xref: /openbmc/linux/net/core/skbuff.c (revision e758936e02700ff88a0b08b722a3847b95283ef2)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <iiitac@pyr.swan.ac.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
58 
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
64 
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
67 
68 #include "kmap_skb.h"
69 
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
72 
73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 				  struct pipe_buffer *buf)
75 {
76 	struct sk_buff *skb = (struct sk_buff *) buf->private;
77 
78 	kfree_skb(skb);
79 }
80 
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 				struct pipe_buffer *buf)
83 {
84 	struct sk_buff *skb = (struct sk_buff *) buf->private;
85 
86 	skb_get(skb);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
125 	       here, skb->len, sz, skb->head, skb->data,
126 	       (unsigned long)skb->tail, (unsigned long)skb->end,
127 	       skb->dev ? skb->dev->name : "<NULL>");
128 	BUG();
129 }
130 
131 /**
132  *	skb_under_panic	- 	private function
133  *	@skb: buffer
134  *	@sz: size
135  *	@here: address
136  *
137  *	Out of line support code for skb_push(). Not user callable.
138  */
139 
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 {
142 	printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 			  "data:%p tail:%#lx end:%#lx dev:%s\n",
144 	       here, skb->len, sz, skb->head, skb->data,
145 	       (unsigned long)skb->tail, (unsigned long)skb->end,
146 	       skb->dev ? skb->dev->name : "<NULL>");
147 	BUG();
148 }
149 
150 void skb_truesize_bug(struct sk_buff *skb)
151 {
152 	printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
153 	       "len=%u, sizeof(sk_buff)=%Zd\n",
154 	       skb->truesize, skb->len, sizeof(struct sk_buff));
155 }
156 EXPORT_SYMBOL(skb_truesize_bug);
157 
158 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
159  *	'private' fields and also do memory statistics to find all the
160  *	[BEEP] leaks.
161  *
162  */
163 
164 /**
165  *	__alloc_skb	-	allocate a network buffer
166  *	@size: size to allocate
167  *	@gfp_mask: allocation mask
168  *	@fclone: allocate from fclone cache instead of head cache
169  *		and allocate a cloned (child) skb
170  *	@node: numa node to allocate memory on
171  *
172  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
173  *	tail room of size bytes. The object has a reference count of one.
174  *	The return is the buffer. On a failure the return is %NULL.
175  *
176  *	Buffers may only be allocated from interrupts using a @gfp_mask of
177  *	%GFP_ATOMIC.
178  */
179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
180 			    int fclone, int node)
181 {
182 	struct kmem_cache *cache;
183 	struct skb_shared_info *shinfo;
184 	struct sk_buff *skb;
185 	u8 *data;
186 
187 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
188 
189 	/* Get the HEAD */
190 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
191 	if (!skb)
192 		goto out;
193 
194 	size = SKB_DATA_ALIGN(size);
195 	data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
196 			gfp_mask, node);
197 	if (!data)
198 		goto nodata;
199 
200 	/*
201 	 * Only clear those fields we need to clear, not those that we will
202 	 * actually initialise below. Hence, don't put any more fields after
203 	 * the tail pointer in struct sk_buff!
204 	 */
205 	memset(skb, 0, offsetof(struct sk_buff, tail));
206 	skb->truesize = size + sizeof(struct sk_buff);
207 	atomic_set(&skb->users, 1);
208 	skb->head = data;
209 	skb->data = data;
210 	skb_reset_tail_pointer(skb);
211 	skb->end = skb->tail + size;
212 	/* make sure we initialize shinfo sequentially */
213 	shinfo = skb_shinfo(skb);
214 	atomic_set(&shinfo->dataref, 1);
215 	shinfo->nr_frags  = 0;
216 	shinfo->gso_size = 0;
217 	shinfo->gso_segs = 0;
218 	shinfo->gso_type = 0;
219 	shinfo->ip6_frag_id = 0;
220 	shinfo->frag_list = NULL;
221 
222 	if (fclone) {
223 		struct sk_buff *child = skb + 1;
224 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
225 
226 		skb->fclone = SKB_FCLONE_ORIG;
227 		atomic_set(fclone_ref, 1);
228 
229 		child->fclone = SKB_FCLONE_UNAVAILABLE;
230 	}
231 out:
232 	return skb;
233 nodata:
234 	kmem_cache_free(cache, skb);
235 	skb = NULL;
236 	goto out;
237 }
238 
239 /**
240  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
241  *	@dev: network device to receive on
242  *	@length: length to allocate
243  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
244  *
245  *	Allocate a new &sk_buff and assign it a usage count of one. The
246  *	buffer has unspecified headroom built in. Users should allocate
247  *	the headroom they think they need without accounting for the
248  *	built in space. The built in space is used for optimisations.
249  *
250  *	%NULL is returned if there is no free memory.
251  */
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 		unsigned int length, gfp_t gfp_mask)
254 {
255 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
256 	struct sk_buff *skb;
257 
258 	skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
259 	if (likely(skb)) {
260 		skb_reserve(skb, NET_SKB_PAD);
261 		skb->dev = dev;
262 	}
263 	return skb;
264 }
265 
266 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
267 {
268 	int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
269 	struct page *page;
270 
271 	page = alloc_pages_node(node, gfp_mask, 0);
272 	return page;
273 }
274 EXPORT_SYMBOL(__netdev_alloc_page);
275 
276 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
277 		int size)
278 {
279 	skb_fill_page_desc(skb, i, page, off, size);
280 	skb->len += size;
281 	skb->data_len += size;
282 	skb->truesize += size;
283 }
284 EXPORT_SYMBOL(skb_add_rx_frag);
285 
286 /**
287  *	dev_alloc_skb - allocate an skbuff for receiving
288  *	@length: length to allocate
289  *
290  *	Allocate a new &sk_buff and assign it a usage count of one. The
291  *	buffer has unspecified headroom built in. Users should allocate
292  *	the headroom they think they need without accounting for the
293  *	built in space. The built in space is used for optimisations.
294  *
295  *	%NULL is returned if there is no free memory. Although this function
296  *	allocates memory it can be called from an interrupt.
297  */
298 struct sk_buff *dev_alloc_skb(unsigned int length)
299 {
300 	/*
301 	 * There is more code here than it seems:
302 	 * __dev_alloc_skb is an inline
303 	 */
304 	return __dev_alloc_skb(length, GFP_ATOMIC);
305 }
306 EXPORT_SYMBOL(dev_alloc_skb);
307 
308 static void skb_drop_list(struct sk_buff **listp)
309 {
310 	struct sk_buff *list = *listp;
311 
312 	*listp = NULL;
313 
314 	do {
315 		struct sk_buff *this = list;
316 		list = list->next;
317 		kfree_skb(this);
318 	} while (list);
319 }
320 
321 static inline void skb_drop_fraglist(struct sk_buff *skb)
322 {
323 	skb_drop_list(&skb_shinfo(skb)->frag_list);
324 }
325 
326 static void skb_clone_fraglist(struct sk_buff *skb)
327 {
328 	struct sk_buff *list;
329 
330 	for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
331 		skb_get(list);
332 }
333 
334 static void skb_release_data(struct sk_buff *skb)
335 {
336 	if (!skb->cloned ||
337 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
338 			       &skb_shinfo(skb)->dataref)) {
339 		if (skb_shinfo(skb)->nr_frags) {
340 			int i;
341 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
342 				put_page(skb_shinfo(skb)->frags[i].page);
343 		}
344 
345 		if (skb_shinfo(skb)->frag_list)
346 			skb_drop_fraglist(skb);
347 
348 		kfree(skb->head);
349 	}
350 }
351 
352 /*
353  *	Free an skbuff by memory without cleaning the state.
354  */
355 static void kfree_skbmem(struct sk_buff *skb)
356 {
357 	struct sk_buff *other;
358 	atomic_t *fclone_ref;
359 
360 	switch (skb->fclone) {
361 	case SKB_FCLONE_UNAVAILABLE:
362 		kmem_cache_free(skbuff_head_cache, skb);
363 		break;
364 
365 	case SKB_FCLONE_ORIG:
366 		fclone_ref = (atomic_t *) (skb + 2);
367 		if (atomic_dec_and_test(fclone_ref))
368 			kmem_cache_free(skbuff_fclone_cache, skb);
369 		break;
370 
371 	case SKB_FCLONE_CLONE:
372 		fclone_ref = (atomic_t *) (skb + 1);
373 		other = skb - 1;
374 
375 		/* The clone portion is available for
376 		 * fast-cloning again.
377 		 */
378 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
379 
380 		if (atomic_dec_and_test(fclone_ref))
381 			kmem_cache_free(skbuff_fclone_cache, other);
382 		break;
383 	}
384 }
385 
386 static void skb_release_head_state(struct sk_buff *skb)
387 {
388 	dst_release(skb->dst);
389 #ifdef CONFIG_XFRM
390 	secpath_put(skb->sp);
391 #endif
392 	if (skb->destructor) {
393 		WARN_ON(in_irq());
394 		skb->destructor(skb);
395 	}
396 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
397 	nf_conntrack_put(skb->nfct);
398 	nf_conntrack_put_reasm(skb->nfct_reasm);
399 #endif
400 #ifdef CONFIG_BRIDGE_NETFILTER
401 	nf_bridge_put(skb->nf_bridge);
402 #endif
403 /* XXX: IS this still necessary? - JHS */
404 #ifdef CONFIG_NET_SCHED
405 	skb->tc_index = 0;
406 #ifdef CONFIG_NET_CLS_ACT
407 	skb->tc_verd = 0;
408 #endif
409 #endif
410 }
411 
412 /* Free everything but the sk_buff shell. */
413 static void skb_release_all(struct sk_buff *skb)
414 {
415 	skb_release_head_state(skb);
416 	skb_release_data(skb);
417 }
418 
419 /**
420  *	__kfree_skb - private function
421  *	@skb: buffer
422  *
423  *	Free an sk_buff. Release anything attached to the buffer.
424  *	Clean the state. This is an internal helper function. Users should
425  *	always call kfree_skb
426  */
427 
428 void __kfree_skb(struct sk_buff *skb)
429 {
430 	skb_release_all(skb);
431 	kfree_skbmem(skb);
432 }
433 
434 /**
435  *	kfree_skb - free an sk_buff
436  *	@skb: buffer to free
437  *
438  *	Drop a reference to the buffer and free it if the usage count has
439  *	hit zero.
440  */
441 void kfree_skb(struct sk_buff *skb)
442 {
443 	if (unlikely(!skb))
444 		return;
445 	if (likely(atomic_read(&skb->users) == 1))
446 		smp_rmb();
447 	else if (likely(!atomic_dec_and_test(&skb->users)))
448 		return;
449 	__kfree_skb(skb);
450 }
451 
452 int skb_recycle_check(struct sk_buff *skb, int skb_size)
453 {
454 	struct skb_shared_info *shinfo;
455 
456 	if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
457 		return 0;
458 
459 	skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
460 	if (skb_end_pointer(skb) - skb->head < skb_size)
461 		return 0;
462 
463 	if (skb_shared(skb) || skb_cloned(skb))
464 		return 0;
465 
466 	skb_release_head_state(skb);
467 	shinfo = skb_shinfo(skb);
468 	atomic_set(&shinfo->dataref, 1);
469 	shinfo->nr_frags = 0;
470 	shinfo->gso_size = 0;
471 	shinfo->gso_segs = 0;
472 	shinfo->gso_type = 0;
473 	shinfo->ip6_frag_id = 0;
474 	shinfo->frag_list = NULL;
475 
476 	memset(skb, 0, offsetof(struct sk_buff, tail));
477 	skb_reset_tail_pointer(skb);
478 	skb->data = skb->head + NET_SKB_PAD;
479 
480 	return 1;
481 }
482 EXPORT_SYMBOL(skb_recycle_check);
483 
484 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
485 {
486 	new->tstamp		= old->tstamp;
487 	new->dev		= old->dev;
488 	new->transport_header	= old->transport_header;
489 	new->network_header	= old->network_header;
490 	new->mac_header		= old->mac_header;
491 	new->dst		= dst_clone(old->dst);
492 #ifdef CONFIG_INET
493 	new->sp			= secpath_get(old->sp);
494 #endif
495 	memcpy(new->cb, old->cb, sizeof(old->cb));
496 	new->csum_start		= old->csum_start;
497 	new->csum_offset	= old->csum_offset;
498 	new->local_df		= old->local_df;
499 	new->pkt_type		= old->pkt_type;
500 	new->ip_summed		= old->ip_summed;
501 	skb_copy_queue_mapping(new, old);
502 	new->priority		= old->priority;
503 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
504 	new->ipvs_property	= old->ipvs_property;
505 #endif
506 	new->protocol		= old->protocol;
507 	new->mark		= old->mark;
508 	__nf_copy(new, old);
509 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
510     defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
511 	new->nf_trace		= old->nf_trace;
512 #endif
513 #ifdef CONFIG_NET_SCHED
514 	new->tc_index		= old->tc_index;
515 #ifdef CONFIG_NET_CLS_ACT
516 	new->tc_verd		= old->tc_verd;
517 #endif
518 #endif
519 	new->vlan_tci		= old->vlan_tci;
520 
521 	skb_copy_secmark(new, old);
522 }
523 
524 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
525 {
526 #define C(x) n->x = skb->x
527 
528 	n->next = n->prev = NULL;
529 	n->sk = NULL;
530 	__copy_skb_header(n, skb);
531 
532 	C(len);
533 	C(data_len);
534 	C(mac_len);
535 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
536 	n->cloned = 1;
537 	n->nohdr = 0;
538 	n->destructor = NULL;
539 	C(iif);
540 	C(tail);
541 	C(end);
542 	C(head);
543 	C(data);
544 	C(truesize);
545 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
546 	C(do_not_encrypt);
547 #endif
548 	atomic_set(&n->users, 1);
549 
550 	atomic_inc(&(skb_shinfo(skb)->dataref));
551 	skb->cloned = 1;
552 
553 	return n;
554 #undef C
555 }
556 
557 /**
558  *	skb_morph	-	morph one skb into another
559  *	@dst: the skb to receive the contents
560  *	@src: the skb to supply the contents
561  *
562  *	This is identical to skb_clone except that the target skb is
563  *	supplied by the user.
564  *
565  *	The target skb is returned upon exit.
566  */
567 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
568 {
569 	skb_release_all(dst);
570 	return __skb_clone(dst, src);
571 }
572 EXPORT_SYMBOL_GPL(skb_morph);
573 
574 /**
575  *	skb_clone	-	duplicate an sk_buff
576  *	@skb: buffer to clone
577  *	@gfp_mask: allocation priority
578  *
579  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
580  *	copies share the same packet data but not structure. The new
581  *	buffer has a reference count of 1. If the allocation fails the
582  *	function returns %NULL otherwise the new buffer is returned.
583  *
584  *	If this function is called from an interrupt gfp_mask() must be
585  *	%GFP_ATOMIC.
586  */
587 
588 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
589 {
590 	struct sk_buff *n;
591 
592 	n = skb + 1;
593 	if (skb->fclone == SKB_FCLONE_ORIG &&
594 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
595 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
596 		n->fclone = SKB_FCLONE_CLONE;
597 		atomic_inc(fclone_ref);
598 	} else {
599 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
600 		if (!n)
601 			return NULL;
602 		n->fclone = SKB_FCLONE_UNAVAILABLE;
603 	}
604 
605 	return __skb_clone(n, skb);
606 }
607 
608 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
609 {
610 #ifndef NET_SKBUFF_DATA_USES_OFFSET
611 	/*
612 	 *	Shift between the two data areas in bytes
613 	 */
614 	unsigned long offset = new->data - old->data;
615 #endif
616 
617 	__copy_skb_header(new, old);
618 
619 #ifndef NET_SKBUFF_DATA_USES_OFFSET
620 	/* {transport,network,mac}_header are relative to skb->head */
621 	new->transport_header += offset;
622 	new->network_header   += offset;
623 	new->mac_header	      += offset;
624 #endif
625 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
626 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
627 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
628 }
629 
630 /**
631  *	skb_copy	-	create private copy of an sk_buff
632  *	@skb: buffer to copy
633  *	@gfp_mask: allocation priority
634  *
635  *	Make a copy of both an &sk_buff and its data. This is used when the
636  *	caller wishes to modify the data and needs a private copy of the
637  *	data to alter. Returns %NULL on failure or the pointer to the buffer
638  *	on success. The returned buffer has a reference count of 1.
639  *
640  *	As by-product this function converts non-linear &sk_buff to linear
641  *	one, so that &sk_buff becomes completely private and caller is allowed
642  *	to modify all the data of returned buffer. This means that this
643  *	function is not recommended for use in circumstances when only
644  *	header is going to be modified. Use pskb_copy() instead.
645  */
646 
647 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
648 {
649 	int headerlen = skb->data - skb->head;
650 	/*
651 	 *	Allocate the copy buffer
652 	 */
653 	struct sk_buff *n;
654 #ifdef NET_SKBUFF_DATA_USES_OFFSET
655 	n = alloc_skb(skb->end + skb->data_len, gfp_mask);
656 #else
657 	n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
658 #endif
659 	if (!n)
660 		return NULL;
661 
662 	/* Set the data pointer */
663 	skb_reserve(n, headerlen);
664 	/* Set the tail pointer and length */
665 	skb_put(n, skb->len);
666 
667 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
668 		BUG();
669 
670 	copy_skb_header(n, skb);
671 	return n;
672 }
673 
674 
675 /**
676  *	pskb_copy	-	create copy of an sk_buff with private head.
677  *	@skb: buffer to copy
678  *	@gfp_mask: allocation priority
679  *
680  *	Make a copy of both an &sk_buff and part of its data, located
681  *	in header. Fragmented data remain shared. This is used when
682  *	the caller wishes to modify only header of &sk_buff and needs
683  *	private copy of the header to alter. Returns %NULL on failure
684  *	or the pointer to the buffer on success.
685  *	The returned buffer has a reference count of 1.
686  */
687 
688 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
689 {
690 	/*
691 	 *	Allocate the copy buffer
692 	 */
693 	struct sk_buff *n;
694 #ifdef NET_SKBUFF_DATA_USES_OFFSET
695 	n = alloc_skb(skb->end, gfp_mask);
696 #else
697 	n = alloc_skb(skb->end - skb->head, gfp_mask);
698 #endif
699 	if (!n)
700 		goto out;
701 
702 	/* Set the data pointer */
703 	skb_reserve(n, skb->data - skb->head);
704 	/* Set the tail pointer and length */
705 	skb_put(n, skb_headlen(skb));
706 	/* Copy the bytes */
707 	skb_copy_from_linear_data(skb, n->data, n->len);
708 
709 	n->truesize += skb->data_len;
710 	n->data_len  = skb->data_len;
711 	n->len	     = skb->len;
712 
713 	if (skb_shinfo(skb)->nr_frags) {
714 		int i;
715 
716 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
717 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
718 			get_page(skb_shinfo(n)->frags[i].page);
719 		}
720 		skb_shinfo(n)->nr_frags = i;
721 	}
722 
723 	if (skb_shinfo(skb)->frag_list) {
724 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
725 		skb_clone_fraglist(n);
726 	}
727 
728 	copy_skb_header(n, skb);
729 out:
730 	return n;
731 }
732 
733 /**
734  *	pskb_expand_head - reallocate header of &sk_buff
735  *	@skb: buffer to reallocate
736  *	@nhead: room to add at head
737  *	@ntail: room to add at tail
738  *	@gfp_mask: allocation priority
739  *
740  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
741  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
742  *	reference count of 1. Returns zero in the case of success or error,
743  *	if expansion failed. In the last case, &sk_buff is not changed.
744  *
745  *	All the pointers pointing into skb header may change and must be
746  *	reloaded after call to this function.
747  */
748 
749 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
750 		     gfp_t gfp_mask)
751 {
752 	int i;
753 	u8 *data;
754 #ifdef NET_SKBUFF_DATA_USES_OFFSET
755 	int size = nhead + skb->end + ntail;
756 #else
757 	int size = nhead + (skb->end - skb->head) + ntail;
758 #endif
759 	long off;
760 
761 	BUG_ON(nhead < 0);
762 
763 	if (skb_shared(skb))
764 		BUG();
765 
766 	size = SKB_DATA_ALIGN(size);
767 
768 	data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
769 	if (!data)
770 		goto nodata;
771 
772 	/* Copy only real data... and, alas, header. This should be
773 	 * optimized for the cases when header is void. */
774 #ifdef NET_SKBUFF_DATA_USES_OFFSET
775 	memcpy(data + nhead, skb->head, skb->tail);
776 #else
777 	memcpy(data + nhead, skb->head, skb->tail - skb->head);
778 #endif
779 	memcpy(data + size, skb_end_pointer(skb),
780 	       sizeof(struct skb_shared_info));
781 
782 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
783 		get_page(skb_shinfo(skb)->frags[i].page);
784 
785 	if (skb_shinfo(skb)->frag_list)
786 		skb_clone_fraglist(skb);
787 
788 	skb_release_data(skb);
789 
790 	off = (data + nhead) - skb->head;
791 
792 	skb->head     = data;
793 	skb->data    += off;
794 #ifdef NET_SKBUFF_DATA_USES_OFFSET
795 	skb->end      = size;
796 	off           = nhead;
797 #else
798 	skb->end      = skb->head + size;
799 #endif
800 	/* {transport,network,mac}_header and tail are relative to skb->head */
801 	skb->tail	      += off;
802 	skb->transport_header += off;
803 	skb->network_header   += off;
804 	skb->mac_header	      += off;
805 	skb->csum_start       += nhead;
806 	skb->cloned   = 0;
807 	skb->hdr_len  = 0;
808 	skb->nohdr    = 0;
809 	atomic_set(&skb_shinfo(skb)->dataref, 1);
810 	return 0;
811 
812 nodata:
813 	return -ENOMEM;
814 }
815 
816 /* Make private copy of skb with writable head and some headroom */
817 
818 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
819 {
820 	struct sk_buff *skb2;
821 	int delta = headroom - skb_headroom(skb);
822 
823 	if (delta <= 0)
824 		skb2 = pskb_copy(skb, GFP_ATOMIC);
825 	else {
826 		skb2 = skb_clone(skb, GFP_ATOMIC);
827 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
828 					     GFP_ATOMIC)) {
829 			kfree_skb(skb2);
830 			skb2 = NULL;
831 		}
832 	}
833 	return skb2;
834 }
835 
836 
837 /**
838  *	skb_copy_expand	-	copy and expand sk_buff
839  *	@skb: buffer to copy
840  *	@newheadroom: new free bytes at head
841  *	@newtailroom: new free bytes at tail
842  *	@gfp_mask: allocation priority
843  *
844  *	Make a copy of both an &sk_buff and its data and while doing so
845  *	allocate additional space.
846  *
847  *	This is used when the caller wishes to modify the data and needs a
848  *	private copy of the data to alter as well as more space for new fields.
849  *	Returns %NULL on failure or the pointer to the buffer
850  *	on success. The returned buffer has a reference count of 1.
851  *
852  *	You must pass %GFP_ATOMIC as the allocation priority if this function
853  *	is called from an interrupt.
854  */
855 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
856 				int newheadroom, int newtailroom,
857 				gfp_t gfp_mask)
858 {
859 	/*
860 	 *	Allocate the copy buffer
861 	 */
862 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
863 				      gfp_mask);
864 	int oldheadroom = skb_headroom(skb);
865 	int head_copy_len, head_copy_off;
866 	int off;
867 
868 	if (!n)
869 		return NULL;
870 
871 	skb_reserve(n, newheadroom);
872 
873 	/* Set the tail pointer and length */
874 	skb_put(n, skb->len);
875 
876 	head_copy_len = oldheadroom;
877 	head_copy_off = 0;
878 	if (newheadroom <= head_copy_len)
879 		head_copy_len = newheadroom;
880 	else
881 		head_copy_off = newheadroom - head_copy_len;
882 
883 	/* Copy the linear header and data. */
884 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
885 			  skb->len + head_copy_len))
886 		BUG();
887 
888 	copy_skb_header(n, skb);
889 
890 	off                  = newheadroom - oldheadroom;
891 	n->csum_start       += off;
892 #ifdef NET_SKBUFF_DATA_USES_OFFSET
893 	n->transport_header += off;
894 	n->network_header   += off;
895 	n->mac_header	    += off;
896 #endif
897 
898 	return n;
899 }
900 
901 /**
902  *	skb_pad			-	zero pad the tail of an skb
903  *	@skb: buffer to pad
904  *	@pad: space to pad
905  *
906  *	Ensure that a buffer is followed by a padding area that is zero
907  *	filled. Used by network drivers which may DMA or transfer data
908  *	beyond the buffer end onto the wire.
909  *
910  *	May return error in out of memory cases. The skb is freed on error.
911  */
912 
913 int skb_pad(struct sk_buff *skb, int pad)
914 {
915 	int err;
916 	int ntail;
917 
918 	/* If the skbuff is non linear tailroom is always zero.. */
919 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
920 		memset(skb->data+skb->len, 0, pad);
921 		return 0;
922 	}
923 
924 	ntail = skb->data_len + pad - (skb->end - skb->tail);
925 	if (likely(skb_cloned(skb) || ntail > 0)) {
926 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
927 		if (unlikely(err))
928 			goto free_skb;
929 	}
930 
931 	/* FIXME: The use of this function with non-linear skb's really needs
932 	 * to be audited.
933 	 */
934 	err = skb_linearize(skb);
935 	if (unlikely(err))
936 		goto free_skb;
937 
938 	memset(skb->data + skb->len, 0, pad);
939 	return 0;
940 
941 free_skb:
942 	kfree_skb(skb);
943 	return err;
944 }
945 
946 /**
947  *	skb_put - add data to a buffer
948  *	@skb: buffer to use
949  *	@len: amount of data to add
950  *
951  *	This function extends the used data area of the buffer. If this would
952  *	exceed the total buffer size the kernel will panic. A pointer to the
953  *	first byte of the extra data is returned.
954  */
955 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
956 {
957 	unsigned char *tmp = skb_tail_pointer(skb);
958 	SKB_LINEAR_ASSERT(skb);
959 	skb->tail += len;
960 	skb->len  += len;
961 	if (unlikely(skb->tail > skb->end))
962 		skb_over_panic(skb, len, __builtin_return_address(0));
963 	return tmp;
964 }
965 EXPORT_SYMBOL(skb_put);
966 
967 /**
968  *	skb_push - add data to the start of a buffer
969  *	@skb: buffer to use
970  *	@len: amount of data to add
971  *
972  *	This function extends the used data area of the buffer at the buffer
973  *	start. If this would exceed the total buffer headroom the kernel will
974  *	panic. A pointer to the first byte of the extra data is returned.
975  */
976 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
977 {
978 	skb->data -= len;
979 	skb->len  += len;
980 	if (unlikely(skb->data<skb->head))
981 		skb_under_panic(skb, len, __builtin_return_address(0));
982 	return skb->data;
983 }
984 EXPORT_SYMBOL(skb_push);
985 
986 /**
987  *	skb_pull - remove data from the start of a buffer
988  *	@skb: buffer to use
989  *	@len: amount of data to remove
990  *
991  *	This function removes data from the start of a buffer, returning
992  *	the memory to the headroom. A pointer to the next data in the buffer
993  *	is returned. Once the data has been pulled future pushes will overwrite
994  *	the old data.
995  */
996 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
997 {
998 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
999 }
1000 EXPORT_SYMBOL(skb_pull);
1001 
1002 /**
1003  *	skb_trim - remove end from a buffer
1004  *	@skb: buffer to alter
1005  *	@len: new length
1006  *
1007  *	Cut the length of a buffer down by removing data from the tail. If
1008  *	the buffer is already under the length specified it is not modified.
1009  *	The skb must be linear.
1010  */
1011 void skb_trim(struct sk_buff *skb, unsigned int len)
1012 {
1013 	if (skb->len > len)
1014 		__skb_trim(skb, len);
1015 }
1016 EXPORT_SYMBOL(skb_trim);
1017 
1018 /* Trims skb to length len. It can change skb pointers.
1019  */
1020 
1021 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1022 {
1023 	struct sk_buff **fragp;
1024 	struct sk_buff *frag;
1025 	int offset = skb_headlen(skb);
1026 	int nfrags = skb_shinfo(skb)->nr_frags;
1027 	int i;
1028 	int err;
1029 
1030 	if (skb_cloned(skb) &&
1031 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1032 		return err;
1033 
1034 	i = 0;
1035 	if (offset >= len)
1036 		goto drop_pages;
1037 
1038 	for (; i < nfrags; i++) {
1039 		int end = offset + skb_shinfo(skb)->frags[i].size;
1040 
1041 		if (end < len) {
1042 			offset = end;
1043 			continue;
1044 		}
1045 
1046 		skb_shinfo(skb)->frags[i++].size = len - offset;
1047 
1048 drop_pages:
1049 		skb_shinfo(skb)->nr_frags = i;
1050 
1051 		for (; i < nfrags; i++)
1052 			put_page(skb_shinfo(skb)->frags[i].page);
1053 
1054 		if (skb_shinfo(skb)->frag_list)
1055 			skb_drop_fraglist(skb);
1056 		goto done;
1057 	}
1058 
1059 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1060 	     fragp = &frag->next) {
1061 		int end = offset + frag->len;
1062 
1063 		if (skb_shared(frag)) {
1064 			struct sk_buff *nfrag;
1065 
1066 			nfrag = skb_clone(frag, GFP_ATOMIC);
1067 			if (unlikely(!nfrag))
1068 				return -ENOMEM;
1069 
1070 			nfrag->next = frag->next;
1071 			kfree_skb(frag);
1072 			frag = nfrag;
1073 			*fragp = frag;
1074 		}
1075 
1076 		if (end < len) {
1077 			offset = end;
1078 			continue;
1079 		}
1080 
1081 		if (end > len &&
1082 		    unlikely((err = pskb_trim(frag, len - offset))))
1083 			return err;
1084 
1085 		if (frag->next)
1086 			skb_drop_list(&frag->next);
1087 		break;
1088 	}
1089 
1090 done:
1091 	if (len > skb_headlen(skb)) {
1092 		skb->data_len -= skb->len - len;
1093 		skb->len       = len;
1094 	} else {
1095 		skb->len       = len;
1096 		skb->data_len  = 0;
1097 		skb_set_tail_pointer(skb, len);
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 /**
1104  *	__pskb_pull_tail - advance tail of skb header
1105  *	@skb: buffer to reallocate
1106  *	@delta: number of bytes to advance tail
1107  *
1108  *	The function makes a sense only on a fragmented &sk_buff,
1109  *	it expands header moving its tail forward and copying necessary
1110  *	data from fragmented part.
1111  *
1112  *	&sk_buff MUST have reference count of 1.
1113  *
1114  *	Returns %NULL (and &sk_buff does not change) if pull failed
1115  *	or value of new tail of skb in the case of success.
1116  *
1117  *	All the pointers pointing into skb header may change and must be
1118  *	reloaded after call to this function.
1119  */
1120 
1121 /* Moves tail of skb head forward, copying data from fragmented part,
1122  * when it is necessary.
1123  * 1. It may fail due to malloc failure.
1124  * 2. It may change skb pointers.
1125  *
1126  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1127  */
1128 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1129 {
1130 	/* If skb has not enough free space at tail, get new one
1131 	 * plus 128 bytes for future expansions. If we have enough
1132 	 * room at tail, reallocate without expansion only if skb is cloned.
1133 	 */
1134 	int i, k, eat = (skb->tail + delta) - skb->end;
1135 
1136 	if (eat > 0 || skb_cloned(skb)) {
1137 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1138 				     GFP_ATOMIC))
1139 			return NULL;
1140 	}
1141 
1142 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1143 		BUG();
1144 
1145 	/* Optimization: no fragments, no reasons to preestimate
1146 	 * size of pulled pages. Superb.
1147 	 */
1148 	if (!skb_shinfo(skb)->frag_list)
1149 		goto pull_pages;
1150 
1151 	/* Estimate size of pulled pages. */
1152 	eat = delta;
1153 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1154 		if (skb_shinfo(skb)->frags[i].size >= eat)
1155 			goto pull_pages;
1156 		eat -= skb_shinfo(skb)->frags[i].size;
1157 	}
1158 
1159 	/* If we need update frag list, we are in troubles.
1160 	 * Certainly, it possible to add an offset to skb data,
1161 	 * but taking into account that pulling is expected to
1162 	 * be very rare operation, it is worth to fight against
1163 	 * further bloating skb head and crucify ourselves here instead.
1164 	 * Pure masohism, indeed. 8)8)
1165 	 */
1166 	if (eat) {
1167 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1168 		struct sk_buff *clone = NULL;
1169 		struct sk_buff *insp = NULL;
1170 
1171 		do {
1172 			BUG_ON(!list);
1173 
1174 			if (list->len <= eat) {
1175 				/* Eaten as whole. */
1176 				eat -= list->len;
1177 				list = list->next;
1178 				insp = list;
1179 			} else {
1180 				/* Eaten partially. */
1181 
1182 				if (skb_shared(list)) {
1183 					/* Sucks! We need to fork list. :-( */
1184 					clone = skb_clone(list, GFP_ATOMIC);
1185 					if (!clone)
1186 						return NULL;
1187 					insp = list->next;
1188 					list = clone;
1189 				} else {
1190 					/* This may be pulled without
1191 					 * problems. */
1192 					insp = list;
1193 				}
1194 				if (!pskb_pull(list, eat)) {
1195 					if (clone)
1196 						kfree_skb(clone);
1197 					return NULL;
1198 				}
1199 				break;
1200 			}
1201 		} while (eat);
1202 
1203 		/* Free pulled out fragments. */
1204 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1205 			skb_shinfo(skb)->frag_list = list->next;
1206 			kfree_skb(list);
1207 		}
1208 		/* And insert new clone at head. */
1209 		if (clone) {
1210 			clone->next = list;
1211 			skb_shinfo(skb)->frag_list = clone;
1212 		}
1213 	}
1214 	/* Success! Now we may commit changes to skb data. */
1215 
1216 pull_pages:
1217 	eat = delta;
1218 	k = 0;
1219 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1220 		if (skb_shinfo(skb)->frags[i].size <= eat) {
1221 			put_page(skb_shinfo(skb)->frags[i].page);
1222 			eat -= skb_shinfo(skb)->frags[i].size;
1223 		} else {
1224 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1225 			if (eat) {
1226 				skb_shinfo(skb)->frags[k].page_offset += eat;
1227 				skb_shinfo(skb)->frags[k].size -= eat;
1228 				eat = 0;
1229 			}
1230 			k++;
1231 		}
1232 	}
1233 	skb_shinfo(skb)->nr_frags = k;
1234 
1235 	skb->tail     += delta;
1236 	skb->data_len -= delta;
1237 
1238 	return skb_tail_pointer(skb);
1239 }
1240 
1241 /* Copy some data bits from skb to kernel buffer. */
1242 
1243 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1244 {
1245 	int i, copy;
1246 	int start = skb_headlen(skb);
1247 
1248 	if (offset > (int)skb->len - len)
1249 		goto fault;
1250 
1251 	/* Copy header. */
1252 	if ((copy = start - offset) > 0) {
1253 		if (copy > len)
1254 			copy = len;
1255 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1256 		if ((len -= copy) == 0)
1257 			return 0;
1258 		offset += copy;
1259 		to     += copy;
1260 	}
1261 
1262 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1263 		int end;
1264 
1265 		WARN_ON(start > offset + len);
1266 
1267 		end = start + skb_shinfo(skb)->frags[i].size;
1268 		if ((copy = end - offset) > 0) {
1269 			u8 *vaddr;
1270 
1271 			if (copy > len)
1272 				copy = len;
1273 
1274 			vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1275 			memcpy(to,
1276 			       vaddr + skb_shinfo(skb)->frags[i].page_offset+
1277 			       offset - start, copy);
1278 			kunmap_skb_frag(vaddr);
1279 
1280 			if ((len -= copy) == 0)
1281 				return 0;
1282 			offset += copy;
1283 			to     += copy;
1284 		}
1285 		start = end;
1286 	}
1287 
1288 	if (skb_shinfo(skb)->frag_list) {
1289 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1290 
1291 		for (; list; list = list->next) {
1292 			int end;
1293 
1294 			WARN_ON(start > offset + len);
1295 
1296 			end = start + list->len;
1297 			if ((copy = end - offset) > 0) {
1298 				if (copy > len)
1299 					copy = len;
1300 				if (skb_copy_bits(list, offset - start,
1301 						  to, copy))
1302 					goto fault;
1303 				if ((len -= copy) == 0)
1304 					return 0;
1305 				offset += copy;
1306 				to     += copy;
1307 			}
1308 			start = end;
1309 		}
1310 	}
1311 	if (!len)
1312 		return 0;
1313 
1314 fault:
1315 	return -EFAULT;
1316 }
1317 
1318 /*
1319  * Callback from splice_to_pipe(), if we need to release some pages
1320  * at the end of the spd in case we error'ed out in filling the pipe.
1321  */
1322 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1323 {
1324 	struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1325 
1326 	kfree_skb(skb);
1327 }
1328 
1329 /*
1330  * Fill page/offset/length into spd, if it can hold more pages.
1331  */
1332 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1333 				unsigned int len, unsigned int offset,
1334 				struct sk_buff *skb)
1335 {
1336 	if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1337 		return 1;
1338 
1339 	spd->pages[spd->nr_pages] = page;
1340 	spd->partial[spd->nr_pages].len = len;
1341 	spd->partial[spd->nr_pages].offset = offset;
1342 	spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1343 	spd->nr_pages++;
1344 	return 0;
1345 }
1346 
1347 static inline void __segment_seek(struct page **page, unsigned int *poff,
1348 				  unsigned int *plen, unsigned int off)
1349 {
1350 	*poff += off;
1351 	*page += *poff / PAGE_SIZE;
1352 	*poff = *poff % PAGE_SIZE;
1353 	*plen -= off;
1354 }
1355 
1356 static inline int __splice_segment(struct page *page, unsigned int poff,
1357 				   unsigned int plen, unsigned int *off,
1358 				   unsigned int *len, struct sk_buff *skb,
1359 				   struct splice_pipe_desc *spd)
1360 {
1361 	if (!*len)
1362 		return 1;
1363 
1364 	/* skip this segment if already processed */
1365 	if (*off >= plen) {
1366 		*off -= plen;
1367 		return 0;
1368 	}
1369 
1370 	/* ignore any bits we already processed */
1371 	if (*off) {
1372 		__segment_seek(&page, &poff, &plen, *off);
1373 		*off = 0;
1374 	}
1375 
1376 	do {
1377 		unsigned int flen = min(*len, plen);
1378 
1379 		/* the linear region may spread across several pages  */
1380 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1381 
1382 		if (spd_fill_page(spd, page, flen, poff, skb))
1383 			return 1;
1384 
1385 		__segment_seek(&page, &poff, &plen, flen);
1386 		*len -= flen;
1387 
1388 	} while (*len && plen);
1389 
1390 	return 0;
1391 }
1392 
1393 /*
1394  * Map linear and fragment data from the skb to spd. It reports failure if the
1395  * pipe is full or if we already spliced the requested length.
1396  */
1397 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1398 		      unsigned int *len,
1399 		      struct splice_pipe_desc *spd)
1400 {
1401 	int seg;
1402 
1403 	/*
1404 	 * map the linear part
1405 	 */
1406 	if (__splice_segment(virt_to_page(skb->data),
1407 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1408 			     skb_headlen(skb),
1409 			     offset, len, skb, spd))
1410 		return 1;
1411 
1412 	/*
1413 	 * then map the fragments
1414 	 */
1415 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1416 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1417 
1418 		if (__splice_segment(f->page, f->page_offset, f->size,
1419 				     offset, len, skb, spd))
1420 			return 1;
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /*
1427  * Map data from the skb to a pipe. Should handle both the linear part,
1428  * the fragments, and the frag list. It does NOT handle frag lists within
1429  * the frag list, if such a thing exists. We'd probably need to recurse to
1430  * handle that cleanly.
1431  */
1432 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1433 		    struct pipe_inode_info *pipe, unsigned int tlen,
1434 		    unsigned int flags)
1435 {
1436 	struct partial_page partial[PIPE_BUFFERS];
1437 	struct page *pages[PIPE_BUFFERS];
1438 	struct splice_pipe_desc spd = {
1439 		.pages = pages,
1440 		.partial = partial,
1441 		.flags = flags,
1442 		.ops = &sock_pipe_buf_ops,
1443 		.spd_release = sock_spd_release,
1444 	};
1445 	struct sk_buff *skb;
1446 
1447 	/*
1448 	 * I'd love to avoid the clone here, but tcp_read_sock()
1449 	 * ignores reference counts and unconditonally kills the sk_buff
1450 	 * on return from the actor.
1451 	 */
1452 	skb = skb_clone(__skb, GFP_KERNEL);
1453 	if (unlikely(!skb))
1454 		return -ENOMEM;
1455 
1456 	/*
1457 	 * __skb_splice_bits() only fails if the output has no room left,
1458 	 * so no point in going over the frag_list for the error case.
1459 	 */
1460 	if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1461 		goto done;
1462 	else if (!tlen)
1463 		goto done;
1464 
1465 	/*
1466 	 * now see if we have a frag_list to map
1467 	 */
1468 	if (skb_shinfo(skb)->frag_list) {
1469 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1470 
1471 		for (; list && tlen; list = list->next) {
1472 			if (__skb_splice_bits(list, &offset, &tlen, &spd))
1473 				break;
1474 		}
1475 	}
1476 
1477 done:
1478 	/*
1479 	 * drop our reference to the clone, the pipe consumption will
1480 	 * drop the rest.
1481 	 */
1482 	kfree_skb(skb);
1483 
1484 	if (spd.nr_pages) {
1485 		int ret;
1486 		struct sock *sk = __skb->sk;
1487 
1488 		/*
1489 		 * Drop the socket lock, otherwise we have reverse
1490 		 * locking dependencies between sk_lock and i_mutex
1491 		 * here as compared to sendfile(). We enter here
1492 		 * with the socket lock held, and splice_to_pipe() will
1493 		 * grab the pipe inode lock. For sendfile() emulation,
1494 		 * we call into ->sendpage() with the i_mutex lock held
1495 		 * and networking will grab the socket lock.
1496 		 */
1497 		release_sock(sk);
1498 		ret = splice_to_pipe(pipe, &spd);
1499 		lock_sock(sk);
1500 		return ret;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 /**
1507  *	skb_store_bits - store bits from kernel buffer to skb
1508  *	@skb: destination buffer
1509  *	@offset: offset in destination
1510  *	@from: source buffer
1511  *	@len: number of bytes to copy
1512  *
1513  *	Copy the specified number of bytes from the source buffer to the
1514  *	destination skb.  This function handles all the messy bits of
1515  *	traversing fragment lists and such.
1516  */
1517 
1518 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1519 {
1520 	int i, copy;
1521 	int start = skb_headlen(skb);
1522 
1523 	if (offset > (int)skb->len - len)
1524 		goto fault;
1525 
1526 	if ((copy = start - offset) > 0) {
1527 		if (copy > len)
1528 			copy = len;
1529 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1530 		if ((len -= copy) == 0)
1531 			return 0;
1532 		offset += copy;
1533 		from += copy;
1534 	}
1535 
1536 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1537 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1538 		int end;
1539 
1540 		WARN_ON(start > offset + len);
1541 
1542 		end = start + frag->size;
1543 		if ((copy = end - offset) > 0) {
1544 			u8 *vaddr;
1545 
1546 			if (copy > len)
1547 				copy = len;
1548 
1549 			vaddr = kmap_skb_frag(frag);
1550 			memcpy(vaddr + frag->page_offset + offset - start,
1551 			       from, copy);
1552 			kunmap_skb_frag(vaddr);
1553 
1554 			if ((len -= copy) == 0)
1555 				return 0;
1556 			offset += copy;
1557 			from += copy;
1558 		}
1559 		start = end;
1560 	}
1561 
1562 	if (skb_shinfo(skb)->frag_list) {
1563 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1564 
1565 		for (; list; list = list->next) {
1566 			int end;
1567 
1568 			WARN_ON(start > offset + len);
1569 
1570 			end = start + list->len;
1571 			if ((copy = end - offset) > 0) {
1572 				if (copy > len)
1573 					copy = len;
1574 				if (skb_store_bits(list, offset - start,
1575 						   from, copy))
1576 					goto fault;
1577 				if ((len -= copy) == 0)
1578 					return 0;
1579 				offset += copy;
1580 				from += copy;
1581 			}
1582 			start = end;
1583 		}
1584 	}
1585 	if (!len)
1586 		return 0;
1587 
1588 fault:
1589 	return -EFAULT;
1590 }
1591 
1592 EXPORT_SYMBOL(skb_store_bits);
1593 
1594 /* Checksum skb data. */
1595 
1596 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1597 			  int len, __wsum csum)
1598 {
1599 	int start = skb_headlen(skb);
1600 	int i, copy = start - offset;
1601 	int pos = 0;
1602 
1603 	/* Checksum header. */
1604 	if (copy > 0) {
1605 		if (copy > len)
1606 			copy = len;
1607 		csum = csum_partial(skb->data + offset, copy, csum);
1608 		if ((len -= copy) == 0)
1609 			return csum;
1610 		offset += copy;
1611 		pos	= copy;
1612 	}
1613 
1614 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1615 		int end;
1616 
1617 		WARN_ON(start > offset + len);
1618 
1619 		end = start + skb_shinfo(skb)->frags[i].size;
1620 		if ((copy = end - offset) > 0) {
1621 			__wsum csum2;
1622 			u8 *vaddr;
1623 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1624 
1625 			if (copy > len)
1626 				copy = len;
1627 			vaddr = kmap_skb_frag(frag);
1628 			csum2 = csum_partial(vaddr + frag->page_offset +
1629 					     offset - start, copy, 0);
1630 			kunmap_skb_frag(vaddr);
1631 			csum = csum_block_add(csum, csum2, pos);
1632 			if (!(len -= copy))
1633 				return csum;
1634 			offset += copy;
1635 			pos    += copy;
1636 		}
1637 		start = end;
1638 	}
1639 
1640 	if (skb_shinfo(skb)->frag_list) {
1641 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1642 
1643 		for (; list; list = list->next) {
1644 			int end;
1645 
1646 			WARN_ON(start > offset + len);
1647 
1648 			end = start + list->len;
1649 			if ((copy = end - offset) > 0) {
1650 				__wsum csum2;
1651 				if (copy > len)
1652 					copy = len;
1653 				csum2 = skb_checksum(list, offset - start,
1654 						     copy, 0);
1655 				csum = csum_block_add(csum, csum2, pos);
1656 				if ((len -= copy) == 0)
1657 					return csum;
1658 				offset += copy;
1659 				pos    += copy;
1660 			}
1661 			start = end;
1662 		}
1663 	}
1664 	BUG_ON(len);
1665 
1666 	return csum;
1667 }
1668 
1669 /* Both of above in one bottle. */
1670 
1671 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1672 				    u8 *to, int len, __wsum csum)
1673 {
1674 	int start = skb_headlen(skb);
1675 	int i, copy = start - offset;
1676 	int pos = 0;
1677 
1678 	/* Copy header. */
1679 	if (copy > 0) {
1680 		if (copy > len)
1681 			copy = len;
1682 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1683 						 copy, csum);
1684 		if ((len -= copy) == 0)
1685 			return csum;
1686 		offset += copy;
1687 		to     += copy;
1688 		pos	= copy;
1689 	}
1690 
1691 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1692 		int end;
1693 
1694 		WARN_ON(start > offset + len);
1695 
1696 		end = start + skb_shinfo(skb)->frags[i].size;
1697 		if ((copy = end - offset) > 0) {
1698 			__wsum csum2;
1699 			u8 *vaddr;
1700 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1701 
1702 			if (copy > len)
1703 				copy = len;
1704 			vaddr = kmap_skb_frag(frag);
1705 			csum2 = csum_partial_copy_nocheck(vaddr +
1706 							  frag->page_offset +
1707 							  offset - start, to,
1708 							  copy, 0);
1709 			kunmap_skb_frag(vaddr);
1710 			csum = csum_block_add(csum, csum2, pos);
1711 			if (!(len -= copy))
1712 				return csum;
1713 			offset += copy;
1714 			to     += copy;
1715 			pos    += copy;
1716 		}
1717 		start = end;
1718 	}
1719 
1720 	if (skb_shinfo(skb)->frag_list) {
1721 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1722 
1723 		for (; list; list = list->next) {
1724 			__wsum csum2;
1725 			int end;
1726 
1727 			WARN_ON(start > offset + len);
1728 
1729 			end = start + list->len;
1730 			if ((copy = end - offset) > 0) {
1731 				if (copy > len)
1732 					copy = len;
1733 				csum2 = skb_copy_and_csum_bits(list,
1734 							       offset - start,
1735 							       to, copy, 0);
1736 				csum = csum_block_add(csum, csum2, pos);
1737 				if ((len -= copy) == 0)
1738 					return csum;
1739 				offset += copy;
1740 				to     += copy;
1741 				pos    += copy;
1742 			}
1743 			start = end;
1744 		}
1745 	}
1746 	BUG_ON(len);
1747 	return csum;
1748 }
1749 
1750 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1751 {
1752 	__wsum csum;
1753 	long csstart;
1754 
1755 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1756 		csstart = skb->csum_start - skb_headroom(skb);
1757 	else
1758 		csstart = skb_headlen(skb);
1759 
1760 	BUG_ON(csstart > skb_headlen(skb));
1761 
1762 	skb_copy_from_linear_data(skb, to, csstart);
1763 
1764 	csum = 0;
1765 	if (csstart != skb->len)
1766 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1767 					      skb->len - csstart, 0);
1768 
1769 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1770 		long csstuff = csstart + skb->csum_offset;
1771 
1772 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
1773 	}
1774 }
1775 
1776 /**
1777  *	skb_dequeue - remove from the head of the queue
1778  *	@list: list to dequeue from
1779  *
1780  *	Remove the head of the list. The list lock is taken so the function
1781  *	may be used safely with other locking list functions. The head item is
1782  *	returned or %NULL if the list is empty.
1783  */
1784 
1785 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1786 {
1787 	unsigned long flags;
1788 	struct sk_buff *result;
1789 
1790 	spin_lock_irqsave(&list->lock, flags);
1791 	result = __skb_dequeue(list);
1792 	spin_unlock_irqrestore(&list->lock, flags);
1793 	return result;
1794 }
1795 
1796 /**
1797  *	skb_dequeue_tail - remove from the tail of the queue
1798  *	@list: list to dequeue from
1799  *
1800  *	Remove the tail of the list. The list lock is taken so the function
1801  *	may be used safely with other locking list functions. The tail item is
1802  *	returned or %NULL if the list is empty.
1803  */
1804 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1805 {
1806 	unsigned long flags;
1807 	struct sk_buff *result;
1808 
1809 	spin_lock_irqsave(&list->lock, flags);
1810 	result = __skb_dequeue_tail(list);
1811 	spin_unlock_irqrestore(&list->lock, flags);
1812 	return result;
1813 }
1814 
1815 /**
1816  *	skb_queue_purge - empty a list
1817  *	@list: list to empty
1818  *
1819  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
1820  *	the list and one reference dropped. This function takes the list
1821  *	lock and is atomic with respect to other list locking functions.
1822  */
1823 void skb_queue_purge(struct sk_buff_head *list)
1824 {
1825 	struct sk_buff *skb;
1826 	while ((skb = skb_dequeue(list)) != NULL)
1827 		kfree_skb(skb);
1828 }
1829 
1830 /**
1831  *	skb_queue_head - queue a buffer at the list head
1832  *	@list: list to use
1833  *	@newsk: buffer to queue
1834  *
1835  *	Queue a buffer at the start of the list. This function takes the
1836  *	list lock and can be used safely with other locking &sk_buff functions
1837  *	safely.
1838  *
1839  *	A buffer cannot be placed on two lists at the same time.
1840  */
1841 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1842 {
1843 	unsigned long flags;
1844 
1845 	spin_lock_irqsave(&list->lock, flags);
1846 	__skb_queue_head(list, newsk);
1847 	spin_unlock_irqrestore(&list->lock, flags);
1848 }
1849 
1850 /**
1851  *	skb_queue_tail - queue a buffer at the list tail
1852  *	@list: list to use
1853  *	@newsk: buffer to queue
1854  *
1855  *	Queue a buffer at the tail of the list. This function takes the
1856  *	list lock and can be used safely with other locking &sk_buff functions
1857  *	safely.
1858  *
1859  *	A buffer cannot be placed on two lists at the same time.
1860  */
1861 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1862 {
1863 	unsigned long flags;
1864 
1865 	spin_lock_irqsave(&list->lock, flags);
1866 	__skb_queue_tail(list, newsk);
1867 	spin_unlock_irqrestore(&list->lock, flags);
1868 }
1869 
1870 /**
1871  *	skb_unlink	-	remove a buffer from a list
1872  *	@skb: buffer to remove
1873  *	@list: list to use
1874  *
1875  *	Remove a packet from a list. The list locks are taken and this
1876  *	function is atomic with respect to other list locked calls
1877  *
1878  *	You must know what list the SKB is on.
1879  */
1880 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1881 {
1882 	unsigned long flags;
1883 
1884 	spin_lock_irqsave(&list->lock, flags);
1885 	__skb_unlink(skb, list);
1886 	spin_unlock_irqrestore(&list->lock, flags);
1887 }
1888 
1889 /**
1890  *	skb_append	-	append a buffer
1891  *	@old: buffer to insert after
1892  *	@newsk: buffer to insert
1893  *	@list: list to use
1894  *
1895  *	Place a packet after a given packet in a list. The list locks are taken
1896  *	and this function is atomic with respect to other list locked calls.
1897  *	A buffer cannot be placed on two lists at the same time.
1898  */
1899 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1900 {
1901 	unsigned long flags;
1902 
1903 	spin_lock_irqsave(&list->lock, flags);
1904 	__skb_queue_after(list, old, newsk);
1905 	spin_unlock_irqrestore(&list->lock, flags);
1906 }
1907 
1908 
1909 /**
1910  *	skb_insert	-	insert a buffer
1911  *	@old: buffer to insert before
1912  *	@newsk: buffer to insert
1913  *	@list: list to use
1914  *
1915  *	Place a packet before a given packet in a list. The list locks are
1916  * 	taken and this function is atomic with respect to other list locked
1917  *	calls.
1918  *
1919  *	A buffer cannot be placed on two lists at the same time.
1920  */
1921 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1922 {
1923 	unsigned long flags;
1924 
1925 	spin_lock_irqsave(&list->lock, flags);
1926 	__skb_insert(newsk, old->prev, old, list);
1927 	spin_unlock_irqrestore(&list->lock, flags);
1928 }
1929 
1930 static inline void skb_split_inside_header(struct sk_buff *skb,
1931 					   struct sk_buff* skb1,
1932 					   const u32 len, const int pos)
1933 {
1934 	int i;
1935 
1936 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1937 					 pos - len);
1938 	/* And move data appendix as is. */
1939 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1940 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1941 
1942 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1943 	skb_shinfo(skb)->nr_frags  = 0;
1944 	skb1->data_len		   = skb->data_len;
1945 	skb1->len		   += skb1->data_len;
1946 	skb->data_len		   = 0;
1947 	skb->len		   = len;
1948 	skb_set_tail_pointer(skb, len);
1949 }
1950 
1951 static inline void skb_split_no_header(struct sk_buff *skb,
1952 				       struct sk_buff* skb1,
1953 				       const u32 len, int pos)
1954 {
1955 	int i, k = 0;
1956 	const int nfrags = skb_shinfo(skb)->nr_frags;
1957 
1958 	skb_shinfo(skb)->nr_frags = 0;
1959 	skb1->len		  = skb1->data_len = skb->len - len;
1960 	skb->len		  = len;
1961 	skb->data_len		  = len - pos;
1962 
1963 	for (i = 0; i < nfrags; i++) {
1964 		int size = skb_shinfo(skb)->frags[i].size;
1965 
1966 		if (pos + size > len) {
1967 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1968 
1969 			if (pos < len) {
1970 				/* Split frag.
1971 				 * We have two variants in this case:
1972 				 * 1. Move all the frag to the second
1973 				 *    part, if it is possible. F.e.
1974 				 *    this approach is mandatory for TUX,
1975 				 *    where splitting is expensive.
1976 				 * 2. Split is accurately. We make this.
1977 				 */
1978 				get_page(skb_shinfo(skb)->frags[i].page);
1979 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1980 				skb_shinfo(skb1)->frags[0].size -= len - pos;
1981 				skb_shinfo(skb)->frags[i].size	= len - pos;
1982 				skb_shinfo(skb)->nr_frags++;
1983 			}
1984 			k++;
1985 		} else
1986 			skb_shinfo(skb)->nr_frags++;
1987 		pos += size;
1988 	}
1989 	skb_shinfo(skb1)->nr_frags = k;
1990 }
1991 
1992 /**
1993  * skb_split - Split fragmented skb to two parts at length len.
1994  * @skb: the buffer to split
1995  * @skb1: the buffer to receive the second part
1996  * @len: new length for skb
1997  */
1998 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1999 {
2000 	int pos = skb_headlen(skb);
2001 
2002 	if (len < pos)	/* Split line is inside header. */
2003 		skb_split_inside_header(skb, skb1, len, pos);
2004 	else		/* Second chunk has no header, nothing to copy. */
2005 		skb_split_no_header(skb, skb1, len, pos);
2006 }
2007 
2008 /**
2009  * skb_prepare_seq_read - Prepare a sequential read of skb data
2010  * @skb: the buffer to read
2011  * @from: lower offset of data to be read
2012  * @to: upper offset of data to be read
2013  * @st: state variable
2014  *
2015  * Initializes the specified state variable. Must be called before
2016  * invoking skb_seq_read() for the first time.
2017  */
2018 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2019 			  unsigned int to, struct skb_seq_state *st)
2020 {
2021 	st->lower_offset = from;
2022 	st->upper_offset = to;
2023 	st->root_skb = st->cur_skb = skb;
2024 	st->frag_idx = st->stepped_offset = 0;
2025 	st->frag_data = NULL;
2026 }
2027 
2028 /**
2029  * skb_seq_read - Sequentially read skb data
2030  * @consumed: number of bytes consumed by the caller so far
2031  * @data: destination pointer for data to be returned
2032  * @st: state variable
2033  *
2034  * Reads a block of skb data at &consumed relative to the
2035  * lower offset specified to skb_prepare_seq_read(). Assigns
2036  * the head of the data block to &data and returns the length
2037  * of the block or 0 if the end of the skb data or the upper
2038  * offset has been reached.
2039  *
2040  * The caller is not required to consume all of the data
2041  * returned, i.e. &consumed is typically set to the number
2042  * of bytes already consumed and the next call to
2043  * skb_seq_read() will return the remaining part of the block.
2044  *
2045  * Note 1: The size of each block of data returned can be arbitary,
2046  *       this limitation is the cost for zerocopy seqeuental
2047  *       reads of potentially non linear data.
2048  *
2049  * Note 2: Fragment lists within fragments are not implemented
2050  *       at the moment, state->root_skb could be replaced with
2051  *       a stack for this purpose.
2052  */
2053 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2054 			  struct skb_seq_state *st)
2055 {
2056 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2057 	skb_frag_t *frag;
2058 
2059 	if (unlikely(abs_offset >= st->upper_offset))
2060 		return 0;
2061 
2062 next_skb:
2063 	block_limit = skb_headlen(st->cur_skb);
2064 
2065 	if (abs_offset < block_limit) {
2066 		*data = st->cur_skb->data + abs_offset;
2067 		return block_limit - abs_offset;
2068 	}
2069 
2070 	if (st->frag_idx == 0 && !st->frag_data)
2071 		st->stepped_offset += skb_headlen(st->cur_skb);
2072 
2073 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2074 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2075 		block_limit = frag->size + st->stepped_offset;
2076 
2077 		if (abs_offset < block_limit) {
2078 			if (!st->frag_data)
2079 				st->frag_data = kmap_skb_frag(frag);
2080 
2081 			*data = (u8 *) st->frag_data + frag->page_offset +
2082 				(abs_offset - st->stepped_offset);
2083 
2084 			return block_limit - abs_offset;
2085 		}
2086 
2087 		if (st->frag_data) {
2088 			kunmap_skb_frag(st->frag_data);
2089 			st->frag_data = NULL;
2090 		}
2091 
2092 		st->frag_idx++;
2093 		st->stepped_offset += frag->size;
2094 	}
2095 
2096 	if (st->frag_data) {
2097 		kunmap_skb_frag(st->frag_data);
2098 		st->frag_data = NULL;
2099 	}
2100 
2101 	if (st->cur_skb->next) {
2102 		st->cur_skb = st->cur_skb->next;
2103 		st->frag_idx = 0;
2104 		goto next_skb;
2105 	} else if (st->root_skb == st->cur_skb &&
2106 		   skb_shinfo(st->root_skb)->frag_list) {
2107 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2108 		goto next_skb;
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 /**
2115  * skb_abort_seq_read - Abort a sequential read of skb data
2116  * @st: state variable
2117  *
2118  * Must be called if skb_seq_read() was not called until it
2119  * returned 0.
2120  */
2121 void skb_abort_seq_read(struct skb_seq_state *st)
2122 {
2123 	if (st->frag_data)
2124 		kunmap_skb_frag(st->frag_data);
2125 }
2126 
2127 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2128 
2129 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2130 					  struct ts_config *conf,
2131 					  struct ts_state *state)
2132 {
2133 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2134 }
2135 
2136 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2137 {
2138 	skb_abort_seq_read(TS_SKB_CB(state));
2139 }
2140 
2141 /**
2142  * skb_find_text - Find a text pattern in skb data
2143  * @skb: the buffer to look in
2144  * @from: search offset
2145  * @to: search limit
2146  * @config: textsearch configuration
2147  * @state: uninitialized textsearch state variable
2148  *
2149  * Finds a pattern in the skb data according to the specified
2150  * textsearch configuration. Use textsearch_next() to retrieve
2151  * subsequent occurrences of the pattern. Returns the offset
2152  * to the first occurrence or UINT_MAX if no match was found.
2153  */
2154 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2155 			   unsigned int to, struct ts_config *config,
2156 			   struct ts_state *state)
2157 {
2158 	unsigned int ret;
2159 
2160 	config->get_next_block = skb_ts_get_next_block;
2161 	config->finish = skb_ts_finish;
2162 
2163 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2164 
2165 	ret = textsearch_find(config, state);
2166 	return (ret <= to - from ? ret : UINT_MAX);
2167 }
2168 
2169 /**
2170  * skb_append_datato_frags: - append the user data to a skb
2171  * @sk: sock  structure
2172  * @skb: skb structure to be appened with user data.
2173  * @getfrag: call back function to be used for getting the user data
2174  * @from: pointer to user message iov
2175  * @length: length of the iov message
2176  *
2177  * Description: This procedure append the user data in the fragment part
2178  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2179  */
2180 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2181 			int (*getfrag)(void *from, char *to, int offset,
2182 					int len, int odd, struct sk_buff *skb),
2183 			void *from, int length)
2184 {
2185 	int frg_cnt = 0;
2186 	skb_frag_t *frag = NULL;
2187 	struct page *page = NULL;
2188 	int copy, left;
2189 	int offset = 0;
2190 	int ret;
2191 
2192 	do {
2193 		/* Return error if we don't have space for new frag */
2194 		frg_cnt = skb_shinfo(skb)->nr_frags;
2195 		if (frg_cnt >= MAX_SKB_FRAGS)
2196 			return -EFAULT;
2197 
2198 		/* allocate a new page for next frag */
2199 		page = alloc_pages(sk->sk_allocation, 0);
2200 
2201 		/* If alloc_page fails just return failure and caller will
2202 		 * free previous allocated pages by doing kfree_skb()
2203 		 */
2204 		if (page == NULL)
2205 			return -ENOMEM;
2206 
2207 		/* initialize the next frag */
2208 		sk->sk_sndmsg_page = page;
2209 		sk->sk_sndmsg_off = 0;
2210 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2211 		skb->truesize += PAGE_SIZE;
2212 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2213 
2214 		/* get the new initialized frag */
2215 		frg_cnt = skb_shinfo(skb)->nr_frags;
2216 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2217 
2218 		/* copy the user data to page */
2219 		left = PAGE_SIZE - frag->page_offset;
2220 		copy = (length > left)? left : length;
2221 
2222 		ret = getfrag(from, (page_address(frag->page) +
2223 			    frag->page_offset + frag->size),
2224 			    offset, copy, 0, skb);
2225 		if (ret < 0)
2226 			return -EFAULT;
2227 
2228 		/* copy was successful so update the size parameters */
2229 		sk->sk_sndmsg_off += copy;
2230 		frag->size += copy;
2231 		skb->len += copy;
2232 		skb->data_len += copy;
2233 		offset += copy;
2234 		length -= copy;
2235 
2236 	} while (length > 0);
2237 
2238 	return 0;
2239 }
2240 
2241 /**
2242  *	skb_pull_rcsum - pull skb and update receive checksum
2243  *	@skb: buffer to update
2244  *	@len: length of data pulled
2245  *
2246  *	This function performs an skb_pull on the packet and updates
2247  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2248  *	receive path processing instead of skb_pull unless you know
2249  *	that the checksum difference is zero (e.g., a valid IP header)
2250  *	or you are setting ip_summed to CHECKSUM_NONE.
2251  */
2252 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2253 {
2254 	BUG_ON(len > skb->len);
2255 	skb->len -= len;
2256 	BUG_ON(skb->len < skb->data_len);
2257 	skb_postpull_rcsum(skb, skb->data, len);
2258 	return skb->data += len;
2259 }
2260 
2261 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2262 
2263 /**
2264  *	skb_segment - Perform protocol segmentation on skb.
2265  *	@skb: buffer to segment
2266  *	@features: features for the output path (see dev->features)
2267  *
2268  *	This function performs segmentation on the given skb.  It returns
2269  *	a pointer to the first in a list of new skbs for the segments.
2270  *	In case of error it returns ERR_PTR(err).
2271  */
2272 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2273 {
2274 	struct sk_buff *segs = NULL;
2275 	struct sk_buff *tail = NULL;
2276 	unsigned int mss = skb_shinfo(skb)->gso_size;
2277 	unsigned int doffset = skb->data - skb_mac_header(skb);
2278 	unsigned int offset = doffset;
2279 	unsigned int headroom;
2280 	unsigned int len;
2281 	int sg = features & NETIF_F_SG;
2282 	int nfrags = skb_shinfo(skb)->nr_frags;
2283 	int err = -ENOMEM;
2284 	int i = 0;
2285 	int pos;
2286 
2287 	__skb_push(skb, doffset);
2288 	headroom = skb_headroom(skb);
2289 	pos = skb_headlen(skb);
2290 
2291 	do {
2292 		struct sk_buff *nskb;
2293 		skb_frag_t *frag;
2294 		int hsize;
2295 		int k;
2296 		int size;
2297 
2298 		len = skb->len - offset;
2299 		if (len > mss)
2300 			len = mss;
2301 
2302 		hsize = skb_headlen(skb) - offset;
2303 		if (hsize < 0)
2304 			hsize = 0;
2305 		if (hsize > len || !sg)
2306 			hsize = len;
2307 
2308 		nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2309 		if (unlikely(!nskb))
2310 			goto err;
2311 
2312 		if (segs)
2313 			tail->next = nskb;
2314 		else
2315 			segs = nskb;
2316 		tail = nskb;
2317 
2318 		__copy_skb_header(nskb, skb);
2319 		nskb->mac_len = skb->mac_len;
2320 
2321 		skb_reserve(nskb, headroom);
2322 		skb_reset_mac_header(nskb);
2323 		skb_set_network_header(nskb, skb->mac_len);
2324 		nskb->transport_header = (nskb->network_header +
2325 					  skb_network_header_len(skb));
2326 		skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2327 					  doffset);
2328 		if (!sg) {
2329 			nskb->ip_summed = CHECKSUM_NONE;
2330 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2331 							    skb_put(nskb, len),
2332 							    len, 0);
2333 			continue;
2334 		}
2335 
2336 		frag = skb_shinfo(nskb)->frags;
2337 		k = 0;
2338 
2339 		skb_copy_from_linear_data_offset(skb, offset,
2340 						 skb_put(nskb, hsize), hsize);
2341 
2342 		while (pos < offset + len) {
2343 			BUG_ON(i >= nfrags);
2344 
2345 			*frag = skb_shinfo(skb)->frags[i];
2346 			get_page(frag->page);
2347 			size = frag->size;
2348 
2349 			if (pos < offset) {
2350 				frag->page_offset += offset - pos;
2351 				frag->size -= offset - pos;
2352 			}
2353 
2354 			k++;
2355 
2356 			if (pos + size <= offset + len) {
2357 				i++;
2358 				pos += size;
2359 			} else {
2360 				frag->size -= pos + size - (offset + len);
2361 				break;
2362 			}
2363 
2364 			frag++;
2365 		}
2366 
2367 		skb_shinfo(nskb)->nr_frags = k;
2368 		nskb->data_len = len - hsize;
2369 		nskb->len += nskb->data_len;
2370 		nskb->truesize += nskb->data_len;
2371 	} while ((offset += len) < skb->len);
2372 
2373 	return segs;
2374 
2375 err:
2376 	while ((skb = segs)) {
2377 		segs = skb->next;
2378 		kfree_skb(skb);
2379 	}
2380 	return ERR_PTR(err);
2381 }
2382 
2383 EXPORT_SYMBOL_GPL(skb_segment);
2384 
2385 void __init skb_init(void)
2386 {
2387 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2388 					      sizeof(struct sk_buff),
2389 					      0,
2390 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2391 					      NULL);
2392 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2393 						(2*sizeof(struct sk_buff)) +
2394 						sizeof(atomic_t),
2395 						0,
2396 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2397 						NULL);
2398 }
2399 
2400 /**
2401  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2402  *	@skb: Socket buffer containing the buffers to be mapped
2403  *	@sg: The scatter-gather list to map into
2404  *	@offset: The offset into the buffer's contents to start mapping
2405  *	@len: Length of buffer space to be mapped
2406  *
2407  *	Fill the specified scatter-gather list with mappings/pointers into a
2408  *	region of the buffer space attached to a socket buffer.
2409  */
2410 static int
2411 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2412 {
2413 	int start = skb_headlen(skb);
2414 	int i, copy = start - offset;
2415 	int elt = 0;
2416 
2417 	if (copy > 0) {
2418 		if (copy > len)
2419 			copy = len;
2420 		sg_set_buf(sg, skb->data + offset, copy);
2421 		elt++;
2422 		if ((len -= copy) == 0)
2423 			return elt;
2424 		offset += copy;
2425 	}
2426 
2427 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2428 		int end;
2429 
2430 		WARN_ON(start > offset + len);
2431 
2432 		end = start + skb_shinfo(skb)->frags[i].size;
2433 		if ((copy = end - offset) > 0) {
2434 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2435 
2436 			if (copy > len)
2437 				copy = len;
2438 			sg_set_page(&sg[elt], frag->page, copy,
2439 					frag->page_offset+offset-start);
2440 			elt++;
2441 			if (!(len -= copy))
2442 				return elt;
2443 			offset += copy;
2444 		}
2445 		start = end;
2446 	}
2447 
2448 	if (skb_shinfo(skb)->frag_list) {
2449 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2450 
2451 		for (; list; list = list->next) {
2452 			int end;
2453 
2454 			WARN_ON(start > offset + len);
2455 
2456 			end = start + list->len;
2457 			if ((copy = end - offset) > 0) {
2458 				if (copy > len)
2459 					copy = len;
2460 				elt += __skb_to_sgvec(list, sg+elt, offset - start,
2461 						      copy);
2462 				if ((len -= copy) == 0)
2463 					return elt;
2464 				offset += copy;
2465 			}
2466 			start = end;
2467 		}
2468 	}
2469 	BUG_ON(len);
2470 	return elt;
2471 }
2472 
2473 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2474 {
2475 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
2476 
2477 	sg_mark_end(&sg[nsg - 1]);
2478 
2479 	return nsg;
2480 }
2481 
2482 /**
2483  *	skb_cow_data - Check that a socket buffer's data buffers are writable
2484  *	@skb: The socket buffer to check.
2485  *	@tailbits: Amount of trailing space to be added
2486  *	@trailer: Returned pointer to the skb where the @tailbits space begins
2487  *
2488  *	Make sure that the data buffers attached to a socket buffer are
2489  *	writable. If they are not, private copies are made of the data buffers
2490  *	and the socket buffer is set to use these instead.
2491  *
2492  *	If @tailbits is given, make sure that there is space to write @tailbits
2493  *	bytes of data beyond current end of socket buffer.  @trailer will be
2494  *	set to point to the skb in which this space begins.
2495  *
2496  *	The number of scatterlist elements required to completely map the
2497  *	COW'd and extended socket buffer will be returned.
2498  */
2499 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2500 {
2501 	int copyflag;
2502 	int elt;
2503 	struct sk_buff *skb1, **skb_p;
2504 
2505 	/* If skb is cloned or its head is paged, reallocate
2506 	 * head pulling out all the pages (pages are considered not writable
2507 	 * at the moment even if they are anonymous).
2508 	 */
2509 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2510 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2511 		return -ENOMEM;
2512 
2513 	/* Easy case. Most of packets will go this way. */
2514 	if (!skb_shinfo(skb)->frag_list) {
2515 		/* A little of trouble, not enough of space for trailer.
2516 		 * This should not happen, when stack is tuned to generate
2517 		 * good frames. OK, on miss we reallocate and reserve even more
2518 		 * space, 128 bytes is fair. */
2519 
2520 		if (skb_tailroom(skb) < tailbits &&
2521 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2522 			return -ENOMEM;
2523 
2524 		/* Voila! */
2525 		*trailer = skb;
2526 		return 1;
2527 	}
2528 
2529 	/* Misery. We are in troubles, going to mincer fragments... */
2530 
2531 	elt = 1;
2532 	skb_p = &skb_shinfo(skb)->frag_list;
2533 	copyflag = 0;
2534 
2535 	while ((skb1 = *skb_p) != NULL) {
2536 		int ntail = 0;
2537 
2538 		/* The fragment is partially pulled by someone,
2539 		 * this can happen on input. Copy it and everything
2540 		 * after it. */
2541 
2542 		if (skb_shared(skb1))
2543 			copyflag = 1;
2544 
2545 		/* If the skb is the last, worry about trailer. */
2546 
2547 		if (skb1->next == NULL && tailbits) {
2548 			if (skb_shinfo(skb1)->nr_frags ||
2549 			    skb_shinfo(skb1)->frag_list ||
2550 			    skb_tailroom(skb1) < tailbits)
2551 				ntail = tailbits + 128;
2552 		}
2553 
2554 		if (copyflag ||
2555 		    skb_cloned(skb1) ||
2556 		    ntail ||
2557 		    skb_shinfo(skb1)->nr_frags ||
2558 		    skb_shinfo(skb1)->frag_list) {
2559 			struct sk_buff *skb2;
2560 
2561 			/* Fuck, we are miserable poor guys... */
2562 			if (ntail == 0)
2563 				skb2 = skb_copy(skb1, GFP_ATOMIC);
2564 			else
2565 				skb2 = skb_copy_expand(skb1,
2566 						       skb_headroom(skb1),
2567 						       ntail,
2568 						       GFP_ATOMIC);
2569 			if (unlikely(skb2 == NULL))
2570 				return -ENOMEM;
2571 
2572 			if (skb1->sk)
2573 				skb_set_owner_w(skb2, skb1->sk);
2574 
2575 			/* Looking around. Are we still alive?
2576 			 * OK, link new skb, drop old one */
2577 
2578 			skb2->next = skb1->next;
2579 			*skb_p = skb2;
2580 			kfree_skb(skb1);
2581 			skb1 = skb2;
2582 		}
2583 		elt++;
2584 		*trailer = skb1;
2585 		skb_p = &skb1->next;
2586 	}
2587 
2588 	return elt;
2589 }
2590 
2591 /**
2592  * skb_partial_csum_set - set up and verify partial csum values for packet
2593  * @skb: the skb to set
2594  * @start: the number of bytes after skb->data to start checksumming.
2595  * @off: the offset from start to place the checksum.
2596  *
2597  * For untrusted partially-checksummed packets, we need to make sure the values
2598  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2599  *
2600  * This function checks and sets those values and skb->ip_summed: if this
2601  * returns false you should drop the packet.
2602  */
2603 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2604 {
2605 	if (unlikely(start > skb->len - 2) ||
2606 	    unlikely((int)start + off > skb->len - 2)) {
2607 		if (net_ratelimit())
2608 			printk(KERN_WARNING
2609 			       "bad partial csum: csum=%u/%u len=%u\n",
2610 			       start, off, skb->len);
2611 		return false;
2612 	}
2613 	skb->ip_summed = CHECKSUM_PARTIAL;
2614 	skb->csum_start = skb_headroom(skb) + start;
2615 	skb->csum_offset = off;
2616 	return true;
2617 }
2618 
2619 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2620 {
2621 	if (net_ratelimit())
2622 		pr_warning("%s: received packets cannot be forwarded"
2623 			   " while LRO is enabled\n", skb->dev->name);
2624 }
2625 
2626 EXPORT_SYMBOL(___pskb_trim);
2627 EXPORT_SYMBOL(__kfree_skb);
2628 EXPORT_SYMBOL(kfree_skb);
2629 EXPORT_SYMBOL(__pskb_pull_tail);
2630 EXPORT_SYMBOL(__alloc_skb);
2631 EXPORT_SYMBOL(__netdev_alloc_skb);
2632 EXPORT_SYMBOL(pskb_copy);
2633 EXPORT_SYMBOL(pskb_expand_head);
2634 EXPORT_SYMBOL(skb_checksum);
2635 EXPORT_SYMBOL(skb_clone);
2636 EXPORT_SYMBOL(skb_copy);
2637 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2638 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2639 EXPORT_SYMBOL(skb_copy_bits);
2640 EXPORT_SYMBOL(skb_copy_expand);
2641 EXPORT_SYMBOL(skb_over_panic);
2642 EXPORT_SYMBOL(skb_pad);
2643 EXPORT_SYMBOL(skb_realloc_headroom);
2644 EXPORT_SYMBOL(skb_under_panic);
2645 EXPORT_SYMBOL(skb_dequeue);
2646 EXPORT_SYMBOL(skb_dequeue_tail);
2647 EXPORT_SYMBOL(skb_insert);
2648 EXPORT_SYMBOL(skb_queue_purge);
2649 EXPORT_SYMBOL(skb_queue_head);
2650 EXPORT_SYMBOL(skb_queue_tail);
2651 EXPORT_SYMBOL(skb_unlink);
2652 EXPORT_SYMBOL(skb_append);
2653 EXPORT_SYMBOL(skb_split);
2654 EXPORT_SYMBOL(skb_prepare_seq_read);
2655 EXPORT_SYMBOL(skb_seq_read);
2656 EXPORT_SYMBOL(skb_abort_seq_read);
2657 EXPORT_SYMBOL(skb_find_text);
2658 EXPORT_SYMBOL(skb_append_datato_frags);
2659 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2660 
2661 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2662 EXPORT_SYMBOL_GPL(skb_cow_data);
2663 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
2664