1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/splice.h> 55 #include <linux/cache.h> 56 #include <linux/rtnetlink.h> 57 #include <linux/init.h> 58 #include <linux/scatterlist.h> 59 #include <linux/errqueue.h> 60 #include <linux/prefetch.h> 61 #include <linux/bitfield.h> 62 #include <linux/if_vlan.h> 63 #include <linux/mpls.h> 64 #include <linux/kcov.h> 65 66 #include <net/protocol.h> 67 #include <net/dst.h> 68 #include <net/sock.h> 69 #include <net/checksum.h> 70 #include <net/gso.h> 71 #include <net/ip6_checksum.h> 72 #include <net/xfrm.h> 73 #include <net/mpls.h> 74 #include <net/mptcp.h> 75 #include <net/mctp.h> 76 #include <net/page_pool/helpers.h> 77 #include <net/dropreason.h> 78 79 #include <linux/uaccess.h> 80 #include <trace/events/skb.h> 81 #include <linux/highmem.h> 82 #include <linux/capability.h> 83 #include <linux/user_namespace.h> 84 #include <linux/indirect_call_wrapper.h> 85 #include <linux/textsearch.h> 86 87 #include "dev.h" 88 #include "sock_destructor.h" 89 90 struct kmem_cache *skbuff_cache __ro_after_init; 91 static struct kmem_cache *skbuff_fclone_cache __ro_after_init; 92 #ifdef CONFIG_SKB_EXTENSIONS 93 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 94 #endif 95 96 97 static struct kmem_cache *skb_small_head_cache __ro_after_init; 98 99 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER) 100 101 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 103 * size, and we can differentiate heads from skb_small_head_cache 104 * vs system slabs by looking at their size (skb_end_offset()). 105 */ 106 #define SKB_SMALL_HEAD_CACHE_SIZE \ 107 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 108 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 109 SKB_SMALL_HEAD_SIZE) 110 111 #define SKB_SMALL_HEAD_HEADROOM \ 112 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 113 114 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 115 EXPORT_SYMBOL(sysctl_max_skb_frags); 116 117 #undef FN 118 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 119 static const char * const drop_reasons[] = { 120 [SKB_CONSUMED] = "CONSUMED", 121 DEFINE_DROP_REASON(FN, FN) 122 }; 123 124 static const struct drop_reason_list drop_reasons_core = { 125 .reasons = drop_reasons, 126 .n_reasons = ARRAY_SIZE(drop_reasons), 127 }; 128 129 const struct drop_reason_list __rcu * 130 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 131 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 132 }; 133 EXPORT_SYMBOL(drop_reasons_by_subsys); 134 135 /** 136 * drop_reasons_register_subsys - register another drop reason subsystem 137 * @subsys: the subsystem to register, must not be the core 138 * @list: the list of drop reasons within the subsystem, must point to 139 * a statically initialized list 140 */ 141 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 142 const struct drop_reason_list *list) 143 { 144 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 145 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 146 "invalid subsystem %d\n", subsys)) 147 return; 148 149 /* must point to statically allocated memory, so INIT is OK */ 150 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 151 } 152 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 153 154 /** 155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 156 * @subsys: the subsystem to remove, must not be the core 157 * 158 * Note: This will synchronize_rcu() to ensure no users when it returns. 159 */ 160 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 161 { 162 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 163 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 164 "invalid subsystem %d\n", subsys)) 165 return; 166 167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 168 169 synchronize_rcu(); 170 } 171 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 172 173 /** 174 * skb_panic - private function for out-of-line support 175 * @skb: buffer 176 * @sz: size 177 * @addr: address 178 * @msg: skb_over_panic or skb_under_panic 179 * 180 * Out-of-line support for skb_put() and skb_push(). 181 * Called via the wrapper skb_over_panic() or skb_under_panic(). 182 * Keep out of line to prevent kernel bloat. 183 * __builtin_return_address is not used because it is not always reliable. 184 */ 185 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 186 const char msg[]) 187 { 188 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 189 msg, addr, skb->len, sz, skb->head, skb->data, 190 (unsigned long)skb->tail, (unsigned long)skb->end, 191 skb->dev ? skb->dev->name : "<NULL>"); 192 BUG(); 193 } 194 195 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 196 { 197 skb_panic(skb, sz, addr, __func__); 198 } 199 200 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 201 { 202 skb_panic(skb, sz, addr, __func__); 203 } 204 205 #define NAPI_SKB_CACHE_SIZE 64 206 #define NAPI_SKB_CACHE_BULK 16 207 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) 208 209 #if PAGE_SIZE == SZ_4K 210 211 #define NAPI_HAS_SMALL_PAGE_FRAG 1 212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc) 213 214 /* specialized page frag allocator using a single order 0 page 215 * and slicing it into 1K sized fragment. Constrained to systems 216 * with a very limited amount of 1K fragments fitting a single 217 * page - to avoid excessive truesize underestimation 218 */ 219 220 struct page_frag_1k { 221 void *va; 222 u16 offset; 223 bool pfmemalloc; 224 }; 225 226 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp) 227 { 228 struct page *page; 229 int offset; 230 231 offset = nc->offset - SZ_1K; 232 if (likely(offset >= 0)) 233 goto use_frag; 234 235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 236 if (!page) 237 return NULL; 238 239 nc->va = page_address(page); 240 nc->pfmemalloc = page_is_pfmemalloc(page); 241 offset = PAGE_SIZE - SZ_1K; 242 page_ref_add(page, offset / SZ_1K); 243 244 use_frag: 245 nc->offset = offset; 246 return nc->va + offset; 247 } 248 #else 249 250 /* the small page is actually unused in this build; add dummy helpers 251 * to please the compiler and avoid later preprocessor's conditionals 252 */ 253 #define NAPI_HAS_SMALL_PAGE_FRAG 0 254 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false 255 256 struct page_frag_1k { 257 }; 258 259 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask) 260 { 261 return NULL; 262 } 263 264 #endif 265 266 struct napi_alloc_cache { 267 struct page_frag_cache page; 268 struct page_frag_1k page_small; 269 unsigned int skb_count; 270 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 271 }; 272 273 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 274 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 275 276 /* Double check that napi_get_frags() allocates skbs with 277 * skb->head being backed by slab, not a page fragment. 278 * This is to make sure bug fixed in 3226b158e67c 279 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 280 * does not accidentally come back. 281 */ 282 void napi_get_frags_check(struct napi_struct *napi) 283 { 284 struct sk_buff *skb; 285 286 local_bh_disable(); 287 skb = napi_get_frags(napi); 288 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag); 289 napi_free_frags(napi); 290 local_bh_enable(); 291 } 292 293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 294 { 295 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 296 297 fragsz = SKB_DATA_ALIGN(fragsz); 298 299 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 300 } 301 EXPORT_SYMBOL(__napi_alloc_frag_align); 302 303 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 304 { 305 void *data; 306 307 fragsz = SKB_DATA_ALIGN(fragsz); 308 if (in_hardirq() || irqs_disabled()) { 309 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 310 311 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); 312 } else { 313 struct napi_alloc_cache *nc; 314 315 local_bh_disable(); 316 nc = this_cpu_ptr(&napi_alloc_cache); 317 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask); 318 local_bh_enable(); 319 } 320 return data; 321 } 322 EXPORT_SYMBOL(__netdev_alloc_frag_align); 323 324 static struct sk_buff *napi_skb_cache_get(void) 325 { 326 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 327 struct sk_buff *skb; 328 329 if (unlikely(!nc->skb_count)) { 330 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache, 331 GFP_ATOMIC, 332 NAPI_SKB_CACHE_BULK, 333 nc->skb_cache); 334 if (unlikely(!nc->skb_count)) 335 return NULL; 336 } 337 338 skb = nc->skb_cache[--nc->skb_count]; 339 kasan_unpoison_object_data(skbuff_cache, skb); 340 341 return skb; 342 } 343 344 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 345 unsigned int size) 346 { 347 struct skb_shared_info *shinfo; 348 349 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 350 351 /* Assumes caller memset cleared SKB */ 352 skb->truesize = SKB_TRUESIZE(size); 353 refcount_set(&skb->users, 1); 354 skb->head = data; 355 skb->data = data; 356 skb_reset_tail_pointer(skb); 357 skb_set_end_offset(skb, size); 358 skb->mac_header = (typeof(skb->mac_header))~0U; 359 skb->transport_header = (typeof(skb->transport_header))~0U; 360 skb->alloc_cpu = raw_smp_processor_id(); 361 /* make sure we initialize shinfo sequentially */ 362 shinfo = skb_shinfo(skb); 363 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 364 atomic_set(&shinfo->dataref, 1); 365 366 skb_set_kcov_handle(skb, kcov_common_handle()); 367 } 368 369 static inline void *__slab_build_skb(struct sk_buff *skb, void *data, 370 unsigned int *size) 371 { 372 void *resized; 373 374 /* Must find the allocation size (and grow it to match). */ 375 *size = ksize(data); 376 /* krealloc() will immediately return "data" when 377 * "ksize(data)" is requested: it is the existing upper 378 * bounds. As a result, GFP_ATOMIC will be ignored. Note 379 * that this "new" pointer needs to be passed back to the 380 * caller for use so the __alloc_size hinting will be 381 * tracked correctly. 382 */ 383 resized = krealloc(data, *size, GFP_ATOMIC); 384 WARN_ON_ONCE(resized != data); 385 return resized; 386 } 387 388 /* build_skb() variant which can operate on slab buffers. 389 * Note that this should be used sparingly as slab buffers 390 * cannot be combined efficiently by GRO! 391 */ 392 struct sk_buff *slab_build_skb(void *data) 393 { 394 struct sk_buff *skb; 395 unsigned int size; 396 397 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 398 if (unlikely(!skb)) 399 return NULL; 400 401 memset(skb, 0, offsetof(struct sk_buff, tail)); 402 data = __slab_build_skb(skb, data, &size); 403 __finalize_skb_around(skb, data, size); 404 405 return skb; 406 } 407 EXPORT_SYMBOL(slab_build_skb); 408 409 /* Caller must provide SKB that is memset cleared */ 410 static void __build_skb_around(struct sk_buff *skb, void *data, 411 unsigned int frag_size) 412 { 413 unsigned int size = frag_size; 414 415 /* frag_size == 0 is considered deprecated now. Callers 416 * using slab buffer should use slab_build_skb() instead. 417 */ 418 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 419 data = __slab_build_skb(skb, data, &size); 420 421 __finalize_skb_around(skb, data, size); 422 } 423 424 /** 425 * __build_skb - build a network buffer 426 * @data: data buffer provided by caller 427 * @frag_size: size of data (must not be 0) 428 * 429 * Allocate a new &sk_buff. Caller provides space holding head and 430 * skb_shared_info. @data must have been allocated from the page 431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 432 * allocation is deprecated, and callers should use slab_build_skb() 433 * instead.) 434 * The return is the new skb buffer. 435 * On a failure the return is %NULL, and @data is not freed. 436 * Notes : 437 * Before IO, driver allocates only data buffer where NIC put incoming frame 438 * Driver should add room at head (NET_SKB_PAD) and 439 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 440 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 441 * before giving packet to stack. 442 * RX rings only contains data buffers, not full skbs. 443 */ 444 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 445 { 446 struct sk_buff *skb; 447 448 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC); 449 if (unlikely(!skb)) 450 return NULL; 451 452 memset(skb, 0, offsetof(struct sk_buff, tail)); 453 __build_skb_around(skb, data, frag_size); 454 455 return skb; 456 } 457 458 /* build_skb() is wrapper over __build_skb(), that specifically 459 * takes care of skb->head and skb->pfmemalloc 460 */ 461 struct sk_buff *build_skb(void *data, unsigned int frag_size) 462 { 463 struct sk_buff *skb = __build_skb(data, frag_size); 464 465 if (likely(skb && frag_size)) { 466 skb->head_frag = 1; 467 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 468 } 469 return skb; 470 } 471 EXPORT_SYMBOL(build_skb); 472 473 /** 474 * build_skb_around - build a network buffer around provided skb 475 * @skb: sk_buff provide by caller, must be memset cleared 476 * @data: data buffer provided by caller 477 * @frag_size: size of data 478 */ 479 struct sk_buff *build_skb_around(struct sk_buff *skb, 480 void *data, unsigned int frag_size) 481 { 482 if (unlikely(!skb)) 483 return NULL; 484 485 __build_skb_around(skb, data, frag_size); 486 487 if (frag_size) { 488 skb->head_frag = 1; 489 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 490 } 491 return skb; 492 } 493 EXPORT_SYMBOL(build_skb_around); 494 495 /** 496 * __napi_build_skb - build a network buffer 497 * @data: data buffer provided by caller 498 * @frag_size: size of data 499 * 500 * Version of __build_skb() that uses NAPI percpu caches to obtain 501 * skbuff_head instead of inplace allocation. 502 * 503 * Returns a new &sk_buff on success, %NULL on allocation failure. 504 */ 505 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 506 { 507 struct sk_buff *skb; 508 509 skb = napi_skb_cache_get(); 510 if (unlikely(!skb)) 511 return NULL; 512 513 memset(skb, 0, offsetof(struct sk_buff, tail)); 514 __build_skb_around(skb, data, frag_size); 515 516 return skb; 517 } 518 519 /** 520 * napi_build_skb - build a network buffer 521 * @data: data buffer provided by caller 522 * @frag_size: size of data 523 * 524 * Version of __napi_build_skb() that takes care of skb->head_frag 525 * and skb->pfmemalloc when the data is a page or page fragment. 526 * 527 * Returns a new &sk_buff on success, %NULL on allocation failure. 528 */ 529 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 530 { 531 struct sk_buff *skb = __napi_build_skb(data, frag_size); 532 533 if (likely(skb) && frag_size) { 534 skb->head_frag = 1; 535 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 536 } 537 538 return skb; 539 } 540 EXPORT_SYMBOL(napi_build_skb); 541 542 /* 543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 544 * the caller if emergency pfmemalloc reserves are being used. If it is and 545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 546 * may be used. Otherwise, the packet data may be discarded until enough 547 * memory is free 548 */ 549 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 550 bool *pfmemalloc) 551 { 552 bool ret_pfmemalloc = false; 553 unsigned int obj_size; 554 void *obj; 555 556 obj_size = SKB_HEAD_ALIGN(*size); 557 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 558 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 559 obj = kmem_cache_alloc_node(skb_small_head_cache, 560 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 561 node); 562 *size = SKB_SMALL_HEAD_CACHE_SIZE; 563 if (obj || !(gfp_pfmemalloc_allowed(flags))) 564 goto out; 565 /* Try again but now we are using pfmemalloc reserves */ 566 ret_pfmemalloc = true; 567 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node); 568 goto out; 569 } 570 *size = obj_size = kmalloc_size_roundup(obj_size); 571 /* 572 * Try a regular allocation, when that fails and we're not entitled 573 * to the reserves, fail. 574 */ 575 obj = kmalloc_node_track_caller(obj_size, 576 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 577 node); 578 if (obj || !(gfp_pfmemalloc_allowed(flags))) 579 goto out; 580 581 /* Try again but now we are using pfmemalloc reserves */ 582 ret_pfmemalloc = true; 583 obj = kmalloc_node_track_caller(obj_size, flags, node); 584 585 out: 586 if (pfmemalloc) 587 *pfmemalloc = ret_pfmemalloc; 588 589 return obj; 590 } 591 592 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 593 * 'private' fields and also do memory statistics to find all the 594 * [BEEP] leaks. 595 * 596 */ 597 598 /** 599 * __alloc_skb - allocate a network buffer 600 * @size: size to allocate 601 * @gfp_mask: allocation mask 602 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 603 * instead of head cache and allocate a cloned (child) skb. 604 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 605 * allocations in case the data is required for writeback 606 * @node: numa node to allocate memory on 607 * 608 * Allocate a new &sk_buff. The returned buffer has no headroom and a 609 * tail room of at least size bytes. The object has a reference count 610 * of one. The return is the buffer. On a failure the return is %NULL. 611 * 612 * Buffers may only be allocated from interrupts using a @gfp_mask of 613 * %GFP_ATOMIC. 614 */ 615 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 616 int flags, int node) 617 { 618 struct kmem_cache *cache; 619 struct sk_buff *skb; 620 bool pfmemalloc; 621 u8 *data; 622 623 cache = (flags & SKB_ALLOC_FCLONE) 624 ? skbuff_fclone_cache : skbuff_cache; 625 626 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 627 gfp_mask |= __GFP_MEMALLOC; 628 629 /* Get the HEAD */ 630 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && 631 likely(node == NUMA_NO_NODE || node == numa_mem_id())) 632 skb = napi_skb_cache_get(); 633 else 634 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 635 if (unlikely(!skb)) 636 return NULL; 637 prefetchw(skb); 638 639 /* We do our best to align skb_shared_info on a separate cache 640 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 641 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 642 * Both skb->head and skb_shared_info are cache line aligned. 643 */ 644 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc); 645 if (unlikely(!data)) 646 goto nodata; 647 /* kmalloc_size_roundup() might give us more room than requested. 648 * Put skb_shared_info exactly at the end of allocated zone, 649 * to allow max possible filling before reallocation. 650 */ 651 prefetchw(data + SKB_WITH_OVERHEAD(size)); 652 653 /* 654 * Only clear those fields we need to clear, not those that we will 655 * actually initialise below. Hence, don't put any more fields after 656 * the tail pointer in struct sk_buff! 657 */ 658 memset(skb, 0, offsetof(struct sk_buff, tail)); 659 __build_skb_around(skb, data, size); 660 skb->pfmemalloc = pfmemalloc; 661 662 if (flags & SKB_ALLOC_FCLONE) { 663 struct sk_buff_fclones *fclones; 664 665 fclones = container_of(skb, struct sk_buff_fclones, skb1); 666 667 skb->fclone = SKB_FCLONE_ORIG; 668 refcount_set(&fclones->fclone_ref, 1); 669 } 670 671 return skb; 672 673 nodata: 674 kmem_cache_free(cache, skb); 675 return NULL; 676 } 677 EXPORT_SYMBOL(__alloc_skb); 678 679 /** 680 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 681 * @dev: network device to receive on 682 * @len: length to allocate 683 * @gfp_mask: get_free_pages mask, passed to alloc_skb 684 * 685 * Allocate a new &sk_buff and assign it a usage count of one. The 686 * buffer has NET_SKB_PAD headroom built in. Users should allocate 687 * the headroom they think they need without accounting for the 688 * built in space. The built in space is used for optimisations. 689 * 690 * %NULL is returned if there is no free memory. 691 */ 692 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 693 gfp_t gfp_mask) 694 { 695 struct page_frag_cache *nc; 696 struct sk_buff *skb; 697 bool pfmemalloc; 698 void *data; 699 700 len += NET_SKB_PAD; 701 702 /* If requested length is either too small or too big, 703 * we use kmalloc() for skb->head allocation. 704 */ 705 if (len <= SKB_WITH_OVERHEAD(1024) || 706 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 707 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 708 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 709 if (!skb) 710 goto skb_fail; 711 goto skb_success; 712 } 713 714 len = SKB_HEAD_ALIGN(len); 715 716 if (sk_memalloc_socks()) 717 gfp_mask |= __GFP_MEMALLOC; 718 719 if (in_hardirq() || irqs_disabled()) { 720 nc = this_cpu_ptr(&netdev_alloc_cache); 721 data = page_frag_alloc(nc, len, gfp_mask); 722 pfmemalloc = nc->pfmemalloc; 723 } else { 724 local_bh_disable(); 725 nc = this_cpu_ptr(&napi_alloc_cache.page); 726 data = page_frag_alloc(nc, len, gfp_mask); 727 pfmemalloc = nc->pfmemalloc; 728 local_bh_enable(); 729 } 730 731 if (unlikely(!data)) 732 return NULL; 733 734 skb = __build_skb(data, len); 735 if (unlikely(!skb)) { 736 skb_free_frag(data); 737 return NULL; 738 } 739 740 if (pfmemalloc) 741 skb->pfmemalloc = 1; 742 skb->head_frag = 1; 743 744 skb_success: 745 skb_reserve(skb, NET_SKB_PAD); 746 skb->dev = dev; 747 748 skb_fail: 749 return skb; 750 } 751 EXPORT_SYMBOL(__netdev_alloc_skb); 752 753 /** 754 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 755 * @napi: napi instance this buffer was allocated for 756 * @len: length to allocate 757 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 758 * 759 * Allocate a new sk_buff for use in NAPI receive. This buffer will 760 * attempt to allocate the head from a special reserved region used 761 * only for NAPI Rx allocation. By doing this we can save several 762 * CPU cycles by avoiding having to disable and re-enable IRQs. 763 * 764 * %NULL is returned if there is no free memory. 765 */ 766 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 767 gfp_t gfp_mask) 768 { 769 struct napi_alloc_cache *nc; 770 struct sk_buff *skb; 771 bool pfmemalloc; 772 void *data; 773 774 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 775 len += NET_SKB_PAD + NET_IP_ALIGN; 776 777 /* If requested length is either too small or too big, 778 * we use kmalloc() for skb->head allocation. 779 * When the small frag allocator is available, prefer it over kmalloc 780 * for small fragments 781 */ 782 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) || 783 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 784 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 785 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 786 NUMA_NO_NODE); 787 if (!skb) 788 goto skb_fail; 789 goto skb_success; 790 } 791 792 nc = this_cpu_ptr(&napi_alloc_cache); 793 794 if (sk_memalloc_socks()) 795 gfp_mask |= __GFP_MEMALLOC; 796 797 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) { 798 /* we are artificially inflating the allocation size, but 799 * that is not as bad as it may look like, as: 800 * - 'len' less than GRO_MAX_HEAD makes little sense 801 * - On most systems, larger 'len' values lead to fragment 802 * size above 512 bytes 803 * - kmalloc would use the kmalloc-1k slab for such values 804 * - Builds with smaller GRO_MAX_HEAD will very likely do 805 * little networking, as that implies no WiFi and no 806 * tunnels support, and 32 bits arches. 807 */ 808 len = SZ_1K; 809 810 data = page_frag_alloc_1k(&nc->page_small, gfp_mask); 811 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small); 812 } else { 813 len = SKB_HEAD_ALIGN(len); 814 815 data = page_frag_alloc(&nc->page, len, gfp_mask); 816 pfmemalloc = nc->page.pfmemalloc; 817 } 818 819 if (unlikely(!data)) 820 return NULL; 821 822 skb = __napi_build_skb(data, len); 823 if (unlikely(!skb)) { 824 skb_free_frag(data); 825 return NULL; 826 } 827 828 if (pfmemalloc) 829 skb->pfmemalloc = 1; 830 skb->head_frag = 1; 831 832 skb_success: 833 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 834 skb->dev = napi->dev; 835 836 skb_fail: 837 return skb; 838 } 839 EXPORT_SYMBOL(__napi_alloc_skb); 840 841 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 842 int size, unsigned int truesize) 843 { 844 skb_fill_page_desc(skb, i, page, off, size); 845 skb->len += size; 846 skb->data_len += size; 847 skb->truesize += truesize; 848 } 849 EXPORT_SYMBOL(skb_add_rx_frag); 850 851 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 852 unsigned int truesize) 853 { 854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 855 856 skb_frag_size_add(frag, size); 857 skb->len += size; 858 skb->data_len += size; 859 skb->truesize += truesize; 860 } 861 EXPORT_SYMBOL(skb_coalesce_rx_frag); 862 863 static void skb_drop_list(struct sk_buff **listp) 864 { 865 kfree_skb_list(*listp); 866 *listp = NULL; 867 } 868 869 static inline void skb_drop_fraglist(struct sk_buff *skb) 870 { 871 skb_drop_list(&skb_shinfo(skb)->frag_list); 872 } 873 874 static void skb_clone_fraglist(struct sk_buff *skb) 875 { 876 struct sk_buff *list; 877 878 skb_walk_frags(skb, list) 879 skb_get(list); 880 } 881 882 #if IS_ENABLED(CONFIG_PAGE_POOL) 883 bool napi_pp_put_page(struct page *page, bool napi_safe) 884 { 885 struct napi_struct *napi; 886 struct page_pool *pp; 887 bool allow_direct; 888 889 page = compound_head(page); 890 891 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation 892 * in order to preserve any existing bits, such as bit 0 for the 893 * head page of compound page and bit 1 for pfmemalloc page, so 894 * mask those bits for freeing side when doing below checking, 895 * and page_is_pfmemalloc() is checked in __page_pool_put_page() 896 * to avoid recycling the pfmemalloc page. 897 */ 898 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE)) 899 return false; 900 901 pp = page->pp; 902 903 /* Allow direct recycle if we have reasons to believe that we are 904 * in the same context as the consumer would run, so there's 905 * no possible race. 906 */ 907 napi = READ_ONCE(pp->p.napi); 908 allow_direct = napi_safe && napi && 909 READ_ONCE(napi->list_owner) == smp_processor_id(); 910 911 /* Driver set this to memory recycling info. Reset it on recycle. 912 * This will *not* work for NIC using a split-page memory model. 913 * The page will be returned to the pool here regardless of the 914 * 'flipped' fragment being in use or not. 915 */ 916 page_pool_put_full_page(pp, page, allow_direct); 917 918 return true; 919 } 920 EXPORT_SYMBOL(napi_pp_put_page); 921 #endif 922 923 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe) 924 { 925 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 926 return false; 927 return napi_pp_put_page(virt_to_page(data), napi_safe); 928 } 929 930 static void skb_kfree_head(void *head, unsigned int end_offset) 931 { 932 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 933 kmem_cache_free(skb_small_head_cache, head); 934 else 935 kfree(head); 936 } 937 938 static void skb_free_head(struct sk_buff *skb, bool napi_safe) 939 { 940 unsigned char *head = skb->head; 941 942 if (skb->head_frag) { 943 if (skb_pp_recycle(skb, head, napi_safe)) 944 return; 945 skb_free_frag(head); 946 } else { 947 skb_kfree_head(head, skb_end_offset(skb)); 948 } 949 } 950 951 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason, 952 bool napi_safe) 953 { 954 struct skb_shared_info *shinfo = skb_shinfo(skb); 955 int i; 956 957 if (skb->cloned && 958 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 959 &shinfo->dataref)) 960 goto exit; 961 962 if (skb_zcopy(skb)) { 963 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 964 965 skb_zcopy_clear(skb, true); 966 if (skip_unref) 967 goto free_head; 968 } 969 970 for (i = 0; i < shinfo->nr_frags; i++) 971 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe); 972 973 free_head: 974 if (shinfo->frag_list) 975 kfree_skb_list_reason(shinfo->frag_list, reason); 976 977 skb_free_head(skb, napi_safe); 978 exit: 979 /* When we clone an SKB we copy the reycling bit. The pp_recycle 980 * bit is only set on the head though, so in order to avoid races 981 * while trying to recycle fragments on __skb_frag_unref() we need 982 * to make one SKB responsible for triggering the recycle path. 983 * So disable the recycling bit if an SKB is cloned and we have 984 * additional references to the fragmented part of the SKB. 985 * Eventually the last SKB will have the recycling bit set and it's 986 * dataref set to 0, which will trigger the recycling 987 */ 988 skb->pp_recycle = 0; 989 } 990 991 /* 992 * Free an skbuff by memory without cleaning the state. 993 */ 994 static void kfree_skbmem(struct sk_buff *skb) 995 { 996 struct sk_buff_fclones *fclones; 997 998 switch (skb->fclone) { 999 case SKB_FCLONE_UNAVAILABLE: 1000 kmem_cache_free(skbuff_cache, skb); 1001 return; 1002 1003 case SKB_FCLONE_ORIG: 1004 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1005 1006 /* We usually free the clone (TX completion) before original skb 1007 * This test would have no chance to be true for the clone, 1008 * while here, branch prediction will be good. 1009 */ 1010 if (refcount_read(&fclones->fclone_ref) == 1) 1011 goto fastpath; 1012 break; 1013 1014 default: /* SKB_FCLONE_CLONE */ 1015 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1016 break; 1017 } 1018 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1019 return; 1020 fastpath: 1021 kmem_cache_free(skbuff_fclone_cache, fclones); 1022 } 1023 1024 void skb_release_head_state(struct sk_buff *skb) 1025 { 1026 skb_dst_drop(skb); 1027 if (skb->destructor) { 1028 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1029 skb->destructor(skb); 1030 } 1031 #if IS_ENABLED(CONFIG_NF_CONNTRACK) 1032 nf_conntrack_put(skb_nfct(skb)); 1033 #endif 1034 skb_ext_put(skb); 1035 } 1036 1037 /* Free everything but the sk_buff shell. */ 1038 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason, 1039 bool napi_safe) 1040 { 1041 skb_release_head_state(skb); 1042 if (likely(skb->head)) 1043 skb_release_data(skb, reason, napi_safe); 1044 } 1045 1046 /** 1047 * __kfree_skb - private function 1048 * @skb: buffer 1049 * 1050 * Free an sk_buff. Release anything attached to the buffer. 1051 * Clean the state. This is an internal helper function. Users should 1052 * always call kfree_skb 1053 */ 1054 1055 void __kfree_skb(struct sk_buff *skb) 1056 { 1057 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false); 1058 kfree_skbmem(skb); 1059 } 1060 EXPORT_SYMBOL(__kfree_skb); 1061 1062 static __always_inline 1063 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1064 { 1065 if (unlikely(!skb_unref(skb))) 1066 return false; 1067 1068 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1069 u32_get_bits(reason, 1070 SKB_DROP_REASON_SUBSYS_MASK) >= 1071 SKB_DROP_REASON_SUBSYS_NUM); 1072 1073 if (reason == SKB_CONSUMED) 1074 trace_consume_skb(skb, __builtin_return_address(0)); 1075 else 1076 trace_kfree_skb(skb, __builtin_return_address(0), reason); 1077 return true; 1078 } 1079 1080 /** 1081 * kfree_skb_reason - free an sk_buff with special reason 1082 * @skb: buffer to free 1083 * @reason: reason why this skb is dropped 1084 * 1085 * Drop a reference to the buffer and free it if the usage count has 1086 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb' 1087 * tracepoint. 1088 */ 1089 void __fix_address 1090 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason) 1091 { 1092 if (__kfree_skb_reason(skb, reason)) 1093 __kfree_skb(skb); 1094 } 1095 EXPORT_SYMBOL(kfree_skb_reason); 1096 1097 #define KFREE_SKB_BULK_SIZE 16 1098 1099 struct skb_free_array { 1100 unsigned int skb_count; 1101 void *skb_array[KFREE_SKB_BULK_SIZE]; 1102 }; 1103 1104 static void kfree_skb_add_bulk(struct sk_buff *skb, 1105 struct skb_free_array *sa, 1106 enum skb_drop_reason reason) 1107 { 1108 /* if SKB is a clone, don't handle this case */ 1109 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1110 __kfree_skb(skb); 1111 return; 1112 } 1113 1114 skb_release_all(skb, reason, false); 1115 sa->skb_array[sa->skb_count++] = skb; 1116 1117 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1118 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE, 1119 sa->skb_array); 1120 sa->skb_count = 0; 1121 } 1122 } 1123 1124 void __fix_address 1125 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1126 { 1127 struct skb_free_array sa; 1128 1129 sa.skb_count = 0; 1130 1131 while (segs) { 1132 struct sk_buff *next = segs->next; 1133 1134 if (__kfree_skb_reason(segs, reason)) { 1135 skb_poison_list(segs); 1136 kfree_skb_add_bulk(segs, &sa, reason); 1137 } 1138 1139 segs = next; 1140 } 1141 1142 if (sa.skb_count) 1143 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array); 1144 } 1145 EXPORT_SYMBOL(kfree_skb_list_reason); 1146 1147 /* Dump skb information and contents. 1148 * 1149 * Must only be called from net_ratelimit()-ed paths. 1150 * 1151 * Dumps whole packets if full_pkt, only headers otherwise. 1152 */ 1153 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1154 { 1155 struct skb_shared_info *sh = skb_shinfo(skb); 1156 struct net_device *dev = skb->dev; 1157 struct sock *sk = skb->sk; 1158 struct sk_buff *list_skb; 1159 bool has_mac, has_trans; 1160 int headroom, tailroom; 1161 int i, len, seg_len; 1162 1163 if (full_pkt) 1164 len = skb->len; 1165 else 1166 len = min_t(int, skb->len, MAX_HEADER + 128); 1167 1168 headroom = skb_headroom(skb); 1169 tailroom = skb_tailroom(skb); 1170 1171 has_mac = skb_mac_header_was_set(skb); 1172 has_trans = skb_transport_header_was_set(skb); 1173 1174 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n" 1175 "mac=(%d,%d) net=(%d,%d) trans=%d\n" 1176 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1177 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1178 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n", 1179 level, skb->len, headroom, skb_headlen(skb), tailroom, 1180 has_mac ? skb->mac_header : -1, 1181 has_mac ? skb_mac_header_len(skb) : -1, 1182 skb->network_header, 1183 has_trans ? skb_network_header_len(skb) : -1, 1184 has_trans ? skb->transport_header : -1, 1185 sh->tx_flags, sh->nr_frags, 1186 sh->gso_size, sh->gso_type, sh->gso_segs, 1187 skb->csum, skb->ip_summed, skb->csum_complete_sw, 1188 skb->csum_valid, skb->csum_level, 1189 skb->hash, skb->sw_hash, skb->l4_hash, 1190 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif); 1191 1192 if (dev) 1193 printk("%sdev name=%s feat=%pNF\n", 1194 level, dev->name, &dev->features); 1195 if (sk) 1196 printk("%ssk family=%hu type=%u proto=%u\n", 1197 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1198 1199 if (full_pkt && headroom) 1200 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1201 16, 1, skb->head, headroom, false); 1202 1203 seg_len = min_t(int, skb_headlen(skb), len); 1204 if (seg_len) 1205 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1206 16, 1, skb->data, seg_len, false); 1207 len -= seg_len; 1208 1209 if (full_pkt && tailroom) 1210 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1211 16, 1, skb_tail_pointer(skb), tailroom, false); 1212 1213 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1214 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1215 u32 p_off, p_len, copied; 1216 struct page *p; 1217 u8 *vaddr; 1218 1219 skb_frag_foreach_page(frag, skb_frag_off(frag), 1220 skb_frag_size(frag), p, p_off, p_len, 1221 copied) { 1222 seg_len = min_t(int, p_len, len); 1223 vaddr = kmap_atomic(p); 1224 print_hex_dump(level, "skb frag: ", 1225 DUMP_PREFIX_OFFSET, 1226 16, 1, vaddr + p_off, seg_len, false); 1227 kunmap_atomic(vaddr); 1228 len -= seg_len; 1229 if (!len) 1230 break; 1231 } 1232 } 1233 1234 if (full_pkt && skb_has_frag_list(skb)) { 1235 printk("skb fraglist:\n"); 1236 skb_walk_frags(skb, list_skb) 1237 skb_dump(level, list_skb, true); 1238 } 1239 } 1240 EXPORT_SYMBOL(skb_dump); 1241 1242 /** 1243 * skb_tx_error - report an sk_buff xmit error 1244 * @skb: buffer that triggered an error 1245 * 1246 * Report xmit error if a device callback is tracking this skb. 1247 * skb must be freed afterwards. 1248 */ 1249 void skb_tx_error(struct sk_buff *skb) 1250 { 1251 if (skb) { 1252 skb_zcopy_downgrade_managed(skb); 1253 skb_zcopy_clear(skb, true); 1254 } 1255 } 1256 EXPORT_SYMBOL(skb_tx_error); 1257 1258 #ifdef CONFIG_TRACEPOINTS 1259 /** 1260 * consume_skb - free an skbuff 1261 * @skb: buffer to free 1262 * 1263 * Drop a ref to the buffer and free it if the usage count has hit zero 1264 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1265 * is being dropped after a failure and notes that 1266 */ 1267 void consume_skb(struct sk_buff *skb) 1268 { 1269 if (!skb_unref(skb)) 1270 return; 1271 1272 trace_consume_skb(skb, __builtin_return_address(0)); 1273 __kfree_skb(skb); 1274 } 1275 EXPORT_SYMBOL(consume_skb); 1276 #endif 1277 1278 /** 1279 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1280 * @skb: buffer to free 1281 * 1282 * Alike consume_skb(), but this variant assumes that this is the last 1283 * skb reference and all the head states have been already dropped 1284 */ 1285 void __consume_stateless_skb(struct sk_buff *skb) 1286 { 1287 trace_consume_skb(skb, __builtin_return_address(0)); 1288 skb_release_data(skb, SKB_CONSUMED, false); 1289 kfree_skbmem(skb); 1290 } 1291 1292 static void napi_skb_cache_put(struct sk_buff *skb) 1293 { 1294 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1295 u32 i; 1296 1297 kasan_poison_object_data(skbuff_cache, skb); 1298 nc->skb_cache[nc->skb_count++] = skb; 1299 1300 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1301 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++) 1302 kasan_unpoison_object_data(skbuff_cache, 1303 nc->skb_cache[i]); 1304 1305 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF, 1306 nc->skb_cache + NAPI_SKB_CACHE_HALF); 1307 nc->skb_count = NAPI_SKB_CACHE_HALF; 1308 } 1309 } 1310 1311 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1312 { 1313 skb_release_all(skb, reason, true); 1314 napi_skb_cache_put(skb); 1315 } 1316 1317 void napi_skb_free_stolen_head(struct sk_buff *skb) 1318 { 1319 if (unlikely(skb->slow_gro)) { 1320 nf_reset_ct(skb); 1321 skb_dst_drop(skb); 1322 skb_ext_put(skb); 1323 skb_orphan(skb); 1324 skb->slow_gro = 0; 1325 } 1326 napi_skb_cache_put(skb); 1327 } 1328 1329 void napi_consume_skb(struct sk_buff *skb, int budget) 1330 { 1331 /* Zero budget indicate non-NAPI context called us, like netpoll */ 1332 if (unlikely(!budget)) { 1333 dev_consume_skb_any(skb); 1334 return; 1335 } 1336 1337 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1338 1339 if (!skb_unref(skb)) 1340 return; 1341 1342 /* if reaching here SKB is ready to free */ 1343 trace_consume_skb(skb, __builtin_return_address(0)); 1344 1345 /* if SKB is a clone, don't handle this case */ 1346 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1347 __kfree_skb(skb); 1348 return; 1349 } 1350 1351 skb_release_all(skb, SKB_CONSUMED, !!budget); 1352 napi_skb_cache_put(skb); 1353 } 1354 EXPORT_SYMBOL(napi_consume_skb); 1355 1356 /* Make sure a field is contained by headers group */ 1357 #define CHECK_SKB_FIELD(field) \ 1358 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1359 offsetof(struct sk_buff, headers.field)); \ 1360 1361 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1362 { 1363 new->tstamp = old->tstamp; 1364 /* We do not copy old->sk */ 1365 new->dev = old->dev; 1366 memcpy(new->cb, old->cb, sizeof(old->cb)); 1367 skb_dst_copy(new, old); 1368 __skb_ext_copy(new, old); 1369 __nf_copy(new, old, false); 1370 1371 /* Note : this field could be in the headers group. 1372 * It is not yet because we do not want to have a 16 bit hole 1373 */ 1374 new->queue_mapping = old->queue_mapping; 1375 1376 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1377 CHECK_SKB_FIELD(protocol); 1378 CHECK_SKB_FIELD(csum); 1379 CHECK_SKB_FIELD(hash); 1380 CHECK_SKB_FIELD(priority); 1381 CHECK_SKB_FIELD(skb_iif); 1382 CHECK_SKB_FIELD(vlan_proto); 1383 CHECK_SKB_FIELD(vlan_tci); 1384 CHECK_SKB_FIELD(transport_header); 1385 CHECK_SKB_FIELD(network_header); 1386 CHECK_SKB_FIELD(mac_header); 1387 CHECK_SKB_FIELD(inner_protocol); 1388 CHECK_SKB_FIELD(inner_transport_header); 1389 CHECK_SKB_FIELD(inner_network_header); 1390 CHECK_SKB_FIELD(inner_mac_header); 1391 CHECK_SKB_FIELD(mark); 1392 #ifdef CONFIG_NETWORK_SECMARK 1393 CHECK_SKB_FIELD(secmark); 1394 #endif 1395 #ifdef CONFIG_NET_RX_BUSY_POLL 1396 CHECK_SKB_FIELD(napi_id); 1397 #endif 1398 CHECK_SKB_FIELD(alloc_cpu); 1399 #ifdef CONFIG_XPS 1400 CHECK_SKB_FIELD(sender_cpu); 1401 #endif 1402 #ifdef CONFIG_NET_SCHED 1403 CHECK_SKB_FIELD(tc_index); 1404 #endif 1405 1406 } 1407 1408 /* 1409 * You should not add any new code to this function. Add it to 1410 * __copy_skb_header above instead. 1411 */ 1412 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1413 { 1414 #define C(x) n->x = skb->x 1415 1416 n->next = n->prev = NULL; 1417 n->sk = NULL; 1418 __copy_skb_header(n, skb); 1419 1420 C(len); 1421 C(data_len); 1422 C(mac_len); 1423 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1424 n->cloned = 1; 1425 n->nohdr = 0; 1426 n->peeked = 0; 1427 C(pfmemalloc); 1428 C(pp_recycle); 1429 n->destructor = NULL; 1430 C(tail); 1431 C(end); 1432 C(head); 1433 C(head_frag); 1434 C(data); 1435 C(truesize); 1436 refcount_set(&n->users, 1); 1437 1438 atomic_inc(&(skb_shinfo(skb)->dataref)); 1439 skb->cloned = 1; 1440 1441 return n; 1442 #undef C 1443 } 1444 1445 /** 1446 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1447 * @first: first sk_buff of the msg 1448 */ 1449 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1450 { 1451 struct sk_buff *n; 1452 1453 n = alloc_skb(0, GFP_ATOMIC); 1454 if (!n) 1455 return NULL; 1456 1457 n->len = first->len; 1458 n->data_len = first->len; 1459 n->truesize = first->truesize; 1460 1461 skb_shinfo(n)->frag_list = first; 1462 1463 __copy_skb_header(n, first); 1464 n->destructor = NULL; 1465 1466 return n; 1467 } 1468 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1469 1470 /** 1471 * skb_morph - morph one skb into another 1472 * @dst: the skb to receive the contents 1473 * @src: the skb to supply the contents 1474 * 1475 * This is identical to skb_clone except that the target skb is 1476 * supplied by the user. 1477 * 1478 * The target skb is returned upon exit. 1479 */ 1480 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1481 { 1482 skb_release_all(dst, SKB_CONSUMED, false); 1483 return __skb_clone(dst, src); 1484 } 1485 EXPORT_SYMBOL_GPL(skb_morph); 1486 1487 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1488 { 1489 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1490 struct user_struct *user; 1491 1492 if (capable(CAP_IPC_LOCK) || !size) 1493 return 0; 1494 1495 rlim = rlimit(RLIMIT_MEMLOCK); 1496 if (rlim == RLIM_INFINITY) 1497 return 0; 1498 1499 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1500 max_pg = rlim >> PAGE_SHIFT; 1501 user = mmp->user ? : current_user(); 1502 1503 old_pg = atomic_long_read(&user->locked_vm); 1504 do { 1505 new_pg = old_pg + num_pg; 1506 if (new_pg > max_pg) 1507 return -ENOBUFS; 1508 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1509 1510 if (!mmp->user) { 1511 mmp->user = get_uid(user); 1512 mmp->num_pg = num_pg; 1513 } else { 1514 mmp->num_pg += num_pg; 1515 } 1516 1517 return 0; 1518 } 1519 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1520 1521 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1522 { 1523 if (mmp->user) { 1524 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1525 free_uid(mmp->user); 1526 } 1527 } 1528 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1529 1530 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size) 1531 { 1532 struct ubuf_info_msgzc *uarg; 1533 struct sk_buff *skb; 1534 1535 WARN_ON_ONCE(!in_task()); 1536 1537 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1538 if (!skb) 1539 return NULL; 1540 1541 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1542 uarg = (void *)skb->cb; 1543 uarg->mmp.user = NULL; 1544 1545 if (mm_account_pinned_pages(&uarg->mmp, size)) { 1546 kfree_skb(skb); 1547 return NULL; 1548 } 1549 1550 uarg->ubuf.callback = msg_zerocopy_callback; 1551 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1552 uarg->len = 1; 1553 uarg->bytelen = size; 1554 uarg->zerocopy = 1; 1555 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1556 refcount_set(&uarg->ubuf.refcnt, 1); 1557 sock_hold(sk); 1558 1559 return &uarg->ubuf; 1560 } 1561 1562 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1563 { 1564 return container_of((void *)uarg, struct sk_buff, cb); 1565 } 1566 1567 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1568 struct ubuf_info *uarg) 1569 { 1570 if (uarg) { 1571 struct ubuf_info_msgzc *uarg_zc; 1572 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1573 u32 bytelen, next; 1574 1575 /* there might be non MSG_ZEROCOPY users */ 1576 if (uarg->callback != msg_zerocopy_callback) 1577 return NULL; 1578 1579 /* realloc only when socket is locked (TCP, UDP cork), 1580 * so uarg->len and sk_zckey access is serialized 1581 */ 1582 if (!sock_owned_by_user(sk)) { 1583 WARN_ON_ONCE(1); 1584 return NULL; 1585 } 1586 1587 uarg_zc = uarg_to_msgzc(uarg); 1588 bytelen = uarg_zc->bytelen + size; 1589 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1590 /* TCP can create new skb to attach new uarg */ 1591 if (sk->sk_type == SOCK_STREAM) 1592 goto new_alloc; 1593 return NULL; 1594 } 1595 1596 next = (u32)atomic_read(&sk->sk_zckey); 1597 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1598 if (mm_account_pinned_pages(&uarg_zc->mmp, size)) 1599 return NULL; 1600 uarg_zc->len++; 1601 uarg_zc->bytelen = bytelen; 1602 atomic_set(&sk->sk_zckey, ++next); 1603 1604 /* no extra ref when appending to datagram (MSG_MORE) */ 1605 if (sk->sk_type == SOCK_STREAM) 1606 net_zcopy_get(uarg); 1607 1608 return uarg; 1609 } 1610 } 1611 1612 new_alloc: 1613 return msg_zerocopy_alloc(sk, size); 1614 } 1615 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1616 1617 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1618 { 1619 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1620 u32 old_lo, old_hi; 1621 u64 sum_len; 1622 1623 old_lo = serr->ee.ee_info; 1624 old_hi = serr->ee.ee_data; 1625 sum_len = old_hi - old_lo + 1ULL + len; 1626 1627 if (sum_len >= (1ULL << 32)) 1628 return false; 1629 1630 if (lo != old_hi + 1) 1631 return false; 1632 1633 serr->ee.ee_data += len; 1634 return true; 1635 } 1636 1637 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1638 { 1639 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1640 struct sock_exterr_skb *serr; 1641 struct sock *sk = skb->sk; 1642 struct sk_buff_head *q; 1643 unsigned long flags; 1644 bool is_zerocopy; 1645 u32 lo, hi; 1646 u16 len; 1647 1648 mm_unaccount_pinned_pages(&uarg->mmp); 1649 1650 /* if !len, there was only 1 call, and it was aborted 1651 * so do not queue a completion notification 1652 */ 1653 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1654 goto release; 1655 1656 len = uarg->len; 1657 lo = uarg->id; 1658 hi = uarg->id + len - 1; 1659 is_zerocopy = uarg->zerocopy; 1660 1661 serr = SKB_EXT_ERR(skb); 1662 memset(serr, 0, sizeof(*serr)); 1663 serr->ee.ee_errno = 0; 1664 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1665 serr->ee.ee_data = hi; 1666 serr->ee.ee_info = lo; 1667 if (!is_zerocopy) 1668 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1669 1670 q = &sk->sk_error_queue; 1671 spin_lock_irqsave(&q->lock, flags); 1672 tail = skb_peek_tail(q); 1673 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1674 !skb_zerocopy_notify_extend(tail, lo, len)) { 1675 __skb_queue_tail(q, skb); 1676 skb = NULL; 1677 } 1678 spin_unlock_irqrestore(&q->lock, flags); 1679 1680 sk_error_report(sk); 1681 1682 release: 1683 consume_skb(skb); 1684 sock_put(sk); 1685 } 1686 1687 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1688 bool success) 1689 { 1690 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1691 1692 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1693 1694 if (refcount_dec_and_test(&uarg->refcnt)) 1695 __msg_zerocopy_callback(uarg_zc); 1696 } 1697 EXPORT_SYMBOL_GPL(msg_zerocopy_callback); 1698 1699 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1700 { 1701 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1702 1703 atomic_dec(&sk->sk_zckey); 1704 uarg_to_msgzc(uarg)->len--; 1705 1706 if (have_uref) 1707 msg_zerocopy_callback(NULL, uarg, true); 1708 } 1709 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1710 1711 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1712 struct msghdr *msg, int len, 1713 struct ubuf_info *uarg) 1714 { 1715 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1716 int err, orig_len = skb->len; 1717 1718 /* An skb can only point to one uarg. This edge case happens when 1719 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc. 1720 */ 1721 if (orig_uarg && uarg != orig_uarg) 1722 return -EEXIST; 1723 1724 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len); 1725 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1726 struct sock *save_sk = skb->sk; 1727 1728 /* Streams do not free skb on error. Reset to prev state. */ 1729 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1730 skb->sk = sk; 1731 ___pskb_trim(skb, orig_len); 1732 skb->sk = save_sk; 1733 return err; 1734 } 1735 1736 skb_zcopy_set(skb, uarg, NULL); 1737 return skb->len - orig_len; 1738 } 1739 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1740 1741 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1742 { 1743 int i; 1744 1745 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1746 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1747 skb_frag_ref(skb, i); 1748 } 1749 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1750 1751 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1752 gfp_t gfp_mask) 1753 { 1754 if (skb_zcopy(orig)) { 1755 if (skb_zcopy(nskb)) { 1756 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1757 if (!gfp_mask) { 1758 WARN_ON_ONCE(1); 1759 return -ENOMEM; 1760 } 1761 if (skb_uarg(nskb) == skb_uarg(orig)) 1762 return 0; 1763 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1764 return -EIO; 1765 } 1766 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1767 } 1768 return 0; 1769 } 1770 1771 /** 1772 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1773 * @skb: the skb to modify 1774 * @gfp_mask: allocation priority 1775 * 1776 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1777 * It will copy all frags into kernel and drop the reference 1778 * to userspace pages. 1779 * 1780 * If this function is called from an interrupt gfp_mask() must be 1781 * %GFP_ATOMIC. 1782 * 1783 * Returns 0 on success or a negative error code on failure 1784 * to allocate kernel memory to copy to. 1785 */ 1786 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 1787 { 1788 int num_frags = skb_shinfo(skb)->nr_frags; 1789 struct page *page, *head = NULL; 1790 int i, order, psize, new_frags; 1791 u32 d_off; 1792 1793 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 1794 return -EINVAL; 1795 1796 if (!num_frags) 1797 goto release; 1798 1799 /* We might have to allocate high order pages, so compute what minimum 1800 * page order is needed. 1801 */ 1802 order = 0; 1803 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 1804 order++; 1805 psize = (PAGE_SIZE << order); 1806 1807 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 1808 for (i = 0; i < new_frags; i++) { 1809 page = alloc_pages(gfp_mask | __GFP_COMP, order); 1810 if (!page) { 1811 while (head) { 1812 struct page *next = (struct page *)page_private(head); 1813 put_page(head); 1814 head = next; 1815 } 1816 return -ENOMEM; 1817 } 1818 set_page_private(page, (unsigned long)head); 1819 head = page; 1820 } 1821 1822 page = head; 1823 d_off = 0; 1824 for (i = 0; i < num_frags; i++) { 1825 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1826 u32 p_off, p_len, copied; 1827 struct page *p; 1828 u8 *vaddr; 1829 1830 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 1831 p, p_off, p_len, copied) { 1832 u32 copy, done = 0; 1833 vaddr = kmap_atomic(p); 1834 1835 while (done < p_len) { 1836 if (d_off == psize) { 1837 d_off = 0; 1838 page = (struct page *)page_private(page); 1839 } 1840 copy = min_t(u32, psize - d_off, p_len - done); 1841 memcpy(page_address(page) + d_off, 1842 vaddr + p_off + done, copy); 1843 done += copy; 1844 d_off += copy; 1845 } 1846 kunmap_atomic(vaddr); 1847 } 1848 } 1849 1850 /* skb frags release userspace buffers */ 1851 for (i = 0; i < num_frags; i++) 1852 skb_frag_unref(skb, i); 1853 1854 /* skb frags point to kernel buffers */ 1855 for (i = 0; i < new_frags - 1; i++) { 1856 __skb_fill_page_desc(skb, i, head, 0, psize); 1857 head = (struct page *)page_private(head); 1858 } 1859 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off); 1860 skb_shinfo(skb)->nr_frags = new_frags; 1861 1862 release: 1863 skb_zcopy_clear(skb, false); 1864 return 0; 1865 } 1866 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 1867 1868 /** 1869 * skb_clone - duplicate an sk_buff 1870 * @skb: buffer to clone 1871 * @gfp_mask: allocation priority 1872 * 1873 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1874 * copies share the same packet data but not structure. The new 1875 * buffer has a reference count of 1. If the allocation fails the 1876 * function returns %NULL otherwise the new buffer is returned. 1877 * 1878 * If this function is called from an interrupt gfp_mask() must be 1879 * %GFP_ATOMIC. 1880 */ 1881 1882 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1883 { 1884 struct sk_buff_fclones *fclones = container_of(skb, 1885 struct sk_buff_fclones, 1886 skb1); 1887 struct sk_buff *n; 1888 1889 if (skb_orphan_frags(skb, gfp_mask)) 1890 return NULL; 1891 1892 if (skb->fclone == SKB_FCLONE_ORIG && 1893 refcount_read(&fclones->fclone_ref) == 1) { 1894 n = &fclones->skb2; 1895 refcount_set(&fclones->fclone_ref, 2); 1896 n->fclone = SKB_FCLONE_CLONE; 1897 } else { 1898 if (skb_pfmemalloc(skb)) 1899 gfp_mask |= __GFP_MEMALLOC; 1900 1901 n = kmem_cache_alloc(skbuff_cache, gfp_mask); 1902 if (!n) 1903 return NULL; 1904 1905 n->fclone = SKB_FCLONE_UNAVAILABLE; 1906 } 1907 1908 return __skb_clone(n, skb); 1909 } 1910 EXPORT_SYMBOL(skb_clone); 1911 1912 void skb_headers_offset_update(struct sk_buff *skb, int off) 1913 { 1914 /* Only adjust this if it actually is csum_start rather than csum */ 1915 if (skb->ip_summed == CHECKSUM_PARTIAL) 1916 skb->csum_start += off; 1917 /* {transport,network,mac}_header and tail are relative to skb->head */ 1918 skb->transport_header += off; 1919 skb->network_header += off; 1920 if (skb_mac_header_was_set(skb)) 1921 skb->mac_header += off; 1922 skb->inner_transport_header += off; 1923 skb->inner_network_header += off; 1924 skb->inner_mac_header += off; 1925 } 1926 EXPORT_SYMBOL(skb_headers_offset_update); 1927 1928 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 1929 { 1930 __copy_skb_header(new, old); 1931 1932 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1933 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1934 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1935 } 1936 EXPORT_SYMBOL(skb_copy_header); 1937 1938 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1939 { 1940 if (skb_pfmemalloc(skb)) 1941 return SKB_ALLOC_RX; 1942 return 0; 1943 } 1944 1945 /** 1946 * skb_copy - create private copy of an sk_buff 1947 * @skb: buffer to copy 1948 * @gfp_mask: allocation priority 1949 * 1950 * Make a copy of both an &sk_buff and its data. This is used when the 1951 * caller wishes to modify the data and needs a private copy of the 1952 * data to alter. Returns %NULL on failure or the pointer to the buffer 1953 * on success. The returned buffer has a reference count of 1. 1954 * 1955 * As by-product this function converts non-linear &sk_buff to linear 1956 * one, so that &sk_buff becomes completely private and caller is allowed 1957 * to modify all the data of returned buffer. This means that this 1958 * function is not recommended for use in circumstances when only 1959 * header is going to be modified. Use pskb_copy() instead. 1960 */ 1961 1962 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1963 { 1964 int headerlen = skb_headroom(skb); 1965 unsigned int size = skb_end_offset(skb) + skb->data_len; 1966 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1967 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1968 1969 if (!n) 1970 return NULL; 1971 1972 /* Set the data pointer */ 1973 skb_reserve(n, headerlen); 1974 /* Set the tail pointer and length */ 1975 skb_put(n, skb->len); 1976 1977 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 1978 1979 skb_copy_header(n, skb); 1980 return n; 1981 } 1982 EXPORT_SYMBOL(skb_copy); 1983 1984 /** 1985 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1986 * @skb: buffer to copy 1987 * @headroom: headroom of new skb 1988 * @gfp_mask: allocation priority 1989 * @fclone: if true allocate the copy of the skb from the fclone 1990 * cache instead of the head cache; it is recommended to set this 1991 * to true for the cases where the copy will likely be cloned 1992 * 1993 * Make a copy of both an &sk_buff and part of its data, located 1994 * in header. Fragmented data remain shared. This is used when 1995 * the caller wishes to modify only header of &sk_buff and needs 1996 * private copy of the header to alter. Returns %NULL on failure 1997 * or the pointer to the buffer on success. 1998 * The returned buffer has a reference count of 1. 1999 */ 2000 2001 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2002 gfp_t gfp_mask, bool fclone) 2003 { 2004 unsigned int size = skb_headlen(skb) + headroom; 2005 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2006 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2007 2008 if (!n) 2009 goto out; 2010 2011 /* Set the data pointer */ 2012 skb_reserve(n, headroom); 2013 /* Set the tail pointer and length */ 2014 skb_put(n, skb_headlen(skb)); 2015 /* Copy the bytes */ 2016 skb_copy_from_linear_data(skb, n->data, n->len); 2017 2018 n->truesize += skb->data_len; 2019 n->data_len = skb->data_len; 2020 n->len = skb->len; 2021 2022 if (skb_shinfo(skb)->nr_frags) { 2023 int i; 2024 2025 if (skb_orphan_frags(skb, gfp_mask) || 2026 skb_zerocopy_clone(n, skb, gfp_mask)) { 2027 kfree_skb(n); 2028 n = NULL; 2029 goto out; 2030 } 2031 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2032 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2033 skb_frag_ref(skb, i); 2034 } 2035 skb_shinfo(n)->nr_frags = i; 2036 } 2037 2038 if (skb_has_frag_list(skb)) { 2039 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2040 skb_clone_fraglist(n); 2041 } 2042 2043 skb_copy_header(n, skb); 2044 out: 2045 return n; 2046 } 2047 EXPORT_SYMBOL(__pskb_copy_fclone); 2048 2049 /** 2050 * pskb_expand_head - reallocate header of &sk_buff 2051 * @skb: buffer to reallocate 2052 * @nhead: room to add at head 2053 * @ntail: room to add at tail 2054 * @gfp_mask: allocation priority 2055 * 2056 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2057 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2058 * reference count of 1. Returns zero in the case of success or error, 2059 * if expansion failed. In the last case, &sk_buff is not changed. 2060 * 2061 * All the pointers pointing into skb header may change and must be 2062 * reloaded after call to this function. 2063 */ 2064 2065 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2066 gfp_t gfp_mask) 2067 { 2068 unsigned int osize = skb_end_offset(skb); 2069 unsigned int size = osize + nhead + ntail; 2070 long off; 2071 u8 *data; 2072 int i; 2073 2074 BUG_ON(nhead < 0); 2075 2076 BUG_ON(skb_shared(skb)); 2077 2078 skb_zcopy_downgrade_managed(skb); 2079 2080 if (skb_pfmemalloc(skb)) 2081 gfp_mask |= __GFP_MEMALLOC; 2082 2083 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2084 if (!data) 2085 goto nodata; 2086 size = SKB_WITH_OVERHEAD(size); 2087 2088 /* Copy only real data... and, alas, header. This should be 2089 * optimized for the cases when header is void. 2090 */ 2091 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2092 2093 memcpy((struct skb_shared_info *)(data + size), 2094 skb_shinfo(skb), 2095 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2096 2097 /* 2098 * if shinfo is shared we must drop the old head gracefully, but if it 2099 * is not we can just drop the old head and let the existing refcount 2100 * be since all we did is relocate the values 2101 */ 2102 if (skb_cloned(skb)) { 2103 if (skb_orphan_frags(skb, gfp_mask)) 2104 goto nofrags; 2105 if (skb_zcopy(skb)) 2106 refcount_inc(&skb_uarg(skb)->refcnt); 2107 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2108 skb_frag_ref(skb, i); 2109 2110 if (skb_has_frag_list(skb)) 2111 skb_clone_fraglist(skb); 2112 2113 skb_release_data(skb, SKB_CONSUMED, false); 2114 } else { 2115 skb_free_head(skb, false); 2116 } 2117 off = (data + nhead) - skb->head; 2118 2119 skb->head = data; 2120 skb->head_frag = 0; 2121 skb->data += off; 2122 2123 skb_set_end_offset(skb, size); 2124 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2125 off = nhead; 2126 #endif 2127 skb->tail += off; 2128 skb_headers_offset_update(skb, nhead); 2129 skb->cloned = 0; 2130 skb->hdr_len = 0; 2131 skb->nohdr = 0; 2132 atomic_set(&skb_shinfo(skb)->dataref, 1); 2133 2134 skb_metadata_clear(skb); 2135 2136 /* It is not generally safe to change skb->truesize. 2137 * For the moment, we really care of rx path, or 2138 * when skb is orphaned (not attached to a socket). 2139 */ 2140 if (!skb->sk || skb->destructor == sock_edemux) 2141 skb->truesize += size - osize; 2142 2143 return 0; 2144 2145 nofrags: 2146 skb_kfree_head(data, size); 2147 nodata: 2148 return -ENOMEM; 2149 } 2150 EXPORT_SYMBOL(pskb_expand_head); 2151 2152 /* Make private copy of skb with writable head and some headroom */ 2153 2154 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2155 { 2156 struct sk_buff *skb2; 2157 int delta = headroom - skb_headroom(skb); 2158 2159 if (delta <= 0) 2160 skb2 = pskb_copy(skb, GFP_ATOMIC); 2161 else { 2162 skb2 = skb_clone(skb, GFP_ATOMIC); 2163 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2164 GFP_ATOMIC)) { 2165 kfree_skb(skb2); 2166 skb2 = NULL; 2167 } 2168 } 2169 return skb2; 2170 } 2171 EXPORT_SYMBOL(skb_realloc_headroom); 2172 2173 /* Note: We plan to rework this in linux-6.4 */ 2174 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2175 { 2176 unsigned int saved_end_offset, saved_truesize; 2177 struct skb_shared_info *shinfo; 2178 int res; 2179 2180 saved_end_offset = skb_end_offset(skb); 2181 saved_truesize = skb->truesize; 2182 2183 res = pskb_expand_head(skb, 0, 0, pri); 2184 if (res) 2185 return res; 2186 2187 skb->truesize = saved_truesize; 2188 2189 if (likely(skb_end_offset(skb) == saved_end_offset)) 2190 return 0; 2191 2192 /* We can not change skb->end if the original or new value 2193 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2194 */ 2195 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2196 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2197 /* We think this path should not be taken. 2198 * Add a temporary trace to warn us just in case. 2199 */ 2200 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2201 saved_end_offset, skb_end_offset(skb)); 2202 WARN_ON_ONCE(1); 2203 return 0; 2204 } 2205 2206 shinfo = skb_shinfo(skb); 2207 2208 /* We are about to change back skb->end, 2209 * we need to move skb_shinfo() to its new location. 2210 */ 2211 memmove(skb->head + saved_end_offset, 2212 shinfo, 2213 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2214 2215 skb_set_end_offset(skb, saved_end_offset); 2216 2217 return 0; 2218 } 2219 2220 /** 2221 * skb_expand_head - reallocate header of &sk_buff 2222 * @skb: buffer to reallocate 2223 * @headroom: needed headroom 2224 * 2225 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2226 * if possible; copies skb->sk to new skb as needed 2227 * and frees original skb in case of failures. 2228 * 2229 * It expect increased headroom and generates warning otherwise. 2230 */ 2231 2232 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2233 { 2234 int delta = headroom - skb_headroom(skb); 2235 int osize = skb_end_offset(skb); 2236 struct sock *sk = skb->sk; 2237 2238 if (WARN_ONCE(delta <= 0, 2239 "%s is expecting an increase in the headroom", __func__)) 2240 return skb; 2241 2242 delta = SKB_DATA_ALIGN(delta); 2243 /* pskb_expand_head() might crash, if skb is shared. */ 2244 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2245 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2246 2247 if (unlikely(!nskb)) 2248 goto fail; 2249 2250 if (sk) 2251 skb_set_owner_w(nskb, sk); 2252 consume_skb(skb); 2253 skb = nskb; 2254 } 2255 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2256 goto fail; 2257 2258 if (sk && is_skb_wmem(skb)) { 2259 delta = skb_end_offset(skb) - osize; 2260 refcount_add(delta, &sk->sk_wmem_alloc); 2261 skb->truesize += delta; 2262 } 2263 return skb; 2264 2265 fail: 2266 kfree_skb(skb); 2267 return NULL; 2268 } 2269 EXPORT_SYMBOL(skb_expand_head); 2270 2271 /** 2272 * skb_copy_expand - copy and expand sk_buff 2273 * @skb: buffer to copy 2274 * @newheadroom: new free bytes at head 2275 * @newtailroom: new free bytes at tail 2276 * @gfp_mask: allocation priority 2277 * 2278 * Make a copy of both an &sk_buff and its data and while doing so 2279 * allocate additional space. 2280 * 2281 * This is used when the caller wishes to modify the data and needs a 2282 * private copy of the data to alter as well as more space for new fields. 2283 * Returns %NULL on failure or the pointer to the buffer 2284 * on success. The returned buffer has a reference count of 1. 2285 * 2286 * You must pass %GFP_ATOMIC as the allocation priority if this function 2287 * is called from an interrupt. 2288 */ 2289 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2290 int newheadroom, int newtailroom, 2291 gfp_t gfp_mask) 2292 { 2293 /* 2294 * Allocate the copy buffer 2295 */ 2296 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 2297 gfp_mask, skb_alloc_rx_flag(skb), 2298 NUMA_NO_NODE); 2299 int oldheadroom = skb_headroom(skb); 2300 int head_copy_len, head_copy_off; 2301 2302 if (!n) 2303 return NULL; 2304 2305 skb_reserve(n, newheadroom); 2306 2307 /* Set the tail pointer and length */ 2308 skb_put(n, skb->len); 2309 2310 head_copy_len = oldheadroom; 2311 head_copy_off = 0; 2312 if (newheadroom <= head_copy_len) 2313 head_copy_len = newheadroom; 2314 else 2315 head_copy_off = newheadroom - head_copy_len; 2316 2317 /* Copy the linear header and data. */ 2318 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2319 skb->len + head_copy_len)); 2320 2321 skb_copy_header(n, skb); 2322 2323 skb_headers_offset_update(n, newheadroom - oldheadroom); 2324 2325 return n; 2326 } 2327 EXPORT_SYMBOL(skb_copy_expand); 2328 2329 /** 2330 * __skb_pad - zero pad the tail of an skb 2331 * @skb: buffer to pad 2332 * @pad: space to pad 2333 * @free_on_error: free buffer on error 2334 * 2335 * Ensure that a buffer is followed by a padding area that is zero 2336 * filled. Used by network drivers which may DMA or transfer data 2337 * beyond the buffer end onto the wire. 2338 * 2339 * May return error in out of memory cases. The skb is freed on error 2340 * if @free_on_error is true. 2341 */ 2342 2343 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2344 { 2345 int err; 2346 int ntail; 2347 2348 /* If the skbuff is non linear tailroom is always zero.. */ 2349 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2350 memset(skb->data+skb->len, 0, pad); 2351 return 0; 2352 } 2353 2354 ntail = skb->data_len + pad - (skb->end - skb->tail); 2355 if (likely(skb_cloned(skb) || ntail > 0)) { 2356 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2357 if (unlikely(err)) 2358 goto free_skb; 2359 } 2360 2361 /* FIXME: The use of this function with non-linear skb's really needs 2362 * to be audited. 2363 */ 2364 err = skb_linearize(skb); 2365 if (unlikely(err)) 2366 goto free_skb; 2367 2368 memset(skb->data + skb->len, 0, pad); 2369 return 0; 2370 2371 free_skb: 2372 if (free_on_error) 2373 kfree_skb(skb); 2374 return err; 2375 } 2376 EXPORT_SYMBOL(__skb_pad); 2377 2378 /** 2379 * pskb_put - add data to the tail of a potentially fragmented buffer 2380 * @skb: start of the buffer to use 2381 * @tail: tail fragment of the buffer to use 2382 * @len: amount of data to add 2383 * 2384 * This function extends the used data area of the potentially 2385 * fragmented buffer. @tail must be the last fragment of @skb -- or 2386 * @skb itself. If this would exceed the total buffer size the kernel 2387 * will panic. A pointer to the first byte of the extra data is 2388 * returned. 2389 */ 2390 2391 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2392 { 2393 if (tail != skb) { 2394 skb->data_len += len; 2395 skb->len += len; 2396 } 2397 return skb_put(tail, len); 2398 } 2399 EXPORT_SYMBOL_GPL(pskb_put); 2400 2401 /** 2402 * skb_put - add data to a buffer 2403 * @skb: buffer to use 2404 * @len: amount of data to add 2405 * 2406 * This function extends the used data area of the buffer. If this would 2407 * exceed the total buffer size the kernel will panic. A pointer to the 2408 * first byte of the extra data is returned. 2409 */ 2410 void *skb_put(struct sk_buff *skb, unsigned int len) 2411 { 2412 void *tmp = skb_tail_pointer(skb); 2413 SKB_LINEAR_ASSERT(skb); 2414 skb->tail += len; 2415 skb->len += len; 2416 if (unlikely(skb->tail > skb->end)) 2417 skb_over_panic(skb, len, __builtin_return_address(0)); 2418 return tmp; 2419 } 2420 EXPORT_SYMBOL(skb_put); 2421 2422 /** 2423 * skb_push - add data to the start of a buffer 2424 * @skb: buffer to use 2425 * @len: amount of data to add 2426 * 2427 * This function extends the used data area of the buffer at the buffer 2428 * start. If this would exceed the total buffer headroom the kernel will 2429 * panic. A pointer to the first byte of the extra data is returned. 2430 */ 2431 void *skb_push(struct sk_buff *skb, unsigned int len) 2432 { 2433 skb->data -= len; 2434 skb->len += len; 2435 if (unlikely(skb->data < skb->head)) 2436 skb_under_panic(skb, len, __builtin_return_address(0)); 2437 return skb->data; 2438 } 2439 EXPORT_SYMBOL(skb_push); 2440 2441 /** 2442 * skb_pull - remove data from the start of a buffer 2443 * @skb: buffer to use 2444 * @len: amount of data to remove 2445 * 2446 * This function removes data from the start of a buffer, returning 2447 * the memory to the headroom. A pointer to the next data in the buffer 2448 * is returned. Once the data has been pulled future pushes will overwrite 2449 * the old data. 2450 */ 2451 void *skb_pull(struct sk_buff *skb, unsigned int len) 2452 { 2453 return skb_pull_inline(skb, len); 2454 } 2455 EXPORT_SYMBOL(skb_pull); 2456 2457 /** 2458 * skb_pull_data - remove data from the start of a buffer returning its 2459 * original position. 2460 * @skb: buffer to use 2461 * @len: amount of data to remove 2462 * 2463 * This function removes data from the start of a buffer, returning 2464 * the memory to the headroom. A pointer to the original data in the buffer 2465 * is returned after checking if there is enough data to pull. Once the 2466 * data has been pulled future pushes will overwrite the old data. 2467 */ 2468 void *skb_pull_data(struct sk_buff *skb, size_t len) 2469 { 2470 void *data = skb->data; 2471 2472 if (skb->len < len) 2473 return NULL; 2474 2475 skb_pull(skb, len); 2476 2477 return data; 2478 } 2479 EXPORT_SYMBOL(skb_pull_data); 2480 2481 /** 2482 * skb_trim - remove end from a buffer 2483 * @skb: buffer to alter 2484 * @len: new length 2485 * 2486 * Cut the length of a buffer down by removing data from the tail. If 2487 * the buffer is already under the length specified it is not modified. 2488 * The skb must be linear. 2489 */ 2490 void skb_trim(struct sk_buff *skb, unsigned int len) 2491 { 2492 if (skb->len > len) 2493 __skb_trim(skb, len); 2494 } 2495 EXPORT_SYMBOL(skb_trim); 2496 2497 /* Trims skb to length len. It can change skb pointers. 2498 */ 2499 2500 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2501 { 2502 struct sk_buff **fragp; 2503 struct sk_buff *frag; 2504 int offset = skb_headlen(skb); 2505 int nfrags = skb_shinfo(skb)->nr_frags; 2506 int i; 2507 int err; 2508 2509 if (skb_cloned(skb) && 2510 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2511 return err; 2512 2513 i = 0; 2514 if (offset >= len) 2515 goto drop_pages; 2516 2517 for (; i < nfrags; i++) { 2518 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2519 2520 if (end < len) { 2521 offset = end; 2522 continue; 2523 } 2524 2525 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2526 2527 drop_pages: 2528 skb_shinfo(skb)->nr_frags = i; 2529 2530 for (; i < nfrags; i++) 2531 skb_frag_unref(skb, i); 2532 2533 if (skb_has_frag_list(skb)) 2534 skb_drop_fraglist(skb); 2535 goto done; 2536 } 2537 2538 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2539 fragp = &frag->next) { 2540 int end = offset + frag->len; 2541 2542 if (skb_shared(frag)) { 2543 struct sk_buff *nfrag; 2544 2545 nfrag = skb_clone(frag, GFP_ATOMIC); 2546 if (unlikely(!nfrag)) 2547 return -ENOMEM; 2548 2549 nfrag->next = frag->next; 2550 consume_skb(frag); 2551 frag = nfrag; 2552 *fragp = frag; 2553 } 2554 2555 if (end < len) { 2556 offset = end; 2557 continue; 2558 } 2559 2560 if (end > len && 2561 unlikely((err = pskb_trim(frag, len - offset)))) 2562 return err; 2563 2564 if (frag->next) 2565 skb_drop_list(&frag->next); 2566 break; 2567 } 2568 2569 done: 2570 if (len > skb_headlen(skb)) { 2571 skb->data_len -= skb->len - len; 2572 skb->len = len; 2573 } else { 2574 skb->len = len; 2575 skb->data_len = 0; 2576 skb_set_tail_pointer(skb, len); 2577 } 2578 2579 if (!skb->sk || skb->destructor == sock_edemux) 2580 skb_condense(skb); 2581 return 0; 2582 } 2583 EXPORT_SYMBOL(___pskb_trim); 2584 2585 /* Note : use pskb_trim_rcsum() instead of calling this directly 2586 */ 2587 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2588 { 2589 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2590 int delta = skb->len - len; 2591 2592 skb->csum = csum_block_sub(skb->csum, 2593 skb_checksum(skb, len, delta, 0), 2594 len); 2595 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2596 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2597 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2598 2599 if (offset + sizeof(__sum16) > hdlen) 2600 return -EINVAL; 2601 } 2602 return __pskb_trim(skb, len); 2603 } 2604 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2605 2606 /** 2607 * __pskb_pull_tail - advance tail of skb header 2608 * @skb: buffer to reallocate 2609 * @delta: number of bytes to advance tail 2610 * 2611 * The function makes a sense only on a fragmented &sk_buff, 2612 * it expands header moving its tail forward and copying necessary 2613 * data from fragmented part. 2614 * 2615 * &sk_buff MUST have reference count of 1. 2616 * 2617 * Returns %NULL (and &sk_buff does not change) if pull failed 2618 * or value of new tail of skb in the case of success. 2619 * 2620 * All the pointers pointing into skb header may change and must be 2621 * reloaded after call to this function. 2622 */ 2623 2624 /* Moves tail of skb head forward, copying data from fragmented part, 2625 * when it is necessary. 2626 * 1. It may fail due to malloc failure. 2627 * 2. It may change skb pointers. 2628 * 2629 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2630 */ 2631 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2632 { 2633 /* If skb has not enough free space at tail, get new one 2634 * plus 128 bytes for future expansions. If we have enough 2635 * room at tail, reallocate without expansion only if skb is cloned. 2636 */ 2637 int i, k, eat = (skb->tail + delta) - skb->end; 2638 2639 if (eat > 0 || skb_cloned(skb)) { 2640 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2641 GFP_ATOMIC)) 2642 return NULL; 2643 } 2644 2645 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2646 skb_tail_pointer(skb), delta)); 2647 2648 /* Optimization: no fragments, no reasons to preestimate 2649 * size of pulled pages. Superb. 2650 */ 2651 if (!skb_has_frag_list(skb)) 2652 goto pull_pages; 2653 2654 /* Estimate size of pulled pages. */ 2655 eat = delta; 2656 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2657 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2658 2659 if (size >= eat) 2660 goto pull_pages; 2661 eat -= size; 2662 } 2663 2664 /* If we need update frag list, we are in troubles. 2665 * Certainly, it is possible to add an offset to skb data, 2666 * but taking into account that pulling is expected to 2667 * be very rare operation, it is worth to fight against 2668 * further bloating skb head and crucify ourselves here instead. 2669 * Pure masohism, indeed. 8)8) 2670 */ 2671 if (eat) { 2672 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2673 struct sk_buff *clone = NULL; 2674 struct sk_buff *insp = NULL; 2675 2676 do { 2677 if (list->len <= eat) { 2678 /* Eaten as whole. */ 2679 eat -= list->len; 2680 list = list->next; 2681 insp = list; 2682 } else { 2683 /* Eaten partially. */ 2684 if (skb_is_gso(skb) && !list->head_frag && 2685 skb_headlen(list)) 2686 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2687 2688 if (skb_shared(list)) { 2689 /* Sucks! We need to fork list. :-( */ 2690 clone = skb_clone(list, GFP_ATOMIC); 2691 if (!clone) 2692 return NULL; 2693 insp = list->next; 2694 list = clone; 2695 } else { 2696 /* This may be pulled without 2697 * problems. */ 2698 insp = list; 2699 } 2700 if (!pskb_pull(list, eat)) { 2701 kfree_skb(clone); 2702 return NULL; 2703 } 2704 break; 2705 } 2706 } while (eat); 2707 2708 /* Free pulled out fragments. */ 2709 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2710 skb_shinfo(skb)->frag_list = list->next; 2711 consume_skb(list); 2712 } 2713 /* And insert new clone at head. */ 2714 if (clone) { 2715 clone->next = list; 2716 skb_shinfo(skb)->frag_list = clone; 2717 } 2718 } 2719 /* Success! Now we may commit changes to skb data. */ 2720 2721 pull_pages: 2722 eat = delta; 2723 k = 0; 2724 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2725 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2726 2727 if (size <= eat) { 2728 skb_frag_unref(skb, i); 2729 eat -= size; 2730 } else { 2731 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2732 2733 *frag = skb_shinfo(skb)->frags[i]; 2734 if (eat) { 2735 skb_frag_off_add(frag, eat); 2736 skb_frag_size_sub(frag, eat); 2737 if (!i) 2738 goto end; 2739 eat = 0; 2740 } 2741 k++; 2742 } 2743 } 2744 skb_shinfo(skb)->nr_frags = k; 2745 2746 end: 2747 skb->tail += delta; 2748 skb->data_len -= delta; 2749 2750 if (!skb->data_len) 2751 skb_zcopy_clear(skb, false); 2752 2753 return skb_tail_pointer(skb); 2754 } 2755 EXPORT_SYMBOL(__pskb_pull_tail); 2756 2757 /** 2758 * skb_copy_bits - copy bits from skb to kernel buffer 2759 * @skb: source skb 2760 * @offset: offset in source 2761 * @to: destination buffer 2762 * @len: number of bytes to copy 2763 * 2764 * Copy the specified number of bytes from the source skb to the 2765 * destination buffer. 2766 * 2767 * CAUTION ! : 2768 * If its prototype is ever changed, 2769 * check arch/{*}/net/{*}.S files, 2770 * since it is called from BPF assembly code. 2771 */ 2772 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 2773 { 2774 int start = skb_headlen(skb); 2775 struct sk_buff *frag_iter; 2776 int i, copy; 2777 2778 if (offset > (int)skb->len - len) 2779 goto fault; 2780 2781 /* Copy header. */ 2782 if ((copy = start - offset) > 0) { 2783 if (copy > len) 2784 copy = len; 2785 skb_copy_from_linear_data_offset(skb, offset, to, copy); 2786 if ((len -= copy) == 0) 2787 return 0; 2788 offset += copy; 2789 to += copy; 2790 } 2791 2792 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2793 int end; 2794 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2795 2796 WARN_ON(start > offset + len); 2797 2798 end = start + skb_frag_size(f); 2799 if ((copy = end - offset) > 0) { 2800 u32 p_off, p_len, copied; 2801 struct page *p; 2802 u8 *vaddr; 2803 2804 if (copy > len) 2805 copy = len; 2806 2807 skb_frag_foreach_page(f, 2808 skb_frag_off(f) + offset - start, 2809 copy, p, p_off, p_len, copied) { 2810 vaddr = kmap_atomic(p); 2811 memcpy(to + copied, vaddr + p_off, p_len); 2812 kunmap_atomic(vaddr); 2813 } 2814 2815 if ((len -= copy) == 0) 2816 return 0; 2817 offset += copy; 2818 to += copy; 2819 } 2820 start = end; 2821 } 2822 2823 skb_walk_frags(skb, frag_iter) { 2824 int end; 2825 2826 WARN_ON(start > offset + len); 2827 2828 end = start + frag_iter->len; 2829 if ((copy = end - offset) > 0) { 2830 if (copy > len) 2831 copy = len; 2832 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 2833 goto fault; 2834 if ((len -= copy) == 0) 2835 return 0; 2836 offset += copy; 2837 to += copy; 2838 } 2839 start = end; 2840 } 2841 2842 if (!len) 2843 return 0; 2844 2845 fault: 2846 return -EFAULT; 2847 } 2848 EXPORT_SYMBOL(skb_copy_bits); 2849 2850 /* 2851 * Callback from splice_to_pipe(), if we need to release some pages 2852 * at the end of the spd in case we error'ed out in filling the pipe. 2853 */ 2854 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 2855 { 2856 put_page(spd->pages[i]); 2857 } 2858 2859 static struct page *linear_to_page(struct page *page, unsigned int *len, 2860 unsigned int *offset, 2861 struct sock *sk) 2862 { 2863 struct page_frag *pfrag = sk_page_frag(sk); 2864 2865 if (!sk_page_frag_refill(sk, pfrag)) 2866 return NULL; 2867 2868 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 2869 2870 memcpy(page_address(pfrag->page) + pfrag->offset, 2871 page_address(page) + *offset, *len); 2872 *offset = pfrag->offset; 2873 pfrag->offset += *len; 2874 2875 return pfrag->page; 2876 } 2877 2878 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 2879 struct page *page, 2880 unsigned int offset) 2881 { 2882 return spd->nr_pages && 2883 spd->pages[spd->nr_pages - 1] == page && 2884 (spd->partial[spd->nr_pages - 1].offset + 2885 spd->partial[spd->nr_pages - 1].len == offset); 2886 } 2887 2888 /* 2889 * Fill page/offset/length into spd, if it can hold more pages. 2890 */ 2891 static bool spd_fill_page(struct splice_pipe_desc *spd, 2892 struct pipe_inode_info *pipe, struct page *page, 2893 unsigned int *len, unsigned int offset, 2894 bool linear, 2895 struct sock *sk) 2896 { 2897 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 2898 return true; 2899 2900 if (linear) { 2901 page = linear_to_page(page, len, &offset, sk); 2902 if (!page) 2903 return true; 2904 } 2905 if (spd_can_coalesce(spd, page, offset)) { 2906 spd->partial[spd->nr_pages - 1].len += *len; 2907 return false; 2908 } 2909 get_page(page); 2910 spd->pages[spd->nr_pages] = page; 2911 spd->partial[spd->nr_pages].len = *len; 2912 spd->partial[spd->nr_pages].offset = offset; 2913 spd->nr_pages++; 2914 2915 return false; 2916 } 2917 2918 static bool __splice_segment(struct page *page, unsigned int poff, 2919 unsigned int plen, unsigned int *off, 2920 unsigned int *len, 2921 struct splice_pipe_desc *spd, bool linear, 2922 struct sock *sk, 2923 struct pipe_inode_info *pipe) 2924 { 2925 if (!*len) 2926 return true; 2927 2928 /* skip this segment if already processed */ 2929 if (*off >= plen) { 2930 *off -= plen; 2931 return false; 2932 } 2933 2934 /* ignore any bits we already processed */ 2935 poff += *off; 2936 plen -= *off; 2937 *off = 0; 2938 2939 do { 2940 unsigned int flen = min(*len, plen); 2941 2942 if (spd_fill_page(spd, pipe, page, &flen, poff, 2943 linear, sk)) 2944 return true; 2945 poff += flen; 2946 plen -= flen; 2947 *len -= flen; 2948 } while (*len && plen); 2949 2950 return false; 2951 } 2952 2953 /* 2954 * Map linear and fragment data from the skb to spd. It reports true if the 2955 * pipe is full or if we already spliced the requested length. 2956 */ 2957 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 2958 unsigned int *offset, unsigned int *len, 2959 struct splice_pipe_desc *spd, struct sock *sk) 2960 { 2961 int seg; 2962 struct sk_buff *iter; 2963 2964 /* map the linear part : 2965 * If skb->head_frag is set, this 'linear' part is backed by a 2966 * fragment, and if the head is not shared with any clones then 2967 * we can avoid a copy since we own the head portion of this page. 2968 */ 2969 if (__splice_segment(virt_to_page(skb->data), 2970 (unsigned long) skb->data & (PAGE_SIZE - 1), 2971 skb_headlen(skb), 2972 offset, len, spd, 2973 skb_head_is_locked(skb), 2974 sk, pipe)) 2975 return true; 2976 2977 /* 2978 * then map the fragments 2979 */ 2980 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 2981 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 2982 2983 if (__splice_segment(skb_frag_page(f), 2984 skb_frag_off(f), skb_frag_size(f), 2985 offset, len, spd, false, sk, pipe)) 2986 return true; 2987 } 2988 2989 skb_walk_frags(skb, iter) { 2990 if (*offset >= iter->len) { 2991 *offset -= iter->len; 2992 continue; 2993 } 2994 /* __skb_splice_bits() only fails if the output has no room 2995 * left, so no point in going over the frag_list for the error 2996 * case. 2997 */ 2998 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 2999 return true; 3000 } 3001 3002 return false; 3003 } 3004 3005 /* 3006 * Map data from the skb to a pipe. Should handle both the linear part, 3007 * the fragments, and the frag list. 3008 */ 3009 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3010 struct pipe_inode_info *pipe, unsigned int tlen, 3011 unsigned int flags) 3012 { 3013 struct partial_page partial[MAX_SKB_FRAGS]; 3014 struct page *pages[MAX_SKB_FRAGS]; 3015 struct splice_pipe_desc spd = { 3016 .pages = pages, 3017 .partial = partial, 3018 .nr_pages_max = MAX_SKB_FRAGS, 3019 .ops = &nosteal_pipe_buf_ops, 3020 .spd_release = sock_spd_release, 3021 }; 3022 int ret = 0; 3023 3024 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3025 3026 if (spd.nr_pages) 3027 ret = splice_to_pipe(pipe, &spd); 3028 3029 return ret; 3030 } 3031 EXPORT_SYMBOL_GPL(skb_splice_bits); 3032 3033 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3034 { 3035 struct socket *sock = sk->sk_socket; 3036 size_t size = msg_data_left(msg); 3037 3038 if (!sock) 3039 return -EINVAL; 3040 3041 if (!sock->ops->sendmsg_locked) 3042 return sock_no_sendmsg_locked(sk, msg, size); 3043 3044 return sock->ops->sendmsg_locked(sk, msg, size); 3045 } 3046 3047 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3048 { 3049 struct socket *sock = sk->sk_socket; 3050 3051 if (!sock) 3052 return -EINVAL; 3053 return sock_sendmsg(sock, msg); 3054 } 3055 3056 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3057 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3058 int len, sendmsg_func sendmsg) 3059 { 3060 unsigned int orig_len = len; 3061 struct sk_buff *head = skb; 3062 unsigned short fragidx; 3063 int slen, ret; 3064 3065 do_frag_list: 3066 3067 /* Deal with head data */ 3068 while (offset < skb_headlen(skb) && len) { 3069 struct kvec kv; 3070 struct msghdr msg; 3071 3072 slen = min_t(int, len, skb_headlen(skb) - offset); 3073 kv.iov_base = skb->data + offset; 3074 kv.iov_len = slen; 3075 memset(&msg, 0, sizeof(msg)); 3076 msg.msg_flags = MSG_DONTWAIT; 3077 3078 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3079 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3080 sendmsg_unlocked, sk, &msg); 3081 if (ret <= 0) 3082 goto error; 3083 3084 offset += ret; 3085 len -= ret; 3086 } 3087 3088 /* All the data was skb head? */ 3089 if (!len) 3090 goto out; 3091 3092 /* Make offset relative to start of frags */ 3093 offset -= skb_headlen(skb); 3094 3095 /* Find where we are in frag list */ 3096 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3097 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3098 3099 if (offset < skb_frag_size(frag)) 3100 break; 3101 3102 offset -= skb_frag_size(frag); 3103 } 3104 3105 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3106 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3107 3108 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3109 3110 while (slen) { 3111 struct bio_vec bvec; 3112 struct msghdr msg = { 3113 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT, 3114 }; 3115 3116 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3117 skb_frag_off(frag) + offset); 3118 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3119 slen); 3120 3121 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3122 sendmsg_unlocked, sk, &msg); 3123 if (ret <= 0) 3124 goto error; 3125 3126 len -= ret; 3127 offset += ret; 3128 slen -= ret; 3129 } 3130 3131 offset = 0; 3132 } 3133 3134 if (len) { 3135 /* Process any frag lists */ 3136 3137 if (skb == head) { 3138 if (skb_has_frag_list(skb)) { 3139 skb = skb_shinfo(skb)->frag_list; 3140 goto do_frag_list; 3141 } 3142 } else if (skb->next) { 3143 skb = skb->next; 3144 goto do_frag_list; 3145 } 3146 } 3147 3148 out: 3149 return orig_len - len; 3150 3151 error: 3152 return orig_len == len ? ret : orig_len - len; 3153 } 3154 3155 /* Send skb data on a socket. Socket must be locked. */ 3156 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3157 int len) 3158 { 3159 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked); 3160 } 3161 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3162 3163 /* Send skb data on a socket. Socket must be unlocked. */ 3164 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3165 { 3166 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked); 3167 } 3168 3169 /** 3170 * skb_store_bits - store bits from kernel buffer to skb 3171 * @skb: destination buffer 3172 * @offset: offset in destination 3173 * @from: source buffer 3174 * @len: number of bytes to copy 3175 * 3176 * Copy the specified number of bytes from the source buffer to the 3177 * destination skb. This function handles all the messy bits of 3178 * traversing fragment lists and such. 3179 */ 3180 3181 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3182 { 3183 int start = skb_headlen(skb); 3184 struct sk_buff *frag_iter; 3185 int i, copy; 3186 3187 if (offset > (int)skb->len - len) 3188 goto fault; 3189 3190 if ((copy = start - offset) > 0) { 3191 if (copy > len) 3192 copy = len; 3193 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3194 if ((len -= copy) == 0) 3195 return 0; 3196 offset += copy; 3197 from += copy; 3198 } 3199 3200 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3201 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3202 int end; 3203 3204 WARN_ON(start > offset + len); 3205 3206 end = start + skb_frag_size(frag); 3207 if ((copy = end - offset) > 0) { 3208 u32 p_off, p_len, copied; 3209 struct page *p; 3210 u8 *vaddr; 3211 3212 if (copy > len) 3213 copy = len; 3214 3215 skb_frag_foreach_page(frag, 3216 skb_frag_off(frag) + offset - start, 3217 copy, p, p_off, p_len, copied) { 3218 vaddr = kmap_atomic(p); 3219 memcpy(vaddr + p_off, from + copied, p_len); 3220 kunmap_atomic(vaddr); 3221 } 3222 3223 if ((len -= copy) == 0) 3224 return 0; 3225 offset += copy; 3226 from += copy; 3227 } 3228 start = end; 3229 } 3230 3231 skb_walk_frags(skb, frag_iter) { 3232 int end; 3233 3234 WARN_ON(start > offset + len); 3235 3236 end = start + frag_iter->len; 3237 if ((copy = end - offset) > 0) { 3238 if (copy > len) 3239 copy = len; 3240 if (skb_store_bits(frag_iter, offset - start, 3241 from, copy)) 3242 goto fault; 3243 if ((len -= copy) == 0) 3244 return 0; 3245 offset += copy; 3246 from += copy; 3247 } 3248 start = end; 3249 } 3250 if (!len) 3251 return 0; 3252 3253 fault: 3254 return -EFAULT; 3255 } 3256 EXPORT_SYMBOL(skb_store_bits); 3257 3258 /* Checksum skb data. */ 3259 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3260 __wsum csum, const struct skb_checksum_ops *ops) 3261 { 3262 int start = skb_headlen(skb); 3263 int i, copy = start - offset; 3264 struct sk_buff *frag_iter; 3265 int pos = 0; 3266 3267 /* Checksum header. */ 3268 if (copy > 0) { 3269 if (copy > len) 3270 copy = len; 3271 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext, 3272 skb->data + offset, copy, csum); 3273 if ((len -= copy) == 0) 3274 return csum; 3275 offset += copy; 3276 pos = copy; 3277 } 3278 3279 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3280 int end; 3281 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3282 3283 WARN_ON(start > offset + len); 3284 3285 end = start + skb_frag_size(frag); 3286 if ((copy = end - offset) > 0) { 3287 u32 p_off, p_len, copied; 3288 struct page *p; 3289 __wsum csum2; 3290 u8 *vaddr; 3291 3292 if (copy > len) 3293 copy = len; 3294 3295 skb_frag_foreach_page(frag, 3296 skb_frag_off(frag) + offset - start, 3297 copy, p, p_off, p_len, copied) { 3298 vaddr = kmap_atomic(p); 3299 csum2 = INDIRECT_CALL_1(ops->update, 3300 csum_partial_ext, 3301 vaddr + p_off, p_len, 0); 3302 kunmap_atomic(vaddr); 3303 csum = INDIRECT_CALL_1(ops->combine, 3304 csum_block_add_ext, csum, 3305 csum2, pos, p_len); 3306 pos += p_len; 3307 } 3308 3309 if (!(len -= copy)) 3310 return csum; 3311 offset += copy; 3312 } 3313 start = end; 3314 } 3315 3316 skb_walk_frags(skb, frag_iter) { 3317 int end; 3318 3319 WARN_ON(start > offset + len); 3320 3321 end = start + frag_iter->len; 3322 if ((copy = end - offset) > 0) { 3323 __wsum csum2; 3324 if (copy > len) 3325 copy = len; 3326 csum2 = __skb_checksum(frag_iter, offset - start, 3327 copy, 0, ops); 3328 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext, 3329 csum, csum2, pos, copy); 3330 if ((len -= copy) == 0) 3331 return csum; 3332 offset += copy; 3333 pos += copy; 3334 } 3335 start = end; 3336 } 3337 BUG_ON(len); 3338 3339 return csum; 3340 } 3341 EXPORT_SYMBOL(__skb_checksum); 3342 3343 __wsum skb_checksum(const struct sk_buff *skb, int offset, 3344 int len, __wsum csum) 3345 { 3346 const struct skb_checksum_ops ops = { 3347 .update = csum_partial_ext, 3348 .combine = csum_block_add_ext, 3349 }; 3350 3351 return __skb_checksum(skb, offset, len, csum, &ops); 3352 } 3353 EXPORT_SYMBOL(skb_checksum); 3354 3355 /* Both of above in one bottle. */ 3356 3357 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3358 u8 *to, int len) 3359 { 3360 int start = skb_headlen(skb); 3361 int i, copy = start - offset; 3362 struct sk_buff *frag_iter; 3363 int pos = 0; 3364 __wsum csum = 0; 3365 3366 /* Copy header. */ 3367 if (copy > 0) { 3368 if (copy > len) 3369 copy = len; 3370 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3371 copy); 3372 if ((len -= copy) == 0) 3373 return csum; 3374 offset += copy; 3375 to += copy; 3376 pos = copy; 3377 } 3378 3379 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3380 int end; 3381 3382 WARN_ON(start > offset + len); 3383 3384 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3385 if ((copy = end - offset) > 0) { 3386 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3387 u32 p_off, p_len, copied; 3388 struct page *p; 3389 __wsum csum2; 3390 u8 *vaddr; 3391 3392 if (copy > len) 3393 copy = len; 3394 3395 skb_frag_foreach_page(frag, 3396 skb_frag_off(frag) + offset - start, 3397 copy, p, p_off, p_len, copied) { 3398 vaddr = kmap_atomic(p); 3399 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3400 to + copied, 3401 p_len); 3402 kunmap_atomic(vaddr); 3403 csum = csum_block_add(csum, csum2, pos); 3404 pos += p_len; 3405 } 3406 3407 if (!(len -= copy)) 3408 return csum; 3409 offset += copy; 3410 to += copy; 3411 } 3412 start = end; 3413 } 3414 3415 skb_walk_frags(skb, frag_iter) { 3416 __wsum csum2; 3417 int end; 3418 3419 WARN_ON(start > offset + len); 3420 3421 end = start + frag_iter->len; 3422 if ((copy = end - offset) > 0) { 3423 if (copy > len) 3424 copy = len; 3425 csum2 = skb_copy_and_csum_bits(frag_iter, 3426 offset - start, 3427 to, copy); 3428 csum = csum_block_add(csum, csum2, pos); 3429 if ((len -= copy) == 0) 3430 return csum; 3431 offset += copy; 3432 to += copy; 3433 pos += copy; 3434 } 3435 start = end; 3436 } 3437 BUG_ON(len); 3438 return csum; 3439 } 3440 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3441 3442 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3443 { 3444 __sum16 sum; 3445 3446 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3447 /* See comments in __skb_checksum_complete(). */ 3448 if (likely(!sum)) { 3449 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3450 !skb->csum_complete_sw) 3451 netdev_rx_csum_fault(skb->dev, skb); 3452 } 3453 if (!skb_shared(skb)) 3454 skb->csum_valid = !sum; 3455 return sum; 3456 } 3457 EXPORT_SYMBOL(__skb_checksum_complete_head); 3458 3459 /* This function assumes skb->csum already holds pseudo header's checksum, 3460 * which has been changed from the hardware checksum, for example, by 3461 * __skb_checksum_validate_complete(). And, the original skb->csum must 3462 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3463 * 3464 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3465 * zero. The new checksum is stored back into skb->csum unless the skb is 3466 * shared. 3467 */ 3468 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3469 { 3470 __wsum csum; 3471 __sum16 sum; 3472 3473 csum = skb_checksum(skb, 0, skb->len, 0); 3474 3475 sum = csum_fold(csum_add(skb->csum, csum)); 3476 /* This check is inverted, because we already knew the hardware 3477 * checksum is invalid before calling this function. So, if the 3478 * re-computed checksum is valid instead, then we have a mismatch 3479 * between the original skb->csum and skb_checksum(). This means either 3480 * the original hardware checksum is incorrect or we screw up skb->csum 3481 * when moving skb->data around. 3482 */ 3483 if (likely(!sum)) { 3484 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3485 !skb->csum_complete_sw) 3486 netdev_rx_csum_fault(skb->dev, skb); 3487 } 3488 3489 if (!skb_shared(skb)) { 3490 /* Save full packet checksum */ 3491 skb->csum = csum; 3492 skb->ip_summed = CHECKSUM_COMPLETE; 3493 skb->csum_complete_sw = 1; 3494 skb->csum_valid = !sum; 3495 } 3496 3497 return sum; 3498 } 3499 EXPORT_SYMBOL(__skb_checksum_complete); 3500 3501 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum) 3502 { 3503 net_warn_ratelimited( 3504 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3505 __func__); 3506 return 0; 3507 } 3508 3509 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2, 3510 int offset, int len) 3511 { 3512 net_warn_ratelimited( 3513 "%s: attempt to compute crc32c without libcrc32c.ko\n", 3514 __func__); 3515 return 0; 3516 } 3517 3518 static const struct skb_checksum_ops default_crc32c_ops = { 3519 .update = warn_crc32c_csum_update, 3520 .combine = warn_crc32c_csum_combine, 3521 }; 3522 3523 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly = 3524 &default_crc32c_ops; 3525 EXPORT_SYMBOL(crc32c_csum_stub); 3526 3527 /** 3528 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3529 * @from: source buffer 3530 * 3531 * Calculates the amount of linear headroom needed in the 'to' skb passed 3532 * into skb_zerocopy(). 3533 */ 3534 unsigned int 3535 skb_zerocopy_headlen(const struct sk_buff *from) 3536 { 3537 unsigned int hlen = 0; 3538 3539 if (!from->head_frag || 3540 skb_headlen(from) < L1_CACHE_BYTES || 3541 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3542 hlen = skb_headlen(from); 3543 if (!hlen) 3544 hlen = from->len; 3545 } 3546 3547 if (skb_has_frag_list(from)) 3548 hlen = from->len; 3549 3550 return hlen; 3551 } 3552 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3553 3554 /** 3555 * skb_zerocopy - Zero copy skb to skb 3556 * @to: destination buffer 3557 * @from: source buffer 3558 * @len: number of bytes to copy from source buffer 3559 * @hlen: size of linear headroom in destination buffer 3560 * 3561 * Copies up to `len` bytes from `from` to `to` by creating references 3562 * to the frags in the source buffer. 3563 * 3564 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3565 * headroom in the `to` buffer. 3566 * 3567 * Return value: 3568 * 0: everything is OK 3569 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3570 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3571 */ 3572 int 3573 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3574 { 3575 int i, j = 0; 3576 int plen = 0; /* length of skb->head fragment */ 3577 int ret; 3578 struct page *page; 3579 unsigned int offset; 3580 3581 BUG_ON(!from->head_frag && !hlen); 3582 3583 /* dont bother with small payloads */ 3584 if (len <= skb_tailroom(to)) 3585 return skb_copy_bits(from, 0, skb_put(to, len), len); 3586 3587 if (hlen) { 3588 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3589 if (unlikely(ret)) 3590 return ret; 3591 len -= hlen; 3592 } else { 3593 plen = min_t(int, skb_headlen(from), len); 3594 if (plen) { 3595 page = virt_to_head_page(from->head); 3596 offset = from->data - (unsigned char *)page_address(page); 3597 __skb_fill_page_desc(to, 0, page, offset, plen); 3598 get_page(page); 3599 j = 1; 3600 len -= plen; 3601 } 3602 } 3603 3604 skb_len_add(to, len + plen); 3605 3606 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3607 skb_tx_error(from); 3608 return -ENOMEM; 3609 } 3610 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3611 3612 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3613 int size; 3614 3615 if (!len) 3616 break; 3617 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3618 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3619 len); 3620 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3621 len -= size; 3622 skb_frag_ref(to, j); 3623 j++; 3624 } 3625 skb_shinfo(to)->nr_frags = j; 3626 3627 return 0; 3628 } 3629 EXPORT_SYMBOL_GPL(skb_zerocopy); 3630 3631 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3632 { 3633 __wsum csum; 3634 long csstart; 3635 3636 if (skb->ip_summed == CHECKSUM_PARTIAL) 3637 csstart = skb_checksum_start_offset(skb); 3638 else 3639 csstart = skb_headlen(skb); 3640 3641 BUG_ON(csstart > skb_headlen(skb)); 3642 3643 skb_copy_from_linear_data(skb, to, csstart); 3644 3645 csum = 0; 3646 if (csstart != skb->len) 3647 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3648 skb->len - csstart); 3649 3650 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3651 long csstuff = csstart + skb->csum_offset; 3652 3653 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3654 } 3655 } 3656 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3657 3658 /** 3659 * skb_dequeue - remove from the head of the queue 3660 * @list: list to dequeue from 3661 * 3662 * Remove the head of the list. The list lock is taken so the function 3663 * may be used safely with other locking list functions. The head item is 3664 * returned or %NULL if the list is empty. 3665 */ 3666 3667 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3668 { 3669 unsigned long flags; 3670 struct sk_buff *result; 3671 3672 spin_lock_irqsave(&list->lock, flags); 3673 result = __skb_dequeue(list); 3674 spin_unlock_irqrestore(&list->lock, flags); 3675 return result; 3676 } 3677 EXPORT_SYMBOL(skb_dequeue); 3678 3679 /** 3680 * skb_dequeue_tail - remove from the tail of the queue 3681 * @list: list to dequeue from 3682 * 3683 * Remove the tail of the list. The list lock is taken so the function 3684 * may be used safely with other locking list functions. The tail item is 3685 * returned or %NULL if the list is empty. 3686 */ 3687 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3688 { 3689 unsigned long flags; 3690 struct sk_buff *result; 3691 3692 spin_lock_irqsave(&list->lock, flags); 3693 result = __skb_dequeue_tail(list); 3694 spin_unlock_irqrestore(&list->lock, flags); 3695 return result; 3696 } 3697 EXPORT_SYMBOL(skb_dequeue_tail); 3698 3699 /** 3700 * skb_queue_purge - empty a list 3701 * @list: list to empty 3702 * 3703 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3704 * the list and one reference dropped. This function takes the list 3705 * lock and is atomic with respect to other list locking functions. 3706 */ 3707 void skb_queue_purge(struct sk_buff_head *list) 3708 { 3709 struct sk_buff *skb; 3710 while ((skb = skb_dequeue(list)) != NULL) 3711 kfree_skb(skb); 3712 } 3713 EXPORT_SYMBOL(skb_queue_purge); 3714 3715 /** 3716 * skb_rbtree_purge - empty a skb rbtree 3717 * @root: root of the rbtree to empty 3718 * Return value: the sum of truesizes of all purged skbs. 3719 * 3720 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 3721 * the list and one reference dropped. This function does not take 3722 * any lock. Synchronization should be handled by the caller (e.g., TCP 3723 * out-of-order queue is protected by the socket lock). 3724 */ 3725 unsigned int skb_rbtree_purge(struct rb_root *root) 3726 { 3727 struct rb_node *p = rb_first(root); 3728 unsigned int sum = 0; 3729 3730 while (p) { 3731 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 3732 3733 p = rb_next(p); 3734 rb_erase(&skb->rbnode, root); 3735 sum += skb->truesize; 3736 kfree_skb(skb); 3737 } 3738 return sum; 3739 } 3740 3741 /** 3742 * skb_queue_head - queue a buffer at the list head 3743 * @list: list to use 3744 * @newsk: buffer to queue 3745 * 3746 * Queue a buffer at the start of the list. This function takes the 3747 * list lock and can be used safely with other locking &sk_buff functions 3748 * safely. 3749 * 3750 * A buffer cannot be placed on two lists at the same time. 3751 */ 3752 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 3753 { 3754 unsigned long flags; 3755 3756 spin_lock_irqsave(&list->lock, flags); 3757 __skb_queue_head(list, newsk); 3758 spin_unlock_irqrestore(&list->lock, flags); 3759 } 3760 EXPORT_SYMBOL(skb_queue_head); 3761 3762 /** 3763 * skb_queue_tail - queue a buffer at the list tail 3764 * @list: list to use 3765 * @newsk: buffer to queue 3766 * 3767 * Queue a buffer at the tail of the list. This function takes the 3768 * list lock and can be used safely with other locking &sk_buff functions 3769 * safely. 3770 * 3771 * A buffer cannot be placed on two lists at the same time. 3772 */ 3773 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 3774 { 3775 unsigned long flags; 3776 3777 spin_lock_irqsave(&list->lock, flags); 3778 __skb_queue_tail(list, newsk); 3779 spin_unlock_irqrestore(&list->lock, flags); 3780 } 3781 EXPORT_SYMBOL(skb_queue_tail); 3782 3783 /** 3784 * skb_unlink - remove a buffer from a list 3785 * @skb: buffer to remove 3786 * @list: list to use 3787 * 3788 * Remove a packet from a list. The list locks are taken and this 3789 * function is atomic with respect to other list locked calls 3790 * 3791 * You must know what list the SKB is on. 3792 */ 3793 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 3794 { 3795 unsigned long flags; 3796 3797 spin_lock_irqsave(&list->lock, flags); 3798 __skb_unlink(skb, list); 3799 spin_unlock_irqrestore(&list->lock, flags); 3800 } 3801 EXPORT_SYMBOL(skb_unlink); 3802 3803 /** 3804 * skb_append - append a buffer 3805 * @old: buffer to insert after 3806 * @newsk: buffer to insert 3807 * @list: list to use 3808 * 3809 * Place a packet after a given packet in a list. The list locks are taken 3810 * and this function is atomic with respect to other list locked calls. 3811 * A buffer cannot be placed on two lists at the same time. 3812 */ 3813 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 3814 { 3815 unsigned long flags; 3816 3817 spin_lock_irqsave(&list->lock, flags); 3818 __skb_queue_after(list, old, newsk); 3819 spin_unlock_irqrestore(&list->lock, flags); 3820 } 3821 EXPORT_SYMBOL(skb_append); 3822 3823 static inline void skb_split_inside_header(struct sk_buff *skb, 3824 struct sk_buff* skb1, 3825 const u32 len, const int pos) 3826 { 3827 int i; 3828 3829 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 3830 pos - len); 3831 /* And move data appendix as is. */ 3832 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 3833 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 3834 3835 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 3836 skb_shinfo(skb)->nr_frags = 0; 3837 skb1->data_len = skb->data_len; 3838 skb1->len += skb1->data_len; 3839 skb->data_len = 0; 3840 skb->len = len; 3841 skb_set_tail_pointer(skb, len); 3842 } 3843 3844 static inline void skb_split_no_header(struct sk_buff *skb, 3845 struct sk_buff* skb1, 3846 const u32 len, int pos) 3847 { 3848 int i, k = 0; 3849 const int nfrags = skb_shinfo(skb)->nr_frags; 3850 3851 skb_shinfo(skb)->nr_frags = 0; 3852 skb1->len = skb1->data_len = skb->len - len; 3853 skb->len = len; 3854 skb->data_len = len - pos; 3855 3856 for (i = 0; i < nfrags; i++) { 3857 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 3858 3859 if (pos + size > len) { 3860 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 3861 3862 if (pos < len) { 3863 /* Split frag. 3864 * We have two variants in this case: 3865 * 1. Move all the frag to the second 3866 * part, if it is possible. F.e. 3867 * this approach is mandatory for TUX, 3868 * where splitting is expensive. 3869 * 2. Split is accurately. We make this. 3870 */ 3871 skb_frag_ref(skb, i); 3872 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 3873 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 3874 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 3875 skb_shinfo(skb)->nr_frags++; 3876 } 3877 k++; 3878 } else 3879 skb_shinfo(skb)->nr_frags++; 3880 pos += size; 3881 } 3882 skb_shinfo(skb1)->nr_frags = k; 3883 } 3884 3885 /** 3886 * skb_split - Split fragmented skb to two parts at length len. 3887 * @skb: the buffer to split 3888 * @skb1: the buffer to receive the second part 3889 * @len: new length for skb 3890 */ 3891 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 3892 { 3893 int pos = skb_headlen(skb); 3894 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 3895 3896 skb_zcopy_downgrade_managed(skb); 3897 3898 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 3899 skb_zerocopy_clone(skb1, skb, 0); 3900 if (len < pos) /* Split line is inside header. */ 3901 skb_split_inside_header(skb, skb1, len, pos); 3902 else /* Second chunk has no header, nothing to copy. */ 3903 skb_split_no_header(skb, skb1, len, pos); 3904 } 3905 EXPORT_SYMBOL(skb_split); 3906 3907 /* Shifting from/to a cloned skb is a no-go. 3908 * 3909 * Caller cannot keep skb_shinfo related pointers past calling here! 3910 */ 3911 static int skb_prepare_for_shift(struct sk_buff *skb) 3912 { 3913 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 3914 } 3915 3916 /** 3917 * skb_shift - Shifts paged data partially from skb to another 3918 * @tgt: buffer into which tail data gets added 3919 * @skb: buffer from which the paged data comes from 3920 * @shiftlen: shift up to this many bytes 3921 * 3922 * Attempts to shift up to shiftlen worth of bytes, which may be less than 3923 * the length of the skb, from skb to tgt. Returns number bytes shifted. 3924 * It's up to caller to free skb if everything was shifted. 3925 * 3926 * If @tgt runs out of frags, the whole operation is aborted. 3927 * 3928 * Skb cannot include anything else but paged data while tgt is allowed 3929 * to have non-paged data as well. 3930 * 3931 * TODO: full sized shift could be optimized but that would need 3932 * specialized skb free'er to handle frags without up-to-date nr_frags. 3933 */ 3934 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 3935 { 3936 int from, to, merge, todo; 3937 skb_frag_t *fragfrom, *fragto; 3938 3939 BUG_ON(shiftlen > skb->len); 3940 3941 if (skb_headlen(skb)) 3942 return 0; 3943 if (skb_zcopy(tgt) || skb_zcopy(skb)) 3944 return 0; 3945 3946 todo = shiftlen; 3947 from = 0; 3948 to = skb_shinfo(tgt)->nr_frags; 3949 fragfrom = &skb_shinfo(skb)->frags[from]; 3950 3951 /* Actual merge is delayed until the point when we know we can 3952 * commit all, so that we don't have to undo partial changes 3953 */ 3954 if (!to || 3955 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 3956 skb_frag_off(fragfrom))) { 3957 merge = -1; 3958 } else { 3959 merge = to - 1; 3960 3961 todo -= skb_frag_size(fragfrom); 3962 if (todo < 0) { 3963 if (skb_prepare_for_shift(skb) || 3964 skb_prepare_for_shift(tgt)) 3965 return 0; 3966 3967 /* All previous frag pointers might be stale! */ 3968 fragfrom = &skb_shinfo(skb)->frags[from]; 3969 fragto = &skb_shinfo(tgt)->frags[merge]; 3970 3971 skb_frag_size_add(fragto, shiftlen); 3972 skb_frag_size_sub(fragfrom, shiftlen); 3973 skb_frag_off_add(fragfrom, shiftlen); 3974 3975 goto onlymerged; 3976 } 3977 3978 from++; 3979 } 3980 3981 /* Skip full, not-fitting skb to avoid expensive operations */ 3982 if ((shiftlen == skb->len) && 3983 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 3984 return 0; 3985 3986 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 3987 return 0; 3988 3989 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 3990 if (to == MAX_SKB_FRAGS) 3991 return 0; 3992 3993 fragfrom = &skb_shinfo(skb)->frags[from]; 3994 fragto = &skb_shinfo(tgt)->frags[to]; 3995 3996 if (todo >= skb_frag_size(fragfrom)) { 3997 *fragto = *fragfrom; 3998 todo -= skb_frag_size(fragfrom); 3999 from++; 4000 to++; 4001 4002 } else { 4003 __skb_frag_ref(fragfrom); 4004 skb_frag_page_copy(fragto, fragfrom); 4005 skb_frag_off_copy(fragto, fragfrom); 4006 skb_frag_size_set(fragto, todo); 4007 4008 skb_frag_off_add(fragfrom, todo); 4009 skb_frag_size_sub(fragfrom, todo); 4010 todo = 0; 4011 4012 to++; 4013 break; 4014 } 4015 } 4016 4017 /* Ready to "commit" this state change to tgt */ 4018 skb_shinfo(tgt)->nr_frags = to; 4019 4020 if (merge >= 0) { 4021 fragfrom = &skb_shinfo(skb)->frags[0]; 4022 fragto = &skb_shinfo(tgt)->frags[merge]; 4023 4024 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4025 __skb_frag_unref(fragfrom, skb->pp_recycle); 4026 } 4027 4028 /* Reposition in the original skb */ 4029 to = 0; 4030 while (from < skb_shinfo(skb)->nr_frags) 4031 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4032 skb_shinfo(skb)->nr_frags = to; 4033 4034 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4035 4036 onlymerged: 4037 /* Most likely the tgt won't ever need its checksum anymore, skb on 4038 * the other hand might need it if it needs to be resent 4039 */ 4040 tgt->ip_summed = CHECKSUM_PARTIAL; 4041 skb->ip_summed = CHECKSUM_PARTIAL; 4042 4043 skb_len_add(skb, -shiftlen); 4044 skb_len_add(tgt, shiftlen); 4045 4046 return shiftlen; 4047 } 4048 4049 /** 4050 * skb_prepare_seq_read - Prepare a sequential read of skb data 4051 * @skb: the buffer to read 4052 * @from: lower offset of data to be read 4053 * @to: upper offset of data to be read 4054 * @st: state variable 4055 * 4056 * Initializes the specified state variable. Must be called before 4057 * invoking skb_seq_read() for the first time. 4058 */ 4059 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4060 unsigned int to, struct skb_seq_state *st) 4061 { 4062 st->lower_offset = from; 4063 st->upper_offset = to; 4064 st->root_skb = st->cur_skb = skb; 4065 st->frag_idx = st->stepped_offset = 0; 4066 st->frag_data = NULL; 4067 st->frag_off = 0; 4068 } 4069 EXPORT_SYMBOL(skb_prepare_seq_read); 4070 4071 /** 4072 * skb_seq_read - Sequentially read skb data 4073 * @consumed: number of bytes consumed by the caller so far 4074 * @data: destination pointer for data to be returned 4075 * @st: state variable 4076 * 4077 * Reads a block of skb data at @consumed relative to the 4078 * lower offset specified to skb_prepare_seq_read(). Assigns 4079 * the head of the data block to @data and returns the length 4080 * of the block or 0 if the end of the skb data or the upper 4081 * offset has been reached. 4082 * 4083 * The caller is not required to consume all of the data 4084 * returned, i.e. @consumed is typically set to the number 4085 * of bytes already consumed and the next call to 4086 * skb_seq_read() will return the remaining part of the block. 4087 * 4088 * Note 1: The size of each block of data returned can be arbitrary, 4089 * this limitation is the cost for zerocopy sequential 4090 * reads of potentially non linear data. 4091 * 4092 * Note 2: Fragment lists within fragments are not implemented 4093 * at the moment, state->root_skb could be replaced with 4094 * a stack for this purpose. 4095 */ 4096 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4097 struct skb_seq_state *st) 4098 { 4099 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4100 skb_frag_t *frag; 4101 4102 if (unlikely(abs_offset >= st->upper_offset)) { 4103 if (st->frag_data) { 4104 kunmap_atomic(st->frag_data); 4105 st->frag_data = NULL; 4106 } 4107 return 0; 4108 } 4109 4110 next_skb: 4111 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4112 4113 if (abs_offset < block_limit && !st->frag_data) { 4114 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4115 return block_limit - abs_offset; 4116 } 4117 4118 if (st->frag_idx == 0 && !st->frag_data) 4119 st->stepped_offset += skb_headlen(st->cur_skb); 4120 4121 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4122 unsigned int pg_idx, pg_off, pg_sz; 4123 4124 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4125 4126 pg_idx = 0; 4127 pg_off = skb_frag_off(frag); 4128 pg_sz = skb_frag_size(frag); 4129 4130 if (skb_frag_must_loop(skb_frag_page(frag))) { 4131 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4132 pg_off = offset_in_page(pg_off + st->frag_off); 4133 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4134 PAGE_SIZE - pg_off); 4135 } 4136 4137 block_limit = pg_sz + st->stepped_offset; 4138 if (abs_offset < block_limit) { 4139 if (!st->frag_data) 4140 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4141 4142 *data = (u8 *)st->frag_data + pg_off + 4143 (abs_offset - st->stepped_offset); 4144 4145 return block_limit - abs_offset; 4146 } 4147 4148 if (st->frag_data) { 4149 kunmap_atomic(st->frag_data); 4150 st->frag_data = NULL; 4151 } 4152 4153 st->stepped_offset += pg_sz; 4154 st->frag_off += pg_sz; 4155 if (st->frag_off == skb_frag_size(frag)) { 4156 st->frag_off = 0; 4157 st->frag_idx++; 4158 } 4159 } 4160 4161 if (st->frag_data) { 4162 kunmap_atomic(st->frag_data); 4163 st->frag_data = NULL; 4164 } 4165 4166 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4167 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4168 st->frag_idx = 0; 4169 goto next_skb; 4170 } else if (st->cur_skb->next) { 4171 st->cur_skb = st->cur_skb->next; 4172 st->frag_idx = 0; 4173 goto next_skb; 4174 } 4175 4176 return 0; 4177 } 4178 EXPORT_SYMBOL(skb_seq_read); 4179 4180 /** 4181 * skb_abort_seq_read - Abort a sequential read of skb data 4182 * @st: state variable 4183 * 4184 * Must be called if skb_seq_read() was not called until it 4185 * returned 0. 4186 */ 4187 void skb_abort_seq_read(struct skb_seq_state *st) 4188 { 4189 if (st->frag_data) 4190 kunmap_atomic(st->frag_data); 4191 } 4192 EXPORT_SYMBOL(skb_abort_seq_read); 4193 4194 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4195 4196 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4197 struct ts_config *conf, 4198 struct ts_state *state) 4199 { 4200 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4201 } 4202 4203 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4204 { 4205 skb_abort_seq_read(TS_SKB_CB(state)); 4206 } 4207 4208 /** 4209 * skb_find_text - Find a text pattern in skb data 4210 * @skb: the buffer to look in 4211 * @from: search offset 4212 * @to: search limit 4213 * @config: textsearch configuration 4214 * 4215 * Finds a pattern in the skb data according to the specified 4216 * textsearch configuration. Use textsearch_next() to retrieve 4217 * subsequent occurrences of the pattern. Returns the offset 4218 * to the first occurrence or UINT_MAX if no match was found. 4219 */ 4220 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4221 unsigned int to, struct ts_config *config) 4222 { 4223 struct ts_state state; 4224 unsigned int ret; 4225 4226 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4227 4228 config->get_next_block = skb_ts_get_next_block; 4229 config->finish = skb_ts_finish; 4230 4231 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4232 4233 ret = textsearch_find(config, &state); 4234 return (ret <= to - from ? ret : UINT_MAX); 4235 } 4236 EXPORT_SYMBOL(skb_find_text); 4237 4238 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4239 int offset, size_t size, size_t max_frags) 4240 { 4241 int i = skb_shinfo(skb)->nr_frags; 4242 4243 if (skb_can_coalesce(skb, i, page, offset)) { 4244 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4245 } else if (i < max_frags) { 4246 skb_zcopy_downgrade_managed(skb); 4247 get_page(page); 4248 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4249 } else { 4250 return -EMSGSIZE; 4251 } 4252 4253 return 0; 4254 } 4255 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4256 4257 /** 4258 * skb_pull_rcsum - pull skb and update receive checksum 4259 * @skb: buffer to update 4260 * @len: length of data pulled 4261 * 4262 * This function performs an skb_pull on the packet and updates 4263 * the CHECKSUM_COMPLETE checksum. It should be used on 4264 * receive path processing instead of skb_pull unless you know 4265 * that the checksum difference is zero (e.g., a valid IP header) 4266 * or you are setting ip_summed to CHECKSUM_NONE. 4267 */ 4268 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4269 { 4270 unsigned char *data = skb->data; 4271 4272 BUG_ON(len > skb->len); 4273 __skb_pull(skb, len); 4274 skb_postpull_rcsum(skb, data, len); 4275 return skb->data; 4276 } 4277 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4278 4279 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4280 { 4281 skb_frag_t head_frag; 4282 struct page *page; 4283 4284 page = virt_to_head_page(frag_skb->head); 4285 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4286 (unsigned char *)page_address(page), 4287 skb_headlen(frag_skb)); 4288 return head_frag; 4289 } 4290 4291 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4292 netdev_features_t features, 4293 unsigned int offset) 4294 { 4295 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4296 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4297 unsigned int delta_truesize = 0; 4298 unsigned int delta_len = 0; 4299 struct sk_buff *tail = NULL; 4300 struct sk_buff *nskb, *tmp; 4301 int len_diff, err; 4302 4303 skb_push(skb, -skb_network_offset(skb) + offset); 4304 4305 /* Ensure the head is writeable before touching the shared info */ 4306 err = skb_unclone(skb, GFP_ATOMIC); 4307 if (err) 4308 goto err_linearize; 4309 4310 skb_shinfo(skb)->frag_list = NULL; 4311 4312 while (list_skb) { 4313 nskb = list_skb; 4314 list_skb = list_skb->next; 4315 4316 err = 0; 4317 delta_truesize += nskb->truesize; 4318 if (skb_shared(nskb)) { 4319 tmp = skb_clone(nskb, GFP_ATOMIC); 4320 if (tmp) { 4321 consume_skb(nskb); 4322 nskb = tmp; 4323 err = skb_unclone(nskb, GFP_ATOMIC); 4324 } else { 4325 err = -ENOMEM; 4326 } 4327 } 4328 4329 if (!tail) 4330 skb->next = nskb; 4331 else 4332 tail->next = nskb; 4333 4334 if (unlikely(err)) { 4335 nskb->next = list_skb; 4336 goto err_linearize; 4337 } 4338 4339 tail = nskb; 4340 4341 delta_len += nskb->len; 4342 4343 skb_push(nskb, -skb_network_offset(nskb) + offset); 4344 4345 skb_release_head_state(nskb); 4346 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4347 __copy_skb_header(nskb, skb); 4348 4349 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4350 nskb->transport_header += len_diff; 4351 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4352 nskb->data - tnl_hlen, 4353 offset + tnl_hlen); 4354 4355 if (skb_needs_linearize(nskb, features) && 4356 __skb_linearize(nskb)) 4357 goto err_linearize; 4358 } 4359 4360 skb->truesize = skb->truesize - delta_truesize; 4361 skb->data_len = skb->data_len - delta_len; 4362 skb->len = skb->len - delta_len; 4363 4364 skb_gso_reset(skb); 4365 4366 skb->prev = tail; 4367 4368 if (skb_needs_linearize(skb, features) && 4369 __skb_linearize(skb)) 4370 goto err_linearize; 4371 4372 skb_get(skb); 4373 4374 return skb; 4375 4376 err_linearize: 4377 kfree_skb_list(skb->next); 4378 skb->next = NULL; 4379 return ERR_PTR(-ENOMEM); 4380 } 4381 EXPORT_SYMBOL_GPL(skb_segment_list); 4382 4383 /** 4384 * skb_segment - Perform protocol segmentation on skb. 4385 * @head_skb: buffer to segment 4386 * @features: features for the output path (see dev->features) 4387 * 4388 * This function performs segmentation on the given skb. It returns 4389 * a pointer to the first in a list of new skbs for the segments. 4390 * In case of error it returns ERR_PTR(err). 4391 */ 4392 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4393 netdev_features_t features) 4394 { 4395 struct sk_buff *segs = NULL; 4396 struct sk_buff *tail = NULL; 4397 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4398 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 4399 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4400 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4401 struct sk_buff *frag_skb = head_skb; 4402 unsigned int offset = doffset; 4403 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4404 unsigned int partial_segs = 0; 4405 unsigned int headroom; 4406 unsigned int len = head_skb->len; 4407 __be16 proto; 4408 bool csum, sg; 4409 int nfrags = skb_shinfo(head_skb)->nr_frags; 4410 int err = -ENOMEM; 4411 int i = 0; 4412 int pos; 4413 4414 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4415 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4416 struct sk_buff *check_skb; 4417 4418 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4419 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4420 /* gso_size is untrusted, and we have a frag_list with 4421 * a linear non head_frag item. 4422 * 4423 * If head_skb's headlen does not fit requested gso_size, 4424 * it means that the frag_list members do NOT terminate 4425 * on exact gso_size boundaries. Hence we cannot perform 4426 * skb_frag_t page sharing. Therefore we must fallback to 4427 * copying the frag_list skbs; we do so by disabling SG. 4428 */ 4429 features &= ~NETIF_F_SG; 4430 break; 4431 } 4432 } 4433 } 4434 4435 __skb_push(head_skb, doffset); 4436 proto = skb_network_protocol(head_skb, NULL); 4437 if (unlikely(!proto)) 4438 return ERR_PTR(-EINVAL); 4439 4440 sg = !!(features & NETIF_F_SG); 4441 csum = !!can_checksum_protocol(features, proto); 4442 4443 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4444 if (!(features & NETIF_F_GSO_PARTIAL)) { 4445 struct sk_buff *iter; 4446 unsigned int frag_len; 4447 4448 if (!list_skb || 4449 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4450 goto normal; 4451 4452 /* If we get here then all the required 4453 * GSO features except frag_list are supported. 4454 * Try to split the SKB to multiple GSO SKBs 4455 * with no frag_list. 4456 * Currently we can do that only when the buffers don't 4457 * have a linear part and all the buffers except 4458 * the last are of the same length. 4459 */ 4460 frag_len = list_skb->len; 4461 skb_walk_frags(head_skb, iter) { 4462 if (frag_len != iter->len && iter->next) 4463 goto normal; 4464 if (skb_headlen(iter) && !iter->head_frag) 4465 goto normal; 4466 4467 len -= iter->len; 4468 } 4469 4470 if (len != frag_len) 4471 goto normal; 4472 } 4473 4474 /* GSO partial only requires that we trim off any excess that 4475 * doesn't fit into an MSS sized block, so take care of that 4476 * now. 4477 */ 4478 partial_segs = len / mss; 4479 if (partial_segs > 1) 4480 mss *= partial_segs; 4481 else 4482 partial_segs = 0; 4483 } 4484 4485 normal: 4486 headroom = skb_headroom(head_skb); 4487 pos = skb_headlen(head_skb); 4488 4489 do { 4490 struct sk_buff *nskb; 4491 skb_frag_t *nskb_frag; 4492 int hsize; 4493 int size; 4494 4495 if (unlikely(mss == GSO_BY_FRAGS)) { 4496 len = list_skb->len; 4497 } else { 4498 len = head_skb->len - offset; 4499 if (len > mss) 4500 len = mss; 4501 } 4502 4503 hsize = skb_headlen(head_skb) - offset; 4504 4505 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4506 (skb_headlen(list_skb) == len || sg)) { 4507 BUG_ON(skb_headlen(list_skb) > len); 4508 4509 i = 0; 4510 nfrags = skb_shinfo(list_skb)->nr_frags; 4511 frag = skb_shinfo(list_skb)->frags; 4512 frag_skb = list_skb; 4513 pos += skb_headlen(list_skb); 4514 4515 while (pos < offset + len) { 4516 BUG_ON(i >= nfrags); 4517 4518 size = skb_frag_size(frag); 4519 if (pos + size > offset + len) 4520 break; 4521 4522 i++; 4523 pos += size; 4524 frag++; 4525 } 4526 4527 nskb = skb_clone(list_skb, GFP_ATOMIC); 4528 list_skb = list_skb->next; 4529 4530 if (unlikely(!nskb)) 4531 goto err; 4532 4533 if (unlikely(pskb_trim(nskb, len))) { 4534 kfree_skb(nskb); 4535 goto err; 4536 } 4537 4538 hsize = skb_end_offset(nskb); 4539 if (skb_cow_head(nskb, doffset + headroom)) { 4540 kfree_skb(nskb); 4541 goto err; 4542 } 4543 4544 nskb->truesize += skb_end_offset(nskb) - hsize; 4545 skb_release_head_state(nskb); 4546 __skb_push(nskb, doffset); 4547 } else { 4548 if (hsize < 0) 4549 hsize = 0; 4550 if (hsize > len || !sg) 4551 hsize = len; 4552 4553 nskb = __alloc_skb(hsize + doffset + headroom, 4554 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4555 NUMA_NO_NODE); 4556 4557 if (unlikely(!nskb)) 4558 goto err; 4559 4560 skb_reserve(nskb, headroom); 4561 __skb_put(nskb, doffset); 4562 } 4563 4564 if (segs) 4565 tail->next = nskb; 4566 else 4567 segs = nskb; 4568 tail = nskb; 4569 4570 __copy_skb_header(nskb, head_skb); 4571 4572 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4573 skb_reset_mac_len(nskb); 4574 4575 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4576 nskb->data - tnl_hlen, 4577 doffset + tnl_hlen); 4578 4579 if (nskb->len == len + doffset) 4580 goto perform_csum_check; 4581 4582 if (!sg) { 4583 if (!csum) { 4584 if (!nskb->remcsum_offload) 4585 nskb->ip_summed = CHECKSUM_NONE; 4586 SKB_GSO_CB(nskb)->csum = 4587 skb_copy_and_csum_bits(head_skb, offset, 4588 skb_put(nskb, 4589 len), 4590 len); 4591 SKB_GSO_CB(nskb)->csum_start = 4592 skb_headroom(nskb) + doffset; 4593 } else { 4594 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4595 goto err; 4596 } 4597 continue; 4598 } 4599 4600 nskb_frag = skb_shinfo(nskb)->frags; 4601 4602 skb_copy_from_linear_data_offset(head_skb, offset, 4603 skb_put(nskb, hsize), hsize); 4604 4605 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4606 SKBFL_SHARED_FRAG; 4607 4608 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4609 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4610 goto err; 4611 4612 while (pos < offset + len) { 4613 if (i >= nfrags) { 4614 i = 0; 4615 nfrags = skb_shinfo(list_skb)->nr_frags; 4616 frag = skb_shinfo(list_skb)->frags; 4617 frag_skb = list_skb; 4618 if (!skb_headlen(list_skb)) { 4619 BUG_ON(!nfrags); 4620 } else { 4621 BUG_ON(!list_skb->head_frag); 4622 4623 /* to make room for head_frag. */ 4624 i--; 4625 frag--; 4626 } 4627 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) || 4628 skb_zerocopy_clone(nskb, frag_skb, 4629 GFP_ATOMIC)) 4630 goto err; 4631 4632 list_skb = list_skb->next; 4633 } 4634 4635 if (unlikely(skb_shinfo(nskb)->nr_frags >= 4636 MAX_SKB_FRAGS)) { 4637 net_warn_ratelimited( 4638 "skb_segment: too many frags: %u %u\n", 4639 pos, mss); 4640 err = -EINVAL; 4641 goto err; 4642 } 4643 4644 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 4645 __skb_frag_ref(nskb_frag); 4646 size = skb_frag_size(nskb_frag); 4647 4648 if (pos < offset) { 4649 skb_frag_off_add(nskb_frag, offset - pos); 4650 skb_frag_size_sub(nskb_frag, offset - pos); 4651 } 4652 4653 skb_shinfo(nskb)->nr_frags++; 4654 4655 if (pos + size <= offset + len) { 4656 i++; 4657 frag++; 4658 pos += size; 4659 } else { 4660 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 4661 goto skip_fraglist; 4662 } 4663 4664 nskb_frag++; 4665 } 4666 4667 skip_fraglist: 4668 nskb->data_len = len - hsize; 4669 nskb->len += nskb->data_len; 4670 nskb->truesize += nskb->data_len; 4671 4672 perform_csum_check: 4673 if (!csum) { 4674 if (skb_has_shared_frag(nskb) && 4675 __skb_linearize(nskb)) 4676 goto err; 4677 4678 if (!nskb->remcsum_offload) 4679 nskb->ip_summed = CHECKSUM_NONE; 4680 SKB_GSO_CB(nskb)->csum = 4681 skb_checksum(nskb, doffset, 4682 nskb->len - doffset, 0); 4683 SKB_GSO_CB(nskb)->csum_start = 4684 skb_headroom(nskb) + doffset; 4685 } 4686 } while ((offset += len) < head_skb->len); 4687 4688 /* Some callers want to get the end of the list. 4689 * Put it in segs->prev to avoid walking the list. 4690 * (see validate_xmit_skb_list() for example) 4691 */ 4692 segs->prev = tail; 4693 4694 if (partial_segs) { 4695 struct sk_buff *iter; 4696 int type = skb_shinfo(head_skb)->gso_type; 4697 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 4698 4699 /* Update type to add partial and then remove dodgy if set */ 4700 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 4701 type &= ~SKB_GSO_DODGY; 4702 4703 /* Update GSO info and prepare to start updating headers on 4704 * our way back down the stack of protocols. 4705 */ 4706 for (iter = segs; iter; iter = iter->next) { 4707 skb_shinfo(iter)->gso_size = gso_size; 4708 skb_shinfo(iter)->gso_segs = partial_segs; 4709 skb_shinfo(iter)->gso_type = type; 4710 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 4711 } 4712 4713 if (tail->len - doffset <= gso_size) 4714 skb_shinfo(tail)->gso_size = 0; 4715 else if (tail != segs) 4716 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 4717 } 4718 4719 /* Following permits correct backpressure, for protocols 4720 * using skb_set_owner_w(). 4721 * Idea is to tranfert ownership from head_skb to last segment. 4722 */ 4723 if (head_skb->destructor == sock_wfree) { 4724 swap(tail->truesize, head_skb->truesize); 4725 swap(tail->destructor, head_skb->destructor); 4726 swap(tail->sk, head_skb->sk); 4727 } 4728 return segs; 4729 4730 err: 4731 kfree_skb_list(segs); 4732 return ERR_PTR(err); 4733 } 4734 EXPORT_SYMBOL_GPL(skb_segment); 4735 4736 #ifdef CONFIG_SKB_EXTENSIONS 4737 #define SKB_EXT_ALIGN_VALUE 8 4738 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 4739 4740 static const u8 skb_ext_type_len[] = { 4741 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4742 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 4743 #endif 4744 #ifdef CONFIG_XFRM 4745 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 4746 #endif 4747 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4748 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 4749 #endif 4750 #if IS_ENABLED(CONFIG_MPTCP) 4751 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 4752 #endif 4753 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4754 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 4755 #endif 4756 }; 4757 4758 static __always_inline unsigned int skb_ext_total_length(void) 4759 { 4760 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) + 4761 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4762 skb_ext_type_len[SKB_EXT_BRIDGE_NF] + 4763 #endif 4764 #ifdef CONFIG_XFRM 4765 skb_ext_type_len[SKB_EXT_SEC_PATH] + 4766 #endif 4767 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4768 skb_ext_type_len[TC_SKB_EXT] + 4769 #endif 4770 #if IS_ENABLED(CONFIG_MPTCP) 4771 skb_ext_type_len[SKB_EXT_MPTCP] + 4772 #endif 4773 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 4774 skb_ext_type_len[SKB_EXT_MCTP] + 4775 #endif 4776 0; 4777 } 4778 4779 static void skb_extensions_init(void) 4780 { 4781 BUILD_BUG_ON(SKB_EXT_NUM >= 8); 4782 BUILD_BUG_ON(skb_ext_total_length() > 255); 4783 4784 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 4785 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 4786 0, 4787 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4788 NULL); 4789 } 4790 #else 4791 static void skb_extensions_init(void) {} 4792 #endif 4793 4794 void __init skb_init(void) 4795 { 4796 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 4797 sizeof(struct sk_buff), 4798 0, 4799 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4800 offsetof(struct sk_buff, cb), 4801 sizeof_field(struct sk_buff, cb), 4802 NULL); 4803 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 4804 sizeof(struct sk_buff_fclones), 4805 0, 4806 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 4807 NULL); 4808 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 4809 * struct skb_shared_info is located at the end of skb->head, 4810 * and should not be copied to/from user. 4811 */ 4812 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 4813 SKB_SMALL_HEAD_CACHE_SIZE, 4814 0, 4815 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 4816 0, 4817 SKB_SMALL_HEAD_HEADROOM, 4818 NULL); 4819 skb_extensions_init(); 4820 } 4821 4822 static int 4823 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 4824 unsigned int recursion_level) 4825 { 4826 int start = skb_headlen(skb); 4827 int i, copy = start - offset; 4828 struct sk_buff *frag_iter; 4829 int elt = 0; 4830 4831 if (unlikely(recursion_level >= 24)) 4832 return -EMSGSIZE; 4833 4834 if (copy > 0) { 4835 if (copy > len) 4836 copy = len; 4837 sg_set_buf(sg, skb->data + offset, copy); 4838 elt++; 4839 if ((len -= copy) == 0) 4840 return elt; 4841 offset += copy; 4842 } 4843 4844 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 4845 int end; 4846 4847 WARN_ON(start > offset + len); 4848 4849 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 4850 if ((copy = end - offset) > 0) { 4851 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4852 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4853 return -EMSGSIZE; 4854 4855 if (copy > len) 4856 copy = len; 4857 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 4858 skb_frag_off(frag) + offset - start); 4859 elt++; 4860 if (!(len -= copy)) 4861 return elt; 4862 offset += copy; 4863 } 4864 start = end; 4865 } 4866 4867 skb_walk_frags(skb, frag_iter) { 4868 int end, ret; 4869 4870 WARN_ON(start > offset + len); 4871 4872 end = start + frag_iter->len; 4873 if ((copy = end - offset) > 0) { 4874 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 4875 return -EMSGSIZE; 4876 4877 if (copy > len) 4878 copy = len; 4879 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 4880 copy, recursion_level + 1); 4881 if (unlikely(ret < 0)) 4882 return ret; 4883 elt += ret; 4884 if ((len -= copy) == 0) 4885 return elt; 4886 offset += copy; 4887 } 4888 start = end; 4889 } 4890 BUG_ON(len); 4891 return elt; 4892 } 4893 4894 /** 4895 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 4896 * @skb: Socket buffer containing the buffers to be mapped 4897 * @sg: The scatter-gather list to map into 4898 * @offset: The offset into the buffer's contents to start mapping 4899 * @len: Length of buffer space to be mapped 4900 * 4901 * Fill the specified scatter-gather list with mappings/pointers into a 4902 * region of the buffer space attached to a socket buffer. Returns either 4903 * the number of scatterlist items used, or -EMSGSIZE if the contents 4904 * could not fit. 4905 */ 4906 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 4907 { 4908 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 4909 4910 if (nsg <= 0) 4911 return nsg; 4912 4913 sg_mark_end(&sg[nsg - 1]); 4914 4915 return nsg; 4916 } 4917 EXPORT_SYMBOL_GPL(skb_to_sgvec); 4918 4919 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 4920 * sglist without mark the sg which contain last skb data as the end. 4921 * So the caller can mannipulate sg list as will when padding new data after 4922 * the first call without calling sg_unmark_end to expend sg list. 4923 * 4924 * Scenario to use skb_to_sgvec_nomark: 4925 * 1. sg_init_table 4926 * 2. skb_to_sgvec_nomark(payload1) 4927 * 3. skb_to_sgvec_nomark(payload2) 4928 * 4929 * This is equivalent to: 4930 * 1. sg_init_table 4931 * 2. skb_to_sgvec(payload1) 4932 * 3. sg_unmark_end 4933 * 4. skb_to_sgvec(payload2) 4934 * 4935 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 4936 * is more preferable. 4937 */ 4938 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 4939 int offset, int len) 4940 { 4941 return __skb_to_sgvec(skb, sg, offset, len, 0); 4942 } 4943 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 4944 4945 4946 4947 /** 4948 * skb_cow_data - Check that a socket buffer's data buffers are writable 4949 * @skb: The socket buffer to check. 4950 * @tailbits: Amount of trailing space to be added 4951 * @trailer: Returned pointer to the skb where the @tailbits space begins 4952 * 4953 * Make sure that the data buffers attached to a socket buffer are 4954 * writable. If they are not, private copies are made of the data buffers 4955 * and the socket buffer is set to use these instead. 4956 * 4957 * If @tailbits is given, make sure that there is space to write @tailbits 4958 * bytes of data beyond current end of socket buffer. @trailer will be 4959 * set to point to the skb in which this space begins. 4960 * 4961 * The number of scatterlist elements required to completely map the 4962 * COW'd and extended socket buffer will be returned. 4963 */ 4964 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 4965 { 4966 int copyflag; 4967 int elt; 4968 struct sk_buff *skb1, **skb_p; 4969 4970 /* If skb is cloned or its head is paged, reallocate 4971 * head pulling out all the pages (pages are considered not writable 4972 * at the moment even if they are anonymous). 4973 */ 4974 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 4975 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 4976 return -ENOMEM; 4977 4978 /* Easy case. Most of packets will go this way. */ 4979 if (!skb_has_frag_list(skb)) { 4980 /* A little of trouble, not enough of space for trailer. 4981 * This should not happen, when stack is tuned to generate 4982 * good frames. OK, on miss we reallocate and reserve even more 4983 * space, 128 bytes is fair. */ 4984 4985 if (skb_tailroom(skb) < tailbits && 4986 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 4987 return -ENOMEM; 4988 4989 /* Voila! */ 4990 *trailer = skb; 4991 return 1; 4992 } 4993 4994 /* Misery. We are in troubles, going to mincer fragments... */ 4995 4996 elt = 1; 4997 skb_p = &skb_shinfo(skb)->frag_list; 4998 copyflag = 0; 4999 5000 while ((skb1 = *skb_p) != NULL) { 5001 int ntail = 0; 5002 5003 /* The fragment is partially pulled by someone, 5004 * this can happen on input. Copy it and everything 5005 * after it. */ 5006 5007 if (skb_shared(skb1)) 5008 copyflag = 1; 5009 5010 /* If the skb is the last, worry about trailer. */ 5011 5012 if (skb1->next == NULL && tailbits) { 5013 if (skb_shinfo(skb1)->nr_frags || 5014 skb_has_frag_list(skb1) || 5015 skb_tailroom(skb1) < tailbits) 5016 ntail = tailbits + 128; 5017 } 5018 5019 if (copyflag || 5020 skb_cloned(skb1) || 5021 ntail || 5022 skb_shinfo(skb1)->nr_frags || 5023 skb_has_frag_list(skb1)) { 5024 struct sk_buff *skb2; 5025 5026 /* Fuck, we are miserable poor guys... */ 5027 if (ntail == 0) 5028 skb2 = skb_copy(skb1, GFP_ATOMIC); 5029 else 5030 skb2 = skb_copy_expand(skb1, 5031 skb_headroom(skb1), 5032 ntail, 5033 GFP_ATOMIC); 5034 if (unlikely(skb2 == NULL)) 5035 return -ENOMEM; 5036 5037 if (skb1->sk) 5038 skb_set_owner_w(skb2, skb1->sk); 5039 5040 /* Looking around. Are we still alive? 5041 * OK, link new skb, drop old one */ 5042 5043 skb2->next = skb1->next; 5044 *skb_p = skb2; 5045 kfree_skb(skb1); 5046 skb1 = skb2; 5047 } 5048 elt++; 5049 *trailer = skb1; 5050 skb_p = &skb1->next; 5051 } 5052 5053 return elt; 5054 } 5055 EXPORT_SYMBOL_GPL(skb_cow_data); 5056 5057 static void sock_rmem_free(struct sk_buff *skb) 5058 { 5059 struct sock *sk = skb->sk; 5060 5061 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5062 } 5063 5064 static void skb_set_err_queue(struct sk_buff *skb) 5065 { 5066 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5067 * So, it is safe to (mis)use it to mark skbs on the error queue. 5068 */ 5069 skb->pkt_type = PACKET_OUTGOING; 5070 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5071 } 5072 5073 /* 5074 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5075 */ 5076 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5077 { 5078 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5079 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5080 return -ENOMEM; 5081 5082 skb_orphan(skb); 5083 skb->sk = sk; 5084 skb->destructor = sock_rmem_free; 5085 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5086 skb_set_err_queue(skb); 5087 5088 /* before exiting rcu section, make sure dst is refcounted */ 5089 skb_dst_force(skb); 5090 5091 skb_queue_tail(&sk->sk_error_queue, skb); 5092 if (!sock_flag(sk, SOCK_DEAD)) 5093 sk_error_report(sk); 5094 return 0; 5095 } 5096 EXPORT_SYMBOL(sock_queue_err_skb); 5097 5098 static bool is_icmp_err_skb(const struct sk_buff *skb) 5099 { 5100 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5101 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5102 } 5103 5104 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5105 { 5106 struct sk_buff_head *q = &sk->sk_error_queue; 5107 struct sk_buff *skb, *skb_next = NULL; 5108 bool icmp_next = false; 5109 unsigned long flags; 5110 5111 spin_lock_irqsave(&q->lock, flags); 5112 skb = __skb_dequeue(q); 5113 if (skb && (skb_next = skb_peek(q))) { 5114 icmp_next = is_icmp_err_skb(skb_next); 5115 if (icmp_next) 5116 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5117 } 5118 spin_unlock_irqrestore(&q->lock, flags); 5119 5120 if (is_icmp_err_skb(skb) && !icmp_next) 5121 sk->sk_err = 0; 5122 5123 if (skb_next) 5124 sk_error_report(sk); 5125 5126 return skb; 5127 } 5128 EXPORT_SYMBOL(sock_dequeue_err_skb); 5129 5130 /** 5131 * skb_clone_sk - create clone of skb, and take reference to socket 5132 * @skb: the skb to clone 5133 * 5134 * This function creates a clone of a buffer that holds a reference on 5135 * sk_refcnt. Buffers created via this function are meant to be 5136 * returned using sock_queue_err_skb, or free via kfree_skb. 5137 * 5138 * When passing buffers allocated with this function to sock_queue_err_skb 5139 * it is necessary to wrap the call with sock_hold/sock_put in order to 5140 * prevent the socket from being released prior to being enqueued on 5141 * the sk_error_queue. 5142 */ 5143 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5144 { 5145 struct sock *sk = skb->sk; 5146 struct sk_buff *clone; 5147 5148 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5149 return NULL; 5150 5151 clone = skb_clone(skb, GFP_ATOMIC); 5152 if (!clone) { 5153 sock_put(sk); 5154 return NULL; 5155 } 5156 5157 clone->sk = sk; 5158 clone->destructor = sock_efree; 5159 5160 return clone; 5161 } 5162 EXPORT_SYMBOL(skb_clone_sk); 5163 5164 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5165 struct sock *sk, 5166 int tstype, 5167 bool opt_stats) 5168 { 5169 struct sock_exterr_skb *serr; 5170 int err; 5171 5172 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5173 5174 serr = SKB_EXT_ERR(skb); 5175 memset(serr, 0, sizeof(*serr)); 5176 serr->ee.ee_errno = ENOMSG; 5177 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5178 serr->ee.ee_info = tstype; 5179 serr->opt_stats = opt_stats; 5180 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5181 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 5182 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5183 if (sk_is_tcp(sk)) 5184 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5185 } 5186 5187 err = sock_queue_err_skb(sk, skb); 5188 5189 if (err) 5190 kfree_skb(skb); 5191 } 5192 5193 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5194 { 5195 bool ret; 5196 5197 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly)) 5198 return true; 5199 5200 read_lock_bh(&sk->sk_callback_lock); 5201 ret = sk->sk_socket && sk->sk_socket->file && 5202 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5203 read_unlock_bh(&sk->sk_callback_lock); 5204 return ret; 5205 } 5206 5207 void skb_complete_tx_timestamp(struct sk_buff *skb, 5208 struct skb_shared_hwtstamps *hwtstamps) 5209 { 5210 struct sock *sk = skb->sk; 5211 5212 if (!skb_may_tx_timestamp(sk, false)) 5213 goto err; 5214 5215 /* Take a reference to prevent skb_orphan() from freeing the socket, 5216 * but only if the socket refcount is not zero. 5217 */ 5218 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5219 *skb_hwtstamps(skb) = *hwtstamps; 5220 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5221 sock_put(sk); 5222 return; 5223 } 5224 5225 err: 5226 kfree_skb(skb); 5227 } 5228 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5229 5230 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5231 const struct sk_buff *ack_skb, 5232 struct skb_shared_hwtstamps *hwtstamps, 5233 struct sock *sk, int tstype) 5234 { 5235 struct sk_buff *skb; 5236 bool tsonly, opt_stats = false; 5237 5238 if (!sk) 5239 return; 5240 5241 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5242 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5243 return; 5244 5245 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5246 if (!skb_may_tx_timestamp(sk, tsonly)) 5247 return; 5248 5249 if (tsonly) { 5250 #ifdef CONFIG_INET 5251 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5252 sk_is_tcp(sk)) { 5253 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5254 ack_skb); 5255 opt_stats = true; 5256 } else 5257 #endif 5258 skb = alloc_skb(0, GFP_ATOMIC); 5259 } else { 5260 skb = skb_clone(orig_skb, GFP_ATOMIC); 5261 5262 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5263 kfree_skb(skb); 5264 return; 5265 } 5266 } 5267 if (!skb) 5268 return; 5269 5270 if (tsonly) { 5271 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5272 SKBTX_ANY_TSTAMP; 5273 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5274 } 5275 5276 if (hwtstamps) 5277 *skb_hwtstamps(skb) = *hwtstamps; 5278 else 5279 __net_timestamp(skb); 5280 5281 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5282 } 5283 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5284 5285 void skb_tstamp_tx(struct sk_buff *orig_skb, 5286 struct skb_shared_hwtstamps *hwtstamps) 5287 { 5288 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5289 SCM_TSTAMP_SND); 5290 } 5291 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5292 5293 #ifdef CONFIG_WIRELESS 5294 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5295 { 5296 struct sock *sk = skb->sk; 5297 struct sock_exterr_skb *serr; 5298 int err = 1; 5299 5300 skb->wifi_acked_valid = 1; 5301 skb->wifi_acked = acked; 5302 5303 serr = SKB_EXT_ERR(skb); 5304 memset(serr, 0, sizeof(*serr)); 5305 serr->ee.ee_errno = ENOMSG; 5306 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5307 5308 /* Take a reference to prevent skb_orphan() from freeing the socket, 5309 * but only if the socket refcount is not zero. 5310 */ 5311 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5312 err = sock_queue_err_skb(sk, skb); 5313 sock_put(sk); 5314 } 5315 if (err) 5316 kfree_skb(skb); 5317 } 5318 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5319 #endif /* CONFIG_WIRELESS */ 5320 5321 /** 5322 * skb_partial_csum_set - set up and verify partial csum values for packet 5323 * @skb: the skb to set 5324 * @start: the number of bytes after skb->data to start checksumming. 5325 * @off: the offset from start to place the checksum. 5326 * 5327 * For untrusted partially-checksummed packets, we need to make sure the values 5328 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5329 * 5330 * This function checks and sets those values and skb->ip_summed: if this 5331 * returns false you should drop the packet. 5332 */ 5333 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5334 { 5335 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5336 u32 csum_start = skb_headroom(skb) + (u32)start; 5337 5338 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5339 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5340 start, off, skb_headroom(skb), skb_headlen(skb)); 5341 return false; 5342 } 5343 skb->ip_summed = CHECKSUM_PARTIAL; 5344 skb->csum_start = csum_start; 5345 skb->csum_offset = off; 5346 skb->transport_header = csum_start; 5347 return true; 5348 } 5349 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5350 5351 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5352 unsigned int max) 5353 { 5354 if (skb_headlen(skb) >= len) 5355 return 0; 5356 5357 /* If we need to pullup then pullup to the max, so we 5358 * won't need to do it again. 5359 */ 5360 if (max > skb->len) 5361 max = skb->len; 5362 5363 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5364 return -ENOMEM; 5365 5366 if (skb_headlen(skb) < len) 5367 return -EPROTO; 5368 5369 return 0; 5370 } 5371 5372 #define MAX_TCP_HDR_LEN (15 * 4) 5373 5374 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5375 typeof(IPPROTO_IP) proto, 5376 unsigned int off) 5377 { 5378 int err; 5379 5380 switch (proto) { 5381 case IPPROTO_TCP: 5382 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5383 off + MAX_TCP_HDR_LEN); 5384 if (!err && !skb_partial_csum_set(skb, off, 5385 offsetof(struct tcphdr, 5386 check))) 5387 err = -EPROTO; 5388 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5389 5390 case IPPROTO_UDP: 5391 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5392 off + sizeof(struct udphdr)); 5393 if (!err && !skb_partial_csum_set(skb, off, 5394 offsetof(struct udphdr, 5395 check))) 5396 err = -EPROTO; 5397 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5398 } 5399 5400 return ERR_PTR(-EPROTO); 5401 } 5402 5403 /* This value should be large enough to cover a tagged ethernet header plus 5404 * maximally sized IP and TCP or UDP headers. 5405 */ 5406 #define MAX_IP_HDR_LEN 128 5407 5408 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5409 { 5410 unsigned int off; 5411 bool fragment; 5412 __sum16 *csum; 5413 int err; 5414 5415 fragment = false; 5416 5417 err = skb_maybe_pull_tail(skb, 5418 sizeof(struct iphdr), 5419 MAX_IP_HDR_LEN); 5420 if (err < 0) 5421 goto out; 5422 5423 if (ip_is_fragment(ip_hdr(skb))) 5424 fragment = true; 5425 5426 off = ip_hdrlen(skb); 5427 5428 err = -EPROTO; 5429 5430 if (fragment) 5431 goto out; 5432 5433 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5434 if (IS_ERR(csum)) 5435 return PTR_ERR(csum); 5436 5437 if (recalculate) 5438 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5439 ip_hdr(skb)->daddr, 5440 skb->len - off, 5441 ip_hdr(skb)->protocol, 0); 5442 err = 0; 5443 5444 out: 5445 return err; 5446 } 5447 5448 /* This value should be large enough to cover a tagged ethernet header plus 5449 * an IPv6 header, all options, and a maximal TCP or UDP header. 5450 */ 5451 #define MAX_IPV6_HDR_LEN 256 5452 5453 #define OPT_HDR(type, skb, off) \ 5454 (type *)(skb_network_header(skb) + (off)) 5455 5456 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5457 { 5458 int err; 5459 u8 nexthdr; 5460 unsigned int off; 5461 unsigned int len; 5462 bool fragment; 5463 bool done; 5464 __sum16 *csum; 5465 5466 fragment = false; 5467 done = false; 5468 5469 off = sizeof(struct ipv6hdr); 5470 5471 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5472 if (err < 0) 5473 goto out; 5474 5475 nexthdr = ipv6_hdr(skb)->nexthdr; 5476 5477 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5478 while (off <= len && !done) { 5479 switch (nexthdr) { 5480 case IPPROTO_DSTOPTS: 5481 case IPPROTO_HOPOPTS: 5482 case IPPROTO_ROUTING: { 5483 struct ipv6_opt_hdr *hp; 5484 5485 err = skb_maybe_pull_tail(skb, 5486 off + 5487 sizeof(struct ipv6_opt_hdr), 5488 MAX_IPV6_HDR_LEN); 5489 if (err < 0) 5490 goto out; 5491 5492 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5493 nexthdr = hp->nexthdr; 5494 off += ipv6_optlen(hp); 5495 break; 5496 } 5497 case IPPROTO_AH: { 5498 struct ip_auth_hdr *hp; 5499 5500 err = skb_maybe_pull_tail(skb, 5501 off + 5502 sizeof(struct ip_auth_hdr), 5503 MAX_IPV6_HDR_LEN); 5504 if (err < 0) 5505 goto out; 5506 5507 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5508 nexthdr = hp->nexthdr; 5509 off += ipv6_authlen(hp); 5510 break; 5511 } 5512 case IPPROTO_FRAGMENT: { 5513 struct frag_hdr *hp; 5514 5515 err = skb_maybe_pull_tail(skb, 5516 off + 5517 sizeof(struct frag_hdr), 5518 MAX_IPV6_HDR_LEN); 5519 if (err < 0) 5520 goto out; 5521 5522 hp = OPT_HDR(struct frag_hdr, skb, off); 5523 5524 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5525 fragment = true; 5526 5527 nexthdr = hp->nexthdr; 5528 off += sizeof(struct frag_hdr); 5529 break; 5530 } 5531 default: 5532 done = true; 5533 break; 5534 } 5535 } 5536 5537 err = -EPROTO; 5538 5539 if (!done || fragment) 5540 goto out; 5541 5542 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5543 if (IS_ERR(csum)) 5544 return PTR_ERR(csum); 5545 5546 if (recalculate) 5547 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5548 &ipv6_hdr(skb)->daddr, 5549 skb->len - off, nexthdr, 0); 5550 err = 0; 5551 5552 out: 5553 return err; 5554 } 5555 5556 /** 5557 * skb_checksum_setup - set up partial checksum offset 5558 * @skb: the skb to set up 5559 * @recalculate: if true the pseudo-header checksum will be recalculated 5560 */ 5561 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 5562 { 5563 int err; 5564 5565 switch (skb->protocol) { 5566 case htons(ETH_P_IP): 5567 err = skb_checksum_setup_ipv4(skb, recalculate); 5568 break; 5569 5570 case htons(ETH_P_IPV6): 5571 err = skb_checksum_setup_ipv6(skb, recalculate); 5572 break; 5573 5574 default: 5575 err = -EPROTO; 5576 break; 5577 } 5578 5579 return err; 5580 } 5581 EXPORT_SYMBOL(skb_checksum_setup); 5582 5583 /** 5584 * skb_checksum_maybe_trim - maybe trims the given skb 5585 * @skb: the skb to check 5586 * @transport_len: the data length beyond the network header 5587 * 5588 * Checks whether the given skb has data beyond the given transport length. 5589 * If so, returns a cloned skb trimmed to this transport length. 5590 * Otherwise returns the provided skb. Returns NULL in error cases 5591 * (e.g. transport_len exceeds skb length or out-of-memory). 5592 * 5593 * Caller needs to set the skb transport header and free any returned skb if it 5594 * differs from the provided skb. 5595 */ 5596 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 5597 unsigned int transport_len) 5598 { 5599 struct sk_buff *skb_chk; 5600 unsigned int len = skb_transport_offset(skb) + transport_len; 5601 int ret; 5602 5603 if (skb->len < len) 5604 return NULL; 5605 else if (skb->len == len) 5606 return skb; 5607 5608 skb_chk = skb_clone(skb, GFP_ATOMIC); 5609 if (!skb_chk) 5610 return NULL; 5611 5612 ret = pskb_trim_rcsum(skb_chk, len); 5613 if (ret) { 5614 kfree_skb(skb_chk); 5615 return NULL; 5616 } 5617 5618 return skb_chk; 5619 } 5620 5621 /** 5622 * skb_checksum_trimmed - validate checksum of an skb 5623 * @skb: the skb to check 5624 * @transport_len: the data length beyond the network header 5625 * @skb_chkf: checksum function to use 5626 * 5627 * Applies the given checksum function skb_chkf to the provided skb. 5628 * Returns a checked and maybe trimmed skb. Returns NULL on error. 5629 * 5630 * If the skb has data beyond the given transport length, then a 5631 * trimmed & cloned skb is checked and returned. 5632 * 5633 * Caller needs to set the skb transport header and free any returned skb if it 5634 * differs from the provided skb. 5635 */ 5636 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 5637 unsigned int transport_len, 5638 __sum16(*skb_chkf)(struct sk_buff *skb)) 5639 { 5640 struct sk_buff *skb_chk; 5641 unsigned int offset = skb_transport_offset(skb); 5642 __sum16 ret; 5643 5644 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 5645 if (!skb_chk) 5646 goto err; 5647 5648 if (!pskb_may_pull(skb_chk, offset)) 5649 goto err; 5650 5651 skb_pull_rcsum(skb_chk, offset); 5652 ret = skb_chkf(skb_chk); 5653 skb_push_rcsum(skb_chk, offset); 5654 5655 if (ret) 5656 goto err; 5657 5658 return skb_chk; 5659 5660 err: 5661 if (skb_chk && skb_chk != skb) 5662 kfree_skb(skb_chk); 5663 5664 return NULL; 5665 5666 } 5667 EXPORT_SYMBOL(skb_checksum_trimmed); 5668 5669 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 5670 { 5671 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 5672 skb->dev->name); 5673 } 5674 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 5675 5676 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 5677 { 5678 if (head_stolen) { 5679 skb_release_head_state(skb); 5680 kmem_cache_free(skbuff_cache, skb); 5681 } else { 5682 __kfree_skb(skb); 5683 } 5684 } 5685 EXPORT_SYMBOL(kfree_skb_partial); 5686 5687 /** 5688 * skb_try_coalesce - try to merge skb to prior one 5689 * @to: prior buffer 5690 * @from: buffer to add 5691 * @fragstolen: pointer to boolean 5692 * @delta_truesize: how much more was allocated than was requested 5693 */ 5694 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 5695 bool *fragstolen, int *delta_truesize) 5696 { 5697 struct skb_shared_info *to_shinfo, *from_shinfo; 5698 int i, delta, len = from->len; 5699 5700 *fragstolen = false; 5701 5702 if (skb_cloned(to)) 5703 return false; 5704 5705 /* In general, avoid mixing page_pool and non-page_pool allocated 5706 * pages within the same SKB. Additionally avoid dealing with clones 5707 * with page_pool pages, in case the SKB is using page_pool fragment 5708 * references (PP_FLAG_PAGE_FRAG). Since we only take full page 5709 * references for cloned SKBs at the moment that would result in 5710 * inconsistent reference counts. 5711 * In theory we could take full references if @from is cloned and 5712 * !@to->pp_recycle but its tricky (due to potential race with 5713 * the clone disappearing) and rare, so not worth dealing with. 5714 */ 5715 if (to->pp_recycle != from->pp_recycle || 5716 (from->pp_recycle && skb_cloned(from))) 5717 return false; 5718 5719 if (len <= skb_tailroom(to)) { 5720 if (len) 5721 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 5722 *delta_truesize = 0; 5723 return true; 5724 } 5725 5726 to_shinfo = skb_shinfo(to); 5727 from_shinfo = skb_shinfo(from); 5728 if (to_shinfo->frag_list || from_shinfo->frag_list) 5729 return false; 5730 if (skb_zcopy(to) || skb_zcopy(from)) 5731 return false; 5732 5733 if (skb_headlen(from) != 0) { 5734 struct page *page; 5735 unsigned int offset; 5736 5737 if (to_shinfo->nr_frags + 5738 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 5739 return false; 5740 5741 if (skb_head_is_locked(from)) 5742 return false; 5743 5744 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 5745 5746 page = virt_to_head_page(from->head); 5747 offset = from->data - (unsigned char *)page_address(page); 5748 5749 skb_fill_page_desc(to, to_shinfo->nr_frags, 5750 page, offset, skb_headlen(from)); 5751 *fragstolen = true; 5752 } else { 5753 if (to_shinfo->nr_frags + 5754 from_shinfo->nr_frags > MAX_SKB_FRAGS) 5755 return false; 5756 5757 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 5758 } 5759 5760 WARN_ON_ONCE(delta < len); 5761 5762 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 5763 from_shinfo->frags, 5764 from_shinfo->nr_frags * sizeof(skb_frag_t)); 5765 to_shinfo->nr_frags += from_shinfo->nr_frags; 5766 5767 if (!skb_cloned(from)) 5768 from_shinfo->nr_frags = 0; 5769 5770 /* if the skb is not cloned this does nothing 5771 * since we set nr_frags to 0. 5772 */ 5773 for (i = 0; i < from_shinfo->nr_frags; i++) 5774 __skb_frag_ref(&from_shinfo->frags[i]); 5775 5776 to->truesize += delta; 5777 to->len += len; 5778 to->data_len += len; 5779 5780 *delta_truesize = delta; 5781 return true; 5782 } 5783 EXPORT_SYMBOL(skb_try_coalesce); 5784 5785 /** 5786 * skb_scrub_packet - scrub an skb 5787 * 5788 * @skb: buffer to clean 5789 * @xnet: packet is crossing netns 5790 * 5791 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 5792 * into/from a tunnel. Some information have to be cleared during these 5793 * operations. 5794 * skb_scrub_packet can also be used to clean a skb before injecting it in 5795 * another namespace (@xnet == true). We have to clear all information in the 5796 * skb that could impact namespace isolation. 5797 */ 5798 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 5799 { 5800 skb->pkt_type = PACKET_HOST; 5801 skb->skb_iif = 0; 5802 skb->ignore_df = 0; 5803 skb_dst_drop(skb); 5804 skb_ext_reset(skb); 5805 nf_reset_ct(skb); 5806 nf_reset_trace(skb); 5807 5808 #ifdef CONFIG_NET_SWITCHDEV 5809 skb->offload_fwd_mark = 0; 5810 skb->offload_l3_fwd_mark = 0; 5811 #endif 5812 5813 if (!xnet) 5814 return; 5815 5816 ipvs_reset(skb); 5817 skb->mark = 0; 5818 skb_clear_tstamp(skb); 5819 } 5820 EXPORT_SYMBOL_GPL(skb_scrub_packet); 5821 5822 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 5823 { 5824 int mac_len, meta_len; 5825 void *meta; 5826 5827 if (skb_cow(skb, skb_headroom(skb)) < 0) { 5828 kfree_skb(skb); 5829 return NULL; 5830 } 5831 5832 mac_len = skb->data - skb_mac_header(skb); 5833 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 5834 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 5835 mac_len - VLAN_HLEN - ETH_TLEN); 5836 } 5837 5838 meta_len = skb_metadata_len(skb); 5839 if (meta_len) { 5840 meta = skb_metadata_end(skb) - meta_len; 5841 memmove(meta + VLAN_HLEN, meta, meta_len); 5842 } 5843 5844 skb->mac_header += VLAN_HLEN; 5845 return skb; 5846 } 5847 5848 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 5849 { 5850 struct vlan_hdr *vhdr; 5851 u16 vlan_tci; 5852 5853 if (unlikely(skb_vlan_tag_present(skb))) { 5854 /* vlan_tci is already set-up so leave this for another time */ 5855 return skb; 5856 } 5857 5858 skb = skb_share_check(skb, GFP_ATOMIC); 5859 if (unlikely(!skb)) 5860 goto err_free; 5861 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 5862 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 5863 goto err_free; 5864 5865 vhdr = (struct vlan_hdr *)skb->data; 5866 vlan_tci = ntohs(vhdr->h_vlan_TCI); 5867 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 5868 5869 skb_pull_rcsum(skb, VLAN_HLEN); 5870 vlan_set_encap_proto(skb, vhdr); 5871 5872 skb = skb_reorder_vlan_header(skb); 5873 if (unlikely(!skb)) 5874 goto err_free; 5875 5876 skb_reset_network_header(skb); 5877 if (!skb_transport_header_was_set(skb)) 5878 skb_reset_transport_header(skb); 5879 skb_reset_mac_len(skb); 5880 5881 return skb; 5882 5883 err_free: 5884 kfree_skb(skb); 5885 return NULL; 5886 } 5887 EXPORT_SYMBOL(skb_vlan_untag); 5888 5889 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 5890 { 5891 if (!pskb_may_pull(skb, write_len)) 5892 return -ENOMEM; 5893 5894 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 5895 return 0; 5896 5897 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 5898 } 5899 EXPORT_SYMBOL(skb_ensure_writable); 5900 5901 /* remove VLAN header from packet and update csum accordingly. 5902 * expects a non skb_vlan_tag_present skb with a vlan tag payload 5903 */ 5904 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 5905 { 5906 int offset = skb->data - skb_mac_header(skb); 5907 int err; 5908 5909 if (WARN_ONCE(offset, 5910 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 5911 offset)) { 5912 return -EINVAL; 5913 } 5914 5915 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 5916 if (unlikely(err)) 5917 return err; 5918 5919 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5920 5921 vlan_remove_tag(skb, vlan_tci); 5922 5923 skb->mac_header += VLAN_HLEN; 5924 5925 if (skb_network_offset(skb) < ETH_HLEN) 5926 skb_set_network_header(skb, ETH_HLEN); 5927 5928 skb_reset_mac_len(skb); 5929 5930 return err; 5931 } 5932 EXPORT_SYMBOL(__skb_vlan_pop); 5933 5934 /* Pop a vlan tag either from hwaccel or from payload. 5935 * Expects skb->data at mac header. 5936 */ 5937 int skb_vlan_pop(struct sk_buff *skb) 5938 { 5939 u16 vlan_tci; 5940 __be16 vlan_proto; 5941 int err; 5942 5943 if (likely(skb_vlan_tag_present(skb))) { 5944 __vlan_hwaccel_clear_tag(skb); 5945 } else { 5946 if (unlikely(!eth_type_vlan(skb->protocol))) 5947 return 0; 5948 5949 err = __skb_vlan_pop(skb, &vlan_tci); 5950 if (err) 5951 return err; 5952 } 5953 /* move next vlan tag to hw accel tag */ 5954 if (likely(!eth_type_vlan(skb->protocol))) 5955 return 0; 5956 5957 vlan_proto = skb->protocol; 5958 err = __skb_vlan_pop(skb, &vlan_tci); 5959 if (unlikely(err)) 5960 return err; 5961 5962 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5963 return 0; 5964 } 5965 EXPORT_SYMBOL(skb_vlan_pop); 5966 5967 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 5968 * Expects skb->data at mac header. 5969 */ 5970 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 5971 { 5972 if (skb_vlan_tag_present(skb)) { 5973 int offset = skb->data - skb_mac_header(skb); 5974 int err; 5975 5976 if (WARN_ONCE(offset, 5977 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 5978 offset)) { 5979 return -EINVAL; 5980 } 5981 5982 err = __vlan_insert_tag(skb, skb->vlan_proto, 5983 skb_vlan_tag_get(skb)); 5984 if (err) 5985 return err; 5986 5987 skb->protocol = skb->vlan_proto; 5988 skb->mac_len += VLAN_HLEN; 5989 5990 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 5991 } 5992 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 5993 return 0; 5994 } 5995 EXPORT_SYMBOL(skb_vlan_push); 5996 5997 /** 5998 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 5999 * 6000 * @skb: Socket buffer to modify 6001 * 6002 * Drop the Ethernet header of @skb. 6003 * 6004 * Expects that skb->data points to the mac header and that no VLAN tags are 6005 * present. 6006 * 6007 * Returns 0 on success, -errno otherwise. 6008 */ 6009 int skb_eth_pop(struct sk_buff *skb) 6010 { 6011 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6012 skb_network_offset(skb) < ETH_HLEN) 6013 return -EPROTO; 6014 6015 skb_pull_rcsum(skb, ETH_HLEN); 6016 skb_reset_mac_header(skb); 6017 skb_reset_mac_len(skb); 6018 6019 return 0; 6020 } 6021 EXPORT_SYMBOL(skb_eth_pop); 6022 6023 /** 6024 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6025 * 6026 * @skb: Socket buffer to modify 6027 * @dst: Destination MAC address of the new header 6028 * @src: Source MAC address of the new header 6029 * 6030 * Prepend @skb with a new Ethernet header. 6031 * 6032 * Expects that skb->data points to the mac header, which must be empty. 6033 * 6034 * Returns 0 on success, -errno otherwise. 6035 */ 6036 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6037 const unsigned char *src) 6038 { 6039 struct ethhdr *eth; 6040 int err; 6041 6042 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6043 return -EPROTO; 6044 6045 err = skb_cow_head(skb, sizeof(*eth)); 6046 if (err < 0) 6047 return err; 6048 6049 skb_push(skb, sizeof(*eth)); 6050 skb_reset_mac_header(skb); 6051 skb_reset_mac_len(skb); 6052 6053 eth = eth_hdr(skb); 6054 ether_addr_copy(eth->h_dest, dst); 6055 ether_addr_copy(eth->h_source, src); 6056 eth->h_proto = skb->protocol; 6057 6058 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6059 6060 return 0; 6061 } 6062 EXPORT_SYMBOL(skb_eth_push); 6063 6064 /* Update the ethertype of hdr and the skb csum value if required. */ 6065 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6066 __be16 ethertype) 6067 { 6068 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6069 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6070 6071 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6072 } 6073 6074 hdr->h_proto = ethertype; 6075 } 6076 6077 /** 6078 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6079 * the packet 6080 * 6081 * @skb: buffer 6082 * @mpls_lse: MPLS label stack entry to push 6083 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6084 * @mac_len: length of the MAC header 6085 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6086 * ethernet 6087 * 6088 * Expects skb->data at mac header. 6089 * 6090 * Returns 0 on success, -errno otherwise. 6091 */ 6092 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6093 int mac_len, bool ethernet) 6094 { 6095 struct mpls_shim_hdr *lse; 6096 int err; 6097 6098 if (unlikely(!eth_p_mpls(mpls_proto))) 6099 return -EINVAL; 6100 6101 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6102 if (skb->encapsulation) 6103 return -EINVAL; 6104 6105 err = skb_cow_head(skb, MPLS_HLEN); 6106 if (unlikely(err)) 6107 return err; 6108 6109 if (!skb->inner_protocol) { 6110 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6111 skb_set_inner_protocol(skb, skb->protocol); 6112 } 6113 6114 skb_push(skb, MPLS_HLEN); 6115 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6116 mac_len); 6117 skb_reset_mac_header(skb); 6118 skb_set_network_header(skb, mac_len); 6119 skb_reset_mac_len(skb); 6120 6121 lse = mpls_hdr(skb); 6122 lse->label_stack_entry = mpls_lse; 6123 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6124 6125 if (ethernet && mac_len >= ETH_HLEN) 6126 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6127 skb->protocol = mpls_proto; 6128 6129 return 0; 6130 } 6131 EXPORT_SYMBOL_GPL(skb_mpls_push); 6132 6133 /** 6134 * skb_mpls_pop() - pop the outermost MPLS header 6135 * 6136 * @skb: buffer 6137 * @next_proto: ethertype of header after popped MPLS header 6138 * @mac_len: length of the MAC header 6139 * @ethernet: flag to indicate if the packet is ethernet 6140 * 6141 * Expects skb->data at mac header. 6142 * 6143 * Returns 0 on success, -errno otherwise. 6144 */ 6145 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6146 bool ethernet) 6147 { 6148 int err; 6149 6150 if (unlikely(!eth_p_mpls(skb->protocol))) 6151 return 0; 6152 6153 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6154 if (unlikely(err)) 6155 return err; 6156 6157 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6158 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6159 mac_len); 6160 6161 __skb_pull(skb, MPLS_HLEN); 6162 skb_reset_mac_header(skb); 6163 skb_set_network_header(skb, mac_len); 6164 6165 if (ethernet && mac_len >= ETH_HLEN) { 6166 struct ethhdr *hdr; 6167 6168 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6169 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6170 skb_mod_eth_type(skb, hdr, next_proto); 6171 } 6172 skb->protocol = next_proto; 6173 6174 return 0; 6175 } 6176 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6177 6178 /** 6179 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6180 * 6181 * @skb: buffer 6182 * @mpls_lse: new MPLS label stack entry to update to 6183 * 6184 * Expects skb->data at mac header. 6185 * 6186 * Returns 0 on success, -errno otherwise. 6187 */ 6188 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6189 { 6190 int err; 6191 6192 if (unlikely(!eth_p_mpls(skb->protocol))) 6193 return -EINVAL; 6194 6195 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6196 if (unlikely(err)) 6197 return err; 6198 6199 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6200 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6201 6202 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6203 } 6204 6205 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6206 6207 return 0; 6208 } 6209 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6210 6211 /** 6212 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6213 * 6214 * @skb: buffer 6215 * 6216 * Expects skb->data at mac header. 6217 * 6218 * Returns 0 on success, -errno otherwise. 6219 */ 6220 int skb_mpls_dec_ttl(struct sk_buff *skb) 6221 { 6222 u32 lse; 6223 u8 ttl; 6224 6225 if (unlikely(!eth_p_mpls(skb->protocol))) 6226 return -EINVAL; 6227 6228 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6229 return -ENOMEM; 6230 6231 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6232 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6233 if (!--ttl) 6234 return -EINVAL; 6235 6236 lse &= ~MPLS_LS_TTL_MASK; 6237 lse |= ttl << MPLS_LS_TTL_SHIFT; 6238 6239 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6240 } 6241 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6242 6243 /** 6244 * alloc_skb_with_frags - allocate skb with page frags 6245 * 6246 * @header_len: size of linear part 6247 * @data_len: needed length in frags 6248 * @order: max page order desired. 6249 * @errcode: pointer to error code if any 6250 * @gfp_mask: allocation mask 6251 * 6252 * This can be used to allocate a paged skb, given a maximal order for frags. 6253 */ 6254 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6255 unsigned long data_len, 6256 int order, 6257 int *errcode, 6258 gfp_t gfp_mask) 6259 { 6260 unsigned long chunk; 6261 struct sk_buff *skb; 6262 struct page *page; 6263 int nr_frags = 0; 6264 6265 *errcode = -EMSGSIZE; 6266 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6267 return NULL; 6268 6269 *errcode = -ENOBUFS; 6270 skb = alloc_skb(header_len, gfp_mask); 6271 if (!skb) 6272 return NULL; 6273 6274 while (data_len) { 6275 if (nr_frags == MAX_SKB_FRAGS - 1) 6276 goto failure; 6277 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6278 order--; 6279 6280 if (order) { 6281 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6282 __GFP_COMP | 6283 __GFP_NOWARN, 6284 order); 6285 if (!page) { 6286 order--; 6287 continue; 6288 } 6289 } else { 6290 page = alloc_page(gfp_mask); 6291 if (!page) 6292 goto failure; 6293 } 6294 chunk = min_t(unsigned long, data_len, 6295 PAGE_SIZE << order); 6296 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6297 nr_frags++; 6298 skb->truesize += (PAGE_SIZE << order); 6299 data_len -= chunk; 6300 } 6301 return skb; 6302 6303 failure: 6304 kfree_skb(skb); 6305 return NULL; 6306 } 6307 EXPORT_SYMBOL(alloc_skb_with_frags); 6308 6309 /* carve out the first off bytes from skb when off < headlen */ 6310 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6311 const int headlen, gfp_t gfp_mask) 6312 { 6313 int i; 6314 unsigned int size = skb_end_offset(skb); 6315 int new_hlen = headlen - off; 6316 u8 *data; 6317 6318 if (skb_pfmemalloc(skb)) 6319 gfp_mask |= __GFP_MEMALLOC; 6320 6321 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6322 if (!data) 6323 return -ENOMEM; 6324 size = SKB_WITH_OVERHEAD(size); 6325 6326 /* Copy real data, and all frags */ 6327 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6328 skb->len -= off; 6329 6330 memcpy((struct skb_shared_info *)(data + size), 6331 skb_shinfo(skb), 6332 offsetof(struct skb_shared_info, 6333 frags[skb_shinfo(skb)->nr_frags])); 6334 if (skb_cloned(skb)) { 6335 /* drop the old head gracefully */ 6336 if (skb_orphan_frags(skb, gfp_mask)) { 6337 skb_kfree_head(data, size); 6338 return -ENOMEM; 6339 } 6340 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6341 skb_frag_ref(skb, i); 6342 if (skb_has_frag_list(skb)) 6343 skb_clone_fraglist(skb); 6344 skb_release_data(skb, SKB_CONSUMED, false); 6345 } else { 6346 /* we can reuse existing recount- all we did was 6347 * relocate values 6348 */ 6349 skb_free_head(skb, false); 6350 } 6351 6352 skb->head = data; 6353 skb->data = data; 6354 skb->head_frag = 0; 6355 skb_set_end_offset(skb, size); 6356 skb_set_tail_pointer(skb, skb_headlen(skb)); 6357 skb_headers_offset_update(skb, 0); 6358 skb->cloned = 0; 6359 skb->hdr_len = 0; 6360 skb->nohdr = 0; 6361 atomic_set(&skb_shinfo(skb)->dataref, 1); 6362 6363 return 0; 6364 } 6365 6366 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6367 6368 /* carve out the first eat bytes from skb's frag_list. May recurse into 6369 * pskb_carve() 6370 */ 6371 static int pskb_carve_frag_list(struct sk_buff *skb, 6372 struct skb_shared_info *shinfo, int eat, 6373 gfp_t gfp_mask) 6374 { 6375 struct sk_buff *list = shinfo->frag_list; 6376 struct sk_buff *clone = NULL; 6377 struct sk_buff *insp = NULL; 6378 6379 do { 6380 if (!list) { 6381 pr_err("Not enough bytes to eat. Want %d\n", eat); 6382 return -EFAULT; 6383 } 6384 if (list->len <= eat) { 6385 /* Eaten as whole. */ 6386 eat -= list->len; 6387 list = list->next; 6388 insp = list; 6389 } else { 6390 /* Eaten partially. */ 6391 if (skb_shared(list)) { 6392 clone = skb_clone(list, gfp_mask); 6393 if (!clone) 6394 return -ENOMEM; 6395 insp = list->next; 6396 list = clone; 6397 } else { 6398 /* This may be pulled without problems. */ 6399 insp = list; 6400 } 6401 if (pskb_carve(list, eat, gfp_mask) < 0) { 6402 kfree_skb(clone); 6403 return -ENOMEM; 6404 } 6405 break; 6406 } 6407 } while (eat); 6408 6409 /* Free pulled out fragments. */ 6410 while ((list = shinfo->frag_list) != insp) { 6411 shinfo->frag_list = list->next; 6412 consume_skb(list); 6413 } 6414 /* And insert new clone at head. */ 6415 if (clone) { 6416 clone->next = list; 6417 shinfo->frag_list = clone; 6418 } 6419 return 0; 6420 } 6421 6422 /* carve off first len bytes from skb. Split line (off) is in the 6423 * non-linear part of skb 6424 */ 6425 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6426 int pos, gfp_t gfp_mask) 6427 { 6428 int i, k = 0; 6429 unsigned int size = skb_end_offset(skb); 6430 u8 *data; 6431 const int nfrags = skb_shinfo(skb)->nr_frags; 6432 struct skb_shared_info *shinfo; 6433 6434 if (skb_pfmemalloc(skb)) 6435 gfp_mask |= __GFP_MEMALLOC; 6436 6437 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6438 if (!data) 6439 return -ENOMEM; 6440 size = SKB_WITH_OVERHEAD(size); 6441 6442 memcpy((struct skb_shared_info *)(data + size), 6443 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6444 if (skb_orphan_frags(skb, gfp_mask)) { 6445 skb_kfree_head(data, size); 6446 return -ENOMEM; 6447 } 6448 shinfo = (struct skb_shared_info *)(data + size); 6449 for (i = 0; i < nfrags; i++) { 6450 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6451 6452 if (pos + fsize > off) { 6453 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6454 6455 if (pos < off) { 6456 /* Split frag. 6457 * We have two variants in this case: 6458 * 1. Move all the frag to the second 6459 * part, if it is possible. F.e. 6460 * this approach is mandatory for TUX, 6461 * where splitting is expensive. 6462 * 2. Split is accurately. We make this. 6463 */ 6464 skb_frag_off_add(&shinfo->frags[0], off - pos); 6465 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6466 } 6467 skb_frag_ref(skb, i); 6468 k++; 6469 } 6470 pos += fsize; 6471 } 6472 shinfo->nr_frags = k; 6473 if (skb_has_frag_list(skb)) 6474 skb_clone_fraglist(skb); 6475 6476 /* split line is in frag list */ 6477 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) { 6478 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6479 if (skb_has_frag_list(skb)) 6480 kfree_skb_list(skb_shinfo(skb)->frag_list); 6481 skb_kfree_head(data, size); 6482 return -ENOMEM; 6483 } 6484 skb_release_data(skb, SKB_CONSUMED, false); 6485 6486 skb->head = data; 6487 skb->head_frag = 0; 6488 skb->data = data; 6489 skb_set_end_offset(skb, size); 6490 skb_reset_tail_pointer(skb); 6491 skb_headers_offset_update(skb, 0); 6492 skb->cloned = 0; 6493 skb->hdr_len = 0; 6494 skb->nohdr = 0; 6495 skb->len -= off; 6496 skb->data_len = skb->len; 6497 atomic_set(&skb_shinfo(skb)->dataref, 1); 6498 return 0; 6499 } 6500 6501 /* remove len bytes from the beginning of the skb */ 6502 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6503 { 6504 int headlen = skb_headlen(skb); 6505 6506 if (len < headlen) 6507 return pskb_carve_inside_header(skb, len, headlen, gfp); 6508 else 6509 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6510 } 6511 6512 /* Extract to_copy bytes starting at off from skb, and return this in 6513 * a new skb 6514 */ 6515 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6516 int to_copy, gfp_t gfp) 6517 { 6518 struct sk_buff *clone = skb_clone(skb, gfp); 6519 6520 if (!clone) 6521 return NULL; 6522 6523 if (pskb_carve(clone, off, gfp) < 0 || 6524 pskb_trim(clone, to_copy)) { 6525 kfree_skb(clone); 6526 return NULL; 6527 } 6528 return clone; 6529 } 6530 EXPORT_SYMBOL(pskb_extract); 6531 6532 /** 6533 * skb_condense - try to get rid of fragments/frag_list if possible 6534 * @skb: buffer 6535 * 6536 * Can be used to save memory before skb is added to a busy queue. 6537 * If packet has bytes in frags and enough tail room in skb->head, 6538 * pull all of them, so that we can free the frags right now and adjust 6539 * truesize. 6540 * Notes: 6541 * We do not reallocate skb->head thus can not fail. 6542 * Caller must re-evaluate skb->truesize if needed. 6543 */ 6544 void skb_condense(struct sk_buff *skb) 6545 { 6546 if (skb->data_len) { 6547 if (skb->data_len > skb->end - skb->tail || 6548 skb_cloned(skb)) 6549 return; 6550 6551 /* Nice, we can free page frag(s) right now */ 6552 __pskb_pull_tail(skb, skb->data_len); 6553 } 6554 /* At this point, skb->truesize might be over estimated, 6555 * because skb had a fragment, and fragments do not tell 6556 * their truesize. 6557 * When we pulled its content into skb->head, fragment 6558 * was freed, but __pskb_pull_tail() could not possibly 6559 * adjust skb->truesize, not knowing the frag truesize. 6560 */ 6561 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6562 } 6563 EXPORT_SYMBOL(skb_condense); 6564 6565 #ifdef CONFIG_SKB_EXTENSIONS 6566 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 6567 { 6568 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 6569 } 6570 6571 /** 6572 * __skb_ext_alloc - allocate a new skb extensions storage 6573 * 6574 * @flags: See kmalloc(). 6575 * 6576 * Returns the newly allocated pointer. The pointer can later attached to a 6577 * skb via __skb_ext_set(). 6578 * Note: caller must handle the skb_ext as an opaque data. 6579 */ 6580 struct skb_ext *__skb_ext_alloc(gfp_t flags) 6581 { 6582 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 6583 6584 if (new) { 6585 memset(new->offset, 0, sizeof(new->offset)); 6586 refcount_set(&new->refcnt, 1); 6587 } 6588 6589 return new; 6590 } 6591 6592 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 6593 unsigned int old_active) 6594 { 6595 struct skb_ext *new; 6596 6597 if (refcount_read(&old->refcnt) == 1) 6598 return old; 6599 6600 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 6601 if (!new) 6602 return NULL; 6603 6604 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 6605 refcount_set(&new->refcnt, 1); 6606 6607 #ifdef CONFIG_XFRM 6608 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 6609 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 6610 unsigned int i; 6611 6612 for (i = 0; i < sp->len; i++) 6613 xfrm_state_hold(sp->xvec[i]); 6614 } 6615 #endif 6616 __skb_ext_put(old); 6617 return new; 6618 } 6619 6620 /** 6621 * __skb_ext_set - attach the specified extension storage to this skb 6622 * @skb: buffer 6623 * @id: extension id 6624 * @ext: extension storage previously allocated via __skb_ext_alloc() 6625 * 6626 * Existing extensions, if any, are cleared. 6627 * 6628 * Returns the pointer to the extension. 6629 */ 6630 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 6631 struct skb_ext *ext) 6632 { 6633 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 6634 6635 skb_ext_put(skb); 6636 newlen = newoff + skb_ext_type_len[id]; 6637 ext->chunks = newlen; 6638 ext->offset[id] = newoff; 6639 skb->extensions = ext; 6640 skb->active_extensions = 1 << id; 6641 return skb_ext_get_ptr(ext, id); 6642 } 6643 6644 /** 6645 * skb_ext_add - allocate space for given extension, COW if needed 6646 * @skb: buffer 6647 * @id: extension to allocate space for 6648 * 6649 * Allocates enough space for the given extension. 6650 * If the extension is already present, a pointer to that extension 6651 * is returned. 6652 * 6653 * If the skb was cloned, COW applies and the returned memory can be 6654 * modified without changing the extension space of clones buffers. 6655 * 6656 * Returns pointer to the extension or NULL on allocation failure. 6657 */ 6658 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 6659 { 6660 struct skb_ext *new, *old = NULL; 6661 unsigned int newlen, newoff; 6662 6663 if (skb->active_extensions) { 6664 old = skb->extensions; 6665 6666 new = skb_ext_maybe_cow(old, skb->active_extensions); 6667 if (!new) 6668 return NULL; 6669 6670 if (__skb_ext_exist(new, id)) 6671 goto set_active; 6672 6673 newoff = new->chunks; 6674 } else { 6675 newoff = SKB_EXT_CHUNKSIZEOF(*new); 6676 6677 new = __skb_ext_alloc(GFP_ATOMIC); 6678 if (!new) 6679 return NULL; 6680 } 6681 6682 newlen = newoff + skb_ext_type_len[id]; 6683 new->chunks = newlen; 6684 new->offset[id] = newoff; 6685 set_active: 6686 skb->slow_gro = 1; 6687 skb->extensions = new; 6688 skb->active_extensions |= 1 << id; 6689 return skb_ext_get_ptr(new, id); 6690 } 6691 EXPORT_SYMBOL(skb_ext_add); 6692 6693 #ifdef CONFIG_XFRM 6694 static void skb_ext_put_sp(struct sec_path *sp) 6695 { 6696 unsigned int i; 6697 6698 for (i = 0; i < sp->len; i++) 6699 xfrm_state_put(sp->xvec[i]); 6700 } 6701 #endif 6702 6703 #ifdef CONFIG_MCTP_FLOWS 6704 static void skb_ext_put_mctp(struct mctp_flow *flow) 6705 { 6706 if (flow->key) 6707 mctp_key_unref(flow->key); 6708 } 6709 #endif 6710 6711 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 6712 { 6713 struct skb_ext *ext = skb->extensions; 6714 6715 skb->active_extensions &= ~(1 << id); 6716 if (skb->active_extensions == 0) { 6717 skb->extensions = NULL; 6718 __skb_ext_put(ext); 6719 #ifdef CONFIG_XFRM 6720 } else if (id == SKB_EXT_SEC_PATH && 6721 refcount_read(&ext->refcnt) == 1) { 6722 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 6723 6724 skb_ext_put_sp(sp); 6725 sp->len = 0; 6726 #endif 6727 } 6728 } 6729 EXPORT_SYMBOL(__skb_ext_del); 6730 6731 void __skb_ext_put(struct skb_ext *ext) 6732 { 6733 /* If this is last clone, nothing can increment 6734 * it after check passes. Avoids one atomic op. 6735 */ 6736 if (refcount_read(&ext->refcnt) == 1) 6737 goto free_now; 6738 6739 if (!refcount_dec_and_test(&ext->refcnt)) 6740 return; 6741 free_now: 6742 #ifdef CONFIG_XFRM 6743 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 6744 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 6745 #endif 6746 #ifdef CONFIG_MCTP_FLOWS 6747 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 6748 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 6749 #endif 6750 6751 kmem_cache_free(skbuff_ext_cache, ext); 6752 } 6753 EXPORT_SYMBOL(__skb_ext_put); 6754 #endif /* CONFIG_SKB_EXTENSIONS */ 6755 6756 /** 6757 * skb_attempt_defer_free - queue skb for remote freeing 6758 * @skb: buffer 6759 * 6760 * Put @skb in a per-cpu list, using the cpu which 6761 * allocated the skb/pages to reduce false sharing 6762 * and memory zone spinlock contention. 6763 */ 6764 void skb_attempt_defer_free(struct sk_buff *skb) 6765 { 6766 int cpu = skb->alloc_cpu; 6767 struct softnet_data *sd; 6768 unsigned int defer_max; 6769 bool kick; 6770 6771 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) || 6772 !cpu_online(cpu) || 6773 cpu == raw_smp_processor_id()) { 6774 nodefer: __kfree_skb(skb); 6775 return; 6776 } 6777 6778 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 6779 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 6780 6781 sd = &per_cpu(softnet_data, cpu); 6782 defer_max = READ_ONCE(sysctl_skb_defer_max); 6783 if (READ_ONCE(sd->defer_count) >= defer_max) 6784 goto nodefer; 6785 6786 spin_lock_bh(&sd->defer_lock); 6787 /* Send an IPI every time queue reaches half capacity. */ 6788 kick = sd->defer_count == (defer_max >> 1); 6789 /* Paired with the READ_ONCE() few lines above */ 6790 WRITE_ONCE(sd->defer_count, sd->defer_count + 1); 6791 6792 skb->next = sd->defer_list; 6793 /* Paired with READ_ONCE() in skb_defer_free_flush() */ 6794 WRITE_ONCE(sd->defer_list, skb); 6795 spin_unlock_bh(&sd->defer_lock); 6796 6797 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 6798 * if we are unlucky enough (this seems very unlikely). 6799 */ 6800 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) 6801 smp_call_function_single_async(cpu, &sd->defer_csd); 6802 } 6803 6804 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 6805 size_t offset, size_t len) 6806 { 6807 const char *kaddr; 6808 __wsum csum; 6809 6810 kaddr = kmap_local_page(page); 6811 csum = csum_partial(kaddr + offset, len, 0); 6812 kunmap_local(kaddr); 6813 skb->csum = csum_block_add(skb->csum, csum, skb->len); 6814 } 6815 6816 /** 6817 * skb_splice_from_iter - Splice (or copy) pages to skbuff 6818 * @skb: The buffer to add pages to 6819 * @iter: Iterator representing the pages to be added 6820 * @maxsize: Maximum amount of pages to be added 6821 * @gfp: Allocation flags 6822 * 6823 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 6824 * extracts pages from an iterator and adds them to the socket buffer if 6825 * possible, copying them to fragments if not possible (such as if they're slab 6826 * pages). 6827 * 6828 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 6829 * insufficient space in the buffer to transfer anything. 6830 */ 6831 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 6832 ssize_t maxsize, gfp_t gfp) 6833 { 6834 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags); 6835 struct page *pages[8], **ppages = pages; 6836 ssize_t spliced = 0, ret = 0; 6837 unsigned int i; 6838 6839 while (iter->count > 0) { 6840 ssize_t space, nr, len; 6841 size_t off; 6842 6843 ret = -EMSGSIZE; 6844 space = frag_limit - skb_shinfo(skb)->nr_frags; 6845 if (space < 0) 6846 break; 6847 6848 /* We might be able to coalesce without increasing nr_frags */ 6849 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 6850 6851 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 6852 if (len <= 0) { 6853 ret = len ?: -EIO; 6854 break; 6855 } 6856 6857 i = 0; 6858 do { 6859 struct page *page = pages[i++]; 6860 size_t part = min_t(size_t, PAGE_SIZE - off, len); 6861 6862 ret = -EIO; 6863 if (WARN_ON_ONCE(!sendpage_ok(page))) 6864 goto out; 6865 6866 ret = skb_append_pagefrags(skb, page, off, part, 6867 frag_limit); 6868 if (ret < 0) { 6869 iov_iter_revert(iter, len); 6870 goto out; 6871 } 6872 6873 if (skb->ip_summed == CHECKSUM_NONE) 6874 skb_splice_csum_page(skb, page, off, part); 6875 6876 off = 0; 6877 spliced += part; 6878 maxsize -= part; 6879 len -= part; 6880 } while (len > 0); 6881 6882 if (maxsize <= 0) 6883 break; 6884 } 6885 6886 out: 6887 skb_len_add(skb, spliced); 6888 return spliced ?: ret; 6889 } 6890 EXPORT_SYMBOL(skb_splice_from_iter); 6891