xref: /openbmc/linux/net/ipv4/ipmr.c (revision a54acb3a6f853e8394c4cb7b6a4d93c88f13eefd)
1 /*
2  *	IP multicast routing support for mrouted 3.6/3.8
3  *
4  *		(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *	  Linux Consultancy and Custom Driver Development
6  *
7  *	This program is free software; you can redistribute it and/or
8  *	modify it under the terms of the GNU General Public License
9  *	as published by the Free Software Foundation; either version
10  *	2 of the License, or (at your option) any later version.
11  *
12  *	Fixes:
13  *	Michael Chastain	:	Incorrect size of copying.
14  *	Alan Cox		:	Added the cache manager code
15  *	Alan Cox		:	Fixed the clone/copy bug and device race.
16  *	Mike McLagan		:	Routing by source
17  *	Malcolm Beattie		:	Buffer handling fixes.
18  *	Alexey Kuznetsov	:	Double buffer free and other fixes.
19  *	SVR Anand		:	Fixed several multicast bugs and problems.
20  *	Alexey Kuznetsov	:	Status, optimisations and more.
21  *	Brad Parker		:	Better behaviour on mrouted upcall
22  *					overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *	Pavlin Ivanov Radoslavov:	PIMv2 Registers must checksum only PIM header
25  *					Relax this requirement to work with older peers.
26  *
27  */
28 
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 
70 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
71 #define CONFIG_IP_PIMSM	1
72 #endif
73 
74 struct mr_table {
75 	struct list_head	list;
76 	possible_net_t		net;
77 	u32			id;
78 	struct sock __rcu	*mroute_sk;
79 	struct timer_list	ipmr_expire_timer;
80 	struct list_head	mfc_unres_queue;
81 	struct list_head	mfc_cache_array[MFC_LINES];
82 	struct vif_device	vif_table[MAXVIFS];
83 	int			maxvif;
84 	atomic_t		cache_resolve_queue_len;
85 	bool			mroute_do_assert;
86 	bool			mroute_do_pim;
87 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
88 	int			mroute_reg_vif_num;
89 #endif
90 };
91 
92 struct ipmr_rule {
93 	struct fib_rule		common;
94 };
95 
96 struct ipmr_result {
97 	struct mr_table		*mrt;
98 };
99 
100 /* Big lock, protecting vif table, mrt cache and mroute socket state.
101  * Note that the changes are semaphored via rtnl_lock.
102  */
103 
104 static DEFINE_RWLOCK(mrt_lock);
105 
106 /*
107  *	Multicast router control variables
108  */
109 
110 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
111 
112 /* Special spinlock for queue of unresolved entries */
113 static DEFINE_SPINLOCK(mfc_unres_lock);
114 
115 /* We return to original Alan's scheme. Hash table of resolved
116  * entries is changed only in process context and protected
117  * with weak lock mrt_lock. Queue of unresolved entries is protected
118  * with strong spinlock mfc_unres_lock.
119  *
120  * In this case data path is free of exclusive locks at all.
121  */
122 
123 static struct kmem_cache *mrt_cachep __read_mostly;
124 
125 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
126 static void ipmr_free_table(struct mr_table *mrt);
127 
128 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
129 			  struct sk_buff *skb, struct mfc_cache *cache,
130 			  int local);
131 static int ipmr_cache_report(struct mr_table *mrt,
132 			     struct sk_buff *pkt, vifi_t vifi, int assert);
133 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
134 			      struct mfc_cache *c, struct rtmsg *rtm);
135 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
136 				 int cmd);
137 static void mroute_clean_tables(struct mr_table *mrt);
138 static void ipmr_expire_process(unsigned long arg);
139 
140 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
141 #define ipmr_for_each_table(mrt, net) \
142 	list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
143 
144 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
145 {
146 	struct mr_table *mrt;
147 
148 	ipmr_for_each_table(mrt, net) {
149 		if (mrt->id == id)
150 			return mrt;
151 	}
152 	return NULL;
153 }
154 
155 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
156 			   struct mr_table **mrt)
157 {
158 	int err;
159 	struct ipmr_result res;
160 	struct fib_lookup_arg arg = {
161 		.result = &res,
162 		.flags = FIB_LOOKUP_NOREF,
163 	};
164 
165 	err = fib_rules_lookup(net->ipv4.mr_rules_ops,
166 			       flowi4_to_flowi(flp4), 0, &arg);
167 	if (err < 0)
168 		return err;
169 	*mrt = res.mrt;
170 	return 0;
171 }
172 
173 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
174 			    int flags, struct fib_lookup_arg *arg)
175 {
176 	struct ipmr_result *res = arg->result;
177 	struct mr_table *mrt;
178 
179 	switch (rule->action) {
180 	case FR_ACT_TO_TBL:
181 		break;
182 	case FR_ACT_UNREACHABLE:
183 		return -ENETUNREACH;
184 	case FR_ACT_PROHIBIT:
185 		return -EACCES;
186 	case FR_ACT_BLACKHOLE:
187 	default:
188 		return -EINVAL;
189 	}
190 
191 	mrt = ipmr_get_table(rule->fr_net, rule->table);
192 	if (mrt == NULL)
193 		return -EAGAIN;
194 	res->mrt = mrt;
195 	return 0;
196 }
197 
198 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
199 {
200 	return 1;
201 }
202 
203 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
204 	FRA_GENERIC_POLICY,
205 };
206 
207 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
208 			       struct fib_rule_hdr *frh, struct nlattr **tb)
209 {
210 	return 0;
211 }
212 
213 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
214 			     struct nlattr **tb)
215 {
216 	return 1;
217 }
218 
219 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
220 			  struct fib_rule_hdr *frh)
221 {
222 	frh->dst_len = 0;
223 	frh->src_len = 0;
224 	frh->tos     = 0;
225 	return 0;
226 }
227 
228 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
229 	.family		= RTNL_FAMILY_IPMR,
230 	.rule_size	= sizeof(struct ipmr_rule),
231 	.addr_size	= sizeof(u32),
232 	.action		= ipmr_rule_action,
233 	.match		= ipmr_rule_match,
234 	.configure	= ipmr_rule_configure,
235 	.compare	= ipmr_rule_compare,
236 	.default_pref	= fib_default_rule_pref,
237 	.fill		= ipmr_rule_fill,
238 	.nlgroup	= RTNLGRP_IPV4_RULE,
239 	.policy		= ipmr_rule_policy,
240 	.owner		= THIS_MODULE,
241 };
242 
243 static int __net_init ipmr_rules_init(struct net *net)
244 {
245 	struct fib_rules_ops *ops;
246 	struct mr_table *mrt;
247 	int err;
248 
249 	ops = fib_rules_register(&ipmr_rules_ops_template, net);
250 	if (IS_ERR(ops))
251 		return PTR_ERR(ops);
252 
253 	INIT_LIST_HEAD(&net->ipv4.mr_tables);
254 
255 	mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
256 	if (mrt == NULL) {
257 		err = -ENOMEM;
258 		goto err1;
259 	}
260 
261 	err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
262 	if (err < 0)
263 		goto err2;
264 
265 	net->ipv4.mr_rules_ops = ops;
266 	return 0;
267 
268 err2:
269 	kfree(mrt);
270 err1:
271 	fib_rules_unregister(ops);
272 	return err;
273 }
274 
275 static void __net_exit ipmr_rules_exit(struct net *net)
276 {
277 	struct mr_table *mrt, *next;
278 
279 	list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
280 		list_del(&mrt->list);
281 		ipmr_free_table(mrt);
282 	}
283 	fib_rules_unregister(net->ipv4.mr_rules_ops);
284 }
285 #else
286 #define ipmr_for_each_table(mrt, net) \
287 	for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
288 
289 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
290 {
291 	return net->ipv4.mrt;
292 }
293 
294 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
295 			   struct mr_table **mrt)
296 {
297 	*mrt = net->ipv4.mrt;
298 	return 0;
299 }
300 
301 static int __net_init ipmr_rules_init(struct net *net)
302 {
303 	net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
304 	return net->ipv4.mrt ? 0 : -ENOMEM;
305 }
306 
307 static void __net_exit ipmr_rules_exit(struct net *net)
308 {
309 	ipmr_free_table(net->ipv4.mrt);
310 }
311 #endif
312 
313 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
314 {
315 	struct mr_table *mrt;
316 	unsigned int i;
317 
318 	mrt = ipmr_get_table(net, id);
319 	if (mrt != NULL)
320 		return mrt;
321 
322 	mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
323 	if (mrt == NULL)
324 		return NULL;
325 	write_pnet(&mrt->net, net);
326 	mrt->id = id;
327 
328 	/* Forwarding cache */
329 	for (i = 0; i < MFC_LINES; i++)
330 		INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
331 
332 	INIT_LIST_HEAD(&mrt->mfc_unres_queue);
333 
334 	setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
335 		    (unsigned long)mrt);
336 
337 #ifdef CONFIG_IP_PIMSM
338 	mrt->mroute_reg_vif_num = -1;
339 #endif
340 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
341 	list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
342 #endif
343 	return mrt;
344 }
345 
346 static void ipmr_free_table(struct mr_table *mrt)
347 {
348 	del_timer_sync(&mrt->ipmr_expire_timer);
349 	mroute_clean_tables(mrt);
350 	kfree(mrt);
351 }
352 
353 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
354 
355 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
356 {
357 	struct net *net = dev_net(dev);
358 
359 	dev_close(dev);
360 
361 	dev = __dev_get_by_name(net, "tunl0");
362 	if (dev) {
363 		const struct net_device_ops *ops = dev->netdev_ops;
364 		struct ifreq ifr;
365 		struct ip_tunnel_parm p;
366 
367 		memset(&p, 0, sizeof(p));
368 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
369 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
370 		p.iph.version = 4;
371 		p.iph.ihl = 5;
372 		p.iph.protocol = IPPROTO_IPIP;
373 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
374 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
375 
376 		if (ops->ndo_do_ioctl) {
377 			mm_segment_t oldfs = get_fs();
378 
379 			set_fs(KERNEL_DS);
380 			ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
381 			set_fs(oldfs);
382 		}
383 	}
384 }
385 
386 static
387 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
388 {
389 	struct net_device  *dev;
390 
391 	dev = __dev_get_by_name(net, "tunl0");
392 
393 	if (dev) {
394 		const struct net_device_ops *ops = dev->netdev_ops;
395 		int err;
396 		struct ifreq ifr;
397 		struct ip_tunnel_parm p;
398 		struct in_device  *in_dev;
399 
400 		memset(&p, 0, sizeof(p));
401 		p.iph.daddr = v->vifc_rmt_addr.s_addr;
402 		p.iph.saddr = v->vifc_lcl_addr.s_addr;
403 		p.iph.version = 4;
404 		p.iph.ihl = 5;
405 		p.iph.protocol = IPPROTO_IPIP;
406 		sprintf(p.name, "dvmrp%d", v->vifc_vifi);
407 		ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
408 
409 		if (ops->ndo_do_ioctl) {
410 			mm_segment_t oldfs = get_fs();
411 
412 			set_fs(KERNEL_DS);
413 			err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
414 			set_fs(oldfs);
415 		} else {
416 			err = -EOPNOTSUPP;
417 		}
418 		dev = NULL;
419 
420 		if (err == 0 &&
421 		    (dev = __dev_get_by_name(net, p.name)) != NULL) {
422 			dev->flags |= IFF_MULTICAST;
423 
424 			in_dev = __in_dev_get_rtnl(dev);
425 			if (in_dev == NULL)
426 				goto failure;
427 
428 			ipv4_devconf_setall(in_dev);
429 			neigh_parms_data_state_setall(in_dev->arp_parms);
430 			IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
431 
432 			if (dev_open(dev))
433 				goto failure;
434 			dev_hold(dev);
435 		}
436 	}
437 	return dev;
438 
439 failure:
440 	/* allow the register to be completed before unregistering. */
441 	rtnl_unlock();
442 	rtnl_lock();
443 
444 	unregister_netdevice(dev);
445 	return NULL;
446 }
447 
448 #ifdef CONFIG_IP_PIMSM
449 
450 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
451 {
452 	struct net *net = dev_net(dev);
453 	struct mr_table *mrt;
454 	struct flowi4 fl4 = {
455 		.flowi4_oif	= dev->ifindex,
456 		.flowi4_iif	= skb->skb_iif ? : LOOPBACK_IFINDEX,
457 		.flowi4_mark	= skb->mark,
458 	};
459 	int err;
460 
461 	err = ipmr_fib_lookup(net, &fl4, &mrt);
462 	if (err < 0) {
463 		kfree_skb(skb);
464 		return err;
465 	}
466 
467 	read_lock(&mrt_lock);
468 	dev->stats.tx_bytes += skb->len;
469 	dev->stats.tx_packets++;
470 	ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
471 	read_unlock(&mrt_lock);
472 	kfree_skb(skb);
473 	return NETDEV_TX_OK;
474 }
475 
476 static const struct net_device_ops reg_vif_netdev_ops = {
477 	.ndo_start_xmit	= reg_vif_xmit,
478 };
479 
480 static void reg_vif_setup(struct net_device *dev)
481 {
482 	dev->type		= ARPHRD_PIMREG;
483 	dev->mtu		= ETH_DATA_LEN - sizeof(struct iphdr) - 8;
484 	dev->flags		= IFF_NOARP;
485 	dev->netdev_ops		= &reg_vif_netdev_ops;
486 	dev->destructor		= free_netdev;
487 	dev->features		|= NETIF_F_NETNS_LOCAL;
488 }
489 
490 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
491 {
492 	struct net_device *dev;
493 	struct in_device *in_dev;
494 	char name[IFNAMSIZ];
495 
496 	if (mrt->id == RT_TABLE_DEFAULT)
497 		sprintf(name, "pimreg");
498 	else
499 		sprintf(name, "pimreg%u", mrt->id);
500 
501 	dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
502 
503 	if (dev == NULL)
504 		return NULL;
505 
506 	dev_net_set(dev, net);
507 
508 	if (register_netdevice(dev)) {
509 		free_netdev(dev);
510 		return NULL;
511 	}
512 	dev->iflink = 0;
513 
514 	rcu_read_lock();
515 	in_dev = __in_dev_get_rcu(dev);
516 	if (!in_dev) {
517 		rcu_read_unlock();
518 		goto failure;
519 	}
520 
521 	ipv4_devconf_setall(in_dev);
522 	neigh_parms_data_state_setall(in_dev->arp_parms);
523 	IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
524 	rcu_read_unlock();
525 
526 	if (dev_open(dev))
527 		goto failure;
528 
529 	dev_hold(dev);
530 
531 	return dev;
532 
533 failure:
534 	/* allow the register to be completed before unregistering. */
535 	rtnl_unlock();
536 	rtnl_lock();
537 
538 	unregister_netdevice(dev);
539 	return NULL;
540 }
541 #endif
542 
543 /**
544  *	vif_delete - Delete a VIF entry
545  *	@notify: Set to 1, if the caller is a notifier_call
546  */
547 
548 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
549 		      struct list_head *head)
550 {
551 	struct vif_device *v;
552 	struct net_device *dev;
553 	struct in_device *in_dev;
554 
555 	if (vifi < 0 || vifi >= mrt->maxvif)
556 		return -EADDRNOTAVAIL;
557 
558 	v = &mrt->vif_table[vifi];
559 
560 	write_lock_bh(&mrt_lock);
561 	dev = v->dev;
562 	v->dev = NULL;
563 
564 	if (!dev) {
565 		write_unlock_bh(&mrt_lock);
566 		return -EADDRNOTAVAIL;
567 	}
568 
569 #ifdef CONFIG_IP_PIMSM
570 	if (vifi == mrt->mroute_reg_vif_num)
571 		mrt->mroute_reg_vif_num = -1;
572 #endif
573 
574 	if (vifi + 1 == mrt->maxvif) {
575 		int tmp;
576 
577 		for (tmp = vifi - 1; tmp >= 0; tmp--) {
578 			if (VIF_EXISTS(mrt, tmp))
579 				break;
580 		}
581 		mrt->maxvif = tmp+1;
582 	}
583 
584 	write_unlock_bh(&mrt_lock);
585 
586 	dev_set_allmulti(dev, -1);
587 
588 	in_dev = __in_dev_get_rtnl(dev);
589 	if (in_dev) {
590 		IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
591 		inet_netconf_notify_devconf(dev_net(dev),
592 					    NETCONFA_MC_FORWARDING,
593 					    dev->ifindex, &in_dev->cnf);
594 		ip_rt_multicast_event(in_dev);
595 	}
596 
597 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
598 		unregister_netdevice_queue(dev, head);
599 
600 	dev_put(dev);
601 	return 0;
602 }
603 
604 static void ipmr_cache_free_rcu(struct rcu_head *head)
605 {
606 	struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
607 
608 	kmem_cache_free(mrt_cachep, c);
609 }
610 
611 static inline void ipmr_cache_free(struct mfc_cache *c)
612 {
613 	call_rcu(&c->rcu, ipmr_cache_free_rcu);
614 }
615 
616 /* Destroy an unresolved cache entry, killing queued skbs
617  * and reporting error to netlink readers.
618  */
619 
620 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
621 {
622 	struct net *net = read_pnet(&mrt->net);
623 	struct sk_buff *skb;
624 	struct nlmsgerr *e;
625 
626 	atomic_dec(&mrt->cache_resolve_queue_len);
627 
628 	while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
629 		if (ip_hdr(skb)->version == 0) {
630 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
631 			nlh->nlmsg_type = NLMSG_ERROR;
632 			nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
633 			skb_trim(skb, nlh->nlmsg_len);
634 			e = nlmsg_data(nlh);
635 			e->error = -ETIMEDOUT;
636 			memset(&e->msg, 0, sizeof(e->msg));
637 
638 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
639 		} else {
640 			kfree_skb(skb);
641 		}
642 	}
643 
644 	ipmr_cache_free(c);
645 }
646 
647 
648 /* Timer process for the unresolved queue. */
649 
650 static void ipmr_expire_process(unsigned long arg)
651 {
652 	struct mr_table *mrt = (struct mr_table *)arg;
653 	unsigned long now;
654 	unsigned long expires;
655 	struct mfc_cache *c, *next;
656 
657 	if (!spin_trylock(&mfc_unres_lock)) {
658 		mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
659 		return;
660 	}
661 
662 	if (list_empty(&mrt->mfc_unres_queue))
663 		goto out;
664 
665 	now = jiffies;
666 	expires = 10*HZ;
667 
668 	list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
669 		if (time_after(c->mfc_un.unres.expires, now)) {
670 			unsigned long interval = c->mfc_un.unres.expires - now;
671 			if (interval < expires)
672 				expires = interval;
673 			continue;
674 		}
675 
676 		list_del(&c->list);
677 		mroute_netlink_event(mrt, c, RTM_DELROUTE);
678 		ipmr_destroy_unres(mrt, c);
679 	}
680 
681 	if (!list_empty(&mrt->mfc_unres_queue))
682 		mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
683 
684 out:
685 	spin_unlock(&mfc_unres_lock);
686 }
687 
688 /* Fill oifs list. It is called under write locked mrt_lock. */
689 
690 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
691 				   unsigned char *ttls)
692 {
693 	int vifi;
694 
695 	cache->mfc_un.res.minvif = MAXVIFS;
696 	cache->mfc_un.res.maxvif = 0;
697 	memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
698 
699 	for (vifi = 0; vifi < mrt->maxvif; vifi++) {
700 		if (VIF_EXISTS(mrt, vifi) &&
701 		    ttls[vifi] && ttls[vifi] < 255) {
702 			cache->mfc_un.res.ttls[vifi] = ttls[vifi];
703 			if (cache->mfc_un.res.minvif > vifi)
704 				cache->mfc_un.res.minvif = vifi;
705 			if (cache->mfc_un.res.maxvif <= vifi)
706 				cache->mfc_un.res.maxvif = vifi + 1;
707 		}
708 	}
709 }
710 
711 static int vif_add(struct net *net, struct mr_table *mrt,
712 		   struct vifctl *vifc, int mrtsock)
713 {
714 	int vifi = vifc->vifc_vifi;
715 	struct vif_device *v = &mrt->vif_table[vifi];
716 	struct net_device *dev;
717 	struct in_device *in_dev;
718 	int err;
719 
720 	/* Is vif busy ? */
721 	if (VIF_EXISTS(mrt, vifi))
722 		return -EADDRINUSE;
723 
724 	switch (vifc->vifc_flags) {
725 #ifdef CONFIG_IP_PIMSM
726 	case VIFF_REGISTER:
727 		/*
728 		 * Special Purpose VIF in PIM
729 		 * All the packets will be sent to the daemon
730 		 */
731 		if (mrt->mroute_reg_vif_num >= 0)
732 			return -EADDRINUSE;
733 		dev = ipmr_reg_vif(net, mrt);
734 		if (!dev)
735 			return -ENOBUFS;
736 		err = dev_set_allmulti(dev, 1);
737 		if (err) {
738 			unregister_netdevice(dev);
739 			dev_put(dev);
740 			return err;
741 		}
742 		break;
743 #endif
744 	case VIFF_TUNNEL:
745 		dev = ipmr_new_tunnel(net, vifc);
746 		if (!dev)
747 			return -ENOBUFS;
748 		err = dev_set_allmulti(dev, 1);
749 		if (err) {
750 			ipmr_del_tunnel(dev, vifc);
751 			dev_put(dev);
752 			return err;
753 		}
754 		break;
755 
756 	case VIFF_USE_IFINDEX:
757 	case 0:
758 		if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
759 			dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
760 			if (dev && __in_dev_get_rtnl(dev) == NULL) {
761 				dev_put(dev);
762 				return -EADDRNOTAVAIL;
763 			}
764 		} else {
765 			dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
766 		}
767 		if (!dev)
768 			return -EADDRNOTAVAIL;
769 		err = dev_set_allmulti(dev, 1);
770 		if (err) {
771 			dev_put(dev);
772 			return err;
773 		}
774 		break;
775 	default:
776 		return -EINVAL;
777 	}
778 
779 	in_dev = __in_dev_get_rtnl(dev);
780 	if (!in_dev) {
781 		dev_put(dev);
782 		return -EADDRNOTAVAIL;
783 	}
784 	IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
785 	inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
786 				    &in_dev->cnf);
787 	ip_rt_multicast_event(in_dev);
788 
789 	/* Fill in the VIF structures */
790 
791 	v->rate_limit = vifc->vifc_rate_limit;
792 	v->local = vifc->vifc_lcl_addr.s_addr;
793 	v->remote = vifc->vifc_rmt_addr.s_addr;
794 	v->flags = vifc->vifc_flags;
795 	if (!mrtsock)
796 		v->flags |= VIFF_STATIC;
797 	v->threshold = vifc->vifc_threshold;
798 	v->bytes_in = 0;
799 	v->bytes_out = 0;
800 	v->pkt_in = 0;
801 	v->pkt_out = 0;
802 	v->link = dev->ifindex;
803 	if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
804 		v->link = dev_get_iflink(dev);
805 
806 	/* And finish update writing critical data */
807 	write_lock_bh(&mrt_lock);
808 	v->dev = dev;
809 #ifdef CONFIG_IP_PIMSM
810 	if (v->flags & VIFF_REGISTER)
811 		mrt->mroute_reg_vif_num = vifi;
812 #endif
813 	if (vifi+1 > mrt->maxvif)
814 		mrt->maxvif = vifi+1;
815 	write_unlock_bh(&mrt_lock);
816 	return 0;
817 }
818 
819 /* called with rcu_read_lock() */
820 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
821 					 __be32 origin,
822 					 __be32 mcastgrp)
823 {
824 	int line = MFC_HASH(mcastgrp, origin);
825 	struct mfc_cache *c;
826 
827 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
828 		if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
829 			return c;
830 	}
831 	return NULL;
832 }
833 
834 /* Look for a (*,*,oif) entry */
835 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
836 						    int vifi)
837 {
838 	int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
839 	struct mfc_cache *c;
840 
841 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
842 		if (c->mfc_origin == htonl(INADDR_ANY) &&
843 		    c->mfc_mcastgrp == htonl(INADDR_ANY) &&
844 		    c->mfc_un.res.ttls[vifi] < 255)
845 			return c;
846 
847 	return NULL;
848 }
849 
850 /* Look for a (*,G) entry */
851 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
852 					     __be32 mcastgrp, int vifi)
853 {
854 	int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
855 	struct mfc_cache *c, *proxy;
856 
857 	if (mcastgrp == htonl(INADDR_ANY))
858 		goto skip;
859 
860 	list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
861 		if (c->mfc_origin == htonl(INADDR_ANY) &&
862 		    c->mfc_mcastgrp == mcastgrp) {
863 			if (c->mfc_un.res.ttls[vifi] < 255)
864 				return c;
865 
866 			/* It's ok if the vifi is part of the static tree */
867 			proxy = ipmr_cache_find_any_parent(mrt,
868 							   c->mfc_parent);
869 			if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
870 				return c;
871 		}
872 
873 skip:
874 	return ipmr_cache_find_any_parent(mrt, vifi);
875 }
876 
877 /*
878  *	Allocate a multicast cache entry
879  */
880 static struct mfc_cache *ipmr_cache_alloc(void)
881 {
882 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
883 
884 	if (c)
885 		c->mfc_un.res.minvif = MAXVIFS;
886 	return c;
887 }
888 
889 static struct mfc_cache *ipmr_cache_alloc_unres(void)
890 {
891 	struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
892 
893 	if (c) {
894 		skb_queue_head_init(&c->mfc_un.unres.unresolved);
895 		c->mfc_un.unres.expires = jiffies + 10*HZ;
896 	}
897 	return c;
898 }
899 
900 /*
901  *	A cache entry has gone into a resolved state from queued
902  */
903 
904 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
905 			       struct mfc_cache *uc, struct mfc_cache *c)
906 {
907 	struct sk_buff *skb;
908 	struct nlmsgerr *e;
909 
910 	/* Play the pending entries through our router */
911 
912 	while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
913 		if (ip_hdr(skb)->version == 0) {
914 			struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
915 
916 			if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
917 				nlh->nlmsg_len = skb_tail_pointer(skb) -
918 						 (u8 *)nlh;
919 			} else {
920 				nlh->nlmsg_type = NLMSG_ERROR;
921 				nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
922 				skb_trim(skb, nlh->nlmsg_len);
923 				e = nlmsg_data(nlh);
924 				e->error = -EMSGSIZE;
925 				memset(&e->msg, 0, sizeof(e->msg));
926 			}
927 
928 			rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
929 		} else {
930 			ip_mr_forward(net, mrt, skb, c, 0);
931 		}
932 	}
933 }
934 
935 /*
936  *	Bounce a cache query up to mrouted. We could use netlink for this but mrouted
937  *	expects the following bizarre scheme.
938  *
939  *	Called under mrt_lock.
940  */
941 
942 static int ipmr_cache_report(struct mr_table *mrt,
943 			     struct sk_buff *pkt, vifi_t vifi, int assert)
944 {
945 	struct sk_buff *skb;
946 	const int ihl = ip_hdrlen(pkt);
947 	struct igmphdr *igmp;
948 	struct igmpmsg *msg;
949 	struct sock *mroute_sk;
950 	int ret;
951 
952 #ifdef CONFIG_IP_PIMSM
953 	if (assert == IGMPMSG_WHOLEPKT)
954 		skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
955 	else
956 #endif
957 		skb = alloc_skb(128, GFP_ATOMIC);
958 
959 	if (!skb)
960 		return -ENOBUFS;
961 
962 #ifdef CONFIG_IP_PIMSM
963 	if (assert == IGMPMSG_WHOLEPKT) {
964 		/* Ugly, but we have no choice with this interface.
965 		 * Duplicate old header, fix ihl, length etc.
966 		 * And all this only to mangle msg->im_msgtype and
967 		 * to set msg->im_mbz to "mbz" :-)
968 		 */
969 		skb_push(skb, sizeof(struct iphdr));
970 		skb_reset_network_header(skb);
971 		skb_reset_transport_header(skb);
972 		msg = (struct igmpmsg *)skb_network_header(skb);
973 		memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
974 		msg->im_msgtype = IGMPMSG_WHOLEPKT;
975 		msg->im_mbz = 0;
976 		msg->im_vif = mrt->mroute_reg_vif_num;
977 		ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
978 		ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
979 					     sizeof(struct iphdr));
980 	} else
981 #endif
982 	{
983 
984 	/* Copy the IP header */
985 
986 	skb_set_network_header(skb, skb->len);
987 	skb_put(skb, ihl);
988 	skb_copy_to_linear_data(skb, pkt->data, ihl);
989 	ip_hdr(skb)->protocol = 0;	/* Flag to the kernel this is a route add */
990 	msg = (struct igmpmsg *)skb_network_header(skb);
991 	msg->im_vif = vifi;
992 	skb_dst_set(skb, dst_clone(skb_dst(pkt)));
993 
994 	/* Add our header */
995 
996 	igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
997 	igmp->type	=
998 	msg->im_msgtype = assert;
999 	igmp->code	= 0;
1000 	ip_hdr(skb)->tot_len = htons(skb->len);		/* Fix the length */
1001 	skb->transport_header = skb->network_header;
1002 	}
1003 
1004 	rcu_read_lock();
1005 	mroute_sk = rcu_dereference(mrt->mroute_sk);
1006 	if (mroute_sk == NULL) {
1007 		rcu_read_unlock();
1008 		kfree_skb(skb);
1009 		return -EINVAL;
1010 	}
1011 
1012 	/* Deliver to mrouted */
1013 
1014 	ret = sock_queue_rcv_skb(mroute_sk, skb);
1015 	rcu_read_unlock();
1016 	if (ret < 0) {
1017 		net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1018 		kfree_skb(skb);
1019 	}
1020 
1021 	return ret;
1022 }
1023 
1024 /*
1025  *	Queue a packet for resolution. It gets locked cache entry!
1026  */
1027 
1028 static int
1029 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
1030 {
1031 	bool found = false;
1032 	int err;
1033 	struct mfc_cache *c;
1034 	const struct iphdr *iph = ip_hdr(skb);
1035 
1036 	spin_lock_bh(&mfc_unres_lock);
1037 	list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1038 		if (c->mfc_mcastgrp == iph->daddr &&
1039 		    c->mfc_origin == iph->saddr) {
1040 			found = true;
1041 			break;
1042 		}
1043 	}
1044 
1045 	if (!found) {
1046 		/* Create a new entry if allowable */
1047 
1048 		if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1049 		    (c = ipmr_cache_alloc_unres()) == NULL) {
1050 			spin_unlock_bh(&mfc_unres_lock);
1051 
1052 			kfree_skb(skb);
1053 			return -ENOBUFS;
1054 		}
1055 
1056 		/* Fill in the new cache entry */
1057 
1058 		c->mfc_parent	= -1;
1059 		c->mfc_origin	= iph->saddr;
1060 		c->mfc_mcastgrp	= iph->daddr;
1061 
1062 		/* Reflect first query at mrouted. */
1063 
1064 		err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1065 		if (err < 0) {
1066 			/* If the report failed throw the cache entry
1067 			   out - Brad Parker
1068 			 */
1069 			spin_unlock_bh(&mfc_unres_lock);
1070 
1071 			ipmr_cache_free(c);
1072 			kfree_skb(skb);
1073 			return err;
1074 		}
1075 
1076 		atomic_inc(&mrt->cache_resolve_queue_len);
1077 		list_add(&c->list, &mrt->mfc_unres_queue);
1078 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1079 
1080 		if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1081 			mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1082 	}
1083 
1084 	/* See if we can append the packet */
1085 
1086 	if (c->mfc_un.unres.unresolved.qlen > 3) {
1087 		kfree_skb(skb);
1088 		err = -ENOBUFS;
1089 	} else {
1090 		skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1091 		err = 0;
1092 	}
1093 
1094 	spin_unlock_bh(&mfc_unres_lock);
1095 	return err;
1096 }
1097 
1098 /*
1099  *	MFC cache manipulation by user space mroute daemon
1100  */
1101 
1102 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1103 {
1104 	int line;
1105 	struct mfc_cache *c, *next;
1106 
1107 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1108 
1109 	list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1110 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1111 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1112 		    (parent == -1 || parent == c->mfc_parent)) {
1113 			list_del_rcu(&c->list);
1114 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1115 			ipmr_cache_free(c);
1116 			return 0;
1117 		}
1118 	}
1119 	return -ENOENT;
1120 }
1121 
1122 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1123 			struct mfcctl *mfc, int mrtsock, int parent)
1124 {
1125 	bool found = false;
1126 	int line;
1127 	struct mfc_cache *uc, *c;
1128 
1129 	if (mfc->mfcc_parent >= MAXVIFS)
1130 		return -ENFILE;
1131 
1132 	line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1133 
1134 	list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1135 		if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1136 		    c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1137 		    (parent == -1 || parent == c->mfc_parent)) {
1138 			found = true;
1139 			break;
1140 		}
1141 	}
1142 
1143 	if (found) {
1144 		write_lock_bh(&mrt_lock);
1145 		c->mfc_parent = mfc->mfcc_parent;
1146 		ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1147 		if (!mrtsock)
1148 			c->mfc_flags |= MFC_STATIC;
1149 		write_unlock_bh(&mrt_lock);
1150 		mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1151 		return 0;
1152 	}
1153 
1154 	if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1155 	    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1156 		return -EINVAL;
1157 
1158 	c = ipmr_cache_alloc();
1159 	if (c == NULL)
1160 		return -ENOMEM;
1161 
1162 	c->mfc_origin = mfc->mfcc_origin.s_addr;
1163 	c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1164 	c->mfc_parent = mfc->mfcc_parent;
1165 	ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1166 	if (!mrtsock)
1167 		c->mfc_flags |= MFC_STATIC;
1168 
1169 	list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1170 
1171 	/*
1172 	 *	Check to see if we resolved a queued list. If so we
1173 	 *	need to send on the frames and tidy up.
1174 	 */
1175 	found = false;
1176 	spin_lock_bh(&mfc_unres_lock);
1177 	list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1178 		if (uc->mfc_origin == c->mfc_origin &&
1179 		    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1180 			list_del(&uc->list);
1181 			atomic_dec(&mrt->cache_resolve_queue_len);
1182 			found = true;
1183 			break;
1184 		}
1185 	}
1186 	if (list_empty(&mrt->mfc_unres_queue))
1187 		del_timer(&mrt->ipmr_expire_timer);
1188 	spin_unlock_bh(&mfc_unres_lock);
1189 
1190 	if (found) {
1191 		ipmr_cache_resolve(net, mrt, uc, c);
1192 		ipmr_cache_free(uc);
1193 	}
1194 	mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1195 	return 0;
1196 }
1197 
1198 /*
1199  *	Close the multicast socket, and clear the vif tables etc
1200  */
1201 
1202 static void mroute_clean_tables(struct mr_table *mrt)
1203 {
1204 	int i;
1205 	LIST_HEAD(list);
1206 	struct mfc_cache *c, *next;
1207 
1208 	/* Shut down all active vif entries */
1209 
1210 	for (i = 0; i < mrt->maxvif; i++) {
1211 		if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1212 			vif_delete(mrt, i, 0, &list);
1213 	}
1214 	unregister_netdevice_many(&list);
1215 
1216 	/* Wipe the cache */
1217 
1218 	for (i = 0; i < MFC_LINES; i++) {
1219 		list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1220 			if (c->mfc_flags & MFC_STATIC)
1221 				continue;
1222 			list_del_rcu(&c->list);
1223 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1224 			ipmr_cache_free(c);
1225 		}
1226 	}
1227 
1228 	if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1229 		spin_lock_bh(&mfc_unres_lock);
1230 		list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1231 			list_del(&c->list);
1232 			mroute_netlink_event(mrt, c, RTM_DELROUTE);
1233 			ipmr_destroy_unres(mrt, c);
1234 		}
1235 		spin_unlock_bh(&mfc_unres_lock);
1236 	}
1237 }
1238 
1239 /* called from ip_ra_control(), before an RCU grace period,
1240  * we dont need to call synchronize_rcu() here
1241  */
1242 static void mrtsock_destruct(struct sock *sk)
1243 {
1244 	struct net *net = sock_net(sk);
1245 	struct mr_table *mrt;
1246 
1247 	rtnl_lock();
1248 	ipmr_for_each_table(mrt, net) {
1249 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1250 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1251 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1252 						    NETCONFA_IFINDEX_ALL,
1253 						    net->ipv4.devconf_all);
1254 			RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1255 			mroute_clean_tables(mrt);
1256 		}
1257 	}
1258 	rtnl_unlock();
1259 }
1260 
1261 /*
1262  *	Socket options and virtual interface manipulation. The whole
1263  *	virtual interface system is a complete heap, but unfortunately
1264  *	that's how BSD mrouted happens to think. Maybe one day with a proper
1265  *	MOSPF/PIM router set up we can clean this up.
1266  */
1267 
1268 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1269 {
1270 	int ret, parent = 0;
1271 	struct vifctl vif;
1272 	struct mfcctl mfc;
1273 	struct net *net = sock_net(sk);
1274 	struct mr_table *mrt;
1275 
1276 	if (sk->sk_type != SOCK_RAW ||
1277 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1278 		return -EOPNOTSUPP;
1279 
1280 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1281 	if (mrt == NULL)
1282 		return -ENOENT;
1283 
1284 	if (optname != MRT_INIT) {
1285 		if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1286 		    !ns_capable(net->user_ns, CAP_NET_ADMIN))
1287 			return -EACCES;
1288 	}
1289 
1290 	switch (optname) {
1291 	case MRT_INIT:
1292 		if (optlen != sizeof(int))
1293 			return -EINVAL;
1294 
1295 		rtnl_lock();
1296 		if (rtnl_dereference(mrt->mroute_sk)) {
1297 			rtnl_unlock();
1298 			return -EADDRINUSE;
1299 		}
1300 
1301 		ret = ip_ra_control(sk, 1, mrtsock_destruct);
1302 		if (ret == 0) {
1303 			rcu_assign_pointer(mrt->mroute_sk, sk);
1304 			IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1305 			inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1306 						    NETCONFA_IFINDEX_ALL,
1307 						    net->ipv4.devconf_all);
1308 		}
1309 		rtnl_unlock();
1310 		return ret;
1311 	case MRT_DONE:
1312 		if (sk != rcu_access_pointer(mrt->mroute_sk))
1313 			return -EACCES;
1314 		return ip_ra_control(sk, 0, NULL);
1315 	case MRT_ADD_VIF:
1316 	case MRT_DEL_VIF:
1317 		if (optlen != sizeof(vif))
1318 			return -EINVAL;
1319 		if (copy_from_user(&vif, optval, sizeof(vif)))
1320 			return -EFAULT;
1321 		if (vif.vifc_vifi >= MAXVIFS)
1322 			return -ENFILE;
1323 		rtnl_lock();
1324 		if (optname == MRT_ADD_VIF) {
1325 			ret = vif_add(net, mrt, &vif,
1326 				      sk == rtnl_dereference(mrt->mroute_sk));
1327 		} else {
1328 			ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1329 		}
1330 		rtnl_unlock();
1331 		return ret;
1332 
1333 		/*
1334 		 *	Manipulate the forwarding caches. These live
1335 		 *	in a sort of kernel/user symbiosis.
1336 		 */
1337 	case MRT_ADD_MFC:
1338 	case MRT_DEL_MFC:
1339 		parent = -1;
1340 	case MRT_ADD_MFC_PROXY:
1341 	case MRT_DEL_MFC_PROXY:
1342 		if (optlen != sizeof(mfc))
1343 			return -EINVAL;
1344 		if (copy_from_user(&mfc, optval, sizeof(mfc)))
1345 			return -EFAULT;
1346 		if (parent == 0)
1347 			parent = mfc.mfcc_parent;
1348 		rtnl_lock();
1349 		if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1350 			ret = ipmr_mfc_delete(mrt, &mfc, parent);
1351 		else
1352 			ret = ipmr_mfc_add(net, mrt, &mfc,
1353 					   sk == rtnl_dereference(mrt->mroute_sk),
1354 					   parent);
1355 		rtnl_unlock();
1356 		return ret;
1357 		/*
1358 		 *	Control PIM assert.
1359 		 */
1360 	case MRT_ASSERT:
1361 	{
1362 		int v;
1363 		if (optlen != sizeof(v))
1364 			return -EINVAL;
1365 		if (get_user(v, (int __user *)optval))
1366 			return -EFAULT;
1367 		mrt->mroute_do_assert = v;
1368 		return 0;
1369 	}
1370 #ifdef CONFIG_IP_PIMSM
1371 	case MRT_PIM:
1372 	{
1373 		int v;
1374 
1375 		if (optlen != sizeof(v))
1376 			return -EINVAL;
1377 		if (get_user(v, (int __user *)optval))
1378 			return -EFAULT;
1379 		v = !!v;
1380 
1381 		rtnl_lock();
1382 		ret = 0;
1383 		if (v != mrt->mroute_do_pim) {
1384 			mrt->mroute_do_pim = v;
1385 			mrt->mroute_do_assert = v;
1386 		}
1387 		rtnl_unlock();
1388 		return ret;
1389 	}
1390 #endif
1391 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1392 	case MRT_TABLE:
1393 	{
1394 		u32 v;
1395 
1396 		if (optlen != sizeof(u32))
1397 			return -EINVAL;
1398 		if (get_user(v, (u32 __user *)optval))
1399 			return -EFAULT;
1400 
1401 		/* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
1402 		if (v != RT_TABLE_DEFAULT && v >= 1000000000)
1403 			return -EINVAL;
1404 
1405 		rtnl_lock();
1406 		ret = 0;
1407 		if (sk == rtnl_dereference(mrt->mroute_sk)) {
1408 			ret = -EBUSY;
1409 		} else {
1410 			if (!ipmr_new_table(net, v))
1411 				ret = -ENOMEM;
1412 			else
1413 				raw_sk(sk)->ipmr_table = v;
1414 		}
1415 		rtnl_unlock();
1416 		return ret;
1417 	}
1418 #endif
1419 	/*
1420 	 *	Spurious command, or MRT_VERSION which you cannot
1421 	 *	set.
1422 	 */
1423 	default:
1424 		return -ENOPROTOOPT;
1425 	}
1426 }
1427 
1428 /*
1429  *	Getsock opt support for the multicast routing system.
1430  */
1431 
1432 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1433 {
1434 	int olr;
1435 	int val;
1436 	struct net *net = sock_net(sk);
1437 	struct mr_table *mrt;
1438 
1439 	if (sk->sk_type != SOCK_RAW ||
1440 	    inet_sk(sk)->inet_num != IPPROTO_IGMP)
1441 		return -EOPNOTSUPP;
1442 
1443 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1444 	if (mrt == NULL)
1445 		return -ENOENT;
1446 
1447 	if (optname != MRT_VERSION &&
1448 #ifdef CONFIG_IP_PIMSM
1449 	   optname != MRT_PIM &&
1450 #endif
1451 	   optname != MRT_ASSERT)
1452 		return -ENOPROTOOPT;
1453 
1454 	if (get_user(olr, optlen))
1455 		return -EFAULT;
1456 
1457 	olr = min_t(unsigned int, olr, sizeof(int));
1458 	if (olr < 0)
1459 		return -EINVAL;
1460 
1461 	if (put_user(olr, optlen))
1462 		return -EFAULT;
1463 	if (optname == MRT_VERSION)
1464 		val = 0x0305;
1465 #ifdef CONFIG_IP_PIMSM
1466 	else if (optname == MRT_PIM)
1467 		val = mrt->mroute_do_pim;
1468 #endif
1469 	else
1470 		val = mrt->mroute_do_assert;
1471 	if (copy_to_user(optval, &val, olr))
1472 		return -EFAULT;
1473 	return 0;
1474 }
1475 
1476 /*
1477  *	The IP multicast ioctl support routines.
1478  */
1479 
1480 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1481 {
1482 	struct sioc_sg_req sr;
1483 	struct sioc_vif_req vr;
1484 	struct vif_device *vif;
1485 	struct mfc_cache *c;
1486 	struct net *net = sock_net(sk);
1487 	struct mr_table *mrt;
1488 
1489 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1490 	if (mrt == NULL)
1491 		return -ENOENT;
1492 
1493 	switch (cmd) {
1494 	case SIOCGETVIFCNT:
1495 		if (copy_from_user(&vr, arg, sizeof(vr)))
1496 			return -EFAULT;
1497 		if (vr.vifi >= mrt->maxvif)
1498 			return -EINVAL;
1499 		read_lock(&mrt_lock);
1500 		vif = &mrt->vif_table[vr.vifi];
1501 		if (VIF_EXISTS(mrt, vr.vifi)) {
1502 			vr.icount = vif->pkt_in;
1503 			vr.ocount = vif->pkt_out;
1504 			vr.ibytes = vif->bytes_in;
1505 			vr.obytes = vif->bytes_out;
1506 			read_unlock(&mrt_lock);
1507 
1508 			if (copy_to_user(arg, &vr, sizeof(vr)))
1509 				return -EFAULT;
1510 			return 0;
1511 		}
1512 		read_unlock(&mrt_lock);
1513 		return -EADDRNOTAVAIL;
1514 	case SIOCGETSGCNT:
1515 		if (copy_from_user(&sr, arg, sizeof(sr)))
1516 			return -EFAULT;
1517 
1518 		rcu_read_lock();
1519 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1520 		if (c) {
1521 			sr.pktcnt = c->mfc_un.res.pkt;
1522 			sr.bytecnt = c->mfc_un.res.bytes;
1523 			sr.wrong_if = c->mfc_un.res.wrong_if;
1524 			rcu_read_unlock();
1525 
1526 			if (copy_to_user(arg, &sr, sizeof(sr)))
1527 				return -EFAULT;
1528 			return 0;
1529 		}
1530 		rcu_read_unlock();
1531 		return -EADDRNOTAVAIL;
1532 	default:
1533 		return -ENOIOCTLCMD;
1534 	}
1535 }
1536 
1537 #ifdef CONFIG_COMPAT
1538 struct compat_sioc_sg_req {
1539 	struct in_addr src;
1540 	struct in_addr grp;
1541 	compat_ulong_t pktcnt;
1542 	compat_ulong_t bytecnt;
1543 	compat_ulong_t wrong_if;
1544 };
1545 
1546 struct compat_sioc_vif_req {
1547 	vifi_t	vifi;		/* Which iface */
1548 	compat_ulong_t icount;
1549 	compat_ulong_t ocount;
1550 	compat_ulong_t ibytes;
1551 	compat_ulong_t obytes;
1552 };
1553 
1554 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1555 {
1556 	struct compat_sioc_sg_req sr;
1557 	struct compat_sioc_vif_req vr;
1558 	struct vif_device *vif;
1559 	struct mfc_cache *c;
1560 	struct net *net = sock_net(sk);
1561 	struct mr_table *mrt;
1562 
1563 	mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1564 	if (mrt == NULL)
1565 		return -ENOENT;
1566 
1567 	switch (cmd) {
1568 	case SIOCGETVIFCNT:
1569 		if (copy_from_user(&vr, arg, sizeof(vr)))
1570 			return -EFAULT;
1571 		if (vr.vifi >= mrt->maxvif)
1572 			return -EINVAL;
1573 		read_lock(&mrt_lock);
1574 		vif = &mrt->vif_table[vr.vifi];
1575 		if (VIF_EXISTS(mrt, vr.vifi)) {
1576 			vr.icount = vif->pkt_in;
1577 			vr.ocount = vif->pkt_out;
1578 			vr.ibytes = vif->bytes_in;
1579 			vr.obytes = vif->bytes_out;
1580 			read_unlock(&mrt_lock);
1581 
1582 			if (copy_to_user(arg, &vr, sizeof(vr)))
1583 				return -EFAULT;
1584 			return 0;
1585 		}
1586 		read_unlock(&mrt_lock);
1587 		return -EADDRNOTAVAIL;
1588 	case SIOCGETSGCNT:
1589 		if (copy_from_user(&sr, arg, sizeof(sr)))
1590 			return -EFAULT;
1591 
1592 		rcu_read_lock();
1593 		c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1594 		if (c) {
1595 			sr.pktcnt = c->mfc_un.res.pkt;
1596 			sr.bytecnt = c->mfc_un.res.bytes;
1597 			sr.wrong_if = c->mfc_un.res.wrong_if;
1598 			rcu_read_unlock();
1599 
1600 			if (copy_to_user(arg, &sr, sizeof(sr)))
1601 				return -EFAULT;
1602 			return 0;
1603 		}
1604 		rcu_read_unlock();
1605 		return -EADDRNOTAVAIL;
1606 	default:
1607 		return -ENOIOCTLCMD;
1608 	}
1609 }
1610 #endif
1611 
1612 
1613 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1614 {
1615 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1616 	struct net *net = dev_net(dev);
1617 	struct mr_table *mrt;
1618 	struct vif_device *v;
1619 	int ct;
1620 
1621 	if (event != NETDEV_UNREGISTER)
1622 		return NOTIFY_DONE;
1623 
1624 	ipmr_for_each_table(mrt, net) {
1625 		v = &mrt->vif_table[0];
1626 		for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1627 			if (v->dev == dev)
1628 				vif_delete(mrt, ct, 1, NULL);
1629 		}
1630 	}
1631 	return NOTIFY_DONE;
1632 }
1633 
1634 
1635 static struct notifier_block ip_mr_notifier = {
1636 	.notifier_call = ipmr_device_event,
1637 };
1638 
1639 /*
1640  *	Encapsulate a packet by attaching a valid IPIP header to it.
1641  *	This avoids tunnel drivers and other mess and gives us the speed so
1642  *	important for multicast video.
1643  */
1644 
1645 static void ip_encap(struct net *net, struct sk_buff *skb,
1646 		     __be32 saddr, __be32 daddr)
1647 {
1648 	struct iphdr *iph;
1649 	const struct iphdr *old_iph = ip_hdr(skb);
1650 
1651 	skb_push(skb, sizeof(struct iphdr));
1652 	skb->transport_header = skb->network_header;
1653 	skb_reset_network_header(skb);
1654 	iph = ip_hdr(skb);
1655 
1656 	iph->version	=	4;
1657 	iph->tos	=	old_iph->tos;
1658 	iph->ttl	=	old_iph->ttl;
1659 	iph->frag_off	=	0;
1660 	iph->daddr	=	daddr;
1661 	iph->saddr	=	saddr;
1662 	iph->protocol	=	IPPROTO_IPIP;
1663 	iph->ihl	=	5;
1664 	iph->tot_len	=	htons(skb->len);
1665 	ip_select_ident(net, skb, NULL);
1666 	ip_send_check(iph);
1667 
1668 	memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1669 	nf_reset(skb);
1670 }
1671 
1672 static inline int ipmr_forward_finish(struct sk_buff *skb)
1673 {
1674 	struct ip_options *opt = &(IPCB(skb)->opt);
1675 
1676 	IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1677 	IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1678 
1679 	if (unlikely(opt->optlen))
1680 		ip_forward_options(skb);
1681 
1682 	return dst_output(skb);
1683 }
1684 
1685 /*
1686  *	Processing handlers for ipmr_forward
1687  */
1688 
1689 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1690 			    struct sk_buff *skb, struct mfc_cache *c, int vifi)
1691 {
1692 	const struct iphdr *iph = ip_hdr(skb);
1693 	struct vif_device *vif = &mrt->vif_table[vifi];
1694 	struct net_device *dev;
1695 	struct rtable *rt;
1696 	struct flowi4 fl4;
1697 	int    encap = 0;
1698 
1699 	if (vif->dev == NULL)
1700 		goto out_free;
1701 
1702 #ifdef CONFIG_IP_PIMSM
1703 	if (vif->flags & VIFF_REGISTER) {
1704 		vif->pkt_out++;
1705 		vif->bytes_out += skb->len;
1706 		vif->dev->stats.tx_bytes += skb->len;
1707 		vif->dev->stats.tx_packets++;
1708 		ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1709 		goto out_free;
1710 	}
1711 #endif
1712 
1713 	if (vif->flags & VIFF_TUNNEL) {
1714 		rt = ip_route_output_ports(net, &fl4, NULL,
1715 					   vif->remote, vif->local,
1716 					   0, 0,
1717 					   IPPROTO_IPIP,
1718 					   RT_TOS(iph->tos), vif->link);
1719 		if (IS_ERR(rt))
1720 			goto out_free;
1721 		encap = sizeof(struct iphdr);
1722 	} else {
1723 		rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1724 					   0, 0,
1725 					   IPPROTO_IPIP,
1726 					   RT_TOS(iph->tos), vif->link);
1727 		if (IS_ERR(rt))
1728 			goto out_free;
1729 	}
1730 
1731 	dev = rt->dst.dev;
1732 
1733 	if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1734 		/* Do not fragment multicasts. Alas, IPv4 does not
1735 		 * allow to send ICMP, so that packets will disappear
1736 		 * to blackhole.
1737 		 */
1738 
1739 		IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1740 		ip_rt_put(rt);
1741 		goto out_free;
1742 	}
1743 
1744 	encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1745 
1746 	if (skb_cow(skb, encap)) {
1747 		ip_rt_put(rt);
1748 		goto out_free;
1749 	}
1750 
1751 	vif->pkt_out++;
1752 	vif->bytes_out += skb->len;
1753 
1754 	skb_dst_drop(skb);
1755 	skb_dst_set(skb, &rt->dst);
1756 	ip_decrease_ttl(ip_hdr(skb));
1757 
1758 	/* FIXME: forward and output firewalls used to be called here.
1759 	 * What do we do with netfilter? -- RR
1760 	 */
1761 	if (vif->flags & VIFF_TUNNEL) {
1762 		ip_encap(net, skb, vif->local, vif->remote);
1763 		/* FIXME: extra output firewall step used to be here. --RR */
1764 		vif->dev->stats.tx_packets++;
1765 		vif->dev->stats.tx_bytes += skb->len;
1766 	}
1767 
1768 	IPCB(skb)->flags |= IPSKB_FORWARDED;
1769 
1770 	/*
1771 	 * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1772 	 * not only before forwarding, but after forwarding on all output
1773 	 * interfaces. It is clear, if mrouter runs a multicasting
1774 	 * program, it should receive packets not depending to what interface
1775 	 * program is joined.
1776 	 * If we will not make it, the program will have to join on all
1777 	 * interfaces. On the other hand, multihoming host (or router, but
1778 	 * not mrouter) cannot join to more than one interface - it will
1779 	 * result in receiving multiple packets.
1780 	 */
1781 	NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1782 		ipmr_forward_finish);
1783 	return;
1784 
1785 out_free:
1786 	kfree_skb(skb);
1787 }
1788 
1789 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1790 {
1791 	int ct;
1792 
1793 	for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1794 		if (mrt->vif_table[ct].dev == dev)
1795 			break;
1796 	}
1797 	return ct;
1798 }
1799 
1800 /* "local" means that we should preserve one skb (for local delivery) */
1801 
1802 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1803 			  struct sk_buff *skb, struct mfc_cache *cache,
1804 			  int local)
1805 {
1806 	int psend = -1;
1807 	int vif, ct;
1808 	int true_vifi = ipmr_find_vif(mrt, skb->dev);
1809 
1810 	vif = cache->mfc_parent;
1811 	cache->mfc_un.res.pkt++;
1812 	cache->mfc_un.res.bytes += skb->len;
1813 
1814 	if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1815 		struct mfc_cache *cache_proxy;
1816 
1817 		/* For an (*,G) entry, we only check that the incomming
1818 		 * interface is part of the static tree.
1819 		 */
1820 		cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1821 		if (cache_proxy &&
1822 		    cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1823 			goto forward;
1824 	}
1825 
1826 	/*
1827 	 * Wrong interface: drop packet and (maybe) send PIM assert.
1828 	 */
1829 	if (mrt->vif_table[vif].dev != skb->dev) {
1830 		if (rt_is_output_route(skb_rtable(skb))) {
1831 			/* It is our own packet, looped back.
1832 			 * Very complicated situation...
1833 			 *
1834 			 * The best workaround until routing daemons will be
1835 			 * fixed is not to redistribute packet, if it was
1836 			 * send through wrong interface. It means, that
1837 			 * multicast applications WILL NOT work for
1838 			 * (S,G), which have default multicast route pointing
1839 			 * to wrong oif. In any case, it is not a good
1840 			 * idea to use multicasting applications on router.
1841 			 */
1842 			goto dont_forward;
1843 		}
1844 
1845 		cache->mfc_un.res.wrong_if++;
1846 
1847 		if (true_vifi >= 0 && mrt->mroute_do_assert &&
1848 		    /* pimsm uses asserts, when switching from RPT to SPT,
1849 		     * so that we cannot check that packet arrived on an oif.
1850 		     * It is bad, but otherwise we would need to move pretty
1851 		     * large chunk of pimd to kernel. Ough... --ANK
1852 		     */
1853 		    (mrt->mroute_do_pim ||
1854 		     cache->mfc_un.res.ttls[true_vifi] < 255) &&
1855 		    time_after(jiffies,
1856 			       cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1857 			cache->mfc_un.res.last_assert = jiffies;
1858 			ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1859 		}
1860 		goto dont_forward;
1861 	}
1862 
1863 forward:
1864 	mrt->vif_table[vif].pkt_in++;
1865 	mrt->vif_table[vif].bytes_in += skb->len;
1866 
1867 	/*
1868 	 *	Forward the frame
1869 	 */
1870 	if (cache->mfc_origin == htonl(INADDR_ANY) &&
1871 	    cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1872 		if (true_vifi >= 0 &&
1873 		    true_vifi != cache->mfc_parent &&
1874 		    ip_hdr(skb)->ttl >
1875 				cache->mfc_un.res.ttls[cache->mfc_parent]) {
1876 			/* It's an (*,*) entry and the packet is not coming from
1877 			 * the upstream: forward the packet to the upstream
1878 			 * only.
1879 			 */
1880 			psend = cache->mfc_parent;
1881 			goto last_forward;
1882 		}
1883 		goto dont_forward;
1884 	}
1885 	for (ct = cache->mfc_un.res.maxvif - 1;
1886 	     ct >= cache->mfc_un.res.minvif; ct--) {
1887 		/* For (*,G) entry, don't forward to the incoming interface */
1888 		if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1889 		     ct != true_vifi) &&
1890 		    ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1891 			if (psend != -1) {
1892 				struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1893 
1894 				if (skb2)
1895 					ipmr_queue_xmit(net, mrt, skb2, cache,
1896 							psend);
1897 			}
1898 			psend = ct;
1899 		}
1900 	}
1901 last_forward:
1902 	if (psend != -1) {
1903 		if (local) {
1904 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1905 
1906 			if (skb2)
1907 				ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1908 		} else {
1909 			ipmr_queue_xmit(net, mrt, skb, cache, psend);
1910 			return;
1911 		}
1912 	}
1913 
1914 dont_forward:
1915 	if (!local)
1916 		kfree_skb(skb);
1917 }
1918 
1919 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1920 {
1921 	struct rtable *rt = skb_rtable(skb);
1922 	struct iphdr *iph = ip_hdr(skb);
1923 	struct flowi4 fl4 = {
1924 		.daddr = iph->daddr,
1925 		.saddr = iph->saddr,
1926 		.flowi4_tos = RT_TOS(iph->tos),
1927 		.flowi4_oif = (rt_is_output_route(rt) ?
1928 			       skb->dev->ifindex : 0),
1929 		.flowi4_iif = (rt_is_output_route(rt) ?
1930 			       LOOPBACK_IFINDEX :
1931 			       skb->dev->ifindex),
1932 		.flowi4_mark = skb->mark,
1933 	};
1934 	struct mr_table *mrt;
1935 	int err;
1936 
1937 	err = ipmr_fib_lookup(net, &fl4, &mrt);
1938 	if (err)
1939 		return ERR_PTR(err);
1940 	return mrt;
1941 }
1942 
1943 /*
1944  *	Multicast packets for forwarding arrive here
1945  *	Called with rcu_read_lock();
1946  */
1947 
1948 int ip_mr_input(struct sk_buff *skb)
1949 {
1950 	struct mfc_cache *cache;
1951 	struct net *net = dev_net(skb->dev);
1952 	int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1953 	struct mr_table *mrt;
1954 
1955 	/* Packet is looped back after forward, it should not be
1956 	 * forwarded second time, but still can be delivered locally.
1957 	 */
1958 	if (IPCB(skb)->flags & IPSKB_FORWARDED)
1959 		goto dont_forward;
1960 
1961 	mrt = ipmr_rt_fib_lookup(net, skb);
1962 	if (IS_ERR(mrt)) {
1963 		kfree_skb(skb);
1964 		return PTR_ERR(mrt);
1965 	}
1966 	if (!local) {
1967 		if (IPCB(skb)->opt.router_alert) {
1968 			if (ip_call_ra_chain(skb))
1969 				return 0;
1970 		} else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1971 			/* IGMPv1 (and broken IGMPv2 implementations sort of
1972 			 * Cisco IOS <= 11.2(8)) do not put router alert
1973 			 * option to IGMP packets destined to routable
1974 			 * groups. It is very bad, because it means
1975 			 * that we can forward NO IGMP messages.
1976 			 */
1977 			struct sock *mroute_sk;
1978 
1979 			mroute_sk = rcu_dereference(mrt->mroute_sk);
1980 			if (mroute_sk) {
1981 				nf_reset(skb);
1982 				raw_rcv(mroute_sk, skb);
1983 				return 0;
1984 			}
1985 		    }
1986 	}
1987 
1988 	/* already under rcu_read_lock() */
1989 	cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1990 	if (cache == NULL) {
1991 		int vif = ipmr_find_vif(mrt, skb->dev);
1992 
1993 		if (vif >= 0)
1994 			cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1995 						    vif);
1996 	}
1997 
1998 	/*
1999 	 *	No usable cache entry
2000 	 */
2001 	if (cache == NULL) {
2002 		int vif;
2003 
2004 		if (local) {
2005 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2006 			ip_local_deliver(skb);
2007 			if (skb2 == NULL)
2008 				return -ENOBUFS;
2009 			skb = skb2;
2010 		}
2011 
2012 		read_lock(&mrt_lock);
2013 		vif = ipmr_find_vif(mrt, skb->dev);
2014 		if (vif >= 0) {
2015 			int err2 = ipmr_cache_unresolved(mrt, vif, skb);
2016 			read_unlock(&mrt_lock);
2017 
2018 			return err2;
2019 		}
2020 		read_unlock(&mrt_lock);
2021 		kfree_skb(skb);
2022 		return -ENODEV;
2023 	}
2024 
2025 	read_lock(&mrt_lock);
2026 	ip_mr_forward(net, mrt, skb, cache, local);
2027 	read_unlock(&mrt_lock);
2028 
2029 	if (local)
2030 		return ip_local_deliver(skb);
2031 
2032 	return 0;
2033 
2034 dont_forward:
2035 	if (local)
2036 		return ip_local_deliver(skb);
2037 	kfree_skb(skb);
2038 	return 0;
2039 }
2040 
2041 #ifdef CONFIG_IP_PIMSM
2042 /* called with rcu_read_lock() */
2043 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
2044 		     unsigned int pimlen)
2045 {
2046 	struct net_device *reg_dev = NULL;
2047 	struct iphdr *encap;
2048 
2049 	encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
2050 	/*
2051 	 * Check that:
2052 	 * a. packet is really sent to a multicast group
2053 	 * b. packet is not a NULL-REGISTER
2054 	 * c. packet is not truncated
2055 	 */
2056 	if (!ipv4_is_multicast(encap->daddr) ||
2057 	    encap->tot_len == 0 ||
2058 	    ntohs(encap->tot_len) + pimlen > skb->len)
2059 		return 1;
2060 
2061 	read_lock(&mrt_lock);
2062 	if (mrt->mroute_reg_vif_num >= 0)
2063 		reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
2064 	read_unlock(&mrt_lock);
2065 
2066 	if (reg_dev == NULL)
2067 		return 1;
2068 
2069 	skb->mac_header = skb->network_header;
2070 	skb_pull(skb, (u8 *)encap - skb->data);
2071 	skb_reset_network_header(skb);
2072 	skb->protocol = htons(ETH_P_IP);
2073 	skb->ip_summed = CHECKSUM_NONE;
2074 
2075 	skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
2076 
2077 	netif_rx(skb);
2078 
2079 	return NET_RX_SUCCESS;
2080 }
2081 #endif
2082 
2083 #ifdef CONFIG_IP_PIMSM_V1
2084 /*
2085  * Handle IGMP messages of PIMv1
2086  */
2087 
2088 int pim_rcv_v1(struct sk_buff *skb)
2089 {
2090 	struct igmphdr *pim;
2091 	struct net *net = dev_net(skb->dev);
2092 	struct mr_table *mrt;
2093 
2094 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2095 		goto drop;
2096 
2097 	pim = igmp_hdr(skb);
2098 
2099 	mrt = ipmr_rt_fib_lookup(net, skb);
2100 	if (IS_ERR(mrt))
2101 		goto drop;
2102 	if (!mrt->mroute_do_pim ||
2103 	    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2104 		goto drop;
2105 
2106 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2107 drop:
2108 		kfree_skb(skb);
2109 	}
2110 	return 0;
2111 }
2112 #endif
2113 
2114 #ifdef CONFIG_IP_PIMSM_V2
2115 static int pim_rcv(struct sk_buff *skb)
2116 {
2117 	struct pimreghdr *pim;
2118 	struct net *net = dev_net(skb->dev);
2119 	struct mr_table *mrt;
2120 
2121 	if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2122 		goto drop;
2123 
2124 	pim = (struct pimreghdr *)skb_transport_header(skb);
2125 	if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2126 	    (pim->flags & PIM_NULL_REGISTER) ||
2127 	    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2128 	     csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2129 		goto drop;
2130 
2131 	mrt = ipmr_rt_fib_lookup(net, skb);
2132 	if (IS_ERR(mrt))
2133 		goto drop;
2134 	if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2135 drop:
2136 		kfree_skb(skb);
2137 	}
2138 	return 0;
2139 }
2140 #endif
2141 
2142 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2143 			      struct mfc_cache *c, struct rtmsg *rtm)
2144 {
2145 	int ct;
2146 	struct rtnexthop *nhp;
2147 	struct nlattr *mp_attr;
2148 	struct rta_mfc_stats mfcs;
2149 
2150 	/* If cache is unresolved, don't try to parse IIF and OIF */
2151 	if (c->mfc_parent >= MAXVIFS)
2152 		return -ENOENT;
2153 
2154 	if (VIF_EXISTS(mrt, c->mfc_parent) &&
2155 	    nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2156 		return -EMSGSIZE;
2157 
2158 	if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2159 		return -EMSGSIZE;
2160 
2161 	for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2162 		if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2163 			if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2164 				nla_nest_cancel(skb, mp_attr);
2165 				return -EMSGSIZE;
2166 			}
2167 
2168 			nhp->rtnh_flags = 0;
2169 			nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2170 			nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2171 			nhp->rtnh_len = sizeof(*nhp);
2172 		}
2173 	}
2174 
2175 	nla_nest_end(skb, mp_attr);
2176 
2177 	mfcs.mfcs_packets = c->mfc_un.res.pkt;
2178 	mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2179 	mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2180 	if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
2181 		return -EMSGSIZE;
2182 
2183 	rtm->rtm_type = RTN_MULTICAST;
2184 	return 1;
2185 }
2186 
2187 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2188 		   __be32 saddr, __be32 daddr,
2189 		   struct rtmsg *rtm, int nowait)
2190 {
2191 	struct mfc_cache *cache;
2192 	struct mr_table *mrt;
2193 	int err;
2194 
2195 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2196 	if (mrt == NULL)
2197 		return -ENOENT;
2198 
2199 	rcu_read_lock();
2200 	cache = ipmr_cache_find(mrt, saddr, daddr);
2201 	if (cache == NULL && skb->dev) {
2202 		int vif = ipmr_find_vif(mrt, skb->dev);
2203 
2204 		if (vif >= 0)
2205 			cache = ipmr_cache_find_any(mrt, daddr, vif);
2206 	}
2207 	if (cache == NULL) {
2208 		struct sk_buff *skb2;
2209 		struct iphdr *iph;
2210 		struct net_device *dev;
2211 		int vif = -1;
2212 
2213 		if (nowait) {
2214 			rcu_read_unlock();
2215 			return -EAGAIN;
2216 		}
2217 
2218 		dev = skb->dev;
2219 		read_lock(&mrt_lock);
2220 		if (dev)
2221 			vif = ipmr_find_vif(mrt, dev);
2222 		if (vif < 0) {
2223 			read_unlock(&mrt_lock);
2224 			rcu_read_unlock();
2225 			return -ENODEV;
2226 		}
2227 		skb2 = skb_clone(skb, GFP_ATOMIC);
2228 		if (!skb2) {
2229 			read_unlock(&mrt_lock);
2230 			rcu_read_unlock();
2231 			return -ENOMEM;
2232 		}
2233 
2234 		skb_push(skb2, sizeof(struct iphdr));
2235 		skb_reset_network_header(skb2);
2236 		iph = ip_hdr(skb2);
2237 		iph->ihl = sizeof(struct iphdr) >> 2;
2238 		iph->saddr = saddr;
2239 		iph->daddr = daddr;
2240 		iph->version = 0;
2241 		err = ipmr_cache_unresolved(mrt, vif, skb2);
2242 		read_unlock(&mrt_lock);
2243 		rcu_read_unlock();
2244 		return err;
2245 	}
2246 
2247 	read_lock(&mrt_lock);
2248 	if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2249 		cache->mfc_flags |= MFC_NOTIFY;
2250 	err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2251 	read_unlock(&mrt_lock);
2252 	rcu_read_unlock();
2253 	return err;
2254 }
2255 
2256 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2257 			    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2258 			    int flags)
2259 {
2260 	struct nlmsghdr *nlh;
2261 	struct rtmsg *rtm;
2262 	int err;
2263 
2264 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2265 	if (nlh == NULL)
2266 		return -EMSGSIZE;
2267 
2268 	rtm = nlmsg_data(nlh);
2269 	rtm->rtm_family   = RTNL_FAMILY_IPMR;
2270 	rtm->rtm_dst_len  = 32;
2271 	rtm->rtm_src_len  = 32;
2272 	rtm->rtm_tos      = 0;
2273 	rtm->rtm_table    = mrt->id;
2274 	if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2275 		goto nla_put_failure;
2276 	rtm->rtm_type     = RTN_MULTICAST;
2277 	rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2278 	if (c->mfc_flags & MFC_STATIC)
2279 		rtm->rtm_protocol = RTPROT_STATIC;
2280 	else
2281 		rtm->rtm_protocol = RTPROT_MROUTED;
2282 	rtm->rtm_flags    = 0;
2283 
2284 	if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2285 	    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2286 		goto nla_put_failure;
2287 	err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2288 	/* do not break the dump if cache is unresolved */
2289 	if (err < 0 && err != -ENOENT)
2290 		goto nla_put_failure;
2291 
2292 	nlmsg_end(skb, nlh);
2293 	return 0;
2294 
2295 nla_put_failure:
2296 	nlmsg_cancel(skb, nlh);
2297 	return -EMSGSIZE;
2298 }
2299 
2300 static size_t mroute_msgsize(bool unresolved, int maxvif)
2301 {
2302 	size_t len =
2303 		NLMSG_ALIGN(sizeof(struct rtmsg))
2304 		+ nla_total_size(4)	/* RTA_TABLE */
2305 		+ nla_total_size(4)	/* RTA_SRC */
2306 		+ nla_total_size(4)	/* RTA_DST */
2307 		;
2308 
2309 	if (!unresolved)
2310 		len = len
2311 		      + nla_total_size(4)	/* RTA_IIF */
2312 		      + nla_total_size(0)	/* RTA_MULTIPATH */
2313 		      + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2314 						/* RTA_MFC_STATS */
2315 		      + nla_total_size(sizeof(struct rta_mfc_stats))
2316 		;
2317 
2318 	return len;
2319 }
2320 
2321 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2322 				 int cmd)
2323 {
2324 	struct net *net = read_pnet(&mrt->net);
2325 	struct sk_buff *skb;
2326 	int err = -ENOBUFS;
2327 
2328 	skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2329 			GFP_ATOMIC);
2330 	if (skb == NULL)
2331 		goto errout;
2332 
2333 	err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2334 	if (err < 0)
2335 		goto errout;
2336 
2337 	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2338 	return;
2339 
2340 errout:
2341 	kfree_skb(skb);
2342 	if (err < 0)
2343 		rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2344 }
2345 
2346 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2347 {
2348 	struct net *net = sock_net(skb->sk);
2349 	struct mr_table *mrt;
2350 	struct mfc_cache *mfc;
2351 	unsigned int t = 0, s_t;
2352 	unsigned int h = 0, s_h;
2353 	unsigned int e = 0, s_e;
2354 
2355 	s_t = cb->args[0];
2356 	s_h = cb->args[1];
2357 	s_e = cb->args[2];
2358 
2359 	rcu_read_lock();
2360 	ipmr_for_each_table(mrt, net) {
2361 		if (t < s_t)
2362 			goto next_table;
2363 		if (t > s_t)
2364 			s_h = 0;
2365 		for (h = s_h; h < MFC_LINES; h++) {
2366 			list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2367 				if (e < s_e)
2368 					goto next_entry;
2369 				if (ipmr_fill_mroute(mrt, skb,
2370 						     NETLINK_CB(cb->skb).portid,
2371 						     cb->nlh->nlmsg_seq,
2372 						     mfc, RTM_NEWROUTE,
2373 						     NLM_F_MULTI) < 0)
2374 					goto done;
2375 next_entry:
2376 				e++;
2377 			}
2378 			e = s_e = 0;
2379 		}
2380 		spin_lock_bh(&mfc_unres_lock);
2381 		list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2382 			if (e < s_e)
2383 				goto next_entry2;
2384 			if (ipmr_fill_mroute(mrt, skb,
2385 					     NETLINK_CB(cb->skb).portid,
2386 					     cb->nlh->nlmsg_seq,
2387 					     mfc, RTM_NEWROUTE,
2388 					     NLM_F_MULTI) < 0) {
2389 				spin_unlock_bh(&mfc_unres_lock);
2390 				goto done;
2391 			}
2392 next_entry2:
2393 			e++;
2394 		}
2395 		spin_unlock_bh(&mfc_unres_lock);
2396 		e = s_e = 0;
2397 		s_h = 0;
2398 next_table:
2399 		t++;
2400 	}
2401 done:
2402 	rcu_read_unlock();
2403 
2404 	cb->args[2] = e;
2405 	cb->args[1] = h;
2406 	cb->args[0] = t;
2407 
2408 	return skb->len;
2409 }
2410 
2411 #ifdef CONFIG_PROC_FS
2412 /*
2413  *	The /proc interfaces to multicast routing :
2414  *	/proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2415  */
2416 struct ipmr_vif_iter {
2417 	struct seq_net_private p;
2418 	struct mr_table *mrt;
2419 	int ct;
2420 };
2421 
2422 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2423 					   struct ipmr_vif_iter *iter,
2424 					   loff_t pos)
2425 {
2426 	struct mr_table *mrt = iter->mrt;
2427 
2428 	for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2429 		if (!VIF_EXISTS(mrt, iter->ct))
2430 			continue;
2431 		if (pos-- == 0)
2432 			return &mrt->vif_table[iter->ct];
2433 	}
2434 	return NULL;
2435 }
2436 
2437 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2438 	__acquires(mrt_lock)
2439 {
2440 	struct ipmr_vif_iter *iter = seq->private;
2441 	struct net *net = seq_file_net(seq);
2442 	struct mr_table *mrt;
2443 
2444 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2445 	if (mrt == NULL)
2446 		return ERR_PTR(-ENOENT);
2447 
2448 	iter->mrt = mrt;
2449 
2450 	read_lock(&mrt_lock);
2451 	return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2452 		: SEQ_START_TOKEN;
2453 }
2454 
2455 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2456 {
2457 	struct ipmr_vif_iter *iter = seq->private;
2458 	struct net *net = seq_file_net(seq);
2459 	struct mr_table *mrt = iter->mrt;
2460 
2461 	++*pos;
2462 	if (v == SEQ_START_TOKEN)
2463 		return ipmr_vif_seq_idx(net, iter, 0);
2464 
2465 	while (++iter->ct < mrt->maxvif) {
2466 		if (!VIF_EXISTS(mrt, iter->ct))
2467 			continue;
2468 		return &mrt->vif_table[iter->ct];
2469 	}
2470 	return NULL;
2471 }
2472 
2473 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2474 	__releases(mrt_lock)
2475 {
2476 	read_unlock(&mrt_lock);
2477 }
2478 
2479 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2480 {
2481 	struct ipmr_vif_iter *iter = seq->private;
2482 	struct mr_table *mrt = iter->mrt;
2483 
2484 	if (v == SEQ_START_TOKEN) {
2485 		seq_puts(seq,
2486 			 "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2487 	} else {
2488 		const struct vif_device *vif = v;
2489 		const char *name =  vif->dev ? vif->dev->name : "none";
2490 
2491 		seq_printf(seq,
2492 			   "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2493 			   vif - mrt->vif_table,
2494 			   name, vif->bytes_in, vif->pkt_in,
2495 			   vif->bytes_out, vif->pkt_out,
2496 			   vif->flags, vif->local, vif->remote);
2497 	}
2498 	return 0;
2499 }
2500 
2501 static const struct seq_operations ipmr_vif_seq_ops = {
2502 	.start = ipmr_vif_seq_start,
2503 	.next  = ipmr_vif_seq_next,
2504 	.stop  = ipmr_vif_seq_stop,
2505 	.show  = ipmr_vif_seq_show,
2506 };
2507 
2508 static int ipmr_vif_open(struct inode *inode, struct file *file)
2509 {
2510 	return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2511 			    sizeof(struct ipmr_vif_iter));
2512 }
2513 
2514 static const struct file_operations ipmr_vif_fops = {
2515 	.owner	 = THIS_MODULE,
2516 	.open    = ipmr_vif_open,
2517 	.read    = seq_read,
2518 	.llseek  = seq_lseek,
2519 	.release = seq_release_net,
2520 };
2521 
2522 struct ipmr_mfc_iter {
2523 	struct seq_net_private p;
2524 	struct mr_table *mrt;
2525 	struct list_head *cache;
2526 	int ct;
2527 };
2528 
2529 
2530 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2531 					  struct ipmr_mfc_iter *it, loff_t pos)
2532 {
2533 	struct mr_table *mrt = it->mrt;
2534 	struct mfc_cache *mfc;
2535 
2536 	rcu_read_lock();
2537 	for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2538 		it->cache = &mrt->mfc_cache_array[it->ct];
2539 		list_for_each_entry_rcu(mfc, it->cache, list)
2540 			if (pos-- == 0)
2541 				return mfc;
2542 	}
2543 	rcu_read_unlock();
2544 
2545 	spin_lock_bh(&mfc_unres_lock);
2546 	it->cache = &mrt->mfc_unres_queue;
2547 	list_for_each_entry(mfc, it->cache, list)
2548 		if (pos-- == 0)
2549 			return mfc;
2550 	spin_unlock_bh(&mfc_unres_lock);
2551 
2552 	it->cache = NULL;
2553 	return NULL;
2554 }
2555 
2556 
2557 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2558 {
2559 	struct ipmr_mfc_iter *it = seq->private;
2560 	struct net *net = seq_file_net(seq);
2561 	struct mr_table *mrt;
2562 
2563 	mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2564 	if (mrt == NULL)
2565 		return ERR_PTR(-ENOENT);
2566 
2567 	it->mrt = mrt;
2568 	it->cache = NULL;
2569 	it->ct = 0;
2570 	return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2571 		: SEQ_START_TOKEN;
2572 }
2573 
2574 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2575 {
2576 	struct mfc_cache *mfc = v;
2577 	struct ipmr_mfc_iter *it = seq->private;
2578 	struct net *net = seq_file_net(seq);
2579 	struct mr_table *mrt = it->mrt;
2580 
2581 	++*pos;
2582 
2583 	if (v == SEQ_START_TOKEN)
2584 		return ipmr_mfc_seq_idx(net, seq->private, 0);
2585 
2586 	if (mfc->list.next != it->cache)
2587 		return list_entry(mfc->list.next, struct mfc_cache, list);
2588 
2589 	if (it->cache == &mrt->mfc_unres_queue)
2590 		goto end_of_list;
2591 
2592 	BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2593 
2594 	while (++it->ct < MFC_LINES) {
2595 		it->cache = &mrt->mfc_cache_array[it->ct];
2596 		if (list_empty(it->cache))
2597 			continue;
2598 		return list_first_entry(it->cache, struct mfc_cache, list);
2599 	}
2600 
2601 	/* exhausted cache_array, show unresolved */
2602 	rcu_read_unlock();
2603 	it->cache = &mrt->mfc_unres_queue;
2604 	it->ct = 0;
2605 
2606 	spin_lock_bh(&mfc_unres_lock);
2607 	if (!list_empty(it->cache))
2608 		return list_first_entry(it->cache, struct mfc_cache, list);
2609 
2610 end_of_list:
2611 	spin_unlock_bh(&mfc_unres_lock);
2612 	it->cache = NULL;
2613 
2614 	return NULL;
2615 }
2616 
2617 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2618 {
2619 	struct ipmr_mfc_iter *it = seq->private;
2620 	struct mr_table *mrt = it->mrt;
2621 
2622 	if (it->cache == &mrt->mfc_unres_queue)
2623 		spin_unlock_bh(&mfc_unres_lock);
2624 	else if (it->cache == &mrt->mfc_cache_array[it->ct])
2625 		rcu_read_unlock();
2626 }
2627 
2628 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2629 {
2630 	int n;
2631 
2632 	if (v == SEQ_START_TOKEN) {
2633 		seq_puts(seq,
2634 		 "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2635 	} else {
2636 		const struct mfc_cache *mfc = v;
2637 		const struct ipmr_mfc_iter *it = seq->private;
2638 		const struct mr_table *mrt = it->mrt;
2639 
2640 		seq_printf(seq, "%08X %08X %-3hd",
2641 			   (__force u32) mfc->mfc_mcastgrp,
2642 			   (__force u32) mfc->mfc_origin,
2643 			   mfc->mfc_parent);
2644 
2645 		if (it->cache != &mrt->mfc_unres_queue) {
2646 			seq_printf(seq, " %8lu %8lu %8lu",
2647 				   mfc->mfc_un.res.pkt,
2648 				   mfc->mfc_un.res.bytes,
2649 				   mfc->mfc_un.res.wrong_if);
2650 			for (n = mfc->mfc_un.res.minvif;
2651 			     n < mfc->mfc_un.res.maxvif; n++) {
2652 				if (VIF_EXISTS(mrt, n) &&
2653 				    mfc->mfc_un.res.ttls[n] < 255)
2654 					seq_printf(seq,
2655 					   " %2d:%-3d",
2656 					   n, mfc->mfc_un.res.ttls[n]);
2657 			}
2658 		} else {
2659 			/* unresolved mfc_caches don't contain
2660 			 * pkt, bytes and wrong_if values
2661 			 */
2662 			seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2663 		}
2664 		seq_putc(seq, '\n');
2665 	}
2666 	return 0;
2667 }
2668 
2669 static const struct seq_operations ipmr_mfc_seq_ops = {
2670 	.start = ipmr_mfc_seq_start,
2671 	.next  = ipmr_mfc_seq_next,
2672 	.stop  = ipmr_mfc_seq_stop,
2673 	.show  = ipmr_mfc_seq_show,
2674 };
2675 
2676 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2677 {
2678 	return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2679 			    sizeof(struct ipmr_mfc_iter));
2680 }
2681 
2682 static const struct file_operations ipmr_mfc_fops = {
2683 	.owner	 = THIS_MODULE,
2684 	.open    = ipmr_mfc_open,
2685 	.read    = seq_read,
2686 	.llseek  = seq_lseek,
2687 	.release = seq_release_net,
2688 };
2689 #endif
2690 
2691 #ifdef CONFIG_IP_PIMSM_V2
2692 static const struct net_protocol pim_protocol = {
2693 	.handler	=	pim_rcv,
2694 	.netns_ok	=	1,
2695 };
2696 #endif
2697 
2698 
2699 /*
2700  *	Setup for IP multicast routing
2701  */
2702 static int __net_init ipmr_net_init(struct net *net)
2703 {
2704 	int err;
2705 
2706 	err = ipmr_rules_init(net);
2707 	if (err < 0)
2708 		goto fail;
2709 
2710 #ifdef CONFIG_PROC_FS
2711 	err = -ENOMEM;
2712 	if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2713 		goto proc_vif_fail;
2714 	if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2715 		goto proc_cache_fail;
2716 #endif
2717 	return 0;
2718 
2719 #ifdef CONFIG_PROC_FS
2720 proc_cache_fail:
2721 	remove_proc_entry("ip_mr_vif", net->proc_net);
2722 proc_vif_fail:
2723 	ipmr_rules_exit(net);
2724 #endif
2725 fail:
2726 	return err;
2727 }
2728 
2729 static void __net_exit ipmr_net_exit(struct net *net)
2730 {
2731 #ifdef CONFIG_PROC_FS
2732 	remove_proc_entry("ip_mr_cache", net->proc_net);
2733 	remove_proc_entry("ip_mr_vif", net->proc_net);
2734 #endif
2735 	ipmr_rules_exit(net);
2736 }
2737 
2738 static struct pernet_operations ipmr_net_ops = {
2739 	.init = ipmr_net_init,
2740 	.exit = ipmr_net_exit,
2741 };
2742 
2743 int __init ip_mr_init(void)
2744 {
2745 	int err;
2746 
2747 	mrt_cachep = kmem_cache_create("ip_mrt_cache",
2748 				       sizeof(struct mfc_cache),
2749 				       0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2750 				       NULL);
2751 	if (!mrt_cachep)
2752 		return -ENOMEM;
2753 
2754 	err = register_pernet_subsys(&ipmr_net_ops);
2755 	if (err)
2756 		goto reg_pernet_fail;
2757 
2758 	err = register_netdevice_notifier(&ip_mr_notifier);
2759 	if (err)
2760 		goto reg_notif_fail;
2761 #ifdef CONFIG_IP_PIMSM_V2
2762 	if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2763 		pr_err("%s: can't add PIM protocol\n", __func__);
2764 		err = -EAGAIN;
2765 		goto add_proto_fail;
2766 	}
2767 #endif
2768 	rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2769 		      NULL, ipmr_rtm_dumproute, NULL);
2770 	return 0;
2771 
2772 #ifdef CONFIG_IP_PIMSM_V2
2773 add_proto_fail:
2774 	unregister_netdevice_notifier(&ip_mr_notifier);
2775 #endif
2776 reg_notif_fail:
2777 	unregister_pernet_subsys(&ipmr_net_ops);
2778 reg_pernet_fail:
2779 	kmem_cache_destroy(mrt_cachep);
2780 	return err;
2781 }
2782