xref: /openbmc/linux/net/ipv4/arp.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /* linux/net/ipv4/arp.c
2  *
3  * Version:	$Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4  *
5  * Copyright (C) 1994 by Florian  La Roche
6  *
7  * This module implements the Address Resolution Protocol ARP (RFC 826),
8  * which is used to convert IP addresses (or in the future maybe other
9  * high-level addresses) into a low-level hardware address (like an Ethernet
10  * address).
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version
15  * 2 of the License, or (at your option) any later version.
16  *
17  * Fixes:
18  *		Alan Cox	:	Removed the Ethernet assumptions in
19  *					Florian's code
20  *		Alan Cox	:	Fixed some small errors in the ARP
21  *					logic
22  *		Alan Cox	:	Allow >4K in /proc
23  *		Alan Cox	:	Make ARP add its own protocol entry
24  *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
25  *		Stephen Henson	:	Add AX25 support to arp_get_info()
26  *		Alan Cox	:	Drop data when a device is downed.
27  *		Alan Cox	:	Use init_timer().
28  *		Alan Cox	:	Double lock fixes.
29  *		Martin Seine	:	Move the arphdr structure
30  *					to if_arp.h for compatibility.
31  *					with BSD based programs.
32  *		Andrew Tridgell :       Added ARP netmask code and
33  *					re-arranged proxy handling.
34  *		Alan Cox	:	Changed to use notifiers.
35  *		Niibe Yutaka	:	Reply for this device or proxies only.
36  *		Alan Cox	:	Don't proxy across hardware types!
37  *		Jonathan Naylor :	Added support for NET/ROM.
38  *		Mike Shaver     :       RFC1122 checks.
39  *		Jonathan Naylor :	Only lookup the hardware address for
40  *					the correct hardware type.
41  *		Germano Caronni	:	Assorted subtle races.
42  *		Craig Schlenter :	Don't modify permanent entry
43  *					during arp_rcv.
44  *		Russ Nelson	:	Tidied up a few bits.
45  *		Alexey Kuznetsov:	Major changes to caching and behaviour,
46  *					eg intelligent arp probing and
47  *					generation
48  *					of host down events.
49  *		Alan Cox	:	Missing unlock in device events.
50  *		Eckes		:	ARP ioctl control errors.
51  *		Alexey Kuznetsov:	Arp free fix.
52  *		Manuel Rodriguez:	Gratuitous ARP.
53  *              Jonathan Layes  :       Added arpd support through kerneld
54  *                                      message queue (960314)
55  *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
56  *		Mike McLagan    :	Routing by source
57  *		Stuart Cheshire	:	Metricom and grat arp fixes
58  *					*** FOR 2.1 clean this up ***
59  *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
60  *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
61  *					folded into the mainstream FDDI code.
62  *					Ack spit, Linus how did you allow that
63  *					one in...
64  *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
65  *					clean up the APFDDI & gen. FDDI bits.
66  *		Alexey Kuznetsov:	new arp state machine;
67  *					now it is in net/core/neighbour.c.
68  *		Krzysztof Halasa:	Added Frame Relay ARP support.
69  *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
70  *		Shmulik Hen:		Split arp_send to arp_create and
71  *					arp_xmit so intermediate drivers like
72  *					bonding can change the skb before
73  *					sending (e.g. insert 8021q tag).
74  *		Harald Welte	:	convert to make use of jenkins hash
75  */
76 
77 #include <linux/module.h>
78 #include <linux/types.h>
79 #include <linux/string.h>
80 #include <linux/kernel.h>
81 #include <linux/capability.h>
82 #include <linux/socket.h>
83 #include <linux/sockios.h>
84 #include <linux/errno.h>
85 #include <linux/in.h>
86 #include <linux/mm.h>
87 #include <linux/inet.h>
88 #include <linux/inetdevice.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/fddidevice.h>
92 #include <linux/if_arp.h>
93 #include <linux/trdevice.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/jhash.h>
102 #ifdef CONFIG_SYSCTL
103 #include <linux/sysctl.h>
104 #endif
105 
106 #include <net/net_namespace.h>
107 #include <net/ip.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
111 #include <net/tcp.h>
112 #include <net/sock.h>
113 #include <net/arp.h>
114 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
115 #include <net/ax25.h>
116 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
117 #include <net/netrom.h>
118 #endif
119 #endif
120 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
121 #include <net/atmclip.h>
122 struct neigh_table *clip_tbl_hook;
123 #endif
124 
125 #include <asm/system.h>
126 #include <asm/uaccess.h>
127 
128 #include <linux/netfilter_arp.h>
129 
130 /*
131  *	Interface to generic neighbour cache.
132  */
133 static u32 arp_hash(const void *pkey, const struct net_device *dev);
134 static int arp_constructor(struct neighbour *neigh);
135 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
136 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
137 static void parp_redo(struct sk_buff *skb);
138 
139 static struct neigh_ops arp_generic_ops = {
140 	.family =		AF_INET,
141 	.solicit =		arp_solicit,
142 	.error_report =		arp_error_report,
143 	.output =		neigh_resolve_output,
144 	.connected_output =	neigh_connected_output,
145 	.hh_output =		dev_queue_xmit,
146 	.queue_xmit =		dev_queue_xmit,
147 };
148 
149 static struct neigh_ops arp_hh_ops = {
150 	.family =		AF_INET,
151 	.solicit =		arp_solicit,
152 	.error_report =		arp_error_report,
153 	.output =		neigh_resolve_output,
154 	.connected_output =	neigh_resolve_output,
155 	.hh_output =		dev_queue_xmit,
156 	.queue_xmit =		dev_queue_xmit,
157 };
158 
159 static struct neigh_ops arp_direct_ops = {
160 	.family =		AF_INET,
161 	.output =		dev_queue_xmit,
162 	.connected_output =	dev_queue_xmit,
163 	.hh_output =		dev_queue_xmit,
164 	.queue_xmit =		dev_queue_xmit,
165 };
166 
167 struct neigh_ops arp_broken_ops = {
168 	.family =		AF_INET,
169 	.solicit =		arp_solicit,
170 	.error_report =		arp_error_report,
171 	.output =		neigh_compat_output,
172 	.connected_output =	neigh_compat_output,
173 	.hh_output =		dev_queue_xmit,
174 	.queue_xmit =		dev_queue_xmit,
175 };
176 
177 struct neigh_table arp_tbl = {
178 	.family =	AF_INET,
179 	.entry_size =	sizeof(struct neighbour) + 4,
180 	.key_len =	4,
181 	.hash =		arp_hash,
182 	.constructor =	arp_constructor,
183 	.proxy_redo =	parp_redo,
184 	.id =		"arp_cache",
185 	.parms = {
186 		.tbl =			&arp_tbl,
187 		.base_reachable_time =	30 * HZ,
188 		.retrans_time =	1 * HZ,
189 		.gc_staletime =	60 * HZ,
190 		.reachable_time =		30 * HZ,
191 		.delay_probe_time =	5 * HZ,
192 		.queue_len =		3,
193 		.ucast_probes =	3,
194 		.mcast_probes =	3,
195 		.anycast_delay =	1 * HZ,
196 		.proxy_delay =		(8 * HZ) / 10,
197 		.proxy_qlen =		64,
198 		.locktime =		1 * HZ,
199 	},
200 	.gc_interval =	30 * HZ,
201 	.gc_thresh1 =	128,
202 	.gc_thresh2 =	512,
203 	.gc_thresh3 =	1024,
204 };
205 
206 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
207 {
208 	switch (dev->type) {
209 	case ARPHRD_ETHER:
210 	case ARPHRD_FDDI:
211 	case ARPHRD_IEEE802:
212 		ip_eth_mc_map(addr, haddr);
213 		return 0;
214 	case ARPHRD_IEEE802_TR:
215 		ip_tr_mc_map(addr, haddr);
216 		return 0;
217 	case ARPHRD_INFINIBAND:
218 		ip_ib_mc_map(addr, haddr);
219 		return 0;
220 	default:
221 		if (dir) {
222 			memcpy(haddr, dev->broadcast, dev->addr_len);
223 			return 0;
224 		}
225 	}
226 	return -EINVAL;
227 }
228 
229 
230 static u32 arp_hash(const void *pkey, const struct net_device *dev)
231 {
232 	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
233 }
234 
235 static int arp_constructor(struct neighbour *neigh)
236 {
237 	__be32 addr = *(__be32*)neigh->primary_key;
238 	struct net_device *dev = neigh->dev;
239 	struct in_device *in_dev;
240 	struct neigh_parms *parms;
241 
242 	neigh->type = inet_addr_type(addr);
243 
244 	rcu_read_lock();
245 	in_dev = __in_dev_get_rcu(dev);
246 	if (in_dev == NULL) {
247 		rcu_read_unlock();
248 		return -EINVAL;
249 	}
250 
251 	parms = in_dev->arp_parms;
252 	__neigh_parms_put(neigh->parms);
253 	neigh->parms = neigh_parms_clone(parms);
254 	rcu_read_unlock();
255 
256 	if (!dev->header_ops) {
257 		neigh->nud_state = NUD_NOARP;
258 		neigh->ops = &arp_direct_ops;
259 		neigh->output = neigh->ops->queue_xmit;
260 	} else {
261 		/* Good devices (checked by reading texts, but only Ethernet is
262 		   tested)
263 
264 		   ARPHRD_ETHER: (ethernet, apfddi)
265 		   ARPHRD_FDDI: (fddi)
266 		   ARPHRD_IEEE802: (tr)
267 		   ARPHRD_METRICOM: (strip)
268 		   ARPHRD_ARCNET:
269 		   etc. etc. etc.
270 
271 		   ARPHRD_IPDDP will also work, if author repairs it.
272 		   I did not it, because this driver does not work even
273 		   in old paradigm.
274 		 */
275 
276 #if 1
277 		/* So... these "amateur" devices are hopeless.
278 		   The only thing, that I can say now:
279 		   It is very sad that we need to keep ugly obsolete
280 		   code to make them happy.
281 
282 		   They should be moved to more reasonable state, now
283 		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
284 		   Besides that, they are sort of out of date
285 		   (a lot of redundant clones/copies, useless in 2.1),
286 		   I wonder why people believe that they work.
287 		 */
288 		switch (dev->type) {
289 		default:
290 			break;
291 		case ARPHRD_ROSE:
292 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
293 		case ARPHRD_AX25:
294 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
295 		case ARPHRD_NETROM:
296 #endif
297 			neigh->ops = &arp_broken_ops;
298 			neigh->output = neigh->ops->output;
299 			return 0;
300 #endif
301 		;}
302 #endif
303 		if (neigh->type == RTN_MULTICAST) {
304 			neigh->nud_state = NUD_NOARP;
305 			arp_mc_map(addr, neigh->ha, dev, 1);
306 		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
307 			neigh->nud_state = NUD_NOARP;
308 			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
309 		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
310 			neigh->nud_state = NUD_NOARP;
311 			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
312 		}
313 
314 		if (dev->header_ops->cache)
315 			neigh->ops = &arp_hh_ops;
316 		else
317 			neigh->ops = &arp_generic_ops;
318 
319 		if (neigh->nud_state&NUD_VALID)
320 			neigh->output = neigh->ops->connected_output;
321 		else
322 			neigh->output = neigh->ops->output;
323 	}
324 	return 0;
325 }
326 
327 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
328 {
329 	dst_link_failure(skb);
330 	kfree_skb(skb);
331 }
332 
333 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
334 {
335 	__be32 saddr = 0;
336 	u8  *dst_ha = NULL;
337 	struct net_device *dev = neigh->dev;
338 	__be32 target = *(__be32*)neigh->primary_key;
339 	int probes = atomic_read(&neigh->probes);
340 	struct in_device *in_dev = in_dev_get(dev);
341 
342 	if (!in_dev)
343 		return;
344 
345 	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
346 	default:
347 	case 0:		/* By default announce any local IP */
348 		if (skb && inet_addr_type(ip_hdr(skb)->saddr) == RTN_LOCAL)
349 			saddr = ip_hdr(skb)->saddr;
350 		break;
351 	case 1:		/* Restrict announcements of saddr in same subnet */
352 		if (!skb)
353 			break;
354 		saddr = ip_hdr(skb)->saddr;
355 		if (inet_addr_type(saddr) == RTN_LOCAL) {
356 			/* saddr should be known to target */
357 			if (inet_addr_onlink(in_dev, target, saddr))
358 				break;
359 		}
360 		saddr = 0;
361 		break;
362 	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
363 		break;
364 	}
365 
366 	if (in_dev)
367 		in_dev_put(in_dev);
368 	if (!saddr)
369 		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
370 
371 	if ((probes -= neigh->parms->ucast_probes) < 0) {
372 		if (!(neigh->nud_state&NUD_VALID))
373 			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
374 		dst_ha = neigh->ha;
375 		read_lock_bh(&neigh->lock);
376 	} else if ((probes -= neigh->parms->app_probes) < 0) {
377 #ifdef CONFIG_ARPD
378 		neigh_app_ns(neigh);
379 #endif
380 		return;
381 	}
382 
383 	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
384 		 dst_ha, dev->dev_addr, NULL);
385 	if (dst_ha)
386 		read_unlock_bh(&neigh->lock);
387 }
388 
389 static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
390 		      __be32 sip, __be32 tip)
391 {
392 	int scope;
393 
394 	switch (IN_DEV_ARP_IGNORE(in_dev)) {
395 	case 0:	/* Reply, the tip is already validated */
396 		return 0;
397 	case 1:	/* Reply only if tip is configured on the incoming interface */
398 		sip = 0;
399 		scope = RT_SCOPE_HOST;
400 		break;
401 	case 2:	/*
402 		 * Reply only if tip is configured on the incoming interface
403 		 * and is in same subnet as sip
404 		 */
405 		scope = RT_SCOPE_HOST;
406 		break;
407 	case 3:	/* Do not reply for scope host addresses */
408 		sip = 0;
409 		scope = RT_SCOPE_LINK;
410 		dev = NULL;
411 		break;
412 	case 4:	/* Reserved */
413 	case 5:
414 	case 6:
415 	case 7:
416 		return 0;
417 	case 8:	/* Do not reply */
418 		return 1;
419 	default:
420 		return 0;
421 	}
422 	return !inet_confirm_addr(dev, sip, tip, scope);
423 }
424 
425 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
426 {
427 	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
428 						 .saddr = tip } } };
429 	struct rtable *rt;
430 	int flag = 0;
431 	/*unsigned long now; */
432 
433 	if (ip_route_output_key(&rt, &fl) < 0)
434 		return 1;
435 	if (rt->u.dst.dev != dev) {
436 		NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
437 		flag = 1;
438 	}
439 	ip_rt_put(rt);
440 	return flag;
441 }
442 
443 /* OBSOLETE FUNCTIONS */
444 
445 /*
446  *	Find an arp mapping in the cache. If not found, post a request.
447  *
448  *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
449  *	even if it exists. It is supposed that skb->dev was mangled
450  *	by a virtual device (eql, shaper). Nobody but broken devices
451  *	is allowed to use this function, it is scheduled to be removed. --ANK
452  */
453 
454 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
455 {
456 	switch (addr_hint) {
457 	case RTN_LOCAL:
458 		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
459 		memcpy(haddr, dev->dev_addr, dev->addr_len);
460 		return 1;
461 	case RTN_MULTICAST:
462 		arp_mc_map(paddr, haddr, dev, 1);
463 		return 1;
464 	case RTN_BROADCAST:
465 		memcpy(haddr, dev->broadcast, dev->addr_len);
466 		return 1;
467 	}
468 	return 0;
469 }
470 
471 
472 int arp_find(unsigned char *haddr, struct sk_buff *skb)
473 {
474 	struct net_device *dev = skb->dev;
475 	__be32 paddr;
476 	struct neighbour *n;
477 
478 	if (!skb->dst) {
479 		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
480 		kfree_skb(skb);
481 		return 1;
482 	}
483 
484 	paddr = ((struct rtable*)skb->dst)->rt_gateway;
485 
486 	if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
487 		return 0;
488 
489 	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
490 
491 	if (n) {
492 		n->used = jiffies;
493 		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
494 			read_lock_bh(&n->lock);
495 			memcpy(haddr, n->ha, dev->addr_len);
496 			read_unlock_bh(&n->lock);
497 			neigh_release(n);
498 			return 0;
499 		}
500 		neigh_release(n);
501 	} else
502 		kfree_skb(skb);
503 	return 1;
504 }
505 
506 /* END OF OBSOLETE FUNCTIONS */
507 
508 int arp_bind_neighbour(struct dst_entry *dst)
509 {
510 	struct net_device *dev = dst->dev;
511 	struct neighbour *n = dst->neighbour;
512 
513 	if (dev == NULL)
514 		return -EINVAL;
515 	if (n == NULL) {
516 		__be32 nexthop = ((struct rtable*)dst)->rt_gateway;
517 		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
518 			nexthop = 0;
519 		n = __neigh_lookup_errno(
520 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
521 		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
522 #endif
523 		    &arp_tbl, &nexthop, dev);
524 		if (IS_ERR(n))
525 			return PTR_ERR(n);
526 		dst->neighbour = n;
527 	}
528 	return 0;
529 }
530 
531 /*
532  * Check if we can use proxy ARP for this path
533  */
534 
535 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
536 {
537 	struct in_device *out_dev;
538 	int imi, omi = -1;
539 
540 	if (!IN_DEV_PROXY_ARP(in_dev))
541 		return 0;
542 
543 	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
544 		return 1;
545 	if (imi == -1)
546 		return 0;
547 
548 	/* place to check for proxy_arp for routes */
549 
550 	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
551 		omi = IN_DEV_MEDIUM_ID(out_dev);
552 		in_dev_put(out_dev);
553 	}
554 	return (omi != imi && omi != -1);
555 }
556 
557 /*
558  *	Interface to link layer: send routine and receive handler.
559  */
560 
561 /*
562  *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
563  *	message.
564  */
565 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
566 			   struct net_device *dev, __be32 src_ip,
567 			   unsigned char *dest_hw, unsigned char *src_hw,
568 			   unsigned char *target_hw)
569 {
570 	struct sk_buff *skb;
571 	struct arphdr *arp;
572 	unsigned char *arp_ptr;
573 
574 	/*
575 	 *	Allocate a buffer
576 	 */
577 
578 	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
579 				+ LL_RESERVED_SPACE(dev), GFP_ATOMIC);
580 	if (skb == NULL)
581 		return NULL;
582 
583 	skb_reserve(skb, LL_RESERVED_SPACE(dev));
584 	skb_reset_network_header(skb);
585 	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
586 	skb->dev = dev;
587 	skb->protocol = htons(ETH_P_ARP);
588 	if (src_hw == NULL)
589 		src_hw = dev->dev_addr;
590 	if (dest_hw == NULL)
591 		dest_hw = dev->broadcast;
592 
593 	/*
594 	 *	Fill the device header for the ARP frame
595 	 */
596 	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
597 		goto out;
598 
599 	/*
600 	 * Fill out the arp protocol part.
601 	 *
602 	 * The arp hardware type should match the device type, except for FDDI,
603 	 * which (according to RFC 1390) should always equal 1 (Ethernet).
604 	 */
605 	/*
606 	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
607 	 *	DIX code for the protocol. Make these device structure fields.
608 	 */
609 	switch (dev->type) {
610 	default:
611 		arp->ar_hrd = htons(dev->type);
612 		arp->ar_pro = htons(ETH_P_IP);
613 		break;
614 
615 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
616 	case ARPHRD_AX25:
617 		arp->ar_hrd = htons(ARPHRD_AX25);
618 		arp->ar_pro = htons(AX25_P_IP);
619 		break;
620 
621 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
622 	case ARPHRD_NETROM:
623 		arp->ar_hrd = htons(ARPHRD_NETROM);
624 		arp->ar_pro = htons(AX25_P_IP);
625 		break;
626 #endif
627 #endif
628 
629 #ifdef CONFIG_FDDI
630 	case ARPHRD_FDDI:
631 		arp->ar_hrd = htons(ARPHRD_ETHER);
632 		arp->ar_pro = htons(ETH_P_IP);
633 		break;
634 #endif
635 #ifdef CONFIG_TR
636 	case ARPHRD_IEEE802_TR:
637 		arp->ar_hrd = htons(ARPHRD_IEEE802);
638 		arp->ar_pro = htons(ETH_P_IP);
639 		break;
640 #endif
641 	}
642 
643 	arp->ar_hln = dev->addr_len;
644 	arp->ar_pln = 4;
645 	arp->ar_op = htons(type);
646 
647 	arp_ptr=(unsigned char *)(arp+1);
648 
649 	memcpy(arp_ptr, src_hw, dev->addr_len);
650 	arp_ptr+=dev->addr_len;
651 	memcpy(arp_ptr, &src_ip,4);
652 	arp_ptr+=4;
653 	if (target_hw != NULL)
654 		memcpy(arp_ptr, target_hw, dev->addr_len);
655 	else
656 		memset(arp_ptr, 0, dev->addr_len);
657 	arp_ptr+=dev->addr_len;
658 	memcpy(arp_ptr, &dest_ip, 4);
659 
660 	return skb;
661 
662 out:
663 	kfree_skb(skb);
664 	return NULL;
665 }
666 
667 /*
668  *	Send an arp packet.
669  */
670 void arp_xmit(struct sk_buff *skb)
671 {
672 	/* Send it off, maybe filter it using firewalling first.  */
673 	NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
674 }
675 
676 /*
677  *	Create and send an arp packet.
678  */
679 void arp_send(int type, int ptype, __be32 dest_ip,
680 	      struct net_device *dev, __be32 src_ip,
681 	      unsigned char *dest_hw, unsigned char *src_hw,
682 	      unsigned char *target_hw)
683 {
684 	struct sk_buff *skb;
685 
686 	/*
687 	 *	No arp on this interface.
688 	 */
689 
690 	if (dev->flags&IFF_NOARP)
691 		return;
692 
693 	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
694 			 dest_hw, src_hw, target_hw);
695 	if (skb == NULL) {
696 		return;
697 	}
698 
699 	arp_xmit(skb);
700 }
701 
702 /*
703  *	Process an arp request.
704  */
705 
706 static int arp_process(struct sk_buff *skb)
707 {
708 	struct net_device *dev = skb->dev;
709 	struct in_device *in_dev = in_dev_get(dev);
710 	struct arphdr *arp;
711 	unsigned char *arp_ptr;
712 	struct rtable *rt;
713 	unsigned char *sha, *tha;
714 	__be32 sip, tip;
715 	u16 dev_type = dev->type;
716 	int addr_type;
717 	struct neighbour *n;
718 
719 	/* arp_rcv below verifies the ARP header and verifies the device
720 	 * is ARP'able.
721 	 */
722 
723 	if (in_dev == NULL)
724 		goto out;
725 
726 	arp = arp_hdr(skb);
727 
728 	switch (dev_type) {
729 	default:
730 		if (arp->ar_pro != htons(ETH_P_IP) ||
731 		    htons(dev_type) != arp->ar_hrd)
732 			goto out;
733 		break;
734 #ifdef CONFIG_NET_ETHERNET
735 	case ARPHRD_ETHER:
736 #endif
737 #ifdef CONFIG_TR
738 	case ARPHRD_IEEE802_TR:
739 #endif
740 #ifdef CONFIG_FDDI
741 	case ARPHRD_FDDI:
742 #endif
743 #ifdef CONFIG_NET_FC
744 	case ARPHRD_IEEE802:
745 #endif
746 #if defined(CONFIG_NET_ETHERNET) || defined(CONFIG_TR) || \
747     defined(CONFIG_FDDI)	 || defined(CONFIG_NET_FC)
748 		/*
749 		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
750 		 * devices, according to RFC 2625) devices will accept ARP
751 		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
752 		 * This is the case also of FDDI, where the RFC 1390 says that
753 		 * FDDI devices should accept ARP hardware of (1) Ethernet,
754 		 * however, to be more robust, we'll accept both 1 (Ethernet)
755 		 * or 6 (IEEE 802.2)
756 		 */
757 		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
758 		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
759 		    arp->ar_pro != htons(ETH_P_IP))
760 			goto out;
761 		break;
762 #endif
763 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
764 	case ARPHRD_AX25:
765 		if (arp->ar_pro != htons(AX25_P_IP) ||
766 		    arp->ar_hrd != htons(ARPHRD_AX25))
767 			goto out;
768 		break;
769 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
770 	case ARPHRD_NETROM:
771 		if (arp->ar_pro != htons(AX25_P_IP) ||
772 		    arp->ar_hrd != htons(ARPHRD_NETROM))
773 			goto out;
774 		break;
775 #endif
776 #endif
777 	}
778 
779 	/* Understand only these message types */
780 
781 	if (arp->ar_op != htons(ARPOP_REPLY) &&
782 	    arp->ar_op != htons(ARPOP_REQUEST))
783 		goto out;
784 
785 /*
786  *	Extract fields
787  */
788 	arp_ptr= (unsigned char *)(arp+1);
789 	sha	= arp_ptr;
790 	arp_ptr += dev->addr_len;
791 	memcpy(&sip, arp_ptr, 4);
792 	arp_ptr += 4;
793 	tha	= arp_ptr;
794 	arp_ptr += dev->addr_len;
795 	memcpy(&tip, arp_ptr, 4);
796 /*
797  *	Check for bad requests for 127.x.x.x and requests for multicast
798  *	addresses.  If this is one such, delete it.
799  */
800 	if (LOOPBACK(tip) || MULTICAST(tip))
801 		goto out;
802 
803 /*
804  *     Special case: We must set Frame Relay source Q.922 address
805  */
806 	if (dev_type == ARPHRD_DLCI)
807 		sha = dev->broadcast;
808 
809 /*
810  *  Process entry.  The idea here is we want to send a reply if it is a
811  *  request for us or if it is a request for someone else that we hold
812  *  a proxy for.  We want to add an entry to our cache if it is a reply
813  *  to us or if it is a request for our address.
814  *  (The assumption for this last is that if someone is requesting our
815  *  address, they are probably intending to talk to us, so it saves time
816  *  if we cache their address.  Their address is also probably not in
817  *  our cache, since ours is not in their cache.)
818  *
819  *  Putting this another way, we only care about replies if they are to
820  *  us, in which case we add them to the cache.  For requests, we care
821  *  about those for us and those for our proxies.  We reply to both,
822  *  and in the case of requests for us we add the requester to the arp
823  *  cache.
824  */
825 
826 	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
827 	if (sip == 0) {
828 		if (arp->ar_op == htons(ARPOP_REQUEST) &&
829 		    inet_addr_type(tip) == RTN_LOCAL &&
830 		    !arp_ignore(in_dev,dev,sip,tip))
831 			arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev->dev_addr,dev->dev_addr);
832 		goto out;
833 	}
834 
835 	if (arp->ar_op == htons(ARPOP_REQUEST) &&
836 	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
837 
838 		rt = (struct rtable*)skb->dst;
839 		addr_type = rt->rt_type;
840 
841 		if (addr_type == RTN_LOCAL) {
842 			n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
843 			if (n) {
844 				int dont_send = 0;
845 
846 				if (!dont_send)
847 					dont_send |= arp_ignore(in_dev,dev,sip,tip);
848 				if (!dont_send && IN_DEV_ARPFILTER(in_dev))
849 					dont_send |= arp_filter(sip,tip,dev);
850 				if (!dont_send)
851 					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
852 
853 				neigh_release(n);
854 			}
855 			goto out;
856 		} else if (IN_DEV_FORWARD(in_dev)) {
857 			if ((rt->rt_flags&RTCF_DNAT) ||
858 			    (addr_type == RTN_UNICAST  && rt->u.dst.dev != dev &&
859 			     (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
860 				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
861 				if (n)
862 					neigh_release(n);
863 
864 				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
865 				    skb->pkt_type == PACKET_HOST ||
866 				    in_dev->arp_parms->proxy_delay == 0) {
867 					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
868 				} else {
869 					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
870 					in_dev_put(in_dev);
871 					return 0;
872 				}
873 				goto out;
874 			}
875 		}
876 	}
877 
878 	/* Update our ARP tables */
879 
880 	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
881 
882 	if (IPV4_DEVCONF_ALL(ARP_ACCEPT)) {
883 		/* Unsolicited ARP is not accepted by default.
884 		   It is possible, that this option should be enabled for some
885 		   devices (strip is candidate)
886 		 */
887 		if (n == NULL &&
888 		    arp->ar_op == htons(ARPOP_REPLY) &&
889 		    inet_addr_type(sip) == RTN_UNICAST)
890 			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
891 	}
892 
893 	if (n) {
894 		int state = NUD_REACHABLE;
895 		int override;
896 
897 		/* If several different ARP replies follows back-to-back,
898 		   use the FIRST one. It is possible, if several proxy
899 		   agents are active. Taking the first reply prevents
900 		   arp trashing and chooses the fastest router.
901 		 */
902 		override = time_after(jiffies, n->updated + n->parms->locktime);
903 
904 		/* Broadcast replies and request packets
905 		   do not assert neighbour reachability.
906 		 */
907 		if (arp->ar_op != htons(ARPOP_REPLY) ||
908 		    skb->pkt_type != PACKET_HOST)
909 			state = NUD_STALE;
910 		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
911 		neigh_release(n);
912 	}
913 
914 out:
915 	if (in_dev)
916 		in_dev_put(in_dev);
917 	kfree_skb(skb);
918 	return 0;
919 }
920 
921 static void parp_redo(struct sk_buff *skb)
922 {
923 	arp_process(skb);
924 }
925 
926 
927 /*
928  *	Receive an arp request from the device layer.
929  */
930 
931 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
932 		   struct packet_type *pt, struct net_device *orig_dev)
933 {
934 	struct arphdr *arp;
935 
936 	if (dev->nd_net != &init_net)
937 		goto freeskb;
938 
939 	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
940 	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
941 				 (2 * dev->addr_len) +
942 				 (2 * sizeof(u32)))))
943 		goto freeskb;
944 
945 	arp = arp_hdr(skb);
946 	if (arp->ar_hln != dev->addr_len ||
947 	    dev->flags & IFF_NOARP ||
948 	    skb->pkt_type == PACKET_OTHERHOST ||
949 	    skb->pkt_type == PACKET_LOOPBACK ||
950 	    arp->ar_pln != 4)
951 		goto freeskb;
952 
953 	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
954 		goto out_of_mem;
955 
956 	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
957 
958 	return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
959 
960 freeskb:
961 	kfree_skb(skb);
962 out_of_mem:
963 	return 0;
964 }
965 
966 /*
967  *	User level interface (ioctl)
968  */
969 
970 /*
971  *	Set (create) an ARP cache entry.
972  */
973 
974 static int arp_req_set(struct arpreq *r, struct net_device * dev)
975 {
976 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
977 	struct neighbour *neigh;
978 	int err;
979 
980 	if (r->arp_flags&ATF_PUBL) {
981 		__be32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
982 		if (mask && mask != htonl(0xFFFFFFFF))
983 			return -EINVAL;
984 		if (!dev && (r->arp_flags & ATF_COM)) {
985 			dev = dev_getbyhwaddr(&init_net, r->arp_ha.sa_family, r->arp_ha.sa_data);
986 			if (!dev)
987 				return -ENODEV;
988 		}
989 		if (mask) {
990 			if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
991 				return -ENOBUFS;
992 			return 0;
993 		}
994 		if (dev == NULL) {
995 			IPV4_DEVCONF_ALL(PROXY_ARP) = 1;
996 			return 0;
997 		}
998 		if (__in_dev_get_rtnl(dev)) {
999 			IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, 1);
1000 			return 0;
1001 		}
1002 		return -ENXIO;
1003 	}
1004 
1005 	if (r->arp_flags & ATF_PERM)
1006 		r->arp_flags |= ATF_COM;
1007 	if (dev == NULL) {
1008 		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1009 							 .tos = RTO_ONLINK } } };
1010 		struct rtable * rt;
1011 		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1012 			return err;
1013 		dev = rt->u.dst.dev;
1014 		ip_rt_put(rt);
1015 		if (!dev)
1016 			return -EINVAL;
1017 	}
1018 	switch (dev->type) {
1019 #ifdef CONFIG_FDDI
1020 	case ARPHRD_FDDI:
1021 		/*
1022 		 * According to RFC 1390, FDDI devices should accept ARP
1023 		 * hardware types of 1 (Ethernet).  However, to be more
1024 		 * robust, we'll accept hardware types of either 1 (Ethernet)
1025 		 * or 6 (IEEE 802.2).
1026 		 */
1027 		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1028 		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1029 		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1030 			return -EINVAL;
1031 		break;
1032 #endif
1033 	default:
1034 		if (r->arp_ha.sa_family != dev->type)
1035 			return -EINVAL;
1036 		break;
1037 	}
1038 
1039 	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1040 	err = PTR_ERR(neigh);
1041 	if (!IS_ERR(neigh)) {
1042 		unsigned state = NUD_STALE;
1043 		if (r->arp_flags & ATF_PERM)
1044 			state = NUD_PERMANENT;
1045 		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1046 				   r->arp_ha.sa_data : NULL, state,
1047 				   NEIGH_UPDATE_F_OVERRIDE|
1048 				   NEIGH_UPDATE_F_ADMIN);
1049 		neigh_release(neigh);
1050 	}
1051 	return err;
1052 }
1053 
1054 static unsigned arp_state_to_flags(struct neighbour *neigh)
1055 {
1056 	unsigned flags = 0;
1057 	if (neigh->nud_state&NUD_PERMANENT)
1058 		flags = ATF_PERM|ATF_COM;
1059 	else if (neigh->nud_state&NUD_VALID)
1060 		flags = ATF_COM;
1061 	return flags;
1062 }
1063 
1064 /*
1065  *	Get an ARP cache entry.
1066  */
1067 
1068 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1069 {
1070 	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1071 	struct neighbour *neigh;
1072 	int err = -ENXIO;
1073 
1074 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1075 	if (neigh) {
1076 		read_lock_bh(&neigh->lock);
1077 		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1078 		r->arp_flags = arp_state_to_flags(neigh);
1079 		read_unlock_bh(&neigh->lock);
1080 		r->arp_ha.sa_family = dev->type;
1081 		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1082 		neigh_release(neigh);
1083 		err = 0;
1084 	}
1085 	return err;
1086 }
1087 
1088 static int arp_req_delete(struct arpreq *r, struct net_device * dev)
1089 {
1090 	int err;
1091 	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1092 	struct neighbour *neigh;
1093 
1094 	if (r->arp_flags & ATF_PUBL) {
1095 		__be32 mask =
1096 		       ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1097 		if (mask == htonl(0xFFFFFFFF))
1098 			return pneigh_delete(&arp_tbl, &ip, dev);
1099 		if (mask == 0) {
1100 			if (dev == NULL) {
1101 				IPV4_DEVCONF_ALL(PROXY_ARP) = 0;
1102 				return 0;
1103 			}
1104 			if (__in_dev_get_rtnl(dev)) {
1105 				IN_DEV_CONF_SET(__in_dev_get_rtnl(dev),
1106 						PROXY_ARP, 0);
1107 				return 0;
1108 			}
1109 			return -ENXIO;
1110 		}
1111 		return -EINVAL;
1112 	}
1113 
1114 	if (dev == NULL) {
1115 		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1116 							 .tos = RTO_ONLINK } } };
1117 		struct rtable * rt;
1118 		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1119 			return err;
1120 		dev = rt->u.dst.dev;
1121 		ip_rt_put(rt);
1122 		if (!dev)
1123 			return -EINVAL;
1124 	}
1125 	err = -ENXIO;
1126 	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1127 	if (neigh) {
1128 		if (neigh->nud_state&~NUD_NOARP)
1129 			err = neigh_update(neigh, NULL, NUD_FAILED,
1130 					   NEIGH_UPDATE_F_OVERRIDE|
1131 					   NEIGH_UPDATE_F_ADMIN);
1132 		neigh_release(neigh);
1133 	}
1134 	return err;
1135 }
1136 
1137 /*
1138  *	Handle an ARP layer I/O control request.
1139  */
1140 
1141 int arp_ioctl(unsigned int cmd, void __user *arg)
1142 {
1143 	int err;
1144 	struct arpreq r;
1145 	struct net_device *dev = NULL;
1146 
1147 	switch (cmd) {
1148 		case SIOCDARP:
1149 		case SIOCSARP:
1150 			if (!capable(CAP_NET_ADMIN))
1151 				return -EPERM;
1152 		case SIOCGARP:
1153 			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1154 			if (err)
1155 				return -EFAULT;
1156 			break;
1157 		default:
1158 			return -EINVAL;
1159 	}
1160 
1161 	if (r.arp_pa.sa_family != AF_INET)
1162 		return -EPFNOSUPPORT;
1163 
1164 	if (!(r.arp_flags & ATF_PUBL) &&
1165 	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1166 		return -EINVAL;
1167 	if (!(r.arp_flags & ATF_NETMASK))
1168 		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1169 							   htonl(0xFFFFFFFFUL);
1170 	rtnl_lock();
1171 	if (r.arp_dev[0]) {
1172 		err = -ENODEV;
1173 		if ((dev = __dev_get_by_name(&init_net, r.arp_dev)) == NULL)
1174 			goto out;
1175 
1176 		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1177 		if (!r.arp_ha.sa_family)
1178 			r.arp_ha.sa_family = dev->type;
1179 		err = -EINVAL;
1180 		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1181 			goto out;
1182 	} else if (cmd == SIOCGARP) {
1183 		err = -ENODEV;
1184 		goto out;
1185 	}
1186 
1187 	switch (cmd) {
1188 	case SIOCDARP:
1189 		err = arp_req_delete(&r, dev);
1190 		break;
1191 	case SIOCSARP:
1192 		err = arp_req_set(&r, dev);
1193 		break;
1194 	case SIOCGARP:
1195 		err = arp_req_get(&r, dev);
1196 		if (!err && copy_to_user(arg, &r, sizeof(r)))
1197 			err = -EFAULT;
1198 		break;
1199 	}
1200 out:
1201 	rtnl_unlock();
1202 	return err;
1203 }
1204 
1205 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1206 {
1207 	struct net_device *dev = ptr;
1208 
1209 	if (dev->nd_net != &init_net)
1210 		return NOTIFY_DONE;
1211 
1212 	switch (event) {
1213 	case NETDEV_CHANGEADDR:
1214 		neigh_changeaddr(&arp_tbl, dev);
1215 		rt_cache_flush(0);
1216 		break;
1217 	default:
1218 		break;
1219 	}
1220 
1221 	return NOTIFY_DONE;
1222 }
1223 
1224 static struct notifier_block arp_netdev_notifier = {
1225 	.notifier_call = arp_netdev_event,
1226 };
1227 
1228 /* Note, that it is not on notifier chain.
1229    It is necessary, that this routine was called after route cache will be
1230    flushed.
1231  */
1232 void arp_ifdown(struct net_device *dev)
1233 {
1234 	neigh_ifdown(&arp_tbl, dev);
1235 }
1236 
1237 
1238 /*
1239  *	Called once on startup.
1240  */
1241 
1242 static struct packet_type arp_packet_type = {
1243 	.type =	__constant_htons(ETH_P_ARP),
1244 	.func =	arp_rcv,
1245 };
1246 
1247 static int arp_proc_init(void);
1248 
1249 void __init arp_init(void)
1250 {
1251 	neigh_table_init(&arp_tbl);
1252 
1253 	dev_add_pack(&arp_packet_type);
1254 	arp_proc_init();
1255 #ifdef CONFIG_SYSCTL
1256 	neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1257 			      NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1258 #endif
1259 	register_netdevice_notifier(&arp_netdev_notifier);
1260 }
1261 
1262 #ifdef CONFIG_PROC_FS
1263 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1264 
1265 /* ------------------------------------------------------------------------ */
1266 /*
1267  *	ax25 -> ASCII conversion
1268  */
1269 static char *ax2asc2(ax25_address *a, char *buf)
1270 {
1271 	char c, *s;
1272 	int n;
1273 
1274 	for (n = 0, s = buf; n < 6; n++) {
1275 		c = (a->ax25_call[n] >> 1) & 0x7F;
1276 
1277 		if (c != ' ') *s++ = c;
1278 	}
1279 
1280 	*s++ = '-';
1281 
1282 	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1283 		*s++ = '1';
1284 		n -= 10;
1285 	}
1286 
1287 	*s++ = n + '0';
1288 	*s++ = '\0';
1289 
1290 	if (*buf == '\0' || *buf == '-')
1291 	   return "*";
1292 
1293 	return buf;
1294 
1295 }
1296 #endif /* CONFIG_AX25 */
1297 
1298 #define HBUFFERLEN 30
1299 
1300 static void arp_format_neigh_entry(struct seq_file *seq,
1301 				   struct neighbour *n)
1302 {
1303 	char hbuffer[HBUFFERLEN];
1304 	const char hexbuf[] = "0123456789ABCDEF";
1305 	int k, j;
1306 	char tbuf[16];
1307 	struct net_device *dev = n->dev;
1308 	int hatype = dev->type;
1309 
1310 	read_lock(&n->lock);
1311 	/* Convert hardware address to XX:XX:XX:XX ... form. */
1312 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1313 	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1314 		ax2asc2((ax25_address *)n->ha, hbuffer);
1315 	else {
1316 #endif
1317 	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1318 		hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1319 		hbuffer[k++] = hexbuf[n->ha[j] & 15];
1320 		hbuffer[k++] = ':';
1321 	}
1322 	hbuffer[--k] = 0;
1323 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1324 	}
1325 #endif
1326 	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1327 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1328 		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1329 	read_unlock(&n->lock);
1330 }
1331 
1332 static void arp_format_pneigh_entry(struct seq_file *seq,
1333 				    struct pneigh_entry *n)
1334 {
1335 	struct net_device *dev = n->dev;
1336 	int hatype = dev ? dev->type : 0;
1337 	char tbuf[16];
1338 
1339 	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1340 	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1341 		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1342 		   dev ? dev->name : "*");
1343 }
1344 
1345 static int arp_seq_show(struct seq_file *seq, void *v)
1346 {
1347 	if (v == SEQ_START_TOKEN) {
1348 		seq_puts(seq, "IP address       HW type     Flags       "
1349 			      "HW address            Mask     Device\n");
1350 	} else {
1351 		struct neigh_seq_state *state = seq->private;
1352 
1353 		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1354 			arp_format_pneigh_entry(seq, v);
1355 		else
1356 			arp_format_neigh_entry(seq, v);
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1363 {
1364 	/* Don't want to confuse "arp -a" w/ magic entries,
1365 	 * so we tell the generic iterator to skip NUD_NOARP.
1366 	 */
1367 	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1368 }
1369 
1370 /* ------------------------------------------------------------------------ */
1371 
1372 static const struct seq_operations arp_seq_ops = {
1373 	.start  = arp_seq_start,
1374 	.next   = neigh_seq_next,
1375 	.stop   = neigh_seq_stop,
1376 	.show   = arp_seq_show,
1377 };
1378 
1379 static int arp_seq_open(struct inode *inode, struct file *file)
1380 {
1381 	return seq_open_private(file, &arp_seq_ops,
1382 			sizeof(struct neigh_seq_state));
1383 }
1384 
1385 static const struct file_operations arp_seq_fops = {
1386 	.owner		= THIS_MODULE,
1387 	.open           = arp_seq_open,
1388 	.read           = seq_read,
1389 	.llseek         = seq_lseek,
1390 	.release	= seq_release_private,
1391 };
1392 
1393 static int __init arp_proc_init(void)
1394 {
1395 	if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1396 		return -ENOMEM;
1397 	return 0;
1398 }
1399 
1400 #else /* CONFIG_PROC_FS */
1401 
1402 static int __init arp_proc_init(void)
1403 {
1404 	return 0;
1405 }
1406 
1407 #endif /* CONFIG_PROC_FS */
1408 
1409 EXPORT_SYMBOL(arp_broken_ops);
1410 EXPORT_SYMBOL(arp_find);
1411 EXPORT_SYMBOL(arp_create);
1412 EXPORT_SYMBOL(arp_xmit);
1413 EXPORT_SYMBOL(arp_send);
1414 EXPORT_SYMBOL(arp_tbl);
1415 
1416 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1417 EXPORT_SYMBOL(clip_tbl_hook);
1418 #endif
1419