xref: /openbmc/linux/net/core/sock.c (revision f845172531fb7410c7fb7780b1a6e51ee6df7d52)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
96 #include <linux/in.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
113 
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
116 
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
126 #include <net/cls_cgroup.h>
127 
128 #include <linux/filter.h>
129 
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133 
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140 
141 /*
142  * Make lock validator output more readable. (we pre-construct these
143  * strings build-time, so that runtime initialization of socket
144  * locks is fast):
145  */
146 static const char *const af_family_key_strings[AF_MAX+1] = {
147   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
148   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
149   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
150   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
151   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
152   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
153   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
154   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
155   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
156   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
157   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
158   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
159   "sk_lock-AF_IEEE802154",
160   "sk_lock-AF_MAX"
161 };
162 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
163   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
164   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
165   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
166   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
167   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
168   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
169   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
170   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
171   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
172   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
173   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
174   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
175   "slock-AF_IEEE802154",
176   "slock-AF_MAX"
177 };
178 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
179   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
180   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
181   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
182   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
183   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
184   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
185   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
186   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
187   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
188   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
189   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
190   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
191   "clock-AF_IEEE802154",
192   "clock-AF_MAX"
193 };
194 
195 /*
196  * sk_callback_lock locking rules are per-address-family,
197  * so split the lock classes by using a per-AF key:
198  */
199 static struct lock_class_key af_callback_keys[AF_MAX];
200 
201 /* Take into consideration the size of the struct sk_buff overhead in the
202  * determination of these values, since that is non-constant across
203  * platforms.  This makes socket queueing behavior and performance
204  * not depend upon such differences.
205  */
206 #define _SK_MEM_PACKETS		256
207 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
208 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
209 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 
211 /* Run time adjustable parameters. */
212 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
213 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
214 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
215 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 
217 /* Maximal space eaten by iovec or ancilliary data plus some space */
218 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
219 EXPORT_SYMBOL(sysctl_optmem_max);
220 
221 #if defined(CONFIG_CGROUPS) && !defined(CONFIG_NET_CLS_CGROUP)
222 int net_cls_subsys_id = -1;
223 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
224 #endif
225 
226 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
227 {
228 	struct timeval tv;
229 
230 	if (optlen < sizeof(tv))
231 		return -EINVAL;
232 	if (copy_from_user(&tv, optval, sizeof(tv)))
233 		return -EFAULT;
234 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
235 		return -EDOM;
236 
237 	if (tv.tv_sec < 0) {
238 		static int warned __read_mostly;
239 
240 		*timeo_p = 0;
241 		if (warned < 10 && net_ratelimit()) {
242 			warned++;
243 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
244 			       "tries to set negative timeout\n",
245 				current->comm, task_pid_nr(current));
246 		}
247 		return 0;
248 	}
249 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
250 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
251 		return 0;
252 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
253 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
254 	return 0;
255 }
256 
257 static void sock_warn_obsolete_bsdism(const char *name)
258 {
259 	static int warned;
260 	static char warncomm[TASK_COMM_LEN];
261 	if (strcmp(warncomm, current->comm) && warned < 5) {
262 		strcpy(warncomm,  current->comm);
263 		printk(KERN_WARNING "process `%s' is using obsolete "
264 		       "%s SO_BSDCOMPAT\n", warncomm, name);
265 		warned++;
266 	}
267 }
268 
269 static void sock_disable_timestamp(struct sock *sk, int flag)
270 {
271 	if (sock_flag(sk, flag)) {
272 		sock_reset_flag(sk, flag);
273 		if (!sock_flag(sk, SOCK_TIMESTAMP) &&
274 		    !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
275 			net_disable_timestamp();
276 		}
277 	}
278 }
279 
280 
281 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
282 {
283 	int err;
284 	int skb_len;
285 	unsigned long flags;
286 	struct sk_buff_head *list = &sk->sk_receive_queue;
287 
288 	/* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
289 	   number of warnings when compiling with -W --ANK
290 	 */
291 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
292 	    (unsigned)sk->sk_rcvbuf) {
293 		atomic_inc(&sk->sk_drops);
294 		return -ENOMEM;
295 	}
296 
297 	err = sk_filter(sk, skb);
298 	if (err)
299 		return err;
300 
301 	if (!sk_rmem_schedule(sk, skb->truesize)) {
302 		atomic_inc(&sk->sk_drops);
303 		return -ENOBUFS;
304 	}
305 
306 	skb->dev = NULL;
307 	skb_set_owner_r(skb, sk);
308 
309 	/* Cache the SKB length before we tack it onto the receive
310 	 * queue.  Once it is added it no longer belongs to us and
311 	 * may be freed by other threads of control pulling packets
312 	 * from the queue.
313 	 */
314 	skb_len = skb->len;
315 
316 	/* we escape from rcu protected region, make sure we dont leak
317 	 * a norefcounted dst
318 	 */
319 	skb_dst_force(skb);
320 
321 	spin_lock_irqsave(&list->lock, flags);
322 	skb->dropcount = atomic_read(&sk->sk_drops);
323 	__skb_queue_tail(list, skb);
324 	spin_unlock_irqrestore(&list->lock, flags);
325 
326 	if (!sock_flag(sk, SOCK_DEAD))
327 		sk->sk_data_ready(sk, skb_len);
328 	return 0;
329 }
330 EXPORT_SYMBOL(sock_queue_rcv_skb);
331 
332 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
333 {
334 	int rc = NET_RX_SUCCESS;
335 
336 	if (sk_filter(sk, skb))
337 		goto discard_and_relse;
338 
339 	skb->dev = NULL;
340 
341 	if (sk_rcvqueues_full(sk, skb)) {
342 		atomic_inc(&sk->sk_drops);
343 		goto discard_and_relse;
344 	}
345 	if (nested)
346 		bh_lock_sock_nested(sk);
347 	else
348 		bh_lock_sock(sk);
349 	if (!sock_owned_by_user(sk)) {
350 		/*
351 		 * trylock + unlock semantics:
352 		 */
353 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
354 
355 		rc = sk_backlog_rcv(sk, skb);
356 
357 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
358 	} else if (sk_add_backlog(sk, skb)) {
359 		bh_unlock_sock(sk);
360 		atomic_inc(&sk->sk_drops);
361 		goto discard_and_relse;
362 	}
363 
364 	bh_unlock_sock(sk);
365 out:
366 	sock_put(sk);
367 	return rc;
368 discard_and_relse:
369 	kfree_skb(skb);
370 	goto out;
371 }
372 EXPORT_SYMBOL(sk_receive_skb);
373 
374 void sk_reset_txq(struct sock *sk)
375 {
376 	sk_tx_queue_clear(sk);
377 }
378 EXPORT_SYMBOL(sk_reset_txq);
379 
380 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
381 {
382 	struct dst_entry *dst = __sk_dst_get(sk);
383 
384 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
385 		sk_tx_queue_clear(sk);
386 		rcu_assign_pointer(sk->sk_dst_cache, NULL);
387 		dst_release(dst);
388 		return NULL;
389 	}
390 
391 	return dst;
392 }
393 EXPORT_SYMBOL(__sk_dst_check);
394 
395 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
396 {
397 	struct dst_entry *dst = sk_dst_get(sk);
398 
399 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
400 		sk_dst_reset(sk);
401 		dst_release(dst);
402 		return NULL;
403 	}
404 
405 	return dst;
406 }
407 EXPORT_SYMBOL(sk_dst_check);
408 
409 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
410 {
411 	int ret = -ENOPROTOOPT;
412 #ifdef CONFIG_NETDEVICES
413 	struct net *net = sock_net(sk);
414 	char devname[IFNAMSIZ];
415 	int index;
416 
417 	/* Sorry... */
418 	ret = -EPERM;
419 	if (!capable(CAP_NET_RAW))
420 		goto out;
421 
422 	ret = -EINVAL;
423 	if (optlen < 0)
424 		goto out;
425 
426 	/* Bind this socket to a particular device like "eth0",
427 	 * as specified in the passed interface name. If the
428 	 * name is "" or the option length is zero the socket
429 	 * is not bound.
430 	 */
431 	if (optlen > IFNAMSIZ - 1)
432 		optlen = IFNAMSIZ - 1;
433 	memset(devname, 0, sizeof(devname));
434 
435 	ret = -EFAULT;
436 	if (copy_from_user(devname, optval, optlen))
437 		goto out;
438 
439 	index = 0;
440 	if (devname[0] != '\0') {
441 		struct net_device *dev;
442 
443 		rcu_read_lock();
444 		dev = dev_get_by_name_rcu(net, devname);
445 		if (dev)
446 			index = dev->ifindex;
447 		rcu_read_unlock();
448 		ret = -ENODEV;
449 		if (!dev)
450 			goto out;
451 	}
452 
453 	lock_sock(sk);
454 	sk->sk_bound_dev_if = index;
455 	sk_dst_reset(sk);
456 	release_sock(sk);
457 
458 	ret = 0;
459 
460 out:
461 #endif
462 
463 	return ret;
464 }
465 
466 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
467 {
468 	if (valbool)
469 		sock_set_flag(sk, bit);
470 	else
471 		sock_reset_flag(sk, bit);
472 }
473 
474 /*
475  *	This is meant for all protocols to use and covers goings on
476  *	at the socket level. Everything here is generic.
477  */
478 
479 int sock_setsockopt(struct socket *sock, int level, int optname,
480 		    char __user *optval, unsigned int optlen)
481 {
482 	struct sock *sk = sock->sk;
483 	int val;
484 	int valbool;
485 	struct linger ling;
486 	int ret = 0;
487 
488 	/*
489 	 *	Options without arguments
490 	 */
491 
492 	if (optname == SO_BINDTODEVICE)
493 		return sock_bindtodevice(sk, optval, optlen);
494 
495 	if (optlen < sizeof(int))
496 		return -EINVAL;
497 
498 	if (get_user(val, (int __user *)optval))
499 		return -EFAULT;
500 
501 	valbool = val ? 1 : 0;
502 
503 	lock_sock(sk);
504 
505 	switch (optname) {
506 	case SO_DEBUG:
507 		if (val && !capable(CAP_NET_ADMIN))
508 			ret = -EACCES;
509 		else
510 			sock_valbool_flag(sk, SOCK_DBG, valbool);
511 		break;
512 	case SO_REUSEADDR:
513 		sk->sk_reuse = valbool;
514 		break;
515 	case SO_TYPE:
516 	case SO_PROTOCOL:
517 	case SO_DOMAIN:
518 	case SO_ERROR:
519 		ret = -ENOPROTOOPT;
520 		break;
521 	case SO_DONTROUTE:
522 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
523 		break;
524 	case SO_BROADCAST:
525 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
526 		break;
527 	case SO_SNDBUF:
528 		/* Don't error on this BSD doesn't and if you think
529 		   about it this is right. Otherwise apps have to
530 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
531 		   are treated in BSD as hints */
532 
533 		if (val > sysctl_wmem_max)
534 			val = sysctl_wmem_max;
535 set_sndbuf:
536 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
537 		if ((val * 2) < SOCK_MIN_SNDBUF)
538 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
539 		else
540 			sk->sk_sndbuf = val * 2;
541 
542 		/*
543 		 *	Wake up sending tasks if we
544 		 *	upped the value.
545 		 */
546 		sk->sk_write_space(sk);
547 		break;
548 
549 	case SO_SNDBUFFORCE:
550 		if (!capable(CAP_NET_ADMIN)) {
551 			ret = -EPERM;
552 			break;
553 		}
554 		goto set_sndbuf;
555 
556 	case SO_RCVBUF:
557 		/* Don't error on this BSD doesn't and if you think
558 		   about it this is right. Otherwise apps have to
559 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
560 		   are treated in BSD as hints */
561 
562 		if (val > sysctl_rmem_max)
563 			val = sysctl_rmem_max;
564 set_rcvbuf:
565 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
566 		/*
567 		 * We double it on the way in to account for
568 		 * "struct sk_buff" etc. overhead.   Applications
569 		 * assume that the SO_RCVBUF setting they make will
570 		 * allow that much actual data to be received on that
571 		 * socket.
572 		 *
573 		 * Applications are unaware that "struct sk_buff" and
574 		 * other overheads allocate from the receive buffer
575 		 * during socket buffer allocation.
576 		 *
577 		 * And after considering the possible alternatives,
578 		 * returning the value we actually used in getsockopt
579 		 * is the most desirable behavior.
580 		 */
581 		if ((val * 2) < SOCK_MIN_RCVBUF)
582 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
583 		else
584 			sk->sk_rcvbuf = val * 2;
585 		break;
586 
587 	case SO_RCVBUFFORCE:
588 		if (!capable(CAP_NET_ADMIN)) {
589 			ret = -EPERM;
590 			break;
591 		}
592 		goto set_rcvbuf;
593 
594 	case SO_KEEPALIVE:
595 #ifdef CONFIG_INET
596 		if (sk->sk_protocol == IPPROTO_TCP)
597 			tcp_set_keepalive(sk, valbool);
598 #endif
599 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
600 		break;
601 
602 	case SO_OOBINLINE:
603 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
604 		break;
605 
606 	case SO_NO_CHECK:
607 		sk->sk_no_check = valbool;
608 		break;
609 
610 	case SO_PRIORITY:
611 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
612 			sk->sk_priority = val;
613 		else
614 			ret = -EPERM;
615 		break;
616 
617 	case SO_LINGER:
618 		if (optlen < sizeof(ling)) {
619 			ret = -EINVAL;	/* 1003.1g */
620 			break;
621 		}
622 		if (copy_from_user(&ling, optval, sizeof(ling))) {
623 			ret = -EFAULT;
624 			break;
625 		}
626 		if (!ling.l_onoff)
627 			sock_reset_flag(sk, SOCK_LINGER);
628 		else {
629 #if (BITS_PER_LONG == 32)
630 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
631 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
632 			else
633 #endif
634 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
635 			sock_set_flag(sk, SOCK_LINGER);
636 		}
637 		break;
638 
639 	case SO_BSDCOMPAT:
640 		sock_warn_obsolete_bsdism("setsockopt");
641 		break;
642 
643 	case SO_PASSCRED:
644 		if (valbool)
645 			set_bit(SOCK_PASSCRED, &sock->flags);
646 		else
647 			clear_bit(SOCK_PASSCRED, &sock->flags);
648 		break;
649 
650 	case SO_TIMESTAMP:
651 	case SO_TIMESTAMPNS:
652 		if (valbool)  {
653 			if (optname == SO_TIMESTAMP)
654 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
655 			else
656 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
657 			sock_set_flag(sk, SOCK_RCVTSTAMP);
658 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
659 		} else {
660 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
661 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
662 		}
663 		break;
664 
665 	case SO_TIMESTAMPING:
666 		if (val & ~SOF_TIMESTAMPING_MASK) {
667 			ret = -EINVAL;
668 			break;
669 		}
670 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
671 				  val & SOF_TIMESTAMPING_TX_HARDWARE);
672 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
673 				  val & SOF_TIMESTAMPING_TX_SOFTWARE);
674 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
675 				  val & SOF_TIMESTAMPING_RX_HARDWARE);
676 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
677 			sock_enable_timestamp(sk,
678 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
679 		else
680 			sock_disable_timestamp(sk,
681 					       SOCK_TIMESTAMPING_RX_SOFTWARE);
682 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
683 				  val & SOF_TIMESTAMPING_SOFTWARE);
684 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
685 				  val & SOF_TIMESTAMPING_SYS_HARDWARE);
686 		sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
687 				  val & SOF_TIMESTAMPING_RAW_HARDWARE);
688 		break;
689 
690 	case SO_RCVLOWAT:
691 		if (val < 0)
692 			val = INT_MAX;
693 		sk->sk_rcvlowat = val ? : 1;
694 		break;
695 
696 	case SO_RCVTIMEO:
697 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
698 		break;
699 
700 	case SO_SNDTIMEO:
701 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
702 		break;
703 
704 	case SO_ATTACH_FILTER:
705 		ret = -EINVAL;
706 		if (optlen == sizeof(struct sock_fprog)) {
707 			struct sock_fprog fprog;
708 
709 			ret = -EFAULT;
710 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
711 				break;
712 
713 			ret = sk_attach_filter(&fprog, sk);
714 		}
715 		break;
716 
717 	case SO_DETACH_FILTER:
718 		ret = sk_detach_filter(sk);
719 		break;
720 
721 	case SO_PASSSEC:
722 		if (valbool)
723 			set_bit(SOCK_PASSSEC, &sock->flags);
724 		else
725 			clear_bit(SOCK_PASSSEC, &sock->flags);
726 		break;
727 	case SO_MARK:
728 		if (!capable(CAP_NET_ADMIN))
729 			ret = -EPERM;
730 		else
731 			sk->sk_mark = val;
732 		break;
733 
734 		/* We implement the SO_SNDLOWAT etc to
735 		   not be settable (1003.1g 5.3) */
736 	case SO_RXQ_OVFL:
737 		if (valbool)
738 			sock_set_flag(sk, SOCK_RXQ_OVFL);
739 		else
740 			sock_reset_flag(sk, SOCK_RXQ_OVFL);
741 		break;
742 	default:
743 		ret = -ENOPROTOOPT;
744 		break;
745 	}
746 	release_sock(sk);
747 	return ret;
748 }
749 EXPORT_SYMBOL(sock_setsockopt);
750 
751 
752 int sock_getsockopt(struct socket *sock, int level, int optname,
753 		    char __user *optval, int __user *optlen)
754 {
755 	struct sock *sk = sock->sk;
756 
757 	union {
758 		int val;
759 		struct linger ling;
760 		struct timeval tm;
761 	} v;
762 
763 	int lv = sizeof(int);
764 	int len;
765 
766 	if (get_user(len, optlen))
767 		return -EFAULT;
768 	if (len < 0)
769 		return -EINVAL;
770 
771 	memset(&v, 0, sizeof(v));
772 
773 	switch (optname) {
774 	case SO_DEBUG:
775 		v.val = sock_flag(sk, SOCK_DBG);
776 		break;
777 
778 	case SO_DONTROUTE:
779 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
780 		break;
781 
782 	case SO_BROADCAST:
783 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
784 		break;
785 
786 	case SO_SNDBUF:
787 		v.val = sk->sk_sndbuf;
788 		break;
789 
790 	case SO_RCVBUF:
791 		v.val = sk->sk_rcvbuf;
792 		break;
793 
794 	case SO_REUSEADDR:
795 		v.val = sk->sk_reuse;
796 		break;
797 
798 	case SO_KEEPALIVE:
799 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
800 		break;
801 
802 	case SO_TYPE:
803 		v.val = sk->sk_type;
804 		break;
805 
806 	case SO_PROTOCOL:
807 		v.val = sk->sk_protocol;
808 		break;
809 
810 	case SO_DOMAIN:
811 		v.val = sk->sk_family;
812 		break;
813 
814 	case SO_ERROR:
815 		v.val = -sock_error(sk);
816 		if (v.val == 0)
817 			v.val = xchg(&sk->sk_err_soft, 0);
818 		break;
819 
820 	case SO_OOBINLINE:
821 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
822 		break;
823 
824 	case SO_NO_CHECK:
825 		v.val = sk->sk_no_check;
826 		break;
827 
828 	case SO_PRIORITY:
829 		v.val = sk->sk_priority;
830 		break;
831 
832 	case SO_LINGER:
833 		lv		= sizeof(v.ling);
834 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
835 		v.ling.l_linger	= sk->sk_lingertime / HZ;
836 		break;
837 
838 	case SO_BSDCOMPAT:
839 		sock_warn_obsolete_bsdism("getsockopt");
840 		break;
841 
842 	case SO_TIMESTAMP:
843 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
844 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
845 		break;
846 
847 	case SO_TIMESTAMPNS:
848 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
849 		break;
850 
851 	case SO_TIMESTAMPING:
852 		v.val = 0;
853 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
854 			v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
855 		if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
856 			v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
857 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
858 			v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
859 		if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
860 			v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
861 		if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
862 			v.val |= SOF_TIMESTAMPING_SOFTWARE;
863 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
864 			v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
865 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
866 			v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
867 		break;
868 
869 	case SO_RCVTIMEO:
870 		lv = sizeof(struct timeval);
871 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
872 			v.tm.tv_sec = 0;
873 			v.tm.tv_usec = 0;
874 		} else {
875 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
876 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
877 		}
878 		break;
879 
880 	case SO_SNDTIMEO:
881 		lv = sizeof(struct timeval);
882 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
883 			v.tm.tv_sec = 0;
884 			v.tm.tv_usec = 0;
885 		} else {
886 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
887 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
888 		}
889 		break;
890 
891 	case SO_RCVLOWAT:
892 		v.val = sk->sk_rcvlowat;
893 		break;
894 
895 	case SO_SNDLOWAT:
896 		v.val = 1;
897 		break;
898 
899 	case SO_PASSCRED:
900 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
901 		break;
902 
903 	case SO_PEERCRED:
904 		if (len > sizeof(sk->sk_peercred))
905 			len = sizeof(sk->sk_peercred);
906 		if (copy_to_user(optval, &sk->sk_peercred, len))
907 			return -EFAULT;
908 		goto lenout;
909 
910 	case SO_PEERNAME:
911 	{
912 		char address[128];
913 
914 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
915 			return -ENOTCONN;
916 		if (lv < len)
917 			return -EINVAL;
918 		if (copy_to_user(optval, address, len))
919 			return -EFAULT;
920 		goto lenout;
921 	}
922 
923 	/* Dubious BSD thing... Probably nobody even uses it, but
924 	 * the UNIX standard wants it for whatever reason... -DaveM
925 	 */
926 	case SO_ACCEPTCONN:
927 		v.val = sk->sk_state == TCP_LISTEN;
928 		break;
929 
930 	case SO_PASSSEC:
931 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
932 		break;
933 
934 	case SO_PEERSEC:
935 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
936 
937 	case SO_MARK:
938 		v.val = sk->sk_mark;
939 		break;
940 
941 	case SO_RXQ_OVFL:
942 		v.val = !!sock_flag(sk, SOCK_RXQ_OVFL);
943 		break;
944 
945 	default:
946 		return -ENOPROTOOPT;
947 	}
948 
949 	if (len > lv)
950 		len = lv;
951 	if (copy_to_user(optval, &v, len))
952 		return -EFAULT;
953 lenout:
954 	if (put_user(len, optlen))
955 		return -EFAULT;
956 	return 0;
957 }
958 
959 /*
960  * Initialize an sk_lock.
961  *
962  * (We also register the sk_lock with the lock validator.)
963  */
964 static inline void sock_lock_init(struct sock *sk)
965 {
966 	sock_lock_init_class_and_name(sk,
967 			af_family_slock_key_strings[sk->sk_family],
968 			af_family_slock_keys + sk->sk_family,
969 			af_family_key_strings[sk->sk_family],
970 			af_family_keys + sk->sk_family);
971 }
972 
973 /*
974  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
975  * even temporarly, because of RCU lookups. sk_node should also be left as is.
976  */
977 static void sock_copy(struct sock *nsk, const struct sock *osk)
978 {
979 #ifdef CONFIG_SECURITY_NETWORK
980 	void *sptr = nsk->sk_security;
981 #endif
982 	BUILD_BUG_ON(offsetof(struct sock, sk_copy_start) !=
983 		     sizeof(osk->sk_node) + sizeof(osk->sk_refcnt) +
984 		     sizeof(osk->sk_tx_queue_mapping));
985 	memcpy(&nsk->sk_copy_start, &osk->sk_copy_start,
986 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_copy_start));
987 #ifdef CONFIG_SECURITY_NETWORK
988 	nsk->sk_security = sptr;
989 	security_sk_clone(osk, nsk);
990 #endif
991 }
992 
993 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
994 		int family)
995 {
996 	struct sock *sk;
997 	struct kmem_cache *slab;
998 
999 	slab = prot->slab;
1000 	if (slab != NULL) {
1001 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1002 		if (!sk)
1003 			return sk;
1004 		if (priority & __GFP_ZERO) {
1005 			/*
1006 			 * caches using SLAB_DESTROY_BY_RCU should let
1007 			 * sk_node.next un-modified. Special care is taken
1008 			 * when initializing object to zero.
1009 			 */
1010 			if (offsetof(struct sock, sk_node.next) != 0)
1011 				memset(sk, 0, offsetof(struct sock, sk_node.next));
1012 			memset(&sk->sk_node.pprev, 0,
1013 			       prot->obj_size - offsetof(struct sock,
1014 							 sk_node.pprev));
1015 		}
1016 	}
1017 	else
1018 		sk = kmalloc(prot->obj_size, priority);
1019 
1020 	if (sk != NULL) {
1021 		kmemcheck_annotate_bitfield(sk, flags);
1022 
1023 		if (security_sk_alloc(sk, family, priority))
1024 			goto out_free;
1025 
1026 		if (!try_module_get(prot->owner))
1027 			goto out_free_sec;
1028 		sk_tx_queue_clear(sk);
1029 	}
1030 
1031 	return sk;
1032 
1033 out_free_sec:
1034 	security_sk_free(sk);
1035 out_free:
1036 	if (slab != NULL)
1037 		kmem_cache_free(slab, sk);
1038 	else
1039 		kfree(sk);
1040 	return NULL;
1041 }
1042 
1043 static void sk_prot_free(struct proto *prot, struct sock *sk)
1044 {
1045 	struct kmem_cache *slab;
1046 	struct module *owner;
1047 
1048 	owner = prot->owner;
1049 	slab = prot->slab;
1050 
1051 	security_sk_free(sk);
1052 	if (slab != NULL)
1053 		kmem_cache_free(slab, sk);
1054 	else
1055 		kfree(sk);
1056 	module_put(owner);
1057 }
1058 
1059 #ifdef CONFIG_CGROUPS
1060 void sock_update_classid(struct sock *sk)
1061 {
1062 	u32 classid = task_cls_classid(current);
1063 
1064 	if (classid && classid != sk->sk_classid)
1065 		sk->sk_classid = classid;
1066 }
1067 #endif
1068 
1069 /**
1070  *	sk_alloc - All socket objects are allocated here
1071  *	@net: the applicable net namespace
1072  *	@family: protocol family
1073  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1074  *	@prot: struct proto associated with this new sock instance
1075  */
1076 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1077 		      struct proto *prot)
1078 {
1079 	struct sock *sk;
1080 
1081 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1082 	if (sk) {
1083 		sk->sk_family = family;
1084 		/*
1085 		 * See comment in struct sock definition to understand
1086 		 * why we need sk_prot_creator -acme
1087 		 */
1088 		sk->sk_prot = sk->sk_prot_creator = prot;
1089 		sock_lock_init(sk);
1090 		sock_net_set(sk, get_net(net));
1091 		atomic_set(&sk->sk_wmem_alloc, 1);
1092 
1093 		sock_update_classid(sk);
1094 	}
1095 
1096 	return sk;
1097 }
1098 EXPORT_SYMBOL(sk_alloc);
1099 
1100 static void __sk_free(struct sock *sk)
1101 {
1102 	struct sk_filter *filter;
1103 
1104 	if (sk->sk_destruct)
1105 		sk->sk_destruct(sk);
1106 
1107 	filter = rcu_dereference_check(sk->sk_filter,
1108 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1109 	if (filter) {
1110 		sk_filter_uncharge(sk, filter);
1111 		rcu_assign_pointer(sk->sk_filter, NULL);
1112 	}
1113 
1114 	sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1115 	sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1116 
1117 	if (atomic_read(&sk->sk_omem_alloc))
1118 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1119 		       __func__, atomic_read(&sk->sk_omem_alloc));
1120 
1121 	put_net(sock_net(sk));
1122 	sk_prot_free(sk->sk_prot_creator, sk);
1123 }
1124 
1125 void sk_free(struct sock *sk)
1126 {
1127 	/*
1128 	 * We substract one from sk_wmem_alloc and can know if
1129 	 * some packets are still in some tx queue.
1130 	 * If not null, sock_wfree() will call __sk_free(sk) later
1131 	 */
1132 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1133 		__sk_free(sk);
1134 }
1135 EXPORT_SYMBOL(sk_free);
1136 
1137 /*
1138  * Last sock_put should drop referrence to sk->sk_net. It has already
1139  * been dropped in sk_change_net. Taking referrence to stopping namespace
1140  * is not an option.
1141  * Take referrence to a socket to remove it from hash _alive_ and after that
1142  * destroy it in the context of init_net.
1143  */
1144 void sk_release_kernel(struct sock *sk)
1145 {
1146 	if (sk == NULL || sk->sk_socket == NULL)
1147 		return;
1148 
1149 	sock_hold(sk);
1150 	sock_release(sk->sk_socket);
1151 	release_net(sock_net(sk));
1152 	sock_net_set(sk, get_net(&init_net));
1153 	sock_put(sk);
1154 }
1155 EXPORT_SYMBOL(sk_release_kernel);
1156 
1157 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1158 {
1159 	struct sock *newsk;
1160 
1161 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1162 	if (newsk != NULL) {
1163 		struct sk_filter *filter;
1164 
1165 		sock_copy(newsk, sk);
1166 
1167 		/* SANITY */
1168 		get_net(sock_net(newsk));
1169 		sk_node_init(&newsk->sk_node);
1170 		sock_lock_init(newsk);
1171 		bh_lock_sock(newsk);
1172 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1173 		newsk->sk_backlog.len = 0;
1174 
1175 		atomic_set(&newsk->sk_rmem_alloc, 0);
1176 		/*
1177 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1178 		 */
1179 		atomic_set(&newsk->sk_wmem_alloc, 1);
1180 		atomic_set(&newsk->sk_omem_alloc, 0);
1181 		skb_queue_head_init(&newsk->sk_receive_queue);
1182 		skb_queue_head_init(&newsk->sk_write_queue);
1183 #ifdef CONFIG_NET_DMA
1184 		skb_queue_head_init(&newsk->sk_async_wait_queue);
1185 #endif
1186 
1187 		spin_lock_init(&newsk->sk_dst_lock);
1188 		rwlock_init(&newsk->sk_callback_lock);
1189 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1190 				af_callback_keys + newsk->sk_family,
1191 				af_family_clock_key_strings[newsk->sk_family]);
1192 
1193 		newsk->sk_dst_cache	= NULL;
1194 		newsk->sk_wmem_queued	= 0;
1195 		newsk->sk_forward_alloc = 0;
1196 		newsk->sk_send_head	= NULL;
1197 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1198 
1199 		sock_reset_flag(newsk, SOCK_DONE);
1200 		skb_queue_head_init(&newsk->sk_error_queue);
1201 
1202 		filter = newsk->sk_filter;
1203 		if (filter != NULL)
1204 			sk_filter_charge(newsk, filter);
1205 
1206 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
1207 			/* It is still raw copy of parent, so invalidate
1208 			 * destructor and make plain sk_free() */
1209 			newsk->sk_destruct = NULL;
1210 			sk_free(newsk);
1211 			newsk = NULL;
1212 			goto out;
1213 		}
1214 
1215 		newsk->sk_err	   = 0;
1216 		newsk->sk_priority = 0;
1217 		/*
1218 		 * Before updating sk_refcnt, we must commit prior changes to memory
1219 		 * (Documentation/RCU/rculist_nulls.txt for details)
1220 		 */
1221 		smp_wmb();
1222 		atomic_set(&newsk->sk_refcnt, 2);
1223 
1224 		/*
1225 		 * Increment the counter in the same struct proto as the master
1226 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1227 		 * is the same as sk->sk_prot->socks, as this field was copied
1228 		 * with memcpy).
1229 		 *
1230 		 * This _changes_ the previous behaviour, where
1231 		 * tcp_create_openreq_child always was incrementing the
1232 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1233 		 * to be taken into account in all callers. -acme
1234 		 */
1235 		sk_refcnt_debug_inc(newsk);
1236 		sk_set_socket(newsk, NULL);
1237 		newsk->sk_wq = NULL;
1238 
1239 		if (newsk->sk_prot->sockets_allocated)
1240 			percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1241 
1242 		if (sock_flag(newsk, SOCK_TIMESTAMP) ||
1243 		    sock_flag(newsk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1244 			net_enable_timestamp();
1245 	}
1246 out:
1247 	return newsk;
1248 }
1249 EXPORT_SYMBOL_GPL(sk_clone);
1250 
1251 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1252 {
1253 	__sk_dst_set(sk, dst);
1254 	sk->sk_route_caps = dst->dev->features;
1255 	if (sk->sk_route_caps & NETIF_F_GSO)
1256 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1257 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1258 	if (sk_can_gso(sk)) {
1259 		if (dst->header_len) {
1260 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1261 		} else {
1262 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1263 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1264 		}
1265 	}
1266 }
1267 EXPORT_SYMBOL_GPL(sk_setup_caps);
1268 
1269 void __init sk_init(void)
1270 {
1271 	if (totalram_pages <= 4096) {
1272 		sysctl_wmem_max = 32767;
1273 		sysctl_rmem_max = 32767;
1274 		sysctl_wmem_default = 32767;
1275 		sysctl_rmem_default = 32767;
1276 	} else if (totalram_pages >= 131072) {
1277 		sysctl_wmem_max = 131071;
1278 		sysctl_rmem_max = 131071;
1279 	}
1280 }
1281 
1282 /*
1283  *	Simple resource managers for sockets.
1284  */
1285 
1286 
1287 /*
1288  * Write buffer destructor automatically called from kfree_skb.
1289  */
1290 void sock_wfree(struct sk_buff *skb)
1291 {
1292 	struct sock *sk = skb->sk;
1293 	unsigned int len = skb->truesize;
1294 
1295 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1296 		/*
1297 		 * Keep a reference on sk_wmem_alloc, this will be released
1298 		 * after sk_write_space() call
1299 		 */
1300 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1301 		sk->sk_write_space(sk);
1302 		len = 1;
1303 	}
1304 	/*
1305 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1306 	 * could not do because of in-flight packets
1307 	 */
1308 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1309 		__sk_free(sk);
1310 }
1311 EXPORT_SYMBOL(sock_wfree);
1312 
1313 /*
1314  * Read buffer destructor automatically called from kfree_skb.
1315  */
1316 void sock_rfree(struct sk_buff *skb)
1317 {
1318 	struct sock *sk = skb->sk;
1319 
1320 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1321 	sk_mem_uncharge(skb->sk, skb->truesize);
1322 }
1323 EXPORT_SYMBOL(sock_rfree);
1324 
1325 
1326 int sock_i_uid(struct sock *sk)
1327 {
1328 	int uid;
1329 
1330 	read_lock(&sk->sk_callback_lock);
1331 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1332 	read_unlock(&sk->sk_callback_lock);
1333 	return uid;
1334 }
1335 EXPORT_SYMBOL(sock_i_uid);
1336 
1337 unsigned long sock_i_ino(struct sock *sk)
1338 {
1339 	unsigned long ino;
1340 
1341 	read_lock(&sk->sk_callback_lock);
1342 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1343 	read_unlock(&sk->sk_callback_lock);
1344 	return ino;
1345 }
1346 EXPORT_SYMBOL(sock_i_ino);
1347 
1348 /*
1349  * Allocate a skb from the socket's send buffer.
1350  */
1351 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1352 			     gfp_t priority)
1353 {
1354 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1355 		struct sk_buff *skb = alloc_skb(size, priority);
1356 		if (skb) {
1357 			skb_set_owner_w(skb, sk);
1358 			return skb;
1359 		}
1360 	}
1361 	return NULL;
1362 }
1363 EXPORT_SYMBOL(sock_wmalloc);
1364 
1365 /*
1366  * Allocate a skb from the socket's receive buffer.
1367  */
1368 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1369 			     gfp_t priority)
1370 {
1371 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1372 		struct sk_buff *skb = alloc_skb(size, priority);
1373 		if (skb) {
1374 			skb_set_owner_r(skb, sk);
1375 			return skb;
1376 		}
1377 	}
1378 	return NULL;
1379 }
1380 
1381 /*
1382  * Allocate a memory block from the socket's option memory buffer.
1383  */
1384 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1385 {
1386 	if ((unsigned)size <= sysctl_optmem_max &&
1387 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1388 		void *mem;
1389 		/* First do the add, to avoid the race if kmalloc
1390 		 * might sleep.
1391 		 */
1392 		atomic_add(size, &sk->sk_omem_alloc);
1393 		mem = kmalloc(size, priority);
1394 		if (mem)
1395 			return mem;
1396 		atomic_sub(size, &sk->sk_omem_alloc);
1397 	}
1398 	return NULL;
1399 }
1400 EXPORT_SYMBOL(sock_kmalloc);
1401 
1402 /*
1403  * Free an option memory block.
1404  */
1405 void sock_kfree_s(struct sock *sk, void *mem, int size)
1406 {
1407 	kfree(mem);
1408 	atomic_sub(size, &sk->sk_omem_alloc);
1409 }
1410 EXPORT_SYMBOL(sock_kfree_s);
1411 
1412 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1413    I think, these locks should be removed for datagram sockets.
1414  */
1415 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1416 {
1417 	DEFINE_WAIT(wait);
1418 
1419 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1420 	for (;;) {
1421 		if (!timeo)
1422 			break;
1423 		if (signal_pending(current))
1424 			break;
1425 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1426 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1427 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1428 			break;
1429 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1430 			break;
1431 		if (sk->sk_err)
1432 			break;
1433 		timeo = schedule_timeout(timeo);
1434 	}
1435 	finish_wait(sk_sleep(sk), &wait);
1436 	return timeo;
1437 }
1438 
1439 
1440 /*
1441  *	Generic send/receive buffer handlers
1442  */
1443 
1444 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1445 				     unsigned long data_len, int noblock,
1446 				     int *errcode)
1447 {
1448 	struct sk_buff *skb;
1449 	gfp_t gfp_mask;
1450 	long timeo;
1451 	int err;
1452 
1453 	gfp_mask = sk->sk_allocation;
1454 	if (gfp_mask & __GFP_WAIT)
1455 		gfp_mask |= __GFP_REPEAT;
1456 
1457 	timeo = sock_sndtimeo(sk, noblock);
1458 	while (1) {
1459 		err = sock_error(sk);
1460 		if (err != 0)
1461 			goto failure;
1462 
1463 		err = -EPIPE;
1464 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1465 			goto failure;
1466 
1467 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1468 			skb = alloc_skb(header_len, gfp_mask);
1469 			if (skb) {
1470 				int npages;
1471 				int i;
1472 
1473 				/* No pages, we're done... */
1474 				if (!data_len)
1475 					break;
1476 
1477 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1478 				skb->truesize += data_len;
1479 				skb_shinfo(skb)->nr_frags = npages;
1480 				for (i = 0; i < npages; i++) {
1481 					struct page *page;
1482 					skb_frag_t *frag;
1483 
1484 					page = alloc_pages(sk->sk_allocation, 0);
1485 					if (!page) {
1486 						err = -ENOBUFS;
1487 						skb_shinfo(skb)->nr_frags = i;
1488 						kfree_skb(skb);
1489 						goto failure;
1490 					}
1491 
1492 					frag = &skb_shinfo(skb)->frags[i];
1493 					frag->page = page;
1494 					frag->page_offset = 0;
1495 					frag->size = (data_len >= PAGE_SIZE ?
1496 						      PAGE_SIZE :
1497 						      data_len);
1498 					data_len -= PAGE_SIZE;
1499 				}
1500 
1501 				/* Full success... */
1502 				break;
1503 			}
1504 			err = -ENOBUFS;
1505 			goto failure;
1506 		}
1507 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1508 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1509 		err = -EAGAIN;
1510 		if (!timeo)
1511 			goto failure;
1512 		if (signal_pending(current))
1513 			goto interrupted;
1514 		timeo = sock_wait_for_wmem(sk, timeo);
1515 	}
1516 
1517 	skb_set_owner_w(skb, sk);
1518 	return skb;
1519 
1520 interrupted:
1521 	err = sock_intr_errno(timeo);
1522 failure:
1523 	*errcode = err;
1524 	return NULL;
1525 }
1526 EXPORT_SYMBOL(sock_alloc_send_pskb);
1527 
1528 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1529 				    int noblock, int *errcode)
1530 {
1531 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1532 }
1533 EXPORT_SYMBOL(sock_alloc_send_skb);
1534 
1535 static void __lock_sock(struct sock *sk)
1536 {
1537 	DEFINE_WAIT(wait);
1538 
1539 	for (;;) {
1540 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1541 					TASK_UNINTERRUPTIBLE);
1542 		spin_unlock_bh(&sk->sk_lock.slock);
1543 		schedule();
1544 		spin_lock_bh(&sk->sk_lock.slock);
1545 		if (!sock_owned_by_user(sk))
1546 			break;
1547 	}
1548 	finish_wait(&sk->sk_lock.wq, &wait);
1549 }
1550 
1551 static void __release_sock(struct sock *sk)
1552 {
1553 	struct sk_buff *skb = sk->sk_backlog.head;
1554 
1555 	do {
1556 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1557 		bh_unlock_sock(sk);
1558 
1559 		do {
1560 			struct sk_buff *next = skb->next;
1561 
1562 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1563 			skb->next = NULL;
1564 			sk_backlog_rcv(sk, skb);
1565 
1566 			/*
1567 			 * We are in process context here with softirqs
1568 			 * disabled, use cond_resched_softirq() to preempt.
1569 			 * This is safe to do because we've taken the backlog
1570 			 * queue private:
1571 			 */
1572 			cond_resched_softirq();
1573 
1574 			skb = next;
1575 		} while (skb != NULL);
1576 
1577 		bh_lock_sock(sk);
1578 	} while ((skb = sk->sk_backlog.head) != NULL);
1579 
1580 	/*
1581 	 * Doing the zeroing here guarantee we can not loop forever
1582 	 * while a wild producer attempts to flood us.
1583 	 */
1584 	sk->sk_backlog.len = 0;
1585 }
1586 
1587 /**
1588  * sk_wait_data - wait for data to arrive at sk_receive_queue
1589  * @sk:    sock to wait on
1590  * @timeo: for how long
1591  *
1592  * Now socket state including sk->sk_err is changed only under lock,
1593  * hence we may omit checks after joining wait queue.
1594  * We check receive queue before schedule() only as optimization;
1595  * it is very likely that release_sock() added new data.
1596  */
1597 int sk_wait_data(struct sock *sk, long *timeo)
1598 {
1599 	int rc;
1600 	DEFINE_WAIT(wait);
1601 
1602 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1603 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1604 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1605 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1606 	finish_wait(sk_sleep(sk), &wait);
1607 	return rc;
1608 }
1609 EXPORT_SYMBOL(sk_wait_data);
1610 
1611 /**
1612  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1613  *	@sk: socket
1614  *	@size: memory size to allocate
1615  *	@kind: allocation type
1616  *
1617  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1618  *	rmem allocation. This function assumes that protocols which have
1619  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1620  */
1621 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1622 {
1623 	struct proto *prot = sk->sk_prot;
1624 	int amt = sk_mem_pages(size);
1625 	int allocated;
1626 
1627 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1628 	allocated = atomic_add_return(amt, prot->memory_allocated);
1629 
1630 	/* Under limit. */
1631 	if (allocated <= prot->sysctl_mem[0]) {
1632 		if (prot->memory_pressure && *prot->memory_pressure)
1633 			*prot->memory_pressure = 0;
1634 		return 1;
1635 	}
1636 
1637 	/* Under pressure. */
1638 	if (allocated > prot->sysctl_mem[1])
1639 		if (prot->enter_memory_pressure)
1640 			prot->enter_memory_pressure(sk);
1641 
1642 	/* Over hard limit. */
1643 	if (allocated > prot->sysctl_mem[2])
1644 		goto suppress_allocation;
1645 
1646 	/* guarantee minimum buffer size under pressure */
1647 	if (kind == SK_MEM_RECV) {
1648 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1649 			return 1;
1650 	} else { /* SK_MEM_SEND */
1651 		if (sk->sk_type == SOCK_STREAM) {
1652 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1653 				return 1;
1654 		} else if (atomic_read(&sk->sk_wmem_alloc) <
1655 			   prot->sysctl_wmem[0])
1656 				return 1;
1657 	}
1658 
1659 	if (prot->memory_pressure) {
1660 		int alloc;
1661 
1662 		if (!*prot->memory_pressure)
1663 			return 1;
1664 		alloc = percpu_counter_read_positive(prot->sockets_allocated);
1665 		if (prot->sysctl_mem[2] > alloc *
1666 		    sk_mem_pages(sk->sk_wmem_queued +
1667 				 atomic_read(&sk->sk_rmem_alloc) +
1668 				 sk->sk_forward_alloc))
1669 			return 1;
1670 	}
1671 
1672 suppress_allocation:
1673 
1674 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1675 		sk_stream_moderate_sndbuf(sk);
1676 
1677 		/* Fail only if socket is _under_ its sndbuf.
1678 		 * In this case we cannot block, so that we have to fail.
1679 		 */
1680 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1681 			return 1;
1682 	}
1683 
1684 	/* Alas. Undo changes. */
1685 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1686 	atomic_sub(amt, prot->memory_allocated);
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL(__sk_mem_schedule);
1690 
1691 /**
1692  *	__sk_reclaim - reclaim memory_allocated
1693  *	@sk: socket
1694  */
1695 void __sk_mem_reclaim(struct sock *sk)
1696 {
1697 	struct proto *prot = sk->sk_prot;
1698 
1699 	atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1700 		   prot->memory_allocated);
1701 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1702 
1703 	if (prot->memory_pressure && *prot->memory_pressure &&
1704 	    (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1705 		*prot->memory_pressure = 0;
1706 }
1707 EXPORT_SYMBOL(__sk_mem_reclaim);
1708 
1709 
1710 /*
1711  * Set of default routines for initialising struct proto_ops when
1712  * the protocol does not support a particular function. In certain
1713  * cases where it makes no sense for a protocol to have a "do nothing"
1714  * function, some default processing is provided.
1715  */
1716 
1717 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1718 {
1719 	return -EOPNOTSUPP;
1720 }
1721 EXPORT_SYMBOL(sock_no_bind);
1722 
1723 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1724 		    int len, int flags)
1725 {
1726 	return -EOPNOTSUPP;
1727 }
1728 EXPORT_SYMBOL(sock_no_connect);
1729 
1730 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1731 {
1732 	return -EOPNOTSUPP;
1733 }
1734 EXPORT_SYMBOL(sock_no_socketpair);
1735 
1736 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1737 {
1738 	return -EOPNOTSUPP;
1739 }
1740 EXPORT_SYMBOL(sock_no_accept);
1741 
1742 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1743 		    int *len, int peer)
1744 {
1745 	return -EOPNOTSUPP;
1746 }
1747 EXPORT_SYMBOL(sock_no_getname);
1748 
1749 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1750 {
1751 	return 0;
1752 }
1753 EXPORT_SYMBOL(sock_no_poll);
1754 
1755 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1756 {
1757 	return -EOPNOTSUPP;
1758 }
1759 EXPORT_SYMBOL(sock_no_ioctl);
1760 
1761 int sock_no_listen(struct socket *sock, int backlog)
1762 {
1763 	return -EOPNOTSUPP;
1764 }
1765 EXPORT_SYMBOL(sock_no_listen);
1766 
1767 int sock_no_shutdown(struct socket *sock, int how)
1768 {
1769 	return -EOPNOTSUPP;
1770 }
1771 EXPORT_SYMBOL(sock_no_shutdown);
1772 
1773 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1774 		    char __user *optval, unsigned int optlen)
1775 {
1776 	return -EOPNOTSUPP;
1777 }
1778 EXPORT_SYMBOL(sock_no_setsockopt);
1779 
1780 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1781 		    char __user *optval, int __user *optlen)
1782 {
1783 	return -EOPNOTSUPP;
1784 }
1785 EXPORT_SYMBOL(sock_no_getsockopt);
1786 
1787 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1788 		    size_t len)
1789 {
1790 	return -EOPNOTSUPP;
1791 }
1792 EXPORT_SYMBOL(sock_no_sendmsg);
1793 
1794 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1795 		    size_t len, int flags)
1796 {
1797 	return -EOPNOTSUPP;
1798 }
1799 EXPORT_SYMBOL(sock_no_recvmsg);
1800 
1801 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1802 {
1803 	/* Mirror missing mmap method error code */
1804 	return -ENODEV;
1805 }
1806 EXPORT_SYMBOL(sock_no_mmap);
1807 
1808 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1809 {
1810 	ssize_t res;
1811 	struct msghdr msg = {.msg_flags = flags};
1812 	struct kvec iov;
1813 	char *kaddr = kmap(page);
1814 	iov.iov_base = kaddr + offset;
1815 	iov.iov_len = size;
1816 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1817 	kunmap(page);
1818 	return res;
1819 }
1820 EXPORT_SYMBOL(sock_no_sendpage);
1821 
1822 /*
1823  *	Default Socket Callbacks
1824  */
1825 
1826 static void sock_def_wakeup(struct sock *sk)
1827 {
1828 	struct socket_wq *wq;
1829 
1830 	rcu_read_lock();
1831 	wq = rcu_dereference(sk->sk_wq);
1832 	if (wq_has_sleeper(wq))
1833 		wake_up_interruptible_all(&wq->wait);
1834 	rcu_read_unlock();
1835 }
1836 
1837 static void sock_def_error_report(struct sock *sk)
1838 {
1839 	struct socket_wq *wq;
1840 
1841 	rcu_read_lock();
1842 	wq = rcu_dereference(sk->sk_wq);
1843 	if (wq_has_sleeper(wq))
1844 		wake_up_interruptible_poll(&wq->wait, POLLERR);
1845 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1846 	rcu_read_unlock();
1847 }
1848 
1849 static void sock_def_readable(struct sock *sk, int len)
1850 {
1851 	struct socket_wq *wq;
1852 
1853 	rcu_read_lock();
1854 	wq = rcu_dereference(sk->sk_wq);
1855 	if (wq_has_sleeper(wq))
1856 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
1857 						POLLRDNORM | POLLRDBAND);
1858 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1859 	rcu_read_unlock();
1860 }
1861 
1862 static void sock_def_write_space(struct sock *sk)
1863 {
1864 	struct socket_wq *wq;
1865 
1866 	rcu_read_lock();
1867 
1868 	/* Do not wake up a writer until he can make "significant"
1869 	 * progress.  --DaveM
1870 	 */
1871 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1872 		wq = rcu_dereference(sk->sk_wq);
1873 		if (wq_has_sleeper(wq))
1874 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
1875 						POLLWRNORM | POLLWRBAND);
1876 
1877 		/* Should agree with poll, otherwise some programs break */
1878 		if (sock_writeable(sk))
1879 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1880 	}
1881 
1882 	rcu_read_unlock();
1883 }
1884 
1885 static void sock_def_destruct(struct sock *sk)
1886 {
1887 	kfree(sk->sk_protinfo);
1888 }
1889 
1890 void sk_send_sigurg(struct sock *sk)
1891 {
1892 	if (sk->sk_socket && sk->sk_socket->file)
1893 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1894 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1895 }
1896 EXPORT_SYMBOL(sk_send_sigurg);
1897 
1898 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1899 		    unsigned long expires)
1900 {
1901 	if (!mod_timer(timer, expires))
1902 		sock_hold(sk);
1903 }
1904 EXPORT_SYMBOL(sk_reset_timer);
1905 
1906 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1907 {
1908 	if (timer_pending(timer) && del_timer(timer))
1909 		__sock_put(sk);
1910 }
1911 EXPORT_SYMBOL(sk_stop_timer);
1912 
1913 void sock_init_data(struct socket *sock, struct sock *sk)
1914 {
1915 	skb_queue_head_init(&sk->sk_receive_queue);
1916 	skb_queue_head_init(&sk->sk_write_queue);
1917 	skb_queue_head_init(&sk->sk_error_queue);
1918 #ifdef CONFIG_NET_DMA
1919 	skb_queue_head_init(&sk->sk_async_wait_queue);
1920 #endif
1921 
1922 	sk->sk_send_head	=	NULL;
1923 
1924 	init_timer(&sk->sk_timer);
1925 
1926 	sk->sk_allocation	=	GFP_KERNEL;
1927 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1928 	sk->sk_sndbuf		=	sysctl_wmem_default;
1929 	sk->sk_state		=	TCP_CLOSE;
1930 	sk_set_socket(sk, sock);
1931 
1932 	sock_set_flag(sk, SOCK_ZAPPED);
1933 
1934 	if (sock) {
1935 		sk->sk_type	=	sock->type;
1936 		sk->sk_wq	=	sock->wq;
1937 		sock->sk	=	sk;
1938 	} else
1939 		sk->sk_wq	=	NULL;
1940 
1941 	spin_lock_init(&sk->sk_dst_lock);
1942 	rwlock_init(&sk->sk_callback_lock);
1943 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1944 			af_callback_keys + sk->sk_family,
1945 			af_family_clock_key_strings[sk->sk_family]);
1946 
1947 	sk->sk_state_change	=	sock_def_wakeup;
1948 	sk->sk_data_ready	=	sock_def_readable;
1949 	sk->sk_write_space	=	sock_def_write_space;
1950 	sk->sk_error_report	=	sock_def_error_report;
1951 	sk->sk_destruct		=	sock_def_destruct;
1952 
1953 	sk->sk_sndmsg_page	=	NULL;
1954 	sk->sk_sndmsg_off	=	0;
1955 
1956 	sk->sk_peercred.pid 	=	0;
1957 	sk->sk_peercred.uid	=	-1;
1958 	sk->sk_peercred.gid	=	-1;
1959 	sk->sk_write_pending	=	0;
1960 	sk->sk_rcvlowat		=	1;
1961 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1962 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1963 
1964 	sk->sk_stamp = ktime_set(-1L, 0);
1965 
1966 	/*
1967 	 * Before updating sk_refcnt, we must commit prior changes to memory
1968 	 * (Documentation/RCU/rculist_nulls.txt for details)
1969 	 */
1970 	smp_wmb();
1971 	atomic_set(&sk->sk_refcnt, 1);
1972 	atomic_set(&sk->sk_drops, 0);
1973 }
1974 EXPORT_SYMBOL(sock_init_data);
1975 
1976 void lock_sock_nested(struct sock *sk, int subclass)
1977 {
1978 	might_sleep();
1979 	spin_lock_bh(&sk->sk_lock.slock);
1980 	if (sk->sk_lock.owned)
1981 		__lock_sock(sk);
1982 	sk->sk_lock.owned = 1;
1983 	spin_unlock(&sk->sk_lock.slock);
1984 	/*
1985 	 * The sk_lock has mutex_lock() semantics here:
1986 	 */
1987 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1988 	local_bh_enable();
1989 }
1990 EXPORT_SYMBOL(lock_sock_nested);
1991 
1992 void release_sock(struct sock *sk)
1993 {
1994 	/*
1995 	 * The sk_lock has mutex_unlock() semantics:
1996 	 */
1997 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1998 
1999 	spin_lock_bh(&sk->sk_lock.slock);
2000 	if (sk->sk_backlog.tail)
2001 		__release_sock(sk);
2002 	sk->sk_lock.owned = 0;
2003 	if (waitqueue_active(&sk->sk_lock.wq))
2004 		wake_up(&sk->sk_lock.wq);
2005 	spin_unlock_bh(&sk->sk_lock.slock);
2006 }
2007 EXPORT_SYMBOL(release_sock);
2008 
2009 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2010 {
2011 	struct timeval tv;
2012 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2013 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2014 	tv = ktime_to_timeval(sk->sk_stamp);
2015 	if (tv.tv_sec == -1)
2016 		return -ENOENT;
2017 	if (tv.tv_sec == 0) {
2018 		sk->sk_stamp = ktime_get_real();
2019 		tv = ktime_to_timeval(sk->sk_stamp);
2020 	}
2021 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2022 }
2023 EXPORT_SYMBOL(sock_get_timestamp);
2024 
2025 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2026 {
2027 	struct timespec ts;
2028 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2029 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2030 	ts = ktime_to_timespec(sk->sk_stamp);
2031 	if (ts.tv_sec == -1)
2032 		return -ENOENT;
2033 	if (ts.tv_sec == 0) {
2034 		sk->sk_stamp = ktime_get_real();
2035 		ts = ktime_to_timespec(sk->sk_stamp);
2036 	}
2037 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2038 }
2039 EXPORT_SYMBOL(sock_get_timestampns);
2040 
2041 void sock_enable_timestamp(struct sock *sk, int flag)
2042 {
2043 	if (!sock_flag(sk, flag)) {
2044 		sock_set_flag(sk, flag);
2045 		/*
2046 		 * we just set one of the two flags which require net
2047 		 * time stamping, but time stamping might have been on
2048 		 * already because of the other one
2049 		 */
2050 		if (!sock_flag(sk,
2051 				flag == SOCK_TIMESTAMP ?
2052 				SOCK_TIMESTAMPING_RX_SOFTWARE :
2053 				SOCK_TIMESTAMP))
2054 			net_enable_timestamp();
2055 	}
2056 }
2057 
2058 /*
2059  *	Get a socket option on an socket.
2060  *
2061  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2062  *	asynchronous errors should be reported by getsockopt. We assume
2063  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2064  */
2065 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2066 			   char __user *optval, int __user *optlen)
2067 {
2068 	struct sock *sk = sock->sk;
2069 
2070 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2071 }
2072 EXPORT_SYMBOL(sock_common_getsockopt);
2073 
2074 #ifdef CONFIG_COMPAT
2075 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2076 				  char __user *optval, int __user *optlen)
2077 {
2078 	struct sock *sk = sock->sk;
2079 
2080 	if (sk->sk_prot->compat_getsockopt != NULL)
2081 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2082 						      optval, optlen);
2083 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2084 }
2085 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2086 #endif
2087 
2088 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2089 			struct msghdr *msg, size_t size, int flags)
2090 {
2091 	struct sock *sk = sock->sk;
2092 	int addr_len = 0;
2093 	int err;
2094 
2095 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2096 				   flags & ~MSG_DONTWAIT, &addr_len);
2097 	if (err >= 0)
2098 		msg->msg_namelen = addr_len;
2099 	return err;
2100 }
2101 EXPORT_SYMBOL(sock_common_recvmsg);
2102 
2103 /*
2104  *	Set socket options on an inet socket.
2105  */
2106 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2107 			   char __user *optval, unsigned int optlen)
2108 {
2109 	struct sock *sk = sock->sk;
2110 
2111 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2112 }
2113 EXPORT_SYMBOL(sock_common_setsockopt);
2114 
2115 #ifdef CONFIG_COMPAT
2116 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2117 				  char __user *optval, unsigned int optlen)
2118 {
2119 	struct sock *sk = sock->sk;
2120 
2121 	if (sk->sk_prot->compat_setsockopt != NULL)
2122 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2123 						      optval, optlen);
2124 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2125 }
2126 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2127 #endif
2128 
2129 void sk_common_release(struct sock *sk)
2130 {
2131 	if (sk->sk_prot->destroy)
2132 		sk->sk_prot->destroy(sk);
2133 
2134 	/*
2135 	 * Observation: when sock_common_release is called, processes have
2136 	 * no access to socket. But net still has.
2137 	 * Step one, detach it from networking:
2138 	 *
2139 	 * A. Remove from hash tables.
2140 	 */
2141 
2142 	sk->sk_prot->unhash(sk);
2143 
2144 	/*
2145 	 * In this point socket cannot receive new packets, but it is possible
2146 	 * that some packets are in flight because some CPU runs receiver and
2147 	 * did hash table lookup before we unhashed socket. They will achieve
2148 	 * receive queue and will be purged by socket destructor.
2149 	 *
2150 	 * Also we still have packets pending on receive queue and probably,
2151 	 * our own packets waiting in device queues. sock_destroy will drain
2152 	 * receive queue, but transmitted packets will delay socket destruction
2153 	 * until the last reference will be released.
2154 	 */
2155 
2156 	sock_orphan(sk);
2157 
2158 	xfrm_sk_free_policy(sk);
2159 
2160 	sk_refcnt_debug_release(sk);
2161 	sock_put(sk);
2162 }
2163 EXPORT_SYMBOL(sk_common_release);
2164 
2165 static DEFINE_RWLOCK(proto_list_lock);
2166 static LIST_HEAD(proto_list);
2167 
2168 #ifdef CONFIG_PROC_FS
2169 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2170 struct prot_inuse {
2171 	int val[PROTO_INUSE_NR];
2172 };
2173 
2174 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2175 
2176 #ifdef CONFIG_NET_NS
2177 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2178 {
2179 	int cpu = smp_processor_id();
2180 	per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2181 }
2182 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2183 
2184 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2185 {
2186 	int cpu, idx = prot->inuse_idx;
2187 	int res = 0;
2188 
2189 	for_each_possible_cpu(cpu)
2190 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2191 
2192 	return res >= 0 ? res : 0;
2193 }
2194 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2195 
2196 static int __net_init sock_inuse_init_net(struct net *net)
2197 {
2198 	net->core.inuse = alloc_percpu(struct prot_inuse);
2199 	return net->core.inuse ? 0 : -ENOMEM;
2200 }
2201 
2202 static void __net_exit sock_inuse_exit_net(struct net *net)
2203 {
2204 	free_percpu(net->core.inuse);
2205 }
2206 
2207 static struct pernet_operations net_inuse_ops = {
2208 	.init = sock_inuse_init_net,
2209 	.exit = sock_inuse_exit_net,
2210 };
2211 
2212 static __init int net_inuse_init(void)
2213 {
2214 	if (register_pernet_subsys(&net_inuse_ops))
2215 		panic("Cannot initialize net inuse counters");
2216 
2217 	return 0;
2218 }
2219 
2220 core_initcall(net_inuse_init);
2221 #else
2222 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2223 
2224 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2225 {
2226 	__get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2227 }
2228 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2229 
2230 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2231 {
2232 	int cpu, idx = prot->inuse_idx;
2233 	int res = 0;
2234 
2235 	for_each_possible_cpu(cpu)
2236 		res += per_cpu(prot_inuse, cpu).val[idx];
2237 
2238 	return res >= 0 ? res : 0;
2239 }
2240 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2241 #endif
2242 
2243 static void assign_proto_idx(struct proto *prot)
2244 {
2245 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2246 
2247 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2248 		printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2249 		return;
2250 	}
2251 
2252 	set_bit(prot->inuse_idx, proto_inuse_idx);
2253 }
2254 
2255 static void release_proto_idx(struct proto *prot)
2256 {
2257 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2258 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2259 }
2260 #else
2261 static inline void assign_proto_idx(struct proto *prot)
2262 {
2263 }
2264 
2265 static inline void release_proto_idx(struct proto *prot)
2266 {
2267 }
2268 #endif
2269 
2270 int proto_register(struct proto *prot, int alloc_slab)
2271 {
2272 	if (alloc_slab) {
2273 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2274 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2275 					NULL);
2276 
2277 		if (prot->slab == NULL) {
2278 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2279 			       prot->name);
2280 			goto out;
2281 		}
2282 
2283 		if (prot->rsk_prot != NULL) {
2284 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2285 			if (prot->rsk_prot->slab_name == NULL)
2286 				goto out_free_sock_slab;
2287 
2288 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2289 								 prot->rsk_prot->obj_size, 0,
2290 								 SLAB_HWCACHE_ALIGN, NULL);
2291 
2292 			if (prot->rsk_prot->slab == NULL) {
2293 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2294 				       prot->name);
2295 				goto out_free_request_sock_slab_name;
2296 			}
2297 		}
2298 
2299 		if (prot->twsk_prot != NULL) {
2300 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2301 
2302 			if (prot->twsk_prot->twsk_slab_name == NULL)
2303 				goto out_free_request_sock_slab;
2304 
2305 			prot->twsk_prot->twsk_slab =
2306 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2307 						  prot->twsk_prot->twsk_obj_size,
2308 						  0,
2309 						  SLAB_HWCACHE_ALIGN |
2310 							prot->slab_flags,
2311 						  NULL);
2312 			if (prot->twsk_prot->twsk_slab == NULL)
2313 				goto out_free_timewait_sock_slab_name;
2314 		}
2315 	}
2316 
2317 	write_lock(&proto_list_lock);
2318 	list_add(&prot->node, &proto_list);
2319 	assign_proto_idx(prot);
2320 	write_unlock(&proto_list_lock);
2321 	return 0;
2322 
2323 out_free_timewait_sock_slab_name:
2324 	kfree(prot->twsk_prot->twsk_slab_name);
2325 out_free_request_sock_slab:
2326 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2327 		kmem_cache_destroy(prot->rsk_prot->slab);
2328 		prot->rsk_prot->slab = NULL;
2329 	}
2330 out_free_request_sock_slab_name:
2331 	if (prot->rsk_prot)
2332 		kfree(prot->rsk_prot->slab_name);
2333 out_free_sock_slab:
2334 	kmem_cache_destroy(prot->slab);
2335 	prot->slab = NULL;
2336 out:
2337 	return -ENOBUFS;
2338 }
2339 EXPORT_SYMBOL(proto_register);
2340 
2341 void proto_unregister(struct proto *prot)
2342 {
2343 	write_lock(&proto_list_lock);
2344 	release_proto_idx(prot);
2345 	list_del(&prot->node);
2346 	write_unlock(&proto_list_lock);
2347 
2348 	if (prot->slab != NULL) {
2349 		kmem_cache_destroy(prot->slab);
2350 		prot->slab = NULL;
2351 	}
2352 
2353 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2354 		kmem_cache_destroy(prot->rsk_prot->slab);
2355 		kfree(prot->rsk_prot->slab_name);
2356 		prot->rsk_prot->slab = NULL;
2357 	}
2358 
2359 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2360 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2361 		kfree(prot->twsk_prot->twsk_slab_name);
2362 		prot->twsk_prot->twsk_slab = NULL;
2363 	}
2364 }
2365 EXPORT_SYMBOL(proto_unregister);
2366 
2367 #ifdef CONFIG_PROC_FS
2368 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2369 	__acquires(proto_list_lock)
2370 {
2371 	read_lock(&proto_list_lock);
2372 	return seq_list_start_head(&proto_list, *pos);
2373 }
2374 
2375 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2376 {
2377 	return seq_list_next(v, &proto_list, pos);
2378 }
2379 
2380 static void proto_seq_stop(struct seq_file *seq, void *v)
2381 	__releases(proto_list_lock)
2382 {
2383 	read_unlock(&proto_list_lock);
2384 }
2385 
2386 static char proto_method_implemented(const void *method)
2387 {
2388 	return method == NULL ? 'n' : 'y';
2389 }
2390 
2391 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2392 {
2393 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
2394 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2395 		   proto->name,
2396 		   proto->obj_size,
2397 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2398 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2399 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2400 		   proto->max_header,
2401 		   proto->slab == NULL ? "no" : "yes",
2402 		   module_name(proto->owner),
2403 		   proto_method_implemented(proto->close),
2404 		   proto_method_implemented(proto->connect),
2405 		   proto_method_implemented(proto->disconnect),
2406 		   proto_method_implemented(proto->accept),
2407 		   proto_method_implemented(proto->ioctl),
2408 		   proto_method_implemented(proto->init),
2409 		   proto_method_implemented(proto->destroy),
2410 		   proto_method_implemented(proto->shutdown),
2411 		   proto_method_implemented(proto->setsockopt),
2412 		   proto_method_implemented(proto->getsockopt),
2413 		   proto_method_implemented(proto->sendmsg),
2414 		   proto_method_implemented(proto->recvmsg),
2415 		   proto_method_implemented(proto->sendpage),
2416 		   proto_method_implemented(proto->bind),
2417 		   proto_method_implemented(proto->backlog_rcv),
2418 		   proto_method_implemented(proto->hash),
2419 		   proto_method_implemented(proto->unhash),
2420 		   proto_method_implemented(proto->get_port),
2421 		   proto_method_implemented(proto->enter_memory_pressure));
2422 }
2423 
2424 static int proto_seq_show(struct seq_file *seq, void *v)
2425 {
2426 	if (v == &proto_list)
2427 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2428 			   "protocol",
2429 			   "size",
2430 			   "sockets",
2431 			   "memory",
2432 			   "press",
2433 			   "maxhdr",
2434 			   "slab",
2435 			   "module",
2436 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2437 	else
2438 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2439 	return 0;
2440 }
2441 
2442 static const struct seq_operations proto_seq_ops = {
2443 	.start  = proto_seq_start,
2444 	.next   = proto_seq_next,
2445 	.stop   = proto_seq_stop,
2446 	.show   = proto_seq_show,
2447 };
2448 
2449 static int proto_seq_open(struct inode *inode, struct file *file)
2450 {
2451 	return seq_open_net(inode, file, &proto_seq_ops,
2452 			    sizeof(struct seq_net_private));
2453 }
2454 
2455 static const struct file_operations proto_seq_fops = {
2456 	.owner		= THIS_MODULE,
2457 	.open		= proto_seq_open,
2458 	.read		= seq_read,
2459 	.llseek		= seq_lseek,
2460 	.release	= seq_release_net,
2461 };
2462 
2463 static __net_init int proto_init_net(struct net *net)
2464 {
2465 	if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2466 		return -ENOMEM;
2467 
2468 	return 0;
2469 }
2470 
2471 static __net_exit void proto_exit_net(struct net *net)
2472 {
2473 	proc_net_remove(net, "protocols");
2474 }
2475 
2476 
2477 static __net_initdata struct pernet_operations proto_net_ops = {
2478 	.init = proto_init_net,
2479 	.exit = proto_exit_net,
2480 };
2481 
2482 static int __init proto_init(void)
2483 {
2484 	return register_pernet_subsys(&proto_net_ops);
2485 }
2486 
2487 subsys_initcall(proto_init);
2488 
2489 #endif /* PROC_FS */
2490