xref: /openbmc/linux/net/core/sock.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11  *
12  * Authors:	Ross Biro
13  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Alan Cox, <A.Cox@swansea.ac.uk>
16  *
17  * Fixes:
18  *		Alan Cox	: 	Numerous verify_area() problems
19  *		Alan Cox	:	Connecting on a connecting socket
20  *					now returns an error for tcp.
21  *		Alan Cox	:	sock->protocol is set correctly.
22  *					and is not sometimes left as 0.
23  *		Alan Cox	:	connect handles icmp errors on a
24  *					connect properly. Unfortunately there
25  *					is a restart syscall nasty there. I
26  *					can't match BSD without hacking the C
27  *					library. Ideas urgently sought!
28  *		Alan Cox	:	Disallow bind() to addresses that are
29  *					not ours - especially broadcast ones!!
30  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
31  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
32  *					instead they leave that for the DESTROY timer.
33  *		Alan Cox	:	Clean up error flag in accept
34  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
35  *					was buggy. Put a remove_sock() in the handler
36  *					for memory when we hit 0. Also altered the timer
37  *					code. The ACK stuff can wait and needs major
38  *					TCP layer surgery.
39  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
40  *					and fixed timer/inet_bh race.
41  *		Alan Cox	:	Added zapped flag for TCP
42  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
43  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
45  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
46  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
48  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
49  *	Pauline Middelink	:	identd support
50  *		Alan Cox	:	Fixed connect() taking signals I think.
51  *		Alan Cox	:	SO_LINGER supported
52  *		Alan Cox	:	Error reporting fixes
53  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
54  *		Alan Cox	:	inet sockets don't set sk->type!
55  *		Alan Cox	:	Split socket option code
56  *		Alan Cox	:	Callbacks
57  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
58  *		Alex		:	Removed restriction on inet fioctl
59  *		Alan Cox	:	Splitting INET from NET core
60  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
61  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
62  *		Alan Cox	:	Split IP from generic code
63  *		Alan Cox	:	New kfree_skbmem()
64  *		Alan Cox	:	Make SO_DEBUG superuser only.
65  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
66  *					(compatibility fix)
67  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
68  *		Alan Cox	:	Allocator for a socket is settable.
69  *		Alan Cox	:	SO_ERROR includes soft errors.
70  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
71  *		Alan Cox	: 	Generic socket allocation to make hooks
72  *					easier (suggested by Craig Metz).
73  *		Michael Pall	:	SO_ERROR returns positive errno again
74  *              Steve Whitehouse:       Added default destructor to free
75  *                                      protocol private data.
76  *              Steve Whitehouse:       Added various other default routines
77  *                                      common to several socket families.
78  *              Chris Evans     :       Call suser() check last on F_SETOWN
79  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
81  *		Andi Kleen	:	Fix write_space callback
82  *		Chris Evans	:	Security fixes - signedness again
83  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
84  *
85  * To Fix:
86  *
87  *
88  *		This program is free software; you can redistribute it and/or
89  *		modify it under the terms of the GNU General Public License
90  *		as published by the Free Software Foundation; either version
91  *		2 of the License, or (at your option) any later version.
92  */
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 
116 #include <asm/uaccess.h>
117 #include <asm/system.h>
118 
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <net/xfrm.h>
126 #include <linux/ipsec.h>
127 
128 #include <linux/filter.h>
129 
130 #ifdef CONFIG_INET
131 #include <net/tcp.h>
132 #endif
133 
134 /*
135  * Each address family might have different locking rules, so we have
136  * one slock key per address family:
137  */
138 static struct lock_class_key af_family_keys[AF_MAX];
139 static struct lock_class_key af_family_slock_keys[AF_MAX];
140 
141 #ifdef CONFIG_DEBUG_LOCK_ALLOC
142 /*
143  * Make lock validator output more readable. (we pre-construct these
144  * strings build-time, so that runtime initialization of socket
145  * locks is fast):
146  */
147 static const char *af_family_key_strings[AF_MAX+1] = {
148   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
149   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
150   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
151   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
152   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
153   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
154   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
155   "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
156   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
157   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
158   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
159   "sk_lock-AF_RXRPC" , "sk_lock-AF_MAX"
160 };
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
163   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
164   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
165   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
166   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
167   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
168   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
169   "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
170   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
171   "slock-27"       , "slock-28"          , "slock-29"          ,
172   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
173   "slock-AF_RXRPC" , "slock-AF_MAX"
174 };
175 static const char *af_family_clock_key_strings[AF_MAX+1] = {
176   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
177   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
178   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
179   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
180   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
181   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
182   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
183   "clock-21"       , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
184   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
185   "clock-27"       , "clock-28"          , "clock-29"          ,
186   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
187   "clock-AF_RXRPC" , "clock-AF_MAX"
188 };
189 #endif
190 
191 /*
192  * sk_callback_lock locking rules are per-address-family,
193  * so split the lock classes by using a per-AF key:
194  */
195 static struct lock_class_key af_callback_keys[AF_MAX];
196 
197 /* Take into consideration the size of the struct sk_buff overhead in the
198  * determination of these values, since that is non-constant across
199  * platforms.  This makes socket queueing behavior and performance
200  * not depend upon such differences.
201  */
202 #define _SK_MEM_PACKETS		256
203 #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
204 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
205 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
206 
207 /* Run time adjustable parameters. */
208 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
209 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
210 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
211 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
212 
213 /* Maximal space eaten by iovec or ancilliary data plus some space */
214 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
215 
216 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
217 {
218 	struct timeval tv;
219 
220 	if (optlen < sizeof(tv))
221 		return -EINVAL;
222 	if (copy_from_user(&tv, optval, sizeof(tv)))
223 		return -EFAULT;
224 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
225 		return -EDOM;
226 
227 	if (tv.tv_sec < 0) {
228 		static int warned __read_mostly;
229 
230 		*timeo_p = 0;
231 		if (warned < 10 && net_ratelimit())
232 			warned++;
233 			printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
234 			       "tries to set negative timeout\n",
235 				current->comm, task_pid_nr(current));
236 		return 0;
237 	}
238 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
239 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
240 		return 0;
241 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
242 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
243 	return 0;
244 }
245 
246 static void sock_warn_obsolete_bsdism(const char *name)
247 {
248 	static int warned;
249 	static char warncomm[TASK_COMM_LEN];
250 	if (strcmp(warncomm, current->comm) && warned < 5) {
251 		strcpy(warncomm,  current->comm);
252 		printk(KERN_WARNING "process `%s' is using obsolete "
253 		       "%s SO_BSDCOMPAT\n", warncomm, name);
254 		warned++;
255 	}
256 }
257 
258 static void sock_disable_timestamp(struct sock *sk)
259 {
260 	if (sock_flag(sk, SOCK_TIMESTAMP)) {
261 		sock_reset_flag(sk, SOCK_TIMESTAMP);
262 		net_disable_timestamp();
263 	}
264 }
265 
266 
267 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
268 {
269 	int err = 0;
270 	int skb_len;
271 
272 	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
273 	   number of warnings when compiling with -W --ANK
274 	 */
275 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
276 	    (unsigned)sk->sk_rcvbuf) {
277 		err = -ENOMEM;
278 		goto out;
279 	}
280 
281 	err = sk_filter(sk, skb);
282 	if (err)
283 		goto out;
284 
285 	skb->dev = NULL;
286 	skb_set_owner_r(skb, sk);
287 
288 	/* Cache the SKB length before we tack it onto the receive
289 	 * queue.  Once it is added it no longer belongs to us and
290 	 * may be freed by other threads of control pulling packets
291 	 * from the queue.
292 	 */
293 	skb_len = skb->len;
294 
295 	skb_queue_tail(&sk->sk_receive_queue, skb);
296 
297 	if (!sock_flag(sk, SOCK_DEAD))
298 		sk->sk_data_ready(sk, skb_len);
299 out:
300 	return err;
301 }
302 EXPORT_SYMBOL(sock_queue_rcv_skb);
303 
304 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
305 {
306 	int rc = NET_RX_SUCCESS;
307 
308 	if (sk_filter(sk, skb))
309 		goto discard_and_relse;
310 
311 	skb->dev = NULL;
312 
313 	if (nested)
314 		bh_lock_sock_nested(sk);
315 	else
316 		bh_lock_sock(sk);
317 	if (!sock_owned_by_user(sk)) {
318 		/*
319 		 * trylock + unlock semantics:
320 		 */
321 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
322 
323 		rc = sk->sk_backlog_rcv(sk, skb);
324 
325 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
326 	} else
327 		sk_add_backlog(sk, skb);
328 	bh_unlock_sock(sk);
329 out:
330 	sock_put(sk);
331 	return rc;
332 discard_and_relse:
333 	kfree_skb(skb);
334 	goto out;
335 }
336 EXPORT_SYMBOL(sk_receive_skb);
337 
338 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
339 {
340 	struct dst_entry *dst = sk->sk_dst_cache;
341 
342 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
343 		sk->sk_dst_cache = NULL;
344 		dst_release(dst);
345 		return NULL;
346 	}
347 
348 	return dst;
349 }
350 EXPORT_SYMBOL(__sk_dst_check);
351 
352 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
353 {
354 	struct dst_entry *dst = sk_dst_get(sk);
355 
356 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
357 		sk_dst_reset(sk);
358 		dst_release(dst);
359 		return NULL;
360 	}
361 
362 	return dst;
363 }
364 EXPORT_SYMBOL(sk_dst_check);
365 
366 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
367 {
368 	int ret = -ENOPROTOOPT;
369 #ifdef CONFIG_NETDEVICES
370 	struct net *net = sk->sk_net;
371 	char devname[IFNAMSIZ];
372 	int index;
373 
374 	/* Sorry... */
375 	ret = -EPERM;
376 	if (!capable(CAP_NET_RAW))
377 		goto out;
378 
379 	ret = -EINVAL;
380 	if (optlen < 0)
381 		goto out;
382 
383 	/* Bind this socket to a particular device like "eth0",
384 	 * as specified in the passed interface name. If the
385 	 * name is "" or the option length is zero the socket
386 	 * is not bound.
387 	 */
388 	if (optlen > IFNAMSIZ - 1)
389 		optlen = IFNAMSIZ - 1;
390 	memset(devname, 0, sizeof(devname));
391 
392 	ret = -EFAULT;
393 	if (copy_from_user(devname, optval, optlen))
394 		goto out;
395 
396 	if (devname[0] == '\0') {
397 		index = 0;
398 	} else {
399 		struct net_device *dev = dev_get_by_name(net, devname);
400 
401 		ret = -ENODEV;
402 		if (!dev)
403 			goto out;
404 
405 		index = dev->ifindex;
406 		dev_put(dev);
407 	}
408 
409 	lock_sock(sk);
410 	sk->sk_bound_dev_if = index;
411 	sk_dst_reset(sk);
412 	release_sock(sk);
413 
414 	ret = 0;
415 
416 out:
417 #endif
418 
419 	return ret;
420 }
421 
422 /*
423  *	This is meant for all protocols to use and covers goings on
424  *	at the socket level. Everything here is generic.
425  */
426 
427 int sock_setsockopt(struct socket *sock, int level, int optname,
428 		    char __user *optval, int optlen)
429 {
430 	struct sock *sk=sock->sk;
431 	int val;
432 	int valbool;
433 	struct linger ling;
434 	int ret = 0;
435 
436 	/*
437 	 *	Options without arguments
438 	 */
439 
440 #ifdef SO_DONTLINGER		/* Compatibility item... */
441 	if (optname == SO_DONTLINGER) {
442 		lock_sock(sk);
443 		sock_reset_flag(sk, SOCK_LINGER);
444 		release_sock(sk);
445 		return 0;
446 	}
447 #endif
448 
449 	if (optname == SO_BINDTODEVICE)
450 		return sock_bindtodevice(sk, optval, optlen);
451 
452 	if (optlen < sizeof(int))
453 		return -EINVAL;
454 
455 	if (get_user(val, (int __user *)optval))
456 		return -EFAULT;
457 
458 	valbool = val?1:0;
459 
460 	lock_sock(sk);
461 
462 	switch(optname) {
463 	case SO_DEBUG:
464 		if (val && !capable(CAP_NET_ADMIN)) {
465 			ret = -EACCES;
466 		}
467 		else if (valbool)
468 			sock_set_flag(sk, SOCK_DBG);
469 		else
470 			sock_reset_flag(sk, SOCK_DBG);
471 		break;
472 	case SO_REUSEADDR:
473 		sk->sk_reuse = valbool;
474 		break;
475 	case SO_TYPE:
476 	case SO_ERROR:
477 		ret = -ENOPROTOOPT;
478 		break;
479 	case SO_DONTROUTE:
480 		if (valbool)
481 			sock_set_flag(sk, SOCK_LOCALROUTE);
482 		else
483 			sock_reset_flag(sk, SOCK_LOCALROUTE);
484 		break;
485 	case SO_BROADCAST:
486 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
487 		break;
488 	case SO_SNDBUF:
489 		/* Don't error on this BSD doesn't and if you think
490 		   about it this is right. Otherwise apps have to
491 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
492 		   are treated in BSD as hints */
493 
494 		if (val > sysctl_wmem_max)
495 			val = sysctl_wmem_max;
496 set_sndbuf:
497 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
498 		if ((val * 2) < SOCK_MIN_SNDBUF)
499 			sk->sk_sndbuf = SOCK_MIN_SNDBUF;
500 		else
501 			sk->sk_sndbuf = val * 2;
502 
503 		/*
504 		 *	Wake up sending tasks if we
505 		 *	upped the value.
506 		 */
507 		sk->sk_write_space(sk);
508 		break;
509 
510 	case SO_SNDBUFFORCE:
511 		if (!capable(CAP_NET_ADMIN)) {
512 			ret = -EPERM;
513 			break;
514 		}
515 		goto set_sndbuf;
516 
517 	case SO_RCVBUF:
518 		/* Don't error on this BSD doesn't and if you think
519 		   about it this is right. Otherwise apps have to
520 		   play 'guess the biggest size' games. RCVBUF/SNDBUF
521 		   are treated in BSD as hints */
522 
523 		if (val > sysctl_rmem_max)
524 			val = sysctl_rmem_max;
525 set_rcvbuf:
526 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
527 		/*
528 		 * We double it on the way in to account for
529 		 * "struct sk_buff" etc. overhead.   Applications
530 		 * assume that the SO_RCVBUF setting they make will
531 		 * allow that much actual data to be received on that
532 		 * socket.
533 		 *
534 		 * Applications are unaware that "struct sk_buff" and
535 		 * other overheads allocate from the receive buffer
536 		 * during socket buffer allocation.
537 		 *
538 		 * And after considering the possible alternatives,
539 		 * returning the value we actually used in getsockopt
540 		 * is the most desirable behavior.
541 		 */
542 		if ((val * 2) < SOCK_MIN_RCVBUF)
543 			sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
544 		else
545 			sk->sk_rcvbuf = val * 2;
546 		break;
547 
548 	case SO_RCVBUFFORCE:
549 		if (!capable(CAP_NET_ADMIN)) {
550 			ret = -EPERM;
551 			break;
552 		}
553 		goto set_rcvbuf;
554 
555 	case SO_KEEPALIVE:
556 #ifdef CONFIG_INET
557 		if (sk->sk_protocol == IPPROTO_TCP)
558 			tcp_set_keepalive(sk, valbool);
559 #endif
560 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
561 		break;
562 
563 	case SO_OOBINLINE:
564 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
565 		break;
566 
567 	case SO_NO_CHECK:
568 		sk->sk_no_check = valbool;
569 		break;
570 
571 	case SO_PRIORITY:
572 		if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
573 			sk->sk_priority = val;
574 		else
575 			ret = -EPERM;
576 		break;
577 
578 	case SO_LINGER:
579 		if (optlen < sizeof(ling)) {
580 			ret = -EINVAL;	/* 1003.1g */
581 			break;
582 		}
583 		if (copy_from_user(&ling,optval,sizeof(ling))) {
584 			ret = -EFAULT;
585 			break;
586 		}
587 		if (!ling.l_onoff)
588 			sock_reset_flag(sk, SOCK_LINGER);
589 		else {
590 #if (BITS_PER_LONG == 32)
591 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
592 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
593 			else
594 #endif
595 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
596 			sock_set_flag(sk, SOCK_LINGER);
597 		}
598 		break;
599 
600 	case SO_BSDCOMPAT:
601 		sock_warn_obsolete_bsdism("setsockopt");
602 		break;
603 
604 	case SO_PASSCRED:
605 		if (valbool)
606 			set_bit(SOCK_PASSCRED, &sock->flags);
607 		else
608 			clear_bit(SOCK_PASSCRED, &sock->flags);
609 		break;
610 
611 	case SO_TIMESTAMP:
612 	case SO_TIMESTAMPNS:
613 		if (valbool)  {
614 			if (optname == SO_TIMESTAMP)
615 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
616 			else
617 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
618 			sock_set_flag(sk, SOCK_RCVTSTAMP);
619 			sock_enable_timestamp(sk);
620 		} else {
621 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
622 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623 		}
624 		break;
625 
626 	case SO_RCVLOWAT:
627 		if (val < 0)
628 			val = INT_MAX;
629 		sk->sk_rcvlowat = val ? : 1;
630 		break;
631 
632 	case SO_RCVTIMEO:
633 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
634 		break;
635 
636 	case SO_SNDTIMEO:
637 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
638 		break;
639 
640 	case SO_ATTACH_FILTER:
641 		ret = -EINVAL;
642 		if (optlen == sizeof(struct sock_fprog)) {
643 			struct sock_fprog fprog;
644 
645 			ret = -EFAULT;
646 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
647 				break;
648 
649 			ret = sk_attach_filter(&fprog, sk);
650 		}
651 		break;
652 
653 	case SO_DETACH_FILTER:
654 		ret = sk_detach_filter(sk);
655 		break;
656 
657 	case SO_PASSSEC:
658 		if (valbool)
659 			set_bit(SOCK_PASSSEC, &sock->flags);
660 		else
661 			clear_bit(SOCK_PASSSEC, &sock->flags);
662 		break;
663 
664 		/* We implement the SO_SNDLOWAT etc to
665 		   not be settable (1003.1g 5.3) */
666 	default:
667 		ret = -ENOPROTOOPT;
668 		break;
669 	}
670 	release_sock(sk);
671 	return ret;
672 }
673 
674 
675 int sock_getsockopt(struct socket *sock, int level, int optname,
676 		    char __user *optval, int __user *optlen)
677 {
678 	struct sock *sk = sock->sk;
679 
680 	union {
681 		int val;
682 		struct linger ling;
683 		struct timeval tm;
684 	} v;
685 
686 	unsigned int lv = sizeof(int);
687 	int len;
688 
689 	if (get_user(len, optlen))
690 		return -EFAULT;
691 	if (len < 0)
692 		return -EINVAL;
693 
694 	switch(optname) {
695 	case SO_DEBUG:
696 		v.val = sock_flag(sk, SOCK_DBG);
697 		break;
698 
699 	case SO_DONTROUTE:
700 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
701 		break;
702 
703 	case SO_BROADCAST:
704 		v.val = !!sock_flag(sk, SOCK_BROADCAST);
705 		break;
706 
707 	case SO_SNDBUF:
708 		v.val = sk->sk_sndbuf;
709 		break;
710 
711 	case SO_RCVBUF:
712 		v.val = sk->sk_rcvbuf;
713 		break;
714 
715 	case SO_REUSEADDR:
716 		v.val = sk->sk_reuse;
717 		break;
718 
719 	case SO_KEEPALIVE:
720 		v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
721 		break;
722 
723 	case SO_TYPE:
724 		v.val = sk->sk_type;
725 		break;
726 
727 	case SO_ERROR:
728 		v.val = -sock_error(sk);
729 		if (v.val==0)
730 			v.val = xchg(&sk->sk_err_soft, 0);
731 		break;
732 
733 	case SO_OOBINLINE:
734 		v.val = !!sock_flag(sk, SOCK_URGINLINE);
735 		break;
736 
737 	case SO_NO_CHECK:
738 		v.val = sk->sk_no_check;
739 		break;
740 
741 	case SO_PRIORITY:
742 		v.val = sk->sk_priority;
743 		break;
744 
745 	case SO_LINGER:
746 		lv		= sizeof(v.ling);
747 		v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
748 		v.ling.l_linger	= sk->sk_lingertime / HZ;
749 		break;
750 
751 	case SO_BSDCOMPAT:
752 		sock_warn_obsolete_bsdism("getsockopt");
753 		break;
754 
755 	case SO_TIMESTAMP:
756 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
757 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
758 		break;
759 
760 	case SO_TIMESTAMPNS:
761 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
762 		break;
763 
764 	case SO_RCVTIMEO:
765 		lv=sizeof(struct timeval);
766 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
767 			v.tm.tv_sec = 0;
768 			v.tm.tv_usec = 0;
769 		} else {
770 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
771 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
772 		}
773 		break;
774 
775 	case SO_SNDTIMEO:
776 		lv=sizeof(struct timeval);
777 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
778 			v.tm.tv_sec = 0;
779 			v.tm.tv_usec = 0;
780 		} else {
781 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
782 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
783 		}
784 		break;
785 
786 	case SO_RCVLOWAT:
787 		v.val = sk->sk_rcvlowat;
788 		break;
789 
790 	case SO_SNDLOWAT:
791 		v.val=1;
792 		break;
793 
794 	case SO_PASSCRED:
795 		v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
796 		break;
797 
798 	case SO_PEERCRED:
799 		if (len > sizeof(sk->sk_peercred))
800 			len = sizeof(sk->sk_peercred);
801 		if (copy_to_user(optval, &sk->sk_peercred, len))
802 			return -EFAULT;
803 		goto lenout;
804 
805 	case SO_PEERNAME:
806 	{
807 		char address[128];
808 
809 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
810 			return -ENOTCONN;
811 		if (lv < len)
812 			return -EINVAL;
813 		if (copy_to_user(optval, address, len))
814 			return -EFAULT;
815 		goto lenout;
816 	}
817 
818 	/* Dubious BSD thing... Probably nobody even uses it, but
819 	 * the UNIX standard wants it for whatever reason... -DaveM
820 	 */
821 	case SO_ACCEPTCONN:
822 		v.val = sk->sk_state == TCP_LISTEN;
823 		break;
824 
825 	case SO_PASSSEC:
826 		v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
827 		break;
828 
829 	case SO_PEERSEC:
830 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
831 
832 	default:
833 		return -ENOPROTOOPT;
834 	}
835 
836 	if (len > lv)
837 		len = lv;
838 	if (copy_to_user(optval, &v, len))
839 		return -EFAULT;
840 lenout:
841 	if (put_user(len, optlen))
842 		return -EFAULT;
843 	return 0;
844 }
845 
846 /*
847  * Initialize an sk_lock.
848  *
849  * (We also register the sk_lock with the lock validator.)
850  */
851 static inline void sock_lock_init(struct sock *sk)
852 {
853 	sock_lock_init_class_and_name(sk,
854 			af_family_slock_key_strings[sk->sk_family],
855 			af_family_slock_keys + sk->sk_family,
856 			af_family_key_strings[sk->sk_family],
857 			af_family_keys + sk->sk_family);
858 }
859 
860 /**
861  *	sk_alloc - All socket objects are allocated here
862  *	@net: the applicable net namespace
863  *	@family: protocol family
864  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
865  *	@prot: struct proto associated with this new sock instance
866  *	@zero_it: if we should zero the newly allocated sock
867  */
868 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
869 		      struct proto *prot, int zero_it)
870 {
871 	struct sock *sk = NULL;
872 	struct kmem_cache *slab = prot->slab;
873 
874 	if (slab != NULL)
875 		sk = kmem_cache_alloc(slab, priority);
876 	else
877 		sk = kmalloc(prot->obj_size, priority);
878 
879 	if (sk) {
880 		if (zero_it) {
881 			memset(sk, 0, prot->obj_size);
882 			sk->sk_family = family;
883 			/*
884 			 * See comment in struct sock definition to understand
885 			 * why we need sk_prot_creator -acme
886 			 */
887 			sk->sk_prot = sk->sk_prot_creator = prot;
888 			sock_lock_init(sk);
889 			sk->sk_net = get_net(net);
890 		}
891 
892 		if (security_sk_alloc(sk, family, priority))
893 			goto out_free;
894 
895 		if (!try_module_get(prot->owner))
896 			goto out_free;
897 	}
898 	return sk;
899 
900 out_free:
901 	if (slab != NULL)
902 		kmem_cache_free(slab, sk);
903 	else
904 		kfree(sk);
905 	return NULL;
906 }
907 
908 void sk_free(struct sock *sk)
909 {
910 	struct sk_filter *filter;
911 	struct module *owner = sk->sk_prot_creator->owner;
912 
913 	if (sk->sk_destruct)
914 		sk->sk_destruct(sk);
915 
916 	filter = rcu_dereference(sk->sk_filter);
917 	if (filter) {
918 		sk_filter_uncharge(sk, filter);
919 		rcu_assign_pointer(sk->sk_filter, NULL);
920 	}
921 
922 	sock_disable_timestamp(sk);
923 
924 	if (atomic_read(&sk->sk_omem_alloc))
925 		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
926 		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
927 
928 	security_sk_free(sk);
929 	put_net(sk->sk_net);
930 	if (sk->sk_prot_creator->slab != NULL)
931 		kmem_cache_free(sk->sk_prot_creator->slab, sk);
932 	else
933 		kfree(sk);
934 	module_put(owner);
935 }
936 
937 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
938 {
939 	struct sock *newsk = sk_alloc(sk->sk_net, sk->sk_family, priority, sk->sk_prot, 0);
940 
941 	if (newsk != NULL) {
942 		struct sk_filter *filter;
943 
944 		sock_copy(newsk, sk);
945 
946 		/* SANITY */
947 		sk_node_init(&newsk->sk_node);
948 		sock_lock_init(newsk);
949 		bh_lock_sock(newsk);
950 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
951 
952 		atomic_set(&newsk->sk_rmem_alloc, 0);
953 		atomic_set(&newsk->sk_wmem_alloc, 0);
954 		atomic_set(&newsk->sk_omem_alloc, 0);
955 		skb_queue_head_init(&newsk->sk_receive_queue);
956 		skb_queue_head_init(&newsk->sk_write_queue);
957 #ifdef CONFIG_NET_DMA
958 		skb_queue_head_init(&newsk->sk_async_wait_queue);
959 #endif
960 
961 		rwlock_init(&newsk->sk_dst_lock);
962 		rwlock_init(&newsk->sk_callback_lock);
963 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
964 				af_callback_keys + newsk->sk_family,
965 				af_family_clock_key_strings[newsk->sk_family]);
966 
967 		newsk->sk_dst_cache	= NULL;
968 		newsk->sk_wmem_queued	= 0;
969 		newsk->sk_forward_alloc = 0;
970 		newsk->sk_send_head	= NULL;
971 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
972 
973 		sock_reset_flag(newsk, SOCK_DONE);
974 		skb_queue_head_init(&newsk->sk_error_queue);
975 
976 		filter = newsk->sk_filter;
977 		if (filter != NULL)
978 			sk_filter_charge(newsk, filter);
979 
980 		if (unlikely(xfrm_sk_clone_policy(newsk))) {
981 			/* It is still raw copy of parent, so invalidate
982 			 * destructor and make plain sk_free() */
983 			newsk->sk_destruct = NULL;
984 			sk_free(newsk);
985 			newsk = NULL;
986 			goto out;
987 		}
988 
989 		newsk->sk_err	   = 0;
990 		newsk->sk_priority = 0;
991 		atomic_set(&newsk->sk_refcnt, 2);
992 
993 		/*
994 		 * Increment the counter in the same struct proto as the master
995 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
996 		 * is the same as sk->sk_prot->socks, as this field was copied
997 		 * with memcpy).
998 		 *
999 		 * This _changes_ the previous behaviour, where
1000 		 * tcp_create_openreq_child always was incrementing the
1001 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1002 		 * to be taken into account in all callers. -acme
1003 		 */
1004 		sk_refcnt_debug_inc(newsk);
1005 		newsk->sk_socket = NULL;
1006 		newsk->sk_sleep	 = NULL;
1007 
1008 		if (newsk->sk_prot->sockets_allocated)
1009 			atomic_inc(newsk->sk_prot->sockets_allocated);
1010 	}
1011 out:
1012 	return newsk;
1013 }
1014 
1015 EXPORT_SYMBOL_GPL(sk_clone);
1016 
1017 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1018 {
1019 	__sk_dst_set(sk, dst);
1020 	sk->sk_route_caps = dst->dev->features;
1021 	if (sk->sk_route_caps & NETIF_F_GSO)
1022 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1023 	if (sk_can_gso(sk)) {
1024 		if (dst->header_len)
1025 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1026 		else
1027 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1028 	}
1029 }
1030 EXPORT_SYMBOL_GPL(sk_setup_caps);
1031 
1032 void __init sk_init(void)
1033 {
1034 	if (num_physpages <= 4096) {
1035 		sysctl_wmem_max = 32767;
1036 		sysctl_rmem_max = 32767;
1037 		sysctl_wmem_default = 32767;
1038 		sysctl_rmem_default = 32767;
1039 	} else if (num_physpages >= 131072) {
1040 		sysctl_wmem_max = 131071;
1041 		sysctl_rmem_max = 131071;
1042 	}
1043 }
1044 
1045 /*
1046  *	Simple resource managers for sockets.
1047  */
1048 
1049 
1050 /*
1051  * Write buffer destructor automatically called from kfree_skb.
1052  */
1053 void sock_wfree(struct sk_buff *skb)
1054 {
1055 	struct sock *sk = skb->sk;
1056 
1057 	/* In case it might be waiting for more memory. */
1058 	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1059 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1060 		sk->sk_write_space(sk);
1061 	sock_put(sk);
1062 }
1063 
1064 /*
1065  * Read buffer destructor automatically called from kfree_skb.
1066  */
1067 void sock_rfree(struct sk_buff *skb)
1068 {
1069 	struct sock *sk = skb->sk;
1070 
1071 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1072 }
1073 
1074 
1075 int sock_i_uid(struct sock *sk)
1076 {
1077 	int uid;
1078 
1079 	read_lock(&sk->sk_callback_lock);
1080 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1081 	read_unlock(&sk->sk_callback_lock);
1082 	return uid;
1083 }
1084 
1085 unsigned long sock_i_ino(struct sock *sk)
1086 {
1087 	unsigned long ino;
1088 
1089 	read_lock(&sk->sk_callback_lock);
1090 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1091 	read_unlock(&sk->sk_callback_lock);
1092 	return ino;
1093 }
1094 
1095 /*
1096  * Allocate a skb from the socket's send buffer.
1097  */
1098 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1099 			     gfp_t priority)
1100 {
1101 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1102 		struct sk_buff * skb = alloc_skb(size, priority);
1103 		if (skb) {
1104 			skb_set_owner_w(skb, sk);
1105 			return skb;
1106 		}
1107 	}
1108 	return NULL;
1109 }
1110 
1111 /*
1112  * Allocate a skb from the socket's receive buffer.
1113  */
1114 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1115 			     gfp_t priority)
1116 {
1117 	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1118 		struct sk_buff *skb = alloc_skb(size, priority);
1119 		if (skb) {
1120 			skb_set_owner_r(skb, sk);
1121 			return skb;
1122 		}
1123 	}
1124 	return NULL;
1125 }
1126 
1127 /*
1128  * Allocate a memory block from the socket's option memory buffer.
1129  */
1130 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1131 {
1132 	if ((unsigned)size <= sysctl_optmem_max &&
1133 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1134 		void *mem;
1135 		/* First do the add, to avoid the race if kmalloc
1136 		 * might sleep.
1137 		 */
1138 		atomic_add(size, &sk->sk_omem_alloc);
1139 		mem = kmalloc(size, priority);
1140 		if (mem)
1141 			return mem;
1142 		atomic_sub(size, &sk->sk_omem_alloc);
1143 	}
1144 	return NULL;
1145 }
1146 
1147 /*
1148  * Free an option memory block.
1149  */
1150 void sock_kfree_s(struct sock *sk, void *mem, int size)
1151 {
1152 	kfree(mem);
1153 	atomic_sub(size, &sk->sk_omem_alloc);
1154 }
1155 
1156 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1157    I think, these locks should be removed for datagram sockets.
1158  */
1159 static long sock_wait_for_wmem(struct sock * sk, long timeo)
1160 {
1161 	DEFINE_WAIT(wait);
1162 
1163 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1164 	for (;;) {
1165 		if (!timeo)
1166 			break;
1167 		if (signal_pending(current))
1168 			break;
1169 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1170 		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1171 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1172 			break;
1173 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1174 			break;
1175 		if (sk->sk_err)
1176 			break;
1177 		timeo = schedule_timeout(timeo);
1178 	}
1179 	finish_wait(sk->sk_sleep, &wait);
1180 	return timeo;
1181 }
1182 
1183 
1184 /*
1185  *	Generic send/receive buffer handlers
1186  */
1187 
1188 static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1189 					    unsigned long header_len,
1190 					    unsigned long data_len,
1191 					    int noblock, int *errcode)
1192 {
1193 	struct sk_buff *skb;
1194 	gfp_t gfp_mask;
1195 	long timeo;
1196 	int err;
1197 
1198 	gfp_mask = sk->sk_allocation;
1199 	if (gfp_mask & __GFP_WAIT)
1200 		gfp_mask |= __GFP_REPEAT;
1201 
1202 	timeo = sock_sndtimeo(sk, noblock);
1203 	while (1) {
1204 		err = sock_error(sk);
1205 		if (err != 0)
1206 			goto failure;
1207 
1208 		err = -EPIPE;
1209 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1210 			goto failure;
1211 
1212 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1213 			skb = alloc_skb(header_len, gfp_mask);
1214 			if (skb) {
1215 				int npages;
1216 				int i;
1217 
1218 				/* No pages, we're done... */
1219 				if (!data_len)
1220 					break;
1221 
1222 				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1223 				skb->truesize += data_len;
1224 				skb_shinfo(skb)->nr_frags = npages;
1225 				for (i = 0; i < npages; i++) {
1226 					struct page *page;
1227 					skb_frag_t *frag;
1228 
1229 					page = alloc_pages(sk->sk_allocation, 0);
1230 					if (!page) {
1231 						err = -ENOBUFS;
1232 						skb_shinfo(skb)->nr_frags = i;
1233 						kfree_skb(skb);
1234 						goto failure;
1235 					}
1236 
1237 					frag = &skb_shinfo(skb)->frags[i];
1238 					frag->page = page;
1239 					frag->page_offset = 0;
1240 					frag->size = (data_len >= PAGE_SIZE ?
1241 						      PAGE_SIZE :
1242 						      data_len);
1243 					data_len -= PAGE_SIZE;
1244 				}
1245 
1246 				/* Full success... */
1247 				break;
1248 			}
1249 			err = -ENOBUFS;
1250 			goto failure;
1251 		}
1252 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1253 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1254 		err = -EAGAIN;
1255 		if (!timeo)
1256 			goto failure;
1257 		if (signal_pending(current))
1258 			goto interrupted;
1259 		timeo = sock_wait_for_wmem(sk, timeo);
1260 	}
1261 
1262 	skb_set_owner_w(skb, sk);
1263 	return skb;
1264 
1265 interrupted:
1266 	err = sock_intr_errno(timeo);
1267 failure:
1268 	*errcode = err;
1269 	return NULL;
1270 }
1271 
1272 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1273 				    int noblock, int *errcode)
1274 {
1275 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1276 }
1277 
1278 static void __lock_sock(struct sock *sk)
1279 {
1280 	DEFINE_WAIT(wait);
1281 
1282 	for (;;) {
1283 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1284 					TASK_UNINTERRUPTIBLE);
1285 		spin_unlock_bh(&sk->sk_lock.slock);
1286 		schedule();
1287 		spin_lock_bh(&sk->sk_lock.slock);
1288 		if (!sock_owned_by_user(sk))
1289 			break;
1290 	}
1291 	finish_wait(&sk->sk_lock.wq, &wait);
1292 }
1293 
1294 static void __release_sock(struct sock *sk)
1295 {
1296 	struct sk_buff *skb = sk->sk_backlog.head;
1297 
1298 	do {
1299 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1300 		bh_unlock_sock(sk);
1301 
1302 		do {
1303 			struct sk_buff *next = skb->next;
1304 
1305 			skb->next = NULL;
1306 			sk->sk_backlog_rcv(sk, skb);
1307 
1308 			/*
1309 			 * We are in process context here with softirqs
1310 			 * disabled, use cond_resched_softirq() to preempt.
1311 			 * This is safe to do because we've taken the backlog
1312 			 * queue private:
1313 			 */
1314 			cond_resched_softirq();
1315 
1316 			skb = next;
1317 		} while (skb != NULL);
1318 
1319 		bh_lock_sock(sk);
1320 	} while ((skb = sk->sk_backlog.head) != NULL);
1321 }
1322 
1323 /**
1324  * sk_wait_data - wait for data to arrive at sk_receive_queue
1325  * @sk:    sock to wait on
1326  * @timeo: for how long
1327  *
1328  * Now socket state including sk->sk_err is changed only under lock,
1329  * hence we may omit checks after joining wait queue.
1330  * We check receive queue before schedule() only as optimization;
1331  * it is very likely that release_sock() added new data.
1332  */
1333 int sk_wait_data(struct sock *sk, long *timeo)
1334 {
1335 	int rc;
1336 	DEFINE_WAIT(wait);
1337 
1338 	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1339 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1340 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1341 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1342 	finish_wait(sk->sk_sleep, &wait);
1343 	return rc;
1344 }
1345 
1346 EXPORT_SYMBOL(sk_wait_data);
1347 
1348 /*
1349  * Set of default routines for initialising struct proto_ops when
1350  * the protocol does not support a particular function. In certain
1351  * cases where it makes no sense for a protocol to have a "do nothing"
1352  * function, some default processing is provided.
1353  */
1354 
1355 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1356 {
1357 	return -EOPNOTSUPP;
1358 }
1359 
1360 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1361 		    int len, int flags)
1362 {
1363 	return -EOPNOTSUPP;
1364 }
1365 
1366 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1367 {
1368 	return -EOPNOTSUPP;
1369 }
1370 
1371 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1372 {
1373 	return -EOPNOTSUPP;
1374 }
1375 
1376 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1377 		    int *len, int peer)
1378 {
1379 	return -EOPNOTSUPP;
1380 }
1381 
1382 unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1383 {
1384 	return 0;
1385 }
1386 
1387 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1388 {
1389 	return -EOPNOTSUPP;
1390 }
1391 
1392 int sock_no_listen(struct socket *sock, int backlog)
1393 {
1394 	return -EOPNOTSUPP;
1395 }
1396 
1397 int sock_no_shutdown(struct socket *sock, int how)
1398 {
1399 	return -EOPNOTSUPP;
1400 }
1401 
1402 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1403 		    char __user *optval, int optlen)
1404 {
1405 	return -EOPNOTSUPP;
1406 }
1407 
1408 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1409 		    char __user *optval, int __user *optlen)
1410 {
1411 	return -EOPNOTSUPP;
1412 }
1413 
1414 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1415 		    size_t len)
1416 {
1417 	return -EOPNOTSUPP;
1418 }
1419 
1420 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1421 		    size_t len, int flags)
1422 {
1423 	return -EOPNOTSUPP;
1424 }
1425 
1426 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1427 {
1428 	/* Mirror missing mmap method error code */
1429 	return -ENODEV;
1430 }
1431 
1432 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1433 {
1434 	ssize_t res;
1435 	struct msghdr msg = {.msg_flags = flags};
1436 	struct kvec iov;
1437 	char *kaddr = kmap(page);
1438 	iov.iov_base = kaddr + offset;
1439 	iov.iov_len = size;
1440 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1441 	kunmap(page);
1442 	return res;
1443 }
1444 
1445 /*
1446  *	Default Socket Callbacks
1447  */
1448 
1449 static void sock_def_wakeup(struct sock *sk)
1450 {
1451 	read_lock(&sk->sk_callback_lock);
1452 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1453 		wake_up_interruptible_all(sk->sk_sleep);
1454 	read_unlock(&sk->sk_callback_lock);
1455 }
1456 
1457 static void sock_def_error_report(struct sock *sk)
1458 {
1459 	read_lock(&sk->sk_callback_lock);
1460 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1461 		wake_up_interruptible(sk->sk_sleep);
1462 	sk_wake_async(sk,0,POLL_ERR);
1463 	read_unlock(&sk->sk_callback_lock);
1464 }
1465 
1466 static void sock_def_readable(struct sock *sk, int len)
1467 {
1468 	read_lock(&sk->sk_callback_lock);
1469 	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1470 		wake_up_interruptible(sk->sk_sleep);
1471 	sk_wake_async(sk,1,POLL_IN);
1472 	read_unlock(&sk->sk_callback_lock);
1473 }
1474 
1475 static void sock_def_write_space(struct sock *sk)
1476 {
1477 	read_lock(&sk->sk_callback_lock);
1478 
1479 	/* Do not wake up a writer until he can make "significant"
1480 	 * progress.  --DaveM
1481 	 */
1482 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1483 		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1484 			wake_up_interruptible(sk->sk_sleep);
1485 
1486 		/* Should agree with poll, otherwise some programs break */
1487 		if (sock_writeable(sk))
1488 			sk_wake_async(sk, 2, POLL_OUT);
1489 	}
1490 
1491 	read_unlock(&sk->sk_callback_lock);
1492 }
1493 
1494 static void sock_def_destruct(struct sock *sk)
1495 {
1496 	kfree(sk->sk_protinfo);
1497 }
1498 
1499 void sk_send_sigurg(struct sock *sk)
1500 {
1501 	if (sk->sk_socket && sk->sk_socket->file)
1502 		if (send_sigurg(&sk->sk_socket->file->f_owner))
1503 			sk_wake_async(sk, 3, POLL_PRI);
1504 }
1505 
1506 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1507 		    unsigned long expires)
1508 {
1509 	if (!mod_timer(timer, expires))
1510 		sock_hold(sk);
1511 }
1512 
1513 EXPORT_SYMBOL(sk_reset_timer);
1514 
1515 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1516 {
1517 	if (timer_pending(timer) && del_timer(timer))
1518 		__sock_put(sk);
1519 }
1520 
1521 EXPORT_SYMBOL(sk_stop_timer);
1522 
1523 void sock_init_data(struct socket *sock, struct sock *sk)
1524 {
1525 	skb_queue_head_init(&sk->sk_receive_queue);
1526 	skb_queue_head_init(&sk->sk_write_queue);
1527 	skb_queue_head_init(&sk->sk_error_queue);
1528 #ifdef CONFIG_NET_DMA
1529 	skb_queue_head_init(&sk->sk_async_wait_queue);
1530 #endif
1531 
1532 	sk->sk_send_head	=	NULL;
1533 
1534 	init_timer(&sk->sk_timer);
1535 
1536 	sk->sk_allocation	=	GFP_KERNEL;
1537 	sk->sk_rcvbuf		=	sysctl_rmem_default;
1538 	sk->sk_sndbuf		=	sysctl_wmem_default;
1539 	sk->sk_state		=	TCP_CLOSE;
1540 	sk->sk_socket		=	sock;
1541 
1542 	sock_set_flag(sk, SOCK_ZAPPED);
1543 
1544 	if (sock) {
1545 		sk->sk_type	=	sock->type;
1546 		sk->sk_sleep	=	&sock->wait;
1547 		sock->sk	=	sk;
1548 	} else
1549 		sk->sk_sleep	=	NULL;
1550 
1551 	rwlock_init(&sk->sk_dst_lock);
1552 	rwlock_init(&sk->sk_callback_lock);
1553 	lockdep_set_class_and_name(&sk->sk_callback_lock,
1554 			af_callback_keys + sk->sk_family,
1555 			af_family_clock_key_strings[sk->sk_family]);
1556 
1557 	sk->sk_state_change	=	sock_def_wakeup;
1558 	sk->sk_data_ready	=	sock_def_readable;
1559 	sk->sk_write_space	=	sock_def_write_space;
1560 	sk->sk_error_report	=	sock_def_error_report;
1561 	sk->sk_destruct		=	sock_def_destruct;
1562 
1563 	sk->sk_sndmsg_page	=	NULL;
1564 	sk->sk_sndmsg_off	=	0;
1565 
1566 	sk->sk_peercred.pid 	=	0;
1567 	sk->sk_peercred.uid	=	-1;
1568 	sk->sk_peercred.gid	=	-1;
1569 	sk->sk_write_pending	=	0;
1570 	sk->sk_rcvlowat		=	1;
1571 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
1572 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
1573 
1574 	sk->sk_stamp = ktime_set(-1L, -1L);
1575 
1576 	atomic_set(&sk->sk_refcnt, 1);
1577 }
1578 
1579 void fastcall lock_sock_nested(struct sock *sk, int subclass)
1580 {
1581 	might_sleep();
1582 	spin_lock_bh(&sk->sk_lock.slock);
1583 	if (sk->sk_lock.owned)
1584 		__lock_sock(sk);
1585 	sk->sk_lock.owned = 1;
1586 	spin_unlock(&sk->sk_lock.slock);
1587 	/*
1588 	 * The sk_lock has mutex_lock() semantics here:
1589 	 */
1590 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1591 	local_bh_enable();
1592 }
1593 
1594 EXPORT_SYMBOL(lock_sock_nested);
1595 
1596 void fastcall release_sock(struct sock *sk)
1597 {
1598 	/*
1599 	 * The sk_lock has mutex_unlock() semantics:
1600 	 */
1601 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1602 
1603 	spin_lock_bh(&sk->sk_lock.slock);
1604 	if (sk->sk_backlog.tail)
1605 		__release_sock(sk);
1606 	sk->sk_lock.owned = 0;
1607 	if (waitqueue_active(&sk->sk_lock.wq))
1608 		wake_up(&sk->sk_lock.wq);
1609 	spin_unlock_bh(&sk->sk_lock.slock);
1610 }
1611 EXPORT_SYMBOL(release_sock);
1612 
1613 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1614 {
1615 	struct timeval tv;
1616 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1617 		sock_enable_timestamp(sk);
1618 	tv = ktime_to_timeval(sk->sk_stamp);
1619 	if (tv.tv_sec == -1)
1620 		return -ENOENT;
1621 	if (tv.tv_sec == 0) {
1622 		sk->sk_stamp = ktime_get_real();
1623 		tv = ktime_to_timeval(sk->sk_stamp);
1624 	}
1625 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1626 }
1627 EXPORT_SYMBOL(sock_get_timestamp);
1628 
1629 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1630 {
1631 	struct timespec ts;
1632 	if (!sock_flag(sk, SOCK_TIMESTAMP))
1633 		sock_enable_timestamp(sk);
1634 	ts = ktime_to_timespec(sk->sk_stamp);
1635 	if (ts.tv_sec == -1)
1636 		return -ENOENT;
1637 	if (ts.tv_sec == 0) {
1638 		sk->sk_stamp = ktime_get_real();
1639 		ts = ktime_to_timespec(sk->sk_stamp);
1640 	}
1641 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1642 }
1643 EXPORT_SYMBOL(sock_get_timestampns);
1644 
1645 void sock_enable_timestamp(struct sock *sk)
1646 {
1647 	if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1648 		sock_set_flag(sk, SOCK_TIMESTAMP);
1649 		net_enable_timestamp();
1650 	}
1651 }
1652 EXPORT_SYMBOL(sock_enable_timestamp);
1653 
1654 /*
1655  *	Get a socket option on an socket.
1656  *
1657  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
1658  *	asynchronous errors should be reported by getsockopt. We assume
1659  *	this means if you specify SO_ERROR (otherwise whats the point of it).
1660  */
1661 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1662 			   char __user *optval, int __user *optlen)
1663 {
1664 	struct sock *sk = sock->sk;
1665 
1666 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1667 }
1668 
1669 EXPORT_SYMBOL(sock_common_getsockopt);
1670 
1671 #ifdef CONFIG_COMPAT
1672 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1673 				  char __user *optval, int __user *optlen)
1674 {
1675 	struct sock *sk = sock->sk;
1676 
1677 	if (sk->sk_prot->compat_getsockopt != NULL)
1678 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
1679 						      optval, optlen);
1680 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1681 }
1682 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1683 #endif
1684 
1685 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1686 			struct msghdr *msg, size_t size, int flags)
1687 {
1688 	struct sock *sk = sock->sk;
1689 	int addr_len = 0;
1690 	int err;
1691 
1692 	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1693 				   flags & ~MSG_DONTWAIT, &addr_len);
1694 	if (err >= 0)
1695 		msg->msg_namelen = addr_len;
1696 	return err;
1697 }
1698 
1699 EXPORT_SYMBOL(sock_common_recvmsg);
1700 
1701 /*
1702  *	Set socket options on an inet socket.
1703  */
1704 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1705 			   char __user *optval, int optlen)
1706 {
1707 	struct sock *sk = sock->sk;
1708 
1709 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1710 }
1711 
1712 EXPORT_SYMBOL(sock_common_setsockopt);
1713 
1714 #ifdef CONFIG_COMPAT
1715 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1716 				  char __user *optval, int optlen)
1717 {
1718 	struct sock *sk = sock->sk;
1719 
1720 	if (sk->sk_prot->compat_setsockopt != NULL)
1721 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
1722 						      optval, optlen);
1723 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1724 }
1725 EXPORT_SYMBOL(compat_sock_common_setsockopt);
1726 #endif
1727 
1728 void sk_common_release(struct sock *sk)
1729 {
1730 	if (sk->sk_prot->destroy)
1731 		sk->sk_prot->destroy(sk);
1732 
1733 	/*
1734 	 * Observation: when sock_common_release is called, processes have
1735 	 * no access to socket. But net still has.
1736 	 * Step one, detach it from networking:
1737 	 *
1738 	 * A. Remove from hash tables.
1739 	 */
1740 
1741 	sk->sk_prot->unhash(sk);
1742 
1743 	/*
1744 	 * In this point socket cannot receive new packets, but it is possible
1745 	 * that some packets are in flight because some CPU runs receiver and
1746 	 * did hash table lookup before we unhashed socket. They will achieve
1747 	 * receive queue and will be purged by socket destructor.
1748 	 *
1749 	 * Also we still have packets pending on receive queue and probably,
1750 	 * our own packets waiting in device queues. sock_destroy will drain
1751 	 * receive queue, but transmitted packets will delay socket destruction
1752 	 * until the last reference will be released.
1753 	 */
1754 
1755 	sock_orphan(sk);
1756 
1757 	xfrm_sk_free_policy(sk);
1758 
1759 	sk_refcnt_debug_release(sk);
1760 	sock_put(sk);
1761 }
1762 
1763 EXPORT_SYMBOL(sk_common_release);
1764 
1765 static DEFINE_RWLOCK(proto_list_lock);
1766 static LIST_HEAD(proto_list);
1767 
1768 int proto_register(struct proto *prot, int alloc_slab)
1769 {
1770 	char *request_sock_slab_name = NULL;
1771 	char *timewait_sock_slab_name;
1772 	int rc = -ENOBUFS;
1773 
1774 	if (alloc_slab) {
1775 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1776 					       SLAB_HWCACHE_ALIGN, NULL);
1777 
1778 		if (prot->slab == NULL) {
1779 			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1780 			       prot->name);
1781 			goto out;
1782 		}
1783 
1784 		if (prot->rsk_prot != NULL) {
1785 			static const char mask[] = "request_sock_%s";
1786 
1787 			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1788 			if (request_sock_slab_name == NULL)
1789 				goto out_free_sock_slab;
1790 
1791 			sprintf(request_sock_slab_name, mask, prot->name);
1792 			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1793 								 prot->rsk_prot->obj_size, 0,
1794 								 SLAB_HWCACHE_ALIGN, NULL);
1795 
1796 			if (prot->rsk_prot->slab == NULL) {
1797 				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1798 				       prot->name);
1799 				goto out_free_request_sock_slab_name;
1800 			}
1801 		}
1802 
1803 		if (prot->twsk_prot != NULL) {
1804 			static const char mask[] = "tw_sock_%s";
1805 
1806 			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1807 
1808 			if (timewait_sock_slab_name == NULL)
1809 				goto out_free_request_sock_slab;
1810 
1811 			sprintf(timewait_sock_slab_name, mask, prot->name);
1812 			prot->twsk_prot->twsk_slab =
1813 				kmem_cache_create(timewait_sock_slab_name,
1814 						  prot->twsk_prot->twsk_obj_size,
1815 						  0, SLAB_HWCACHE_ALIGN,
1816 						  NULL);
1817 			if (prot->twsk_prot->twsk_slab == NULL)
1818 				goto out_free_timewait_sock_slab_name;
1819 		}
1820 	}
1821 
1822 	write_lock(&proto_list_lock);
1823 	list_add(&prot->node, &proto_list);
1824 	write_unlock(&proto_list_lock);
1825 	rc = 0;
1826 out:
1827 	return rc;
1828 out_free_timewait_sock_slab_name:
1829 	kfree(timewait_sock_slab_name);
1830 out_free_request_sock_slab:
1831 	if (prot->rsk_prot && prot->rsk_prot->slab) {
1832 		kmem_cache_destroy(prot->rsk_prot->slab);
1833 		prot->rsk_prot->slab = NULL;
1834 	}
1835 out_free_request_sock_slab_name:
1836 	kfree(request_sock_slab_name);
1837 out_free_sock_slab:
1838 	kmem_cache_destroy(prot->slab);
1839 	prot->slab = NULL;
1840 	goto out;
1841 }
1842 
1843 EXPORT_SYMBOL(proto_register);
1844 
1845 void proto_unregister(struct proto *prot)
1846 {
1847 	write_lock(&proto_list_lock);
1848 	list_del(&prot->node);
1849 	write_unlock(&proto_list_lock);
1850 
1851 	if (prot->slab != NULL) {
1852 		kmem_cache_destroy(prot->slab);
1853 		prot->slab = NULL;
1854 	}
1855 
1856 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1857 		const char *name = kmem_cache_name(prot->rsk_prot->slab);
1858 
1859 		kmem_cache_destroy(prot->rsk_prot->slab);
1860 		kfree(name);
1861 		prot->rsk_prot->slab = NULL;
1862 	}
1863 
1864 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1865 		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
1866 
1867 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
1868 		kfree(name);
1869 		prot->twsk_prot->twsk_slab = NULL;
1870 	}
1871 }
1872 
1873 EXPORT_SYMBOL(proto_unregister);
1874 
1875 #ifdef CONFIG_PROC_FS
1876 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1877 {
1878 	read_lock(&proto_list_lock);
1879 	return seq_list_start_head(&proto_list, *pos);
1880 }
1881 
1882 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1883 {
1884 	return seq_list_next(v, &proto_list, pos);
1885 }
1886 
1887 static void proto_seq_stop(struct seq_file *seq, void *v)
1888 {
1889 	read_unlock(&proto_list_lock);
1890 }
1891 
1892 static char proto_method_implemented(const void *method)
1893 {
1894 	return method == NULL ? 'n' : 'y';
1895 }
1896 
1897 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1898 {
1899 	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
1900 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1901 		   proto->name,
1902 		   proto->obj_size,
1903 		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1904 		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1905 		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1906 		   proto->max_header,
1907 		   proto->slab == NULL ? "no" : "yes",
1908 		   module_name(proto->owner),
1909 		   proto_method_implemented(proto->close),
1910 		   proto_method_implemented(proto->connect),
1911 		   proto_method_implemented(proto->disconnect),
1912 		   proto_method_implemented(proto->accept),
1913 		   proto_method_implemented(proto->ioctl),
1914 		   proto_method_implemented(proto->init),
1915 		   proto_method_implemented(proto->destroy),
1916 		   proto_method_implemented(proto->shutdown),
1917 		   proto_method_implemented(proto->setsockopt),
1918 		   proto_method_implemented(proto->getsockopt),
1919 		   proto_method_implemented(proto->sendmsg),
1920 		   proto_method_implemented(proto->recvmsg),
1921 		   proto_method_implemented(proto->sendpage),
1922 		   proto_method_implemented(proto->bind),
1923 		   proto_method_implemented(proto->backlog_rcv),
1924 		   proto_method_implemented(proto->hash),
1925 		   proto_method_implemented(proto->unhash),
1926 		   proto_method_implemented(proto->get_port),
1927 		   proto_method_implemented(proto->enter_memory_pressure));
1928 }
1929 
1930 static int proto_seq_show(struct seq_file *seq, void *v)
1931 {
1932 	if (v == &proto_list)
1933 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1934 			   "protocol",
1935 			   "size",
1936 			   "sockets",
1937 			   "memory",
1938 			   "press",
1939 			   "maxhdr",
1940 			   "slab",
1941 			   "module",
1942 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1943 	else
1944 		proto_seq_printf(seq, list_entry(v, struct proto, node));
1945 	return 0;
1946 }
1947 
1948 static const struct seq_operations proto_seq_ops = {
1949 	.start  = proto_seq_start,
1950 	.next   = proto_seq_next,
1951 	.stop   = proto_seq_stop,
1952 	.show   = proto_seq_show,
1953 };
1954 
1955 static int proto_seq_open(struct inode *inode, struct file *file)
1956 {
1957 	return seq_open(file, &proto_seq_ops);
1958 }
1959 
1960 static const struct file_operations proto_seq_fops = {
1961 	.owner		= THIS_MODULE,
1962 	.open		= proto_seq_open,
1963 	.read		= seq_read,
1964 	.llseek		= seq_lseek,
1965 	.release	= seq_release,
1966 };
1967 
1968 static int __init proto_init(void)
1969 {
1970 	/* register /proc/net/protocols */
1971 	return proc_net_fops_create(&init_net, "protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1972 }
1973 
1974 subsys_initcall(proto_init);
1975 
1976 #endif /* PROC_FS */
1977 
1978 EXPORT_SYMBOL(sk_alloc);
1979 EXPORT_SYMBOL(sk_free);
1980 EXPORT_SYMBOL(sk_send_sigurg);
1981 EXPORT_SYMBOL(sock_alloc_send_skb);
1982 EXPORT_SYMBOL(sock_init_data);
1983 EXPORT_SYMBOL(sock_kfree_s);
1984 EXPORT_SYMBOL(sock_kmalloc);
1985 EXPORT_SYMBOL(sock_no_accept);
1986 EXPORT_SYMBOL(sock_no_bind);
1987 EXPORT_SYMBOL(sock_no_connect);
1988 EXPORT_SYMBOL(sock_no_getname);
1989 EXPORT_SYMBOL(sock_no_getsockopt);
1990 EXPORT_SYMBOL(sock_no_ioctl);
1991 EXPORT_SYMBOL(sock_no_listen);
1992 EXPORT_SYMBOL(sock_no_mmap);
1993 EXPORT_SYMBOL(sock_no_poll);
1994 EXPORT_SYMBOL(sock_no_recvmsg);
1995 EXPORT_SYMBOL(sock_no_sendmsg);
1996 EXPORT_SYMBOL(sock_no_sendpage);
1997 EXPORT_SYMBOL(sock_no_setsockopt);
1998 EXPORT_SYMBOL(sock_no_shutdown);
1999 EXPORT_SYMBOL(sock_no_socketpair);
2000 EXPORT_SYMBOL(sock_rfree);
2001 EXPORT_SYMBOL(sock_setsockopt);
2002 EXPORT_SYMBOL(sock_wfree);
2003 EXPORT_SYMBOL(sock_wmalloc);
2004 EXPORT_SYMBOL(sock_i_uid);
2005 EXPORT_SYMBOL(sock_i_ino);
2006 EXPORT_SYMBOL(sysctl_optmem_max);
2007 #ifdef CONFIG_SYSCTL
2008 EXPORT_SYMBOL(sysctl_rmem_max);
2009 EXPORT_SYMBOL(sysctl_wmem_max);
2010 #endif
2011