xref: /openbmc/linux/net/ipv4/tcp.c (revision 46d3ceabd8d98ed0ad10f20c595ca784e34786c5)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 
272 #include <net/icmp.h>
273 #include <net/tcp.h>
274 #include <net/xfrm.h>
275 #include <net/ip.h>
276 #include <net/netdma.h>
277 #include <net/sock.h>
278 
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
281 
282 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
283 
284 struct percpu_counter tcp_orphan_count;
285 EXPORT_SYMBOL_GPL(tcp_orphan_count);
286 
287 int sysctl_tcp_wmem[3] __read_mostly;
288 int sysctl_tcp_rmem[3] __read_mostly;
289 
290 EXPORT_SYMBOL(sysctl_tcp_rmem);
291 EXPORT_SYMBOL(sysctl_tcp_wmem);
292 
293 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
294 EXPORT_SYMBOL(tcp_memory_allocated);
295 
296 /*
297  * Current number of TCP sockets.
298  */
299 struct percpu_counter tcp_sockets_allocated;
300 EXPORT_SYMBOL(tcp_sockets_allocated);
301 
302 /*
303  * TCP splice context
304  */
305 struct tcp_splice_state {
306 	struct pipe_inode_info *pipe;
307 	size_t len;
308 	unsigned int flags;
309 };
310 
311 /*
312  * Pressure flag: try to collapse.
313  * Technical note: it is used by multiple contexts non atomically.
314  * All the __sk_mem_schedule() is of this nature: accounting
315  * is strict, actions are advisory and have some latency.
316  */
317 int tcp_memory_pressure __read_mostly;
318 EXPORT_SYMBOL(tcp_memory_pressure);
319 
320 void tcp_enter_memory_pressure(struct sock *sk)
321 {
322 	if (!tcp_memory_pressure) {
323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
324 		tcp_memory_pressure = 1;
325 	}
326 }
327 EXPORT_SYMBOL(tcp_enter_memory_pressure);
328 
329 /* Convert seconds to retransmits based on initial and max timeout */
330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
331 {
332 	u8 res = 0;
333 
334 	if (seconds > 0) {
335 		int period = timeout;
336 
337 		res = 1;
338 		while (seconds > period && res < 255) {
339 			res++;
340 			timeout <<= 1;
341 			if (timeout > rto_max)
342 				timeout = rto_max;
343 			period += timeout;
344 		}
345 	}
346 	return res;
347 }
348 
349 /* Convert retransmits to seconds based on initial and max timeout */
350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
351 {
352 	int period = 0;
353 
354 	if (retrans > 0) {
355 		period = timeout;
356 		while (--retrans) {
357 			timeout <<= 1;
358 			if (timeout > rto_max)
359 				timeout = rto_max;
360 			period += timeout;
361 		}
362 	}
363 	return period;
364 }
365 
366 /* Address-family independent initialization for a tcp_sock.
367  *
368  * NOTE: A lot of things set to zero explicitly by call to
369  *       sk_alloc() so need not be done here.
370  */
371 void tcp_init_sock(struct sock *sk)
372 {
373 	struct inet_connection_sock *icsk = inet_csk(sk);
374 	struct tcp_sock *tp = tcp_sk(sk);
375 
376 	skb_queue_head_init(&tp->out_of_order_queue);
377 	tcp_init_xmit_timers(sk);
378 	tcp_prequeue_init(tp);
379 	INIT_LIST_HEAD(&tp->tsq_node);
380 
381 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
382 	tp->mdev = TCP_TIMEOUT_INIT;
383 
384 	/* So many TCP implementations out there (incorrectly) count the
385 	 * initial SYN frame in their delayed-ACK and congestion control
386 	 * algorithms that we must have the following bandaid to talk
387 	 * efficiently to them.  -DaveM
388 	 */
389 	tp->snd_cwnd = TCP_INIT_CWND;
390 
391 	/* See draft-stevens-tcpca-spec-01 for discussion of the
392 	 * initialization of these values.
393 	 */
394 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
395 	tp->snd_cwnd_clamp = ~0;
396 	tp->mss_cache = TCP_MSS_DEFAULT;
397 
398 	tp->reordering = sysctl_tcp_reordering;
399 	tcp_enable_early_retrans(tp);
400 	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
401 
402 	sk->sk_state = TCP_CLOSE;
403 
404 	sk->sk_write_space = sk_stream_write_space;
405 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
406 
407 	icsk->icsk_sync_mss = tcp_sync_mss;
408 
409 	/* TCP Cookie Transactions */
410 	if (sysctl_tcp_cookie_size > 0) {
411 		/* Default, cookies without s_data_payload. */
412 		tp->cookie_values =
413 			kzalloc(sizeof(*tp->cookie_values),
414 				sk->sk_allocation);
415 		if (tp->cookie_values != NULL)
416 			kref_init(&tp->cookie_values->kref);
417 	}
418 	/* Presumed zeroed, in order of appearance:
419 	 *	cookie_in_always, cookie_out_never,
420 	 *	s_data_constant, s_data_in, s_data_out
421 	 */
422 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
423 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
424 
425 	local_bh_disable();
426 	sock_update_memcg(sk);
427 	sk_sockets_allocated_inc(sk);
428 	local_bh_enable();
429 }
430 EXPORT_SYMBOL(tcp_init_sock);
431 
432 /*
433  *	Wait for a TCP event.
434  *
435  *	Note that we don't need to lock the socket, as the upper poll layers
436  *	take care of normal races (between the test and the event) and we don't
437  *	go look at any of the socket buffers directly.
438  */
439 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
440 {
441 	unsigned int mask;
442 	struct sock *sk = sock->sk;
443 	const struct tcp_sock *tp = tcp_sk(sk);
444 
445 	sock_poll_wait(file, sk_sleep(sk), wait);
446 	if (sk->sk_state == TCP_LISTEN)
447 		return inet_csk_listen_poll(sk);
448 
449 	/* Socket is not locked. We are protected from async events
450 	 * by poll logic and correct handling of state changes
451 	 * made by other threads is impossible in any case.
452 	 */
453 
454 	mask = 0;
455 
456 	/*
457 	 * POLLHUP is certainly not done right. But poll() doesn't
458 	 * have a notion of HUP in just one direction, and for a
459 	 * socket the read side is more interesting.
460 	 *
461 	 * Some poll() documentation says that POLLHUP is incompatible
462 	 * with the POLLOUT/POLLWR flags, so somebody should check this
463 	 * all. But careful, it tends to be safer to return too many
464 	 * bits than too few, and you can easily break real applications
465 	 * if you don't tell them that something has hung up!
466 	 *
467 	 * Check-me.
468 	 *
469 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
470 	 * our fs/select.c). It means that after we received EOF,
471 	 * poll always returns immediately, making impossible poll() on write()
472 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
473 	 * if and only if shutdown has been made in both directions.
474 	 * Actually, it is interesting to look how Solaris and DUX
475 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
476 	 * then we could set it on SND_SHUTDOWN. BTW examples given
477 	 * in Stevens' books assume exactly this behaviour, it explains
478 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
479 	 *
480 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
481 	 * blocking on fresh not-connected or disconnected socket. --ANK
482 	 */
483 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
484 		mask |= POLLHUP;
485 	if (sk->sk_shutdown & RCV_SHUTDOWN)
486 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
487 
488 	/* Connected? */
489 	if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
490 		int target = sock_rcvlowat(sk, 0, INT_MAX);
491 
492 		if (tp->urg_seq == tp->copied_seq &&
493 		    !sock_flag(sk, SOCK_URGINLINE) &&
494 		    tp->urg_data)
495 			target++;
496 
497 		/* Potential race condition. If read of tp below will
498 		 * escape above sk->sk_state, we can be illegally awaken
499 		 * in SYN_* states. */
500 		if (tp->rcv_nxt - tp->copied_seq >= target)
501 			mask |= POLLIN | POLLRDNORM;
502 
503 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
504 			if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
505 				mask |= POLLOUT | POLLWRNORM;
506 			} else {  /* send SIGIO later */
507 				set_bit(SOCK_ASYNC_NOSPACE,
508 					&sk->sk_socket->flags);
509 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
510 
511 				/* Race breaker. If space is freed after
512 				 * wspace test but before the flags are set,
513 				 * IO signal will be lost.
514 				 */
515 				if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
516 					mask |= POLLOUT | POLLWRNORM;
517 			}
518 		} else
519 			mask |= POLLOUT | POLLWRNORM;
520 
521 		if (tp->urg_data & TCP_URG_VALID)
522 			mask |= POLLPRI;
523 	}
524 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
525 	smp_rmb();
526 	if (sk->sk_err)
527 		mask |= POLLERR;
528 
529 	return mask;
530 }
531 EXPORT_SYMBOL(tcp_poll);
532 
533 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
534 {
535 	struct tcp_sock *tp = tcp_sk(sk);
536 	int answ;
537 
538 	switch (cmd) {
539 	case SIOCINQ:
540 		if (sk->sk_state == TCP_LISTEN)
541 			return -EINVAL;
542 
543 		lock_sock(sk);
544 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
545 			answ = 0;
546 		else if (sock_flag(sk, SOCK_URGINLINE) ||
547 			 !tp->urg_data ||
548 			 before(tp->urg_seq, tp->copied_seq) ||
549 			 !before(tp->urg_seq, tp->rcv_nxt)) {
550 			struct sk_buff *skb;
551 
552 			answ = tp->rcv_nxt - tp->copied_seq;
553 
554 			/* Subtract 1, if FIN is in queue. */
555 			skb = skb_peek_tail(&sk->sk_receive_queue);
556 			if (answ && skb)
557 				answ -= tcp_hdr(skb)->fin;
558 		} else
559 			answ = tp->urg_seq - tp->copied_seq;
560 		release_sock(sk);
561 		break;
562 	case SIOCATMARK:
563 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
564 		break;
565 	case SIOCOUTQ:
566 		if (sk->sk_state == TCP_LISTEN)
567 			return -EINVAL;
568 
569 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
570 			answ = 0;
571 		else
572 			answ = tp->write_seq - tp->snd_una;
573 		break;
574 	case SIOCOUTQNSD:
575 		if (sk->sk_state == TCP_LISTEN)
576 			return -EINVAL;
577 
578 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
579 			answ = 0;
580 		else
581 			answ = tp->write_seq - tp->snd_nxt;
582 		break;
583 	default:
584 		return -ENOIOCTLCMD;
585 	}
586 
587 	return put_user(answ, (int __user *)arg);
588 }
589 EXPORT_SYMBOL(tcp_ioctl);
590 
591 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
592 {
593 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
594 	tp->pushed_seq = tp->write_seq;
595 }
596 
597 static inline bool forced_push(const struct tcp_sock *tp)
598 {
599 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
600 }
601 
602 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
603 {
604 	struct tcp_sock *tp = tcp_sk(sk);
605 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
606 
607 	skb->csum    = 0;
608 	tcb->seq     = tcb->end_seq = tp->write_seq;
609 	tcb->tcp_flags = TCPHDR_ACK;
610 	tcb->sacked  = 0;
611 	skb_header_release(skb);
612 	tcp_add_write_queue_tail(sk, skb);
613 	sk->sk_wmem_queued += skb->truesize;
614 	sk_mem_charge(sk, skb->truesize);
615 	if (tp->nonagle & TCP_NAGLE_PUSH)
616 		tp->nonagle &= ~TCP_NAGLE_PUSH;
617 }
618 
619 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
620 {
621 	if (flags & MSG_OOB)
622 		tp->snd_up = tp->write_seq;
623 }
624 
625 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
626 			    int nonagle)
627 {
628 	if (tcp_send_head(sk)) {
629 		struct tcp_sock *tp = tcp_sk(sk);
630 
631 		if (!(flags & MSG_MORE) || forced_push(tp))
632 			tcp_mark_push(tp, tcp_write_queue_tail(sk));
633 
634 		tcp_mark_urg(tp, flags);
635 		__tcp_push_pending_frames(sk, mss_now,
636 					  (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
637 	}
638 }
639 
640 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
641 				unsigned int offset, size_t len)
642 {
643 	struct tcp_splice_state *tss = rd_desc->arg.data;
644 	int ret;
645 
646 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
647 			      tss->flags);
648 	if (ret > 0)
649 		rd_desc->count -= ret;
650 	return ret;
651 }
652 
653 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
654 {
655 	/* Store TCP splice context information in read_descriptor_t. */
656 	read_descriptor_t rd_desc = {
657 		.arg.data = tss,
658 		.count	  = tss->len,
659 	};
660 
661 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
662 }
663 
664 /**
665  *  tcp_splice_read - splice data from TCP socket to a pipe
666  * @sock:	socket to splice from
667  * @ppos:	position (not valid)
668  * @pipe:	pipe to splice to
669  * @len:	number of bytes to splice
670  * @flags:	splice modifier flags
671  *
672  * Description:
673  *    Will read pages from given socket and fill them into a pipe.
674  *
675  **/
676 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
677 			struct pipe_inode_info *pipe, size_t len,
678 			unsigned int flags)
679 {
680 	struct sock *sk = sock->sk;
681 	struct tcp_splice_state tss = {
682 		.pipe = pipe,
683 		.len = len,
684 		.flags = flags,
685 	};
686 	long timeo;
687 	ssize_t spliced;
688 	int ret;
689 
690 	sock_rps_record_flow(sk);
691 	/*
692 	 * We can't seek on a socket input
693 	 */
694 	if (unlikely(*ppos))
695 		return -ESPIPE;
696 
697 	ret = spliced = 0;
698 
699 	lock_sock(sk);
700 
701 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
702 	while (tss.len) {
703 		ret = __tcp_splice_read(sk, &tss);
704 		if (ret < 0)
705 			break;
706 		else if (!ret) {
707 			if (spliced)
708 				break;
709 			if (sock_flag(sk, SOCK_DONE))
710 				break;
711 			if (sk->sk_err) {
712 				ret = sock_error(sk);
713 				break;
714 			}
715 			if (sk->sk_shutdown & RCV_SHUTDOWN)
716 				break;
717 			if (sk->sk_state == TCP_CLOSE) {
718 				/*
719 				 * This occurs when user tries to read
720 				 * from never connected socket.
721 				 */
722 				if (!sock_flag(sk, SOCK_DONE))
723 					ret = -ENOTCONN;
724 				break;
725 			}
726 			if (!timeo) {
727 				ret = -EAGAIN;
728 				break;
729 			}
730 			sk_wait_data(sk, &timeo);
731 			if (signal_pending(current)) {
732 				ret = sock_intr_errno(timeo);
733 				break;
734 			}
735 			continue;
736 		}
737 		tss.len -= ret;
738 		spliced += ret;
739 
740 		if (!timeo)
741 			break;
742 		release_sock(sk);
743 		lock_sock(sk);
744 
745 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
746 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
747 		    signal_pending(current))
748 			break;
749 	}
750 
751 	release_sock(sk);
752 
753 	if (spliced)
754 		return spliced;
755 
756 	return ret;
757 }
758 EXPORT_SYMBOL(tcp_splice_read);
759 
760 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
761 {
762 	struct sk_buff *skb;
763 
764 	/* The TCP header must be at least 32-bit aligned.  */
765 	size = ALIGN(size, 4);
766 
767 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
768 	if (skb) {
769 		if (sk_wmem_schedule(sk, skb->truesize)) {
770 			skb_reserve(skb, sk->sk_prot->max_header);
771 			/*
772 			 * Make sure that we have exactly size bytes
773 			 * available to the caller, no more, no less.
774 			 */
775 			skb->avail_size = size;
776 			return skb;
777 		}
778 		__kfree_skb(skb);
779 	} else {
780 		sk->sk_prot->enter_memory_pressure(sk);
781 		sk_stream_moderate_sndbuf(sk);
782 	}
783 	return NULL;
784 }
785 
786 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
787 				       int large_allowed)
788 {
789 	struct tcp_sock *tp = tcp_sk(sk);
790 	u32 xmit_size_goal, old_size_goal;
791 
792 	xmit_size_goal = mss_now;
793 
794 	if (large_allowed && sk_can_gso(sk)) {
795 		xmit_size_goal = ((sk->sk_gso_max_size - 1) -
796 				  inet_csk(sk)->icsk_af_ops->net_header_len -
797 				  inet_csk(sk)->icsk_ext_hdr_len -
798 				  tp->tcp_header_len);
799 
800 		/* TSQ : try to have two TSO segments in flight */
801 		xmit_size_goal = min_t(u32, xmit_size_goal,
802 				       sysctl_tcp_limit_output_bytes >> 1);
803 
804 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
805 
806 		/* We try hard to avoid divides here */
807 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
808 
809 		if (likely(old_size_goal <= xmit_size_goal &&
810 			   old_size_goal + mss_now > xmit_size_goal)) {
811 			xmit_size_goal = old_size_goal;
812 		} else {
813 			tp->xmit_size_goal_segs = xmit_size_goal / mss_now;
814 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
815 		}
816 	}
817 
818 	return max(xmit_size_goal, mss_now);
819 }
820 
821 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
822 {
823 	int mss_now;
824 
825 	mss_now = tcp_current_mss(sk);
826 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
827 
828 	return mss_now;
829 }
830 
831 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
832 			 size_t psize, int flags)
833 {
834 	struct tcp_sock *tp = tcp_sk(sk);
835 	int mss_now, size_goal;
836 	int err;
837 	ssize_t copied;
838 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
839 
840 	/* Wait for a connection to finish. */
841 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
842 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
843 			goto out_err;
844 
845 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
846 
847 	mss_now = tcp_send_mss(sk, &size_goal, flags);
848 	copied = 0;
849 
850 	err = -EPIPE;
851 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
852 		goto out_err;
853 
854 	while (psize > 0) {
855 		struct sk_buff *skb = tcp_write_queue_tail(sk);
856 		struct page *page = pages[poffset / PAGE_SIZE];
857 		int copy, i;
858 		int offset = poffset % PAGE_SIZE;
859 		int size = min_t(size_t, psize, PAGE_SIZE - offset);
860 		bool can_coalesce;
861 
862 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
863 new_segment:
864 			if (!sk_stream_memory_free(sk))
865 				goto wait_for_sndbuf;
866 
867 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
868 			if (!skb)
869 				goto wait_for_memory;
870 
871 			skb_entail(sk, skb);
872 			copy = size_goal;
873 		}
874 
875 		if (copy > size)
876 			copy = size;
877 
878 		i = skb_shinfo(skb)->nr_frags;
879 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
880 		if (!can_coalesce && i >= MAX_SKB_FRAGS) {
881 			tcp_mark_push(tp, skb);
882 			goto new_segment;
883 		}
884 		if (!sk_wmem_schedule(sk, copy))
885 			goto wait_for_memory;
886 
887 		if (can_coalesce) {
888 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
889 		} else {
890 			get_page(page);
891 			skb_fill_page_desc(skb, i, page, offset, copy);
892 		}
893 
894 		skb->len += copy;
895 		skb->data_len += copy;
896 		skb->truesize += copy;
897 		sk->sk_wmem_queued += copy;
898 		sk_mem_charge(sk, copy);
899 		skb->ip_summed = CHECKSUM_PARTIAL;
900 		tp->write_seq += copy;
901 		TCP_SKB_CB(skb)->end_seq += copy;
902 		skb_shinfo(skb)->gso_segs = 0;
903 
904 		if (!copied)
905 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
906 
907 		copied += copy;
908 		poffset += copy;
909 		if (!(psize -= copy))
910 			goto out;
911 
912 		if (skb->len < size_goal || (flags & MSG_OOB))
913 			continue;
914 
915 		if (forced_push(tp)) {
916 			tcp_mark_push(tp, skb);
917 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
918 		} else if (skb == tcp_send_head(sk))
919 			tcp_push_one(sk, mss_now);
920 		continue;
921 
922 wait_for_sndbuf:
923 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
924 wait_for_memory:
925 		tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
926 
927 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
928 			goto do_error;
929 
930 		mss_now = tcp_send_mss(sk, &size_goal, flags);
931 	}
932 
933 out:
934 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
935 		tcp_push(sk, flags, mss_now, tp->nonagle);
936 	return copied;
937 
938 do_error:
939 	if (copied)
940 		goto out;
941 out_err:
942 	return sk_stream_error(sk, flags, err);
943 }
944 
945 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
946 		 size_t size, int flags)
947 {
948 	ssize_t res;
949 
950 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
951 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
952 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
953 					flags);
954 
955 	lock_sock(sk);
956 	res = do_tcp_sendpages(sk, &page, offset, size, flags);
957 	release_sock(sk);
958 	return res;
959 }
960 EXPORT_SYMBOL(tcp_sendpage);
961 
962 static inline int select_size(const struct sock *sk, bool sg)
963 {
964 	const struct tcp_sock *tp = tcp_sk(sk);
965 	int tmp = tp->mss_cache;
966 
967 	if (sg) {
968 		if (sk_can_gso(sk)) {
969 			/* Small frames wont use a full page:
970 			 * Payload will immediately follow tcp header.
971 			 */
972 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
973 		} else {
974 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
975 
976 			if (tmp >= pgbreak &&
977 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
978 				tmp = pgbreak;
979 		}
980 	}
981 
982 	return tmp;
983 }
984 
985 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
986 		size_t size)
987 {
988 	struct iovec *iov;
989 	struct tcp_sock *tp = tcp_sk(sk);
990 	struct sk_buff *skb;
991 	int iovlen, flags, err, copied;
992 	int mss_now = 0, size_goal;
993 	bool sg;
994 	long timeo;
995 
996 	lock_sock(sk);
997 
998 	flags = msg->msg_flags;
999 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1000 
1001 	/* Wait for a connection to finish. */
1002 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1003 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1004 			goto out_err;
1005 
1006 	if (unlikely(tp->repair)) {
1007 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1008 			copied = tcp_send_rcvq(sk, msg, size);
1009 			goto out;
1010 		}
1011 
1012 		err = -EINVAL;
1013 		if (tp->repair_queue == TCP_NO_QUEUE)
1014 			goto out_err;
1015 
1016 		/* 'common' sending to sendq */
1017 	}
1018 
1019 	/* This should be in poll */
1020 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1021 
1022 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1023 
1024 	/* Ok commence sending. */
1025 	iovlen = msg->msg_iovlen;
1026 	iov = msg->msg_iov;
1027 	copied = 0;
1028 
1029 	err = -EPIPE;
1030 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1031 		goto out_err;
1032 
1033 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1034 
1035 	while (--iovlen >= 0) {
1036 		size_t seglen = iov->iov_len;
1037 		unsigned char __user *from = iov->iov_base;
1038 
1039 		iov++;
1040 
1041 		while (seglen > 0) {
1042 			int copy = 0;
1043 			int max = size_goal;
1044 
1045 			skb = tcp_write_queue_tail(sk);
1046 			if (tcp_send_head(sk)) {
1047 				if (skb->ip_summed == CHECKSUM_NONE)
1048 					max = mss_now;
1049 				copy = max - skb->len;
1050 			}
1051 
1052 			if (copy <= 0) {
1053 new_segment:
1054 				/* Allocate new segment. If the interface is SG,
1055 				 * allocate skb fitting to single page.
1056 				 */
1057 				if (!sk_stream_memory_free(sk))
1058 					goto wait_for_sndbuf;
1059 
1060 				skb = sk_stream_alloc_skb(sk,
1061 							  select_size(sk, sg),
1062 							  sk->sk_allocation);
1063 				if (!skb)
1064 					goto wait_for_memory;
1065 
1066 				/*
1067 				 * Check whether we can use HW checksum.
1068 				 */
1069 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1070 					skb->ip_summed = CHECKSUM_PARTIAL;
1071 
1072 				skb_entail(sk, skb);
1073 				copy = size_goal;
1074 				max = size_goal;
1075 			}
1076 
1077 			/* Try to append data to the end of skb. */
1078 			if (copy > seglen)
1079 				copy = seglen;
1080 
1081 			/* Where to copy to? */
1082 			if (skb_availroom(skb) > 0) {
1083 				/* We have some space in skb head. Superb! */
1084 				copy = min_t(int, copy, skb_availroom(skb));
1085 				err = skb_add_data_nocache(sk, skb, from, copy);
1086 				if (err)
1087 					goto do_fault;
1088 			} else {
1089 				bool merge = false;
1090 				int i = skb_shinfo(skb)->nr_frags;
1091 				struct page *page = sk->sk_sndmsg_page;
1092 				int off;
1093 
1094 				if (page && page_count(page) == 1)
1095 					sk->sk_sndmsg_off = 0;
1096 
1097 				off = sk->sk_sndmsg_off;
1098 
1099 				if (skb_can_coalesce(skb, i, page, off) &&
1100 				    off != PAGE_SIZE) {
1101 					/* We can extend the last page
1102 					 * fragment. */
1103 					merge = true;
1104 				} else if (i == MAX_SKB_FRAGS || !sg) {
1105 					/* Need to add new fragment and cannot
1106 					 * do this because interface is non-SG,
1107 					 * or because all the page slots are
1108 					 * busy. */
1109 					tcp_mark_push(tp, skb);
1110 					goto new_segment;
1111 				} else if (page) {
1112 					if (off == PAGE_SIZE) {
1113 						put_page(page);
1114 						sk->sk_sndmsg_page = page = NULL;
1115 						off = 0;
1116 					}
1117 				} else
1118 					off = 0;
1119 
1120 				if (copy > PAGE_SIZE - off)
1121 					copy = PAGE_SIZE - off;
1122 
1123 				if (!sk_wmem_schedule(sk, copy))
1124 					goto wait_for_memory;
1125 
1126 				if (!page) {
1127 					/* Allocate new cache page. */
1128 					if (!(page = sk_stream_alloc_page(sk)))
1129 						goto wait_for_memory;
1130 				}
1131 
1132 				/* Time to copy data. We are close to
1133 				 * the end! */
1134 				err = skb_copy_to_page_nocache(sk, from, skb,
1135 							       page, off, copy);
1136 				if (err) {
1137 					/* If this page was new, give it to the
1138 					 * socket so it does not get leaked.
1139 					 */
1140 					if (!sk->sk_sndmsg_page) {
1141 						sk->sk_sndmsg_page = page;
1142 						sk->sk_sndmsg_off = 0;
1143 					}
1144 					goto do_error;
1145 				}
1146 
1147 				/* Update the skb. */
1148 				if (merge) {
1149 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1150 				} else {
1151 					skb_fill_page_desc(skb, i, page, off, copy);
1152 					if (sk->sk_sndmsg_page) {
1153 						get_page(page);
1154 					} else if (off + copy < PAGE_SIZE) {
1155 						get_page(page);
1156 						sk->sk_sndmsg_page = page;
1157 					}
1158 				}
1159 
1160 				sk->sk_sndmsg_off = off + copy;
1161 			}
1162 
1163 			if (!copied)
1164 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1165 
1166 			tp->write_seq += copy;
1167 			TCP_SKB_CB(skb)->end_seq += copy;
1168 			skb_shinfo(skb)->gso_segs = 0;
1169 
1170 			from += copy;
1171 			copied += copy;
1172 			if ((seglen -= copy) == 0 && iovlen == 0)
1173 				goto out;
1174 
1175 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1176 				continue;
1177 
1178 			if (forced_push(tp)) {
1179 				tcp_mark_push(tp, skb);
1180 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1181 			} else if (skb == tcp_send_head(sk))
1182 				tcp_push_one(sk, mss_now);
1183 			continue;
1184 
1185 wait_for_sndbuf:
1186 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1187 wait_for_memory:
1188 			if (copied && likely(!tp->repair))
1189 				tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1190 
1191 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1192 				goto do_error;
1193 
1194 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1195 		}
1196 	}
1197 
1198 out:
1199 	if (copied && likely(!tp->repair))
1200 		tcp_push(sk, flags, mss_now, tp->nonagle);
1201 	release_sock(sk);
1202 	return copied;
1203 
1204 do_fault:
1205 	if (!skb->len) {
1206 		tcp_unlink_write_queue(skb, sk);
1207 		/* It is the one place in all of TCP, except connection
1208 		 * reset, where we can be unlinking the send_head.
1209 		 */
1210 		tcp_check_send_head(sk, skb);
1211 		sk_wmem_free_skb(sk, skb);
1212 	}
1213 
1214 do_error:
1215 	if (copied)
1216 		goto out;
1217 out_err:
1218 	err = sk_stream_error(sk, flags, err);
1219 	release_sock(sk);
1220 	return err;
1221 }
1222 EXPORT_SYMBOL(tcp_sendmsg);
1223 
1224 /*
1225  *	Handle reading urgent data. BSD has very simple semantics for
1226  *	this, no blocking and very strange errors 8)
1227  */
1228 
1229 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1230 {
1231 	struct tcp_sock *tp = tcp_sk(sk);
1232 
1233 	/* No URG data to read. */
1234 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1235 	    tp->urg_data == TCP_URG_READ)
1236 		return -EINVAL;	/* Yes this is right ! */
1237 
1238 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1239 		return -ENOTCONN;
1240 
1241 	if (tp->urg_data & TCP_URG_VALID) {
1242 		int err = 0;
1243 		char c = tp->urg_data;
1244 
1245 		if (!(flags & MSG_PEEK))
1246 			tp->urg_data = TCP_URG_READ;
1247 
1248 		/* Read urgent data. */
1249 		msg->msg_flags |= MSG_OOB;
1250 
1251 		if (len > 0) {
1252 			if (!(flags & MSG_TRUNC))
1253 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1254 			len = 1;
1255 		} else
1256 			msg->msg_flags |= MSG_TRUNC;
1257 
1258 		return err ? -EFAULT : len;
1259 	}
1260 
1261 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1262 		return 0;
1263 
1264 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1265 	 * the available implementations agree in this case:
1266 	 * this call should never block, independent of the
1267 	 * blocking state of the socket.
1268 	 * Mike <pall@rz.uni-karlsruhe.de>
1269 	 */
1270 	return -EAGAIN;
1271 }
1272 
1273 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1274 {
1275 	struct sk_buff *skb;
1276 	int copied = 0, err = 0;
1277 
1278 	/* XXX -- need to support SO_PEEK_OFF */
1279 
1280 	skb_queue_walk(&sk->sk_write_queue, skb) {
1281 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1282 		if (err)
1283 			break;
1284 
1285 		copied += skb->len;
1286 	}
1287 
1288 	return err ?: copied;
1289 }
1290 
1291 /* Clean up the receive buffer for full frames taken by the user,
1292  * then send an ACK if necessary.  COPIED is the number of bytes
1293  * tcp_recvmsg has given to the user so far, it speeds up the
1294  * calculation of whether or not we must ACK for the sake of
1295  * a window update.
1296  */
1297 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1298 {
1299 	struct tcp_sock *tp = tcp_sk(sk);
1300 	bool time_to_ack = false;
1301 
1302 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1303 
1304 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1305 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1306 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1307 
1308 	if (inet_csk_ack_scheduled(sk)) {
1309 		const struct inet_connection_sock *icsk = inet_csk(sk);
1310 		   /* Delayed ACKs frequently hit locked sockets during bulk
1311 		    * receive. */
1312 		if (icsk->icsk_ack.blocked ||
1313 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1314 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1315 		    /*
1316 		     * If this read emptied read buffer, we send ACK, if
1317 		     * connection is not bidirectional, user drained
1318 		     * receive buffer and there was a small segment
1319 		     * in queue.
1320 		     */
1321 		    (copied > 0 &&
1322 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1323 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1324 		       !icsk->icsk_ack.pingpong)) &&
1325 		      !atomic_read(&sk->sk_rmem_alloc)))
1326 			time_to_ack = true;
1327 	}
1328 
1329 	/* We send an ACK if we can now advertise a non-zero window
1330 	 * which has been raised "significantly".
1331 	 *
1332 	 * Even if window raised up to infinity, do not send window open ACK
1333 	 * in states, where we will not receive more. It is useless.
1334 	 */
1335 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1336 		__u32 rcv_window_now = tcp_receive_window(tp);
1337 
1338 		/* Optimize, __tcp_select_window() is not cheap. */
1339 		if (2*rcv_window_now <= tp->window_clamp) {
1340 			__u32 new_window = __tcp_select_window(sk);
1341 
1342 			/* Send ACK now, if this read freed lots of space
1343 			 * in our buffer. Certainly, new_window is new window.
1344 			 * We can advertise it now, if it is not less than current one.
1345 			 * "Lots" means "at least twice" here.
1346 			 */
1347 			if (new_window && new_window >= 2 * rcv_window_now)
1348 				time_to_ack = true;
1349 		}
1350 	}
1351 	if (time_to_ack)
1352 		tcp_send_ack(sk);
1353 }
1354 
1355 static void tcp_prequeue_process(struct sock *sk)
1356 {
1357 	struct sk_buff *skb;
1358 	struct tcp_sock *tp = tcp_sk(sk);
1359 
1360 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1361 
1362 	/* RX process wants to run with disabled BHs, though it is not
1363 	 * necessary */
1364 	local_bh_disable();
1365 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1366 		sk_backlog_rcv(sk, skb);
1367 	local_bh_enable();
1368 
1369 	/* Clear memory counter. */
1370 	tp->ucopy.memory = 0;
1371 }
1372 
1373 #ifdef CONFIG_NET_DMA
1374 static void tcp_service_net_dma(struct sock *sk, bool wait)
1375 {
1376 	dma_cookie_t done, used;
1377 	dma_cookie_t last_issued;
1378 	struct tcp_sock *tp = tcp_sk(sk);
1379 
1380 	if (!tp->ucopy.dma_chan)
1381 		return;
1382 
1383 	last_issued = tp->ucopy.dma_cookie;
1384 	dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1385 
1386 	do {
1387 		if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1388 					      last_issued, &done,
1389 					      &used) == DMA_SUCCESS) {
1390 			/* Safe to free early-copied skbs now */
1391 			__skb_queue_purge(&sk->sk_async_wait_queue);
1392 			break;
1393 		} else {
1394 			struct sk_buff *skb;
1395 			while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1396 			       (dma_async_is_complete(skb->dma_cookie, done,
1397 						      used) == DMA_SUCCESS)) {
1398 				__skb_dequeue(&sk->sk_async_wait_queue);
1399 				kfree_skb(skb);
1400 			}
1401 		}
1402 	} while (wait);
1403 }
1404 #endif
1405 
1406 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1407 {
1408 	struct sk_buff *skb;
1409 	u32 offset;
1410 
1411 	skb_queue_walk(&sk->sk_receive_queue, skb) {
1412 		offset = seq - TCP_SKB_CB(skb)->seq;
1413 		if (tcp_hdr(skb)->syn)
1414 			offset--;
1415 		if (offset < skb->len || tcp_hdr(skb)->fin) {
1416 			*off = offset;
1417 			return skb;
1418 		}
1419 	}
1420 	return NULL;
1421 }
1422 
1423 /*
1424  * This routine provides an alternative to tcp_recvmsg() for routines
1425  * that would like to handle copying from skbuffs directly in 'sendfile'
1426  * fashion.
1427  * Note:
1428  *	- It is assumed that the socket was locked by the caller.
1429  *	- The routine does not block.
1430  *	- At present, there is no support for reading OOB data
1431  *	  or for 'peeking' the socket using this routine
1432  *	  (although both would be easy to implement).
1433  */
1434 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1435 		  sk_read_actor_t recv_actor)
1436 {
1437 	struct sk_buff *skb;
1438 	struct tcp_sock *tp = tcp_sk(sk);
1439 	u32 seq = tp->copied_seq;
1440 	u32 offset;
1441 	int copied = 0;
1442 
1443 	if (sk->sk_state == TCP_LISTEN)
1444 		return -ENOTCONN;
1445 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1446 		if (offset < skb->len) {
1447 			int used;
1448 			size_t len;
1449 
1450 			len = skb->len - offset;
1451 			/* Stop reading if we hit a patch of urgent data */
1452 			if (tp->urg_data) {
1453 				u32 urg_offset = tp->urg_seq - seq;
1454 				if (urg_offset < len)
1455 					len = urg_offset;
1456 				if (!len)
1457 					break;
1458 			}
1459 			used = recv_actor(desc, skb, offset, len);
1460 			if (used < 0) {
1461 				if (!copied)
1462 					copied = used;
1463 				break;
1464 			} else if (used <= len) {
1465 				seq += used;
1466 				copied += used;
1467 				offset += used;
1468 			}
1469 			/*
1470 			 * If recv_actor drops the lock (e.g. TCP splice
1471 			 * receive) the skb pointer might be invalid when
1472 			 * getting here: tcp_collapse might have deleted it
1473 			 * while aggregating skbs from the socket queue.
1474 			 */
1475 			skb = tcp_recv_skb(sk, seq-1, &offset);
1476 			if (!skb || (offset+1 != skb->len))
1477 				break;
1478 		}
1479 		if (tcp_hdr(skb)->fin) {
1480 			sk_eat_skb(sk, skb, false);
1481 			++seq;
1482 			break;
1483 		}
1484 		sk_eat_skb(sk, skb, false);
1485 		if (!desc->count)
1486 			break;
1487 		tp->copied_seq = seq;
1488 	}
1489 	tp->copied_seq = seq;
1490 
1491 	tcp_rcv_space_adjust(sk);
1492 
1493 	/* Clean up data we have read: This will do ACK frames. */
1494 	if (copied > 0)
1495 		tcp_cleanup_rbuf(sk, copied);
1496 	return copied;
1497 }
1498 EXPORT_SYMBOL(tcp_read_sock);
1499 
1500 /*
1501  *	This routine copies from a sock struct into the user buffer.
1502  *
1503  *	Technical note: in 2.3 we work on _locked_ socket, so that
1504  *	tricks with *seq access order and skb->users are not required.
1505  *	Probably, code can be easily improved even more.
1506  */
1507 
1508 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1509 		size_t len, int nonblock, int flags, int *addr_len)
1510 {
1511 	struct tcp_sock *tp = tcp_sk(sk);
1512 	int copied = 0;
1513 	u32 peek_seq;
1514 	u32 *seq;
1515 	unsigned long used;
1516 	int err;
1517 	int target;		/* Read at least this many bytes */
1518 	long timeo;
1519 	struct task_struct *user_recv = NULL;
1520 	bool copied_early = false;
1521 	struct sk_buff *skb;
1522 	u32 urg_hole = 0;
1523 
1524 	lock_sock(sk);
1525 
1526 	err = -ENOTCONN;
1527 	if (sk->sk_state == TCP_LISTEN)
1528 		goto out;
1529 
1530 	timeo = sock_rcvtimeo(sk, nonblock);
1531 
1532 	/* Urgent data needs to be handled specially. */
1533 	if (flags & MSG_OOB)
1534 		goto recv_urg;
1535 
1536 	if (unlikely(tp->repair)) {
1537 		err = -EPERM;
1538 		if (!(flags & MSG_PEEK))
1539 			goto out;
1540 
1541 		if (tp->repair_queue == TCP_SEND_QUEUE)
1542 			goto recv_sndq;
1543 
1544 		err = -EINVAL;
1545 		if (tp->repair_queue == TCP_NO_QUEUE)
1546 			goto out;
1547 
1548 		/* 'common' recv queue MSG_PEEK-ing */
1549 	}
1550 
1551 	seq = &tp->copied_seq;
1552 	if (flags & MSG_PEEK) {
1553 		peek_seq = tp->copied_seq;
1554 		seq = &peek_seq;
1555 	}
1556 
1557 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1558 
1559 #ifdef CONFIG_NET_DMA
1560 	tp->ucopy.dma_chan = NULL;
1561 	preempt_disable();
1562 	skb = skb_peek_tail(&sk->sk_receive_queue);
1563 	{
1564 		int available = 0;
1565 
1566 		if (skb)
1567 			available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1568 		if ((available < target) &&
1569 		    (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1570 		    !sysctl_tcp_low_latency &&
1571 		    net_dma_find_channel()) {
1572 			preempt_enable_no_resched();
1573 			tp->ucopy.pinned_list =
1574 					dma_pin_iovec_pages(msg->msg_iov, len);
1575 		} else {
1576 			preempt_enable_no_resched();
1577 		}
1578 	}
1579 #endif
1580 
1581 	do {
1582 		u32 offset;
1583 
1584 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1585 		if (tp->urg_data && tp->urg_seq == *seq) {
1586 			if (copied)
1587 				break;
1588 			if (signal_pending(current)) {
1589 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1590 				break;
1591 			}
1592 		}
1593 
1594 		/* Next get a buffer. */
1595 
1596 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1597 			/* Now that we have two receive queues this
1598 			 * shouldn't happen.
1599 			 */
1600 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1601 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1602 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1603 				 flags))
1604 				break;
1605 
1606 			offset = *seq - TCP_SKB_CB(skb)->seq;
1607 			if (tcp_hdr(skb)->syn)
1608 				offset--;
1609 			if (offset < skb->len)
1610 				goto found_ok_skb;
1611 			if (tcp_hdr(skb)->fin)
1612 				goto found_fin_ok;
1613 			WARN(!(flags & MSG_PEEK),
1614 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1615 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1616 		}
1617 
1618 		/* Well, if we have backlog, try to process it now yet. */
1619 
1620 		if (copied >= target && !sk->sk_backlog.tail)
1621 			break;
1622 
1623 		if (copied) {
1624 			if (sk->sk_err ||
1625 			    sk->sk_state == TCP_CLOSE ||
1626 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1627 			    !timeo ||
1628 			    signal_pending(current))
1629 				break;
1630 		} else {
1631 			if (sock_flag(sk, SOCK_DONE))
1632 				break;
1633 
1634 			if (sk->sk_err) {
1635 				copied = sock_error(sk);
1636 				break;
1637 			}
1638 
1639 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1640 				break;
1641 
1642 			if (sk->sk_state == TCP_CLOSE) {
1643 				if (!sock_flag(sk, SOCK_DONE)) {
1644 					/* This occurs when user tries to read
1645 					 * from never connected socket.
1646 					 */
1647 					copied = -ENOTCONN;
1648 					break;
1649 				}
1650 				break;
1651 			}
1652 
1653 			if (!timeo) {
1654 				copied = -EAGAIN;
1655 				break;
1656 			}
1657 
1658 			if (signal_pending(current)) {
1659 				copied = sock_intr_errno(timeo);
1660 				break;
1661 			}
1662 		}
1663 
1664 		tcp_cleanup_rbuf(sk, copied);
1665 
1666 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1667 			/* Install new reader */
1668 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1669 				user_recv = current;
1670 				tp->ucopy.task = user_recv;
1671 				tp->ucopy.iov = msg->msg_iov;
1672 			}
1673 
1674 			tp->ucopy.len = len;
1675 
1676 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1677 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1678 
1679 			/* Ugly... If prequeue is not empty, we have to
1680 			 * process it before releasing socket, otherwise
1681 			 * order will be broken at second iteration.
1682 			 * More elegant solution is required!!!
1683 			 *
1684 			 * Look: we have the following (pseudo)queues:
1685 			 *
1686 			 * 1. packets in flight
1687 			 * 2. backlog
1688 			 * 3. prequeue
1689 			 * 4. receive_queue
1690 			 *
1691 			 * Each queue can be processed only if the next ones
1692 			 * are empty. At this point we have empty receive_queue.
1693 			 * But prequeue _can_ be not empty after 2nd iteration,
1694 			 * when we jumped to start of loop because backlog
1695 			 * processing added something to receive_queue.
1696 			 * We cannot release_sock(), because backlog contains
1697 			 * packets arrived _after_ prequeued ones.
1698 			 *
1699 			 * Shortly, algorithm is clear --- to process all
1700 			 * the queues in order. We could make it more directly,
1701 			 * requeueing packets from backlog to prequeue, if
1702 			 * is not empty. It is more elegant, but eats cycles,
1703 			 * unfortunately.
1704 			 */
1705 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1706 				goto do_prequeue;
1707 
1708 			/* __ Set realtime policy in scheduler __ */
1709 		}
1710 
1711 #ifdef CONFIG_NET_DMA
1712 		if (tp->ucopy.dma_chan)
1713 			dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1714 #endif
1715 		if (copied >= target) {
1716 			/* Do not sleep, just process backlog. */
1717 			release_sock(sk);
1718 			lock_sock(sk);
1719 		} else
1720 			sk_wait_data(sk, &timeo);
1721 
1722 #ifdef CONFIG_NET_DMA
1723 		tcp_service_net_dma(sk, false);  /* Don't block */
1724 		tp->ucopy.wakeup = 0;
1725 #endif
1726 
1727 		if (user_recv) {
1728 			int chunk;
1729 
1730 			/* __ Restore normal policy in scheduler __ */
1731 
1732 			if ((chunk = len - tp->ucopy.len) != 0) {
1733 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1734 				len -= chunk;
1735 				copied += chunk;
1736 			}
1737 
1738 			if (tp->rcv_nxt == tp->copied_seq &&
1739 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1740 do_prequeue:
1741 				tcp_prequeue_process(sk);
1742 
1743 				if ((chunk = len - tp->ucopy.len) != 0) {
1744 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1745 					len -= chunk;
1746 					copied += chunk;
1747 				}
1748 			}
1749 		}
1750 		if ((flags & MSG_PEEK) &&
1751 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1752 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1753 					    current->comm,
1754 					    task_pid_nr(current));
1755 			peek_seq = tp->copied_seq;
1756 		}
1757 		continue;
1758 
1759 	found_ok_skb:
1760 		/* Ok so how much can we use? */
1761 		used = skb->len - offset;
1762 		if (len < used)
1763 			used = len;
1764 
1765 		/* Do we have urgent data here? */
1766 		if (tp->urg_data) {
1767 			u32 urg_offset = tp->urg_seq - *seq;
1768 			if (urg_offset < used) {
1769 				if (!urg_offset) {
1770 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1771 						++*seq;
1772 						urg_hole++;
1773 						offset++;
1774 						used--;
1775 						if (!used)
1776 							goto skip_copy;
1777 					}
1778 				} else
1779 					used = urg_offset;
1780 			}
1781 		}
1782 
1783 		if (!(flags & MSG_TRUNC)) {
1784 #ifdef CONFIG_NET_DMA
1785 			if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1786 				tp->ucopy.dma_chan = net_dma_find_channel();
1787 
1788 			if (tp->ucopy.dma_chan) {
1789 				tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1790 					tp->ucopy.dma_chan, skb, offset,
1791 					msg->msg_iov, used,
1792 					tp->ucopy.pinned_list);
1793 
1794 				if (tp->ucopy.dma_cookie < 0) {
1795 
1796 					pr_alert("%s: dma_cookie < 0\n",
1797 						 __func__);
1798 
1799 					/* Exception. Bailout! */
1800 					if (!copied)
1801 						copied = -EFAULT;
1802 					break;
1803 				}
1804 
1805 				dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1806 
1807 				if ((offset + used) == skb->len)
1808 					copied_early = true;
1809 
1810 			} else
1811 #endif
1812 			{
1813 				err = skb_copy_datagram_iovec(skb, offset,
1814 						msg->msg_iov, used);
1815 				if (err) {
1816 					/* Exception. Bailout! */
1817 					if (!copied)
1818 						copied = -EFAULT;
1819 					break;
1820 				}
1821 			}
1822 		}
1823 
1824 		*seq += used;
1825 		copied += used;
1826 		len -= used;
1827 
1828 		tcp_rcv_space_adjust(sk);
1829 
1830 skip_copy:
1831 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1832 			tp->urg_data = 0;
1833 			tcp_fast_path_check(sk);
1834 		}
1835 		if (used + offset < skb->len)
1836 			continue;
1837 
1838 		if (tcp_hdr(skb)->fin)
1839 			goto found_fin_ok;
1840 		if (!(flags & MSG_PEEK)) {
1841 			sk_eat_skb(sk, skb, copied_early);
1842 			copied_early = false;
1843 		}
1844 		continue;
1845 
1846 	found_fin_ok:
1847 		/* Process the FIN. */
1848 		++*seq;
1849 		if (!(flags & MSG_PEEK)) {
1850 			sk_eat_skb(sk, skb, copied_early);
1851 			copied_early = false;
1852 		}
1853 		break;
1854 	} while (len > 0);
1855 
1856 	if (user_recv) {
1857 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1858 			int chunk;
1859 
1860 			tp->ucopy.len = copied > 0 ? len : 0;
1861 
1862 			tcp_prequeue_process(sk);
1863 
1864 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1865 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1866 				len -= chunk;
1867 				copied += chunk;
1868 			}
1869 		}
1870 
1871 		tp->ucopy.task = NULL;
1872 		tp->ucopy.len = 0;
1873 	}
1874 
1875 #ifdef CONFIG_NET_DMA
1876 	tcp_service_net_dma(sk, true);  /* Wait for queue to drain */
1877 	tp->ucopy.dma_chan = NULL;
1878 
1879 	if (tp->ucopy.pinned_list) {
1880 		dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1881 		tp->ucopy.pinned_list = NULL;
1882 	}
1883 #endif
1884 
1885 	/* According to UNIX98, msg_name/msg_namelen are ignored
1886 	 * on connected socket. I was just happy when found this 8) --ANK
1887 	 */
1888 
1889 	/* Clean up data we have read: This will do ACK frames. */
1890 	tcp_cleanup_rbuf(sk, copied);
1891 
1892 	release_sock(sk);
1893 	return copied;
1894 
1895 out:
1896 	release_sock(sk);
1897 	return err;
1898 
1899 recv_urg:
1900 	err = tcp_recv_urg(sk, msg, len, flags);
1901 	goto out;
1902 
1903 recv_sndq:
1904 	err = tcp_peek_sndq(sk, msg, len);
1905 	goto out;
1906 }
1907 EXPORT_SYMBOL(tcp_recvmsg);
1908 
1909 void tcp_set_state(struct sock *sk, int state)
1910 {
1911 	int oldstate = sk->sk_state;
1912 
1913 	switch (state) {
1914 	case TCP_ESTABLISHED:
1915 		if (oldstate != TCP_ESTABLISHED)
1916 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1917 		break;
1918 
1919 	case TCP_CLOSE:
1920 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1921 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1922 
1923 		sk->sk_prot->unhash(sk);
1924 		if (inet_csk(sk)->icsk_bind_hash &&
1925 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1926 			inet_put_port(sk);
1927 		/* fall through */
1928 	default:
1929 		if (oldstate == TCP_ESTABLISHED)
1930 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1931 	}
1932 
1933 	/* Change state AFTER socket is unhashed to avoid closed
1934 	 * socket sitting in hash tables.
1935 	 */
1936 	sk->sk_state = state;
1937 
1938 #ifdef STATE_TRACE
1939 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1940 #endif
1941 }
1942 EXPORT_SYMBOL_GPL(tcp_set_state);
1943 
1944 /*
1945  *	State processing on a close. This implements the state shift for
1946  *	sending our FIN frame. Note that we only send a FIN for some
1947  *	states. A shutdown() may have already sent the FIN, or we may be
1948  *	closed.
1949  */
1950 
1951 static const unsigned char new_state[16] = {
1952   /* current state:        new state:      action:	*/
1953   /* (Invalid)		*/ TCP_CLOSE,
1954   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1955   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1956   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1957   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1958   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1959   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1960   /* TCP_CLOSE		*/ TCP_CLOSE,
1961   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1962   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1963   /* TCP_LISTEN		*/ TCP_CLOSE,
1964   /* TCP_CLOSING	*/ TCP_CLOSING,
1965 };
1966 
1967 static int tcp_close_state(struct sock *sk)
1968 {
1969 	int next = (int)new_state[sk->sk_state];
1970 	int ns = next & TCP_STATE_MASK;
1971 
1972 	tcp_set_state(sk, ns);
1973 
1974 	return next & TCP_ACTION_FIN;
1975 }
1976 
1977 /*
1978  *	Shutdown the sending side of a connection. Much like close except
1979  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1980  */
1981 
1982 void tcp_shutdown(struct sock *sk, int how)
1983 {
1984 	/*	We need to grab some memory, and put together a FIN,
1985 	 *	and then put it into the queue to be sent.
1986 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1987 	 */
1988 	if (!(how & SEND_SHUTDOWN))
1989 		return;
1990 
1991 	/* If we've already sent a FIN, or it's a closed state, skip this. */
1992 	if ((1 << sk->sk_state) &
1993 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
1994 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
1995 		/* Clear out any half completed packets.  FIN if needed. */
1996 		if (tcp_close_state(sk))
1997 			tcp_send_fin(sk);
1998 	}
1999 }
2000 EXPORT_SYMBOL(tcp_shutdown);
2001 
2002 bool tcp_check_oom(struct sock *sk, int shift)
2003 {
2004 	bool too_many_orphans, out_of_socket_memory;
2005 
2006 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2007 	out_of_socket_memory = tcp_out_of_memory(sk);
2008 
2009 	if (too_many_orphans)
2010 		net_info_ratelimited("too many orphaned sockets\n");
2011 	if (out_of_socket_memory)
2012 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2013 	return too_many_orphans || out_of_socket_memory;
2014 }
2015 
2016 void tcp_close(struct sock *sk, long timeout)
2017 {
2018 	struct sk_buff *skb;
2019 	int data_was_unread = 0;
2020 	int state;
2021 
2022 	lock_sock(sk);
2023 	sk->sk_shutdown = SHUTDOWN_MASK;
2024 
2025 	if (sk->sk_state == TCP_LISTEN) {
2026 		tcp_set_state(sk, TCP_CLOSE);
2027 
2028 		/* Special case. */
2029 		inet_csk_listen_stop(sk);
2030 
2031 		goto adjudge_to_death;
2032 	}
2033 
2034 	/*  We need to flush the recv. buffs.  We do this only on the
2035 	 *  descriptor close, not protocol-sourced closes, because the
2036 	 *  reader process may not have drained the data yet!
2037 	 */
2038 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2039 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2040 			  tcp_hdr(skb)->fin;
2041 		data_was_unread += len;
2042 		__kfree_skb(skb);
2043 	}
2044 
2045 	sk_mem_reclaim(sk);
2046 
2047 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2048 	if (sk->sk_state == TCP_CLOSE)
2049 		goto adjudge_to_death;
2050 
2051 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2052 	 * data was lost. To witness the awful effects of the old behavior of
2053 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2054 	 * GET in an FTP client, suspend the process, wait for the client to
2055 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2056 	 * Note: timeout is always zero in such a case.
2057 	 */
2058 	if (unlikely(tcp_sk(sk)->repair)) {
2059 		sk->sk_prot->disconnect(sk, 0);
2060 	} else if (data_was_unread) {
2061 		/* Unread data was tossed, zap the connection. */
2062 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2063 		tcp_set_state(sk, TCP_CLOSE);
2064 		tcp_send_active_reset(sk, sk->sk_allocation);
2065 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2066 		/* Check zero linger _after_ checking for unread data. */
2067 		sk->sk_prot->disconnect(sk, 0);
2068 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2069 	} else if (tcp_close_state(sk)) {
2070 		/* We FIN if the application ate all the data before
2071 		 * zapping the connection.
2072 		 */
2073 
2074 		/* RED-PEN. Formally speaking, we have broken TCP state
2075 		 * machine. State transitions:
2076 		 *
2077 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2078 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2079 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2080 		 *
2081 		 * are legal only when FIN has been sent (i.e. in window),
2082 		 * rather than queued out of window. Purists blame.
2083 		 *
2084 		 * F.e. "RFC state" is ESTABLISHED,
2085 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2086 		 *
2087 		 * The visible declinations are that sometimes
2088 		 * we enter time-wait state, when it is not required really
2089 		 * (harmless), do not send active resets, when they are
2090 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2091 		 * they look as CLOSING or LAST_ACK for Linux)
2092 		 * Probably, I missed some more holelets.
2093 		 * 						--ANK
2094 		 */
2095 		tcp_send_fin(sk);
2096 	}
2097 
2098 	sk_stream_wait_close(sk, timeout);
2099 
2100 adjudge_to_death:
2101 	state = sk->sk_state;
2102 	sock_hold(sk);
2103 	sock_orphan(sk);
2104 
2105 	/* It is the last release_sock in its life. It will remove backlog. */
2106 	release_sock(sk);
2107 
2108 
2109 	/* Now socket is owned by kernel and we acquire BH lock
2110 	   to finish close. No need to check for user refs.
2111 	 */
2112 	local_bh_disable();
2113 	bh_lock_sock(sk);
2114 	WARN_ON(sock_owned_by_user(sk));
2115 
2116 	percpu_counter_inc(sk->sk_prot->orphan_count);
2117 
2118 	/* Have we already been destroyed by a softirq or backlog? */
2119 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2120 		goto out;
2121 
2122 	/*	This is a (useful) BSD violating of the RFC. There is a
2123 	 *	problem with TCP as specified in that the other end could
2124 	 *	keep a socket open forever with no application left this end.
2125 	 *	We use a 3 minute timeout (about the same as BSD) then kill
2126 	 *	our end. If they send after that then tough - BUT: long enough
2127 	 *	that we won't make the old 4*rto = almost no time - whoops
2128 	 *	reset mistake.
2129 	 *
2130 	 *	Nope, it was not mistake. It is really desired behaviour
2131 	 *	f.e. on http servers, when such sockets are useless, but
2132 	 *	consume significant resources. Let's do it with special
2133 	 *	linger2	option.					--ANK
2134 	 */
2135 
2136 	if (sk->sk_state == TCP_FIN_WAIT2) {
2137 		struct tcp_sock *tp = tcp_sk(sk);
2138 		if (tp->linger2 < 0) {
2139 			tcp_set_state(sk, TCP_CLOSE);
2140 			tcp_send_active_reset(sk, GFP_ATOMIC);
2141 			NET_INC_STATS_BH(sock_net(sk),
2142 					LINUX_MIB_TCPABORTONLINGER);
2143 		} else {
2144 			const int tmo = tcp_fin_time(sk);
2145 
2146 			if (tmo > TCP_TIMEWAIT_LEN) {
2147 				inet_csk_reset_keepalive_timer(sk,
2148 						tmo - TCP_TIMEWAIT_LEN);
2149 			} else {
2150 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2151 				goto out;
2152 			}
2153 		}
2154 	}
2155 	if (sk->sk_state != TCP_CLOSE) {
2156 		sk_mem_reclaim(sk);
2157 		if (tcp_check_oom(sk, 0)) {
2158 			tcp_set_state(sk, TCP_CLOSE);
2159 			tcp_send_active_reset(sk, GFP_ATOMIC);
2160 			NET_INC_STATS_BH(sock_net(sk),
2161 					LINUX_MIB_TCPABORTONMEMORY);
2162 		}
2163 	}
2164 
2165 	if (sk->sk_state == TCP_CLOSE)
2166 		inet_csk_destroy_sock(sk);
2167 	/* Otherwise, socket is reprieved until protocol close. */
2168 
2169 out:
2170 	bh_unlock_sock(sk);
2171 	local_bh_enable();
2172 	sock_put(sk);
2173 }
2174 EXPORT_SYMBOL(tcp_close);
2175 
2176 /* These states need RST on ABORT according to RFC793 */
2177 
2178 static inline bool tcp_need_reset(int state)
2179 {
2180 	return (1 << state) &
2181 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2182 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2183 }
2184 
2185 int tcp_disconnect(struct sock *sk, int flags)
2186 {
2187 	struct inet_sock *inet = inet_sk(sk);
2188 	struct inet_connection_sock *icsk = inet_csk(sk);
2189 	struct tcp_sock *tp = tcp_sk(sk);
2190 	int err = 0;
2191 	int old_state = sk->sk_state;
2192 
2193 	if (old_state != TCP_CLOSE)
2194 		tcp_set_state(sk, TCP_CLOSE);
2195 
2196 	/* ABORT function of RFC793 */
2197 	if (old_state == TCP_LISTEN) {
2198 		inet_csk_listen_stop(sk);
2199 	} else if (unlikely(tp->repair)) {
2200 		sk->sk_err = ECONNABORTED;
2201 	} else if (tcp_need_reset(old_state) ||
2202 		   (tp->snd_nxt != tp->write_seq &&
2203 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2204 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2205 		 * states
2206 		 */
2207 		tcp_send_active_reset(sk, gfp_any());
2208 		sk->sk_err = ECONNRESET;
2209 	} else if (old_state == TCP_SYN_SENT)
2210 		sk->sk_err = ECONNRESET;
2211 
2212 	tcp_clear_xmit_timers(sk);
2213 	__skb_queue_purge(&sk->sk_receive_queue);
2214 	tcp_write_queue_purge(sk);
2215 	__skb_queue_purge(&tp->out_of_order_queue);
2216 #ifdef CONFIG_NET_DMA
2217 	__skb_queue_purge(&sk->sk_async_wait_queue);
2218 #endif
2219 
2220 	inet->inet_dport = 0;
2221 
2222 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2223 		inet_reset_saddr(sk);
2224 
2225 	sk->sk_shutdown = 0;
2226 	sock_reset_flag(sk, SOCK_DONE);
2227 	tp->srtt = 0;
2228 	if ((tp->write_seq += tp->max_window + 2) == 0)
2229 		tp->write_seq = 1;
2230 	icsk->icsk_backoff = 0;
2231 	tp->snd_cwnd = 2;
2232 	icsk->icsk_probes_out = 0;
2233 	tp->packets_out = 0;
2234 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2235 	tp->snd_cwnd_cnt = 0;
2236 	tp->bytes_acked = 0;
2237 	tp->window_clamp = 0;
2238 	tcp_set_ca_state(sk, TCP_CA_Open);
2239 	tcp_clear_retrans(tp);
2240 	inet_csk_delack_init(sk);
2241 	tcp_init_send_head(sk);
2242 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2243 	__sk_dst_reset(sk);
2244 
2245 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2246 
2247 	sk->sk_error_report(sk);
2248 	return err;
2249 }
2250 EXPORT_SYMBOL(tcp_disconnect);
2251 
2252 static inline bool tcp_can_repair_sock(const struct sock *sk)
2253 {
2254 	return capable(CAP_NET_ADMIN) &&
2255 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2256 }
2257 
2258 static int tcp_repair_options_est(struct tcp_sock *tp,
2259 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2260 {
2261 	struct tcp_repair_opt opt;
2262 
2263 	while (len >= sizeof(opt)) {
2264 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2265 			return -EFAULT;
2266 
2267 		optbuf++;
2268 		len -= sizeof(opt);
2269 
2270 		switch (opt.opt_code) {
2271 		case TCPOPT_MSS:
2272 			tp->rx_opt.mss_clamp = opt.opt_val;
2273 			break;
2274 		case TCPOPT_WINDOW:
2275 			if (opt.opt_val > 14)
2276 				return -EFBIG;
2277 
2278 			tp->rx_opt.snd_wscale = opt.opt_val;
2279 			break;
2280 		case TCPOPT_SACK_PERM:
2281 			if (opt.opt_val != 0)
2282 				return -EINVAL;
2283 
2284 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2285 			if (sysctl_tcp_fack)
2286 				tcp_enable_fack(tp);
2287 			break;
2288 		case TCPOPT_TIMESTAMP:
2289 			if (opt.opt_val != 0)
2290 				return -EINVAL;
2291 
2292 			tp->rx_opt.tstamp_ok = 1;
2293 			break;
2294 		}
2295 	}
2296 
2297 	return 0;
2298 }
2299 
2300 /*
2301  *	Socket option code for TCP.
2302  */
2303 static int do_tcp_setsockopt(struct sock *sk, int level,
2304 		int optname, char __user *optval, unsigned int optlen)
2305 {
2306 	struct tcp_sock *tp = tcp_sk(sk);
2307 	struct inet_connection_sock *icsk = inet_csk(sk);
2308 	int val;
2309 	int err = 0;
2310 
2311 	/* These are data/string values, all the others are ints */
2312 	switch (optname) {
2313 	case TCP_CONGESTION: {
2314 		char name[TCP_CA_NAME_MAX];
2315 
2316 		if (optlen < 1)
2317 			return -EINVAL;
2318 
2319 		val = strncpy_from_user(name, optval,
2320 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2321 		if (val < 0)
2322 			return -EFAULT;
2323 		name[val] = 0;
2324 
2325 		lock_sock(sk);
2326 		err = tcp_set_congestion_control(sk, name);
2327 		release_sock(sk);
2328 		return err;
2329 	}
2330 	case TCP_COOKIE_TRANSACTIONS: {
2331 		struct tcp_cookie_transactions ctd;
2332 		struct tcp_cookie_values *cvp = NULL;
2333 
2334 		if (sizeof(ctd) > optlen)
2335 			return -EINVAL;
2336 		if (copy_from_user(&ctd, optval, sizeof(ctd)))
2337 			return -EFAULT;
2338 
2339 		if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2340 		    ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2341 			return -EINVAL;
2342 
2343 		if (ctd.tcpct_cookie_desired == 0) {
2344 			/* default to global value */
2345 		} else if ((0x1 & ctd.tcpct_cookie_desired) ||
2346 			   ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2347 			   ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2348 			return -EINVAL;
2349 		}
2350 
2351 		if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2352 			/* Supercedes all other values */
2353 			lock_sock(sk);
2354 			if (tp->cookie_values != NULL) {
2355 				kref_put(&tp->cookie_values->kref,
2356 					 tcp_cookie_values_release);
2357 				tp->cookie_values = NULL;
2358 			}
2359 			tp->rx_opt.cookie_in_always = 0; /* false */
2360 			tp->rx_opt.cookie_out_never = 1; /* true */
2361 			release_sock(sk);
2362 			return err;
2363 		}
2364 
2365 		/* Allocate ancillary memory before locking.
2366 		 */
2367 		if (ctd.tcpct_used > 0 ||
2368 		    (tp->cookie_values == NULL &&
2369 		     (sysctl_tcp_cookie_size > 0 ||
2370 		      ctd.tcpct_cookie_desired > 0 ||
2371 		      ctd.tcpct_s_data_desired > 0))) {
2372 			cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2373 				      GFP_KERNEL);
2374 			if (cvp == NULL)
2375 				return -ENOMEM;
2376 
2377 			kref_init(&cvp->kref);
2378 		}
2379 		lock_sock(sk);
2380 		tp->rx_opt.cookie_in_always =
2381 			(TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2382 		tp->rx_opt.cookie_out_never = 0; /* false */
2383 
2384 		if (tp->cookie_values != NULL) {
2385 			if (cvp != NULL) {
2386 				/* Changed values are recorded by a changed
2387 				 * pointer, ensuring the cookie will differ,
2388 				 * without separately hashing each value later.
2389 				 */
2390 				kref_put(&tp->cookie_values->kref,
2391 					 tcp_cookie_values_release);
2392 			} else {
2393 				cvp = tp->cookie_values;
2394 			}
2395 		}
2396 
2397 		if (cvp != NULL) {
2398 			cvp->cookie_desired = ctd.tcpct_cookie_desired;
2399 
2400 			if (ctd.tcpct_used > 0) {
2401 				memcpy(cvp->s_data_payload, ctd.tcpct_value,
2402 				       ctd.tcpct_used);
2403 				cvp->s_data_desired = ctd.tcpct_used;
2404 				cvp->s_data_constant = 1; /* true */
2405 			} else {
2406 				/* No constant payload data. */
2407 				cvp->s_data_desired = ctd.tcpct_s_data_desired;
2408 				cvp->s_data_constant = 0; /* false */
2409 			}
2410 
2411 			tp->cookie_values = cvp;
2412 		}
2413 		release_sock(sk);
2414 		return err;
2415 	}
2416 	default:
2417 		/* fallthru */
2418 		break;
2419 	}
2420 
2421 	if (optlen < sizeof(int))
2422 		return -EINVAL;
2423 
2424 	if (get_user(val, (int __user *)optval))
2425 		return -EFAULT;
2426 
2427 	lock_sock(sk);
2428 
2429 	switch (optname) {
2430 	case TCP_MAXSEG:
2431 		/* Values greater than interface MTU won't take effect. However
2432 		 * at the point when this call is done we typically don't yet
2433 		 * know which interface is going to be used */
2434 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2435 			err = -EINVAL;
2436 			break;
2437 		}
2438 		tp->rx_opt.user_mss = val;
2439 		break;
2440 
2441 	case TCP_NODELAY:
2442 		if (val) {
2443 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2444 			 * this option on corked socket is remembered, but
2445 			 * it is not activated until cork is cleared.
2446 			 *
2447 			 * However, when TCP_NODELAY is set we make
2448 			 * an explicit push, which overrides even TCP_CORK
2449 			 * for currently queued segments.
2450 			 */
2451 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2452 			tcp_push_pending_frames(sk);
2453 		} else {
2454 			tp->nonagle &= ~TCP_NAGLE_OFF;
2455 		}
2456 		break;
2457 
2458 	case TCP_THIN_LINEAR_TIMEOUTS:
2459 		if (val < 0 || val > 1)
2460 			err = -EINVAL;
2461 		else
2462 			tp->thin_lto = val;
2463 		break;
2464 
2465 	case TCP_THIN_DUPACK:
2466 		if (val < 0 || val > 1)
2467 			err = -EINVAL;
2468 		else
2469 			tp->thin_dupack = val;
2470 			if (tp->thin_dupack)
2471 				tcp_disable_early_retrans(tp);
2472 		break;
2473 
2474 	case TCP_REPAIR:
2475 		if (!tcp_can_repair_sock(sk))
2476 			err = -EPERM;
2477 		else if (val == 1) {
2478 			tp->repair = 1;
2479 			sk->sk_reuse = SK_FORCE_REUSE;
2480 			tp->repair_queue = TCP_NO_QUEUE;
2481 		} else if (val == 0) {
2482 			tp->repair = 0;
2483 			sk->sk_reuse = SK_NO_REUSE;
2484 			tcp_send_window_probe(sk);
2485 		} else
2486 			err = -EINVAL;
2487 
2488 		break;
2489 
2490 	case TCP_REPAIR_QUEUE:
2491 		if (!tp->repair)
2492 			err = -EPERM;
2493 		else if (val < TCP_QUEUES_NR)
2494 			tp->repair_queue = val;
2495 		else
2496 			err = -EINVAL;
2497 		break;
2498 
2499 	case TCP_QUEUE_SEQ:
2500 		if (sk->sk_state != TCP_CLOSE)
2501 			err = -EPERM;
2502 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2503 			tp->write_seq = val;
2504 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2505 			tp->rcv_nxt = val;
2506 		else
2507 			err = -EINVAL;
2508 		break;
2509 
2510 	case TCP_REPAIR_OPTIONS:
2511 		if (!tp->repair)
2512 			err = -EINVAL;
2513 		else if (sk->sk_state == TCP_ESTABLISHED)
2514 			err = tcp_repair_options_est(tp,
2515 					(struct tcp_repair_opt __user *)optval,
2516 					optlen);
2517 		else
2518 			err = -EPERM;
2519 		break;
2520 
2521 	case TCP_CORK:
2522 		/* When set indicates to always queue non-full frames.
2523 		 * Later the user clears this option and we transmit
2524 		 * any pending partial frames in the queue.  This is
2525 		 * meant to be used alongside sendfile() to get properly
2526 		 * filled frames when the user (for example) must write
2527 		 * out headers with a write() call first and then use
2528 		 * sendfile to send out the data parts.
2529 		 *
2530 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2531 		 * stronger than TCP_NODELAY.
2532 		 */
2533 		if (val) {
2534 			tp->nonagle |= TCP_NAGLE_CORK;
2535 		} else {
2536 			tp->nonagle &= ~TCP_NAGLE_CORK;
2537 			if (tp->nonagle&TCP_NAGLE_OFF)
2538 				tp->nonagle |= TCP_NAGLE_PUSH;
2539 			tcp_push_pending_frames(sk);
2540 		}
2541 		break;
2542 
2543 	case TCP_KEEPIDLE:
2544 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2545 			err = -EINVAL;
2546 		else {
2547 			tp->keepalive_time = val * HZ;
2548 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2549 			    !((1 << sk->sk_state) &
2550 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2551 				u32 elapsed = keepalive_time_elapsed(tp);
2552 				if (tp->keepalive_time > elapsed)
2553 					elapsed = tp->keepalive_time - elapsed;
2554 				else
2555 					elapsed = 0;
2556 				inet_csk_reset_keepalive_timer(sk, elapsed);
2557 			}
2558 		}
2559 		break;
2560 	case TCP_KEEPINTVL:
2561 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2562 			err = -EINVAL;
2563 		else
2564 			tp->keepalive_intvl = val * HZ;
2565 		break;
2566 	case TCP_KEEPCNT:
2567 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2568 			err = -EINVAL;
2569 		else
2570 			tp->keepalive_probes = val;
2571 		break;
2572 	case TCP_SYNCNT:
2573 		if (val < 1 || val > MAX_TCP_SYNCNT)
2574 			err = -EINVAL;
2575 		else
2576 			icsk->icsk_syn_retries = val;
2577 		break;
2578 
2579 	case TCP_LINGER2:
2580 		if (val < 0)
2581 			tp->linger2 = -1;
2582 		else if (val > sysctl_tcp_fin_timeout / HZ)
2583 			tp->linger2 = 0;
2584 		else
2585 			tp->linger2 = val * HZ;
2586 		break;
2587 
2588 	case TCP_DEFER_ACCEPT:
2589 		/* Translate value in seconds to number of retransmits */
2590 		icsk->icsk_accept_queue.rskq_defer_accept =
2591 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2592 					TCP_RTO_MAX / HZ);
2593 		break;
2594 
2595 	case TCP_WINDOW_CLAMP:
2596 		if (!val) {
2597 			if (sk->sk_state != TCP_CLOSE) {
2598 				err = -EINVAL;
2599 				break;
2600 			}
2601 			tp->window_clamp = 0;
2602 		} else
2603 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2604 						SOCK_MIN_RCVBUF / 2 : val;
2605 		break;
2606 
2607 	case TCP_QUICKACK:
2608 		if (!val) {
2609 			icsk->icsk_ack.pingpong = 1;
2610 		} else {
2611 			icsk->icsk_ack.pingpong = 0;
2612 			if ((1 << sk->sk_state) &
2613 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2614 			    inet_csk_ack_scheduled(sk)) {
2615 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2616 				tcp_cleanup_rbuf(sk, 1);
2617 				if (!(val & 1))
2618 					icsk->icsk_ack.pingpong = 1;
2619 			}
2620 		}
2621 		break;
2622 
2623 #ifdef CONFIG_TCP_MD5SIG
2624 	case TCP_MD5SIG:
2625 		/* Read the IP->Key mappings from userspace */
2626 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2627 		break;
2628 #endif
2629 	case TCP_USER_TIMEOUT:
2630 		/* Cap the max timeout in ms TCP will retry/retrans
2631 		 * before giving up and aborting (ETIMEDOUT) a connection.
2632 		 */
2633 		icsk->icsk_user_timeout = msecs_to_jiffies(val);
2634 		break;
2635 	default:
2636 		err = -ENOPROTOOPT;
2637 		break;
2638 	}
2639 
2640 	release_sock(sk);
2641 	return err;
2642 }
2643 
2644 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2645 		   unsigned int optlen)
2646 {
2647 	const struct inet_connection_sock *icsk = inet_csk(sk);
2648 
2649 	if (level != SOL_TCP)
2650 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2651 						     optval, optlen);
2652 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2653 }
2654 EXPORT_SYMBOL(tcp_setsockopt);
2655 
2656 #ifdef CONFIG_COMPAT
2657 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2658 			  char __user *optval, unsigned int optlen)
2659 {
2660 	if (level != SOL_TCP)
2661 		return inet_csk_compat_setsockopt(sk, level, optname,
2662 						  optval, optlen);
2663 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2664 }
2665 EXPORT_SYMBOL(compat_tcp_setsockopt);
2666 #endif
2667 
2668 /* Return information about state of tcp endpoint in API format. */
2669 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2670 {
2671 	const struct tcp_sock *tp = tcp_sk(sk);
2672 	const struct inet_connection_sock *icsk = inet_csk(sk);
2673 	u32 now = tcp_time_stamp;
2674 
2675 	memset(info, 0, sizeof(*info));
2676 
2677 	info->tcpi_state = sk->sk_state;
2678 	info->tcpi_ca_state = icsk->icsk_ca_state;
2679 	info->tcpi_retransmits = icsk->icsk_retransmits;
2680 	info->tcpi_probes = icsk->icsk_probes_out;
2681 	info->tcpi_backoff = icsk->icsk_backoff;
2682 
2683 	if (tp->rx_opt.tstamp_ok)
2684 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2685 	if (tcp_is_sack(tp))
2686 		info->tcpi_options |= TCPI_OPT_SACK;
2687 	if (tp->rx_opt.wscale_ok) {
2688 		info->tcpi_options |= TCPI_OPT_WSCALE;
2689 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2690 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2691 	}
2692 
2693 	if (tp->ecn_flags & TCP_ECN_OK)
2694 		info->tcpi_options |= TCPI_OPT_ECN;
2695 	if (tp->ecn_flags & TCP_ECN_SEEN)
2696 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2697 
2698 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2699 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2700 	info->tcpi_snd_mss = tp->mss_cache;
2701 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2702 
2703 	if (sk->sk_state == TCP_LISTEN) {
2704 		info->tcpi_unacked = sk->sk_ack_backlog;
2705 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2706 	} else {
2707 		info->tcpi_unacked = tp->packets_out;
2708 		info->tcpi_sacked = tp->sacked_out;
2709 	}
2710 	info->tcpi_lost = tp->lost_out;
2711 	info->tcpi_retrans = tp->retrans_out;
2712 	info->tcpi_fackets = tp->fackets_out;
2713 
2714 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2715 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2716 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2717 
2718 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2719 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2720 	info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2721 	info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2722 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2723 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2724 	info->tcpi_advmss = tp->advmss;
2725 	info->tcpi_reordering = tp->reordering;
2726 
2727 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2728 	info->tcpi_rcv_space = tp->rcvq_space.space;
2729 
2730 	info->tcpi_total_retrans = tp->total_retrans;
2731 }
2732 EXPORT_SYMBOL_GPL(tcp_get_info);
2733 
2734 static int do_tcp_getsockopt(struct sock *sk, int level,
2735 		int optname, char __user *optval, int __user *optlen)
2736 {
2737 	struct inet_connection_sock *icsk = inet_csk(sk);
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 	int val, len;
2740 
2741 	if (get_user(len, optlen))
2742 		return -EFAULT;
2743 
2744 	len = min_t(unsigned int, len, sizeof(int));
2745 
2746 	if (len < 0)
2747 		return -EINVAL;
2748 
2749 	switch (optname) {
2750 	case TCP_MAXSEG:
2751 		val = tp->mss_cache;
2752 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2753 			val = tp->rx_opt.user_mss;
2754 		if (tp->repair)
2755 			val = tp->rx_opt.mss_clamp;
2756 		break;
2757 	case TCP_NODELAY:
2758 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2759 		break;
2760 	case TCP_CORK:
2761 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2762 		break;
2763 	case TCP_KEEPIDLE:
2764 		val = keepalive_time_when(tp) / HZ;
2765 		break;
2766 	case TCP_KEEPINTVL:
2767 		val = keepalive_intvl_when(tp) / HZ;
2768 		break;
2769 	case TCP_KEEPCNT:
2770 		val = keepalive_probes(tp);
2771 		break;
2772 	case TCP_SYNCNT:
2773 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2774 		break;
2775 	case TCP_LINGER2:
2776 		val = tp->linger2;
2777 		if (val >= 0)
2778 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2779 		break;
2780 	case TCP_DEFER_ACCEPT:
2781 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2782 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2783 		break;
2784 	case TCP_WINDOW_CLAMP:
2785 		val = tp->window_clamp;
2786 		break;
2787 	case TCP_INFO: {
2788 		struct tcp_info info;
2789 
2790 		if (get_user(len, optlen))
2791 			return -EFAULT;
2792 
2793 		tcp_get_info(sk, &info);
2794 
2795 		len = min_t(unsigned int, len, sizeof(info));
2796 		if (put_user(len, optlen))
2797 			return -EFAULT;
2798 		if (copy_to_user(optval, &info, len))
2799 			return -EFAULT;
2800 		return 0;
2801 	}
2802 	case TCP_QUICKACK:
2803 		val = !icsk->icsk_ack.pingpong;
2804 		break;
2805 
2806 	case TCP_CONGESTION:
2807 		if (get_user(len, optlen))
2808 			return -EFAULT;
2809 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2810 		if (put_user(len, optlen))
2811 			return -EFAULT;
2812 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2813 			return -EFAULT;
2814 		return 0;
2815 
2816 	case TCP_COOKIE_TRANSACTIONS: {
2817 		struct tcp_cookie_transactions ctd;
2818 		struct tcp_cookie_values *cvp = tp->cookie_values;
2819 
2820 		if (get_user(len, optlen))
2821 			return -EFAULT;
2822 		if (len < sizeof(ctd))
2823 			return -EINVAL;
2824 
2825 		memset(&ctd, 0, sizeof(ctd));
2826 		ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2827 				   TCP_COOKIE_IN_ALWAYS : 0)
2828 				| (tp->rx_opt.cookie_out_never ?
2829 				   TCP_COOKIE_OUT_NEVER : 0);
2830 
2831 		if (cvp != NULL) {
2832 			ctd.tcpct_flags |= (cvp->s_data_in ?
2833 					    TCP_S_DATA_IN : 0)
2834 					 | (cvp->s_data_out ?
2835 					    TCP_S_DATA_OUT : 0);
2836 
2837 			ctd.tcpct_cookie_desired = cvp->cookie_desired;
2838 			ctd.tcpct_s_data_desired = cvp->s_data_desired;
2839 
2840 			memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2841 			       cvp->cookie_pair_size);
2842 			ctd.tcpct_used = cvp->cookie_pair_size;
2843 		}
2844 
2845 		if (put_user(sizeof(ctd), optlen))
2846 			return -EFAULT;
2847 		if (copy_to_user(optval, &ctd, sizeof(ctd)))
2848 			return -EFAULT;
2849 		return 0;
2850 	}
2851 	case TCP_THIN_LINEAR_TIMEOUTS:
2852 		val = tp->thin_lto;
2853 		break;
2854 	case TCP_THIN_DUPACK:
2855 		val = tp->thin_dupack;
2856 		break;
2857 
2858 	case TCP_REPAIR:
2859 		val = tp->repair;
2860 		break;
2861 
2862 	case TCP_REPAIR_QUEUE:
2863 		if (tp->repair)
2864 			val = tp->repair_queue;
2865 		else
2866 			return -EINVAL;
2867 		break;
2868 
2869 	case TCP_QUEUE_SEQ:
2870 		if (tp->repair_queue == TCP_SEND_QUEUE)
2871 			val = tp->write_seq;
2872 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2873 			val = tp->rcv_nxt;
2874 		else
2875 			return -EINVAL;
2876 		break;
2877 
2878 	case TCP_USER_TIMEOUT:
2879 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2880 		break;
2881 	default:
2882 		return -ENOPROTOOPT;
2883 	}
2884 
2885 	if (put_user(len, optlen))
2886 		return -EFAULT;
2887 	if (copy_to_user(optval, &val, len))
2888 		return -EFAULT;
2889 	return 0;
2890 }
2891 
2892 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2893 		   int __user *optlen)
2894 {
2895 	struct inet_connection_sock *icsk = inet_csk(sk);
2896 
2897 	if (level != SOL_TCP)
2898 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2899 						     optval, optlen);
2900 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2901 }
2902 EXPORT_SYMBOL(tcp_getsockopt);
2903 
2904 #ifdef CONFIG_COMPAT
2905 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2906 			  char __user *optval, int __user *optlen)
2907 {
2908 	if (level != SOL_TCP)
2909 		return inet_csk_compat_getsockopt(sk, level, optname,
2910 						  optval, optlen);
2911 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2912 }
2913 EXPORT_SYMBOL(compat_tcp_getsockopt);
2914 #endif
2915 
2916 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2917 	netdev_features_t features)
2918 {
2919 	struct sk_buff *segs = ERR_PTR(-EINVAL);
2920 	struct tcphdr *th;
2921 	unsigned int thlen;
2922 	unsigned int seq;
2923 	__be32 delta;
2924 	unsigned int oldlen;
2925 	unsigned int mss;
2926 
2927 	if (!pskb_may_pull(skb, sizeof(*th)))
2928 		goto out;
2929 
2930 	th = tcp_hdr(skb);
2931 	thlen = th->doff * 4;
2932 	if (thlen < sizeof(*th))
2933 		goto out;
2934 
2935 	if (!pskb_may_pull(skb, thlen))
2936 		goto out;
2937 
2938 	oldlen = (u16)~skb->len;
2939 	__skb_pull(skb, thlen);
2940 
2941 	mss = skb_shinfo(skb)->gso_size;
2942 	if (unlikely(skb->len <= mss))
2943 		goto out;
2944 
2945 	if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2946 		/* Packet is from an untrusted source, reset gso_segs. */
2947 		int type = skb_shinfo(skb)->gso_type;
2948 
2949 		if (unlikely(type &
2950 			     ~(SKB_GSO_TCPV4 |
2951 			       SKB_GSO_DODGY |
2952 			       SKB_GSO_TCP_ECN |
2953 			       SKB_GSO_TCPV6 |
2954 			       0) ||
2955 			     !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2956 			goto out;
2957 
2958 		skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2959 
2960 		segs = NULL;
2961 		goto out;
2962 	}
2963 
2964 	segs = skb_segment(skb, features);
2965 	if (IS_ERR(segs))
2966 		goto out;
2967 
2968 	delta = htonl(oldlen + (thlen + mss));
2969 
2970 	skb = segs;
2971 	th = tcp_hdr(skb);
2972 	seq = ntohl(th->seq);
2973 
2974 	do {
2975 		th->fin = th->psh = 0;
2976 
2977 		th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2978 				       (__force u32)delta));
2979 		if (skb->ip_summed != CHECKSUM_PARTIAL)
2980 			th->check =
2981 			     csum_fold(csum_partial(skb_transport_header(skb),
2982 						    thlen, skb->csum));
2983 
2984 		seq += mss;
2985 		skb = skb->next;
2986 		th = tcp_hdr(skb);
2987 
2988 		th->seq = htonl(seq);
2989 		th->cwr = 0;
2990 	} while (skb->next);
2991 
2992 	delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2993 		      skb->data_len);
2994 	th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2995 				(__force u32)delta));
2996 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2997 		th->check = csum_fold(csum_partial(skb_transport_header(skb),
2998 						   thlen, skb->csum));
2999 
3000 out:
3001 	return segs;
3002 }
3003 EXPORT_SYMBOL(tcp_tso_segment);
3004 
3005 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3006 {
3007 	struct sk_buff **pp = NULL;
3008 	struct sk_buff *p;
3009 	struct tcphdr *th;
3010 	struct tcphdr *th2;
3011 	unsigned int len;
3012 	unsigned int thlen;
3013 	__be32 flags;
3014 	unsigned int mss = 1;
3015 	unsigned int hlen;
3016 	unsigned int off;
3017 	int flush = 1;
3018 	int i;
3019 
3020 	off = skb_gro_offset(skb);
3021 	hlen = off + sizeof(*th);
3022 	th = skb_gro_header_fast(skb, off);
3023 	if (skb_gro_header_hard(skb, hlen)) {
3024 		th = skb_gro_header_slow(skb, hlen, off);
3025 		if (unlikely(!th))
3026 			goto out;
3027 	}
3028 
3029 	thlen = th->doff * 4;
3030 	if (thlen < sizeof(*th))
3031 		goto out;
3032 
3033 	hlen = off + thlen;
3034 	if (skb_gro_header_hard(skb, hlen)) {
3035 		th = skb_gro_header_slow(skb, hlen, off);
3036 		if (unlikely(!th))
3037 			goto out;
3038 	}
3039 
3040 	skb_gro_pull(skb, thlen);
3041 
3042 	len = skb_gro_len(skb);
3043 	flags = tcp_flag_word(th);
3044 
3045 	for (; (p = *head); head = &p->next) {
3046 		if (!NAPI_GRO_CB(p)->same_flow)
3047 			continue;
3048 
3049 		th2 = tcp_hdr(p);
3050 
3051 		if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3052 			NAPI_GRO_CB(p)->same_flow = 0;
3053 			continue;
3054 		}
3055 
3056 		goto found;
3057 	}
3058 
3059 	goto out_check_final;
3060 
3061 found:
3062 	flush = NAPI_GRO_CB(p)->flush;
3063 	flush |= (__force int)(flags & TCP_FLAG_CWR);
3064 	flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3065 		  ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3066 	flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3067 	for (i = sizeof(*th); i < thlen; i += 4)
3068 		flush |= *(u32 *)((u8 *)th + i) ^
3069 			 *(u32 *)((u8 *)th2 + i);
3070 
3071 	mss = skb_shinfo(p)->gso_size;
3072 
3073 	flush |= (len - 1) >= mss;
3074 	flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3075 
3076 	if (flush || skb_gro_receive(head, skb)) {
3077 		mss = 1;
3078 		goto out_check_final;
3079 	}
3080 
3081 	p = *head;
3082 	th2 = tcp_hdr(p);
3083 	tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3084 
3085 out_check_final:
3086 	flush = len < mss;
3087 	flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3088 					TCP_FLAG_RST | TCP_FLAG_SYN |
3089 					TCP_FLAG_FIN));
3090 
3091 	if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3092 		pp = head;
3093 
3094 out:
3095 	NAPI_GRO_CB(skb)->flush |= flush;
3096 
3097 	return pp;
3098 }
3099 EXPORT_SYMBOL(tcp_gro_receive);
3100 
3101 int tcp_gro_complete(struct sk_buff *skb)
3102 {
3103 	struct tcphdr *th = tcp_hdr(skb);
3104 
3105 	skb->csum_start = skb_transport_header(skb) - skb->head;
3106 	skb->csum_offset = offsetof(struct tcphdr, check);
3107 	skb->ip_summed = CHECKSUM_PARTIAL;
3108 
3109 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3110 
3111 	if (th->cwr)
3112 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3113 
3114 	return 0;
3115 }
3116 EXPORT_SYMBOL(tcp_gro_complete);
3117 
3118 #ifdef CONFIG_TCP_MD5SIG
3119 static unsigned long tcp_md5sig_users;
3120 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3121 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3122 
3123 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3124 {
3125 	int cpu;
3126 
3127 	for_each_possible_cpu(cpu) {
3128 		struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3129 
3130 		if (p->md5_desc.tfm)
3131 			crypto_free_hash(p->md5_desc.tfm);
3132 	}
3133 	free_percpu(pool);
3134 }
3135 
3136 void tcp_free_md5sig_pool(void)
3137 {
3138 	struct tcp_md5sig_pool __percpu *pool = NULL;
3139 
3140 	spin_lock_bh(&tcp_md5sig_pool_lock);
3141 	if (--tcp_md5sig_users == 0) {
3142 		pool = tcp_md5sig_pool;
3143 		tcp_md5sig_pool = NULL;
3144 	}
3145 	spin_unlock_bh(&tcp_md5sig_pool_lock);
3146 	if (pool)
3147 		__tcp_free_md5sig_pool(pool);
3148 }
3149 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3150 
3151 static struct tcp_md5sig_pool __percpu *
3152 __tcp_alloc_md5sig_pool(struct sock *sk)
3153 {
3154 	int cpu;
3155 	struct tcp_md5sig_pool __percpu *pool;
3156 
3157 	pool = alloc_percpu(struct tcp_md5sig_pool);
3158 	if (!pool)
3159 		return NULL;
3160 
3161 	for_each_possible_cpu(cpu) {
3162 		struct crypto_hash *hash;
3163 
3164 		hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3165 		if (!hash || IS_ERR(hash))
3166 			goto out_free;
3167 
3168 		per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3169 	}
3170 	return pool;
3171 out_free:
3172 	__tcp_free_md5sig_pool(pool);
3173 	return NULL;
3174 }
3175 
3176 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3177 {
3178 	struct tcp_md5sig_pool __percpu *pool;
3179 	bool alloc = false;
3180 
3181 retry:
3182 	spin_lock_bh(&tcp_md5sig_pool_lock);
3183 	pool = tcp_md5sig_pool;
3184 	if (tcp_md5sig_users++ == 0) {
3185 		alloc = true;
3186 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3187 	} else if (!pool) {
3188 		tcp_md5sig_users--;
3189 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3190 		cpu_relax();
3191 		goto retry;
3192 	} else
3193 		spin_unlock_bh(&tcp_md5sig_pool_lock);
3194 
3195 	if (alloc) {
3196 		/* we cannot hold spinlock here because this may sleep. */
3197 		struct tcp_md5sig_pool __percpu *p;
3198 
3199 		p = __tcp_alloc_md5sig_pool(sk);
3200 		spin_lock_bh(&tcp_md5sig_pool_lock);
3201 		if (!p) {
3202 			tcp_md5sig_users--;
3203 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3204 			return NULL;
3205 		}
3206 		pool = tcp_md5sig_pool;
3207 		if (pool) {
3208 			/* oops, it has already been assigned. */
3209 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3210 			__tcp_free_md5sig_pool(p);
3211 		} else {
3212 			tcp_md5sig_pool = pool = p;
3213 			spin_unlock_bh(&tcp_md5sig_pool_lock);
3214 		}
3215 	}
3216 	return pool;
3217 }
3218 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3219 
3220 
3221 /**
3222  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3223  *
3224  *	We use percpu structure, so if we succeed, we exit with preemption
3225  *	and BH disabled, to make sure another thread or softirq handling
3226  *	wont try to get same context.
3227  */
3228 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3229 {
3230 	struct tcp_md5sig_pool __percpu *p;
3231 
3232 	local_bh_disable();
3233 
3234 	spin_lock(&tcp_md5sig_pool_lock);
3235 	p = tcp_md5sig_pool;
3236 	if (p)
3237 		tcp_md5sig_users++;
3238 	spin_unlock(&tcp_md5sig_pool_lock);
3239 
3240 	if (p)
3241 		return this_cpu_ptr(p);
3242 
3243 	local_bh_enable();
3244 	return NULL;
3245 }
3246 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3247 
3248 void tcp_put_md5sig_pool(void)
3249 {
3250 	local_bh_enable();
3251 	tcp_free_md5sig_pool();
3252 }
3253 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3254 
3255 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3256 			const struct tcphdr *th)
3257 {
3258 	struct scatterlist sg;
3259 	struct tcphdr hdr;
3260 	int err;
3261 
3262 	/* We are not allowed to change tcphdr, make a local copy */
3263 	memcpy(&hdr, th, sizeof(hdr));
3264 	hdr.check = 0;
3265 
3266 	/* options aren't included in the hash */
3267 	sg_init_one(&sg, &hdr, sizeof(hdr));
3268 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3269 	return err;
3270 }
3271 EXPORT_SYMBOL(tcp_md5_hash_header);
3272 
3273 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3274 			  const struct sk_buff *skb, unsigned int header_len)
3275 {
3276 	struct scatterlist sg;
3277 	const struct tcphdr *tp = tcp_hdr(skb);
3278 	struct hash_desc *desc = &hp->md5_desc;
3279 	unsigned int i;
3280 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3281 					   skb_headlen(skb) - header_len : 0;
3282 	const struct skb_shared_info *shi = skb_shinfo(skb);
3283 	struct sk_buff *frag_iter;
3284 
3285 	sg_init_table(&sg, 1);
3286 
3287 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3288 	if (crypto_hash_update(desc, &sg, head_data_len))
3289 		return 1;
3290 
3291 	for (i = 0; i < shi->nr_frags; ++i) {
3292 		const struct skb_frag_struct *f = &shi->frags[i];
3293 		struct page *page = skb_frag_page(f);
3294 		sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3295 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3296 			return 1;
3297 	}
3298 
3299 	skb_walk_frags(skb, frag_iter)
3300 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3301 			return 1;
3302 
3303 	return 0;
3304 }
3305 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3306 
3307 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3308 {
3309 	struct scatterlist sg;
3310 
3311 	sg_init_one(&sg, key->key, key->keylen);
3312 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3313 }
3314 EXPORT_SYMBOL(tcp_md5_hash_key);
3315 
3316 #endif
3317 
3318 /* Each Responder maintains up to two secret values concurrently for
3319  * efficient secret rollover.  Each secret value has 4 states:
3320  *
3321  * Generating.  (tcp_secret_generating != tcp_secret_primary)
3322  *    Generates new Responder-Cookies, but not yet used for primary
3323  *    verification.  This is a short-term state, typically lasting only
3324  *    one round trip time (RTT).
3325  *
3326  * Primary.  (tcp_secret_generating == tcp_secret_primary)
3327  *    Used both for generation and primary verification.
3328  *
3329  * Retiring.  (tcp_secret_retiring != tcp_secret_secondary)
3330  *    Used for verification, until the first failure that can be
3331  *    verified by the newer Generating secret.  At that time, this
3332  *    cookie's state is changed to Secondary, and the Generating
3333  *    cookie's state is changed to Primary.  This is a short-term state,
3334  *    typically lasting only one round trip time (RTT).
3335  *
3336  * Secondary.  (tcp_secret_retiring == tcp_secret_secondary)
3337  *    Used for secondary verification, after primary verification
3338  *    failures.  This state lasts no more than twice the Maximum Segment
3339  *    Lifetime (2MSL).  Then, the secret is discarded.
3340  */
3341 struct tcp_cookie_secret {
3342 	/* The secret is divided into two parts.  The digest part is the
3343 	 * equivalent of previously hashing a secret and saving the state,
3344 	 * and serves as an initialization vector (IV).  The message part
3345 	 * serves as the trailing secret.
3346 	 */
3347 	u32				secrets[COOKIE_WORKSPACE_WORDS];
3348 	unsigned long			expires;
3349 };
3350 
3351 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3352 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3353 #define TCP_SECRET_LIFE (HZ * 600)
3354 
3355 static struct tcp_cookie_secret tcp_secret_one;
3356 static struct tcp_cookie_secret tcp_secret_two;
3357 
3358 /* Essentially a circular list, without dynamic allocation. */
3359 static struct tcp_cookie_secret *tcp_secret_generating;
3360 static struct tcp_cookie_secret *tcp_secret_primary;
3361 static struct tcp_cookie_secret *tcp_secret_retiring;
3362 static struct tcp_cookie_secret *tcp_secret_secondary;
3363 
3364 static DEFINE_SPINLOCK(tcp_secret_locker);
3365 
3366 /* Select a pseudo-random word in the cookie workspace.
3367  */
3368 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3369 {
3370 	return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3371 }
3372 
3373 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3374  * Called in softirq context.
3375  * Returns: 0 for success.
3376  */
3377 int tcp_cookie_generator(u32 *bakery)
3378 {
3379 	unsigned long jiffy = jiffies;
3380 
3381 	if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3382 		spin_lock_bh(&tcp_secret_locker);
3383 		if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3384 			/* refreshed by another */
3385 			memcpy(bakery,
3386 			       &tcp_secret_generating->secrets[0],
3387 			       COOKIE_WORKSPACE_WORDS);
3388 		} else {
3389 			/* still needs refreshing */
3390 			get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3391 
3392 			/* The first time, paranoia assumes that the
3393 			 * randomization function isn't as strong.  But,
3394 			 * this secret initialization is delayed until
3395 			 * the last possible moment (packet arrival).
3396 			 * Although that time is observable, it is
3397 			 * unpredictably variable.  Mash in the most
3398 			 * volatile clock bits available, and expire the
3399 			 * secret extra quickly.
3400 			 */
3401 			if (unlikely(tcp_secret_primary->expires ==
3402 				     tcp_secret_secondary->expires)) {
3403 				struct timespec tv;
3404 
3405 				getnstimeofday(&tv);
3406 				bakery[COOKIE_DIGEST_WORDS+0] ^=
3407 					(u32)tv.tv_nsec;
3408 
3409 				tcp_secret_secondary->expires = jiffy
3410 					+ TCP_SECRET_1MSL
3411 					+ (0x0f & tcp_cookie_work(bakery, 0));
3412 			} else {
3413 				tcp_secret_secondary->expires = jiffy
3414 					+ TCP_SECRET_LIFE
3415 					+ (0xff & tcp_cookie_work(bakery, 1));
3416 				tcp_secret_primary->expires = jiffy
3417 					+ TCP_SECRET_2MSL
3418 					+ (0x1f & tcp_cookie_work(bakery, 2));
3419 			}
3420 			memcpy(&tcp_secret_secondary->secrets[0],
3421 			       bakery, COOKIE_WORKSPACE_WORDS);
3422 
3423 			rcu_assign_pointer(tcp_secret_generating,
3424 					   tcp_secret_secondary);
3425 			rcu_assign_pointer(tcp_secret_retiring,
3426 					   tcp_secret_primary);
3427 			/*
3428 			 * Neither call_rcu() nor synchronize_rcu() needed.
3429 			 * Retiring data is not freed.  It is replaced after
3430 			 * further (locked) pointer updates, and a quiet time
3431 			 * (minimum 1MSL, maximum LIFE - 2MSL).
3432 			 */
3433 		}
3434 		spin_unlock_bh(&tcp_secret_locker);
3435 	} else {
3436 		rcu_read_lock_bh();
3437 		memcpy(bakery,
3438 		       &rcu_dereference(tcp_secret_generating)->secrets[0],
3439 		       COOKIE_WORKSPACE_WORDS);
3440 		rcu_read_unlock_bh();
3441 	}
3442 	return 0;
3443 }
3444 EXPORT_SYMBOL(tcp_cookie_generator);
3445 
3446 void tcp_done(struct sock *sk)
3447 {
3448 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3449 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3450 
3451 	tcp_set_state(sk, TCP_CLOSE);
3452 	tcp_clear_xmit_timers(sk);
3453 
3454 	sk->sk_shutdown = SHUTDOWN_MASK;
3455 
3456 	if (!sock_flag(sk, SOCK_DEAD))
3457 		sk->sk_state_change(sk);
3458 	else
3459 		inet_csk_destroy_sock(sk);
3460 }
3461 EXPORT_SYMBOL_GPL(tcp_done);
3462 
3463 extern struct tcp_congestion_ops tcp_reno;
3464 
3465 static __initdata unsigned long thash_entries;
3466 static int __init set_thash_entries(char *str)
3467 {
3468 	ssize_t ret;
3469 
3470 	if (!str)
3471 		return 0;
3472 
3473 	ret = kstrtoul(str, 0, &thash_entries);
3474 	if (ret)
3475 		return 0;
3476 
3477 	return 1;
3478 }
3479 __setup("thash_entries=", set_thash_entries);
3480 
3481 void tcp_init_mem(struct net *net)
3482 {
3483 	unsigned long limit = nr_free_buffer_pages() / 8;
3484 	limit = max(limit, 128UL);
3485 	net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3486 	net->ipv4.sysctl_tcp_mem[1] = limit;
3487 	net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3488 }
3489 
3490 void __init tcp_init(void)
3491 {
3492 	struct sk_buff *skb = NULL;
3493 	unsigned long limit;
3494 	int max_rshare, max_wshare, cnt;
3495 	unsigned int i;
3496 	unsigned long jiffy = jiffies;
3497 
3498 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3499 
3500 	percpu_counter_init(&tcp_sockets_allocated, 0);
3501 	percpu_counter_init(&tcp_orphan_count, 0);
3502 	tcp_hashinfo.bind_bucket_cachep =
3503 		kmem_cache_create("tcp_bind_bucket",
3504 				  sizeof(struct inet_bind_bucket), 0,
3505 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3506 
3507 	/* Size and allocate the main established and bind bucket
3508 	 * hash tables.
3509 	 *
3510 	 * The methodology is similar to that of the buffer cache.
3511 	 */
3512 	tcp_hashinfo.ehash =
3513 		alloc_large_system_hash("TCP established",
3514 					sizeof(struct inet_ehash_bucket),
3515 					thash_entries,
3516 					(totalram_pages >= 128 * 1024) ?
3517 					13 : 15,
3518 					0,
3519 					NULL,
3520 					&tcp_hashinfo.ehash_mask,
3521 					0,
3522 					thash_entries ? 0 : 512 * 1024);
3523 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3524 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3525 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3526 	}
3527 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3528 		panic("TCP: failed to alloc ehash_locks");
3529 	tcp_hashinfo.bhash =
3530 		alloc_large_system_hash("TCP bind",
3531 					sizeof(struct inet_bind_hashbucket),
3532 					tcp_hashinfo.ehash_mask + 1,
3533 					(totalram_pages >= 128 * 1024) ?
3534 					13 : 15,
3535 					0,
3536 					&tcp_hashinfo.bhash_size,
3537 					NULL,
3538 					0,
3539 					64 * 1024);
3540 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3541 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3542 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3543 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3544 	}
3545 
3546 
3547 	cnt = tcp_hashinfo.ehash_mask + 1;
3548 
3549 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3550 	sysctl_tcp_max_orphans = cnt / 2;
3551 	sysctl_max_syn_backlog = max(128, cnt / 256);
3552 
3553 	tcp_init_mem(&init_net);
3554 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3555 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3556 	max_wshare = min(4UL*1024*1024, limit);
3557 	max_rshare = min(6UL*1024*1024, limit);
3558 
3559 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3560 	sysctl_tcp_wmem[1] = 16*1024;
3561 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3562 
3563 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3564 	sysctl_tcp_rmem[1] = 87380;
3565 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3566 
3567 	pr_info("Hash tables configured (established %u bind %u)\n",
3568 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3569 
3570 	tcp_metrics_init();
3571 
3572 	tcp_register_congestion_control(&tcp_reno);
3573 
3574 	memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3575 	memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3576 	tcp_secret_one.expires = jiffy; /* past due */
3577 	tcp_secret_two.expires = jiffy; /* past due */
3578 	tcp_secret_generating = &tcp_secret_one;
3579 	tcp_secret_primary = &tcp_secret_one;
3580 	tcp_secret_retiring = &tcp_secret_two;
3581 	tcp_secret_secondary = &tcp_secret_two;
3582 	tcp_tasklet_init();
3583 }
3584