xref: /openbmc/linux/net/core/sock.c (revision a9ca9f9ceff382b58b488248f0c0da9e157f5d06)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Generic socket support routines. Memory allocators, socket lock/release
8  *		handler for protocols to use and generic option handler.
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  */
85 
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87 
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
94 #include <linux/in.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
117 #include <linux/mroute.h>
118 #include <linux/mroute6.h>
119 #include <linux/icmpv6.h>
120 
121 #include <linux/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 #include <linux/sock_diag.h>
135 
136 #include <linux/filter.h>
137 #include <net/sock_reuseport.h>
138 #include <net/bpf_sk_storage.h>
139 
140 #include <trace/events/sock.h>
141 
142 #include <net/tcp.h>
143 #include <net/busy_poll.h>
144 #include <net/phonet/phonet.h>
145 
146 #include <linux/ethtool.h>
147 
148 #include "dev.h"
149 
150 static DEFINE_MUTEX(proto_list_mutex);
151 static LIST_HEAD(proto_list);
152 
153 static void sock_def_write_space_wfree(struct sock *sk);
154 static void sock_def_write_space(struct sock *sk);
155 
156 /**
157  * sk_ns_capable - General socket capability test
158  * @sk: Socket to use a capability on or through
159  * @user_ns: The user namespace of the capability to use
160  * @cap: The capability to use
161  *
162  * Test to see if the opener of the socket had when the socket was
163  * created and the current process has the capability @cap in the user
164  * namespace @user_ns.
165  */
166 bool sk_ns_capable(const struct sock *sk,
167 		   struct user_namespace *user_ns, int cap)
168 {
169 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
170 		ns_capable(user_ns, cap);
171 }
172 EXPORT_SYMBOL(sk_ns_capable);
173 
174 /**
175  * sk_capable - Socket global capability test
176  * @sk: Socket to use a capability on or through
177  * @cap: The global capability to use
178  *
179  * Test to see if the opener of the socket had when the socket was
180  * created and the current process has the capability @cap in all user
181  * namespaces.
182  */
183 bool sk_capable(const struct sock *sk, int cap)
184 {
185 	return sk_ns_capable(sk, &init_user_ns, cap);
186 }
187 EXPORT_SYMBOL(sk_capable);
188 
189 /**
190  * sk_net_capable - Network namespace socket capability test
191  * @sk: Socket to use a capability on or through
192  * @cap: The capability to use
193  *
194  * Test to see if the opener of the socket had when the socket was created
195  * and the current process has the capability @cap over the network namespace
196  * the socket is a member of.
197  */
198 bool sk_net_capable(const struct sock *sk, int cap)
199 {
200 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
201 }
202 EXPORT_SYMBOL(sk_net_capable);
203 
204 /*
205  * Each address family might have different locking rules, so we have
206  * one slock key per address family and separate keys for internal and
207  * userspace sockets.
208  */
209 static struct lock_class_key af_family_keys[AF_MAX];
210 static struct lock_class_key af_family_kern_keys[AF_MAX];
211 static struct lock_class_key af_family_slock_keys[AF_MAX];
212 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
213 
214 /*
215  * Make lock validator output more readable. (we pre-construct these
216  * strings build-time, so that runtime initialization of socket
217  * locks is fast):
218  */
219 
220 #define _sock_locks(x)						  \
221   x "AF_UNSPEC",	x "AF_UNIX"     ,	x "AF_INET"     , \
222   x "AF_AX25"  ,	x "AF_IPX"      ,	x "AF_APPLETALK", \
223   x "AF_NETROM",	x "AF_BRIDGE"   ,	x "AF_ATMPVC"   , \
224   x "AF_X25"   ,	x "AF_INET6"    ,	x "AF_ROSE"     , \
225   x "AF_DECnet",	x "AF_NETBEUI"  ,	x "AF_SECURITY" , \
226   x "AF_KEY"   ,	x "AF_NETLINK"  ,	x "AF_PACKET"   , \
227   x "AF_ASH"   ,	x "AF_ECONET"   ,	x "AF_ATMSVC"   , \
228   x "AF_RDS"   ,	x "AF_SNA"      ,	x "AF_IRDA"     , \
229   x "AF_PPPOX" ,	x "AF_WANPIPE"  ,	x "AF_LLC"      , \
230   x "27"       ,	x "28"          ,	x "AF_CAN"      , \
231   x "AF_TIPC"  ,	x "AF_BLUETOOTH",	x "IUCV"        , \
232   x "AF_RXRPC" ,	x "AF_ISDN"     ,	x "AF_PHONET"   , \
233   x "AF_IEEE802154",	x "AF_CAIF"	,	x "AF_ALG"      , \
234   x "AF_NFC"   ,	x "AF_VSOCK"    ,	x "AF_KCM"      , \
235   x "AF_QIPCRTR",	x "AF_SMC"	,	x "AF_XDP"	, \
236   x "AF_MCTP"  , \
237   x "AF_MAX"
238 
239 static const char *const af_family_key_strings[AF_MAX+1] = {
240 	_sock_locks("sk_lock-")
241 };
242 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
243 	_sock_locks("slock-")
244 };
245 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
246 	_sock_locks("clock-")
247 };
248 
249 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
250 	_sock_locks("k-sk_lock-")
251 };
252 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
253 	_sock_locks("k-slock-")
254 };
255 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
256 	_sock_locks("k-clock-")
257 };
258 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
259 	_sock_locks("rlock-")
260 };
261 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
262 	_sock_locks("wlock-")
263 };
264 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
265 	_sock_locks("elock-")
266 };
267 
268 /*
269  * sk_callback_lock and sk queues locking rules are per-address-family,
270  * so split the lock classes by using a per-AF key:
271  */
272 static struct lock_class_key af_callback_keys[AF_MAX];
273 static struct lock_class_key af_rlock_keys[AF_MAX];
274 static struct lock_class_key af_wlock_keys[AF_MAX];
275 static struct lock_class_key af_elock_keys[AF_MAX];
276 static struct lock_class_key af_kern_callback_keys[AF_MAX];
277 
278 /* Run time adjustable parameters. */
279 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280 EXPORT_SYMBOL(sysctl_wmem_max);
281 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282 EXPORT_SYMBOL(sysctl_rmem_max);
283 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285 
286 /* Maximal space eaten by iovec or ancillary data plus some space */
287 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288 EXPORT_SYMBOL(sysctl_optmem_max);
289 
290 int sysctl_tstamp_allow_data __read_mostly = 1;
291 
292 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
293 EXPORT_SYMBOL_GPL(memalloc_socks_key);
294 
295 /**
296  * sk_set_memalloc - sets %SOCK_MEMALLOC
297  * @sk: socket to set it on
298  *
299  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300  * It's the responsibility of the admin to adjust min_free_kbytes
301  * to meet the requirements
302  */
303 void sk_set_memalloc(struct sock *sk)
304 {
305 	sock_set_flag(sk, SOCK_MEMALLOC);
306 	sk->sk_allocation |= __GFP_MEMALLOC;
307 	static_branch_inc(&memalloc_socks_key);
308 }
309 EXPORT_SYMBOL_GPL(sk_set_memalloc);
310 
311 void sk_clear_memalloc(struct sock *sk)
312 {
313 	sock_reset_flag(sk, SOCK_MEMALLOC);
314 	sk->sk_allocation &= ~__GFP_MEMALLOC;
315 	static_branch_dec(&memalloc_socks_key);
316 
317 	/*
318 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 	 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 	 * it has rmem allocations due to the last swapfile being deactivated
321 	 * but there is a risk that the socket is unusable due to exceeding
322 	 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 	 */
324 	sk_mem_reclaim(sk);
325 }
326 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327 
328 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329 {
330 	int ret;
331 	unsigned int noreclaim_flag;
332 
333 	/* these should have been dropped before queueing */
334 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335 
336 	noreclaim_flag = memalloc_noreclaim_save();
337 	ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
338 				 tcp_v6_do_rcv,
339 				 tcp_v4_do_rcv,
340 				 sk, skb);
341 	memalloc_noreclaim_restore(noreclaim_flag);
342 
343 	return ret;
344 }
345 EXPORT_SYMBOL(__sk_backlog_rcv);
346 
347 void sk_error_report(struct sock *sk)
348 {
349 	sk->sk_error_report(sk);
350 
351 	switch (sk->sk_family) {
352 	case AF_INET:
353 		fallthrough;
354 	case AF_INET6:
355 		trace_inet_sk_error_report(sk);
356 		break;
357 	default:
358 		break;
359 	}
360 }
361 EXPORT_SYMBOL(sk_error_report);
362 
363 int sock_get_timeout(long timeo, void *optval, bool old_timeval)
364 {
365 	struct __kernel_sock_timeval tv;
366 
367 	if (timeo == MAX_SCHEDULE_TIMEOUT) {
368 		tv.tv_sec = 0;
369 		tv.tv_usec = 0;
370 	} else {
371 		tv.tv_sec = timeo / HZ;
372 		tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
373 	}
374 
375 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
376 		struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
377 		*(struct old_timeval32 *)optval = tv32;
378 		return sizeof(tv32);
379 	}
380 
381 	if (old_timeval) {
382 		struct __kernel_old_timeval old_tv;
383 		old_tv.tv_sec = tv.tv_sec;
384 		old_tv.tv_usec = tv.tv_usec;
385 		*(struct __kernel_old_timeval *)optval = old_tv;
386 		return sizeof(old_tv);
387 	}
388 
389 	*(struct __kernel_sock_timeval *)optval = tv;
390 	return sizeof(tv);
391 }
392 EXPORT_SYMBOL(sock_get_timeout);
393 
394 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
395 			   sockptr_t optval, int optlen, bool old_timeval)
396 {
397 	if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
398 		struct old_timeval32 tv32;
399 
400 		if (optlen < sizeof(tv32))
401 			return -EINVAL;
402 
403 		if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
404 			return -EFAULT;
405 		tv->tv_sec = tv32.tv_sec;
406 		tv->tv_usec = tv32.tv_usec;
407 	} else if (old_timeval) {
408 		struct __kernel_old_timeval old_tv;
409 
410 		if (optlen < sizeof(old_tv))
411 			return -EINVAL;
412 		if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
413 			return -EFAULT;
414 		tv->tv_sec = old_tv.tv_sec;
415 		tv->tv_usec = old_tv.tv_usec;
416 	} else {
417 		if (optlen < sizeof(*tv))
418 			return -EINVAL;
419 		if (copy_from_sockptr(tv, optval, sizeof(*tv)))
420 			return -EFAULT;
421 	}
422 
423 	return 0;
424 }
425 EXPORT_SYMBOL(sock_copy_user_timeval);
426 
427 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
428 			    bool old_timeval)
429 {
430 	struct __kernel_sock_timeval tv;
431 	int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
432 	long val;
433 
434 	if (err)
435 		return err;
436 
437 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
438 		return -EDOM;
439 
440 	if (tv.tv_sec < 0) {
441 		static int warned __read_mostly;
442 
443 		WRITE_ONCE(*timeo_p, 0);
444 		if (warned < 10 && net_ratelimit()) {
445 			warned++;
446 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
447 				__func__, current->comm, task_pid_nr(current));
448 		}
449 		return 0;
450 	}
451 	val = MAX_SCHEDULE_TIMEOUT;
452 	if ((tv.tv_sec || tv.tv_usec) &&
453 	    (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
454 		val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
455 						    USEC_PER_SEC / HZ);
456 	WRITE_ONCE(*timeo_p, val);
457 	return 0;
458 }
459 
460 static bool sock_needs_netstamp(const struct sock *sk)
461 {
462 	switch (sk->sk_family) {
463 	case AF_UNSPEC:
464 	case AF_UNIX:
465 		return false;
466 	default:
467 		return true;
468 	}
469 }
470 
471 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
472 {
473 	if (sk->sk_flags & flags) {
474 		sk->sk_flags &= ~flags;
475 		if (sock_needs_netstamp(sk) &&
476 		    !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
477 			net_disable_timestamp();
478 	}
479 }
480 
481 
482 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
483 {
484 	unsigned long flags;
485 	struct sk_buff_head *list = &sk->sk_receive_queue;
486 
487 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
488 		atomic_inc(&sk->sk_drops);
489 		trace_sock_rcvqueue_full(sk, skb);
490 		return -ENOMEM;
491 	}
492 
493 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
494 		atomic_inc(&sk->sk_drops);
495 		return -ENOBUFS;
496 	}
497 
498 	skb->dev = NULL;
499 	skb_set_owner_r(skb, sk);
500 
501 	/* we escape from rcu protected region, make sure we dont leak
502 	 * a norefcounted dst
503 	 */
504 	skb_dst_force(skb);
505 
506 	spin_lock_irqsave(&list->lock, flags);
507 	sock_skb_set_dropcount(sk, skb);
508 	__skb_queue_tail(list, skb);
509 	spin_unlock_irqrestore(&list->lock, flags);
510 
511 	if (!sock_flag(sk, SOCK_DEAD))
512 		sk->sk_data_ready(sk);
513 	return 0;
514 }
515 EXPORT_SYMBOL(__sock_queue_rcv_skb);
516 
517 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
518 			      enum skb_drop_reason *reason)
519 {
520 	enum skb_drop_reason drop_reason;
521 	int err;
522 
523 	err = sk_filter(sk, skb);
524 	if (err) {
525 		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
526 		goto out;
527 	}
528 	err = __sock_queue_rcv_skb(sk, skb);
529 	switch (err) {
530 	case -ENOMEM:
531 		drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
532 		break;
533 	case -ENOBUFS:
534 		drop_reason = SKB_DROP_REASON_PROTO_MEM;
535 		break;
536 	default:
537 		drop_reason = SKB_NOT_DROPPED_YET;
538 		break;
539 	}
540 out:
541 	if (reason)
542 		*reason = drop_reason;
543 	return err;
544 }
545 EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
546 
547 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
548 		     const int nested, unsigned int trim_cap, bool refcounted)
549 {
550 	int rc = NET_RX_SUCCESS;
551 
552 	if (sk_filter_trim_cap(sk, skb, trim_cap))
553 		goto discard_and_relse;
554 
555 	skb->dev = NULL;
556 
557 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
558 		atomic_inc(&sk->sk_drops);
559 		goto discard_and_relse;
560 	}
561 	if (nested)
562 		bh_lock_sock_nested(sk);
563 	else
564 		bh_lock_sock(sk);
565 	if (!sock_owned_by_user(sk)) {
566 		/*
567 		 * trylock + unlock semantics:
568 		 */
569 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
570 
571 		rc = sk_backlog_rcv(sk, skb);
572 
573 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
574 	} else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
575 		bh_unlock_sock(sk);
576 		atomic_inc(&sk->sk_drops);
577 		goto discard_and_relse;
578 	}
579 
580 	bh_unlock_sock(sk);
581 out:
582 	if (refcounted)
583 		sock_put(sk);
584 	return rc;
585 discard_and_relse:
586 	kfree_skb(skb);
587 	goto out;
588 }
589 EXPORT_SYMBOL(__sk_receive_skb);
590 
591 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
592 							  u32));
593 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
594 							   u32));
595 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
596 {
597 	struct dst_entry *dst = __sk_dst_get(sk);
598 
599 	if (dst && dst->obsolete &&
600 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
601 			       dst, cookie) == NULL) {
602 		sk_tx_queue_clear(sk);
603 		sk->sk_dst_pending_confirm = 0;
604 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
605 		dst_release(dst);
606 		return NULL;
607 	}
608 
609 	return dst;
610 }
611 EXPORT_SYMBOL(__sk_dst_check);
612 
613 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
614 {
615 	struct dst_entry *dst = sk_dst_get(sk);
616 
617 	if (dst && dst->obsolete &&
618 	    INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
619 			       dst, cookie) == NULL) {
620 		sk_dst_reset(sk);
621 		dst_release(dst);
622 		return NULL;
623 	}
624 
625 	return dst;
626 }
627 EXPORT_SYMBOL(sk_dst_check);
628 
629 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
630 {
631 	int ret = -ENOPROTOOPT;
632 #ifdef CONFIG_NETDEVICES
633 	struct net *net = sock_net(sk);
634 
635 	/* Sorry... */
636 	ret = -EPERM;
637 	if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
638 		goto out;
639 
640 	ret = -EINVAL;
641 	if (ifindex < 0)
642 		goto out;
643 
644 	/* Paired with all READ_ONCE() done locklessly. */
645 	WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
646 
647 	if (sk->sk_prot->rehash)
648 		sk->sk_prot->rehash(sk);
649 	sk_dst_reset(sk);
650 
651 	ret = 0;
652 
653 out:
654 #endif
655 
656 	return ret;
657 }
658 
659 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
660 {
661 	int ret;
662 
663 	if (lock_sk)
664 		lock_sock(sk);
665 	ret = sock_bindtoindex_locked(sk, ifindex);
666 	if (lock_sk)
667 		release_sock(sk);
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL(sock_bindtoindex);
672 
673 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
674 {
675 	int ret = -ENOPROTOOPT;
676 #ifdef CONFIG_NETDEVICES
677 	struct net *net = sock_net(sk);
678 	char devname[IFNAMSIZ];
679 	int index;
680 
681 	ret = -EINVAL;
682 	if (optlen < 0)
683 		goto out;
684 
685 	/* Bind this socket to a particular device like "eth0",
686 	 * as specified in the passed interface name. If the
687 	 * name is "" or the option length is zero the socket
688 	 * is not bound.
689 	 */
690 	if (optlen > IFNAMSIZ - 1)
691 		optlen = IFNAMSIZ - 1;
692 	memset(devname, 0, sizeof(devname));
693 
694 	ret = -EFAULT;
695 	if (copy_from_sockptr(devname, optval, optlen))
696 		goto out;
697 
698 	index = 0;
699 	if (devname[0] != '\0') {
700 		struct net_device *dev;
701 
702 		rcu_read_lock();
703 		dev = dev_get_by_name_rcu(net, devname);
704 		if (dev)
705 			index = dev->ifindex;
706 		rcu_read_unlock();
707 		ret = -ENODEV;
708 		if (!dev)
709 			goto out;
710 	}
711 
712 	sockopt_lock_sock(sk);
713 	ret = sock_bindtoindex_locked(sk, index);
714 	sockopt_release_sock(sk);
715 out:
716 #endif
717 
718 	return ret;
719 }
720 
721 static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
722 				sockptr_t optlen, int len)
723 {
724 	int ret = -ENOPROTOOPT;
725 #ifdef CONFIG_NETDEVICES
726 	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
727 	struct net *net = sock_net(sk);
728 	char devname[IFNAMSIZ];
729 
730 	if (bound_dev_if == 0) {
731 		len = 0;
732 		goto zero;
733 	}
734 
735 	ret = -EINVAL;
736 	if (len < IFNAMSIZ)
737 		goto out;
738 
739 	ret = netdev_get_name(net, devname, bound_dev_if);
740 	if (ret)
741 		goto out;
742 
743 	len = strlen(devname) + 1;
744 
745 	ret = -EFAULT;
746 	if (copy_to_sockptr(optval, devname, len))
747 		goto out;
748 
749 zero:
750 	ret = -EFAULT;
751 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
752 		goto out;
753 
754 	ret = 0;
755 
756 out:
757 #endif
758 
759 	return ret;
760 }
761 
762 bool sk_mc_loop(struct sock *sk)
763 {
764 	if (dev_recursion_level())
765 		return false;
766 	if (!sk)
767 		return true;
768 	switch (sk->sk_family) {
769 	case AF_INET:
770 		return inet_sk(sk)->mc_loop;
771 #if IS_ENABLED(CONFIG_IPV6)
772 	case AF_INET6:
773 		return inet6_sk(sk)->mc_loop;
774 #endif
775 	}
776 	WARN_ON_ONCE(1);
777 	return true;
778 }
779 EXPORT_SYMBOL(sk_mc_loop);
780 
781 void sock_set_reuseaddr(struct sock *sk)
782 {
783 	lock_sock(sk);
784 	sk->sk_reuse = SK_CAN_REUSE;
785 	release_sock(sk);
786 }
787 EXPORT_SYMBOL(sock_set_reuseaddr);
788 
789 void sock_set_reuseport(struct sock *sk)
790 {
791 	lock_sock(sk);
792 	sk->sk_reuseport = true;
793 	release_sock(sk);
794 }
795 EXPORT_SYMBOL(sock_set_reuseport);
796 
797 void sock_no_linger(struct sock *sk)
798 {
799 	lock_sock(sk);
800 	sk->sk_lingertime = 0;
801 	sock_set_flag(sk, SOCK_LINGER);
802 	release_sock(sk);
803 }
804 EXPORT_SYMBOL(sock_no_linger);
805 
806 void sock_set_priority(struct sock *sk, u32 priority)
807 {
808 	lock_sock(sk);
809 	WRITE_ONCE(sk->sk_priority, priority);
810 	release_sock(sk);
811 }
812 EXPORT_SYMBOL(sock_set_priority);
813 
814 void sock_set_sndtimeo(struct sock *sk, s64 secs)
815 {
816 	lock_sock(sk);
817 	if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
818 		WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
819 	else
820 		WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
821 	release_sock(sk);
822 }
823 EXPORT_SYMBOL(sock_set_sndtimeo);
824 
825 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
826 {
827 	if (val)  {
828 		sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
829 		sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
830 		sock_set_flag(sk, SOCK_RCVTSTAMP);
831 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
832 	} else {
833 		sock_reset_flag(sk, SOCK_RCVTSTAMP);
834 		sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
835 	}
836 }
837 
838 void sock_enable_timestamps(struct sock *sk)
839 {
840 	lock_sock(sk);
841 	__sock_set_timestamps(sk, true, false, true);
842 	release_sock(sk);
843 }
844 EXPORT_SYMBOL(sock_enable_timestamps);
845 
846 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
847 {
848 	switch (optname) {
849 	case SO_TIMESTAMP_OLD:
850 		__sock_set_timestamps(sk, valbool, false, false);
851 		break;
852 	case SO_TIMESTAMP_NEW:
853 		__sock_set_timestamps(sk, valbool, true, false);
854 		break;
855 	case SO_TIMESTAMPNS_OLD:
856 		__sock_set_timestamps(sk, valbool, false, true);
857 		break;
858 	case SO_TIMESTAMPNS_NEW:
859 		__sock_set_timestamps(sk, valbool, true, true);
860 		break;
861 	}
862 }
863 
864 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
865 {
866 	struct net *net = sock_net(sk);
867 	struct net_device *dev = NULL;
868 	bool match = false;
869 	int *vclock_index;
870 	int i, num;
871 
872 	if (sk->sk_bound_dev_if)
873 		dev = dev_get_by_index(net, sk->sk_bound_dev_if);
874 
875 	if (!dev) {
876 		pr_err("%s: sock not bind to device\n", __func__);
877 		return -EOPNOTSUPP;
878 	}
879 
880 	num = ethtool_get_phc_vclocks(dev, &vclock_index);
881 	dev_put(dev);
882 
883 	for (i = 0; i < num; i++) {
884 		if (*(vclock_index + i) == phc_index) {
885 			match = true;
886 			break;
887 		}
888 	}
889 
890 	if (num > 0)
891 		kfree(vclock_index);
892 
893 	if (!match)
894 		return -EINVAL;
895 
896 	sk->sk_bind_phc = phc_index;
897 
898 	return 0;
899 }
900 
901 int sock_set_timestamping(struct sock *sk, int optname,
902 			  struct so_timestamping timestamping)
903 {
904 	int val = timestamping.flags;
905 	int ret;
906 
907 	if (val & ~SOF_TIMESTAMPING_MASK)
908 		return -EINVAL;
909 
910 	if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
911 	    !(val & SOF_TIMESTAMPING_OPT_ID))
912 		return -EINVAL;
913 
914 	if (val & SOF_TIMESTAMPING_OPT_ID &&
915 	    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
916 		if (sk_is_tcp(sk)) {
917 			if ((1 << sk->sk_state) &
918 			    (TCPF_CLOSE | TCPF_LISTEN))
919 				return -EINVAL;
920 			if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
921 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->write_seq);
922 			else
923 				atomic_set(&sk->sk_tskey, tcp_sk(sk)->snd_una);
924 		} else {
925 			atomic_set(&sk->sk_tskey, 0);
926 		}
927 	}
928 
929 	if (val & SOF_TIMESTAMPING_OPT_STATS &&
930 	    !(val & SOF_TIMESTAMPING_OPT_TSONLY))
931 		return -EINVAL;
932 
933 	if (val & SOF_TIMESTAMPING_BIND_PHC) {
934 		ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
935 		if (ret)
936 			return ret;
937 	}
938 
939 	sk->sk_tsflags = val;
940 	sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
941 
942 	if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
943 		sock_enable_timestamp(sk,
944 				      SOCK_TIMESTAMPING_RX_SOFTWARE);
945 	else
946 		sock_disable_timestamp(sk,
947 				       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
948 	return 0;
949 }
950 
951 void sock_set_keepalive(struct sock *sk)
952 {
953 	lock_sock(sk);
954 	if (sk->sk_prot->keepalive)
955 		sk->sk_prot->keepalive(sk, true);
956 	sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
957 	release_sock(sk);
958 }
959 EXPORT_SYMBOL(sock_set_keepalive);
960 
961 static void __sock_set_rcvbuf(struct sock *sk, int val)
962 {
963 	/* Ensure val * 2 fits into an int, to prevent max_t() from treating it
964 	 * as a negative value.
965 	 */
966 	val = min_t(int, val, INT_MAX / 2);
967 	sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
968 
969 	/* We double it on the way in to account for "struct sk_buff" etc.
970 	 * overhead.   Applications assume that the SO_RCVBUF setting they make
971 	 * will allow that much actual data to be received on that socket.
972 	 *
973 	 * Applications are unaware that "struct sk_buff" and other overheads
974 	 * allocate from the receive buffer during socket buffer allocation.
975 	 *
976 	 * And after considering the possible alternatives, returning the value
977 	 * we actually used in getsockopt is the most desirable behavior.
978 	 */
979 	WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
980 }
981 
982 void sock_set_rcvbuf(struct sock *sk, int val)
983 {
984 	lock_sock(sk);
985 	__sock_set_rcvbuf(sk, val);
986 	release_sock(sk);
987 }
988 EXPORT_SYMBOL(sock_set_rcvbuf);
989 
990 static void __sock_set_mark(struct sock *sk, u32 val)
991 {
992 	if (val != sk->sk_mark) {
993 		WRITE_ONCE(sk->sk_mark, val);
994 		sk_dst_reset(sk);
995 	}
996 }
997 
998 void sock_set_mark(struct sock *sk, u32 val)
999 {
1000 	lock_sock(sk);
1001 	__sock_set_mark(sk, val);
1002 	release_sock(sk);
1003 }
1004 EXPORT_SYMBOL(sock_set_mark);
1005 
1006 static void sock_release_reserved_memory(struct sock *sk, int bytes)
1007 {
1008 	/* Round down bytes to multiple of pages */
1009 	bytes = round_down(bytes, PAGE_SIZE);
1010 
1011 	WARN_ON(bytes > sk->sk_reserved_mem);
1012 	WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1013 	sk_mem_reclaim(sk);
1014 }
1015 
1016 static int sock_reserve_memory(struct sock *sk, int bytes)
1017 {
1018 	long allocated;
1019 	bool charged;
1020 	int pages;
1021 
1022 	if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1023 		return -EOPNOTSUPP;
1024 
1025 	if (!bytes)
1026 		return 0;
1027 
1028 	pages = sk_mem_pages(bytes);
1029 
1030 	/* pre-charge to memcg */
1031 	charged = mem_cgroup_charge_skmem(sk->sk_memcg, pages,
1032 					  GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1033 	if (!charged)
1034 		return -ENOMEM;
1035 
1036 	/* pre-charge to forward_alloc */
1037 	sk_memory_allocated_add(sk, pages);
1038 	allocated = sk_memory_allocated(sk);
1039 	/* If the system goes into memory pressure with this
1040 	 * precharge, give up and return error.
1041 	 */
1042 	if (allocated > sk_prot_mem_limits(sk, 1)) {
1043 		sk_memory_allocated_sub(sk, pages);
1044 		mem_cgroup_uncharge_skmem(sk->sk_memcg, pages);
1045 		return -ENOMEM;
1046 	}
1047 	sk->sk_forward_alloc += pages << PAGE_SHIFT;
1048 
1049 	WRITE_ONCE(sk->sk_reserved_mem,
1050 		   sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1051 
1052 	return 0;
1053 }
1054 
1055 void sockopt_lock_sock(struct sock *sk)
1056 {
1057 	/* When current->bpf_ctx is set, the setsockopt is called from
1058 	 * a bpf prog.  bpf has ensured the sk lock has been
1059 	 * acquired before calling setsockopt().
1060 	 */
1061 	if (has_current_bpf_ctx())
1062 		return;
1063 
1064 	lock_sock(sk);
1065 }
1066 EXPORT_SYMBOL(sockopt_lock_sock);
1067 
1068 void sockopt_release_sock(struct sock *sk)
1069 {
1070 	if (has_current_bpf_ctx())
1071 		return;
1072 
1073 	release_sock(sk);
1074 }
1075 EXPORT_SYMBOL(sockopt_release_sock);
1076 
1077 bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1078 {
1079 	return has_current_bpf_ctx() || ns_capable(ns, cap);
1080 }
1081 EXPORT_SYMBOL(sockopt_ns_capable);
1082 
1083 bool sockopt_capable(int cap)
1084 {
1085 	return has_current_bpf_ctx() || capable(cap);
1086 }
1087 EXPORT_SYMBOL(sockopt_capable);
1088 
1089 /*
1090  *	This is meant for all protocols to use and covers goings on
1091  *	at the socket level. Everything here is generic.
1092  */
1093 
1094 int sk_setsockopt(struct sock *sk, int level, int optname,
1095 		  sockptr_t optval, unsigned int optlen)
1096 {
1097 	struct so_timestamping timestamping;
1098 	struct socket *sock = sk->sk_socket;
1099 	struct sock_txtime sk_txtime;
1100 	int val;
1101 	int valbool;
1102 	struct linger ling;
1103 	int ret = 0;
1104 
1105 	/*
1106 	 *	Options without arguments
1107 	 */
1108 
1109 	if (optname == SO_BINDTODEVICE)
1110 		return sock_setbindtodevice(sk, optval, optlen);
1111 
1112 	if (optlen < sizeof(int))
1113 		return -EINVAL;
1114 
1115 	if (copy_from_sockptr(&val, optval, sizeof(val)))
1116 		return -EFAULT;
1117 
1118 	valbool = val ? 1 : 0;
1119 
1120 	sockopt_lock_sock(sk);
1121 
1122 	switch (optname) {
1123 	case SO_DEBUG:
1124 		if (val && !sockopt_capable(CAP_NET_ADMIN))
1125 			ret = -EACCES;
1126 		else
1127 			sock_valbool_flag(sk, SOCK_DBG, valbool);
1128 		break;
1129 	case SO_REUSEADDR:
1130 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1131 		break;
1132 	case SO_REUSEPORT:
1133 		sk->sk_reuseport = valbool;
1134 		break;
1135 	case SO_TYPE:
1136 	case SO_PROTOCOL:
1137 	case SO_DOMAIN:
1138 	case SO_ERROR:
1139 		ret = -ENOPROTOOPT;
1140 		break;
1141 	case SO_DONTROUTE:
1142 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1143 		sk_dst_reset(sk);
1144 		break;
1145 	case SO_BROADCAST:
1146 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1147 		break;
1148 	case SO_SNDBUF:
1149 		/* Don't error on this BSD doesn't and if you think
1150 		 * about it this is right. Otherwise apps have to
1151 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1152 		 * are treated in BSD as hints
1153 		 */
1154 		val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1155 set_sndbuf:
1156 		/* Ensure val * 2 fits into an int, to prevent max_t()
1157 		 * from treating it as a negative value.
1158 		 */
1159 		val = min_t(int, val, INT_MAX / 2);
1160 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1161 		WRITE_ONCE(sk->sk_sndbuf,
1162 			   max_t(int, val * 2, SOCK_MIN_SNDBUF));
1163 		/* Wake up sending tasks if we upped the value. */
1164 		sk->sk_write_space(sk);
1165 		break;
1166 
1167 	case SO_SNDBUFFORCE:
1168 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1169 			ret = -EPERM;
1170 			break;
1171 		}
1172 
1173 		/* No negative values (to prevent underflow, as val will be
1174 		 * multiplied by 2).
1175 		 */
1176 		if (val < 0)
1177 			val = 0;
1178 		goto set_sndbuf;
1179 
1180 	case SO_RCVBUF:
1181 		/* Don't error on this BSD doesn't and if you think
1182 		 * about it this is right. Otherwise apps have to
1183 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1184 		 * are treated in BSD as hints
1185 		 */
1186 		__sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1187 		break;
1188 
1189 	case SO_RCVBUFFORCE:
1190 		if (!sockopt_capable(CAP_NET_ADMIN)) {
1191 			ret = -EPERM;
1192 			break;
1193 		}
1194 
1195 		/* No negative values (to prevent underflow, as val will be
1196 		 * multiplied by 2).
1197 		 */
1198 		__sock_set_rcvbuf(sk, max(val, 0));
1199 		break;
1200 
1201 	case SO_KEEPALIVE:
1202 		if (sk->sk_prot->keepalive)
1203 			sk->sk_prot->keepalive(sk, valbool);
1204 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1205 		break;
1206 
1207 	case SO_OOBINLINE:
1208 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1209 		break;
1210 
1211 	case SO_NO_CHECK:
1212 		sk->sk_no_check_tx = valbool;
1213 		break;
1214 
1215 	case SO_PRIORITY:
1216 		if ((val >= 0 && val <= 6) ||
1217 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1218 		    sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1219 			WRITE_ONCE(sk->sk_priority, val);
1220 		else
1221 			ret = -EPERM;
1222 		break;
1223 
1224 	case SO_LINGER:
1225 		if (optlen < sizeof(ling)) {
1226 			ret = -EINVAL;	/* 1003.1g */
1227 			break;
1228 		}
1229 		if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1230 			ret = -EFAULT;
1231 			break;
1232 		}
1233 		if (!ling.l_onoff)
1234 			sock_reset_flag(sk, SOCK_LINGER);
1235 		else {
1236 #if (BITS_PER_LONG == 32)
1237 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1238 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1239 			else
1240 #endif
1241 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1242 			sock_set_flag(sk, SOCK_LINGER);
1243 		}
1244 		break;
1245 
1246 	case SO_BSDCOMPAT:
1247 		break;
1248 
1249 	case SO_PASSCRED:
1250 		assign_bit(SOCK_PASSCRED, &sock->flags, valbool);
1251 		break;
1252 
1253 	case SO_PASSPIDFD:
1254 		assign_bit(SOCK_PASSPIDFD, &sock->flags, valbool);
1255 		break;
1256 
1257 	case SO_TIMESTAMP_OLD:
1258 	case SO_TIMESTAMP_NEW:
1259 	case SO_TIMESTAMPNS_OLD:
1260 	case SO_TIMESTAMPNS_NEW:
1261 		sock_set_timestamp(sk, optname, valbool);
1262 		break;
1263 
1264 	case SO_TIMESTAMPING_NEW:
1265 	case SO_TIMESTAMPING_OLD:
1266 		if (optlen == sizeof(timestamping)) {
1267 			if (copy_from_sockptr(&timestamping, optval,
1268 					      sizeof(timestamping))) {
1269 				ret = -EFAULT;
1270 				break;
1271 			}
1272 		} else {
1273 			memset(&timestamping, 0, sizeof(timestamping));
1274 			timestamping.flags = val;
1275 		}
1276 		ret = sock_set_timestamping(sk, optname, timestamping);
1277 		break;
1278 
1279 	case SO_RCVLOWAT:
1280 		if (val < 0)
1281 			val = INT_MAX;
1282 		if (sock && sock->ops->set_rcvlowat)
1283 			ret = sock->ops->set_rcvlowat(sk, val);
1284 		else
1285 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1286 		break;
1287 
1288 	case SO_RCVTIMEO_OLD:
1289 	case SO_RCVTIMEO_NEW:
1290 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1291 				       optlen, optname == SO_RCVTIMEO_OLD);
1292 		break;
1293 
1294 	case SO_SNDTIMEO_OLD:
1295 	case SO_SNDTIMEO_NEW:
1296 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1297 				       optlen, optname == SO_SNDTIMEO_OLD);
1298 		break;
1299 
1300 	case SO_ATTACH_FILTER: {
1301 		struct sock_fprog fprog;
1302 
1303 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1304 		if (!ret)
1305 			ret = sk_attach_filter(&fprog, sk);
1306 		break;
1307 	}
1308 	case SO_ATTACH_BPF:
1309 		ret = -EINVAL;
1310 		if (optlen == sizeof(u32)) {
1311 			u32 ufd;
1312 
1313 			ret = -EFAULT;
1314 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1315 				break;
1316 
1317 			ret = sk_attach_bpf(ufd, sk);
1318 		}
1319 		break;
1320 
1321 	case SO_ATTACH_REUSEPORT_CBPF: {
1322 		struct sock_fprog fprog;
1323 
1324 		ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1325 		if (!ret)
1326 			ret = sk_reuseport_attach_filter(&fprog, sk);
1327 		break;
1328 	}
1329 	case SO_ATTACH_REUSEPORT_EBPF:
1330 		ret = -EINVAL;
1331 		if (optlen == sizeof(u32)) {
1332 			u32 ufd;
1333 
1334 			ret = -EFAULT;
1335 			if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1336 				break;
1337 
1338 			ret = sk_reuseport_attach_bpf(ufd, sk);
1339 		}
1340 		break;
1341 
1342 	case SO_DETACH_REUSEPORT_BPF:
1343 		ret = reuseport_detach_prog(sk);
1344 		break;
1345 
1346 	case SO_DETACH_FILTER:
1347 		ret = sk_detach_filter(sk);
1348 		break;
1349 
1350 	case SO_LOCK_FILTER:
1351 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1352 			ret = -EPERM;
1353 		else
1354 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1355 		break;
1356 
1357 	case SO_PASSSEC:
1358 		assign_bit(SOCK_PASSSEC, &sock->flags, valbool);
1359 		break;
1360 	case SO_MARK:
1361 		if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1362 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1363 			ret = -EPERM;
1364 			break;
1365 		}
1366 
1367 		__sock_set_mark(sk, val);
1368 		break;
1369 	case SO_RCVMARK:
1370 		sock_valbool_flag(sk, SOCK_RCVMARK, valbool);
1371 		break;
1372 
1373 	case SO_RXQ_OVFL:
1374 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1375 		break;
1376 
1377 	case SO_WIFI_STATUS:
1378 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1379 		break;
1380 
1381 	case SO_PEEK_OFF:
1382 		if (sock->ops->set_peek_off)
1383 			ret = sock->ops->set_peek_off(sk, val);
1384 		else
1385 			ret = -EOPNOTSUPP;
1386 		break;
1387 
1388 	case SO_NOFCS:
1389 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1390 		break;
1391 
1392 	case SO_SELECT_ERR_QUEUE:
1393 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1394 		break;
1395 
1396 #ifdef CONFIG_NET_RX_BUSY_POLL
1397 	case SO_BUSY_POLL:
1398 		if (val < 0)
1399 			ret = -EINVAL;
1400 		else
1401 			WRITE_ONCE(sk->sk_ll_usec, val);
1402 		break;
1403 	case SO_PREFER_BUSY_POLL:
1404 		if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1405 			ret = -EPERM;
1406 		else
1407 			WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1408 		break;
1409 	case SO_BUSY_POLL_BUDGET:
1410 		if (val > READ_ONCE(sk->sk_busy_poll_budget) && !sockopt_capable(CAP_NET_ADMIN)) {
1411 			ret = -EPERM;
1412 		} else {
1413 			if (val < 0 || val > U16_MAX)
1414 				ret = -EINVAL;
1415 			else
1416 				WRITE_ONCE(sk->sk_busy_poll_budget, val);
1417 		}
1418 		break;
1419 #endif
1420 
1421 	case SO_MAX_PACING_RATE:
1422 		{
1423 		unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1424 
1425 		if (sizeof(ulval) != sizeof(val) &&
1426 		    optlen >= sizeof(ulval) &&
1427 		    copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1428 			ret = -EFAULT;
1429 			break;
1430 		}
1431 		if (ulval != ~0UL)
1432 			cmpxchg(&sk->sk_pacing_status,
1433 				SK_PACING_NONE,
1434 				SK_PACING_NEEDED);
1435 		/* Pairs with READ_ONCE() from sk_getsockopt() */
1436 		WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1437 		sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1438 		break;
1439 		}
1440 	case SO_INCOMING_CPU:
1441 		reuseport_update_incoming_cpu(sk, val);
1442 		break;
1443 
1444 	case SO_CNX_ADVICE:
1445 		if (val == 1)
1446 			dst_negative_advice(sk);
1447 		break;
1448 
1449 	case SO_ZEROCOPY:
1450 		if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1451 			if (!(sk_is_tcp(sk) ||
1452 			      (sk->sk_type == SOCK_DGRAM &&
1453 			       sk->sk_protocol == IPPROTO_UDP)))
1454 				ret = -EOPNOTSUPP;
1455 		} else if (sk->sk_family != PF_RDS) {
1456 			ret = -EOPNOTSUPP;
1457 		}
1458 		if (!ret) {
1459 			if (val < 0 || val > 1)
1460 				ret = -EINVAL;
1461 			else
1462 				sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1463 		}
1464 		break;
1465 
1466 	case SO_TXTIME:
1467 		if (optlen != sizeof(struct sock_txtime)) {
1468 			ret = -EINVAL;
1469 			break;
1470 		} else if (copy_from_sockptr(&sk_txtime, optval,
1471 			   sizeof(struct sock_txtime))) {
1472 			ret = -EFAULT;
1473 			break;
1474 		} else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1475 			ret = -EINVAL;
1476 			break;
1477 		}
1478 		/* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1479 		 * scheduler has enough safe guards.
1480 		 */
1481 		if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1482 		    !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1483 			ret = -EPERM;
1484 			break;
1485 		}
1486 		sock_valbool_flag(sk, SOCK_TXTIME, true);
1487 		sk->sk_clockid = sk_txtime.clockid;
1488 		sk->sk_txtime_deadline_mode =
1489 			!!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1490 		sk->sk_txtime_report_errors =
1491 			!!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1492 		break;
1493 
1494 	case SO_BINDTOIFINDEX:
1495 		ret = sock_bindtoindex_locked(sk, val);
1496 		break;
1497 
1498 	case SO_BUF_LOCK:
1499 		if (val & ~SOCK_BUF_LOCK_MASK) {
1500 			ret = -EINVAL;
1501 			break;
1502 		}
1503 		sk->sk_userlocks = val | (sk->sk_userlocks &
1504 					  ~SOCK_BUF_LOCK_MASK);
1505 		break;
1506 
1507 	case SO_RESERVE_MEM:
1508 	{
1509 		int delta;
1510 
1511 		if (val < 0) {
1512 			ret = -EINVAL;
1513 			break;
1514 		}
1515 
1516 		delta = val - sk->sk_reserved_mem;
1517 		if (delta < 0)
1518 			sock_release_reserved_memory(sk, -delta);
1519 		else
1520 			ret = sock_reserve_memory(sk, delta);
1521 		break;
1522 	}
1523 
1524 	case SO_TXREHASH:
1525 		if (val < -1 || val > 1) {
1526 			ret = -EINVAL;
1527 			break;
1528 		}
1529 		if ((u8)val == SOCK_TXREHASH_DEFAULT)
1530 			val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1531 		/* Paired with READ_ONCE() in tcp_rtx_synack()
1532 		 * and sk_getsockopt().
1533 		 */
1534 		WRITE_ONCE(sk->sk_txrehash, (u8)val);
1535 		break;
1536 
1537 	default:
1538 		ret = -ENOPROTOOPT;
1539 		break;
1540 	}
1541 	sockopt_release_sock(sk);
1542 	return ret;
1543 }
1544 
1545 int sock_setsockopt(struct socket *sock, int level, int optname,
1546 		    sockptr_t optval, unsigned int optlen)
1547 {
1548 	return sk_setsockopt(sock->sk, level, optname,
1549 			     optval, optlen);
1550 }
1551 EXPORT_SYMBOL(sock_setsockopt);
1552 
1553 static const struct cred *sk_get_peer_cred(struct sock *sk)
1554 {
1555 	const struct cred *cred;
1556 
1557 	spin_lock(&sk->sk_peer_lock);
1558 	cred = get_cred(sk->sk_peer_cred);
1559 	spin_unlock(&sk->sk_peer_lock);
1560 
1561 	return cred;
1562 }
1563 
1564 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1565 			  struct ucred *ucred)
1566 {
1567 	ucred->pid = pid_vnr(pid);
1568 	ucred->uid = ucred->gid = -1;
1569 	if (cred) {
1570 		struct user_namespace *current_ns = current_user_ns();
1571 
1572 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
1573 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
1574 	}
1575 }
1576 
1577 static int groups_to_user(sockptr_t dst, const struct group_info *src)
1578 {
1579 	struct user_namespace *user_ns = current_user_ns();
1580 	int i;
1581 
1582 	for (i = 0; i < src->ngroups; i++) {
1583 		gid_t gid = from_kgid_munged(user_ns, src->gid[i]);
1584 
1585 		if (copy_to_sockptr_offset(dst, i * sizeof(gid), &gid, sizeof(gid)))
1586 			return -EFAULT;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 int sk_getsockopt(struct sock *sk, int level, int optname,
1593 		  sockptr_t optval, sockptr_t optlen)
1594 {
1595 	struct socket *sock = sk->sk_socket;
1596 
1597 	union {
1598 		int val;
1599 		u64 val64;
1600 		unsigned long ulval;
1601 		struct linger ling;
1602 		struct old_timeval32 tm32;
1603 		struct __kernel_old_timeval tm;
1604 		struct  __kernel_sock_timeval stm;
1605 		struct sock_txtime txtime;
1606 		struct so_timestamping timestamping;
1607 	} v;
1608 
1609 	int lv = sizeof(int);
1610 	int len;
1611 
1612 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
1613 		return -EFAULT;
1614 	if (len < 0)
1615 		return -EINVAL;
1616 
1617 	memset(&v, 0, sizeof(v));
1618 
1619 	switch (optname) {
1620 	case SO_DEBUG:
1621 		v.val = sock_flag(sk, SOCK_DBG);
1622 		break;
1623 
1624 	case SO_DONTROUTE:
1625 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1626 		break;
1627 
1628 	case SO_BROADCAST:
1629 		v.val = sock_flag(sk, SOCK_BROADCAST);
1630 		break;
1631 
1632 	case SO_SNDBUF:
1633 		v.val = READ_ONCE(sk->sk_sndbuf);
1634 		break;
1635 
1636 	case SO_RCVBUF:
1637 		v.val = READ_ONCE(sk->sk_rcvbuf);
1638 		break;
1639 
1640 	case SO_REUSEADDR:
1641 		v.val = sk->sk_reuse;
1642 		break;
1643 
1644 	case SO_REUSEPORT:
1645 		v.val = sk->sk_reuseport;
1646 		break;
1647 
1648 	case SO_KEEPALIVE:
1649 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1650 		break;
1651 
1652 	case SO_TYPE:
1653 		v.val = sk->sk_type;
1654 		break;
1655 
1656 	case SO_PROTOCOL:
1657 		v.val = sk->sk_protocol;
1658 		break;
1659 
1660 	case SO_DOMAIN:
1661 		v.val = sk->sk_family;
1662 		break;
1663 
1664 	case SO_ERROR:
1665 		v.val = -sock_error(sk);
1666 		if (v.val == 0)
1667 			v.val = xchg(&sk->sk_err_soft, 0);
1668 		break;
1669 
1670 	case SO_OOBINLINE:
1671 		v.val = sock_flag(sk, SOCK_URGINLINE);
1672 		break;
1673 
1674 	case SO_NO_CHECK:
1675 		v.val = sk->sk_no_check_tx;
1676 		break;
1677 
1678 	case SO_PRIORITY:
1679 		v.val = READ_ONCE(sk->sk_priority);
1680 		break;
1681 
1682 	case SO_LINGER:
1683 		lv		= sizeof(v.ling);
1684 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1685 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1686 		break;
1687 
1688 	case SO_BSDCOMPAT:
1689 		break;
1690 
1691 	case SO_TIMESTAMP_OLD:
1692 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1693 				!sock_flag(sk, SOCK_TSTAMP_NEW) &&
1694 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1695 		break;
1696 
1697 	case SO_TIMESTAMPNS_OLD:
1698 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1699 		break;
1700 
1701 	case SO_TIMESTAMP_NEW:
1702 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1703 		break;
1704 
1705 	case SO_TIMESTAMPNS_NEW:
1706 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1707 		break;
1708 
1709 	case SO_TIMESTAMPING_OLD:
1710 		lv = sizeof(v.timestamping);
1711 		v.timestamping.flags = sk->sk_tsflags;
1712 		v.timestamping.bind_phc = sk->sk_bind_phc;
1713 		break;
1714 
1715 	case SO_RCVTIMEO_OLD:
1716 	case SO_RCVTIMEO_NEW:
1717 		lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1718 				      SO_RCVTIMEO_OLD == optname);
1719 		break;
1720 
1721 	case SO_SNDTIMEO_OLD:
1722 	case SO_SNDTIMEO_NEW:
1723 		lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1724 				      SO_SNDTIMEO_OLD == optname);
1725 		break;
1726 
1727 	case SO_RCVLOWAT:
1728 		v.val = READ_ONCE(sk->sk_rcvlowat);
1729 		break;
1730 
1731 	case SO_SNDLOWAT:
1732 		v.val = 1;
1733 		break;
1734 
1735 	case SO_PASSCRED:
1736 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1737 		break;
1738 
1739 	case SO_PASSPIDFD:
1740 		v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1741 		break;
1742 
1743 	case SO_PEERCRED:
1744 	{
1745 		struct ucred peercred;
1746 		if (len > sizeof(peercred))
1747 			len = sizeof(peercred);
1748 
1749 		spin_lock(&sk->sk_peer_lock);
1750 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1751 		spin_unlock(&sk->sk_peer_lock);
1752 
1753 		if (copy_to_sockptr(optval, &peercred, len))
1754 			return -EFAULT;
1755 		goto lenout;
1756 	}
1757 
1758 	case SO_PEERPIDFD:
1759 	{
1760 		struct pid *peer_pid;
1761 		struct file *pidfd_file = NULL;
1762 		int pidfd;
1763 
1764 		if (len > sizeof(pidfd))
1765 			len = sizeof(pidfd);
1766 
1767 		spin_lock(&sk->sk_peer_lock);
1768 		peer_pid = get_pid(sk->sk_peer_pid);
1769 		spin_unlock(&sk->sk_peer_lock);
1770 
1771 		if (!peer_pid)
1772 			return -ESRCH;
1773 
1774 		pidfd = pidfd_prepare(peer_pid, 0, &pidfd_file);
1775 		put_pid(peer_pid);
1776 		if (pidfd < 0)
1777 			return pidfd;
1778 
1779 		if (copy_to_sockptr(optval, &pidfd, len) ||
1780 		    copy_to_sockptr(optlen, &len, sizeof(int))) {
1781 			put_unused_fd(pidfd);
1782 			fput(pidfd_file);
1783 
1784 			return -EFAULT;
1785 		}
1786 
1787 		fd_install(pidfd, pidfd_file);
1788 		return 0;
1789 	}
1790 
1791 	case SO_PEERGROUPS:
1792 	{
1793 		const struct cred *cred;
1794 		int ret, n;
1795 
1796 		cred = sk_get_peer_cred(sk);
1797 		if (!cred)
1798 			return -ENODATA;
1799 
1800 		n = cred->group_info->ngroups;
1801 		if (len < n * sizeof(gid_t)) {
1802 			len = n * sizeof(gid_t);
1803 			put_cred(cred);
1804 			return copy_to_sockptr(optlen, &len, sizeof(int)) ? -EFAULT : -ERANGE;
1805 		}
1806 		len = n * sizeof(gid_t);
1807 
1808 		ret = groups_to_user(optval, cred->group_info);
1809 		put_cred(cred);
1810 		if (ret)
1811 			return ret;
1812 		goto lenout;
1813 	}
1814 
1815 	case SO_PEERNAME:
1816 	{
1817 		struct sockaddr_storage address;
1818 
1819 		lv = sock->ops->getname(sock, (struct sockaddr *)&address, 2);
1820 		if (lv < 0)
1821 			return -ENOTCONN;
1822 		if (lv < len)
1823 			return -EINVAL;
1824 		if (copy_to_sockptr(optval, &address, len))
1825 			return -EFAULT;
1826 		goto lenout;
1827 	}
1828 
1829 	/* Dubious BSD thing... Probably nobody even uses it, but
1830 	 * the UNIX standard wants it for whatever reason... -DaveM
1831 	 */
1832 	case SO_ACCEPTCONN:
1833 		v.val = sk->sk_state == TCP_LISTEN;
1834 		break;
1835 
1836 	case SO_PASSSEC:
1837 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1838 		break;
1839 
1840 	case SO_PEERSEC:
1841 		return security_socket_getpeersec_stream(sock,
1842 							 optval, optlen, len);
1843 
1844 	case SO_MARK:
1845 		v.val = READ_ONCE(sk->sk_mark);
1846 		break;
1847 
1848 	case SO_RCVMARK:
1849 		v.val = sock_flag(sk, SOCK_RCVMARK);
1850 		break;
1851 
1852 	case SO_RXQ_OVFL:
1853 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1854 		break;
1855 
1856 	case SO_WIFI_STATUS:
1857 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1858 		break;
1859 
1860 	case SO_PEEK_OFF:
1861 		if (!sock->ops->set_peek_off)
1862 			return -EOPNOTSUPP;
1863 
1864 		v.val = READ_ONCE(sk->sk_peek_off);
1865 		break;
1866 	case SO_NOFCS:
1867 		v.val = sock_flag(sk, SOCK_NOFCS);
1868 		break;
1869 
1870 	case SO_BINDTODEVICE:
1871 		return sock_getbindtodevice(sk, optval, optlen, len);
1872 
1873 	case SO_GET_FILTER:
1874 		len = sk_get_filter(sk, optval, len);
1875 		if (len < 0)
1876 			return len;
1877 
1878 		goto lenout;
1879 
1880 	case SO_LOCK_FILTER:
1881 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1882 		break;
1883 
1884 	case SO_BPF_EXTENSIONS:
1885 		v.val = bpf_tell_extensions();
1886 		break;
1887 
1888 	case SO_SELECT_ERR_QUEUE:
1889 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1890 		break;
1891 
1892 #ifdef CONFIG_NET_RX_BUSY_POLL
1893 	case SO_BUSY_POLL:
1894 		v.val = READ_ONCE(sk->sk_ll_usec);
1895 		break;
1896 	case SO_PREFER_BUSY_POLL:
1897 		v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1898 		break;
1899 #endif
1900 
1901 	case SO_MAX_PACING_RATE:
1902 		/* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1903 		if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1904 			lv = sizeof(v.ulval);
1905 			v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1906 		} else {
1907 			/* 32bit version */
1908 			v.val = min_t(unsigned long, ~0U,
1909 				      READ_ONCE(sk->sk_max_pacing_rate));
1910 		}
1911 		break;
1912 
1913 	case SO_INCOMING_CPU:
1914 		v.val = READ_ONCE(sk->sk_incoming_cpu);
1915 		break;
1916 
1917 	case SO_MEMINFO:
1918 	{
1919 		u32 meminfo[SK_MEMINFO_VARS];
1920 
1921 		sk_get_meminfo(sk, meminfo);
1922 
1923 		len = min_t(unsigned int, len, sizeof(meminfo));
1924 		if (copy_to_sockptr(optval, &meminfo, len))
1925 			return -EFAULT;
1926 
1927 		goto lenout;
1928 	}
1929 
1930 #ifdef CONFIG_NET_RX_BUSY_POLL
1931 	case SO_INCOMING_NAPI_ID:
1932 		v.val = READ_ONCE(sk->sk_napi_id);
1933 
1934 		/* aggregate non-NAPI IDs down to 0 */
1935 		if (v.val < MIN_NAPI_ID)
1936 			v.val = 0;
1937 
1938 		break;
1939 #endif
1940 
1941 	case SO_COOKIE:
1942 		lv = sizeof(u64);
1943 		if (len < lv)
1944 			return -EINVAL;
1945 		v.val64 = sock_gen_cookie(sk);
1946 		break;
1947 
1948 	case SO_ZEROCOPY:
1949 		v.val = sock_flag(sk, SOCK_ZEROCOPY);
1950 		break;
1951 
1952 	case SO_TXTIME:
1953 		lv = sizeof(v.txtime);
1954 		v.txtime.clockid = sk->sk_clockid;
1955 		v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1956 				  SOF_TXTIME_DEADLINE_MODE : 0;
1957 		v.txtime.flags |= sk->sk_txtime_report_errors ?
1958 				  SOF_TXTIME_REPORT_ERRORS : 0;
1959 		break;
1960 
1961 	case SO_BINDTOIFINDEX:
1962 		v.val = READ_ONCE(sk->sk_bound_dev_if);
1963 		break;
1964 
1965 	case SO_NETNS_COOKIE:
1966 		lv = sizeof(u64);
1967 		if (len != lv)
1968 			return -EINVAL;
1969 		v.val64 = sock_net(sk)->net_cookie;
1970 		break;
1971 
1972 	case SO_BUF_LOCK:
1973 		v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1974 		break;
1975 
1976 	case SO_RESERVE_MEM:
1977 		v.val = READ_ONCE(sk->sk_reserved_mem);
1978 		break;
1979 
1980 	case SO_TXREHASH:
1981 		/* Paired with WRITE_ONCE() in sk_setsockopt() */
1982 		v.val = READ_ONCE(sk->sk_txrehash);
1983 		break;
1984 
1985 	default:
1986 		/* We implement the SO_SNDLOWAT etc to not be settable
1987 		 * (1003.1g 7).
1988 		 */
1989 		return -ENOPROTOOPT;
1990 	}
1991 
1992 	if (len > lv)
1993 		len = lv;
1994 	if (copy_to_sockptr(optval, &v, len))
1995 		return -EFAULT;
1996 lenout:
1997 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
1998 		return -EFAULT;
1999 	return 0;
2000 }
2001 
2002 int sock_getsockopt(struct socket *sock, int level, int optname,
2003 		    char __user *optval, int __user *optlen)
2004 {
2005 	return sk_getsockopt(sock->sk, level, optname,
2006 			     USER_SOCKPTR(optval),
2007 			     USER_SOCKPTR(optlen));
2008 }
2009 
2010 /*
2011  * Initialize an sk_lock.
2012  *
2013  * (We also register the sk_lock with the lock validator.)
2014  */
2015 static inline void sock_lock_init(struct sock *sk)
2016 {
2017 	if (sk->sk_kern_sock)
2018 		sock_lock_init_class_and_name(
2019 			sk,
2020 			af_family_kern_slock_key_strings[sk->sk_family],
2021 			af_family_kern_slock_keys + sk->sk_family,
2022 			af_family_kern_key_strings[sk->sk_family],
2023 			af_family_kern_keys + sk->sk_family);
2024 	else
2025 		sock_lock_init_class_and_name(
2026 			sk,
2027 			af_family_slock_key_strings[sk->sk_family],
2028 			af_family_slock_keys + sk->sk_family,
2029 			af_family_key_strings[sk->sk_family],
2030 			af_family_keys + sk->sk_family);
2031 }
2032 
2033 /*
2034  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2035  * even temporarly, because of RCU lookups. sk_node should also be left as is.
2036  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2037  */
2038 static void sock_copy(struct sock *nsk, const struct sock *osk)
2039 {
2040 	const struct proto *prot = READ_ONCE(osk->sk_prot);
2041 #ifdef CONFIG_SECURITY_NETWORK
2042 	void *sptr = nsk->sk_security;
2043 #endif
2044 
2045 	/* If we move sk_tx_queue_mapping out of the private section,
2046 	 * we must check if sk_tx_queue_clear() is called after
2047 	 * sock_copy() in sk_clone_lock().
2048 	 */
2049 	BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2050 		     offsetof(struct sock, sk_dontcopy_begin) ||
2051 		     offsetof(struct sock, sk_tx_queue_mapping) >=
2052 		     offsetof(struct sock, sk_dontcopy_end));
2053 
2054 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2055 
2056 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2057 	       prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2058 
2059 #ifdef CONFIG_SECURITY_NETWORK
2060 	nsk->sk_security = sptr;
2061 	security_sk_clone(osk, nsk);
2062 #endif
2063 }
2064 
2065 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2066 		int family)
2067 {
2068 	struct sock *sk;
2069 	struct kmem_cache *slab;
2070 
2071 	slab = prot->slab;
2072 	if (slab != NULL) {
2073 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
2074 		if (!sk)
2075 			return sk;
2076 		if (want_init_on_alloc(priority))
2077 			sk_prot_clear_nulls(sk, prot->obj_size);
2078 	} else
2079 		sk = kmalloc(prot->obj_size, priority);
2080 
2081 	if (sk != NULL) {
2082 		if (security_sk_alloc(sk, family, priority))
2083 			goto out_free;
2084 
2085 		if (!try_module_get(prot->owner))
2086 			goto out_free_sec;
2087 	}
2088 
2089 	return sk;
2090 
2091 out_free_sec:
2092 	security_sk_free(sk);
2093 out_free:
2094 	if (slab != NULL)
2095 		kmem_cache_free(slab, sk);
2096 	else
2097 		kfree(sk);
2098 	return NULL;
2099 }
2100 
2101 static void sk_prot_free(struct proto *prot, struct sock *sk)
2102 {
2103 	struct kmem_cache *slab;
2104 	struct module *owner;
2105 
2106 	owner = prot->owner;
2107 	slab = prot->slab;
2108 
2109 	cgroup_sk_free(&sk->sk_cgrp_data);
2110 	mem_cgroup_sk_free(sk);
2111 	security_sk_free(sk);
2112 	if (slab != NULL)
2113 		kmem_cache_free(slab, sk);
2114 	else
2115 		kfree(sk);
2116 	module_put(owner);
2117 }
2118 
2119 /**
2120  *	sk_alloc - All socket objects are allocated here
2121  *	@net: the applicable net namespace
2122  *	@family: protocol family
2123  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2124  *	@prot: struct proto associated with this new sock instance
2125  *	@kern: is this to be a kernel socket?
2126  */
2127 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2128 		      struct proto *prot, int kern)
2129 {
2130 	struct sock *sk;
2131 
2132 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
2133 	if (sk) {
2134 		sk->sk_family = family;
2135 		/*
2136 		 * See comment in struct sock definition to understand
2137 		 * why we need sk_prot_creator -acme
2138 		 */
2139 		sk->sk_prot = sk->sk_prot_creator = prot;
2140 		sk->sk_kern_sock = kern;
2141 		sock_lock_init(sk);
2142 		sk->sk_net_refcnt = kern ? 0 : 1;
2143 		if (likely(sk->sk_net_refcnt)) {
2144 			get_net_track(net, &sk->ns_tracker, priority);
2145 			sock_inuse_add(net, 1);
2146 		} else {
2147 			__netns_tracker_alloc(net, &sk->ns_tracker,
2148 					      false, priority);
2149 		}
2150 
2151 		sock_net_set(sk, net);
2152 		refcount_set(&sk->sk_wmem_alloc, 1);
2153 
2154 		mem_cgroup_sk_alloc(sk);
2155 		cgroup_sk_alloc(&sk->sk_cgrp_data);
2156 		sock_update_classid(&sk->sk_cgrp_data);
2157 		sock_update_netprioidx(&sk->sk_cgrp_data);
2158 		sk_tx_queue_clear(sk);
2159 	}
2160 
2161 	return sk;
2162 }
2163 EXPORT_SYMBOL(sk_alloc);
2164 
2165 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
2166  * grace period. This is the case for UDP sockets and TCP listeners.
2167  */
2168 static void __sk_destruct(struct rcu_head *head)
2169 {
2170 	struct sock *sk = container_of(head, struct sock, sk_rcu);
2171 	struct sk_filter *filter;
2172 
2173 	if (sk->sk_destruct)
2174 		sk->sk_destruct(sk);
2175 
2176 	filter = rcu_dereference_check(sk->sk_filter,
2177 				       refcount_read(&sk->sk_wmem_alloc) == 0);
2178 	if (filter) {
2179 		sk_filter_uncharge(sk, filter);
2180 		RCU_INIT_POINTER(sk->sk_filter, NULL);
2181 	}
2182 
2183 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2184 
2185 #ifdef CONFIG_BPF_SYSCALL
2186 	bpf_sk_storage_free(sk);
2187 #endif
2188 
2189 	if (atomic_read(&sk->sk_omem_alloc))
2190 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
2191 			 __func__, atomic_read(&sk->sk_omem_alloc));
2192 
2193 	if (sk->sk_frag.page) {
2194 		put_page(sk->sk_frag.page);
2195 		sk->sk_frag.page = NULL;
2196 	}
2197 
2198 	/* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2199 	put_cred(sk->sk_peer_cred);
2200 	put_pid(sk->sk_peer_pid);
2201 
2202 	if (likely(sk->sk_net_refcnt))
2203 		put_net_track(sock_net(sk), &sk->ns_tracker);
2204 	else
2205 		__netns_tracker_free(sock_net(sk), &sk->ns_tracker, false);
2206 
2207 	sk_prot_free(sk->sk_prot_creator, sk);
2208 }
2209 
2210 void sk_destruct(struct sock *sk)
2211 {
2212 	bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
2213 
2214 	if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2215 		reuseport_detach_sock(sk);
2216 		use_call_rcu = true;
2217 	}
2218 
2219 	if (use_call_rcu)
2220 		call_rcu(&sk->sk_rcu, __sk_destruct);
2221 	else
2222 		__sk_destruct(&sk->sk_rcu);
2223 }
2224 
2225 static void __sk_free(struct sock *sk)
2226 {
2227 	if (likely(sk->sk_net_refcnt))
2228 		sock_inuse_add(sock_net(sk), -1);
2229 
2230 	if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2231 		sock_diag_broadcast_destroy(sk);
2232 	else
2233 		sk_destruct(sk);
2234 }
2235 
2236 void sk_free(struct sock *sk)
2237 {
2238 	/*
2239 	 * We subtract one from sk_wmem_alloc and can know if
2240 	 * some packets are still in some tx queue.
2241 	 * If not null, sock_wfree() will call __sk_free(sk) later
2242 	 */
2243 	if (refcount_dec_and_test(&sk->sk_wmem_alloc))
2244 		__sk_free(sk);
2245 }
2246 EXPORT_SYMBOL(sk_free);
2247 
2248 static void sk_init_common(struct sock *sk)
2249 {
2250 	skb_queue_head_init(&sk->sk_receive_queue);
2251 	skb_queue_head_init(&sk->sk_write_queue);
2252 	skb_queue_head_init(&sk->sk_error_queue);
2253 
2254 	rwlock_init(&sk->sk_callback_lock);
2255 	lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2256 			af_rlock_keys + sk->sk_family,
2257 			af_family_rlock_key_strings[sk->sk_family]);
2258 	lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2259 			af_wlock_keys + sk->sk_family,
2260 			af_family_wlock_key_strings[sk->sk_family]);
2261 	lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2262 			af_elock_keys + sk->sk_family,
2263 			af_family_elock_key_strings[sk->sk_family]);
2264 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2265 			af_callback_keys + sk->sk_family,
2266 			af_family_clock_key_strings[sk->sk_family]);
2267 }
2268 
2269 /**
2270  *	sk_clone_lock - clone a socket, and lock its clone
2271  *	@sk: the socket to clone
2272  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2273  *
2274  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2275  */
2276 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2277 {
2278 	struct proto *prot = READ_ONCE(sk->sk_prot);
2279 	struct sk_filter *filter;
2280 	bool is_charged = true;
2281 	struct sock *newsk;
2282 
2283 	newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2284 	if (!newsk)
2285 		goto out;
2286 
2287 	sock_copy(newsk, sk);
2288 
2289 	newsk->sk_prot_creator = prot;
2290 
2291 	/* SANITY */
2292 	if (likely(newsk->sk_net_refcnt)) {
2293 		get_net_track(sock_net(newsk), &newsk->ns_tracker, priority);
2294 		sock_inuse_add(sock_net(newsk), 1);
2295 	} else {
2296 		/* Kernel sockets are not elevating the struct net refcount.
2297 		 * Instead, use a tracker to more easily detect if a layer
2298 		 * is not properly dismantling its kernel sockets at netns
2299 		 * destroy time.
2300 		 */
2301 		__netns_tracker_alloc(sock_net(newsk), &newsk->ns_tracker,
2302 				      false, priority);
2303 	}
2304 	sk_node_init(&newsk->sk_node);
2305 	sock_lock_init(newsk);
2306 	bh_lock_sock(newsk);
2307 	newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
2308 	newsk->sk_backlog.len = 0;
2309 
2310 	atomic_set(&newsk->sk_rmem_alloc, 0);
2311 
2312 	/* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2313 	refcount_set(&newsk->sk_wmem_alloc, 1);
2314 
2315 	atomic_set(&newsk->sk_omem_alloc, 0);
2316 	sk_init_common(newsk);
2317 
2318 	newsk->sk_dst_cache	= NULL;
2319 	newsk->sk_dst_pending_confirm = 0;
2320 	newsk->sk_wmem_queued	= 0;
2321 	newsk->sk_forward_alloc = 0;
2322 	newsk->sk_reserved_mem  = 0;
2323 	atomic_set(&newsk->sk_drops, 0);
2324 	newsk->sk_send_head	= NULL;
2325 	newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2326 	atomic_set(&newsk->sk_zckey, 0);
2327 
2328 	sock_reset_flag(newsk, SOCK_DONE);
2329 
2330 	/* sk->sk_memcg will be populated at accept() time */
2331 	newsk->sk_memcg = NULL;
2332 
2333 	cgroup_sk_clone(&newsk->sk_cgrp_data);
2334 
2335 	rcu_read_lock();
2336 	filter = rcu_dereference(sk->sk_filter);
2337 	if (filter != NULL)
2338 		/* though it's an empty new sock, the charging may fail
2339 		 * if sysctl_optmem_max was changed between creation of
2340 		 * original socket and cloning
2341 		 */
2342 		is_charged = sk_filter_charge(newsk, filter);
2343 	RCU_INIT_POINTER(newsk->sk_filter, filter);
2344 	rcu_read_unlock();
2345 
2346 	if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2347 		/* We need to make sure that we don't uncharge the new
2348 		 * socket if we couldn't charge it in the first place
2349 		 * as otherwise we uncharge the parent's filter.
2350 		 */
2351 		if (!is_charged)
2352 			RCU_INIT_POINTER(newsk->sk_filter, NULL);
2353 		sk_free_unlock_clone(newsk);
2354 		newsk = NULL;
2355 		goto out;
2356 	}
2357 	RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2358 
2359 	if (bpf_sk_storage_clone(sk, newsk)) {
2360 		sk_free_unlock_clone(newsk);
2361 		newsk = NULL;
2362 		goto out;
2363 	}
2364 
2365 	/* Clear sk_user_data if parent had the pointer tagged
2366 	 * as not suitable for copying when cloning.
2367 	 */
2368 	if (sk_user_data_is_nocopy(newsk))
2369 		newsk->sk_user_data = NULL;
2370 
2371 	newsk->sk_err	   = 0;
2372 	newsk->sk_err_soft = 0;
2373 	newsk->sk_priority = 0;
2374 	newsk->sk_incoming_cpu = raw_smp_processor_id();
2375 
2376 	/* Before updating sk_refcnt, we must commit prior changes to memory
2377 	 * (Documentation/RCU/rculist_nulls.rst for details)
2378 	 */
2379 	smp_wmb();
2380 	refcount_set(&newsk->sk_refcnt, 2);
2381 
2382 	sk_set_socket(newsk, NULL);
2383 	sk_tx_queue_clear(newsk);
2384 	RCU_INIT_POINTER(newsk->sk_wq, NULL);
2385 
2386 	if (newsk->sk_prot->sockets_allocated)
2387 		sk_sockets_allocated_inc(newsk);
2388 
2389 	if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2390 		net_enable_timestamp();
2391 out:
2392 	return newsk;
2393 }
2394 EXPORT_SYMBOL_GPL(sk_clone_lock);
2395 
2396 void sk_free_unlock_clone(struct sock *sk)
2397 {
2398 	/* It is still raw copy of parent, so invalidate
2399 	 * destructor and make plain sk_free() */
2400 	sk->sk_destruct = NULL;
2401 	bh_unlock_sock(sk);
2402 	sk_free(sk);
2403 }
2404 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2405 
2406 static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2407 {
2408 	bool is_ipv6 = false;
2409 	u32 max_size;
2410 
2411 #if IS_ENABLED(CONFIG_IPV6)
2412 	is_ipv6 = (sk->sk_family == AF_INET6 &&
2413 		   !ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr));
2414 #endif
2415 	/* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2416 	max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2417 			READ_ONCE(dst->dev->gso_ipv4_max_size);
2418 	if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2419 		max_size = GSO_LEGACY_MAX_SIZE;
2420 
2421 	return max_size - (MAX_TCP_HEADER + 1);
2422 }
2423 
2424 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2425 {
2426 	u32 max_segs = 1;
2427 
2428 	sk->sk_route_caps = dst->dev->features;
2429 	if (sk_is_tcp(sk))
2430 		sk->sk_route_caps |= NETIF_F_GSO;
2431 	if (sk->sk_route_caps & NETIF_F_GSO)
2432 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2433 	if (unlikely(sk->sk_gso_disabled))
2434 		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2435 	if (sk_can_gso(sk)) {
2436 		if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2437 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2438 		} else {
2439 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2440 			sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2441 			/* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2442 			max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2443 		}
2444 	}
2445 	sk->sk_gso_max_segs = max_segs;
2446 	sk_dst_set(sk, dst);
2447 }
2448 EXPORT_SYMBOL_GPL(sk_setup_caps);
2449 
2450 /*
2451  *	Simple resource managers for sockets.
2452  */
2453 
2454 
2455 /*
2456  * Write buffer destructor automatically called from kfree_skb.
2457  */
2458 void sock_wfree(struct sk_buff *skb)
2459 {
2460 	struct sock *sk = skb->sk;
2461 	unsigned int len = skb->truesize;
2462 	bool free;
2463 
2464 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2465 		if (sock_flag(sk, SOCK_RCU_FREE) &&
2466 		    sk->sk_write_space == sock_def_write_space) {
2467 			rcu_read_lock();
2468 			free = refcount_sub_and_test(len, &sk->sk_wmem_alloc);
2469 			sock_def_write_space_wfree(sk);
2470 			rcu_read_unlock();
2471 			if (unlikely(free))
2472 				__sk_free(sk);
2473 			return;
2474 		}
2475 
2476 		/*
2477 		 * Keep a reference on sk_wmem_alloc, this will be released
2478 		 * after sk_write_space() call
2479 		 */
2480 		WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2481 		sk->sk_write_space(sk);
2482 		len = 1;
2483 	}
2484 	/*
2485 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2486 	 * could not do because of in-flight packets
2487 	 */
2488 	if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2489 		__sk_free(sk);
2490 }
2491 EXPORT_SYMBOL(sock_wfree);
2492 
2493 /* This variant of sock_wfree() is used by TCP,
2494  * since it sets SOCK_USE_WRITE_QUEUE.
2495  */
2496 void __sock_wfree(struct sk_buff *skb)
2497 {
2498 	struct sock *sk = skb->sk;
2499 
2500 	if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2501 		__sk_free(sk);
2502 }
2503 
2504 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2505 {
2506 	skb_orphan(skb);
2507 	skb->sk = sk;
2508 #ifdef CONFIG_INET
2509 	if (unlikely(!sk_fullsock(sk))) {
2510 		skb->destructor = sock_edemux;
2511 		sock_hold(sk);
2512 		return;
2513 	}
2514 #endif
2515 	skb->destructor = sock_wfree;
2516 	skb_set_hash_from_sk(skb, sk);
2517 	/*
2518 	 * We used to take a refcount on sk, but following operation
2519 	 * is enough to guarantee sk_free() wont free this sock until
2520 	 * all in-flight packets are completed
2521 	 */
2522 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2523 }
2524 EXPORT_SYMBOL(skb_set_owner_w);
2525 
2526 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2527 {
2528 #ifdef CONFIG_TLS_DEVICE
2529 	/* Drivers depend on in-order delivery for crypto offload,
2530 	 * partial orphan breaks out-of-order-OK logic.
2531 	 */
2532 	if (skb->decrypted)
2533 		return false;
2534 #endif
2535 	return (skb->destructor == sock_wfree ||
2536 		(IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2537 }
2538 
2539 /* This helper is used by netem, as it can hold packets in its
2540  * delay queue. We want to allow the owner socket to send more
2541  * packets, as if they were already TX completed by a typical driver.
2542  * But we also want to keep skb->sk set because some packet schedulers
2543  * rely on it (sch_fq for example).
2544  */
2545 void skb_orphan_partial(struct sk_buff *skb)
2546 {
2547 	if (skb_is_tcp_pure_ack(skb))
2548 		return;
2549 
2550 	if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2551 		return;
2552 
2553 	skb_orphan(skb);
2554 }
2555 EXPORT_SYMBOL(skb_orphan_partial);
2556 
2557 /*
2558  * Read buffer destructor automatically called from kfree_skb.
2559  */
2560 void sock_rfree(struct sk_buff *skb)
2561 {
2562 	struct sock *sk = skb->sk;
2563 	unsigned int len = skb->truesize;
2564 
2565 	atomic_sub(len, &sk->sk_rmem_alloc);
2566 	sk_mem_uncharge(sk, len);
2567 }
2568 EXPORT_SYMBOL(sock_rfree);
2569 
2570 /*
2571  * Buffer destructor for skbs that are not used directly in read or write
2572  * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2573  */
2574 void sock_efree(struct sk_buff *skb)
2575 {
2576 	sock_put(skb->sk);
2577 }
2578 EXPORT_SYMBOL(sock_efree);
2579 
2580 /* Buffer destructor for prefetch/receive path where reference count may
2581  * not be held, e.g. for listen sockets.
2582  */
2583 #ifdef CONFIG_INET
2584 void sock_pfree(struct sk_buff *skb)
2585 {
2586 	if (sk_is_refcounted(skb->sk))
2587 		sock_gen_put(skb->sk);
2588 }
2589 EXPORT_SYMBOL(sock_pfree);
2590 #endif /* CONFIG_INET */
2591 
2592 kuid_t sock_i_uid(struct sock *sk)
2593 {
2594 	kuid_t uid;
2595 
2596 	read_lock_bh(&sk->sk_callback_lock);
2597 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2598 	read_unlock_bh(&sk->sk_callback_lock);
2599 	return uid;
2600 }
2601 EXPORT_SYMBOL(sock_i_uid);
2602 
2603 unsigned long __sock_i_ino(struct sock *sk)
2604 {
2605 	unsigned long ino;
2606 
2607 	read_lock(&sk->sk_callback_lock);
2608 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2609 	read_unlock(&sk->sk_callback_lock);
2610 	return ino;
2611 }
2612 EXPORT_SYMBOL(__sock_i_ino);
2613 
2614 unsigned long sock_i_ino(struct sock *sk)
2615 {
2616 	unsigned long ino;
2617 
2618 	local_bh_disable();
2619 	ino = __sock_i_ino(sk);
2620 	local_bh_enable();
2621 	return ino;
2622 }
2623 EXPORT_SYMBOL(sock_i_ino);
2624 
2625 /*
2626  * Allocate a skb from the socket's send buffer.
2627  */
2628 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2629 			     gfp_t priority)
2630 {
2631 	if (force ||
2632 	    refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2633 		struct sk_buff *skb = alloc_skb(size, priority);
2634 
2635 		if (skb) {
2636 			skb_set_owner_w(skb, sk);
2637 			return skb;
2638 		}
2639 	}
2640 	return NULL;
2641 }
2642 EXPORT_SYMBOL(sock_wmalloc);
2643 
2644 static void sock_ofree(struct sk_buff *skb)
2645 {
2646 	struct sock *sk = skb->sk;
2647 
2648 	atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2649 }
2650 
2651 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2652 			     gfp_t priority)
2653 {
2654 	struct sk_buff *skb;
2655 
2656 	/* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2657 	if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2658 	    READ_ONCE(sysctl_optmem_max))
2659 		return NULL;
2660 
2661 	skb = alloc_skb(size, priority);
2662 	if (!skb)
2663 		return NULL;
2664 
2665 	atomic_add(skb->truesize, &sk->sk_omem_alloc);
2666 	skb->sk = sk;
2667 	skb->destructor = sock_ofree;
2668 	return skb;
2669 }
2670 
2671 /*
2672  * Allocate a memory block from the socket's option memory buffer.
2673  */
2674 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2675 {
2676 	int optmem_max = READ_ONCE(sysctl_optmem_max);
2677 
2678 	if ((unsigned int)size <= optmem_max &&
2679 	    atomic_read(&sk->sk_omem_alloc) + size < optmem_max) {
2680 		void *mem;
2681 		/* First do the add, to avoid the race if kmalloc
2682 		 * might sleep.
2683 		 */
2684 		atomic_add(size, &sk->sk_omem_alloc);
2685 		mem = kmalloc(size, priority);
2686 		if (mem)
2687 			return mem;
2688 		atomic_sub(size, &sk->sk_omem_alloc);
2689 	}
2690 	return NULL;
2691 }
2692 EXPORT_SYMBOL(sock_kmalloc);
2693 
2694 /* Free an option memory block. Note, we actually want the inline
2695  * here as this allows gcc to detect the nullify and fold away the
2696  * condition entirely.
2697  */
2698 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2699 				  const bool nullify)
2700 {
2701 	if (WARN_ON_ONCE(!mem))
2702 		return;
2703 	if (nullify)
2704 		kfree_sensitive(mem);
2705 	else
2706 		kfree(mem);
2707 	atomic_sub(size, &sk->sk_omem_alloc);
2708 }
2709 
2710 void sock_kfree_s(struct sock *sk, void *mem, int size)
2711 {
2712 	__sock_kfree_s(sk, mem, size, false);
2713 }
2714 EXPORT_SYMBOL(sock_kfree_s);
2715 
2716 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2717 {
2718 	__sock_kfree_s(sk, mem, size, true);
2719 }
2720 EXPORT_SYMBOL(sock_kzfree_s);
2721 
2722 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2723    I think, these locks should be removed for datagram sockets.
2724  */
2725 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2726 {
2727 	DEFINE_WAIT(wait);
2728 
2729 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2730 	for (;;) {
2731 		if (!timeo)
2732 			break;
2733 		if (signal_pending(current))
2734 			break;
2735 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2736 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2737 		if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2738 			break;
2739 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2740 			break;
2741 		if (sk->sk_err)
2742 			break;
2743 		timeo = schedule_timeout(timeo);
2744 	}
2745 	finish_wait(sk_sleep(sk), &wait);
2746 	return timeo;
2747 }
2748 
2749 
2750 /*
2751  *	Generic send/receive buffer handlers
2752  */
2753 
2754 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2755 				     unsigned long data_len, int noblock,
2756 				     int *errcode, int max_page_order)
2757 {
2758 	struct sk_buff *skb;
2759 	long timeo;
2760 	int err;
2761 
2762 	timeo = sock_sndtimeo(sk, noblock);
2763 	for (;;) {
2764 		err = sock_error(sk);
2765 		if (err != 0)
2766 			goto failure;
2767 
2768 		err = -EPIPE;
2769 		if (sk->sk_shutdown & SEND_SHUTDOWN)
2770 			goto failure;
2771 
2772 		if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2773 			break;
2774 
2775 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2776 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2777 		err = -EAGAIN;
2778 		if (!timeo)
2779 			goto failure;
2780 		if (signal_pending(current))
2781 			goto interrupted;
2782 		timeo = sock_wait_for_wmem(sk, timeo);
2783 	}
2784 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2785 				   errcode, sk->sk_allocation);
2786 	if (skb)
2787 		skb_set_owner_w(skb, sk);
2788 	return skb;
2789 
2790 interrupted:
2791 	err = sock_intr_errno(timeo);
2792 failure:
2793 	*errcode = err;
2794 	return NULL;
2795 }
2796 EXPORT_SYMBOL(sock_alloc_send_pskb);
2797 
2798 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2799 		     struct sockcm_cookie *sockc)
2800 {
2801 	u32 tsflags;
2802 
2803 	switch (cmsg->cmsg_type) {
2804 	case SO_MARK:
2805 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
2806 		    !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2807 			return -EPERM;
2808 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2809 			return -EINVAL;
2810 		sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2811 		break;
2812 	case SO_TIMESTAMPING_OLD:
2813 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2814 			return -EINVAL;
2815 
2816 		tsflags = *(u32 *)CMSG_DATA(cmsg);
2817 		if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2818 			return -EINVAL;
2819 
2820 		sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2821 		sockc->tsflags |= tsflags;
2822 		break;
2823 	case SCM_TXTIME:
2824 		if (!sock_flag(sk, SOCK_TXTIME))
2825 			return -EINVAL;
2826 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2827 			return -EINVAL;
2828 		sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2829 		break;
2830 	/* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2831 	case SCM_RIGHTS:
2832 	case SCM_CREDENTIALS:
2833 		break;
2834 	default:
2835 		return -EINVAL;
2836 	}
2837 	return 0;
2838 }
2839 EXPORT_SYMBOL(__sock_cmsg_send);
2840 
2841 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2842 		   struct sockcm_cookie *sockc)
2843 {
2844 	struct cmsghdr *cmsg;
2845 	int ret;
2846 
2847 	for_each_cmsghdr(cmsg, msg) {
2848 		if (!CMSG_OK(msg, cmsg))
2849 			return -EINVAL;
2850 		if (cmsg->cmsg_level != SOL_SOCKET)
2851 			continue;
2852 		ret = __sock_cmsg_send(sk, cmsg, sockc);
2853 		if (ret)
2854 			return ret;
2855 	}
2856 	return 0;
2857 }
2858 EXPORT_SYMBOL(sock_cmsg_send);
2859 
2860 static void sk_enter_memory_pressure(struct sock *sk)
2861 {
2862 	if (!sk->sk_prot->enter_memory_pressure)
2863 		return;
2864 
2865 	sk->sk_prot->enter_memory_pressure(sk);
2866 }
2867 
2868 static void sk_leave_memory_pressure(struct sock *sk)
2869 {
2870 	if (sk->sk_prot->leave_memory_pressure) {
2871 		INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2872 				     tcp_leave_memory_pressure, sk);
2873 	} else {
2874 		unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2875 
2876 		if (memory_pressure && READ_ONCE(*memory_pressure))
2877 			WRITE_ONCE(*memory_pressure, 0);
2878 	}
2879 }
2880 
2881 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2882 
2883 /**
2884  * skb_page_frag_refill - check that a page_frag contains enough room
2885  * @sz: minimum size of the fragment we want to get
2886  * @pfrag: pointer to page_frag
2887  * @gfp: priority for memory allocation
2888  *
2889  * Note: While this allocator tries to use high order pages, there is
2890  * no guarantee that allocations succeed. Therefore, @sz MUST be
2891  * less or equal than PAGE_SIZE.
2892  */
2893 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2894 {
2895 	if (pfrag->page) {
2896 		if (page_ref_count(pfrag->page) == 1) {
2897 			pfrag->offset = 0;
2898 			return true;
2899 		}
2900 		if (pfrag->offset + sz <= pfrag->size)
2901 			return true;
2902 		put_page(pfrag->page);
2903 	}
2904 
2905 	pfrag->offset = 0;
2906 	if (SKB_FRAG_PAGE_ORDER &&
2907 	    !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2908 		/* Avoid direct reclaim but allow kswapd to wake */
2909 		pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2910 					  __GFP_COMP | __GFP_NOWARN |
2911 					  __GFP_NORETRY,
2912 					  SKB_FRAG_PAGE_ORDER);
2913 		if (likely(pfrag->page)) {
2914 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2915 			return true;
2916 		}
2917 	}
2918 	pfrag->page = alloc_page(gfp);
2919 	if (likely(pfrag->page)) {
2920 		pfrag->size = PAGE_SIZE;
2921 		return true;
2922 	}
2923 	return false;
2924 }
2925 EXPORT_SYMBOL(skb_page_frag_refill);
2926 
2927 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2928 {
2929 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2930 		return true;
2931 
2932 	sk_enter_memory_pressure(sk);
2933 	sk_stream_moderate_sndbuf(sk);
2934 	return false;
2935 }
2936 EXPORT_SYMBOL(sk_page_frag_refill);
2937 
2938 void __lock_sock(struct sock *sk)
2939 	__releases(&sk->sk_lock.slock)
2940 	__acquires(&sk->sk_lock.slock)
2941 {
2942 	DEFINE_WAIT(wait);
2943 
2944 	for (;;) {
2945 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2946 					TASK_UNINTERRUPTIBLE);
2947 		spin_unlock_bh(&sk->sk_lock.slock);
2948 		schedule();
2949 		spin_lock_bh(&sk->sk_lock.slock);
2950 		if (!sock_owned_by_user(sk))
2951 			break;
2952 	}
2953 	finish_wait(&sk->sk_lock.wq, &wait);
2954 }
2955 
2956 void __release_sock(struct sock *sk)
2957 	__releases(&sk->sk_lock.slock)
2958 	__acquires(&sk->sk_lock.slock)
2959 {
2960 	struct sk_buff *skb, *next;
2961 
2962 	while ((skb = sk->sk_backlog.head) != NULL) {
2963 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2964 
2965 		spin_unlock_bh(&sk->sk_lock.slock);
2966 
2967 		do {
2968 			next = skb->next;
2969 			prefetch(next);
2970 			DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2971 			skb_mark_not_on_list(skb);
2972 			sk_backlog_rcv(sk, skb);
2973 
2974 			cond_resched();
2975 
2976 			skb = next;
2977 		} while (skb != NULL);
2978 
2979 		spin_lock_bh(&sk->sk_lock.slock);
2980 	}
2981 
2982 	/*
2983 	 * Doing the zeroing here guarantee we can not loop forever
2984 	 * while a wild producer attempts to flood us.
2985 	 */
2986 	sk->sk_backlog.len = 0;
2987 }
2988 
2989 void __sk_flush_backlog(struct sock *sk)
2990 {
2991 	spin_lock_bh(&sk->sk_lock.slock);
2992 	__release_sock(sk);
2993 	spin_unlock_bh(&sk->sk_lock.slock);
2994 }
2995 EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2996 
2997 /**
2998  * sk_wait_data - wait for data to arrive at sk_receive_queue
2999  * @sk:    sock to wait on
3000  * @timeo: for how long
3001  * @skb:   last skb seen on sk_receive_queue
3002  *
3003  * Now socket state including sk->sk_err is changed only under lock,
3004  * hence we may omit checks after joining wait queue.
3005  * We check receive queue before schedule() only as optimization;
3006  * it is very likely that release_sock() added new data.
3007  */
3008 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3009 {
3010 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
3011 	int rc;
3012 
3013 	add_wait_queue(sk_sleep(sk), &wait);
3014 	sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3015 	rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3016 	sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3017 	remove_wait_queue(sk_sleep(sk), &wait);
3018 	return rc;
3019 }
3020 EXPORT_SYMBOL(sk_wait_data);
3021 
3022 /**
3023  *	__sk_mem_raise_allocated - increase memory_allocated
3024  *	@sk: socket
3025  *	@size: memory size to allocate
3026  *	@amt: pages to allocate
3027  *	@kind: allocation type
3028  *
3029  *	Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
3030  */
3031 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3032 {
3033 	bool memcg_charge = mem_cgroup_sockets_enabled && sk->sk_memcg;
3034 	struct proto *prot = sk->sk_prot;
3035 	bool charged = true;
3036 	long allocated;
3037 
3038 	sk_memory_allocated_add(sk, amt);
3039 	allocated = sk_memory_allocated(sk);
3040 	if (memcg_charge &&
3041 	    !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3042 						gfp_memcg_charge())))
3043 		goto suppress_allocation;
3044 
3045 	/* Under limit. */
3046 	if (allocated <= sk_prot_mem_limits(sk, 0)) {
3047 		sk_leave_memory_pressure(sk);
3048 		return 1;
3049 	}
3050 
3051 	/* Under pressure. */
3052 	if (allocated > sk_prot_mem_limits(sk, 1))
3053 		sk_enter_memory_pressure(sk);
3054 
3055 	/* Over hard limit. */
3056 	if (allocated > sk_prot_mem_limits(sk, 2))
3057 		goto suppress_allocation;
3058 
3059 	/* guarantee minimum buffer size under pressure */
3060 	if (kind == SK_MEM_RECV) {
3061 		if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
3062 			return 1;
3063 
3064 	} else { /* SK_MEM_SEND */
3065 		int wmem0 = sk_get_wmem0(sk, prot);
3066 
3067 		if (sk->sk_type == SOCK_STREAM) {
3068 			if (sk->sk_wmem_queued < wmem0)
3069 				return 1;
3070 		} else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
3071 				return 1;
3072 		}
3073 	}
3074 
3075 	if (sk_has_memory_pressure(sk)) {
3076 		u64 alloc;
3077 
3078 		if (!sk_under_memory_pressure(sk))
3079 			return 1;
3080 		alloc = sk_sockets_allocated_read_positive(sk);
3081 		if (sk_prot_mem_limits(sk, 2) > alloc *
3082 		    sk_mem_pages(sk->sk_wmem_queued +
3083 				 atomic_read(&sk->sk_rmem_alloc) +
3084 				 sk->sk_forward_alloc))
3085 			return 1;
3086 	}
3087 
3088 suppress_allocation:
3089 
3090 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3091 		sk_stream_moderate_sndbuf(sk);
3092 
3093 		/* Fail only if socket is _under_ its sndbuf.
3094 		 * In this case we cannot block, so that we have to fail.
3095 		 */
3096 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3097 			/* Force charge with __GFP_NOFAIL */
3098 			if (memcg_charge && !charged) {
3099 				mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3100 					gfp_memcg_charge() | __GFP_NOFAIL);
3101 			}
3102 			return 1;
3103 		}
3104 	}
3105 
3106 	if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3107 		trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3108 
3109 	sk_memory_allocated_sub(sk, amt);
3110 
3111 	if (memcg_charge && charged)
3112 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
3113 
3114 	return 0;
3115 }
3116 
3117 /**
3118  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3119  *	@sk: socket
3120  *	@size: memory size to allocate
3121  *	@kind: allocation type
3122  *
3123  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3124  *	rmem allocation. This function assumes that protocols which have
3125  *	memory_pressure use sk_wmem_queued as write buffer accounting.
3126  */
3127 int __sk_mem_schedule(struct sock *sk, int size, int kind)
3128 {
3129 	int ret, amt = sk_mem_pages(size);
3130 
3131 	sk->sk_forward_alloc += amt << PAGE_SHIFT;
3132 	ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3133 	if (!ret)
3134 		sk->sk_forward_alloc -= amt << PAGE_SHIFT;
3135 	return ret;
3136 }
3137 EXPORT_SYMBOL(__sk_mem_schedule);
3138 
3139 /**
3140  *	__sk_mem_reduce_allocated - reclaim memory_allocated
3141  *	@sk: socket
3142  *	@amount: number of quanta
3143  *
3144  *	Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3145  */
3146 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3147 {
3148 	sk_memory_allocated_sub(sk, amount);
3149 
3150 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3151 		mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
3152 
3153 	if (sk_under_memory_pressure(sk) &&
3154 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
3155 		sk_leave_memory_pressure(sk);
3156 }
3157 
3158 /**
3159  *	__sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3160  *	@sk: socket
3161  *	@amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3162  */
3163 void __sk_mem_reclaim(struct sock *sk, int amount)
3164 {
3165 	amount >>= PAGE_SHIFT;
3166 	sk->sk_forward_alloc -= amount << PAGE_SHIFT;
3167 	__sk_mem_reduce_allocated(sk, amount);
3168 }
3169 EXPORT_SYMBOL(__sk_mem_reclaim);
3170 
3171 int sk_set_peek_off(struct sock *sk, int val)
3172 {
3173 	WRITE_ONCE(sk->sk_peek_off, val);
3174 	return 0;
3175 }
3176 EXPORT_SYMBOL_GPL(sk_set_peek_off);
3177 
3178 /*
3179  * Set of default routines for initialising struct proto_ops when
3180  * the protocol does not support a particular function. In certain
3181  * cases where it makes no sense for a protocol to have a "do nothing"
3182  * function, some default processing is provided.
3183  */
3184 
3185 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3186 {
3187 	return -EOPNOTSUPP;
3188 }
3189 EXPORT_SYMBOL(sock_no_bind);
3190 
3191 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3192 		    int len, int flags)
3193 {
3194 	return -EOPNOTSUPP;
3195 }
3196 EXPORT_SYMBOL(sock_no_connect);
3197 
3198 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3199 {
3200 	return -EOPNOTSUPP;
3201 }
3202 EXPORT_SYMBOL(sock_no_socketpair);
3203 
3204 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3205 		   bool kern)
3206 {
3207 	return -EOPNOTSUPP;
3208 }
3209 EXPORT_SYMBOL(sock_no_accept);
3210 
3211 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3212 		    int peer)
3213 {
3214 	return -EOPNOTSUPP;
3215 }
3216 EXPORT_SYMBOL(sock_no_getname);
3217 
3218 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3219 {
3220 	return -EOPNOTSUPP;
3221 }
3222 EXPORT_SYMBOL(sock_no_ioctl);
3223 
3224 int sock_no_listen(struct socket *sock, int backlog)
3225 {
3226 	return -EOPNOTSUPP;
3227 }
3228 EXPORT_SYMBOL(sock_no_listen);
3229 
3230 int sock_no_shutdown(struct socket *sock, int how)
3231 {
3232 	return -EOPNOTSUPP;
3233 }
3234 EXPORT_SYMBOL(sock_no_shutdown);
3235 
3236 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3237 {
3238 	return -EOPNOTSUPP;
3239 }
3240 EXPORT_SYMBOL(sock_no_sendmsg);
3241 
3242 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3243 {
3244 	return -EOPNOTSUPP;
3245 }
3246 EXPORT_SYMBOL(sock_no_sendmsg_locked);
3247 
3248 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3249 		    int flags)
3250 {
3251 	return -EOPNOTSUPP;
3252 }
3253 EXPORT_SYMBOL(sock_no_recvmsg);
3254 
3255 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3256 {
3257 	/* Mirror missing mmap method error code */
3258 	return -ENODEV;
3259 }
3260 EXPORT_SYMBOL(sock_no_mmap);
3261 
3262 /*
3263  * When a file is received (via SCM_RIGHTS, etc), we must bump the
3264  * various sock-based usage counts.
3265  */
3266 void __receive_sock(struct file *file)
3267 {
3268 	struct socket *sock;
3269 
3270 	sock = sock_from_file(file);
3271 	if (sock) {
3272 		sock_update_netprioidx(&sock->sk->sk_cgrp_data);
3273 		sock_update_classid(&sock->sk->sk_cgrp_data);
3274 	}
3275 }
3276 
3277 /*
3278  *	Default Socket Callbacks
3279  */
3280 
3281 static void sock_def_wakeup(struct sock *sk)
3282 {
3283 	struct socket_wq *wq;
3284 
3285 	rcu_read_lock();
3286 	wq = rcu_dereference(sk->sk_wq);
3287 	if (skwq_has_sleeper(wq))
3288 		wake_up_interruptible_all(&wq->wait);
3289 	rcu_read_unlock();
3290 }
3291 
3292 static void sock_def_error_report(struct sock *sk)
3293 {
3294 	struct socket_wq *wq;
3295 
3296 	rcu_read_lock();
3297 	wq = rcu_dereference(sk->sk_wq);
3298 	if (skwq_has_sleeper(wq))
3299 		wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3300 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3301 	rcu_read_unlock();
3302 }
3303 
3304 void sock_def_readable(struct sock *sk)
3305 {
3306 	struct socket_wq *wq;
3307 
3308 	trace_sk_data_ready(sk);
3309 
3310 	rcu_read_lock();
3311 	wq = rcu_dereference(sk->sk_wq);
3312 	if (skwq_has_sleeper(wq))
3313 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3314 						EPOLLRDNORM | EPOLLRDBAND);
3315 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3316 	rcu_read_unlock();
3317 }
3318 
3319 static void sock_def_write_space(struct sock *sk)
3320 {
3321 	struct socket_wq *wq;
3322 
3323 	rcu_read_lock();
3324 
3325 	/* Do not wake up a writer until he can make "significant"
3326 	 * progress.  --DaveM
3327 	 */
3328 	if (sock_writeable(sk)) {
3329 		wq = rcu_dereference(sk->sk_wq);
3330 		if (skwq_has_sleeper(wq))
3331 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3332 						EPOLLWRNORM | EPOLLWRBAND);
3333 
3334 		/* Should agree with poll, otherwise some programs break */
3335 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3336 	}
3337 
3338 	rcu_read_unlock();
3339 }
3340 
3341 /* An optimised version of sock_def_write_space(), should only be called
3342  * for SOCK_RCU_FREE sockets under RCU read section and after putting
3343  * ->sk_wmem_alloc.
3344  */
3345 static void sock_def_write_space_wfree(struct sock *sk)
3346 {
3347 	/* Do not wake up a writer until he can make "significant"
3348 	 * progress.  --DaveM
3349 	 */
3350 	if (sock_writeable(sk)) {
3351 		struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3352 
3353 		/* rely on refcount_sub from sock_wfree() */
3354 		smp_mb__after_atomic();
3355 		if (wq && waitqueue_active(&wq->wait))
3356 			wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3357 						EPOLLWRNORM | EPOLLWRBAND);
3358 
3359 		/* Should agree with poll, otherwise some programs break */
3360 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3361 	}
3362 }
3363 
3364 static void sock_def_destruct(struct sock *sk)
3365 {
3366 }
3367 
3368 void sk_send_sigurg(struct sock *sk)
3369 {
3370 	if (sk->sk_socket && sk->sk_socket->file)
3371 		if (send_sigurg(&sk->sk_socket->file->f_owner))
3372 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3373 }
3374 EXPORT_SYMBOL(sk_send_sigurg);
3375 
3376 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3377 		    unsigned long expires)
3378 {
3379 	if (!mod_timer(timer, expires))
3380 		sock_hold(sk);
3381 }
3382 EXPORT_SYMBOL(sk_reset_timer);
3383 
3384 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3385 {
3386 	if (del_timer(timer))
3387 		__sock_put(sk);
3388 }
3389 EXPORT_SYMBOL(sk_stop_timer);
3390 
3391 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3392 {
3393 	if (del_timer_sync(timer))
3394 		__sock_put(sk);
3395 }
3396 EXPORT_SYMBOL(sk_stop_timer_sync);
3397 
3398 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3399 {
3400 	sk_init_common(sk);
3401 	sk->sk_send_head	=	NULL;
3402 
3403 	timer_setup(&sk->sk_timer, NULL, 0);
3404 
3405 	sk->sk_allocation	=	GFP_KERNEL;
3406 	sk->sk_rcvbuf		=	READ_ONCE(sysctl_rmem_default);
3407 	sk->sk_sndbuf		=	READ_ONCE(sysctl_wmem_default);
3408 	sk->sk_state		=	TCP_CLOSE;
3409 	sk->sk_use_task_frag	=	true;
3410 	sk_set_socket(sk, sock);
3411 
3412 	sock_set_flag(sk, SOCK_ZAPPED);
3413 
3414 	if (sock) {
3415 		sk->sk_type	=	sock->type;
3416 		RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3417 		sock->sk	=	sk;
3418 	} else {
3419 		RCU_INIT_POINTER(sk->sk_wq, NULL);
3420 	}
3421 	sk->sk_uid	=	uid;
3422 
3423 	rwlock_init(&sk->sk_callback_lock);
3424 	if (sk->sk_kern_sock)
3425 		lockdep_set_class_and_name(
3426 			&sk->sk_callback_lock,
3427 			af_kern_callback_keys + sk->sk_family,
3428 			af_family_kern_clock_key_strings[sk->sk_family]);
3429 	else
3430 		lockdep_set_class_and_name(
3431 			&sk->sk_callback_lock,
3432 			af_callback_keys + sk->sk_family,
3433 			af_family_clock_key_strings[sk->sk_family]);
3434 
3435 	sk->sk_state_change	=	sock_def_wakeup;
3436 	sk->sk_data_ready	=	sock_def_readable;
3437 	sk->sk_write_space	=	sock_def_write_space;
3438 	sk->sk_error_report	=	sock_def_error_report;
3439 	sk->sk_destruct		=	sock_def_destruct;
3440 
3441 	sk->sk_frag.page	=	NULL;
3442 	sk->sk_frag.offset	=	0;
3443 	sk->sk_peek_off		=	-1;
3444 
3445 	sk->sk_peer_pid 	=	NULL;
3446 	sk->sk_peer_cred	=	NULL;
3447 	spin_lock_init(&sk->sk_peer_lock);
3448 
3449 	sk->sk_write_pending	=	0;
3450 	sk->sk_rcvlowat		=	1;
3451 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
3452 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
3453 
3454 	sk->sk_stamp = SK_DEFAULT_STAMP;
3455 #if BITS_PER_LONG==32
3456 	seqlock_init(&sk->sk_stamp_seq);
3457 #endif
3458 	atomic_set(&sk->sk_zckey, 0);
3459 
3460 #ifdef CONFIG_NET_RX_BUSY_POLL
3461 	sk->sk_napi_id		=	0;
3462 	sk->sk_ll_usec		=	READ_ONCE(sysctl_net_busy_read);
3463 #endif
3464 
3465 	sk->sk_max_pacing_rate = ~0UL;
3466 	sk->sk_pacing_rate = ~0UL;
3467 	WRITE_ONCE(sk->sk_pacing_shift, 10);
3468 	sk->sk_incoming_cpu = -1;
3469 
3470 	sk_rx_queue_clear(sk);
3471 	/*
3472 	 * Before updating sk_refcnt, we must commit prior changes to memory
3473 	 * (Documentation/RCU/rculist_nulls.rst for details)
3474 	 */
3475 	smp_wmb();
3476 	refcount_set(&sk->sk_refcnt, 1);
3477 	atomic_set(&sk->sk_drops, 0);
3478 }
3479 EXPORT_SYMBOL(sock_init_data_uid);
3480 
3481 void sock_init_data(struct socket *sock, struct sock *sk)
3482 {
3483 	kuid_t uid = sock ?
3484 		SOCK_INODE(sock)->i_uid :
3485 		make_kuid(sock_net(sk)->user_ns, 0);
3486 
3487 	sock_init_data_uid(sock, sk, uid);
3488 }
3489 EXPORT_SYMBOL(sock_init_data);
3490 
3491 void lock_sock_nested(struct sock *sk, int subclass)
3492 {
3493 	/* The sk_lock has mutex_lock() semantics here. */
3494 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3495 
3496 	might_sleep();
3497 	spin_lock_bh(&sk->sk_lock.slock);
3498 	if (sock_owned_by_user_nocheck(sk))
3499 		__lock_sock(sk);
3500 	sk->sk_lock.owned = 1;
3501 	spin_unlock_bh(&sk->sk_lock.slock);
3502 }
3503 EXPORT_SYMBOL(lock_sock_nested);
3504 
3505 void release_sock(struct sock *sk)
3506 {
3507 	spin_lock_bh(&sk->sk_lock.slock);
3508 	if (sk->sk_backlog.tail)
3509 		__release_sock(sk);
3510 
3511 	/* Warning : release_cb() might need to release sk ownership,
3512 	 * ie call sock_release_ownership(sk) before us.
3513 	 */
3514 	if (sk->sk_prot->release_cb)
3515 		sk->sk_prot->release_cb(sk);
3516 
3517 	sock_release_ownership(sk);
3518 	if (waitqueue_active(&sk->sk_lock.wq))
3519 		wake_up(&sk->sk_lock.wq);
3520 	spin_unlock_bh(&sk->sk_lock.slock);
3521 }
3522 EXPORT_SYMBOL(release_sock);
3523 
3524 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3525 {
3526 	might_sleep();
3527 	spin_lock_bh(&sk->sk_lock.slock);
3528 
3529 	if (!sock_owned_by_user_nocheck(sk)) {
3530 		/*
3531 		 * Fast path return with bottom halves disabled and
3532 		 * sock::sk_lock.slock held.
3533 		 *
3534 		 * The 'mutex' is not contended and holding
3535 		 * sock::sk_lock.slock prevents all other lockers to
3536 		 * proceed so the corresponding unlock_sock_fast() can
3537 		 * avoid the slow path of release_sock() completely and
3538 		 * just release slock.
3539 		 *
3540 		 * From a semantical POV this is equivalent to 'acquiring'
3541 		 * the 'mutex', hence the corresponding lockdep
3542 		 * mutex_release() has to happen in the fast path of
3543 		 * unlock_sock_fast().
3544 		 */
3545 		return false;
3546 	}
3547 
3548 	__lock_sock(sk);
3549 	sk->sk_lock.owned = 1;
3550 	__acquire(&sk->sk_lock.slock);
3551 	spin_unlock_bh(&sk->sk_lock.slock);
3552 	return true;
3553 }
3554 EXPORT_SYMBOL(__lock_sock_fast);
3555 
3556 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3557 		   bool timeval, bool time32)
3558 {
3559 	struct sock *sk = sock->sk;
3560 	struct timespec64 ts;
3561 
3562 	sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3563 	ts = ktime_to_timespec64(sock_read_timestamp(sk));
3564 	if (ts.tv_sec == -1)
3565 		return -ENOENT;
3566 	if (ts.tv_sec == 0) {
3567 		ktime_t kt = ktime_get_real();
3568 		sock_write_timestamp(sk, kt);
3569 		ts = ktime_to_timespec64(kt);
3570 	}
3571 
3572 	if (timeval)
3573 		ts.tv_nsec /= 1000;
3574 
3575 #ifdef CONFIG_COMPAT_32BIT_TIME
3576 	if (time32)
3577 		return put_old_timespec32(&ts, userstamp);
3578 #endif
3579 #ifdef CONFIG_SPARC64
3580 	/* beware of padding in sparc64 timeval */
3581 	if (timeval && !in_compat_syscall()) {
3582 		struct __kernel_old_timeval __user tv = {
3583 			.tv_sec = ts.tv_sec,
3584 			.tv_usec = ts.tv_nsec,
3585 		};
3586 		if (copy_to_user(userstamp, &tv, sizeof(tv)))
3587 			return -EFAULT;
3588 		return 0;
3589 	}
3590 #endif
3591 	return put_timespec64(&ts, userstamp);
3592 }
3593 EXPORT_SYMBOL(sock_gettstamp);
3594 
3595 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3596 {
3597 	if (!sock_flag(sk, flag)) {
3598 		unsigned long previous_flags = sk->sk_flags;
3599 
3600 		sock_set_flag(sk, flag);
3601 		/*
3602 		 * we just set one of the two flags which require net
3603 		 * time stamping, but time stamping might have been on
3604 		 * already because of the other one
3605 		 */
3606 		if (sock_needs_netstamp(sk) &&
3607 		    !(previous_flags & SK_FLAGS_TIMESTAMP))
3608 			net_enable_timestamp();
3609 	}
3610 }
3611 
3612 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3613 		       int level, int type)
3614 {
3615 	struct sock_exterr_skb *serr;
3616 	struct sk_buff *skb;
3617 	int copied, err;
3618 
3619 	err = -EAGAIN;
3620 	skb = sock_dequeue_err_skb(sk);
3621 	if (skb == NULL)
3622 		goto out;
3623 
3624 	copied = skb->len;
3625 	if (copied > len) {
3626 		msg->msg_flags |= MSG_TRUNC;
3627 		copied = len;
3628 	}
3629 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
3630 	if (err)
3631 		goto out_free_skb;
3632 
3633 	sock_recv_timestamp(msg, sk, skb);
3634 
3635 	serr = SKB_EXT_ERR(skb);
3636 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3637 
3638 	msg->msg_flags |= MSG_ERRQUEUE;
3639 	err = copied;
3640 
3641 out_free_skb:
3642 	kfree_skb(skb);
3643 out:
3644 	return err;
3645 }
3646 EXPORT_SYMBOL(sock_recv_errqueue);
3647 
3648 /*
3649  *	Get a socket option on an socket.
3650  *
3651  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
3652  *	asynchronous errors should be reported by getsockopt. We assume
3653  *	this means if you specify SO_ERROR (otherwise whats the point of it).
3654  */
3655 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3656 			   char __user *optval, int __user *optlen)
3657 {
3658 	struct sock *sk = sock->sk;
3659 
3660 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3661 	return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3662 }
3663 EXPORT_SYMBOL(sock_common_getsockopt);
3664 
3665 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3666 			int flags)
3667 {
3668 	struct sock *sk = sock->sk;
3669 	int addr_len = 0;
3670 	int err;
3671 
3672 	err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3673 	if (err >= 0)
3674 		msg->msg_namelen = addr_len;
3675 	return err;
3676 }
3677 EXPORT_SYMBOL(sock_common_recvmsg);
3678 
3679 /*
3680  *	Set socket options on an inet socket.
3681  */
3682 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3683 			   sockptr_t optval, unsigned int optlen)
3684 {
3685 	struct sock *sk = sock->sk;
3686 
3687 	/* IPV6_ADDRFORM can change sk->sk_prot under us. */
3688 	return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3689 }
3690 EXPORT_SYMBOL(sock_common_setsockopt);
3691 
3692 void sk_common_release(struct sock *sk)
3693 {
3694 	if (sk->sk_prot->destroy)
3695 		sk->sk_prot->destroy(sk);
3696 
3697 	/*
3698 	 * Observation: when sk_common_release is called, processes have
3699 	 * no access to socket. But net still has.
3700 	 * Step one, detach it from networking:
3701 	 *
3702 	 * A. Remove from hash tables.
3703 	 */
3704 
3705 	sk->sk_prot->unhash(sk);
3706 
3707 	/*
3708 	 * In this point socket cannot receive new packets, but it is possible
3709 	 * that some packets are in flight because some CPU runs receiver and
3710 	 * did hash table lookup before we unhashed socket. They will achieve
3711 	 * receive queue and will be purged by socket destructor.
3712 	 *
3713 	 * Also we still have packets pending on receive queue and probably,
3714 	 * our own packets waiting in device queues. sock_destroy will drain
3715 	 * receive queue, but transmitted packets will delay socket destruction
3716 	 * until the last reference will be released.
3717 	 */
3718 
3719 	sock_orphan(sk);
3720 
3721 	xfrm_sk_free_policy(sk);
3722 
3723 	sock_put(sk);
3724 }
3725 EXPORT_SYMBOL(sk_common_release);
3726 
3727 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3728 {
3729 	memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3730 
3731 	mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3732 	mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3733 	mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3734 	mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3735 	mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3736 	mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3737 	mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3738 	mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3739 	mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3740 }
3741 
3742 #ifdef CONFIG_PROC_FS
3743 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3744 
3745 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3746 {
3747 	int cpu, idx = prot->inuse_idx;
3748 	int res = 0;
3749 
3750 	for_each_possible_cpu(cpu)
3751 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3752 
3753 	return res >= 0 ? res : 0;
3754 }
3755 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3756 
3757 int sock_inuse_get(struct net *net)
3758 {
3759 	int cpu, res = 0;
3760 
3761 	for_each_possible_cpu(cpu)
3762 		res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3763 
3764 	return res;
3765 }
3766 
3767 EXPORT_SYMBOL_GPL(sock_inuse_get);
3768 
3769 static int __net_init sock_inuse_init_net(struct net *net)
3770 {
3771 	net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3772 	if (net->core.prot_inuse == NULL)
3773 		return -ENOMEM;
3774 	return 0;
3775 }
3776 
3777 static void __net_exit sock_inuse_exit_net(struct net *net)
3778 {
3779 	free_percpu(net->core.prot_inuse);
3780 }
3781 
3782 static struct pernet_operations net_inuse_ops = {
3783 	.init = sock_inuse_init_net,
3784 	.exit = sock_inuse_exit_net,
3785 };
3786 
3787 static __init int net_inuse_init(void)
3788 {
3789 	if (register_pernet_subsys(&net_inuse_ops))
3790 		panic("Cannot initialize net inuse counters");
3791 
3792 	return 0;
3793 }
3794 
3795 core_initcall(net_inuse_init);
3796 
3797 static int assign_proto_idx(struct proto *prot)
3798 {
3799 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3800 
3801 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3802 		pr_err("PROTO_INUSE_NR exhausted\n");
3803 		return -ENOSPC;
3804 	}
3805 
3806 	set_bit(prot->inuse_idx, proto_inuse_idx);
3807 	return 0;
3808 }
3809 
3810 static void release_proto_idx(struct proto *prot)
3811 {
3812 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3813 		clear_bit(prot->inuse_idx, proto_inuse_idx);
3814 }
3815 #else
3816 static inline int assign_proto_idx(struct proto *prot)
3817 {
3818 	return 0;
3819 }
3820 
3821 static inline void release_proto_idx(struct proto *prot)
3822 {
3823 }
3824 
3825 #endif
3826 
3827 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3828 {
3829 	if (!twsk_prot)
3830 		return;
3831 	kfree(twsk_prot->twsk_slab_name);
3832 	twsk_prot->twsk_slab_name = NULL;
3833 	kmem_cache_destroy(twsk_prot->twsk_slab);
3834 	twsk_prot->twsk_slab = NULL;
3835 }
3836 
3837 static int tw_prot_init(const struct proto *prot)
3838 {
3839 	struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3840 
3841 	if (!twsk_prot)
3842 		return 0;
3843 
3844 	twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3845 					      prot->name);
3846 	if (!twsk_prot->twsk_slab_name)
3847 		return -ENOMEM;
3848 
3849 	twsk_prot->twsk_slab =
3850 		kmem_cache_create(twsk_prot->twsk_slab_name,
3851 				  twsk_prot->twsk_obj_size, 0,
3852 				  SLAB_ACCOUNT | prot->slab_flags,
3853 				  NULL);
3854 	if (!twsk_prot->twsk_slab) {
3855 		pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3856 			prot->name);
3857 		return -ENOMEM;
3858 	}
3859 
3860 	return 0;
3861 }
3862 
3863 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3864 {
3865 	if (!rsk_prot)
3866 		return;
3867 	kfree(rsk_prot->slab_name);
3868 	rsk_prot->slab_name = NULL;
3869 	kmem_cache_destroy(rsk_prot->slab);
3870 	rsk_prot->slab = NULL;
3871 }
3872 
3873 static int req_prot_init(const struct proto *prot)
3874 {
3875 	struct request_sock_ops *rsk_prot = prot->rsk_prot;
3876 
3877 	if (!rsk_prot)
3878 		return 0;
3879 
3880 	rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3881 					prot->name);
3882 	if (!rsk_prot->slab_name)
3883 		return -ENOMEM;
3884 
3885 	rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3886 					   rsk_prot->obj_size, 0,
3887 					   SLAB_ACCOUNT | prot->slab_flags,
3888 					   NULL);
3889 
3890 	if (!rsk_prot->slab) {
3891 		pr_crit("%s: Can't create request sock SLAB cache!\n",
3892 			prot->name);
3893 		return -ENOMEM;
3894 	}
3895 	return 0;
3896 }
3897 
3898 int proto_register(struct proto *prot, int alloc_slab)
3899 {
3900 	int ret = -ENOBUFS;
3901 
3902 	if (prot->memory_allocated && !prot->sysctl_mem) {
3903 		pr_err("%s: missing sysctl_mem\n", prot->name);
3904 		return -EINVAL;
3905 	}
3906 	if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3907 		pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3908 		return -EINVAL;
3909 	}
3910 	if (alloc_slab) {
3911 		prot->slab = kmem_cache_create_usercopy(prot->name,
3912 					prot->obj_size, 0,
3913 					SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3914 					prot->slab_flags,
3915 					prot->useroffset, prot->usersize,
3916 					NULL);
3917 
3918 		if (prot->slab == NULL) {
3919 			pr_crit("%s: Can't create sock SLAB cache!\n",
3920 				prot->name);
3921 			goto out;
3922 		}
3923 
3924 		if (req_prot_init(prot))
3925 			goto out_free_request_sock_slab;
3926 
3927 		if (tw_prot_init(prot))
3928 			goto out_free_timewait_sock_slab;
3929 	}
3930 
3931 	mutex_lock(&proto_list_mutex);
3932 	ret = assign_proto_idx(prot);
3933 	if (ret) {
3934 		mutex_unlock(&proto_list_mutex);
3935 		goto out_free_timewait_sock_slab;
3936 	}
3937 	list_add(&prot->node, &proto_list);
3938 	mutex_unlock(&proto_list_mutex);
3939 	return ret;
3940 
3941 out_free_timewait_sock_slab:
3942 	if (alloc_slab)
3943 		tw_prot_cleanup(prot->twsk_prot);
3944 out_free_request_sock_slab:
3945 	if (alloc_slab) {
3946 		req_prot_cleanup(prot->rsk_prot);
3947 
3948 		kmem_cache_destroy(prot->slab);
3949 		prot->slab = NULL;
3950 	}
3951 out:
3952 	return ret;
3953 }
3954 EXPORT_SYMBOL(proto_register);
3955 
3956 void proto_unregister(struct proto *prot)
3957 {
3958 	mutex_lock(&proto_list_mutex);
3959 	release_proto_idx(prot);
3960 	list_del(&prot->node);
3961 	mutex_unlock(&proto_list_mutex);
3962 
3963 	kmem_cache_destroy(prot->slab);
3964 	prot->slab = NULL;
3965 
3966 	req_prot_cleanup(prot->rsk_prot);
3967 	tw_prot_cleanup(prot->twsk_prot);
3968 }
3969 EXPORT_SYMBOL(proto_unregister);
3970 
3971 int sock_load_diag_module(int family, int protocol)
3972 {
3973 	if (!protocol) {
3974 		if (!sock_is_registered(family))
3975 			return -ENOENT;
3976 
3977 		return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3978 				      NETLINK_SOCK_DIAG, family);
3979 	}
3980 
3981 #ifdef CONFIG_INET
3982 	if (family == AF_INET &&
3983 	    protocol != IPPROTO_RAW &&
3984 	    protocol < MAX_INET_PROTOS &&
3985 	    !rcu_access_pointer(inet_protos[protocol]))
3986 		return -ENOENT;
3987 #endif
3988 
3989 	return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3990 			      NETLINK_SOCK_DIAG, family, protocol);
3991 }
3992 EXPORT_SYMBOL(sock_load_diag_module);
3993 
3994 #ifdef CONFIG_PROC_FS
3995 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3996 	__acquires(proto_list_mutex)
3997 {
3998 	mutex_lock(&proto_list_mutex);
3999 	return seq_list_start_head(&proto_list, *pos);
4000 }
4001 
4002 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4003 {
4004 	return seq_list_next(v, &proto_list, pos);
4005 }
4006 
4007 static void proto_seq_stop(struct seq_file *seq, void *v)
4008 	__releases(proto_list_mutex)
4009 {
4010 	mutex_unlock(&proto_list_mutex);
4011 }
4012 
4013 static char proto_method_implemented(const void *method)
4014 {
4015 	return method == NULL ? 'n' : 'y';
4016 }
4017 static long sock_prot_memory_allocated(struct proto *proto)
4018 {
4019 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
4020 }
4021 
4022 static const char *sock_prot_memory_pressure(struct proto *proto)
4023 {
4024 	return proto->memory_pressure != NULL ?
4025 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
4026 }
4027 
4028 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4029 {
4030 
4031 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
4032 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4033 		   proto->name,
4034 		   proto->obj_size,
4035 		   sock_prot_inuse_get(seq_file_net(seq), proto),
4036 		   sock_prot_memory_allocated(proto),
4037 		   sock_prot_memory_pressure(proto),
4038 		   proto->max_header,
4039 		   proto->slab == NULL ? "no" : "yes",
4040 		   module_name(proto->owner),
4041 		   proto_method_implemented(proto->close),
4042 		   proto_method_implemented(proto->connect),
4043 		   proto_method_implemented(proto->disconnect),
4044 		   proto_method_implemented(proto->accept),
4045 		   proto_method_implemented(proto->ioctl),
4046 		   proto_method_implemented(proto->init),
4047 		   proto_method_implemented(proto->destroy),
4048 		   proto_method_implemented(proto->shutdown),
4049 		   proto_method_implemented(proto->setsockopt),
4050 		   proto_method_implemented(proto->getsockopt),
4051 		   proto_method_implemented(proto->sendmsg),
4052 		   proto_method_implemented(proto->recvmsg),
4053 		   proto_method_implemented(proto->bind),
4054 		   proto_method_implemented(proto->backlog_rcv),
4055 		   proto_method_implemented(proto->hash),
4056 		   proto_method_implemented(proto->unhash),
4057 		   proto_method_implemented(proto->get_port),
4058 		   proto_method_implemented(proto->enter_memory_pressure));
4059 }
4060 
4061 static int proto_seq_show(struct seq_file *seq, void *v)
4062 {
4063 	if (v == &proto_list)
4064 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4065 			   "protocol",
4066 			   "size",
4067 			   "sockets",
4068 			   "memory",
4069 			   "press",
4070 			   "maxhdr",
4071 			   "slab",
4072 			   "module",
4073 			   "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4074 	else
4075 		proto_seq_printf(seq, list_entry(v, struct proto, node));
4076 	return 0;
4077 }
4078 
4079 static const struct seq_operations proto_seq_ops = {
4080 	.start  = proto_seq_start,
4081 	.next   = proto_seq_next,
4082 	.stop   = proto_seq_stop,
4083 	.show   = proto_seq_show,
4084 };
4085 
4086 static __net_init int proto_init_net(struct net *net)
4087 {
4088 	if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4089 			sizeof(struct seq_net_private)))
4090 		return -ENOMEM;
4091 
4092 	return 0;
4093 }
4094 
4095 static __net_exit void proto_exit_net(struct net *net)
4096 {
4097 	remove_proc_entry("protocols", net->proc_net);
4098 }
4099 
4100 
4101 static __net_initdata struct pernet_operations proto_net_ops = {
4102 	.init = proto_init_net,
4103 	.exit = proto_exit_net,
4104 };
4105 
4106 static int __init proto_init(void)
4107 {
4108 	return register_pernet_subsys(&proto_net_ops);
4109 }
4110 
4111 subsys_initcall(proto_init);
4112 
4113 #endif /* PROC_FS */
4114 
4115 #ifdef CONFIG_NET_RX_BUSY_POLL
4116 bool sk_busy_loop_end(void *p, unsigned long start_time)
4117 {
4118 	struct sock *sk = p;
4119 
4120 	return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
4121 	       sk_busy_loop_timeout(sk, start_time);
4122 }
4123 EXPORT_SYMBOL(sk_busy_loop_end);
4124 #endif /* CONFIG_NET_RX_BUSY_POLL */
4125 
4126 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4127 {
4128 	if (!sk->sk_prot->bind_add)
4129 		return -EOPNOTSUPP;
4130 	return sk->sk_prot->bind_add(sk, addr, addr_len);
4131 }
4132 EXPORT_SYMBOL(sock_bind_add);
4133 
4134 /* Copy 'size' bytes from userspace and return `size` back to userspace */
4135 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4136 		     void __user *arg, void *karg, size_t size)
4137 {
4138 	int ret;
4139 
4140 	if (copy_from_user(karg, arg, size))
4141 		return -EFAULT;
4142 
4143 	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4144 	if (ret)
4145 		return ret;
4146 
4147 	if (copy_to_user(arg, karg, size))
4148 		return -EFAULT;
4149 
4150 	return 0;
4151 }
4152 EXPORT_SYMBOL(sock_ioctl_inout);
4153 
4154 /* This is the most common ioctl prep function, where the result (4 bytes) is
4155  * copied back to userspace if the ioctl() returns successfully. No input is
4156  * copied from userspace as input argument.
4157  */
4158 static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4159 {
4160 	int ret, karg = 0;
4161 
4162 	ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4163 	if (ret)
4164 		return ret;
4165 
4166 	return put_user(karg, (int __user *)arg);
4167 }
4168 
4169 /* A wrapper around sock ioctls, which copies the data from userspace
4170  * (depending on the protocol/ioctl), and copies back the result to userspace.
4171  * The main motivation for this function is to pass kernel memory to the
4172  * protocol ioctl callbacks, instead of userspace memory.
4173  */
4174 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4175 {
4176 	int rc = 1;
4177 
4178 	if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4179 		rc = ipmr_sk_ioctl(sk, cmd, arg);
4180 	else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4181 		rc = ip6mr_sk_ioctl(sk, cmd, arg);
4182 	else if (sk_is_phonet(sk))
4183 		rc = phonet_sk_ioctl(sk, cmd, arg);
4184 
4185 	/* If ioctl was processed, returns its value */
4186 	if (rc <= 0)
4187 		return rc;
4188 
4189 	/* Otherwise call the default handler */
4190 	return sock_ioctl_out(sk, cmd, arg);
4191 }
4192 EXPORT_SYMBOL(sk_ioctl);
4193