xref: /openbmc/linux/net/ipv4/ip_output.c (revision 4af358f81881e1d083a916c9269b5ac0936e180d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The Internet Protocol (IP) output module.
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Donald Becker, <becker@super.org>
11  *		Alan Cox, <Alan.Cox@linux.org>
12  *		Richard Underwood
13  *		Stefan Becker, <stefanb@yello.ping.de>
14  *		Jorge Cwik, <jorge@laser.satlink.net>
15  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16  *		Hirokazu Takahashi, <taka@valinux.co.jp>
17  *
18  *	See ip_input.c for original log
19  *
20  *	Fixes:
21  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
22  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
23  *		Bradford Johnson:	Fix faulty handling of some frames when
24  *					no route is found.
25  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
26  *					(in case if packet not accepted by
27  *					output firewall rules)
28  *		Mike McLagan	:	Routing by source
29  *		Alexey Kuznetsov:	use new route cache
30  *		Andi Kleen:		Fix broken PMTU recovery and remove
31  *					some redundant tests.
32  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
33  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
34  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
35  *					for decreased register pressure on x86
36  *					and more readibility.
37  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
38  *					silently drop skb instead of failing with -EPERM.
39  *		Detlev Wengorz	:	Copy protocol for fragments.
40  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
41  *					datagrams.
42  *		Hirokazu Takahashi:	sendfile() on UDP works now.
43  */
44 
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
83 
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl);
86 
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
89 {
90 	iph->check = 0;
91 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 }
93 EXPORT_SYMBOL(ip_send_check);
94 
95 int __ip_local_out(struct sk_buff *skb)
96 {
97 	struct iphdr *iph = ip_hdr(skb);
98 
99 	iph->tot_len = htons(skb->len);
100 	ip_send_check(iph);
101 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
102 		       skb_dst(skb)->dev, dst_output);
103 }
104 
105 int ip_local_out(struct sk_buff *skb)
106 {
107 	int err;
108 
109 	err = __ip_local_out(skb);
110 	if (likely(err == 1))
111 		err = dst_output(skb);
112 
113 	return err;
114 }
115 EXPORT_SYMBOL_GPL(ip_local_out);
116 
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
119 {
120 	skb_reset_mac_header(newskb);
121 	__skb_pull(newskb, skb_network_offset(newskb));
122 	newskb->pkt_type = PACKET_LOOPBACK;
123 	newskb->ip_summed = CHECKSUM_UNNECESSARY;
124 	WARN_ON(!skb_dst(newskb));
125 	netif_rx_ni(newskb);
126 	return 0;
127 }
128 
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
130 {
131 	int ttl = inet->uc_ttl;
132 
133 	if (ttl < 0)
134 		ttl = ip4_dst_hoplimit(dst);
135 	return ttl;
136 }
137 
138 /*
139  *		Add an ip header to a skbuff and send it out.
140  *
141  */
142 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
144 {
145 	struct inet_sock *inet = inet_sk(sk);
146 	struct rtable *rt = skb_rtable(skb);
147 	struct iphdr *iph;
148 
149 	/* Build the IP header. */
150 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
151 	skb_reset_network_header(skb);
152 	iph = ip_hdr(skb);
153 	iph->version  = 4;
154 	iph->ihl      = 5;
155 	iph->tos      = inet->tos;
156 	if (ip_dont_fragment(sk, &rt->dst))
157 		iph->frag_off = htons(IP_DF);
158 	else
159 		iph->frag_off = 0;
160 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
161 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
162 	iph->saddr    = saddr;
163 	iph->protocol = sk->sk_protocol;
164 	ip_select_ident(iph, &rt->dst, sk);
165 
166 	if (opt && opt->opt.optlen) {
167 		iph->ihl += opt->opt.optlen>>2;
168 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
169 	}
170 
171 	skb->priority = sk->sk_priority;
172 	skb->mark = sk->sk_mark;
173 
174 	/* Send it out. */
175 	return ip_local_out(skb);
176 }
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
178 
179 static inline int ip_finish_output2(struct sk_buff *skb)
180 {
181 	struct dst_entry *dst = skb_dst(skb);
182 	struct rtable *rt = (struct rtable *)dst;
183 	struct net_device *dev = dst->dev;
184 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
185 
186 	if (rt->rt_type == RTN_MULTICAST) {
187 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
188 	} else if (rt->rt_type == RTN_BROADCAST)
189 		IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
190 
191 	/* Be paranoid, rather than too clever. */
192 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 		struct sk_buff *skb2;
194 
195 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
196 		if (skb2 == NULL) {
197 			kfree_skb(skb);
198 			return -ENOMEM;
199 		}
200 		if (skb->sk)
201 			skb_set_owner_w(skb2, skb->sk);
202 		kfree_skb(skb);
203 		skb = skb2;
204 	}
205 
206 	if (dst->hh)
207 		return neigh_hh_output(dst->hh, skb);
208 	else if (dst->neighbour)
209 		return dst->neighbour->output(skb);
210 
211 	if (net_ratelimit())
212 		printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
213 	kfree_skb(skb);
214 	return -EINVAL;
215 }
216 
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
218 {
219 	struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
220 
221 	return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 	       skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
223 }
224 
225 static int ip_finish_output(struct sk_buff *skb)
226 {
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 	/* Policy lookup after SNAT yielded a new policy */
229 	if (skb_dst(skb)->xfrm != NULL) {
230 		IPCB(skb)->flags |= IPSKB_REROUTED;
231 		return dst_output(skb);
232 	}
233 #endif
234 	if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 		return ip_fragment(skb, ip_finish_output2);
236 	else
237 		return ip_finish_output2(skb);
238 }
239 
240 int ip_mc_output(struct sk_buff *skb)
241 {
242 	struct sock *sk = skb->sk;
243 	struct rtable *rt = skb_rtable(skb);
244 	struct net_device *dev = rt->dst.dev;
245 
246 	/*
247 	 *	If the indicated interface is up and running, send the packet.
248 	 */
249 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
250 
251 	skb->dev = dev;
252 	skb->protocol = htons(ETH_P_IP);
253 
254 	/*
255 	 *	Multicasts are looped back for other local users
256 	 */
257 
258 	if (rt->rt_flags&RTCF_MULTICAST) {
259 		if (sk_mc_loop(sk)
260 #ifdef CONFIG_IP_MROUTE
261 		/* Small optimization: do not loopback not local frames,
262 		   which returned after forwarding; they will be  dropped
263 		   by ip_mr_input in any case.
264 		   Note, that local frames are looped back to be delivered
265 		   to local recipients.
266 
267 		   This check is duplicated in ip_mr_input at the moment.
268 		 */
269 		    &&
270 		    ((rt->rt_flags & RTCF_LOCAL) ||
271 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
272 #endif
273 		   ) {
274 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
275 			if (newskb)
276 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
277 					newskb, NULL, newskb->dev,
278 					ip_dev_loopback_xmit);
279 		}
280 
281 		/* Multicasts with ttl 0 must not go beyond the host */
282 
283 		if (ip_hdr(skb)->ttl == 0) {
284 			kfree_skb(skb);
285 			return 0;
286 		}
287 	}
288 
289 	if (rt->rt_flags&RTCF_BROADCAST) {
290 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
291 		if (newskb)
292 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
293 				NULL, newskb->dev, ip_dev_loopback_xmit);
294 	}
295 
296 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
297 			    skb->dev, ip_finish_output,
298 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
299 }
300 
301 int ip_output(struct sk_buff *skb)
302 {
303 	struct net_device *dev = skb_dst(skb)->dev;
304 
305 	IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
306 
307 	skb->dev = dev;
308 	skb->protocol = htons(ETH_P_IP);
309 
310 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
311 			    ip_finish_output,
312 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
313 }
314 
315 int ip_queue_xmit(struct sk_buff *skb, struct flowi *fl)
316 {
317 	struct sock *sk = skb->sk;
318 	struct inet_sock *inet = inet_sk(sk);
319 	struct ip_options_rcu *inet_opt;
320 	struct flowi4 *fl4;
321 	struct rtable *rt;
322 	struct iphdr *iph;
323 	int res;
324 
325 	/* Skip all of this if the packet is already routed,
326 	 * f.e. by something like SCTP.
327 	 */
328 	rcu_read_lock();
329 	inet_opt = rcu_dereference(inet->inet_opt);
330 	fl4 = &fl->u.ip4;
331 	rt = skb_rtable(skb);
332 	if (rt != NULL)
333 		goto packet_routed;
334 
335 	/* Make sure we can route this packet. */
336 	rt = (struct rtable *)__sk_dst_check(sk, 0);
337 	if (rt == NULL) {
338 		__be32 daddr;
339 
340 		/* Use correct destination address if we have options. */
341 		daddr = inet->inet_daddr;
342 		if (inet_opt && inet_opt->opt.srr)
343 			daddr = inet_opt->opt.faddr;
344 
345 		/* If this fails, retransmit mechanism of transport layer will
346 		 * keep trying until route appears or the connection times
347 		 * itself out.
348 		 */
349 		rt = ip_route_output_ports(sock_net(sk), fl4, sk,
350 					   daddr, inet->inet_saddr,
351 					   inet->inet_dport,
352 					   inet->inet_sport,
353 					   sk->sk_protocol,
354 					   RT_CONN_FLAGS(sk),
355 					   sk->sk_bound_dev_if);
356 		if (IS_ERR(rt))
357 			goto no_route;
358 		sk_setup_caps(sk, &rt->dst);
359 	}
360 	skb_dst_set_noref(skb, &rt->dst);
361 
362 packet_routed:
363 	if (inet_opt && inet_opt->opt.is_strictroute && fl4->daddr != rt->rt_gateway)
364 		goto no_route;
365 
366 	/* OK, we know where to send it, allocate and build IP header. */
367 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
368 	skb_reset_network_header(skb);
369 	iph = ip_hdr(skb);
370 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
371 	if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
372 		iph->frag_off = htons(IP_DF);
373 	else
374 		iph->frag_off = 0;
375 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
376 	iph->protocol = sk->sk_protocol;
377 	iph->saddr    = fl4->saddr;
378 	iph->daddr    = fl4->daddr;
379 	/* Transport layer set skb->h.foo itself. */
380 
381 	if (inet_opt && inet_opt->opt.optlen) {
382 		iph->ihl += inet_opt->opt.optlen >> 2;
383 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
384 	}
385 
386 	ip_select_ident_more(iph, &rt->dst, sk,
387 			     (skb_shinfo(skb)->gso_segs ?: 1) - 1);
388 
389 	skb->priority = sk->sk_priority;
390 	skb->mark = sk->sk_mark;
391 
392 	res = ip_local_out(skb);
393 	rcu_read_unlock();
394 	return res;
395 
396 no_route:
397 	rcu_read_unlock();
398 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
399 	kfree_skb(skb);
400 	return -EHOSTUNREACH;
401 }
402 EXPORT_SYMBOL(ip_queue_xmit);
403 
404 
405 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
406 {
407 	to->pkt_type = from->pkt_type;
408 	to->priority = from->priority;
409 	to->protocol = from->protocol;
410 	skb_dst_drop(to);
411 	skb_dst_copy(to, from);
412 	to->dev = from->dev;
413 	to->mark = from->mark;
414 
415 	/* Copy the flags to each fragment. */
416 	IPCB(to)->flags = IPCB(from)->flags;
417 
418 #ifdef CONFIG_NET_SCHED
419 	to->tc_index = from->tc_index;
420 #endif
421 	nf_copy(to, from);
422 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
423     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
424 	to->nf_trace = from->nf_trace;
425 #endif
426 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
427 	to->ipvs_property = from->ipvs_property;
428 #endif
429 	skb_copy_secmark(to, from);
430 }
431 
432 /*
433  *	This IP datagram is too large to be sent in one piece.  Break it up into
434  *	smaller pieces (each of size equal to IP header plus
435  *	a block of the data of the original IP data part) that will yet fit in a
436  *	single device frame, and queue such a frame for sending.
437  */
438 
439 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
440 {
441 	struct iphdr *iph;
442 	int ptr;
443 	struct net_device *dev;
444 	struct sk_buff *skb2;
445 	unsigned int mtu, hlen, left, len, ll_rs;
446 	int offset;
447 	__be16 not_last_frag;
448 	struct rtable *rt = skb_rtable(skb);
449 	int err = 0;
450 
451 	dev = rt->dst.dev;
452 
453 	/*
454 	 *	Point into the IP datagram header.
455 	 */
456 
457 	iph = ip_hdr(skb);
458 
459 	if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
460 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
461 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
462 			  htonl(ip_skb_dst_mtu(skb)));
463 		kfree_skb(skb);
464 		return -EMSGSIZE;
465 	}
466 
467 	/*
468 	 *	Setup starting values.
469 	 */
470 
471 	hlen = iph->ihl * 4;
472 	mtu = dst_mtu(&rt->dst) - hlen;	/* Size of data space */
473 #ifdef CONFIG_BRIDGE_NETFILTER
474 	if (skb->nf_bridge)
475 		mtu -= nf_bridge_mtu_reduction(skb);
476 #endif
477 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
478 
479 	/* When frag_list is given, use it. First, check its validity:
480 	 * some transformers could create wrong frag_list or break existing
481 	 * one, it is not prohibited. In this case fall back to copying.
482 	 *
483 	 * LATER: this step can be merged to real generation of fragments,
484 	 * we can switch to copy when see the first bad fragment.
485 	 */
486 	if (skb_has_frag_list(skb)) {
487 		struct sk_buff *frag, *frag2;
488 		int first_len = skb_pagelen(skb);
489 
490 		if (first_len - hlen > mtu ||
491 		    ((first_len - hlen) & 7) ||
492 		    (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
493 		    skb_cloned(skb))
494 			goto slow_path;
495 
496 		skb_walk_frags(skb, frag) {
497 			/* Correct geometry. */
498 			if (frag->len > mtu ||
499 			    ((frag->len & 7) && frag->next) ||
500 			    skb_headroom(frag) < hlen)
501 				goto slow_path_clean;
502 
503 			/* Partially cloned skb? */
504 			if (skb_shared(frag))
505 				goto slow_path_clean;
506 
507 			BUG_ON(frag->sk);
508 			if (skb->sk) {
509 				frag->sk = skb->sk;
510 				frag->destructor = sock_wfree;
511 			}
512 			skb->truesize -= frag->truesize;
513 		}
514 
515 		/* Everything is OK. Generate! */
516 
517 		err = 0;
518 		offset = 0;
519 		frag = skb_shinfo(skb)->frag_list;
520 		skb_frag_list_init(skb);
521 		skb->data_len = first_len - skb_headlen(skb);
522 		skb->len = first_len;
523 		iph->tot_len = htons(first_len);
524 		iph->frag_off = htons(IP_MF);
525 		ip_send_check(iph);
526 
527 		for (;;) {
528 			/* Prepare header of the next frame,
529 			 * before previous one went down. */
530 			if (frag) {
531 				frag->ip_summed = CHECKSUM_NONE;
532 				skb_reset_transport_header(frag);
533 				__skb_push(frag, hlen);
534 				skb_reset_network_header(frag);
535 				memcpy(skb_network_header(frag), iph, hlen);
536 				iph = ip_hdr(frag);
537 				iph->tot_len = htons(frag->len);
538 				ip_copy_metadata(frag, skb);
539 				if (offset == 0)
540 					ip_options_fragment(frag);
541 				offset += skb->len - hlen;
542 				iph->frag_off = htons(offset>>3);
543 				if (frag->next != NULL)
544 					iph->frag_off |= htons(IP_MF);
545 				/* Ready, complete checksum */
546 				ip_send_check(iph);
547 			}
548 
549 			err = output(skb);
550 
551 			if (!err)
552 				IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
553 			if (err || !frag)
554 				break;
555 
556 			skb = frag;
557 			frag = skb->next;
558 			skb->next = NULL;
559 		}
560 
561 		if (err == 0) {
562 			IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
563 			return 0;
564 		}
565 
566 		while (frag) {
567 			skb = frag->next;
568 			kfree_skb(frag);
569 			frag = skb;
570 		}
571 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
572 		return err;
573 
574 slow_path_clean:
575 		skb_walk_frags(skb, frag2) {
576 			if (frag2 == frag)
577 				break;
578 			frag2->sk = NULL;
579 			frag2->destructor = NULL;
580 			skb->truesize += frag2->truesize;
581 		}
582 	}
583 
584 slow_path:
585 	left = skb->len - hlen;		/* Space per frame */
586 	ptr = hlen;		/* Where to start from */
587 
588 	/* for bridged IP traffic encapsulated inside f.e. a vlan header,
589 	 * we need to make room for the encapsulating header
590 	 */
591 	ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
592 
593 	/*
594 	 *	Fragment the datagram.
595 	 */
596 
597 	offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
598 	not_last_frag = iph->frag_off & htons(IP_MF);
599 
600 	/*
601 	 *	Keep copying data until we run out.
602 	 */
603 
604 	while (left > 0) {
605 		len = left;
606 		/* IF: it doesn't fit, use 'mtu' - the data space left */
607 		if (len > mtu)
608 			len = mtu;
609 		/* IF: we are not sending up to and including the packet end
610 		   then align the next start on an eight byte boundary */
611 		if (len < left)	{
612 			len &= ~7;
613 		}
614 		/*
615 		 *	Allocate buffer.
616 		 */
617 
618 		if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
619 			NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
620 			err = -ENOMEM;
621 			goto fail;
622 		}
623 
624 		/*
625 		 *	Set up data on packet
626 		 */
627 
628 		ip_copy_metadata(skb2, skb);
629 		skb_reserve(skb2, ll_rs);
630 		skb_put(skb2, len + hlen);
631 		skb_reset_network_header(skb2);
632 		skb2->transport_header = skb2->network_header + hlen;
633 
634 		/*
635 		 *	Charge the memory for the fragment to any owner
636 		 *	it might possess
637 		 */
638 
639 		if (skb->sk)
640 			skb_set_owner_w(skb2, skb->sk);
641 
642 		/*
643 		 *	Copy the packet header into the new buffer.
644 		 */
645 
646 		skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
647 
648 		/*
649 		 *	Copy a block of the IP datagram.
650 		 */
651 		if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
652 			BUG();
653 		left -= len;
654 
655 		/*
656 		 *	Fill in the new header fields.
657 		 */
658 		iph = ip_hdr(skb2);
659 		iph->frag_off = htons((offset >> 3));
660 
661 		/* ANK: dirty, but effective trick. Upgrade options only if
662 		 * the segment to be fragmented was THE FIRST (otherwise,
663 		 * options are already fixed) and make it ONCE
664 		 * on the initial skb, so that all the following fragments
665 		 * will inherit fixed options.
666 		 */
667 		if (offset == 0)
668 			ip_options_fragment(skb);
669 
670 		/*
671 		 *	Added AC : If we are fragmenting a fragment that's not the
672 		 *		   last fragment then keep MF on each bit
673 		 */
674 		if (left > 0 || not_last_frag)
675 			iph->frag_off |= htons(IP_MF);
676 		ptr += len;
677 		offset += len;
678 
679 		/*
680 		 *	Put this fragment into the sending queue.
681 		 */
682 		iph->tot_len = htons(len + hlen);
683 
684 		ip_send_check(iph);
685 
686 		err = output(skb2);
687 		if (err)
688 			goto fail;
689 
690 		IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
691 	}
692 	kfree_skb(skb);
693 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
694 	return err;
695 
696 fail:
697 	kfree_skb(skb);
698 	IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
699 	return err;
700 }
701 EXPORT_SYMBOL(ip_fragment);
702 
703 int
704 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
705 {
706 	struct iovec *iov = from;
707 
708 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
709 		if (memcpy_fromiovecend(to, iov, offset, len) < 0)
710 			return -EFAULT;
711 	} else {
712 		__wsum csum = 0;
713 		if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
714 			return -EFAULT;
715 		skb->csum = csum_block_add(skb->csum, csum, odd);
716 	}
717 	return 0;
718 }
719 EXPORT_SYMBOL(ip_generic_getfrag);
720 
721 static inline __wsum
722 csum_page(struct page *page, int offset, int copy)
723 {
724 	char *kaddr;
725 	__wsum csum;
726 	kaddr = kmap(page);
727 	csum = csum_partial(kaddr + offset, copy, 0);
728 	kunmap(page);
729 	return csum;
730 }
731 
732 static inline int ip_ufo_append_data(struct sock *sk,
733 			struct sk_buff_head *queue,
734 			int getfrag(void *from, char *to, int offset, int len,
735 			       int odd, struct sk_buff *skb),
736 			void *from, int length, int hh_len, int fragheaderlen,
737 			int transhdrlen, int mtu, unsigned int flags)
738 {
739 	struct sk_buff *skb;
740 	int err;
741 
742 	/* There is support for UDP fragmentation offload by network
743 	 * device, so create one single skb packet containing complete
744 	 * udp datagram
745 	 */
746 	if ((skb = skb_peek_tail(queue)) == NULL) {
747 		skb = sock_alloc_send_skb(sk,
748 			hh_len + fragheaderlen + transhdrlen + 20,
749 			(flags & MSG_DONTWAIT), &err);
750 
751 		if (skb == NULL)
752 			return err;
753 
754 		/* reserve space for Hardware header */
755 		skb_reserve(skb, hh_len);
756 
757 		/* create space for UDP/IP header */
758 		skb_put(skb, fragheaderlen + transhdrlen);
759 
760 		/* initialize network header pointer */
761 		skb_reset_network_header(skb);
762 
763 		/* initialize protocol header pointer */
764 		skb->transport_header = skb->network_header + fragheaderlen;
765 
766 		skb->ip_summed = CHECKSUM_PARTIAL;
767 		skb->csum = 0;
768 
769 		/* specify the length of each IP datagram fragment */
770 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
771 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
772 		__skb_queue_tail(queue, skb);
773 	}
774 
775 	return skb_append_datato_frags(sk, skb, getfrag, from,
776 				       (length - transhdrlen));
777 }
778 
779 static int __ip_append_data(struct sock *sk,
780 			    struct flowi4 *fl4,
781 			    struct sk_buff_head *queue,
782 			    struct inet_cork *cork,
783 			    int getfrag(void *from, char *to, int offset,
784 					int len, int odd, struct sk_buff *skb),
785 			    void *from, int length, int transhdrlen,
786 			    unsigned int flags)
787 {
788 	struct inet_sock *inet = inet_sk(sk);
789 	struct sk_buff *skb;
790 
791 	struct ip_options *opt = cork->opt;
792 	int hh_len;
793 	int exthdrlen;
794 	int mtu;
795 	int copy;
796 	int err;
797 	int offset = 0;
798 	unsigned int maxfraglen, fragheaderlen;
799 	int csummode = CHECKSUM_NONE;
800 	struct rtable *rt = (struct rtable *)cork->dst;
801 
802 	skb = skb_peek_tail(queue);
803 
804 	exthdrlen = !skb ? rt->dst.header_len : 0;
805 	mtu = cork->fragsize;
806 
807 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
808 
809 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
810 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
811 
812 	if (cork->length + length > 0xFFFF - fragheaderlen) {
813 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
814 			       mtu-exthdrlen);
815 		return -EMSGSIZE;
816 	}
817 
818 	/*
819 	 * transhdrlen > 0 means that this is the first fragment and we wish
820 	 * it won't be fragmented in the future.
821 	 */
822 	if (transhdrlen &&
823 	    length + fragheaderlen <= mtu &&
824 	    rt->dst.dev->features & NETIF_F_V4_CSUM &&
825 	    !exthdrlen)
826 		csummode = CHECKSUM_PARTIAL;
827 
828 	cork->length += length;
829 	if (((length > mtu) || (skb && skb_is_gso(skb))) &&
830 	    (sk->sk_protocol == IPPROTO_UDP) &&
831 	    (rt->dst.dev->features & NETIF_F_UFO) && !rt->dst.header_len) {
832 		err = ip_ufo_append_data(sk, queue, getfrag, from, length,
833 					 hh_len, fragheaderlen, transhdrlen,
834 					 mtu, flags);
835 		if (err)
836 			goto error;
837 		return 0;
838 	}
839 
840 	/* So, what's going on in the loop below?
841 	 *
842 	 * We use calculated fragment length to generate chained skb,
843 	 * each of segments is IP fragment ready for sending to network after
844 	 * adding appropriate IP header.
845 	 */
846 
847 	if (!skb)
848 		goto alloc_new_skb;
849 
850 	while (length > 0) {
851 		/* Check if the remaining data fits into current packet. */
852 		copy = mtu - skb->len;
853 		if (copy < length)
854 			copy = maxfraglen - skb->len;
855 		if (copy <= 0) {
856 			char *data;
857 			unsigned int datalen;
858 			unsigned int fraglen;
859 			unsigned int fraggap;
860 			unsigned int alloclen;
861 			struct sk_buff *skb_prev;
862 alloc_new_skb:
863 			skb_prev = skb;
864 			if (skb_prev)
865 				fraggap = skb_prev->len - maxfraglen;
866 			else
867 				fraggap = 0;
868 
869 			/*
870 			 * If remaining data exceeds the mtu,
871 			 * we know we need more fragment(s).
872 			 */
873 			datalen = length + fraggap;
874 			if (datalen > mtu - fragheaderlen)
875 				datalen = maxfraglen - fragheaderlen;
876 			fraglen = datalen + fragheaderlen;
877 
878 			if ((flags & MSG_MORE) &&
879 			    !(rt->dst.dev->features&NETIF_F_SG))
880 				alloclen = mtu;
881 			else
882 				alloclen = fraglen;
883 
884 			alloclen += exthdrlen;
885 
886 			/* The last fragment gets additional space at tail.
887 			 * Note, with MSG_MORE we overallocate on fragments,
888 			 * because we have no idea what fragment will be
889 			 * the last.
890 			 */
891 			if (datalen == length + fraggap)
892 				alloclen += rt->dst.trailer_len;
893 
894 			if (transhdrlen) {
895 				skb = sock_alloc_send_skb(sk,
896 						alloclen + hh_len + 15,
897 						(flags & MSG_DONTWAIT), &err);
898 			} else {
899 				skb = NULL;
900 				if (atomic_read(&sk->sk_wmem_alloc) <=
901 				    2 * sk->sk_sndbuf)
902 					skb = sock_wmalloc(sk,
903 							   alloclen + hh_len + 15, 1,
904 							   sk->sk_allocation);
905 				if (unlikely(skb == NULL))
906 					err = -ENOBUFS;
907 				else
908 					/* only the initial fragment is
909 					   time stamped */
910 					cork->tx_flags = 0;
911 			}
912 			if (skb == NULL)
913 				goto error;
914 
915 			/*
916 			 *	Fill in the control structures
917 			 */
918 			skb->ip_summed = csummode;
919 			skb->csum = 0;
920 			skb_reserve(skb, hh_len);
921 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
922 
923 			/*
924 			 *	Find where to start putting bytes.
925 			 */
926 			data = skb_put(skb, fraglen + exthdrlen);
927 			skb_set_network_header(skb, exthdrlen);
928 			skb->transport_header = (skb->network_header +
929 						 fragheaderlen);
930 			data += fragheaderlen + exthdrlen;
931 
932 			if (fraggap) {
933 				skb->csum = skb_copy_and_csum_bits(
934 					skb_prev, maxfraglen,
935 					data + transhdrlen, fraggap, 0);
936 				skb_prev->csum = csum_sub(skb_prev->csum,
937 							  skb->csum);
938 				data += fraggap;
939 				pskb_trim_unique(skb_prev, maxfraglen);
940 			}
941 
942 			copy = datalen - transhdrlen - fraggap;
943 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
944 				err = -EFAULT;
945 				kfree_skb(skb);
946 				goto error;
947 			}
948 
949 			offset += copy;
950 			length -= datalen - fraggap;
951 			transhdrlen = 0;
952 			exthdrlen = 0;
953 			csummode = CHECKSUM_NONE;
954 
955 			/*
956 			 * Put the packet on the pending queue.
957 			 */
958 			__skb_queue_tail(queue, skb);
959 			continue;
960 		}
961 
962 		if (copy > length)
963 			copy = length;
964 
965 		if (!(rt->dst.dev->features&NETIF_F_SG)) {
966 			unsigned int off;
967 
968 			off = skb->len;
969 			if (getfrag(from, skb_put(skb, copy),
970 					offset, copy, off, skb) < 0) {
971 				__skb_trim(skb, off);
972 				err = -EFAULT;
973 				goto error;
974 			}
975 		} else {
976 			int i = skb_shinfo(skb)->nr_frags;
977 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
978 			struct page *page = cork->page;
979 			int off = cork->off;
980 			unsigned int left;
981 
982 			if (page && (left = PAGE_SIZE - off) > 0) {
983 				if (copy >= left)
984 					copy = left;
985 				if (page != frag->page) {
986 					if (i == MAX_SKB_FRAGS) {
987 						err = -EMSGSIZE;
988 						goto error;
989 					}
990 					get_page(page);
991 					skb_fill_page_desc(skb, i, page, off, 0);
992 					frag = &skb_shinfo(skb)->frags[i];
993 				}
994 			} else if (i < MAX_SKB_FRAGS) {
995 				if (copy > PAGE_SIZE)
996 					copy = PAGE_SIZE;
997 				page = alloc_pages(sk->sk_allocation, 0);
998 				if (page == NULL)  {
999 					err = -ENOMEM;
1000 					goto error;
1001 				}
1002 				cork->page = page;
1003 				cork->off = 0;
1004 
1005 				skb_fill_page_desc(skb, i, page, 0, 0);
1006 				frag = &skb_shinfo(skb)->frags[i];
1007 			} else {
1008 				err = -EMSGSIZE;
1009 				goto error;
1010 			}
1011 			if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1012 				err = -EFAULT;
1013 				goto error;
1014 			}
1015 			cork->off += copy;
1016 			frag->size += copy;
1017 			skb->len += copy;
1018 			skb->data_len += copy;
1019 			skb->truesize += copy;
1020 			atomic_add(copy, &sk->sk_wmem_alloc);
1021 		}
1022 		offset += copy;
1023 		length -= copy;
1024 	}
1025 
1026 	return 0;
1027 
1028 error:
1029 	cork->length -= length;
1030 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1031 	return err;
1032 }
1033 
1034 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1035 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1036 {
1037 	struct inet_sock *inet = inet_sk(sk);
1038 	struct ip_options_rcu *opt;
1039 	struct rtable *rt;
1040 
1041 	/*
1042 	 * setup for corking.
1043 	 */
1044 	opt = ipc->opt;
1045 	if (opt) {
1046 		if (cork->opt == NULL) {
1047 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1048 					    sk->sk_allocation);
1049 			if (unlikely(cork->opt == NULL))
1050 				return -ENOBUFS;
1051 		}
1052 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1053 		cork->flags |= IPCORK_OPT;
1054 		cork->addr = ipc->addr;
1055 	}
1056 	rt = *rtp;
1057 	if (unlikely(!rt))
1058 		return -EFAULT;
1059 	/*
1060 	 * We steal reference to this route, caller should not release it
1061 	 */
1062 	*rtp = NULL;
1063 	cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1064 			 rt->dst.dev->mtu : dst_mtu(&rt->dst);
1065 	cork->dst = &rt->dst;
1066 	cork->length = 0;
1067 	cork->tx_flags = ipc->tx_flags;
1068 	cork->page = NULL;
1069 	cork->off = 0;
1070 
1071 	return 0;
1072 }
1073 
1074 /*
1075  *	ip_append_data() and ip_append_page() can make one large IP datagram
1076  *	from many pieces of data. Each pieces will be holded on the socket
1077  *	until ip_push_pending_frames() is called. Each piece can be a page
1078  *	or non-page data.
1079  *
1080  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1081  *	this interface potentially.
1082  *
1083  *	LATER: length must be adjusted by pad at tail, when it is required.
1084  */
1085 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1086 		   int getfrag(void *from, char *to, int offset, int len,
1087 			       int odd, struct sk_buff *skb),
1088 		   void *from, int length, int transhdrlen,
1089 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1090 		   unsigned int flags)
1091 {
1092 	struct inet_sock *inet = inet_sk(sk);
1093 	int err;
1094 
1095 	if (flags&MSG_PROBE)
1096 		return 0;
1097 
1098 	if (skb_queue_empty(&sk->sk_write_queue)) {
1099 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1100 		if (err)
1101 			return err;
1102 	} else {
1103 		transhdrlen = 0;
1104 	}
1105 
1106 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, getfrag,
1107 				from, length, transhdrlen, flags);
1108 }
1109 
1110 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1111 		       int offset, size_t size, int flags)
1112 {
1113 	struct inet_sock *inet = inet_sk(sk);
1114 	struct sk_buff *skb;
1115 	struct rtable *rt;
1116 	struct ip_options *opt = NULL;
1117 	struct inet_cork *cork;
1118 	int hh_len;
1119 	int mtu;
1120 	int len;
1121 	int err;
1122 	unsigned int maxfraglen, fragheaderlen, fraggap;
1123 
1124 	if (inet->hdrincl)
1125 		return -EPERM;
1126 
1127 	if (flags&MSG_PROBE)
1128 		return 0;
1129 
1130 	if (skb_queue_empty(&sk->sk_write_queue))
1131 		return -EINVAL;
1132 
1133 	cork = &inet->cork.base;
1134 	rt = (struct rtable *)cork->dst;
1135 	if (cork->flags & IPCORK_OPT)
1136 		opt = cork->opt;
1137 
1138 	if (!(rt->dst.dev->features&NETIF_F_SG))
1139 		return -EOPNOTSUPP;
1140 
1141 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1142 	mtu = cork->fragsize;
1143 
1144 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1145 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1146 
1147 	if (cork->length + size > 0xFFFF - fragheaderlen) {
1148 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, mtu);
1149 		return -EMSGSIZE;
1150 	}
1151 
1152 	if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1153 		return -EINVAL;
1154 
1155 	cork->length += size;
1156 	if ((size + skb->len > mtu) &&
1157 	    (sk->sk_protocol == IPPROTO_UDP) &&
1158 	    (rt->dst.dev->features & NETIF_F_UFO)) {
1159 		skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1160 		skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1161 	}
1162 
1163 
1164 	while (size > 0) {
1165 		int i;
1166 
1167 		if (skb_is_gso(skb))
1168 			len = size;
1169 		else {
1170 
1171 			/* Check if the remaining data fits into current packet. */
1172 			len = mtu - skb->len;
1173 			if (len < size)
1174 				len = maxfraglen - skb->len;
1175 		}
1176 		if (len <= 0) {
1177 			struct sk_buff *skb_prev;
1178 			int alloclen;
1179 
1180 			skb_prev = skb;
1181 			fraggap = skb_prev->len - maxfraglen;
1182 
1183 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1184 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1185 			if (unlikely(!skb)) {
1186 				err = -ENOBUFS;
1187 				goto error;
1188 			}
1189 
1190 			/*
1191 			 *	Fill in the control structures
1192 			 */
1193 			skb->ip_summed = CHECKSUM_NONE;
1194 			skb->csum = 0;
1195 			skb_reserve(skb, hh_len);
1196 
1197 			/*
1198 			 *	Find where to start putting bytes.
1199 			 */
1200 			skb_put(skb, fragheaderlen + fraggap);
1201 			skb_reset_network_header(skb);
1202 			skb->transport_header = (skb->network_header +
1203 						 fragheaderlen);
1204 			if (fraggap) {
1205 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1206 								   maxfraglen,
1207 						    skb_transport_header(skb),
1208 								   fraggap, 0);
1209 				skb_prev->csum = csum_sub(skb_prev->csum,
1210 							  skb->csum);
1211 				pskb_trim_unique(skb_prev, maxfraglen);
1212 			}
1213 
1214 			/*
1215 			 * Put the packet on the pending queue.
1216 			 */
1217 			__skb_queue_tail(&sk->sk_write_queue, skb);
1218 			continue;
1219 		}
1220 
1221 		i = skb_shinfo(skb)->nr_frags;
1222 		if (len > size)
1223 			len = size;
1224 		if (skb_can_coalesce(skb, i, page, offset)) {
1225 			skb_shinfo(skb)->frags[i-1].size += len;
1226 		} else if (i < MAX_SKB_FRAGS) {
1227 			get_page(page);
1228 			skb_fill_page_desc(skb, i, page, offset, len);
1229 		} else {
1230 			err = -EMSGSIZE;
1231 			goto error;
1232 		}
1233 
1234 		if (skb->ip_summed == CHECKSUM_NONE) {
1235 			__wsum csum;
1236 			csum = csum_page(page, offset, len);
1237 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1238 		}
1239 
1240 		skb->len += len;
1241 		skb->data_len += len;
1242 		skb->truesize += len;
1243 		atomic_add(len, &sk->sk_wmem_alloc);
1244 		offset += len;
1245 		size -= len;
1246 	}
1247 	return 0;
1248 
1249 error:
1250 	cork->length -= size;
1251 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1252 	return err;
1253 }
1254 
1255 static void ip_cork_release(struct inet_cork *cork)
1256 {
1257 	cork->flags &= ~IPCORK_OPT;
1258 	kfree(cork->opt);
1259 	cork->opt = NULL;
1260 	dst_release(cork->dst);
1261 	cork->dst = NULL;
1262 }
1263 
1264 /*
1265  *	Combined all pending IP fragments on the socket as one IP datagram
1266  *	and push them out.
1267  */
1268 struct sk_buff *__ip_make_skb(struct sock *sk,
1269 			      struct flowi4 *fl4,
1270 			      struct sk_buff_head *queue,
1271 			      struct inet_cork *cork)
1272 {
1273 	struct sk_buff *skb, *tmp_skb;
1274 	struct sk_buff **tail_skb;
1275 	struct inet_sock *inet = inet_sk(sk);
1276 	struct net *net = sock_net(sk);
1277 	struct ip_options *opt = NULL;
1278 	struct rtable *rt = (struct rtable *)cork->dst;
1279 	struct iphdr *iph;
1280 	__be16 df = 0;
1281 	__u8 ttl;
1282 
1283 	if ((skb = __skb_dequeue(queue)) == NULL)
1284 		goto out;
1285 	tail_skb = &(skb_shinfo(skb)->frag_list);
1286 
1287 	/* move skb->data to ip header from ext header */
1288 	if (skb->data < skb_network_header(skb))
1289 		__skb_pull(skb, skb_network_offset(skb));
1290 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1291 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1292 		*tail_skb = tmp_skb;
1293 		tail_skb = &(tmp_skb->next);
1294 		skb->len += tmp_skb->len;
1295 		skb->data_len += tmp_skb->len;
1296 		skb->truesize += tmp_skb->truesize;
1297 		tmp_skb->destructor = NULL;
1298 		tmp_skb->sk = NULL;
1299 	}
1300 
1301 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1302 	 * to fragment the frame generated here. No matter, what transforms
1303 	 * how transforms change size of the packet, it will come out.
1304 	 */
1305 	if (inet->pmtudisc < IP_PMTUDISC_DO)
1306 		skb->local_df = 1;
1307 
1308 	/* DF bit is set when we want to see DF on outgoing frames.
1309 	 * If local_df is set too, we still allow to fragment this frame
1310 	 * locally. */
1311 	if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1312 	    (skb->len <= dst_mtu(&rt->dst) &&
1313 	     ip_dont_fragment(sk, &rt->dst)))
1314 		df = htons(IP_DF);
1315 
1316 	if (cork->flags & IPCORK_OPT)
1317 		opt = cork->opt;
1318 
1319 	if (rt->rt_type == RTN_MULTICAST)
1320 		ttl = inet->mc_ttl;
1321 	else
1322 		ttl = ip_select_ttl(inet, &rt->dst);
1323 
1324 	iph = (struct iphdr *)skb->data;
1325 	iph->version = 4;
1326 	iph->ihl = 5;
1327 	iph->tos = inet->tos;
1328 	iph->frag_off = df;
1329 	ip_select_ident(iph, &rt->dst, sk);
1330 	iph->ttl = ttl;
1331 	iph->protocol = sk->sk_protocol;
1332 	iph->saddr = fl4->saddr;
1333 	iph->daddr = fl4->daddr;
1334 
1335 	if (opt) {
1336 		iph->ihl += opt->optlen>>2;
1337 		ip_options_build(skb, opt, cork->addr, rt, 0);
1338 	}
1339 
1340 	skb->priority = sk->sk_priority;
1341 	skb->mark = sk->sk_mark;
1342 	/*
1343 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1344 	 * on dst refcount
1345 	 */
1346 	cork->dst = NULL;
1347 	skb_dst_set(skb, &rt->dst);
1348 
1349 	if (iph->protocol == IPPROTO_ICMP)
1350 		icmp_out_count(net, ((struct icmphdr *)
1351 			skb_transport_header(skb))->type);
1352 
1353 	ip_cork_release(cork);
1354 out:
1355 	return skb;
1356 }
1357 
1358 int ip_send_skb(struct sk_buff *skb)
1359 {
1360 	struct net *net = sock_net(skb->sk);
1361 	int err;
1362 
1363 	err = ip_local_out(skb);
1364 	if (err) {
1365 		if (err > 0)
1366 			err = net_xmit_errno(err);
1367 		if (err)
1368 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1369 	}
1370 
1371 	return err;
1372 }
1373 
1374 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1375 {
1376 	struct sk_buff *skb;
1377 
1378 	skb = ip_finish_skb(sk, fl4);
1379 	if (!skb)
1380 		return 0;
1381 
1382 	/* Netfilter gets whole the not fragmented skb. */
1383 	return ip_send_skb(skb);
1384 }
1385 
1386 /*
1387  *	Throw away all pending data on the socket.
1388  */
1389 static void __ip_flush_pending_frames(struct sock *sk,
1390 				      struct sk_buff_head *queue,
1391 				      struct inet_cork *cork)
1392 {
1393 	struct sk_buff *skb;
1394 
1395 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1396 		kfree_skb(skb);
1397 
1398 	ip_cork_release(cork);
1399 }
1400 
1401 void ip_flush_pending_frames(struct sock *sk)
1402 {
1403 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1404 }
1405 
1406 struct sk_buff *ip_make_skb(struct sock *sk,
1407 			    struct flowi4 *fl4,
1408 			    int getfrag(void *from, char *to, int offset,
1409 					int len, int odd, struct sk_buff *skb),
1410 			    void *from, int length, int transhdrlen,
1411 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1412 			    unsigned int flags)
1413 {
1414 	struct inet_cork cork;
1415 	struct sk_buff_head queue;
1416 	int err;
1417 
1418 	if (flags & MSG_PROBE)
1419 		return NULL;
1420 
1421 	__skb_queue_head_init(&queue);
1422 
1423 	cork.flags = 0;
1424 	cork.addr = 0;
1425 	cork.opt = NULL;
1426 	err = ip_setup_cork(sk, &cork, ipc, rtp);
1427 	if (err)
1428 		return ERR_PTR(err);
1429 
1430 	err = __ip_append_data(sk, fl4, &queue, &cork, getfrag,
1431 			       from, length, transhdrlen, flags);
1432 	if (err) {
1433 		__ip_flush_pending_frames(sk, &queue, &cork);
1434 		return ERR_PTR(err);
1435 	}
1436 
1437 	return __ip_make_skb(sk, fl4, &queue, &cork);
1438 }
1439 
1440 /*
1441  *	Fetch data from kernel space and fill in checksum if needed.
1442  */
1443 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1444 			      int len, int odd, struct sk_buff *skb)
1445 {
1446 	__wsum csum;
1447 
1448 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1449 	skb->csum = csum_block_add(skb->csum, csum, odd);
1450 	return 0;
1451 }
1452 
1453 /*
1454  *	Generic function to send a packet as reply to another packet.
1455  *	Used to send TCP resets so far. ICMP should use this function too.
1456  *
1457  *	Should run single threaded per socket because it uses the sock
1458  *     	structure to pass arguments.
1459  */
1460 void ip_send_reply(struct sock *sk, struct sk_buff *skb, __be32 daddr,
1461 		   struct ip_reply_arg *arg, unsigned int len)
1462 {
1463 	struct inet_sock *inet = inet_sk(sk);
1464 	struct ip_options_data replyopts;
1465 	struct ipcm_cookie ipc;
1466 	struct flowi4 fl4;
1467 	struct rtable *rt = skb_rtable(skb);
1468 
1469 	if (ip_options_echo(&replyopts.opt.opt, skb))
1470 		return;
1471 
1472 	ipc.addr = daddr;
1473 	ipc.opt = NULL;
1474 	ipc.tx_flags = 0;
1475 
1476 	if (replyopts.opt.opt.optlen) {
1477 		ipc.opt = &replyopts.opt;
1478 
1479 		if (replyopts.opt.opt.srr)
1480 			daddr = replyopts.opt.opt.faddr;
1481 	}
1482 
1483 	flowi4_init_output(&fl4, arg->bound_dev_if, 0,
1484 			   RT_TOS(ip_hdr(skb)->tos),
1485 			   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1486 			   ip_reply_arg_flowi_flags(arg),
1487 			   daddr, rt->rt_spec_dst,
1488 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest);
1489 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1490 	rt = ip_route_output_key(sock_net(sk), &fl4);
1491 	if (IS_ERR(rt))
1492 		return;
1493 
1494 	/* And let IP do all the hard work.
1495 
1496 	   This chunk is not reenterable, hence spinlock.
1497 	   Note that it uses the fact, that this function is called
1498 	   with locally disabled BH and that sk cannot be already spinlocked.
1499 	 */
1500 	bh_lock_sock(sk);
1501 	inet->tos = ip_hdr(skb)->tos;
1502 	sk->sk_priority = skb->priority;
1503 	sk->sk_protocol = ip_hdr(skb)->protocol;
1504 	sk->sk_bound_dev_if = arg->bound_dev_if;
1505 	ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1506 		       &ipc, &rt, MSG_DONTWAIT);
1507 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1508 		if (arg->csumoffset >= 0)
1509 			*((__sum16 *)skb_transport_header(skb) +
1510 			  arg->csumoffset) = csum_fold(csum_add(skb->csum,
1511 								arg->csum));
1512 		skb->ip_summed = CHECKSUM_NONE;
1513 		ip_push_pending_frames(sk, &fl4);
1514 	}
1515 
1516 	bh_unlock_sock(sk);
1517 
1518 	ip_rt_put(rt);
1519 }
1520 
1521 void __init ip_init(void)
1522 {
1523 	ip_rt_init();
1524 	inet_initpeers();
1525 
1526 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1527 	igmp_mc_proc_init();
1528 #endif
1529 }
1530