1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <linux/kernel.h> 251 #include <linux/module.h> 252 #include <linux/types.h> 253 #include <linux/fcntl.h> 254 #include <linux/poll.h> 255 #include <linux/init.h> 256 #include <linux/fs.h> 257 #include <linux/skbuff.h> 258 #include <linux/scatterlist.h> 259 #include <linux/splice.h> 260 #include <linux/net.h> 261 #include <linux/socket.h> 262 #include <linux/random.h> 263 #include <linux/bootmem.h> 264 #include <linux/highmem.h> 265 #include <linux/swap.h> 266 #include <linux/cache.h> 267 #include <linux/err.h> 268 #include <linux/crypto.h> 269 #include <linux/time.h> 270 #include <linux/slab.h> 271 272 #include <net/icmp.h> 273 #include <net/tcp.h> 274 #include <net/xfrm.h> 275 #include <net/ip.h> 276 #include <net/netdma.h> 277 #include <net/sock.h> 278 279 #include <asm/uaccess.h> 280 #include <asm/ioctls.h> 281 282 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT; 283 284 struct percpu_counter tcp_orphan_count; 285 EXPORT_SYMBOL_GPL(tcp_orphan_count); 286 287 int sysctl_tcp_wmem[3] __read_mostly; 288 int sysctl_tcp_rmem[3] __read_mostly; 289 290 EXPORT_SYMBOL(sysctl_tcp_rmem); 291 EXPORT_SYMBOL(sysctl_tcp_wmem); 292 293 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 294 EXPORT_SYMBOL(tcp_memory_allocated); 295 296 /* 297 * Current number of TCP sockets. 298 */ 299 struct percpu_counter tcp_sockets_allocated; 300 EXPORT_SYMBOL(tcp_sockets_allocated); 301 302 /* 303 * TCP splice context 304 */ 305 struct tcp_splice_state { 306 struct pipe_inode_info *pipe; 307 size_t len; 308 unsigned int flags; 309 }; 310 311 /* 312 * Pressure flag: try to collapse. 313 * Technical note: it is used by multiple contexts non atomically. 314 * All the __sk_mem_schedule() is of this nature: accounting 315 * is strict, actions are advisory and have some latency. 316 */ 317 int tcp_memory_pressure __read_mostly; 318 EXPORT_SYMBOL(tcp_memory_pressure); 319 320 void tcp_enter_memory_pressure(struct sock *sk) 321 { 322 if (!tcp_memory_pressure) { 323 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 324 tcp_memory_pressure = 1; 325 } 326 } 327 EXPORT_SYMBOL(tcp_enter_memory_pressure); 328 329 /* Convert seconds to retransmits based on initial and max timeout */ 330 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 331 { 332 u8 res = 0; 333 334 if (seconds > 0) { 335 int period = timeout; 336 337 res = 1; 338 while (seconds > period && res < 255) { 339 res++; 340 timeout <<= 1; 341 if (timeout > rto_max) 342 timeout = rto_max; 343 period += timeout; 344 } 345 } 346 return res; 347 } 348 349 /* Convert retransmits to seconds based on initial and max timeout */ 350 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 351 { 352 int period = 0; 353 354 if (retrans > 0) { 355 period = timeout; 356 while (--retrans) { 357 timeout <<= 1; 358 if (timeout > rto_max) 359 timeout = rto_max; 360 period += timeout; 361 } 362 } 363 return period; 364 } 365 366 /* Address-family independent initialization for a tcp_sock. 367 * 368 * NOTE: A lot of things set to zero explicitly by call to 369 * sk_alloc() so need not be done here. 370 */ 371 void tcp_init_sock(struct sock *sk) 372 { 373 struct inet_connection_sock *icsk = inet_csk(sk); 374 struct tcp_sock *tp = tcp_sk(sk); 375 376 skb_queue_head_init(&tp->out_of_order_queue); 377 tcp_init_xmit_timers(sk); 378 tcp_prequeue_init(tp); 379 INIT_LIST_HEAD(&tp->tsq_node); 380 381 icsk->icsk_rto = TCP_TIMEOUT_INIT; 382 tp->mdev = TCP_TIMEOUT_INIT; 383 384 /* So many TCP implementations out there (incorrectly) count the 385 * initial SYN frame in their delayed-ACK and congestion control 386 * algorithms that we must have the following bandaid to talk 387 * efficiently to them. -DaveM 388 */ 389 tp->snd_cwnd = TCP_INIT_CWND; 390 391 /* See draft-stevens-tcpca-spec-01 for discussion of the 392 * initialization of these values. 393 */ 394 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 395 tp->snd_cwnd_clamp = ~0; 396 tp->mss_cache = TCP_MSS_DEFAULT; 397 398 tp->reordering = sysctl_tcp_reordering; 399 tcp_enable_early_retrans(tp); 400 icsk->icsk_ca_ops = &tcp_init_congestion_ops; 401 402 sk->sk_state = TCP_CLOSE; 403 404 sk->sk_write_space = sk_stream_write_space; 405 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 406 407 icsk->icsk_sync_mss = tcp_sync_mss; 408 409 /* TCP Cookie Transactions */ 410 if (sysctl_tcp_cookie_size > 0) { 411 /* Default, cookies without s_data_payload. */ 412 tp->cookie_values = 413 kzalloc(sizeof(*tp->cookie_values), 414 sk->sk_allocation); 415 if (tp->cookie_values != NULL) 416 kref_init(&tp->cookie_values->kref); 417 } 418 /* Presumed zeroed, in order of appearance: 419 * cookie_in_always, cookie_out_never, 420 * s_data_constant, s_data_in, s_data_out 421 */ 422 sk->sk_sndbuf = sysctl_tcp_wmem[1]; 423 sk->sk_rcvbuf = sysctl_tcp_rmem[1]; 424 425 local_bh_disable(); 426 sock_update_memcg(sk); 427 sk_sockets_allocated_inc(sk); 428 local_bh_enable(); 429 } 430 EXPORT_SYMBOL(tcp_init_sock); 431 432 /* 433 * Wait for a TCP event. 434 * 435 * Note that we don't need to lock the socket, as the upper poll layers 436 * take care of normal races (between the test and the event) and we don't 437 * go look at any of the socket buffers directly. 438 */ 439 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 440 { 441 unsigned int mask; 442 struct sock *sk = sock->sk; 443 const struct tcp_sock *tp = tcp_sk(sk); 444 445 sock_poll_wait(file, sk_sleep(sk), wait); 446 if (sk->sk_state == TCP_LISTEN) 447 return inet_csk_listen_poll(sk); 448 449 /* Socket is not locked. We are protected from async events 450 * by poll logic and correct handling of state changes 451 * made by other threads is impossible in any case. 452 */ 453 454 mask = 0; 455 456 /* 457 * POLLHUP is certainly not done right. But poll() doesn't 458 * have a notion of HUP in just one direction, and for a 459 * socket the read side is more interesting. 460 * 461 * Some poll() documentation says that POLLHUP is incompatible 462 * with the POLLOUT/POLLWR flags, so somebody should check this 463 * all. But careful, it tends to be safer to return too many 464 * bits than too few, and you can easily break real applications 465 * if you don't tell them that something has hung up! 466 * 467 * Check-me. 468 * 469 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and 470 * our fs/select.c). It means that after we received EOF, 471 * poll always returns immediately, making impossible poll() on write() 472 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP 473 * if and only if shutdown has been made in both directions. 474 * Actually, it is interesting to look how Solaris and DUX 475 * solve this dilemma. I would prefer, if POLLHUP were maskable, 476 * then we could set it on SND_SHUTDOWN. BTW examples given 477 * in Stevens' books assume exactly this behaviour, it explains 478 * why POLLHUP is incompatible with POLLOUT. --ANK 479 * 480 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 481 * blocking on fresh not-connected or disconnected socket. --ANK 482 */ 483 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE) 484 mask |= POLLHUP; 485 if (sk->sk_shutdown & RCV_SHUTDOWN) 486 mask |= POLLIN | POLLRDNORM | POLLRDHUP; 487 488 /* Connected? */ 489 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) { 490 int target = sock_rcvlowat(sk, 0, INT_MAX); 491 492 if (tp->urg_seq == tp->copied_seq && 493 !sock_flag(sk, SOCK_URGINLINE) && 494 tp->urg_data) 495 target++; 496 497 /* Potential race condition. If read of tp below will 498 * escape above sk->sk_state, we can be illegally awaken 499 * in SYN_* states. */ 500 if (tp->rcv_nxt - tp->copied_seq >= target) 501 mask |= POLLIN | POLLRDNORM; 502 503 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 504 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) { 505 mask |= POLLOUT | POLLWRNORM; 506 } else { /* send SIGIO later */ 507 set_bit(SOCK_ASYNC_NOSPACE, 508 &sk->sk_socket->flags); 509 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 510 511 /* Race breaker. If space is freed after 512 * wspace test but before the flags are set, 513 * IO signal will be lost. 514 */ 515 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) 516 mask |= POLLOUT | POLLWRNORM; 517 } 518 } else 519 mask |= POLLOUT | POLLWRNORM; 520 521 if (tp->urg_data & TCP_URG_VALID) 522 mask |= POLLPRI; 523 } 524 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 525 smp_rmb(); 526 if (sk->sk_err) 527 mask |= POLLERR; 528 529 return mask; 530 } 531 EXPORT_SYMBOL(tcp_poll); 532 533 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 534 { 535 struct tcp_sock *tp = tcp_sk(sk); 536 int answ; 537 538 switch (cmd) { 539 case SIOCINQ: 540 if (sk->sk_state == TCP_LISTEN) 541 return -EINVAL; 542 543 lock_sock(sk); 544 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 545 answ = 0; 546 else if (sock_flag(sk, SOCK_URGINLINE) || 547 !tp->urg_data || 548 before(tp->urg_seq, tp->copied_seq) || 549 !before(tp->urg_seq, tp->rcv_nxt)) { 550 struct sk_buff *skb; 551 552 answ = tp->rcv_nxt - tp->copied_seq; 553 554 /* Subtract 1, if FIN is in queue. */ 555 skb = skb_peek_tail(&sk->sk_receive_queue); 556 if (answ && skb) 557 answ -= tcp_hdr(skb)->fin; 558 } else 559 answ = tp->urg_seq - tp->copied_seq; 560 release_sock(sk); 561 break; 562 case SIOCATMARK: 563 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 564 break; 565 case SIOCOUTQ: 566 if (sk->sk_state == TCP_LISTEN) 567 return -EINVAL; 568 569 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 570 answ = 0; 571 else 572 answ = tp->write_seq - tp->snd_una; 573 break; 574 case SIOCOUTQNSD: 575 if (sk->sk_state == TCP_LISTEN) 576 return -EINVAL; 577 578 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 579 answ = 0; 580 else 581 answ = tp->write_seq - tp->snd_nxt; 582 break; 583 default: 584 return -ENOIOCTLCMD; 585 } 586 587 return put_user(answ, (int __user *)arg); 588 } 589 EXPORT_SYMBOL(tcp_ioctl); 590 591 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 592 { 593 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 594 tp->pushed_seq = tp->write_seq; 595 } 596 597 static inline bool forced_push(const struct tcp_sock *tp) 598 { 599 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 600 } 601 602 static inline void skb_entail(struct sock *sk, struct sk_buff *skb) 603 { 604 struct tcp_sock *tp = tcp_sk(sk); 605 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 606 607 skb->csum = 0; 608 tcb->seq = tcb->end_seq = tp->write_seq; 609 tcb->tcp_flags = TCPHDR_ACK; 610 tcb->sacked = 0; 611 skb_header_release(skb); 612 tcp_add_write_queue_tail(sk, skb); 613 sk->sk_wmem_queued += skb->truesize; 614 sk_mem_charge(sk, skb->truesize); 615 if (tp->nonagle & TCP_NAGLE_PUSH) 616 tp->nonagle &= ~TCP_NAGLE_PUSH; 617 } 618 619 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 620 { 621 if (flags & MSG_OOB) 622 tp->snd_up = tp->write_seq; 623 } 624 625 static inline void tcp_push(struct sock *sk, int flags, int mss_now, 626 int nonagle) 627 { 628 if (tcp_send_head(sk)) { 629 struct tcp_sock *tp = tcp_sk(sk); 630 631 if (!(flags & MSG_MORE) || forced_push(tp)) 632 tcp_mark_push(tp, tcp_write_queue_tail(sk)); 633 634 tcp_mark_urg(tp, flags); 635 __tcp_push_pending_frames(sk, mss_now, 636 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle); 637 } 638 } 639 640 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 641 unsigned int offset, size_t len) 642 { 643 struct tcp_splice_state *tss = rd_desc->arg.data; 644 int ret; 645 646 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len), 647 tss->flags); 648 if (ret > 0) 649 rd_desc->count -= ret; 650 return ret; 651 } 652 653 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 654 { 655 /* Store TCP splice context information in read_descriptor_t. */ 656 read_descriptor_t rd_desc = { 657 .arg.data = tss, 658 .count = tss->len, 659 }; 660 661 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 662 } 663 664 /** 665 * tcp_splice_read - splice data from TCP socket to a pipe 666 * @sock: socket to splice from 667 * @ppos: position (not valid) 668 * @pipe: pipe to splice to 669 * @len: number of bytes to splice 670 * @flags: splice modifier flags 671 * 672 * Description: 673 * Will read pages from given socket and fill them into a pipe. 674 * 675 **/ 676 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 677 struct pipe_inode_info *pipe, size_t len, 678 unsigned int flags) 679 { 680 struct sock *sk = sock->sk; 681 struct tcp_splice_state tss = { 682 .pipe = pipe, 683 .len = len, 684 .flags = flags, 685 }; 686 long timeo; 687 ssize_t spliced; 688 int ret; 689 690 sock_rps_record_flow(sk); 691 /* 692 * We can't seek on a socket input 693 */ 694 if (unlikely(*ppos)) 695 return -ESPIPE; 696 697 ret = spliced = 0; 698 699 lock_sock(sk); 700 701 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 702 while (tss.len) { 703 ret = __tcp_splice_read(sk, &tss); 704 if (ret < 0) 705 break; 706 else if (!ret) { 707 if (spliced) 708 break; 709 if (sock_flag(sk, SOCK_DONE)) 710 break; 711 if (sk->sk_err) { 712 ret = sock_error(sk); 713 break; 714 } 715 if (sk->sk_shutdown & RCV_SHUTDOWN) 716 break; 717 if (sk->sk_state == TCP_CLOSE) { 718 /* 719 * This occurs when user tries to read 720 * from never connected socket. 721 */ 722 if (!sock_flag(sk, SOCK_DONE)) 723 ret = -ENOTCONN; 724 break; 725 } 726 if (!timeo) { 727 ret = -EAGAIN; 728 break; 729 } 730 sk_wait_data(sk, &timeo); 731 if (signal_pending(current)) { 732 ret = sock_intr_errno(timeo); 733 break; 734 } 735 continue; 736 } 737 tss.len -= ret; 738 spliced += ret; 739 740 if (!timeo) 741 break; 742 release_sock(sk); 743 lock_sock(sk); 744 745 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 746 (sk->sk_shutdown & RCV_SHUTDOWN) || 747 signal_pending(current)) 748 break; 749 } 750 751 release_sock(sk); 752 753 if (spliced) 754 return spliced; 755 756 return ret; 757 } 758 EXPORT_SYMBOL(tcp_splice_read); 759 760 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp) 761 { 762 struct sk_buff *skb; 763 764 /* The TCP header must be at least 32-bit aligned. */ 765 size = ALIGN(size, 4); 766 767 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 768 if (skb) { 769 if (sk_wmem_schedule(sk, skb->truesize)) { 770 skb_reserve(skb, sk->sk_prot->max_header); 771 /* 772 * Make sure that we have exactly size bytes 773 * available to the caller, no more, no less. 774 */ 775 skb->avail_size = size; 776 return skb; 777 } 778 __kfree_skb(skb); 779 } else { 780 sk->sk_prot->enter_memory_pressure(sk); 781 sk_stream_moderate_sndbuf(sk); 782 } 783 return NULL; 784 } 785 786 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 787 int large_allowed) 788 { 789 struct tcp_sock *tp = tcp_sk(sk); 790 u32 xmit_size_goal, old_size_goal; 791 792 xmit_size_goal = mss_now; 793 794 if (large_allowed && sk_can_gso(sk)) { 795 xmit_size_goal = ((sk->sk_gso_max_size - 1) - 796 inet_csk(sk)->icsk_af_ops->net_header_len - 797 inet_csk(sk)->icsk_ext_hdr_len - 798 tp->tcp_header_len); 799 800 /* TSQ : try to have two TSO segments in flight */ 801 xmit_size_goal = min_t(u32, xmit_size_goal, 802 sysctl_tcp_limit_output_bytes >> 1); 803 804 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal); 805 806 /* We try hard to avoid divides here */ 807 old_size_goal = tp->xmit_size_goal_segs * mss_now; 808 809 if (likely(old_size_goal <= xmit_size_goal && 810 old_size_goal + mss_now > xmit_size_goal)) { 811 xmit_size_goal = old_size_goal; 812 } else { 813 tp->xmit_size_goal_segs = xmit_size_goal / mss_now; 814 xmit_size_goal = tp->xmit_size_goal_segs * mss_now; 815 } 816 } 817 818 return max(xmit_size_goal, mss_now); 819 } 820 821 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 822 { 823 int mss_now; 824 825 mss_now = tcp_current_mss(sk); 826 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 827 828 return mss_now; 829 } 830 831 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset, 832 size_t psize, int flags) 833 { 834 struct tcp_sock *tp = tcp_sk(sk); 835 int mss_now, size_goal; 836 int err; 837 ssize_t copied; 838 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 839 840 /* Wait for a connection to finish. */ 841 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 842 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 843 goto out_err; 844 845 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 846 847 mss_now = tcp_send_mss(sk, &size_goal, flags); 848 copied = 0; 849 850 err = -EPIPE; 851 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 852 goto out_err; 853 854 while (psize > 0) { 855 struct sk_buff *skb = tcp_write_queue_tail(sk); 856 struct page *page = pages[poffset / PAGE_SIZE]; 857 int copy, i; 858 int offset = poffset % PAGE_SIZE; 859 int size = min_t(size_t, psize, PAGE_SIZE - offset); 860 bool can_coalesce; 861 862 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) { 863 new_segment: 864 if (!sk_stream_memory_free(sk)) 865 goto wait_for_sndbuf; 866 867 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation); 868 if (!skb) 869 goto wait_for_memory; 870 871 skb_entail(sk, skb); 872 copy = size_goal; 873 } 874 875 if (copy > size) 876 copy = size; 877 878 i = skb_shinfo(skb)->nr_frags; 879 can_coalesce = skb_can_coalesce(skb, i, page, offset); 880 if (!can_coalesce && i >= MAX_SKB_FRAGS) { 881 tcp_mark_push(tp, skb); 882 goto new_segment; 883 } 884 if (!sk_wmem_schedule(sk, copy)) 885 goto wait_for_memory; 886 887 if (can_coalesce) { 888 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 889 } else { 890 get_page(page); 891 skb_fill_page_desc(skb, i, page, offset, copy); 892 } 893 894 skb->len += copy; 895 skb->data_len += copy; 896 skb->truesize += copy; 897 sk->sk_wmem_queued += copy; 898 sk_mem_charge(sk, copy); 899 skb->ip_summed = CHECKSUM_PARTIAL; 900 tp->write_seq += copy; 901 TCP_SKB_CB(skb)->end_seq += copy; 902 skb_shinfo(skb)->gso_segs = 0; 903 904 if (!copied) 905 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 906 907 copied += copy; 908 poffset += copy; 909 if (!(psize -= copy)) 910 goto out; 911 912 if (skb->len < size_goal || (flags & MSG_OOB)) 913 continue; 914 915 if (forced_push(tp)) { 916 tcp_mark_push(tp, skb); 917 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 918 } else if (skb == tcp_send_head(sk)) 919 tcp_push_one(sk, mss_now); 920 continue; 921 922 wait_for_sndbuf: 923 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 924 wait_for_memory: 925 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 926 927 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 928 goto do_error; 929 930 mss_now = tcp_send_mss(sk, &size_goal, flags); 931 } 932 933 out: 934 if (copied && !(flags & MSG_SENDPAGE_NOTLAST)) 935 tcp_push(sk, flags, mss_now, tp->nonagle); 936 return copied; 937 938 do_error: 939 if (copied) 940 goto out; 941 out_err: 942 return sk_stream_error(sk, flags, err); 943 } 944 945 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 946 size_t size, int flags) 947 { 948 ssize_t res; 949 950 if (!(sk->sk_route_caps & NETIF_F_SG) || 951 !(sk->sk_route_caps & NETIF_F_ALL_CSUM)) 952 return sock_no_sendpage(sk->sk_socket, page, offset, size, 953 flags); 954 955 lock_sock(sk); 956 res = do_tcp_sendpages(sk, &page, offset, size, flags); 957 release_sock(sk); 958 return res; 959 } 960 EXPORT_SYMBOL(tcp_sendpage); 961 962 static inline int select_size(const struct sock *sk, bool sg) 963 { 964 const struct tcp_sock *tp = tcp_sk(sk); 965 int tmp = tp->mss_cache; 966 967 if (sg) { 968 if (sk_can_gso(sk)) { 969 /* Small frames wont use a full page: 970 * Payload will immediately follow tcp header. 971 */ 972 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 973 } else { 974 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER); 975 976 if (tmp >= pgbreak && 977 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE) 978 tmp = pgbreak; 979 } 980 } 981 982 return tmp; 983 } 984 985 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 986 size_t size) 987 { 988 struct iovec *iov; 989 struct tcp_sock *tp = tcp_sk(sk); 990 struct sk_buff *skb; 991 int iovlen, flags, err, copied; 992 int mss_now = 0, size_goal; 993 bool sg; 994 long timeo; 995 996 lock_sock(sk); 997 998 flags = msg->msg_flags; 999 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1000 1001 /* Wait for a connection to finish. */ 1002 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) 1003 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0) 1004 goto out_err; 1005 1006 if (unlikely(tp->repair)) { 1007 if (tp->repair_queue == TCP_RECV_QUEUE) { 1008 copied = tcp_send_rcvq(sk, msg, size); 1009 goto out; 1010 } 1011 1012 err = -EINVAL; 1013 if (tp->repair_queue == TCP_NO_QUEUE) 1014 goto out_err; 1015 1016 /* 'common' sending to sendq */ 1017 } 1018 1019 /* This should be in poll */ 1020 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 1021 1022 mss_now = tcp_send_mss(sk, &size_goal, flags); 1023 1024 /* Ok commence sending. */ 1025 iovlen = msg->msg_iovlen; 1026 iov = msg->msg_iov; 1027 copied = 0; 1028 1029 err = -EPIPE; 1030 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1031 goto out_err; 1032 1033 sg = !!(sk->sk_route_caps & NETIF_F_SG); 1034 1035 while (--iovlen >= 0) { 1036 size_t seglen = iov->iov_len; 1037 unsigned char __user *from = iov->iov_base; 1038 1039 iov++; 1040 1041 while (seglen > 0) { 1042 int copy = 0; 1043 int max = size_goal; 1044 1045 skb = tcp_write_queue_tail(sk); 1046 if (tcp_send_head(sk)) { 1047 if (skb->ip_summed == CHECKSUM_NONE) 1048 max = mss_now; 1049 copy = max - skb->len; 1050 } 1051 1052 if (copy <= 0) { 1053 new_segment: 1054 /* Allocate new segment. If the interface is SG, 1055 * allocate skb fitting to single page. 1056 */ 1057 if (!sk_stream_memory_free(sk)) 1058 goto wait_for_sndbuf; 1059 1060 skb = sk_stream_alloc_skb(sk, 1061 select_size(sk, sg), 1062 sk->sk_allocation); 1063 if (!skb) 1064 goto wait_for_memory; 1065 1066 /* 1067 * Check whether we can use HW checksum. 1068 */ 1069 if (sk->sk_route_caps & NETIF_F_ALL_CSUM) 1070 skb->ip_summed = CHECKSUM_PARTIAL; 1071 1072 skb_entail(sk, skb); 1073 copy = size_goal; 1074 max = size_goal; 1075 } 1076 1077 /* Try to append data to the end of skb. */ 1078 if (copy > seglen) 1079 copy = seglen; 1080 1081 /* Where to copy to? */ 1082 if (skb_availroom(skb) > 0) { 1083 /* We have some space in skb head. Superb! */ 1084 copy = min_t(int, copy, skb_availroom(skb)); 1085 err = skb_add_data_nocache(sk, skb, from, copy); 1086 if (err) 1087 goto do_fault; 1088 } else { 1089 bool merge = false; 1090 int i = skb_shinfo(skb)->nr_frags; 1091 struct page *page = sk->sk_sndmsg_page; 1092 int off; 1093 1094 if (page && page_count(page) == 1) 1095 sk->sk_sndmsg_off = 0; 1096 1097 off = sk->sk_sndmsg_off; 1098 1099 if (skb_can_coalesce(skb, i, page, off) && 1100 off != PAGE_SIZE) { 1101 /* We can extend the last page 1102 * fragment. */ 1103 merge = true; 1104 } else if (i == MAX_SKB_FRAGS || !sg) { 1105 /* Need to add new fragment and cannot 1106 * do this because interface is non-SG, 1107 * or because all the page slots are 1108 * busy. */ 1109 tcp_mark_push(tp, skb); 1110 goto new_segment; 1111 } else if (page) { 1112 if (off == PAGE_SIZE) { 1113 put_page(page); 1114 sk->sk_sndmsg_page = page = NULL; 1115 off = 0; 1116 } 1117 } else 1118 off = 0; 1119 1120 if (copy > PAGE_SIZE - off) 1121 copy = PAGE_SIZE - off; 1122 1123 if (!sk_wmem_schedule(sk, copy)) 1124 goto wait_for_memory; 1125 1126 if (!page) { 1127 /* Allocate new cache page. */ 1128 if (!(page = sk_stream_alloc_page(sk))) 1129 goto wait_for_memory; 1130 } 1131 1132 /* Time to copy data. We are close to 1133 * the end! */ 1134 err = skb_copy_to_page_nocache(sk, from, skb, 1135 page, off, copy); 1136 if (err) { 1137 /* If this page was new, give it to the 1138 * socket so it does not get leaked. 1139 */ 1140 if (!sk->sk_sndmsg_page) { 1141 sk->sk_sndmsg_page = page; 1142 sk->sk_sndmsg_off = 0; 1143 } 1144 goto do_error; 1145 } 1146 1147 /* Update the skb. */ 1148 if (merge) { 1149 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1150 } else { 1151 skb_fill_page_desc(skb, i, page, off, copy); 1152 if (sk->sk_sndmsg_page) { 1153 get_page(page); 1154 } else if (off + copy < PAGE_SIZE) { 1155 get_page(page); 1156 sk->sk_sndmsg_page = page; 1157 } 1158 } 1159 1160 sk->sk_sndmsg_off = off + copy; 1161 } 1162 1163 if (!copied) 1164 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1165 1166 tp->write_seq += copy; 1167 TCP_SKB_CB(skb)->end_seq += copy; 1168 skb_shinfo(skb)->gso_segs = 0; 1169 1170 from += copy; 1171 copied += copy; 1172 if ((seglen -= copy) == 0 && iovlen == 0) 1173 goto out; 1174 1175 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair)) 1176 continue; 1177 1178 if (forced_push(tp)) { 1179 tcp_mark_push(tp, skb); 1180 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1181 } else if (skb == tcp_send_head(sk)) 1182 tcp_push_one(sk, mss_now); 1183 continue; 1184 1185 wait_for_sndbuf: 1186 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1187 wait_for_memory: 1188 if (copied && likely(!tp->repair)) 1189 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH); 1190 1191 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0) 1192 goto do_error; 1193 1194 mss_now = tcp_send_mss(sk, &size_goal, flags); 1195 } 1196 } 1197 1198 out: 1199 if (copied && likely(!tp->repair)) 1200 tcp_push(sk, flags, mss_now, tp->nonagle); 1201 release_sock(sk); 1202 return copied; 1203 1204 do_fault: 1205 if (!skb->len) { 1206 tcp_unlink_write_queue(skb, sk); 1207 /* It is the one place in all of TCP, except connection 1208 * reset, where we can be unlinking the send_head. 1209 */ 1210 tcp_check_send_head(sk, skb); 1211 sk_wmem_free_skb(sk, skb); 1212 } 1213 1214 do_error: 1215 if (copied) 1216 goto out; 1217 out_err: 1218 err = sk_stream_error(sk, flags, err); 1219 release_sock(sk); 1220 return err; 1221 } 1222 EXPORT_SYMBOL(tcp_sendmsg); 1223 1224 /* 1225 * Handle reading urgent data. BSD has very simple semantics for 1226 * this, no blocking and very strange errors 8) 1227 */ 1228 1229 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1230 { 1231 struct tcp_sock *tp = tcp_sk(sk); 1232 1233 /* No URG data to read. */ 1234 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1235 tp->urg_data == TCP_URG_READ) 1236 return -EINVAL; /* Yes this is right ! */ 1237 1238 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1239 return -ENOTCONN; 1240 1241 if (tp->urg_data & TCP_URG_VALID) { 1242 int err = 0; 1243 char c = tp->urg_data; 1244 1245 if (!(flags & MSG_PEEK)) 1246 tp->urg_data = TCP_URG_READ; 1247 1248 /* Read urgent data. */ 1249 msg->msg_flags |= MSG_OOB; 1250 1251 if (len > 0) { 1252 if (!(flags & MSG_TRUNC)) 1253 err = memcpy_toiovec(msg->msg_iov, &c, 1); 1254 len = 1; 1255 } else 1256 msg->msg_flags |= MSG_TRUNC; 1257 1258 return err ? -EFAULT : len; 1259 } 1260 1261 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1262 return 0; 1263 1264 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1265 * the available implementations agree in this case: 1266 * this call should never block, independent of the 1267 * blocking state of the socket. 1268 * Mike <pall@rz.uni-karlsruhe.de> 1269 */ 1270 return -EAGAIN; 1271 } 1272 1273 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1274 { 1275 struct sk_buff *skb; 1276 int copied = 0, err = 0; 1277 1278 /* XXX -- need to support SO_PEEK_OFF */ 1279 1280 skb_queue_walk(&sk->sk_write_queue, skb) { 1281 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len); 1282 if (err) 1283 break; 1284 1285 copied += skb->len; 1286 } 1287 1288 return err ?: copied; 1289 } 1290 1291 /* Clean up the receive buffer for full frames taken by the user, 1292 * then send an ACK if necessary. COPIED is the number of bytes 1293 * tcp_recvmsg has given to the user so far, it speeds up the 1294 * calculation of whether or not we must ACK for the sake of 1295 * a window update. 1296 */ 1297 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1298 { 1299 struct tcp_sock *tp = tcp_sk(sk); 1300 bool time_to_ack = false; 1301 1302 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1303 1304 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1305 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1306 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1307 1308 if (inet_csk_ack_scheduled(sk)) { 1309 const struct inet_connection_sock *icsk = inet_csk(sk); 1310 /* Delayed ACKs frequently hit locked sockets during bulk 1311 * receive. */ 1312 if (icsk->icsk_ack.blocked || 1313 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1314 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1315 /* 1316 * If this read emptied read buffer, we send ACK, if 1317 * connection is not bidirectional, user drained 1318 * receive buffer and there was a small segment 1319 * in queue. 1320 */ 1321 (copied > 0 && 1322 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1323 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1324 !icsk->icsk_ack.pingpong)) && 1325 !atomic_read(&sk->sk_rmem_alloc))) 1326 time_to_ack = true; 1327 } 1328 1329 /* We send an ACK if we can now advertise a non-zero window 1330 * which has been raised "significantly". 1331 * 1332 * Even if window raised up to infinity, do not send window open ACK 1333 * in states, where we will not receive more. It is useless. 1334 */ 1335 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1336 __u32 rcv_window_now = tcp_receive_window(tp); 1337 1338 /* Optimize, __tcp_select_window() is not cheap. */ 1339 if (2*rcv_window_now <= tp->window_clamp) { 1340 __u32 new_window = __tcp_select_window(sk); 1341 1342 /* Send ACK now, if this read freed lots of space 1343 * in our buffer. Certainly, new_window is new window. 1344 * We can advertise it now, if it is not less than current one. 1345 * "Lots" means "at least twice" here. 1346 */ 1347 if (new_window && new_window >= 2 * rcv_window_now) 1348 time_to_ack = true; 1349 } 1350 } 1351 if (time_to_ack) 1352 tcp_send_ack(sk); 1353 } 1354 1355 static void tcp_prequeue_process(struct sock *sk) 1356 { 1357 struct sk_buff *skb; 1358 struct tcp_sock *tp = tcp_sk(sk); 1359 1360 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED); 1361 1362 /* RX process wants to run with disabled BHs, though it is not 1363 * necessary */ 1364 local_bh_disable(); 1365 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) 1366 sk_backlog_rcv(sk, skb); 1367 local_bh_enable(); 1368 1369 /* Clear memory counter. */ 1370 tp->ucopy.memory = 0; 1371 } 1372 1373 #ifdef CONFIG_NET_DMA 1374 static void tcp_service_net_dma(struct sock *sk, bool wait) 1375 { 1376 dma_cookie_t done, used; 1377 dma_cookie_t last_issued; 1378 struct tcp_sock *tp = tcp_sk(sk); 1379 1380 if (!tp->ucopy.dma_chan) 1381 return; 1382 1383 last_issued = tp->ucopy.dma_cookie; 1384 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1385 1386 do { 1387 if (dma_async_memcpy_complete(tp->ucopy.dma_chan, 1388 last_issued, &done, 1389 &used) == DMA_SUCCESS) { 1390 /* Safe to free early-copied skbs now */ 1391 __skb_queue_purge(&sk->sk_async_wait_queue); 1392 break; 1393 } else { 1394 struct sk_buff *skb; 1395 while ((skb = skb_peek(&sk->sk_async_wait_queue)) && 1396 (dma_async_is_complete(skb->dma_cookie, done, 1397 used) == DMA_SUCCESS)) { 1398 __skb_dequeue(&sk->sk_async_wait_queue); 1399 kfree_skb(skb); 1400 } 1401 } 1402 } while (wait); 1403 } 1404 #endif 1405 1406 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1407 { 1408 struct sk_buff *skb; 1409 u32 offset; 1410 1411 skb_queue_walk(&sk->sk_receive_queue, skb) { 1412 offset = seq - TCP_SKB_CB(skb)->seq; 1413 if (tcp_hdr(skb)->syn) 1414 offset--; 1415 if (offset < skb->len || tcp_hdr(skb)->fin) { 1416 *off = offset; 1417 return skb; 1418 } 1419 } 1420 return NULL; 1421 } 1422 1423 /* 1424 * This routine provides an alternative to tcp_recvmsg() for routines 1425 * that would like to handle copying from skbuffs directly in 'sendfile' 1426 * fashion. 1427 * Note: 1428 * - It is assumed that the socket was locked by the caller. 1429 * - The routine does not block. 1430 * - At present, there is no support for reading OOB data 1431 * or for 'peeking' the socket using this routine 1432 * (although both would be easy to implement). 1433 */ 1434 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1435 sk_read_actor_t recv_actor) 1436 { 1437 struct sk_buff *skb; 1438 struct tcp_sock *tp = tcp_sk(sk); 1439 u32 seq = tp->copied_seq; 1440 u32 offset; 1441 int copied = 0; 1442 1443 if (sk->sk_state == TCP_LISTEN) 1444 return -ENOTCONN; 1445 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1446 if (offset < skb->len) { 1447 int used; 1448 size_t len; 1449 1450 len = skb->len - offset; 1451 /* Stop reading if we hit a patch of urgent data */ 1452 if (tp->urg_data) { 1453 u32 urg_offset = tp->urg_seq - seq; 1454 if (urg_offset < len) 1455 len = urg_offset; 1456 if (!len) 1457 break; 1458 } 1459 used = recv_actor(desc, skb, offset, len); 1460 if (used < 0) { 1461 if (!copied) 1462 copied = used; 1463 break; 1464 } else if (used <= len) { 1465 seq += used; 1466 copied += used; 1467 offset += used; 1468 } 1469 /* 1470 * If recv_actor drops the lock (e.g. TCP splice 1471 * receive) the skb pointer might be invalid when 1472 * getting here: tcp_collapse might have deleted it 1473 * while aggregating skbs from the socket queue. 1474 */ 1475 skb = tcp_recv_skb(sk, seq-1, &offset); 1476 if (!skb || (offset+1 != skb->len)) 1477 break; 1478 } 1479 if (tcp_hdr(skb)->fin) { 1480 sk_eat_skb(sk, skb, false); 1481 ++seq; 1482 break; 1483 } 1484 sk_eat_skb(sk, skb, false); 1485 if (!desc->count) 1486 break; 1487 tp->copied_seq = seq; 1488 } 1489 tp->copied_seq = seq; 1490 1491 tcp_rcv_space_adjust(sk); 1492 1493 /* Clean up data we have read: This will do ACK frames. */ 1494 if (copied > 0) 1495 tcp_cleanup_rbuf(sk, copied); 1496 return copied; 1497 } 1498 EXPORT_SYMBOL(tcp_read_sock); 1499 1500 /* 1501 * This routine copies from a sock struct into the user buffer. 1502 * 1503 * Technical note: in 2.3 we work on _locked_ socket, so that 1504 * tricks with *seq access order and skb->users are not required. 1505 * Probably, code can be easily improved even more. 1506 */ 1507 1508 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 1509 size_t len, int nonblock, int flags, int *addr_len) 1510 { 1511 struct tcp_sock *tp = tcp_sk(sk); 1512 int copied = 0; 1513 u32 peek_seq; 1514 u32 *seq; 1515 unsigned long used; 1516 int err; 1517 int target; /* Read at least this many bytes */ 1518 long timeo; 1519 struct task_struct *user_recv = NULL; 1520 bool copied_early = false; 1521 struct sk_buff *skb; 1522 u32 urg_hole = 0; 1523 1524 lock_sock(sk); 1525 1526 err = -ENOTCONN; 1527 if (sk->sk_state == TCP_LISTEN) 1528 goto out; 1529 1530 timeo = sock_rcvtimeo(sk, nonblock); 1531 1532 /* Urgent data needs to be handled specially. */ 1533 if (flags & MSG_OOB) 1534 goto recv_urg; 1535 1536 if (unlikely(tp->repair)) { 1537 err = -EPERM; 1538 if (!(flags & MSG_PEEK)) 1539 goto out; 1540 1541 if (tp->repair_queue == TCP_SEND_QUEUE) 1542 goto recv_sndq; 1543 1544 err = -EINVAL; 1545 if (tp->repair_queue == TCP_NO_QUEUE) 1546 goto out; 1547 1548 /* 'common' recv queue MSG_PEEK-ing */ 1549 } 1550 1551 seq = &tp->copied_seq; 1552 if (flags & MSG_PEEK) { 1553 peek_seq = tp->copied_seq; 1554 seq = &peek_seq; 1555 } 1556 1557 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1558 1559 #ifdef CONFIG_NET_DMA 1560 tp->ucopy.dma_chan = NULL; 1561 preempt_disable(); 1562 skb = skb_peek_tail(&sk->sk_receive_queue); 1563 { 1564 int available = 0; 1565 1566 if (skb) 1567 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq); 1568 if ((available < target) && 1569 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && 1570 !sysctl_tcp_low_latency && 1571 net_dma_find_channel()) { 1572 preempt_enable_no_resched(); 1573 tp->ucopy.pinned_list = 1574 dma_pin_iovec_pages(msg->msg_iov, len); 1575 } else { 1576 preempt_enable_no_resched(); 1577 } 1578 } 1579 #endif 1580 1581 do { 1582 u32 offset; 1583 1584 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1585 if (tp->urg_data && tp->urg_seq == *seq) { 1586 if (copied) 1587 break; 1588 if (signal_pending(current)) { 1589 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1590 break; 1591 } 1592 } 1593 1594 /* Next get a buffer. */ 1595 1596 skb_queue_walk(&sk->sk_receive_queue, skb) { 1597 /* Now that we have two receive queues this 1598 * shouldn't happen. 1599 */ 1600 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1601 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1602 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1603 flags)) 1604 break; 1605 1606 offset = *seq - TCP_SKB_CB(skb)->seq; 1607 if (tcp_hdr(skb)->syn) 1608 offset--; 1609 if (offset < skb->len) 1610 goto found_ok_skb; 1611 if (tcp_hdr(skb)->fin) 1612 goto found_fin_ok; 1613 WARN(!(flags & MSG_PEEK), 1614 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 1615 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 1616 } 1617 1618 /* Well, if we have backlog, try to process it now yet. */ 1619 1620 if (copied >= target && !sk->sk_backlog.tail) 1621 break; 1622 1623 if (copied) { 1624 if (sk->sk_err || 1625 sk->sk_state == TCP_CLOSE || 1626 (sk->sk_shutdown & RCV_SHUTDOWN) || 1627 !timeo || 1628 signal_pending(current)) 1629 break; 1630 } else { 1631 if (sock_flag(sk, SOCK_DONE)) 1632 break; 1633 1634 if (sk->sk_err) { 1635 copied = sock_error(sk); 1636 break; 1637 } 1638 1639 if (sk->sk_shutdown & RCV_SHUTDOWN) 1640 break; 1641 1642 if (sk->sk_state == TCP_CLOSE) { 1643 if (!sock_flag(sk, SOCK_DONE)) { 1644 /* This occurs when user tries to read 1645 * from never connected socket. 1646 */ 1647 copied = -ENOTCONN; 1648 break; 1649 } 1650 break; 1651 } 1652 1653 if (!timeo) { 1654 copied = -EAGAIN; 1655 break; 1656 } 1657 1658 if (signal_pending(current)) { 1659 copied = sock_intr_errno(timeo); 1660 break; 1661 } 1662 } 1663 1664 tcp_cleanup_rbuf(sk, copied); 1665 1666 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) { 1667 /* Install new reader */ 1668 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) { 1669 user_recv = current; 1670 tp->ucopy.task = user_recv; 1671 tp->ucopy.iov = msg->msg_iov; 1672 } 1673 1674 tp->ucopy.len = len; 1675 1676 WARN_ON(tp->copied_seq != tp->rcv_nxt && 1677 !(flags & (MSG_PEEK | MSG_TRUNC))); 1678 1679 /* Ugly... If prequeue is not empty, we have to 1680 * process it before releasing socket, otherwise 1681 * order will be broken at second iteration. 1682 * More elegant solution is required!!! 1683 * 1684 * Look: we have the following (pseudo)queues: 1685 * 1686 * 1. packets in flight 1687 * 2. backlog 1688 * 3. prequeue 1689 * 4. receive_queue 1690 * 1691 * Each queue can be processed only if the next ones 1692 * are empty. At this point we have empty receive_queue. 1693 * But prequeue _can_ be not empty after 2nd iteration, 1694 * when we jumped to start of loop because backlog 1695 * processing added something to receive_queue. 1696 * We cannot release_sock(), because backlog contains 1697 * packets arrived _after_ prequeued ones. 1698 * 1699 * Shortly, algorithm is clear --- to process all 1700 * the queues in order. We could make it more directly, 1701 * requeueing packets from backlog to prequeue, if 1702 * is not empty. It is more elegant, but eats cycles, 1703 * unfortunately. 1704 */ 1705 if (!skb_queue_empty(&tp->ucopy.prequeue)) 1706 goto do_prequeue; 1707 1708 /* __ Set realtime policy in scheduler __ */ 1709 } 1710 1711 #ifdef CONFIG_NET_DMA 1712 if (tp->ucopy.dma_chan) 1713 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1714 #endif 1715 if (copied >= target) { 1716 /* Do not sleep, just process backlog. */ 1717 release_sock(sk); 1718 lock_sock(sk); 1719 } else 1720 sk_wait_data(sk, &timeo); 1721 1722 #ifdef CONFIG_NET_DMA 1723 tcp_service_net_dma(sk, false); /* Don't block */ 1724 tp->ucopy.wakeup = 0; 1725 #endif 1726 1727 if (user_recv) { 1728 int chunk; 1729 1730 /* __ Restore normal policy in scheduler __ */ 1731 1732 if ((chunk = len - tp->ucopy.len) != 0) { 1733 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk); 1734 len -= chunk; 1735 copied += chunk; 1736 } 1737 1738 if (tp->rcv_nxt == tp->copied_seq && 1739 !skb_queue_empty(&tp->ucopy.prequeue)) { 1740 do_prequeue: 1741 tcp_prequeue_process(sk); 1742 1743 if ((chunk = len - tp->ucopy.len) != 0) { 1744 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1745 len -= chunk; 1746 copied += chunk; 1747 } 1748 } 1749 } 1750 if ((flags & MSG_PEEK) && 1751 (peek_seq - copied - urg_hole != tp->copied_seq)) { 1752 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 1753 current->comm, 1754 task_pid_nr(current)); 1755 peek_seq = tp->copied_seq; 1756 } 1757 continue; 1758 1759 found_ok_skb: 1760 /* Ok so how much can we use? */ 1761 used = skb->len - offset; 1762 if (len < used) 1763 used = len; 1764 1765 /* Do we have urgent data here? */ 1766 if (tp->urg_data) { 1767 u32 urg_offset = tp->urg_seq - *seq; 1768 if (urg_offset < used) { 1769 if (!urg_offset) { 1770 if (!sock_flag(sk, SOCK_URGINLINE)) { 1771 ++*seq; 1772 urg_hole++; 1773 offset++; 1774 used--; 1775 if (!used) 1776 goto skip_copy; 1777 } 1778 } else 1779 used = urg_offset; 1780 } 1781 } 1782 1783 if (!(flags & MSG_TRUNC)) { 1784 #ifdef CONFIG_NET_DMA 1785 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 1786 tp->ucopy.dma_chan = net_dma_find_channel(); 1787 1788 if (tp->ucopy.dma_chan) { 1789 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec( 1790 tp->ucopy.dma_chan, skb, offset, 1791 msg->msg_iov, used, 1792 tp->ucopy.pinned_list); 1793 1794 if (tp->ucopy.dma_cookie < 0) { 1795 1796 pr_alert("%s: dma_cookie < 0\n", 1797 __func__); 1798 1799 /* Exception. Bailout! */ 1800 if (!copied) 1801 copied = -EFAULT; 1802 break; 1803 } 1804 1805 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan); 1806 1807 if ((offset + used) == skb->len) 1808 copied_early = true; 1809 1810 } else 1811 #endif 1812 { 1813 err = skb_copy_datagram_iovec(skb, offset, 1814 msg->msg_iov, used); 1815 if (err) { 1816 /* Exception. Bailout! */ 1817 if (!copied) 1818 copied = -EFAULT; 1819 break; 1820 } 1821 } 1822 } 1823 1824 *seq += used; 1825 copied += used; 1826 len -= used; 1827 1828 tcp_rcv_space_adjust(sk); 1829 1830 skip_copy: 1831 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 1832 tp->urg_data = 0; 1833 tcp_fast_path_check(sk); 1834 } 1835 if (used + offset < skb->len) 1836 continue; 1837 1838 if (tcp_hdr(skb)->fin) 1839 goto found_fin_ok; 1840 if (!(flags & MSG_PEEK)) { 1841 sk_eat_skb(sk, skb, copied_early); 1842 copied_early = false; 1843 } 1844 continue; 1845 1846 found_fin_ok: 1847 /* Process the FIN. */ 1848 ++*seq; 1849 if (!(flags & MSG_PEEK)) { 1850 sk_eat_skb(sk, skb, copied_early); 1851 copied_early = false; 1852 } 1853 break; 1854 } while (len > 0); 1855 1856 if (user_recv) { 1857 if (!skb_queue_empty(&tp->ucopy.prequeue)) { 1858 int chunk; 1859 1860 tp->ucopy.len = copied > 0 ? len : 0; 1861 1862 tcp_prequeue_process(sk); 1863 1864 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) { 1865 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk); 1866 len -= chunk; 1867 copied += chunk; 1868 } 1869 } 1870 1871 tp->ucopy.task = NULL; 1872 tp->ucopy.len = 0; 1873 } 1874 1875 #ifdef CONFIG_NET_DMA 1876 tcp_service_net_dma(sk, true); /* Wait for queue to drain */ 1877 tp->ucopy.dma_chan = NULL; 1878 1879 if (tp->ucopy.pinned_list) { 1880 dma_unpin_iovec_pages(tp->ucopy.pinned_list); 1881 tp->ucopy.pinned_list = NULL; 1882 } 1883 #endif 1884 1885 /* According to UNIX98, msg_name/msg_namelen are ignored 1886 * on connected socket. I was just happy when found this 8) --ANK 1887 */ 1888 1889 /* Clean up data we have read: This will do ACK frames. */ 1890 tcp_cleanup_rbuf(sk, copied); 1891 1892 release_sock(sk); 1893 return copied; 1894 1895 out: 1896 release_sock(sk); 1897 return err; 1898 1899 recv_urg: 1900 err = tcp_recv_urg(sk, msg, len, flags); 1901 goto out; 1902 1903 recv_sndq: 1904 err = tcp_peek_sndq(sk, msg, len); 1905 goto out; 1906 } 1907 EXPORT_SYMBOL(tcp_recvmsg); 1908 1909 void tcp_set_state(struct sock *sk, int state) 1910 { 1911 int oldstate = sk->sk_state; 1912 1913 switch (state) { 1914 case TCP_ESTABLISHED: 1915 if (oldstate != TCP_ESTABLISHED) 1916 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1917 break; 1918 1919 case TCP_CLOSE: 1920 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 1921 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 1922 1923 sk->sk_prot->unhash(sk); 1924 if (inet_csk(sk)->icsk_bind_hash && 1925 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 1926 inet_put_port(sk); 1927 /* fall through */ 1928 default: 1929 if (oldstate == TCP_ESTABLISHED) 1930 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 1931 } 1932 1933 /* Change state AFTER socket is unhashed to avoid closed 1934 * socket sitting in hash tables. 1935 */ 1936 sk->sk_state = state; 1937 1938 #ifdef STATE_TRACE 1939 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 1940 #endif 1941 } 1942 EXPORT_SYMBOL_GPL(tcp_set_state); 1943 1944 /* 1945 * State processing on a close. This implements the state shift for 1946 * sending our FIN frame. Note that we only send a FIN for some 1947 * states. A shutdown() may have already sent the FIN, or we may be 1948 * closed. 1949 */ 1950 1951 static const unsigned char new_state[16] = { 1952 /* current state: new state: action: */ 1953 /* (Invalid) */ TCP_CLOSE, 1954 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1955 /* TCP_SYN_SENT */ TCP_CLOSE, 1956 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN, 1957 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1, 1958 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2, 1959 /* TCP_TIME_WAIT */ TCP_CLOSE, 1960 /* TCP_CLOSE */ TCP_CLOSE, 1961 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN, 1962 /* TCP_LAST_ACK */ TCP_LAST_ACK, 1963 /* TCP_LISTEN */ TCP_CLOSE, 1964 /* TCP_CLOSING */ TCP_CLOSING, 1965 }; 1966 1967 static int tcp_close_state(struct sock *sk) 1968 { 1969 int next = (int)new_state[sk->sk_state]; 1970 int ns = next & TCP_STATE_MASK; 1971 1972 tcp_set_state(sk, ns); 1973 1974 return next & TCP_ACTION_FIN; 1975 } 1976 1977 /* 1978 * Shutdown the sending side of a connection. Much like close except 1979 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 1980 */ 1981 1982 void tcp_shutdown(struct sock *sk, int how) 1983 { 1984 /* We need to grab some memory, and put together a FIN, 1985 * and then put it into the queue to be sent. 1986 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 1987 */ 1988 if (!(how & SEND_SHUTDOWN)) 1989 return; 1990 1991 /* If we've already sent a FIN, or it's a closed state, skip this. */ 1992 if ((1 << sk->sk_state) & 1993 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 1994 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 1995 /* Clear out any half completed packets. FIN if needed. */ 1996 if (tcp_close_state(sk)) 1997 tcp_send_fin(sk); 1998 } 1999 } 2000 EXPORT_SYMBOL(tcp_shutdown); 2001 2002 bool tcp_check_oom(struct sock *sk, int shift) 2003 { 2004 bool too_many_orphans, out_of_socket_memory; 2005 2006 too_many_orphans = tcp_too_many_orphans(sk, shift); 2007 out_of_socket_memory = tcp_out_of_memory(sk); 2008 2009 if (too_many_orphans) 2010 net_info_ratelimited("too many orphaned sockets\n"); 2011 if (out_of_socket_memory) 2012 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2013 return too_many_orphans || out_of_socket_memory; 2014 } 2015 2016 void tcp_close(struct sock *sk, long timeout) 2017 { 2018 struct sk_buff *skb; 2019 int data_was_unread = 0; 2020 int state; 2021 2022 lock_sock(sk); 2023 sk->sk_shutdown = SHUTDOWN_MASK; 2024 2025 if (sk->sk_state == TCP_LISTEN) { 2026 tcp_set_state(sk, TCP_CLOSE); 2027 2028 /* Special case. */ 2029 inet_csk_listen_stop(sk); 2030 2031 goto adjudge_to_death; 2032 } 2033 2034 /* We need to flush the recv. buffs. We do this only on the 2035 * descriptor close, not protocol-sourced closes, because the 2036 * reader process may not have drained the data yet! 2037 */ 2038 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2039 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq - 2040 tcp_hdr(skb)->fin; 2041 data_was_unread += len; 2042 __kfree_skb(skb); 2043 } 2044 2045 sk_mem_reclaim(sk); 2046 2047 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2048 if (sk->sk_state == TCP_CLOSE) 2049 goto adjudge_to_death; 2050 2051 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2052 * data was lost. To witness the awful effects of the old behavior of 2053 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2054 * GET in an FTP client, suspend the process, wait for the client to 2055 * advertise a zero window, then kill -9 the FTP client, wheee... 2056 * Note: timeout is always zero in such a case. 2057 */ 2058 if (unlikely(tcp_sk(sk)->repair)) { 2059 sk->sk_prot->disconnect(sk, 0); 2060 } else if (data_was_unread) { 2061 /* Unread data was tossed, zap the connection. */ 2062 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2063 tcp_set_state(sk, TCP_CLOSE); 2064 tcp_send_active_reset(sk, sk->sk_allocation); 2065 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2066 /* Check zero linger _after_ checking for unread data. */ 2067 sk->sk_prot->disconnect(sk, 0); 2068 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2069 } else if (tcp_close_state(sk)) { 2070 /* We FIN if the application ate all the data before 2071 * zapping the connection. 2072 */ 2073 2074 /* RED-PEN. Formally speaking, we have broken TCP state 2075 * machine. State transitions: 2076 * 2077 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2078 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2079 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2080 * 2081 * are legal only when FIN has been sent (i.e. in window), 2082 * rather than queued out of window. Purists blame. 2083 * 2084 * F.e. "RFC state" is ESTABLISHED, 2085 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2086 * 2087 * The visible declinations are that sometimes 2088 * we enter time-wait state, when it is not required really 2089 * (harmless), do not send active resets, when they are 2090 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2091 * they look as CLOSING or LAST_ACK for Linux) 2092 * Probably, I missed some more holelets. 2093 * --ANK 2094 */ 2095 tcp_send_fin(sk); 2096 } 2097 2098 sk_stream_wait_close(sk, timeout); 2099 2100 adjudge_to_death: 2101 state = sk->sk_state; 2102 sock_hold(sk); 2103 sock_orphan(sk); 2104 2105 /* It is the last release_sock in its life. It will remove backlog. */ 2106 release_sock(sk); 2107 2108 2109 /* Now socket is owned by kernel and we acquire BH lock 2110 to finish close. No need to check for user refs. 2111 */ 2112 local_bh_disable(); 2113 bh_lock_sock(sk); 2114 WARN_ON(sock_owned_by_user(sk)); 2115 2116 percpu_counter_inc(sk->sk_prot->orphan_count); 2117 2118 /* Have we already been destroyed by a softirq or backlog? */ 2119 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2120 goto out; 2121 2122 /* This is a (useful) BSD violating of the RFC. There is a 2123 * problem with TCP as specified in that the other end could 2124 * keep a socket open forever with no application left this end. 2125 * We use a 3 minute timeout (about the same as BSD) then kill 2126 * our end. If they send after that then tough - BUT: long enough 2127 * that we won't make the old 4*rto = almost no time - whoops 2128 * reset mistake. 2129 * 2130 * Nope, it was not mistake. It is really desired behaviour 2131 * f.e. on http servers, when such sockets are useless, but 2132 * consume significant resources. Let's do it with special 2133 * linger2 option. --ANK 2134 */ 2135 2136 if (sk->sk_state == TCP_FIN_WAIT2) { 2137 struct tcp_sock *tp = tcp_sk(sk); 2138 if (tp->linger2 < 0) { 2139 tcp_set_state(sk, TCP_CLOSE); 2140 tcp_send_active_reset(sk, GFP_ATOMIC); 2141 NET_INC_STATS_BH(sock_net(sk), 2142 LINUX_MIB_TCPABORTONLINGER); 2143 } else { 2144 const int tmo = tcp_fin_time(sk); 2145 2146 if (tmo > TCP_TIMEWAIT_LEN) { 2147 inet_csk_reset_keepalive_timer(sk, 2148 tmo - TCP_TIMEWAIT_LEN); 2149 } else { 2150 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2151 goto out; 2152 } 2153 } 2154 } 2155 if (sk->sk_state != TCP_CLOSE) { 2156 sk_mem_reclaim(sk); 2157 if (tcp_check_oom(sk, 0)) { 2158 tcp_set_state(sk, TCP_CLOSE); 2159 tcp_send_active_reset(sk, GFP_ATOMIC); 2160 NET_INC_STATS_BH(sock_net(sk), 2161 LINUX_MIB_TCPABORTONMEMORY); 2162 } 2163 } 2164 2165 if (sk->sk_state == TCP_CLOSE) 2166 inet_csk_destroy_sock(sk); 2167 /* Otherwise, socket is reprieved until protocol close. */ 2168 2169 out: 2170 bh_unlock_sock(sk); 2171 local_bh_enable(); 2172 sock_put(sk); 2173 } 2174 EXPORT_SYMBOL(tcp_close); 2175 2176 /* These states need RST on ABORT according to RFC793 */ 2177 2178 static inline bool tcp_need_reset(int state) 2179 { 2180 return (1 << state) & 2181 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2182 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2183 } 2184 2185 int tcp_disconnect(struct sock *sk, int flags) 2186 { 2187 struct inet_sock *inet = inet_sk(sk); 2188 struct inet_connection_sock *icsk = inet_csk(sk); 2189 struct tcp_sock *tp = tcp_sk(sk); 2190 int err = 0; 2191 int old_state = sk->sk_state; 2192 2193 if (old_state != TCP_CLOSE) 2194 tcp_set_state(sk, TCP_CLOSE); 2195 2196 /* ABORT function of RFC793 */ 2197 if (old_state == TCP_LISTEN) { 2198 inet_csk_listen_stop(sk); 2199 } else if (unlikely(tp->repair)) { 2200 sk->sk_err = ECONNABORTED; 2201 } else if (tcp_need_reset(old_state) || 2202 (tp->snd_nxt != tp->write_seq && 2203 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2204 /* The last check adjusts for discrepancy of Linux wrt. RFC 2205 * states 2206 */ 2207 tcp_send_active_reset(sk, gfp_any()); 2208 sk->sk_err = ECONNRESET; 2209 } else if (old_state == TCP_SYN_SENT) 2210 sk->sk_err = ECONNRESET; 2211 2212 tcp_clear_xmit_timers(sk); 2213 __skb_queue_purge(&sk->sk_receive_queue); 2214 tcp_write_queue_purge(sk); 2215 __skb_queue_purge(&tp->out_of_order_queue); 2216 #ifdef CONFIG_NET_DMA 2217 __skb_queue_purge(&sk->sk_async_wait_queue); 2218 #endif 2219 2220 inet->inet_dport = 0; 2221 2222 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2223 inet_reset_saddr(sk); 2224 2225 sk->sk_shutdown = 0; 2226 sock_reset_flag(sk, SOCK_DONE); 2227 tp->srtt = 0; 2228 if ((tp->write_seq += tp->max_window + 2) == 0) 2229 tp->write_seq = 1; 2230 icsk->icsk_backoff = 0; 2231 tp->snd_cwnd = 2; 2232 icsk->icsk_probes_out = 0; 2233 tp->packets_out = 0; 2234 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2235 tp->snd_cwnd_cnt = 0; 2236 tp->bytes_acked = 0; 2237 tp->window_clamp = 0; 2238 tcp_set_ca_state(sk, TCP_CA_Open); 2239 tcp_clear_retrans(tp); 2240 inet_csk_delack_init(sk); 2241 tcp_init_send_head(sk); 2242 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2243 __sk_dst_reset(sk); 2244 2245 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2246 2247 sk->sk_error_report(sk); 2248 return err; 2249 } 2250 EXPORT_SYMBOL(tcp_disconnect); 2251 2252 static inline bool tcp_can_repair_sock(const struct sock *sk) 2253 { 2254 return capable(CAP_NET_ADMIN) && 2255 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED)); 2256 } 2257 2258 static int tcp_repair_options_est(struct tcp_sock *tp, 2259 struct tcp_repair_opt __user *optbuf, unsigned int len) 2260 { 2261 struct tcp_repair_opt opt; 2262 2263 while (len >= sizeof(opt)) { 2264 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2265 return -EFAULT; 2266 2267 optbuf++; 2268 len -= sizeof(opt); 2269 2270 switch (opt.opt_code) { 2271 case TCPOPT_MSS: 2272 tp->rx_opt.mss_clamp = opt.opt_val; 2273 break; 2274 case TCPOPT_WINDOW: 2275 if (opt.opt_val > 14) 2276 return -EFBIG; 2277 2278 tp->rx_opt.snd_wscale = opt.opt_val; 2279 break; 2280 case TCPOPT_SACK_PERM: 2281 if (opt.opt_val != 0) 2282 return -EINVAL; 2283 2284 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2285 if (sysctl_tcp_fack) 2286 tcp_enable_fack(tp); 2287 break; 2288 case TCPOPT_TIMESTAMP: 2289 if (opt.opt_val != 0) 2290 return -EINVAL; 2291 2292 tp->rx_opt.tstamp_ok = 1; 2293 break; 2294 } 2295 } 2296 2297 return 0; 2298 } 2299 2300 /* 2301 * Socket option code for TCP. 2302 */ 2303 static int do_tcp_setsockopt(struct sock *sk, int level, 2304 int optname, char __user *optval, unsigned int optlen) 2305 { 2306 struct tcp_sock *tp = tcp_sk(sk); 2307 struct inet_connection_sock *icsk = inet_csk(sk); 2308 int val; 2309 int err = 0; 2310 2311 /* These are data/string values, all the others are ints */ 2312 switch (optname) { 2313 case TCP_CONGESTION: { 2314 char name[TCP_CA_NAME_MAX]; 2315 2316 if (optlen < 1) 2317 return -EINVAL; 2318 2319 val = strncpy_from_user(name, optval, 2320 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2321 if (val < 0) 2322 return -EFAULT; 2323 name[val] = 0; 2324 2325 lock_sock(sk); 2326 err = tcp_set_congestion_control(sk, name); 2327 release_sock(sk); 2328 return err; 2329 } 2330 case TCP_COOKIE_TRANSACTIONS: { 2331 struct tcp_cookie_transactions ctd; 2332 struct tcp_cookie_values *cvp = NULL; 2333 2334 if (sizeof(ctd) > optlen) 2335 return -EINVAL; 2336 if (copy_from_user(&ctd, optval, sizeof(ctd))) 2337 return -EFAULT; 2338 2339 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) || 2340 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED) 2341 return -EINVAL; 2342 2343 if (ctd.tcpct_cookie_desired == 0) { 2344 /* default to global value */ 2345 } else if ((0x1 & ctd.tcpct_cookie_desired) || 2346 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX || 2347 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) { 2348 return -EINVAL; 2349 } 2350 2351 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) { 2352 /* Supercedes all other values */ 2353 lock_sock(sk); 2354 if (tp->cookie_values != NULL) { 2355 kref_put(&tp->cookie_values->kref, 2356 tcp_cookie_values_release); 2357 tp->cookie_values = NULL; 2358 } 2359 tp->rx_opt.cookie_in_always = 0; /* false */ 2360 tp->rx_opt.cookie_out_never = 1; /* true */ 2361 release_sock(sk); 2362 return err; 2363 } 2364 2365 /* Allocate ancillary memory before locking. 2366 */ 2367 if (ctd.tcpct_used > 0 || 2368 (tp->cookie_values == NULL && 2369 (sysctl_tcp_cookie_size > 0 || 2370 ctd.tcpct_cookie_desired > 0 || 2371 ctd.tcpct_s_data_desired > 0))) { 2372 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used, 2373 GFP_KERNEL); 2374 if (cvp == NULL) 2375 return -ENOMEM; 2376 2377 kref_init(&cvp->kref); 2378 } 2379 lock_sock(sk); 2380 tp->rx_opt.cookie_in_always = 2381 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags); 2382 tp->rx_opt.cookie_out_never = 0; /* false */ 2383 2384 if (tp->cookie_values != NULL) { 2385 if (cvp != NULL) { 2386 /* Changed values are recorded by a changed 2387 * pointer, ensuring the cookie will differ, 2388 * without separately hashing each value later. 2389 */ 2390 kref_put(&tp->cookie_values->kref, 2391 tcp_cookie_values_release); 2392 } else { 2393 cvp = tp->cookie_values; 2394 } 2395 } 2396 2397 if (cvp != NULL) { 2398 cvp->cookie_desired = ctd.tcpct_cookie_desired; 2399 2400 if (ctd.tcpct_used > 0) { 2401 memcpy(cvp->s_data_payload, ctd.tcpct_value, 2402 ctd.tcpct_used); 2403 cvp->s_data_desired = ctd.tcpct_used; 2404 cvp->s_data_constant = 1; /* true */ 2405 } else { 2406 /* No constant payload data. */ 2407 cvp->s_data_desired = ctd.tcpct_s_data_desired; 2408 cvp->s_data_constant = 0; /* false */ 2409 } 2410 2411 tp->cookie_values = cvp; 2412 } 2413 release_sock(sk); 2414 return err; 2415 } 2416 default: 2417 /* fallthru */ 2418 break; 2419 } 2420 2421 if (optlen < sizeof(int)) 2422 return -EINVAL; 2423 2424 if (get_user(val, (int __user *)optval)) 2425 return -EFAULT; 2426 2427 lock_sock(sk); 2428 2429 switch (optname) { 2430 case TCP_MAXSEG: 2431 /* Values greater than interface MTU won't take effect. However 2432 * at the point when this call is done we typically don't yet 2433 * know which interface is going to be used */ 2434 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) { 2435 err = -EINVAL; 2436 break; 2437 } 2438 tp->rx_opt.user_mss = val; 2439 break; 2440 2441 case TCP_NODELAY: 2442 if (val) { 2443 /* TCP_NODELAY is weaker than TCP_CORK, so that 2444 * this option on corked socket is remembered, but 2445 * it is not activated until cork is cleared. 2446 * 2447 * However, when TCP_NODELAY is set we make 2448 * an explicit push, which overrides even TCP_CORK 2449 * for currently queued segments. 2450 */ 2451 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2452 tcp_push_pending_frames(sk); 2453 } else { 2454 tp->nonagle &= ~TCP_NAGLE_OFF; 2455 } 2456 break; 2457 2458 case TCP_THIN_LINEAR_TIMEOUTS: 2459 if (val < 0 || val > 1) 2460 err = -EINVAL; 2461 else 2462 tp->thin_lto = val; 2463 break; 2464 2465 case TCP_THIN_DUPACK: 2466 if (val < 0 || val > 1) 2467 err = -EINVAL; 2468 else 2469 tp->thin_dupack = val; 2470 if (tp->thin_dupack) 2471 tcp_disable_early_retrans(tp); 2472 break; 2473 2474 case TCP_REPAIR: 2475 if (!tcp_can_repair_sock(sk)) 2476 err = -EPERM; 2477 else if (val == 1) { 2478 tp->repair = 1; 2479 sk->sk_reuse = SK_FORCE_REUSE; 2480 tp->repair_queue = TCP_NO_QUEUE; 2481 } else if (val == 0) { 2482 tp->repair = 0; 2483 sk->sk_reuse = SK_NO_REUSE; 2484 tcp_send_window_probe(sk); 2485 } else 2486 err = -EINVAL; 2487 2488 break; 2489 2490 case TCP_REPAIR_QUEUE: 2491 if (!tp->repair) 2492 err = -EPERM; 2493 else if (val < TCP_QUEUES_NR) 2494 tp->repair_queue = val; 2495 else 2496 err = -EINVAL; 2497 break; 2498 2499 case TCP_QUEUE_SEQ: 2500 if (sk->sk_state != TCP_CLOSE) 2501 err = -EPERM; 2502 else if (tp->repair_queue == TCP_SEND_QUEUE) 2503 tp->write_seq = val; 2504 else if (tp->repair_queue == TCP_RECV_QUEUE) 2505 tp->rcv_nxt = val; 2506 else 2507 err = -EINVAL; 2508 break; 2509 2510 case TCP_REPAIR_OPTIONS: 2511 if (!tp->repair) 2512 err = -EINVAL; 2513 else if (sk->sk_state == TCP_ESTABLISHED) 2514 err = tcp_repair_options_est(tp, 2515 (struct tcp_repair_opt __user *)optval, 2516 optlen); 2517 else 2518 err = -EPERM; 2519 break; 2520 2521 case TCP_CORK: 2522 /* When set indicates to always queue non-full frames. 2523 * Later the user clears this option and we transmit 2524 * any pending partial frames in the queue. This is 2525 * meant to be used alongside sendfile() to get properly 2526 * filled frames when the user (for example) must write 2527 * out headers with a write() call first and then use 2528 * sendfile to send out the data parts. 2529 * 2530 * TCP_CORK can be set together with TCP_NODELAY and it is 2531 * stronger than TCP_NODELAY. 2532 */ 2533 if (val) { 2534 tp->nonagle |= TCP_NAGLE_CORK; 2535 } else { 2536 tp->nonagle &= ~TCP_NAGLE_CORK; 2537 if (tp->nonagle&TCP_NAGLE_OFF) 2538 tp->nonagle |= TCP_NAGLE_PUSH; 2539 tcp_push_pending_frames(sk); 2540 } 2541 break; 2542 2543 case TCP_KEEPIDLE: 2544 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2545 err = -EINVAL; 2546 else { 2547 tp->keepalive_time = val * HZ; 2548 if (sock_flag(sk, SOCK_KEEPOPEN) && 2549 !((1 << sk->sk_state) & 2550 (TCPF_CLOSE | TCPF_LISTEN))) { 2551 u32 elapsed = keepalive_time_elapsed(tp); 2552 if (tp->keepalive_time > elapsed) 2553 elapsed = tp->keepalive_time - elapsed; 2554 else 2555 elapsed = 0; 2556 inet_csk_reset_keepalive_timer(sk, elapsed); 2557 } 2558 } 2559 break; 2560 case TCP_KEEPINTVL: 2561 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2562 err = -EINVAL; 2563 else 2564 tp->keepalive_intvl = val * HZ; 2565 break; 2566 case TCP_KEEPCNT: 2567 if (val < 1 || val > MAX_TCP_KEEPCNT) 2568 err = -EINVAL; 2569 else 2570 tp->keepalive_probes = val; 2571 break; 2572 case TCP_SYNCNT: 2573 if (val < 1 || val > MAX_TCP_SYNCNT) 2574 err = -EINVAL; 2575 else 2576 icsk->icsk_syn_retries = val; 2577 break; 2578 2579 case TCP_LINGER2: 2580 if (val < 0) 2581 tp->linger2 = -1; 2582 else if (val > sysctl_tcp_fin_timeout / HZ) 2583 tp->linger2 = 0; 2584 else 2585 tp->linger2 = val * HZ; 2586 break; 2587 2588 case TCP_DEFER_ACCEPT: 2589 /* Translate value in seconds to number of retransmits */ 2590 icsk->icsk_accept_queue.rskq_defer_accept = 2591 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2592 TCP_RTO_MAX / HZ); 2593 break; 2594 2595 case TCP_WINDOW_CLAMP: 2596 if (!val) { 2597 if (sk->sk_state != TCP_CLOSE) { 2598 err = -EINVAL; 2599 break; 2600 } 2601 tp->window_clamp = 0; 2602 } else 2603 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2604 SOCK_MIN_RCVBUF / 2 : val; 2605 break; 2606 2607 case TCP_QUICKACK: 2608 if (!val) { 2609 icsk->icsk_ack.pingpong = 1; 2610 } else { 2611 icsk->icsk_ack.pingpong = 0; 2612 if ((1 << sk->sk_state) & 2613 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2614 inet_csk_ack_scheduled(sk)) { 2615 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2616 tcp_cleanup_rbuf(sk, 1); 2617 if (!(val & 1)) 2618 icsk->icsk_ack.pingpong = 1; 2619 } 2620 } 2621 break; 2622 2623 #ifdef CONFIG_TCP_MD5SIG 2624 case TCP_MD5SIG: 2625 /* Read the IP->Key mappings from userspace */ 2626 err = tp->af_specific->md5_parse(sk, optval, optlen); 2627 break; 2628 #endif 2629 case TCP_USER_TIMEOUT: 2630 /* Cap the max timeout in ms TCP will retry/retrans 2631 * before giving up and aborting (ETIMEDOUT) a connection. 2632 */ 2633 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2634 break; 2635 default: 2636 err = -ENOPROTOOPT; 2637 break; 2638 } 2639 2640 release_sock(sk); 2641 return err; 2642 } 2643 2644 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 2645 unsigned int optlen) 2646 { 2647 const struct inet_connection_sock *icsk = inet_csk(sk); 2648 2649 if (level != SOL_TCP) 2650 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 2651 optval, optlen); 2652 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2653 } 2654 EXPORT_SYMBOL(tcp_setsockopt); 2655 2656 #ifdef CONFIG_COMPAT 2657 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 2658 char __user *optval, unsigned int optlen) 2659 { 2660 if (level != SOL_TCP) 2661 return inet_csk_compat_setsockopt(sk, level, optname, 2662 optval, optlen); 2663 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 2664 } 2665 EXPORT_SYMBOL(compat_tcp_setsockopt); 2666 #endif 2667 2668 /* Return information about state of tcp endpoint in API format. */ 2669 void tcp_get_info(const struct sock *sk, struct tcp_info *info) 2670 { 2671 const struct tcp_sock *tp = tcp_sk(sk); 2672 const struct inet_connection_sock *icsk = inet_csk(sk); 2673 u32 now = tcp_time_stamp; 2674 2675 memset(info, 0, sizeof(*info)); 2676 2677 info->tcpi_state = sk->sk_state; 2678 info->tcpi_ca_state = icsk->icsk_ca_state; 2679 info->tcpi_retransmits = icsk->icsk_retransmits; 2680 info->tcpi_probes = icsk->icsk_probes_out; 2681 info->tcpi_backoff = icsk->icsk_backoff; 2682 2683 if (tp->rx_opt.tstamp_ok) 2684 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 2685 if (tcp_is_sack(tp)) 2686 info->tcpi_options |= TCPI_OPT_SACK; 2687 if (tp->rx_opt.wscale_ok) { 2688 info->tcpi_options |= TCPI_OPT_WSCALE; 2689 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 2690 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 2691 } 2692 2693 if (tp->ecn_flags & TCP_ECN_OK) 2694 info->tcpi_options |= TCPI_OPT_ECN; 2695 if (tp->ecn_flags & TCP_ECN_SEEN) 2696 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 2697 2698 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 2699 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 2700 info->tcpi_snd_mss = tp->mss_cache; 2701 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 2702 2703 if (sk->sk_state == TCP_LISTEN) { 2704 info->tcpi_unacked = sk->sk_ack_backlog; 2705 info->tcpi_sacked = sk->sk_max_ack_backlog; 2706 } else { 2707 info->tcpi_unacked = tp->packets_out; 2708 info->tcpi_sacked = tp->sacked_out; 2709 } 2710 info->tcpi_lost = tp->lost_out; 2711 info->tcpi_retrans = tp->retrans_out; 2712 info->tcpi_fackets = tp->fackets_out; 2713 2714 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 2715 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 2716 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 2717 2718 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 2719 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 2720 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3; 2721 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2; 2722 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 2723 info->tcpi_snd_cwnd = tp->snd_cwnd; 2724 info->tcpi_advmss = tp->advmss; 2725 info->tcpi_reordering = tp->reordering; 2726 2727 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3; 2728 info->tcpi_rcv_space = tp->rcvq_space.space; 2729 2730 info->tcpi_total_retrans = tp->total_retrans; 2731 } 2732 EXPORT_SYMBOL_GPL(tcp_get_info); 2733 2734 static int do_tcp_getsockopt(struct sock *sk, int level, 2735 int optname, char __user *optval, int __user *optlen) 2736 { 2737 struct inet_connection_sock *icsk = inet_csk(sk); 2738 struct tcp_sock *tp = tcp_sk(sk); 2739 int val, len; 2740 2741 if (get_user(len, optlen)) 2742 return -EFAULT; 2743 2744 len = min_t(unsigned int, len, sizeof(int)); 2745 2746 if (len < 0) 2747 return -EINVAL; 2748 2749 switch (optname) { 2750 case TCP_MAXSEG: 2751 val = tp->mss_cache; 2752 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 2753 val = tp->rx_opt.user_mss; 2754 if (tp->repair) 2755 val = tp->rx_opt.mss_clamp; 2756 break; 2757 case TCP_NODELAY: 2758 val = !!(tp->nonagle&TCP_NAGLE_OFF); 2759 break; 2760 case TCP_CORK: 2761 val = !!(tp->nonagle&TCP_NAGLE_CORK); 2762 break; 2763 case TCP_KEEPIDLE: 2764 val = keepalive_time_when(tp) / HZ; 2765 break; 2766 case TCP_KEEPINTVL: 2767 val = keepalive_intvl_when(tp) / HZ; 2768 break; 2769 case TCP_KEEPCNT: 2770 val = keepalive_probes(tp); 2771 break; 2772 case TCP_SYNCNT: 2773 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries; 2774 break; 2775 case TCP_LINGER2: 2776 val = tp->linger2; 2777 if (val >= 0) 2778 val = (val ? : sysctl_tcp_fin_timeout) / HZ; 2779 break; 2780 case TCP_DEFER_ACCEPT: 2781 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 2782 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 2783 break; 2784 case TCP_WINDOW_CLAMP: 2785 val = tp->window_clamp; 2786 break; 2787 case TCP_INFO: { 2788 struct tcp_info info; 2789 2790 if (get_user(len, optlen)) 2791 return -EFAULT; 2792 2793 tcp_get_info(sk, &info); 2794 2795 len = min_t(unsigned int, len, sizeof(info)); 2796 if (put_user(len, optlen)) 2797 return -EFAULT; 2798 if (copy_to_user(optval, &info, len)) 2799 return -EFAULT; 2800 return 0; 2801 } 2802 case TCP_QUICKACK: 2803 val = !icsk->icsk_ack.pingpong; 2804 break; 2805 2806 case TCP_CONGESTION: 2807 if (get_user(len, optlen)) 2808 return -EFAULT; 2809 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 2810 if (put_user(len, optlen)) 2811 return -EFAULT; 2812 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 2813 return -EFAULT; 2814 return 0; 2815 2816 case TCP_COOKIE_TRANSACTIONS: { 2817 struct tcp_cookie_transactions ctd; 2818 struct tcp_cookie_values *cvp = tp->cookie_values; 2819 2820 if (get_user(len, optlen)) 2821 return -EFAULT; 2822 if (len < sizeof(ctd)) 2823 return -EINVAL; 2824 2825 memset(&ctd, 0, sizeof(ctd)); 2826 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ? 2827 TCP_COOKIE_IN_ALWAYS : 0) 2828 | (tp->rx_opt.cookie_out_never ? 2829 TCP_COOKIE_OUT_NEVER : 0); 2830 2831 if (cvp != NULL) { 2832 ctd.tcpct_flags |= (cvp->s_data_in ? 2833 TCP_S_DATA_IN : 0) 2834 | (cvp->s_data_out ? 2835 TCP_S_DATA_OUT : 0); 2836 2837 ctd.tcpct_cookie_desired = cvp->cookie_desired; 2838 ctd.tcpct_s_data_desired = cvp->s_data_desired; 2839 2840 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0], 2841 cvp->cookie_pair_size); 2842 ctd.tcpct_used = cvp->cookie_pair_size; 2843 } 2844 2845 if (put_user(sizeof(ctd), optlen)) 2846 return -EFAULT; 2847 if (copy_to_user(optval, &ctd, sizeof(ctd))) 2848 return -EFAULT; 2849 return 0; 2850 } 2851 case TCP_THIN_LINEAR_TIMEOUTS: 2852 val = tp->thin_lto; 2853 break; 2854 case TCP_THIN_DUPACK: 2855 val = tp->thin_dupack; 2856 break; 2857 2858 case TCP_REPAIR: 2859 val = tp->repair; 2860 break; 2861 2862 case TCP_REPAIR_QUEUE: 2863 if (tp->repair) 2864 val = tp->repair_queue; 2865 else 2866 return -EINVAL; 2867 break; 2868 2869 case TCP_QUEUE_SEQ: 2870 if (tp->repair_queue == TCP_SEND_QUEUE) 2871 val = tp->write_seq; 2872 else if (tp->repair_queue == TCP_RECV_QUEUE) 2873 val = tp->rcv_nxt; 2874 else 2875 return -EINVAL; 2876 break; 2877 2878 case TCP_USER_TIMEOUT: 2879 val = jiffies_to_msecs(icsk->icsk_user_timeout); 2880 break; 2881 default: 2882 return -ENOPROTOOPT; 2883 } 2884 2885 if (put_user(len, optlen)) 2886 return -EFAULT; 2887 if (copy_to_user(optval, &val, len)) 2888 return -EFAULT; 2889 return 0; 2890 } 2891 2892 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 2893 int __user *optlen) 2894 { 2895 struct inet_connection_sock *icsk = inet_csk(sk); 2896 2897 if (level != SOL_TCP) 2898 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 2899 optval, optlen); 2900 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2901 } 2902 EXPORT_SYMBOL(tcp_getsockopt); 2903 2904 #ifdef CONFIG_COMPAT 2905 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 2906 char __user *optval, int __user *optlen) 2907 { 2908 if (level != SOL_TCP) 2909 return inet_csk_compat_getsockopt(sk, level, optname, 2910 optval, optlen); 2911 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 2912 } 2913 EXPORT_SYMBOL(compat_tcp_getsockopt); 2914 #endif 2915 2916 struct sk_buff *tcp_tso_segment(struct sk_buff *skb, 2917 netdev_features_t features) 2918 { 2919 struct sk_buff *segs = ERR_PTR(-EINVAL); 2920 struct tcphdr *th; 2921 unsigned int thlen; 2922 unsigned int seq; 2923 __be32 delta; 2924 unsigned int oldlen; 2925 unsigned int mss; 2926 2927 if (!pskb_may_pull(skb, sizeof(*th))) 2928 goto out; 2929 2930 th = tcp_hdr(skb); 2931 thlen = th->doff * 4; 2932 if (thlen < sizeof(*th)) 2933 goto out; 2934 2935 if (!pskb_may_pull(skb, thlen)) 2936 goto out; 2937 2938 oldlen = (u16)~skb->len; 2939 __skb_pull(skb, thlen); 2940 2941 mss = skb_shinfo(skb)->gso_size; 2942 if (unlikely(skb->len <= mss)) 2943 goto out; 2944 2945 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) { 2946 /* Packet is from an untrusted source, reset gso_segs. */ 2947 int type = skb_shinfo(skb)->gso_type; 2948 2949 if (unlikely(type & 2950 ~(SKB_GSO_TCPV4 | 2951 SKB_GSO_DODGY | 2952 SKB_GSO_TCP_ECN | 2953 SKB_GSO_TCPV6 | 2954 0) || 2955 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))) 2956 goto out; 2957 2958 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss); 2959 2960 segs = NULL; 2961 goto out; 2962 } 2963 2964 segs = skb_segment(skb, features); 2965 if (IS_ERR(segs)) 2966 goto out; 2967 2968 delta = htonl(oldlen + (thlen + mss)); 2969 2970 skb = segs; 2971 th = tcp_hdr(skb); 2972 seq = ntohl(th->seq); 2973 2974 do { 2975 th->fin = th->psh = 0; 2976 2977 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2978 (__force u32)delta)); 2979 if (skb->ip_summed != CHECKSUM_PARTIAL) 2980 th->check = 2981 csum_fold(csum_partial(skb_transport_header(skb), 2982 thlen, skb->csum)); 2983 2984 seq += mss; 2985 skb = skb->next; 2986 th = tcp_hdr(skb); 2987 2988 th->seq = htonl(seq); 2989 th->cwr = 0; 2990 } while (skb->next); 2991 2992 delta = htonl(oldlen + (skb->tail - skb->transport_header) + 2993 skb->data_len); 2994 th->check = ~csum_fold((__force __wsum)((__force u32)th->check + 2995 (__force u32)delta)); 2996 if (skb->ip_summed != CHECKSUM_PARTIAL) 2997 th->check = csum_fold(csum_partial(skb_transport_header(skb), 2998 thlen, skb->csum)); 2999 3000 out: 3001 return segs; 3002 } 3003 EXPORT_SYMBOL(tcp_tso_segment); 3004 3005 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3006 { 3007 struct sk_buff **pp = NULL; 3008 struct sk_buff *p; 3009 struct tcphdr *th; 3010 struct tcphdr *th2; 3011 unsigned int len; 3012 unsigned int thlen; 3013 __be32 flags; 3014 unsigned int mss = 1; 3015 unsigned int hlen; 3016 unsigned int off; 3017 int flush = 1; 3018 int i; 3019 3020 off = skb_gro_offset(skb); 3021 hlen = off + sizeof(*th); 3022 th = skb_gro_header_fast(skb, off); 3023 if (skb_gro_header_hard(skb, hlen)) { 3024 th = skb_gro_header_slow(skb, hlen, off); 3025 if (unlikely(!th)) 3026 goto out; 3027 } 3028 3029 thlen = th->doff * 4; 3030 if (thlen < sizeof(*th)) 3031 goto out; 3032 3033 hlen = off + thlen; 3034 if (skb_gro_header_hard(skb, hlen)) { 3035 th = skb_gro_header_slow(skb, hlen, off); 3036 if (unlikely(!th)) 3037 goto out; 3038 } 3039 3040 skb_gro_pull(skb, thlen); 3041 3042 len = skb_gro_len(skb); 3043 flags = tcp_flag_word(th); 3044 3045 for (; (p = *head); head = &p->next) { 3046 if (!NAPI_GRO_CB(p)->same_flow) 3047 continue; 3048 3049 th2 = tcp_hdr(p); 3050 3051 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) { 3052 NAPI_GRO_CB(p)->same_flow = 0; 3053 continue; 3054 } 3055 3056 goto found; 3057 } 3058 3059 goto out_check_final; 3060 3061 found: 3062 flush = NAPI_GRO_CB(p)->flush; 3063 flush |= (__force int)(flags & TCP_FLAG_CWR); 3064 flush |= (__force int)((flags ^ tcp_flag_word(th2)) & 3065 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH)); 3066 flush |= (__force int)(th->ack_seq ^ th2->ack_seq); 3067 for (i = sizeof(*th); i < thlen; i += 4) 3068 flush |= *(u32 *)((u8 *)th + i) ^ 3069 *(u32 *)((u8 *)th2 + i); 3070 3071 mss = skb_shinfo(p)->gso_size; 3072 3073 flush |= (len - 1) >= mss; 3074 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq); 3075 3076 if (flush || skb_gro_receive(head, skb)) { 3077 mss = 1; 3078 goto out_check_final; 3079 } 3080 3081 p = *head; 3082 th2 = tcp_hdr(p); 3083 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH); 3084 3085 out_check_final: 3086 flush = len < mss; 3087 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH | 3088 TCP_FLAG_RST | TCP_FLAG_SYN | 3089 TCP_FLAG_FIN)); 3090 3091 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush)) 3092 pp = head; 3093 3094 out: 3095 NAPI_GRO_CB(skb)->flush |= flush; 3096 3097 return pp; 3098 } 3099 EXPORT_SYMBOL(tcp_gro_receive); 3100 3101 int tcp_gro_complete(struct sk_buff *skb) 3102 { 3103 struct tcphdr *th = tcp_hdr(skb); 3104 3105 skb->csum_start = skb_transport_header(skb) - skb->head; 3106 skb->csum_offset = offsetof(struct tcphdr, check); 3107 skb->ip_summed = CHECKSUM_PARTIAL; 3108 3109 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 3110 3111 if (th->cwr) 3112 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 3113 3114 return 0; 3115 } 3116 EXPORT_SYMBOL(tcp_gro_complete); 3117 3118 #ifdef CONFIG_TCP_MD5SIG 3119 static unsigned long tcp_md5sig_users; 3120 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool; 3121 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock); 3122 3123 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool) 3124 { 3125 int cpu; 3126 3127 for_each_possible_cpu(cpu) { 3128 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu); 3129 3130 if (p->md5_desc.tfm) 3131 crypto_free_hash(p->md5_desc.tfm); 3132 } 3133 free_percpu(pool); 3134 } 3135 3136 void tcp_free_md5sig_pool(void) 3137 { 3138 struct tcp_md5sig_pool __percpu *pool = NULL; 3139 3140 spin_lock_bh(&tcp_md5sig_pool_lock); 3141 if (--tcp_md5sig_users == 0) { 3142 pool = tcp_md5sig_pool; 3143 tcp_md5sig_pool = NULL; 3144 } 3145 spin_unlock_bh(&tcp_md5sig_pool_lock); 3146 if (pool) 3147 __tcp_free_md5sig_pool(pool); 3148 } 3149 EXPORT_SYMBOL(tcp_free_md5sig_pool); 3150 3151 static struct tcp_md5sig_pool __percpu * 3152 __tcp_alloc_md5sig_pool(struct sock *sk) 3153 { 3154 int cpu; 3155 struct tcp_md5sig_pool __percpu *pool; 3156 3157 pool = alloc_percpu(struct tcp_md5sig_pool); 3158 if (!pool) 3159 return NULL; 3160 3161 for_each_possible_cpu(cpu) { 3162 struct crypto_hash *hash; 3163 3164 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC); 3165 if (!hash || IS_ERR(hash)) 3166 goto out_free; 3167 3168 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash; 3169 } 3170 return pool; 3171 out_free: 3172 __tcp_free_md5sig_pool(pool); 3173 return NULL; 3174 } 3175 3176 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk) 3177 { 3178 struct tcp_md5sig_pool __percpu *pool; 3179 bool alloc = false; 3180 3181 retry: 3182 spin_lock_bh(&tcp_md5sig_pool_lock); 3183 pool = tcp_md5sig_pool; 3184 if (tcp_md5sig_users++ == 0) { 3185 alloc = true; 3186 spin_unlock_bh(&tcp_md5sig_pool_lock); 3187 } else if (!pool) { 3188 tcp_md5sig_users--; 3189 spin_unlock_bh(&tcp_md5sig_pool_lock); 3190 cpu_relax(); 3191 goto retry; 3192 } else 3193 spin_unlock_bh(&tcp_md5sig_pool_lock); 3194 3195 if (alloc) { 3196 /* we cannot hold spinlock here because this may sleep. */ 3197 struct tcp_md5sig_pool __percpu *p; 3198 3199 p = __tcp_alloc_md5sig_pool(sk); 3200 spin_lock_bh(&tcp_md5sig_pool_lock); 3201 if (!p) { 3202 tcp_md5sig_users--; 3203 spin_unlock_bh(&tcp_md5sig_pool_lock); 3204 return NULL; 3205 } 3206 pool = tcp_md5sig_pool; 3207 if (pool) { 3208 /* oops, it has already been assigned. */ 3209 spin_unlock_bh(&tcp_md5sig_pool_lock); 3210 __tcp_free_md5sig_pool(p); 3211 } else { 3212 tcp_md5sig_pool = pool = p; 3213 spin_unlock_bh(&tcp_md5sig_pool_lock); 3214 } 3215 } 3216 return pool; 3217 } 3218 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3219 3220 3221 /** 3222 * tcp_get_md5sig_pool - get md5sig_pool for this user 3223 * 3224 * We use percpu structure, so if we succeed, we exit with preemption 3225 * and BH disabled, to make sure another thread or softirq handling 3226 * wont try to get same context. 3227 */ 3228 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3229 { 3230 struct tcp_md5sig_pool __percpu *p; 3231 3232 local_bh_disable(); 3233 3234 spin_lock(&tcp_md5sig_pool_lock); 3235 p = tcp_md5sig_pool; 3236 if (p) 3237 tcp_md5sig_users++; 3238 spin_unlock(&tcp_md5sig_pool_lock); 3239 3240 if (p) 3241 return this_cpu_ptr(p); 3242 3243 local_bh_enable(); 3244 return NULL; 3245 } 3246 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3247 3248 void tcp_put_md5sig_pool(void) 3249 { 3250 local_bh_enable(); 3251 tcp_free_md5sig_pool(); 3252 } 3253 EXPORT_SYMBOL(tcp_put_md5sig_pool); 3254 3255 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp, 3256 const struct tcphdr *th) 3257 { 3258 struct scatterlist sg; 3259 struct tcphdr hdr; 3260 int err; 3261 3262 /* We are not allowed to change tcphdr, make a local copy */ 3263 memcpy(&hdr, th, sizeof(hdr)); 3264 hdr.check = 0; 3265 3266 /* options aren't included in the hash */ 3267 sg_init_one(&sg, &hdr, sizeof(hdr)); 3268 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr)); 3269 return err; 3270 } 3271 EXPORT_SYMBOL(tcp_md5_hash_header); 3272 3273 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3274 const struct sk_buff *skb, unsigned int header_len) 3275 { 3276 struct scatterlist sg; 3277 const struct tcphdr *tp = tcp_hdr(skb); 3278 struct hash_desc *desc = &hp->md5_desc; 3279 unsigned int i; 3280 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3281 skb_headlen(skb) - header_len : 0; 3282 const struct skb_shared_info *shi = skb_shinfo(skb); 3283 struct sk_buff *frag_iter; 3284 3285 sg_init_table(&sg, 1); 3286 3287 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3288 if (crypto_hash_update(desc, &sg, head_data_len)) 3289 return 1; 3290 3291 for (i = 0; i < shi->nr_frags; ++i) { 3292 const struct skb_frag_struct *f = &shi->frags[i]; 3293 struct page *page = skb_frag_page(f); 3294 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset); 3295 if (crypto_hash_update(desc, &sg, skb_frag_size(f))) 3296 return 1; 3297 } 3298 3299 skb_walk_frags(skb, frag_iter) 3300 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3301 return 1; 3302 3303 return 0; 3304 } 3305 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3306 3307 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3308 { 3309 struct scatterlist sg; 3310 3311 sg_init_one(&sg, key->key, key->keylen); 3312 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen); 3313 } 3314 EXPORT_SYMBOL(tcp_md5_hash_key); 3315 3316 #endif 3317 3318 /* Each Responder maintains up to two secret values concurrently for 3319 * efficient secret rollover. Each secret value has 4 states: 3320 * 3321 * Generating. (tcp_secret_generating != tcp_secret_primary) 3322 * Generates new Responder-Cookies, but not yet used for primary 3323 * verification. This is a short-term state, typically lasting only 3324 * one round trip time (RTT). 3325 * 3326 * Primary. (tcp_secret_generating == tcp_secret_primary) 3327 * Used both for generation and primary verification. 3328 * 3329 * Retiring. (tcp_secret_retiring != tcp_secret_secondary) 3330 * Used for verification, until the first failure that can be 3331 * verified by the newer Generating secret. At that time, this 3332 * cookie's state is changed to Secondary, and the Generating 3333 * cookie's state is changed to Primary. This is a short-term state, 3334 * typically lasting only one round trip time (RTT). 3335 * 3336 * Secondary. (tcp_secret_retiring == tcp_secret_secondary) 3337 * Used for secondary verification, after primary verification 3338 * failures. This state lasts no more than twice the Maximum Segment 3339 * Lifetime (2MSL). Then, the secret is discarded. 3340 */ 3341 struct tcp_cookie_secret { 3342 /* The secret is divided into two parts. The digest part is the 3343 * equivalent of previously hashing a secret and saving the state, 3344 * and serves as an initialization vector (IV). The message part 3345 * serves as the trailing secret. 3346 */ 3347 u32 secrets[COOKIE_WORKSPACE_WORDS]; 3348 unsigned long expires; 3349 }; 3350 3351 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL) 3352 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2) 3353 #define TCP_SECRET_LIFE (HZ * 600) 3354 3355 static struct tcp_cookie_secret tcp_secret_one; 3356 static struct tcp_cookie_secret tcp_secret_two; 3357 3358 /* Essentially a circular list, without dynamic allocation. */ 3359 static struct tcp_cookie_secret *tcp_secret_generating; 3360 static struct tcp_cookie_secret *tcp_secret_primary; 3361 static struct tcp_cookie_secret *tcp_secret_retiring; 3362 static struct tcp_cookie_secret *tcp_secret_secondary; 3363 3364 static DEFINE_SPINLOCK(tcp_secret_locker); 3365 3366 /* Select a pseudo-random word in the cookie workspace. 3367 */ 3368 static inline u32 tcp_cookie_work(const u32 *ws, const int n) 3369 { 3370 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])]; 3371 } 3372 3373 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed. 3374 * Called in softirq context. 3375 * Returns: 0 for success. 3376 */ 3377 int tcp_cookie_generator(u32 *bakery) 3378 { 3379 unsigned long jiffy = jiffies; 3380 3381 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) { 3382 spin_lock_bh(&tcp_secret_locker); 3383 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) { 3384 /* refreshed by another */ 3385 memcpy(bakery, 3386 &tcp_secret_generating->secrets[0], 3387 COOKIE_WORKSPACE_WORDS); 3388 } else { 3389 /* still needs refreshing */ 3390 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS); 3391 3392 /* The first time, paranoia assumes that the 3393 * randomization function isn't as strong. But, 3394 * this secret initialization is delayed until 3395 * the last possible moment (packet arrival). 3396 * Although that time is observable, it is 3397 * unpredictably variable. Mash in the most 3398 * volatile clock bits available, and expire the 3399 * secret extra quickly. 3400 */ 3401 if (unlikely(tcp_secret_primary->expires == 3402 tcp_secret_secondary->expires)) { 3403 struct timespec tv; 3404 3405 getnstimeofday(&tv); 3406 bakery[COOKIE_DIGEST_WORDS+0] ^= 3407 (u32)tv.tv_nsec; 3408 3409 tcp_secret_secondary->expires = jiffy 3410 + TCP_SECRET_1MSL 3411 + (0x0f & tcp_cookie_work(bakery, 0)); 3412 } else { 3413 tcp_secret_secondary->expires = jiffy 3414 + TCP_SECRET_LIFE 3415 + (0xff & tcp_cookie_work(bakery, 1)); 3416 tcp_secret_primary->expires = jiffy 3417 + TCP_SECRET_2MSL 3418 + (0x1f & tcp_cookie_work(bakery, 2)); 3419 } 3420 memcpy(&tcp_secret_secondary->secrets[0], 3421 bakery, COOKIE_WORKSPACE_WORDS); 3422 3423 rcu_assign_pointer(tcp_secret_generating, 3424 tcp_secret_secondary); 3425 rcu_assign_pointer(tcp_secret_retiring, 3426 tcp_secret_primary); 3427 /* 3428 * Neither call_rcu() nor synchronize_rcu() needed. 3429 * Retiring data is not freed. It is replaced after 3430 * further (locked) pointer updates, and a quiet time 3431 * (minimum 1MSL, maximum LIFE - 2MSL). 3432 */ 3433 } 3434 spin_unlock_bh(&tcp_secret_locker); 3435 } else { 3436 rcu_read_lock_bh(); 3437 memcpy(bakery, 3438 &rcu_dereference(tcp_secret_generating)->secrets[0], 3439 COOKIE_WORKSPACE_WORDS); 3440 rcu_read_unlock_bh(); 3441 } 3442 return 0; 3443 } 3444 EXPORT_SYMBOL(tcp_cookie_generator); 3445 3446 void tcp_done(struct sock *sk) 3447 { 3448 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3449 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3450 3451 tcp_set_state(sk, TCP_CLOSE); 3452 tcp_clear_xmit_timers(sk); 3453 3454 sk->sk_shutdown = SHUTDOWN_MASK; 3455 3456 if (!sock_flag(sk, SOCK_DEAD)) 3457 sk->sk_state_change(sk); 3458 else 3459 inet_csk_destroy_sock(sk); 3460 } 3461 EXPORT_SYMBOL_GPL(tcp_done); 3462 3463 extern struct tcp_congestion_ops tcp_reno; 3464 3465 static __initdata unsigned long thash_entries; 3466 static int __init set_thash_entries(char *str) 3467 { 3468 ssize_t ret; 3469 3470 if (!str) 3471 return 0; 3472 3473 ret = kstrtoul(str, 0, &thash_entries); 3474 if (ret) 3475 return 0; 3476 3477 return 1; 3478 } 3479 __setup("thash_entries=", set_thash_entries); 3480 3481 void tcp_init_mem(struct net *net) 3482 { 3483 unsigned long limit = nr_free_buffer_pages() / 8; 3484 limit = max(limit, 128UL); 3485 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3; 3486 net->ipv4.sysctl_tcp_mem[1] = limit; 3487 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2; 3488 } 3489 3490 void __init tcp_init(void) 3491 { 3492 struct sk_buff *skb = NULL; 3493 unsigned long limit; 3494 int max_rshare, max_wshare, cnt; 3495 unsigned int i; 3496 unsigned long jiffy = jiffies; 3497 3498 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb)); 3499 3500 percpu_counter_init(&tcp_sockets_allocated, 0); 3501 percpu_counter_init(&tcp_orphan_count, 0); 3502 tcp_hashinfo.bind_bucket_cachep = 3503 kmem_cache_create("tcp_bind_bucket", 3504 sizeof(struct inet_bind_bucket), 0, 3505 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3506 3507 /* Size and allocate the main established and bind bucket 3508 * hash tables. 3509 * 3510 * The methodology is similar to that of the buffer cache. 3511 */ 3512 tcp_hashinfo.ehash = 3513 alloc_large_system_hash("TCP established", 3514 sizeof(struct inet_ehash_bucket), 3515 thash_entries, 3516 (totalram_pages >= 128 * 1024) ? 3517 13 : 15, 3518 0, 3519 NULL, 3520 &tcp_hashinfo.ehash_mask, 3521 0, 3522 thash_entries ? 0 : 512 * 1024); 3523 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) { 3524 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3525 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i); 3526 } 3527 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3528 panic("TCP: failed to alloc ehash_locks"); 3529 tcp_hashinfo.bhash = 3530 alloc_large_system_hash("TCP bind", 3531 sizeof(struct inet_bind_hashbucket), 3532 tcp_hashinfo.ehash_mask + 1, 3533 (totalram_pages >= 128 * 1024) ? 3534 13 : 15, 3535 0, 3536 &tcp_hashinfo.bhash_size, 3537 NULL, 3538 0, 3539 64 * 1024); 3540 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3541 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3542 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3543 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3544 } 3545 3546 3547 cnt = tcp_hashinfo.ehash_mask + 1; 3548 3549 tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 3550 sysctl_tcp_max_orphans = cnt / 2; 3551 sysctl_max_syn_backlog = max(128, cnt / 256); 3552 3553 tcp_init_mem(&init_net); 3554 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3555 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3556 max_wshare = min(4UL*1024*1024, limit); 3557 max_rshare = min(6UL*1024*1024, limit); 3558 3559 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3560 sysctl_tcp_wmem[1] = 16*1024; 3561 sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3562 3563 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3564 sysctl_tcp_rmem[1] = 87380; 3565 sysctl_tcp_rmem[2] = max(87380, max_rshare); 3566 3567 pr_info("Hash tables configured (established %u bind %u)\n", 3568 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3569 3570 tcp_metrics_init(); 3571 3572 tcp_register_congestion_control(&tcp_reno); 3573 3574 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets)); 3575 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets)); 3576 tcp_secret_one.expires = jiffy; /* past due */ 3577 tcp_secret_two.expires = jiffy; /* past due */ 3578 tcp_secret_generating = &tcp_secret_one; 3579 tcp_secret_primary = &tcp_secret_one; 3580 tcp_secret_retiring = &tcp_secret_two; 3581 tcp_secret_secondary = &tcp_secret_two; 3582 tcp_tasklet_init(); 3583 } 3584