= target && !sk->sk_backlog.tail) 1675 break; 1676 1677 if (copied) { 1678 if (sk->sk_err || 1679 sk->sk_state == TCP_CLOSE || 1680 (sk->sk_shutdown & RCV_SHUTDOWN) || 1681 !timeo || 1682 signal_pending(current)) 1683 break; 1684 } else { 1685 if (sock_flag(sk, SOCK_DONE)) 1686 break; 1687 1688 if (sk->sk_err) { 1689 copied = sock_error(sk); 1690 break; 1691 } 1692 1693 if (sk->sk_shutdown & RCV_SHUTDOWN) 1694 break; 1695 1696 if (sk->sk_state == TCP_CLOSE) { 1697 if (!sock_flag(sk, SOCK_DONE)) { 1698 /* This occurs when user tries to read 1699 * from never connected socket. 1700 */ 1701 copied = -ENOTCONN; 1702 break; 1703 } 1704 break; 1705 } 1706 1707 if (!timeo) { 1708 copied = -EAGAIN; 1709 break; 1710 } 1711 1712 if (signal_pending(current)) { 1713 copied = sock_intr_errno(timeo); 1714 break; 1715 } 1716 } 1717 1718 tcp_cleanup_rbuf(sk, copied); 1719 1720 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1721 /* Install new reader */ 1722 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1723 user_recv = current; 1724 tp->ucopy.task = user_recv; 1725 tp->ucopy.msg = msg; 1726 } 1727 1728 tp->ucopy.len = len; 1729 1730 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1731 !(flags & (MSG_PEEK | MSG_TRUNC))); 1732 1733 /* Ugly... If prequeue is not empty, we have to 1734 * process it before releasing socket, otherwise 1735 * order will be broken at second iteration. 1736 * More elegant solution is required!!! 1737 * 1738 * Look: we have the following (pseudo)queues: 1739 * 1740 * 1. packets in flight 1741 * 2. backlog 1742 * 3. prequeue 1743 * 4. receive_queue 1744 * 1745 * Each queue can be processed only if the next ones 1746 * are empty. At this point we have empty receive_queue. 1747 * But prequeue _can_ be not empty after 2nd iteration, 1748 * when we jumped to start of loop because backlog 1749 * processing added something to receive_queue. 1750 * We cannot release_sock(), because backlog contains 1751 * packets arrived _after_ prequeued ones. 1752 * 1753 * Shortly, algorithm is clear --- to process all 1754 * the queues in order. We could make it more directly, 1755 * requeueing packets from backlog to prequeue, if 1756 * is not empty. It is more elegant, but eats cycles, 1757 * unfortunately. 1758 */ 1759 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1760 goto do_prequeue; 1761 1762 /* __ Set realtime policy in scheduler __ */ 1763 } 1764 1765 if (copied >= target) { 1766 /* Do not sleep, just process backlog. */ 1767 release_sock(sk); 1768 lock_sock(sk); 1769 } else { 1770 sk_wait_data(sk, &timeo, last); 1771 } 1772 1773 if (user_recv) { 1774 int chunk; 1775 1776 /* __ Restore normal policy in scheduler __ */ 1777 1778 chunk = len - tp->ucopy.len; 1779 if (chunk != 0) { 1780 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1781 len -= chunk; 1782 copied += chunk; 1783 } 1784 1785 if (tp->rcv_nxt == tp->copied_seq && 1786 !skb_queue_empty(&tp->ucopy.prequeue)) { 1787 do_prequeue: 1788 tcp_prequeue_process(sk); 1789 1790 chunk = len - tp->ucopy.len; 1791 if (chunk != 0) { 1792 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1793 len -= chunk; 1794 copied += chunk; 1795 } 1796 } 1797 } 1798 if ((flags & MSG_PEEK) && 1799 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1800 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1801 current->comm, 1802 task_pid_nr(current)); 1803 peek_seq = tp->copied_seq; 1804 } 1805 continue; 1806 1807 found_ok_skb: 1808 /* Ok so how much can we use? */ 1809 used = skb->len - offset; 1810 if (len < used) 1811 used = len; 1812 1813 /* Do we have urgent data here? */ 1814 if (tp->urg_data) { 1815 u32 urg_offset = tp->urg_seq - *seq; 1816 if (urg_offset < used) { 1817 if (!urg_offset) { 1818 if (!sock_flag(sk, SOCK_URGINLINE)) { 1819 ++*seq; 1820 urg_hole++; 1821 offset++; 1822 used--; 1823 if (!used) 1824 goto skip_copy; 1825 } 1826 } else 1827 used = urg_offset; 1828 } 1829 } 1830 1831 if (!(flags & MSG_TRUNC)) { 1832 err = skb_copy_datagram_msg(skb, offset, msg, used); 1833 if (err) { 1834 /* Exception. Bailout! */ 1835 if (!copied) 1836 copied = -EFAULT; 1837 break; 1838 } 1839 } 1840 1841 *seq += used; 1842 copied += used; 1843 len -= used; 1844 1845 tcp_rcv_space_adjust(sk); 1846 1847 skip_copy: 1848 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1849 tp->urg_data = 0; 1850 tcp_fast_path_check(sk); 1851 } 1852 if (used + offset < skb->len) 1853 continue; 1854 1855 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1856 goto found_fin_ok; 1857 if (!(flags & MSG_PEEK)) 1858 sk_eat_skb(sk, skb); 1859 continue; 1860 1861 found_fin_ok: 1862 /* Process the FIN. */ 1863 ++*seq; 1864 if (!(flags & MSG_PEEK)) 1865 sk_eat_skb(sk, skb); 1866 break; 1867 } while (len > 0); 1868 1869 if (user_recv) { 1870 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1871 int chunk; 1872 1873 tp->ucopy.len = copied > 0 ? len : 0; 1874 1875 tcp_prequeue_process(sk); 1876 1877 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1878 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1879 len -= chunk; 1880 copied += chunk; 1881 } 1882 } 1883 1884 tp->ucopy.task = NULL; 1885 tp->ucopy.len = 0; 1886 } 1887 1888 /* According to UNIX98, msg_name/msg_namelen are ignored 1889 * on connected socket. I was just happy when found this 8) --ANK 1890 */ 1891 1892 /* Clean up data we have read: This will do ACK frames. */ 1893 tcp_cleanup_rbuf(sk, copied); 1894 1895 release_sock(sk); 1896 return copied; 1897 1898 out: 1899 release_sock(sk); 1900 return err; 1901 1902 recv_urg: 1903 err = tcp_recv_urg(sk, msg, len, flags); 1904 goto out; 1905 1906 recv_sndq: 1907 err = tcp_peek_sndq(sk, msg, len); 1908 goto out; 1909 } 1910 EXPORT_SYMBOL(tcp_recvmsg); 1911 1912 void tcp_set_state(struct sock *sk, int state) 1913 { 1914 int oldstate = sk->sk_state; 1915 1916 switch (state) { 1917 case TCP_ESTABLISHED: 1918 if (oldstate != TCP_ESTABLISHED) 1919 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1920 break; 1921 1922 case TCP_CLOSE: 1923 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1924 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1925 1926 sk->sk_prot->unhash(sk); 1927 if (inet_csk(sk)->icsk_bind_hash && 1928 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1929 inet_put_port(sk); 1930 /* fall through */ 1931 default: 1932 if (oldstate == TCP_ESTABLISHED) 1933 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1934 } 1935 1936 /* Change state AFTER socket is unhashed to avoid closed 1937 * socket sitting in hash tables. 1938 */ 1939 sk_state_store(sk, state); 1940 1941 #ifdef STATE_TRACE 1942 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1943 #endif 1944 } 1945 EXPORT_SYMBOL_GPL(tcp_set_state); 1946 1947 /* 1948 * State processing on a close. This implements the state shift for 1949 * sending our FIN frame. Note that we only send a FIN for some 1950 * states. A shutdown() may have already sent the FIN, or we may be 1951 * closed. 1952 */ 1953 1954 static const unsigned char new_state[16] = { 1955 /* current state: new state: action: */ 1956 [0 /* (Invalid) */] = TCP_CLOSE, 1957 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1958 [TCP_SYN_SENT] = TCP_CLOSE, 1959 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1960 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 1961 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 1962 [TCP_TIME_WAIT] = TCP_CLOSE, 1963 [TCP_CLOSE] = TCP_CLOSE, 1964 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 1965 [TCP_LAST_ACK] = TCP_LAST_ACK, 1966 [TCP_LISTEN] = TCP_CLOSE, 1967 [TCP_CLOSING] = TCP_CLOSING, 1968 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 1969 }; 1970 1971 static int tcp_close_state(struct sock *sk) 1972 { 1973 int next = (int)new_state[sk->sk_state]; 1974 int ns = next & TCP_STATE_MASK; 1975 1976 tcp_set_state(sk, ns); 1977 1978 return next & TCP_ACTION_FIN; 1979 } 1980 1981 /* 1982 * Shutdown the sending side of a connection. Much like close except 1983 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1984 */ 1985 1986 void tcp_shutdown(struct sock *sk, int how) 1987 { 1988 /* We need to grab some memory, and put together a FIN, 1989 * and then put it into the queue to be sent. 1990 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1991 */ 1992 if (!(how & SEND_SHUTDOWN)) 1993 return; 1994 1995 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1996 if ((1 << sk->sk_state) & 1997 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1998 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1999 /* Clear out any half completed packets. FIN if needed. */ 2000 if (tcp_close_state(sk)) 2001 tcp_send_fin(sk); 2002 } 2003 } 2004 EXPORT_SYMBOL(tcp_shutdown); 2005 2006 bool tcp_check_oom(struct sock *sk, int shift) 2007 { 2008 bool too_many_orphans, out_of_socket_memory; 2009 2010 too_many_orphans = tcp_too_many_orphans(sk, shift); 2011 out_of_socket_memory = tcp_out_of_memory(sk); 2012 2013 if (too_many_orphans) 2014 net_info_ratelimited("too many orphaned sockets\n"); 2015 if (out_of_socket_memory) 2016 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2017 return too_many_orphans || out_of_socket_memory; 2018 } 2019 2020 void tcp_close(struct sock *sk, long timeout) 2021 { 2022 struct sk_buff *skb; 2023 int data_was_unread = 0; 2024 int state; 2025 2026 lock_sock(sk); 2027 sk->sk_shutdown = SHUTDOWN_MASK; 2028 2029 if (sk->sk_state == TCP_LISTEN) { 2030 tcp_set_state(sk, TCP_CLOSE); 2031 2032 /* Special case. */ 2033 inet_csk_listen_stop(sk); 2034 2035 goto adjudge_to_death; 2036 } 2037 2038 /* We need to flush the recv. buffs. We do this only on the 2039 * descriptor close, not protocol-sourced closes, because the 2040 * reader process may not have drained the data yet! 2041 */ 2042 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2043 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2044 2045 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2046 len--; 2047 data_was_unread += len; 2048 __kfree_skb(skb); 2049 } 2050 2051 sk_mem_reclaim(sk); 2052 2053 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2054 if (sk->sk_state == TCP_CLOSE) 2055 goto adjudge_to_death; 2056 2057 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2058 * data was lost. To witness the awful effects of the old behavior of 2059 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2060 * GET in an FTP client, suspend the process, wait for the client to 2061 * advertise a zero window, then kill -9 the FTP client, wheee... 2062 * Note: timeout is always zero in such a case. 2063 */ 2064 if (unlikely(tcp_sk(sk)->repair)) { 2065 sk->sk_prot->disconnect(sk, 0); 2066 } else if (data_was_unread) { 2067 /* Unread data was tossed, zap the connection. */ 2068 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2069 tcp_set_state(sk, TCP_CLOSE); 2070 tcp_send_active_reset(sk, sk->sk_allocation); 2071 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2072 /* Check zero linger _after_ checking for unread data. */ 2073 sk->sk_prot->disconnect(sk, 0); 2074 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2075 } else if (tcp_close_state(sk)) { 2076 /* We FIN if the application ate all the data before 2077 * zapping the connection. 2078 */ 2079 2080 /* RED-PEN. Formally speaking, we have broken TCP state 2081 * machine. State transitions: 2082 * 2083 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2084 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2085 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2086 * 2087 * are legal only when FIN has been sent (i.e. in window), 2088 * rather than queued out of window. Purists blame. 2089 * 2090 * F.e. "RFC state" is ESTABLISHED, 2091 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2092 * 2093 * The visible declinations are that sometimes 2094 * we enter time-wait state, when it is not required really 2095 * (harmless), do not send active resets, when they are 2096 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2097 * they look as CLOSING or LAST_ACK for Linux) 2098 * Probably, I missed some more holelets. 2099 * --ANK 2100 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2101 * in a single packet! (May consider it later but will 2102 * probably need API support or TCP_CORK SYN-ACK until 2103 * data is written and socket is closed.) 2104 */ 2105 tcp_send_fin(sk); 2106 } 2107 2108 sk_stream_wait_close(sk, timeout); 2109 2110 adjudge_to_death: 2111 state = sk->sk_state; 2112 sock_hold(sk); 2113 sock_orphan(sk); 2114 2115 /* It is the last release_sock in its life. It will remove backlog. */ 2116 release_sock(sk); 2117 2118 2119 /* Now socket is owned by kernel and we acquire BH lock 2120 to finish close. No need to check for user refs. 2121 */ 2122 local_bh_disable(); 2123 bh_lock_sock(sk); 2124 WARN_ON(sock_owned_by_user(sk)); 2125 2126 percpu_counter_inc(sk->sk_prot->orphan_count); 2127 2128 /* Have we already been destroyed by a softirq or backlog? */ 2129 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2130 goto out; 2131 2132 /* This is a (useful) BSD violating of the RFC. There is a 2133 * problem with TCP as specified in that the other end could 2134 * keep a socket open forever with no application left this end. 2135 * We use a 1 minute timeout (about the same as BSD) then kill 2136 * our end. If they send after that then tough - BUT: long enough 2137 * that we won't make the old 4*rto = almost no time - whoops 2138 * reset mistake. 2139 * 2140 * Nope, it was not mistake. It is really desired behaviour 2141 * f.e. on http servers, when such sockets are useless, but 2142 * consume significant resources. Let's do it with special 2143 * linger2 option. --ANK 2144 */ 2145 2146 if (sk->sk_state == TCP_FIN_WAIT2) { 2147 struct tcp_sock *tp = tcp_sk(sk); 2148 if (tp->linger2 < 0) { 2149 tcp_set_state(sk, TCP_CLOSE); 2150 tcp_send_active_reset(sk, GFP_ATOMIC); 2151 NET_INC_STATS_BH(sock_net(sk), 2152 LINUX_MIB_TCPABORTONLINGER); 2153 } else { 2154 const int tmo = tcp_fin_time(sk); 2155 2156 if (tmo > TCP_TIMEWAIT_LEN) { 2157 inet_csk_reset_keepalive_timer(sk, 2158 tmo - TCP_TIMEWAIT_LEN); 2159 } else { 2160 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2161 goto out; 2162 } 2163 } 2164 } 2165 if (sk->sk_state != TCP_CLOSE) { 2166 sk_mem_reclaim(sk); 2167 if (tcp_check_oom(sk, 0)) { 2168 tcp_set_state(sk, TCP_CLOSE); 2169 tcp_send_active_reset(sk, GFP_ATOMIC); 2170 NET_INC_STATS_BH(sock_net(sk), 2171 LINUX_MIB_TCPABORTONMEMORY); 2172 } 2173 } 2174 2175 if (sk->sk_state == TCP_CLOSE) { 2176 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2177 /* We could get here with a non-NULL req if the socket is 2178 * aborted (e.g., closed with unread data) before 3WHS 2179 * finishes. 2180 */ 2181 if (req) 2182 reqsk_fastopen_remove(sk, req, false); 2183 inet_csk_destroy_sock(sk); 2184 } 2185 /* Otherwise, socket is reprieved until protocol close. */ 2186 2187 out: 2188 bh_unlock_sock(sk); 2189 local_bh_enable(); 2190 sock_put(sk); 2191 } 2192 EXPORT_SYMBOL(tcp_close); 2193 2194 /* These states need RST on ABORT according to RFC793 */ 2195 2196 static inline bool tcp_need_reset(int state) 2197 { 2198 return (1 << state) & 2199 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2200 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2201 } 2202 2203 int tcp_disconnect(struct sock *sk, int flags) 2204 { 2205 struct inet_sock *inet = inet_sk(sk); 2206 struct inet_connection_sock *icsk = inet_csk(sk); 2207 struct tcp_sock *tp = tcp_sk(sk); 2208 int err = 0; 2209 int old_state = sk->sk_state; 2210 2211 if (old_state != TCP_CLOSE) 2212 tcp_set_state(sk, TCP_CLOSE); 2213 2214 /* ABORT function of RFC793 */ 2215 if (old_state == TCP_LISTEN) { 2216 inet_csk_listen_stop(sk); 2217 } else if (unlikely(tp->repair)) { 2218 sk->sk_err = ECONNABORTED; 2219 } else if (tcp_need_reset(old_state) || 2220 (tp->snd_nxt != tp->write_seq && 2221 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2222 /* The last check adjusts for discrepancy of Linux wrt. RFC 2223 * states 2224 */ 2225 tcp_send_active_reset(sk, gfp_any()); 2226 sk->sk_err = ECONNRESET; 2227 } else if (old_state == TCP_SYN_SENT) 2228 sk->sk_err = ECONNRESET; 2229 2230 tcp_clear_xmit_timers(sk); 2231 __skb_queue_purge(&sk->sk_receive_queue); 2232 tcp_write_queue_purge(sk); 2233 __skb_queue_purge(&tp->out_of_order_queue); 2234 2235 inet->inet_dport = 0; 2236 2237 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2238 inet_reset_saddr(sk); 2239 2240 sk->sk_shutdown = 0; 2241 sock_reset_flag(sk, SOCK_DONE); 2242 tp->srtt_us = 0; 2243 tp->write_seq += tp->max_window + 2; 2244 if (tp->write_seq == 0) 2245 tp->write_seq = 1; 2246 icsk->icsk_backoff = 0; 2247 tp->snd_cwnd = 2; 2248 icsk->icsk_probes_out = 0; 2249 tp->packets_out = 0; 2250 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2251 tp->snd_cwnd_cnt = 0; 2252 tp->window_clamp = 0; 2253 tcp_set_ca_state(sk, TCP_CA_Open); 2254 tcp_clear_retrans(tp); 2255 inet_csk_delack_init(sk); 2256 tcp_init_send_head(sk); 2257 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2258 __sk_dst_reset(sk); 2259 2260 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2261 2262 sk->sk_error_report(sk); 2263 return err; 2264 } 2265 EXPORT_SYMBOL(tcp_disconnect); 2266 2267 static inline bool tcp_can_repair_sock(const struct sock *sk) 2268 { 2269 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2270 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2271 } 2272 2273 static int tcp_repair_options_est(struct tcp_sock *tp, 2274 struct tcp_repair_opt __user *optbuf, unsigned int len) 2275 { 2276 struct tcp_repair_opt opt; 2277 2278 while (len >= sizeof(opt)) { 2279 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2280 return -EFAULT; 2281 2282 optbuf++; 2283 len -= sizeof(opt); 2284 2285 switch (opt.opt_code) { 2286 case TCPOPT_MSS: 2287 tp->rx_opt.mss_clamp = opt.opt_val; 2288 break; 2289 case TCPOPT_WINDOW: 2290 { 2291 u16 snd_wscale = opt.opt_val & 0xFFFF; 2292 u16 rcv_wscale = opt.opt_val >> 16; 2293 2294 if (snd_wscale > 14 || rcv_wscale > 14) 2295 return -EFBIG; 2296 2297 tp->rx_opt.snd_wscale = snd_wscale; 2298 tp->rx_opt.rcv_wscale = rcv_wscale; 2299 tp->rx_opt.wscale_ok = 1; 2300 } 2301 break; 2302 case TCPOPT_SACK_PERM: 2303 if (opt.opt_val != 0) 2304 return -EINVAL; 2305 2306 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2307 if (sysctl_tcp_fack) 2308 tcp_enable_fack(tp); 2309 break; 2310 case TCPOPT_TIMESTAMP: 2311 if (opt.opt_val != 0) 2312 return -EINVAL; 2313 2314 tp->rx_opt.tstamp_ok = 1; 2315 break; 2316 } 2317 } 2318 2319 return 0; 2320 } 2321 2322 /* 2323 * Socket option code for TCP. 2324 */ 2325 static int do_tcp_setsockopt(struct sock *sk, int level, 2326 int optname, char __user *optval, unsigned int optlen) 2327 { 2328 struct tcp_sock *tp = tcp_sk(sk); 2329 struct inet_connection_sock *icsk = inet_csk(sk); 2330 struct net *net = sock_net(sk); 2331 int val; 2332 int err = 0; 2333 2334 /* These are data/string values, all the others are ints */ 2335 switch (optname) { 2336 case TCP_CONGESTION: { 2337 char name[TCP_CA_NAME_MAX]; 2338 2339 if (optlen < 1) 2340 return -EINVAL; 2341 2342 val = strncpy_from_user(name, optval, 2343 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2344 if (val < 0) 2345 return -EFAULT; 2346 name[val] = 0; 2347 2348 lock_sock(sk); 2349 err = tcp_set_congestion_control(sk, name); 2350 release_sock(sk); 2351 return err; 2352 } 2353 default: 2354 /* fallthru */ 2355 break; 2356 } 2357 2358 if (optlen < sizeof(int)) 2359 return -EINVAL; 2360 2361 if (get_user(val, (int __user *)optval)) 2362 return -EFAULT; 2363 2364 lock_sock(sk); 2365 2366 switch (optname) { 2367 case TCP_MAXSEG: 2368 /* Values greater than interface MTU won't take effect. However 2369 * at the point when this call is done we typically don't yet 2370 * know which interface is going to be used */ 2371 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2372 err = -EINVAL; 2373 break; 2374 } 2375 tp->rx_opt.user_mss = val; 2376 break; 2377 2378 case TCP_NODELAY: 2379 if (val) { 2380 /* TCP_NODELAY is weaker than TCP_CORK, so that 2381 * this option on corked socket is remembered, but 2382 * it is not activated until cork is cleared. 2383 * 2384 * However, when TCP_NODELAY is set we make 2385 * an explicit push, which overrides even TCP_CORK 2386 * for currently queued segments. 2387 */ 2388 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2389 tcp_push_pending_frames(sk); 2390 } else { 2391 tp->nonagle &= ~TCP_NAGLE_OFF; 2392 } 2393 break; 2394 2395 case TCP_THIN_LINEAR_TIMEOUTS: 2396 if (val < 0 || val > 1) 2397 err = -EINVAL; 2398 else 2399 tp->thin_lto = val; 2400 break; 2401 2402 case TCP_THIN_DUPACK: 2403 if (val < 0 || val > 1) 2404 err = -EINVAL; 2405 else { 2406 tp->thin_dupack = val; 2407 if (tp->thin_dupack) 2408 tcp_disable_early_retrans(tp); 2409 } 2410 break; 2411 2412 case TCP_REPAIR: 2413 if (!tcp_can_repair_sock(sk)) 2414 err = -EPERM; 2415 else if (val == 1) { 2416 tp->repair = 1; 2417 sk->sk_reuse = SK_FORCE_REUSE; 2418 tp->repair_queue = TCP_NO_QUEUE; 2419 } else if (val == 0) { 2420 tp->repair = 0; 2421 sk->sk_reuse = SK_NO_REUSE; 2422 tcp_send_window_probe(sk); 2423 } else 2424 err = -EINVAL; 2425 2426 break; 2427 2428 case TCP_REPAIR_QUEUE: 2429 if (!tp->repair) 2430 err = -EPERM; 2431 else if (val < TCP_QUEUES_NR) 2432 tp->repair_queue = val; 2433 else 2434 err = -EINVAL; 2435 break; 2436 2437 case TCP_QUEUE_SEQ: 2438 if (sk->sk_state != TCP_CLOSE) 2439 err = -EPERM; 2440 else if (tp->repair_queue == TCP_SEND_QUEUE) 2441 tp->write_seq = val; 2442 else if (tp->repair_queue == TCP_RECV_QUEUE) 2443 tp->rcv_nxt = val; 2444 else 2445 err = -EINVAL; 2446 break; 2447 2448 case TCP_REPAIR_OPTIONS: 2449 if (!tp->repair) 2450 err = -EINVAL; 2451 else if (sk->sk_state == TCP_ESTABLISHED) 2452 err = tcp_repair_options_est(tp, 2453 (struct tcp_repair_opt __user *)optval, 2454 optlen); 2455 else 2456 err = -EPERM; 2457 break; 2458 2459 case TCP_CORK: 2460 /* When set indicates to always queue non-full frames. 2461 * Later the user clears this option and we transmit 2462 * any pending partial frames in the queue. This is 2463 * meant to be used alongside sendfile() to get properly 2464 * filled frames when the user (for example) must write 2465 * out headers with a write() call first and then use 2466 * sendfile to send out the data parts. 2467 * 2468 * TCP_CORK can be set together with TCP_NODELAY and it is 2469 * stronger than TCP_NODELAY. 2470 */ 2471 if (val) { 2472 tp->nonagle |= TCP_NAGLE_CORK; 2473 } else { 2474 tp->nonagle &= ~TCP_NAGLE_CORK; 2475 if (tp->nonagle&TCP_NAGLE_OFF) 2476 tp->nonagle |= TCP_NAGLE_PUSH; 2477 tcp_push_pending_frames(sk); 2478 } 2479 break; 2480 2481 case TCP_KEEPIDLE: 2482 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2483 err = -EINVAL; 2484 else { 2485 tp->keepalive_time = val * HZ; 2486 if (sock_flag(sk, SOCK_KEEPOPEN) && 2487 !((1 << sk->sk_state) & 2488 (TCPF_CLOSE | TCPF_LISTEN))) { 2489 u32 elapsed = keepalive_time_elapsed(tp); 2490 if (tp->keepalive_time > elapsed) 2491 elapsed = tp->keepalive_time - elapsed; 2492 else 2493 elapsed = 0; 2494 inet_csk_reset_keepalive_timer(sk, elapsed); 2495 } 2496 } 2497 break; 2498 case TCP_KEEPINTVL: 2499 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2500 err = -EINVAL; 2501 else 2502 tp->keepalive_intvl = val * HZ; 2503 break; 2504 case TCP_KEEPCNT: 2505 if (val < 1 || val > MAX_TCP_KEEPCNT) 2506 err = -EINVAL; 2507 else 2508 tp->keepalive_probes = val; 2509 break; 2510 case TCP_SYNCNT: 2511 if (val < 1 || val > MAX_TCP_SYNCNT) 2512 err = -EINVAL; 2513 else 2514 icsk->icsk_syn_retries = val; 2515 break; 2516 2517 case TCP_SAVE_SYN: 2518 if (val < 0 || val > 1) 2519 err = -EINVAL; 2520 else 2521 tp->save_syn = val; 2522 break; 2523 2524 case TCP_LINGER2: 2525 if (val < 0) 2526 tp->linger2 = -1; 2527 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2528 tp->linger2 = 0; 2529 else 2530 tp->linger2 = val * HZ; 2531 break; 2532 2533 case TCP_DEFER_ACCEPT: 2534 /* Translate value in seconds to number of retransmits */ 2535 icsk->icsk_accept_queue.rskq_defer_accept = 2536 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2537 TCP_RTO_MAX / HZ); 2538 break; 2539 2540 case TCP_WINDOW_CLAMP: 2541 if (!val) { 2542 if (sk->sk_state != TCP_CLOSE) { 2543 err = -EINVAL; 2544 break; 2545 } 2546 tp->window_clamp = 0; 2547 } else 2548 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2549 SOCK_MIN_RCVBUF / 2 : val; 2550 break; 2551 2552 case TCP_QUICKACK: 2553 if (!val) { 2554 icsk->icsk_ack.pingpong = 1; 2555 } else { 2556 icsk->icsk_ack.pingpong = 0; 2557 if ((1 << sk->sk_state) & 2558 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2559 inet_csk_ack_scheduled(sk)) { 2560 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2561 tcp_cleanup_rbuf(sk, 1); 2562 if (!(val & 1)) 2563 icsk->icsk_ack.pingpong = 1; 2564 } 2565 } 2566 break; 2567 2568 #ifdef CONFIG_TCP_MD5SIG 2569 case TCP_MD5SIG: 2570 /* Read the IP->Key mappings from userspace */ 2571 err = tp->af_specific->md5_parse(sk, optval, optlen); 2572 break; 2573 #endif 2574 case TCP_USER_TIMEOUT: 2575 /* Cap the max time in ms TCP will retry or probe the window 2576 * before giving up and aborting (ETIMEDOUT) a connection. 2577 */ 2578 if (val < 0) 2579 err = -EINVAL; 2580 else 2581 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2582 break; 2583 2584 case TCP_FASTOPEN: 2585 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2586 TCPF_LISTEN))) { 2587 tcp_fastopen_init_key_once(true); 2588 2589 fastopen_queue_tune(sk, val); 2590 } else { 2591 err = -EINVAL; 2592 } 2593 break; 2594 case TCP_TIMESTAMP: 2595 if (!tp->repair) 2596 err = -EPERM; 2597 else 2598 tp->tsoffset = val - tcp_time_stamp; 2599 break; 2600 case TCP_NOTSENT_LOWAT: 2601 tp->notsent_lowat = val; 2602 sk->sk_write_space(sk); 2603 break; 2604 default: 2605 err = -ENOPROTOOPT; 2606 break; 2607 } 2608 2609 release_sock(sk); 2610 return err; 2611 } 2612 2613 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2614 unsigned int optlen) 2615 { 2616 const struct inet_connection_sock *icsk = inet_csk(sk); 2617 2618 if (level != SOL_TCP) 2619 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2620 optval, optlen); 2621 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2622 } 2623 EXPORT_SYMBOL(tcp_setsockopt); 2624 2625 #ifdef CONFIG_COMPAT 2626 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2627 char __user *optval, unsigned int optlen) 2628 { 2629 if (level != SOL_TCP) 2630 return inet_csk_compat_setsockopt(sk, level, optname, 2631 optval, optlen); 2632 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2633 } 2634 EXPORT_SYMBOL(compat_tcp_setsockopt); 2635 #endif 2636 2637 /* Return information about state of tcp endpoint in API format. */ 2638 void tcp_get_info(struct sock *sk, struct tcp_info *info) 2639 { 2640 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 2641 const struct inet_connection_sock *icsk = inet_csk(sk); 2642 u32 now = tcp_time_stamp; 2643 unsigned int start; 2644 int notsent_bytes; 2645 u64 rate64; 2646 u32 rate; 2647 2648 memset(info, 0, sizeof(*info)); 2649 if (sk->sk_type != SOCK_STREAM) 2650 return; 2651 2652 info->tcpi_state = sk_state_load(sk); 2653 2654 info->tcpi_ca_state = icsk->icsk_ca_state; 2655 info->tcpi_retransmits = icsk->icsk_retransmits; 2656 info->tcpi_probes = icsk->icsk_probes_out; 2657 info->tcpi_backoff = icsk->icsk_backoff; 2658 2659 if (tp->rx_opt.tstamp_ok) 2660 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2661 if (tcp_is_sack(tp)) 2662 info->tcpi_options |= TCPI_OPT_SACK; 2663 if (tp->rx_opt.wscale_ok) { 2664 info->tcpi_options |= TCPI_OPT_WSCALE; 2665 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2666 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2667 } 2668 2669 if (tp->ecn_flags & TCP_ECN_OK) 2670 info->tcpi_options |= TCPI_OPT_ECN; 2671 if (tp->ecn_flags & TCP_ECN_SEEN) 2672 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2673 if (tp->syn_data_acked) 2674 info->tcpi_options |= TCPI_OPT_SYN_DATA; 2675 2676 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2677 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2678 info->tcpi_snd_mss = tp->mss_cache; 2679 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2680 2681 if (info->tcpi_state == TCP_LISTEN) { 2682 info->tcpi_unacked = sk->sk_ack_backlog; 2683 info->tcpi_sacked = sk->sk_max_ack_backlog; 2684 } else { 2685 info->tcpi_unacked = tp->packets_out; 2686 info->tcpi_sacked = tp->sacked_out; 2687 } 2688 info->tcpi_lost = tp->lost_out; 2689 info->tcpi_retrans = tp->retrans_out; 2690 info->tcpi_fackets = tp->fackets_out; 2691 2692 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2693 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2694 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2695 2696 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2697 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2698 info->tcpi_rtt = tp->srtt_us >> 3; 2699 info->tcpi_rttvar = tp->mdev_us >> 2; 2700 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2701 info->tcpi_snd_cwnd = tp->snd_cwnd; 2702 info->tcpi_advmss = tp->advmss; 2703 info->tcpi_reordering = tp->reordering; 2704 2705 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2706 info->tcpi_rcv_space = tp->rcvq_space.space; 2707 2708 info->tcpi_total_retrans = tp->total_retrans; 2709 2710 rate = READ_ONCE(sk->sk_pacing_rate); 2711 rate64 = rate != ~0U ? rate : ~0ULL; 2712 put_unaligned(rate64, &info->tcpi_pacing_rate); 2713 2714 rate = READ_ONCE(sk->sk_max_pacing_rate); 2715 rate64 = rate != ~0U ? rate : ~0ULL; 2716 put_unaligned(rate64, &info->tcpi_max_pacing_rate); 2717 2718 do { 2719 start = u64_stats_fetch_begin_irq(&tp->syncp); 2720 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked); 2721 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received); 2722 } while (u64_stats_fetch_retry_irq(&tp->syncp, start)); 2723 info->tcpi_segs_out = tp->segs_out; 2724 info->tcpi_segs_in = tp->segs_in; 2725 2726 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt); 2727 info->tcpi_notsent_bytes = max(0, notsent_bytes); 2728 2729 info->tcpi_min_rtt = tcp_min_rtt(tp); 2730 info->tcpi_data_segs_in = tp->data_segs_in; 2731 info->tcpi_data_segs_out = tp->data_segs_out; 2732 } 2733 EXPORT_SYMBOL_GPL(tcp_get_info); 2734 2735 static int do_tcp_getsockopt(struct sock *sk, int level, 2736 int optname, char __user *optval, int __user *optlen) 2737 { 2738 struct inet_connection_sock *icsk = inet_csk(sk); 2739 struct tcp_sock *tp = tcp_sk(sk); 2740 struct net *net = sock_net(sk); 2741 int val, len; 2742 2743 if (get_user(len, optlen)) 2744 return -EFAULT; 2745 2746 len = min_t(unsigned int, len, sizeof(int)); 2747 2748 if (len < 0) 2749 return -EINVAL; 2750 2751 switch (optname) { 2752 case TCP_MAXSEG: 2753 val = tp->mss_cache; 2754 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2755 val = tp->rx_opt.user_mss; 2756 if (tp->repair) 2757 val = tp->rx_opt.mss_clamp; 2758 break; 2759 case TCP_NODELAY: 2760 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2761 break; 2762 case TCP_CORK: 2763 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2764 break; 2765 case TCP_KEEPIDLE: 2766 val = keepalive_time_when(tp) / HZ; 2767 break; 2768 case TCP_KEEPINTVL: 2769 val = keepalive_intvl_when(tp) / HZ; 2770 break; 2771 case TCP_KEEPCNT: 2772 val = keepalive_probes(tp); 2773 break; 2774 case TCP_SYNCNT: 2775 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 2776 break; 2777 case TCP_LINGER2: 2778 val = tp->linger2; 2779 if (val >= 0) 2780 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 2781 break; 2782 case TCP_DEFER_ACCEPT: 2783 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2784 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2785 break; 2786 case TCP_WINDOW_CLAMP: 2787 val = tp->window_clamp; 2788 break; 2789 case TCP_INFO: { 2790 struct tcp_info info; 2791 2792 if (get_user(len, optlen)) 2793 return -EFAULT; 2794 2795 tcp_get_info(sk, &info); 2796 2797 len = min_t(unsigned int, len, sizeof(info)); 2798 if (put_user(len, optlen)) 2799 return -EFAULT; 2800 if (copy_to_user(optval, &info, len)) 2801 return -EFAULT; 2802 return 0; 2803 } 2804 case TCP_CC_INFO: { 2805 const struct tcp_congestion_ops *ca_ops; 2806 union tcp_cc_info info; 2807 size_t sz = 0; 2808 int attr; 2809 2810 if (get_user(len, optlen)) 2811 return -EFAULT; 2812 2813 ca_ops = icsk->icsk_ca_ops; 2814 if (ca_ops && ca_ops->get_info) 2815 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 2816 2817 len = min_t(unsigned int, len, sz); 2818 if (put_user(len, optlen)) 2819 return -EFAULT; 2820 if (copy_to_user(optval, &info, len)) 2821 return -EFAULT; 2822 return 0; 2823 } 2824 case TCP_QUICKACK: 2825 val = !icsk->icsk_ack.pingpong; 2826 break; 2827 2828 case TCP_CONGESTION: 2829 if (get_user(len, optlen)) 2830 return -EFAULT; 2831 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2832 if (put_user(len, optlen)) 2833 return -EFAULT; 2834 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2835 return -EFAULT; 2836 return 0; 2837 2838 case TCP_THIN_LINEAR_TIMEOUTS: 2839 val = tp->thin_lto; 2840 break; 2841 case TCP_THIN_DUPACK: 2842 val = tp->thin_dupack; 2843 break; 2844 2845 case TCP_REPAIR: 2846 val = tp->repair; 2847 break; 2848 2849 case TCP_REPAIR_QUEUE: 2850 if (tp->repair) 2851 val = tp->repair_queue; 2852 else 2853 return -EINVAL; 2854 break; 2855 2856 case TCP_QUEUE_SEQ: 2857 if (tp->repair_queue == TCP_SEND_QUEUE) 2858 val = tp->write_seq; 2859 else if (tp->repair_queue == TCP_RECV_QUEUE) 2860 val = tp->rcv_nxt; 2861 else 2862 return -EINVAL; 2863 break; 2864 2865 case TCP_USER_TIMEOUT: 2866 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2867 break; 2868 2869 case TCP_FASTOPEN: 2870 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 2871 break; 2872 2873 case TCP_TIMESTAMP: 2874 val = tcp_time_stamp + tp->tsoffset; 2875 break; 2876 case TCP_NOTSENT_LOWAT: 2877 val = tp->notsent_lowat; 2878 break; 2879 case TCP_SAVE_SYN: 2880 val = tp->save_syn; 2881 break; 2882 case TCP_SAVED_SYN: { 2883 if (get_user(len, optlen)) 2884 return -EFAULT; 2885 2886 lock_sock(sk); 2887 if (tp->saved_syn) { 2888 if (len < tp->saved_syn[0]) { 2889 if (put_user(tp->saved_syn[0], optlen)) { 2890 release_sock(sk); 2891 return -EFAULT; 2892 } 2893 release_sock(sk); 2894 return -EINVAL; 2895 } 2896 len = tp->saved_syn[0]; 2897 if (put_user(len, optlen)) { 2898 release_sock(sk); 2899 return -EFAULT; 2900 } 2901 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 2902 release_sock(sk); 2903 return -EFAULT; 2904 } 2905 tcp_saved_syn_free(tp); 2906 release_sock(sk); 2907 } else { 2908 release_sock(sk); 2909 len = 0; 2910 if (put_user(len, optlen)) 2911 return -EFAULT; 2912 } 2913 return 0; 2914 } 2915 default: 2916 return -ENOPROTOOPT; 2917 } 2918 2919 if (put_user(len, optlen)) 2920 return -EFAULT; 2921 if (copy_to_user(optval, &val, len)) 2922 return -EFAULT; 2923 return 0; 2924 } 2925 2926 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2927 int __user *optlen) 2928 { 2929 struct inet_connection_sock *icsk = inet_csk(sk); 2930 2931 if (level != SOL_TCP) 2932 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2933 optval, optlen); 2934 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2935 } 2936 EXPORT_SYMBOL(tcp_getsockopt); 2937 2938 #ifdef CONFIG_COMPAT 2939 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2940 char __user *optval, int __user *optlen) 2941 { 2942 if (level != SOL_TCP) 2943 return inet_csk_compat_getsockopt(sk, level, optname, 2944 optval, optlen); 2945 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2946 } 2947 EXPORT_SYMBOL(compat_tcp_getsockopt); 2948 #endif 2949 2950 #ifdef CONFIG_TCP_MD5SIG 2951 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 2952 static DEFINE_MUTEX(tcp_md5sig_mutex); 2953 static bool tcp_md5sig_pool_populated = false; 2954 2955 static void __tcp_alloc_md5sig_pool(void) 2956 { 2957 struct crypto_ahash *hash; 2958 int cpu; 2959 2960 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 2961 if (IS_ERR(hash)) 2962 return; 2963 2964 for_each_possible_cpu(cpu) { 2965 struct ahash_request *req; 2966 2967 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 2968 continue; 2969 2970 req = ahash_request_alloc(hash, GFP_KERNEL); 2971 if (!req) 2972 return; 2973 2974 ahash_request_set_callback(req, 0, NULL, NULL); 2975 2976 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 2977 } 2978 /* before setting tcp_md5sig_pool_populated, we must commit all writes 2979 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 2980 */ 2981 smp_wmb(); 2982 tcp_md5sig_pool_populated = true; 2983 } 2984 2985 bool tcp_alloc_md5sig_pool(void) 2986 { 2987 if (unlikely(!tcp_md5sig_pool_populated)) { 2988 mutex_lock(&tcp_md5sig_mutex); 2989 2990 if (!tcp_md5sig_pool_populated) 2991 __tcp_alloc_md5sig_pool(); 2992 2993 mutex_unlock(&tcp_md5sig_mutex); 2994 } 2995 return tcp_md5sig_pool_populated; 2996 } 2997 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 2998 2999 3000 /** 3001 * tcp_get_md5sig_pool - get md5sig_pool for this user 3002 * 3003 * We use percpu structure, so if we succeed, we exit with preemption 3004 * and BH disabled, to make sure another thread or softirq handling 3005 * wont try to get same context. 3006 */ 3007 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3008 { 3009 local_bh_disable(); 3010 3011 if (tcp_md5sig_pool_populated) { 3012 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3013 smp_rmb(); 3014 return this_cpu_ptr(&tcp_md5sig_pool); 3015 } 3016 local_bh_enable(); 3017 return NULL; 3018 } 3019 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3020 3021 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3022 const struct tcphdr *th) 3023 { 3024 struct scatterlist sg; 3025 struct tcphdr hdr; 3026 3027 /* We are not allowed to change tcphdr, make a local copy */ 3028 memcpy(&hdr, th, sizeof(hdr)); 3029 hdr.check = 0; 3030 3031 /* options aren't included in the hash */ 3032 sg_init_one(&sg, &hdr, sizeof(hdr)); 3033 ahash_request_set_crypt(hp->md5_req, &sg, NULL, sizeof(hdr)); 3034 return crypto_ahash_update(hp->md5_req); 3035 } 3036 EXPORT_SYMBOL(tcp_md5_hash_header); 3037 3038 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3039 const struct sk_buff *skb, unsigned int header_len) 3040 { 3041 struct scatterlist sg; 3042 const struct tcphdr *tp = tcp_hdr(skb); 3043 struct ahash_request *req = hp->md5_req; 3044 unsigned int i; 3045 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3046 skb_headlen(skb) - header_len : 0; 3047 const struct skb_shared_info *shi = skb_shinfo(skb); 3048 struct sk_buff *frag_iter; 3049 3050 sg_init_table(&sg, 1); 3051 3052 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3053 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3054 if (crypto_ahash_update(req)) 3055 return 1; 3056 3057 for (i = 0; i < shi->nr_frags; ++i) { 3058 const struct skb_frag_struct *f = &shi->frags[i]; 3059 unsigned int offset = f->page_offset; 3060 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3061 3062 sg_set_page(&sg, page, skb_frag_size(f), 3063 offset_in_page(offset)); 3064 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3065 if (crypto_ahash_update(req)) 3066 return 1; 3067 } 3068 3069 skb_walk_frags(skb, frag_iter) 3070 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3071 return 1; 3072 3073 return 0; 3074 } 3075 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3076 3077 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3078 { 3079 struct scatterlist sg; 3080 3081 sg_init_one(&sg, key->key, key->keylen); 3082 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3083 return crypto_ahash_update(hp->md5_req); 3084 } 3085 EXPORT_SYMBOL(tcp_md5_hash_key); 3086 3087 #endif 3088 3089 void tcp_done(struct sock *sk) 3090 { 3091 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3092 3093 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3094 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3095 3096 tcp_set_state(sk, TCP_CLOSE); 3097 tcp_clear_xmit_timers(sk); 3098 if (req) 3099 reqsk_fastopen_remove(sk, req, false); 3100 3101 sk->sk_shutdown = SHUTDOWN_MASK; 3102 3103 if (!sock_flag(sk, SOCK_DEAD)) 3104 sk->sk_state_change(sk); 3105 else 3106 inet_csk_destroy_sock(sk); 3107 } 3108 EXPORT_SYMBOL_GPL(tcp_done); 3109 3110 int tcp_abort(struct sock *sk, int err) 3111 { 3112 if (!sk_fullsock(sk)) { 3113 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3114 struct request_sock *req = inet_reqsk(sk); 3115 3116 local_bh_disable(); 3117 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3118 req); 3119 local_bh_enable(); 3120 return 0; 3121 } 3122 sock_gen_put(sk); 3123 return -EOPNOTSUPP; 3124 } 3125 3126 /* Don't race with userspace socket closes such as tcp_close. */ 3127 lock_sock(sk); 3128 3129 if (sk->sk_state == TCP_LISTEN) { 3130 tcp_set_state(sk, TCP_CLOSE); 3131 inet_csk_listen_stop(sk); 3132 } 3133 3134 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3135 local_bh_disable(); 3136 bh_lock_sock(sk); 3137 3138 if (!sock_flag(sk, SOCK_DEAD)) { 3139 sk->sk_err = err; 3140 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3141 smp_wmb(); 3142 sk->sk_error_report(sk); 3143 if (tcp_need_reset(sk->sk_state)) 3144 tcp_send_active_reset(sk, GFP_ATOMIC); 3145 tcp_done(sk); 3146 } 3147 3148 bh_unlock_sock(sk); 3149 local_bh_enable(); 3150 release_sock(sk); 3151 sock_put(sk); 3152 return 0; 3153 } 3154 EXPORT_SYMBOL_GPL(tcp_abort); 3155 3156 extern struct tcp_congestion_ops tcp_reno; 3157 3158 static __initdata unsigned long thash_entries; 3159 static int __init set_thash_entries(char *str) 3160 { 3161 ssize_t ret; 3162 3163 if (!str) 3164 return 0; 3165 3166 ret = kstrtoul(str, 0, &thash_entries); 3167 if (ret) 3168 return 0; 3169 3170 return 1; 3171 } 3172 __setup("thash_entries=", set_thash_entries); 3173 3174 static void __init tcp_init_mem(void) 3175 { 3176 unsigned long limit = nr_free_buffer_pages() / 16; 3177 3178 limit = max(limit, 128UL); 3179 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3180 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3181 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3182 } 3183 3184 void __init tcp_init(void) 3185 { 3186 unsigned long limit; 3187 int max_rshare, max_wshare, cnt; 3188 unsigned int i; 3189 3190 sock_skb_cb_check_size(sizeof(struct tcp_skb_cb)); 3191 3192 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3193 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3194 tcp_hashinfo.bind_bucket_cachep = 3195 kmem_cache_create("tcp_bind_bucket", 3196 sizeof(struct inet_bind_bucket), 0, 3197 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3198 3199 /* Size and allocate the main established and bind bucket 3200 * hash tables. 3201 * 3202 * The methodology is similar to that of the buffer cache. 3203 */ 3204 tcp_hashinfo.ehash = 3205 alloc_large_system_hash("TCP established", 3206 sizeof(struct inet_ehash_bucket), 3207 thash_entries, 3208 17, /* one slot per 128 KB of memory */ 3209 0, 3210 NULL, 3211 &tcp_hashinfo.ehash_mask, 3212 0, 3213 thash_entries ? 0 : 512 * 1024); 3214 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3215 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3216 3217 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3218 panic("TCP: failed to alloc ehash_locks"); 3219 tcp_hashinfo.bhash = 3220 alloc_large_system_hash("TCP bind", 3221 sizeof(struct inet_bind_hashbucket), 3222 tcp_hashinfo.ehash_mask + 1, 3223 17, /* one slot per 128 KB of memory */ 3224 0, 3225 &tcp_hashinfo.bhash_size, 3226 NULL, 3227 0, 3228 64 * 1024); 3229 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3230 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3231 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3232 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3233 } 3234 3235 3236 cnt = tcp_hashinfo.ehash_mask + 1; 3237 3238 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3239 sysctl_tcp_max_orphans = cnt / 2; 3240 sysctl_max_syn_backlog = max(128, cnt / 256); 3241 3242 tcp_init_mem(); 3243 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3244 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3245 max_wshare = min(4UL*1024*1024, limit); 3246 max_rshare = min(6UL*1024*1024, limit); 3247 3248 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3249 sysctl_tcp_wmem[1] = 16*1024; 3250 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3251 3252 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3253 sysctl_tcp_rmem[1] = 87380; 3254 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3255 3256 pr_info("Hash tables configured (established %u bind %u)\n", 3257 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3258 3259 tcp_metrics_init(); 3260 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3261 tcp_tasklet_init(); 3262 } 3263