xref: /openbmc/linux/net/core/sock.c (revision 33cf7c90fe2f97afb1cadaa0cfb782cb9d1b9ee2)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Generic socket support routines. Memory allocators, socket lock/release
7  *		handler for protocols to use and generic option handler.
8  *
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Alan Cox, <A.Cox@swansea.ac.uk>
14  *
15  * Fixes:
16  *		Alan Cox	: 	Numerous verify_area() problems
17  *		Alan Cox	:	Connecting on a connecting socket
18  *					now returns an error for tcp.
19  *		Alan Cox	:	sock->protocol is set correctly.
20  *					and is not sometimes left as 0.
21  *		Alan Cox	:	connect handles icmp errors on a
22  *					connect properly. Unfortunately there
23  *					is a restart syscall nasty there. I
24  *					can't match BSD without hacking the C
25  *					library. Ideas urgently sought!
26  *		Alan Cox	:	Disallow bind() to addresses that are
27  *					not ours - especially broadcast ones!!
28  *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
29  *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
30  *					instead they leave that for the DESTROY timer.
31  *		Alan Cox	:	Clean up error flag in accept
32  *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
33  *					was buggy. Put a remove_sock() in the handler
34  *					for memory when we hit 0. Also altered the timer
35  *					code. The ACK stuff can wait and needs major
36  *					TCP layer surgery.
37  *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
38  *					and fixed timer/inet_bh race.
39  *		Alan Cox	:	Added zapped flag for TCP
40  *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
41  *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42  *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
43  *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
44  *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45  *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
46  *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
47  *	Pauline Middelink	:	identd support
48  *		Alan Cox	:	Fixed connect() taking signals I think.
49  *		Alan Cox	:	SO_LINGER supported
50  *		Alan Cox	:	Error reporting fixes
51  *		Anonymous	:	inet_create tidied up (sk->reuse setting)
52  *		Alan Cox	:	inet sockets don't set sk->type!
53  *		Alan Cox	:	Split socket option code
54  *		Alan Cox	:	Callbacks
55  *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
56  *		Alex		:	Removed restriction on inet fioctl
57  *		Alan Cox	:	Splitting INET from NET core
58  *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
59  *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
60  *		Alan Cox	:	Split IP from generic code
61  *		Alan Cox	:	New kfree_skbmem()
62  *		Alan Cox	:	Make SO_DEBUG superuser only.
63  *		Alan Cox	:	Allow anyone to clear SO_DEBUG
64  *					(compatibility fix)
65  *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
66  *		Alan Cox	:	Allocator for a socket is settable.
67  *		Alan Cox	:	SO_ERROR includes soft errors.
68  *		Alan Cox	:	Allow NULL arguments on some SO_ opts
69  *		Alan Cox	: 	Generic socket allocation to make hooks
70  *					easier (suggested by Craig Metz).
71  *		Michael Pall	:	SO_ERROR returns positive errno again
72  *              Steve Whitehouse:       Added default destructor to free
73  *                                      protocol private data.
74  *              Steve Whitehouse:       Added various other default routines
75  *                                      common to several socket families.
76  *              Chris Evans     :       Call suser() check last on F_SETOWN
77  *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78  *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
79  *		Andi Kleen	:	Fix write_space callback
80  *		Chris Evans	:	Security fixes - signedness again
81  *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
82  *
83  * To Fix:
84  *
85  *
86  *		This program is free software; you can redistribute it and/or
87  *		modify it under the terms of the GNU General Public License
88  *		as published by the Free Software Foundation; either version
89  *		2 of the License, or (at your option) any later version.
90  */
91 
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93 
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120 
121 #include <asm/uaccess.h>
122 
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134 
135 #include <linux/filter.h>
136 
137 #include <trace/events/sock.h>
138 
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142 
143 #include <net/busy_poll.h>
144 
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147 
148 /**
149  * sk_ns_capable - General socket capability test
150  * @sk: Socket to use a capability on or through
151  * @user_ns: The user namespace of the capability to use
152  * @cap: The capability to use
153  *
154  * Test to see if the opener of the socket had when the socket was
155  * created and the current process has the capability @cap in the user
156  * namespace @user_ns.
157  */
158 bool sk_ns_capable(const struct sock *sk,
159 		   struct user_namespace *user_ns, int cap)
160 {
161 	return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 		ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165 
166 /**
167  * sk_capable - Socket global capability test
168  * @sk: Socket to use a capability on or through
169  * @cap: The global capability to use
170  *
171  * Test to see if the opener of the socket had when the socket was
172  * created and the current process has the capability @cap in all user
173  * namespaces.
174  */
175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 	return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180 
181 /**
182  * sk_net_capable - Network namespace socket capability test
183  * @sk: Socket to use a capability on or through
184  * @cap: The capability to use
185  *
186  * Test to see if the opener of the socket had when the socket was created
187  * and the current process has the capability @cap over the network namespace
188  * the socket is a member of.
189  */
190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 	return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195 
196 
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 	struct proto *proto;
201 	int ret = 0;
202 
203 	mutex_lock(&proto_list_mutex);
204 	list_for_each_entry(proto, &proto_list, node) {
205 		if (proto->init_cgroup) {
206 			ret = proto->init_cgroup(memcg, ss);
207 			if (ret)
208 				goto out;
209 		}
210 	}
211 
212 	mutex_unlock(&proto_list_mutex);
213 	return ret;
214 out:
215 	list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 		if (proto->destroy_cgroup)
217 			proto->destroy_cgroup(memcg);
218 	mutex_unlock(&proto_list_mutex);
219 	return ret;
220 }
221 
222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 	struct proto *proto;
225 
226 	mutex_lock(&proto_list_mutex);
227 	list_for_each_entry_reverse(proto, &proto_list, node)
228 		if (proto->destroy_cgroup)
229 			proto->destroy_cgroup(memcg);
230 	mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233 
234 /*
235  * Each address family might have different locking rules, so we have
236  * one slock key per address family:
237  */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240 
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245 
246 /*
247  * Make lock validator output more readable. (we pre-construct these
248  * strings build-time, so that runtime initialization of socket
249  * locks is fast):
250  */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252   "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
253   "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
254   "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
255   "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
256   "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
257   "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
258   "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
259   "sk_lock-AF_RDS"   , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
260   "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
261   "sk_lock-27"       , "sk_lock-28"          , "sk_lock-AF_CAN"      ,
262   "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV"        ,
263   "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN"     , "sk_lock-AF_PHONET"   ,
264   "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG"      ,
265   "sk_lock-AF_NFC"   , "sk_lock-AF_VSOCK"    , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268   "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
269   "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
270   "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
271   "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
272   "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
273   "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
274   "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
275   "slock-AF_RDS"   , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
276   "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
277   "slock-27"       , "slock-28"          , "slock-AF_CAN"      ,
278   "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_IUCV"     ,
279   "slock-AF_RXRPC" , "slock-AF_ISDN"     , "slock-AF_PHONET"   ,
280   "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG"      ,
281   "slock-AF_NFC"   , "slock-AF_VSOCK"    ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284   "clock-AF_UNSPEC", "clock-AF_UNIX"     , "clock-AF_INET"     ,
285   "clock-AF_AX25"  , "clock-AF_IPX"      , "clock-AF_APPLETALK",
286   "clock-AF_NETROM", "clock-AF_BRIDGE"   , "clock-AF_ATMPVC"   ,
287   "clock-AF_X25"   , "clock-AF_INET6"    , "clock-AF_ROSE"     ,
288   "clock-AF_DECnet", "clock-AF_NETBEUI"  , "clock-AF_SECURITY" ,
289   "clock-AF_KEY"   , "clock-AF_NETLINK"  , "clock-AF_PACKET"   ,
290   "clock-AF_ASH"   , "clock-AF_ECONET"   , "clock-AF_ATMSVC"   ,
291   "clock-AF_RDS"   , "clock-AF_SNA"      , "clock-AF_IRDA"     ,
292   "clock-AF_PPPOX" , "clock-AF_WANPIPE"  , "clock-AF_LLC"      ,
293   "clock-27"       , "clock-28"          , "clock-AF_CAN"      ,
294   "clock-AF_TIPC"  , "clock-AF_BLUETOOTH", "clock-AF_IUCV"     ,
295   "clock-AF_RXRPC" , "clock-AF_ISDN"     , "clock-AF_PHONET"   ,
296   "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG"      ,
297   "clock-AF_NFC"   , "clock-AF_VSOCK"    , "clock-AF_MAX"
298 };
299 
300 /*
301  * sk_callback_lock locking rules are per-address-family,
302  * so split the lock classes by using a per-AF key:
303  */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305 
306 /* Take into consideration the size of the struct sk_buff overhead in the
307  * determination of these values, since that is non-constant across
308  * platforms.  This makes socket queueing behavior and performance
309  * not depend upon such differences.
310  */
311 #define _SK_MEM_PACKETS		256
312 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315 
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323 
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327 
328 int sysctl_tstamp_allow_data __read_mostly = 1;
329 
330 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
331 EXPORT_SYMBOL_GPL(memalloc_socks);
332 
333 /**
334  * sk_set_memalloc - sets %SOCK_MEMALLOC
335  * @sk: socket to set it on
336  *
337  * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
338  * It's the responsibility of the admin to adjust min_free_kbytes
339  * to meet the requirements
340  */
341 void sk_set_memalloc(struct sock *sk)
342 {
343 	sock_set_flag(sk, SOCK_MEMALLOC);
344 	sk->sk_allocation |= __GFP_MEMALLOC;
345 	static_key_slow_inc(&memalloc_socks);
346 }
347 EXPORT_SYMBOL_GPL(sk_set_memalloc);
348 
349 void sk_clear_memalloc(struct sock *sk)
350 {
351 	sock_reset_flag(sk, SOCK_MEMALLOC);
352 	sk->sk_allocation &= ~__GFP_MEMALLOC;
353 	static_key_slow_dec(&memalloc_socks);
354 
355 	/*
356 	 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
357 	 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
358 	 * it has rmem allocations there is a risk that the user of the
359 	 * socket cannot make forward progress due to exceeding the rmem
360 	 * limits. By rights, sk_clear_memalloc() should only be called
361 	 * on sockets being torn down but warn and reset the accounting if
362 	 * that assumption breaks.
363 	 */
364 	if (WARN_ON(sk->sk_forward_alloc))
365 		sk_mem_reclaim(sk);
366 }
367 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
368 
369 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
370 {
371 	int ret;
372 	unsigned long pflags = current->flags;
373 
374 	/* these should have been dropped before queueing */
375 	BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
376 
377 	current->flags |= PF_MEMALLOC;
378 	ret = sk->sk_backlog_rcv(sk, skb);
379 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
380 
381 	return ret;
382 }
383 EXPORT_SYMBOL(__sk_backlog_rcv);
384 
385 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
386 {
387 	struct timeval tv;
388 
389 	if (optlen < sizeof(tv))
390 		return -EINVAL;
391 	if (copy_from_user(&tv, optval, sizeof(tv)))
392 		return -EFAULT;
393 	if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
394 		return -EDOM;
395 
396 	if (tv.tv_sec < 0) {
397 		static int warned __read_mostly;
398 
399 		*timeo_p = 0;
400 		if (warned < 10 && net_ratelimit()) {
401 			warned++;
402 			pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
403 				__func__, current->comm, task_pid_nr(current));
404 		}
405 		return 0;
406 	}
407 	*timeo_p = MAX_SCHEDULE_TIMEOUT;
408 	if (tv.tv_sec == 0 && tv.tv_usec == 0)
409 		return 0;
410 	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
411 		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
412 	return 0;
413 }
414 
415 static void sock_warn_obsolete_bsdism(const char *name)
416 {
417 	static int warned;
418 	static char warncomm[TASK_COMM_LEN];
419 	if (strcmp(warncomm, current->comm) && warned < 5) {
420 		strcpy(warncomm,  current->comm);
421 		pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
422 			warncomm, name);
423 		warned++;
424 	}
425 }
426 
427 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
428 
429 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
430 {
431 	if (sk->sk_flags & flags) {
432 		sk->sk_flags &= ~flags;
433 		if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
434 			net_disable_timestamp();
435 	}
436 }
437 
438 
439 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
440 {
441 	int err;
442 	unsigned long flags;
443 	struct sk_buff_head *list = &sk->sk_receive_queue;
444 
445 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
446 		atomic_inc(&sk->sk_drops);
447 		trace_sock_rcvqueue_full(sk, skb);
448 		return -ENOMEM;
449 	}
450 
451 	err = sk_filter(sk, skb);
452 	if (err)
453 		return err;
454 
455 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
456 		atomic_inc(&sk->sk_drops);
457 		return -ENOBUFS;
458 	}
459 
460 	skb->dev = NULL;
461 	skb_set_owner_r(skb, sk);
462 
463 	/* we escape from rcu protected region, make sure we dont leak
464 	 * a norefcounted dst
465 	 */
466 	skb_dst_force(skb);
467 
468 	spin_lock_irqsave(&list->lock, flags);
469 	sock_skb_set_dropcount(sk, skb);
470 	__skb_queue_tail(list, skb);
471 	spin_unlock_irqrestore(&list->lock, flags);
472 
473 	if (!sock_flag(sk, SOCK_DEAD))
474 		sk->sk_data_ready(sk);
475 	return 0;
476 }
477 EXPORT_SYMBOL(sock_queue_rcv_skb);
478 
479 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
480 {
481 	int rc = NET_RX_SUCCESS;
482 
483 	if (sk_filter(sk, skb))
484 		goto discard_and_relse;
485 
486 	skb->dev = NULL;
487 
488 	if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
489 		atomic_inc(&sk->sk_drops);
490 		goto discard_and_relse;
491 	}
492 	if (nested)
493 		bh_lock_sock_nested(sk);
494 	else
495 		bh_lock_sock(sk);
496 	if (!sock_owned_by_user(sk)) {
497 		/*
498 		 * trylock + unlock semantics:
499 		 */
500 		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
501 
502 		rc = sk_backlog_rcv(sk, skb);
503 
504 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
505 	} else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
506 		bh_unlock_sock(sk);
507 		atomic_inc(&sk->sk_drops);
508 		goto discard_and_relse;
509 	}
510 
511 	bh_unlock_sock(sk);
512 out:
513 	sock_put(sk);
514 	return rc;
515 discard_and_relse:
516 	kfree_skb(skb);
517 	goto out;
518 }
519 EXPORT_SYMBOL(sk_receive_skb);
520 
521 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
522 {
523 	struct dst_entry *dst = __sk_dst_get(sk);
524 
525 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
526 		sk_tx_queue_clear(sk);
527 		RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
528 		dst_release(dst);
529 		return NULL;
530 	}
531 
532 	return dst;
533 }
534 EXPORT_SYMBOL(__sk_dst_check);
535 
536 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
537 {
538 	struct dst_entry *dst = sk_dst_get(sk);
539 
540 	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
541 		sk_dst_reset(sk);
542 		dst_release(dst);
543 		return NULL;
544 	}
545 
546 	return dst;
547 }
548 EXPORT_SYMBOL(sk_dst_check);
549 
550 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
551 				int optlen)
552 {
553 	int ret = -ENOPROTOOPT;
554 #ifdef CONFIG_NETDEVICES
555 	struct net *net = sock_net(sk);
556 	char devname[IFNAMSIZ];
557 	int index;
558 
559 	/* Sorry... */
560 	ret = -EPERM;
561 	if (!ns_capable(net->user_ns, CAP_NET_RAW))
562 		goto out;
563 
564 	ret = -EINVAL;
565 	if (optlen < 0)
566 		goto out;
567 
568 	/* Bind this socket to a particular device like "eth0",
569 	 * as specified in the passed interface name. If the
570 	 * name is "" or the option length is zero the socket
571 	 * is not bound.
572 	 */
573 	if (optlen > IFNAMSIZ - 1)
574 		optlen = IFNAMSIZ - 1;
575 	memset(devname, 0, sizeof(devname));
576 
577 	ret = -EFAULT;
578 	if (copy_from_user(devname, optval, optlen))
579 		goto out;
580 
581 	index = 0;
582 	if (devname[0] != '\0') {
583 		struct net_device *dev;
584 
585 		rcu_read_lock();
586 		dev = dev_get_by_name_rcu(net, devname);
587 		if (dev)
588 			index = dev->ifindex;
589 		rcu_read_unlock();
590 		ret = -ENODEV;
591 		if (!dev)
592 			goto out;
593 	}
594 
595 	lock_sock(sk);
596 	sk->sk_bound_dev_if = index;
597 	sk_dst_reset(sk);
598 	release_sock(sk);
599 
600 	ret = 0;
601 
602 out:
603 #endif
604 
605 	return ret;
606 }
607 
608 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
609 				int __user *optlen, int len)
610 {
611 	int ret = -ENOPROTOOPT;
612 #ifdef CONFIG_NETDEVICES
613 	struct net *net = sock_net(sk);
614 	char devname[IFNAMSIZ];
615 
616 	if (sk->sk_bound_dev_if == 0) {
617 		len = 0;
618 		goto zero;
619 	}
620 
621 	ret = -EINVAL;
622 	if (len < IFNAMSIZ)
623 		goto out;
624 
625 	ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
626 	if (ret)
627 		goto out;
628 
629 	len = strlen(devname) + 1;
630 
631 	ret = -EFAULT;
632 	if (copy_to_user(optval, devname, len))
633 		goto out;
634 
635 zero:
636 	ret = -EFAULT;
637 	if (put_user(len, optlen))
638 		goto out;
639 
640 	ret = 0;
641 
642 out:
643 #endif
644 
645 	return ret;
646 }
647 
648 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
649 {
650 	if (valbool)
651 		sock_set_flag(sk, bit);
652 	else
653 		sock_reset_flag(sk, bit);
654 }
655 
656 /*
657  *	This is meant for all protocols to use and covers goings on
658  *	at the socket level. Everything here is generic.
659  */
660 
661 int sock_setsockopt(struct socket *sock, int level, int optname,
662 		    char __user *optval, unsigned int optlen)
663 {
664 	struct sock *sk = sock->sk;
665 	int val;
666 	int valbool;
667 	struct linger ling;
668 	int ret = 0;
669 
670 	/*
671 	 *	Options without arguments
672 	 */
673 
674 	if (optname == SO_BINDTODEVICE)
675 		return sock_setbindtodevice(sk, optval, optlen);
676 
677 	if (optlen < sizeof(int))
678 		return -EINVAL;
679 
680 	if (get_user(val, (int __user *)optval))
681 		return -EFAULT;
682 
683 	valbool = val ? 1 : 0;
684 
685 	lock_sock(sk);
686 
687 	switch (optname) {
688 	case SO_DEBUG:
689 		if (val && !capable(CAP_NET_ADMIN))
690 			ret = -EACCES;
691 		else
692 			sock_valbool_flag(sk, SOCK_DBG, valbool);
693 		break;
694 	case SO_REUSEADDR:
695 		sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
696 		break;
697 	case SO_REUSEPORT:
698 		sk->sk_reuseport = valbool;
699 		break;
700 	case SO_TYPE:
701 	case SO_PROTOCOL:
702 	case SO_DOMAIN:
703 	case SO_ERROR:
704 		ret = -ENOPROTOOPT;
705 		break;
706 	case SO_DONTROUTE:
707 		sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
708 		break;
709 	case SO_BROADCAST:
710 		sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
711 		break;
712 	case SO_SNDBUF:
713 		/* Don't error on this BSD doesn't and if you think
714 		 * about it this is right. Otherwise apps have to
715 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
716 		 * are treated in BSD as hints
717 		 */
718 		val = min_t(u32, val, sysctl_wmem_max);
719 set_sndbuf:
720 		sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
721 		sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
722 		/* Wake up sending tasks if we upped the value. */
723 		sk->sk_write_space(sk);
724 		break;
725 
726 	case SO_SNDBUFFORCE:
727 		if (!capable(CAP_NET_ADMIN)) {
728 			ret = -EPERM;
729 			break;
730 		}
731 		goto set_sndbuf;
732 
733 	case SO_RCVBUF:
734 		/* Don't error on this BSD doesn't and if you think
735 		 * about it this is right. Otherwise apps have to
736 		 * play 'guess the biggest size' games. RCVBUF/SNDBUF
737 		 * are treated in BSD as hints
738 		 */
739 		val = min_t(u32, val, sysctl_rmem_max);
740 set_rcvbuf:
741 		sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
742 		/*
743 		 * We double it on the way in to account for
744 		 * "struct sk_buff" etc. overhead.   Applications
745 		 * assume that the SO_RCVBUF setting they make will
746 		 * allow that much actual data to be received on that
747 		 * socket.
748 		 *
749 		 * Applications are unaware that "struct sk_buff" and
750 		 * other overheads allocate from the receive buffer
751 		 * during socket buffer allocation.
752 		 *
753 		 * And after considering the possible alternatives,
754 		 * returning the value we actually used in getsockopt
755 		 * is the most desirable behavior.
756 		 */
757 		sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
758 		break;
759 
760 	case SO_RCVBUFFORCE:
761 		if (!capable(CAP_NET_ADMIN)) {
762 			ret = -EPERM;
763 			break;
764 		}
765 		goto set_rcvbuf;
766 
767 	case SO_KEEPALIVE:
768 #ifdef CONFIG_INET
769 		if (sk->sk_protocol == IPPROTO_TCP &&
770 		    sk->sk_type == SOCK_STREAM)
771 			tcp_set_keepalive(sk, valbool);
772 #endif
773 		sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
774 		break;
775 
776 	case SO_OOBINLINE:
777 		sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
778 		break;
779 
780 	case SO_NO_CHECK:
781 		sk->sk_no_check_tx = valbool;
782 		break;
783 
784 	case SO_PRIORITY:
785 		if ((val >= 0 && val <= 6) ||
786 		    ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
787 			sk->sk_priority = val;
788 		else
789 			ret = -EPERM;
790 		break;
791 
792 	case SO_LINGER:
793 		if (optlen < sizeof(ling)) {
794 			ret = -EINVAL;	/* 1003.1g */
795 			break;
796 		}
797 		if (copy_from_user(&ling, optval, sizeof(ling))) {
798 			ret = -EFAULT;
799 			break;
800 		}
801 		if (!ling.l_onoff)
802 			sock_reset_flag(sk, SOCK_LINGER);
803 		else {
804 #if (BITS_PER_LONG == 32)
805 			if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
806 				sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
807 			else
808 #endif
809 				sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
810 			sock_set_flag(sk, SOCK_LINGER);
811 		}
812 		break;
813 
814 	case SO_BSDCOMPAT:
815 		sock_warn_obsolete_bsdism("setsockopt");
816 		break;
817 
818 	case SO_PASSCRED:
819 		if (valbool)
820 			set_bit(SOCK_PASSCRED, &sock->flags);
821 		else
822 			clear_bit(SOCK_PASSCRED, &sock->flags);
823 		break;
824 
825 	case SO_TIMESTAMP:
826 	case SO_TIMESTAMPNS:
827 		if (valbool)  {
828 			if (optname == SO_TIMESTAMP)
829 				sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
830 			else
831 				sock_set_flag(sk, SOCK_RCVTSTAMPNS);
832 			sock_set_flag(sk, SOCK_RCVTSTAMP);
833 			sock_enable_timestamp(sk, SOCK_TIMESTAMP);
834 		} else {
835 			sock_reset_flag(sk, SOCK_RCVTSTAMP);
836 			sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
837 		}
838 		break;
839 
840 	case SO_TIMESTAMPING:
841 		if (val & ~SOF_TIMESTAMPING_MASK) {
842 			ret = -EINVAL;
843 			break;
844 		}
845 
846 		if (val & SOF_TIMESTAMPING_OPT_ID &&
847 		    !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
848 			if (sk->sk_protocol == IPPROTO_TCP) {
849 				if (sk->sk_state != TCP_ESTABLISHED) {
850 					ret = -EINVAL;
851 					break;
852 				}
853 				sk->sk_tskey = tcp_sk(sk)->snd_una;
854 			} else {
855 				sk->sk_tskey = 0;
856 			}
857 		}
858 		sk->sk_tsflags = val;
859 		if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
860 			sock_enable_timestamp(sk,
861 					      SOCK_TIMESTAMPING_RX_SOFTWARE);
862 		else
863 			sock_disable_timestamp(sk,
864 					       (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
865 		break;
866 
867 	case SO_RCVLOWAT:
868 		if (val < 0)
869 			val = INT_MAX;
870 		sk->sk_rcvlowat = val ? : 1;
871 		break;
872 
873 	case SO_RCVTIMEO:
874 		ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
875 		break;
876 
877 	case SO_SNDTIMEO:
878 		ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
879 		break;
880 
881 	case SO_ATTACH_FILTER:
882 		ret = -EINVAL;
883 		if (optlen == sizeof(struct sock_fprog)) {
884 			struct sock_fprog fprog;
885 
886 			ret = -EFAULT;
887 			if (copy_from_user(&fprog, optval, sizeof(fprog)))
888 				break;
889 
890 			ret = sk_attach_filter(&fprog, sk);
891 		}
892 		break;
893 
894 	case SO_ATTACH_BPF:
895 		ret = -EINVAL;
896 		if (optlen == sizeof(u32)) {
897 			u32 ufd;
898 
899 			ret = -EFAULT;
900 			if (copy_from_user(&ufd, optval, sizeof(ufd)))
901 				break;
902 
903 			ret = sk_attach_bpf(ufd, sk);
904 		}
905 		break;
906 
907 	case SO_DETACH_FILTER:
908 		ret = sk_detach_filter(sk);
909 		break;
910 
911 	case SO_LOCK_FILTER:
912 		if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
913 			ret = -EPERM;
914 		else
915 			sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
916 		break;
917 
918 	case SO_PASSSEC:
919 		if (valbool)
920 			set_bit(SOCK_PASSSEC, &sock->flags);
921 		else
922 			clear_bit(SOCK_PASSSEC, &sock->flags);
923 		break;
924 	case SO_MARK:
925 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
926 			ret = -EPERM;
927 		else
928 			sk->sk_mark = val;
929 		break;
930 
931 		/* We implement the SO_SNDLOWAT etc to
932 		   not be settable (1003.1g 5.3) */
933 	case SO_RXQ_OVFL:
934 		sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
935 		break;
936 
937 	case SO_WIFI_STATUS:
938 		sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
939 		break;
940 
941 	case SO_PEEK_OFF:
942 		if (sock->ops->set_peek_off)
943 			ret = sock->ops->set_peek_off(sk, val);
944 		else
945 			ret = -EOPNOTSUPP;
946 		break;
947 
948 	case SO_NOFCS:
949 		sock_valbool_flag(sk, SOCK_NOFCS, valbool);
950 		break;
951 
952 	case SO_SELECT_ERR_QUEUE:
953 		sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
954 		break;
955 
956 #ifdef CONFIG_NET_RX_BUSY_POLL
957 	case SO_BUSY_POLL:
958 		/* allow unprivileged users to decrease the value */
959 		if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
960 			ret = -EPERM;
961 		else {
962 			if (val < 0)
963 				ret = -EINVAL;
964 			else
965 				sk->sk_ll_usec = val;
966 		}
967 		break;
968 #endif
969 
970 	case SO_MAX_PACING_RATE:
971 		sk->sk_max_pacing_rate = val;
972 		sk->sk_pacing_rate = min(sk->sk_pacing_rate,
973 					 sk->sk_max_pacing_rate);
974 		break;
975 
976 	default:
977 		ret = -ENOPROTOOPT;
978 		break;
979 	}
980 	release_sock(sk);
981 	return ret;
982 }
983 EXPORT_SYMBOL(sock_setsockopt);
984 
985 
986 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
987 			  struct ucred *ucred)
988 {
989 	ucred->pid = pid_vnr(pid);
990 	ucred->uid = ucred->gid = -1;
991 	if (cred) {
992 		struct user_namespace *current_ns = current_user_ns();
993 
994 		ucred->uid = from_kuid_munged(current_ns, cred->euid);
995 		ucred->gid = from_kgid_munged(current_ns, cred->egid);
996 	}
997 }
998 
999 int sock_getsockopt(struct socket *sock, int level, int optname,
1000 		    char __user *optval, int __user *optlen)
1001 {
1002 	struct sock *sk = sock->sk;
1003 
1004 	union {
1005 		int val;
1006 		struct linger ling;
1007 		struct timeval tm;
1008 	} v;
1009 
1010 	int lv = sizeof(int);
1011 	int len;
1012 
1013 	if (get_user(len, optlen))
1014 		return -EFAULT;
1015 	if (len < 0)
1016 		return -EINVAL;
1017 
1018 	memset(&v, 0, sizeof(v));
1019 
1020 	switch (optname) {
1021 	case SO_DEBUG:
1022 		v.val = sock_flag(sk, SOCK_DBG);
1023 		break;
1024 
1025 	case SO_DONTROUTE:
1026 		v.val = sock_flag(sk, SOCK_LOCALROUTE);
1027 		break;
1028 
1029 	case SO_BROADCAST:
1030 		v.val = sock_flag(sk, SOCK_BROADCAST);
1031 		break;
1032 
1033 	case SO_SNDBUF:
1034 		v.val = sk->sk_sndbuf;
1035 		break;
1036 
1037 	case SO_RCVBUF:
1038 		v.val = sk->sk_rcvbuf;
1039 		break;
1040 
1041 	case SO_REUSEADDR:
1042 		v.val = sk->sk_reuse;
1043 		break;
1044 
1045 	case SO_REUSEPORT:
1046 		v.val = sk->sk_reuseport;
1047 		break;
1048 
1049 	case SO_KEEPALIVE:
1050 		v.val = sock_flag(sk, SOCK_KEEPOPEN);
1051 		break;
1052 
1053 	case SO_TYPE:
1054 		v.val = sk->sk_type;
1055 		break;
1056 
1057 	case SO_PROTOCOL:
1058 		v.val = sk->sk_protocol;
1059 		break;
1060 
1061 	case SO_DOMAIN:
1062 		v.val = sk->sk_family;
1063 		break;
1064 
1065 	case SO_ERROR:
1066 		v.val = -sock_error(sk);
1067 		if (v.val == 0)
1068 			v.val = xchg(&sk->sk_err_soft, 0);
1069 		break;
1070 
1071 	case SO_OOBINLINE:
1072 		v.val = sock_flag(sk, SOCK_URGINLINE);
1073 		break;
1074 
1075 	case SO_NO_CHECK:
1076 		v.val = sk->sk_no_check_tx;
1077 		break;
1078 
1079 	case SO_PRIORITY:
1080 		v.val = sk->sk_priority;
1081 		break;
1082 
1083 	case SO_LINGER:
1084 		lv		= sizeof(v.ling);
1085 		v.ling.l_onoff	= sock_flag(sk, SOCK_LINGER);
1086 		v.ling.l_linger	= sk->sk_lingertime / HZ;
1087 		break;
1088 
1089 	case SO_BSDCOMPAT:
1090 		sock_warn_obsolete_bsdism("getsockopt");
1091 		break;
1092 
1093 	case SO_TIMESTAMP:
1094 		v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1095 				!sock_flag(sk, SOCK_RCVTSTAMPNS);
1096 		break;
1097 
1098 	case SO_TIMESTAMPNS:
1099 		v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1100 		break;
1101 
1102 	case SO_TIMESTAMPING:
1103 		v.val = sk->sk_tsflags;
1104 		break;
1105 
1106 	case SO_RCVTIMEO:
1107 		lv = sizeof(struct timeval);
1108 		if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1109 			v.tm.tv_sec = 0;
1110 			v.tm.tv_usec = 0;
1111 		} else {
1112 			v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1113 			v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1114 		}
1115 		break;
1116 
1117 	case SO_SNDTIMEO:
1118 		lv = sizeof(struct timeval);
1119 		if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1120 			v.tm.tv_sec = 0;
1121 			v.tm.tv_usec = 0;
1122 		} else {
1123 			v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1124 			v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1125 		}
1126 		break;
1127 
1128 	case SO_RCVLOWAT:
1129 		v.val = sk->sk_rcvlowat;
1130 		break;
1131 
1132 	case SO_SNDLOWAT:
1133 		v.val = 1;
1134 		break;
1135 
1136 	case SO_PASSCRED:
1137 		v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1138 		break;
1139 
1140 	case SO_PEERCRED:
1141 	{
1142 		struct ucred peercred;
1143 		if (len > sizeof(peercred))
1144 			len = sizeof(peercred);
1145 		cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1146 		if (copy_to_user(optval, &peercred, len))
1147 			return -EFAULT;
1148 		goto lenout;
1149 	}
1150 
1151 	case SO_PEERNAME:
1152 	{
1153 		char address[128];
1154 
1155 		if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1156 			return -ENOTCONN;
1157 		if (lv < len)
1158 			return -EINVAL;
1159 		if (copy_to_user(optval, address, len))
1160 			return -EFAULT;
1161 		goto lenout;
1162 	}
1163 
1164 	/* Dubious BSD thing... Probably nobody even uses it, but
1165 	 * the UNIX standard wants it for whatever reason... -DaveM
1166 	 */
1167 	case SO_ACCEPTCONN:
1168 		v.val = sk->sk_state == TCP_LISTEN;
1169 		break;
1170 
1171 	case SO_PASSSEC:
1172 		v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1173 		break;
1174 
1175 	case SO_PEERSEC:
1176 		return security_socket_getpeersec_stream(sock, optval, optlen, len);
1177 
1178 	case SO_MARK:
1179 		v.val = sk->sk_mark;
1180 		break;
1181 
1182 	case SO_RXQ_OVFL:
1183 		v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1184 		break;
1185 
1186 	case SO_WIFI_STATUS:
1187 		v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1188 		break;
1189 
1190 	case SO_PEEK_OFF:
1191 		if (!sock->ops->set_peek_off)
1192 			return -EOPNOTSUPP;
1193 
1194 		v.val = sk->sk_peek_off;
1195 		break;
1196 	case SO_NOFCS:
1197 		v.val = sock_flag(sk, SOCK_NOFCS);
1198 		break;
1199 
1200 	case SO_BINDTODEVICE:
1201 		return sock_getbindtodevice(sk, optval, optlen, len);
1202 
1203 	case SO_GET_FILTER:
1204 		len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1205 		if (len < 0)
1206 			return len;
1207 
1208 		goto lenout;
1209 
1210 	case SO_LOCK_FILTER:
1211 		v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1212 		break;
1213 
1214 	case SO_BPF_EXTENSIONS:
1215 		v.val = bpf_tell_extensions();
1216 		break;
1217 
1218 	case SO_SELECT_ERR_QUEUE:
1219 		v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1220 		break;
1221 
1222 #ifdef CONFIG_NET_RX_BUSY_POLL
1223 	case SO_BUSY_POLL:
1224 		v.val = sk->sk_ll_usec;
1225 		break;
1226 #endif
1227 
1228 	case SO_MAX_PACING_RATE:
1229 		v.val = sk->sk_max_pacing_rate;
1230 		break;
1231 
1232 	case SO_INCOMING_CPU:
1233 		v.val = sk->sk_incoming_cpu;
1234 		break;
1235 
1236 	default:
1237 		return -ENOPROTOOPT;
1238 	}
1239 
1240 	if (len > lv)
1241 		len = lv;
1242 	if (copy_to_user(optval, &v, len))
1243 		return -EFAULT;
1244 lenout:
1245 	if (put_user(len, optlen))
1246 		return -EFAULT;
1247 	return 0;
1248 }
1249 
1250 /*
1251  * Initialize an sk_lock.
1252  *
1253  * (We also register the sk_lock with the lock validator.)
1254  */
1255 static inline void sock_lock_init(struct sock *sk)
1256 {
1257 	sock_lock_init_class_and_name(sk,
1258 			af_family_slock_key_strings[sk->sk_family],
1259 			af_family_slock_keys + sk->sk_family,
1260 			af_family_key_strings[sk->sk_family],
1261 			af_family_keys + sk->sk_family);
1262 }
1263 
1264 /*
1265  * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1266  * even temporarly, because of RCU lookups. sk_node should also be left as is.
1267  * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1268  */
1269 static void sock_copy(struct sock *nsk, const struct sock *osk)
1270 {
1271 #ifdef CONFIG_SECURITY_NETWORK
1272 	void *sptr = nsk->sk_security;
1273 #endif
1274 	memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1275 
1276 	memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1277 	       osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1278 
1279 #ifdef CONFIG_SECURITY_NETWORK
1280 	nsk->sk_security = sptr;
1281 	security_sk_clone(osk, nsk);
1282 #endif
1283 }
1284 
1285 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1286 {
1287 	unsigned long nulls1, nulls2;
1288 
1289 	nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1290 	nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1291 	if (nulls1 > nulls2)
1292 		swap(nulls1, nulls2);
1293 
1294 	if (nulls1 != 0)
1295 		memset((char *)sk, 0, nulls1);
1296 	memset((char *)sk + nulls1 + sizeof(void *), 0,
1297 	       nulls2 - nulls1 - sizeof(void *));
1298 	memset((char *)sk + nulls2 + sizeof(void *), 0,
1299 	       size - nulls2 - sizeof(void *));
1300 }
1301 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1302 
1303 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1304 		int family)
1305 {
1306 	struct sock *sk;
1307 	struct kmem_cache *slab;
1308 
1309 	slab = prot->slab;
1310 	if (slab != NULL) {
1311 		sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1312 		if (!sk)
1313 			return sk;
1314 		if (priority & __GFP_ZERO) {
1315 			if (prot->clear_sk)
1316 				prot->clear_sk(sk, prot->obj_size);
1317 			else
1318 				sk_prot_clear_nulls(sk, prot->obj_size);
1319 		}
1320 	} else
1321 		sk = kmalloc(prot->obj_size, priority);
1322 
1323 	if (sk != NULL) {
1324 		kmemcheck_annotate_bitfield(sk, flags);
1325 
1326 		if (security_sk_alloc(sk, family, priority))
1327 			goto out_free;
1328 
1329 		if (!try_module_get(prot->owner))
1330 			goto out_free_sec;
1331 		sk_tx_queue_clear(sk);
1332 	}
1333 
1334 	return sk;
1335 
1336 out_free_sec:
1337 	security_sk_free(sk);
1338 out_free:
1339 	if (slab != NULL)
1340 		kmem_cache_free(slab, sk);
1341 	else
1342 		kfree(sk);
1343 	return NULL;
1344 }
1345 
1346 static void sk_prot_free(struct proto *prot, struct sock *sk)
1347 {
1348 	struct kmem_cache *slab;
1349 	struct module *owner;
1350 
1351 	owner = prot->owner;
1352 	slab = prot->slab;
1353 
1354 	security_sk_free(sk);
1355 	if (slab != NULL)
1356 		kmem_cache_free(slab, sk);
1357 	else
1358 		kfree(sk);
1359 	module_put(owner);
1360 }
1361 
1362 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1363 void sock_update_netprioidx(struct sock *sk)
1364 {
1365 	if (in_interrupt())
1366 		return;
1367 
1368 	sk->sk_cgrp_prioidx = task_netprioidx(current);
1369 }
1370 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1371 #endif
1372 
1373 /**
1374  *	sk_alloc - All socket objects are allocated here
1375  *	@net: the applicable net namespace
1376  *	@family: protocol family
1377  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1378  *	@prot: struct proto associated with this new sock instance
1379  */
1380 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1381 		      struct proto *prot)
1382 {
1383 	struct sock *sk;
1384 
1385 	sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1386 	if (sk) {
1387 		sk->sk_family = family;
1388 		/*
1389 		 * See comment in struct sock definition to understand
1390 		 * why we need sk_prot_creator -acme
1391 		 */
1392 		sk->sk_prot = sk->sk_prot_creator = prot;
1393 		sock_lock_init(sk);
1394 		sock_net_set(sk, get_net(net));
1395 		atomic_set(&sk->sk_wmem_alloc, 1);
1396 
1397 		sock_update_classid(sk);
1398 		sock_update_netprioidx(sk);
1399 	}
1400 
1401 	return sk;
1402 }
1403 EXPORT_SYMBOL(sk_alloc);
1404 
1405 static void __sk_free(struct sock *sk)
1406 {
1407 	struct sk_filter *filter;
1408 
1409 	if (sk->sk_destruct)
1410 		sk->sk_destruct(sk);
1411 
1412 	filter = rcu_dereference_check(sk->sk_filter,
1413 				       atomic_read(&sk->sk_wmem_alloc) == 0);
1414 	if (filter) {
1415 		sk_filter_uncharge(sk, filter);
1416 		RCU_INIT_POINTER(sk->sk_filter, NULL);
1417 	}
1418 
1419 	sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1420 
1421 	if (atomic_read(&sk->sk_omem_alloc))
1422 		pr_debug("%s: optmem leakage (%d bytes) detected\n",
1423 			 __func__, atomic_read(&sk->sk_omem_alloc));
1424 
1425 	if (sk->sk_peer_cred)
1426 		put_cred(sk->sk_peer_cred);
1427 	put_pid(sk->sk_peer_pid);
1428 	put_net(sock_net(sk));
1429 	sk_prot_free(sk->sk_prot_creator, sk);
1430 }
1431 
1432 void sk_free(struct sock *sk)
1433 {
1434 	/*
1435 	 * We subtract one from sk_wmem_alloc and can know if
1436 	 * some packets are still in some tx queue.
1437 	 * If not null, sock_wfree() will call __sk_free(sk) later
1438 	 */
1439 	if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1440 		__sk_free(sk);
1441 }
1442 EXPORT_SYMBOL(sk_free);
1443 
1444 /*
1445  * Last sock_put should drop reference to sk->sk_net. It has already
1446  * been dropped in sk_change_net. Taking reference to stopping namespace
1447  * is not an option.
1448  * Take reference to a socket to remove it from hash _alive_ and after that
1449  * destroy it in the context of init_net.
1450  */
1451 void sk_release_kernel(struct sock *sk)
1452 {
1453 	if (sk == NULL || sk->sk_socket == NULL)
1454 		return;
1455 
1456 	sock_hold(sk);
1457 	sock_release(sk->sk_socket);
1458 	release_net(sock_net(sk));
1459 	sock_net_set(sk, get_net(&init_net));
1460 	sock_put(sk);
1461 }
1462 EXPORT_SYMBOL(sk_release_kernel);
1463 
1464 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1465 {
1466 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1467 		sock_update_memcg(newsk);
1468 }
1469 
1470 /**
1471  *	sk_clone_lock - clone a socket, and lock its clone
1472  *	@sk: the socket to clone
1473  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1474  *
1475  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1476  */
1477 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1478 {
1479 	struct sock *newsk;
1480 	bool is_charged = true;
1481 
1482 	newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1483 	if (newsk != NULL) {
1484 		struct sk_filter *filter;
1485 
1486 		sock_copy(newsk, sk);
1487 
1488 		/* SANITY */
1489 		get_net(sock_net(newsk));
1490 		sk_node_init(&newsk->sk_node);
1491 		sock_lock_init(newsk);
1492 		bh_lock_sock(newsk);
1493 		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
1494 		newsk->sk_backlog.len = 0;
1495 
1496 		atomic_set(&newsk->sk_rmem_alloc, 0);
1497 		/*
1498 		 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1499 		 */
1500 		atomic_set(&newsk->sk_wmem_alloc, 1);
1501 		atomic_set(&newsk->sk_omem_alloc, 0);
1502 		skb_queue_head_init(&newsk->sk_receive_queue);
1503 		skb_queue_head_init(&newsk->sk_write_queue);
1504 
1505 		spin_lock_init(&newsk->sk_dst_lock);
1506 		rwlock_init(&newsk->sk_callback_lock);
1507 		lockdep_set_class_and_name(&newsk->sk_callback_lock,
1508 				af_callback_keys + newsk->sk_family,
1509 				af_family_clock_key_strings[newsk->sk_family]);
1510 
1511 		newsk->sk_dst_cache	= NULL;
1512 		newsk->sk_wmem_queued	= 0;
1513 		newsk->sk_forward_alloc = 0;
1514 		newsk->sk_send_head	= NULL;
1515 		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1516 
1517 		sock_reset_flag(newsk, SOCK_DONE);
1518 		skb_queue_head_init(&newsk->sk_error_queue);
1519 
1520 		filter = rcu_dereference_protected(newsk->sk_filter, 1);
1521 		if (filter != NULL)
1522 			/* though it's an empty new sock, the charging may fail
1523 			 * if sysctl_optmem_max was changed between creation of
1524 			 * original socket and cloning
1525 			 */
1526 			is_charged = sk_filter_charge(newsk, filter);
1527 
1528 		if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1529 			/* It is still raw copy of parent, so invalidate
1530 			 * destructor and make plain sk_free() */
1531 			newsk->sk_destruct = NULL;
1532 			bh_unlock_sock(newsk);
1533 			sk_free(newsk);
1534 			newsk = NULL;
1535 			goto out;
1536 		}
1537 
1538 		newsk->sk_err	   = 0;
1539 		newsk->sk_priority = 0;
1540 		newsk->sk_incoming_cpu = raw_smp_processor_id();
1541 		atomic64_set(&newsk->sk_cookie, 0);
1542 		/*
1543 		 * Before updating sk_refcnt, we must commit prior changes to memory
1544 		 * (Documentation/RCU/rculist_nulls.txt for details)
1545 		 */
1546 		smp_wmb();
1547 		atomic_set(&newsk->sk_refcnt, 2);
1548 
1549 		/*
1550 		 * Increment the counter in the same struct proto as the master
1551 		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1552 		 * is the same as sk->sk_prot->socks, as this field was copied
1553 		 * with memcpy).
1554 		 *
1555 		 * This _changes_ the previous behaviour, where
1556 		 * tcp_create_openreq_child always was incrementing the
1557 		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1558 		 * to be taken into account in all callers. -acme
1559 		 */
1560 		sk_refcnt_debug_inc(newsk);
1561 		sk_set_socket(newsk, NULL);
1562 		newsk->sk_wq = NULL;
1563 
1564 		sk_update_clone(sk, newsk);
1565 
1566 		if (newsk->sk_prot->sockets_allocated)
1567 			sk_sockets_allocated_inc(newsk);
1568 
1569 		if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1570 			net_enable_timestamp();
1571 	}
1572 out:
1573 	return newsk;
1574 }
1575 EXPORT_SYMBOL_GPL(sk_clone_lock);
1576 
1577 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1578 {
1579 	__sk_dst_set(sk, dst);
1580 	sk->sk_route_caps = dst->dev->features;
1581 	if (sk->sk_route_caps & NETIF_F_GSO)
1582 		sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1583 	sk->sk_route_caps &= ~sk->sk_route_nocaps;
1584 	if (sk_can_gso(sk)) {
1585 		if (dst->header_len) {
1586 			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1587 		} else {
1588 			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1589 			sk->sk_gso_max_size = dst->dev->gso_max_size;
1590 			sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1591 		}
1592 	}
1593 }
1594 EXPORT_SYMBOL_GPL(sk_setup_caps);
1595 
1596 /*
1597  *	Simple resource managers for sockets.
1598  */
1599 
1600 
1601 /*
1602  * Write buffer destructor automatically called from kfree_skb.
1603  */
1604 void sock_wfree(struct sk_buff *skb)
1605 {
1606 	struct sock *sk = skb->sk;
1607 	unsigned int len = skb->truesize;
1608 
1609 	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1610 		/*
1611 		 * Keep a reference on sk_wmem_alloc, this will be released
1612 		 * after sk_write_space() call
1613 		 */
1614 		atomic_sub(len - 1, &sk->sk_wmem_alloc);
1615 		sk->sk_write_space(sk);
1616 		len = 1;
1617 	}
1618 	/*
1619 	 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1620 	 * could not do because of in-flight packets
1621 	 */
1622 	if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1623 		__sk_free(sk);
1624 }
1625 EXPORT_SYMBOL(sock_wfree);
1626 
1627 void skb_orphan_partial(struct sk_buff *skb)
1628 {
1629 	/* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1630 	 * so we do not completely orphan skb, but transfert all
1631 	 * accounted bytes but one, to avoid unexpected reorders.
1632 	 */
1633 	if (skb->destructor == sock_wfree
1634 #ifdef CONFIG_INET
1635 	    || skb->destructor == tcp_wfree
1636 #endif
1637 		) {
1638 		atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
1639 		skb->truesize = 1;
1640 	} else {
1641 		skb_orphan(skb);
1642 	}
1643 }
1644 EXPORT_SYMBOL(skb_orphan_partial);
1645 
1646 /*
1647  * Read buffer destructor automatically called from kfree_skb.
1648  */
1649 void sock_rfree(struct sk_buff *skb)
1650 {
1651 	struct sock *sk = skb->sk;
1652 	unsigned int len = skb->truesize;
1653 
1654 	atomic_sub(len, &sk->sk_rmem_alloc);
1655 	sk_mem_uncharge(sk, len);
1656 }
1657 EXPORT_SYMBOL(sock_rfree);
1658 
1659 void sock_efree(struct sk_buff *skb)
1660 {
1661 	sock_put(skb->sk);
1662 }
1663 EXPORT_SYMBOL(sock_efree);
1664 
1665 #ifdef CONFIG_INET
1666 void sock_edemux(struct sk_buff *skb)
1667 {
1668 	struct sock *sk = skb->sk;
1669 
1670 	if (sk->sk_state == TCP_TIME_WAIT)
1671 		inet_twsk_put(inet_twsk(sk));
1672 	else
1673 		sock_put(sk);
1674 }
1675 EXPORT_SYMBOL(sock_edemux);
1676 #endif
1677 
1678 kuid_t sock_i_uid(struct sock *sk)
1679 {
1680 	kuid_t uid;
1681 
1682 	read_lock_bh(&sk->sk_callback_lock);
1683 	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1684 	read_unlock_bh(&sk->sk_callback_lock);
1685 	return uid;
1686 }
1687 EXPORT_SYMBOL(sock_i_uid);
1688 
1689 unsigned long sock_i_ino(struct sock *sk)
1690 {
1691 	unsigned long ino;
1692 
1693 	read_lock_bh(&sk->sk_callback_lock);
1694 	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1695 	read_unlock_bh(&sk->sk_callback_lock);
1696 	return ino;
1697 }
1698 EXPORT_SYMBOL(sock_i_ino);
1699 
1700 /*
1701  * Allocate a skb from the socket's send buffer.
1702  */
1703 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1704 			     gfp_t priority)
1705 {
1706 	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1707 		struct sk_buff *skb = alloc_skb(size, priority);
1708 		if (skb) {
1709 			skb_set_owner_w(skb, sk);
1710 			return skb;
1711 		}
1712 	}
1713 	return NULL;
1714 }
1715 EXPORT_SYMBOL(sock_wmalloc);
1716 
1717 /*
1718  * Allocate a memory block from the socket's option memory buffer.
1719  */
1720 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1721 {
1722 	if ((unsigned int)size <= sysctl_optmem_max &&
1723 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1724 		void *mem;
1725 		/* First do the add, to avoid the race if kmalloc
1726 		 * might sleep.
1727 		 */
1728 		atomic_add(size, &sk->sk_omem_alloc);
1729 		mem = kmalloc(size, priority);
1730 		if (mem)
1731 			return mem;
1732 		atomic_sub(size, &sk->sk_omem_alloc);
1733 	}
1734 	return NULL;
1735 }
1736 EXPORT_SYMBOL(sock_kmalloc);
1737 
1738 /* Free an option memory block. Note, we actually want the inline
1739  * here as this allows gcc to detect the nullify and fold away the
1740  * condition entirely.
1741  */
1742 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
1743 				  const bool nullify)
1744 {
1745 	if (WARN_ON_ONCE(!mem))
1746 		return;
1747 	if (nullify)
1748 		kzfree(mem);
1749 	else
1750 		kfree(mem);
1751 	atomic_sub(size, &sk->sk_omem_alloc);
1752 }
1753 
1754 void sock_kfree_s(struct sock *sk, void *mem, int size)
1755 {
1756 	__sock_kfree_s(sk, mem, size, false);
1757 }
1758 EXPORT_SYMBOL(sock_kfree_s);
1759 
1760 void sock_kzfree_s(struct sock *sk, void *mem, int size)
1761 {
1762 	__sock_kfree_s(sk, mem, size, true);
1763 }
1764 EXPORT_SYMBOL(sock_kzfree_s);
1765 
1766 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1767    I think, these locks should be removed for datagram sockets.
1768  */
1769 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1770 {
1771 	DEFINE_WAIT(wait);
1772 
1773 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1774 	for (;;) {
1775 		if (!timeo)
1776 			break;
1777 		if (signal_pending(current))
1778 			break;
1779 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1780 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1781 		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1782 			break;
1783 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1784 			break;
1785 		if (sk->sk_err)
1786 			break;
1787 		timeo = schedule_timeout(timeo);
1788 	}
1789 	finish_wait(sk_sleep(sk), &wait);
1790 	return timeo;
1791 }
1792 
1793 
1794 /*
1795  *	Generic send/receive buffer handlers
1796  */
1797 
1798 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1799 				     unsigned long data_len, int noblock,
1800 				     int *errcode, int max_page_order)
1801 {
1802 	struct sk_buff *skb;
1803 	long timeo;
1804 	int err;
1805 
1806 	timeo = sock_sndtimeo(sk, noblock);
1807 	for (;;) {
1808 		err = sock_error(sk);
1809 		if (err != 0)
1810 			goto failure;
1811 
1812 		err = -EPIPE;
1813 		if (sk->sk_shutdown & SEND_SHUTDOWN)
1814 			goto failure;
1815 
1816 		if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1817 			break;
1818 
1819 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1820 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1821 		err = -EAGAIN;
1822 		if (!timeo)
1823 			goto failure;
1824 		if (signal_pending(current))
1825 			goto interrupted;
1826 		timeo = sock_wait_for_wmem(sk, timeo);
1827 	}
1828 	skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1829 				   errcode, sk->sk_allocation);
1830 	if (skb)
1831 		skb_set_owner_w(skb, sk);
1832 	return skb;
1833 
1834 interrupted:
1835 	err = sock_intr_errno(timeo);
1836 failure:
1837 	*errcode = err;
1838 	return NULL;
1839 }
1840 EXPORT_SYMBOL(sock_alloc_send_pskb);
1841 
1842 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1843 				    int noblock, int *errcode)
1844 {
1845 	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1846 }
1847 EXPORT_SYMBOL(sock_alloc_send_skb);
1848 
1849 /* On 32bit arches, an skb frag is limited to 2^15 */
1850 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
1851 
1852 /**
1853  * skb_page_frag_refill - check that a page_frag contains enough room
1854  * @sz: minimum size of the fragment we want to get
1855  * @pfrag: pointer to page_frag
1856  * @gfp: priority for memory allocation
1857  *
1858  * Note: While this allocator tries to use high order pages, there is
1859  * no guarantee that allocations succeed. Therefore, @sz MUST be
1860  * less or equal than PAGE_SIZE.
1861  */
1862 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1863 {
1864 	if (pfrag->page) {
1865 		if (atomic_read(&pfrag->page->_count) == 1) {
1866 			pfrag->offset = 0;
1867 			return true;
1868 		}
1869 		if (pfrag->offset + sz <= pfrag->size)
1870 			return true;
1871 		put_page(pfrag->page);
1872 	}
1873 
1874 	pfrag->offset = 0;
1875 	if (SKB_FRAG_PAGE_ORDER) {
1876 		pfrag->page = alloc_pages(gfp | __GFP_COMP |
1877 					  __GFP_NOWARN | __GFP_NORETRY,
1878 					  SKB_FRAG_PAGE_ORDER);
1879 		if (likely(pfrag->page)) {
1880 			pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1881 			return true;
1882 		}
1883 	}
1884 	pfrag->page = alloc_page(gfp);
1885 	if (likely(pfrag->page)) {
1886 		pfrag->size = PAGE_SIZE;
1887 		return true;
1888 	}
1889 	return false;
1890 }
1891 EXPORT_SYMBOL(skb_page_frag_refill);
1892 
1893 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1894 {
1895 	if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1896 		return true;
1897 
1898 	sk_enter_memory_pressure(sk);
1899 	sk_stream_moderate_sndbuf(sk);
1900 	return false;
1901 }
1902 EXPORT_SYMBOL(sk_page_frag_refill);
1903 
1904 static void __lock_sock(struct sock *sk)
1905 	__releases(&sk->sk_lock.slock)
1906 	__acquires(&sk->sk_lock.slock)
1907 {
1908 	DEFINE_WAIT(wait);
1909 
1910 	for (;;) {
1911 		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1912 					TASK_UNINTERRUPTIBLE);
1913 		spin_unlock_bh(&sk->sk_lock.slock);
1914 		schedule();
1915 		spin_lock_bh(&sk->sk_lock.slock);
1916 		if (!sock_owned_by_user(sk))
1917 			break;
1918 	}
1919 	finish_wait(&sk->sk_lock.wq, &wait);
1920 }
1921 
1922 static void __release_sock(struct sock *sk)
1923 	__releases(&sk->sk_lock.slock)
1924 	__acquires(&sk->sk_lock.slock)
1925 {
1926 	struct sk_buff *skb = sk->sk_backlog.head;
1927 
1928 	do {
1929 		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1930 		bh_unlock_sock(sk);
1931 
1932 		do {
1933 			struct sk_buff *next = skb->next;
1934 
1935 			prefetch(next);
1936 			WARN_ON_ONCE(skb_dst_is_noref(skb));
1937 			skb->next = NULL;
1938 			sk_backlog_rcv(sk, skb);
1939 
1940 			/*
1941 			 * We are in process context here with softirqs
1942 			 * disabled, use cond_resched_softirq() to preempt.
1943 			 * This is safe to do because we've taken the backlog
1944 			 * queue private:
1945 			 */
1946 			cond_resched_softirq();
1947 
1948 			skb = next;
1949 		} while (skb != NULL);
1950 
1951 		bh_lock_sock(sk);
1952 	} while ((skb = sk->sk_backlog.head) != NULL);
1953 
1954 	/*
1955 	 * Doing the zeroing here guarantee we can not loop forever
1956 	 * while a wild producer attempts to flood us.
1957 	 */
1958 	sk->sk_backlog.len = 0;
1959 }
1960 
1961 /**
1962  * sk_wait_data - wait for data to arrive at sk_receive_queue
1963  * @sk:    sock to wait on
1964  * @timeo: for how long
1965  *
1966  * Now socket state including sk->sk_err is changed only under lock,
1967  * hence we may omit checks after joining wait queue.
1968  * We check receive queue before schedule() only as optimization;
1969  * it is very likely that release_sock() added new data.
1970  */
1971 int sk_wait_data(struct sock *sk, long *timeo)
1972 {
1973 	int rc;
1974 	DEFINE_WAIT(wait);
1975 
1976 	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1977 	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1978 	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1979 	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1980 	finish_wait(sk_sleep(sk), &wait);
1981 	return rc;
1982 }
1983 EXPORT_SYMBOL(sk_wait_data);
1984 
1985 /**
1986  *	__sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1987  *	@sk: socket
1988  *	@size: memory size to allocate
1989  *	@kind: allocation type
1990  *
1991  *	If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1992  *	rmem allocation. This function assumes that protocols which have
1993  *	memory_pressure use sk_wmem_queued as write buffer accounting.
1994  */
1995 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1996 {
1997 	struct proto *prot = sk->sk_prot;
1998 	int amt = sk_mem_pages(size);
1999 	long allocated;
2000 	int parent_status = UNDER_LIMIT;
2001 
2002 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2003 
2004 	allocated = sk_memory_allocated_add(sk, amt, &parent_status);
2005 
2006 	/* Under limit. */
2007 	if (parent_status == UNDER_LIMIT &&
2008 			allocated <= sk_prot_mem_limits(sk, 0)) {
2009 		sk_leave_memory_pressure(sk);
2010 		return 1;
2011 	}
2012 
2013 	/* Under pressure. (we or our parents) */
2014 	if ((parent_status > SOFT_LIMIT) ||
2015 			allocated > sk_prot_mem_limits(sk, 1))
2016 		sk_enter_memory_pressure(sk);
2017 
2018 	/* Over hard limit (we or our parents) */
2019 	if ((parent_status == OVER_LIMIT) ||
2020 			(allocated > sk_prot_mem_limits(sk, 2)))
2021 		goto suppress_allocation;
2022 
2023 	/* guarantee minimum buffer size under pressure */
2024 	if (kind == SK_MEM_RECV) {
2025 		if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2026 			return 1;
2027 
2028 	} else { /* SK_MEM_SEND */
2029 		if (sk->sk_type == SOCK_STREAM) {
2030 			if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2031 				return 1;
2032 		} else if (atomic_read(&sk->sk_wmem_alloc) <
2033 			   prot->sysctl_wmem[0])
2034 				return 1;
2035 	}
2036 
2037 	if (sk_has_memory_pressure(sk)) {
2038 		int alloc;
2039 
2040 		if (!sk_under_memory_pressure(sk))
2041 			return 1;
2042 		alloc = sk_sockets_allocated_read_positive(sk);
2043 		if (sk_prot_mem_limits(sk, 2) > alloc *
2044 		    sk_mem_pages(sk->sk_wmem_queued +
2045 				 atomic_read(&sk->sk_rmem_alloc) +
2046 				 sk->sk_forward_alloc))
2047 			return 1;
2048 	}
2049 
2050 suppress_allocation:
2051 
2052 	if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2053 		sk_stream_moderate_sndbuf(sk);
2054 
2055 		/* Fail only if socket is _under_ its sndbuf.
2056 		 * In this case we cannot block, so that we have to fail.
2057 		 */
2058 		if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2059 			return 1;
2060 	}
2061 
2062 	trace_sock_exceed_buf_limit(sk, prot, allocated);
2063 
2064 	/* Alas. Undo changes. */
2065 	sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2066 
2067 	sk_memory_allocated_sub(sk, amt);
2068 
2069 	return 0;
2070 }
2071 EXPORT_SYMBOL(__sk_mem_schedule);
2072 
2073 /**
2074  *	__sk_reclaim - reclaim memory_allocated
2075  *	@sk: socket
2076  */
2077 void __sk_mem_reclaim(struct sock *sk)
2078 {
2079 	sk_memory_allocated_sub(sk,
2080 				sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2081 	sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2082 
2083 	if (sk_under_memory_pressure(sk) &&
2084 	    (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2085 		sk_leave_memory_pressure(sk);
2086 }
2087 EXPORT_SYMBOL(__sk_mem_reclaim);
2088 
2089 
2090 /*
2091  * Set of default routines for initialising struct proto_ops when
2092  * the protocol does not support a particular function. In certain
2093  * cases where it makes no sense for a protocol to have a "do nothing"
2094  * function, some default processing is provided.
2095  */
2096 
2097 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2098 {
2099 	return -EOPNOTSUPP;
2100 }
2101 EXPORT_SYMBOL(sock_no_bind);
2102 
2103 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2104 		    int len, int flags)
2105 {
2106 	return -EOPNOTSUPP;
2107 }
2108 EXPORT_SYMBOL(sock_no_connect);
2109 
2110 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2111 {
2112 	return -EOPNOTSUPP;
2113 }
2114 EXPORT_SYMBOL(sock_no_socketpair);
2115 
2116 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2117 {
2118 	return -EOPNOTSUPP;
2119 }
2120 EXPORT_SYMBOL(sock_no_accept);
2121 
2122 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2123 		    int *len, int peer)
2124 {
2125 	return -EOPNOTSUPP;
2126 }
2127 EXPORT_SYMBOL(sock_no_getname);
2128 
2129 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2130 {
2131 	return 0;
2132 }
2133 EXPORT_SYMBOL(sock_no_poll);
2134 
2135 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2136 {
2137 	return -EOPNOTSUPP;
2138 }
2139 EXPORT_SYMBOL(sock_no_ioctl);
2140 
2141 int sock_no_listen(struct socket *sock, int backlog)
2142 {
2143 	return -EOPNOTSUPP;
2144 }
2145 EXPORT_SYMBOL(sock_no_listen);
2146 
2147 int sock_no_shutdown(struct socket *sock, int how)
2148 {
2149 	return -EOPNOTSUPP;
2150 }
2151 EXPORT_SYMBOL(sock_no_shutdown);
2152 
2153 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2154 		    char __user *optval, unsigned int optlen)
2155 {
2156 	return -EOPNOTSUPP;
2157 }
2158 EXPORT_SYMBOL(sock_no_setsockopt);
2159 
2160 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2161 		    char __user *optval, int __user *optlen)
2162 {
2163 	return -EOPNOTSUPP;
2164 }
2165 EXPORT_SYMBOL(sock_no_getsockopt);
2166 
2167 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2168 {
2169 	return -EOPNOTSUPP;
2170 }
2171 EXPORT_SYMBOL(sock_no_sendmsg);
2172 
2173 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2174 		    int flags)
2175 {
2176 	return -EOPNOTSUPP;
2177 }
2178 EXPORT_SYMBOL(sock_no_recvmsg);
2179 
2180 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2181 {
2182 	/* Mirror missing mmap method error code */
2183 	return -ENODEV;
2184 }
2185 EXPORT_SYMBOL(sock_no_mmap);
2186 
2187 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2188 {
2189 	ssize_t res;
2190 	struct msghdr msg = {.msg_flags = flags};
2191 	struct kvec iov;
2192 	char *kaddr = kmap(page);
2193 	iov.iov_base = kaddr + offset;
2194 	iov.iov_len = size;
2195 	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2196 	kunmap(page);
2197 	return res;
2198 }
2199 EXPORT_SYMBOL(sock_no_sendpage);
2200 
2201 /*
2202  *	Default Socket Callbacks
2203  */
2204 
2205 static void sock_def_wakeup(struct sock *sk)
2206 {
2207 	struct socket_wq *wq;
2208 
2209 	rcu_read_lock();
2210 	wq = rcu_dereference(sk->sk_wq);
2211 	if (wq_has_sleeper(wq))
2212 		wake_up_interruptible_all(&wq->wait);
2213 	rcu_read_unlock();
2214 }
2215 
2216 static void sock_def_error_report(struct sock *sk)
2217 {
2218 	struct socket_wq *wq;
2219 
2220 	rcu_read_lock();
2221 	wq = rcu_dereference(sk->sk_wq);
2222 	if (wq_has_sleeper(wq))
2223 		wake_up_interruptible_poll(&wq->wait, POLLERR);
2224 	sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2225 	rcu_read_unlock();
2226 }
2227 
2228 static void sock_def_readable(struct sock *sk)
2229 {
2230 	struct socket_wq *wq;
2231 
2232 	rcu_read_lock();
2233 	wq = rcu_dereference(sk->sk_wq);
2234 	if (wq_has_sleeper(wq))
2235 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2236 						POLLRDNORM | POLLRDBAND);
2237 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2238 	rcu_read_unlock();
2239 }
2240 
2241 static void sock_def_write_space(struct sock *sk)
2242 {
2243 	struct socket_wq *wq;
2244 
2245 	rcu_read_lock();
2246 
2247 	/* Do not wake up a writer until he can make "significant"
2248 	 * progress.  --DaveM
2249 	 */
2250 	if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2251 		wq = rcu_dereference(sk->sk_wq);
2252 		if (wq_has_sleeper(wq))
2253 			wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2254 						POLLWRNORM | POLLWRBAND);
2255 
2256 		/* Should agree with poll, otherwise some programs break */
2257 		if (sock_writeable(sk))
2258 			sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2259 	}
2260 
2261 	rcu_read_unlock();
2262 }
2263 
2264 static void sock_def_destruct(struct sock *sk)
2265 {
2266 	kfree(sk->sk_protinfo);
2267 }
2268 
2269 void sk_send_sigurg(struct sock *sk)
2270 {
2271 	if (sk->sk_socket && sk->sk_socket->file)
2272 		if (send_sigurg(&sk->sk_socket->file->f_owner))
2273 			sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2274 }
2275 EXPORT_SYMBOL(sk_send_sigurg);
2276 
2277 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2278 		    unsigned long expires)
2279 {
2280 	if (!mod_timer(timer, expires))
2281 		sock_hold(sk);
2282 }
2283 EXPORT_SYMBOL(sk_reset_timer);
2284 
2285 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2286 {
2287 	if (del_timer(timer))
2288 		__sock_put(sk);
2289 }
2290 EXPORT_SYMBOL(sk_stop_timer);
2291 
2292 void sock_init_data(struct socket *sock, struct sock *sk)
2293 {
2294 	skb_queue_head_init(&sk->sk_receive_queue);
2295 	skb_queue_head_init(&sk->sk_write_queue);
2296 	skb_queue_head_init(&sk->sk_error_queue);
2297 
2298 	sk->sk_send_head	=	NULL;
2299 
2300 	init_timer(&sk->sk_timer);
2301 
2302 	sk->sk_allocation	=	GFP_KERNEL;
2303 	sk->sk_rcvbuf		=	sysctl_rmem_default;
2304 	sk->sk_sndbuf		=	sysctl_wmem_default;
2305 	sk->sk_state		=	TCP_CLOSE;
2306 	sk_set_socket(sk, sock);
2307 
2308 	sock_set_flag(sk, SOCK_ZAPPED);
2309 
2310 	if (sock) {
2311 		sk->sk_type	=	sock->type;
2312 		sk->sk_wq	=	sock->wq;
2313 		sock->sk	=	sk;
2314 	} else
2315 		sk->sk_wq	=	NULL;
2316 
2317 	spin_lock_init(&sk->sk_dst_lock);
2318 	rwlock_init(&sk->sk_callback_lock);
2319 	lockdep_set_class_and_name(&sk->sk_callback_lock,
2320 			af_callback_keys + sk->sk_family,
2321 			af_family_clock_key_strings[sk->sk_family]);
2322 
2323 	sk->sk_state_change	=	sock_def_wakeup;
2324 	sk->sk_data_ready	=	sock_def_readable;
2325 	sk->sk_write_space	=	sock_def_write_space;
2326 	sk->sk_error_report	=	sock_def_error_report;
2327 	sk->sk_destruct		=	sock_def_destruct;
2328 
2329 	sk->sk_frag.page	=	NULL;
2330 	sk->sk_frag.offset	=	0;
2331 	sk->sk_peek_off		=	-1;
2332 
2333 	sk->sk_peer_pid 	=	NULL;
2334 	sk->sk_peer_cred	=	NULL;
2335 	sk->sk_write_pending	=	0;
2336 	sk->sk_rcvlowat		=	1;
2337 	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
2338 	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
2339 
2340 	sk->sk_stamp = ktime_set(-1L, 0);
2341 
2342 #ifdef CONFIG_NET_RX_BUSY_POLL
2343 	sk->sk_napi_id		=	0;
2344 	sk->sk_ll_usec		=	sysctl_net_busy_read;
2345 #endif
2346 
2347 	sk->sk_max_pacing_rate = ~0U;
2348 	sk->sk_pacing_rate = ~0U;
2349 	/*
2350 	 * Before updating sk_refcnt, we must commit prior changes to memory
2351 	 * (Documentation/RCU/rculist_nulls.txt for details)
2352 	 */
2353 	smp_wmb();
2354 	atomic_set(&sk->sk_refcnt, 1);
2355 	atomic_set(&sk->sk_drops, 0);
2356 }
2357 EXPORT_SYMBOL(sock_init_data);
2358 
2359 void lock_sock_nested(struct sock *sk, int subclass)
2360 {
2361 	might_sleep();
2362 	spin_lock_bh(&sk->sk_lock.slock);
2363 	if (sk->sk_lock.owned)
2364 		__lock_sock(sk);
2365 	sk->sk_lock.owned = 1;
2366 	spin_unlock(&sk->sk_lock.slock);
2367 	/*
2368 	 * The sk_lock has mutex_lock() semantics here:
2369 	 */
2370 	mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2371 	local_bh_enable();
2372 }
2373 EXPORT_SYMBOL(lock_sock_nested);
2374 
2375 void release_sock(struct sock *sk)
2376 {
2377 	/*
2378 	 * The sk_lock has mutex_unlock() semantics:
2379 	 */
2380 	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2381 
2382 	spin_lock_bh(&sk->sk_lock.slock);
2383 	if (sk->sk_backlog.tail)
2384 		__release_sock(sk);
2385 
2386 	/* Warning : release_cb() might need to release sk ownership,
2387 	 * ie call sock_release_ownership(sk) before us.
2388 	 */
2389 	if (sk->sk_prot->release_cb)
2390 		sk->sk_prot->release_cb(sk);
2391 
2392 	sock_release_ownership(sk);
2393 	if (waitqueue_active(&sk->sk_lock.wq))
2394 		wake_up(&sk->sk_lock.wq);
2395 	spin_unlock_bh(&sk->sk_lock.slock);
2396 }
2397 EXPORT_SYMBOL(release_sock);
2398 
2399 /**
2400  * lock_sock_fast - fast version of lock_sock
2401  * @sk: socket
2402  *
2403  * This version should be used for very small section, where process wont block
2404  * return false if fast path is taken
2405  *   sk_lock.slock locked, owned = 0, BH disabled
2406  * return true if slow path is taken
2407  *   sk_lock.slock unlocked, owned = 1, BH enabled
2408  */
2409 bool lock_sock_fast(struct sock *sk)
2410 {
2411 	might_sleep();
2412 	spin_lock_bh(&sk->sk_lock.slock);
2413 
2414 	if (!sk->sk_lock.owned)
2415 		/*
2416 		 * Note : We must disable BH
2417 		 */
2418 		return false;
2419 
2420 	__lock_sock(sk);
2421 	sk->sk_lock.owned = 1;
2422 	spin_unlock(&sk->sk_lock.slock);
2423 	/*
2424 	 * The sk_lock has mutex_lock() semantics here:
2425 	 */
2426 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2427 	local_bh_enable();
2428 	return true;
2429 }
2430 EXPORT_SYMBOL(lock_sock_fast);
2431 
2432 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2433 {
2434 	struct timeval tv;
2435 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2436 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2437 	tv = ktime_to_timeval(sk->sk_stamp);
2438 	if (tv.tv_sec == -1)
2439 		return -ENOENT;
2440 	if (tv.tv_sec == 0) {
2441 		sk->sk_stamp = ktime_get_real();
2442 		tv = ktime_to_timeval(sk->sk_stamp);
2443 	}
2444 	return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2445 }
2446 EXPORT_SYMBOL(sock_get_timestamp);
2447 
2448 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2449 {
2450 	struct timespec ts;
2451 	if (!sock_flag(sk, SOCK_TIMESTAMP))
2452 		sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2453 	ts = ktime_to_timespec(sk->sk_stamp);
2454 	if (ts.tv_sec == -1)
2455 		return -ENOENT;
2456 	if (ts.tv_sec == 0) {
2457 		sk->sk_stamp = ktime_get_real();
2458 		ts = ktime_to_timespec(sk->sk_stamp);
2459 	}
2460 	return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2461 }
2462 EXPORT_SYMBOL(sock_get_timestampns);
2463 
2464 void sock_enable_timestamp(struct sock *sk, int flag)
2465 {
2466 	if (!sock_flag(sk, flag)) {
2467 		unsigned long previous_flags = sk->sk_flags;
2468 
2469 		sock_set_flag(sk, flag);
2470 		/*
2471 		 * we just set one of the two flags which require net
2472 		 * time stamping, but time stamping might have been on
2473 		 * already because of the other one
2474 		 */
2475 		if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2476 			net_enable_timestamp();
2477 	}
2478 }
2479 
2480 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2481 		       int level, int type)
2482 {
2483 	struct sock_exterr_skb *serr;
2484 	struct sk_buff *skb;
2485 	int copied, err;
2486 
2487 	err = -EAGAIN;
2488 	skb = sock_dequeue_err_skb(sk);
2489 	if (skb == NULL)
2490 		goto out;
2491 
2492 	copied = skb->len;
2493 	if (copied > len) {
2494 		msg->msg_flags |= MSG_TRUNC;
2495 		copied = len;
2496 	}
2497 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2498 	if (err)
2499 		goto out_free_skb;
2500 
2501 	sock_recv_timestamp(msg, sk, skb);
2502 
2503 	serr = SKB_EXT_ERR(skb);
2504 	put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2505 
2506 	msg->msg_flags |= MSG_ERRQUEUE;
2507 	err = copied;
2508 
2509 out_free_skb:
2510 	kfree_skb(skb);
2511 out:
2512 	return err;
2513 }
2514 EXPORT_SYMBOL(sock_recv_errqueue);
2515 
2516 /*
2517  *	Get a socket option on an socket.
2518  *
2519  *	FIX: POSIX 1003.1g is very ambiguous here. It states that
2520  *	asynchronous errors should be reported by getsockopt. We assume
2521  *	this means if you specify SO_ERROR (otherwise whats the point of it).
2522  */
2523 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2524 			   char __user *optval, int __user *optlen)
2525 {
2526 	struct sock *sk = sock->sk;
2527 
2528 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2529 }
2530 EXPORT_SYMBOL(sock_common_getsockopt);
2531 
2532 #ifdef CONFIG_COMPAT
2533 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2534 				  char __user *optval, int __user *optlen)
2535 {
2536 	struct sock *sk = sock->sk;
2537 
2538 	if (sk->sk_prot->compat_getsockopt != NULL)
2539 		return sk->sk_prot->compat_getsockopt(sk, level, optname,
2540 						      optval, optlen);
2541 	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2542 }
2543 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2544 #endif
2545 
2546 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2547 			int flags)
2548 {
2549 	struct sock *sk = sock->sk;
2550 	int addr_len = 0;
2551 	int err;
2552 
2553 	err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2554 				   flags & ~MSG_DONTWAIT, &addr_len);
2555 	if (err >= 0)
2556 		msg->msg_namelen = addr_len;
2557 	return err;
2558 }
2559 EXPORT_SYMBOL(sock_common_recvmsg);
2560 
2561 /*
2562  *	Set socket options on an inet socket.
2563  */
2564 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2565 			   char __user *optval, unsigned int optlen)
2566 {
2567 	struct sock *sk = sock->sk;
2568 
2569 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2570 }
2571 EXPORT_SYMBOL(sock_common_setsockopt);
2572 
2573 #ifdef CONFIG_COMPAT
2574 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2575 				  char __user *optval, unsigned int optlen)
2576 {
2577 	struct sock *sk = sock->sk;
2578 
2579 	if (sk->sk_prot->compat_setsockopt != NULL)
2580 		return sk->sk_prot->compat_setsockopt(sk, level, optname,
2581 						      optval, optlen);
2582 	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2583 }
2584 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2585 #endif
2586 
2587 void sk_common_release(struct sock *sk)
2588 {
2589 	if (sk->sk_prot->destroy)
2590 		sk->sk_prot->destroy(sk);
2591 
2592 	/*
2593 	 * Observation: when sock_common_release is called, processes have
2594 	 * no access to socket. But net still has.
2595 	 * Step one, detach it from networking:
2596 	 *
2597 	 * A. Remove from hash tables.
2598 	 */
2599 
2600 	sk->sk_prot->unhash(sk);
2601 
2602 	/*
2603 	 * In this point socket cannot receive new packets, but it is possible
2604 	 * that some packets are in flight because some CPU runs receiver and
2605 	 * did hash table lookup before we unhashed socket. They will achieve
2606 	 * receive queue and will be purged by socket destructor.
2607 	 *
2608 	 * Also we still have packets pending on receive queue and probably,
2609 	 * our own packets waiting in device queues. sock_destroy will drain
2610 	 * receive queue, but transmitted packets will delay socket destruction
2611 	 * until the last reference will be released.
2612 	 */
2613 
2614 	sock_orphan(sk);
2615 
2616 	xfrm_sk_free_policy(sk);
2617 
2618 	sk_refcnt_debug_release(sk);
2619 
2620 	if (sk->sk_frag.page) {
2621 		put_page(sk->sk_frag.page);
2622 		sk->sk_frag.page = NULL;
2623 	}
2624 
2625 	sock_put(sk);
2626 }
2627 EXPORT_SYMBOL(sk_common_release);
2628 
2629 #ifdef CONFIG_PROC_FS
2630 #define PROTO_INUSE_NR	64	/* should be enough for the first time */
2631 struct prot_inuse {
2632 	int val[PROTO_INUSE_NR];
2633 };
2634 
2635 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2636 
2637 #ifdef CONFIG_NET_NS
2638 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2639 {
2640 	__this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2641 }
2642 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2643 
2644 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2645 {
2646 	int cpu, idx = prot->inuse_idx;
2647 	int res = 0;
2648 
2649 	for_each_possible_cpu(cpu)
2650 		res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2651 
2652 	return res >= 0 ? res : 0;
2653 }
2654 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2655 
2656 static int __net_init sock_inuse_init_net(struct net *net)
2657 {
2658 	net->core.inuse = alloc_percpu(struct prot_inuse);
2659 	return net->core.inuse ? 0 : -ENOMEM;
2660 }
2661 
2662 static void __net_exit sock_inuse_exit_net(struct net *net)
2663 {
2664 	free_percpu(net->core.inuse);
2665 }
2666 
2667 static struct pernet_operations net_inuse_ops = {
2668 	.init = sock_inuse_init_net,
2669 	.exit = sock_inuse_exit_net,
2670 };
2671 
2672 static __init int net_inuse_init(void)
2673 {
2674 	if (register_pernet_subsys(&net_inuse_ops))
2675 		panic("Cannot initialize net inuse counters");
2676 
2677 	return 0;
2678 }
2679 
2680 core_initcall(net_inuse_init);
2681 #else
2682 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2683 
2684 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2685 {
2686 	__this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2687 }
2688 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2689 
2690 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2691 {
2692 	int cpu, idx = prot->inuse_idx;
2693 	int res = 0;
2694 
2695 	for_each_possible_cpu(cpu)
2696 		res += per_cpu(prot_inuse, cpu).val[idx];
2697 
2698 	return res >= 0 ? res : 0;
2699 }
2700 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2701 #endif
2702 
2703 static void assign_proto_idx(struct proto *prot)
2704 {
2705 	prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2706 
2707 	if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2708 		pr_err("PROTO_INUSE_NR exhausted\n");
2709 		return;
2710 	}
2711 
2712 	set_bit(prot->inuse_idx, proto_inuse_idx);
2713 }
2714 
2715 static void release_proto_idx(struct proto *prot)
2716 {
2717 	if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2718 		clear_bit(prot->inuse_idx, proto_inuse_idx);
2719 }
2720 #else
2721 static inline void assign_proto_idx(struct proto *prot)
2722 {
2723 }
2724 
2725 static inline void release_proto_idx(struct proto *prot)
2726 {
2727 }
2728 #endif
2729 
2730 int proto_register(struct proto *prot, int alloc_slab)
2731 {
2732 	if (alloc_slab) {
2733 		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2734 					SLAB_HWCACHE_ALIGN | prot->slab_flags,
2735 					NULL);
2736 
2737 		if (prot->slab == NULL) {
2738 			pr_crit("%s: Can't create sock SLAB cache!\n",
2739 				prot->name);
2740 			goto out;
2741 		}
2742 
2743 		if (prot->rsk_prot != NULL) {
2744 			prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2745 			if (prot->rsk_prot->slab_name == NULL)
2746 				goto out_free_sock_slab;
2747 
2748 			prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2749 								 prot->rsk_prot->obj_size, 0,
2750 								 SLAB_HWCACHE_ALIGN, NULL);
2751 
2752 			if (prot->rsk_prot->slab == NULL) {
2753 				pr_crit("%s: Can't create request sock SLAB cache!\n",
2754 					prot->name);
2755 				goto out_free_request_sock_slab_name;
2756 			}
2757 		}
2758 
2759 		if (prot->twsk_prot != NULL) {
2760 			prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2761 
2762 			if (prot->twsk_prot->twsk_slab_name == NULL)
2763 				goto out_free_request_sock_slab;
2764 
2765 			prot->twsk_prot->twsk_slab =
2766 				kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2767 						  prot->twsk_prot->twsk_obj_size,
2768 						  0,
2769 						  SLAB_HWCACHE_ALIGN |
2770 							prot->slab_flags,
2771 						  NULL);
2772 			if (prot->twsk_prot->twsk_slab == NULL)
2773 				goto out_free_timewait_sock_slab_name;
2774 		}
2775 	}
2776 
2777 	mutex_lock(&proto_list_mutex);
2778 	list_add(&prot->node, &proto_list);
2779 	assign_proto_idx(prot);
2780 	mutex_unlock(&proto_list_mutex);
2781 	return 0;
2782 
2783 out_free_timewait_sock_slab_name:
2784 	kfree(prot->twsk_prot->twsk_slab_name);
2785 out_free_request_sock_slab:
2786 	if (prot->rsk_prot && prot->rsk_prot->slab) {
2787 		kmem_cache_destroy(prot->rsk_prot->slab);
2788 		prot->rsk_prot->slab = NULL;
2789 	}
2790 out_free_request_sock_slab_name:
2791 	if (prot->rsk_prot)
2792 		kfree(prot->rsk_prot->slab_name);
2793 out_free_sock_slab:
2794 	kmem_cache_destroy(prot->slab);
2795 	prot->slab = NULL;
2796 out:
2797 	return -ENOBUFS;
2798 }
2799 EXPORT_SYMBOL(proto_register);
2800 
2801 void proto_unregister(struct proto *prot)
2802 {
2803 	mutex_lock(&proto_list_mutex);
2804 	release_proto_idx(prot);
2805 	list_del(&prot->node);
2806 	mutex_unlock(&proto_list_mutex);
2807 
2808 	if (prot->slab != NULL) {
2809 		kmem_cache_destroy(prot->slab);
2810 		prot->slab = NULL;
2811 	}
2812 
2813 	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2814 		kmem_cache_destroy(prot->rsk_prot->slab);
2815 		kfree(prot->rsk_prot->slab_name);
2816 		prot->rsk_prot->slab = NULL;
2817 	}
2818 
2819 	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2820 		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2821 		kfree(prot->twsk_prot->twsk_slab_name);
2822 		prot->twsk_prot->twsk_slab = NULL;
2823 	}
2824 }
2825 EXPORT_SYMBOL(proto_unregister);
2826 
2827 #ifdef CONFIG_PROC_FS
2828 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2829 	__acquires(proto_list_mutex)
2830 {
2831 	mutex_lock(&proto_list_mutex);
2832 	return seq_list_start_head(&proto_list, *pos);
2833 }
2834 
2835 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2836 {
2837 	return seq_list_next(v, &proto_list, pos);
2838 }
2839 
2840 static void proto_seq_stop(struct seq_file *seq, void *v)
2841 	__releases(proto_list_mutex)
2842 {
2843 	mutex_unlock(&proto_list_mutex);
2844 }
2845 
2846 static char proto_method_implemented(const void *method)
2847 {
2848 	return method == NULL ? 'n' : 'y';
2849 }
2850 static long sock_prot_memory_allocated(struct proto *proto)
2851 {
2852 	return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2853 }
2854 
2855 static char *sock_prot_memory_pressure(struct proto *proto)
2856 {
2857 	return proto->memory_pressure != NULL ?
2858 	proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2859 }
2860 
2861 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2862 {
2863 
2864 	seq_printf(seq, "%-9s %4u %6d  %6ld   %-3s %6u   %-3s  %-10s "
2865 			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2866 		   proto->name,
2867 		   proto->obj_size,
2868 		   sock_prot_inuse_get(seq_file_net(seq), proto),
2869 		   sock_prot_memory_allocated(proto),
2870 		   sock_prot_memory_pressure(proto),
2871 		   proto->max_header,
2872 		   proto->slab == NULL ? "no" : "yes",
2873 		   module_name(proto->owner),
2874 		   proto_method_implemented(proto->close),
2875 		   proto_method_implemented(proto->connect),
2876 		   proto_method_implemented(proto->disconnect),
2877 		   proto_method_implemented(proto->accept),
2878 		   proto_method_implemented(proto->ioctl),
2879 		   proto_method_implemented(proto->init),
2880 		   proto_method_implemented(proto->destroy),
2881 		   proto_method_implemented(proto->shutdown),
2882 		   proto_method_implemented(proto->setsockopt),
2883 		   proto_method_implemented(proto->getsockopt),
2884 		   proto_method_implemented(proto->sendmsg),
2885 		   proto_method_implemented(proto->recvmsg),
2886 		   proto_method_implemented(proto->sendpage),
2887 		   proto_method_implemented(proto->bind),
2888 		   proto_method_implemented(proto->backlog_rcv),
2889 		   proto_method_implemented(proto->hash),
2890 		   proto_method_implemented(proto->unhash),
2891 		   proto_method_implemented(proto->get_port),
2892 		   proto_method_implemented(proto->enter_memory_pressure));
2893 }
2894 
2895 static int proto_seq_show(struct seq_file *seq, void *v)
2896 {
2897 	if (v == &proto_list)
2898 		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2899 			   "protocol",
2900 			   "size",
2901 			   "sockets",
2902 			   "memory",
2903 			   "press",
2904 			   "maxhdr",
2905 			   "slab",
2906 			   "module",
2907 			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2908 	else
2909 		proto_seq_printf(seq, list_entry(v, struct proto, node));
2910 	return 0;
2911 }
2912 
2913 static const struct seq_operations proto_seq_ops = {
2914 	.start  = proto_seq_start,
2915 	.next   = proto_seq_next,
2916 	.stop   = proto_seq_stop,
2917 	.show   = proto_seq_show,
2918 };
2919 
2920 static int proto_seq_open(struct inode *inode, struct file *file)
2921 {
2922 	return seq_open_net(inode, file, &proto_seq_ops,
2923 			    sizeof(struct seq_net_private));
2924 }
2925 
2926 static const struct file_operations proto_seq_fops = {
2927 	.owner		= THIS_MODULE,
2928 	.open		= proto_seq_open,
2929 	.read		= seq_read,
2930 	.llseek		= seq_lseek,
2931 	.release	= seq_release_net,
2932 };
2933 
2934 static __net_init int proto_init_net(struct net *net)
2935 {
2936 	if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2937 		return -ENOMEM;
2938 
2939 	return 0;
2940 }
2941 
2942 static __net_exit void proto_exit_net(struct net *net)
2943 {
2944 	remove_proc_entry("protocols", net->proc_net);
2945 }
2946 
2947 
2948 static __net_initdata struct pernet_operations proto_net_ops = {
2949 	.init = proto_init_net,
2950 	.exit = proto_exit_net,
2951 };
2952 
2953 static int __init proto_init(void)
2954 {
2955 	return register_pernet_subsys(&proto_net_ops);
2956 }
2957 
2958 subsys_initcall(proto_init);
2959 
2960 #endif /* PROC_FS */
2961