xref: /openbmc/linux/net/core/skbuff.c (revision 289733ed456f7c1cbdb1f1ca58312f77c239953b)
1 /*
2  *	Routines having to do with the 'struct sk_buff' memory handlers.
3  *
4  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  *			Florian La Roche <rzsfl@rz.uni-sb.de>
6  *
7  *	Fixes:
8  *		Alan Cox	:	Fixed the worst of the load
9  *					balancer bugs.
10  *		Dave Platt	:	Interrupt stacking fix.
11  *	Richard Kooijman	:	Timestamp fixes.
12  *		Alan Cox	:	Changed buffer format.
13  *		Alan Cox	:	destructor hook for AF_UNIX etc.
14  *		Linus Torvalds	:	Better skb_clone.
15  *		Alan Cox	:	Added skb_copy.
16  *		Alan Cox	:	Added all the changed routines Linus
17  *					only put in the headers
18  *		Ray VanTassle	:	Fixed --skb->lock in free
19  *		Alan Cox	:	skb_copy copy arp field
20  *		Andi Kleen	:	slabified it.
21  *		Robert Olsson	:	Removed skb_head_pool
22  *
23  *	NOTE:
24  *		The __skb_ routines should be called with interrupts
25  *	disabled, or you better be *real* sure that the operation is atomic
26  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
27  *	or via disabling bottom half handlers, etc).
28  *
29  *	This program is free software; you can redistribute it and/or
30  *	modify it under the terms of the GNU General Public License
31  *	as published by the Free Software Foundation; either version
32  *	2 of the License, or (at your option) any later version.
33  */
34 
35 /*
36  *	The functions in this file will not compile correctly with gcc 2.4.x
37  */
38 
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
63 
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
69 
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
73 
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
76 
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 				  struct pipe_buffer *buf)
79 {
80 	put_page(buf->page);
81 }
82 
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 				struct pipe_buffer *buf)
85 {
86 	get_page(buf->page);
87 }
88 
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 			       struct pipe_buffer *buf)
91 {
92 	return 1;
93 }
94 
95 
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 	.can_merge = 0,
99 	.map = generic_pipe_buf_map,
100 	.unmap = generic_pipe_buf_unmap,
101 	.confirm = generic_pipe_buf_confirm,
102 	.release = sock_pipe_buf_release,
103 	.steal = sock_pipe_buf_steal,
104 	.get = sock_pipe_buf_get,
105 };
106 
107 /*
108  *	Keep out-of-line to prevent kernel bloat.
109  *	__builtin_return_address is not used because it is not always
110  *	reliable.
111  */
112 
113 /**
114  *	skb_over_panic	- 	private function
115  *	@skb: buffer
116  *	@sz: size
117  *	@here: address
118  *
119  *	Out of line support code for skb_put(). Not user callable.
120  */
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
122 {
123 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 		 __func__, here, skb->len, sz, skb->head, skb->data,
125 		 (unsigned long)skb->tail, (unsigned long)skb->end,
126 		 skb->dev ? skb->dev->name : "<NULL>");
127 	BUG();
128 }
129 
130 /**
131  *	skb_under_panic	- 	private function
132  *	@skb: buffer
133  *	@sz: size
134  *	@here: address
135  *
136  *	Out of line support code for skb_push(). Not user callable.
137  */
138 
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
140 {
141 	pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 		 __func__, here, skb->len, sz, skb->head, skb->data,
143 		 (unsigned long)skb->tail, (unsigned long)skb->end,
144 		 skb->dev ? skb->dev->name : "<NULL>");
145 	BUG();
146 }
147 
148 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
149  *	'private' fields and also do memory statistics to find all the
150  *	[BEEP] leaks.
151  *
152  */
153 
154 /**
155  *	__alloc_skb	-	allocate a network buffer
156  *	@size: size to allocate
157  *	@gfp_mask: allocation mask
158  *	@fclone: allocate from fclone cache instead of head cache
159  *		and allocate a cloned (child) skb
160  *	@node: numa node to allocate memory on
161  *
162  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
163  *	tail room of size bytes. The object has a reference count of one.
164  *	The return is the buffer. On a failure the return is %NULL.
165  *
166  *	Buffers may only be allocated from interrupts using a @gfp_mask of
167  *	%GFP_ATOMIC.
168  */
169 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
170 			    int fclone, int node)
171 {
172 	struct kmem_cache *cache;
173 	struct skb_shared_info *shinfo;
174 	struct sk_buff *skb;
175 	u8 *data;
176 
177 	cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
178 
179 	/* Get the HEAD */
180 	skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
181 	if (!skb)
182 		goto out;
183 	prefetchw(skb);
184 
185 	/* We do our best to align skb_shared_info on a separate cache
186 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
187 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
188 	 * Both skb->head and skb_shared_info are cache line aligned.
189 	 */
190 	size = SKB_DATA_ALIGN(size);
191 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
192 	data = kmalloc_node_track_caller(size, gfp_mask, node);
193 	if (!data)
194 		goto nodata;
195 	/* kmalloc(size) might give us more room than requested.
196 	 * Put skb_shared_info exactly at the end of allocated zone,
197 	 * to allow max possible filling before reallocation.
198 	 */
199 	size = SKB_WITH_OVERHEAD(ksize(data));
200 	prefetchw(data + size);
201 
202 	/*
203 	 * Only clear those fields we need to clear, not those that we will
204 	 * actually initialise below. Hence, don't put any more fields after
205 	 * the tail pointer in struct sk_buff!
206 	 */
207 	memset(skb, 0, offsetof(struct sk_buff, tail));
208 	/* Account for allocated memory : skb + skb->head */
209 	skb->truesize = SKB_TRUESIZE(size);
210 	atomic_set(&skb->users, 1);
211 	skb->head = data;
212 	skb->data = data;
213 	skb_reset_tail_pointer(skb);
214 	skb->end = skb->tail + size;
215 #ifdef NET_SKBUFF_DATA_USES_OFFSET
216 	skb->mac_header = ~0U;
217 #endif
218 
219 	/* make sure we initialize shinfo sequentially */
220 	shinfo = skb_shinfo(skb);
221 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
222 	atomic_set(&shinfo->dataref, 1);
223 	kmemcheck_annotate_variable(shinfo->destructor_arg);
224 
225 	if (fclone) {
226 		struct sk_buff *child = skb + 1;
227 		atomic_t *fclone_ref = (atomic_t *) (child + 1);
228 
229 		kmemcheck_annotate_bitfield(child, flags1);
230 		kmemcheck_annotate_bitfield(child, flags2);
231 		skb->fclone = SKB_FCLONE_ORIG;
232 		atomic_set(fclone_ref, 1);
233 
234 		child->fclone = SKB_FCLONE_UNAVAILABLE;
235 	}
236 out:
237 	return skb;
238 nodata:
239 	kmem_cache_free(cache, skb);
240 	skb = NULL;
241 	goto out;
242 }
243 EXPORT_SYMBOL(__alloc_skb);
244 
245 /**
246  * build_skb - build a network buffer
247  * @data: data buffer provided by caller
248  * @frag_size: size of fragment, or 0 if head was kmalloced
249  *
250  * Allocate a new &sk_buff. Caller provides space holding head and
251  * skb_shared_info. @data must have been allocated by kmalloc()
252  * The return is the new skb buffer.
253  * On a failure the return is %NULL, and @data is not freed.
254  * Notes :
255  *  Before IO, driver allocates only data buffer where NIC put incoming frame
256  *  Driver should add room at head (NET_SKB_PAD) and
257  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
258  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
259  *  before giving packet to stack.
260  *  RX rings only contains data buffers, not full skbs.
261  */
262 struct sk_buff *build_skb(void *data, unsigned int frag_size)
263 {
264 	struct skb_shared_info *shinfo;
265 	struct sk_buff *skb;
266 	unsigned int size = frag_size ? : ksize(data);
267 
268 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
269 	if (!skb)
270 		return NULL;
271 
272 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
273 
274 	memset(skb, 0, offsetof(struct sk_buff, tail));
275 	skb->truesize = SKB_TRUESIZE(size);
276 	skb->head_frag = frag_size != 0;
277 	atomic_set(&skb->users, 1);
278 	skb->head = data;
279 	skb->data = data;
280 	skb_reset_tail_pointer(skb);
281 	skb->end = skb->tail + size;
282 #ifdef NET_SKBUFF_DATA_USES_OFFSET
283 	skb->mac_header = ~0U;
284 #endif
285 
286 	/* make sure we initialize shinfo sequentially */
287 	shinfo = skb_shinfo(skb);
288 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
289 	atomic_set(&shinfo->dataref, 1);
290 	kmemcheck_annotate_variable(shinfo->destructor_arg);
291 
292 	return skb;
293 }
294 EXPORT_SYMBOL(build_skb);
295 
296 struct netdev_alloc_cache {
297 	struct page *page;
298 	unsigned int offset;
299 };
300 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
301 
302 /**
303  * netdev_alloc_frag - allocate a page fragment
304  * @fragsz: fragment size
305  *
306  * Allocates a frag from a page for receive buffer.
307  * Uses GFP_ATOMIC allocations.
308  */
309 void *netdev_alloc_frag(unsigned int fragsz)
310 {
311 	struct netdev_alloc_cache *nc;
312 	void *data = NULL;
313 	unsigned long flags;
314 
315 	local_irq_save(flags);
316 	nc = &__get_cpu_var(netdev_alloc_cache);
317 	if (unlikely(!nc->page)) {
318 refill:
319 		nc->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
320 		nc->offset = 0;
321 	}
322 	if (likely(nc->page)) {
323 		if (nc->offset + fragsz > PAGE_SIZE) {
324 			put_page(nc->page);
325 			goto refill;
326 		}
327 		data = page_address(nc->page) + nc->offset;
328 		nc->offset += fragsz;
329 		get_page(nc->page);
330 	}
331 	local_irq_restore(flags);
332 	return data;
333 }
334 EXPORT_SYMBOL(netdev_alloc_frag);
335 
336 /**
337  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
338  *	@dev: network device to receive on
339  *	@length: length to allocate
340  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
341  *
342  *	Allocate a new &sk_buff and assign it a usage count of one. The
343  *	buffer has unspecified headroom built in. Users should allocate
344  *	the headroom they think they need without accounting for the
345  *	built in space. The built in space is used for optimisations.
346  *
347  *	%NULL is returned if there is no free memory.
348  */
349 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
350 				   unsigned int length, gfp_t gfp_mask)
351 {
352 	struct sk_buff *skb = NULL;
353 	unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
354 			      SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
355 
356 	if (fragsz <= PAGE_SIZE && !(gfp_mask & __GFP_WAIT)) {
357 		void *data = netdev_alloc_frag(fragsz);
358 
359 		if (likely(data)) {
360 			skb = build_skb(data, fragsz);
361 			if (unlikely(!skb))
362 				put_page(virt_to_head_page(data));
363 		}
364 	} else {
365 		skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, NUMA_NO_NODE);
366 	}
367 	if (likely(skb)) {
368 		skb_reserve(skb, NET_SKB_PAD);
369 		skb->dev = dev;
370 	}
371 	return skb;
372 }
373 EXPORT_SYMBOL(__netdev_alloc_skb);
374 
375 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
376 		     int size, unsigned int truesize)
377 {
378 	skb_fill_page_desc(skb, i, page, off, size);
379 	skb->len += size;
380 	skb->data_len += size;
381 	skb->truesize += truesize;
382 }
383 EXPORT_SYMBOL(skb_add_rx_frag);
384 
385 static void skb_drop_list(struct sk_buff **listp)
386 {
387 	struct sk_buff *list = *listp;
388 
389 	*listp = NULL;
390 
391 	do {
392 		struct sk_buff *this = list;
393 		list = list->next;
394 		kfree_skb(this);
395 	} while (list);
396 }
397 
398 static inline void skb_drop_fraglist(struct sk_buff *skb)
399 {
400 	skb_drop_list(&skb_shinfo(skb)->frag_list);
401 }
402 
403 static void skb_clone_fraglist(struct sk_buff *skb)
404 {
405 	struct sk_buff *list;
406 
407 	skb_walk_frags(skb, list)
408 		skb_get(list);
409 }
410 
411 static void skb_free_head(struct sk_buff *skb)
412 {
413 	if (skb->head_frag)
414 		put_page(virt_to_head_page(skb->head));
415 	else
416 		kfree(skb->head);
417 }
418 
419 static void skb_release_data(struct sk_buff *skb)
420 {
421 	if (!skb->cloned ||
422 	    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
423 			       &skb_shinfo(skb)->dataref)) {
424 		if (skb_shinfo(skb)->nr_frags) {
425 			int i;
426 			for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
427 				skb_frag_unref(skb, i);
428 		}
429 
430 		/*
431 		 * If skb buf is from userspace, we need to notify the caller
432 		 * the lower device DMA has done;
433 		 */
434 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
435 			struct ubuf_info *uarg;
436 
437 			uarg = skb_shinfo(skb)->destructor_arg;
438 			if (uarg->callback)
439 				uarg->callback(uarg);
440 		}
441 
442 		if (skb_has_frag_list(skb))
443 			skb_drop_fraglist(skb);
444 
445 		skb_free_head(skb);
446 	}
447 }
448 
449 /*
450  *	Free an skbuff by memory without cleaning the state.
451  */
452 static void kfree_skbmem(struct sk_buff *skb)
453 {
454 	struct sk_buff *other;
455 	atomic_t *fclone_ref;
456 
457 	switch (skb->fclone) {
458 	case SKB_FCLONE_UNAVAILABLE:
459 		kmem_cache_free(skbuff_head_cache, skb);
460 		break;
461 
462 	case SKB_FCLONE_ORIG:
463 		fclone_ref = (atomic_t *) (skb + 2);
464 		if (atomic_dec_and_test(fclone_ref))
465 			kmem_cache_free(skbuff_fclone_cache, skb);
466 		break;
467 
468 	case SKB_FCLONE_CLONE:
469 		fclone_ref = (atomic_t *) (skb + 1);
470 		other = skb - 1;
471 
472 		/* The clone portion is available for
473 		 * fast-cloning again.
474 		 */
475 		skb->fclone = SKB_FCLONE_UNAVAILABLE;
476 
477 		if (atomic_dec_and_test(fclone_ref))
478 			kmem_cache_free(skbuff_fclone_cache, other);
479 		break;
480 	}
481 }
482 
483 static void skb_release_head_state(struct sk_buff *skb)
484 {
485 	skb_dst_drop(skb);
486 #ifdef CONFIG_XFRM
487 	secpath_put(skb->sp);
488 #endif
489 	if (skb->destructor) {
490 		WARN_ON(in_irq());
491 		skb->destructor(skb);
492 	}
493 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
494 	nf_conntrack_put(skb->nfct);
495 #endif
496 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
497 	nf_conntrack_put_reasm(skb->nfct_reasm);
498 #endif
499 #ifdef CONFIG_BRIDGE_NETFILTER
500 	nf_bridge_put(skb->nf_bridge);
501 #endif
502 /* XXX: IS this still necessary? - JHS */
503 #ifdef CONFIG_NET_SCHED
504 	skb->tc_index = 0;
505 #ifdef CONFIG_NET_CLS_ACT
506 	skb->tc_verd = 0;
507 #endif
508 #endif
509 }
510 
511 /* Free everything but the sk_buff shell. */
512 static void skb_release_all(struct sk_buff *skb)
513 {
514 	skb_release_head_state(skb);
515 	skb_release_data(skb);
516 }
517 
518 /**
519  *	__kfree_skb - private function
520  *	@skb: buffer
521  *
522  *	Free an sk_buff. Release anything attached to the buffer.
523  *	Clean the state. This is an internal helper function. Users should
524  *	always call kfree_skb
525  */
526 
527 void __kfree_skb(struct sk_buff *skb)
528 {
529 	skb_release_all(skb);
530 	kfree_skbmem(skb);
531 }
532 EXPORT_SYMBOL(__kfree_skb);
533 
534 /**
535  *	kfree_skb - free an sk_buff
536  *	@skb: buffer to free
537  *
538  *	Drop a reference to the buffer and free it if the usage count has
539  *	hit zero.
540  */
541 void kfree_skb(struct sk_buff *skb)
542 {
543 	if (unlikely(!skb))
544 		return;
545 	if (likely(atomic_read(&skb->users) == 1))
546 		smp_rmb();
547 	else if (likely(!atomic_dec_and_test(&skb->users)))
548 		return;
549 	trace_kfree_skb(skb, __builtin_return_address(0));
550 	__kfree_skb(skb);
551 }
552 EXPORT_SYMBOL(kfree_skb);
553 
554 /**
555  *	consume_skb - free an skbuff
556  *	@skb: buffer to free
557  *
558  *	Drop a ref to the buffer and free it if the usage count has hit zero
559  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
560  *	is being dropped after a failure and notes that
561  */
562 void consume_skb(struct sk_buff *skb)
563 {
564 	if (unlikely(!skb))
565 		return;
566 	if (likely(atomic_read(&skb->users) == 1))
567 		smp_rmb();
568 	else if (likely(!atomic_dec_and_test(&skb->users)))
569 		return;
570 	trace_consume_skb(skb);
571 	__kfree_skb(skb);
572 }
573 EXPORT_SYMBOL(consume_skb);
574 
575 /**
576  * 	skb_recycle - clean up an skb for reuse
577  * 	@skb: buffer
578  *
579  * 	Recycles the skb to be reused as a receive buffer. This
580  * 	function does any necessary reference count dropping, and
581  * 	cleans up the skbuff as if it just came from __alloc_skb().
582  */
583 void skb_recycle(struct sk_buff *skb)
584 {
585 	struct skb_shared_info *shinfo;
586 
587 	skb_release_head_state(skb);
588 
589 	shinfo = skb_shinfo(skb);
590 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
591 	atomic_set(&shinfo->dataref, 1);
592 
593 	memset(skb, 0, offsetof(struct sk_buff, tail));
594 	skb->data = skb->head + NET_SKB_PAD;
595 	skb_reset_tail_pointer(skb);
596 }
597 EXPORT_SYMBOL(skb_recycle);
598 
599 /**
600  *	skb_recycle_check - check if skb can be reused for receive
601  *	@skb: buffer
602  *	@skb_size: minimum receive buffer size
603  *
604  *	Checks that the skb passed in is not shared or cloned, and
605  *	that it is linear and its head portion at least as large as
606  *	skb_size so that it can be recycled as a receive buffer.
607  *	If these conditions are met, this function does any necessary
608  *	reference count dropping and cleans up the skbuff as if it
609  *	just came from __alloc_skb().
610  */
611 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
612 {
613 	if (!skb_is_recycleable(skb, skb_size))
614 		return false;
615 
616 	skb_recycle(skb);
617 
618 	return true;
619 }
620 EXPORT_SYMBOL(skb_recycle_check);
621 
622 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
623 {
624 	new->tstamp		= old->tstamp;
625 	new->dev		= old->dev;
626 	new->transport_header	= old->transport_header;
627 	new->network_header	= old->network_header;
628 	new->mac_header		= old->mac_header;
629 	skb_dst_copy(new, old);
630 	new->rxhash		= old->rxhash;
631 	new->ooo_okay		= old->ooo_okay;
632 	new->l4_rxhash		= old->l4_rxhash;
633 	new->no_fcs		= old->no_fcs;
634 #ifdef CONFIG_XFRM
635 	new->sp			= secpath_get(old->sp);
636 #endif
637 	memcpy(new->cb, old->cb, sizeof(old->cb));
638 	new->csum		= old->csum;
639 	new->local_df		= old->local_df;
640 	new->pkt_type		= old->pkt_type;
641 	new->ip_summed		= old->ip_summed;
642 	skb_copy_queue_mapping(new, old);
643 	new->priority		= old->priority;
644 #if IS_ENABLED(CONFIG_IP_VS)
645 	new->ipvs_property	= old->ipvs_property;
646 #endif
647 	new->protocol		= old->protocol;
648 	new->mark		= old->mark;
649 	new->skb_iif		= old->skb_iif;
650 	__nf_copy(new, old);
651 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
652 	new->nf_trace		= old->nf_trace;
653 #endif
654 #ifdef CONFIG_NET_SCHED
655 	new->tc_index		= old->tc_index;
656 #ifdef CONFIG_NET_CLS_ACT
657 	new->tc_verd		= old->tc_verd;
658 #endif
659 #endif
660 	new->vlan_tci		= old->vlan_tci;
661 
662 	skb_copy_secmark(new, old);
663 }
664 
665 /*
666  * You should not add any new code to this function.  Add it to
667  * __copy_skb_header above instead.
668  */
669 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
670 {
671 #define C(x) n->x = skb->x
672 
673 	n->next = n->prev = NULL;
674 	n->sk = NULL;
675 	__copy_skb_header(n, skb);
676 
677 	C(len);
678 	C(data_len);
679 	C(mac_len);
680 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
681 	n->cloned = 1;
682 	n->nohdr = 0;
683 	n->destructor = NULL;
684 	C(tail);
685 	C(end);
686 	C(head);
687 	C(head_frag);
688 	C(data);
689 	C(truesize);
690 	atomic_set(&n->users, 1);
691 
692 	atomic_inc(&(skb_shinfo(skb)->dataref));
693 	skb->cloned = 1;
694 
695 	return n;
696 #undef C
697 }
698 
699 /**
700  *	skb_morph	-	morph one skb into another
701  *	@dst: the skb to receive the contents
702  *	@src: the skb to supply the contents
703  *
704  *	This is identical to skb_clone except that the target skb is
705  *	supplied by the user.
706  *
707  *	The target skb is returned upon exit.
708  */
709 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
710 {
711 	skb_release_all(dst);
712 	return __skb_clone(dst, src);
713 }
714 EXPORT_SYMBOL_GPL(skb_morph);
715 
716 /*	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
717  *	@skb: the skb to modify
718  *	@gfp_mask: allocation priority
719  *
720  *	This must be called on SKBTX_DEV_ZEROCOPY skb.
721  *	It will copy all frags into kernel and drop the reference
722  *	to userspace pages.
723  *
724  *	If this function is called from an interrupt gfp_mask() must be
725  *	%GFP_ATOMIC.
726  *
727  *	Returns 0 on success or a negative error code on failure
728  *	to allocate kernel memory to copy to.
729  */
730 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
731 {
732 	int i;
733 	int num_frags = skb_shinfo(skb)->nr_frags;
734 	struct page *page, *head = NULL;
735 	struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
736 
737 	for (i = 0; i < num_frags; i++) {
738 		u8 *vaddr;
739 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
740 
741 		page = alloc_page(GFP_ATOMIC);
742 		if (!page) {
743 			while (head) {
744 				struct page *next = (struct page *)head->private;
745 				put_page(head);
746 				head = next;
747 			}
748 			return -ENOMEM;
749 		}
750 		vaddr = kmap_atomic(skb_frag_page(f));
751 		memcpy(page_address(page),
752 		       vaddr + f->page_offset, skb_frag_size(f));
753 		kunmap_atomic(vaddr);
754 		page->private = (unsigned long)head;
755 		head = page;
756 	}
757 
758 	/* skb frags release userspace buffers */
759 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
760 		skb_frag_unref(skb, i);
761 
762 	uarg->callback(uarg);
763 
764 	/* skb frags point to kernel buffers */
765 	for (i = skb_shinfo(skb)->nr_frags; i > 0; i--) {
766 		__skb_fill_page_desc(skb, i-1, head, 0,
767 				     skb_shinfo(skb)->frags[i - 1].size);
768 		head = (struct page *)head->private;
769 	}
770 
771 	skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
772 	return 0;
773 }
774 
775 
776 /**
777  *	skb_clone	-	duplicate an sk_buff
778  *	@skb: buffer to clone
779  *	@gfp_mask: allocation priority
780  *
781  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
782  *	copies share the same packet data but not structure. The new
783  *	buffer has a reference count of 1. If the allocation fails the
784  *	function returns %NULL otherwise the new buffer is returned.
785  *
786  *	If this function is called from an interrupt gfp_mask() must be
787  *	%GFP_ATOMIC.
788  */
789 
790 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
791 {
792 	struct sk_buff *n;
793 
794 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
795 		if (skb_copy_ubufs(skb, gfp_mask))
796 			return NULL;
797 	}
798 
799 	n = skb + 1;
800 	if (skb->fclone == SKB_FCLONE_ORIG &&
801 	    n->fclone == SKB_FCLONE_UNAVAILABLE) {
802 		atomic_t *fclone_ref = (atomic_t *) (n + 1);
803 		n->fclone = SKB_FCLONE_CLONE;
804 		atomic_inc(fclone_ref);
805 	} else {
806 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
807 		if (!n)
808 			return NULL;
809 
810 		kmemcheck_annotate_bitfield(n, flags1);
811 		kmemcheck_annotate_bitfield(n, flags2);
812 		n->fclone = SKB_FCLONE_UNAVAILABLE;
813 	}
814 
815 	return __skb_clone(n, skb);
816 }
817 EXPORT_SYMBOL(skb_clone);
818 
819 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
820 {
821 #ifndef NET_SKBUFF_DATA_USES_OFFSET
822 	/*
823 	 *	Shift between the two data areas in bytes
824 	 */
825 	unsigned long offset = new->data - old->data;
826 #endif
827 
828 	__copy_skb_header(new, old);
829 
830 #ifndef NET_SKBUFF_DATA_USES_OFFSET
831 	/* {transport,network,mac}_header are relative to skb->head */
832 	new->transport_header += offset;
833 	new->network_header   += offset;
834 	if (skb_mac_header_was_set(new))
835 		new->mac_header	      += offset;
836 #endif
837 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
838 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
839 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
840 }
841 
842 /**
843  *	skb_copy	-	create private copy of an sk_buff
844  *	@skb: buffer to copy
845  *	@gfp_mask: allocation priority
846  *
847  *	Make a copy of both an &sk_buff and its data. This is used when the
848  *	caller wishes to modify the data and needs a private copy of the
849  *	data to alter. Returns %NULL on failure or the pointer to the buffer
850  *	on success. The returned buffer has a reference count of 1.
851  *
852  *	As by-product this function converts non-linear &sk_buff to linear
853  *	one, so that &sk_buff becomes completely private and caller is allowed
854  *	to modify all the data of returned buffer. This means that this
855  *	function is not recommended for use in circumstances when only
856  *	header is going to be modified. Use pskb_copy() instead.
857  */
858 
859 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
860 {
861 	int headerlen = skb_headroom(skb);
862 	unsigned int size = skb_end_offset(skb) + skb->data_len;
863 	struct sk_buff *n = alloc_skb(size, gfp_mask);
864 
865 	if (!n)
866 		return NULL;
867 
868 	/* Set the data pointer */
869 	skb_reserve(n, headerlen);
870 	/* Set the tail pointer and length */
871 	skb_put(n, skb->len);
872 
873 	if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
874 		BUG();
875 
876 	copy_skb_header(n, skb);
877 	return n;
878 }
879 EXPORT_SYMBOL(skb_copy);
880 
881 /**
882  *	__pskb_copy	-	create copy of an sk_buff with private head.
883  *	@skb: buffer to copy
884  *	@headroom: headroom of new skb
885  *	@gfp_mask: allocation priority
886  *
887  *	Make a copy of both an &sk_buff and part of its data, located
888  *	in header. Fragmented data remain shared. This is used when
889  *	the caller wishes to modify only header of &sk_buff and needs
890  *	private copy of the header to alter. Returns %NULL on failure
891  *	or the pointer to the buffer on success.
892  *	The returned buffer has a reference count of 1.
893  */
894 
895 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
896 {
897 	unsigned int size = skb_headlen(skb) + headroom;
898 	struct sk_buff *n = alloc_skb(size, gfp_mask);
899 
900 	if (!n)
901 		goto out;
902 
903 	/* Set the data pointer */
904 	skb_reserve(n, headroom);
905 	/* Set the tail pointer and length */
906 	skb_put(n, skb_headlen(skb));
907 	/* Copy the bytes */
908 	skb_copy_from_linear_data(skb, n->data, n->len);
909 
910 	n->truesize += skb->data_len;
911 	n->data_len  = skb->data_len;
912 	n->len	     = skb->len;
913 
914 	if (skb_shinfo(skb)->nr_frags) {
915 		int i;
916 
917 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
918 			if (skb_copy_ubufs(skb, gfp_mask)) {
919 				kfree_skb(n);
920 				n = NULL;
921 				goto out;
922 			}
923 		}
924 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
925 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
926 			skb_frag_ref(skb, i);
927 		}
928 		skb_shinfo(n)->nr_frags = i;
929 	}
930 
931 	if (skb_has_frag_list(skb)) {
932 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
933 		skb_clone_fraglist(n);
934 	}
935 
936 	copy_skb_header(n, skb);
937 out:
938 	return n;
939 }
940 EXPORT_SYMBOL(__pskb_copy);
941 
942 /**
943  *	pskb_expand_head - reallocate header of &sk_buff
944  *	@skb: buffer to reallocate
945  *	@nhead: room to add at head
946  *	@ntail: room to add at tail
947  *	@gfp_mask: allocation priority
948  *
949  *	Expands (or creates identical copy, if &nhead and &ntail are zero)
950  *	header of skb. &sk_buff itself is not changed. &sk_buff MUST have
951  *	reference count of 1. Returns zero in the case of success or error,
952  *	if expansion failed. In the last case, &sk_buff is not changed.
953  *
954  *	All the pointers pointing into skb header may change and must be
955  *	reloaded after call to this function.
956  */
957 
958 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
959 		     gfp_t gfp_mask)
960 {
961 	int i;
962 	u8 *data;
963 	int size = nhead + skb_end_offset(skb) + ntail;
964 	long off;
965 
966 	BUG_ON(nhead < 0);
967 
968 	if (skb_shared(skb))
969 		BUG();
970 
971 	size = SKB_DATA_ALIGN(size);
972 
973 	data = kmalloc(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
974 		       gfp_mask);
975 	if (!data)
976 		goto nodata;
977 	size = SKB_WITH_OVERHEAD(ksize(data));
978 
979 	/* Copy only real data... and, alas, header. This should be
980 	 * optimized for the cases when header is void.
981 	 */
982 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
983 
984 	memcpy((struct skb_shared_info *)(data + size),
985 	       skb_shinfo(skb),
986 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
987 
988 	/*
989 	 * if shinfo is shared we must drop the old head gracefully, but if it
990 	 * is not we can just drop the old head and let the existing refcount
991 	 * be since all we did is relocate the values
992 	 */
993 	if (skb_cloned(skb)) {
994 		/* copy this zero copy skb frags */
995 		if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
996 			if (skb_copy_ubufs(skb, gfp_mask))
997 				goto nofrags;
998 		}
999 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1000 			skb_frag_ref(skb, i);
1001 
1002 		if (skb_has_frag_list(skb))
1003 			skb_clone_fraglist(skb);
1004 
1005 		skb_release_data(skb);
1006 	} else {
1007 		skb_free_head(skb);
1008 	}
1009 	off = (data + nhead) - skb->head;
1010 
1011 	skb->head     = data;
1012 	skb->head_frag = 0;
1013 	skb->data    += off;
1014 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1015 	skb->end      = size;
1016 	off           = nhead;
1017 #else
1018 	skb->end      = skb->head + size;
1019 #endif
1020 	/* {transport,network,mac}_header and tail are relative to skb->head */
1021 	skb->tail	      += off;
1022 	skb->transport_header += off;
1023 	skb->network_header   += off;
1024 	if (skb_mac_header_was_set(skb))
1025 		skb->mac_header += off;
1026 	/* Only adjust this if it actually is csum_start rather than csum */
1027 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1028 		skb->csum_start += nhead;
1029 	skb->cloned   = 0;
1030 	skb->hdr_len  = 0;
1031 	skb->nohdr    = 0;
1032 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1033 	return 0;
1034 
1035 nofrags:
1036 	kfree(data);
1037 nodata:
1038 	return -ENOMEM;
1039 }
1040 EXPORT_SYMBOL(pskb_expand_head);
1041 
1042 /* Make private copy of skb with writable head and some headroom */
1043 
1044 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1045 {
1046 	struct sk_buff *skb2;
1047 	int delta = headroom - skb_headroom(skb);
1048 
1049 	if (delta <= 0)
1050 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1051 	else {
1052 		skb2 = skb_clone(skb, GFP_ATOMIC);
1053 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1054 					     GFP_ATOMIC)) {
1055 			kfree_skb(skb2);
1056 			skb2 = NULL;
1057 		}
1058 	}
1059 	return skb2;
1060 }
1061 EXPORT_SYMBOL(skb_realloc_headroom);
1062 
1063 /**
1064  *	skb_copy_expand	-	copy and expand sk_buff
1065  *	@skb: buffer to copy
1066  *	@newheadroom: new free bytes at head
1067  *	@newtailroom: new free bytes at tail
1068  *	@gfp_mask: allocation priority
1069  *
1070  *	Make a copy of both an &sk_buff and its data and while doing so
1071  *	allocate additional space.
1072  *
1073  *	This is used when the caller wishes to modify the data and needs a
1074  *	private copy of the data to alter as well as more space for new fields.
1075  *	Returns %NULL on failure or the pointer to the buffer
1076  *	on success. The returned buffer has a reference count of 1.
1077  *
1078  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1079  *	is called from an interrupt.
1080  */
1081 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1082 				int newheadroom, int newtailroom,
1083 				gfp_t gfp_mask)
1084 {
1085 	/*
1086 	 *	Allocate the copy buffer
1087 	 */
1088 	struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
1089 				      gfp_mask);
1090 	int oldheadroom = skb_headroom(skb);
1091 	int head_copy_len, head_copy_off;
1092 	int off;
1093 
1094 	if (!n)
1095 		return NULL;
1096 
1097 	skb_reserve(n, newheadroom);
1098 
1099 	/* Set the tail pointer and length */
1100 	skb_put(n, skb->len);
1101 
1102 	head_copy_len = oldheadroom;
1103 	head_copy_off = 0;
1104 	if (newheadroom <= head_copy_len)
1105 		head_copy_len = newheadroom;
1106 	else
1107 		head_copy_off = newheadroom - head_copy_len;
1108 
1109 	/* Copy the linear header and data. */
1110 	if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1111 			  skb->len + head_copy_len))
1112 		BUG();
1113 
1114 	copy_skb_header(n, skb);
1115 
1116 	off                  = newheadroom - oldheadroom;
1117 	if (n->ip_summed == CHECKSUM_PARTIAL)
1118 		n->csum_start += off;
1119 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1120 	n->transport_header += off;
1121 	n->network_header   += off;
1122 	if (skb_mac_header_was_set(skb))
1123 		n->mac_header += off;
1124 #endif
1125 
1126 	return n;
1127 }
1128 EXPORT_SYMBOL(skb_copy_expand);
1129 
1130 /**
1131  *	skb_pad			-	zero pad the tail of an skb
1132  *	@skb: buffer to pad
1133  *	@pad: space to pad
1134  *
1135  *	Ensure that a buffer is followed by a padding area that is zero
1136  *	filled. Used by network drivers which may DMA or transfer data
1137  *	beyond the buffer end onto the wire.
1138  *
1139  *	May return error in out of memory cases. The skb is freed on error.
1140  */
1141 
1142 int skb_pad(struct sk_buff *skb, int pad)
1143 {
1144 	int err;
1145 	int ntail;
1146 
1147 	/* If the skbuff is non linear tailroom is always zero.. */
1148 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1149 		memset(skb->data+skb->len, 0, pad);
1150 		return 0;
1151 	}
1152 
1153 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1154 	if (likely(skb_cloned(skb) || ntail > 0)) {
1155 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1156 		if (unlikely(err))
1157 			goto free_skb;
1158 	}
1159 
1160 	/* FIXME: The use of this function with non-linear skb's really needs
1161 	 * to be audited.
1162 	 */
1163 	err = skb_linearize(skb);
1164 	if (unlikely(err))
1165 		goto free_skb;
1166 
1167 	memset(skb->data + skb->len, 0, pad);
1168 	return 0;
1169 
1170 free_skb:
1171 	kfree_skb(skb);
1172 	return err;
1173 }
1174 EXPORT_SYMBOL(skb_pad);
1175 
1176 /**
1177  *	skb_put - add data to a buffer
1178  *	@skb: buffer to use
1179  *	@len: amount of data to add
1180  *
1181  *	This function extends the used data area of the buffer. If this would
1182  *	exceed the total buffer size the kernel will panic. A pointer to the
1183  *	first byte of the extra data is returned.
1184  */
1185 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1186 {
1187 	unsigned char *tmp = skb_tail_pointer(skb);
1188 	SKB_LINEAR_ASSERT(skb);
1189 	skb->tail += len;
1190 	skb->len  += len;
1191 	if (unlikely(skb->tail > skb->end))
1192 		skb_over_panic(skb, len, __builtin_return_address(0));
1193 	return tmp;
1194 }
1195 EXPORT_SYMBOL(skb_put);
1196 
1197 /**
1198  *	skb_push - add data to the start of a buffer
1199  *	@skb: buffer to use
1200  *	@len: amount of data to add
1201  *
1202  *	This function extends the used data area of the buffer at the buffer
1203  *	start. If this would exceed the total buffer headroom the kernel will
1204  *	panic. A pointer to the first byte of the extra data is returned.
1205  */
1206 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1207 {
1208 	skb->data -= len;
1209 	skb->len  += len;
1210 	if (unlikely(skb->data<skb->head))
1211 		skb_under_panic(skb, len, __builtin_return_address(0));
1212 	return skb->data;
1213 }
1214 EXPORT_SYMBOL(skb_push);
1215 
1216 /**
1217  *	skb_pull - remove data from the start of a buffer
1218  *	@skb: buffer to use
1219  *	@len: amount of data to remove
1220  *
1221  *	This function removes data from the start of a buffer, returning
1222  *	the memory to the headroom. A pointer to the next data in the buffer
1223  *	is returned. Once the data has been pulled future pushes will overwrite
1224  *	the old data.
1225  */
1226 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1227 {
1228 	return skb_pull_inline(skb, len);
1229 }
1230 EXPORT_SYMBOL(skb_pull);
1231 
1232 /**
1233  *	skb_trim - remove end from a buffer
1234  *	@skb: buffer to alter
1235  *	@len: new length
1236  *
1237  *	Cut the length of a buffer down by removing data from the tail. If
1238  *	the buffer is already under the length specified it is not modified.
1239  *	The skb must be linear.
1240  */
1241 void skb_trim(struct sk_buff *skb, unsigned int len)
1242 {
1243 	if (skb->len > len)
1244 		__skb_trim(skb, len);
1245 }
1246 EXPORT_SYMBOL(skb_trim);
1247 
1248 /* Trims skb to length len. It can change skb pointers.
1249  */
1250 
1251 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1252 {
1253 	struct sk_buff **fragp;
1254 	struct sk_buff *frag;
1255 	int offset = skb_headlen(skb);
1256 	int nfrags = skb_shinfo(skb)->nr_frags;
1257 	int i;
1258 	int err;
1259 
1260 	if (skb_cloned(skb) &&
1261 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1262 		return err;
1263 
1264 	i = 0;
1265 	if (offset >= len)
1266 		goto drop_pages;
1267 
1268 	for (; i < nfrags; i++) {
1269 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1270 
1271 		if (end < len) {
1272 			offset = end;
1273 			continue;
1274 		}
1275 
1276 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1277 
1278 drop_pages:
1279 		skb_shinfo(skb)->nr_frags = i;
1280 
1281 		for (; i < nfrags; i++)
1282 			skb_frag_unref(skb, i);
1283 
1284 		if (skb_has_frag_list(skb))
1285 			skb_drop_fraglist(skb);
1286 		goto done;
1287 	}
1288 
1289 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1290 	     fragp = &frag->next) {
1291 		int end = offset + frag->len;
1292 
1293 		if (skb_shared(frag)) {
1294 			struct sk_buff *nfrag;
1295 
1296 			nfrag = skb_clone(frag, GFP_ATOMIC);
1297 			if (unlikely(!nfrag))
1298 				return -ENOMEM;
1299 
1300 			nfrag->next = frag->next;
1301 			consume_skb(frag);
1302 			frag = nfrag;
1303 			*fragp = frag;
1304 		}
1305 
1306 		if (end < len) {
1307 			offset = end;
1308 			continue;
1309 		}
1310 
1311 		if (end > len &&
1312 		    unlikely((err = pskb_trim(frag, len - offset))))
1313 			return err;
1314 
1315 		if (frag->next)
1316 			skb_drop_list(&frag->next);
1317 		break;
1318 	}
1319 
1320 done:
1321 	if (len > skb_headlen(skb)) {
1322 		skb->data_len -= skb->len - len;
1323 		skb->len       = len;
1324 	} else {
1325 		skb->len       = len;
1326 		skb->data_len  = 0;
1327 		skb_set_tail_pointer(skb, len);
1328 	}
1329 
1330 	return 0;
1331 }
1332 EXPORT_SYMBOL(___pskb_trim);
1333 
1334 /**
1335  *	__pskb_pull_tail - advance tail of skb header
1336  *	@skb: buffer to reallocate
1337  *	@delta: number of bytes to advance tail
1338  *
1339  *	The function makes a sense only on a fragmented &sk_buff,
1340  *	it expands header moving its tail forward and copying necessary
1341  *	data from fragmented part.
1342  *
1343  *	&sk_buff MUST have reference count of 1.
1344  *
1345  *	Returns %NULL (and &sk_buff does not change) if pull failed
1346  *	or value of new tail of skb in the case of success.
1347  *
1348  *	All the pointers pointing into skb header may change and must be
1349  *	reloaded after call to this function.
1350  */
1351 
1352 /* Moves tail of skb head forward, copying data from fragmented part,
1353  * when it is necessary.
1354  * 1. It may fail due to malloc failure.
1355  * 2. It may change skb pointers.
1356  *
1357  * It is pretty complicated. Luckily, it is called only in exceptional cases.
1358  */
1359 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1360 {
1361 	/* If skb has not enough free space at tail, get new one
1362 	 * plus 128 bytes for future expansions. If we have enough
1363 	 * room at tail, reallocate without expansion only if skb is cloned.
1364 	 */
1365 	int i, k, eat = (skb->tail + delta) - skb->end;
1366 
1367 	if (eat > 0 || skb_cloned(skb)) {
1368 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1369 				     GFP_ATOMIC))
1370 			return NULL;
1371 	}
1372 
1373 	if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1374 		BUG();
1375 
1376 	/* Optimization: no fragments, no reasons to preestimate
1377 	 * size of pulled pages. Superb.
1378 	 */
1379 	if (!skb_has_frag_list(skb))
1380 		goto pull_pages;
1381 
1382 	/* Estimate size of pulled pages. */
1383 	eat = delta;
1384 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1385 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1386 
1387 		if (size >= eat)
1388 			goto pull_pages;
1389 		eat -= size;
1390 	}
1391 
1392 	/* If we need update frag list, we are in troubles.
1393 	 * Certainly, it possible to add an offset to skb data,
1394 	 * but taking into account that pulling is expected to
1395 	 * be very rare operation, it is worth to fight against
1396 	 * further bloating skb head and crucify ourselves here instead.
1397 	 * Pure masohism, indeed. 8)8)
1398 	 */
1399 	if (eat) {
1400 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
1401 		struct sk_buff *clone = NULL;
1402 		struct sk_buff *insp = NULL;
1403 
1404 		do {
1405 			BUG_ON(!list);
1406 
1407 			if (list->len <= eat) {
1408 				/* Eaten as whole. */
1409 				eat -= list->len;
1410 				list = list->next;
1411 				insp = list;
1412 			} else {
1413 				/* Eaten partially. */
1414 
1415 				if (skb_shared(list)) {
1416 					/* Sucks! We need to fork list. :-( */
1417 					clone = skb_clone(list, GFP_ATOMIC);
1418 					if (!clone)
1419 						return NULL;
1420 					insp = list->next;
1421 					list = clone;
1422 				} else {
1423 					/* This may be pulled without
1424 					 * problems. */
1425 					insp = list;
1426 				}
1427 				if (!pskb_pull(list, eat)) {
1428 					kfree_skb(clone);
1429 					return NULL;
1430 				}
1431 				break;
1432 			}
1433 		} while (eat);
1434 
1435 		/* Free pulled out fragments. */
1436 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
1437 			skb_shinfo(skb)->frag_list = list->next;
1438 			kfree_skb(list);
1439 		}
1440 		/* And insert new clone at head. */
1441 		if (clone) {
1442 			clone->next = list;
1443 			skb_shinfo(skb)->frag_list = clone;
1444 		}
1445 	}
1446 	/* Success! Now we may commit changes to skb data. */
1447 
1448 pull_pages:
1449 	eat = delta;
1450 	k = 0;
1451 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1452 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1453 
1454 		if (size <= eat) {
1455 			skb_frag_unref(skb, i);
1456 			eat -= size;
1457 		} else {
1458 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1459 			if (eat) {
1460 				skb_shinfo(skb)->frags[k].page_offset += eat;
1461 				skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1462 				eat = 0;
1463 			}
1464 			k++;
1465 		}
1466 	}
1467 	skb_shinfo(skb)->nr_frags = k;
1468 
1469 	skb->tail     += delta;
1470 	skb->data_len -= delta;
1471 
1472 	return skb_tail_pointer(skb);
1473 }
1474 EXPORT_SYMBOL(__pskb_pull_tail);
1475 
1476 /**
1477  *	skb_copy_bits - copy bits from skb to kernel buffer
1478  *	@skb: source skb
1479  *	@offset: offset in source
1480  *	@to: destination buffer
1481  *	@len: number of bytes to copy
1482  *
1483  *	Copy the specified number of bytes from the source skb to the
1484  *	destination buffer.
1485  *
1486  *	CAUTION ! :
1487  *		If its prototype is ever changed,
1488  *		check arch/{*}/net/{*}.S files,
1489  *		since it is called from BPF assembly code.
1490  */
1491 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1492 {
1493 	int start = skb_headlen(skb);
1494 	struct sk_buff *frag_iter;
1495 	int i, copy;
1496 
1497 	if (offset > (int)skb->len - len)
1498 		goto fault;
1499 
1500 	/* Copy header. */
1501 	if ((copy = start - offset) > 0) {
1502 		if (copy > len)
1503 			copy = len;
1504 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
1505 		if ((len -= copy) == 0)
1506 			return 0;
1507 		offset += copy;
1508 		to     += copy;
1509 	}
1510 
1511 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1512 		int end;
1513 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1514 
1515 		WARN_ON(start > offset + len);
1516 
1517 		end = start + skb_frag_size(f);
1518 		if ((copy = end - offset) > 0) {
1519 			u8 *vaddr;
1520 
1521 			if (copy > len)
1522 				copy = len;
1523 
1524 			vaddr = kmap_atomic(skb_frag_page(f));
1525 			memcpy(to,
1526 			       vaddr + f->page_offset + offset - start,
1527 			       copy);
1528 			kunmap_atomic(vaddr);
1529 
1530 			if ((len -= copy) == 0)
1531 				return 0;
1532 			offset += copy;
1533 			to     += copy;
1534 		}
1535 		start = end;
1536 	}
1537 
1538 	skb_walk_frags(skb, frag_iter) {
1539 		int end;
1540 
1541 		WARN_ON(start > offset + len);
1542 
1543 		end = start + frag_iter->len;
1544 		if ((copy = end - offset) > 0) {
1545 			if (copy > len)
1546 				copy = len;
1547 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
1548 				goto fault;
1549 			if ((len -= copy) == 0)
1550 				return 0;
1551 			offset += copy;
1552 			to     += copy;
1553 		}
1554 		start = end;
1555 	}
1556 
1557 	if (!len)
1558 		return 0;
1559 
1560 fault:
1561 	return -EFAULT;
1562 }
1563 EXPORT_SYMBOL(skb_copy_bits);
1564 
1565 /*
1566  * Callback from splice_to_pipe(), if we need to release some pages
1567  * at the end of the spd in case we error'ed out in filling the pipe.
1568  */
1569 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1570 {
1571 	put_page(spd->pages[i]);
1572 }
1573 
1574 static struct page *linear_to_page(struct page *page, unsigned int *len,
1575 				   unsigned int *offset,
1576 				   struct sk_buff *skb, struct sock *sk)
1577 {
1578 	struct page *p = sk->sk_sndmsg_page;
1579 	unsigned int off;
1580 
1581 	if (!p) {
1582 new_page:
1583 		p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1584 		if (!p)
1585 			return NULL;
1586 
1587 		off = sk->sk_sndmsg_off = 0;
1588 		/* hold one ref to this page until it's full */
1589 	} else {
1590 		unsigned int mlen;
1591 
1592 		/* If we are the only user of the page, we can reset offset */
1593 		if (page_count(p) == 1)
1594 			sk->sk_sndmsg_off = 0;
1595 		off = sk->sk_sndmsg_off;
1596 		mlen = PAGE_SIZE - off;
1597 		if (mlen < 64 && mlen < *len) {
1598 			put_page(p);
1599 			goto new_page;
1600 		}
1601 
1602 		*len = min_t(unsigned int, *len, mlen);
1603 	}
1604 
1605 	memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1606 	sk->sk_sndmsg_off += *len;
1607 	*offset = off;
1608 
1609 	return p;
1610 }
1611 
1612 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1613 			     struct page *page,
1614 			     unsigned int offset)
1615 {
1616 	return	spd->nr_pages &&
1617 		spd->pages[spd->nr_pages - 1] == page &&
1618 		(spd->partial[spd->nr_pages - 1].offset +
1619 		 spd->partial[spd->nr_pages - 1].len == offset);
1620 }
1621 
1622 /*
1623  * Fill page/offset/length into spd, if it can hold more pages.
1624  */
1625 static bool spd_fill_page(struct splice_pipe_desc *spd,
1626 			  struct pipe_inode_info *pipe, struct page *page,
1627 			  unsigned int *len, unsigned int offset,
1628 			  struct sk_buff *skb, bool linear,
1629 			  struct sock *sk)
1630 {
1631 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1632 		return true;
1633 
1634 	if (linear) {
1635 		page = linear_to_page(page, len, &offset, skb, sk);
1636 		if (!page)
1637 			return true;
1638 	}
1639 	if (spd_can_coalesce(spd, page, offset)) {
1640 		spd->partial[spd->nr_pages - 1].len += *len;
1641 		return false;
1642 	}
1643 	get_page(page);
1644 	spd->pages[spd->nr_pages] = page;
1645 	spd->partial[spd->nr_pages].len = *len;
1646 	spd->partial[spd->nr_pages].offset = offset;
1647 	spd->nr_pages++;
1648 
1649 	return false;
1650 }
1651 
1652 static inline void __segment_seek(struct page **page, unsigned int *poff,
1653 				  unsigned int *plen, unsigned int off)
1654 {
1655 	unsigned long n;
1656 
1657 	*poff += off;
1658 	n = *poff / PAGE_SIZE;
1659 	if (n)
1660 		*page = nth_page(*page, n);
1661 
1662 	*poff = *poff % PAGE_SIZE;
1663 	*plen -= off;
1664 }
1665 
1666 static bool __splice_segment(struct page *page, unsigned int poff,
1667 			     unsigned int plen, unsigned int *off,
1668 			     unsigned int *len, struct sk_buff *skb,
1669 			     struct splice_pipe_desc *spd, bool linear,
1670 			     struct sock *sk,
1671 			     struct pipe_inode_info *pipe)
1672 {
1673 	if (!*len)
1674 		return true;
1675 
1676 	/* skip this segment if already processed */
1677 	if (*off >= plen) {
1678 		*off -= plen;
1679 		return false;
1680 	}
1681 
1682 	/* ignore any bits we already processed */
1683 	if (*off) {
1684 		__segment_seek(&page, &poff, &plen, *off);
1685 		*off = 0;
1686 	}
1687 
1688 	do {
1689 		unsigned int flen = min(*len, plen);
1690 
1691 		/* the linear region may spread across several pages  */
1692 		flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1693 
1694 		if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1695 			return true;
1696 
1697 		__segment_seek(&page, &poff, &plen, flen);
1698 		*len -= flen;
1699 
1700 	} while (*len && plen);
1701 
1702 	return false;
1703 }
1704 
1705 /*
1706  * Map linear and fragment data from the skb to spd. It reports true if the
1707  * pipe is full or if we already spliced the requested length.
1708  */
1709 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1710 			      unsigned int *offset, unsigned int *len,
1711 			      struct splice_pipe_desc *spd, struct sock *sk)
1712 {
1713 	int seg;
1714 
1715 	/* map the linear part :
1716 	 * If skb->head_frag is set, this 'linear' part is backed by a
1717 	 * fragment, and if the head is not shared with any clones then
1718 	 * we can avoid a copy since we own the head portion of this page.
1719 	 */
1720 	if (__splice_segment(virt_to_page(skb->data),
1721 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
1722 			     skb_headlen(skb),
1723 			     offset, len, skb, spd,
1724 			     skb_head_is_locked(skb),
1725 			     sk, pipe))
1726 		return true;
1727 
1728 	/*
1729 	 * then map the fragments
1730 	 */
1731 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1732 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1733 
1734 		if (__splice_segment(skb_frag_page(f),
1735 				     f->page_offset, skb_frag_size(f),
1736 				     offset, len, skb, spd, false, sk, pipe))
1737 			return true;
1738 	}
1739 
1740 	return false;
1741 }
1742 
1743 /*
1744  * Map data from the skb to a pipe. Should handle both the linear part,
1745  * the fragments, and the frag list. It does NOT handle frag lists within
1746  * the frag list, if such a thing exists. We'd probably need to recurse to
1747  * handle that cleanly.
1748  */
1749 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1750 		    struct pipe_inode_info *pipe, unsigned int tlen,
1751 		    unsigned int flags)
1752 {
1753 	struct partial_page partial[MAX_SKB_FRAGS];
1754 	struct page *pages[MAX_SKB_FRAGS];
1755 	struct splice_pipe_desc spd = {
1756 		.pages = pages,
1757 		.partial = partial,
1758 		.flags = flags,
1759 		.ops = &sock_pipe_buf_ops,
1760 		.spd_release = sock_spd_release,
1761 	};
1762 	struct sk_buff *frag_iter;
1763 	struct sock *sk = skb->sk;
1764 	int ret = 0;
1765 
1766 	/*
1767 	 * __skb_splice_bits() only fails if the output has no room left,
1768 	 * so no point in going over the frag_list for the error case.
1769 	 */
1770 	if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1771 		goto done;
1772 	else if (!tlen)
1773 		goto done;
1774 
1775 	/*
1776 	 * now see if we have a frag_list to map
1777 	 */
1778 	skb_walk_frags(skb, frag_iter) {
1779 		if (!tlen)
1780 			break;
1781 		if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1782 			break;
1783 	}
1784 
1785 done:
1786 	if (spd.nr_pages) {
1787 		/*
1788 		 * Drop the socket lock, otherwise we have reverse
1789 		 * locking dependencies between sk_lock and i_mutex
1790 		 * here as compared to sendfile(). We enter here
1791 		 * with the socket lock held, and splice_to_pipe() will
1792 		 * grab the pipe inode lock. For sendfile() emulation,
1793 		 * we call into ->sendpage() with the i_mutex lock held
1794 		 * and networking will grab the socket lock.
1795 		 */
1796 		release_sock(sk);
1797 		ret = splice_to_pipe(pipe, &spd);
1798 		lock_sock(sk);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 /**
1805  *	skb_store_bits - store bits from kernel buffer to skb
1806  *	@skb: destination buffer
1807  *	@offset: offset in destination
1808  *	@from: source buffer
1809  *	@len: number of bytes to copy
1810  *
1811  *	Copy the specified number of bytes from the source buffer to the
1812  *	destination skb.  This function handles all the messy bits of
1813  *	traversing fragment lists and such.
1814  */
1815 
1816 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1817 {
1818 	int start = skb_headlen(skb);
1819 	struct sk_buff *frag_iter;
1820 	int i, copy;
1821 
1822 	if (offset > (int)skb->len - len)
1823 		goto fault;
1824 
1825 	if ((copy = start - offset) > 0) {
1826 		if (copy > len)
1827 			copy = len;
1828 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
1829 		if ((len -= copy) == 0)
1830 			return 0;
1831 		offset += copy;
1832 		from += copy;
1833 	}
1834 
1835 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1836 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1837 		int end;
1838 
1839 		WARN_ON(start > offset + len);
1840 
1841 		end = start + skb_frag_size(frag);
1842 		if ((copy = end - offset) > 0) {
1843 			u8 *vaddr;
1844 
1845 			if (copy > len)
1846 				copy = len;
1847 
1848 			vaddr = kmap_atomic(skb_frag_page(frag));
1849 			memcpy(vaddr + frag->page_offset + offset - start,
1850 			       from, copy);
1851 			kunmap_atomic(vaddr);
1852 
1853 			if ((len -= copy) == 0)
1854 				return 0;
1855 			offset += copy;
1856 			from += copy;
1857 		}
1858 		start = end;
1859 	}
1860 
1861 	skb_walk_frags(skb, frag_iter) {
1862 		int end;
1863 
1864 		WARN_ON(start > offset + len);
1865 
1866 		end = start + frag_iter->len;
1867 		if ((copy = end - offset) > 0) {
1868 			if (copy > len)
1869 				copy = len;
1870 			if (skb_store_bits(frag_iter, offset - start,
1871 					   from, copy))
1872 				goto fault;
1873 			if ((len -= copy) == 0)
1874 				return 0;
1875 			offset += copy;
1876 			from += copy;
1877 		}
1878 		start = end;
1879 	}
1880 	if (!len)
1881 		return 0;
1882 
1883 fault:
1884 	return -EFAULT;
1885 }
1886 EXPORT_SYMBOL(skb_store_bits);
1887 
1888 /* Checksum skb data. */
1889 
1890 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1891 			  int len, __wsum csum)
1892 {
1893 	int start = skb_headlen(skb);
1894 	int i, copy = start - offset;
1895 	struct sk_buff *frag_iter;
1896 	int pos = 0;
1897 
1898 	/* Checksum header. */
1899 	if (copy > 0) {
1900 		if (copy > len)
1901 			copy = len;
1902 		csum = csum_partial(skb->data + offset, copy, csum);
1903 		if ((len -= copy) == 0)
1904 			return csum;
1905 		offset += copy;
1906 		pos	= copy;
1907 	}
1908 
1909 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1910 		int end;
1911 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1912 
1913 		WARN_ON(start > offset + len);
1914 
1915 		end = start + skb_frag_size(frag);
1916 		if ((copy = end - offset) > 0) {
1917 			__wsum csum2;
1918 			u8 *vaddr;
1919 
1920 			if (copy > len)
1921 				copy = len;
1922 			vaddr = kmap_atomic(skb_frag_page(frag));
1923 			csum2 = csum_partial(vaddr + frag->page_offset +
1924 					     offset - start, copy, 0);
1925 			kunmap_atomic(vaddr);
1926 			csum = csum_block_add(csum, csum2, pos);
1927 			if (!(len -= copy))
1928 				return csum;
1929 			offset += copy;
1930 			pos    += copy;
1931 		}
1932 		start = end;
1933 	}
1934 
1935 	skb_walk_frags(skb, frag_iter) {
1936 		int end;
1937 
1938 		WARN_ON(start > offset + len);
1939 
1940 		end = start + frag_iter->len;
1941 		if ((copy = end - offset) > 0) {
1942 			__wsum csum2;
1943 			if (copy > len)
1944 				copy = len;
1945 			csum2 = skb_checksum(frag_iter, offset - start,
1946 					     copy, 0);
1947 			csum = csum_block_add(csum, csum2, pos);
1948 			if ((len -= copy) == 0)
1949 				return csum;
1950 			offset += copy;
1951 			pos    += copy;
1952 		}
1953 		start = end;
1954 	}
1955 	BUG_ON(len);
1956 
1957 	return csum;
1958 }
1959 EXPORT_SYMBOL(skb_checksum);
1960 
1961 /* Both of above in one bottle. */
1962 
1963 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1964 				    u8 *to, int len, __wsum csum)
1965 {
1966 	int start = skb_headlen(skb);
1967 	int i, copy = start - offset;
1968 	struct sk_buff *frag_iter;
1969 	int pos = 0;
1970 
1971 	/* Copy header. */
1972 	if (copy > 0) {
1973 		if (copy > len)
1974 			copy = len;
1975 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
1976 						 copy, csum);
1977 		if ((len -= copy) == 0)
1978 			return csum;
1979 		offset += copy;
1980 		to     += copy;
1981 		pos	= copy;
1982 	}
1983 
1984 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1985 		int end;
1986 
1987 		WARN_ON(start > offset + len);
1988 
1989 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1990 		if ((copy = end - offset) > 0) {
1991 			__wsum csum2;
1992 			u8 *vaddr;
1993 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1994 
1995 			if (copy > len)
1996 				copy = len;
1997 			vaddr = kmap_atomic(skb_frag_page(frag));
1998 			csum2 = csum_partial_copy_nocheck(vaddr +
1999 							  frag->page_offset +
2000 							  offset - start, to,
2001 							  copy, 0);
2002 			kunmap_atomic(vaddr);
2003 			csum = csum_block_add(csum, csum2, pos);
2004 			if (!(len -= copy))
2005 				return csum;
2006 			offset += copy;
2007 			to     += copy;
2008 			pos    += copy;
2009 		}
2010 		start = end;
2011 	}
2012 
2013 	skb_walk_frags(skb, frag_iter) {
2014 		__wsum csum2;
2015 		int end;
2016 
2017 		WARN_ON(start > offset + len);
2018 
2019 		end = start + frag_iter->len;
2020 		if ((copy = end - offset) > 0) {
2021 			if (copy > len)
2022 				copy = len;
2023 			csum2 = skb_copy_and_csum_bits(frag_iter,
2024 						       offset - start,
2025 						       to, copy, 0);
2026 			csum = csum_block_add(csum, csum2, pos);
2027 			if ((len -= copy) == 0)
2028 				return csum;
2029 			offset += copy;
2030 			to     += copy;
2031 			pos    += copy;
2032 		}
2033 		start = end;
2034 	}
2035 	BUG_ON(len);
2036 	return csum;
2037 }
2038 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2039 
2040 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2041 {
2042 	__wsum csum;
2043 	long csstart;
2044 
2045 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2046 		csstart = skb_checksum_start_offset(skb);
2047 	else
2048 		csstart = skb_headlen(skb);
2049 
2050 	BUG_ON(csstart > skb_headlen(skb));
2051 
2052 	skb_copy_from_linear_data(skb, to, csstart);
2053 
2054 	csum = 0;
2055 	if (csstart != skb->len)
2056 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2057 					      skb->len - csstart, 0);
2058 
2059 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2060 		long csstuff = csstart + skb->csum_offset;
2061 
2062 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
2063 	}
2064 }
2065 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2066 
2067 /**
2068  *	skb_dequeue - remove from the head of the queue
2069  *	@list: list to dequeue from
2070  *
2071  *	Remove the head of the list. The list lock is taken so the function
2072  *	may be used safely with other locking list functions. The head item is
2073  *	returned or %NULL if the list is empty.
2074  */
2075 
2076 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2077 {
2078 	unsigned long flags;
2079 	struct sk_buff *result;
2080 
2081 	spin_lock_irqsave(&list->lock, flags);
2082 	result = __skb_dequeue(list);
2083 	spin_unlock_irqrestore(&list->lock, flags);
2084 	return result;
2085 }
2086 EXPORT_SYMBOL(skb_dequeue);
2087 
2088 /**
2089  *	skb_dequeue_tail - remove from the tail of the queue
2090  *	@list: list to dequeue from
2091  *
2092  *	Remove the tail of the list. The list lock is taken so the function
2093  *	may be used safely with other locking list functions. The tail item is
2094  *	returned or %NULL if the list is empty.
2095  */
2096 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2097 {
2098 	unsigned long flags;
2099 	struct sk_buff *result;
2100 
2101 	spin_lock_irqsave(&list->lock, flags);
2102 	result = __skb_dequeue_tail(list);
2103 	spin_unlock_irqrestore(&list->lock, flags);
2104 	return result;
2105 }
2106 EXPORT_SYMBOL(skb_dequeue_tail);
2107 
2108 /**
2109  *	skb_queue_purge - empty a list
2110  *	@list: list to empty
2111  *
2112  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2113  *	the list and one reference dropped. This function takes the list
2114  *	lock and is atomic with respect to other list locking functions.
2115  */
2116 void skb_queue_purge(struct sk_buff_head *list)
2117 {
2118 	struct sk_buff *skb;
2119 	while ((skb = skb_dequeue(list)) != NULL)
2120 		kfree_skb(skb);
2121 }
2122 EXPORT_SYMBOL(skb_queue_purge);
2123 
2124 /**
2125  *	skb_queue_head - queue a buffer at the list head
2126  *	@list: list to use
2127  *	@newsk: buffer to queue
2128  *
2129  *	Queue a buffer at the start of the list. This function takes the
2130  *	list lock and can be used safely with other locking &sk_buff functions
2131  *	safely.
2132  *
2133  *	A buffer cannot be placed on two lists at the same time.
2134  */
2135 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2136 {
2137 	unsigned long flags;
2138 
2139 	spin_lock_irqsave(&list->lock, flags);
2140 	__skb_queue_head(list, newsk);
2141 	spin_unlock_irqrestore(&list->lock, flags);
2142 }
2143 EXPORT_SYMBOL(skb_queue_head);
2144 
2145 /**
2146  *	skb_queue_tail - queue a buffer at the list tail
2147  *	@list: list to use
2148  *	@newsk: buffer to queue
2149  *
2150  *	Queue a buffer at the tail of the list. This function takes the
2151  *	list lock and can be used safely with other locking &sk_buff functions
2152  *	safely.
2153  *
2154  *	A buffer cannot be placed on two lists at the same time.
2155  */
2156 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2157 {
2158 	unsigned long flags;
2159 
2160 	spin_lock_irqsave(&list->lock, flags);
2161 	__skb_queue_tail(list, newsk);
2162 	spin_unlock_irqrestore(&list->lock, flags);
2163 }
2164 EXPORT_SYMBOL(skb_queue_tail);
2165 
2166 /**
2167  *	skb_unlink	-	remove a buffer from a list
2168  *	@skb: buffer to remove
2169  *	@list: list to use
2170  *
2171  *	Remove a packet from a list. The list locks are taken and this
2172  *	function is atomic with respect to other list locked calls
2173  *
2174  *	You must know what list the SKB is on.
2175  */
2176 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2177 {
2178 	unsigned long flags;
2179 
2180 	spin_lock_irqsave(&list->lock, flags);
2181 	__skb_unlink(skb, list);
2182 	spin_unlock_irqrestore(&list->lock, flags);
2183 }
2184 EXPORT_SYMBOL(skb_unlink);
2185 
2186 /**
2187  *	skb_append	-	append a buffer
2188  *	@old: buffer to insert after
2189  *	@newsk: buffer to insert
2190  *	@list: list to use
2191  *
2192  *	Place a packet after a given packet in a list. The list locks are taken
2193  *	and this function is atomic with respect to other list locked calls.
2194  *	A buffer cannot be placed on two lists at the same time.
2195  */
2196 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2197 {
2198 	unsigned long flags;
2199 
2200 	spin_lock_irqsave(&list->lock, flags);
2201 	__skb_queue_after(list, old, newsk);
2202 	spin_unlock_irqrestore(&list->lock, flags);
2203 }
2204 EXPORT_SYMBOL(skb_append);
2205 
2206 /**
2207  *	skb_insert	-	insert a buffer
2208  *	@old: buffer to insert before
2209  *	@newsk: buffer to insert
2210  *	@list: list to use
2211  *
2212  *	Place a packet before a given packet in a list. The list locks are
2213  * 	taken and this function is atomic with respect to other list locked
2214  *	calls.
2215  *
2216  *	A buffer cannot be placed on two lists at the same time.
2217  */
2218 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2219 {
2220 	unsigned long flags;
2221 
2222 	spin_lock_irqsave(&list->lock, flags);
2223 	__skb_insert(newsk, old->prev, old, list);
2224 	spin_unlock_irqrestore(&list->lock, flags);
2225 }
2226 EXPORT_SYMBOL(skb_insert);
2227 
2228 static inline void skb_split_inside_header(struct sk_buff *skb,
2229 					   struct sk_buff* skb1,
2230 					   const u32 len, const int pos)
2231 {
2232 	int i;
2233 
2234 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2235 					 pos - len);
2236 	/* And move data appendix as is. */
2237 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2238 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2239 
2240 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2241 	skb_shinfo(skb)->nr_frags  = 0;
2242 	skb1->data_len		   = skb->data_len;
2243 	skb1->len		   += skb1->data_len;
2244 	skb->data_len		   = 0;
2245 	skb->len		   = len;
2246 	skb_set_tail_pointer(skb, len);
2247 }
2248 
2249 static inline void skb_split_no_header(struct sk_buff *skb,
2250 				       struct sk_buff* skb1,
2251 				       const u32 len, int pos)
2252 {
2253 	int i, k = 0;
2254 	const int nfrags = skb_shinfo(skb)->nr_frags;
2255 
2256 	skb_shinfo(skb)->nr_frags = 0;
2257 	skb1->len		  = skb1->data_len = skb->len - len;
2258 	skb->len		  = len;
2259 	skb->data_len		  = len - pos;
2260 
2261 	for (i = 0; i < nfrags; i++) {
2262 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2263 
2264 		if (pos + size > len) {
2265 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2266 
2267 			if (pos < len) {
2268 				/* Split frag.
2269 				 * We have two variants in this case:
2270 				 * 1. Move all the frag to the second
2271 				 *    part, if it is possible. F.e.
2272 				 *    this approach is mandatory for TUX,
2273 				 *    where splitting is expensive.
2274 				 * 2. Split is accurately. We make this.
2275 				 */
2276 				skb_frag_ref(skb, i);
2277 				skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2278 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2279 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2280 				skb_shinfo(skb)->nr_frags++;
2281 			}
2282 			k++;
2283 		} else
2284 			skb_shinfo(skb)->nr_frags++;
2285 		pos += size;
2286 	}
2287 	skb_shinfo(skb1)->nr_frags = k;
2288 }
2289 
2290 /**
2291  * skb_split - Split fragmented skb to two parts at length len.
2292  * @skb: the buffer to split
2293  * @skb1: the buffer to receive the second part
2294  * @len: new length for skb
2295  */
2296 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2297 {
2298 	int pos = skb_headlen(skb);
2299 
2300 	if (len < pos)	/* Split line is inside header. */
2301 		skb_split_inside_header(skb, skb1, len, pos);
2302 	else		/* Second chunk has no header, nothing to copy. */
2303 		skb_split_no_header(skb, skb1, len, pos);
2304 }
2305 EXPORT_SYMBOL(skb_split);
2306 
2307 /* Shifting from/to a cloned skb is a no-go.
2308  *
2309  * Caller cannot keep skb_shinfo related pointers past calling here!
2310  */
2311 static int skb_prepare_for_shift(struct sk_buff *skb)
2312 {
2313 	return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2314 }
2315 
2316 /**
2317  * skb_shift - Shifts paged data partially from skb to another
2318  * @tgt: buffer into which tail data gets added
2319  * @skb: buffer from which the paged data comes from
2320  * @shiftlen: shift up to this many bytes
2321  *
2322  * Attempts to shift up to shiftlen worth of bytes, which may be less than
2323  * the length of the skb, from skb to tgt. Returns number bytes shifted.
2324  * It's up to caller to free skb if everything was shifted.
2325  *
2326  * If @tgt runs out of frags, the whole operation is aborted.
2327  *
2328  * Skb cannot include anything else but paged data while tgt is allowed
2329  * to have non-paged data as well.
2330  *
2331  * TODO: full sized shift could be optimized but that would need
2332  * specialized skb free'er to handle frags without up-to-date nr_frags.
2333  */
2334 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2335 {
2336 	int from, to, merge, todo;
2337 	struct skb_frag_struct *fragfrom, *fragto;
2338 
2339 	BUG_ON(shiftlen > skb->len);
2340 	BUG_ON(skb_headlen(skb));	/* Would corrupt stream */
2341 
2342 	todo = shiftlen;
2343 	from = 0;
2344 	to = skb_shinfo(tgt)->nr_frags;
2345 	fragfrom = &skb_shinfo(skb)->frags[from];
2346 
2347 	/* Actual merge is delayed until the point when we know we can
2348 	 * commit all, so that we don't have to undo partial changes
2349 	 */
2350 	if (!to ||
2351 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2352 			      fragfrom->page_offset)) {
2353 		merge = -1;
2354 	} else {
2355 		merge = to - 1;
2356 
2357 		todo -= skb_frag_size(fragfrom);
2358 		if (todo < 0) {
2359 			if (skb_prepare_for_shift(skb) ||
2360 			    skb_prepare_for_shift(tgt))
2361 				return 0;
2362 
2363 			/* All previous frag pointers might be stale! */
2364 			fragfrom = &skb_shinfo(skb)->frags[from];
2365 			fragto = &skb_shinfo(tgt)->frags[merge];
2366 
2367 			skb_frag_size_add(fragto, shiftlen);
2368 			skb_frag_size_sub(fragfrom, shiftlen);
2369 			fragfrom->page_offset += shiftlen;
2370 
2371 			goto onlymerged;
2372 		}
2373 
2374 		from++;
2375 	}
2376 
2377 	/* Skip full, not-fitting skb to avoid expensive operations */
2378 	if ((shiftlen == skb->len) &&
2379 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2380 		return 0;
2381 
2382 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2383 		return 0;
2384 
2385 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2386 		if (to == MAX_SKB_FRAGS)
2387 			return 0;
2388 
2389 		fragfrom = &skb_shinfo(skb)->frags[from];
2390 		fragto = &skb_shinfo(tgt)->frags[to];
2391 
2392 		if (todo >= skb_frag_size(fragfrom)) {
2393 			*fragto = *fragfrom;
2394 			todo -= skb_frag_size(fragfrom);
2395 			from++;
2396 			to++;
2397 
2398 		} else {
2399 			__skb_frag_ref(fragfrom);
2400 			fragto->page = fragfrom->page;
2401 			fragto->page_offset = fragfrom->page_offset;
2402 			skb_frag_size_set(fragto, todo);
2403 
2404 			fragfrom->page_offset += todo;
2405 			skb_frag_size_sub(fragfrom, todo);
2406 			todo = 0;
2407 
2408 			to++;
2409 			break;
2410 		}
2411 	}
2412 
2413 	/* Ready to "commit" this state change to tgt */
2414 	skb_shinfo(tgt)->nr_frags = to;
2415 
2416 	if (merge >= 0) {
2417 		fragfrom = &skb_shinfo(skb)->frags[0];
2418 		fragto = &skb_shinfo(tgt)->frags[merge];
2419 
2420 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2421 		__skb_frag_unref(fragfrom);
2422 	}
2423 
2424 	/* Reposition in the original skb */
2425 	to = 0;
2426 	while (from < skb_shinfo(skb)->nr_frags)
2427 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2428 	skb_shinfo(skb)->nr_frags = to;
2429 
2430 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2431 
2432 onlymerged:
2433 	/* Most likely the tgt won't ever need its checksum anymore, skb on
2434 	 * the other hand might need it if it needs to be resent
2435 	 */
2436 	tgt->ip_summed = CHECKSUM_PARTIAL;
2437 	skb->ip_summed = CHECKSUM_PARTIAL;
2438 
2439 	/* Yak, is it really working this way? Some helper please? */
2440 	skb->len -= shiftlen;
2441 	skb->data_len -= shiftlen;
2442 	skb->truesize -= shiftlen;
2443 	tgt->len += shiftlen;
2444 	tgt->data_len += shiftlen;
2445 	tgt->truesize += shiftlen;
2446 
2447 	return shiftlen;
2448 }
2449 
2450 /**
2451  * skb_prepare_seq_read - Prepare a sequential read of skb data
2452  * @skb: the buffer to read
2453  * @from: lower offset of data to be read
2454  * @to: upper offset of data to be read
2455  * @st: state variable
2456  *
2457  * Initializes the specified state variable. Must be called before
2458  * invoking skb_seq_read() for the first time.
2459  */
2460 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2461 			  unsigned int to, struct skb_seq_state *st)
2462 {
2463 	st->lower_offset = from;
2464 	st->upper_offset = to;
2465 	st->root_skb = st->cur_skb = skb;
2466 	st->frag_idx = st->stepped_offset = 0;
2467 	st->frag_data = NULL;
2468 }
2469 EXPORT_SYMBOL(skb_prepare_seq_read);
2470 
2471 /**
2472  * skb_seq_read - Sequentially read skb data
2473  * @consumed: number of bytes consumed by the caller so far
2474  * @data: destination pointer for data to be returned
2475  * @st: state variable
2476  *
2477  * Reads a block of skb data at &consumed relative to the
2478  * lower offset specified to skb_prepare_seq_read(). Assigns
2479  * the head of the data block to &data and returns the length
2480  * of the block or 0 if the end of the skb data or the upper
2481  * offset has been reached.
2482  *
2483  * The caller is not required to consume all of the data
2484  * returned, i.e. &consumed is typically set to the number
2485  * of bytes already consumed and the next call to
2486  * skb_seq_read() will return the remaining part of the block.
2487  *
2488  * Note 1: The size of each block of data returned can be arbitrary,
2489  *       this limitation is the cost for zerocopy seqeuental
2490  *       reads of potentially non linear data.
2491  *
2492  * Note 2: Fragment lists within fragments are not implemented
2493  *       at the moment, state->root_skb could be replaced with
2494  *       a stack for this purpose.
2495  */
2496 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2497 			  struct skb_seq_state *st)
2498 {
2499 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2500 	skb_frag_t *frag;
2501 
2502 	if (unlikely(abs_offset >= st->upper_offset))
2503 		return 0;
2504 
2505 next_skb:
2506 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2507 
2508 	if (abs_offset < block_limit && !st->frag_data) {
2509 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2510 		return block_limit - abs_offset;
2511 	}
2512 
2513 	if (st->frag_idx == 0 && !st->frag_data)
2514 		st->stepped_offset += skb_headlen(st->cur_skb);
2515 
2516 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2517 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2518 		block_limit = skb_frag_size(frag) + st->stepped_offset;
2519 
2520 		if (abs_offset < block_limit) {
2521 			if (!st->frag_data)
2522 				st->frag_data = kmap_atomic(skb_frag_page(frag));
2523 
2524 			*data = (u8 *) st->frag_data + frag->page_offset +
2525 				(abs_offset - st->stepped_offset);
2526 
2527 			return block_limit - abs_offset;
2528 		}
2529 
2530 		if (st->frag_data) {
2531 			kunmap_atomic(st->frag_data);
2532 			st->frag_data = NULL;
2533 		}
2534 
2535 		st->frag_idx++;
2536 		st->stepped_offset += skb_frag_size(frag);
2537 	}
2538 
2539 	if (st->frag_data) {
2540 		kunmap_atomic(st->frag_data);
2541 		st->frag_data = NULL;
2542 	}
2543 
2544 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2545 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2546 		st->frag_idx = 0;
2547 		goto next_skb;
2548 	} else if (st->cur_skb->next) {
2549 		st->cur_skb = st->cur_skb->next;
2550 		st->frag_idx = 0;
2551 		goto next_skb;
2552 	}
2553 
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL(skb_seq_read);
2557 
2558 /**
2559  * skb_abort_seq_read - Abort a sequential read of skb data
2560  * @st: state variable
2561  *
2562  * Must be called if skb_seq_read() was not called until it
2563  * returned 0.
2564  */
2565 void skb_abort_seq_read(struct skb_seq_state *st)
2566 {
2567 	if (st->frag_data)
2568 		kunmap_atomic(st->frag_data);
2569 }
2570 EXPORT_SYMBOL(skb_abort_seq_read);
2571 
2572 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
2573 
2574 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2575 					  struct ts_config *conf,
2576 					  struct ts_state *state)
2577 {
2578 	return skb_seq_read(offset, text, TS_SKB_CB(state));
2579 }
2580 
2581 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2582 {
2583 	skb_abort_seq_read(TS_SKB_CB(state));
2584 }
2585 
2586 /**
2587  * skb_find_text - Find a text pattern in skb data
2588  * @skb: the buffer to look in
2589  * @from: search offset
2590  * @to: search limit
2591  * @config: textsearch configuration
2592  * @state: uninitialized textsearch state variable
2593  *
2594  * Finds a pattern in the skb data according to the specified
2595  * textsearch configuration. Use textsearch_next() to retrieve
2596  * subsequent occurrences of the pattern. Returns the offset
2597  * to the first occurrence or UINT_MAX if no match was found.
2598  */
2599 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2600 			   unsigned int to, struct ts_config *config,
2601 			   struct ts_state *state)
2602 {
2603 	unsigned int ret;
2604 
2605 	config->get_next_block = skb_ts_get_next_block;
2606 	config->finish = skb_ts_finish;
2607 
2608 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2609 
2610 	ret = textsearch_find(config, state);
2611 	return (ret <= to - from ? ret : UINT_MAX);
2612 }
2613 EXPORT_SYMBOL(skb_find_text);
2614 
2615 /**
2616  * skb_append_datato_frags: - append the user data to a skb
2617  * @sk: sock  structure
2618  * @skb: skb structure to be appened with user data.
2619  * @getfrag: call back function to be used for getting the user data
2620  * @from: pointer to user message iov
2621  * @length: length of the iov message
2622  *
2623  * Description: This procedure append the user data in the fragment part
2624  * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2625  */
2626 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2627 			int (*getfrag)(void *from, char *to, int offset,
2628 					int len, int odd, struct sk_buff *skb),
2629 			void *from, int length)
2630 {
2631 	int frg_cnt = 0;
2632 	skb_frag_t *frag = NULL;
2633 	struct page *page = NULL;
2634 	int copy, left;
2635 	int offset = 0;
2636 	int ret;
2637 
2638 	do {
2639 		/* Return error if we don't have space for new frag */
2640 		frg_cnt = skb_shinfo(skb)->nr_frags;
2641 		if (frg_cnt >= MAX_SKB_FRAGS)
2642 			return -EFAULT;
2643 
2644 		/* allocate a new page for next frag */
2645 		page = alloc_pages(sk->sk_allocation, 0);
2646 
2647 		/* If alloc_page fails just return failure and caller will
2648 		 * free previous allocated pages by doing kfree_skb()
2649 		 */
2650 		if (page == NULL)
2651 			return -ENOMEM;
2652 
2653 		/* initialize the next frag */
2654 		skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2655 		skb->truesize += PAGE_SIZE;
2656 		atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2657 
2658 		/* get the new initialized frag */
2659 		frg_cnt = skb_shinfo(skb)->nr_frags;
2660 		frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2661 
2662 		/* copy the user data to page */
2663 		left = PAGE_SIZE - frag->page_offset;
2664 		copy = (length > left)? left : length;
2665 
2666 		ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2667 			    offset, copy, 0, skb);
2668 		if (ret < 0)
2669 			return -EFAULT;
2670 
2671 		/* copy was successful so update the size parameters */
2672 		skb_frag_size_add(frag, copy);
2673 		skb->len += copy;
2674 		skb->data_len += copy;
2675 		offset += copy;
2676 		length -= copy;
2677 
2678 	} while (length > 0);
2679 
2680 	return 0;
2681 }
2682 EXPORT_SYMBOL(skb_append_datato_frags);
2683 
2684 /**
2685  *	skb_pull_rcsum - pull skb and update receive checksum
2686  *	@skb: buffer to update
2687  *	@len: length of data pulled
2688  *
2689  *	This function performs an skb_pull on the packet and updates
2690  *	the CHECKSUM_COMPLETE checksum.  It should be used on
2691  *	receive path processing instead of skb_pull unless you know
2692  *	that the checksum difference is zero (e.g., a valid IP header)
2693  *	or you are setting ip_summed to CHECKSUM_NONE.
2694  */
2695 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2696 {
2697 	BUG_ON(len > skb->len);
2698 	skb->len -= len;
2699 	BUG_ON(skb->len < skb->data_len);
2700 	skb_postpull_rcsum(skb, skb->data, len);
2701 	return skb->data += len;
2702 }
2703 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2704 
2705 /**
2706  *	skb_segment - Perform protocol segmentation on skb.
2707  *	@skb: buffer to segment
2708  *	@features: features for the output path (see dev->features)
2709  *
2710  *	This function performs segmentation on the given skb.  It returns
2711  *	a pointer to the first in a list of new skbs for the segments.
2712  *	In case of error it returns ERR_PTR(err).
2713  */
2714 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2715 {
2716 	struct sk_buff *segs = NULL;
2717 	struct sk_buff *tail = NULL;
2718 	struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2719 	unsigned int mss = skb_shinfo(skb)->gso_size;
2720 	unsigned int doffset = skb->data - skb_mac_header(skb);
2721 	unsigned int offset = doffset;
2722 	unsigned int headroom;
2723 	unsigned int len;
2724 	int sg = !!(features & NETIF_F_SG);
2725 	int nfrags = skb_shinfo(skb)->nr_frags;
2726 	int err = -ENOMEM;
2727 	int i = 0;
2728 	int pos;
2729 
2730 	__skb_push(skb, doffset);
2731 	headroom = skb_headroom(skb);
2732 	pos = skb_headlen(skb);
2733 
2734 	do {
2735 		struct sk_buff *nskb;
2736 		skb_frag_t *frag;
2737 		int hsize;
2738 		int size;
2739 
2740 		len = skb->len - offset;
2741 		if (len > mss)
2742 			len = mss;
2743 
2744 		hsize = skb_headlen(skb) - offset;
2745 		if (hsize < 0)
2746 			hsize = 0;
2747 		if (hsize > len || !sg)
2748 			hsize = len;
2749 
2750 		if (!hsize && i >= nfrags) {
2751 			BUG_ON(fskb->len != len);
2752 
2753 			pos += len;
2754 			nskb = skb_clone(fskb, GFP_ATOMIC);
2755 			fskb = fskb->next;
2756 
2757 			if (unlikely(!nskb))
2758 				goto err;
2759 
2760 			hsize = skb_end_offset(nskb);
2761 			if (skb_cow_head(nskb, doffset + headroom)) {
2762 				kfree_skb(nskb);
2763 				goto err;
2764 			}
2765 
2766 			nskb->truesize += skb_end_offset(nskb) - hsize;
2767 			skb_release_head_state(nskb);
2768 			__skb_push(nskb, doffset);
2769 		} else {
2770 			nskb = alloc_skb(hsize + doffset + headroom,
2771 					 GFP_ATOMIC);
2772 
2773 			if (unlikely(!nskb))
2774 				goto err;
2775 
2776 			skb_reserve(nskb, headroom);
2777 			__skb_put(nskb, doffset);
2778 		}
2779 
2780 		if (segs)
2781 			tail->next = nskb;
2782 		else
2783 			segs = nskb;
2784 		tail = nskb;
2785 
2786 		__copy_skb_header(nskb, skb);
2787 		nskb->mac_len = skb->mac_len;
2788 
2789 		/* nskb and skb might have different headroom */
2790 		if (nskb->ip_summed == CHECKSUM_PARTIAL)
2791 			nskb->csum_start += skb_headroom(nskb) - headroom;
2792 
2793 		skb_reset_mac_header(nskb);
2794 		skb_set_network_header(nskb, skb->mac_len);
2795 		nskb->transport_header = (nskb->network_header +
2796 					  skb_network_header_len(skb));
2797 		skb_copy_from_linear_data(skb, nskb->data, doffset);
2798 
2799 		if (fskb != skb_shinfo(skb)->frag_list)
2800 			continue;
2801 
2802 		if (!sg) {
2803 			nskb->ip_summed = CHECKSUM_NONE;
2804 			nskb->csum = skb_copy_and_csum_bits(skb, offset,
2805 							    skb_put(nskb, len),
2806 							    len, 0);
2807 			continue;
2808 		}
2809 
2810 		frag = skb_shinfo(nskb)->frags;
2811 
2812 		skb_copy_from_linear_data_offset(skb, offset,
2813 						 skb_put(nskb, hsize), hsize);
2814 
2815 		while (pos < offset + len && i < nfrags) {
2816 			*frag = skb_shinfo(skb)->frags[i];
2817 			__skb_frag_ref(frag);
2818 			size = skb_frag_size(frag);
2819 
2820 			if (pos < offset) {
2821 				frag->page_offset += offset - pos;
2822 				skb_frag_size_sub(frag, offset - pos);
2823 			}
2824 
2825 			skb_shinfo(nskb)->nr_frags++;
2826 
2827 			if (pos + size <= offset + len) {
2828 				i++;
2829 				pos += size;
2830 			} else {
2831 				skb_frag_size_sub(frag, pos + size - (offset + len));
2832 				goto skip_fraglist;
2833 			}
2834 
2835 			frag++;
2836 		}
2837 
2838 		if (pos < offset + len) {
2839 			struct sk_buff *fskb2 = fskb;
2840 
2841 			BUG_ON(pos + fskb->len != offset + len);
2842 
2843 			pos += fskb->len;
2844 			fskb = fskb->next;
2845 
2846 			if (fskb2->next) {
2847 				fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2848 				if (!fskb2)
2849 					goto err;
2850 			} else
2851 				skb_get(fskb2);
2852 
2853 			SKB_FRAG_ASSERT(nskb);
2854 			skb_shinfo(nskb)->frag_list = fskb2;
2855 		}
2856 
2857 skip_fraglist:
2858 		nskb->data_len = len - hsize;
2859 		nskb->len += nskb->data_len;
2860 		nskb->truesize += nskb->data_len;
2861 	} while ((offset += len) < skb->len);
2862 
2863 	return segs;
2864 
2865 err:
2866 	while ((skb = segs)) {
2867 		segs = skb->next;
2868 		kfree_skb(skb);
2869 	}
2870 	return ERR_PTR(err);
2871 }
2872 EXPORT_SYMBOL_GPL(skb_segment);
2873 
2874 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2875 {
2876 	struct sk_buff *p = *head;
2877 	struct sk_buff *nskb;
2878 	struct skb_shared_info *skbinfo = skb_shinfo(skb);
2879 	struct skb_shared_info *pinfo = skb_shinfo(p);
2880 	unsigned int headroom;
2881 	unsigned int len = skb_gro_len(skb);
2882 	unsigned int offset = skb_gro_offset(skb);
2883 	unsigned int headlen = skb_headlen(skb);
2884 	unsigned int delta_truesize;
2885 
2886 	if (p->len + len >= 65536)
2887 		return -E2BIG;
2888 
2889 	if (pinfo->frag_list)
2890 		goto merge;
2891 	else if (headlen <= offset) {
2892 		skb_frag_t *frag;
2893 		skb_frag_t *frag2;
2894 		int i = skbinfo->nr_frags;
2895 		int nr_frags = pinfo->nr_frags + i;
2896 
2897 		offset -= headlen;
2898 
2899 		if (nr_frags > MAX_SKB_FRAGS)
2900 			return -E2BIG;
2901 
2902 		pinfo->nr_frags = nr_frags;
2903 		skbinfo->nr_frags = 0;
2904 
2905 		frag = pinfo->frags + nr_frags;
2906 		frag2 = skbinfo->frags + i;
2907 		do {
2908 			*--frag = *--frag2;
2909 		} while (--i);
2910 
2911 		frag->page_offset += offset;
2912 		skb_frag_size_sub(frag, offset);
2913 
2914 		/* all fragments truesize : remove (head size + sk_buff) */
2915 		delta_truesize = skb->truesize -
2916 				 SKB_TRUESIZE(skb_end_offset(skb));
2917 
2918 		skb->truesize -= skb->data_len;
2919 		skb->len -= skb->data_len;
2920 		skb->data_len = 0;
2921 
2922 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2923 		goto done;
2924 	} else if (skb->head_frag) {
2925 		int nr_frags = pinfo->nr_frags;
2926 		skb_frag_t *frag = pinfo->frags + nr_frags;
2927 		struct page *page = virt_to_head_page(skb->head);
2928 		unsigned int first_size = headlen - offset;
2929 		unsigned int first_offset;
2930 
2931 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2932 			return -E2BIG;
2933 
2934 		first_offset = skb->data -
2935 			       (unsigned char *)page_address(page) +
2936 			       offset;
2937 
2938 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
2939 
2940 		frag->page.p	  = page;
2941 		frag->page_offset = first_offset;
2942 		skb_frag_size_set(frag, first_size);
2943 
2944 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
2945 		/* We dont need to clear skbinfo->nr_frags here */
2946 
2947 		delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
2948 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
2949 		goto done;
2950 	} else if (skb_gro_len(p) != pinfo->gso_size)
2951 		return -E2BIG;
2952 
2953 	headroom = skb_headroom(p);
2954 	nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
2955 	if (unlikely(!nskb))
2956 		return -ENOMEM;
2957 
2958 	__copy_skb_header(nskb, p);
2959 	nskb->mac_len = p->mac_len;
2960 
2961 	skb_reserve(nskb, headroom);
2962 	__skb_put(nskb, skb_gro_offset(p));
2963 
2964 	skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
2965 	skb_set_network_header(nskb, skb_network_offset(p));
2966 	skb_set_transport_header(nskb, skb_transport_offset(p));
2967 
2968 	__skb_pull(p, skb_gro_offset(p));
2969 	memcpy(skb_mac_header(nskb), skb_mac_header(p),
2970 	       p->data - skb_mac_header(p));
2971 
2972 	*NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
2973 	skb_shinfo(nskb)->frag_list = p;
2974 	skb_shinfo(nskb)->gso_size = pinfo->gso_size;
2975 	pinfo->gso_size = 0;
2976 	skb_header_release(p);
2977 	nskb->prev = p;
2978 
2979 	nskb->data_len += p->len;
2980 	nskb->truesize += p->truesize;
2981 	nskb->len += p->len;
2982 
2983 	*head = nskb;
2984 	nskb->next = p->next;
2985 	p->next = NULL;
2986 
2987 	p = nskb;
2988 
2989 merge:
2990 	delta_truesize = skb->truesize;
2991 	if (offset > headlen) {
2992 		unsigned int eat = offset - headlen;
2993 
2994 		skbinfo->frags[0].page_offset += eat;
2995 		skb_frag_size_sub(&skbinfo->frags[0], eat);
2996 		skb->data_len -= eat;
2997 		skb->len -= eat;
2998 		offset = headlen;
2999 	}
3000 
3001 	__skb_pull(skb, offset);
3002 
3003 	p->prev->next = skb;
3004 	p->prev = skb;
3005 	skb_header_release(skb);
3006 
3007 done:
3008 	NAPI_GRO_CB(p)->count++;
3009 	p->data_len += len;
3010 	p->truesize += delta_truesize;
3011 	p->len += len;
3012 
3013 	NAPI_GRO_CB(skb)->same_flow = 1;
3014 	return 0;
3015 }
3016 EXPORT_SYMBOL_GPL(skb_gro_receive);
3017 
3018 void __init skb_init(void)
3019 {
3020 	skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3021 					      sizeof(struct sk_buff),
3022 					      0,
3023 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3024 					      NULL);
3025 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3026 						(2*sizeof(struct sk_buff)) +
3027 						sizeof(atomic_t),
3028 						0,
3029 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3030 						NULL);
3031 }
3032 
3033 /**
3034  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3035  *	@skb: Socket buffer containing the buffers to be mapped
3036  *	@sg: The scatter-gather list to map into
3037  *	@offset: The offset into the buffer's contents to start mapping
3038  *	@len: Length of buffer space to be mapped
3039  *
3040  *	Fill the specified scatter-gather list with mappings/pointers into a
3041  *	region of the buffer space attached to a socket buffer.
3042  */
3043 static int
3044 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3045 {
3046 	int start = skb_headlen(skb);
3047 	int i, copy = start - offset;
3048 	struct sk_buff *frag_iter;
3049 	int elt = 0;
3050 
3051 	if (copy > 0) {
3052 		if (copy > len)
3053 			copy = len;
3054 		sg_set_buf(sg, skb->data + offset, copy);
3055 		elt++;
3056 		if ((len -= copy) == 0)
3057 			return elt;
3058 		offset += copy;
3059 	}
3060 
3061 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3062 		int end;
3063 
3064 		WARN_ON(start > offset + len);
3065 
3066 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3067 		if ((copy = end - offset) > 0) {
3068 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3069 
3070 			if (copy > len)
3071 				copy = len;
3072 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3073 					frag->page_offset+offset-start);
3074 			elt++;
3075 			if (!(len -= copy))
3076 				return elt;
3077 			offset += copy;
3078 		}
3079 		start = end;
3080 	}
3081 
3082 	skb_walk_frags(skb, frag_iter) {
3083 		int end;
3084 
3085 		WARN_ON(start > offset + len);
3086 
3087 		end = start + frag_iter->len;
3088 		if ((copy = end - offset) > 0) {
3089 			if (copy > len)
3090 				copy = len;
3091 			elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3092 					      copy);
3093 			if ((len -= copy) == 0)
3094 				return elt;
3095 			offset += copy;
3096 		}
3097 		start = end;
3098 	}
3099 	BUG_ON(len);
3100 	return elt;
3101 }
3102 
3103 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3104 {
3105 	int nsg = __skb_to_sgvec(skb, sg, offset, len);
3106 
3107 	sg_mark_end(&sg[nsg - 1]);
3108 
3109 	return nsg;
3110 }
3111 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3112 
3113 /**
3114  *	skb_cow_data - Check that a socket buffer's data buffers are writable
3115  *	@skb: The socket buffer to check.
3116  *	@tailbits: Amount of trailing space to be added
3117  *	@trailer: Returned pointer to the skb where the @tailbits space begins
3118  *
3119  *	Make sure that the data buffers attached to a socket buffer are
3120  *	writable. If they are not, private copies are made of the data buffers
3121  *	and the socket buffer is set to use these instead.
3122  *
3123  *	If @tailbits is given, make sure that there is space to write @tailbits
3124  *	bytes of data beyond current end of socket buffer.  @trailer will be
3125  *	set to point to the skb in which this space begins.
3126  *
3127  *	The number of scatterlist elements required to completely map the
3128  *	COW'd and extended socket buffer will be returned.
3129  */
3130 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3131 {
3132 	int copyflag;
3133 	int elt;
3134 	struct sk_buff *skb1, **skb_p;
3135 
3136 	/* If skb is cloned or its head is paged, reallocate
3137 	 * head pulling out all the pages (pages are considered not writable
3138 	 * at the moment even if they are anonymous).
3139 	 */
3140 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3141 	    __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3142 		return -ENOMEM;
3143 
3144 	/* Easy case. Most of packets will go this way. */
3145 	if (!skb_has_frag_list(skb)) {
3146 		/* A little of trouble, not enough of space for trailer.
3147 		 * This should not happen, when stack is tuned to generate
3148 		 * good frames. OK, on miss we reallocate and reserve even more
3149 		 * space, 128 bytes is fair. */
3150 
3151 		if (skb_tailroom(skb) < tailbits &&
3152 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3153 			return -ENOMEM;
3154 
3155 		/* Voila! */
3156 		*trailer = skb;
3157 		return 1;
3158 	}
3159 
3160 	/* Misery. We are in troubles, going to mincer fragments... */
3161 
3162 	elt = 1;
3163 	skb_p = &skb_shinfo(skb)->frag_list;
3164 	copyflag = 0;
3165 
3166 	while ((skb1 = *skb_p) != NULL) {
3167 		int ntail = 0;
3168 
3169 		/* The fragment is partially pulled by someone,
3170 		 * this can happen on input. Copy it and everything
3171 		 * after it. */
3172 
3173 		if (skb_shared(skb1))
3174 			copyflag = 1;
3175 
3176 		/* If the skb is the last, worry about trailer. */
3177 
3178 		if (skb1->next == NULL && tailbits) {
3179 			if (skb_shinfo(skb1)->nr_frags ||
3180 			    skb_has_frag_list(skb1) ||
3181 			    skb_tailroom(skb1) < tailbits)
3182 				ntail = tailbits + 128;
3183 		}
3184 
3185 		if (copyflag ||
3186 		    skb_cloned(skb1) ||
3187 		    ntail ||
3188 		    skb_shinfo(skb1)->nr_frags ||
3189 		    skb_has_frag_list(skb1)) {
3190 			struct sk_buff *skb2;
3191 
3192 			/* Fuck, we are miserable poor guys... */
3193 			if (ntail == 0)
3194 				skb2 = skb_copy(skb1, GFP_ATOMIC);
3195 			else
3196 				skb2 = skb_copy_expand(skb1,
3197 						       skb_headroom(skb1),
3198 						       ntail,
3199 						       GFP_ATOMIC);
3200 			if (unlikely(skb2 == NULL))
3201 				return -ENOMEM;
3202 
3203 			if (skb1->sk)
3204 				skb_set_owner_w(skb2, skb1->sk);
3205 
3206 			/* Looking around. Are we still alive?
3207 			 * OK, link new skb, drop old one */
3208 
3209 			skb2->next = skb1->next;
3210 			*skb_p = skb2;
3211 			kfree_skb(skb1);
3212 			skb1 = skb2;
3213 		}
3214 		elt++;
3215 		*trailer = skb1;
3216 		skb_p = &skb1->next;
3217 	}
3218 
3219 	return elt;
3220 }
3221 EXPORT_SYMBOL_GPL(skb_cow_data);
3222 
3223 static void sock_rmem_free(struct sk_buff *skb)
3224 {
3225 	struct sock *sk = skb->sk;
3226 
3227 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3228 }
3229 
3230 /*
3231  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3232  */
3233 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3234 {
3235 	int len = skb->len;
3236 
3237 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3238 	    (unsigned int)sk->sk_rcvbuf)
3239 		return -ENOMEM;
3240 
3241 	skb_orphan(skb);
3242 	skb->sk = sk;
3243 	skb->destructor = sock_rmem_free;
3244 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3245 
3246 	/* before exiting rcu section, make sure dst is refcounted */
3247 	skb_dst_force(skb);
3248 
3249 	skb_queue_tail(&sk->sk_error_queue, skb);
3250 	if (!sock_flag(sk, SOCK_DEAD))
3251 		sk->sk_data_ready(sk, len);
3252 	return 0;
3253 }
3254 EXPORT_SYMBOL(sock_queue_err_skb);
3255 
3256 void skb_tstamp_tx(struct sk_buff *orig_skb,
3257 		struct skb_shared_hwtstamps *hwtstamps)
3258 {
3259 	struct sock *sk = orig_skb->sk;
3260 	struct sock_exterr_skb *serr;
3261 	struct sk_buff *skb;
3262 	int err;
3263 
3264 	if (!sk)
3265 		return;
3266 
3267 	skb = skb_clone(orig_skb, GFP_ATOMIC);
3268 	if (!skb)
3269 		return;
3270 
3271 	if (hwtstamps) {
3272 		*skb_hwtstamps(skb) =
3273 			*hwtstamps;
3274 	} else {
3275 		/*
3276 		 * no hardware time stamps available,
3277 		 * so keep the shared tx_flags and only
3278 		 * store software time stamp
3279 		 */
3280 		skb->tstamp = ktime_get_real();
3281 	}
3282 
3283 	serr = SKB_EXT_ERR(skb);
3284 	memset(serr, 0, sizeof(*serr));
3285 	serr->ee.ee_errno = ENOMSG;
3286 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3287 
3288 	err = sock_queue_err_skb(sk, skb);
3289 
3290 	if (err)
3291 		kfree_skb(skb);
3292 }
3293 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3294 
3295 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3296 {
3297 	struct sock *sk = skb->sk;
3298 	struct sock_exterr_skb *serr;
3299 	int err;
3300 
3301 	skb->wifi_acked_valid = 1;
3302 	skb->wifi_acked = acked;
3303 
3304 	serr = SKB_EXT_ERR(skb);
3305 	memset(serr, 0, sizeof(*serr));
3306 	serr->ee.ee_errno = ENOMSG;
3307 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3308 
3309 	err = sock_queue_err_skb(sk, skb);
3310 	if (err)
3311 		kfree_skb(skb);
3312 }
3313 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3314 
3315 
3316 /**
3317  * skb_partial_csum_set - set up and verify partial csum values for packet
3318  * @skb: the skb to set
3319  * @start: the number of bytes after skb->data to start checksumming.
3320  * @off: the offset from start to place the checksum.
3321  *
3322  * For untrusted partially-checksummed packets, we need to make sure the values
3323  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3324  *
3325  * This function checks and sets those values and skb->ip_summed: if this
3326  * returns false you should drop the packet.
3327  */
3328 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3329 {
3330 	if (unlikely(start > skb_headlen(skb)) ||
3331 	    unlikely((int)start + off > skb_headlen(skb) - 2)) {
3332 		net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3333 				     start, off, skb_headlen(skb));
3334 		return false;
3335 	}
3336 	skb->ip_summed = CHECKSUM_PARTIAL;
3337 	skb->csum_start = skb_headroom(skb) + start;
3338 	skb->csum_offset = off;
3339 	return true;
3340 }
3341 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3342 
3343 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3344 {
3345 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3346 			     skb->dev->name);
3347 }
3348 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3349 
3350 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3351 {
3352 	if (head_stolen)
3353 		kmem_cache_free(skbuff_head_cache, skb);
3354 	else
3355 		__kfree_skb(skb);
3356 }
3357 EXPORT_SYMBOL(kfree_skb_partial);
3358 
3359 /**
3360  * skb_try_coalesce - try to merge skb to prior one
3361  * @to: prior buffer
3362  * @from: buffer to add
3363  * @fragstolen: pointer to boolean
3364  *
3365  */
3366 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3367 		      bool *fragstolen, int *delta_truesize)
3368 {
3369 	int i, delta, len = from->len;
3370 
3371 	*fragstolen = false;
3372 
3373 	if (skb_cloned(to))
3374 		return false;
3375 
3376 	if (len <= skb_tailroom(to)) {
3377 		BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3378 		*delta_truesize = 0;
3379 		return true;
3380 	}
3381 
3382 	if (skb_has_frag_list(to) || skb_has_frag_list(from))
3383 		return false;
3384 
3385 	if (skb_headlen(from) != 0) {
3386 		struct page *page;
3387 		unsigned int offset;
3388 
3389 		if (skb_shinfo(to)->nr_frags +
3390 		    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3391 			return false;
3392 
3393 		if (skb_head_is_locked(from))
3394 			return false;
3395 
3396 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3397 
3398 		page = virt_to_head_page(from->head);
3399 		offset = from->data - (unsigned char *)page_address(page);
3400 
3401 		skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3402 				   page, offset, skb_headlen(from));
3403 		*fragstolen = true;
3404 	} else {
3405 		if (skb_shinfo(to)->nr_frags +
3406 		    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3407 			return false;
3408 
3409 		delta = from->truesize -
3410 			SKB_TRUESIZE(skb_end_pointer(from) - from->head);
3411 	}
3412 
3413 	WARN_ON_ONCE(delta < len);
3414 
3415 	memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3416 	       skb_shinfo(from)->frags,
3417 	       skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3418 	skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3419 
3420 	if (!skb_cloned(from))
3421 		skb_shinfo(from)->nr_frags = 0;
3422 
3423 	/* if the skb is cloned this does nothing since we set nr_frags to 0 */
3424 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3425 		skb_frag_ref(from, i);
3426 
3427 	to->truesize += delta;
3428 	to->len += len;
3429 	to->data_len += len;
3430 
3431 	*delta_truesize = delta;
3432 	return true;
3433 }
3434 EXPORT_SYMBOL(skb_try_coalesce);
3435