xref: /openbmc/linux/net/ipv4/ip_fragment.c (revision 7a9b149212f3716c598afe973b6261fd58453b7a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		The IP fragmentation functionality.
7  *
8  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
9  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
10  *
11  * Fixes:
12  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
13  *		David S. Miller :	Begin massive cleanup...
14  *		Andi Kleen	:	Add sysctls.
15  *		xxxx		:	Overlapfrag bug.
16  *		Ultima          :       ip_expire() kernel panic.
17  *		Bill Hawes	:	Frag accounting and evictor fixes.
18  *		John McDonald	:	0 length frag bug.
19  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
20  *		Patrick McHardy :	LRU queue of frag heads for evictor.
21  */
22 
23 #include <linux/compiler.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/jiffies.h>
28 #include <linux/skbuff.h>
29 #include <linux/list.h>
30 #include <linux/ip.h>
31 #include <linux/icmp.h>
32 #include <linux/netdevice.h>
33 #include <linux/jhash.h>
34 #include <linux/random.h>
35 #include <linux/slab.h>
36 #include <net/route.h>
37 #include <net/dst.h>
38 #include <net/sock.h>
39 #include <net/ip.h>
40 #include <net/icmp.h>
41 #include <net/checksum.h>
42 #include <net/inetpeer.h>
43 #include <net/inet_frag.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/inet.h>
47 #include <linux/netfilter_ipv4.h>
48 
49 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
50  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
51  * as well. Or notify me, at least. --ANK
52  */
53 
54 static int sysctl_ipfrag_max_dist __read_mostly = 64;
55 
56 struct ipfrag_skb_cb
57 {
58 	struct inet_skb_parm	h;
59 	int			offset;
60 };
61 
62 #define FRAG_CB(skb)	((struct ipfrag_skb_cb *)((skb)->cb))
63 
64 /* Describe an entry in the "incomplete datagrams" queue. */
65 struct ipq {
66 	struct inet_frag_queue q;
67 
68 	u32		user;
69 	__be32		saddr;
70 	__be32		daddr;
71 	__be16		id;
72 	u8		protocol;
73 	int             iif;
74 	unsigned int    rid;
75 	struct inet_peer *peer;
76 };
77 
78 static struct inet_frags ip4_frags;
79 
80 int ip_frag_nqueues(struct net *net)
81 {
82 	return net->ipv4.frags.nqueues;
83 }
84 
85 int ip_frag_mem(struct net *net)
86 {
87 	return atomic_read(&net->ipv4.frags.mem);
88 }
89 
90 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
91 			 struct net_device *dev);
92 
93 struct ip4_create_arg {
94 	struct iphdr *iph;
95 	u32 user;
96 };
97 
98 static unsigned int ipqhashfn(__be16 id, __be32 saddr, __be32 daddr, u8 prot)
99 {
100 	return jhash_3words((__force u32)id << 16 | prot,
101 			    (__force u32)saddr, (__force u32)daddr,
102 			    ip4_frags.rnd) & (INETFRAGS_HASHSZ - 1);
103 }
104 
105 static unsigned int ip4_hashfn(struct inet_frag_queue *q)
106 {
107 	struct ipq *ipq;
108 
109 	ipq = container_of(q, struct ipq, q);
110 	return ipqhashfn(ipq->id, ipq->saddr, ipq->daddr, ipq->protocol);
111 }
112 
113 static int ip4_frag_match(struct inet_frag_queue *q, void *a)
114 {
115 	struct ipq *qp;
116 	struct ip4_create_arg *arg = a;
117 
118 	qp = container_of(q, struct ipq, q);
119 	return (qp->id == arg->iph->id &&
120 			qp->saddr == arg->iph->saddr &&
121 			qp->daddr == arg->iph->daddr &&
122 			qp->protocol == arg->iph->protocol &&
123 			qp->user == arg->user);
124 }
125 
126 /* Memory Tracking Functions. */
127 static __inline__ void frag_kfree_skb(struct netns_frags *nf,
128 		struct sk_buff *skb, int *work)
129 {
130 	if (work)
131 		*work -= skb->truesize;
132 	atomic_sub(skb->truesize, &nf->mem);
133 	kfree_skb(skb);
134 }
135 
136 static void ip4_frag_init(struct inet_frag_queue *q, void *a)
137 {
138 	struct ipq *qp = container_of(q, struct ipq, q);
139 	struct ip4_create_arg *arg = a;
140 
141 	qp->protocol = arg->iph->protocol;
142 	qp->id = arg->iph->id;
143 	qp->saddr = arg->iph->saddr;
144 	qp->daddr = arg->iph->daddr;
145 	qp->user = arg->user;
146 	qp->peer = sysctl_ipfrag_max_dist ?
147 		inet_getpeer(arg->iph->saddr, 1) : NULL;
148 }
149 
150 static __inline__ void ip4_frag_free(struct inet_frag_queue *q)
151 {
152 	struct ipq *qp;
153 
154 	qp = container_of(q, struct ipq, q);
155 	if (qp->peer)
156 		inet_putpeer(qp->peer);
157 }
158 
159 
160 /* Destruction primitives. */
161 
162 static __inline__ void ipq_put(struct ipq *ipq)
163 {
164 	inet_frag_put(&ipq->q, &ip4_frags);
165 }
166 
167 /* Kill ipq entry. It is not destroyed immediately,
168  * because caller (and someone more) holds reference count.
169  */
170 static void ipq_kill(struct ipq *ipq)
171 {
172 	inet_frag_kill(&ipq->q, &ip4_frags);
173 }
174 
175 /* Memory limiting on fragments.  Evictor trashes the oldest
176  * fragment queue until we are back under the threshold.
177  */
178 static void ip_evictor(struct net *net)
179 {
180 	int evicted;
181 
182 	evicted = inet_frag_evictor(&net->ipv4.frags, &ip4_frags);
183 	if (evicted)
184 		IP_ADD_STATS_BH(net, IPSTATS_MIB_REASMFAILS, evicted);
185 }
186 
187 /*
188  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
189  */
190 static void ip_expire(unsigned long arg)
191 {
192 	struct ipq *qp;
193 	struct net *net;
194 
195 	qp = container_of((struct inet_frag_queue *) arg, struct ipq, q);
196 	net = container_of(qp->q.net, struct net, ipv4.frags);
197 
198 	spin_lock(&qp->q.lock);
199 
200 	if (qp->q.last_in & INET_FRAG_COMPLETE)
201 		goto out;
202 
203 	ipq_kill(qp);
204 
205 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMTIMEOUT);
206 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
207 
208 	if ((qp->q.last_in & INET_FRAG_FIRST_IN) && qp->q.fragments != NULL) {
209 		struct sk_buff *head = qp->q.fragments;
210 
211 		rcu_read_lock();
212 		head->dev = dev_get_by_index_rcu(net, qp->iif);
213 		if (!head->dev)
214 			goto out_rcu_unlock;
215 
216 		/*
217 		 * Only search router table for the head fragment,
218 		 * when defraging timeout at PRE_ROUTING HOOK.
219 		 */
220 		if (qp->user == IP_DEFRAG_CONNTRACK_IN && !skb_dst(head)) {
221 			const struct iphdr *iph = ip_hdr(head);
222 			int err = ip_route_input(head, iph->daddr, iph->saddr,
223 						 iph->tos, head->dev);
224 			if (unlikely(err))
225 				goto out_rcu_unlock;
226 
227 			/*
228 			 * Only an end host needs to send an ICMP
229 			 * "Fragment Reassembly Timeout" message, per RFC792.
230 			 */
231 			if (skb_rtable(head)->rt_type != RTN_LOCAL)
232 				goto out_rcu_unlock;
233 
234 		}
235 
236 		/* Send an ICMP "Fragment Reassembly Timeout" message. */
237 		icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
238 out_rcu_unlock:
239 		rcu_read_unlock();
240 	}
241 out:
242 	spin_unlock(&qp->q.lock);
243 	ipq_put(qp);
244 }
245 
246 /* Find the correct entry in the "incomplete datagrams" queue for
247  * this IP datagram, and create new one, if nothing is found.
248  */
249 static inline struct ipq *ip_find(struct net *net, struct iphdr *iph, u32 user)
250 {
251 	struct inet_frag_queue *q;
252 	struct ip4_create_arg arg;
253 	unsigned int hash;
254 
255 	arg.iph = iph;
256 	arg.user = user;
257 
258 	read_lock(&ip4_frags.lock);
259 	hash = ipqhashfn(iph->id, iph->saddr, iph->daddr, iph->protocol);
260 
261 	q = inet_frag_find(&net->ipv4.frags, &ip4_frags, &arg, hash);
262 	if (q == NULL)
263 		goto out_nomem;
264 
265 	return container_of(q, struct ipq, q);
266 
267 out_nomem:
268 	LIMIT_NETDEBUG(KERN_ERR "ip_frag_create: no memory left !\n");
269 	return NULL;
270 }
271 
272 /* Is the fragment too far ahead to be part of ipq? */
273 static inline int ip_frag_too_far(struct ipq *qp)
274 {
275 	struct inet_peer *peer = qp->peer;
276 	unsigned int max = sysctl_ipfrag_max_dist;
277 	unsigned int start, end;
278 
279 	int rc;
280 
281 	if (!peer || !max)
282 		return 0;
283 
284 	start = qp->rid;
285 	end = atomic_inc_return(&peer->rid);
286 	qp->rid = end;
287 
288 	rc = qp->q.fragments && (end - start) > max;
289 
290 	if (rc) {
291 		struct net *net;
292 
293 		net = container_of(qp->q.net, struct net, ipv4.frags);
294 		IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
295 	}
296 
297 	return rc;
298 }
299 
300 static int ip_frag_reinit(struct ipq *qp)
301 {
302 	struct sk_buff *fp;
303 
304 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
305 		atomic_inc(&qp->q.refcnt);
306 		return -ETIMEDOUT;
307 	}
308 
309 	fp = qp->q.fragments;
310 	do {
311 		struct sk_buff *xp = fp->next;
312 		frag_kfree_skb(qp->q.net, fp, NULL);
313 		fp = xp;
314 	} while (fp);
315 
316 	qp->q.last_in = 0;
317 	qp->q.len = 0;
318 	qp->q.meat = 0;
319 	qp->q.fragments = NULL;
320 	qp->iif = 0;
321 
322 	return 0;
323 }
324 
325 /* Add new segment to existing queue. */
326 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
327 {
328 	struct sk_buff *prev, *next;
329 	struct net_device *dev;
330 	int flags, offset;
331 	int ihl, end;
332 	int err = -ENOENT;
333 
334 	if (qp->q.last_in & INET_FRAG_COMPLETE)
335 		goto err;
336 
337 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
338 	    unlikely(ip_frag_too_far(qp)) &&
339 	    unlikely(err = ip_frag_reinit(qp))) {
340 		ipq_kill(qp);
341 		goto err;
342 	}
343 
344 	offset = ntohs(ip_hdr(skb)->frag_off);
345 	flags = offset & ~IP_OFFSET;
346 	offset &= IP_OFFSET;
347 	offset <<= 3;		/* offset is in 8-byte chunks */
348 	ihl = ip_hdrlen(skb);
349 
350 	/* Determine the position of this fragment. */
351 	end = offset + skb->len - ihl;
352 	err = -EINVAL;
353 
354 	/* Is this the final fragment? */
355 	if ((flags & IP_MF) == 0) {
356 		/* If we already have some bits beyond end
357 		 * or have different end, the segment is corrrupted.
358 		 */
359 		if (end < qp->q.len ||
360 		    ((qp->q.last_in & INET_FRAG_LAST_IN) && end != qp->q.len))
361 			goto err;
362 		qp->q.last_in |= INET_FRAG_LAST_IN;
363 		qp->q.len = end;
364 	} else {
365 		if (end&7) {
366 			end &= ~7;
367 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
368 				skb->ip_summed = CHECKSUM_NONE;
369 		}
370 		if (end > qp->q.len) {
371 			/* Some bits beyond end -> corruption. */
372 			if (qp->q.last_in & INET_FRAG_LAST_IN)
373 				goto err;
374 			qp->q.len = end;
375 		}
376 	}
377 	if (end == offset)
378 		goto err;
379 
380 	err = -ENOMEM;
381 	if (pskb_pull(skb, ihl) == NULL)
382 		goto err;
383 
384 	err = pskb_trim_rcsum(skb, end - offset);
385 	if (err)
386 		goto err;
387 
388 	/* Find out which fragments are in front and at the back of us
389 	 * in the chain of fragments so far.  We must know where to put
390 	 * this fragment, right?
391 	 */
392 	prev = NULL;
393 	for (next = qp->q.fragments; next != NULL; next = next->next) {
394 		if (FRAG_CB(next)->offset >= offset)
395 			break;	/* bingo! */
396 		prev = next;
397 	}
398 
399 	/* We found where to put this one.  Check for overlap with
400 	 * preceding fragment, and, if needed, align things so that
401 	 * any overlaps are eliminated.
402 	 */
403 	if (prev) {
404 		int i = (FRAG_CB(prev)->offset + prev->len) - offset;
405 
406 		if (i > 0) {
407 			offset += i;
408 			err = -EINVAL;
409 			if (end <= offset)
410 				goto err;
411 			err = -ENOMEM;
412 			if (!pskb_pull(skb, i))
413 				goto err;
414 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
415 				skb->ip_summed = CHECKSUM_NONE;
416 		}
417 	}
418 
419 	err = -ENOMEM;
420 
421 	while (next && FRAG_CB(next)->offset < end) {
422 		int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */
423 
424 		if (i < next->len) {
425 			/* Eat head of the next overlapped fragment
426 			 * and leave the loop. The next ones cannot overlap.
427 			 */
428 			if (!pskb_pull(next, i))
429 				goto err;
430 			FRAG_CB(next)->offset += i;
431 			qp->q.meat -= i;
432 			if (next->ip_summed != CHECKSUM_UNNECESSARY)
433 				next->ip_summed = CHECKSUM_NONE;
434 			break;
435 		} else {
436 			struct sk_buff *free_it = next;
437 
438 			/* Old fragment is completely overridden with
439 			 * new one drop it.
440 			 */
441 			next = next->next;
442 
443 			if (prev)
444 				prev->next = next;
445 			else
446 				qp->q.fragments = next;
447 
448 			qp->q.meat -= free_it->len;
449 			frag_kfree_skb(qp->q.net, free_it, NULL);
450 		}
451 	}
452 
453 	FRAG_CB(skb)->offset = offset;
454 
455 	/* Insert this fragment in the chain of fragments. */
456 	skb->next = next;
457 	if (prev)
458 		prev->next = skb;
459 	else
460 		qp->q.fragments = skb;
461 
462 	dev = skb->dev;
463 	if (dev) {
464 		qp->iif = dev->ifindex;
465 		skb->dev = NULL;
466 	}
467 	qp->q.stamp = skb->tstamp;
468 	qp->q.meat += skb->len;
469 	atomic_add(skb->truesize, &qp->q.net->mem);
470 	if (offset == 0)
471 		qp->q.last_in |= INET_FRAG_FIRST_IN;
472 
473 	if (qp->q.last_in == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
474 	    qp->q.meat == qp->q.len)
475 		return ip_frag_reasm(qp, prev, dev);
476 
477 	write_lock(&ip4_frags.lock);
478 	list_move_tail(&qp->q.lru_list, &qp->q.net->lru_list);
479 	write_unlock(&ip4_frags.lock);
480 	return -EINPROGRESS;
481 
482 err:
483 	kfree_skb(skb);
484 	return err;
485 }
486 
487 
488 /* Build a new IP datagram from all its fragments. */
489 
490 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *prev,
491 			 struct net_device *dev)
492 {
493 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
494 	struct iphdr *iph;
495 	struct sk_buff *fp, *head = qp->q.fragments;
496 	int len;
497 	int ihlen;
498 	int err;
499 
500 	ipq_kill(qp);
501 
502 	/* Make the one we just received the head. */
503 	if (prev) {
504 		head = prev->next;
505 		fp = skb_clone(head, GFP_ATOMIC);
506 		if (!fp)
507 			goto out_nomem;
508 
509 		fp->next = head->next;
510 		prev->next = fp;
511 
512 		skb_morph(head, qp->q.fragments);
513 		head->next = qp->q.fragments->next;
514 
515 		kfree_skb(qp->q.fragments);
516 		qp->q.fragments = head;
517 	}
518 
519 	WARN_ON(head == NULL);
520 	WARN_ON(FRAG_CB(head)->offset != 0);
521 
522 	/* Allocate a new buffer for the datagram. */
523 	ihlen = ip_hdrlen(head);
524 	len = ihlen + qp->q.len;
525 
526 	err = -E2BIG;
527 	if (len > 65535)
528 		goto out_oversize;
529 
530 	/* Head of list must not be cloned. */
531 	if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC))
532 		goto out_nomem;
533 
534 	/* If the first fragment is fragmented itself, we split
535 	 * it to two chunks: the first with data and paged part
536 	 * and the second, holding only fragments. */
537 	if (skb_has_frags(head)) {
538 		struct sk_buff *clone;
539 		int i, plen = 0;
540 
541 		if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL)
542 			goto out_nomem;
543 		clone->next = head->next;
544 		head->next = clone;
545 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
546 		skb_frag_list_init(head);
547 		for (i=0; i<skb_shinfo(head)->nr_frags; i++)
548 			plen += skb_shinfo(head)->frags[i].size;
549 		clone->len = clone->data_len = head->data_len - plen;
550 		head->data_len -= clone->len;
551 		head->len -= clone->len;
552 		clone->csum = 0;
553 		clone->ip_summed = head->ip_summed;
554 		atomic_add(clone->truesize, &qp->q.net->mem);
555 	}
556 
557 	skb_shinfo(head)->frag_list = head->next;
558 	skb_push(head, head->data - skb_network_header(head));
559 	atomic_sub(head->truesize, &qp->q.net->mem);
560 
561 	for (fp=head->next; fp; fp = fp->next) {
562 		head->data_len += fp->len;
563 		head->len += fp->len;
564 		if (head->ip_summed != fp->ip_summed)
565 			head->ip_summed = CHECKSUM_NONE;
566 		else if (head->ip_summed == CHECKSUM_COMPLETE)
567 			head->csum = csum_add(head->csum, fp->csum);
568 		head->truesize += fp->truesize;
569 		atomic_sub(fp->truesize, &qp->q.net->mem);
570 	}
571 
572 	head->next = NULL;
573 	head->dev = dev;
574 	head->tstamp = qp->q.stamp;
575 
576 	iph = ip_hdr(head);
577 	iph->frag_off = 0;
578 	iph->tot_len = htons(len);
579 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMOKS);
580 	qp->q.fragments = NULL;
581 	return 0;
582 
583 out_nomem:
584 	LIMIT_NETDEBUG(KERN_ERR "IP: queue_glue: no memory for gluing "
585 			      "queue %p\n", qp);
586 	err = -ENOMEM;
587 	goto out_fail;
588 out_oversize:
589 	if (net_ratelimit())
590 		printk(KERN_INFO "Oversized IP packet from %pI4.\n",
591 			&qp->saddr);
592 out_fail:
593 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
594 	return err;
595 }
596 
597 /* Process an incoming IP datagram fragment. */
598 int ip_defrag(struct sk_buff *skb, u32 user)
599 {
600 	struct ipq *qp;
601 	struct net *net;
602 
603 	net = skb->dev ? dev_net(skb->dev) : dev_net(skb_dst(skb)->dev);
604 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMREQDS);
605 
606 	/* Start by cleaning up the memory. */
607 	if (atomic_read(&net->ipv4.frags.mem) > net->ipv4.frags.high_thresh)
608 		ip_evictor(net);
609 
610 	/* Lookup (or create) queue header */
611 	if ((qp = ip_find(net, ip_hdr(skb), user)) != NULL) {
612 		int ret;
613 
614 		spin_lock(&qp->q.lock);
615 
616 		ret = ip_frag_queue(qp, skb);
617 
618 		spin_unlock(&qp->q.lock);
619 		ipq_put(qp);
620 		return ret;
621 	}
622 
623 	IP_INC_STATS_BH(net, IPSTATS_MIB_REASMFAILS);
624 	kfree_skb(skb);
625 	return -ENOMEM;
626 }
627 
628 #ifdef CONFIG_SYSCTL
629 static int zero;
630 
631 static struct ctl_table ip4_frags_ns_ctl_table[] = {
632 	{
633 		.procname	= "ipfrag_high_thresh",
634 		.data		= &init_net.ipv4.frags.high_thresh,
635 		.maxlen		= sizeof(int),
636 		.mode		= 0644,
637 		.proc_handler	= proc_dointvec
638 	},
639 	{
640 		.procname	= "ipfrag_low_thresh",
641 		.data		= &init_net.ipv4.frags.low_thresh,
642 		.maxlen		= sizeof(int),
643 		.mode		= 0644,
644 		.proc_handler	= proc_dointvec
645 	},
646 	{
647 		.procname	= "ipfrag_time",
648 		.data		= &init_net.ipv4.frags.timeout,
649 		.maxlen		= sizeof(int),
650 		.mode		= 0644,
651 		.proc_handler	= proc_dointvec_jiffies,
652 	},
653 	{ }
654 };
655 
656 static struct ctl_table ip4_frags_ctl_table[] = {
657 	{
658 		.procname	= "ipfrag_secret_interval",
659 		.data		= &ip4_frags.secret_interval,
660 		.maxlen		= sizeof(int),
661 		.mode		= 0644,
662 		.proc_handler	= proc_dointvec_jiffies,
663 	},
664 	{
665 		.procname	= "ipfrag_max_dist",
666 		.data		= &sysctl_ipfrag_max_dist,
667 		.maxlen		= sizeof(int),
668 		.mode		= 0644,
669 		.proc_handler	= proc_dointvec_minmax,
670 		.extra1		= &zero
671 	},
672 	{ }
673 };
674 
675 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
676 {
677 	struct ctl_table *table;
678 	struct ctl_table_header *hdr;
679 
680 	table = ip4_frags_ns_ctl_table;
681 	if (!net_eq(net, &init_net)) {
682 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
683 		if (table == NULL)
684 			goto err_alloc;
685 
686 		table[0].data = &net->ipv4.frags.high_thresh;
687 		table[1].data = &net->ipv4.frags.low_thresh;
688 		table[2].data = &net->ipv4.frags.timeout;
689 	}
690 
691 	hdr = register_net_sysctl_table(net, net_ipv4_ctl_path, table);
692 	if (hdr == NULL)
693 		goto err_reg;
694 
695 	net->ipv4.frags_hdr = hdr;
696 	return 0;
697 
698 err_reg:
699 	if (!net_eq(net, &init_net))
700 		kfree(table);
701 err_alloc:
702 	return -ENOMEM;
703 }
704 
705 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
706 {
707 	struct ctl_table *table;
708 
709 	table = net->ipv4.frags_hdr->ctl_table_arg;
710 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
711 	kfree(table);
712 }
713 
714 static void ip4_frags_ctl_register(void)
715 {
716 	register_net_sysctl_rotable(net_ipv4_ctl_path, ip4_frags_ctl_table);
717 }
718 #else
719 static inline int ip4_frags_ns_ctl_register(struct net *net)
720 {
721 	return 0;
722 }
723 
724 static inline void ip4_frags_ns_ctl_unregister(struct net *net)
725 {
726 }
727 
728 static inline void ip4_frags_ctl_register(void)
729 {
730 }
731 #endif
732 
733 static int __net_init ipv4_frags_init_net(struct net *net)
734 {
735 	/*
736 	 * Fragment cache limits. We will commit 256K at one time. Should we
737 	 * cross that limit we will prune down to 192K. This should cope with
738 	 * even the most extreme cases without allowing an attacker to
739 	 * measurably harm machine performance.
740 	 */
741 	net->ipv4.frags.high_thresh = 256 * 1024;
742 	net->ipv4.frags.low_thresh = 192 * 1024;
743 	/*
744 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
745 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
746 	 * by TTL.
747 	 */
748 	net->ipv4.frags.timeout = IP_FRAG_TIME;
749 
750 	inet_frags_init_net(&net->ipv4.frags);
751 
752 	return ip4_frags_ns_ctl_register(net);
753 }
754 
755 static void __net_exit ipv4_frags_exit_net(struct net *net)
756 {
757 	ip4_frags_ns_ctl_unregister(net);
758 	inet_frags_exit_net(&net->ipv4.frags, &ip4_frags);
759 }
760 
761 static struct pernet_operations ip4_frags_ops = {
762 	.init = ipv4_frags_init_net,
763 	.exit = ipv4_frags_exit_net,
764 };
765 
766 void __init ipfrag_init(void)
767 {
768 	ip4_frags_ctl_register();
769 	register_pernet_subsys(&ip4_frags_ops);
770 	ip4_frags.hashfn = ip4_hashfn;
771 	ip4_frags.constructor = ip4_frag_init;
772 	ip4_frags.destructor = ip4_frag_free;
773 	ip4_frags.skb_free = NULL;
774 	ip4_frags.qsize = sizeof(struct ipq);
775 	ip4_frags.match = ip4_frag_match;
776 	ip4_frags.frag_expire = ip_expire;
777 	ip4_frags.secret_interval = 10 * 60 * HZ;
778 	inet_frags_init(&ip4_frags);
779 }
780 
781 EXPORT_SYMBOL(ip_defrag);
782