1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 * 21 * Fixes: 22 * Alan Cox : Numerous verify_area() calls 23 * Alan Cox : Set the ACK bit on a reset 24 * Alan Cox : Stopped it crashing if it closed while 25 * sk->inuse=1 and was trying to connect 26 * (tcp_err()). 27 * Alan Cox : All icmp error handling was broken 28 * pointers passed where wrong and the 29 * socket was looked up backwards. Nobody 30 * tested any icmp error code obviously. 31 * Alan Cox : tcp_err() now handled properly. It 32 * wakes people on errors. poll 33 * behaves and the icmp error race 34 * has gone by moving it into sock.c 35 * Alan Cox : tcp_send_reset() fixed to work for 36 * everything not just packets for 37 * unknown sockets. 38 * Alan Cox : tcp option processing. 39 * Alan Cox : Reset tweaked (still not 100%) [Had 40 * syn rule wrong] 41 * Herp Rosmanith : More reset fixes 42 * Alan Cox : No longer acks invalid rst frames. 43 * Acking any kind of RST is right out. 44 * Alan Cox : Sets an ignore me flag on an rst 45 * receive otherwise odd bits of prattle 46 * escape still 47 * Alan Cox : Fixed another acking RST frame bug. 48 * Should stop LAN workplace lockups. 49 * Alan Cox : Some tidyups using the new skb list 50 * facilities 51 * Alan Cox : sk->keepopen now seems to work 52 * Alan Cox : Pulls options out correctly on accepts 53 * Alan Cox : Fixed assorted sk->rqueue->next errors 54 * Alan Cox : PSH doesn't end a TCP read. Switched a 55 * bit to skb ops. 56 * Alan Cox : Tidied tcp_data to avoid a potential 57 * nasty. 58 * Alan Cox : Added some better commenting, as the 59 * tcp is hard to follow 60 * Alan Cox : Removed incorrect check for 20 * psh 61 * Michael O'Reilly : ack < copied bug fix. 62 * Johannes Stille : Misc tcp fixes (not all in yet). 63 * Alan Cox : FIN with no memory -> CRASH 64 * Alan Cox : Added socket option proto entries. 65 * Also added awareness of them to accept. 66 * Alan Cox : Added TCP options (SOL_TCP) 67 * Alan Cox : Switched wakeup calls to callbacks, 68 * so the kernel can layer network 69 * sockets. 70 * Alan Cox : Use ip_tos/ip_ttl settings. 71 * Alan Cox : Handle FIN (more) properly (we hope). 72 * Alan Cox : RST frames sent on unsynchronised 73 * state ack error. 74 * Alan Cox : Put in missing check for SYN bit. 75 * Alan Cox : Added tcp_select_window() aka NET2E 76 * window non shrink trick. 77 * Alan Cox : Added a couple of small NET2E timer 78 * fixes 79 * Charles Hedrick : TCP fixes 80 * Toomas Tamm : TCP window fixes 81 * Alan Cox : Small URG fix to rlogin ^C ack fight 82 * Charles Hedrick : Rewrote most of it to actually work 83 * Linus : Rewrote tcp_read() and URG handling 84 * completely 85 * Gerhard Koerting: Fixed some missing timer handling 86 * Matthew Dillon : Reworked TCP machine states as per RFC 87 * Gerhard Koerting: PC/TCP workarounds 88 * Adam Caldwell : Assorted timer/timing errors 89 * Matthew Dillon : Fixed another RST bug 90 * Alan Cox : Move to kernel side addressing changes. 91 * Alan Cox : Beginning work on TCP fastpathing 92 * (not yet usable) 93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 94 * Alan Cox : TCP fast path debugging 95 * Alan Cox : Window clamping 96 * Michael Riepe : Bug in tcp_check() 97 * Matt Dillon : More TCP improvements and RST bug fixes 98 * Matt Dillon : Yet more small nasties remove from the 99 * TCP code (Be very nice to this man if 100 * tcp finally works 100%) 8) 101 * Alan Cox : BSD accept semantics. 102 * Alan Cox : Reset on closedown bug. 103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 104 * Michael Pall : Handle poll() after URG properly in 105 * all cases. 106 * Michael Pall : Undo the last fix in tcp_read_urg() 107 * (multi URG PUSH broke rlogin). 108 * Michael Pall : Fix the multi URG PUSH problem in 109 * tcp_readable(), poll() after URG 110 * works now. 111 * Michael Pall : recv(...,MSG_OOB) never blocks in the 112 * BSD api. 113 * Alan Cox : Changed the semantics of sk->socket to 114 * fix a race and a signal problem with 115 * accept() and async I/O. 116 * Alan Cox : Relaxed the rules on tcp_sendto(). 117 * Yury Shevchuk : Really fixed accept() blocking problem. 118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 119 * clients/servers which listen in on 120 * fixed ports. 121 * Alan Cox : Cleaned the above up and shrank it to 122 * a sensible code size. 123 * Alan Cox : Self connect lockup fix. 124 * Alan Cox : No connect to multicast. 125 * Ross Biro : Close unaccepted children on master 126 * socket close. 127 * Alan Cox : Reset tracing code. 128 * Alan Cox : Spurious resets on shutdown. 129 * Alan Cox : Giant 15 minute/60 second timer error 130 * Alan Cox : Small whoops in polling before an 131 * accept. 132 * Alan Cox : Kept the state trace facility since 133 * it's handy for debugging. 134 * Alan Cox : More reset handler fixes. 135 * Alan Cox : Started rewriting the code based on 136 * the RFC's for other useful protocol 137 * references see: Comer, KA9Q NOS, and 138 * for a reference on the difference 139 * between specifications and how BSD 140 * works see the 4.4lite source. 141 * A.N.Kuznetsov : Don't time wait on completion of tidy 142 * close. 143 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 144 * Linus Torvalds : Fixed BSD port reuse to work first syn 145 * Alan Cox : Reimplemented timers as per the RFC 146 * and using multiple timers for sanity. 147 * Alan Cox : Small bug fixes, and a lot of new 148 * comments. 149 * Alan Cox : Fixed dual reader crash by locking 150 * the buffers (much like datagram.c) 151 * Alan Cox : Fixed stuck sockets in probe. A probe 152 * now gets fed up of retrying without 153 * (even a no space) answer. 154 * Alan Cox : Extracted closing code better 155 * Alan Cox : Fixed the closing state machine to 156 * resemble the RFC. 157 * Alan Cox : More 'per spec' fixes. 158 * Jorge Cwik : Even faster checksumming. 159 * Alan Cox : tcp_data() doesn't ack illegal PSH 160 * only frames. At least one pc tcp stack 161 * generates them. 162 * Alan Cox : Cache last socket. 163 * Alan Cox : Per route irtt. 164 * Matt Day : poll()->select() match BSD precisely on error 165 * Alan Cox : New buffers 166 * Marc Tamsky : Various sk->prot->retransmits and 167 * sk->retransmits misupdating fixed. 168 * Fixed tcp_write_timeout: stuck close, 169 * and TCP syn retries gets used now. 170 * Mark Yarvis : In tcp_read_wakeup(), don't send an 171 * ack if state is TCP_CLOSED. 172 * Alan Cox : Look up device on a retransmit - routes may 173 * change. Doesn't yet cope with MSS shrink right 174 * but it's a start! 175 * Marc Tamsky : Closing in closing fixes. 176 * Mike Shaver : RFC1122 verifications. 177 * Alan Cox : rcv_saddr errors. 178 * Alan Cox : Block double connect(). 179 * Alan Cox : Small hooks for enSKIP. 180 * Alexey Kuznetsov: Path MTU discovery. 181 * Alan Cox : Support soft errors. 182 * Alan Cox : Fix MTU discovery pathological case 183 * when the remote claims no mtu! 184 * Marc Tamsky : TCP_CLOSE fix. 185 * Colin (G3TNE) : Send a reset on syn ack replies in 186 * window but wrong (fixes NT lpd problems) 187 * Pedro Roque : Better TCP window handling, delayed ack. 188 * Joerg Reuter : No modification of locked buffers in 189 * tcp_do_retransmit() 190 * Eric Schenk : Changed receiver side silly window 191 * avoidance algorithm to BSD style 192 * algorithm. This doubles throughput 193 * against machines running Solaris, 194 * and seems to result in general 195 * improvement. 196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 197 * Willy Konynenberg : Transparent proxying support. 198 * Mike McLagan : Routing by source 199 * Keith Owens : Do proper merging with partial SKB's in 200 * tcp_do_sendmsg to avoid burstiness. 201 * Eric Schenk : Fix fast close down bug with 202 * shutdown() followed by close(). 203 * Andi Kleen : Make poll agree with SIGIO 204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 205 * lingertime == 0 (RFC 793 ABORT Call) 206 * Hirokazu Takahashi : Use copy_from_user() instead of 207 * csum_and_copy_from_user() if possible. 208 * 209 * Description of States: 210 * 211 * TCP_SYN_SENT sent a connection request, waiting for ack 212 * 213 * TCP_SYN_RECV received a connection request, sent ack, 214 * waiting for final ack in three-way handshake. 215 * 216 * TCP_ESTABLISHED connection established 217 * 218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 219 * transmission of remaining buffered data 220 * 221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 222 * to shutdown 223 * 224 * TCP_CLOSING both sides have shutdown but we still have 225 * data we have to finish sending 226 * 227 * TCP_TIME_WAIT timeout to catch resent junk before entering 228 * closed, can only be entered from FIN_WAIT2 229 * or CLOSING. Required because the other end 230 * may not have gotten our last ACK causing it 231 * to retransmit the data packet (which we ignore) 232 * 233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 234 * us to finish writing our data and to shutdown 235 * (we have to close() to move on to LAST_ACK) 236 * 237 * TCP_LAST_ACK out side has shutdown after remote has 238 * shutdown. There may still be data in our 239 * buffer that we have to finish sending 240 * 241 * TCP_CLOSE socket is finished 242 */ 243 244 #define pr_fmt(fmt) "TCP: " fmt 245 246 #include <crypto/hash.h> 247 #include <linux/kernel.h> 248 #include <linux/module.h> 249 #include <linux/types.h> 250 #include <linux/fcntl.h> 251 #include <linux/poll.h> 252 #include <linux/inet_diag.h> 253 #include <linux/init.h> 254 #include <linux/fs.h> 255 #include <linux/skbuff.h> 256 #include <linux/scatterlist.h> 257 #include <linux/splice.h> 258 #include <linux/net.h> 259 #include <linux/socket.h> 260 #include <linux/random.h> 261 #include <linux/memblock.h> 262 #include <linux/highmem.h> 263 #include <linux/cache.h> 264 #include <linux/err.h> 265 #include <linux/time.h> 266 #include <linux/slab.h> 267 #include <linux/errqueue.h> 268 #include <linux/static_key.h> 269 #include <linux/btf.h> 270 271 #include <net/icmp.h> 272 #include <net/inet_common.h> 273 #include <net/tcp.h> 274 #include <net/mptcp.h> 275 #include <net/xfrm.h> 276 #include <net/ip.h> 277 #include <net/sock.h> 278 279 #include <linux/uaccess.h> 280 #include <asm/ioctls.h> 281 #include <net/busy_poll.h> 282 283 /* Track pending CMSGs. */ 284 enum { 285 TCP_CMSG_INQ = 1, 286 TCP_CMSG_TS = 2 287 }; 288 289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count); 290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count); 291 292 long sysctl_tcp_mem[3] __read_mostly; 293 EXPORT_SYMBOL(sysctl_tcp_mem); 294 295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */ 296 EXPORT_SYMBOL(tcp_memory_allocated); 297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc); 298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc); 299 300 #if IS_ENABLED(CONFIG_SMC) 301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 302 EXPORT_SYMBOL(tcp_have_smc); 303 #endif 304 305 /* 306 * Current number of TCP sockets. 307 */ 308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp; 309 EXPORT_SYMBOL(tcp_sockets_allocated); 310 311 /* 312 * TCP splice context 313 */ 314 struct tcp_splice_state { 315 struct pipe_inode_info *pipe; 316 size_t len; 317 unsigned int flags; 318 }; 319 320 /* 321 * Pressure flag: try to collapse. 322 * Technical note: it is used by multiple contexts non atomically. 323 * All the __sk_mem_schedule() is of this nature: accounting 324 * is strict, actions are advisory and have some latency. 325 */ 326 unsigned long tcp_memory_pressure __read_mostly; 327 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 328 329 void tcp_enter_memory_pressure(struct sock *sk) 330 { 331 unsigned long val; 332 333 if (READ_ONCE(tcp_memory_pressure)) 334 return; 335 val = jiffies; 336 337 if (!val) 338 val--; 339 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 341 } 342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 343 344 void tcp_leave_memory_pressure(struct sock *sk) 345 { 346 unsigned long val; 347 348 if (!READ_ONCE(tcp_memory_pressure)) 349 return; 350 val = xchg(&tcp_memory_pressure, 0); 351 if (val) 352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 353 jiffies_to_msecs(jiffies - val)); 354 } 355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 356 357 /* Convert seconds to retransmits based on initial and max timeout */ 358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 359 { 360 u8 res = 0; 361 362 if (seconds > 0) { 363 int period = timeout; 364 365 res = 1; 366 while (seconds > period && res < 255) { 367 res++; 368 timeout <<= 1; 369 if (timeout > rto_max) 370 timeout = rto_max; 371 period += timeout; 372 } 373 } 374 return res; 375 } 376 377 /* Convert retransmits to seconds based on initial and max timeout */ 378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 379 { 380 int period = 0; 381 382 if (retrans > 0) { 383 period = timeout; 384 while (--retrans) { 385 timeout <<= 1; 386 if (timeout > rto_max) 387 timeout = rto_max; 388 period += timeout; 389 } 390 } 391 return period; 392 } 393 394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 395 { 396 u32 rate = READ_ONCE(tp->rate_delivered); 397 u32 intv = READ_ONCE(tp->rate_interval_us); 398 u64 rate64 = 0; 399 400 if (rate && intv) { 401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 402 do_div(rate64, intv); 403 } 404 return rate64; 405 } 406 407 /* Address-family independent initialization for a tcp_sock. 408 * 409 * NOTE: A lot of things set to zero explicitly by call to 410 * sk_alloc() so need not be done here. 411 */ 412 void tcp_init_sock(struct sock *sk) 413 { 414 struct inet_connection_sock *icsk = inet_csk(sk); 415 struct tcp_sock *tp = tcp_sk(sk); 416 417 tp->out_of_order_queue = RB_ROOT; 418 sk->tcp_rtx_queue = RB_ROOT; 419 tcp_init_xmit_timers(sk); 420 INIT_LIST_HEAD(&tp->tsq_node); 421 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 422 423 icsk->icsk_rto = TCP_TIMEOUT_INIT; 424 icsk->icsk_rto_min = TCP_RTO_MIN; 425 icsk->icsk_delack_max = TCP_DELACK_MAX; 426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 428 429 /* So many TCP implementations out there (incorrectly) count the 430 * initial SYN frame in their delayed-ACK and congestion control 431 * algorithms that we must have the following bandaid to talk 432 * efficiently to them. -DaveM 433 */ 434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 435 436 /* There's a bubble in the pipe until at least the first ACK. */ 437 tp->app_limited = ~0U; 438 tp->rate_app_limited = 1; 439 440 /* See draft-stevens-tcpca-spec-01 for discussion of the 441 * initialization of these values. 442 */ 443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 444 tp->snd_cwnd_clamp = ~0; 445 tp->mss_cache = TCP_MSS_DEFAULT; 446 447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering); 448 tcp_assign_congestion_control(sk); 449 450 tp->tsoffset = 0; 451 tp->rack.reo_wnd_steps = 1; 452 453 sk->sk_write_space = sk_stream_write_space; 454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 455 456 icsk->icsk_sync_mss = tcp_sync_mss; 457 458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1])); 459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1])); 460 tcp_scaling_ratio_init(sk); 461 462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags); 463 sk_sockets_allocated_inc(sk); 464 } 465 EXPORT_SYMBOL(tcp_init_sock); 466 467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 468 { 469 struct sk_buff *skb = tcp_write_queue_tail(sk); 470 471 if (tsflags && skb) { 472 struct skb_shared_info *shinfo = skb_shinfo(skb); 473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 474 475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 476 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 477 tcb->txstamp_ack = 1; 478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 480 } 481 } 482 483 static bool tcp_stream_is_readable(struct sock *sk, int target) 484 { 485 if (tcp_epollin_ready(sk, target)) 486 return true; 487 return sk_is_readable(sk); 488 } 489 490 /* 491 * Wait for a TCP event. 492 * 493 * Note that we don't need to lock the socket, as the upper poll layers 494 * take care of normal races (between the test and the event) and we don't 495 * go look at any of the socket buffers directly. 496 */ 497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait) 498 { 499 __poll_t mask; 500 struct sock *sk = sock->sk; 501 const struct tcp_sock *tp = tcp_sk(sk); 502 u8 shutdown; 503 int state; 504 505 sock_poll_wait(file, sock, wait); 506 507 state = inet_sk_state_load(sk); 508 if (state == TCP_LISTEN) 509 return inet_csk_listen_poll(sk); 510 511 /* Socket is not locked. We are protected from async events 512 * by poll logic and correct handling of state changes 513 * made by other threads is impossible in any case. 514 */ 515 516 mask = 0; 517 518 /* 519 * EPOLLHUP is certainly not done right. But poll() doesn't 520 * have a notion of HUP in just one direction, and for a 521 * socket the read side is more interesting. 522 * 523 * Some poll() documentation says that EPOLLHUP is incompatible 524 * with the EPOLLOUT/POLLWR flags, so somebody should check this 525 * all. But careful, it tends to be safer to return too many 526 * bits than too few, and you can easily break real applications 527 * if you don't tell them that something has hung up! 528 * 529 * Check-me. 530 * 531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 532 * our fs/select.c). It means that after we received EOF, 533 * poll always returns immediately, making impossible poll() on write() 534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 535 * if and only if shutdown has been made in both directions. 536 * Actually, it is interesting to look how Solaris and DUX 537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 538 * then we could set it on SND_SHUTDOWN. BTW examples given 539 * in Stevens' books assume exactly this behaviour, it explains 540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 541 * 542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 543 * blocking on fresh not-connected or disconnected socket. --ANK 544 */ 545 shutdown = READ_ONCE(sk->sk_shutdown); 546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 547 mask |= EPOLLHUP; 548 if (shutdown & RCV_SHUTDOWN) 549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 550 551 /* Connected or passive Fast Open socket? */ 552 if (state != TCP_SYN_SENT && 553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) { 554 int target = sock_rcvlowat(sk, 0, INT_MAX); 555 u16 urg_data = READ_ONCE(tp->urg_data); 556 557 if (unlikely(urg_data) && 558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) && 559 !sock_flag(sk, SOCK_URGINLINE)) 560 target++; 561 562 if (tcp_stream_is_readable(sk, target)) 563 mask |= EPOLLIN | EPOLLRDNORM; 564 565 if (!(shutdown & SEND_SHUTDOWN)) { 566 if (__sk_stream_is_writeable(sk, 1)) { 567 mask |= EPOLLOUT | EPOLLWRNORM; 568 } else { /* send SIGIO later */ 569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 571 572 /* Race breaker. If space is freed after 573 * wspace test but before the flags are set, 574 * IO signal will be lost. Memory barrier 575 * pairs with the input side. 576 */ 577 smp_mb__after_atomic(); 578 if (__sk_stream_is_writeable(sk, 1)) 579 mask |= EPOLLOUT | EPOLLWRNORM; 580 } 581 } else 582 mask |= EPOLLOUT | EPOLLWRNORM; 583 584 if (urg_data & TCP_URG_VALID) 585 mask |= EPOLLPRI; 586 } else if (state == TCP_SYN_SENT && 587 inet_test_bit(DEFER_CONNECT, sk)) { 588 /* Active TCP fastopen socket with defer_connect 589 * Return EPOLLOUT so application can call write() 590 * in order for kernel to generate SYN+data 591 */ 592 mask |= EPOLLOUT | EPOLLWRNORM; 593 } 594 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */ 595 smp_rmb(); 596 if (READ_ONCE(sk->sk_err) || 597 !skb_queue_empty_lockless(&sk->sk_error_queue)) 598 mask |= EPOLLERR; 599 600 return mask; 601 } 602 EXPORT_SYMBOL(tcp_poll); 603 604 int tcp_ioctl(struct sock *sk, int cmd, int *karg) 605 { 606 struct tcp_sock *tp = tcp_sk(sk); 607 int answ; 608 bool slow; 609 610 switch (cmd) { 611 case SIOCINQ: 612 if (sk->sk_state == TCP_LISTEN) 613 return -EINVAL; 614 615 slow = lock_sock_fast(sk); 616 answ = tcp_inq(sk); 617 unlock_sock_fast(sk, slow); 618 break; 619 case SIOCATMARK: 620 answ = READ_ONCE(tp->urg_data) && 621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq); 622 break; 623 case SIOCOUTQ: 624 if (sk->sk_state == TCP_LISTEN) 625 return -EINVAL; 626 627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 628 answ = 0; 629 else 630 answ = READ_ONCE(tp->write_seq) - tp->snd_una; 631 break; 632 case SIOCOUTQNSD: 633 if (sk->sk_state == TCP_LISTEN) 634 return -EINVAL; 635 636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 637 answ = 0; 638 else 639 answ = READ_ONCE(tp->write_seq) - 640 READ_ONCE(tp->snd_nxt); 641 break; 642 default: 643 return -ENOIOCTLCMD; 644 } 645 646 *karg = answ; 647 return 0; 648 } 649 EXPORT_SYMBOL(tcp_ioctl); 650 651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 652 { 653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 654 tp->pushed_seq = tp->write_seq; 655 } 656 657 static inline bool forced_push(const struct tcp_sock *tp) 658 { 659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 660 } 661 662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb) 663 { 664 struct tcp_sock *tp = tcp_sk(sk); 665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 666 667 tcb->seq = tcb->end_seq = tp->write_seq; 668 tcb->tcp_flags = TCPHDR_ACK; 669 __skb_header_release(skb); 670 tcp_add_write_queue_tail(sk, skb); 671 sk_wmem_queued_add(sk, skb->truesize); 672 sk_mem_charge(sk, skb->truesize); 673 if (tp->nonagle & TCP_NAGLE_PUSH) 674 tp->nonagle &= ~TCP_NAGLE_PUSH; 675 676 tcp_slow_start_after_idle_check(sk); 677 } 678 679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 680 { 681 if (flags & MSG_OOB) 682 tp->snd_up = tp->write_seq; 683 } 684 685 /* If a not yet filled skb is pushed, do not send it if 686 * we have data packets in Qdisc or NIC queues : 687 * Because TX completion will happen shortly, it gives a chance 688 * to coalesce future sendmsg() payload into this skb, without 689 * need for a timer, and with no latency trade off. 690 * As packets containing data payload have a bigger truesize 691 * than pure acks (dataless) packets, the last checks prevent 692 * autocorking if we only have an ACK in Qdisc/NIC queues, 693 * or if TX completion was delayed after we processed ACK packet. 694 */ 695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 696 int size_goal) 697 { 698 return skb->len < size_goal && 699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) && 700 !tcp_rtx_queue_empty(sk) && 701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize && 702 tcp_skb_can_collapse_to(skb); 703 } 704 705 void tcp_push(struct sock *sk, int flags, int mss_now, 706 int nonagle, int size_goal) 707 { 708 struct tcp_sock *tp = tcp_sk(sk); 709 struct sk_buff *skb; 710 711 skb = tcp_write_queue_tail(sk); 712 if (!skb) 713 return; 714 if (!(flags & MSG_MORE) || forced_push(tp)) 715 tcp_mark_push(tp, skb); 716 717 tcp_mark_urg(tp, flags); 718 719 if (tcp_should_autocork(sk, skb, size_goal)) { 720 721 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 725 smp_mb__after_atomic(); 726 } 727 /* It is possible TX completion already happened 728 * before we set TSQ_THROTTLED. 729 */ 730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 731 return; 732 } 733 734 if (flags & MSG_MORE) 735 nonagle = TCP_NAGLE_CORK; 736 737 __tcp_push_pending_frames(sk, mss_now, nonagle); 738 } 739 740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 741 unsigned int offset, size_t len) 742 { 743 struct tcp_splice_state *tss = rd_desc->arg.data; 744 int ret; 745 746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 747 min(rd_desc->count, len), tss->flags); 748 if (ret > 0) 749 rd_desc->count -= ret; 750 return ret; 751 } 752 753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 754 { 755 /* Store TCP splice context information in read_descriptor_t. */ 756 read_descriptor_t rd_desc = { 757 .arg.data = tss, 758 .count = tss->len, 759 }; 760 761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 762 } 763 764 /** 765 * tcp_splice_read - splice data from TCP socket to a pipe 766 * @sock: socket to splice from 767 * @ppos: position (not valid) 768 * @pipe: pipe to splice to 769 * @len: number of bytes to splice 770 * @flags: splice modifier flags 771 * 772 * Description: 773 * Will read pages from given socket and fill them into a pipe. 774 * 775 **/ 776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 777 struct pipe_inode_info *pipe, size_t len, 778 unsigned int flags) 779 { 780 struct sock *sk = sock->sk; 781 struct tcp_splice_state tss = { 782 .pipe = pipe, 783 .len = len, 784 .flags = flags, 785 }; 786 long timeo; 787 ssize_t spliced; 788 int ret; 789 790 sock_rps_record_flow(sk); 791 /* 792 * We can't seek on a socket input 793 */ 794 if (unlikely(*ppos)) 795 return -ESPIPE; 796 797 ret = spliced = 0; 798 799 lock_sock(sk); 800 801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 802 while (tss.len) { 803 ret = __tcp_splice_read(sk, &tss); 804 if (ret < 0) 805 break; 806 else if (!ret) { 807 if (spliced) 808 break; 809 if (sock_flag(sk, SOCK_DONE)) 810 break; 811 if (sk->sk_err) { 812 ret = sock_error(sk); 813 break; 814 } 815 if (sk->sk_shutdown & RCV_SHUTDOWN) 816 break; 817 if (sk->sk_state == TCP_CLOSE) { 818 /* 819 * This occurs when user tries to read 820 * from never connected socket. 821 */ 822 ret = -ENOTCONN; 823 break; 824 } 825 if (!timeo) { 826 ret = -EAGAIN; 827 break; 828 } 829 /* if __tcp_splice_read() got nothing while we have 830 * an skb in receive queue, we do not want to loop. 831 * This might happen with URG data. 832 */ 833 if (!skb_queue_empty(&sk->sk_receive_queue)) 834 break; 835 ret = sk_wait_data(sk, &timeo, NULL); 836 if (ret < 0) 837 break; 838 if (signal_pending(current)) { 839 ret = sock_intr_errno(timeo); 840 break; 841 } 842 continue; 843 } 844 tss.len -= ret; 845 spliced += ret; 846 847 if (!tss.len || !timeo) 848 break; 849 release_sock(sk); 850 lock_sock(sk); 851 852 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 853 (sk->sk_shutdown & RCV_SHUTDOWN) || 854 signal_pending(current)) 855 break; 856 } 857 858 release_sock(sk); 859 860 if (spliced) 861 return spliced; 862 863 return ret; 864 } 865 EXPORT_SYMBOL(tcp_splice_read); 866 867 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp, 868 bool force_schedule) 869 { 870 struct sk_buff *skb; 871 872 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 873 if (likely(skb)) { 874 bool mem_scheduled; 875 876 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 877 if (force_schedule) { 878 mem_scheduled = true; 879 sk_forced_mem_schedule(sk, skb->truesize); 880 } else { 881 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 882 } 883 if (likely(mem_scheduled)) { 884 skb_reserve(skb, MAX_TCP_HEADER); 885 skb->ip_summed = CHECKSUM_PARTIAL; 886 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 887 return skb; 888 } 889 __kfree_skb(skb); 890 } else { 891 sk->sk_prot->enter_memory_pressure(sk); 892 sk_stream_moderate_sndbuf(sk); 893 } 894 return NULL; 895 } 896 897 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 898 int large_allowed) 899 { 900 struct tcp_sock *tp = tcp_sk(sk); 901 u32 new_size_goal, size_goal; 902 903 if (!large_allowed) 904 return mss_now; 905 906 /* Note : tcp_tso_autosize() will eventually split this later */ 907 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size); 908 909 /* We try hard to avoid divides here */ 910 size_goal = tp->gso_segs * mss_now; 911 if (unlikely(new_size_goal < size_goal || 912 new_size_goal >= size_goal + mss_now)) { 913 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 914 sk->sk_gso_max_segs); 915 size_goal = tp->gso_segs * mss_now; 916 } 917 918 return max(size_goal, mss_now); 919 } 920 921 int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 922 { 923 int mss_now; 924 925 mss_now = tcp_current_mss(sk); 926 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 927 928 return mss_now; 929 } 930 931 /* In some cases, sendmsg() could have added an skb to the write queue, 932 * but failed adding payload on it. We need to remove it to consume less 933 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger 934 * epoll() users. Another reason is that tcp_write_xmit() does not like 935 * finding an empty skb in the write queue. 936 */ 937 void tcp_remove_empty_skb(struct sock *sk) 938 { 939 struct sk_buff *skb = tcp_write_queue_tail(sk); 940 941 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 942 tcp_unlink_write_queue(skb, sk); 943 if (tcp_write_queue_empty(sk)) 944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 945 tcp_wmem_free_skb(sk, skb); 946 } 947 } 948 949 /* skb changing from pure zc to mixed, must charge zc */ 950 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb) 951 { 952 if (unlikely(skb_zcopy_pure(skb))) { 953 u32 extra = skb->truesize - 954 SKB_TRUESIZE(skb_end_offset(skb)); 955 956 if (!sk_wmem_schedule(sk, extra)) 957 return -ENOMEM; 958 959 sk_mem_charge(sk, extra); 960 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY; 961 } 962 return 0; 963 } 964 965 966 int tcp_wmem_schedule(struct sock *sk, int copy) 967 { 968 int left; 969 970 if (likely(sk_wmem_schedule(sk, copy))) 971 return copy; 972 973 /* We could be in trouble if we have nothing queued. 974 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0] 975 * to guarantee some progress. 976 */ 977 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued; 978 if (left > 0) 979 sk_forced_mem_schedule(sk, min(left, copy)); 980 return min(copy, sk->sk_forward_alloc); 981 } 982 983 void tcp_free_fastopen_req(struct tcp_sock *tp) 984 { 985 if (tp->fastopen_req) { 986 kfree(tp->fastopen_req); 987 tp->fastopen_req = NULL; 988 } 989 } 990 991 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied, 992 size_t size, struct ubuf_info *uarg) 993 { 994 struct tcp_sock *tp = tcp_sk(sk); 995 struct inet_sock *inet = inet_sk(sk); 996 struct sockaddr *uaddr = msg->msg_name; 997 int err, flags; 998 999 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & 1000 TFO_CLIENT_ENABLE) || 1001 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1002 uaddr->sa_family == AF_UNSPEC)) 1003 return -EOPNOTSUPP; 1004 if (tp->fastopen_req) 1005 return -EALREADY; /* Another Fast Open is in progress */ 1006 1007 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1008 sk->sk_allocation); 1009 if (unlikely(!tp->fastopen_req)) 1010 return -ENOBUFS; 1011 tp->fastopen_req->data = msg; 1012 tp->fastopen_req->size = size; 1013 tp->fastopen_req->uarg = uarg; 1014 1015 if (inet_test_bit(DEFER_CONNECT, sk)) { 1016 err = tcp_connect(sk); 1017 /* Same failure procedure as in tcp_v4/6_connect */ 1018 if (err) { 1019 tcp_set_state(sk, TCP_CLOSE); 1020 inet->inet_dport = 0; 1021 sk->sk_route_caps = 0; 1022 } 1023 } 1024 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1025 err = __inet_stream_connect(sk->sk_socket, uaddr, 1026 msg->msg_namelen, flags, 1); 1027 /* fastopen_req could already be freed in __inet_stream_connect 1028 * if the connection times out or gets rst 1029 */ 1030 if (tp->fastopen_req) { 1031 *copied = tp->fastopen_req->copied; 1032 tcp_free_fastopen_req(tp); 1033 inet_clear_bit(DEFER_CONNECT, sk); 1034 } 1035 return err; 1036 } 1037 1038 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1039 { 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 struct ubuf_info *uarg = NULL; 1042 struct sk_buff *skb; 1043 struct sockcm_cookie sockc; 1044 int flags, err, copied = 0; 1045 int mss_now = 0, size_goal, copied_syn = 0; 1046 int process_backlog = 0; 1047 int zc = 0; 1048 long timeo; 1049 1050 flags = msg->msg_flags; 1051 1052 if ((flags & MSG_ZEROCOPY) && size) { 1053 if (msg->msg_ubuf) { 1054 uarg = msg->msg_ubuf; 1055 if (sk->sk_route_caps & NETIF_F_SG) 1056 zc = MSG_ZEROCOPY; 1057 } else if (sock_flag(sk, SOCK_ZEROCOPY)) { 1058 skb = tcp_write_queue_tail(sk); 1059 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1060 if (!uarg) { 1061 err = -ENOBUFS; 1062 goto out_err; 1063 } 1064 if (sk->sk_route_caps & NETIF_F_SG) 1065 zc = MSG_ZEROCOPY; 1066 else 1067 uarg_to_msgzc(uarg)->zerocopy = 0; 1068 } 1069 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) { 1070 if (sk->sk_route_caps & NETIF_F_SG) 1071 zc = MSG_SPLICE_PAGES; 1072 } 1073 1074 if (unlikely(flags & MSG_FASTOPEN || 1075 inet_test_bit(DEFER_CONNECT, sk)) && 1076 !tp->repair) { 1077 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg); 1078 if (err == -EINPROGRESS && copied_syn > 0) 1079 goto out; 1080 else if (err) 1081 goto out_err; 1082 } 1083 1084 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1085 1086 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1087 1088 /* Wait for a connection to finish. One exception is TCP Fast Open 1089 * (passive side) where data is allowed to be sent before a connection 1090 * is fully established. 1091 */ 1092 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1093 !tcp_passive_fastopen(sk)) { 1094 err = sk_stream_wait_connect(sk, &timeo); 1095 if (err != 0) 1096 goto do_error; 1097 } 1098 1099 if (unlikely(tp->repair)) { 1100 if (tp->repair_queue == TCP_RECV_QUEUE) { 1101 copied = tcp_send_rcvq(sk, msg, size); 1102 goto out_nopush; 1103 } 1104 1105 err = -EINVAL; 1106 if (tp->repair_queue == TCP_NO_QUEUE) 1107 goto out_err; 1108 1109 /* 'common' sending to sendq */ 1110 } 1111 1112 sockcm_init(&sockc, sk); 1113 if (msg->msg_controllen) { 1114 err = sock_cmsg_send(sk, msg, &sockc); 1115 if (unlikely(err)) { 1116 err = -EINVAL; 1117 goto out_err; 1118 } 1119 } 1120 1121 /* This should be in poll */ 1122 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1123 1124 /* Ok commence sending. */ 1125 copied = 0; 1126 1127 restart: 1128 mss_now = tcp_send_mss(sk, &size_goal, flags); 1129 1130 err = -EPIPE; 1131 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1132 goto do_error; 1133 1134 while (msg_data_left(msg)) { 1135 ssize_t copy = 0; 1136 1137 skb = tcp_write_queue_tail(sk); 1138 if (skb) 1139 copy = size_goal - skb->len; 1140 1141 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1142 bool first_skb; 1143 1144 new_segment: 1145 if (!sk_stream_memory_free(sk)) 1146 goto wait_for_space; 1147 1148 if (unlikely(process_backlog >= 16)) { 1149 process_backlog = 0; 1150 if (sk_flush_backlog(sk)) 1151 goto restart; 1152 } 1153 first_skb = tcp_rtx_and_write_queues_empty(sk); 1154 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation, 1155 first_skb); 1156 if (!skb) 1157 goto wait_for_space; 1158 1159 process_backlog++; 1160 1161 #ifdef CONFIG_SKB_DECRYPTED 1162 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED); 1163 #endif 1164 tcp_skb_entail(sk, skb); 1165 copy = size_goal; 1166 1167 /* All packets are restored as if they have 1168 * already been sent. skb_mstamp_ns isn't set to 1169 * avoid wrong rtt estimation. 1170 */ 1171 if (tp->repair) 1172 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1173 } 1174 1175 /* Try to append data to the end of skb. */ 1176 if (copy > msg_data_left(msg)) 1177 copy = msg_data_left(msg); 1178 1179 if (zc == 0) { 1180 bool merge = true; 1181 int i = skb_shinfo(skb)->nr_frags; 1182 struct page_frag *pfrag = sk_page_frag(sk); 1183 1184 if (!sk_page_frag_refill(sk, pfrag)) 1185 goto wait_for_space; 1186 1187 if (!skb_can_coalesce(skb, i, pfrag->page, 1188 pfrag->offset)) { 1189 if (i >= READ_ONCE(sysctl_max_skb_frags)) { 1190 tcp_mark_push(tp, skb); 1191 goto new_segment; 1192 } 1193 merge = false; 1194 } 1195 1196 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1197 1198 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) { 1199 if (tcp_downgrade_zcopy_pure(sk, skb)) 1200 goto wait_for_space; 1201 skb_zcopy_downgrade_managed(skb); 1202 } 1203 1204 copy = tcp_wmem_schedule(sk, copy); 1205 if (!copy) 1206 goto wait_for_space; 1207 1208 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1209 pfrag->page, 1210 pfrag->offset, 1211 copy); 1212 if (err) 1213 goto do_error; 1214 1215 /* Update the skb. */ 1216 if (merge) { 1217 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1218 } else { 1219 skb_fill_page_desc(skb, i, pfrag->page, 1220 pfrag->offset, copy); 1221 page_ref_inc(pfrag->page); 1222 } 1223 pfrag->offset += copy; 1224 } else if (zc == MSG_ZEROCOPY) { 1225 /* First append to a fragless skb builds initial 1226 * pure zerocopy skb 1227 */ 1228 if (!skb->len) 1229 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY; 1230 1231 if (!skb_zcopy_pure(skb)) { 1232 copy = tcp_wmem_schedule(sk, copy); 1233 if (!copy) 1234 goto wait_for_space; 1235 } 1236 1237 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1238 if (err == -EMSGSIZE || err == -EEXIST) { 1239 tcp_mark_push(tp, skb); 1240 goto new_segment; 1241 } 1242 if (err < 0) 1243 goto do_error; 1244 copy = err; 1245 } else if (zc == MSG_SPLICE_PAGES) { 1246 /* Splice in data if we can; copy if we can't. */ 1247 if (tcp_downgrade_zcopy_pure(sk, skb)) 1248 goto wait_for_space; 1249 copy = tcp_wmem_schedule(sk, copy); 1250 if (!copy) 1251 goto wait_for_space; 1252 1253 err = skb_splice_from_iter(skb, &msg->msg_iter, copy, 1254 sk->sk_allocation); 1255 if (err < 0) { 1256 if (err == -EMSGSIZE) { 1257 tcp_mark_push(tp, skb); 1258 goto new_segment; 1259 } 1260 goto do_error; 1261 } 1262 copy = err; 1263 1264 if (!(flags & MSG_NO_SHARED_FRAGS)) 1265 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG; 1266 1267 sk_wmem_queued_add(sk, copy); 1268 sk_mem_charge(sk, copy); 1269 } 1270 1271 if (!copied) 1272 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1273 1274 WRITE_ONCE(tp->write_seq, tp->write_seq + copy); 1275 TCP_SKB_CB(skb)->end_seq += copy; 1276 tcp_skb_pcount_set(skb, 0); 1277 1278 copied += copy; 1279 if (!msg_data_left(msg)) { 1280 if (unlikely(flags & MSG_EOR)) 1281 TCP_SKB_CB(skb)->eor = 1; 1282 goto out; 1283 } 1284 1285 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1286 continue; 1287 1288 if (forced_push(tp)) { 1289 tcp_mark_push(tp, skb); 1290 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1291 } else if (skb == tcp_send_head(sk)) 1292 tcp_push_one(sk, mss_now); 1293 continue; 1294 1295 wait_for_space: 1296 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1297 tcp_remove_empty_skb(sk); 1298 if (copied) 1299 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1300 TCP_NAGLE_PUSH, size_goal); 1301 1302 err = sk_stream_wait_memory(sk, &timeo); 1303 if (err != 0) 1304 goto do_error; 1305 1306 mss_now = tcp_send_mss(sk, &size_goal, flags); 1307 } 1308 1309 out: 1310 if (copied) { 1311 tcp_tx_timestamp(sk, sockc.tsflags); 1312 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1313 } 1314 out_nopush: 1315 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1316 if (uarg && !msg->msg_ubuf) 1317 net_zcopy_put(uarg); 1318 return copied + copied_syn; 1319 1320 do_error: 1321 tcp_remove_empty_skb(sk); 1322 1323 if (copied + copied_syn) 1324 goto out; 1325 out_err: 1326 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */ 1327 if (uarg && !msg->msg_ubuf) 1328 net_zcopy_put_abort(uarg, true); 1329 err = sk_stream_error(sk, flags, err); 1330 /* make sure we wake any epoll edge trigger waiter */ 1331 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) { 1332 sk->sk_write_space(sk); 1333 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1334 } 1335 return err; 1336 } 1337 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1338 1339 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1340 { 1341 int ret; 1342 1343 lock_sock(sk); 1344 ret = tcp_sendmsg_locked(sk, msg, size); 1345 release_sock(sk); 1346 1347 return ret; 1348 } 1349 EXPORT_SYMBOL(tcp_sendmsg); 1350 1351 void tcp_splice_eof(struct socket *sock) 1352 { 1353 struct sock *sk = sock->sk; 1354 struct tcp_sock *tp = tcp_sk(sk); 1355 int mss_now, size_goal; 1356 1357 if (!tcp_write_queue_tail(sk)) 1358 return; 1359 1360 lock_sock(sk); 1361 mss_now = tcp_send_mss(sk, &size_goal, 0); 1362 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal); 1363 release_sock(sk); 1364 } 1365 EXPORT_SYMBOL_GPL(tcp_splice_eof); 1366 1367 /* 1368 * Handle reading urgent data. BSD has very simple semantics for 1369 * this, no blocking and very strange errors 8) 1370 */ 1371 1372 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1373 { 1374 struct tcp_sock *tp = tcp_sk(sk); 1375 1376 /* No URG data to read. */ 1377 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1378 tp->urg_data == TCP_URG_READ) 1379 return -EINVAL; /* Yes this is right ! */ 1380 1381 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1382 return -ENOTCONN; 1383 1384 if (tp->urg_data & TCP_URG_VALID) { 1385 int err = 0; 1386 char c = tp->urg_data; 1387 1388 if (!(flags & MSG_PEEK)) 1389 WRITE_ONCE(tp->urg_data, TCP_URG_READ); 1390 1391 /* Read urgent data. */ 1392 msg->msg_flags |= MSG_OOB; 1393 1394 if (len > 0) { 1395 if (!(flags & MSG_TRUNC)) 1396 err = memcpy_to_msg(msg, &c, 1); 1397 len = 1; 1398 } else 1399 msg->msg_flags |= MSG_TRUNC; 1400 1401 return err ? -EFAULT : len; 1402 } 1403 1404 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1405 return 0; 1406 1407 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1408 * the available implementations agree in this case: 1409 * this call should never block, independent of the 1410 * blocking state of the socket. 1411 * Mike <pall@rz.uni-karlsruhe.de> 1412 */ 1413 return -EAGAIN; 1414 } 1415 1416 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1417 { 1418 struct sk_buff *skb; 1419 int copied = 0, err = 0; 1420 1421 /* XXX -- need to support SO_PEEK_OFF */ 1422 1423 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1424 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1425 if (err) 1426 return err; 1427 copied += skb->len; 1428 } 1429 1430 skb_queue_walk(&sk->sk_write_queue, skb) { 1431 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1432 if (err) 1433 break; 1434 1435 copied += skb->len; 1436 } 1437 1438 return err ?: copied; 1439 } 1440 1441 /* Clean up the receive buffer for full frames taken by the user, 1442 * then send an ACK if necessary. COPIED is the number of bytes 1443 * tcp_recvmsg has given to the user so far, it speeds up the 1444 * calculation of whether or not we must ACK for the sake of 1445 * a window update. 1446 */ 1447 void __tcp_cleanup_rbuf(struct sock *sk, int copied) 1448 { 1449 struct tcp_sock *tp = tcp_sk(sk); 1450 bool time_to_ack = false; 1451 1452 if (inet_csk_ack_scheduled(sk)) { 1453 const struct inet_connection_sock *icsk = inet_csk(sk); 1454 1455 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */ 1456 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1457 /* 1458 * If this read emptied read buffer, we send ACK, if 1459 * connection is not bidirectional, user drained 1460 * receive buffer and there was a small segment 1461 * in queue. 1462 */ 1463 (copied > 0 && 1464 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1465 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1466 !inet_csk_in_pingpong_mode(sk))) && 1467 !atomic_read(&sk->sk_rmem_alloc))) 1468 time_to_ack = true; 1469 } 1470 1471 /* We send an ACK if we can now advertise a non-zero window 1472 * which has been raised "significantly". 1473 * 1474 * Even if window raised up to infinity, do not send window open ACK 1475 * in states, where we will not receive more. It is useless. 1476 */ 1477 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1478 __u32 rcv_window_now = tcp_receive_window(tp); 1479 1480 /* Optimize, __tcp_select_window() is not cheap. */ 1481 if (2*rcv_window_now <= tp->window_clamp) { 1482 __u32 new_window = __tcp_select_window(sk); 1483 1484 /* Send ACK now, if this read freed lots of space 1485 * in our buffer. Certainly, new_window is new window. 1486 * We can advertise it now, if it is not less than current one. 1487 * "Lots" means "at least twice" here. 1488 */ 1489 if (new_window && new_window >= 2 * rcv_window_now) 1490 time_to_ack = true; 1491 } 1492 } 1493 if (time_to_ack) 1494 tcp_send_ack(sk); 1495 } 1496 1497 void tcp_cleanup_rbuf(struct sock *sk, int copied) 1498 { 1499 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1500 struct tcp_sock *tp = tcp_sk(sk); 1501 1502 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1503 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1504 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1505 __tcp_cleanup_rbuf(sk, copied); 1506 } 1507 1508 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb) 1509 { 1510 __skb_unlink(skb, &sk->sk_receive_queue); 1511 if (likely(skb->destructor == sock_rfree)) { 1512 sock_rfree(skb); 1513 skb->destructor = NULL; 1514 skb->sk = NULL; 1515 return skb_attempt_defer_free(skb); 1516 } 1517 __kfree_skb(skb); 1518 } 1519 1520 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1521 { 1522 struct sk_buff *skb; 1523 u32 offset; 1524 1525 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1526 offset = seq - TCP_SKB_CB(skb)->seq; 1527 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1528 pr_err_once("%s: found a SYN, please report !\n", __func__); 1529 offset--; 1530 } 1531 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1532 *off = offset; 1533 return skb; 1534 } 1535 /* This looks weird, but this can happen if TCP collapsing 1536 * splitted a fat GRO packet, while we released socket lock 1537 * in skb_splice_bits() 1538 */ 1539 tcp_eat_recv_skb(sk, skb); 1540 } 1541 return NULL; 1542 } 1543 EXPORT_SYMBOL(tcp_recv_skb); 1544 1545 /* 1546 * This routine provides an alternative to tcp_recvmsg() for routines 1547 * that would like to handle copying from skbuffs directly in 'sendfile' 1548 * fashion. 1549 * Note: 1550 * - It is assumed that the socket was locked by the caller. 1551 * - The routine does not block. 1552 * - At present, there is no support for reading OOB data 1553 * or for 'peeking' the socket using this routine 1554 * (although both would be easy to implement). 1555 */ 1556 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1557 sk_read_actor_t recv_actor, bool noack, 1558 u32 *copied_seq) 1559 { 1560 struct sk_buff *skb; 1561 struct tcp_sock *tp = tcp_sk(sk); 1562 u32 seq = *copied_seq; 1563 u32 offset; 1564 int copied = 0; 1565 1566 if (sk->sk_state == TCP_LISTEN) 1567 return -ENOTCONN; 1568 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1569 if (offset < skb->len) { 1570 int used; 1571 size_t len; 1572 1573 len = skb->len - offset; 1574 /* Stop reading if we hit a patch of urgent data */ 1575 if (unlikely(tp->urg_data)) { 1576 u32 urg_offset = tp->urg_seq - seq; 1577 if (urg_offset < len) 1578 len = urg_offset; 1579 if (!len) 1580 break; 1581 } 1582 used = recv_actor(desc, skb, offset, len); 1583 if (used <= 0) { 1584 if (!copied) 1585 copied = used; 1586 break; 1587 } 1588 if (WARN_ON_ONCE(used > len)) 1589 used = len; 1590 seq += used; 1591 copied += used; 1592 offset += used; 1593 1594 /* If recv_actor drops the lock (e.g. TCP splice 1595 * receive) the skb pointer might be invalid when 1596 * getting here: tcp_collapse might have deleted it 1597 * while aggregating skbs from the socket queue. 1598 */ 1599 skb = tcp_recv_skb(sk, seq - 1, &offset); 1600 if (!skb) 1601 break; 1602 /* TCP coalescing might have appended data to the skb. 1603 * Try to splice more frags 1604 */ 1605 if (offset + 1 != skb->len) 1606 continue; 1607 } 1608 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1609 tcp_eat_recv_skb(sk, skb); 1610 ++seq; 1611 break; 1612 } 1613 tcp_eat_recv_skb(sk, skb); 1614 if (!desc->count) 1615 break; 1616 WRITE_ONCE(*copied_seq, seq); 1617 } 1618 WRITE_ONCE(*copied_seq, seq); 1619 1620 if (noack) 1621 goto out; 1622 1623 tcp_rcv_space_adjust(sk); 1624 1625 /* Clean up data we have read: This will do ACK frames. */ 1626 if (copied > 0) { 1627 tcp_recv_skb(sk, seq, &offset); 1628 tcp_cleanup_rbuf(sk, copied); 1629 } 1630 out: 1631 return copied; 1632 } 1633 1634 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1635 sk_read_actor_t recv_actor) 1636 { 1637 return __tcp_read_sock(sk, desc, recv_actor, false, 1638 &tcp_sk(sk)->copied_seq); 1639 } 1640 EXPORT_SYMBOL(tcp_read_sock); 1641 1642 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc, 1643 sk_read_actor_t recv_actor, bool noack, 1644 u32 *copied_seq) 1645 { 1646 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq); 1647 } 1648 1649 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) 1650 { 1651 struct sk_buff *skb; 1652 int copied = 0; 1653 1654 if (sk->sk_state == TCP_LISTEN) 1655 return -ENOTCONN; 1656 1657 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1658 u8 tcp_flags; 1659 int used; 1660 1661 __skb_unlink(skb, &sk->sk_receive_queue); 1662 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); 1663 tcp_flags = TCP_SKB_CB(skb)->tcp_flags; 1664 used = recv_actor(sk, skb); 1665 if (used < 0) { 1666 if (!copied) 1667 copied = used; 1668 break; 1669 } 1670 copied += used; 1671 1672 if (tcp_flags & TCPHDR_FIN) 1673 break; 1674 } 1675 return copied; 1676 } 1677 EXPORT_SYMBOL(tcp_read_skb); 1678 1679 void tcp_read_done(struct sock *sk, size_t len) 1680 { 1681 struct tcp_sock *tp = tcp_sk(sk); 1682 u32 seq = tp->copied_seq; 1683 struct sk_buff *skb; 1684 size_t left; 1685 u32 offset; 1686 1687 if (sk->sk_state == TCP_LISTEN) 1688 return; 1689 1690 left = len; 1691 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1692 int used; 1693 1694 used = min_t(size_t, skb->len - offset, left); 1695 seq += used; 1696 left -= used; 1697 1698 if (skb->len > offset + used) 1699 break; 1700 1701 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1702 tcp_eat_recv_skb(sk, skb); 1703 ++seq; 1704 break; 1705 } 1706 tcp_eat_recv_skb(sk, skb); 1707 } 1708 WRITE_ONCE(tp->copied_seq, seq); 1709 1710 tcp_rcv_space_adjust(sk); 1711 1712 /* Clean up data we have read: This will do ACK frames. */ 1713 if (left != len) 1714 tcp_cleanup_rbuf(sk, len - left); 1715 } 1716 EXPORT_SYMBOL(tcp_read_done); 1717 1718 int tcp_peek_len(struct socket *sock) 1719 { 1720 return tcp_inq(sock->sk); 1721 } 1722 EXPORT_SYMBOL(tcp_peek_len); 1723 1724 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1725 int tcp_set_rcvlowat(struct sock *sk, int val) 1726 { 1727 int space, cap; 1728 1729 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1730 cap = sk->sk_rcvbuf >> 1; 1731 else 1732 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 1733 val = min(val, cap); 1734 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1); 1735 1736 /* Check if we need to signal EPOLLIN right now */ 1737 tcp_data_ready(sk); 1738 1739 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1740 return 0; 1741 1742 space = tcp_space_from_win(sk, val); 1743 if (space > sk->sk_rcvbuf) { 1744 WRITE_ONCE(sk->sk_rcvbuf, space); 1745 WRITE_ONCE(tcp_sk(sk)->window_clamp, val); 1746 } 1747 return 0; 1748 } 1749 EXPORT_SYMBOL(tcp_set_rcvlowat); 1750 1751 void tcp_update_recv_tstamps(struct sk_buff *skb, 1752 struct scm_timestamping_internal *tss) 1753 { 1754 if (skb->tstamp) 1755 tss->ts[0] = ktime_to_timespec64(skb->tstamp); 1756 else 1757 tss->ts[0] = (struct timespec64) {0}; 1758 1759 if (skb_hwtstamps(skb)->hwtstamp) 1760 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp); 1761 else 1762 tss->ts[2] = (struct timespec64) {0}; 1763 } 1764 1765 #ifdef CONFIG_MMU 1766 static const struct vm_operations_struct tcp_vm_ops = { 1767 }; 1768 1769 int tcp_mmap(struct file *file, struct socket *sock, 1770 struct vm_area_struct *vma) 1771 { 1772 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1773 return -EPERM; 1774 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC); 1775 1776 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */ 1777 vm_flags_set(vma, VM_MIXEDMAP); 1778 1779 vma->vm_ops = &tcp_vm_ops; 1780 return 0; 1781 } 1782 EXPORT_SYMBOL(tcp_mmap); 1783 1784 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb, 1785 u32 *offset_frag) 1786 { 1787 skb_frag_t *frag; 1788 1789 if (unlikely(offset_skb >= skb->len)) 1790 return NULL; 1791 1792 offset_skb -= skb_headlen(skb); 1793 if ((int)offset_skb < 0 || skb_has_frag_list(skb)) 1794 return NULL; 1795 1796 frag = skb_shinfo(skb)->frags; 1797 while (offset_skb) { 1798 if (skb_frag_size(frag) > offset_skb) { 1799 *offset_frag = offset_skb; 1800 return frag; 1801 } 1802 offset_skb -= skb_frag_size(frag); 1803 ++frag; 1804 } 1805 *offset_frag = 0; 1806 return frag; 1807 } 1808 1809 static bool can_map_frag(const skb_frag_t *frag) 1810 { 1811 struct page *page; 1812 1813 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag)) 1814 return false; 1815 1816 page = skb_frag_page(frag); 1817 1818 if (PageCompound(page) || page->mapping) 1819 return false; 1820 1821 return true; 1822 } 1823 1824 static int find_next_mappable_frag(const skb_frag_t *frag, 1825 int remaining_in_skb) 1826 { 1827 int offset = 0; 1828 1829 if (likely(can_map_frag(frag))) 1830 return 0; 1831 1832 while (offset < remaining_in_skb && !can_map_frag(frag)) { 1833 offset += skb_frag_size(frag); 1834 ++frag; 1835 } 1836 return offset; 1837 } 1838 1839 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk, 1840 struct tcp_zerocopy_receive *zc, 1841 struct sk_buff *skb, u32 offset) 1842 { 1843 u32 frag_offset, partial_frag_remainder = 0; 1844 int mappable_offset; 1845 skb_frag_t *frag; 1846 1847 /* worst case: skip to next skb. try to improve on this case below */ 1848 zc->recv_skip_hint = skb->len - offset; 1849 1850 /* Find the frag containing this offset (and how far into that frag) */ 1851 frag = skb_advance_to_frag(skb, offset, &frag_offset); 1852 if (!frag) 1853 return; 1854 1855 if (frag_offset) { 1856 struct skb_shared_info *info = skb_shinfo(skb); 1857 1858 /* We read part of the last frag, must recvmsg() rest of skb. */ 1859 if (frag == &info->frags[info->nr_frags - 1]) 1860 return; 1861 1862 /* Else, we must at least read the remainder in this frag. */ 1863 partial_frag_remainder = skb_frag_size(frag) - frag_offset; 1864 zc->recv_skip_hint -= partial_frag_remainder; 1865 ++frag; 1866 } 1867 1868 /* partial_frag_remainder: If part way through a frag, must read rest. 1869 * mappable_offset: Bytes till next mappable frag, *not* counting bytes 1870 * in partial_frag_remainder. 1871 */ 1872 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint); 1873 zc->recv_skip_hint = mappable_offset + partial_frag_remainder; 1874 } 1875 1876 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 1877 int flags, struct scm_timestamping_internal *tss, 1878 int *cmsg_flags); 1879 static int receive_fallback_to_copy(struct sock *sk, 1880 struct tcp_zerocopy_receive *zc, int inq, 1881 struct scm_timestamping_internal *tss) 1882 { 1883 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1884 struct msghdr msg = {}; 1885 struct iovec iov; 1886 int err; 1887 1888 zc->length = 0; 1889 zc->recv_skip_hint = 0; 1890 1891 if (copy_address != zc->copybuf_address) 1892 return -EINVAL; 1893 1894 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1895 inq, &iov, &msg.msg_iter); 1896 if (err) 1897 return err; 1898 1899 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT, 1900 tss, &zc->msg_flags); 1901 if (err < 0) 1902 return err; 1903 1904 zc->copybuf_len = err; 1905 if (likely(zc->copybuf_len)) { 1906 struct sk_buff *skb; 1907 u32 offset; 1908 1909 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset); 1910 if (skb) 1911 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset); 1912 } 1913 return 0; 1914 } 1915 1916 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc, 1917 struct sk_buff *skb, u32 copylen, 1918 u32 *offset, u32 *seq) 1919 { 1920 unsigned long copy_address = (unsigned long)zc->copybuf_address; 1921 struct msghdr msg = {}; 1922 struct iovec iov; 1923 int err; 1924 1925 if (copy_address != zc->copybuf_address) 1926 return -EINVAL; 1927 1928 err = import_single_range(ITER_DEST, (void __user *)copy_address, 1929 copylen, &iov, &msg.msg_iter); 1930 if (err) 1931 return err; 1932 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen); 1933 if (err) 1934 return err; 1935 zc->recv_skip_hint -= copylen; 1936 *offset += copylen; 1937 *seq += copylen; 1938 return (__s32)copylen; 1939 } 1940 1941 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc, 1942 struct sock *sk, 1943 struct sk_buff *skb, 1944 u32 *seq, 1945 s32 copybuf_len, 1946 struct scm_timestamping_internal *tss) 1947 { 1948 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint); 1949 1950 if (!copylen) 1951 return 0; 1952 /* skb is null if inq < PAGE_SIZE. */ 1953 if (skb) { 1954 offset = *seq - TCP_SKB_CB(skb)->seq; 1955 } else { 1956 skb = tcp_recv_skb(sk, *seq, &offset); 1957 if (TCP_SKB_CB(skb)->has_rxtstamp) { 1958 tcp_update_recv_tstamps(skb, tss); 1959 zc->msg_flags |= TCP_CMSG_TS; 1960 } 1961 } 1962 1963 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset, 1964 seq); 1965 return zc->copybuf_len < 0 ? 0 : copylen; 1966 } 1967 1968 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma, 1969 struct page **pending_pages, 1970 unsigned long pages_remaining, 1971 unsigned long *address, 1972 u32 *length, 1973 u32 *seq, 1974 struct tcp_zerocopy_receive *zc, 1975 u32 total_bytes_to_map, 1976 int err) 1977 { 1978 /* At least one page did not map. Try zapping if we skipped earlier. */ 1979 if (err == -EBUSY && 1980 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) { 1981 u32 maybe_zap_len; 1982 1983 maybe_zap_len = total_bytes_to_map - /* All bytes to map */ 1984 *length + /* Mapped or pending */ 1985 (pages_remaining * PAGE_SIZE); /* Failed map. */ 1986 zap_page_range_single(vma, *address, maybe_zap_len, NULL); 1987 err = 0; 1988 } 1989 1990 if (!err) { 1991 unsigned long leftover_pages = pages_remaining; 1992 int bytes_mapped; 1993 1994 /* We called zap_page_range_single, try to reinsert. */ 1995 err = vm_insert_pages(vma, *address, 1996 pending_pages, 1997 &pages_remaining); 1998 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining); 1999 *seq += bytes_mapped; 2000 *address += bytes_mapped; 2001 } 2002 if (err) { 2003 /* Either we were unable to zap, OR we zapped, retried an 2004 * insert, and still had an issue. Either ways, pages_remaining 2005 * is the number of pages we were unable to map, and we unroll 2006 * some state we speculatively touched before. 2007 */ 2008 const int bytes_not_mapped = PAGE_SIZE * pages_remaining; 2009 2010 *length -= bytes_not_mapped; 2011 zc->recv_skip_hint += bytes_not_mapped; 2012 } 2013 return err; 2014 } 2015 2016 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma, 2017 struct page **pages, 2018 unsigned int pages_to_map, 2019 unsigned long *address, 2020 u32 *length, 2021 u32 *seq, 2022 struct tcp_zerocopy_receive *zc, 2023 u32 total_bytes_to_map) 2024 { 2025 unsigned long pages_remaining = pages_to_map; 2026 unsigned int pages_mapped; 2027 unsigned int bytes_mapped; 2028 int err; 2029 2030 err = vm_insert_pages(vma, *address, pages, &pages_remaining); 2031 pages_mapped = pages_to_map - (unsigned int)pages_remaining; 2032 bytes_mapped = PAGE_SIZE * pages_mapped; 2033 /* Even if vm_insert_pages fails, it may have partially succeeded in 2034 * mapping (some but not all of the pages). 2035 */ 2036 *seq += bytes_mapped; 2037 *address += bytes_mapped; 2038 2039 if (likely(!err)) 2040 return 0; 2041 2042 /* Error: maybe zap and retry + rollback state for failed inserts. */ 2043 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped, 2044 pages_remaining, address, length, seq, zc, total_bytes_to_map, 2045 err); 2046 } 2047 2048 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS) 2049 static void tcp_zc_finalize_rx_tstamp(struct sock *sk, 2050 struct tcp_zerocopy_receive *zc, 2051 struct scm_timestamping_internal *tss) 2052 { 2053 unsigned long msg_control_addr; 2054 struct msghdr cmsg_dummy; 2055 2056 msg_control_addr = (unsigned long)zc->msg_control; 2057 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr; 2058 cmsg_dummy.msg_controllen = 2059 (__kernel_size_t)zc->msg_controllen; 2060 cmsg_dummy.msg_flags = in_compat_syscall() 2061 ? MSG_CMSG_COMPAT : 0; 2062 cmsg_dummy.msg_control_is_user = true; 2063 zc->msg_flags = 0; 2064 if (zc->msg_control == msg_control_addr && 2065 zc->msg_controllen == cmsg_dummy.msg_controllen) { 2066 tcp_recv_timestamp(&cmsg_dummy, sk, tss); 2067 zc->msg_control = (__u64) 2068 ((uintptr_t)cmsg_dummy.msg_control_user); 2069 zc->msg_controllen = 2070 (__u64)cmsg_dummy.msg_controllen; 2071 zc->msg_flags = (__u32)cmsg_dummy.msg_flags; 2072 } 2073 } 2074 2075 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm, 2076 unsigned long address, 2077 bool *mmap_locked) 2078 { 2079 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address); 2080 2081 if (vma) { 2082 if (vma->vm_ops != &tcp_vm_ops) { 2083 vma_end_read(vma); 2084 return NULL; 2085 } 2086 *mmap_locked = false; 2087 return vma; 2088 } 2089 2090 mmap_read_lock(mm); 2091 vma = vma_lookup(mm, address); 2092 if (!vma || vma->vm_ops != &tcp_vm_ops) { 2093 mmap_read_unlock(mm); 2094 return NULL; 2095 } 2096 *mmap_locked = true; 2097 return vma; 2098 } 2099 2100 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32 2101 static int tcp_zerocopy_receive(struct sock *sk, 2102 struct tcp_zerocopy_receive *zc, 2103 struct scm_timestamping_internal *tss) 2104 { 2105 u32 length = 0, offset, vma_len, avail_len, copylen = 0; 2106 unsigned long address = (unsigned long)zc->address; 2107 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE]; 2108 s32 copybuf_len = zc->copybuf_len; 2109 struct tcp_sock *tp = tcp_sk(sk); 2110 const skb_frag_t *frags = NULL; 2111 unsigned int pages_to_map = 0; 2112 struct vm_area_struct *vma; 2113 struct sk_buff *skb = NULL; 2114 u32 seq = tp->copied_seq; 2115 u32 total_bytes_to_map; 2116 int inq = tcp_inq(sk); 2117 bool mmap_locked; 2118 int ret; 2119 2120 zc->copybuf_len = 0; 2121 zc->msg_flags = 0; 2122 2123 if (address & (PAGE_SIZE - 1) || address != zc->address) 2124 return -EINVAL; 2125 2126 if (sk->sk_state == TCP_LISTEN) 2127 return -ENOTCONN; 2128 2129 sock_rps_record_flow(sk); 2130 2131 if (inq && inq <= copybuf_len) 2132 return receive_fallback_to_copy(sk, zc, inq, tss); 2133 2134 if (inq < PAGE_SIZE) { 2135 zc->length = 0; 2136 zc->recv_skip_hint = inq; 2137 if (!inq && sock_flag(sk, SOCK_DONE)) 2138 return -EIO; 2139 return 0; 2140 } 2141 2142 vma = find_tcp_vma(current->mm, address, &mmap_locked); 2143 if (!vma) 2144 return -EINVAL; 2145 2146 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address); 2147 avail_len = min_t(u32, vma_len, inq); 2148 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1); 2149 if (total_bytes_to_map) { 2150 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT)) 2151 zap_page_range_single(vma, address, total_bytes_to_map, 2152 NULL); 2153 zc->length = total_bytes_to_map; 2154 zc->recv_skip_hint = 0; 2155 } else { 2156 zc->length = avail_len; 2157 zc->recv_skip_hint = avail_len; 2158 } 2159 ret = 0; 2160 while (length + PAGE_SIZE <= zc->length) { 2161 int mappable_offset; 2162 struct page *page; 2163 2164 if (zc->recv_skip_hint < PAGE_SIZE) { 2165 u32 offset_frag; 2166 2167 if (skb) { 2168 if (zc->recv_skip_hint > 0) 2169 break; 2170 skb = skb->next; 2171 offset = seq - TCP_SKB_CB(skb)->seq; 2172 } else { 2173 skb = tcp_recv_skb(sk, seq, &offset); 2174 } 2175 2176 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2177 tcp_update_recv_tstamps(skb, tss); 2178 zc->msg_flags |= TCP_CMSG_TS; 2179 } 2180 zc->recv_skip_hint = skb->len - offset; 2181 frags = skb_advance_to_frag(skb, offset, &offset_frag); 2182 if (!frags || offset_frag) 2183 break; 2184 } 2185 2186 mappable_offset = find_next_mappable_frag(frags, 2187 zc->recv_skip_hint); 2188 if (mappable_offset) { 2189 zc->recv_skip_hint = mappable_offset; 2190 break; 2191 } 2192 page = skb_frag_page(frags); 2193 prefetchw(page); 2194 pages[pages_to_map++] = page; 2195 length += PAGE_SIZE; 2196 zc->recv_skip_hint -= PAGE_SIZE; 2197 frags++; 2198 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE || 2199 zc->recv_skip_hint < PAGE_SIZE) { 2200 /* Either full batch, or we're about to go to next skb 2201 * (and we cannot unroll failed ops across skbs). 2202 */ 2203 ret = tcp_zerocopy_vm_insert_batch(vma, pages, 2204 pages_to_map, 2205 &address, &length, 2206 &seq, zc, 2207 total_bytes_to_map); 2208 if (ret) 2209 goto out; 2210 pages_to_map = 0; 2211 } 2212 } 2213 if (pages_to_map) { 2214 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map, 2215 &address, &length, &seq, 2216 zc, total_bytes_to_map); 2217 } 2218 out: 2219 if (mmap_locked) 2220 mmap_read_unlock(current->mm); 2221 else 2222 vma_end_read(vma); 2223 /* Try to copy straggler data. */ 2224 if (!ret) 2225 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss); 2226 2227 if (length + copylen) { 2228 WRITE_ONCE(tp->copied_seq, seq); 2229 tcp_rcv_space_adjust(sk); 2230 2231 /* Clean up data we have read: This will do ACK frames. */ 2232 tcp_recv_skb(sk, seq, &offset); 2233 tcp_cleanup_rbuf(sk, length + copylen); 2234 ret = 0; 2235 if (length == zc->length) 2236 zc->recv_skip_hint = 0; 2237 } else { 2238 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 2239 ret = -EIO; 2240 } 2241 zc->length = length; 2242 return ret; 2243 } 2244 #endif 2245 2246 /* Similar to __sock_recv_timestamp, but does not require an skb */ 2247 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 2248 struct scm_timestamping_internal *tss) 2249 { 2250 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 2251 bool has_timestamping = false; 2252 2253 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 2254 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 2255 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 2256 if (new_tstamp) { 2257 struct __kernel_timespec kts = { 2258 .tv_sec = tss->ts[0].tv_sec, 2259 .tv_nsec = tss->ts[0].tv_nsec, 2260 }; 2261 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 2262 sizeof(kts), &kts); 2263 } else { 2264 struct __kernel_old_timespec ts_old = { 2265 .tv_sec = tss->ts[0].tv_sec, 2266 .tv_nsec = tss->ts[0].tv_nsec, 2267 }; 2268 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 2269 sizeof(ts_old), &ts_old); 2270 } 2271 } else { 2272 if (new_tstamp) { 2273 struct __kernel_sock_timeval stv = { 2274 .tv_sec = tss->ts[0].tv_sec, 2275 .tv_usec = tss->ts[0].tv_nsec / 1000, 2276 }; 2277 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 2278 sizeof(stv), &stv); 2279 } else { 2280 struct __kernel_old_timeval tv = { 2281 .tv_sec = tss->ts[0].tv_sec, 2282 .tv_usec = tss->ts[0].tv_nsec / 1000, 2283 }; 2284 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 2285 sizeof(tv), &tv); 2286 } 2287 } 2288 } 2289 2290 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE) 2291 has_timestamping = true; 2292 else 2293 tss->ts[0] = (struct timespec64) {0}; 2294 } 2295 2296 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 2297 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE) 2298 has_timestamping = true; 2299 else 2300 tss->ts[2] = (struct timespec64) {0}; 2301 } 2302 2303 if (has_timestamping) { 2304 tss->ts[1] = (struct timespec64) {0}; 2305 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 2306 put_cmsg_scm_timestamping64(msg, tss); 2307 else 2308 put_cmsg_scm_timestamping(msg, tss); 2309 } 2310 } 2311 2312 static int tcp_inq_hint(struct sock *sk) 2313 { 2314 const struct tcp_sock *tp = tcp_sk(sk); 2315 u32 copied_seq = READ_ONCE(tp->copied_seq); 2316 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 2317 int inq; 2318 2319 inq = rcv_nxt - copied_seq; 2320 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 2321 lock_sock(sk); 2322 inq = tp->rcv_nxt - tp->copied_seq; 2323 release_sock(sk); 2324 } 2325 /* After receiving a FIN, tell the user-space to continue reading 2326 * by returning a non-zero inq. 2327 */ 2328 if (inq == 0 && sock_flag(sk, SOCK_DONE)) 2329 inq = 1; 2330 return inq; 2331 } 2332 2333 /* 2334 * This routine copies from a sock struct into the user buffer. 2335 * 2336 * Technical note: in 2.3 we work on _locked_ socket, so that 2337 * tricks with *seq access order and skb->users are not required. 2338 * Probably, code can be easily improved even more. 2339 */ 2340 2341 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len, 2342 int flags, struct scm_timestamping_internal *tss, 2343 int *cmsg_flags) 2344 { 2345 struct tcp_sock *tp = tcp_sk(sk); 2346 int copied = 0; 2347 u32 peek_seq; 2348 u32 *seq; 2349 unsigned long used; 2350 int err; 2351 int target; /* Read at least this many bytes */ 2352 long timeo; 2353 struct sk_buff *skb, *last; 2354 u32 urg_hole = 0; 2355 2356 err = -ENOTCONN; 2357 if (sk->sk_state == TCP_LISTEN) 2358 goto out; 2359 2360 if (tp->recvmsg_inq) { 2361 *cmsg_flags = TCP_CMSG_INQ; 2362 msg->msg_get_inq = 1; 2363 } 2364 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2365 2366 /* Urgent data needs to be handled specially. */ 2367 if (flags & MSG_OOB) 2368 goto recv_urg; 2369 2370 if (unlikely(tp->repair)) { 2371 err = -EPERM; 2372 if (!(flags & MSG_PEEK)) 2373 goto out; 2374 2375 if (tp->repair_queue == TCP_SEND_QUEUE) 2376 goto recv_sndq; 2377 2378 err = -EINVAL; 2379 if (tp->repair_queue == TCP_NO_QUEUE) 2380 goto out; 2381 2382 /* 'common' recv queue MSG_PEEK-ing */ 2383 } 2384 2385 seq = &tp->copied_seq; 2386 if (flags & MSG_PEEK) { 2387 peek_seq = tp->copied_seq; 2388 seq = &peek_seq; 2389 } 2390 2391 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2392 2393 do { 2394 u32 offset; 2395 2396 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 2397 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) { 2398 if (copied) 2399 break; 2400 if (signal_pending(current)) { 2401 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 2402 break; 2403 } 2404 } 2405 2406 /* Next get a buffer. */ 2407 2408 last = skb_peek_tail(&sk->sk_receive_queue); 2409 skb_queue_walk(&sk->sk_receive_queue, skb) { 2410 last = skb; 2411 /* Now that we have two receive queues this 2412 * shouldn't happen. 2413 */ 2414 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 2415 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n", 2416 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 2417 flags)) 2418 break; 2419 2420 offset = *seq - TCP_SKB_CB(skb)->seq; 2421 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 2422 pr_err_once("%s: found a SYN, please report !\n", __func__); 2423 offset--; 2424 } 2425 if (offset < skb->len) 2426 goto found_ok_skb; 2427 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2428 goto found_fin_ok; 2429 WARN(!(flags & MSG_PEEK), 2430 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n", 2431 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2432 } 2433 2434 /* Well, if we have backlog, try to process it now yet. */ 2435 2436 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail)) 2437 break; 2438 2439 if (copied) { 2440 if (!timeo || 2441 sk->sk_err || 2442 sk->sk_state == TCP_CLOSE || 2443 (sk->sk_shutdown & RCV_SHUTDOWN) || 2444 signal_pending(current)) 2445 break; 2446 } else { 2447 if (sock_flag(sk, SOCK_DONE)) 2448 break; 2449 2450 if (sk->sk_err) { 2451 copied = sock_error(sk); 2452 break; 2453 } 2454 2455 if (sk->sk_shutdown & RCV_SHUTDOWN) 2456 break; 2457 2458 if (sk->sk_state == TCP_CLOSE) { 2459 /* This occurs when user tries to read 2460 * from never connected socket. 2461 */ 2462 copied = -ENOTCONN; 2463 break; 2464 } 2465 2466 if (!timeo) { 2467 copied = -EAGAIN; 2468 break; 2469 } 2470 2471 if (signal_pending(current)) { 2472 copied = sock_intr_errno(timeo); 2473 break; 2474 } 2475 } 2476 2477 if (copied >= target) { 2478 /* Do not sleep, just process backlog. */ 2479 __sk_flush_backlog(sk); 2480 } else { 2481 tcp_cleanup_rbuf(sk, copied); 2482 err = sk_wait_data(sk, &timeo, last); 2483 if (err < 0) { 2484 err = copied ? : err; 2485 goto out; 2486 } 2487 } 2488 2489 if ((flags & MSG_PEEK) && 2490 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2491 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2492 current->comm, 2493 task_pid_nr(current)); 2494 peek_seq = tp->copied_seq; 2495 } 2496 continue; 2497 2498 found_ok_skb: 2499 /* Ok so how much can we use? */ 2500 used = skb->len - offset; 2501 if (len < used) 2502 used = len; 2503 2504 /* Do we have urgent data here? */ 2505 if (unlikely(tp->urg_data)) { 2506 u32 urg_offset = tp->urg_seq - *seq; 2507 if (urg_offset < used) { 2508 if (!urg_offset) { 2509 if (!sock_flag(sk, SOCK_URGINLINE)) { 2510 WRITE_ONCE(*seq, *seq + 1); 2511 urg_hole++; 2512 offset++; 2513 used--; 2514 if (!used) 2515 goto skip_copy; 2516 } 2517 } else 2518 used = urg_offset; 2519 } 2520 } 2521 2522 if (!(flags & MSG_TRUNC)) { 2523 err = skb_copy_datagram_msg(skb, offset, msg, used); 2524 if (err) { 2525 /* Exception. Bailout! */ 2526 if (!copied) 2527 copied = -EFAULT; 2528 break; 2529 } 2530 } 2531 2532 WRITE_ONCE(*seq, *seq + used); 2533 copied += used; 2534 len -= used; 2535 2536 tcp_rcv_space_adjust(sk); 2537 2538 skip_copy: 2539 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) { 2540 WRITE_ONCE(tp->urg_data, 0); 2541 tcp_fast_path_check(sk); 2542 } 2543 2544 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2545 tcp_update_recv_tstamps(skb, tss); 2546 *cmsg_flags |= TCP_CMSG_TS; 2547 } 2548 2549 if (used + offset < skb->len) 2550 continue; 2551 2552 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2553 goto found_fin_ok; 2554 if (!(flags & MSG_PEEK)) 2555 tcp_eat_recv_skb(sk, skb); 2556 continue; 2557 2558 found_fin_ok: 2559 /* Process the FIN. */ 2560 WRITE_ONCE(*seq, *seq + 1); 2561 if (!(flags & MSG_PEEK)) 2562 tcp_eat_recv_skb(sk, skb); 2563 break; 2564 } while (len > 0); 2565 2566 /* According to UNIX98, msg_name/msg_namelen are ignored 2567 * on connected socket. I was just happy when found this 8) --ANK 2568 */ 2569 2570 /* Clean up data we have read: This will do ACK frames. */ 2571 tcp_cleanup_rbuf(sk, copied); 2572 return copied; 2573 2574 out: 2575 return err; 2576 2577 recv_urg: 2578 err = tcp_recv_urg(sk, msg, len, flags); 2579 goto out; 2580 2581 recv_sndq: 2582 err = tcp_peek_sndq(sk, msg, len); 2583 goto out; 2584 } 2585 2586 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, 2587 int *addr_len) 2588 { 2589 int cmsg_flags = 0, ret; 2590 struct scm_timestamping_internal tss; 2591 2592 if (unlikely(flags & MSG_ERRQUEUE)) 2593 return inet_recv_error(sk, msg, len, addr_len); 2594 2595 if (sk_can_busy_loop(sk) && 2596 skb_queue_empty_lockless(&sk->sk_receive_queue) && 2597 sk->sk_state == TCP_ESTABLISHED) 2598 sk_busy_loop(sk, flags & MSG_DONTWAIT); 2599 2600 lock_sock(sk); 2601 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags); 2602 release_sock(sk); 2603 2604 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) { 2605 if (cmsg_flags & TCP_CMSG_TS) 2606 tcp_recv_timestamp(msg, sk, &tss); 2607 if (msg->msg_get_inq) { 2608 msg->msg_inq = tcp_inq_hint(sk); 2609 if (cmsg_flags & TCP_CMSG_INQ) 2610 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, 2611 sizeof(msg->msg_inq), &msg->msg_inq); 2612 } 2613 } 2614 return ret; 2615 } 2616 EXPORT_SYMBOL(tcp_recvmsg); 2617 2618 void tcp_set_state(struct sock *sk, int state) 2619 { 2620 int oldstate = sk->sk_state; 2621 2622 /* We defined a new enum for TCP states that are exported in BPF 2623 * so as not force the internal TCP states to be frozen. The 2624 * following checks will detect if an internal state value ever 2625 * differs from the BPF value. If this ever happens, then we will 2626 * need to remap the internal value to the BPF value before calling 2627 * tcp_call_bpf_2arg. 2628 */ 2629 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2630 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2631 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2632 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2633 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2634 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2635 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2636 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2637 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2638 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2639 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2640 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2641 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2642 2643 /* bpf uapi header bpf.h defines an anonymous enum with values 2644 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux 2645 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON. 2646 * But clang built vmlinux does not have this enum in DWARF 2647 * since clang removes the above code before generating IR/debuginfo. 2648 * Let us explicitly emit the type debuginfo to ensure the 2649 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF 2650 * regardless of which compiler is used. 2651 */ 2652 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED); 2653 2654 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2655 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2656 2657 switch (state) { 2658 case TCP_ESTABLISHED: 2659 if (oldstate != TCP_ESTABLISHED) 2660 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2661 break; 2662 case TCP_CLOSE_WAIT: 2663 if (oldstate == TCP_SYN_RECV) 2664 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2665 break; 2666 2667 case TCP_CLOSE: 2668 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2669 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2670 2671 sk->sk_prot->unhash(sk); 2672 if (inet_csk(sk)->icsk_bind_hash && 2673 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2674 inet_put_port(sk); 2675 fallthrough; 2676 default: 2677 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2678 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2679 } 2680 2681 /* Change state AFTER socket is unhashed to avoid closed 2682 * socket sitting in hash tables. 2683 */ 2684 inet_sk_state_store(sk, state); 2685 } 2686 EXPORT_SYMBOL_GPL(tcp_set_state); 2687 2688 /* 2689 * State processing on a close. This implements the state shift for 2690 * sending our FIN frame. Note that we only send a FIN for some 2691 * states. A shutdown() may have already sent the FIN, or we may be 2692 * closed. 2693 */ 2694 2695 static const unsigned char new_state[16] = { 2696 /* current state: new state: action: */ 2697 [0 /* (Invalid) */] = TCP_CLOSE, 2698 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2699 [TCP_SYN_SENT] = TCP_CLOSE, 2700 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2701 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2702 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2703 [TCP_TIME_WAIT] = TCP_CLOSE, 2704 [TCP_CLOSE] = TCP_CLOSE, 2705 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2706 [TCP_LAST_ACK] = TCP_LAST_ACK, 2707 [TCP_LISTEN] = TCP_CLOSE, 2708 [TCP_CLOSING] = TCP_CLOSING, 2709 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2710 }; 2711 2712 static int tcp_close_state(struct sock *sk) 2713 { 2714 int next = (int)new_state[sk->sk_state]; 2715 int ns = next & TCP_STATE_MASK; 2716 2717 tcp_set_state(sk, ns); 2718 2719 return next & TCP_ACTION_FIN; 2720 } 2721 2722 /* 2723 * Shutdown the sending side of a connection. Much like close except 2724 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2725 */ 2726 2727 void tcp_shutdown(struct sock *sk, int how) 2728 { 2729 /* We need to grab some memory, and put together a FIN, 2730 * and then put it into the queue to be sent. 2731 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2732 */ 2733 if (!(how & SEND_SHUTDOWN)) 2734 return; 2735 2736 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2737 if ((1 << sk->sk_state) & 2738 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2739 TCPF_CLOSE_WAIT)) { 2740 /* Clear out any half completed packets. FIN if needed. */ 2741 if (tcp_close_state(sk)) 2742 tcp_send_fin(sk); 2743 } 2744 } 2745 EXPORT_SYMBOL(tcp_shutdown); 2746 2747 int tcp_orphan_count_sum(void) 2748 { 2749 int i, total = 0; 2750 2751 for_each_possible_cpu(i) 2752 total += per_cpu(tcp_orphan_count, i); 2753 2754 return max(total, 0); 2755 } 2756 2757 static int tcp_orphan_cache; 2758 static struct timer_list tcp_orphan_timer; 2759 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100) 2760 2761 static void tcp_orphan_update(struct timer_list *unused) 2762 { 2763 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum()); 2764 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 2765 } 2766 2767 static bool tcp_too_many_orphans(int shift) 2768 { 2769 return READ_ONCE(tcp_orphan_cache) << shift > 2770 READ_ONCE(sysctl_tcp_max_orphans); 2771 } 2772 2773 bool tcp_check_oom(struct sock *sk, int shift) 2774 { 2775 bool too_many_orphans, out_of_socket_memory; 2776 2777 too_many_orphans = tcp_too_many_orphans(shift); 2778 out_of_socket_memory = tcp_out_of_memory(sk); 2779 2780 if (too_many_orphans) 2781 net_info_ratelimited("too many orphaned sockets\n"); 2782 if (out_of_socket_memory) 2783 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2784 return too_many_orphans || out_of_socket_memory; 2785 } 2786 2787 void __tcp_close(struct sock *sk, long timeout) 2788 { 2789 struct sk_buff *skb; 2790 int data_was_unread = 0; 2791 int state; 2792 2793 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2794 2795 if (sk->sk_state == TCP_LISTEN) { 2796 tcp_set_state(sk, TCP_CLOSE); 2797 2798 /* Special case. */ 2799 inet_csk_listen_stop(sk); 2800 2801 goto adjudge_to_death; 2802 } 2803 2804 /* We need to flush the recv. buffs. We do this only on the 2805 * descriptor close, not protocol-sourced closes, because the 2806 * reader process may not have drained the data yet! 2807 */ 2808 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2809 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2810 2811 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2812 len--; 2813 data_was_unread += len; 2814 __kfree_skb(skb); 2815 } 2816 2817 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2818 if (sk->sk_state == TCP_CLOSE) 2819 goto adjudge_to_death; 2820 2821 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2822 * data was lost. To witness the awful effects of the old behavior of 2823 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2824 * GET in an FTP client, suspend the process, wait for the client to 2825 * advertise a zero window, then kill -9 the FTP client, wheee... 2826 * Note: timeout is always zero in such a case. 2827 */ 2828 if (unlikely(tcp_sk(sk)->repair)) { 2829 sk->sk_prot->disconnect(sk, 0); 2830 } else if (data_was_unread) { 2831 /* Unread data was tossed, zap the connection. */ 2832 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2833 tcp_set_state(sk, TCP_CLOSE); 2834 tcp_send_active_reset(sk, sk->sk_allocation); 2835 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2836 /* Check zero linger _after_ checking for unread data. */ 2837 sk->sk_prot->disconnect(sk, 0); 2838 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2839 } else if (tcp_close_state(sk)) { 2840 /* We FIN if the application ate all the data before 2841 * zapping the connection. 2842 */ 2843 2844 /* RED-PEN. Formally speaking, we have broken TCP state 2845 * machine. State transitions: 2846 * 2847 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2848 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult) 2849 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2850 * 2851 * are legal only when FIN has been sent (i.e. in window), 2852 * rather than queued out of window. Purists blame. 2853 * 2854 * F.e. "RFC state" is ESTABLISHED, 2855 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2856 * 2857 * The visible declinations are that sometimes 2858 * we enter time-wait state, when it is not required really 2859 * (harmless), do not send active resets, when they are 2860 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2861 * they look as CLOSING or LAST_ACK for Linux) 2862 * Probably, I missed some more holelets. 2863 * --ANK 2864 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2865 * in a single packet! (May consider it later but will 2866 * probably need API support or TCP_CORK SYN-ACK until 2867 * data is written and socket is closed.) 2868 */ 2869 tcp_send_fin(sk); 2870 } 2871 2872 sk_stream_wait_close(sk, timeout); 2873 2874 adjudge_to_death: 2875 state = sk->sk_state; 2876 sock_hold(sk); 2877 sock_orphan(sk); 2878 2879 local_bh_disable(); 2880 bh_lock_sock(sk); 2881 /* remove backlog if any, without releasing ownership. */ 2882 __release_sock(sk); 2883 2884 this_cpu_inc(tcp_orphan_count); 2885 2886 /* Have we already been destroyed by a softirq or backlog? */ 2887 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2888 goto out; 2889 2890 /* This is a (useful) BSD violating of the RFC. There is a 2891 * problem with TCP as specified in that the other end could 2892 * keep a socket open forever with no application left this end. 2893 * We use a 1 minute timeout (about the same as BSD) then kill 2894 * our end. If they send after that then tough - BUT: long enough 2895 * that we won't make the old 4*rto = almost no time - whoops 2896 * reset mistake. 2897 * 2898 * Nope, it was not mistake. It is really desired behaviour 2899 * f.e. on http servers, when such sockets are useless, but 2900 * consume significant resources. Let's do it with special 2901 * linger2 option. --ANK 2902 */ 2903 2904 if (sk->sk_state == TCP_FIN_WAIT2) { 2905 struct tcp_sock *tp = tcp_sk(sk); 2906 if (READ_ONCE(tp->linger2) < 0) { 2907 tcp_set_state(sk, TCP_CLOSE); 2908 tcp_send_active_reset(sk, GFP_ATOMIC); 2909 __NET_INC_STATS(sock_net(sk), 2910 LINUX_MIB_TCPABORTONLINGER); 2911 } else { 2912 const int tmo = tcp_fin_time(sk); 2913 2914 if (tmo > TCP_TIMEWAIT_LEN) { 2915 inet_csk_reset_keepalive_timer(sk, 2916 tmo - TCP_TIMEWAIT_LEN); 2917 } else { 2918 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2919 goto out; 2920 } 2921 } 2922 } 2923 if (sk->sk_state != TCP_CLOSE) { 2924 if (tcp_check_oom(sk, 0)) { 2925 tcp_set_state(sk, TCP_CLOSE); 2926 tcp_send_active_reset(sk, GFP_ATOMIC); 2927 __NET_INC_STATS(sock_net(sk), 2928 LINUX_MIB_TCPABORTONMEMORY); 2929 } else if (!check_net(sock_net(sk))) { 2930 /* Not possible to send reset; just close */ 2931 tcp_set_state(sk, TCP_CLOSE); 2932 } 2933 } 2934 2935 if (sk->sk_state == TCP_CLOSE) { 2936 struct request_sock *req; 2937 2938 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 2939 lockdep_sock_is_held(sk)); 2940 /* We could get here with a non-NULL req if the socket is 2941 * aborted (e.g., closed with unread data) before 3WHS 2942 * finishes. 2943 */ 2944 if (req) 2945 reqsk_fastopen_remove(sk, req, false); 2946 inet_csk_destroy_sock(sk); 2947 } 2948 /* Otherwise, socket is reprieved until protocol close. */ 2949 2950 out: 2951 bh_unlock_sock(sk); 2952 local_bh_enable(); 2953 } 2954 2955 void tcp_close(struct sock *sk, long timeout) 2956 { 2957 lock_sock(sk); 2958 __tcp_close(sk, timeout); 2959 release_sock(sk); 2960 if (!sk->sk_net_refcnt) 2961 inet_csk_clear_xmit_timers_sync(sk); 2962 sock_put(sk); 2963 } 2964 EXPORT_SYMBOL(tcp_close); 2965 2966 /* These states need RST on ABORT according to RFC793 */ 2967 2968 static inline bool tcp_need_reset(int state) 2969 { 2970 return (1 << state) & 2971 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2972 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2973 } 2974 2975 static void tcp_rtx_queue_purge(struct sock *sk) 2976 { 2977 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2978 2979 tcp_sk(sk)->highest_sack = NULL; 2980 while (p) { 2981 struct sk_buff *skb = rb_to_skb(p); 2982 2983 p = rb_next(p); 2984 /* Since we are deleting whole queue, no need to 2985 * list_del(&skb->tcp_tsorted_anchor) 2986 */ 2987 tcp_rtx_queue_unlink(skb, sk); 2988 tcp_wmem_free_skb(sk, skb); 2989 } 2990 } 2991 2992 void tcp_write_queue_purge(struct sock *sk) 2993 { 2994 struct sk_buff *skb; 2995 2996 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2997 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2998 tcp_skb_tsorted_anchor_cleanup(skb); 2999 tcp_wmem_free_skb(sk, skb); 3000 } 3001 tcp_rtx_queue_purge(sk); 3002 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 3003 tcp_clear_all_retrans_hints(tcp_sk(sk)); 3004 tcp_sk(sk)->packets_out = 0; 3005 inet_csk(sk)->icsk_backoff = 0; 3006 } 3007 3008 int tcp_disconnect(struct sock *sk, int flags) 3009 { 3010 struct inet_sock *inet = inet_sk(sk); 3011 struct inet_connection_sock *icsk = inet_csk(sk); 3012 struct tcp_sock *tp = tcp_sk(sk); 3013 int old_state = sk->sk_state; 3014 u32 seq; 3015 3016 if (old_state != TCP_CLOSE) 3017 tcp_set_state(sk, TCP_CLOSE); 3018 3019 /* ABORT function of RFC793 */ 3020 if (old_state == TCP_LISTEN) { 3021 inet_csk_listen_stop(sk); 3022 } else if (unlikely(tp->repair)) { 3023 WRITE_ONCE(sk->sk_err, ECONNABORTED); 3024 } else if (tcp_need_reset(old_state) || 3025 (tp->snd_nxt != tp->write_seq && 3026 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 3027 /* The last check adjusts for discrepancy of Linux wrt. RFC 3028 * states 3029 */ 3030 tcp_send_active_reset(sk, gfp_any()); 3031 WRITE_ONCE(sk->sk_err, ECONNRESET); 3032 } else if (old_state == TCP_SYN_SENT) 3033 WRITE_ONCE(sk->sk_err, ECONNRESET); 3034 3035 tcp_clear_xmit_timers(sk); 3036 __skb_queue_purge(&sk->sk_receive_queue); 3037 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 3038 WRITE_ONCE(tp->urg_data, 0); 3039 tcp_write_queue_purge(sk); 3040 tcp_fastopen_active_disable_ofo_check(sk); 3041 skb_rbtree_purge(&tp->out_of_order_queue); 3042 3043 inet->inet_dport = 0; 3044 3045 inet_bhash2_reset_saddr(sk); 3046 3047 WRITE_ONCE(sk->sk_shutdown, 0); 3048 sock_reset_flag(sk, SOCK_DONE); 3049 tp->srtt_us = 0; 3050 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 3051 tp->rcv_rtt_last_tsecr = 0; 3052 3053 seq = tp->write_seq + tp->max_window + 2; 3054 if (!seq) 3055 seq = 1; 3056 WRITE_ONCE(tp->write_seq, seq); 3057 3058 icsk->icsk_backoff = 0; 3059 icsk->icsk_probes_out = 0; 3060 icsk->icsk_probes_tstamp = 0; 3061 icsk->icsk_rto = TCP_TIMEOUT_INIT; 3062 icsk->icsk_rto_min = TCP_RTO_MIN; 3063 icsk->icsk_delack_max = TCP_DELACK_MAX; 3064 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 3065 tcp_snd_cwnd_set(tp, TCP_INIT_CWND); 3066 tp->snd_cwnd_cnt = 0; 3067 tp->is_cwnd_limited = 0; 3068 tp->max_packets_out = 0; 3069 tp->window_clamp = 0; 3070 tp->delivered = 0; 3071 tp->delivered_ce = 0; 3072 if (icsk->icsk_ca_ops->release) 3073 icsk->icsk_ca_ops->release(sk); 3074 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv)); 3075 icsk->icsk_ca_initialized = 0; 3076 tcp_set_ca_state(sk, TCP_CA_Open); 3077 tp->is_sack_reneg = 0; 3078 tcp_clear_retrans(tp); 3079 tp->total_retrans = 0; 3080 inet_csk_delack_init(sk); 3081 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 3082 * issue in __tcp_select_window() 3083 */ 3084 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 3085 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 3086 __sk_dst_reset(sk); 3087 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL))); 3088 tcp_saved_syn_free(tp); 3089 tp->compressed_ack = 0; 3090 tp->segs_in = 0; 3091 tp->segs_out = 0; 3092 tp->bytes_sent = 0; 3093 tp->bytes_acked = 0; 3094 tp->bytes_received = 0; 3095 tp->bytes_retrans = 0; 3096 tp->data_segs_in = 0; 3097 tp->data_segs_out = 0; 3098 tp->duplicate_sack[0].start_seq = 0; 3099 tp->duplicate_sack[0].end_seq = 0; 3100 tp->dsack_dups = 0; 3101 tp->reord_seen = 0; 3102 tp->retrans_out = 0; 3103 tp->sacked_out = 0; 3104 tp->tlp_high_seq = 0; 3105 tp->last_oow_ack_time = 0; 3106 tp->plb_rehash = 0; 3107 /* There's a bubble in the pipe until at least the first ACK. */ 3108 tp->app_limited = ~0U; 3109 tp->rate_app_limited = 1; 3110 tp->rack.mstamp = 0; 3111 tp->rack.advanced = 0; 3112 tp->rack.reo_wnd_steps = 1; 3113 tp->rack.last_delivered = 0; 3114 tp->rack.reo_wnd_persist = 0; 3115 tp->rack.dsack_seen = 0; 3116 tp->syn_data_acked = 0; 3117 tp->rx_opt.saw_tstamp = 0; 3118 tp->rx_opt.dsack = 0; 3119 tp->rx_opt.num_sacks = 0; 3120 tp->rcv_ooopack = 0; 3121 3122 3123 /* Clean up fastopen related fields */ 3124 tcp_free_fastopen_req(tp); 3125 inet_clear_bit(DEFER_CONNECT, sk); 3126 tp->fastopen_client_fail = 0; 3127 3128 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 3129 3130 if (sk->sk_frag.page) { 3131 put_page(sk->sk_frag.page); 3132 sk->sk_frag.page = NULL; 3133 sk->sk_frag.offset = 0; 3134 } 3135 sk_error_report(sk); 3136 return 0; 3137 } 3138 EXPORT_SYMBOL(tcp_disconnect); 3139 3140 static inline bool tcp_can_repair_sock(const struct sock *sk) 3141 { 3142 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 3143 (sk->sk_state != TCP_LISTEN); 3144 } 3145 3146 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len) 3147 { 3148 struct tcp_repair_window opt; 3149 3150 if (!tp->repair) 3151 return -EPERM; 3152 3153 if (len != sizeof(opt)) 3154 return -EINVAL; 3155 3156 if (copy_from_sockptr(&opt, optbuf, sizeof(opt))) 3157 return -EFAULT; 3158 3159 if (opt.max_window < opt.snd_wnd) 3160 return -EINVAL; 3161 3162 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 3163 return -EINVAL; 3164 3165 if (after(opt.rcv_wup, tp->rcv_nxt)) 3166 return -EINVAL; 3167 3168 tp->snd_wl1 = opt.snd_wl1; 3169 tp->snd_wnd = opt.snd_wnd; 3170 tp->max_window = opt.max_window; 3171 3172 tp->rcv_wnd = opt.rcv_wnd; 3173 tp->rcv_wup = opt.rcv_wup; 3174 3175 return 0; 3176 } 3177 3178 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf, 3179 unsigned int len) 3180 { 3181 struct tcp_sock *tp = tcp_sk(sk); 3182 struct tcp_repair_opt opt; 3183 size_t offset = 0; 3184 3185 while (len >= sizeof(opt)) { 3186 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt))) 3187 return -EFAULT; 3188 3189 offset += sizeof(opt); 3190 len -= sizeof(opt); 3191 3192 switch (opt.opt_code) { 3193 case TCPOPT_MSS: 3194 tp->rx_opt.mss_clamp = opt.opt_val; 3195 tcp_mtup_init(sk); 3196 break; 3197 case TCPOPT_WINDOW: 3198 { 3199 u16 snd_wscale = opt.opt_val & 0xFFFF; 3200 u16 rcv_wscale = opt.opt_val >> 16; 3201 3202 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 3203 return -EFBIG; 3204 3205 tp->rx_opt.snd_wscale = snd_wscale; 3206 tp->rx_opt.rcv_wscale = rcv_wscale; 3207 tp->rx_opt.wscale_ok = 1; 3208 } 3209 break; 3210 case TCPOPT_SACK_PERM: 3211 if (opt.opt_val != 0) 3212 return -EINVAL; 3213 3214 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 3215 break; 3216 case TCPOPT_TIMESTAMP: 3217 if (opt.opt_val != 0) 3218 return -EINVAL; 3219 3220 tp->rx_opt.tstamp_ok = 1; 3221 break; 3222 } 3223 } 3224 3225 return 0; 3226 } 3227 3228 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled); 3229 EXPORT_SYMBOL(tcp_tx_delay_enabled); 3230 3231 static void tcp_enable_tx_delay(void) 3232 { 3233 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) { 3234 static int __tcp_tx_delay_enabled = 0; 3235 3236 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) { 3237 static_branch_enable(&tcp_tx_delay_enabled); 3238 pr_info("TCP_TX_DELAY enabled\n"); 3239 } 3240 } 3241 } 3242 3243 /* When set indicates to always queue non-full frames. Later the user clears 3244 * this option and we transmit any pending partial frames in the queue. This is 3245 * meant to be used alongside sendfile() to get properly filled frames when the 3246 * user (for example) must write out headers with a write() call first and then 3247 * use sendfile to send out the data parts. 3248 * 3249 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than 3250 * TCP_NODELAY. 3251 */ 3252 void __tcp_sock_set_cork(struct sock *sk, bool on) 3253 { 3254 struct tcp_sock *tp = tcp_sk(sk); 3255 3256 if (on) { 3257 tp->nonagle |= TCP_NAGLE_CORK; 3258 } else { 3259 tp->nonagle &= ~TCP_NAGLE_CORK; 3260 if (tp->nonagle & TCP_NAGLE_OFF) 3261 tp->nonagle |= TCP_NAGLE_PUSH; 3262 tcp_push_pending_frames(sk); 3263 } 3264 } 3265 3266 void tcp_sock_set_cork(struct sock *sk, bool on) 3267 { 3268 lock_sock(sk); 3269 __tcp_sock_set_cork(sk, on); 3270 release_sock(sk); 3271 } 3272 EXPORT_SYMBOL(tcp_sock_set_cork); 3273 3274 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is 3275 * remembered, but it is not activated until cork is cleared. 3276 * 3277 * However, when TCP_NODELAY is set we make an explicit push, which overrides 3278 * even TCP_CORK for currently queued segments. 3279 */ 3280 void __tcp_sock_set_nodelay(struct sock *sk, bool on) 3281 { 3282 if (on) { 3283 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 3284 tcp_push_pending_frames(sk); 3285 } else { 3286 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF; 3287 } 3288 } 3289 3290 void tcp_sock_set_nodelay(struct sock *sk) 3291 { 3292 lock_sock(sk); 3293 __tcp_sock_set_nodelay(sk, true); 3294 release_sock(sk); 3295 } 3296 EXPORT_SYMBOL(tcp_sock_set_nodelay); 3297 3298 static void __tcp_sock_set_quickack(struct sock *sk, int val) 3299 { 3300 if (!val) { 3301 inet_csk_enter_pingpong_mode(sk); 3302 return; 3303 } 3304 3305 inet_csk_exit_pingpong_mode(sk); 3306 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 3307 inet_csk_ack_scheduled(sk)) { 3308 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED; 3309 tcp_cleanup_rbuf(sk, 1); 3310 if (!(val & 1)) 3311 inet_csk_enter_pingpong_mode(sk); 3312 } 3313 } 3314 3315 void tcp_sock_set_quickack(struct sock *sk, int val) 3316 { 3317 lock_sock(sk); 3318 __tcp_sock_set_quickack(sk, val); 3319 release_sock(sk); 3320 } 3321 EXPORT_SYMBOL(tcp_sock_set_quickack); 3322 3323 int tcp_sock_set_syncnt(struct sock *sk, int val) 3324 { 3325 if (val < 1 || val > MAX_TCP_SYNCNT) 3326 return -EINVAL; 3327 3328 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val); 3329 return 0; 3330 } 3331 EXPORT_SYMBOL(tcp_sock_set_syncnt); 3332 3333 int tcp_sock_set_user_timeout(struct sock *sk, int val) 3334 { 3335 /* Cap the max time in ms TCP will retry or probe the window 3336 * before giving up and aborting (ETIMEDOUT) a connection. 3337 */ 3338 if (val < 0) 3339 return -EINVAL; 3340 3341 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val); 3342 return 0; 3343 } 3344 EXPORT_SYMBOL(tcp_sock_set_user_timeout); 3345 3346 int tcp_sock_set_keepidle_locked(struct sock *sk, int val) 3347 { 3348 struct tcp_sock *tp = tcp_sk(sk); 3349 3350 if (val < 1 || val > MAX_TCP_KEEPIDLE) 3351 return -EINVAL; 3352 3353 /* Paired with WRITE_ONCE() in keepalive_time_when() */ 3354 WRITE_ONCE(tp->keepalive_time, val * HZ); 3355 if (sock_flag(sk, SOCK_KEEPOPEN) && 3356 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) { 3357 u32 elapsed = keepalive_time_elapsed(tp); 3358 3359 if (tp->keepalive_time > elapsed) 3360 elapsed = tp->keepalive_time - elapsed; 3361 else 3362 elapsed = 0; 3363 inet_csk_reset_keepalive_timer(sk, elapsed); 3364 } 3365 3366 return 0; 3367 } 3368 3369 int tcp_sock_set_keepidle(struct sock *sk, int val) 3370 { 3371 int err; 3372 3373 lock_sock(sk); 3374 err = tcp_sock_set_keepidle_locked(sk, val); 3375 release_sock(sk); 3376 return err; 3377 } 3378 EXPORT_SYMBOL(tcp_sock_set_keepidle); 3379 3380 int tcp_sock_set_keepintvl(struct sock *sk, int val) 3381 { 3382 if (val < 1 || val > MAX_TCP_KEEPINTVL) 3383 return -EINVAL; 3384 3385 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ); 3386 return 0; 3387 } 3388 EXPORT_SYMBOL(tcp_sock_set_keepintvl); 3389 3390 int tcp_sock_set_keepcnt(struct sock *sk, int val) 3391 { 3392 if (val < 1 || val > MAX_TCP_KEEPCNT) 3393 return -EINVAL; 3394 3395 /* Paired with READ_ONCE() in keepalive_probes() */ 3396 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val); 3397 return 0; 3398 } 3399 EXPORT_SYMBOL(tcp_sock_set_keepcnt); 3400 3401 int tcp_set_window_clamp(struct sock *sk, int val) 3402 { 3403 struct tcp_sock *tp = tcp_sk(sk); 3404 3405 if (!val) { 3406 if (sk->sk_state != TCP_CLOSE) 3407 return -EINVAL; 3408 WRITE_ONCE(tp->window_clamp, 0); 3409 } else { 3410 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp; 3411 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 3412 SOCK_MIN_RCVBUF / 2 : val; 3413 3414 if (new_window_clamp == old_window_clamp) 3415 return 0; 3416 3417 WRITE_ONCE(tp->window_clamp, new_window_clamp); 3418 if (new_window_clamp < old_window_clamp) { 3419 /* need to apply the reserved mem provisioning only 3420 * when shrinking the window clamp 3421 */ 3422 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp); 3423 3424 } else { 3425 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp); 3426 tp->rcv_ssthresh = max(new_rcv_ssthresh, 3427 tp->rcv_ssthresh); 3428 } 3429 } 3430 return 0; 3431 } 3432 3433 /* 3434 * Socket option code for TCP. 3435 */ 3436 int do_tcp_setsockopt(struct sock *sk, int level, int optname, 3437 sockptr_t optval, unsigned int optlen) 3438 { 3439 struct tcp_sock *tp = tcp_sk(sk); 3440 struct inet_connection_sock *icsk = inet_csk(sk); 3441 struct net *net = sock_net(sk); 3442 int val; 3443 int err = 0; 3444 3445 /* These are data/string values, all the others are ints */ 3446 switch (optname) { 3447 case TCP_CONGESTION: { 3448 char name[TCP_CA_NAME_MAX]; 3449 3450 if (optlen < 1) 3451 return -EINVAL; 3452 3453 val = strncpy_from_sockptr(name, optval, 3454 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 3455 if (val < 0) 3456 return -EFAULT; 3457 name[val] = 0; 3458 3459 sockopt_lock_sock(sk); 3460 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(), 3461 sockopt_ns_capable(sock_net(sk)->user_ns, 3462 CAP_NET_ADMIN)); 3463 sockopt_release_sock(sk); 3464 return err; 3465 } 3466 case TCP_ULP: { 3467 char name[TCP_ULP_NAME_MAX]; 3468 3469 if (optlen < 1) 3470 return -EINVAL; 3471 3472 val = strncpy_from_sockptr(name, optval, 3473 min_t(long, TCP_ULP_NAME_MAX - 1, 3474 optlen)); 3475 if (val < 0) 3476 return -EFAULT; 3477 name[val] = 0; 3478 3479 sockopt_lock_sock(sk); 3480 err = tcp_set_ulp(sk, name); 3481 sockopt_release_sock(sk); 3482 return err; 3483 } 3484 case TCP_FASTOPEN_KEY: { 3485 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH]; 3486 __u8 *backup_key = NULL; 3487 3488 /* Allow a backup key as well to facilitate key rotation 3489 * First key is the active one. 3490 */ 3491 if (optlen != TCP_FASTOPEN_KEY_LENGTH && 3492 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH) 3493 return -EINVAL; 3494 3495 if (copy_from_sockptr(key, optval, optlen)) 3496 return -EFAULT; 3497 3498 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH) 3499 backup_key = key + TCP_FASTOPEN_KEY_LENGTH; 3500 3501 return tcp_fastopen_reset_cipher(net, sk, key, backup_key); 3502 } 3503 default: 3504 /* fallthru */ 3505 break; 3506 } 3507 3508 if (optlen < sizeof(int)) 3509 return -EINVAL; 3510 3511 if (copy_from_sockptr(&val, optval, sizeof(val))) 3512 return -EFAULT; 3513 3514 /* Handle options that can be set without locking the socket. */ 3515 switch (optname) { 3516 case TCP_SYNCNT: 3517 return tcp_sock_set_syncnt(sk, val); 3518 case TCP_USER_TIMEOUT: 3519 return tcp_sock_set_user_timeout(sk, val); 3520 case TCP_KEEPINTVL: 3521 return tcp_sock_set_keepintvl(sk, val); 3522 case TCP_KEEPCNT: 3523 return tcp_sock_set_keepcnt(sk, val); 3524 case TCP_LINGER2: 3525 if (val < 0) 3526 WRITE_ONCE(tp->linger2, -1); 3527 else if (val > TCP_FIN_TIMEOUT_MAX / HZ) 3528 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX); 3529 else 3530 WRITE_ONCE(tp->linger2, val * HZ); 3531 return 0; 3532 case TCP_DEFER_ACCEPT: 3533 /* Translate value in seconds to number of retransmits */ 3534 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept, 3535 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 3536 TCP_RTO_MAX / HZ)); 3537 return 0; 3538 } 3539 3540 sockopt_lock_sock(sk); 3541 3542 switch (optname) { 3543 case TCP_MAXSEG: 3544 /* Values greater than interface MTU won't take effect. However 3545 * at the point when this call is done we typically don't yet 3546 * know which interface is going to be used 3547 */ 3548 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 3549 err = -EINVAL; 3550 break; 3551 } 3552 tp->rx_opt.user_mss = val; 3553 break; 3554 3555 case TCP_NODELAY: 3556 __tcp_sock_set_nodelay(sk, val); 3557 break; 3558 3559 case TCP_THIN_LINEAR_TIMEOUTS: 3560 if (val < 0 || val > 1) 3561 err = -EINVAL; 3562 else 3563 tp->thin_lto = val; 3564 break; 3565 3566 case TCP_THIN_DUPACK: 3567 if (val < 0 || val > 1) 3568 err = -EINVAL; 3569 break; 3570 3571 case TCP_REPAIR: 3572 if (!tcp_can_repair_sock(sk)) 3573 err = -EPERM; 3574 else if (val == TCP_REPAIR_ON) { 3575 tp->repair = 1; 3576 sk->sk_reuse = SK_FORCE_REUSE; 3577 tp->repair_queue = TCP_NO_QUEUE; 3578 } else if (val == TCP_REPAIR_OFF) { 3579 tp->repair = 0; 3580 sk->sk_reuse = SK_NO_REUSE; 3581 tcp_send_window_probe(sk); 3582 } else if (val == TCP_REPAIR_OFF_NO_WP) { 3583 tp->repair = 0; 3584 sk->sk_reuse = SK_NO_REUSE; 3585 } else 3586 err = -EINVAL; 3587 3588 break; 3589 3590 case TCP_REPAIR_QUEUE: 3591 if (!tp->repair) 3592 err = -EPERM; 3593 else if ((unsigned int)val < TCP_QUEUES_NR) 3594 tp->repair_queue = val; 3595 else 3596 err = -EINVAL; 3597 break; 3598 3599 case TCP_QUEUE_SEQ: 3600 if (sk->sk_state != TCP_CLOSE) { 3601 err = -EPERM; 3602 } else if (tp->repair_queue == TCP_SEND_QUEUE) { 3603 if (!tcp_rtx_queue_empty(sk)) 3604 err = -EPERM; 3605 else 3606 WRITE_ONCE(tp->write_seq, val); 3607 } else if (tp->repair_queue == TCP_RECV_QUEUE) { 3608 if (tp->rcv_nxt != tp->copied_seq) { 3609 err = -EPERM; 3610 } else { 3611 WRITE_ONCE(tp->rcv_nxt, val); 3612 WRITE_ONCE(tp->copied_seq, val); 3613 } 3614 } else { 3615 err = -EINVAL; 3616 } 3617 break; 3618 3619 case TCP_REPAIR_OPTIONS: 3620 if (!tp->repair) 3621 err = -EINVAL; 3622 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent) 3623 err = tcp_repair_options_est(sk, optval, optlen); 3624 else 3625 err = -EPERM; 3626 break; 3627 3628 case TCP_CORK: 3629 __tcp_sock_set_cork(sk, val); 3630 break; 3631 3632 case TCP_KEEPIDLE: 3633 err = tcp_sock_set_keepidle_locked(sk, val); 3634 break; 3635 case TCP_SAVE_SYN: 3636 /* 0: disable, 1: enable, 2: start from ether_header */ 3637 if (val < 0 || val > 2) 3638 err = -EINVAL; 3639 else 3640 tp->save_syn = val; 3641 break; 3642 3643 case TCP_WINDOW_CLAMP: 3644 err = tcp_set_window_clamp(sk, val); 3645 break; 3646 3647 case TCP_QUICKACK: 3648 __tcp_sock_set_quickack(sk, val); 3649 break; 3650 3651 #ifdef CONFIG_TCP_MD5SIG 3652 case TCP_MD5SIG: 3653 case TCP_MD5SIG_EXT: 3654 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 3655 break; 3656 #endif 3657 case TCP_FASTOPEN: 3658 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 3659 TCPF_LISTEN))) { 3660 tcp_fastopen_init_key_once(net); 3661 3662 fastopen_queue_tune(sk, val); 3663 } else { 3664 err = -EINVAL; 3665 } 3666 break; 3667 case TCP_FASTOPEN_CONNECT: 3668 if (val > 1 || val < 0) { 3669 err = -EINVAL; 3670 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) & 3671 TFO_CLIENT_ENABLE) { 3672 if (sk->sk_state == TCP_CLOSE) 3673 tp->fastopen_connect = val; 3674 else 3675 err = -EINVAL; 3676 } else { 3677 err = -EOPNOTSUPP; 3678 } 3679 break; 3680 case TCP_FASTOPEN_NO_COOKIE: 3681 if (val > 1 || val < 0) 3682 err = -EINVAL; 3683 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3684 err = -EINVAL; 3685 else 3686 tp->fastopen_no_cookie = val; 3687 break; 3688 case TCP_TIMESTAMP: 3689 if (!tp->repair) 3690 err = -EPERM; 3691 else 3692 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw()); 3693 break; 3694 case TCP_REPAIR_WINDOW: 3695 err = tcp_repair_set_window(tp, optval, optlen); 3696 break; 3697 case TCP_NOTSENT_LOWAT: 3698 WRITE_ONCE(tp->notsent_lowat, val); 3699 sk->sk_write_space(sk); 3700 break; 3701 case TCP_INQ: 3702 if (val > 1 || val < 0) 3703 err = -EINVAL; 3704 else 3705 tp->recvmsg_inq = val; 3706 break; 3707 case TCP_TX_DELAY: 3708 if (val) 3709 tcp_enable_tx_delay(); 3710 WRITE_ONCE(tp->tcp_tx_delay, val); 3711 break; 3712 default: 3713 err = -ENOPROTOOPT; 3714 break; 3715 } 3716 3717 sockopt_release_sock(sk); 3718 return err; 3719 } 3720 3721 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, 3722 unsigned int optlen) 3723 { 3724 const struct inet_connection_sock *icsk = inet_csk(sk); 3725 3726 if (level != SOL_TCP) 3727 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 3728 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname, 3729 optval, optlen); 3730 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3731 } 3732 EXPORT_SYMBOL(tcp_setsockopt); 3733 3734 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3735 struct tcp_info *info) 3736 { 3737 u64 stats[__TCP_CHRONO_MAX], total = 0; 3738 enum tcp_chrono i; 3739 3740 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3741 stats[i] = tp->chrono_stat[i - 1]; 3742 if (i == tp->chrono_type) 3743 stats[i] += tcp_jiffies32 - tp->chrono_start; 3744 stats[i] *= USEC_PER_SEC / HZ; 3745 total += stats[i]; 3746 } 3747 3748 info->tcpi_busy_time = total; 3749 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3750 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3751 } 3752 3753 /* Return information about state of tcp endpoint in API format. */ 3754 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3755 { 3756 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3757 const struct inet_connection_sock *icsk = inet_csk(sk); 3758 unsigned long rate; 3759 u32 now; 3760 u64 rate64; 3761 bool slow; 3762 3763 memset(info, 0, sizeof(*info)); 3764 if (sk->sk_type != SOCK_STREAM) 3765 return; 3766 3767 info->tcpi_state = inet_sk_state_load(sk); 3768 3769 /* Report meaningful fields for all TCP states, including listeners */ 3770 rate = READ_ONCE(sk->sk_pacing_rate); 3771 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3772 info->tcpi_pacing_rate = rate64; 3773 3774 rate = READ_ONCE(sk->sk_max_pacing_rate); 3775 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3776 info->tcpi_max_pacing_rate = rate64; 3777 3778 info->tcpi_reordering = tp->reordering; 3779 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp); 3780 3781 if (info->tcpi_state == TCP_LISTEN) { 3782 /* listeners aliased fields : 3783 * tcpi_unacked -> Number of children ready for accept() 3784 * tcpi_sacked -> max backlog 3785 */ 3786 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog); 3787 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog); 3788 return; 3789 } 3790 3791 slow = lock_sock_fast(sk); 3792 3793 info->tcpi_ca_state = icsk->icsk_ca_state; 3794 info->tcpi_retransmits = icsk->icsk_retransmits; 3795 info->tcpi_probes = icsk->icsk_probes_out; 3796 info->tcpi_backoff = icsk->icsk_backoff; 3797 3798 if (tp->rx_opt.tstamp_ok) 3799 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3800 if (tcp_is_sack(tp)) 3801 info->tcpi_options |= TCPI_OPT_SACK; 3802 if (tp->rx_opt.wscale_ok) { 3803 info->tcpi_options |= TCPI_OPT_WSCALE; 3804 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3805 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3806 } 3807 3808 if (tp->ecn_flags & TCP_ECN_OK) 3809 info->tcpi_options |= TCPI_OPT_ECN; 3810 if (tp->ecn_flags & TCP_ECN_SEEN) 3811 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3812 if (tp->syn_data_acked) 3813 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3814 3815 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3816 info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato, 3817 tcp_delack_max(sk))); 3818 info->tcpi_snd_mss = tp->mss_cache; 3819 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3820 3821 info->tcpi_unacked = tp->packets_out; 3822 info->tcpi_sacked = tp->sacked_out; 3823 3824 info->tcpi_lost = tp->lost_out; 3825 info->tcpi_retrans = tp->retrans_out; 3826 3827 now = tcp_jiffies32; 3828 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3829 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3830 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3831 3832 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3833 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3834 info->tcpi_rtt = tp->srtt_us >> 3; 3835 info->tcpi_rttvar = tp->mdev_us >> 2; 3836 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3837 info->tcpi_advmss = tp->advmss; 3838 3839 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3840 info->tcpi_rcv_space = tp->rcvq_space.space; 3841 3842 info->tcpi_total_retrans = tp->total_retrans; 3843 3844 info->tcpi_bytes_acked = tp->bytes_acked; 3845 info->tcpi_bytes_received = tp->bytes_received; 3846 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3847 tcp_get_info_chrono_stats(tp, info); 3848 3849 info->tcpi_segs_out = tp->segs_out; 3850 3851 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */ 3852 info->tcpi_segs_in = READ_ONCE(tp->segs_in); 3853 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in); 3854 3855 info->tcpi_min_rtt = tcp_min_rtt(tp); 3856 info->tcpi_data_segs_out = tp->data_segs_out; 3857 3858 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3859 rate64 = tcp_compute_delivery_rate(tp); 3860 if (rate64) 3861 info->tcpi_delivery_rate = rate64; 3862 info->tcpi_delivered = tp->delivered; 3863 info->tcpi_delivered_ce = tp->delivered_ce; 3864 info->tcpi_bytes_sent = tp->bytes_sent; 3865 info->tcpi_bytes_retrans = tp->bytes_retrans; 3866 info->tcpi_dsack_dups = tp->dsack_dups; 3867 info->tcpi_reord_seen = tp->reord_seen; 3868 info->tcpi_rcv_ooopack = tp->rcv_ooopack; 3869 info->tcpi_snd_wnd = tp->snd_wnd; 3870 info->tcpi_rcv_wnd = tp->rcv_wnd; 3871 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash; 3872 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail; 3873 3874 info->tcpi_total_rto = tp->total_rto; 3875 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries; 3876 info->tcpi_total_rto_time = tp->total_rto_time; 3877 if (tp->rto_stamp) { 3878 info->tcpi_total_rto_time += tcp_time_stamp_raw() - 3879 tp->rto_stamp; 3880 } 3881 3882 unlock_sock_fast(sk, slow); 3883 } 3884 EXPORT_SYMBOL_GPL(tcp_get_info); 3885 3886 static size_t tcp_opt_stats_get_size(void) 3887 { 3888 return 3889 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */ 3890 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */ 3891 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */ 3892 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */ 3893 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */ 3894 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */ 3895 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */ 3896 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */ 3897 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */ 3898 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */ 3899 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */ 3900 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */ 3901 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */ 3902 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */ 3903 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */ 3904 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */ 3905 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */ 3906 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */ 3907 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */ 3908 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */ 3909 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */ 3910 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */ 3911 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */ 3912 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */ 3913 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */ 3914 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */ 3915 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */ 3916 0; 3917 } 3918 3919 /* Returns TTL or hop limit of an incoming packet from skb. */ 3920 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb) 3921 { 3922 if (skb->protocol == htons(ETH_P_IP)) 3923 return ip_hdr(skb)->ttl; 3924 else if (skb->protocol == htons(ETH_P_IPV6)) 3925 return ipv6_hdr(skb)->hop_limit; 3926 else 3927 return 0; 3928 } 3929 3930 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk, 3931 const struct sk_buff *orig_skb, 3932 const struct sk_buff *ack_skb) 3933 { 3934 const struct tcp_sock *tp = tcp_sk(sk); 3935 struct sk_buff *stats; 3936 struct tcp_info info; 3937 unsigned long rate; 3938 u64 rate64; 3939 3940 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC); 3941 if (!stats) 3942 return NULL; 3943 3944 tcp_get_info_chrono_stats(tp, &info); 3945 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3946 info.tcpi_busy_time, TCP_NLA_PAD); 3947 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3948 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3949 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3950 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3951 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3952 tp->data_segs_out, TCP_NLA_PAD); 3953 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3954 tp->total_retrans, TCP_NLA_PAD); 3955 3956 rate = READ_ONCE(sk->sk_pacing_rate); 3957 rate64 = (rate != ~0UL) ? rate : ~0ULL; 3958 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3959 3960 rate64 = tcp_compute_delivery_rate(tp); 3961 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3962 3963 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp)); 3964 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3965 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3966 3967 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3968 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3969 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3970 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3971 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3972 3973 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3974 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3975 3976 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent, 3977 TCP_NLA_PAD); 3978 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans, 3979 TCP_NLA_PAD); 3980 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups); 3981 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen); 3982 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3); 3983 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash); 3984 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT, 3985 max_t(int, 0, tp->write_seq - tp->snd_nxt)); 3986 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns, 3987 TCP_NLA_PAD); 3988 if (ack_skb) 3989 nla_put_u8(stats, TCP_NLA_TTL, 3990 tcp_skb_ttl_or_hop_limit(ack_skb)); 3991 3992 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash); 3993 return stats; 3994 } 3995 3996 int do_tcp_getsockopt(struct sock *sk, int level, 3997 int optname, sockptr_t optval, sockptr_t optlen) 3998 { 3999 struct inet_connection_sock *icsk = inet_csk(sk); 4000 struct tcp_sock *tp = tcp_sk(sk); 4001 struct net *net = sock_net(sk); 4002 int val, len; 4003 4004 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4005 return -EFAULT; 4006 4007 if (len < 0) 4008 return -EINVAL; 4009 4010 len = min_t(unsigned int, len, sizeof(int)); 4011 4012 switch (optname) { 4013 case TCP_MAXSEG: 4014 val = tp->mss_cache; 4015 if (tp->rx_opt.user_mss && 4016 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 4017 val = tp->rx_opt.user_mss; 4018 if (tp->repair) 4019 val = tp->rx_opt.mss_clamp; 4020 break; 4021 case TCP_NODELAY: 4022 val = !!(tp->nonagle&TCP_NAGLE_OFF); 4023 break; 4024 case TCP_CORK: 4025 val = !!(tp->nonagle&TCP_NAGLE_CORK); 4026 break; 4027 case TCP_KEEPIDLE: 4028 val = keepalive_time_when(tp) / HZ; 4029 break; 4030 case TCP_KEEPINTVL: 4031 val = keepalive_intvl_when(tp) / HZ; 4032 break; 4033 case TCP_KEEPCNT: 4034 val = keepalive_probes(tp); 4035 break; 4036 case TCP_SYNCNT: 4037 val = READ_ONCE(icsk->icsk_syn_retries) ? : 4038 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries); 4039 break; 4040 case TCP_LINGER2: 4041 val = READ_ONCE(tp->linger2); 4042 if (val >= 0) 4043 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ; 4044 break; 4045 case TCP_DEFER_ACCEPT: 4046 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept); 4047 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ, 4048 TCP_RTO_MAX / HZ); 4049 break; 4050 case TCP_WINDOW_CLAMP: 4051 val = READ_ONCE(tp->window_clamp); 4052 break; 4053 case TCP_INFO: { 4054 struct tcp_info info; 4055 4056 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4057 return -EFAULT; 4058 4059 tcp_get_info(sk, &info); 4060 4061 len = min_t(unsigned int, len, sizeof(info)); 4062 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4063 return -EFAULT; 4064 if (copy_to_sockptr(optval, &info, len)) 4065 return -EFAULT; 4066 return 0; 4067 } 4068 case TCP_CC_INFO: { 4069 const struct tcp_congestion_ops *ca_ops; 4070 union tcp_cc_info info; 4071 size_t sz = 0; 4072 int attr; 4073 4074 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4075 return -EFAULT; 4076 4077 ca_ops = icsk->icsk_ca_ops; 4078 if (ca_ops && ca_ops->get_info) 4079 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 4080 4081 len = min_t(unsigned int, len, sz); 4082 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4083 return -EFAULT; 4084 if (copy_to_sockptr(optval, &info, len)) 4085 return -EFAULT; 4086 return 0; 4087 } 4088 case TCP_QUICKACK: 4089 val = !inet_csk_in_pingpong_mode(sk); 4090 break; 4091 4092 case TCP_CONGESTION: 4093 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4094 return -EFAULT; 4095 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 4096 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4097 return -EFAULT; 4098 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len)) 4099 return -EFAULT; 4100 return 0; 4101 4102 case TCP_ULP: 4103 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4104 return -EFAULT; 4105 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 4106 if (!icsk->icsk_ulp_ops) { 4107 len = 0; 4108 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4109 return -EFAULT; 4110 return 0; 4111 } 4112 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4113 return -EFAULT; 4114 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len)) 4115 return -EFAULT; 4116 return 0; 4117 4118 case TCP_FASTOPEN_KEY: { 4119 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)]; 4120 unsigned int key_len; 4121 4122 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4123 return -EFAULT; 4124 4125 key_len = tcp_fastopen_get_cipher(net, icsk, key) * 4126 TCP_FASTOPEN_KEY_LENGTH; 4127 len = min_t(unsigned int, len, key_len); 4128 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4129 return -EFAULT; 4130 if (copy_to_sockptr(optval, key, len)) 4131 return -EFAULT; 4132 return 0; 4133 } 4134 case TCP_THIN_LINEAR_TIMEOUTS: 4135 val = tp->thin_lto; 4136 break; 4137 4138 case TCP_THIN_DUPACK: 4139 val = 0; 4140 break; 4141 4142 case TCP_REPAIR: 4143 val = tp->repair; 4144 break; 4145 4146 case TCP_REPAIR_QUEUE: 4147 if (tp->repair) 4148 val = tp->repair_queue; 4149 else 4150 return -EINVAL; 4151 break; 4152 4153 case TCP_REPAIR_WINDOW: { 4154 struct tcp_repair_window opt; 4155 4156 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4157 return -EFAULT; 4158 4159 if (len != sizeof(opt)) 4160 return -EINVAL; 4161 4162 if (!tp->repair) 4163 return -EPERM; 4164 4165 opt.snd_wl1 = tp->snd_wl1; 4166 opt.snd_wnd = tp->snd_wnd; 4167 opt.max_window = tp->max_window; 4168 opt.rcv_wnd = tp->rcv_wnd; 4169 opt.rcv_wup = tp->rcv_wup; 4170 4171 if (copy_to_sockptr(optval, &opt, len)) 4172 return -EFAULT; 4173 return 0; 4174 } 4175 case TCP_QUEUE_SEQ: 4176 if (tp->repair_queue == TCP_SEND_QUEUE) 4177 val = tp->write_seq; 4178 else if (tp->repair_queue == TCP_RECV_QUEUE) 4179 val = tp->rcv_nxt; 4180 else 4181 return -EINVAL; 4182 break; 4183 4184 case TCP_USER_TIMEOUT: 4185 val = READ_ONCE(icsk->icsk_user_timeout); 4186 break; 4187 4188 case TCP_FASTOPEN: 4189 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen); 4190 break; 4191 4192 case TCP_FASTOPEN_CONNECT: 4193 val = tp->fastopen_connect; 4194 break; 4195 4196 case TCP_FASTOPEN_NO_COOKIE: 4197 val = tp->fastopen_no_cookie; 4198 break; 4199 4200 case TCP_TX_DELAY: 4201 val = READ_ONCE(tp->tcp_tx_delay); 4202 break; 4203 4204 case TCP_TIMESTAMP: 4205 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset); 4206 break; 4207 case TCP_NOTSENT_LOWAT: 4208 val = READ_ONCE(tp->notsent_lowat); 4209 break; 4210 case TCP_INQ: 4211 val = tp->recvmsg_inq; 4212 break; 4213 case TCP_SAVE_SYN: 4214 val = tp->save_syn; 4215 break; 4216 case TCP_SAVED_SYN: { 4217 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4218 return -EFAULT; 4219 4220 sockopt_lock_sock(sk); 4221 if (tp->saved_syn) { 4222 if (len < tcp_saved_syn_len(tp->saved_syn)) { 4223 len = tcp_saved_syn_len(tp->saved_syn); 4224 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4225 sockopt_release_sock(sk); 4226 return -EFAULT; 4227 } 4228 sockopt_release_sock(sk); 4229 return -EINVAL; 4230 } 4231 len = tcp_saved_syn_len(tp->saved_syn); 4232 if (copy_to_sockptr(optlen, &len, sizeof(int))) { 4233 sockopt_release_sock(sk); 4234 return -EFAULT; 4235 } 4236 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) { 4237 sockopt_release_sock(sk); 4238 return -EFAULT; 4239 } 4240 tcp_saved_syn_free(tp); 4241 sockopt_release_sock(sk); 4242 } else { 4243 sockopt_release_sock(sk); 4244 len = 0; 4245 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4246 return -EFAULT; 4247 } 4248 return 0; 4249 } 4250 #ifdef CONFIG_MMU 4251 case TCP_ZEROCOPY_RECEIVE: { 4252 struct scm_timestamping_internal tss; 4253 struct tcp_zerocopy_receive zc = {}; 4254 int err; 4255 4256 if (copy_from_sockptr(&len, optlen, sizeof(int))) 4257 return -EFAULT; 4258 if (len < 0 || 4259 len < offsetofend(struct tcp_zerocopy_receive, length)) 4260 return -EINVAL; 4261 if (unlikely(len > sizeof(zc))) { 4262 err = check_zeroed_sockptr(optval, sizeof(zc), 4263 len - sizeof(zc)); 4264 if (err < 1) 4265 return err == 0 ? -EINVAL : err; 4266 len = sizeof(zc); 4267 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4268 return -EFAULT; 4269 } 4270 if (copy_from_sockptr(&zc, optval, len)) 4271 return -EFAULT; 4272 if (zc.reserved) 4273 return -EINVAL; 4274 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS)) 4275 return -EINVAL; 4276 sockopt_lock_sock(sk); 4277 err = tcp_zerocopy_receive(sk, &zc, &tss); 4278 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname, 4279 &zc, &len, err); 4280 sockopt_release_sock(sk); 4281 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags)) 4282 goto zerocopy_rcv_cmsg; 4283 switch (len) { 4284 case offsetofend(struct tcp_zerocopy_receive, msg_flags): 4285 goto zerocopy_rcv_cmsg; 4286 case offsetofend(struct tcp_zerocopy_receive, msg_controllen): 4287 case offsetofend(struct tcp_zerocopy_receive, msg_control): 4288 case offsetofend(struct tcp_zerocopy_receive, flags): 4289 case offsetofend(struct tcp_zerocopy_receive, copybuf_len): 4290 case offsetofend(struct tcp_zerocopy_receive, copybuf_address): 4291 case offsetofend(struct tcp_zerocopy_receive, err): 4292 goto zerocopy_rcv_sk_err; 4293 case offsetofend(struct tcp_zerocopy_receive, inq): 4294 goto zerocopy_rcv_inq; 4295 case offsetofend(struct tcp_zerocopy_receive, length): 4296 default: 4297 goto zerocopy_rcv_out; 4298 } 4299 zerocopy_rcv_cmsg: 4300 if (zc.msg_flags & TCP_CMSG_TS) 4301 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss); 4302 else 4303 zc.msg_flags = 0; 4304 zerocopy_rcv_sk_err: 4305 if (!err) 4306 zc.err = sock_error(sk); 4307 zerocopy_rcv_inq: 4308 zc.inq = tcp_inq_hint(sk); 4309 zerocopy_rcv_out: 4310 if (!err && copy_to_sockptr(optval, &zc, len)) 4311 err = -EFAULT; 4312 return err; 4313 } 4314 #endif 4315 default: 4316 return -ENOPROTOOPT; 4317 } 4318 4319 if (copy_to_sockptr(optlen, &len, sizeof(int))) 4320 return -EFAULT; 4321 if (copy_to_sockptr(optval, &val, len)) 4322 return -EFAULT; 4323 return 0; 4324 } 4325 4326 bool tcp_bpf_bypass_getsockopt(int level, int optname) 4327 { 4328 /* TCP do_tcp_getsockopt has optimized getsockopt implementation 4329 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE. 4330 */ 4331 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE) 4332 return true; 4333 4334 return false; 4335 } 4336 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt); 4337 4338 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 4339 int __user *optlen) 4340 { 4341 struct inet_connection_sock *icsk = inet_csk(sk); 4342 4343 if (level != SOL_TCP) 4344 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */ 4345 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname, 4346 optval, optlen); 4347 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval), 4348 USER_SOCKPTR(optlen)); 4349 } 4350 EXPORT_SYMBOL(tcp_getsockopt); 4351 4352 #ifdef CONFIG_TCP_MD5SIG 4353 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 4354 static DEFINE_MUTEX(tcp_md5sig_mutex); 4355 static bool tcp_md5sig_pool_populated = false; 4356 4357 static void __tcp_alloc_md5sig_pool(void) 4358 { 4359 struct crypto_ahash *hash; 4360 int cpu; 4361 4362 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 4363 if (IS_ERR(hash)) 4364 return; 4365 4366 for_each_possible_cpu(cpu) { 4367 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 4368 struct ahash_request *req; 4369 4370 if (!scratch) { 4371 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 4372 sizeof(struct tcphdr), 4373 GFP_KERNEL, 4374 cpu_to_node(cpu)); 4375 if (!scratch) 4376 return; 4377 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 4378 } 4379 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 4380 continue; 4381 4382 req = ahash_request_alloc(hash, GFP_KERNEL); 4383 if (!req) 4384 return; 4385 4386 ahash_request_set_callback(req, 0, NULL, NULL); 4387 4388 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 4389 } 4390 /* before setting tcp_md5sig_pool_populated, we must commit all writes 4391 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 4392 */ 4393 smp_wmb(); 4394 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool() 4395 * and tcp_get_md5sig_pool(). 4396 */ 4397 WRITE_ONCE(tcp_md5sig_pool_populated, true); 4398 } 4399 4400 bool tcp_alloc_md5sig_pool(void) 4401 { 4402 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4403 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) { 4404 mutex_lock(&tcp_md5sig_mutex); 4405 4406 if (!tcp_md5sig_pool_populated) 4407 __tcp_alloc_md5sig_pool(); 4408 4409 mutex_unlock(&tcp_md5sig_mutex); 4410 } 4411 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4412 return READ_ONCE(tcp_md5sig_pool_populated); 4413 } 4414 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 4415 4416 4417 /** 4418 * tcp_get_md5sig_pool - get md5sig_pool for this user 4419 * 4420 * We use percpu structure, so if we succeed, we exit with preemption 4421 * and BH disabled, to make sure another thread or softirq handling 4422 * wont try to get same context. 4423 */ 4424 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 4425 { 4426 local_bh_disable(); 4427 4428 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */ 4429 if (READ_ONCE(tcp_md5sig_pool_populated)) { 4430 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 4431 smp_rmb(); 4432 return this_cpu_ptr(&tcp_md5sig_pool); 4433 } 4434 local_bh_enable(); 4435 return NULL; 4436 } 4437 EXPORT_SYMBOL(tcp_get_md5sig_pool); 4438 4439 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 4440 const struct sk_buff *skb, unsigned int header_len) 4441 { 4442 struct scatterlist sg; 4443 const struct tcphdr *tp = tcp_hdr(skb); 4444 struct ahash_request *req = hp->md5_req; 4445 unsigned int i; 4446 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 4447 skb_headlen(skb) - header_len : 0; 4448 const struct skb_shared_info *shi = skb_shinfo(skb); 4449 struct sk_buff *frag_iter; 4450 4451 sg_init_table(&sg, 1); 4452 4453 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 4454 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 4455 if (crypto_ahash_update(req)) 4456 return 1; 4457 4458 for (i = 0; i < shi->nr_frags; ++i) { 4459 const skb_frag_t *f = &shi->frags[i]; 4460 unsigned int offset = skb_frag_off(f); 4461 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 4462 4463 sg_set_page(&sg, page, skb_frag_size(f), 4464 offset_in_page(offset)); 4465 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 4466 if (crypto_ahash_update(req)) 4467 return 1; 4468 } 4469 4470 skb_walk_frags(skb, frag_iter) 4471 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 4472 return 1; 4473 4474 return 0; 4475 } 4476 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 4477 4478 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 4479 { 4480 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */ 4481 struct scatterlist sg; 4482 4483 sg_init_one(&sg, key->key, keylen); 4484 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen); 4485 4486 /* We use data_race() because tcp_md5_do_add() might change key->key under us */ 4487 return data_race(crypto_ahash_update(hp->md5_req)); 4488 } 4489 EXPORT_SYMBOL(tcp_md5_hash_key); 4490 4491 /* Called with rcu_read_lock() */ 4492 enum skb_drop_reason 4493 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb, 4494 const void *saddr, const void *daddr, 4495 int family, int dif, int sdif) 4496 { 4497 /* 4498 * This gets called for each TCP segment that arrives 4499 * so we want to be efficient. 4500 * We have 3 drop cases: 4501 * o No MD5 hash and one expected. 4502 * o MD5 hash and we're not expecting one. 4503 * o MD5 hash and its wrong. 4504 */ 4505 const __u8 *hash_location = NULL; 4506 struct tcp_md5sig_key *hash_expected; 4507 const struct tcphdr *th = tcp_hdr(skb); 4508 const struct tcp_sock *tp = tcp_sk(sk); 4509 int genhash, l3index; 4510 u8 newhash[16]; 4511 4512 /* sdif set, means packet ingressed via a device 4513 * in an L3 domain and dif is set to the l3mdev 4514 */ 4515 l3index = sdif ? dif : 0; 4516 4517 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family); 4518 hash_location = tcp_parse_md5sig_option(th); 4519 4520 /* We've parsed the options - do we have a hash? */ 4521 if (!hash_expected && !hash_location) 4522 return SKB_NOT_DROPPED_YET; 4523 4524 if (hash_expected && !hash_location) { 4525 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 4526 return SKB_DROP_REASON_TCP_MD5NOTFOUND; 4527 } 4528 4529 if (!hash_expected && hash_location) { 4530 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 4531 return SKB_DROP_REASON_TCP_MD5UNEXPECTED; 4532 } 4533 4534 /* Check the signature. 4535 * To support dual stack listeners, we need to handle 4536 * IPv4-mapped case. 4537 */ 4538 if (family == AF_INET) 4539 genhash = tcp_v4_md5_hash_skb(newhash, 4540 hash_expected, 4541 NULL, skb); 4542 else 4543 genhash = tp->af_specific->calc_md5_hash(newhash, 4544 hash_expected, 4545 NULL, skb); 4546 4547 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 4548 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 4549 if (family == AF_INET) { 4550 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", 4551 saddr, ntohs(th->source), 4552 daddr, ntohs(th->dest), 4553 genhash ? " tcp_v4_calc_md5_hash failed" 4554 : "", l3index); 4555 } else { 4556 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n", 4557 genhash ? "failed" : "mismatch", 4558 saddr, ntohs(th->source), 4559 daddr, ntohs(th->dest), l3index); 4560 } 4561 return SKB_DROP_REASON_TCP_MD5FAILURE; 4562 } 4563 return SKB_NOT_DROPPED_YET; 4564 } 4565 EXPORT_SYMBOL(tcp_inbound_md5_hash); 4566 4567 #endif 4568 4569 void tcp_done(struct sock *sk) 4570 { 4571 struct request_sock *req; 4572 4573 /* We might be called with a new socket, after 4574 * inet_csk_prepare_forced_close() has been called 4575 * so we can not use lockdep_sock_is_held(sk) 4576 */ 4577 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1); 4578 4579 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 4580 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 4581 4582 tcp_set_state(sk, TCP_CLOSE); 4583 tcp_clear_xmit_timers(sk); 4584 if (req) 4585 reqsk_fastopen_remove(sk, req, false); 4586 4587 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 4588 4589 if (!sock_flag(sk, SOCK_DEAD)) 4590 sk->sk_state_change(sk); 4591 else 4592 inet_csk_destroy_sock(sk); 4593 } 4594 EXPORT_SYMBOL_GPL(tcp_done); 4595 4596 int tcp_abort(struct sock *sk, int err) 4597 { 4598 int state = inet_sk_state_load(sk); 4599 4600 if (state == TCP_NEW_SYN_RECV) { 4601 struct request_sock *req = inet_reqsk(sk); 4602 4603 local_bh_disable(); 4604 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 4605 local_bh_enable(); 4606 return 0; 4607 } 4608 if (state == TCP_TIME_WAIT) { 4609 struct inet_timewait_sock *tw = inet_twsk(sk); 4610 4611 refcount_inc(&tw->tw_refcnt); 4612 local_bh_disable(); 4613 inet_twsk_deschedule_put(tw); 4614 local_bh_enable(); 4615 return 0; 4616 } 4617 4618 /* BPF context ensures sock locking. */ 4619 if (!has_current_bpf_ctx()) 4620 /* Don't race with userspace socket closes such as tcp_close. */ 4621 lock_sock(sk); 4622 4623 if (sk->sk_state == TCP_LISTEN) { 4624 tcp_set_state(sk, TCP_CLOSE); 4625 inet_csk_listen_stop(sk); 4626 } 4627 4628 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 4629 local_bh_disable(); 4630 bh_lock_sock(sk); 4631 4632 if (!sock_flag(sk, SOCK_DEAD)) { 4633 WRITE_ONCE(sk->sk_err, err); 4634 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4635 smp_wmb(); 4636 sk_error_report(sk); 4637 if (tcp_need_reset(sk->sk_state)) 4638 tcp_send_active_reset(sk, GFP_ATOMIC); 4639 tcp_done(sk); 4640 } 4641 4642 bh_unlock_sock(sk); 4643 local_bh_enable(); 4644 tcp_write_queue_purge(sk); 4645 if (!has_current_bpf_ctx()) 4646 release_sock(sk); 4647 return 0; 4648 } 4649 EXPORT_SYMBOL_GPL(tcp_abort); 4650 4651 extern struct tcp_congestion_ops tcp_reno; 4652 4653 static __initdata unsigned long thash_entries; 4654 static int __init set_thash_entries(char *str) 4655 { 4656 ssize_t ret; 4657 4658 if (!str) 4659 return 0; 4660 4661 ret = kstrtoul(str, 0, &thash_entries); 4662 if (ret) 4663 return 0; 4664 4665 return 1; 4666 } 4667 __setup("thash_entries=", set_thash_entries); 4668 4669 static void __init tcp_init_mem(void) 4670 { 4671 unsigned long limit = nr_free_buffer_pages() / 16; 4672 4673 limit = max(limit, 128UL); 4674 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 4675 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 4676 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 4677 } 4678 4679 void __init tcp_init(void) 4680 { 4681 int max_rshare, max_wshare, cnt; 4682 unsigned long limit; 4683 unsigned int i; 4684 4685 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE); 4686 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 4687 sizeof_field(struct sk_buff, cb)); 4688 4689 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 4690 4691 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE); 4692 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD); 4693 4694 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 4695 thash_entries, 21, /* one slot per 2 MB*/ 4696 0, 64 * 1024); 4697 tcp_hashinfo.bind_bucket_cachep = 4698 kmem_cache_create("tcp_bind_bucket", 4699 sizeof(struct inet_bind_bucket), 0, 4700 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4701 SLAB_ACCOUNT, 4702 NULL); 4703 tcp_hashinfo.bind2_bucket_cachep = 4704 kmem_cache_create("tcp_bind2_bucket", 4705 sizeof(struct inet_bind2_bucket), 0, 4706 SLAB_HWCACHE_ALIGN | SLAB_PANIC | 4707 SLAB_ACCOUNT, 4708 NULL); 4709 4710 /* Size and allocate the main established and bind bucket 4711 * hash tables. 4712 * 4713 * The methodology is similar to that of the buffer cache. 4714 */ 4715 tcp_hashinfo.ehash = 4716 alloc_large_system_hash("TCP established", 4717 sizeof(struct inet_ehash_bucket), 4718 thash_entries, 4719 17, /* one slot per 128 KB of memory */ 4720 0, 4721 NULL, 4722 &tcp_hashinfo.ehash_mask, 4723 0, 4724 thash_entries ? 0 : 512 * 1024); 4725 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 4726 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 4727 4728 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 4729 panic("TCP: failed to alloc ehash_locks"); 4730 tcp_hashinfo.bhash = 4731 alloc_large_system_hash("TCP bind", 4732 2 * sizeof(struct inet_bind_hashbucket), 4733 tcp_hashinfo.ehash_mask + 1, 4734 17, /* one slot per 128 KB of memory */ 4735 0, 4736 &tcp_hashinfo.bhash_size, 4737 NULL, 4738 0, 4739 64 * 1024); 4740 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 4741 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size; 4742 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 4743 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 4744 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 4745 spin_lock_init(&tcp_hashinfo.bhash2[i].lock); 4746 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain); 4747 } 4748 4749 tcp_hashinfo.pernet = false; 4750 4751 cnt = tcp_hashinfo.ehash_mask + 1; 4752 sysctl_tcp_max_orphans = cnt / 2; 4753 4754 tcp_init_mem(); 4755 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 4756 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 4757 max_wshare = min(4UL*1024*1024, limit); 4758 max_rshare = min(6UL*1024*1024, limit); 4759 4760 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE; 4761 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 4762 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 4763 4764 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE; 4765 init_net.ipv4.sysctl_tcp_rmem[1] = 131072; 4766 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare); 4767 4768 pr_info("Hash tables configured (established %u bind %u)\n", 4769 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 4770 4771 tcp_v4_init(); 4772 tcp_metrics_init(); 4773 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 4774 tcp_tasklet_init(); 4775 mptcp_init(); 4776 } 4777