1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 66 #include <net/protocol.h> 67 #include <net/dst.h> 68 #include <net/sock.h> 69 #include <net/checksum.h> 70 #include <net/gso.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 #include <net/mpls.h> 74 #include <net/mptcp.h> 75 #include <net/mctp.h> 76 #include <net/page_pool/helpers.h> 77 #include <net/dropreason.h> 78 79 #include <linux/uaccess.h> 80 #include <trace/events/skb.h> 81 #include <linux/highmem.h> 82 #include <linux/capability.h> 83 #include <linux/user_namespace.h> 84 #include <linux/indirect_call_wrapper.h> 85 #include <linux/textsearch.h> 86 87 #include "dev.h" 88 #include "sock_destructor.h" 89 90 struct kmem_cache *skbuff_cache __ro_after_init; 91 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 92 #ifdef CONFIG_SKB_EXTENSIONS 93 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 94 #endif 95 96 97 static struct kmem_cache *skb_small_head_cache __ro_after_init; 98 99 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 100 101 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 103 * size, and we can differentiate heads from skb_small_head_cache 104 * vs system slabs by looking at their size (skb_end_offset()). 105 */ 106 #define SKB_SMALL_HEAD_CACHE_SIZE \ 107 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 108 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 109 SKB_SMALL_HEAD_SIZE) 110 111 #define SKB_SMALL_HEAD_HEADROOM \ 112 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 113 114 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 115 EXPORT_SYMBOL(sysctl_max_skb_frags); 116 117 #undef FN 118 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 119 static const char * const drop_reasons[] = { 120 [SKB_CONSUMED] = "CONSUMED", 121 DEFINE_DROP_REASON(FN, FN) 122 }; 123 124 static const struct drop_reason_list drop_reasons_core = { 125 .reasons = drop_reasons, 126 .n_reasons = ARRAY_SIZE(drop_reasons), 127 }; 128 129 const struct drop_reason_list __rcu * 130 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 131 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 132 }; 133 EXPORT_SYMBOL(drop_reasons_by_subsys); 134 135 /** 136 * drop_reasons_register_subsys - register another drop reason subsystem 137 * @subsys: the subsystem to register, must not be the core 138 * @list: the list of drop reasons within the subsystem, must point to 139 * a statically initialized list 140 */ 141 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 142 const struct drop_reason_list *list) 143 { 144 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 145 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 146 "invalid subsystem %d\n", subsys)) 147 return; 148 149 /* must point to statically allocated memory, so INIT is OK */ 150 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 151 } 152 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 153 154 /** 155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 156 * @subsys: the subsystem to remove, must not be the core 157 * 158 * Note: This will synchronize_rcu() to ensure no users when it returns. 159 */ 160 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 161 { 162 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 163 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 164 "invalid subsystem %d\n", subsys)) 165 return; 166 167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 168 169 synchronize_rcu(); 170 } 171 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 172 173 /** 174 * skb_panic - private function for out-of-line support 175 * @skb: buffer 176 * @sz: size 177 * @addr: address 178 * @msg: skb_over_panic or skb_under_panic 179 * 180 * Out-of-line support for skb_put() and skb_push(). 181 * Called via the wrapper skb_over_panic() or skb_under_panic(). 182 * Keep out of line to prevent kernel bloat. 183 * __builtin_return_address is not used because it is not always reliable. 184 */ 185 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 186 const char msg[]) 187 { 188 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 189 msg, addr, skb->len, sz, skb->head, skb->data, 190 (unsigned long)skb->tail, (unsigned long)skb->end, 191 skb->dev ? skb->dev->name : "<NULL>"); 192 BUG(); 193 } 194 195 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 196 { 197 skb_panic(skb, sz, addr, __func__); 198 } 199 200 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 201 { 202 skb_panic(skb, sz, addr, __func__); 203 } 204 205 #define NAPI_SKB_CACHE_SIZE 64 206 #define NAPI_SKB_CACHE_BULK 16 207 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 208 209 #if PAGE_SIZE == SZ_4K 210 211 #define NAPI_HAS_SMALL_PAGE_FRAG 1 212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 213 214 /* specialized page frag allocator using a single order 0 page 215 * and slicing it into 1K sized fragment. Constrained to systems 216 * with a very limited amount of 1K fragments fitting a single 217 * page - to avoid excessive truesize underestimation 218 */ 219 220 struct page_frag_1k { 221 void *va; 222 u16 offset; 223 bool pfmemalloc; 224 }; 225 226 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 227 { 228 struct page *page; 229 int offset; 230 231 offset = nc->offset - SZ_1K; 232 if (likely(offset >= 0)) 233 goto use_frag; 234 235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 236 if (!page) 237 return NULL; 238 239 nc->va = page_address(page); 240 nc->pfmemalloc = page_is_pfmemalloc(page); 241 offset = PAGE_SIZE - SZ_1K; 242 page_ref_add(page, offset / SZ_1K); 243 244 use_frag: 245 nc->offset = offset; 246 return nc->va + offset; 247 } 248 #else 249 250 /* the small page is actually unused in this build; add dummy helpers 251 * to please the compiler and avoid later preprocessor's conditionals 252 */ 253 #define NAPI_HAS_SMALL_PAGE_FRAG 0 254 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 255 256 struct page_frag_1k { 257 }; 258 259 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 260 { 261 return NULL; 262 } 263 264 #endif 265 266 struct napi_alloc_cache { 267 struct page_frag_cache page; 268 struct page_frag_1k page_small; 269 unsigned int skb_count; 270 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 271 }; 272 273 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 274 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 275 276 /* Double check that napi_get_frags() allocates skbs with 277 * skb->head being backed by slab, not a page fragment. 278 * This is to make sure bug fixed in 3226b158e67c 279 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 280 * does not accidentally come back. 281 */ 282 void napi_get_frags_check(struct napi_struct *napi) 283 { 284 struct sk_buff *skb; 285 286 local_bh_disable(); 287 skb = napi_get_frags(napi); 288 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 289 napi_free_frags(napi); 290 local_bh_enable(); 291 } 292 293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 294 { 295 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 296 297 fragsz = SKB_DATA_ALIGN(fragsz); 298 299 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 300 } 301 EXPORT_SYMBOL(__napi_alloc_frag_align); 302 303 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 304 { 305 void *data; 306 307 fragsz = SKB_DATA_ALIGN(fragsz); 308 if (in_hardirq() || irqs_disabled()) { 309 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 310 311 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 312 } else { 313 struct napi_alloc_cache *nc; 314 315 local_bh_disable(); 316 nc = this_cpu_ptr(&napi_alloc_cache); 317 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 318 local_bh_enable(); 319 } 320 return data; 321 } 322 EXPORT_SYMBOL(__netdev_alloc_frag_align); 323 324 static struct sk_buff *napi_skb_cache_get(void) 325 { 326 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 327 struct sk_buff *skb; 328 329 if (unlikely(!nc->skb_count)) { 330 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 331 GFP_ATOMIC, 332 NAPI_SKB_CACHE_BULK, 333 nc->skb_cache); 334 if (unlikely(!nc->skb_count)) 335 return NULL; 336 } 337 338 skb = nc->skb_cache[--nc->skb_count]; 339 kasan_unpoison_object_data(skbuff_cache, skb); 340 341 return skb; 342 } 343 344 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 345 unsigned int size) 346 { 347 struct skb_shared_info *shinfo; 348 349 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 350 351 /* Assumes caller memset cleared SKB */ 352 skb->truesize = SKB_TRUESIZE(size); 353 refcount_set(&skb->users, 1); 354 skb->head = data; 355 skb->data = data; 356 skb_reset_tail_pointer(skb); 357 skb_set_end_offset(skb, size); 358 skb->mac_header = (typeof(skb->mac_header))~0U; 359 skb->transport_header = (typeof(skb->transport_header))~0U; 360 skb->alloc_cpu = raw_smp_processor_id(); 361 /* make sure we initialize shinfo sequentially */ 362 shinfo = skb_shinfo(skb); 363 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 364 atomic_set(&shinfo->dataref, 1); 365 366 skb_set_kcov_handle(skb, kcov_common_handle()); 367 } 368 369 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 370 unsigned int *size) 371 { 372 void *resized; 373 374 /* Must find the allocation size (and grow it to match). */ 375 *size = ksize(data); 376 /* krealloc() will immediately return "data" when 377 * "ksize(data)" is requested: it is the existing upper 378 * bounds. As a result, GFP_ATOMIC will be ignored. Note 379 * that this "new" pointer needs to be passed back to the 380 * caller for use so the __alloc_size hinting will be 381 * tracked correctly. 382 */ 383 resized = krealloc(data, *size, GFP_ATOMIC); 384 WARN_ON_ONCE(resized != data); 385 return resized; 386 } 387 388 /* build_skb() variant which can operate on slab buffers. 389 * Note that this should be used sparingly as slab buffers 390 * cannot be combined efficiently by GRO! 391 */ 392 struct sk_buff *slab_build_skb(void *data) 393 { 394 struct sk_buff *skb; 395 unsigned int size; 396 397 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 398 if (unlikely(!skb)) 399 return NULL; 400 401 memset(skb, 0, offsetof(struct sk_buff, tail)); 402 data = __slab_build_skb(skb, data, &size); 403 __finalize_skb_around(skb, data, size); 404 405 return skb; 406 } 407 EXPORT_SYMBOL(slab_build_skb); 408 409 /* Caller must provide SKB that is memset cleared */ 410 static void __build_skb_around(struct sk_buff *skb, void *data, 411 unsigned int frag_size) 412 { 413 unsigned int size = frag_size; 414 415 /* frag_size == 0 is considered deprecated now. Callers 416 * using slab buffer should use slab_build_skb() instead. 417 */ 418 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 419 data = __slab_build_skb(skb, data, &size); 420 421 __finalize_skb_around(skb, data, size); 422 } 423 424 /** 425 * __build_skb - build a network buffer 426 * @data: data buffer provided by caller 427 * @frag_size: size of data (must not be 0) 428 * 429 * Allocate a new &sk_buff. Caller provides space holding head and 430 * skb_shared_info. @data must have been allocated from the page 431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 432 * allocation is deprecated, and callers should use slab_build_skb() 433 * instead.) 434 * The return is the new skb buffer. 435 * On a failure the return is %NULL, and @data is not freed. 436 * Notes : 437 * Before IO, driver allocates only data buffer where NIC put incoming frame 438 * Driver should add room at head (NET_SKB_PAD) and 439 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 440 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 441 * before giving packet to stack. 442 * RX rings only contains data buffers, not full skbs. 443 */ 444 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 445 { 446 struct sk_buff *skb; 447 448 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 449 if (unlikely(!skb)) 450 return NULL; 451 452 memset(skb, 0, offsetof(struct sk_buff, tail)); 453 __build_skb_around(skb, data, frag_size); 454 455 return skb; 456 } 457 458 /* build_skb() is wrapper over __build_skb(), that specifically 459 * takes care of skb->head and skb->pfmemalloc 460 */ 461 struct sk_buff *build_skb(void *data, unsigned int frag_size) 462 { 463 struct sk_buff *skb = __build_skb(data, frag_size); 464 465 if (likely(skb && frag_size)) { 466 skb->head_frag = 1; 467 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 468 } 469 return skb; 470 } 471 EXPORT_SYMBOL(build_skb); 472 473 /** 474 * build_skb_around - build a network buffer around provided skb 475 * @skb: sk_buff provide by caller, must be memset cleared 476 * @data: data buffer provided by caller 477 * @frag_size: size of data 478 */ 479 struct sk_buff *build_skb_around(struct sk_buff *skb, 480 void *data, unsigned int frag_size) 481 { 482 if (unlikely(!skb)) 483 return NULL; 484 485 __build_skb_around(skb, data, frag_size); 486 487 if (frag_size) { 488 skb->head_frag = 1; 489 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 490 } 491 return skb; 492 } 493 EXPORT_SYMBOL(build_skb_around); 494 495 /** 496 * __napi_build_skb - build a network buffer 497 * @data: data buffer provided by caller 498 * @frag_size: size of data 499 * 500 * Version of __build_skb() that uses NAPI percpu caches to obtain 501 * skbuff_head instead of inplace allocation. 502 * 503 * Returns a new &sk_buff on success, %NULL on allocation failure. 504 */ 505 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 506 { 507 struct sk_buff *skb; 508 509 skb = napi_skb_cache_get(); 510 if (unlikely(!skb)) 511 return NULL; 512 513 memset(skb, 0, offsetof(struct sk_buff, tail)); 514 __build_skb_around(skb, data, frag_size); 515 516 return skb; 517 } 518 519 /** 520 * napi_build_skb - build a network buffer 521 * @data: data buffer provided by caller 522 * @frag_size: size of data 523 * 524 * Version of __napi_build_skb() that takes care of skb->head_frag 525 * and skb->pfmemalloc when the data is a page or page fragment. 526 * 527 * Returns a new &sk_buff on success, %NULL on allocation failure. 528 */ 529 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 530 { 531 struct sk_buff *skb = __napi_build_skb(data, frag_size); 532 533 if (likely(skb) && frag_size) { 534 skb->head_frag = 1; 535 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 536 } 537 538 return skb; 539 } 540 EXPORT_SYMBOL(napi_build_skb); 541 542 /* 543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 544 * the caller if emergency pfmemalloc reserves are being used. If it is and 545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 546 * may be used. Otherwise, the packet data may be discarded until enough 547 * memory is free 548 */ 549 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 550 bool *pfmemalloc) 551 { 552 bool ret_pfmemalloc = false; 553 size_t obj_size; 554 void *obj; 555 556 obj_size = SKB_HEAD_ALIGN(*size); 557 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 558 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 559 obj = kmem_cache_alloc_node(skb_small_head_cache, 560 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 561 node); 562 *size = SKB_SMALL_HEAD_CACHE_SIZE; 563 if (obj || !(gfp_pfmemalloc_allowed(flags))) 564 goto out; 565 /* Try again but now we are using pfmemalloc reserves */ 566 ret_pfmemalloc = true; 567 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 568 goto out; 569 } 570 571 obj_size = kmalloc_size_roundup(obj_size); 572 /* The following cast might truncate high-order bits of obj_size, this 573 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 574 */ 575 *size = (unsigned int)obj_size; 576 577 /* 578 * Try a regular allocation, when that fails and we're not entitled 579 * to the reserves, fail. 580 */ 581 obj = kmalloc_node_track_caller(obj_size, 582 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 583 node); 584 if (obj || !(gfp_pfmemalloc_allowed(flags))) 585 goto out; 586 587 /* Try again but now we are using pfmemalloc reserves */ 588 ret_pfmemalloc = true; 589 obj = kmalloc_node_track_caller(obj_size, flags, node); 590 591 out: 592 if (pfmemalloc) 593 *pfmemalloc = ret_pfmemalloc; 594 595 return obj; 596 } 597 598 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 599 * 'private' fields and also do memory statistics to find all the 600 * [BEEP] leaks. 601 * 602 */ 603 604 /** 605 * __alloc_skb - allocate a network buffer 606 * @size: size to allocate 607 * @gfp_mask: allocation mask 608 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 609 * instead of head cache and allocate a cloned (child) skb. 610 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 611 * allocations in case the data is required for writeback 612 * @node: numa node to allocate memory on 613 * 614 * Allocate a new &sk_buff. The returned buffer has no headroom and a 615 * tail room of at least size bytes. The object has a reference count 616 * of one. The return is the buffer. On a failure the return is %NULL. 617 * 618 * Buffers may only be allocated from interrupts using a @gfp_mask of 619 * %GFP_ATOMIC. 620 */ 621 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 622 int flags, int node) 623 { 624 struct kmem_cache *cache; 625 struct sk_buff *skb; 626 bool pfmemalloc; 627 u8 *data; 628 629 cache = (flags & SKB_ALLOC_FCLONE) 630 ? skbuff_fclone_cache : skbuff_cache; 631 632 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 633 gfp_mask |= __GFP_MEMALLOC; 634 635 /* Get the HEAD */ 636 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 637 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 638 skb = napi_skb_cache_get(); 639 else 640 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 641 if (unlikely(!skb)) 642 return NULL; 643 prefetchw(skb); 644 645 /* We do our best to align skb_shared_info on a separate cache 646 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 647 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 648 * Both skb->head and skb_shared_info are cache line aligned. 649 */ 650 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 651 if (unlikely(!data)) 652 goto nodata; 653 /* kmalloc_size_roundup() might give us more room than requested. 654 * Put skb_shared_info exactly at the end of allocated zone, 655 * to allow max possible filling before reallocation. 656 */ 657 prefetchw(data + SKB_WITH_OVERHEAD(size)); 658 659 /* 660 * Only clear those fields we need to clear, not those that we will 661 * actually initialise below. Hence, don't put any more fields after 662 * the tail pointer in struct sk_buff! 663 */ 664 memset(skb, 0, offsetof(struct sk_buff, tail)); 665 __build_skb_around(skb, data, size); 666 skb->pfmemalloc = pfmemalloc; 667 668 if (flags & SKB_ALLOC_FCLONE) { 669 struct sk_buff_fclones *fclones; 670 671 fclones = container_of(skb, struct sk_buff_fclones, skb1); 672 673 skb->fclone = SKB_FCLONE_ORIG; 674 refcount_set(&fclones->fclone_ref, 1); 675 } 676 677 return skb; 678 679 nodata: 680 kmem_cache_free(cache, skb); 681 return NULL; 682 } 683 EXPORT_SYMBOL(__alloc_skb); 684 685 /** 686 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 687 * @dev: network device to receive on 688 * @len: length to allocate 689 * @gfp_mask: get_free_pages mask, passed to alloc_skb 690 * 691 * Allocate a new &sk_buff and assign it a usage count of one. The 692 * buffer has NET_SKB_PAD headroom built in. Users should allocate 693 * the headroom they think they need without accounting for the 694 * built in space. The built in space is used for optimisations. 695 * 696 * %NULL is returned if there is no free memory. 697 */ 698 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 699 gfp_t gfp_mask) 700 { 701 struct page_frag_cache *nc; 702 struct sk_buff *skb; 703 bool pfmemalloc; 704 void *data; 705 706 len += NET_SKB_PAD; 707 708 /* If requested length is either too small or too big, 709 * we use kmalloc() for skb->head allocation. 710 */ 711 if (len <= SKB_WITH_OVERHEAD(1024) || 712 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 713 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 714 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 715 if (!skb) 716 goto skb_fail; 717 goto skb_success; 718 } 719 720 len = SKB_HEAD_ALIGN(len); 721 722 if (sk_memalloc_socks()) 723 gfp_mask |= __GFP_MEMALLOC; 724 725 if (in_hardirq() || irqs_disabled()) { 726 nc = this_cpu_ptr(&netdev_alloc_cache); 727 data = page_frag_alloc(nc, len, gfp_mask); 728 pfmemalloc = nc->pfmemalloc; 729 } else { 730 local_bh_disable(); 731 nc = this_cpu_ptr(&napi_alloc_cache.page); 732 data = page_frag_alloc(nc, len, gfp_mask); 733 pfmemalloc = nc->pfmemalloc; 734 local_bh_enable(); 735 } 736 737 if (unlikely(!data)) 738 return NULL; 739 740 skb = __build_skb(data, len); 741 if (unlikely(!skb)) { 742 skb_free_frag(data); 743 return NULL; 744 } 745 746 if (pfmemalloc) 747 skb->pfmemalloc = 1; 748 skb->head_frag = 1; 749 750 skb_success: 751 skb_reserve(skb, NET_SKB_PAD); 752 skb->dev = dev; 753 754 skb_fail: 755 return skb; 756 } 757 EXPORT_SYMBOL(__netdev_alloc_skb); 758 759 /** 760 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 761 * @napi: napi instance this buffer was allocated for 762 * @len: length to allocate 763 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 764 * 765 * Allocate a new sk_buff for use in NAPI receive. This buffer will 766 * attempt to allocate the head from a special reserved region used 767 * only for NAPI Rx allocation. By doing this we can save several 768 * CPU cycles by avoiding having to disable and re-enable IRQs. 769 * 770 * %NULL is returned if there is no free memory. 771 */ 772 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 773 gfp_t gfp_mask) 774 { 775 struct napi_alloc_cache *nc; 776 struct sk_buff *skb; 777 bool pfmemalloc; 778 void *data; 779 780 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 781 len += NET_SKB_PAD + NET_IP_ALIGN; 782 783 /* If requested length is either too small or too big, 784 * we use kmalloc() for skb->head allocation. 785 * When the small frag allocator is available, prefer it over kmalloc 786 * for small fragments 787 */ 788 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 789 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 790 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 791 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 792 NUMA_NO_NODE); 793 if (!skb) 794 goto skb_fail; 795 goto skb_success; 796 } 797 798 nc = this_cpu_ptr(&napi_alloc_cache); 799 800 if (sk_memalloc_socks()) 801 gfp_mask |= __GFP_MEMALLOC; 802 803 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 804 /* we are artificially inflating the allocation size, but 805 * that is not as bad as it may look like, as: 806 * - 'len' less than GRO_MAX_HEAD makes little sense 807 * - On most systems, larger 'len' values lead to fragment 808 * size above 512 bytes 809 * - kmalloc would use the kmalloc-1k slab for such values 810 * - Builds with smaller GRO_MAX_HEAD will very likely do 811 * little networking, as that implies no WiFi and no 812 * tunnels support, and 32 bits arches. 813 */ 814 len = SZ_1K; 815 816 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 817 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 818 } else { 819 len = SKB_HEAD_ALIGN(len); 820 821 data = page_frag_alloc(&nc->page, len, gfp_mask); 822 pfmemalloc = nc->page.pfmemalloc; 823 } 824 825 if (unlikely(!data)) 826 return NULL; 827 828 skb = __napi_build_skb(data, len); 829 if (unlikely(!skb)) { 830 skb_free_frag(data); 831 return NULL; 832 } 833 834 if (pfmemalloc) 835 skb->pfmemalloc = 1; 836 skb->head_frag = 1; 837 838 skb_success: 839 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 840 skb->dev = napi->dev; 841 842 skb_fail: 843 return skb; 844 } 845 EXPORT_SYMBOL(__napi_alloc_skb); 846 847 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 848 int size, unsigned int truesize) 849 { 850 skb_fill_page_desc(skb, i, page, off, size); 851 skb->len += size; 852 skb->data_len += size; 853 skb->truesize += truesize; 854 } 855 EXPORT_SYMBOL(skb_add_rx_frag); 856 857 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 858 unsigned int truesize) 859 { 860 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 861 862 skb_frag_size_add(frag, size); 863 skb->len += size; 864 skb->data_len += size; 865 skb->truesize += truesize; 866 } 867 EXPORT_SYMBOL(skb_coalesce_rx_frag); 868 869 static void skb_drop_list(struct sk_buff **listp) 870 { 871 kfree_skb_list(*listp); 872 *listp = NULL; 873 } 874 875 static inline void skb_drop_fraglist(struct sk_buff *skb) 876 { 877 skb_drop_list(&skb_shinfo(skb)->frag_list); 878 } 879 880 static void skb_clone_fraglist(struct sk_buff *skb) 881 { 882 struct sk_buff *list; 883 884 skb_walk_frags(skb, list) 885 skb_get(list); 886 } 887 888 #if IS_ENABLED(CONFIG_PAGE_POOL) 889 bool napi_pp_put_page(struct page *page, bool napi_safe) 890 { 891 bool allow_direct = false; 892 struct page_pool *pp; 893 894 page = compound_head(page); 895 896 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 897 * in order to preserve any existing bits, such as bit 0 for the 898 * head page of compound page and bit 1 for pfmemalloc page, so 899 * mask those bits for freeing side when doing below checking, 900 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 901 * to avoid recycling the pfmemalloc page. 902 */ 903 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE)) 904 return false; 905 906 pp = page->pp; 907 908 /* Allow direct recycle if we have reasons to believe that we are 909 * in the same context as the consumer would run, so there's 910 * no possible race. 911 * __page_pool_put_page() makes sure we're not in hardirq context 912 * and interrupts are enabled prior to accessing the cache. 913 */ 914 if (napi_safe || in_softirq()) { 915 const struct napi_struct *napi = READ_ONCE(pp->p.napi); 916 917 allow_direct = napi && 918 READ_ONCE(napi->list_owner) == smp_processor_id(); 919 } 920 921 /* Driver set this to memory recycling info. Reset it on recycle. 922 * This will *not* work for NIC using a split-page memory model. 923 * The page will be returned to the pool here regardless of the 924 * 'flipped' fragment being in use or not. 925 */ 926 page_pool_put_full_page(pp, page, allow_direct); 927 928 return true; 929 } 930 EXPORT_SYMBOL(napi_pp_put_page); 931 #endif 932 933 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 934 { 935 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 936 return false; 937 return napi_pp_put_page(virt_to_page(data), napi_safe); 938 } 939 940 static void skb_kfree_head(void *head, unsigned int end_offset) 941 { 942 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 943 kmem_cache_free(skb_small_head_cache, head); 944 else 945 kfree(head); 946 } 947 948 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 949 { 950 unsigned char *head = skb->head; 951 952 if (skb->head_frag) { 953 if (skb_pp_recycle(skb, head, napi_safe)) 954 return; 955 skb_free_frag(head); 956 } else { 957 skb_kfree_head(head, skb_end_offset(skb)); 958 } 959 } 960 961 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 962 bool napi_safe) 963 { 964 struct skb_shared_info *shinfo = skb_shinfo(skb); 965 int i; 966 967 if (skb->cloned && 968 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 969 &shinfo->dataref)) 970 goto exit; 971 972 if (skb_zcopy(skb)) { 973 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 974 975 skb_zcopy_clear(skb, true); 976 if (skip_unref) 977 goto free_head; 978 } 979 980 for (i = 0; i < shinfo->nr_frags; i++) 981 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 982 983 free_head: 984 if (shinfo->frag_list) 985 kfree_skb_list_reason(shinfo->frag_list, reason); 986 987 skb_free_head(skb, napi_safe); 988 exit: 989 /* When we clone an SKB we copy the reycling bit. The pp_recycle 990 * bit is only set on the head though, so in order to avoid races 991 * while trying to recycle fragments on __skb_frag_unref() we need 992 * to make one SKB responsible for triggering the recycle path. 993 * So disable the recycling bit if an SKB is cloned and we have 994 * additional references to the fragmented part of the SKB. 995 * Eventually the last SKB will have the recycling bit set and it's 996 * dataref set to 0, which will trigger the recycling 997 */ 998 skb->pp_recycle = 0; 999 } 1000 1001 /* 1002 * Free an skbuff by memory without cleaning the state. 1003 */ 1004 static void kfree_skbmem(struct sk_buff *skb) 1005 { 1006 struct sk_buff_fclones *fclones; 1007 1008 switch (skb->fclone) { 1009 case SKB_FCLONE_UNAVAILABLE: 1010 kmem_cache_free(skbuff_cache, skb); 1011 return; 1012 1013 case SKB_FCLONE_ORIG: 1014 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1015 1016 /* We usually free the clone (TX completion) before original skb 1017 * This test would have no chance to be true for the clone, 1018 * while here, branch prediction will be good. 1019 */ 1020 if (refcount_read(&fclones->fclone_ref) == 1) 1021 goto fastpath; 1022 break; 1023 1024 default: /* SKB_FCLONE_CLONE */ 1025 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1026 break; 1027 } 1028 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1029 return; 1030 fastpath: 1031 kmem_cache_free(skbuff_fclone_cache, fclones); 1032 } 1033 1034 void skb_release_head_state(struct sk_buff *skb) 1035 { 1036 skb_dst_drop(skb); 1037 if (skb->destructor) { 1038 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1039 skb->destructor(skb); 1040 } 1041 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1042 nf_conntrack_put(skb_nfct(skb)); 1043 #endif 1044 skb_ext_put(skb); 1045 } 1046 1047 /* Free everything but the sk_buff shell. */ 1048 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1049 bool napi_safe) 1050 { 1051 skb_release_head_state(skb); 1052 if (likely(skb->head)) 1053 skb_release_data(skb, reason, napi_safe); 1054 } 1055 1056 /** 1057 * __kfree_skb - private function 1058 * @skb: buffer 1059 * 1060 * Free an sk_buff. Release anything attached to the buffer. 1061 * Clean the state. This is an internal helper function. Users should 1062 * always call kfree_skb 1063 */ 1064 1065 void __kfree_skb(struct sk_buff *skb) 1066 { 1067 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1068 kfree_skbmem(skb); 1069 } 1070 EXPORT_SYMBOL(__kfree_skb); 1071 1072 static __always_inline 1073 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1074 { 1075 if (unlikely(!skb_unref(skb))) 1076 return false; 1077 1078 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1079 u32_get_bits(reason, 1080 SKB_DROP_REASON_SUBSYS_MASK) >= 1081 SKB_DROP_REASON_SUBSYS_NUM); 1082 1083 if (reason == SKB_CONSUMED) 1084 trace_consume_skb(skb, __builtin_return_address(0)); 1085 else 1086 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1087 return true; 1088 } 1089 1090 /** 1091 * kfree_skb_reason - free an sk_buff with special reason 1092 * @skb: buffer to free 1093 * @reason: reason why this skb is dropped 1094 * 1095 * Drop a reference to the buffer and free it if the usage count has 1096 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1097 * tracepoint. 1098 */ 1099 void __fix_address 1100 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1101 { 1102 if (__kfree_skb_reason(skb, reason)) 1103 __kfree_skb(skb); 1104 } 1105 EXPORT_SYMBOL(kfree_skb_reason); 1106 1107 #define KFREE_SKB_BULK_SIZE 16 1108 1109 struct skb_free_array { 1110 unsigned int skb_count; 1111 void *skb_array[KFREE_SKB_BULK_SIZE]; 1112 }; 1113 1114 static void kfree_skb_add_bulk(struct sk_buff *skb, 1115 struct skb_free_array *sa, 1116 enum skb_drop_reason reason) 1117 { 1118 /* if SKB is a clone, don't handle this case */ 1119 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1120 __kfree_skb(skb); 1121 return; 1122 } 1123 1124 skb_release_all(skb, reason, false); 1125 sa->skb_array[sa->skb_count++] = skb; 1126 1127 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1128 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1129 sa->skb_array); 1130 sa->skb_count = 0; 1131 } 1132 } 1133 1134 void __fix_address 1135 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1136 { 1137 struct skb_free_array sa; 1138 1139 sa.skb_count = 0; 1140 1141 while (segs) { 1142 struct sk_buff *next = segs->next; 1143 1144 if (__kfree_skb_reason(segs, reason)) { 1145 skb_poison_list(segs); 1146 kfree_skb_add_bulk(segs, &sa, reason); 1147 } 1148 1149 segs = next; 1150 } 1151 1152 if (sa.skb_count) 1153 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1154 } 1155 EXPORT_SYMBOL(kfree_skb_list_reason); 1156 1157 /* Dump skb information and contents. 1158 * 1159 * Must only be called from net_ratelimit()-ed paths. 1160 * 1161 * Dumps whole packets if full_pkt, only headers otherwise. 1162 */ 1163 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1164 { 1165 struct skb_shared_info *sh = skb_shinfo(skb); 1166 struct net_device *dev = skb->dev; 1167 struct sock *sk = skb->sk; 1168 struct sk_buff *list_skb; 1169 bool has_mac, has_trans; 1170 int headroom, tailroom; 1171 int i, len, seg_len; 1172 1173 if (full_pkt) 1174 len = skb->len; 1175 else 1176 len = min_t(int, skb->len, MAX_HEADER + 128); 1177 1178 headroom = skb_headroom(skb); 1179 tailroom = skb_tailroom(skb); 1180 1181 has_mac = skb_mac_header_was_set(skb); 1182 has_trans = skb_transport_header_was_set(skb); 1183 1184 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1185 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1186 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1187 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1188 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1189 level, skb->len, headroom, skb_headlen(skb), tailroom, 1190 has_mac ? skb->mac_header : -1, 1191 has_mac ? skb_mac_header_len(skb) : -1, 1192 skb->network_header, 1193 has_trans ? skb_network_header_len(skb) : -1, 1194 has_trans ? skb->transport_header : -1, 1195 sh->tx_flags, sh->nr_frags, 1196 sh->gso_size, sh->gso_type, sh->gso_segs, 1197 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1198 skb->csum_valid, skb->csum_level, 1199 skb->hash, skb->sw_hash, skb->l4_hash, 1200 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1201 1202 if (dev) 1203 printk("%sdev name=%s feat=%pNF\n", 1204 level, dev->name, &dev->features); 1205 if (sk) 1206 printk("%ssk family=%hu type=%u proto=%u\n", 1207 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1208 1209 if (full_pkt && headroom) 1210 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1211 16, 1, skb->head, headroom, false); 1212 1213 seg_len = min_t(int, skb_headlen(skb), len); 1214 if (seg_len) 1215 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1216 16, 1, skb->data, seg_len, false); 1217 len -= seg_len; 1218 1219 if (full_pkt && tailroom) 1220 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1221 16, 1, skb_tail_pointer(skb), tailroom, false); 1222 1223 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1224 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1225 u32 p_off, p_len, copied; 1226 struct page *p; 1227 u8 *vaddr; 1228 1229 skb_frag_foreach_page(frag, skb_frag_off(frag), 1230 skb_frag_size(frag), p, p_off, p_len, 1231 copied) { 1232 seg_len = min_t(int, p_len, len); 1233 vaddr = kmap_atomic(p); 1234 print_hex_dump(level, "skb frag: ", 1235 DUMP_PREFIX_OFFSET, 1236 16, 1, vaddr + p_off, seg_len, false); 1237 kunmap_atomic(vaddr); 1238 len -= seg_len; 1239 if (!len) 1240 break; 1241 } 1242 } 1243 1244 if (full_pkt && skb_has_frag_list(skb)) { 1245 printk("skb fraglist:\n"); 1246 skb_walk_frags(skb, list_skb) 1247 skb_dump(level, list_skb, true); 1248 } 1249 } 1250 EXPORT_SYMBOL(skb_dump); 1251 1252 /** 1253 * skb_tx_error - report an sk_buff xmit error 1254 * @skb: buffer that triggered an error 1255 * 1256 * Report xmit error if a device callback is tracking this skb. 1257 * skb must be freed afterwards. 1258 */ 1259 void skb_tx_error(struct sk_buff *skb) 1260 { 1261 if (skb) { 1262 skb_zcopy_downgrade_managed(skb); 1263 skb_zcopy_clear(skb, true); 1264 } 1265 } 1266 EXPORT_SYMBOL(skb_tx_error); 1267 1268 #ifdef CONFIG_TRACEPOINTS 1269 /** 1270 * consume_skb - free an skbuff 1271 * @skb: buffer to free 1272 * 1273 * Drop a ref to the buffer and free it if the usage count has hit zero 1274 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1275 * is being dropped after a failure and notes that 1276 */ 1277 void consume_skb(struct sk_buff *skb) 1278 { 1279 if (!skb_unref(skb)) 1280 return; 1281 1282 trace_consume_skb(skb, __builtin_return_address(0)); 1283 __kfree_skb(skb); 1284 } 1285 EXPORT_SYMBOL(consume_skb); 1286 #endif 1287 1288 /** 1289 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1290 * @skb: buffer to free 1291 * 1292 * Alike consume_skb(), but this variant assumes that this is the last 1293 * skb reference and all the head states have been already dropped 1294 */ 1295 void __consume_stateless_skb(struct sk_buff *skb) 1296 { 1297 trace_consume_skb(skb, __builtin_return_address(0)); 1298 skb_release_data(skb, SKB_CONSUMED, false); 1299 kfree_skbmem(skb); 1300 } 1301 1302 static void napi_skb_cache_put(struct sk_buff *skb) 1303 { 1304 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1305 u32 i; 1306 1307 kasan_poison_object_data(skbuff_cache, skb); 1308 nc->skb_cache[nc->skb_count++] = skb; 1309 1310 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1311 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1312 kasan_unpoison_object_data(skbuff_cache, 1313 nc->skb_cache[i]); 1314 1315 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1316 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1317 nc->skb_count = NAPI_SKB_CACHE_HALF; 1318 } 1319 } 1320 1321 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1322 { 1323 skb_release_all(skb, reason, true); 1324 napi_skb_cache_put(skb); 1325 } 1326 1327 void napi_skb_free_stolen_head(struct sk_buff *skb) 1328 { 1329 if (unlikely(skb->slow_gro)) { 1330 nf_reset_ct(skb); 1331 skb_dst_drop(skb); 1332 skb_ext_put(skb); 1333 skb_orphan(skb); 1334 skb->slow_gro = 0; 1335 } 1336 napi_skb_cache_put(skb); 1337 } 1338 1339 void napi_consume_skb(struct sk_buff *skb, int budget) 1340 { 1341 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1342 if (unlikely(!budget)) { 1343 dev_consume_skb_any(skb); 1344 return; 1345 } 1346 1347 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1348 1349 if (!skb_unref(skb)) 1350 return; 1351 1352 /* if reaching here SKB is ready to free */ 1353 trace_consume_skb(skb, __builtin_return_address(0)); 1354 1355 /* if SKB is a clone, don't handle this case */ 1356 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1357 __kfree_skb(skb); 1358 return; 1359 } 1360 1361 skb_release_all(skb, SKB_CONSUMED, !!budget); 1362 napi_skb_cache_put(skb); 1363 } 1364 EXPORT_SYMBOL(napi_consume_skb); 1365 1366 /* Make sure a field is contained by headers group */ 1367 #define CHECK_SKB_FIELD(field) \ 1368 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1369 offsetof(struct sk_buff, headers.field)); \ 1370 1371 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1372 { 1373 new->tstamp = old->tstamp; 1374 /* We do not copy old->sk */ 1375 new->dev = old->dev; 1376 memcpy(new->cb, old->cb, sizeof(old->cb)); 1377 skb_dst_copy(new, old); 1378 __skb_ext_copy(new, old); 1379 __nf_copy(new, old, false); 1380 1381 /* Note : this field could be in the headers group. 1382 * It is not yet because we do not want to have a 16 bit hole 1383 */ 1384 new->queue_mapping = old->queue_mapping; 1385 1386 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1387 CHECK_SKB_FIELD(protocol); 1388 CHECK_SKB_FIELD(csum); 1389 CHECK_SKB_FIELD(hash); 1390 CHECK_SKB_FIELD(priority); 1391 CHECK_SKB_FIELD(skb_iif); 1392 CHECK_SKB_FIELD(vlan_proto); 1393 CHECK_SKB_FIELD(vlan_tci); 1394 CHECK_SKB_FIELD(transport_header); 1395 CHECK_SKB_FIELD(network_header); 1396 CHECK_SKB_FIELD(mac_header); 1397 CHECK_SKB_FIELD(inner_protocol); 1398 CHECK_SKB_FIELD(inner_transport_header); 1399 CHECK_SKB_FIELD(inner_network_header); 1400 CHECK_SKB_FIELD(inner_mac_header); 1401 CHECK_SKB_FIELD(mark); 1402 #ifdef CONFIG_NETWORK_SECMARK 1403 CHECK_SKB_FIELD(secmark); 1404 #endif 1405 #ifdef CONFIG_NET_RX_BUSY_POLL 1406 CHECK_SKB_FIELD(napi_id); 1407 #endif 1408 CHECK_SKB_FIELD(alloc_cpu); 1409 #ifdef CONFIG_XPS 1410 CHECK_SKB_FIELD(sender_cpu); 1411 #endif 1412 #ifdef CONFIG_NET_SCHED 1413 CHECK_SKB_FIELD(tc_index); 1414 #endif 1415 1416 } 1417 1418 /* 1419 * You should not add any new code to this function. Add it to 1420 * __copy_skb_header above instead. 1421 */ 1422 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1423 { 1424 #define C(x) n->x = skb->x 1425 1426 n->next = n->prev = NULL; 1427 n->sk = NULL; 1428 __copy_skb_header(n, skb); 1429 1430 C(len); 1431 C(data_len); 1432 C(mac_len); 1433 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1434 n->cloned = 1; 1435 n->nohdr = 0; 1436 n->peeked = 0; 1437 C(pfmemalloc); 1438 C(pp_recycle); 1439 n->destructor = NULL; 1440 C(tail); 1441 C(end); 1442 C(head); 1443 C(head_frag); 1444 C(data); 1445 C(truesize); 1446 refcount_set(&n->users, 1); 1447 1448 atomic_inc(&(skb_shinfo(skb)->dataref)); 1449 skb->cloned = 1; 1450 1451 return n; 1452 #undef C 1453 } 1454 1455 /** 1456 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1457 * @first: first sk_buff of the msg 1458 */ 1459 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1460 { 1461 struct sk_buff *n; 1462 1463 n = alloc_skb(0, GFP_ATOMIC); 1464 if (!n) 1465 return NULL; 1466 1467 n->len = first->len; 1468 n->data_len = first->len; 1469 n->truesize = first->truesize; 1470 1471 skb_shinfo(n)->frag_list = first; 1472 1473 __copy_skb_header(n, first); 1474 n->destructor = NULL; 1475 1476 return n; 1477 } 1478 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1479 1480 /** 1481 * skb_morph - morph one skb into another 1482 * @dst: the skb to receive the contents 1483 * @src: the skb to supply the contents 1484 * 1485 * This is identical to skb_clone except that the target skb is 1486 * supplied by the user. 1487 * 1488 * The target skb is returned upon exit. 1489 */ 1490 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1491 { 1492 skb_release_all(dst, SKB_CONSUMED, false); 1493 return __skb_clone(dst, src); 1494 } 1495 EXPORT_SYMBOL_GPL(skb_morph); 1496 1497 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1498 { 1499 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1500 struct user_struct *user; 1501 1502 if (capable(CAP_IPC_LOCK) || !size) 1503 return 0; 1504 1505 rlim = rlimit(RLIMIT_MEMLOCK); 1506 if (rlim == RLIM_INFINITY) 1507 return 0; 1508 1509 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1510 max_pg = rlim >> PAGE_SHIFT; 1511 user = mmp->user ? : current_user(); 1512 1513 old_pg = atomic_long_read(&user->locked_vm); 1514 do { 1515 new_pg = old_pg + num_pg; 1516 if (new_pg > max_pg) 1517 return -ENOBUFS; 1518 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1519 1520 if (!mmp->user) { 1521 mmp->user = get_uid(user); 1522 mmp->num_pg = num_pg; 1523 } else { 1524 mmp->num_pg += num_pg; 1525 } 1526 1527 return 0; 1528 } 1529 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1530 1531 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1532 { 1533 if (mmp->user) { 1534 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1535 free_uid(mmp->user); 1536 } 1537 } 1538 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1539 1540 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1541 { 1542 struct ubuf_info_msgzc *uarg; 1543 struct sk_buff *skb; 1544 1545 WARN_ON_ONCE(!in_task()); 1546 1547 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1548 if (!skb) 1549 return NULL; 1550 1551 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1552 uarg = (void *)skb->cb; 1553 uarg->mmp.user = NULL; 1554 1555 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1556 kfree_skb(skb); 1557 return NULL; 1558 } 1559 1560 uarg->ubuf.callback = msg_zerocopy_callback; 1561 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1562 uarg->len = 1; 1563 uarg->bytelen = size; 1564 uarg->zerocopy = 1; 1565 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1566 refcount_set(&uarg->ubuf.refcnt, 1); 1567 sock_hold(sk); 1568 1569 return &uarg->ubuf; 1570 } 1571 1572 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1573 { 1574 return container_of((void *)uarg, struct sk_buff, cb); 1575 } 1576 1577 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1578 struct ubuf_info *uarg) 1579 { 1580 if (uarg) { 1581 struct ubuf_info_msgzc *uarg_zc; 1582 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1583 u32 bytelen, next; 1584 1585 /* there might be non MSG_ZEROCOPY users */ 1586 if (uarg->callback != msg_zerocopy_callback) 1587 return NULL; 1588 1589 /* realloc only when socket is locked (TCP, UDP cork), 1590 * so uarg->len and sk_zckey access is serialized 1591 */ 1592 if (!sock_owned_by_user(sk)) { 1593 WARN_ON_ONCE(1); 1594 return NULL; 1595 } 1596 1597 uarg_zc = uarg_to_msgzc(uarg); 1598 bytelen = uarg_zc->bytelen + size; 1599 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1600 /* TCP can create new skb to attach new uarg */ 1601 if (sk->sk_type == SOCK_STREAM) 1602 goto new_alloc; 1603 return NULL; 1604 } 1605 1606 next = (u32)atomic_read(&sk->sk_zckey); 1607 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1608 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1609 return NULL; 1610 uarg_zc->len++; 1611 uarg_zc->bytelen = bytelen; 1612 atomic_set(&sk->sk_zckey, ++next); 1613 1614 /* no extra ref when appending to datagram (MSG_MORE) */ 1615 if (sk->sk_type == SOCK_STREAM) 1616 net_zcopy_get(uarg); 1617 1618 return uarg; 1619 } 1620 } 1621 1622 new_alloc: 1623 return msg_zerocopy_alloc(sk, size); 1624 } 1625 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1626 1627 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1628 { 1629 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1630 u32 old_lo, old_hi; 1631 u64 sum_len; 1632 1633 old_lo = serr->ee.ee_info; 1634 old_hi = serr->ee.ee_data; 1635 sum_len = old_hi - old_lo + 1ULL + len; 1636 1637 if (sum_len >= (1ULL << 32)) 1638 return false; 1639 1640 if (lo != old_hi + 1) 1641 return false; 1642 1643 serr->ee.ee_data += len; 1644 return true; 1645 } 1646 1647 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1648 { 1649 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1650 struct sock_exterr_skb *serr; 1651 struct sock *sk = skb->sk; 1652 struct sk_buff_head *q; 1653 unsigned long flags; 1654 bool is_zerocopy; 1655 u32 lo, hi; 1656 u16 len; 1657 1658 mm_unaccount_pinned_pages(&uarg->mmp); 1659 1660 /* if !len, there was only 1 call, and it was aborted 1661 * so do not queue a completion notification 1662 */ 1663 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1664 goto release; 1665 1666 len = uarg->len; 1667 lo = uarg->id; 1668 hi = uarg->id + len - 1; 1669 is_zerocopy = uarg->zerocopy; 1670 1671 serr = SKB_EXT_ERR(skb); 1672 memset(serr, 0, sizeof(*serr)); 1673 serr->ee.ee_errno = 0; 1674 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1675 serr->ee.ee_data = hi; 1676 serr->ee.ee_info = lo; 1677 if (!is_zerocopy) 1678 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1679 1680 q = &sk->sk_error_queue; 1681 spin_lock_irqsave(&q->lock, flags); 1682 tail = skb_peek_tail(q); 1683 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1684 !skb_zerocopy_notify_extend(tail, lo, len)) { 1685 __skb_queue_tail(q, skb); 1686 skb = NULL; 1687 } 1688 spin_unlock_irqrestore(&q->lock, flags); 1689 1690 sk_error_report(sk); 1691 1692 release: 1693 consume_skb(skb); 1694 sock_put(sk); 1695 } 1696 1697 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1698 bool success) 1699 { 1700 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1701 1702 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1703 1704 if (refcount_dec_and_test(&uarg->refcnt)) 1705 __msg_zerocopy_callback(uarg_zc); 1706 } 1707 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1708 1709 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1710 { 1711 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1712 1713 atomic_dec(&sk->sk_zckey); 1714 uarg_to_msgzc(uarg)->len--; 1715 1716 if (have_uref) 1717 msg_zerocopy_callback(NULL, uarg, true); 1718 } 1719 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1720 1721 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1722 struct msghdr *msg, int len, 1723 struct ubuf_info *uarg) 1724 { 1725 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1726 int err, orig_len = skb->len; 1727 1728 /* An skb can only point to one uarg. This edge case happens when 1729 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1730 */ 1731 if (orig_uarg && uarg != orig_uarg) 1732 return -EEXIST; 1733 1734 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1735 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1736 struct sock *save_sk = skb->sk; 1737 1738 /* Streams do not free skb on error. Reset to prev state. */ 1739 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1740 skb->sk = sk; 1741 ___pskb_trim(skb, orig_len); 1742 skb->sk = save_sk; 1743 return err; 1744 } 1745 1746 skb_zcopy_set(skb, uarg, NULL); 1747 return skb->len - orig_len; 1748 } 1749 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1750 1751 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1752 { 1753 int i; 1754 1755 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1757 skb_frag_ref(skb, i); 1758 } 1759 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1760 1761 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1762 gfp_t gfp_mask) 1763 { 1764 if (skb_zcopy(orig)) { 1765 if (skb_zcopy(nskb)) { 1766 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1767 if (!gfp_mask) { 1768 WARN_ON_ONCE(1); 1769 return -ENOMEM; 1770 } 1771 if (skb_uarg(nskb) == skb_uarg(orig)) 1772 return 0; 1773 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1774 return -EIO; 1775 } 1776 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1777 } 1778 return 0; 1779 } 1780 1781 /** 1782 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1783 * @skb: the skb to modify 1784 * @gfp_mask: allocation priority 1785 * 1786 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1787 * It will copy all frags into kernel and drop the reference 1788 * to userspace pages. 1789 * 1790 * If this function is called from an interrupt gfp_mask() must be 1791 * %GFP_ATOMIC. 1792 * 1793 * Returns 0 on success or a negative error code on failure 1794 * to allocate kernel memory to copy to. 1795 */ 1796 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1797 { 1798 int num_frags = skb_shinfo(skb)->nr_frags; 1799 struct page *page, *head = NULL; 1800 int i, order, psize, new_frags; 1801 u32 d_off; 1802 1803 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1804 return -EINVAL; 1805 1806 if (!num_frags) 1807 goto release; 1808 1809 /* We might have to allocate high order pages, so compute what minimum 1810 * page order is needed. 1811 */ 1812 order = 0; 1813 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1814 order++; 1815 psize = (PAGE_SIZE << order); 1816 1817 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1818 for (i = 0; i < new_frags; i++) { 1819 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1820 if (!page) { 1821 while (head) { 1822 struct page *next = (struct page *)page_private(head); 1823 put_page(head); 1824 head = next; 1825 } 1826 return -ENOMEM; 1827 } 1828 set_page_private(page, (unsigned long)head); 1829 head = page; 1830 } 1831 1832 page = head; 1833 d_off = 0; 1834 for (i = 0; i < num_frags; i++) { 1835 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1836 u32 p_off, p_len, copied; 1837 struct page *p; 1838 u8 *vaddr; 1839 1840 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1841 p, p_off, p_len, copied) { 1842 u32 copy, done = 0; 1843 vaddr = kmap_atomic(p); 1844 1845 while (done < p_len) { 1846 if (d_off == psize) { 1847 d_off = 0; 1848 page = (struct page *)page_private(page); 1849 } 1850 copy = min_t(u32, psize - d_off, p_len - done); 1851 memcpy(page_address(page) + d_off, 1852 vaddr + p_off + done, copy); 1853 done += copy; 1854 d_off += copy; 1855 } 1856 kunmap_atomic(vaddr); 1857 } 1858 } 1859 1860 /* skb frags release userspace buffers */ 1861 for (i = 0; i < num_frags; i++) 1862 skb_frag_unref(skb, i); 1863 1864 /* skb frags point to kernel buffers */ 1865 for (i = 0; i < new_frags - 1; i++) { 1866 __skb_fill_page_desc(skb, i, head, 0, psize); 1867 head = (struct page *)page_private(head); 1868 } 1869 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1870 skb_shinfo(skb)->nr_frags = new_frags; 1871 1872 release: 1873 skb_zcopy_clear(skb, false); 1874 return 0; 1875 } 1876 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1877 1878 /** 1879 * skb_clone - duplicate an sk_buff 1880 * @skb: buffer to clone 1881 * @gfp_mask: allocation priority 1882 * 1883 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1884 * copies share the same packet data but not structure. The new 1885 * buffer has a reference count of 1. If the allocation fails the 1886 * function returns %NULL otherwise the new buffer is returned. 1887 * 1888 * If this function is called from an interrupt gfp_mask() must be 1889 * %GFP_ATOMIC. 1890 */ 1891 1892 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1893 { 1894 struct sk_buff_fclones *fclones = container_of(skb, 1895 struct sk_buff_fclones, 1896 skb1); 1897 struct sk_buff *n; 1898 1899 if (skb_orphan_frags(skb, gfp_mask)) 1900 return NULL; 1901 1902 if (skb->fclone == SKB_FCLONE_ORIG && 1903 refcount_read(&fclones->fclone_ref) == 1) { 1904 n = &fclones->skb2; 1905 refcount_set(&fclones->fclone_ref, 2); 1906 n->fclone = SKB_FCLONE_CLONE; 1907 } else { 1908 if (skb_pfmemalloc(skb)) 1909 gfp_mask |= __GFP_MEMALLOC; 1910 1911 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1912 if (!n) 1913 return NULL; 1914 1915 n->fclone = SKB_FCLONE_UNAVAILABLE; 1916 } 1917 1918 return __skb_clone(n, skb); 1919 } 1920 EXPORT_SYMBOL(skb_clone); 1921 1922 void skb_headers_offset_update(struct sk_buff *skb, int off) 1923 { 1924 /* Only adjust this if it actually is csum_start rather than csum */ 1925 if (skb->ip_summed == CHECKSUM_PARTIAL) 1926 skb->csum_start += off; 1927 /* {transport,network,mac}_header and tail are relative to skb->head */ 1928 skb->transport_header += off; 1929 skb->network_header += off; 1930 if (skb_mac_header_was_set(skb)) 1931 skb->mac_header += off; 1932 skb->inner_transport_header += off; 1933 skb->inner_network_header += off; 1934 skb->inner_mac_header += off; 1935 } 1936 EXPORT_SYMBOL(skb_headers_offset_update); 1937 1938 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1939 { 1940 __copy_skb_header(new, old); 1941 1942 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1943 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1944 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1945 } 1946 EXPORT_SYMBOL(skb_copy_header); 1947 1948 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1949 { 1950 if (skb_pfmemalloc(skb)) 1951 return SKB_ALLOC_RX; 1952 return 0; 1953 } 1954 1955 /** 1956 * skb_copy - create private copy of an sk_buff 1957 * @skb: buffer to copy 1958 * @gfp_mask: allocation priority 1959 * 1960 * Make a copy of both an &sk_buff and its data. This is used when the 1961 * caller wishes to modify the data and needs a private copy of the 1962 * data to alter. Returns %NULL on failure or the pointer to the buffer 1963 * on success. The returned buffer has a reference count of 1. 1964 * 1965 * As by-product this function converts non-linear &sk_buff to linear 1966 * one, so that &sk_buff becomes completely private and caller is allowed 1967 * to modify all the data of returned buffer. This means that this 1968 * function is not recommended for use in circumstances when only 1969 * header is going to be modified. Use pskb_copy() instead. 1970 */ 1971 1972 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1973 { 1974 int headerlen = skb_headroom(skb); 1975 unsigned int size = skb_end_offset(skb) + skb->data_len; 1976 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1977 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1978 1979 if (!n) 1980 return NULL; 1981 1982 /* Set the data pointer */ 1983 skb_reserve(n, headerlen); 1984 /* Set the tail pointer and length */ 1985 skb_put(n, skb->len); 1986 1987 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1988 1989 skb_copy_header(n, skb); 1990 return n; 1991 } 1992 EXPORT_SYMBOL(skb_copy); 1993 1994 /** 1995 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1996 * @skb: buffer to copy 1997 * @headroom: headroom of new skb 1998 * @gfp_mask: allocation priority 1999 * @fclone: if true allocate the copy of the skb from the fclone 2000 * cache instead of the head cache; it is recommended to set this 2001 * to true for the cases where the copy will likely be cloned 2002 * 2003 * Make a copy of both an &sk_buff and part of its data, located 2004 * in header. Fragmented data remain shared. This is used when 2005 * the caller wishes to modify only header of &sk_buff and needs 2006 * private copy of the header to alter. Returns %NULL on failure 2007 * or the pointer to the buffer on success. 2008 * The returned buffer has a reference count of 1. 2009 */ 2010 2011 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2012 gfp_t gfp_mask, bool fclone) 2013 { 2014 unsigned int size = skb_headlen(skb) + headroom; 2015 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2016 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2017 2018 if (!n) 2019 goto out; 2020 2021 /* Set the data pointer */ 2022 skb_reserve(n, headroom); 2023 /* Set the tail pointer and length */ 2024 skb_put(n, skb_headlen(skb)); 2025 /* Copy the bytes */ 2026 skb_copy_from_linear_data(skb, n->data, n->len); 2027 2028 n->truesize += skb->data_len; 2029 n->data_len = skb->data_len; 2030 n->len = skb->len; 2031 2032 if (skb_shinfo(skb)->nr_frags) { 2033 int i; 2034 2035 if (skb_orphan_frags(skb, gfp_mask) || 2036 skb_zerocopy_clone(n, skb, gfp_mask)) { 2037 kfree_skb(n); 2038 n = NULL; 2039 goto out; 2040 } 2041 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2042 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2043 skb_frag_ref(skb, i); 2044 } 2045 skb_shinfo(n)->nr_frags = i; 2046 } 2047 2048 if (skb_has_frag_list(skb)) { 2049 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2050 skb_clone_fraglist(n); 2051 } 2052 2053 skb_copy_header(n, skb); 2054 out: 2055 return n; 2056 } 2057 EXPORT_SYMBOL(__pskb_copy_fclone); 2058 2059 /** 2060 * pskb_expand_head - reallocate header of &sk_buff 2061 * @skb: buffer to reallocate 2062 * @nhead: room to add at head 2063 * @ntail: room to add at tail 2064 * @gfp_mask: allocation priority 2065 * 2066 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2067 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2068 * reference count of 1. Returns zero in the case of success or error, 2069 * if expansion failed. In the last case, &sk_buff is not changed. 2070 * 2071 * All the pointers pointing into skb header may change and must be 2072 * reloaded after call to this function. 2073 */ 2074 2075 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2076 gfp_t gfp_mask) 2077 { 2078 unsigned int osize = skb_end_offset(skb); 2079 unsigned int size = osize + nhead + ntail; 2080 long off; 2081 u8 *data; 2082 int i; 2083 2084 BUG_ON(nhead < 0); 2085 2086 BUG_ON(skb_shared(skb)); 2087 2088 skb_zcopy_downgrade_managed(skb); 2089 2090 if (skb_pfmemalloc(skb)) 2091 gfp_mask |= __GFP_MEMALLOC; 2092 2093 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2094 if (!data) 2095 goto nodata; 2096 size = SKB_WITH_OVERHEAD(size); 2097 2098 /* Copy only real data... and, alas, header. This should be 2099 * optimized for the cases when header is void. 2100 */ 2101 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2102 2103 memcpy((struct skb_shared_info *)(data + size), 2104 skb_shinfo(skb), 2105 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2106 2107 /* 2108 * if shinfo is shared we must drop the old head gracefully, but if it 2109 * is not we can just drop the old head and let the existing refcount 2110 * be since all we did is relocate the values 2111 */ 2112 if (skb_cloned(skb)) { 2113 if (skb_orphan_frags(skb, gfp_mask)) 2114 goto nofrags; 2115 if (skb_zcopy(skb)) 2116 refcount_inc(&skb_uarg(skb)->refcnt); 2117 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2118 skb_frag_ref(skb, i); 2119 2120 if (skb_has_frag_list(skb)) 2121 skb_clone_fraglist(skb); 2122 2123 skb_release_data(skb, SKB_CONSUMED, false); 2124 } else { 2125 skb_free_head(skb, false); 2126 } 2127 off = (data + nhead) - skb->head; 2128 2129 skb->head = data; 2130 skb->head_frag = 0; 2131 skb->data += off; 2132 2133 skb_set_end_offset(skb, size); 2134 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2135 off = nhead; 2136 #endif 2137 skb->tail += off; 2138 skb_headers_offset_update(skb, nhead); 2139 skb->cloned = 0; 2140 skb->hdr_len = 0; 2141 skb->nohdr = 0; 2142 atomic_set(&skb_shinfo(skb)->dataref, 1); 2143 2144 skb_metadata_clear(skb); 2145 2146 /* It is not generally safe to change skb->truesize. 2147 * For the moment, we really care of rx path, or 2148 * when skb is orphaned (not attached to a socket). 2149 */ 2150 if (!skb->sk || skb->destructor == sock_edemux) 2151 skb->truesize += size - osize; 2152 2153 return 0; 2154 2155 nofrags: 2156 skb_kfree_head(data, size); 2157 nodata: 2158 return -ENOMEM; 2159 } 2160 EXPORT_SYMBOL(pskb_expand_head); 2161 2162 /* Make private copy of skb with writable head and some headroom */ 2163 2164 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2165 { 2166 struct sk_buff *skb2; 2167 int delta = headroom - skb_headroom(skb); 2168 2169 if (delta <= 0) 2170 skb2 = pskb_copy(skb, GFP_ATOMIC); 2171 else { 2172 skb2 = skb_clone(skb, GFP_ATOMIC); 2173 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2174 GFP_ATOMIC)) { 2175 kfree_skb(skb2); 2176 skb2 = NULL; 2177 } 2178 } 2179 return skb2; 2180 } 2181 EXPORT_SYMBOL(skb_realloc_headroom); 2182 2183 /* Note: We plan to rework this in linux-6.4 */ 2184 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2185 { 2186 unsigned int saved_end_offset, saved_truesize; 2187 struct skb_shared_info *shinfo; 2188 int res; 2189 2190 saved_end_offset = skb_end_offset(skb); 2191 saved_truesize = skb->truesize; 2192 2193 res = pskb_expand_head(skb, 0, 0, pri); 2194 if (res) 2195 return res; 2196 2197 skb->truesize = saved_truesize; 2198 2199 if (likely(skb_end_offset(skb) == saved_end_offset)) 2200 return 0; 2201 2202 /* We can not change skb->end if the original or new value 2203 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2204 */ 2205 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2206 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2207 /* We think this path should not be taken. 2208 * Add a temporary trace to warn us just in case. 2209 */ 2210 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2211 saved_end_offset, skb_end_offset(skb)); 2212 WARN_ON_ONCE(1); 2213 return 0; 2214 } 2215 2216 shinfo = skb_shinfo(skb); 2217 2218 /* We are about to change back skb->end, 2219 * we need to move skb_shinfo() to its new location. 2220 */ 2221 memmove(skb->head + saved_end_offset, 2222 shinfo, 2223 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2224 2225 skb_set_end_offset(skb, saved_end_offset); 2226 2227 return 0; 2228 } 2229 2230 /** 2231 * skb_expand_head - reallocate header of &sk_buff 2232 * @skb: buffer to reallocate 2233 * @headroom: needed headroom 2234 * 2235 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2236 * if possible; copies skb->sk to new skb as needed 2237 * and frees original skb in case of failures. 2238 * 2239 * It expect increased headroom and generates warning otherwise. 2240 */ 2241 2242 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2243 { 2244 int delta = headroom - skb_headroom(skb); 2245 int osize = skb_end_offset(skb); 2246 struct sock *sk = skb->sk; 2247 2248 if (WARN_ONCE(delta <= 0, 2249 "%s is expecting an increase in the headroom", __func__)) 2250 return skb; 2251 2252 delta = SKB_DATA_ALIGN(delta); 2253 /* pskb_expand_head() might crash, if skb is shared. */ 2254 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2255 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2256 2257 if (unlikely(!nskb)) 2258 goto fail; 2259 2260 if (sk) 2261 skb_set_owner_w(nskb, sk); 2262 consume_skb(skb); 2263 skb = nskb; 2264 } 2265 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2266 goto fail; 2267 2268 if (sk && is_skb_wmem(skb)) { 2269 delta = skb_end_offset(skb) - osize; 2270 refcount_add(delta, &sk->sk_wmem_alloc); 2271 skb->truesize += delta; 2272 } 2273 return skb; 2274 2275 fail: 2276 kfree_skb(skb); 2277 return NULL; 2278 } 2279 EXPORT_SYMBOL(skb_expand_head); 2280 2281 /** 2282 * skb_copy_expand - copy and expand sk_buff 2283 * @skb: buffer to copy 2284 * @newheadroom: new free bytes at head 2285 * @newtailroom: new free bytes at tail 2286 * @gfp_mask: allocation priority 2287 * 2288 * Make a copy of both an &sk_buff and its data and while doing so 2289 * allocate additional space. 2290 * 2291 * This is used when the caller wishes to modify the data and needs a 2292 * private copy of the data to alter as well as more space for new fields. 2293 * Returns %NULL on failure or the pointer to the buffer 2294 * on success. The returned buffer has a reference count of 1. 2295 * 2296 * You must pass %GFP_ATOMIC as the allocation priority if this function 2297 * is called from an interrupt. 2298 */ 2299 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2300 int newheadroom, int newtailroom, 2301 gfp_t gfp_mask) 2302 { 2303 /* 2304 * Allocate the copy buffer 2305 */ 2306 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2307 gfp_mask, skb_alloc_rx_flag(skb), 2308 NUMA_NO_NODE); 2309 int oldheadroom = skb_headroom(skb); 2310 int head_copy_len, head_copy_off; 2311 2312 if (!n) 2313 return NULL; 2314 2315 skb_reserve(n, newheadroom); 2316 2317 /* Set the tail pointer and length */ 2318 skb_put(n, skb->len); 2319 2320 head_copy_len = oldheadroom; 2321 head_copy_off = 0; 2322 if (newheadroom <= head_copy_len) 2323 head_copy_len = newheadroom; 2324 else 2325 head_copy_off = newheadroom - head_copy_len; 2326 2327 /* Copy the linear header and data. */ 2328 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2329 skb->len + head_copy_len)); 2330 2331 skb_copy_header(n, skb); 2332 2333 skb_headers_offset_update(n, newheadroom - oldheadroom); 2334 2335 return n; 2336 } 2337 EXPORT_SYMBOL(skb_copy_expand); 2338 2339 /** 2340 * __skb_pad - zero pad the tail of an skb 2341 * @skb: buffer to pad 2342 * @pad: space to pad 2343 * @free_on_error: free buffer on error 2344 * 2345 * Ensure that a buffer is followed by a padding area that is zero 2346 * filled. Used by network drivers which may DMA or transfer data 2347 * beyond the buffer end onto the wire. 2348 * 2349 * May return error in out of memory cases. The skb is freed on error 2350 * if @free_on_error is true. 2351 */ 2352 2353 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2354 { 2355 int err; 2356 int ntail; 2357 2358 /* If the skbuff is non linear tailroom is always zero.. */ 2359 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2360 memset(skb->data+skb->len, 0, pad); 2361 return 0; 2362 } 2363 2364 ntail = skb->data_len + pad - (skb->end - skb->tail); 2365 if (likely(skb_cloned(skb) || ntail > 0)) { 2366 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2367 if (unlikely(err)) 2368 goto free_skb; 2369 } 2370 2371 /* FIXME: The use of this function with non-linear skb's really needs 2372 * to be audited. 2373 */ 2374 err = skb_linearize(skb); 2375 if (unlikely(err)) 2376 goto free_skb; 2377 2378 memset(skb->data + skb->len, 0, pad); 2379 return 0; 2380 2381 free_skb: 2382 if (free_on_error) 2383 kfree_skb(skb); 2384 return err; 2385 } 2386 EXPORT_SYMBOL(__skb_pad); 2387 2388 /** 2389 * pskb_put - add data to the tail of a potentially fragmented buffer 2390 * @skb: start of the buffer to use 2391 * @tail: tail fragment of the buffer to use 2392 * @len: amount of data to add 2393 * 2394 * This function extends the used data area of the potentially 2395 * fragmented buffer. @tail must be the last fragment of @skb -- or 2396 * @skb itself. If this would exceed the total buffer size the kernel 2397 * will panic. A pointer to the first byte of the extra data is 2398 * returned. 2399 */ 2400 2401 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2402 { 2403 if (tail != skb) { 2404 skb->data_len += len; 2405 skb->len += len; 2406 } 2407 return skb_put(tail, len); 2408 } 2409 EXPORT_SYMBOL_GPL(pskb_put); 2410 2411 /** 2412 * skb_put - add data to a buffer 2413 * @skb: buffer to use 2414 * @len: amount of data to add 2415 * 2416 * This function extends the used data area of the buffer. If this would 2417 * exceed the total buffer size the kernel will panic. A pointer to the 2418 * first byte of the extra data is returned. 2419 */ 2420 void *skb_put(struct sk_buff *skb, unsigned int len) 2421 { 2422 void *tmp = skb_tail_pointer(skb); 2423 SKB_LINEAR_ASSERT(skb); 2424 skb->tail += len; 2425 skb->len += len; 2426 if (unlikely(skb->tail > skb->end)) 2427 skb_over_panic(skb, len, __builtin_return_address(0)); 2428 return tmp; 2429 } 2430 EXPORT_SYMBOL(skb_put); 2431 2432 /** 2433 * skb_push - add data to the start of a buffer 2434 * @skb: buffer to use 2435 * @len: amount of data to add 2436 * 2437 * This function extends the used data area of the buffer at the buffer 2438 * start. If this would exceed the total buffer headroom the kernel will 2439 * panic. A pointer to the first byte of the extra data is returned. 2440 */ 2441 void *skb_push(struct sk_buff *skb, unsigned int len) 2442 { 2443 skb->data -= len; 2444 skb->len += len; 2445 if (unlikely(skb->data < skb->head)) 2446 skb_under_panic(skb, len, __builtin_return_address(0)); 2447 return skb->data; 2448 } 2449 EXPORT_SYMBOL(skb_push); 2450 2451 /** 2452 * skb_pull - remove data from the start of a buffer 2453 * @skb: buffer to use 2454 * @len: amount of data to remove 2455 * 2456 * This function removes data from the start of a buffer, returning 2457 * the memory to the headroom. A pointer to the next data in the buffer 2458 * is returned. Once the data has been pulled future pushes will overwrite 2459 * the old data. 2460 */ 2461 void *skb_pull(struct sk_buff *skb, unsigned int len) 2462 { 2463 return skb_pull_inline(skb, len); 2464 } 2465 EXPORT_SYMBOL(skb_pull); 2466 2467 /** 2468 * skb_pull_data - remove data from the start of a buffer returning its 2469 * original position. 2470 * @skb: buffer to use 2471 * @len: amount of data to remove 2472 * 2473 * This function removes data from the start of a buffer, returning 2474 * the memory to the headroom. A pointer to the original data in the buffer 2475 * is returned after checking if there is enough data to pull. Once the 2476 * data has been pulled future pushes will overwrite the old data. 2477 */ 2478 void *skb_pull_data(struct sk_buff *skb, size_t len) 2479 { 2480 void *data = skb->data; 2481 2482 if (skb->len < len) 2483 return NULL; 2484 2485 skb_pull(skb, len); 2486 2487 return data; 2488 } 2489 EXPORT_SYMBOL(skb_pull_data); 2490 2491 /** 2492 * skb_trim - remove end from a buffer 2493 * @skb: buffer to alter 2494 * @len: new length 2495 * 2496 * Cut the length of a buffer down by removing data from the tail. If 2497 * the buffer is already under the length specified it is not modified. 2498 * The skb must be linear. 2499 */ 2500 void skb_trim(struct sk_buff *skb, unsigned int len) 2501 { 2502 if (skb->len > len) 2503 __skb_trim(skb, len); 2504 } 2505 EXPORT_SYMBOL(skb_trim); 2506 2507 /* Trims skb to length len. It can change skb pointers. 2508 */ 2509 2510 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2511 { 2512 struct sk_buff **fragp; 2513 struct sk_buff *frag; 2514 int offset = skb_headlen(skb); 2515 int nfrags = skb_shinfo(skb)->nr_frags; 2516 int i; 2517 int err; 2518 2519 if (skb_cloned(skb) && 2520 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2521 return err; 2522 2523 i = 0; 2524 if (offset >= len) 2525 goto drop_pages; 2526 2527 for (; i < nfrags; i++) { 2528 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2529 2530 if (end < len) { 2531 offset = end; 2532 continue; 2533 } 2534 2535 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2536 2537 drop_pages: 2538 skb_shinfo(skb)->nr_frags = i; 2539 2540 for (; i < nfrags; i++) 2541 skb_frag_unref(skb, i); 2542 2543 if (skb_has_frag_list(skb)) 2544 skb_drop_fraglist(skb); 2545 goto done; 2546 } 2547 2548 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2549 fragp = &frag->next) { 2550 int end = offset + frag->len; 2551 2552 if (skb_shared(frag)) { 2553 struct sk_buff *nfrag; 2554 2555 nfrag = skb_clone(frag, GFP_ATOMIC); 2556 if (unlikely(!nfrag)) 2557 return -ENOMEM; 2558 2559 nfrag->next = frag->next; 2560 consume_skb(frag); 2561 frag = nfrag; 2562 *fragp = frag; 2563 } 2564 2565 if (end < len) { 2566 offset = end; 2567 continue; 2568 } 2569 2570 if (end > len && 2571 unlikely((err = pskb_trim(frag, len - offset)))) 2572 return err; 2573 2574 if (frag->next) 2575 skb_drop_list(&frag->next); 2576 break; 2577 } 2578 2579 done: 2580 if (len > skb_headlen(skb)) { 2581 skb->data_len -= skb->len - len; 2582 skb->len = len; 2583 } else { 2584 skb->len = len; 2585 skb->data_len = 0; 2586 skb_set_tail_pointer(skb, len); 2587 } 2588 2589 if (!skb->sk || skb->destructor == sock_edemux) 2590 skb_condense(skb); 2591 return 0; 2592 } 2593 EXPORT_SYMBOL(___pskb_trim); 2594 2595 /* Note : use pskb_trim_rcsum() instead of calling this directly 2596 */ 2597 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2598 { 2599 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2600 int delta = skb->len - len; 2601 2602 skb->csum = csum_block_sub(skb->csum, 2603 skb_checksum(skb, len, delta, 0), 2604 len); 2605 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2606 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2607 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2608 2609 if (offset + sizeof(__sum16) > hdlen) 2610 return -EINVAL; 2611 } 2612 return __pskb_trim(skb, len); 2613 } 2614 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2615 2616 /** 2617 * __pskb_pull_tail - advance tail of skb header 2618 * @skb: buffer to reallocate 2619 * @delta: number of bytes to advance tail 2620 * 2621 * The function makes a sense only on a fragmented &sk_buff, 2622 * it expands header moving its tail forward and copying necessary 2623 * data from fragmented part. 2624 * 2625 * &sk_buff MUST have reference count of 1. 2626 * 2627 * Returns %NULL (and &sk_buff does not change) if pull failed 2628 * or value of new tail of skb in the case of success. 2629 * 2630 * All the pointers pointing into skb header may change and must be 2631 * reloaded after call to this function. 2632 */ 2633 2634 /* Moves tail of skb head forward, copying data from fragmented part, 2635 * when it is necessary. 2636 * 1. It may fail due to malloc failure. 2637 * 2. It may change skb pointers. 2638 * 2639 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2640 */ 2641 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2642 { 2643 /* If skb has not enough free space at tail, get new one 2644 * plus 128 bytes for future expansions. If we have enough 2645 * room at tail, reallocate without expansion only if skb is cloned. 2646 */ 2647 int i, k, eat = (skb->tail + delta) - skb->end; 2648 2649 if (eat > 0 || skb_cloned(skb)) { 2650 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2651 GFP_ATOMIC)) 2652 return NULL; 2653 } 2654 2655 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2656 skb_tail_pointer(skb), delta)); 2657 2658 /* Optimization: no fragments, no reasons to preestimate 2659 * size of pulled pages. Superb. 2660 */ 2661 if (!skb_has_frag_list(skb)) 2662 goto pull_pages; 2663 2664 /* Estimate size of pulled pages. */ 2665 eat = delta; 2666 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2667 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2668 2669 if (size >= eat) 2670 goto pull_pages; 2671 eat -= size; 2672 } 2673 2674 /* If we need update frag list, we are in troubles. 2675 * Certainly, it is possible to add an offset to skb data, 2676 * but taking into account that pulling is expected to 2677 * be very rare operation, it is worth to fight against 2678 * further bloating skb head and crucify ourselves here instead. 2679 * Pure masohism, indeed. 8)8) 2680 */ 2681 if (eat) { 2682 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2683 struct sk_buff *clone = NULL; 2684 struct sk_buff *insp = NULL; 2685 2686 do { 2687 if (list->len <= eat) { 2688 /* Eaten as whole. */ 2689 eat -= list->len; 2690 list = list->next; 2691 insp = list; 2692 } else { 2693 /* Eaten partially. */ 2694 if (skb_is_gso(skb) && !list->head_frag && 2695 skb_headlen(list)) 2696 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2697 2698 if (skb_shared(list)) { 2699 /* Sucks! We need to fork list. :-( */ 2700 clone = skb_clone(list, GFP_ATOMIC); 2701 if (!clone) 2702 return NULL; 2703 insp = list->next; 2704 list = clone; 2705 } else { 2706 /* This may be pulled without 2707 * problems. */ 2708 insp = list; 2709 } 2710 if (!pskb_pull(list, eat)) { 2711 kfree_skb(clone); 2712 return NULL; 2713 } 2714 break; 2715 } 2716 } while (eat); 2717 2718 /* Free pulled out fragments. */ 2719 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2720 skb_shinfo(skb)->frag_list = list->next; 2721 consume_skb(list); 2722 } 2723 /* And insert new clone at head. */ 2724 if (clone) { 2725 clone->next = list; 2726 skb_shinfo(skb)->frag_list = clone; 2727 } 2728 } 2729 /* Success! Now we may commit changes to skb data. */ 2730 2731 pull_pages: 2732 eat = delta; 2733 k = 0; 2734 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2735 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2736 2737 if (size <= eat) { 2738 skb_frag_unref(skb, i); 2739 eat -= size; 2740 } else { 2741 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2742 2743 *frag = skb_shinfo(skb)->frags[i]; 2744 if (eat) { 2745 skb_frag_off_add(frag, eat); 2746 skb_frag_size_sub(frag, eat); 2747 if (!i) 2748 goto end; 2749 eat = 0; 2750 } 2751 k++; 2752 } 2753 } 2754 skb_shinfo(skb)->nr_frags = k; 2755 2756 end: 2757 skb->tail += delta; 2758 skb->data_len -= delta; 2759 2760 if (!skb->data_len) 2761 skb_zcopy_clear(skb, false); 2762 2763 return skb_tail_pointer(skb); 2764 } 2765 EXPORT_SYMBOL(__pskb_pull_tail); 2766 2767 /** 2768 * skb_copy_bits - copy bits from skb to kernel buffer 2769 * @skb: source skb 2770 * @offset: offset in source 2771 * @to: destination buffer 2772 * @len: number of bytes to copy 2773 * 2774 * Copy the specified number of bytes from the source skb to the 2775 * destination buffer. 2776 * 2777 * CAUTION ! : 2778 * If its prototype is ever changed, 2779 * check arch/{*}/net/{*}.S files, 2780 * since it is called from BPF assembly code. 2781 */ 2782 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2783 { 2784 int start = skb_headlen(skb); 2785 struct sk_buff *frag_iter; 2786 int i, copy; 2787 2788 if (offset > (int)skb->len - len) 2789 goto fault; 2790 2791 /* Copy header. */ 2792 if ((copy = start - offset) > 0) { 2793 if (copy > len) 2794 copy = len; 2795 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2796 if ((len -= copy) == 0) 2797 return 0; 2798 offset += copy; 2799 to += copy; 2800 } 2801 2802 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2803 int end; 2804 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2805 2806 WARN_ON(start > offset + len); 2807 2808 end = start + skb_frag_size(f); 2809 if ((copy = end - offset) > 0) { 2810 u32 p_off, p_len, copied; 2811 struct page *p; 2812 u8 *vaddr; 2813 2814 if (copy > len) 2815 copy = len; 2816 2817 skb_frag_foreach_page(f, 2818 skb_frag_off(f) + offset - start, 2819 copy, p, p_off, p_len, copied) { 2820 vaddr = kmap_atomic(p); 2821 memcpy(to + copied, vaddr + p_off, p_len); 2822 kunmap_atomic(vaddr); 2823 } 2824 2825 if ((len -= copy) == 0) 2826 return 0; 2827 offset += copy; 2828 to += copy; 2829 } 2830 start = end; 2831 } 2832 2833 skb_walk_frags(skb, frag_iter) { 2834 int end; 2835 2836 WARN_ON(start > offset + len); 2837 2838 end = start + frag_iter->len; 2839 if ((copy = end - offset) > 0) { 2840 if (copy > len) 2841 copy = len; 2842 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2843 goto fault; 2844 if ((len -= copy) == 0) 2845 return 0; 2846 offset += copy; 2847 to += copy; 2848 } 2849 start = end; 2850 } 2851 2852 if (!len) 2853 return 0; 2854 2855 fault: 2856 return -EFAULT; 2857 } 2858 EXPORT_SYMBOL(skb_copy_bits); 2859 2860 /* 2861 * Callback from splice_to_pipe(), if we need to release some pages 2862 * at the end of the spd in case we error'ed out in filling the pipe. 2863 */ 2864 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2865 { 2866 put_page(spd->pages[i]); 2867 } 2868 2869 static struct page *linear_to_page(struct page *page, unsigned int *len, 2870 unsigned int *offset, 2871 struct sock *sk) 2872 { 2873 struct page_frag *pfrag = sk_page_frag(sk); 2874 2875 if (!sk_page_frag_refill(sk, pfrag)) 2876 return NULL; 2877 2878 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2879 2880 memcpy(page_address(pfrag->page) + pfrag->offset, 2881 page_address(page) + *offset, *len); 2882 *offset = pfrag->offset; 2883 pfrag->offset += *len; 2884 2885 return pfrag->page; 2886 } 2887 2888 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2889 struct page *page, 2890 unsigned int offset) 2891 { 2892 return spd->nr_pages && 2893 spd->pages[spd->nr_pages - 1] == page && 2894 (spd->partial[spd->nr_pages - 1].offset + 2895 spd->partial[spd->nr_pages - 1].len == offset); 2896 } 2897 2898 /* 2899 * Fill page/offset/length into spd, if it can hold more pages. 2900 */ 2901 static bool spd_fill_page(struct splice_pipe_desc *spd, 2902 struct pipe_inode_info *pipe, struct page *page, 2903 unsigned int *len, unsigned int offset, 2904 bool linear, 2905 struct sock *sk) 2906 { 2907 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2908 return true; 2909 2910 if (linear) { 2911 page = linear_to_page(page, len, &offset, sk); 2912 if (!page) 2913 return true; 2914 } 2915 if (spd_can_coalesce(spd, page, offset)) { 2916 spd->partial[spd->nr_pages - 1].len += *len; 2917 return false; 2918 } 2919 get_page(page); 2920 spd->pages[spd->nr_pages] = page; 2921 spd->partial[spd->nr_pages].len = *len; 2922 spd->partial[spd->nr_pages].offset = offset; 2923 spd->nr_pages++; 2924 2925 return false; 2926 } 2927 2928 static bool __splice_segment(struct page *page, unsigned int poff, 2929 unsigned int plen, unsigned int *off, 2930 unsigned int *len, 2931 struct splice_pipe_desc *spd, bool linear, 2932 struct sock *sk, 2933 struct pipe_inode_info *pipe) 2934 { 2935 if (!*len) 2936 return true; 2937 2938 /* skip this segment if already processed */ 2939 if (*off >= plen) { 2940 *off -= plen; 2941 return false; 2942 } 2943 2944 /* ignore any bits we already processed */ 2945 poff += *off; 2946 plen -= *off; 2947 *off = 0; 2948 2949 do { 2950 unsigned int flen = min(*len, plen); 2951 2952 if (spd_fill_page(spd, pipe, page, &flen, poff, 2953 linear, sk)) 2954 return true; 2955 poff += flen; 2956 plen -= flen; 2957 *len -= flen; 2958 } while (*len && plen); 2959 2960 return false; 2961 } 2962 2963 /* 2964 * Map linear and fragment data from the skb to spd. It reports true if the 2965 * pipe is full or if we already spliced the requested length. 2966 */ 2967 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2968 unsigned int *offset, unsigned int *len, 2969 struct splice_pipe_desc *spd, struct sock *sk) 2970 { 2971 int seg; 2972 struct sk_buff *iter; 2973 2974 /* map the linear part : 2975 * If skb->head_frag is set, this 'linear' part is backed by a 2976 * fragment, and if the head is not shared with any clones then 2977 * we can avoid a copy since we own the head portion of this page. 2978 */ 2979 if (__splice_segment(virt_to_page(skb->data), 2980 (unsigned long) skb->data & (PAGE_SIZE - 1), 2981 skb_headlen(skb), 2982 offset, len, spd, 2983 skb_head_is_locked(skb), 2984 sk, pipe)) 2985 return true; 2986 2987 /* 2988 * then map the fragments 2989 */ 2990 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2991 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2992 2993 if (__splice_segment(skb_frag_page(f), 2994 skb_frag_off(f), skb_frag_size(f), 2995 offset, len, spd, false, sk, pipe)) 2996 return true; 2997 } 2998 2999 skb_walk_frags(skb, iter) { 3000 if (*offset >= iter->len) { 3001 *offset -= iter->len; 3002 continue; 3003 } 3004 /* __skb_splice_bits() only fails if the output has no room 3005 * left, so no point in going over the frag_list for the error 3006 * case. 3007 */ 3008 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3009 return true; 3010 } 3011 3012 return false; 3013 } 3014 3015 /* 3016 * Map data from the skb to a pipe. Should handle both the linear part, 3017 * the fragments, and the frag list. 3018 */ 3019 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3020 struct pipe_inode_info *pipe, unsigned int tlen, 3021 unsigned int flags) 3022 { 3023 struct partial_page partial[MAX_SKB_FRAGS]; 3024 struct page *pages[MAX_SKB_FRAGS]; 3025 struct splice_pipe_desc spd = { 3026 .pages = pages, 3027 .partial = partial, 3028 .nr_pages_max = MAX_SKB_FRAGS, 3029 .ops = &nosteal_pipe_buf_ops, 3030 .spd_release = sock_spd_release, 3031 }; 3032 int ret = 0; 3033 3034 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3035 3036 if (spd.nr_pages) 3037 ret = splice_to_pipe(pipe, &spd); 3038 3039 return ret; 3040 } 3041 EXPORT_SYMBOL_GPL(skb_splice_bits); 3042 3043 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3044 { 3045 struct socket *sock = sk->sk_socket; 3046 size_t size = msg_data_left(msg); 3047 3048 if (!sock) 3049 return -EINVAL; 3050 3051 if (!sock->ops->sendmsg_locked) 3052 return sock_no_sendmsg_locked(sk, msg, size); 3053 3054 return sock->ops->sendmsg_locked(sk, msg, size); 3055 } 3056 3057 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3058 { 3059 struct socket *sock = sk->sk_socket; 3060 3061 if (!sock) 3062 return -EINVAL; 3063 return sock_sendmsg(sock, msg); 3064 } 3065 3066 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3067 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3068 int len, sendmsg_func sendmsg) 3069 { 3070 unsigned int orig_len = len; 3071 struct sk_buff *head = skb; 3072 unsigned short fragidx; 3073 int slen, ret; 3074 3075 do_frag_list: 3076 3077 /* Deal with head data */ 3078 while (offset < skb_headlen(skb) && len) { 3079 struct kvec kv; 3080 struct msghdr msg; 3081 3082 slen = min_t(int, len, skb_headlen(skb) - offset); 3083 kv.iov_base = skb->data + offset; 3084 kv.iov_len = slen; 3085 memset(&msg, 0, sizeof(msg)); 3086 msg.msg_flags = MSG_DONTWAIT; 3087 3088 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3089 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3090 sendmsg_unlocked, sk, &msg); 3091 if (ret <= 0) 3092 goto error; 3093 3094 offset += ret; 3095 len -= ret; 3096 } 3097 3098 /* All the data was skb head? */ 3099 if (!len) 3100 goto out; 3101 3102 /* Make offset relative to start of frags */ 3103 offset -= skb_headlen(skb); 3104 3105 /* Find where we are in frag list */ 3106 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3107 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3108 3109 if (offset < skb_frag_size(frag)) 3110 break; 3111 3112 offset -= skb_frag_size(frag); 3113 } 3114 3115 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3116 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3117 3118 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3119 3120 while (slen) { 3121 struct bio_vec bvec; 3122 struct msghdr msg = { 3123 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3124 }; 3125 3126 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3127 skb_frag_off(frag) + offset); 3128 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3129 slen); 3130 3131 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3132 sendmsg_unlocked, sk, &msg); 3133 if (ret <= 0) 3134 goto error; 3135 3136 len -= ret; 3137 offset += ret; 3138 slen -= ret; 3139 } 3140 3141 offset = 0; 3142 } 3143 3144 if (len) { 3145 /* Process any frag lists */ 3146 3147 if (skb == head) { 3148 if (skb_has_frag_list(skb)) { 3149 skb = skb_shinfo(skb)->frag_list; 3150 goto do_frag_list; 3151 } 3152 } else if (skb->next) { 3153 skb = skb->next; 3154 goto do_frag_list; 3155 } 3156 } 3157 3158 out: 3159 return orig_len - len; 3160 3161 error: 3162 return orig_len == len ? ret : orig_len - len; 3163 } 3164 3165 /* Send skb data on a socket. Socket must be locked. */ 3166 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3167 int len) 3168 { 3169 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3170 } 3171 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3172 3173 /* Send skb data on a socket. Socket must be unlocked. */ 3174 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3175 { 3176 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3177 } 3178 3179 /** 3180 * skb_store_bits - store bits from kernel buffer to skb 3181 * @skb: destination buffer 3182 * @offset: offset in destination 3183 * @from: source buffer 3184 * @len: number of bytes to copy 3185 * 3186 * Copy the specified number of bytes from the source buffer to the 3187 * destination skb. This function handles all the messy bits of 3188 * traversing fragment lists and such. 3189 */ 3190 3191 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3192 { 3193 int start = skb_headlen(skb); 3194 struct sk_buff *frag_iter; 3195 int i, copy; 3196 3197 if (offset > (int)skb->len - len) 3198 goto fault; 3199 3200 if ((copy = start - offset) > 0) { 3201 if (copy > len) 3202 copy = len; 3203 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3204 if ((len -= copy) == 0) 3205 return 0; 3206 offset += copy; 3207 from += copy; 3208 } 3209 3210 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3211 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3212 int end; 3213 3214 WARN_ON(start > offset + len); 3215 3216 end = start + skb_frag_size(frag); 3217 if ((copy = end - offset) > 0) { 3218 u32 p_off, p_len, copied; 3219 struct page *p; 3220 u8 *vaddr; 3221 3222 if (copy > len) 3223 copy = len; 3224 3225 skb_frag_foreach_page(frag, 3226 skb_frag_off(frag) + offset - start, 3227 copy, p, p_off, p_len, copied) { 3228 vaddr = kmap_atomic(p); 3229 memcpy(vaddr + p_off, from + copied, p_len); 3230 kunmap_atomic(vaddr); 3231 } 3232 3233 if ((len -= copy) == 0) 3234 return 0; 3235 offset += copy; 3236 from += copy; 3237 } 3238 start = end; 3239 } 3240 3241 skb_walk_frags(skb, frag_iter) { 3242 int end; 3243 3244 WARN_ON(start > offset + len); 3245 3246 end = start + frag_iter->len; 3247 if ((copy = end - offset) > 0) { 3248 if (copy > len) 3249 copy = len; 3250 if (skb_store_bits(frag_iter, offset - start, 3251 from, copy)) 3252 goto fault; 3253 if ((len -= copy) == 0) 3254 return 0; 3255 offset += copy; 3256 from += copy; 3257 } 3258 start = end; 3259 } 3260 if (!len) 3261 return 0; 3262 3263 fault: 3264 return -EFAULT; 3265 } 3266 EXPORT_SYMBOL(skb_store_bits); 3267 3268 /* Checksum skb data. */ 3269 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3270 __wsum csum, const struct skb_checksum_ops *ops) 3271 { 3272 int start = skb_headlen(skb); 3273 int i, copy = start - offset; 3274 struct sk_buff *frag_iter; 3275 int pos = 0; 3276 3277 /* Checksum header. */ 3278 if (copy > 0) { 3279 if (copy > len) 3280 copy = len; 3281 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3282 skb->data + offset, copy, csum); 3283 if ((len -= copy) == 0) 3284 return csum; 3285 offset += copy; 3286 pos = copy; 3287 } 3288 3289 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3290 int end; 3291 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3292 3293 WARN_ON(start > offset + len); 3294 3295 end = start + skb_frag_size(frag); 3296 if ((copy = end - offset) > 0) { 3297 u32 p_off, p_len, copied; 3298 struct page *p; 3299 __wsum csum2; 3300 u8 *vaddr; 3301 3302 if (copy > len) 3303 copy = len; 3304 3305 skb_frag_foreach_page(frag, 3306 skb_frag_off(frag) + offset - start, 3307 copy, p, p_off, p_len, copied) { 3308 vaddr = kmap_atomic(p); 3309 csum2 = INDIRECT_CALL_1(ops->update, 3310 csum_partial_ext, 3311 vaddr + p_off, p_len, 0); 3312 kunmap_atomic(vaddr); 3313 csum = INDIRECT_CALL_1(ops->combine, 3314 csum_block_add_ext, csum, 3315 csum2, pos, p_len); 3316 pos += p_len; 3317 } 3318 3319 if (!(len -= copy)) 3320 return csum; 3321 offset += copy; 3322 } 3323 start = end; 3324 } 3325 3326 skb_walk_frags(skb, frag_iter) { 3327 int end; 3328 3329 WARN_ON(start > offset + len); 3330 3331 end = start + frag_iter->len; 3332 if ((copy = end - offset) > 0) { 3333 __wsum csum2; 3334 if (copy > len) 3335 copy = len; 3336 csum2 = __skb_checksum(frag_iter, offset - start, 3337 copy, 0, ops); 3338 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3339 csum, csum2, pos, copy); 3340 if ((len -= copy) == 0) 3341 return csum; 3342 offset += copy; 3343 pos += copy; 3344 } 3345 start = end; 3346 } 3347 BUG_ON(len); 3348 3349 return csum; 3350 } 3351 EXPORT_SYMBOL(__skb_checksum); 3352 3353 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3354 int len, __wsum csum) 3355 { 3356 const struct skb_checksum_ops ops = { 3357 .update = csum_partial_ext, 3358 .combine = csum_block_add_ext, 3359 }; 3360 3361 return __skb_checksum(skb, offset, len, csum, &ops); 3362 } 3363 EXPORT_SYMBOL(skb_checksum); 3364 3365 /* Both of above in one bottle. */ 3366 3367 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3368 u8 *to, int len) 3369 { 3370 int start = skb_headlen(skb); 3371 int i, copy = start - offset; 3372 struct sk_buff *frag_iter; 3373 int pos = 0; 3374 __wsum csum = 0; 3375 3376 /* Copy header. */ 3377 if (copy > 0) { 3378 if (copy > len) 3379 copy = len; 3380 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3381 copy); 3382 if ((len -= copy) == 0) 3383 return csum; 3384 offset += copy; 3385 to += copy; 3386 pos = copy; 3387 } 3388 3389 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3390 int end; 3391 3392 WARN_ON(start > offset + len); 3393 3394 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3395 if ((copy = end - offset) > 0) { 3396 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3397 u32 p_off, p_len, copied; 3398 struct page *p; 3399 __wsum csum2; 3400 u8 *vaddr; 3401 3402 if (copy > len) 3403 copy = len; 3404 3405 skb_frag_foreach_page(frag, 3406 skb_frag_off(frag) + offset - start, 3407 copy, p, p_off, p_len, copied) { 3408 vaddr = kmap_atomic(p); 3409 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3410 to + copied, 3411 p_len); 3412 kunmap_atomic(vaddr); 3413 csum = csum_block_add(csum, csum2, pos); 3414 pos += p_len; 3415 } 3416 3417 if (!(len -= copy)) 3418 return csum; 3419 offset += copy; 3420 to += copy; 3421 } 3422 start = end; 3423 } 3424 3425 skb_walk_frags(skb, frag_iter) { 3426 __wsum csum2; 3427 int end; 3428 3429 WARN_ON(start > offset + len); 3430 3431 end = start + frag_iter->len; 3432 if ((copy = end - offset) > 0) { 3433 if (copy > len) 3434 copy = len; 3435 csum2 = skb_copy_and_csum_bits(frag_iter, 3436 offset - start, 3437 to, copy); 3438 csum = csum_block_add(csum, csum2, pos); 3439 if ((len -= copy) == 0) 3440 return csum; 3441 offset += copy; 3442 to += copy; 3443 pos += copy; 3444 } 3445 start = end; 3446 } 3447 BUG_ON(len); 3448 return csum; 3449 } 3450 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3451 3452 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3453 { 3454 __sum16 sum; 3455 3456 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3457 /* See comments in __skb_checksum_complete(). */ 3458 if (likely(!sum)) { 3459 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3460 !skb->csum_complete_sw) 3461 netdev_rx_csum_fault(skb->dev, skb); 3462 } 3463 if (!skb_shared(skb)) 3464 skb->csum_valid = !sum; 3465 return sum; 3466 } 3467 EXPORT_SYMBOL(__skb_checksum_complete_head); 3468 3469 /* This function assumes skb->csum already holds pseudo header's checksum, 3470 * which has been changed from the hardware checksum, for example, by 3471 * __skb_checksum_validate_complete(). And, the original skb->csum must 3472 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3473 * 3474 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3475 * zero. The new checksum is stored back into skb->csum unless the skb is 3476 * shared. 3477 */ 3478 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3479 { 3480 __wsum csum; 3481 __sum16 sum; 3482 3483 csum = skb_checksum(skb, 0, skb->len, 0); 3484 3485 sum = csum_fold(csum_add(skb->csum, csum)); 3486 /* This check is inverted, because we already knew the hardware 3487 * checksum is invalid before calling this function. So, if the 3488 * re-computed checksum is valid instead, then we have a mismatch 3489 * between the original skb->csum and skb_checksum(). This means either 3490 * the original hardware checksum is incorrect or we screw up skb->csum 3491 * when moving skb->data around. 3492 */ 3493 if (likely(!sum)) { 3494 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3495 !skb->csum_complete_sw) 3496 netdev_rx_csum_fault(skb->dev, skb); 3497 } 3498 3499 if (!skb_shared(skb)) { 3500 /* Save full packet checksum */ 3501 skb->csum = csum; 3502 skb->ip_summed = CHECKSUM_COMPLETE; 3503 skb->csum_complete_sw = 1; 3504 skb->csum_valid = !sum; 3505 } 3506 3507 return sum; 3508 } 3509 EXPORT_SYMBOL(__skb_checksum_complete); 3510 3511 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3512 { 3513 net_warn_ratelimited( 3514 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3515 __func__); 3516 return 0; 3517 } 3518 3519 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3520 int offset, int len) 3521 { 3522 net_warn_ratelimited( 3523 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3524 __func__); 3525 return 0; 3526 } 3527 3528 static const struct skb_checksum_ops default_crc32c_ops = { 3529 .update = warn_crc32c_csum_update, 3530 .combine = warn_crc32c_csum_combine, 3531 }; 3532 3533 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3534 &default_crc32c_ops; 3535 EXPORT_SYMBOL(crc32c_csum_stub); 3536 3537 /** 3538 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3539 * @from: source buffer 3540 * 3541 * Calculates the amount of linear headroom needed in the 'to' skb passed 3542 * into skb_zerocopy(). 3543 */ 3544 unsigned int 3545 skb_zerocopy_headlen(const struct sk_buff *from) 3546 { 3547 unsigned int hlen = 0; 3548 3549 if (!from->head_frag || 3550 skb_headlen(from) < L1_CACHE_BYTES || 3551 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3552 hlen = skb_headlen(from); 3553 if (!hlen) 3554 hlen = from->len; 3555 } 3556 3557 if (skb_has_frag_list(from)) 3558 hlen = from->len; 3559 3560 return hlen; 3561 } 3562 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3563 3564 /** 3565 * skb_zerocopy - Zero copy skb to skb 3566 * @to: destination buffer 3567 * @from: source buffer 3568 * @len: number of bytes to copy from source buffer 3569 * @hlen: size of linear headroom in destination buffer 3570 * 3571 * Copies up to `len` bytes from `from` to `to` by creating references 3572 * to the frags in the source buffer. 3573 * 3574 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3575 * headroom in the `to` buffer. 3576 * 3577 * Return value: 3578 * 0: everything is OK 3579 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3580 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3581 */ 3582 int 3583 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3584 { 3585 int i, j = 0; 3586 int plen = 0; /* length of skb->head fragment */ 3587 int ret; 3588 struct page *page; 3589 unsigned int offset; 3590 3591 BUG_ON(!from->head_frag && !hlen); 3592 3593 /* dont bother with small payloads */ 3594 if (len <= skb_tailroom(to)) 3595 return skb_copy_bits(from, 0, skb_put(to, len), len); 3596 3597 if (hlen) { 3598 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3599 if (unlikely(ret)) 3600 return ret; 3601 len -= hlen; 3602 } else { 3603 plen = min_t(int, skb_headlen(from), len); 3604 if (plen) { 3605 page = virt_to_head_page(from->head); 3606 offset = from->data - (unsigned char *)page_address(page); 3607 __skb_fill_page_desc(to, 0, page, offset, plen); 3608 get_page(page); 3609 j = 1; 3610 len -= plen; 3611 } 3612 } 3613 3614 skb_len_add(to, len + plen); 3615 3616 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3617 skb_tx_error(from); 3618 return -ENOMEM; 3619 } 3620 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3621 3622 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3623 int size; 3624 3625 if (!len) 3626 break; 3627 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3628 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3629 len); 3630 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3631 len -= size; 3632 skb_frag_ref(to, j); 3633 j++; 3634 } 3635 skb_shinfo(to)->nr_frags = j; 3636 3637 return 0; 3638 } 3639 EXPORT_SYMBOL_GPL(skb_zerocopy); 3640 3641 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3642 { 3643 __wsum csum; 3644 long csstart; 3645 3646 if (skb->ip_summed == CHECKSUM_PARTIAL) 3647 csstart = skb_checksum_start_offset(skb); 3648 else 3649 csstart = skb_headlen(skb); 3650 3651 BUG_ON(csstart > skb_headlen(skb)); 3652 3653 skb_copy_from_linear_data(skb, to, csstart); 3654 3655 csum = 0; 3656 if (csstart != skb->len) 3657 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3658 skb->len - csstart); 3659 3660 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3661 long csstuff = csstart + skb->csum_offset; 3662 3663 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3664 } 3665 } 3666 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3667 3668 /** 3669 * skb_dequeue - remove from the head of the queue 3670 * @list: list to dequeue from 3671 * 3672 * Remove the head of the list. The list lock is taken so the function 3673 * may be used safely with other locking list functions. The head item is 3674 * returned or %NULL if the list is empty. 3675 */ 3676 3677 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3678 { 3679 unsigned long flags; 3680 struct sk_buff *result; 3681 3682 spin_lock_irqsave(&list->lock, flags); 3683 result = __skb_dequeue(list); 3684 spin_unlock_irqrestore(&list->lock, flags); 3685 return result; 3686 } 3687 EXPORT_SYMBOL(skb_dequeue); 3688 3689 /** 3690 * skb_dequeue_tail - remove from the tail of the queue 3691 * @list: list to dequeue from 3692 * 3693 * Remove the tail of the list. The list lock is taken so the function 3694 * may be used safely with other locking list functions. The tail item is 3695 * returned or %NULL if the list is empty. 3696 */ 3697 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3698 { 3699 unsigned long flags; 3700 struct sk_buff *result; 3701 3702 spin_lock_irqsave(&list->lock, flags); 3703 result = __skb_dequeue_tail(list); 3704 spin_unlock_irqrestore(&list->lock, flags); 3705 return result; 3706 } 3707 EXPORT_SYMBOL(skb_dequeue_tail); 3708 3709 /** 3710 * skb_queue_purge_reason - empty a list 3711 * @list: list to empty 3712 * @reason: drop reason 3713 * 3714 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3715 * the list and one reference dropped. This function takes the list 3716 * lock and is atomic with respect to other list locking functions. 3717 */ 3718 void skb_queue_purge_reason(struct sk_buff_head *list, 3719 enum skb_drop_reason reason) 3720 { 3721 struct sk_buff *skb; 3722 3723 while ((skb = skb_dequeue(list)) != NULL) 3724 kfree_skb_reason(skb, reason); 3725 } 3726 EXPORT_SYMBOL(skb_queue_purge_reason); 3727 3728 /** 3729 * skb_rbtree_purge - empty a skb rbtree 3730 * @root: root of the rbtree to empty 3731 * Return value: the sum of truesizes of all purged skbs. 3732 * 3733 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3734 * the list and one reference dropped. This function does not take 3735 * any lock. Synchronization should be handled by the caller (e.g., TCP 3736 * out-of-order queue is protected by the socket lock). 3737 */ 3738 unsigned int skb_rbtree_purge(struct rb_root *root) 3739 { 3740 struct rb_node *p = rb_first(root); 3741 unsigned int sum = 0; 3742 3743 while (p) { 3744 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3745 3746 p = rb_next(p); 3747 rb_erase(&skb->rbnode, root); 3748 sum += skb->truesize; 3749 kfree_skb(skb); 3750 } 3751 return sum; 3752 } 3753 3754 void skb_errqueue_purge(struct sk_buff_head *list) 3755 { 3756 struct sk_buff *skb, *next; 3757 struct sk_buff_head kill; 3758 unsigned long flags; 3759 3760 __skb_queue_head_init(&kill); 3761 3762 spin_lock_irqsave(&list->lock, flags); 3763 skb_queue_walk_safe(list, skb, next) { 3764 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 3765 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 3766 continue; 3767 __skb_unlink(skb, list); 3768 __skb_queue_tail(&kill, skb); 3769 } 3770 spin_unlock_irqrestore(&list->lock, flags); 3771 __skb_queue_purge(&kill); 3772 } 3773 EXPORT_SYMBOL(skb_errqueue_purge); 3774 3775 /** 3776 * skb_queue_head - queue a buffer at the list head 3777 * @list: list to use 3778 * @newsk: buffer to queue 3779 * 3780 * Queue a buffer at the start of the list. This function takes the 3781 * list lock and can be used safely with other locking &sk_buff functions 3782 * safely. 3783 * 3784 * A buffer cannot be placed on two lists at the same time. 3785 */ 3786 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3787 { 3788 unsigned long flags; 3789 3790 spin_lock_irqsave(&list->lock, flags); 3791 __skb_queue_head(list, newsk); 3792 spin_unlock_irqrestore(&list->lock, flags); 3793 } 3794 EXPORT_SYMBOL(skb_queue_head); 3795 3796 /** 3797 * skb_queue_tail - queue a buffer at the list tail 3798 * @list: list to use 3799 * @newsk: buffer to queue 3800 * 3801 * Queue a buffer at the tail of the list. This function takes the 3802 * list lock and can be used safely with other locking &sk_buff functions 3803 * safely. 3804 * 3805 * A buffer cannot be placed on two lists at the same time. 3806 */ 3807 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3808 { 3809 unsigned long flags; 3810 3811 spin_lock_irqsave(&list->lock, flags); 3812 __skb_queue_tail(list, newsk); 3813 spin_unlock_irqrestore(&list->lock, flags); 3814 } 3815 EXPORT_SYMBOL(skb_queue_tail); 3816 3817 /** 3818 * skb_unlink - remove a buffer from a list 3819 * @skb: buffer to remove 3820 * @list: list to use 3821 * 3822 * Remove a packet from a list. The list locks are taken and this 3823 * function is atomic with respect to other list locked calls 3824 * 3825 * You must know what list the SKB is on. 3826 */ 3827 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3828 { 3829 unsigned long flags; 3830 3831 spin_lock_irqsave(&list->lock, flags); 3832 __skb_unlink(skb, list); 3833 spin_unlock_irqrestore(&list->lock, flags); 3834 } 3835 EXPORT_SYMBOL(skb_unlink); 3836 3837 /** 3838 * skb_append - append a buffer 3839 * @old: buffer to insert after 3840 * @newsk: buffer to insert 3841 * @list: list to use 3842 * 3843 * Place a packet after a given packet in a list. The list locks are taken 3844 * and this function is atomic with respect to other list locked calls. 3845 * A buffer cannot be placed on two lists at the same time. 3846 */ 3847 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3848 { 3849 unsigned long flags; 3850 3851 spin_lock_irqsave(&list->lock, flags); 3852 __skb_queue_after(list, old, newsk); 3853 spin_unlock_irqrestore(&list->lock, flags); 3854 } 3855 EXPORT_SYMBOL(skb_append); 3856 3857 static inline void skb_split_inside_header(struct sk_buff *skb, 3858 struct sk_buff* skb1, 3859 const u32 len, const int pos) 3860 { 3861 int i; 3862 3863 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3864 pos - len); 3865 /* And move data appendix as is. */ 3866 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3867 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3868 3869 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3870 skb_shinfo(skb)->nr_frags = 0; 3871 skb1->data_len = skb->data_len; 3872 skb1->len += skb1->data_len; 3873 skb->data_len = 0; 3874 skb->len = len; 3875 skb_set_tail_pointer(skb, len); 3876 } 3877 3878 static inline void skb_split_no_header(struct sk_buff *skb, 3879 struct sk_buff* skb1, 3880 const u32 len, int pos) 3881 { 3882 int i, k = 0; 3883 const int nfrags = skb_shinfo(skb)->nr_frags; 3884 3885 skb_shinfo(skb)->nr_frags = 0; 3886 skb1->len = skb1->data_len = skb->len - len; 3887 skb->len = len; 3888 skb->data_len = len - pos; 3889 3890 for (i = 0; i < nfrags; i++) { 3891 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3892 3893 if (pos + size > len) { 3894 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3895 3896 if (pos < len) { 3897 /* Split frag. 3898 * We have two variants in this case: 3899 * 1. Move all the frag to the second 3900 * part, if it is possible. F.e. 3901 * this approach is mandatory for TUX, 3902 * where splitting is expensive. 3903 * 2. Split is accurately. We make this. 3904 */ 3905 skb_frag_ref(skb, i); 3906 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3907 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3908 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3909 skb_shinfo(skb)->nr_frags++; 3910 } 3911 k++; 3912 } else 3913 skb_shinfo(skb)->nr_frags++; 3914 pos += size; 3915 } 3916 skb_shinfo(skb1)->nr_frags = k; 3917 } 3918 3919 /** 3920 * skb_split - Split fragmented skb to two parts at length len. 3921 * @skb: the buffer to split 3922 * @skb1: the buffer to receive the second part 3923 * @len: new length for skb 3924 */ 3925 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3926 { 3927 int pos = skb_headlen(skb); 3928 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3929 3930 skb_zcopy_downgrade_managed(skb); 3931 3932 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3933 skb_zerocopy_clone(skb1, skb, 0); 3934 if (len < pos) /* Split line is inside header. */ 3935 skb_split_inside_header(skb, skb1, len, pos); 3936 else /* Second chunk has no header, nothing to copy. */ 3937 skb_split_no_header(skb, skb1, len, pos); 3938 } 3939 EXPORT_SYMBOL(skb_split); 3940 3941 /* Shifting from/to a cloned skb is a no-go. 3942 * 3943 * Caller cannot keep skb_shinfo related pointers past calling here! 3944 */ 3945 static int skb_prepare_for_shift(struct sk_buff *skb) 3946 { 3947 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3948 } 3949 3950 /** 3951 * skb_shift - Shifts paged data partially from skb to another 3952 * @tgt: buffer into which tail data gets added 3953 * @skb: buffer from which the paged data comes from 3954 * @shiftlen: shift up to this many bytes 3955 * 3956 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3957 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3958 * It's up to caller to free skb if everything was shifted. 3959 * 3960 * If @tgt runs out of frags, the whole operation is aborted. 3961 * 3962 * Skb cannot include anything else but paged data while tgt is allowed 3963 * to have non-paged data as well. 3964 * 3965 * TODO: full sized shift could be optimized but that would need 3966 * specialized skb free'er to handle frags without up-to-date nr_frags. 3967 */ 3968 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3969 { 3970 int from, to, merge, todo; 3971 skb_frag_t *fragfrom, *fragto; 3972 3973 BUG_ON(shiftlen > skb->len); 3974 3975 if (skb_headlen(skb)) 3976 return 0; 3977 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3978 return 0; 3979 3980 todo = shiftlen; 3981 from = 0; 3982 to = skb_shinfo(tgt)->nr_frags; 3983 fragfrom = &skb_shinfo(skb)->frags[from]; 3984 3985 /* Actual merge is delayed until the point when we know we can 3986 * commit all, so that we don't have to undo partial changes 3987 */ 3988 if (!to || 3989 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3990 skb_frag_off(fragfrom))) { 3991 merge = -1; 3992 } else { 3993 merge = to - 1; 3994 3995 todo -= skb_frag_size(fragfrom); 3996 if (todo < 0) { 3997 if (skb_prepare_for_shift(skb) || 3998 skb_prepare_for_shift(tgt)) 3999 return 0; 4000 4001 /* All previous frag pointers might be stale! */ 4002 fragfrom = &skb_shinfo(skb)->frags[from]; 4003 fragto = &skb_shinfo(tgt)->frags[merge]; 4004 4005 skb_frag_size_add(fragto, shiftlen); 4006 skb_frag_size_sub(fragfrom, shiftlen); 4007 skb_frag_off_add(fragfrom, shiftlen); 4008 4009 goto onlymerged; 4010 } 4011 4012 from++; 4013 } 4014 4015 /* Skip full, not-fitting skb to avoid expensive operations */ 4016 if ((shiftlen == skb->len) && 4017 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4018 return 0; 4019 4020 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4021 return 0; 4022 4023 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4024 if (to == MAX_SKB_FRAGS) 4025 return 0; 4026 4027 fragfrom = &skb_shinfo(skb)->frags[from]; 4028 fragto = &skb_shinfo(tgt)->frags[to]; 4029 4030 if (todo >= skb_frag_size(fragfrom)) { 4031 *fragto = *fragfrom; 4032 todo -= skb_frag_size(fragfrom); 4033 from++; 4034 to++; 4035 4036 } else { 4037 __skb_frag_ref(fragfrom); 4038 skb_frag_page_copy(fragto, fragfrom); 4039 skb_frag_off_copy(fragto, fragfrom); 4040 skb_frag_size_set(fragto, todo); 4041 4042 skb_frag_off_add(fragfrom, todo); 4043 skb_frag_size_sub(fragfrom, todo); 4044 todo = 0; 4045 4046 to++; 4047 break; 4048 } 4049 } 4050 4051 /* Ready to "commit" this state change to tgt */ 4052 skb_shinfo(tgt)->nr_frags = to; 4053 4054 if (merge >= 0) { 4055 fragfrom = &skb_shinfo(skb)->frags[0]; 4056 fragto = &skb_shinfo(tgt)->frags[merge]; 4057 4058 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4059 __skb_frag_unref(fragfrom, skb->pp_recycle); 4060 } 4061 4062 /* Reposition in the original skb */ 4063 to = 0; 4064 while (from < skb_shinfo(skb)->nr_frags) 4065 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4066 skb_shinfo(skb)->nr_frags = to; 4067 4068 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4069 4070 onlymerged: 4071 /* Most likely the tgt won't ever need its checksum anymore, skb on 4072 * the other hand might need it if it needs to be resent 4073 */ 4074 tgt->ip_summed = CHECKSUM_PARTIAL; 4075 skb->ip_summed = CHECKSUM_PARTIAL; 4076 4077 skb_len_add(skb, -shiftlen); 4078 skb_len_add(tgt, shiftlen); 4079 4080 return shiftlen; 4081 } 4082 4083 /** 4084 * skb_prepare_seq_read - Prepare a sequential read of skb data 4085 * @skb: the buffer to read 4086 * @from: lower offset of data to be read 4087 * @to: upper offset of data to be read 4088 * @st: state variable 4089 * 4090 * Initializes the specified state variable. Must be called before 4091 * invoking skb_seq_read() for the first time. 4092 */ 4093 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4094 unsigned int to, struct skb_seq_state *st) 4095 { 4096 st->lower_offset = from; 4097 st->upper_offset = to; 4098 st->root_skb = st->cur_skb = skb; 4099 st->frag_idx = st->stepped_offset = 0; 4100 st->frag_data = NULL; 4101 st->frag_off = 0; 4102 } 4103 EXPORT_SYMBOL(skb_prepare_seq_read); 4104 4105 /** 4106 * skb_seq_read - Sequentially read skb data 4107 * @consumed: number of bytes consumed by the caller so far 4108 * @data: destination pointer for data to be returned 4109 * @st: state variable 4110 * 4111 * Reads a block of skb data at @consumed relative to the 4112 * lower offset specified to skb_prepare_seq_read(). Assigns 4113 * the head of the data block to @data and returns the length 4114 * of the block or 0 if the end of the skb data or the upper 4115 * offset has been reached. 4116 * 4117 * The caller is not required to consume all of the data 4118 * returned, i.e. @consumed is typically set to the number 4119 * of bytes already consumed and the next call to 4120 * skb_seq_read() will return the remaining part of the block. 4121 * 4122 * Note 1: The size of each block of data returned can be arbitrary, 4123 * this limitation is the cost for zerocopy sequential 4124 * reads of potentially non linear data. 4125 * 4126 * Note 2: Fragment lists within fragments are not implemented 4127 * at the moment, state->root_skb could be replaced with 4128 * a stack for this purpose. 4129 */ 4130 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4131 struct skb_seq_state *st) 4132 { 4133 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4134 skb_frag_t *frag; 4135 4136 if (unlikely(abs_offset >= st->upper_offset)) { 4137 if (st->frag_data) { 4138 kunmap_atomic(st->frag_data); 4139 st->frag_data = NULL; 4140 } 4141 return 0; 4142 } 4143 4144 next_skb: 4145 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4146 4147 if (abs_offset < block_limit && !st->frag_data) { 4148 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4149 return block_limit - abs_offset; 4150 } 4151 4152 if (st->frag_idx == 0 && !st->frag_data) 4153 st->stepped_offset += skb_headlen(st->cur_skb); 4154 4155 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4156 unsigned int pg_idx, pg_off, pg_sz; 4157 4158 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4159 4160 pg_idx = 0; 4161 pg_off = skb_frag_off(frag); 4162 pg_sz = skb_frag_size(frag); 4163 4164 if (skb_frag_must_loop(skb_frag_page(frag))) { 4165 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4166 pg_off = offset_in_page(pg_off + st->frag_off); 4167 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4168 PAGE_SIZE - pg_off); 4169 } 4170 4171 block_limit = pg_sz + st->stepped_offset; 4172 if (abs_offset < block_limit) { 4173 if (!st->frag_data) 4174 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4175 4176 *data = (u8 *)st->frag_data + pg_off + 4177 (abs_offset - st->stepped_offset); 4178 4179 return block_limit - abs_offset; 4180 } 4181 4182 if (st->frag_data) { 4183 kunmap_atomic(st->frag_data); 4184 st->frag_data = NULL; 4185 } 4186 4187 st->stepped_offset += pg_sz; 4188 st->frag_off += pg_sz; 4189 if (st->frag_off == skb_frag_size(frag)) { 4190 st->frag_off = 0; 4191 st->frag_idx++; 4192 } 4193 } 4194 4195 if (st->frag_data) { 4196 kunmap_atomic(st->frag_data); 4197 st->frag_data = NULL; 4198 } 4199 4200 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4201 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4202 st->frag_idx = 0; 4203 goto next_skb; 4204 } else if (st->cur_skb->next) { 4205 st->cur_skb = st->cur_skb->next; 4206 st->frag_idx = 0; 4207 goto next_skb; 4208 } 4209 4210 return 0; 4211 } 4212 EXPORT_SYMBOL(skb_seq_read); 4213 4214 /** 4215 * skb_abort_seq_read - Abort a sequential read of skb data 4216 * @st: state variable 4217 * 4218 * Must be called if skb_seq_read() was not called until it 4219 * returned 0. 4220 */ 4221 void skb_abort_seq_read(struct skb_seq_state *st) 4222 { 4223 if (st->frag_data) 4224 kunmap_atomic(st->frag_data); 4225 } 4226 EXPORT_SYMBOL(skb_abort_seq_read); 4227 4228 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4229 4230 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4231 struct ts_config *conf, 4232 struct ts_state *state) 4233 { 4234 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4235 } 4236 4237 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4238 { 4239 skb_abort_seq_read(TS_SKB_CB(state)); 4240 } 4241 4242 /** 4243 * skb_find_text - Find a text pattern in skb data 4244 * @skb: the buffer to look in 4245 * @from: search offset 4246 * @to: search limit 4247 * @config: textsearch configuration 4248 * 4249 * Finds a pattern in the skb data according to the specified 4250 * textsearch configuration. Use textsearch_next() to retrieve 4251 * subsequent occurrences of the pattern. Returns the offset 4252 * to the first occurrence or UINT_MAX if no match was found. 4253 */ 4254 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4255 unsigned int to, struct ts_config *config) 4256 { 4257 unsigned int patlen = config->ops->get_pattern_len(config); 4258 struct ts_state state; 4259 unsigned int ret; 4260 4261 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4262 4263 config->get_next_block = skb_ts_get_next_block; 4264 config->finish = skb_ts_finish; 4265 4266 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4267 4268 ret = textsearch_find(config, &state); 4269 return (ret + patlen <= to - from ? ret : UINT_MAX); 4270 } 4271 EXPORT_SYMBOL(skb_find_text); 4272 4273 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4274 int offset, size_t size, size_t max_frags) 4275 { 4276 int i = skb_shinfo(skb)->nr_frags; 4277 4278 if (skb_can_coalesce(skb, i, page, offset)) { 4279 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4280 } else if (i < max_frags) { 4281 skb_zcopy_downgrade_managed(skb); 4282 get_page(page); 4283 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4284 } else { 4285 return -EMSGSIZE; 4286 } 4287 4288 return 0; 4289 } 4290 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4291 4292 /** 4293 * skb_pull_rcsum - pull skb and update receive checksum 4294 * @skb: buffer to update 4295 * @len: length of data pulled 4296 * 4297 * This function performs an skb_pull on the packet and updates 4298 * the CHECKSUM_COMPLETE checksum. It should be used on 4299 * receive path processing instead of skb_pull unless you know 4300 * that the checksum difference is zero (e.g., a valid IP header) 4301 * or you are setting ip_summed to CHECKSUM_NONE. 4302 */ 4303 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4304 { 4305 unsigned char *data = skb->data; 4306 4307 BUG_ON(len > skb->len); 4308 __skb_pull(skb, len); 4309 skb_postpull_rcsum(skb, data, len); 4310 return skb->data; 4311 } 4312 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4313 4314 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4315 { 4316 skb_frag_t head_frag; 4317 struct page *page; 4318 4319 page = virt_to_head_page(frag_skb->head); 4320 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4321 (unsigned char *)page_address(page), 4322 skb_headlen(frag_skb)); 4323 return head_frag; 4324 } 4325 4326 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4327 netdev_features_t features, 4328 unsigned int offset) 4329 { 4330 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4331 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4332 unsigned int delta_truesize = 0; 4333 unsigned int delta_len = 0; 4334 struct sk_buff *tail = NULL; 4335 struct sk_buff *nskb, *tmp; 4336 int len_diff, err; 4337 4338 skb_push(skb, -skb_network_offset(skb) + offset); 4339 4340 /* Ensure the head is writeable before touching the shared info */ 4341 err = skb_unclone(skb, GFP_ATOMIC); 4342 if (err) 4343 goto err_linearize; 4344 4345 skb_shinfo(skb)->frag_list = NULL; 4346 4347 while (list_skb) { 4348 nskb = list_skb; 4349 list_skb = list_skb->next; 4350 4351 err = 0; 4352 delta_truesize += nskb->truesize; 4353 if (skb_shared(nskb)) { 4354 tmp = skb_clone(nskb, GFP_ATOMIC); 4355 if (tmp) { 4356 consume_skb(nskb); 4357 nskb = tmp; 4358 err = skb_unclone(nskb, GFP_ATOMIC); 4359 } else { 4360 err = -ENOMEM; 4361 } 4362 } 4363 4364 if (!tail) 4365 skb->next = nskb; 4366 else 4367 tail->next = nskb; 4368 4369 if (unlikely(err)) { 4370 nskb->next = list_skb; 4371 goto err_linearize; 4372 } 4373 4374 tail = nskb; 4375 4376 delta_len += nskb->len; 4377 4378 skb_push(nskb, -skb_network_offset(nskb) + offset); 4379 4380 skb_release_head_state(nskb); 4381 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4382 __copy_skb_header(nskb, skb); 4383 4384 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4385 nskb->transport_header += len_diff; 4386 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4387 nskb->data - tnl_hlen, 4388 offset + tnl_hlen); 4389 4390 if (skb_needs_linearize(nskb, features) && 4391 __skb_linearize(nskb)) 4392 goto err_linearize; 4393 } 4394 4395 skb->truesize = skb->truesize - delta_truesize; 4396 skb->data_len = skb->data_len - delta_len; 4397 skb->len = skb->len - delta_len; 4398 4399 skb_gso_reset(skb); 4400 4401 skb->prev = tail; 4402 4403 if (skb_needs_linearize(skb, features) && 4404 __skb_linearize(skb)) 4405 goto err_linearize; 4406 4407 skb_get(skb); 4408 4409 return skb; 4410 4411 err_linearize: 4412 kfree_skb_list(skb->next); 4413 skb->next = NULL; 4414 return ERR_PTR(-ENOMEM); 4415 } 4416 EXPORT_SYMBOL_GPL(skb_segment_list); 4417 4418 /** 4419 * skb_segment - Perform protocol segmentation on skb. 4420 * @head_skb: buffer to segment 4421 * @features: features for the output path (see dev->features) 4422 * 4423 * This function performs segmentation on the given skb. It returns 4424 * a pointer to the first in a list of new skbs for the segments. 4425 * In case of error it returns ERR_PTR(err). 4426 */ 4427 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4428 netdev_features_t features) 4429 { 4430 struct sk_buff *segs = NULL; 4431 struct sk_buff *tail = NULL; 4432 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4433 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4434 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4435 unsigned int offset = doffset; 4436 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4437 unsigned int partial_segs = 0; 4438 unsigned int headroom; 4439 unsigned int len = head_skb->len; 4440 struct sk_buff *frag_skb; 4441 skb_frag_t *frag; 4442 __be16 proto; 4443 bool csum, sg; 4444 int err = -ENOMEM; 4445 int i = 0; 4446 int nfrags, pos; 4447 4448 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4449 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4450 struct sk_buff *check_skb; 4451 4452 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4453 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4454 /* gso_size is untrusted, and we have a frag_list with 4455 * a linear non head_frag item. 4456 * 4457 * If head_skb's headlen does not fit requested gso_size, 4458 * it means that the frag_list members do NOT terminate 4459 * on exact gso_size boundaries. Hence we cannot perform 4460 * skb_frag_t page sharing. Therefore we must fallback to 4461 * copying the frag_list skbs; we do so by disabling SG. 4462 */ 4463 features &= ~NETIF_F_SG; 4464 break; 4465 } 4466 } 4467 } 4468 4469 __skb_push(head_skb, doffset); 4470 proto = skb_network_protocol(head_skb, NULL); 4471 if (unlikely(!proto)) 4472 return ERR_PTR(-EINVAL); 4473 4474 sg = !!(features & NETIF_F_SG); 4475 csum = !!can_checksum_protocol(features, proto); 4476 4477 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4478 if (!(features & NETIF_F_GSO_PARTIAL)) { 4479 struct sk_buff *iter; 4480 unsigned int frag_len; 4481 4482 if (!list_skb || 4483 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4484 goto normal; 4485 4486 /* If we get here then all the required 4487 * GSO features except frag_list are supported. 4488 * Try to split the SKB to multiple GSO SKBs 4489 * with no frag_list. 4490 * Currently we can do that only when the buffers don't 4491 * have a linear part and all the buffers except 4492 * the last are of the same length. 4493 */ 4494 frag_len = list_skb->len; 4495 skb_walk_frags(head_skb, iter) { 4496 if (frag_len != iter->len && iter->next) 4497 goto normal; 4498 if (skb_headlen(iter) && !iter->head_frag) 4499 goto normal; 4500 4501 len -= iter->len; 4502 } 4503 4504 if (len != frag_len) 4505 goto normal; 4506 } 4507 4508 /* GSO partial only requires that we trim off any excess that 4509 * doesn't fit into an MSS sized block, so take care of that 4510 * now. 4511 */ 4512 partial_segs = len / mss; 4513 if (partial_segs > 1) 4514 mss *= partial_segs; 4515 else 4516 partial_segs = 0; 4517 } 4518 4519 normal: 4520 headroom = skb_headroom(head_skb); 4521 pos = skb_headlen(head_skb); 4522 4523 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4524 return ERR_PTR(-ENOMEM); 4525 4526 nfrags = skb_shinfo(head_skb)->nr_frags; 4527 frag = skb_shinfo(head_skb)->frags; 4528 frag_skb = head_skb; 4529 4530 do { 4531 struct sk_buff *nskb; 4532 skb_frag_t *nskb_frag; 4533 int hsize; 4534 int size; 4535 4536 if (unlikely(mss == GSO_BY_FRAGS)) { 4537 len = list_skb->len; 4538 } else { 4539 len = head_skb->len - offset; 4540 if (len > mss) 4541 len = mss; 4542 } 4543 4544 hsize = skb_headlen(head_skb) - offset; 4545 4546 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4547 (skb_headlen(list_skb) == len || sg)) { 4548 BUG_ON(skb_headlen(list_skb) > len); 4549 4550 nskb = skb_clone(list_skb, GFP_ATOMIC); 4551 if (unlikely(!nskb)) 4552 goto err; 4553 4554 i = 0; 4555 nfrags = skb_shinfo(list_skb)->nr_frags; 4556 frag = skb_shinfo(list_skb)->frags; 4557 frag_skb = list_skb; 4558 pos += skb_headlen(list_skb); 4559 4560 while (pos < offset + len) { 4561 BUG_ON(i >= nfrags); 4562 4563 size = skb_frag_size(frag); 4564 if (pos + size > offset + len) 4565 break; 4566 4567 i++; 4568 pos += size; 4569 frag++; 4570 } 4571 4572 list_skb = list_skb->next; 4573 4574 if (unlikely(pskb_trim(nskb, len))) { 4575 kfree_skb(nskb); 4576 goto err; 4577 } 4578 4579 hsize = skb_end_offset(nskb); 4580 if (skb_cow_head(nskb, doffset + headroom)) { 4581 kfree_skb(nskb); 4582 goto err; 4583 } 4584 4585 nskb->truesize += skb_end_offset(nskb) - hsize; 4586 skb_release_head_state(nskb); 4587 __skb_push(nskb, doffset); 4588 } else { 4589 if (hsize < 0) 4590 hsize = 0; 4591 if (hsize > len || !sg) 4592 hsize = len; 4593 4594 nskb = __alloc_skb(hsize + doffset + headroom, 4595 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4596 NUMA_NO_NODE); 4597 4598 if (unlikely(!nskb)) 4599 goto err; 4600 4601 skb_reserve(nskb, headroom); 4602 __skb_put(nskb, doffset); 4603 } 4604 4605 if (segs) 4606 tail->next = nskb; 4607 else 4608 segs = nskb; 4609 tail = nskb; 4610 4611 __copy_skb_header(nskb, head_skb); 4612 4613 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4614 skb_reset_mac_len(nskb); 4615 4616 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4617 nskb->data - tnl_hlen, 4618 doffset + tnl_hlen); 4619 4620 if (nskb->len == len + doffset) 4621 goto perform_csum_check; 4622 4623 if (!sg) { 4624 if (!csum) { 4625 if (!nskb->remcsum_offload) 4626 nskb->ip_summed = CHECKSUM_NONE; 4627 SKB_GSO_CB(nskb)->csum = 4628 skb_copy_and_csum_bits(head_skb, offset, 4629 skb_put(nskb, 4630 len), 4631 len); 4632 SKB_GSO_CB(nskb)->csum_start = 4633 skb_headroom(nskb) + doffset; 4634 } else { 4635 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4636 goto err; 4637 } 4638 continue; 4639 } 4640 4641 nskb_frag = skb_shinfo(nskb)->frags; 4642 4643 skb_copy_from_linear_data_offset(head_skb, offset, 4644 skb_put(nskb, hsize), hsize); 4645 4646 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4647 SKBFL_SHARED_FRAG; 4648 4649 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4650 goto err; 4651 4652 while (pos < offset + len) { 4653 if (i >= nfrags) { 4654 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4655 skb_zerocopy_clone(nskb, list_skb, 4656 GFP_ATOMIC)) 4657 goto err; 4658 4659 i = 0; 4660 nfrags = skb_shinfo(list_skb)->nr_frags; 4661 frag = skb_shinfo(list_skb)->frags; 4662 frag_skb = list_skb; 4663 if (!skb_headlen(list_skb)) { 4664 BUG_ON(!nfrags); 4665 } else { 4666 BUG_ON(!list_skb->head_frag); 4667 4668 /* to make room for head_frag. */ 4669 i--; 4670 frag--; 4671 } 4672 4673 list_skb = list_skb->next; 4674 } 4675 4676 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4677 MAX_SKB_FRAGS)) { 4678 net_warn_ratelimited( 4679 "skb_segment: too many frags: %u %u\n", 4680 pos, mss); 4681 err = -EINVAL; 4682 goto err; 4683 } 4684 4685 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4686 __skb_frag_ref(nskb_frag); 4687 size = skb_frag_size(nskb_frag); 4688 4689 if (pos < offset) { 4690 skb_frag_off_add(nskb_frag, offset - pos); 4691 skb_frag_size_sub(nskb_frag, offset - pos); 4692 } 4693 4694 skb_shinfo(nskb)->nr_frags++; 4695 4696 if (pos + size <= offset + len) { 4697 i++; 4698 frag++; 4699 pos += size; 4700 } else { 4701 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4702 goto skip_fraglist; 4703 } 4704 4705 nskb_frag++; 4706 } 4707 4708 skip_fraglist: 4709 nskb->data_len = len - hsize; 4710 nskb->len += nskb->data_len; 4711 nskb->truesize += nskb->data_len; 4712 4713 perform_csum_check: 4714 if (!csum) { 4715 if (skb_has_shared_frag(nskb) && 4716 __skb_linearize(nskb)) 4717 goto err; 4718 4719 if (!nskb->remcsum_offload) 4720 nskb->ip_summed = CHECKSUM_NONE; 4721 SKB_GSO_CB(nskb)->csum = 4722 skb_checksum(nskb, doffset, 4723 nskb->len - doffset, 0); 4724 SKB_GSO_CB(nskb)->csum_start = 4725 skb_headroom(nskb) + doffset; 4726 } 4727 } while ((offset += len) < head_skb->len); 4728 4729 /* Some callers want to get the end of the list. 4730 * Put it in segs->prev to avoid walking the list. 4731 * (see validate_xmit_skb_list() for example) 4732 */ 4733 segs->prev = tail; 4734 4735 if (partial_segs) { 4736 struct sk_buff *iter; 4737 int type = skb_shinfo(head_skb)->gso_type; 4738 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4739 4740 /* Update type to add partial and then remove dodgy if set */ 4741 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4742 type &= ~SKB_GSO_DODGY; 4743 4744 /* Update GSO info and prepare to start updating headers on 4745 * our way back down the stack of protocols. 4746 */ 4747 for (iter = segs; iter; iter = iter->next) { 4748 skb_shinfo(iter)->gso_size = gso_size; 4749 skb_shinfo(iter)->gso_segs = partial_segs; 4750 skb_shinfo(iter)->gso_type = type; 4751 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4752 } 4753 4754 if (tail->len - doffset <= gso_size) 4755 skb_shinfo(tail)->gso_size = 0; 4756 else if (tail != segs) 4757 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4758 } 4759 4760 /* Following permits correct backpressure, for protocols 4761 * using skb_set_owner_w(). 4762 * Idea is to tranfert ownership from head_skb to last segment. 4763 */ 4764 if (head_skb->destructor == sock_wfree) { 4765 swap(tail->truesize, head_skb->truesize); 4766 swap(tail->destructor, head_skb->destructor); 4767 swap(tail->sk, head_skb->sk); 4768 } 4769 return segs; 4770 4771 err: 4772 kfree_skb_list(segs); 4773 return ERR_PTR(err); 4774 } 4775 EXPORT_SYMBOL_GPL(skb_segment); 4776 4777 #ifdef CONFIG_SKB_EXTENSIONS 4778 #define SKB_EXT_ALIGN_VALUE 8 4779 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4780 4781 static const u8 skb_ext_type_len[] = { 4782 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4783 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4784 #endif 4785 #ifdef CONFIG_XFRM 4786 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4787 #endif 4788 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4789 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4790 #endif 4791 #if IS_ENABLED(CONFIG_MPTCP) 4792 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4793 #endif 4794 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4795 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4796 #endif 4797 }; 4798 4799 static __always_inline unsigned int skb_ext_total_length(void) 4800 { 4801 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 4802 int i; 4803 4804 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 4805 l += skb_ext_type_len[i]; 4806 4807 return l; 4808 } 4809 4810 static void skb_extensions_init(void) 4811 { 4812 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4813 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 4814 BUILD_BUG_ON(skb_ext_total_length() > 255); 4815 #endif 4816 4817 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4818 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4819 0, 4820 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4821 NULL); 4822 } 4823 #else 4824 static void skb_extensions_init(void) {} 4825 #endif 4826 4827 /* The SKB kmem_cache slab is critical for network performance. Never 4828 * merge/alias the slab with similar sized objects. This avoids fragmentation 4829 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 4830 */ 4831 #ifndef CONFIG_SLUB_TINY 4832 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 4833 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 4834 #define FLAG_SKB_NO_MERGE 0 4835 #endif 4836 4837 void __init skb_init(void) 4838 { 4839 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4840 sizeof(struct sk_buff), 4841 0, 4842 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 4843 FLAG_SKB_NO_MERGE, 4844 offsetof(struct sk_buff, cb), 4845 sizeof_field(struct sk_buff, cb), 4846 NULL); 4847 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4848 sizeof(struct sk_buff_fclones), 4849 0, 4850 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4851 NULL); 4852 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4853 * struct skb_shared_info is located at the end of skb->head, 4854 * and should not be copied to/from user. 4855 */ 4856 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4857 SKB_SMALL_HEAD_CACHE_SIZE, 4858 0, 4859 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4860 0, 4861 SKB_SMALL_HEAD_HEADROOM, 4862 NULL); 4863 skb_extensions_init(); 4864 } 4865 4866 static int 4867 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4868 unsigned int recursion_level) 4869 { 4870 int start = skb_headlen(skb); 4871 int i, copy = start - offset; 4872 struct sk_buff *frag_iter; 4873 int elt = 0; 4874 4875 if (unlikely(recursion_level >= 24)) 4876 return -EMSGSIZE; 4877 4878 if (copy > 0) { 4879 if (copy > len) 4880 copy = len; 4881 sg_set_buf(sg, skb->data + offset, copy); 4882 elt++; 4883 if ((len -= copy) == 0) 4884 return elt; 4885 offset += copy; 4886 } 4887 4888 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4889 int end; 4890 4891 WARN_ON(start > offset + len); 4892 4893 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4894 if ((copy = end - offset) > 0) { 4895 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4896 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4897 return -EMSGSIZE; 4898 4899 if (copy > len) 4900 copy = len; 4901 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4902 skb_frag_off(frag) + offset - start); 4903 elt++; 4904 if (!(len -= copy)) 4905 return elt; 4906 offset += copy; 4907 } 4908 start = end; 4909 } 4910 4911 skb_walk_frags(skb, frag_iter) { 4912 int end, ret; 4913 4914 WARN_ON(start > offset + len); 4915 4916 end = start + frag_iter->len; 4917 if ((copy = end - offset) > 0) { 4918 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4919 return -EMSGSIZE; 4920 4921 if (copy > len) 4922 copy = len; 4923 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4924 copy, recursion_level + 1); 4925 if (unlikely(ret < 0)) 4926 return ret; 4927 elt += ret; 4928 if ((len -= copy) == 0) 4929 return elt; 4930 offset += copy; 4931 } 4932 start = end; 4933 } 4934 BUG_ON(len); 4935 return elt; 4936 } 4937 4938 /** 4939 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4940 * @skb: Socket buffer containing the buffers to be mapped 4941 * @sg: The scatter-gather list to map into 4942 * @offset: The offset into the buffer's contents to start mapping 4943 * @len: Length of buffer space to be mapped 4944 * 4945 * Fill the specified scatter-gather list with mappings/pointers into a 4946 * region of the buffer space attached to a socket buffer. Returns either 4947 * the number of scatterlist items used, or -EMSGSIZE if the contents 4948 * could not fit. 4949 */ 4950 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4951 { 4952 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4953 4954 if (nsg <= 0) 4955 return nsg; 4956 4957 sg_mark_end(&sg[nsg - 1]); 4958 4959 return nsg; 4960 } 4961 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4962 4963 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4964 * sglist without mark the sg which contain last skb data as the end. 4965 * So the caller can mannipulate sg list as will when padding new data after 4966 * the first call without calling sg_unmark_end to expend sg list. 4967 * 4968 * Scenario to use skb_to_sgvec_nomark: 4969 * 1. sg_init_table 4970 * 2. skb_to_sgvec_nomark(payload1) 4971 * 3. skb_to_sgvec_nomark(payload2) 4972 * 4973 * This is equivalent to: 4974 * 1. sg_init_table 4975 * 2. skb_to_sgvec(payload1) 4976 * 3. sg_unmark_end 4977 * 4. skb_to_sgvec(payload2) 4978 * 4979 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4980 * is more preferable. 4981 */ 4982 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4983 int offset, int len) 4984 { 4985 return __skb_to_sgvec(skb, sg, offset, len, 0); 4986 } 4987 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4988 4989 4990 4991 /** 4992 * skb_cow_data - Check that a socket buffer's data buffers are writable 4993 * @skb: The socket buffer to check. 4994 * @tailbits: Amount of trailing space to be added 4995 * @trailer: Returned pointer to the skb where the @tailbits space begins 4996 * 4997 * Make sure that the data buffers attached to a socket buffer are 4998 * writable. If they are not, private copies are made of the data buffers 4999 * and the socket buffer is set to use these instead. 5000 * 5001 * If @tailbits is given, make sure that there is space to write @tailbits 5002 * bytes of data beyond current end of socket buffer. @trailer will be 5003 * set to point to the skb in which this space begins. 5004 * 5005 * The number of scatterlist elements required to completely map the 5006 * COW'd and extended socket buffer will be returned. 5007 */ 5008 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5009 { 5010 int copyflag; 5011 int elt; 5012 struct sk_buff *skb1, **skb_p; 5013 5014 /* If skb is cloned or its head is paged, reallocate 5015 * head pulling out all the pages (pages are considered not writable 5016 * at the moment even if they are anonymous). 5017 */ 5018 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5019 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5020 return -ENOMEM; 5021 5022 /* Easy case. Most of packets will go this way. */ 5023 if (!skb_has_frag_list(skb)) { 5024 /* A little of trouble, not enough of space for trailer. 5025 * This should not happen, when stack is tuned to generate 5026 * good frames. OK, on miss we reallocate and reserve even more 5027 * space, 128 bytes is fair. */ 5028 5029 if (skb_tailroom(skb) < tailbits && 5030 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5031 return -ENOMEM; 5032 5033 /* Voila! */ 5034 *trailer = skb; 5035 return 1; 5036 } 5037 5038 /* Misery. We are in troubles, going to mincer fragments... */ 5039 5040 elt = 1; 5041 skb_p = &skb_shinfo(skb)->frag_list; 5042 copyflag = 0; 5043 5044 while ((skb1 = *skb_p) != NULL) { 5045 int ntail = 0; 5046 5047 /* The fragment is partially pulled by someone, 5048 * this can happen on input. Copy it and everything 5049 * after it. */ 5050 5051 if (skb_shared(skb1)) 5052 copyflag = 1; 5053 5054 /* If the skb is the last, worry about trailer. */ 5055 5056 if (skb1->next == NULL && tailbits) { 5057 if (skb_shinfo(skb1)->nr_frags || 5058 skb_has_frag_list(skb1) || 5059 skb_tailroom(skb1) < tailbits) 5060 ntail = tailbits + 128; 5061 } 5062 5063 if (copyflag || 5064 skb_cloned(skb1) || 5065 ntail || 5066 skb_shinfo(skb1)->nr_frags || 5067 skb_has_frag_list(skb1)) { 5068 struct sk_buff *skb2; 5069 5070 /* Fuck, we are miserable poor guys... */ 5071 if (ntail == 0) 5072 skb2 = skb_copy(skb1, GFP_ATOMIC); 5073 else 5074 skb2 = skb_copy_expand(skb1, 5075 skb_headroom(skb1), 5076 ntail, 5077 GFP_ATOMIC); 5078 if (unlikely(skb2 == NULL)) 5079 return -ENOMEM; 5080 5081 if (skb1->sk) 5082 skb_set_owner_w(skb2, skb1->sk); 5083 5084 /* Looking around. Are we still alive? 5085 * OK, link new skb, drop old one */ 5086 5087 skb2->next = skb1->next; 5088 *skb_p = skb2; 5089 kfree_skb(skb1); 5090 skb1 = skb2; 5091 } 5092 elt++; 5093 *trailer = skb1; 5094 skb_p = &skb1->next; 5095 } 5096 5097 return elt; 5098 } 5099 EXPORT_SYMBOL_GPL(skb_cow_data); 5100 5101 static void sock_rmem_free(struct sk_buff *skb) 5102 { 5103 struct sock *sk = skb->sk; 5104 5105 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5106 } 5107 5108 static void skb_set_err_queue(struct sk_buff *skb) 5109 { 5110 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5111 * So, it is safe to (mis)use it to mark skbs on the error queue. 5112 */ 5113 skb->pkt_type = PACKET_OUTGOING; 5114 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5115 } 5116 5117 /* 5118 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5119 */ 5120 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5121 { 5122 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5123 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5124 return -ENOMEM; 5125 5126 skb_orphan(skb); 5127 skb->sk = sk; 5128 skb->destructor = sock_rmem_free; 5129 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5130 skb_set_err_queue(skb); 5131 5132 /* before exiting rcu section, make sure dst is refcounted */ 5133 skb_dst_force(skb); 5134 5135 skb_queue_tail(&sk->sk_error_queue, skb); 5136 if (!sock_flag(sk, SOCK_DEAD)) 5137 sk_error_report(sk); 5138 return 0; 5139 } 5140 EXPORT_SYMBOL(sock_queue_err_skb); 5141 5142 static bool is_icmp_err_skb(const struct sk_buff *skb) 5143 { 5144 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5145 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5146 } 5147 5148 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5149 { 5150 struct sk_buff_head *q = &sk->sk_error_queue; 5151 struct sk_buff *skb, *skb_next = NULL; 5152 bool icmp_next = false; 5153 unsigned long flags; 5154 5155 spin_lock_irqsave(&q->lock, flags); 5156 skb = __skb_dequeue(q); 5157 if (skb && (skb_next = skb_peek(q))) { 5158 icmp_next = is_icmp_err_skb(skb_next); 5159 if (icmp_next) 5160 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5161 } 5162 spin_unlock_irqrestore(&q->lock, flags); 5163 5164 if (is_icmp_err_skb(skb) && !icmp_next) 5165 sk->sk_err = 0; 5166 5167 if (skb_next) 5168 sk_error_report(sk); 5169 5170 return skb; 5171 } 5172 EXPORT_SYMBOL(sock_dequeue_err_skb); 5173 5174 /** 5175 * skb_clone_sk - create clone of skb, and take reference to socket 5176 * @skb: the skb to clone 5177 * 5178 * This function creates a clone of a buffer that holds a reference on 5179 * sk_refcnt. Buffers created via this function are meant to be 5180 * returned using sock_queue_err_skb, or free via kfree_skb. 5181 * 5182 * When passing buffers allocated with this function to sock_queue_err_skb 5183 * it is necessary to wrap the call with sock_hold/sock_put in order to 5184 * prevent the socket from being released prior to being enqueued on 5185 * the sk_error_queue. 5186 */ 5187 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5188 { 5189 struct sock *sk = skb->sk; 5190 struct sk_buff *clone; 5191 5192 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5193 return NULL; 5194 5195 clone = skb_clone(skb, GFP_ATOMIC); 5196 if (!clone) { 5197 sock_put(sk); 5198 return NULL; 5199 } 5200 5201 clone->sk = sk; 5202 clone->destructor = sock_efree; 5203 5204 return clone; 5205 } 5206 EXPORT_SYMBOL(skb_clone_sk); 5207 5208 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5209 struct sock *sk, 5210 int tstype, 5211 bool opt_stats) 5212 { 5213 struct sock_exterr_skb *serr; 5214 int err; 5215 5216 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5217 5218 serr = SKB_EXT_ERR(skb); 5219 memset(serr, 0, sizeof(*serr)); 5220 serr->ee.ee_errno = ENOMSG; 5221 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5222 serr->ee.ee_info = tstype; 5223 serr->opt_stats = opt_stats; 5224 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5225 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5226 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5227 if (sk_is_tcp(sk)) 5228 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5229 } 5230 5231 err = sock_queue_err_skb(sk, skb); 5232 5233 if (err) 5234 kfree_skb(skb); 5235 } 5236 5237 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5238 { 5239 bool ret; 5240 5241 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5242 return true; 5243 5244 read_lock_bh(&sk->sk_callback_lock); 5245 ret = sk->sk_socket && sk->sk_socket->file && 5246 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5247 read_unlock_bh(&sk->sk_callback_lock); 5248 return ret; 5249 } 5250 5251 void skb_complete_tx_timestamp(struct sk_buff *skb, 5252 struct skb_shared_hwtstamps *hwtstamps) 5253 { 5254 struct sock *sk = skb->sk; 5255 5256 if (!skb_may_tx_timestamp(sk, false)) 5257 goto err; 5258 5259 /* Take a reference to prevent skb_orphan() from freeing the socket, 5260 * but only if the socket refcount is not zero. 5261 */ 5262 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5263 *skb_hwtstamps(skb) = *hwtstamps; 5264 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5265 sock_put(sk); 5266 return; 5267 } 5268 5269 err: 5270 kfree_skb(skb); 5271 } 5272 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5273 5274 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5275 const struct sk_buff *ack_skb, 5276 struct skb_shared_hwtstamps *hwtstamps, 5277 struct sock *sk, int tstype) 5278 { 5279 struct sk_buff *skb; 5280 bool tsonly, opt_stats = false; 5281 u32 tsflags; 5282 5283 if (!sk) 5284 return; 5285 5286 tsflags = READ_ONCE(sk->sk_tsflags); 5287 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5288 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5289 return; 5290 5291 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5292 if (!skb_may_tx_timestamp(sk, tsonly)) 5293 return; 5294 5295 if (tsonly) { 5296 #ifdef CONFIG_INET 5297 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5298 sk_is_tcp(sk)) { 5299 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5300 ack_skb); 5301 opt_stats = true; 5302 } else 5303 #endif 5304 skb = alloc_skb(0, GFP_ATOMIC); 5305 } else { 5306 skb = skb_clone(orig_skb, GFP_ATOMIC); 5307 5308 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5309 kfree_skb(skb); 5310 return; 5311 } 5312 } 5313 if (!skb) 5314 return; 5315 5316 if (tsonly) { 5317 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5318 SKBTX_ANY_TSTAMP; 5319 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5320 } 5321 5322 if (hwtstamps) 5323 *skb_hwtstamps(skb) = *hwtstamps; 5324 else 5325 __net_timestamp(skb); 5326 5327 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5328 } 5329 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5330 5331 void skb_tstamp_tx(struct sk_buff *orig_skb, 5332 struct skb_shared_hwtstamps *hwtstamps) 5333 { 5334 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5335 SCM_TSTAMP_SND); 5336 } 5337 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5338 5339 #ifdef CONFIG_WIRELESS 5340 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5341 { 5342 struct sock *sk = skb->sk; 5343 struct sock_exterr_skb *serr; 5344 int err = 1; 5345 5346 skb->wifi_acked_valid = 1; 5347 skb->wifi_acked = acked; 5348 5349 serr = SKB_EXT_ERR(skb); 5350 memset(serr, 0, sizeof(*serr)); 5351 serr->ee.ee_errno = ENOMSG; 5352 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5353 5354 /* Take a reference to prevent skb_orphan() from freeing the socket, 5355 * but only if the socket refcount is not zero. 5356 */ 5357 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5358 err = sock_queue_err_skb(sk, skb); 5359 sock_put(sk); 5360 } 5361 if (err) 5362 kfree_skb(skb); 5363 } 5364 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5365 #endif /* CONFIG_WIRELESS */ 5366 5367 /** 5368 * skb_partial_csum_set - set up and verify partial csum values for packet 5369 * @skb: the skb to set 5370 * @start: the number of bytes after skb->data to start checksumming. 5371 * @off: the offset from start to place the checksum. 5372 * 5373 * For untrusted partially-checksummed packets, we need to make sure the values 5374 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5375 * 5376 * This function checks and sets those values and skb->ip_summed: if this 5377 * returns false you should drop the packet. 5378 */ 5379 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5380 { 5381 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5382 u32 csum_start = skb_headroom(skb) + (u32)start; 5383 5384 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5385 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5386 start, off, skb_headroom(skb), skb_headlen(skb)); 5387 return false; 5388 } 5389 skb->ip_summed = CHECKSUM_PARTIAL; 5390 skb->csum_start = csum_start; 5391 skb->csum_offset = off; 5392 skb->transport_header = csum_start; 5393 return true; 5394 } 5395 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5396 5397 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5398 unsigned int max) 5399 { 5400 if (skb_headlen(skb) >= len) 5401 return 0; 5402 5403 /* If we need to pullup then pullup to the max, so we 5404 * won't need to do it again. 5405 */ 5406 if (max > skb->len) 5407 max = skb->len; 5408 5409 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5410 return -ENOMEM; 5411 5412 if (skb_headlen(skb) < len) 5413 return -EPROTO; 5414 5415 return 0; 5416 } 5417 5418 #define MAX_TCP_HDR_LEN (15 * 4) 5419 5420 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5421 typeof(IPPROTO_IP) proto, 5422 unsigned int off) 5423 { 5424 int err; 5425 5426 switch (proto) { 5427 case IPPROTO_TCP: 5428 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5429 off + MAX_TCP_HDR_LEN); 5430 if (!err && !skb_partial_csum_set(skb, off, 5431 offsetof(struct tcphdr, 5432 check))) 5433 err = -EPROTO; 5434 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5435 5436 case IPPROTO_UDP: 5437 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5438 off + sizeof(struct udphdr)); 5439 if (!err && !skb_partial_csum_set(skb, off, 5440 offsetof(struct udphdr, 5441 check))) 5442 err = -EPROTO; 5443 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5444 } 5445 5446 return ERR_PTR(-EPROTO); 5447 } 5448 5449 /* This value should be large enough to cover a tagged ethernet header plus 5450 * maximally sized IP and TCP or UDP headers. 5451 */ 5452 #define MAX_IP_HDR_LEN 128 5453 5454 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5455 { 5456 unsigned int off; 5457 bool fragment; 5458 __sum16 *csum; 5459 int err; 5460 5461 fragment = false; 5462 5463 err = skb_maybe_pull_tail(skb, 5464 sizeof(struct iphdr), 5465 MAX_IP_HDR_LEN); 5466 if (err < 0) 5467 goto out; 5468 5469 if (ip_is_fragment(ip_hdr(skb))) 5470 fragment = true; 5471 5472 off = ip_hdrlen(skb); 5473 5474 err = -EPROTO; 5475 5476 if (fragment) 5477 goto out; 5478 5479 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5480 if (IS_ERR(csum)) 5481 return PTR_ERR(csum); 5482 5483 if (recalculate) 5484 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5485 ip_hdr(skb)->daddr, 5486 skb->len - off, 5487 ip_hdr(skb)->protocol, 0); 5488 err = 0; 5489 5490 out: 5491 return err; 5492 } 5493 5494 /* This value should be large enough to cover a tagged ethernet header plus 5495 * an IPv6 header, all options, and a maximal TCP or UDP header. 5496 */ 5497 #define MAX_IPV6_HDR_LEN 256 5498 5499 #define OPT_HDR(type, skb, off) \ 5500 (type *)(skb_network_header(skb) + (off)) 5501 5502 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5503 { 5504 int err; 5505 u8 nexthdr; 5506 unsigned int off; 5507 unsigned int len; 5508 bool fragment; 5509 bool done; 5510 __sum16 *csum; 5511 5512 fragment = false; 5513 done = false; 5514 5515 off = sizeof(struct ipv6hdr); 5516 5517 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5518 if (err < 0) 5519 goto out; 5520 5521 nexthdr = ipv6_hdr(skb)->nexthdr; 5522 5523 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5524 while (off <= len && !done) { 5525 switch (nexthdr) { 5526 case IPPROTO_DSTOPTS: 5527 case IPPROTO_HOPOPTS: 5528 case IPPROTO_ROUTING: { 5529 struct ipv6_opt_hdr *hp; 5530 5531 err = skb_maybe_pull_tail(skb, 5532 off + 5533 sizeof(struct ipv6_opt_hdr), 5534 MAX_IPV6_HDR_LEN); 5535 if (err < 0) 5536 goto out; 5537 5538 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5539 nexthdr = hp->nexthdr; 5540 off += ipv6_optlen(hp); 5541 break; 5542 } 5543 case IPPROTO_AH: { 5544 struct ip_auth_hdr *hp; 5545 5546 err = skb_maybe_pull_tail(skb, 5547 off + 5548 sizeof(struct ip_auth_hdr), 5549 MAX_IPV6_HDR_LEN); 5550 if (err < 0) 5551 goto out; 5552 5553 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5554 nexthdr = hp->nexthdr; 5555 off += ipv6_authlen(hp); 5556 break; 5557 } 5558 case IPPROTO_FRAGMENT: { 5559 struct frag_hdr *hp; 5560 5561 err = skb_maybe_pull_tail(skb, 5562 off + 5563 sizeof(struct frag_hdr), 5564 MAX_IPV6_HDR_LEN); 5565 if (err < 0) 5566 goto out; 5567 5568 hp = OPT_HDR(struct frag_hdr, skb, off); 5569 5570 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5571 fragment = true; 5572 5573 nexthdr = hp->nexthdr; 5574 off += sizeof(struct frag_hdr); 5575 break; 5576 } 5577 default: 5578 done = true; 5579 break; 5580 } 5581 } 5582 5583 err = -EPROTO; 5584 5585 if (!done || fragment) 5586 goto out; 5587 5588 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5589 if (IS_ERR(csum)) 5590 return PTR_ERR(csum); 5591 5592 if (recalculate) 5593 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5594 &ipv6_hdr(skb)->daddr, 5595 skb->len - off, nexthdr, 0); 5596 err = 0; 5597 5598 out: 5599 return err; 5600 } 5601 5602 /** 5603 * skb_checksum_setup - set up partial checksum offset 5604 * @skb: the skb to set up 5605 * @recalculate: if true the pseudo-header checksum will be recalculated 5606 */ 5607 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5608 { 5609 int err; 5610 5611 switch (skb->protocol) { 5612 case htons(ETH_P_IP): 5613 err = skb_checksum_setup_ipv4(skb, recalculate); 5614 break; 5615 5616 case htons(ETH_P_IPV6): 5617 err = skb_checksum_setup_ipv6(skb, recalculate); 5618 break; 5619 5620 default: 5621 err = -EPROTO; 5622 break; 5623 } 5624 5625 return err; 5626 } 5627 EXPORT_SYMBOL(skb_checksum_setup); 5628 5629 /** 5630 * skb_checksum_maybe_trim - maybe trims the given skb 5631 * @skb: the skb to check 5632 * @transport_len: the data length beyond the network header 5633 * 5634 * Checks whether the given skb has data beyond the given transport length. 5635 * If so, returns a cloned skb trimmed to this transport length. 5636 * Otherwise returns the provided skb. Returns NULL in error cases 5637 * (e.g. transport_len exceeds skb length or out-of-memory). 5638 * 5639 * Caller needs to set the skb transport header and free any returned skb if it 5640 * differs from the provided skb. 5641 */ 5642 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5643 unsigned int transport_len) 5644 { 5645 struct sk_buff *skb_chk; 5646 unsigned int len = skb_transport_offset(skb) + transport_len; 5647 int ret; 5648 5649 if (skb->len < len) 5650 return NULL; 5651 else if (skb->len == len) 5652 return skb; 5653 5654 skb_chk = skb_clone(skb, GFP_ATOMIC); 5655 if (!skb_chk) 5656 return NULL; 5657 5658 ret = pskb_trim_rcsum(skb_chk, len); 5659 if (ret) { 5660 kfree_skb(skb_chk); 5661 return NULL; 5662 } 5663 5664 return skb_chk; 5665 } 5666 5667 /** 5668 * skb_checksum_trimmed - validate checksum of an skb 5669 * @skb: the skb to check 5670 * @transport_len: the data length beyond the network header 5671 * @skb_chkf: checksum function to use 5672 * 5673 * Applies the given checksum function skb_chkf to the provided skb. 5674 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5675 * 5676 * If the skb has data beyond the given transport length, then a 5677 * trimmed & cloned skb is checked and returned. 5678 * 5679 * Caller needs to set the skb transport header and free any returned skb if it 5680 * differs from the provided skb. 5681 */ 5682 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5683 unsigned int transport_len, 5684 __sum16(*skb_chkf)(struct sk_buff *skb)) 5685 { 5686 struct sk_buff *skb_chk; 5687 unsigned int offset = skb_transport_offset(skb); 5688 __sum16 ret; 5689 5690 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5691 if (!skb_chk) 5692 goto err; 5693 5694 if (!pskb_may_pull(skb_chk, offset)) 5695 goto err; 5696 5697 skb_pull_rcsum(skb_chk, offset); 5698 ret = skb_chkf(skb_chk); 5699 skb_push_rcsum(skb_chk, offset); 5700 5701 if (ret) 5702 goto err; 5703 5704 return skb_chk; 5705 5706 err: 5707 if (skb_chk && skb_chk != skb) 5708 kfree_skb(skb_chk); 5709 5710 return NULL; 5711 5712 } 5713 EXPORT_SYMBOL(skb_checksum_trimmed); 5714 5715 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5716 { 5717 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5718 skb->dev->name); 5719 } 5720 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5721 5722 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5723 { 5724 if (head_stolen) { 5725 skb_release_head_state(skb); 5726 kmem_cache_free(skbuff_cache, skb); 5727 } else { 5728 __kfree_skb(skb); 5729 } 5730 } 5731 EXPORT_SYMBOL(kfree_skb_partial); 5732 5733 /** 5734 * skb_try_coalesce - try to merge skb to prior one 5735 * @to: prior buffer 5736 * @from: buffer to add 5737 * @fragstolen: pointer to boolean 5738 * @delta_truesize: how much more was allocated than was requested 5739 */ 5740 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5741 bool *fragstolen, int *delta_truesize) 5742 { 5743 struct skb_shared_info *to_shinfo, *from_shinfo; 5744 int i, delta, len = from->len; 5745 5746 *fragstolen = false; 5747 5748 if (skb_cloned(to)) 5749 return false; 5750 5751 /* In general, avoid mixing page_pool and non-page_pool allocated 5752 * pages within the same SKB. Additionally avoid dealing with clones 5753 * with page_pool pages, in case the SKB is using page_pool fragment 5754 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5755 * references for cloned SKBs at the moment that would result in 5756 * inconsistent reference counts. 5757 * In theory we could take full references if @from is cloned and 5758 * !@to->pp_recycle but its tricky (due to potential race with 5759 * the clone disappearing) and rare, so not worth dealing with. 5760 */ 5761 if (to->pp_recycle != from->pp_recycle || 5762 (from->pp_recycle && skb_cloned(from))) 5763 return false; 5764 5765 if (len <= skb_tailroom(to)) { 5766 if (len) 5767 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5768 *delta_truesize = 0; 5769 return true; 5770 } 5771 5772 to_shinfo = skb_shinfo(to); 5773 from_shinfo = skb_shinfo(from); 5774 if (to_shinfo->frag_list || from_shinfo->frag_list) 5775 return false; 5776 if (skb_zcopy(to) || skb_zcopy(from)) 5777 return false; 5778 5779 if (skb_headlen(from) != 0) { 5780 struct page *page; 5781 unsigned int offset; 5782 5783 if (to_shinfo->nr_frags + 5784 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5785 return false; 5786 5787 if (skb_head_is_locked(from)) 5788 return false; 5789 5790 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5791 5792 page = virt_to_head_page(from->head); 5793 offset = from->data - (unsigned char *)page_address(page); 5794 5795 skb_fill_page_desc(to, to_shinfo->nr_frags, 5796 page, offset, skb_headlen(from)); 5797 *fragstolen = true; 5798 } else { 5799 if (to_shinfo->nr_frags + 5800 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5801 return false; 5802 5803 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5804 } 5805 5806 WARN_ON_ONCE(delta < len); 5807 5808 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5809 from_shinfo->frags, 5810 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5811 to_shinfo->nr_frags += from_shinfo->nr_frags; 5812 5813 if (!skb_cloned(from)) 5814 from_shinfo->nr_frags = 0; 5815 5816 /* if the skb is not cloned this does nothing 5817 * since we set nr_frags to 0. 5818 */ 5819 for (i = 0; i < from_shinfo->nr_frags; i++) 5820 __skb_frag_ref(&from_shinfo->frags[i]); 5821 5822 to->truesize += delta; 5823 to->len += len; 5824 to->data_len += len; 5825 5826 *delta_truesize = delta; 5827 return true; 5828 } 5829 EXPORT_SYMBOL(skb_try_coalesce); 5830 5831 /** 5832 * skb_scrub_packet - scrub an skb 5833 * 5834 * @skb: buffer to clean 5835 * @xnet: packet is crossing netns 5836 * 5837 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5838 * into/from a tunnel. Some information have to be cleared during these 5839 * operations. 5840 * skb_scrub_packet can also be used to clean a skb before injecting it in 5841 * another namespace (@xnet == true). We have to clear all information in the 5842 * skb that could impact namespace isolation. 5843 */ 5844 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5845 { 5846 skb->pkt_type = PACKET_HOST; 5847 skb->skb_iif = 0; 5848 skb->ignore_df = 0; 5849 skb_dst_drop(skb); 5850 skb_ext_reset(skb); 5851 nf_reset_ct(skb); 5852 nf_reset_trace(skb); 5853 5854 #ifdef CONFIG_NET_SWITCHDEV 5855 skb->offload_fwd_mark = 0; 5856 skb->offload_l3_fwd_mark = 0; 5857 #endif 5858 5859 if (!xnet) 5860 return; 5861 5862 ipvs_reset(skb); 5863 skb->mark = 0; 5864 skb_clear_tstamp(skb); 5865 } 5866 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5867 5868 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5869 { 5870 int mac_len, meta_len; 5871 void *meta; 5872 5873 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5874 kfree_skb(skb); 5875 return NULL; 5876 } 5877 5878 mac_len = skb->data - skb_mac_header(skb); 5879 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5880 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5881 mac_len - VLAN_HLEN - ETH_TLEN); 5882 } 5883 5884 meta_len = skb_metadata_len(skb); 5885 if (meta_len) { 5886 meta = skb_metadata_end(skb) - meta_len; 5887 memmove(meta + VLAN_HLEN, meta, meta_len); 5888 } 5889 5890 skb->mac_header += VLAN_HLEN; 5891 return skb; 5892 } 5893 5894 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5895 { 5896 struct vlan_hdr *vhdr; 5897 u16 vlan_tci; 5898 5899 if (unlikely(skb_vlan_tag_present(skb))) { 5900 /* vlan_tci is already set-up so leave this for another time */ 5901 return skb; 5902 } 5903 5904 skb = skb_share_check(skb, GFP_ATOMIC); 5905 if (unlikely(!skb)) 5906 goto err_free; 5907 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5908 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5909 goto err_free; 5910 5911 vhdr = (struct vlan_hdr *)skb->data; 5912 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5913 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5914 5915 skb_pull_rcsum(skb, VLAN_HLEN); 5916 vlan_set_encap_proto(skb, vhdr); 5917 5918 skb = skb_reorder_vlan_header(skb); 5919 if (unlikely(!skb)) 5920 goto err_free; 5921 5922 skb_reset_network_header(skb); 5923 if (!skb_transport_header_was_set(skb)) 5924 skb_reset_transport_header(skb); 5925 skb_reset_mac_len(skb); 5926 5927 return skb; 5928 5929 err_free: 5930 kfree_skb(skb); 5931 return NULL; 5932 } 5933 EXPORT_SYMBOL(skb_vlan_untag); 5934 5935 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5936 { 5937 if (!pskb_may_pull(skb, write_len)) 5938 return -ENOMEM; 5939 5940 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5941 return 0; 5942 5943 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5944 } 5945 EXPORT_SYMBOL(skb_ensure_writable); 5946 5947 /* remove VLAN header from packet and update csum accordingly. 5948 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5949 */ 5950 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5951 { 5952 int offset = skb->data - skb_mac_header(skb); 5953 int err; 5954 5955 if (WARN_ONCE(offset, 5956 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5957 offset)) { 5958 return -EINVAL; 5959 } 5960 5961 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5962 if (unlikely(err)) 5963 return err; 5964 5965 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5966 5967 vlan_remove_tag(skb, vlan_tci); 5968 5969 skb->mac_header += VLAN_HLEN; 5970 5971 if (skb_network_offset(skb) < ETH_HLEN) 5972 skb_set_network_header(skb, ETH_HLEN); 5973 5974 skb_reset_mac_len(skb); 5975 5976 return err; 5977 } 5978 EXPORT_SYMBOL(__skb_vlan_pop); 5979 5980 /* Pop a vlan tag either from hwaccel or from payload. 5981 * Expects skb->data at mac header. 5982 */ 5983 int skb_vlan_pop(struct sk_buff *skb) 5984 { 5985 u16 vlan_tci; 5986 __be16 vlan_proto; 5987 int err; 5988 5989 if (likely(skb_vlan_tag_present(skb))) { 5990 __vlan_hwaccel_clear_tag(skb); 5991 } else { 5992 if (unlikely(!eth_type_vlan(skb->protocol))) 5993 return 0; 5994 5995 err = __skb_vlan_pop(skb, &vlan_tci); 5996 if (err) 5997 return err; 5998 } 5999 /* move next vlan tag to hw accel tag */ 6000 if (likely(!eth_type_vlan(skb->protocol))) 6001 return 0; 6002 6003 vlan_proto = skb->protocol; 6004 err = __skb_vlan_pop(skb, &vlan_tci); 6005 if (unlikely(err)) 6006 return err; 6007 6008 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6009 return 0; 6010 } 6011 EXPORT_SYMBOL(skb_vlan_pop); 6012 6013 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6014 * Expects skb->data at mac header. 6015 */ 6016 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6017 { 6018 if (skb_vlan_tag_present(skb)) { 6019 int offset = skb->data - skb_mac_header(skb); 6020 int err; 6021 6022 if (WARN_ONCE(offset, 6023 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6024 offset)) { 6025 return -EINVAL; 6026 } 6027 6028 err = __vlan_insert_tag(skb, skb->vlan_proto, 6029 skb_vlan_tag_get(skb)); 6030 if (err) 6031 return err; 6032 6033 skb->protocol = skb->vlan_proto; 6034 skb->mac_len += VLAN_HLEN; 6035 6036 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6037 } 6038 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6039 return 0; 6040 } 6041 EXPORT_SYMBOL(skb_vlan_push); 6042 6043 /** 6044 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6045 * 6046 * @skb: Socket buffer to modify 6047 * 6048 * Drop the Ethernet header of @skb. 6049 * 6050 * Expects that skb->data points to the mac header and that no VLAN tags are 6051 * present. 6052 * 6053 * Returns 0 on success, -errno otherwise. 6054 */ 6055 int skb_eth_pop(struct sk_buff *skb) 6056 { 6057 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6058 skb_network_offset(skb) < ETH_HLEN) 6059 return -EPROTO; 6060 6061 skb_pull_rcsum(skb, ETH_HLEN); 6062 skb_reset_mac_header(skb); 6063 skb_reset_mac_len(skb); 6064 6065 return 0; 6066 } 6067 EXPORT_SYMBOL(skb_eth_pop); 6068 6069 /** 6070 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6071 * 6072 * @skb: Socket buffer to modify 6073 * @dst: Destination MAC address of the new header 6074 * @src: Source MAC address of the new header 6075 * 6076 * Prepend @skb with a new Ethernet header. 6077 * 6078 * Expects that skb->data points to the mac header, which must be empty. 6079 * 6080 * Returns 0 on success, -errno otherwise. 6081 */ 6082 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6083 const unsigned char *src) 6084 { 6085 struct ethhdr *eth; 6086 int err; 6087 6088 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6089 return -EPROTO; 6090 6091 err = skb_cow_head(skb, sizeof(*eth)); 6092 if (err < 0) 6093 return err; 6094 6095 skb_push(skb, sizeof(*eth)); 6096 skb_reset_mac_header(skb); 6097 skb_reset_mac_len(skb); 6098 6099 eth = eth_hdr(skb); 6100 ether_addr_copy(eth->h_dest, dst); 6101 ether_addr_copy(eth->h_source, src); 6102 eth->h_proto = skb->protocol; 6103 6104 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6105 6106 return 0; 6107 } 6108 EXPORT_SYMBOL(skb_eth_push); 6109 6110 /* Update the ethertype of hdr and the skb csum value if required. */ 6111 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6112 __be16 ethertype) 6113 { 6114 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6115 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6116 6117 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6118 } 6119 6120 hdr->h_proto = ethertype; 6121 } 6122 6123 /** 6124 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6125 * the packet 6126 * 6127 * @skb: buffer 6128 * @mpls_lse: MPLS label stack entry to push 6129 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6130 * @mac_len: length of the MAC header 6131 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6132 * ethernet 6133 * 6134 * Expects skb->data at mac header. 6135 * 6136 * Returns 0 on success, -errno otherwise. 6137 */ 6138 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6139 int mac_len, bool ethernet) 6140 { 6141 struct mpls_shim_hdr *lse; 6142 int err; 6143 6144 if (unlikely(!eth_p_mpls(mpls_proto))) 6145 return -EINVAL; 6146 6147 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6148 if (skb->encapsulation) 6149 return -EINVAL; 6150 6151 err = skb_cow_head(skb, MPLS_HLEN); 6152 if (unlikely(err)) 6153 return err; 6154 6155 if (!skb->inner_protocol) { 6156 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6157 skb_set_inner_protocol(skb, skb->protocol); 6158 } 6159 6160 skb_push(skb, MPLS_HLEN); 6161 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6162 mac_len); 6163 skb_reset_mac_header(skb); 6164 skb_set_network_header(skb, mac_len); 6165 skb_reset_mac_len(skb); 6166 6167 lse = mpls_hdr(skb); 6168 lse->label_stack_entry = mpls_lse; 6169 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6170 6171 if (ethernet && mac_len >= ETH_HLEN) 6172 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6173 skb->protocol = mpls_proto; 6174 6175 return 0; 6176 } 6177 EXPORT_SYMBOL_GPL(skb_mpls_push); 6178 6179 /** 6180 * skb_mpls_pop() - pop the outermost MPLS header 6181 * 6182 * @skb: buffer 6183 * @next_proto: ethertype of header after popped MPLS header 6184 * @mac_len: length of the MAC header 6185 * @ethernet: flag to indicate if the packet is ethernet 6186 * 6187 * Expects skb->data at mac header. 6188 * 6189 * Returns 0 on success, -errno otherwise. 6190 */ 6191 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6192 bool ethernet) 6193 { 6194 int err; 6195 6196 if (unlikely(!eth_p_mpls(skb->protocol))) 6197 return 0; 6198 6199 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6200 if (unlikely(err)) 6201 return err; 6202 6203 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6204 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6205 mac_len); 6206 6207 __skb_pull(skb, MPLS_HLEN); 6208 skb_reset_mac_header(skb); 6209 skb_set_network_header(skb, mac_len); 6210 6211 if (ethernet && mac_len >= ETH_HLEN) { 6212 struct ethhdr *hdr; 6213 6214 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6215 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6216 skb_mod_eth_type(skb, hdr, next_proto); 6217 } 6218 skb->protocol = next_proto; 6219 6220 return 0; 6221 } 6222 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6223 6224 /** 6225 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6226 * 6227 * @skb: buffer 6228 * @mpls_lse: new MPLS label stack entry to update to 6229 * 6230 * Expects skb->data at mac header. 6231 * 6232 * Returns 0 on success, -errno otherwise. 6233 */ 6234 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6235 { 6236 int err; 6237 6238 if (unlikely(!eth_p_mpls(skb->protocol))) 6239 return -EINVAL; 6240 6241 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6242 if (unlikely(err)) 6243 return err; 6244 6245 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6246 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6247 6248 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6249 } 6250 6251 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6252 6253 return 0; 6254 } 6255 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6256 6257 /** 6258 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6259 * 6260 * @skb: buffer 6261 * 6262 * Expects skb->data at mac header. 6263 * 6264 * Returns 0 on success, -errno otherwise. 6265 */ 6266 int skb_mpls_dec_ttl(struct sk_buff *skb) 6267 { 6268 u32 lse; 6269 u8 ttl; 6270 6271 if (unlikely(!eth_p_mpls(skb->protocol))) 6272 return -EINVAL; 6273 6274 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6275 return -ENOMEM; 6276 6277 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6278 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6279 if (!--ttl) 6280 return -EINVAL; 6281 6282 lse &= ~MPLS_LS_TTL_MASK; 6283 lse |= ttl << MPLS_LS_TTL_SHIFT; 6284 6285 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6286 } 6287 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6288 6289 /** 6290 * alloc_skb_with_frags - allocate skb with page frags 6291 * 6292 * @header_len: size of linear part 6293 * @data_len: needed length in frags 6294 * @order: max page order desired. 6295 * @errcode: pointer to error code if any 6296 * @gfp_mask: allocation mask 6297 * 6298 * This can be used to allocate a paged skb, given a maximal order for frags. 6299 */ 6300 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6301 unsigned long data_len, 6302 int order, 6303 int *errcode, 6304 gfp_t gfp_mask) 6305 { 6306 unsigned long chunk; 6307 struct sk_buff *skb; 6308 struct page *page; 6309 int nr_frags = 0; 6310 6311 *errcode = -EMSGSIZE; 6312 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6313 return NULL; 6314 6315 *errcode = -ENOBUFS; 6316 skb = alloc_skb(header_len, gfp_mask); 6317 if (!skb) 6318 return NULL; 6319 6320 while (data_len) { 6321 if (nr_frags == MAX_SKB_FRAGS - 1) 6322 goto failure; 6323 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6324 order--; 6325 6326 if (order) { 6327 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6328 __GFP_COMP | 6329 __GFP_NOWARN, 6330 order); 6331 if (!page) { 6332 order--; 6333 continue; 6334 } 6335 } else { 6336 page = alloc_page(gfp_mask); 6337 if (!page) 6338 goto failure; 6339 } 6340 chunk = min_t(unsigned long, data_len, 6341 PAGE_SIZE << order); 6342 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6343 nr_frags++; 6344 skb->truesize += (PAGE_SIZE << order); 6345 data_len -= chunk; 6346 } 6347 return skb; 6348 6349 failure: 6350 kfree_skb(skb); 6351 return NULL; 6352 } 6353 EXPORT_SYMBOL(alloc_skb_with_frags); 6354 6355 /* carve out the first off bytes from skb when off < headlen */ 6356 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6357 const int headlen, gfp_t gfp_mask) 6358 { 6359 int i; 6360 unsigned int size = skb_end_offset(skb); 6361 int new_hlen = headlen - off; 6362 u8 *data; 6363 6364 if (skb_pfmemalloc(skb)) 6365 gfp_mask |= __GFP_MEMALLOC; 6366 6367 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6368 if (!data) 6369 return -ENOMEM; 6370 size = SKB_WITH_OVERHEAD(size); 6371 6372 /* Copy real data, and all frags */ 6373 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6374 skb->len -= off; 6375 6376 memcpy((struct skb_shared_info *)(data + size), 6377 skb_shinfo(skb), 6378 offsetof(struct skb_shared_info, 6379 frags[skb_shinfo(skb)->nr_frags])); 6380 if (skb_cloned(skb)) { 6381 /* drop the old head gracefully */ 6382 if (skb_orphan_frags(skb, gfp_mask)) { 6383 skb_kfree_head(data, size); 6384 return -ENOMEM; 6385 } 6386 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6387 skb_frag_ref(skb, i); 6388 if (skb_has_frag_list(skb)) 6389 skb_clone_fraglist(skb); 6390 skb_release_data(skb, SKB_CONSUMED, false); 6391 } else { 6392 /* we can reuse existing recount- all we did was 6393 * relocate values 6394 */ 6395 skb_free_head(skb, false); 6396 } 6397 6398 skb->head = data; 6399 skb->data = data; 6400 skb->head_frag = 0; 6401 skb_set_end_offset(skb, size); 6402 skb_set_tail_pointer(skb, skb_headlen(skb)); 6403 skb_headers_offset_update(skb, 0); 6404 skb->cloned = 0; 6405 skb->hdr_len = 0; 6406 skb->nohdr = 0; 6407 atomic_set(&skb_shinfo(skb)->dataref, 1); 6408 6409 return 0; 6410 } 6411 6412 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6413 6414 /* carve out the first eat bytes from skb's frag_list. May recurse into 6415 * pskb_carve() 6416 */ 6417 static int pskb_carve_frag_list(struct sk_buff *skb, 6418 struct skb_shared_info *shinfo, int eat, 6419 gfp_t gfp_mask) 6420 { 6421 struct sk_buff *list = shinfo->frag_list; 6422 struct sk_buff *clone = NULL; 6423 struct sk_buff *insp = NULL; 6424 6425 do { 6426 if (!list) { 6427 pr_err("Not enough bytes to eat. Want %d\n", eat); 6428 return -EFAULT; 6429 } 6430 if (list->len <= eat) { 6431 /* Eaten as whole. */ 6432 eat -= list->len; 6433 list = list->next; 6434 insp = list; 6435 } else { 6436 /* Eaten partially. */ 6437 if (skb_shared(list)) { 6438 clone = skb_clone(list, gfp_mask); 6439 if (!clone) 6440 return -ENOMEM; 6441 insp = list->next; 6442 list = clone; 6443 } else { 6444 /* This may be pulled without problems. */ 6445 insp = list; 6446 } 6447 if (pskb_carve(list, eat, gfp_mask) < 0) { 6448 kfree_skb(clone); 6449 return -ENOMEM; 6450 } 6451 break; 6452 } 6453 } while (eat); 6454 6455 /* Free pulled out fragments. */ 6456 while ((list = shinfo->frag_list) != insp) { 6457 shinfo->frag_list = list->next; 6458 consume_skb(list); 6459 } 6460 /* And insert new clone at head. */ 6461 if (clone) { 6462 clone->next = list; 6463 shinfo->frag_list = clone; 6464 } 6465 return 0; 6466 } 6467 6468 /* carve off first len bytes from skb. Split line (off) is in the 6469 * non-linear part of skb 6470 */ 6471 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6472 int pos, gfp_t gfp_mask) 6473 { 6474 int i, k = 0; 6475 unsigned int size = skb_end_offset(skb); 6476 u8 *data; 6477 const int nfrags = skb_shinfo(skb)->nr_frags; 6478 struct skb_shared_info *shinfo; 6479 6480 if (skb_pfmemalloc(skb)) 6481 gfp_mask |= __GFP_MEMALLOC; 6482 6483 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6484 if (!data) 6485 return -ENOMEM; 6486 size = SKB_WITH_OVERHEAD(size); 6487 6488 memcpy((struct skb_shared_info *)(data + size), 6489 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6490 if (skb_orphan_frags(skb, gfp_mask)) { 6491 skb_kfree_head(data, size); 6492 return -ENOMEM; 6493 } 6494 shinfo = (struct skb_shared_info *)(data + size); 6495 for (i = 0; i < nfrags; i++) { 6496 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6497 6498 if (pos + fsize > off) { 6499 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6500 6501 if (pos < off) { 6502 /* Split frag. 6503 * We have two variants in this case: 6504 * 1. Move all the frag to the second 6505 * part, if it is possible. F.e. 6506 * this approach is mandatory for TUX, 6507 * where splitting is expensive. 6508 * 2. Split is accurately. We make this. 6509 */ 6510 skb_frag_off_add(&shinfo->frags[0], off - pos); 6511 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6512 } 6513 skb_frag_ref(skb, i); 6514 k++; 6515 } 6516 pos += fsize; 6517 } 6518 shinfo->nr_frags = k; 6519 if (skb_has_frag_list(skb)) 6520 skb_clone_fraglist(skb); 6521 6522 /* split line is in frag list */ 6523 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6524 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6525 if (skb_has_frag_list(skb)) 6526 kfree_skb_list(skb_shinfo(skb)->frag_list); 6527 skb_kfree_head(data, size); 6528 return -ENOMEM; 6529 } 6530 skb_release_data(skb, SKB_CONSUMED, false); 6531 6532 skb->head = data; 6533 skb->head_frag = 0; 6534 skb->data = data; 6535 skb_set_end_offset(skb, size); 6536 skb_reset_tail_pointer(skb); 6537 skb_headers_offset_update(skb, 0); 6538 skb->cloned = 0; 6539 skb->hdr_len = 0; 6540 skb->nohdr = 0; 6541 skb->len -= off; 6542 skb->data_len = skb->len; 6543 atomic_set(&skb_shinfo(skb)->dataref, 1); 6544 return 0; 6545 } 6546 6547 /* remove len bytes from the beginning of the skb */ 6548 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6549 { 6550 int headlen = skb_headlen(skb); 6551 6552 if (len < headlen) 6553 return pskb_carve_inside_header(skb, len, headlen, gfp); 6554 else 6555 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6556 } 6557 6558 /* Extract to_copy bytes starting at off from skb, and return this in 6559 * a new skb 6560 */ 6561 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6562 int to_copy, gfp_t gfp) 6563 { 6564 struct sk_buff *clone = skb_clone(skb, gfp); 6565 6566 if (!clone) 6567 return NULL; 6568 6569 if (pskb_carve(clone, off, gfp) < 0 || 6570 pskb_trim(clone, to_copy)) { 6571 kfree_skb(clone); 6572 return NULL; 6573 } 6574 return clone; 6575 } 6576 EXPORT_SYMBOL(pskb_extract); 6577 6578 /** 6579 * skb_condense - try to get rid of fragments/frag_list if possible 6580 * @skb: buffer 6581 * 6582 * Can be used to save memory before skb is added to a busy queue. 6583 * If packet has bytes in frags and enough tail room in skb->head, 6584 * pull all of them, so that we can free the frags right now and adjust 6585 * truesize. 6586 * Notes: 6587 * We do not reallocate skb->head thus can not fail. 6588 * Caller must re-evaluate skb->truesize if needed. 6589 */ 6590 void skb_condense(struct sk_buff *skb) 6591 { 6592 if (skb->data_len) { 6593 if (skb->data_len > skb->end - skb->tail || 6594 skb_cloned(skb)) 6595 return; 6596 6597 /* Nice, we can free page frag(s) right now */ 6598 __pskb_pull_tail(skb, skb->data_len); 6599 } 6600 /* At this point, skb->truesize might be over estimated, 6601 * because skb had a fragment, and fragments do not tell 6602 * their truesize. 6603 * When we pulled its content into skb->head, fragment 6604 * was freed, but __pskb_pull_tail() could not possibly 6605 * adjust skb->truesize, not knowing the frag truesize. 6606 */ 6607 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6608 } 6609 EXPORT_SYMBOL(skb_condense); 6610 6611 #ifdef CONFIG_SKB_EXTENSIONS 6612 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6613 { 6614 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6615 } 6616 6617 /** 6618 * __skb_ext_alloc - allocate a new skb extensions storage 6619 * 6620 * @flags: See kmalloc(). 6621 * 6622 * Returns the newly allocated pointer. The pointer can later attached to a 6623 * skb via __skb_ext_set(). 6624 * Note: caller must handle the skb_ext as an opaque data. 6625 */ 6626 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6627 { 6628 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6629 6630 if (new) { 6631 memset(new->offset, 0, sizeof(new->offset)); 6632 refcount_set(&new->refcnt, 1); 6633 } 6634 6635 return new; 6636 } 6637 6638 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6639 unsigned int old_active) 6640 { 6641 struct skb_ext *new; 6642 6643 if (refcount_read(&old->refcnt) == 1) 6644 return old; 6645 6646 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6647 if (!new) 6648 return NULL; 6649 6650 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6651 refcount_set(&new->refcnt, 1); 6652 6653 #ifdef CONFIG_XFRM 6654 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6655 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6656 unsigned int i; 6657 6658 for (i = 0; i < sp->len; i++) 6659 xfrm_state_hold(sp->xvec[i]); 6660 } 6661 #endif 6662 __skb_ext_put(old); 6663 return new; 6664 } 6665 6666 /** 6667 * __skb_ext_set - attach the specified extension storage to this skb 6668 * @skb: buffer 6669 * @id: extension id 6670 * @ext: extension storage previously allocated via __skb_ext_alloc() 6671 * 6672 * Existing extensions, if any, are cleared. 6673 * 6674 * Returns the pointer to the extension. 6675 */ 6676 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6677 struct skb_ext *ext) 6678 { 6679 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6680 6681 skb_ext_put(skb); 6682 newlen = newoff + skb_ext_type_len[id]; 6683 ext->chunks = newlen; 6684 ext->offset[id] = newoff; 6685 skb->extensions = ext; 6686 skb->active_extensions = 1 << id; 6687 return skb_ext_get_ptr(ext, id); 6688 } 6689 6690 /** 6691 * skb_ext_add - allocate space for given extension, COW if needed 6692 * @skb: buffer 6693 * @id: extension to allocate space for 6694 * 6695 * Allocates enough space for the given extension. 6696 * If the extension is already present, a pointer to that extension 6697 * is returned. 6698 * 6699 * If the skb was cloned, COW applies and the returned memory can be 6700 * modified without changing the extension space of clones buffers. 6701 * 6702 * Returns pointer to the extension or NULL on allocation failure. 6703 */ 6704 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6705 { 6706 struct skb_ext *new, *old = NULL; 6707 unsigned int newlen, newoff; 6708 6709 if (skb->active_extensions) { 6710 old = skb->extensions; 6711 6712 new = skb_ext_maybe_cow(old, skb->active_extensions); 6713 if (!new) 6714 return NULL; 6715 6716 if (__skb_ext_exist(new, id)) 6717 goto set_active; 6718 6719 newoff = new->chunks; 6720 } else { 6721 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6722 6723 new = __skb_ext_alloc(GFP_ATOMIC); 6724 if (!new) 6725 return NULL; 6726 } 6727 6728 newlen = newoff + skb_ext_type_len[id]; 6729 new->chunks = newlen; 6730 new->offset[id] = newoff; 6731 set_active: 6732 skb->slow_gro = 1; 6733 skb->extensions = new; 6734 skb->active_extensions |= 1 << id; 6735 return skb_ext_get_ptr(new, id); 6736 } 6737 EXPORT_SYMBOL(skb_ext_add); 6738 6739 #ifdef CONFIG_XFRM 6740 static void skb_ext_put_sp(struct sec_path *sp) 6741 { 6742 unsigned int i; 6743 6744 for (i = 0; i < sp->len; i++) 6745 xfrm_state_put(sp->xvec[i]); 6746 } 6747 #endif 6748 6749 #ifdef CONFIG_MCTP_FLOWS 6750 static void skb_ext_put_mctp(struct mctp_flow *flow) 6751 { 6752 if (flow->key) 6753 mctp_key_unref(flow->key); 6754 } 6755 #endif 6756 6757 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6758 { 6759 struct skb_ext *ext = skb->extensions; 6760 6761 skb->active_extensions &= ~(1 << id); 6762 if (skb->active_extensions == 0) { 6763 skb->extensions = NULL; 6764 __skb_ext_put(ext); 6765 #ifdef CONFIG_XFRM 6766 } else if (id == SKB_EXT_SEC_PATH && 6767 refcount_read(&ext->refcnt) == 1) { 6768 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6769 6770 skb_ext_put_sp(sp); 6771 sp->len = 0; 6772 #endif 6773 } 6774 } 6775 EXPORT_SYMBOL(__skb_ext_del); 6776 6777 void __skb_ext_put(struct skb_ext *ext) 6778 { 6779 /* If this is last clone, nothing can increment 6780 * it after check passes. Avoids one atomic op. 6781 */ 6782 if (refcount_read(&ext->refcnt) == 1) 6783 goto free_now; 6784 6785 if (!refcount_dec_and_test(&ext->refcnt)) 6786 return; 6787 free_now: 6788 #ifdef CONFIG_XFRM 6789 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6790 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6791 #endif 6792 #ifdef CONFIG_MCTP_FLOWS 6793 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6794 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6795 #endif 6796 6797 kmem_cache_free(skbuff_ext_cache, ext); 6798 } 6799 EXPORT_SYMBOL(__skb_ext_put); 6800 #endif /* CONFIG_SKB_EXTENSIONS */ 6801 6802 /** 6803 * skb_attempt_defer_free - queue skb for remote freeing 6804 * @skb: buffer 6805 * 6806 * Put @skb in a per-cpu list, using the cpu which 6807 * allocated the skb/pages to reduce false sharing 6808 * and memory zone spinlock contention. 6809 */ 6810 void skb_attempt_defer_free(struct sk_buff *skb) 6811 { 6812 int cpu = skb->alloc_cpu; 6813 struct softnet_data *sd; 6814 unsigned int defer_max; 6815 bool kick; 6816 6817 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6818 !cpu_online(cpu) || 6819 cpu == raw_smp_processor_id()) { 6820 nodefer: __kfree_skb(skb); 6821 return; 6822 } 6823 6824 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6825 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6826 6827 sd = &per_cpu(softnet_data, cpu); 6828 defer_max = READ_ONCE(sysctl_skb_defer_max); 6829 if (READ_ONCE(sd->defer_count) >= defer_max) 6830 goto nodefer; 6831 6832 spin_lock_bh(&sd->defer_lock); 6833 /* Send an IPI every time queue reaches half capacity. */ 6834 kick = sd->defer_count == (defer_max >> 1); 6835 /* Paired with the READ_ONCE() few lines above */ 6836 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6837 6838 skb->next = sd->defer_list; 6839 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6840 WRITE_ONCE(sd->defer_list, skb); 6841 spin_unlock_bh(&sd->defer_lock); 6842 6843 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6844 * if we are unlucky enough (this seems very unlikely). 6845 */ 6846 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6847 smp_call_function_single_async(cpu, &sd->defer_csd); 6848 } 6849 6850 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 6851 size_t offset, size_t len) 6852 { 6853 const char *kaddr; 6854 __wsum csum; 6855 6856 kaddr = kmap_local_page(page); 6857 csum = csum_partial(kaddr + offset, len, 0); 6858 kunmap_local(kaddr); 6859 skb->csum = csum_block_add(skb->csum, csum, skb->len); 6860 } 6861 6862 /** 6863 * skb_splice_from_iter - Splice (or copy) pages to skbuff 6864 * @skb: The buffer to add pages to 6865 * @iter: Iterator representing the pages to be added 6866 * @maxsize: Maximum amount of pages to be added 6867 * @gfp: Allocation flags 6868 * 6869 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 6870 * extracts pages from an iterator and adds them to the socket buffer if 6871 * possible, copying them to fragments if not possible (such as if they're slab 6872 * pages). 6873 * 6874 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 6875 * insufficient space in the buffer to transfer anything. 6876 */ 6877 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 6878 ssize_t maxsize, gfp_t gfp) 6879 { 6880 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 6881 struct page *pages[8], **ppages = pages; 6882 ssize_t spliced = 0, ret = 0; 6883 unsigned int i; 6884 6885 while (iter->count > 0) { 6886 ssize_t space, nr, len; 6887 size_t off; 6888 6889 ret = -EMSGSIZE; 6890 space = frag_limit - skb_shinfo(skb)->nr_frags; 6891 if (space < 0) 6892 break; 6893 6894 /* We might be able to coalesce without increasing nr_frags */ 6895 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 6896 6897 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 6898 if (len <= 0) { 6899 ret = len ?: -EIO; 6900 break; 6901 } 6902 6903 i = 0; 6904 do { 6905 struct page *page = pages[i++]; 6906 size_t part = min_t(size_t, PAGE_SIZE - off, len); 6907 6908 ret = -EIO; 6909 if (WARN_ON_ONCE(!sendpage_ok(page))) 6910 goto out; 6911 6912 ret = skb_append_pagefrags(skb, page, off, part, 6913 frag_limit); 6914 if (ret < 0) { 6915 iov_iter_revert(iter, len); 6916 goto out; 6917 } 6918 6919 if (skb->ip_summed == CHECKSUM_NONE) 6920 skb_splice_csum_page(skb, page, off, part); 6921 6922 off = 0; 6923 spliced += part; 6924 maxsize -= part; 6925 len -= part; 6926 } while (len > 0); 6927 6928 if (maxsize <= 0) 6929 break; 6930 } 6931 6932 out: 6933 skb_len_add(skb, spliced); 6934 return spliced ?: ret; 6935 } 6936 EXPORT_SYMBOL(skb_splice_from_iter); 6937