xref: /openbmc/linux/net/core/neighbour.c (revision f6b72b6217f8c24f2a54988e58af858b4e66024d)
1 /*
2  *	Generic address resolution entity
3  *
4  *	Authors:
5  *	Pedro Roque		<roque@di.fc.ul.pt>
6  *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Fixes:
14  *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
15  *	Harald Welte		Add neighbour cache statistics like rtstat
16  */
17 
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39 
40 #define NEIGH_DEBUG 1
41 
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
46 
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
55 
56 #define PNEIGH_HASHMASK		0xF
57 
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
62 
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
67 
68 /*
69    Neighbour hash table buckets are protected with rwlock tbl->lock.
70 
71    - All the scans/updates to hash buckets MUST be made under this lock.
72    - NOTHING clever should be made under this lock: no callbacks
73      to protocol backends, no attempts to send something to network.
74      It will result in deadlocks, if backend/driver wants to use neighbour
75      cache.
76    - If the entry requires some non-trivial actions, increase
77      its reference count and release table lock.
78 
79    Neighbour entries are protected:
80    - with reference count.
81    - with rwlock neigh->lock
82 
83    Reference count prevents destruction.
84 
85    neigh->lock mainly serializes ll address data and its validity state.
86    However, the same lock is used to protect another entry fields:
87     - timer
88     - resolution queue
89 
90    Again, nothing clever shall be made under neigh->lock,
91    the most complicated procedure, which we allow is dev->hard_header.
92    It is supposed, that dev->hard_header is simplistic and does
93    not make callbacks to neighbour tables.
94 
95    The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96    list of neighbour tables. This list is used only in process context,
97  */
98 
99 static DEFINE_RWLOCK(neigh_tbl_lock);
100 
101 static int neigh_blackhole(struct sk_buff *skb)
102 {
103 	kfree_skb(skb);
104 	return -ENETDOWN;
105 }
106 
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
108 {
109 	if (neigh->parms->neigh_cleanup)
110 		neigh->parms->neigh_cleanup(neigh);
111 
112 	__neigh_notify(neigh, RTM_DELNEIGH, 0);
113 	neigh_release(neigh);
114 }
115 
116 /*
117  * It is random distribution in the interval (1/2)*base...(3/2)*base.
118  * It corresponds to default IPv6 settings and is not overridable,
119  * because it is really reasonable choice.
120  */
121 
122 unsigned long neigh_rand_reach_time(unsigned long base)
123 {
124 	return base ? (net_random() % base) + (base >> 1) : 0;
125 }
126 EXPORT_SYMBOL(neigh_rand_reach_time);
127 
128 
129 static int neigh_forced_gc(struct neigh_table *tbl)
130 {
131 	int shrunk = 0;
132 	int i;
133 	struct neigh_hash_table *nht;
134 
135 	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
136 
137 	write_lock_bh(&tbl->lock);
138 	nht = rcu_dereference_protected(tbl->nht,
139 					lockdep_is_held(&tbl->lock));
140 	for (i = 0; i < (1 << nht->hash_shift); i++) {
141 		struct neighbour *n;
142 		struct neighbour __rcu **np;
143 
144 		np = &nht->hash_buckets[i];
145 		while ((n = rcu_dereference_protected(*np,
146 					lockdep_is_held(&tbl->lock))) != NULL) {
147 			/* Neighbour record may be discarded if:
148 			 * - nobody refers to it.
149 			 * - it is not permanent
150 			 */
151 			write_lock(&n->lock);
152 			if (atomic_read(&n->refcnt) == 1 &&
153 			    !(n->nud_state & NUD_PERMANENT)) {
154 				rcu_assign_pointer(*np,
155 					rcu_dereference_protected(n->next,
156 						  lockdep_is_held(&tbl->lock)));
157 				n->dead = 1;
158 				shrunk	= 1;
159 				write_unlock(&n->lock);
160 				neigh_cleanup_and_release(n);
161 				continue;
162 			}
163 			write_unlock(&n->lock);
164 			np = &n->next;
165 		}
166 	}
167 
168 	tbl->last_flush = jiffies;
169 
170 	write_unlock_bh(&tbl->lock);
171 
172 	return shrunk;
173 }
174 
175 static void neigh_add_timer(struct neighbour *n, unsigned long when)
176 {
177 	neigh_hold(n);
178 	if (unlikely(mod_timer(&n->timer, when))) {
179 		printk("NEIGH: BUG, double timer add, state is %x\n",
180 		       n->nud_state);
181 		dump_stack();
182 	}
183 }
184 
185 static int neigh_del_timer(struct neighbour *n)
186 {
187 	if ((n->nud_state & NUD_IN_TIMER) &&
188 	    del_timer(&n->timer)) {
189 		neigh_release(n);
190 		return 1;
191 	}
192 	return 0;
193 }
194 
195 static void pneigh_queue_purge(struct sk_buff_head *list)
196 {
197 	struct sk_buff *skb;
198 
199 	while ((skb = skb_dequeue(list)) != NULL) {
200 		dev_put(skb->dev);
201 		kfree_skb(skb);
202 	}
203 }
204 
205 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
206 {
207 	int i;
208 	struct neigh_hash_table *nht;
209 
210 	nht = rcu_dereference_protected(tbl->nht,
211 					lockdep_is_held(&tbl->lock));
212 
213 	for (i = 0; i < (1 << nht->hash_shift); i++) {
214 		struct neighbour *n;
215 		struct neighbour __rcu **np = &nht->hash_buckets[i];
216 
217 		while ((n = rcu_dereference_protected(*np,
218 					lockdep_is_held(&tbl->lock))) != NULL) {
219 			if (dev && n->dev != dev) {
220 				np = &n->next;
221 				continue;
222 			}
223 			rcu_assign_pointer(*np,
224 				   rcu_dereference_protected(n->next,
225 						lockdep_is_held(&tbl->lock)));
226 			write_lock(&n->lock);
227 			neigh_del_timer(n);
228 			n->dead = 1;
229 
230 			if (atomic_read(&n->refcnt) != 1) {
231 				/* The most unpleasant situation.
232 				   We must destroy neighbour entry,
233 				   but someone still uses it.
234 
235 				   The destroy will be delayed until
236 				   the last user releases us, but
237 				   we must kill timers etc. and move
238 				   it to safe state.
239 				 */
240 				skb_queue_purge(&n->arp_queue);
241 				n->output = neigh_blackhole;
242 				if (n->nud_state & NUD_VALID)
243 					n->nud_state = NUD_NOARP;
244 				else
245 					n->nud_state = NUD_NONE;
246 				NEIGH_PRINTK2("neigh %p is stray.\n", n);
247 			}
248 			write_unlock(&n->lock);
249 			neigh_cleanup_and_release(n);
250 		}
251 	}
252 }
253 
254 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
255 {
256 	write_lock_bh(&tbl->lock);
257 	neigh_flush_dev(tbl, dev);
258 	write_unlock_bh(&tbl->lock);
259 }
260 EXPORT_SYMBOL(neigh_changeaddr);
261 
262 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
263 {
264 	write_lock_bh(&tbl->lock);
265 	neigh_flush_dev(tbl, dev);
266 	pneigh_ifdown(tbl, dev);
267 	write_unlock_bh(&tbl->lock);
268 
269 	del_timer_sync(&tbl->proxy_timer);
270 	pneigh_queue_purge(&tbl->proxy_queue);
271 	return 0;
272 }
273 EXPORT_SYMBOL(neigh_ifdown);
274 
275 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
276 {
277 	struct neighbour *n = NULL;
278 	unsigned long now = jiffies;
279 	int entries;
280 
281 	entries = atomic_inc_return(&tbl->entries) - 1;
282 	if (entries >= tbl->gc_thresh3 ||
283 	    (entries >= tbl->gc_thresh2 &&
284 	     time_after(now, tbl->last_flush + 5 * HZ))) {
285 		if (!neigh_forced_gc(tbl) &&
286 		    entries >= tbl->gc_thresh3)
287 			goto out_entries;
288 	}
289 
290 	n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
291 	if (!n)
292 		goto out_entries;
293 
294 	skb_queue_head_init(&n->arp_queue);
295 	rwlock_init(&n->lock);
296 	seqlock_init(&n->ha_lock);
297 	n->updated	  = n->used = now;
298 	n->nud_state	  = NUD_NONE;
299 	n->output	  = neigh_blackhole;
300 	seqlock_init(&n->hh.hh_lock);
301 	n->parms	  = neigh_parms_clone(&tbl->parms);
302 	setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
303 
304 	NEIGH_CACHE_STAT_INC(tbl, allocs);
305 	n->tbl		  = tbl;
306 	atomic_set(&n->refcnt, 1);
307 	n->dead		  = 1;
308 out:
309 	return n;
310 
311 out_entries:
312 	atomic_dec(&tbl->entries);
313 	goto out;
314 }
315 
316 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
317 {
318 	size_t size = (1 << shift) * sizeof(struct neighbour *);
319 	struct neigh_hash_table *ret;
320 	struct neighbour __rcu **buckets;
321 
322 	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
323 	if (!ret)
324 		return NULL;
325 	if (size <= PAGE_SIZE)
326 		buckets = kzalloc(size, GFP_ATOMIC);
327 	else
328 		buckets = (struct neighbour __rcu **)
329 			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
330 					   get_order(size));
331 	if (!buckets) {
332 		kfree(ret);
333 		return NULL;
334 	}
335 	ret->hash_buckets = buckets;
336 	ret->hash_shift = shift;
337 	get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
338 	ret->hash_rnd |= 1;
339 	return ret;
340 }
341 
342 static void neigh_hash_free_rcu(struct rcu_head *head)
343 {
344 	struct neigh_hash_table *nht = container_of(head,
345 						    struct neigh_hash_table,
346 						    rcu);
347 	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
348 	struct neighbour __rcu **buckets = nht->hash_buckets;
349 
350 	if (size <= PAGE_SIZE)
351 		kfree(buckets);
352 	else
353 		free_pages((unsigned long)buckets, get_order(size));
354 	kfree(nht);
355 }
356 
357 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
358 						unsigned long new_shift)
359 {
360 	unsigned int i, hash;
361 	struct neigh_hash_table *new_nht, *old_nht;
362 
363 	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
364 
365 	old_nht = rcu_dereference_protected(tbl->nht,
366 					    lockdep_is_held(&tbl->lock));
367 	new_nht = neigh_hash_alloc(new_shift);
368 	if (!new_nht)
369 		return old_nht;
370 
371 	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
372 		struct neighbour *n, *next;
373 
374 		for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
375 						   lockdep_is_held(&tbl->lock));
376 		     n != NULL;
377 		     n = next) {
378 			hash = tbl->hash(n->primary_key, n->dev,
379 					 new_nht->hash_rnd);
380 
381 			hash >>= (32 - new_nht->hash_shift);
382 			next = rcu_dereference_protected(n->next,
383 						lockdep_is_held(&tbl->lock));
384 
385 			rcu_assign_pointer(n->next,
386 					   rcu_dereference_protected(
387 						new_nht->hash_buckets[hash],
388 						lockdep_is_held(&tbl->lock)));
389 			rcu_assign_pointer(new_nht->hash_buckets[hash], n);
390 		}
391 	}
392 
393 	rcu_assign_pointer(tbl->nht, new_nht);
394 	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
395 	return new_nht;
396 }
397 
398 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
399 			       struct net_device *dev)
400 {
401 	struct neighbour *n;
402 	int key_len = tbl->key_len;
403 	u32 hash_val;
404 	struct neigh_hash_table *nht;
405 
406 	NEIGH_CACHE_STAT_INC(tbl, lookups);
407 
408 	rcu_read_lock_bh();
409 	nht = rcu_dereference_bh(tbl->nht);
410 	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
411 
412 	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
413 	     n != NULL;
414 	     n = rcu_dereference_bh(n->next)) {
415 		if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
416 			if (!atomic_inc_not_zero(&n->refcnt))
417 				n = NULL;
418 			NEIGH_CACHE_STAT_INC(tbl, hits);
419 			break;
420 		}
421 	}
422 
423 	rcu_read_unlock_bh();
424 	return n;
425 }
426 EXPORT_SYMBOL(neigh_lookup);
427 
428 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
429 				     const void *pkey)
430 {
431 	struct neighbour *n;
432 	int key_len = tbl->key_len;
433 	u32 hash_val;
434 	struct neigh_hash_table *nht;
435 
436 	NEIGH_CACHE_STAT_INC(tbl, lookups);
437 
438 	rcu_read_lock_bh();
439 	nht = rcu_dereference_bh(tbl->nht);
440 	hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
441 
442 	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
443 	     n != NULL;
444 	     n = rcu_dereference_bh(n->next)) {
445 		if (!memcmp(n->primary_key, pkey, key_len) &&
446 		    net_eq(dev_net(n->dev), net)) {
447 			if (!atomic_inc_not_zero(&n->refcnt))
448 				n = NULL;
449 			NEIGH_CACHE_STAT_INC(tbl, hits);
450 			break;
451 		}
452 	}
453 
454 	rcu_read_unlock_bh();
455 	return n;
456 }
457 EXPORT_SYMBOL(neigh_lookup_nodev);
458 
459 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
460 			       struct net_device *dev)
461 {
462 	u32 hash_val;
463 	int key_len = tbl->key_len;
464 	int error;
465 	struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
466 	struct neigh_hash_table *nht;
467 
468 	if (!n) {
469 		rc = ERR_PTR(-ENOBUFS);
470 		goto out;
471 	}
472 
473 	memcpy(n->primary_key, pkey, key_len);
474 	n->dev = dev;
475 	dev_hold(dev);
476 
477 	/* Protocol specific setup. */
478 	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
479 		rc = ERR_PTR(error);
480 		goto out_neigh_release;
481 	}
482 
483 	/* Device specific setup. */
484 	if (n->parms->neigh_setup &&
485 	    (error = n->parms->neigh_setup(n)) < 0) {
486 		rc = ERR_PTR(error);
487 		goto out_neigh_release;
488 	}
489 
490 	n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
491 
492 	write_lock_bh(&tbl->lock);
493 	nht = rcu_dereference_protected(tbl->nht,
494 					lockdep_is_held(&tbl->lock));
495 
496 	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
497 		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
498 
499 	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
500 
501 	if (n->parms->dead) {
502 		rc = ERR_PTR(-EINVAL);
503 		goto out_tbl_unlock;
504 	}
505 
506 	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
507 					    lockdep_is_held(&tbl->lock));
508 	     n1 != NULL;
509 	     n1 = rcu_dereference_protected(n1->next,
510 			lockdep_is_held(&tbl->lock))) {
511 		if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
512 			neigh_hold(n1);
513 			rc = n1;
514 			goto out_tbl_unlock;
515 		}
516 	}
517 
518 	n->dead = 0;
519 	neigh_hold(n);
520 	rcu_assign_pointer(n->next,
521 			   rcu_dereference_protected(nht->hash_buckets[hash_val],
522 						     lockdep_is_held(&tbl->lock)));
523 	rcu_assign_pointer(nht->hash_buckets[hash_val], n);
524 	write_unlock_bh(&tbl->lock);
525 	NEIGH_PRINTK2("neigh %p is created.\n", n);
526 	rc = n;
527 out:
528 	return rc;
529 out_tbl_unlock:
530 	write_unlock_bh(&tbl->lock);
531 out_neigh_release:
532 	neigh_release(n);
533 	goto out;
534 }
535 EXPORT_SYMBOL(neigh_create);
536 
537 static u32 pneigh_hash(const void *pkey, int key_len)
538 {
539 	u32 hash_val = *(u32 *)(pkey + key_len - 4);
540 	hash_val ^= (hash_val >> 16);
541 	hash_val ^= hash_val >> 8;
542 	hash_val ^= hash_val >> 4;
543 	hash_val &= PNEIGH_HASHMASK;
544 	return hash_val;
545 }
546 
547 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
548 					      struct net *net,
549 					      const void *pkey,
550 					      int key_len,
551 					      struct net_device *dev)
552 {
553 	while (n) {
554 		if (!memcmp(n->key, pkey, key_len) &&
555 		    net_eq(pneigh_net(n), net) &&
556 		    (n->dev == dev || !n->dev))
557 			return n;
558 		n = n->next;
559 	}
560 	return NULL;
561 }
562 
563 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
564 		struct net *net, const void *pkey, struct net_device *dev)
565 {
566 	int key_len = tbl->key_len;
567 	u32 hash_val = pneigh_hash(pkey, key_len);
568 
569 	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
570 				 net, pkey, key_len, dev);
571 }
572 EXPORT_SYMBOL_GPL(__pneigh_lookup);
573 
574 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
575 				    struct net *net, const void *pkey,
576 				    struct net_device *dev, int creat)
577 {
578 	struct pneigh_entry *n;
579 	int key_len = tbl->key_len;
580 	u32 hash_val = pneigh_hash(pkey, key_len);
581 
582 	read_lock_bh(&tbl->lock);
583 	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
584 			      net, pkey, key_len, dev);
585 	read_unlock_bh(&tbl->lock);
586 
587 	if (n || !creat)
588 		goto out;
589 
590 	ASSERT_RTNL();
591 
592 	n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
593 	if (!n)
594 		goto out;
595 
596 	write_pnet(&n->net, hold_net(net));
597 	memcpy(n->key, pkey, key_len);
598 	n->dev = dev;
599 	if (dev)
600 		dev_hold(dev);
601 
602 	if (tbl->pconstructor && tbl->pconstructor(n)) {
603 		if (dev)
604 			dev_put(dev);
605 		release_net(net);
606 		kfree(n);
607 		n = NULL;
608 		goto out;
609 	}
610 
611 	write_lock_bh(&tbl->lock);
612 	n->next = tbl->phash_buckets[hash_val];
613 	tbl->phash_buckets[hash_val] = n;
614 	write_unlock_bh(&tbl->lock);
615 out:
616 	return n;
617 }
618 EXPORT_SYMBOL(pneigh_lookup);
619 
620 
621 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
622 		  struct net_device *dev)
623 {
624 	struct pneigh_entry *n, **np;
625 	int key_len = tbl->key_len;
626 	u32 hash_val = pneigh_hash(pkey, key_len);
627 
628 	write_lock_bh(&tbl->lock);
629 	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
630 	     np = &n->next) {
631 		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
632 		    net_eq(pneigh_net(n), net)) {
633 			*np = n->next;
634 			write_unlock_bh(&tbl->lock);
635 			if (tbl->pdestructor)
636 				tbl->pdestructor(n);
637 			if (n->dev)
638 				dev_put(n->dev);
639 			release_net(pneigh_net(n));
640 			kfree(n);
641 			return 0;
642 		}
643 	}
644 	write_unlock_bh(&tbl->lock);
645 	return -ENOENT;
646 }
647 
648 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
649 {
650 	struct pneigh_entry *n, **np;
651 	u32 h;
652 
653 	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
654 		np = &tbl->phash_buckets[h];
655 		while ((n = *np) != NULL) {
656 			if (!dev || n->dev == dev) {
657 				*np = n->next;
658 				if (tbl->pdestructor)
659 					tbl->pdestructor(n);
660 				if (n->dev)
661 					dev_put(n->dev);
662 				release_net(pneigh_net(n));
663 				kfree(n);
664 				continue;
665 			}
666 			np = &n->next;
667 		}
668 	}
669 	return -ENOENT;
670 }
671 
672 static void neigh_parms_destroy(struct neigh_parms *parms);
673 
674 static inline void neigh_parms_put(struct neigh_parms *parms)
675 {
676 	if (atomic_dec_and_test(&parms->refcnt))
677 		neigh_parms_destroy(parms);
678 }
679 
680 static void neigh_destroy_rcu(struct rcu_head *head)
681 {
682 	struct neighbour *neigh = container_of(head, struct neighbour, rcu);
683 
684 	kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
685 }
686 /*
687  *	neighbour must already be out of the table;
688  *
689  */
690 void neigh_destroy(struct neighbour *neigh)
691 {
692 	struct hh_cache *hh;
693 
694 	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
695 
696 	if (!neigh->dead) {
697 		printk(KERN_WARNING
698 		       "Destroying alive neighbour %p\n", neigh);
699 		dump_stack();
700 		return;
701 	}
702 
703 	if (neigh_del_timer(neigh))
704 		printk(KERN_WARNING "Impossible event.\n");
705 
706 	hh = &neigh->hh;
707 	if (hh->hh_len) {
708 		write_seqlock_bh(&hh->hh_lock);
709 		hh->hh_output = neigh_blackhole;
710 		write_sequnlock_bh(&hh->hh_lock);
711 	}
712 
713 	skb_queue_purge(&neigh->arp_queue);
714 
715 	dev_put(neigh->dev);
716 	neigh_parms_put(neigh->parms);
717 
718 	NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
719 
720 	atomic_dec(&neigh->tbl->entries);
721 	call_rcu(&neigh->rcu, neigh_destroy_rcu);
722 }
723 EXPORT_SYMBOL(neigh_destroy);
724 
725 /* Neighbour state is suspicious;
726    disable fast path.
727 
728    Called with write_locked neigh.
729  */
730 static void neigh_suspect(struct neighbour *neigh)
731 {
732 	struct hh_cache *hh;
733 
734 	NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
735 
736 	neigh->output = neigh->ops->output;
737 
738 	hh = &neigh->hh;
739 	if (hh->hh_len)
740 		hh->hh_output = neigh->ops->output;
741 }
742 
743 /* Neighbour state is OK;
744    enable fast path.
745 
746    Called with write_locked neigh.
747  */
748 static void neigh_connect(struct neighbour *neigh)
749 {
750 	struct hh_cache *hh;
751 
752 	NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
753 
754 	neigh->output = neigh->ops->connected_output;
755 
756 	hh = &neigh->hh;
757 	if (hh->hh_len)
758 		hh->hh_output = neigh->ops->hh_output;
759 }
760 
761 static void neigh_periodic_work(struct work_struct *work)
762 {
763 	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
764 	struct neighbour *n;
765 	struct neighbour __rcu **np;
766 	unsigned int i;
767 	struct neigh_hash_table *nht;
768 
769 	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
770 
771 	write_lock_bh(&tbl->lock);
772 	nht = rcu_dereference_protected(tbl->nht,
773 					lockdep_is_held(&tbl->lock));
774 
775 	/*
776 	 *	periodically recompute ReachableTime from random function
777 	 */
778 
779 	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
780 		struct neigh_parms *p;
781 		tbl->last_rand = jiffies;
782 		for (p = &tbl->parms; p; p = p->next)
783 			p->reachable_time =
784 				neigh_rand_reach_time(p->base_reachable_time);
785 	}
786 
787 	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
788 		np = &nht->hash_buckets[i];
789 
790 		while ((n = rcu_dereference_protected(*np,
791 				lockdep_is_held(&tbl->lock))) != NULL) {
792 			unsigned int state;
793 
794 			write_lock(&n->lock);
795 
796 			state = n->nud_state;
797 			if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
798 				write_unlock(&n->lock);
799 				goto next_elt;
800 			}
801 
802 			if (time_before(n->used, n->confirmed))
803 				n->used = n->confirmed;
804 
805 			if (atomic_read(&n->refcnt) == 1 &&
806 			    (state == NUD_FAILED ||
807 			     time_after(jiffies, n->used + n->parms->gc_staletime))) {
808 				*np = n->next;
809 				n->dead = 1;
810 				write_unlock(&n->lock);
811 				neigh_cleanup_and_release(n);
812 				continue;
813 			}
814 			write_unlock(&n->lock);
815 
816 next_elt:
817 			np = &n->next;
818 		}
819 		/*
820 		 * It's fine to release lock here, even if hash table
821 		 * grows while we are preempted.
822 		 */
823 		write_unlock_bh(&tbl->lock);
824 		cond_resched();
825 		write_lock_bh(&tbl->lock);
826 	}
827 	/* Cycle through all hash buckets every base_reachable_time/2 ticks.
828 	 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
829 	 * base_reachable_time.
830 	 */
831 	schedule_delayed_work(&tbl->gc_work,
832 			      tbl->parms.base_reachable_time >> 1);
833 	write_unlock_bh(&tbl->lock);
834 }
835 
836 static __inline__ int neigh_max_probes(struct neighbour *n)
837 {
838 	struct neigh_parms *p = n->parms;
839 	return (n->nud_state & NUD_PROBE) ?
840 		p->ucast_probes :
841 		p->ucast_probes + p->app_probes + p->mcast_probes;
842 }
843 
844 static void neigh_invalidate(struct neighbour *neigh)
845 	__releases(neigh->lock)
846 	__acquires(neigh->lock)
847 {
848 	struct sk_buff *skb;
849 
850 	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
851 	NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
852 	neigh->updated = jiffies;
853 
854 	/* It is very thin place. report_unreachable is very complicated
855 	   routine. Particularly, it can hit the same neighbour entry!
856 
857 	   So that, we try to be accurate and avoid dead loop. --ANK
858 	 */
859 	while (neigh->nud_state == NUD_FAILED &&
860 	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
861 		write_unlock(&neigh->lock);
862 		neigh->ops->error_report(neigh, skb);
863 		write_lock(&neigh->lock);
864 	}
865 	skb_queue_purge(&neigh->arp_queue);
866 }
867 
868 /* Called when a timer expires for a neighbour entry. */
869 
870 static void neigh_timer_handler(unsigned long arg)
871 {
872 	unsigned long now, next;
873 	struct neighbour *neigh = (struct neighbour *)arg;
874 	unsigned state;
875 	int notify = 0;
876 
877 	write_lock(&neigh->lock);
878 
879 	state = neigh->nud_state;
880 	now = jiffies;
881 	next = now + HZ;
882 
883 	if (!(state & NUD_IN_TIMER)) {
884 #ifndef CONFIG_SMP
885 		printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
886 #endif
887 		goto out;
888 	}
889 
890 	if (state & NUD_REACHABLE) {
891 		if (time_before_eq(now,
892 				   neigh->confirmed + neigh->parms->reachable_time)) {
893 			NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
894 			next = neigh->confirmed + neigh->parms->reachable_time;
895 		} else if (time_before_eq(now,
896 					  neigh->used + neigh->parms->delay_probe_time)) {
897 			NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
898 			neigh->nud_state = NUD_DELAY;
899 			neigh->updated = jiffies;
900 			neigh_suspect(neigh);
901 			next = now + neigh->parms->delay_probe_time;
902 		} else {
903 			NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
904 			neigh->nud_state = NUD_STALE;
905 			neigh->updated = jiffies;
906 			neigh_suspect(neigh);
907 			notify = 1;
908 		}
909 	} else if (state & NUD_DELAY) {
910 		if (time_before_eq(now,
911 				   neigh->confirmed + neigh->parms->delay_probe_time)) {
912 			NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
913 			neigh->nud_state = NUD_REACHABLE;
914 			neigh->updated = jiffies;
915 			neigh_connect(neigh);
916 			notify = 1;
917 			next = neigh->confirmed + neigh->parms->reachable_time;
918 		} else {
919 			NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
920 			neigh->nud_state = NUD_PROBE;
921 			neigh->updated = jiffies;
922 			atomic_set(&neigh->probes, 0);
923 			next = now + neigh->parms->retrans_time;
924 		}
925 	} else {
926 		/* NUD_PROBE|NUD_INCOMPLETE */
927 		next = now + neigh->parms->retrans_time;
928 	}
929 
930 	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
931 	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
932 		neigh->nud_state = NUD_FAILED;
933 		notify = 1;
934 		neigh_invalidate(neigh);
935 	}
936 
937 	if (neigh->nud_state & NUD_IN_TIMER) {
938 		if (time_before(next, jiffies + HZ/2))
939 			next = jiffies + HZ/2;
940 		if (!mod_timer(&neigh->timer, next))
941 			neigh_hold(neigh);
942 	}
943 	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
944 		struct sk_buff *skb = skb_peek(&neigh->arp_queue);
945 		/* keep skb alive even if arp_queue overflows */
946 		if (skb)
947 			skb = skb_copy(skb, GFP_ATOMIC);
948 		write_unlock(&neigh->lock);
949 		neigh->ops->solicit(neigh, skb);
950 		atomic_inc(&neigh->probes);
951 		kfree_skb(skb);
952 	} else {
953 out:
954 		write_unlock(&neigh->lock);
955 	}
956 
957 	if (notify)
958 		neigh_update_notify(neigh);
959 
960 	neigh_release(neigh);
961 }
962 
963 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
964 {
965 	int rc;
966 	unsigned long now;
967 
968 	write_lock_bh(&neigh->lock);
969 
970 	rc = 0;
971 	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
972 		goto out_unlock_bh;
973 
974 	now = jiffies;
975 
976 	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
977 		if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
978 			atomic_set(&neigh->probes, neigh->parms->ucast_probes);
979 			neigh->nud_state     = NUD_INCOMPLETE;
980 			neigh->updated = jiffies;
981 			neigh_add_timer(neigh, now + 1);
982 		} else {
983 			neigh->nud_state = NUD_FAILED;
984 			neigh->updated = jiffies;
985 			write_unlock_bh(&neigh->lock);
986 
987 			kfree_skb(skb);
988 			return 1;
989 		}
990 	} else if (neigh->nud_state & NUD_STALE) {
991 		NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
992 		neigh->nud_state = NUD_DELAY;
993 		neigh->updated = jiffies;
994 		neigh_add_timer(neigh,
995 				jiffies + neigh->parms->delay_probe_time);
996 	}
997 
998 	if (neigh->nud_state == NUD_INCOMPLETE) {
999 		if (skb) {
1000 			if (skb_queue_len(&neigh->arp_queue) >=
1001 			    neigh->parms->queue_len) {
1002 				struct sk_buff *buff;
1003 				buff = __skb_dequeue(&neigh->arp_queue);
1004 				kfree_skb(buff);
1005 				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1006 			}
1007 			skb_dst_force(skb);
1008 			__skb_queue_tail(&neigh->arp_queue, skb);
1009 		}
1010 		rc = 1;
1011 	}
1012 out_unlock_bh:
1013 	write_unlock_bh(&neigh->lock);
1014 	return rc;
1015 }
1016 EXPORT_SYMBOL(__neigh_event_send);
1017 
1018 static void neigh_update_hhs(struct neighbour *neigh)
1019 {
1020 	struct hh_cache *hh;
1021 	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1022 		= NULL;
1023 
1024 	if (neigh->dev->header_ops)
1025 		update = neigh->dev->header_ops->cache_update;
1026 
1027 	if (update) {
1028 		hh = &neigh->hh;
1029 		if (hh->hh_len) {
1030 			write_seqlock_bh(&hh->hh_lock);
1031 			update(hh, neigh->dev, neigh->ha);
1032 			write_sequnlock_bh(&hh->hh_lock);
1033 		}
1034 	}
1035 }
1036 
1037 
1038 
1039 /* Generic update routine.
1040    -- lladdr is new lladdr or NULL, if it is not supplied.
1041    -- new    is new state.
1042    -- flags
1043 	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1044 				if it is different.
1045 	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1046 				lladdr instead of overriding it
1047 				if it is different.
1048 				It also allows to retain current state
1049 				if lladdr is unchanged.
1050 	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1051 
1052 	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1053 				NTF_ROUTER flag.
1054 	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1055 				a router.
1056 
1057    Caller MUST hold reference count on the entry.
1058  */
1059 
1060 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1061 		 u32 flags)
1062 {
1063 	u8 old;
1064 	int err;
1065 	int notify = 0;
1066 	struct net_device *dev;
1067 	int update_isrouter = 0;
1068 
1069 	write_lock_bh(&neigh->lock);
1070 
1071 	dev    = neigh->dev;
1072 	old    = neigh->nud_state;
1073 	err    = -EPERM;
1074 
1075 	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1076 	    (old & (NUD_NOARP | NUD_PERMANENT)))
1077 		goto out;
1078 
1079 	if (!(new & NUD_VALID)) {
1080 		neigh_del_timer(neigh);
1081 		if (old & NUD_CONNECTED)
1082 			neigh_suspect(neigh);
1083 		neigh->nud_state = new;
1084 		err = 0;
1085 		notify = old & NUD_VALID;
1086 		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1087 		    (new & NUD_FAILED)) {
1088 			neigh_invalidate(neigh);
1089 			notify = 1;
1090 		}
1091 		goto out;
1092 	}
1093 
1094 	/* Compare new lladdr with cached one */
1095 	if (!dev->addr_len) {
1096 		/* First case: device needs no address. */
1097 		lladdr = neigh->ha;
1098 	} else if (lladdr) {
1099 		/* The second case: if something is already cached
1100 		   and a new address is proposed:
1101 		   - compare new & old
1102 		   - if they are different, check override flag
1103 		 */
1104 		if ((old & NUD_VALID) &&
1105 		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1106 			lladdr = neigh->ha;
1107 	} else {
1108 		/* No address is supplied; if we know something,
1109 		   use it, otherwise discard the request.
1110 		 */
1111 		err = -EINVAL;
1112 		if (!(old & NUD_VALID))
1113 			goto out;
1114 		lladdr = neigh->ha;
1115 	}
1116 
1117 	if (new & NUD_CONNECTED)
1118 		neigh->confirmed = jiffies;
1119 	neigh->updated = jiffies;
1120 
1121 	/* If entry was valid and address is not changed,
1122 	   do not change entry state, if new one is STALE.
1123 	 */
1124 	err = 0;
1125 	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1126 	if (old & NUD_VALID) {
1127 		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1128 			update_isrouter = 0;
1129 			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1130 			    (old & NUD_CONNECTED)) {
1131 				lladdr = neigh->ha;
1132 				new = NUD_STALE;
1133 			} else
1134 				goto out;
1135 		} else {
1136 			if (lladdr == neigh->ha && new == NUD_STALE &&
1137 			    ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1138 			     (old & NUD_CONNECTED))
1139 			    )
1140 				new = old;
1141 		}
1142 	}
1143 
1144 	if (new != old) {
1145 		neigh_del_timer(neigh);
1146 		if (new & NUD_IN_TIMER)
1147 			neigh_add_timer(neigh, (jiffies +
1148 						((new & NUD_REACHABLE) ?
1149 						 neigh->parms->reachable_time :
1150 						 0)));
1151 		neigh->nud_state = new;
1152 	}
1153 
1154 	if (lladdr != neigh->ha) {
1155 		write_seqlock(&neigh->ha_lock);
1156 		memcpy(&neigh->ha, lladdr, dev->addr_len);
1157 		write_sequnlock(&neigh->ha_lock);
1158 		neigh_update_hhs(neigh);
1159 		if (!(new & NUD_CONNECTED))
1160 			neigh->confirmed = jiffies -
1161 				      (neigh->parms->base_reachable_time << 1);
1162 		notify = 1;
1163 	}
1164 	if (new == old)
1165 		goto out;
1166 	if (new & NUD_CONNECTED)
1167 		neigh_connect(neigh);
1168 	else
1169 		neigh_suspect(neigh);
1170 	if (!(old & NUD_VALID)) {
1171 		struct sk_buff *skb;
1172 
1173 		/* Again: avoid dead loop if something went wrong */
1174 
1175 		while (neigh->nud_state & NUD_VALID &&
1176 		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1177 			struct neighbour *n1 = neigh;
1178 			write_unlock_bh(&neigh->lock);
1179 			/* On shaper/eql skb->dst->neighbour != neigh :( */
1180 			if (skb_dst(skb) && skb_dst(skb)->neighbour)
1181 				n1 = skb_dst(skb)->neighbour;
1182 			n1->output(skb);
1183 			write_lock_bh(&neigh->lock);
1184 		}
1185 		skb_queue_purge(&neigh->arp_queue);
1186 	}
1187 out:
1188 	if (update_isrouter) {
1189 		neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1190 			(neigh->flags | NTF_ROUTER) :
1191 			(neigh->flags & ~NTF_ROUTER);
1192 	}
1193 	write_unlock_bh(&neigh->lock);
1194 
1195 	if (notify)
1196 		neigh_update_notify(neigh);
1197 
1198 	return err;
1199 }
1200 EXPORT_SYMBOL(neigh_update);
1201 
1202 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1203 				 u8 *lladdr, void *saddr,
1204 				 struct net_device *dev)
1205 {
1206 	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1207 						 lladdr || !dev->addr_len);
1208 	if (neigh)
1209 		neigh_update(neigh, lladdr, NUD_STALE,
1210 			     NEIGH_UPDATE_F_OVERRIDE);
1211 	return neigh;
1212 }
1213 EXPORT_SYMBOL(neigh_event_ns);
1214 
1215 /* called with read_lock_bh(&n->lock); */
1216 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1217 {
1218 	struct net_device *dev = dst->dev;
1219 	__be16 prot = dst->ops->protocol;
1220 	struct hh_cache	*hh = &n->hh;
1221 
1222 	write_lock_bh(&n->lock);
1223 
1224 	/* Only one thread can come in here and initialize the
1225 	 * hh_cache entry.
1226 	 */
1227 	if (hh->hh_len)
1228 		goto end;
1229 
1230 	if (dev->header_ops->cache(n, hh, prot))
1231 		goto end;
1232 
1233 	if (n->nud_state & NUD_CONNECTED)
1234 		hh->hh_output = n->ops->hh_output;
1235 	else
1236 		hh->hh_output = n->ops->output;
1237 
1238 end:
1239 	write_unlock_bh(&n->lock);
1240 }
1241 
1242 /* This function can be used in contexts, where only old dev_queue_xmit
1243  * worked, f.e. if you want to override normal output path (eql, shaper),
1244  * but resolution is not made yet.
1245  */
1246 
1247 int neigh_compat_output(struct sk_buff *skb)
1248 {
1249 	struct net_device *dev = skb->dev;
1250 
1251 	__skb_pull(skb, skb_network_offset(skb));
1252 
1253 	if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1254 			    skb->len) < 0 &&
1255 	    dev->header_ops->rebuild(skb))
1256 		return 0;
1257 
1258 	return dev_queue_xmit(skb);
1259 }
1260 EXPORT_SYMBOL(neigh_compat_output);
1261 
1262 /* Slow and careful. */
1263 
1264 int neigh_resolve_output(struct sk_buff *skb)
1265 {
1266 	struct dst_entry *dst = skb_dst(skb);
1267 	struct neighbour *neigh;
1268 	int rc = 0;
1269 
1270 	if (!dst || !(neigh = dst->neighbour))
1271 		goto discard;
1272 
1273 	__skb_pull(skb, skb_network_offset(skb));
1274 
1275 	if (!neigh_event_send(neigh, skb)) {
1276 		int err;
1277 		struct net_device *dev = neigh->dev;
1278 		unsigned int seq;
1279 
1280 		if (dev->header_ops->cache && !neigh->hh.hh_len)
1281 			neigh_hh_init(neigh, dst);
1282 
1283 		do {
1284 			seq = read_seqbegin(&neigh->ha_lock);
1285 			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1286 					      neigh->ha, NULL, skb->len);
1287 		} while (read_seqretry(&neigh->ha_lock, seq));
1288 
1289 		if (err >= 0)
1290 			rc = neigh->ops->queue_xmit(skb);
1291 		else
1292 			goto out_kfree_skb;
1293 	}
1294 out:
1295 	return rc;
1296 discard:
1297 	NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1298 		      dst, dst ? dst->neighbour : NULL);
1299 out_kfree_skb:
1300 	rc = -EINVAL;
1301 	kfree_skb(skb);
1302 	goto out;
1303 }
1304 EXPORT_SYMBOL(neigh_resolve_output);
1305 
1306 /* As fast as possible without hh cache */
1307 
1308 int neigh_connected_output(struct sk_buff *skb)
1309 {
1310 	int err;
1311 	struct dst_entry *dst = skb_dst(skb);
1312 	struct neighbour *neigh = dst->neighbour;
1313 	struct net_device *dev = neigh->dev;
1314 	unsigned int seq;
1315 
1316 	__skb_pull(skb, skb_network_offset(skb));
1317 
1318 	do {
1319 		seq = read_seqbegin(&neigh->ha_lock);
1320 		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1321 				      neigh->ha, NULL, skb->len);
1322 	} while (read_seqretry(&neigh->ha_lock, seq));
1323 
1324 	if (err >= 0)
1325 		err = neigh->ops->queue_xmit(skb);
1326 	else {
1327 		err = -EINVAL;
1328 		kfree_skb(skb);
1329 	}
1330 	return err;
1331 }
1332 EXPORT_SYMBOL(neigh_connected_output);
1333 
1334 static void neigh_proxy_process(unsigned long arg)
1335 {
1336 	struct neigh_table *tbl = (struct neigh_table *)arg;
1337 	long sched_next = 0;
1338 	unsigned long now = jiffies;
1339 	struct sk_buff *skb, *n;
1340 
1341 	spin_lock(&tbl->proxy_queue.lock);
1342 
1343 	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1344 		long tdif = NEIGH_CB(skb)->sched_next - now;
1345 
1346 		if (tdif <= 0) {
1347 			struct net_device *dev = skb->dev;
1348 			__skb_unlink(skb, &tbl->proxy_queue);
1349 			if (tbl->proxy_redo && netif_running(dev))
1350 				tbl->proxy_redo(skb);
1351 			else
1352 				kfree_skb(skb);
1353 
1354 			dev_put(dev);
1355 		} else if (!sched_next || tdif < sched_next)
1356 			sched_next = tdif;
1357 	}
1358 	del_timer(&tbl->proxy_timer);
1359 	if (sched_next)
1360 		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1361 	spin_unlock(&tbl->proxy_queue.lock);
1362 }
1363 
1364 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1365 		    struct sk_buff *skb)
1366 {
1367 	unsigned long now = jiffies;
1368 	unsigned long sched_next = now + (net_random() % p->proxy_delay);
1369 
1370 	if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1371 		kfree_skb(skb);
1372 		return;
1373 	}
1374 
1375 	NEIGH_CB(skb)->sched_next = sched_next;
1376 	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1377 
1378 	spin_lock(&tbl->proxy_queue.lock);
1379 	if (del_timer(&tbl->proxy_timer)) {
1380 		if (time_before(tbl->proxy_timer.expires, sched_next))
1381 			sched_next = tbl->proxy_timer.expires;
1382 	}
1383 	skb_dst_drop(skb);
1384 	dev_hold(skb->dev);
1385 	__skb_queue_tail(&tbl->proxy_queue, skb);
1386 	mod_timer(&tbl->proxy_timer, sched_next);
1387 	spin_unlock(&tbl->proxy_queue.lock);
1388 }
1389 EXPORT_SYMBOL(pneigh_enqueue);
1390 
1391 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1392 						      struct net *net, int ifindex)
1393 {
1394 	struct neigh_parms *p;
1395 
1396 	for (p = &tbl->parms; p; p = p->next) {
1397 		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1398 		    (!p->dev && !ifindex))
1399 			return p;
1400 	}
1401 
1402 	return NULL;
1403 }
1404 
1405 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1406 				      struct neigh_table *tbl)
1407 {
1408 	struct neigh_parms *p, *ref;
1409 	struct net *net = dev_net(dev);
1410 	const struct net_device_ops *ops = dev->netdev_ops;
1411 
1412 	ref = lookup_neigh_parms(tbl, net, 0);
1413 	if (!ref)
1414 		return NULL;
1415 
1416 	p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1417 	if (p) {
1418 		p->tbl		  = tbl;
1419 		atomic_set(&p->refcnt, 1);
1420 		p->reachable_time =
1421 				neigh_rand_reach_time(p->base_reachable_time);
1422 
1423 		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1424 			kfree(p);
1425 			return NULL;
1426 		}
1427 
1428 		dev_hold(dev);
1429 		p->dev = dev;
1430 		write_pnet(&p->net, hold_net(net));
1431 		p->sysctl_table = NULL;
1432 		write_lock_bh(&tbl->lock);
1433 		p->next		= tbl->parms.next;
1434 		tbl->parms.next = p;
1435 		write_unlock_bh(&tbl->lock);
1436 	}
1437 	return p;
1438 }
1439 EXPORT_SYMBOL(neigh_parms_alloc);
1440 
1441 static void neigh_rcu_free_parms(struct rcu_head *head)
1442 {
1443 	struct neigh_parms *parms =
1444 		container_of(head, struct neigh_parms, rcu_head);
1445 
1446 	neigh_parms_put(parms);
1447 }
1448 
1449 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1450 {
1451 	struct neigh_parms **p;
1452 
1453 	if (!parms || parms == &tbl->parms)
1454 		return;
1455 	write_lock_bh(&tbl->lock);
1456 	for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1457 		if (*p == parms) {
1458 			*p = parms->next;
1459 			parms->dead = 1;
1460 			write_unlock_bh(&tbl->lock);
1461 			if (parms->dev)
1462 				dev_put(parms->dev);
1463 			call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1464 			return;
1465 		}
1466 	}
1467 	write_unlock_bh(&tbl->lock);
1468 	NEIGH_PRINTK1("neigh_parms_release: not found\n");
1469 }
1470 EXPORT_SYMBOL(neigh_parms_release);
1471 
1472 static void neigh_parms_destroy(struct neigh_parms *parms)
1473 {
1474 	release_net(neigh_parms_net(parms));
1475 	kfree(parms);
1476 }
1477 
1478 static struct lock_class_key neigh_table_proxy_queue_class;
1479 
1480 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1481 {
1482 	unsigned long now = jiffies;
1483 	unsigned long phsize;
1484 
1485 	write_pnet(&tbl->parms.net, &init_net);
1486 	atomic_set(&tbl->parms.refcnt, 1);
1487 	tbl->parms.reachable_time =
1488 			  neigh_rand_reach_time(tbl->parms.base_reachable_time);
1489 
1490 	if (!tbl->kmem_cachep)
1491 		tbl->kmem_cachep =
1492 			kmem_cache_create(tbl->id, tbl->entry_size, 0,
1493 					  SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1494 					  NULL);
1495 	tbl->stats = alloc_percpu(struct neigh_statistics);
1496 	if (!tbl->stats)
1497 		panic("cannot create neighbour cache statistics");
1498 
1499 #ifdef CONFIG_PROC_FS
1500 	if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1501 			      &neigh_stat_seq_fops, tbl))
1502 		panic("cannot create neighbour proc dir entry");
1503 #endif
1504 
1505 	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1506 
1507 	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1508 	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1509 
1510 	if (!tbl->nht || !tbl->phash_buckets)
1511 		panic("cannot allocate neighbour cache hashes");
1512 
1513 	rwlock_init(&tbl->lock);
1514 	INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1515 	schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1516 	setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1517 	skb_queue_head_init_class(&tbl->proxy_queue,
1518 			&neigh_table_proxy_queue_class);
1519 
1520 	tbl->last_flush = now;
1521 	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
1522 }
1523 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1524 
1525 void neigh_table_init(struct neigh_table *tbl)
1526 {
1527 	struct neigh_table *tmp;
1528 
1529 	neigh_table_init_no_netlink(tbl);
1530 	write_lock(&neigh_tbl_lock);
1531 	for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1532 		if (tmp->family == tbl->family)
1533 			break;
1534 	}
1535 	tbl->next	= neigh_tables;
1536 	neigh_tables	= tbl;
1537 	write_unlock(&neigh_tbl_lock);
1538 
1539 	if (unlikely(tmp)) {
1540 		printk(KERN_ERR "NEIGH: Registering multiple tables for "
1541 		       "family %d\n", tbl->family);
1542 		dump_stack();
1543 	}
1544 }
1545 EXPORT_SYMBOL(neigh_table_init);
1546 
1547 int neigh_table_clear(struct neigh_table *tbl)
1548 {
1549 	struct neigh_table **tp;
1550 
1551 	/* It is not clean... Fix it to unload IPv6 module safely */
1552 	cancel_delayed_work_sync(&tbl->gc_work);
1553 	del_timer_sync(&tbl->proxy_timer);
1554 	pneigh_queue_purge(&tbl->proxy_queue);
1555 	neigh_ifdown(tbl, NULL);
1556 	if (atomic_read(&tbl->entries))
1557 		printk(KERN_CRIT "neighbour leakage\n");
1558 	write_lock(&neigh_tbl_lock);
1559 	for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1560 		if (*tp == tbl) {
1561 			*tp = tbl->next;
1562 			break;
1563 		}
1564 	}
1565 	write_unlock(&neigh_tbl_lock);
1566 
1567 	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1568 		 neigh_hash_free_rcu);
1569 	tbl->nht = NULL;
1570 
1571 	kfree(tbl->phash_buckets);
1572 	tbl->phash_buckets = NULL;
1573 
1574 	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1575 
1576 	free_percpu(tbl->stats);
1577 	tbl->stats = NULL;
1578 
1579 	kmem_cache_destroy(tbl->kmem_cachep);
1580 	tbl->kmem_cachep = NULL;
1581 
1582 	return 0;
1583 }
1584 EXPORT_SYMBOL(neigh_table_clear);
1585 
1586 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1587 {
1588 	struct net *net = sock_net(skb->sk);
1589 	struct ndmsg *ndm;
1590 	struct nlattr *dst_attr;
1591 	struct neigh_table *tbl;
1592 	struct net_device *dev = NULL;
1593 	int err = -EINVAL;
1594 
1595 	ASSERT_RTNL();
1596 	if (nlmsg_len(nlh) < sizeof(*ndm))
1597 		goto out;
1598 
1599 	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1600 	if (dst_attr == NULL)
1601 		goto out;
1602 
1603 	ndm = nlmsg_data(nlh);
1604 	if (ndm->ndm_ifindex) {
1605 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1606 		if (dev == NULL) {
1607 			err = -ENODEV;
1608 			goto out;
1609 		}
1610 	}
1611 
1612 	read_lock(&neigh_tbl_lock);
1613 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1614 		struct neighbour *neigh;
1615 
1616 		if (tbl->family != ndm->ndm_family)
1617 			continue;
1618 		read_unlock(&neigh_tbl_lock);
1619 
1620 		if (nla_len(dst_attr) < tbl->key_len)
1621 			goto out;
1622 
1623 		if (ndm->ndm_flags & NTF_PROXY) {
1624 			err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1625 			goto out;
1626 		}
1627 
1628 		if (dev == NULL)
1629 			goto out;
1630 
1631 		neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1632 		if (neigh == NULL) {
1633 			err = -ENOENT;
1634 			goto out;
1635 		}
1636 
1637 		err = neigh_update(neigh, NULL, NUD_FAILED,
1638 				   NEIGH_UPDATE_F_OVERRIDE |
1639 				   NEIGH_UPDATE_F_ADMIN);
1640 		neigh_release(neigh);
1641 		goto out;
1642 	}
1643 	read_unlock(&neigh_tbl_lock);
1644 	err = -EAFNOSUPPORT;
1645 
1646 out:
1647 	return err;
1648 }
1649 
1650 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1651 {
1652 	struct net *net = sock_net(skb->sk);
1653 	struct ndmsg *ndm;
1654 	struct nlattr *tb[NDA_MAX+1];
1655 	struct neigh_table *tbl;
1656 	struct net_device *dev = NULL;
1657 	int err;
1658 
1659 	ASSERT_RTNL();
1660 	err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1661 	if (err < 0)
1662 		goto out;
1663 
1664 	err = -EINVAL;
1665 	if (tb[NDA_DST] == NULL)
1666 		goto out;
1667 
1668 	ndm = nlmsg_data(nlh);
1669 	if (ndm->ndm_ifindex) {
1670 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1671 		if (dev == NULL) {
1672 			err = -ENODEV;
1673 			goto out;
1674 		}
1675 
1676 		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1677 			goto out;
1678 	}
1679 
1680 	read_lock(&neigh_tbl_lock);
1681 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1682 		int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1683 		struct neighbour *neigh;
1684 		void *dst, *lladdr;
1685 
1686 		if (tbl->family != ndm->ndm_family)
1687 			continue;
1688 		read_unlock(&neigh_tbl_lock);
1689 
1690 		if (nla_len(tb[NDA_DST]) < tbl->key_len)
1691 			goto out;
1692 		dst = nla_data(tb[NDA_DST]);
1693 		lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1694 
1695 		if (ndm->ndm_flags & NTF_PROXY) {
1696 			struct pneigh_entry *pn;
1697 
1698 			err = -ENOBUFS;
1699 			pn = pneigh_lookup(tbl, net, dst, dev, 1);
1700 			if (pn) {
1701 				pn->flags = ndm->ndm_flags;
1702 				err = 0;
1703 			}
1704 			goto out;
1705 		}
1706 
1707 		if (dev == NULL)
1708 			goto out;
1709 
1710 		neigh = neigh_lookup(tbl, dst, dev);
1711 		if (neigh == NULL) {
1712 			if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1713 				err = -ENOENT;
1714 				goto out;
1715 			}
1716 
1717 			neigh = __neigh_lookup_errno(tbl, dst, dev);
1718 			if (IS_ERR(neigh)) {
1719 				err = PTR_ERR(neigh);
1720 				goto out;
1721 			}
1722 		} else {
1723 			if (nlh->nlmsg_flags & NLM_F_EXCL) {
1724 				err = -EEXIST;
1725 				neigh_release(neigh);
1726 				goto out;
1727 			}
1728 
1729 			if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1730 				flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1731 		}
1732 
1733 		if (ndm->ndm_flags & NTF_USE) {
1734 			neigh_event_send(neigh, NULL);
1735 			err = 0;
1736 		} else
1737 			err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1738 		neigh_release(neigh);
1739 		goto out;
1740 	}
1741 
1742 	read_unlock(&neigh_tbl_lock);
1743 	err = -EAFNOSUPPORT;
1744 out:
1745 	return err;
1746 }
1747 
1748 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1749 {
1750 	struct nlattr *nest;
1751 
1752 	nest = nla_nest_start(skb, NDTA_PARMS);
1753 	if (nest == NULL)
1754 		return -ENOBUFS;
1755 
1756 	if (parms->dev)
1757 		NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1758 
1759 	NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1760 	NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1761 	NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1762 	NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1763 	NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1764 	NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1765 	NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1766 	NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1767 		      parms->base_reachable_time);
1768 	NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1769 	NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1770 	NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1771 	NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1772 	NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1773 	NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1774 
1775 	return nla_nest_end(skb, nest);
1776 
1777 nla_put_failure:
1778 	nla_nest_cancel(skb, nest);
1779 	return -EMSGSIZE;
1780 }
1781 
1782 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1783 			      u32 pid, u32 seq, int type, int flags)
1784 {
1785 	struct nlmsghdr *nlh;
1786 	struct ndtmsg *ndtmsg;
1787 
1788 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1789 	if (nlh == NULL)
1790 		return -EMSGSIZE;
1791 
1792 	ndtmsg = nlmsg_data(nlh);
1793 
1794 	read_lock_bh(&tbl->lock);
1795 	ndtmsg->ndtm_family = tbl->family;
1796 	ndtmsg->ndtm_pad1   = 0;
1797 	ndtmsg->ndtm_pad2   = 0;
1798 
1799 	NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1800 	NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1801 	NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1802 	NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1803 	NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1804 
1805 	{
1806 		unsigned long now = jiffies;
1807 		unsigned int flush_delta = now - tbl->last_flush;
1808 		unsigned int rand_delta = now - tbl->last_rand;
1809 		struct neigh_hash_table *nht;
1810 		struct ndt_config ndc = {
1811 			.ndtc_key_len		= tbl->key_len,
1812 			.ndtc_entry_size	= tbl->entry_size,
1813 			.ndtc_entries		= atomic_read(&tbl->entries),
1814 			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
1815 			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
1816 			.ndtc_proxy_qlen	= tbl->proxy_queue.qlen,
1817 		};
1818 
1819 		rcu_read_lock_bh();
1820 		nht = rcu_dereference_bh(tbl->nht);
1821 		ndc.ndtc_hash_rnd = nht->hash_rnd;
1822 		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1823 		rcu_read_unlock_bh();
1824 
1825 		NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1826 	}
1827 
1828 	{
1829 		int cpu;
1830 		struct ndt_stats ndst;
1831 
1832 		memset(&ndst, 0, sizeof(ndst));
1833 
1834 		for_each_possible_cpu(cpu) {
1835 			struct neigh_statistics	*st;
1836 
1837 			st = per_cpu_ptr(tbl->stats, cpu);
1838 			ndst.ndts_allocs		+= st->allocs;
1839 			ndst.ndts_destroys		+= st->destroys;
1840 			ndst.ndts_hash_grows		+= st->hash_grows;
1841 			ndst.ndts_res_failed		+= st->res_failed;
1842 			ndst.ndts_lookups		+= st->lookups;
1843 			ndst.ndts_hits			+= st->hits;
1844 			ndst.ndts_rcv_probes_mcast	+= st->rcv_probes_mcast;
1845 			ndst.ndts_rcv_probes_ucast	+= st->rcv_probes_ucast;
1846 			ndst.ndts_periodic_gc_runs	+= st->periodic_gc_runs;
1847 			ndst.ndts_forced_gc_runs	+= st->forced_gc_runs;
1848 		}
1849 
1850 		NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1851 	}
1852 
1853 	BUG_ON(tbl->parms.dev);
1854 	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1855 		goto nla_put_failure;
1856 
1857 	read_unlock_bh(&tbl->lock);
1858 	return nlmsg_end(skb, nlh);
1859 
1860 nla_put_failure:
1861 	read_unlock_bh(&tbl->lock);
1862 	nlmsg_cancel(skb, nlh);
1863 	return -EMSGSIZE;
1864 }
1865 
1866 static int neightbl_fill_param_info(struct sk_buff *skb,
1867 				    struct neigh_table *tbl,
1868 				    struct neigh_parms *parms,
1869 				    u32 pid, u32 seq, int type,
1870 				    unsigned int flags)
1871 {
1872 	struct ndtmsg *ndtmsg;
1873 	struct nlmsghdr *nlh;
1874 
1875 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1876 	if (nlh == NULL)
1877 		return -EMSGSIZE;
1878 
1879 	ndtmsg = nlmsg_data(nlh);
1880 
1881 	read_lock_bh(&tbl->lock);
1882 	ndtmsg->ndtm_family = tbl->family;
1883 	ndtmsg->ndtm_pad1   = 0;
1884 	ndtmsg->ndtm_pad2   = 0;
1885 
1886 	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1887 	    neightbl_fill_parms(skb, parms) < 0)
1888 		goto errout;
1889 
1890 	read_unlock_bh(&tbl->lock);
1891 	return nlmsg_end(skb, nlh);
1892 errout:
1893 	read_unlock_bh(&tbl->lock);
1894 	nlmsg_cancel(skb, nlh);
1895 	return -EMSGSIZE;
1896 }
1897 
1898 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1899 	[NDTA_NAME]		= { .type = NLA_STRING },
1900 	[NDTA_THRESH1]		= { .type = NLA_U32 },
1901 	[NDTA_THRESH2]		= { .type = NLA_U32 },
1902 	[NDTA_THRESH3]		= { .type = NLA_U32 },
1903 	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
1904 	[NDTA_PARMS]		= { .type = NLA_NESTED },
1905 };
1906 
1907 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1908 	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
1909 	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
1910 	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
1911 	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
1912 	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
1913 	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
1914 	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
1915 	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
1916 	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
1917 	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
1918 	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
1919 	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
1920 	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
1921 };
1922 
1923 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1924 {
1925 	struct net *net = sock_net(skb->sk);
1926 	struct neigh_table *tbl;
1927 	struct ndtmsg *ndtmsg;
1928 	struct nlattr *tb[NDTA_MAX+1];
1929 	int err;
1930 
1931 	err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1932 			  nl_neightbl_policy);
1933 	if (err < 0)
1934 		goto errout;
1935 
1936 	if (tb[NDTA_NAME] == NULL) {
1937 		err = -EINVAL;
1938 		goto errout;
1939 	}
1940 
1941 	ndtmsg = nlmsg_data(nlh);
1942 	read_lock(&neigh_tbl_lock);
1943 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1944 		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1945 			continue;
1946 
1947 		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1948 			break;
1949 	}
1950 
1951 	if (tbl == NULL) {
1952 		err = -ENOENT;
1953 		goto errout_locked;
1954 	}
1955 
1956 	/*
1957 	 * We acquire tbl->lock to be nice to the periodic timers and
1958 	 * make sure they always see a consistent set of values.
1959 	 */
1960 	write_lock_bh(&tbl->lock);
1961 
1962 	if (tb[NDTA_PARMS]) {
1963 		struct nlattr *tbp[NDTPA_MAX+1];
1964 		struct neigh_parms *p;
1965 		int i, ifindex = 0;
1966 
1967 		err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1968 				       nl_ntbl_parm_policy);
1969 		if (err < 0)
1970 			goto errout_tbl_lock;
1971 
1972 		if (tbp[NDTPA_IFINDEX])
1973 			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1974 
1975 		p = lookup_neigh_parms(tbl, net, ifindex);
1976 		if (p == NULL) {
1977 			err = -ENOENT;
1978 			goto errout_tbl_lock;
1979 		}
1980 
1981 		for (i = 1; i <= NDTPA_MAX; i++) {
1982 			if (tbp[i] == NULL)
1983 				continue;
1984 
1985 			switch (i) {
1986 			case NDTPA_QUEUE_LEN:
1987 				p->queue_len = nla_get_u32(tbp[i]);
1988 				break;
1989 			case NDTPA_PROXY_QLEN:
1990 				p->proxy_qlen = nla_get_u32(tbp[i]);
1991 				break;
1992 			case NDTPA_APP_PROBES:
1993 				p->app_probes = nla_get_u32(tbp[i]);
1994 				break;
1995 			case NDTPA_UCAST_PROBES:
1996 				p->ucast_probes = nla_get_u32(tbp[i]);
1997 				break;
1998 			case NDTPA_MCAST_PROBES:
1999 				p->mcast_probes = nla_get_u32(tbp[i]);
2000 				break;
2001 			case NDTPA_BASE_REACHABLE_TIME:
2002 				p->base_reachable_time = nla_get_msecs(tbp[i]);
2003 				break;
2004 			case NDTPA_GC_STALETIME:
2005 				p->gc_staletime = nla_get_msecs(tbp[i]);
2006 				break;
2007 			case NDTPA_DELAY_PROBE_TIME:
2008 				p->delay_probe_time = nla_get_msecs(tbp[i]);
2009 				break;
2010 			case NDTPA_RETRANS_TIME:
2011 				p->retrans_time = nla_get_msecs(tbp[i]);
2012 				break;
2013 			case NDTPA_ANYCAST_DELAY:
2014 				p->anycast_delay = nla_get_msecs(tbp[i]);
2015 				break;
2016 			case NDTPA_PROXY_DELAY:
2017 				p->proxy_delay = nla_get_msecs(tbp[i]);
2018 				break;
2019 			case NDTPA_LOCKTIME:
2020 				p->locktime = nla_get_msecs(tbp[i]);
2021 				break;
2022 			}
2023 		}
2024 	}
2025 
2026 	if (tb[NDTA_THRESH1])
2027 		tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2028 
2029 	if (tb[NDTA_THRESH2])
2030 		tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2031 
2032 	if (tb[NDTA_THRESH3])
2033 		tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2034 
2035 	if (tb[NDTA_GC_INTERVAL])
2036 		tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2037 
2038 	err = 0;
2039 
2040 errout_tbl_lock:
2041 	write_unlock_bh(&tbl->lock);
2042 errout_locked:
2043 	read_unlock(&neigh_tbl_lock);
2044 errout:
2045 	return err;
2046 }
2047 
2048 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2049 {
2050 	struct net *net = sock_net(skb->sk);
2051 	int family, tidx, nidx = 0;
2052 	int tbl_skip = cb->args[0];
2053 	int neigh_skip = cb->args[1];
2054 	struct neigh_table *tbl;
2055 
2056 	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2057 
2058 	read_lock(&neigh_tbl_lock);
2059 	for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2060 		struct neigh_parms *p;
2061 
2062 		if (tidx < tbl_skip || (family && tbl->family != family))
2063 			continue;
2064 
2065 		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2066 				       cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2067 				       NLM_F_MULTI) <= 0)
2068 			break;
2069 
2070 		for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2071 			if (!net_eq(neigh_parms_net(p), net))
2072 				continue;
2073 
2074 			if (nidx < neigh_skip)
2075 				goto next;
2076 
2077 			if (neightbl_fill_param_info(skb, tbl, p,
2078 						     NETLINK_CB(cb->skb).pid,
2079 						     cb->nlh->nlmsg_seq,
2080 						     RTM_NEWNEIGHTBL,
2081 						     NLM_F_MULTI) <= 0)
2082 				goto out;
2083 		next:
2084 			nidx++;
2085 		}
2086 
2087 		neigh_skip = 0;
2088 	}
2089 out:
2090 	read_unlock(&neigh_tbl_lock);
2091 	cb->args[0] = tidx;
2092 	cb->args[1] = nidx;
2093 
2094 	return skb->len;
2095 }
2096 
2097 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2098 			   u32 pid, u32 seq, int type, unsigned int flags)
2099 {
2100 	unsigned long now = jiffies;
2101 	struct nda_cacheinfo ci;
2102 	struct nlmsghdr *nlh;
2103 	struct ndmsg *ndm;
2104 
2105 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2106 	if (nlh == NULL)
2107 		return -EMSGSIZE;
2108 
2109 	ndm = nlmsg_data(nlh);
2110 	ndm->ndm_family	 = neigh->ops->family;
2111 	ndm->ndm_pad1    = 0;
2112 	ndm->ndm_pad2    = 0;
2113 	ndm->ndm_flags	 = neigh->flags;
2114 	ndm->ndm_type	 = neigh->type;
2115 	ndm->ndm_ifindex = neigh->dev->ifindex;
2116 
2117 	NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2118 
2119 	read_lock_bh(&neigh->lock);
2120 	ndm->ndm_state	 = neigh->nud_state;
2121 	if (neigh->nud_state & NUD_VALID) {
2122 		char haddr[MAX_ADDR_LEN];
2123 
2124 		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2125 		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2126 			read_unlock_bh(&neigh->lock);
2127 			goto nla_put_failure;
2128 		}
2129 	}
2130 
2131 	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2132 	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2133 	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2134 	ci.ndm_refcnt	 = atomic_read(&neigh->refcnt) - 1;
2135 	read_unlock_bh(&neigh->lock);
2136 
2137 	NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2138 	NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2139 
2140 	return nlmsg_end(skb, nlh);
2141 
2142 nla_put_failure:
2143 	nlmsg_cancel(skb, nlh);
2144 	return -EMSGSIZE;
2145 }
2146 
2147 static void neigh_update_notify(struct neighbour *neigh)
2148 {
2149 	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2150 	__neigh_notify(neigh, RTM_NEWNEIGH, 0);
2151 }
2152 
2153 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2154 			    struct netlink_callback *cb)
2155 {
2156 	struct net *net = sock_net(skb->sk);
2157 	struct neighbour *n;
2158 	int rc, h, s_h = cb->args[1];
2159 	int idx, s_idx = idx = cb->args[2];
2160 	struct neigh_hash_table *nht;
2161 
2162 	rcu_read_lock_bh();
2163 	nht = rcu_dereference_bh(tbl->nht);
2164 
2165 	for (h = 0; h < (1 << nht->hash_shift); h++) {
2166 		if (h < s_h)
2167 			continue;
2168 		if (h > s_h)
2169 			s_idx = 0;
2170 		for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2171 		     n != NULL;
2172 		     n = rcu_dereference_bh(n->next)) {
2173 			if (!net_eq(dev_net(n->dev), net))
2174 				continue;
2175 			if (idx < s_idx)
2176 				goto next;
2177 			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2178 					    cb->nlh->nlmsg_seq,
2179 					    RTM_NEWNEIGH,
2180 					    NLM_F_MULTI) <= 0) {
2181 				rc = -1;
2182 				goto out;
2183 			}
2184 next:
2185 			idx++;
2186 		}
2187 	}
2188 	rc = skb->len;
2189 out:
2190 	rcu_read_unlock_bh();
2191 	cb->args[1] = h;
2192 	cb->args[2] = idx;
2193 	return rc;
2194 }
2195 
2196 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2197 {
2198 	struct neigh_table *tbl;
2199 	int t, family, s_t;
2200 
2201 	read_lock(&neigh_tbl_lock);
2202 	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2203 	s_t = cb->args[0];
2204 
2205 	for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2206 		if (t < s_t || (family && tbl->family != family))
2207 			continue;
2208 		if (t > s_t)
2209 			memset(&cb->args[1], 0, sizeof(cb->args) -
2210 						sizeof(cb->args[0]));
2211 		if (neigh_dump_table(tbl, skb, cb) < 0)
2212 			break;
2213 	}
2214 	read_unlock(&neigh_tbl_lock);
2215 
2216 	cb->args[0] = t;
2217 	return skb->len;
2218 }
2219 
2220 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2221 {
2222 	int chain;
2223 	struct neigh_hash_table *nht;
2224 
2225 	rcu_read_lock_bh();
2226 	nht = rcu_dereference_bh(tbl->nht);
2227 
2228 	read_lock(&tbl->lock); /* avoid resizes */
2229 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2230 		struct neighbour *n;
2231 
2232 		for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2233 		     n != NULL;
2234 		     n = rcu_dereference_bh(n->next))
2235 			cb(n, cookie);
2236 	}
2237 	read_unlock(&tbl->lock);
2238 	rcu_read_unlock_bh();
2239 }
2240 EXPORT_SYMBOL(neigh_for_each);
2241 
2242 /* The tbl->lock must be held as a writer and BH disabled. */
2243 void __neigh_for_each_release(struct neigh_table *tbl,
2244 			      int (*cb)(struct neighbour *))
2245 {
2246 	int chain;
2247 	struct neigh_hash_table *nht;
2248 
2249 	nht = rcu_dereference_protected(tbl->nht,
2250 					lockdep_is_held(&tbl->lock));
2251 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2252 		struct neighbour *n;
2253 		struct neighbour __rcu **np;
2254 
2255 		np = &nht->hash_buckets[chain];
2256 		while ((n = rcu_dereference_protected(*np,
2257 					lockdep_is_held(&tbl->lock))) != NULL) {
2258 			int release;
2259 
2260 			write_lock(&n->lock);
2261 			release = cb(n);
2262 			if (release) {
2263 				rcu_assign_pointer(*np,
2264 					rcu_dereference_protected(n->next,
2265 						lockdep_is_held(&tbl->lock)));
2266 				n->dead = 1;
2267 			} else
2268 				np = &n->next;
2269 			write_unlock(&n->lock);
2270 			if (release)
2271 				neigh_cleanup_and_release(n);
2272 		}
2273 	}
2274 }
2275 EXPORT_SYMBOL(__neigh_for_each_release);
2276 
2277 #ifdef CONFIG_PROC_FS
2278 
2279 static struct neighbour *neigh_get_first(struct seq_file *seq)
2280 {
2281 	struct neigh_seq_state *state = seq->private;
2282 	struct net *net = seq_file_net(seq);
2283 	struct neigh_hash_table *nht = state->nht;
2284 	struct neighbour *n = NULL;
2285 	int bucket = state->bucket;
2286 
2287 	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2288 	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2289 		n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2290 
2291 		while (n) {
2292 			if (!net_eq(dev_net(n->dev), net))
2293 				goto next;
2294 			if (state->neigh_sub_iter) {
2295 				loff_t fakep = 0;
2296 				void *v;
2297 
2298 				v = state->neigh_sub_iter(state, n, &fakep);
2299 				if (!v)
2300 					goto next;
2301 			}
2302 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2303 				break;
2304 			if (n->nud_state & ~NUD_NOARP)
2305 				break;
2306 next:
2307 			n = rcu_dereference_bh(n->next);
2308 		}
2309 
2310 		if (n)
2311 			break;
2312 	}
2313 	state->bucket = bucket;
2314 
2315 	return n;
2316 }
2317 
2318 static struct neighbour *neigh_get_next(struct seq_file *seq,
2319 					struct neighbour *n,
2320 					loff_t *pos)
2321 {
2322 	struct neigh_seq_state *state = seq->private;
2323 	struct net *net = seq_file_net(seq);
2324 	struct neigh_hash_table *nht = state->nht;
2325 
2326 	if (state->neigh_sub_iter) {
2327 		void *v = state->neigh_sub_iter(state, n, pos);
2328 		if (v)
2329 			return n;
2330 	}
2331 	n = rcu_dereference_bh(n->next);
2332 
2333 	while (1) {
2334 		while (n) {
2335 			if (!net_eq(dev_net(n->dev), net))
2336 				goto next;
2337 			if (state->neigh_sub_iter) {
2338 				void *v = state->neigh_sub_iter(state, n, pos);
2339 				if (v)
2340 					return n;
2341 				goto next;
2342 			}
2343 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2344 				break;
2345 
2346 			if (n->nud_state & ~NUD_NOARP)
2347 				break;
2348 next:
2349 			n = rcu_dereference_bh(n->next);
2350 		}
2351 
2352 		if (n)
2353 			break;
2354 
2355 		if (++state->bucket >= (1 << nht->hash_shift))
2356 			break;
2357 
2358 		n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2359 	}
2360 
2361 	if (n && pos)
2362 		--(*pos);
2363 	return n;
2364 }
2365 
2366 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2367 {
2368 	struct neighbour *n = neigh_get_first(seq);
2369 
2370 	if (n) {
2371 		--(*pos);
2372 		while (*pos) {
2373 			n = neigh_get_next(seq, n, pos);
2374 			if (!n)
2375 				break;
2376 		}
2377 	}
2378 	return *pos ? NULL : n;
2379 }
2380 
2381 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2382 {
2383 	struct neigh_seq_state *state = seq->private;
2384 	struct net *net = seq_file_net(seq);
2385 	struct neigh_table *tbl = state->tbl;
2386 	struct pneigh_entry *pn = NULL;
2387 	int bucket = state->bucket;
2388 
2389 	state->flags |= NEIGH_SEQ_IS_PNEIGH;
2390 	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2391 		pn = tbl->phash_buckets[bucket];
2392 		while (pn && !net_eq(pneigh_net(pn), net))
2393 			pn = pn->next;
2394 		if (pn)
2395 			break;
2396 	}
2397 	state->bucket = bucket;
2398 
2399 	return pn;
2400 }
2401 
2402 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2403 					    struct pneigh_entry *pn,
2404 					    loff_t *pos)
2405 {
2406 	struct neigh_seq_state *state = seq->private;
2407 	struct net *net = seq_file_net(seq);
2408 	struct neigh_table *tbl = state->tbl;
2409 
2410 	pn = pn->next;
2411 	while (!pn) {
2412 		if (++state->bucket > PNEIGH_HASHMASK)
2413 			break;
2414 		pn = tbl->phash_buckets[state->bucket];
2415 		while (pn && !net_eq(pneigh_net(pn), net))
2416 			pn = pn->next;
2417 		if (pn)
2418 			break;
2419 	}
2420 
2421 	if (pn && pos)
2422 		--(*pos);
2423 
2424 	return pn;
2425 }
2426 
2427 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2428 {
2429 	struct pneigh_entry *pn = pneigh_get_first(seq);
2430 
2431 	if (pn) {
2432 		--(*pos);
2433 		while (*pos) {
2434 			pn = pneigh_get_next(seq, pn, pos);
2435 			if (!pn)
2436 				break;
2437 		}
2438 	}
2439 	return *pos ? NULL : pn;
2440 }
2441 
2442 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2443 {
2444 	struct neigh_seq_state *state = seq->private;
2445 	void *rc;
2446 	loff_t idxpos = *pos;
2447 
2448 	rc = neigh_get_idx(seq, &idxpos);
2449 	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2450 		rc = pneigh_get_idx(seq, &idxpos);
2451 
2452 	return rc;
2453 }
2454 
2455 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2456 	__acquires(rcu_bh)
2457 {
2458 	struct neigh_seq_state *state = seq->private;
2459 
2460 	state->tbl = tbl;
2461 	state->bucket = 0;
2462 	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2463 
2464 	rcu_read_lock_bh();
2465 	state->nht = rcu_dereference_bh(tbl->nht);
2466 
2467 	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2468 }
2469 EXPORT_SYMBOL(neigh_seq_start);
2470 
2471 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2472 {
2473 	struct neigh_seq_state *state;
2474 	void *rc;
2475 
2476 	if (v == SEQ_START_TOKEN) {
2477 		rc = neigh_get_first(seq);
2478 		goto out;
2479 	}
2480 
2481 	state = seq->private;
2482 	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2483 		rc = neigh_get_next(seq, v, NULL);
2484 		if (rc)
2485 			goto out;
2486 		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2487 			rc = pneigh_get_first(seq);
2488 	} else {
2489 		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2490 		rc = pneigh_get_next(seq, v, NULL);
2491 	}
2492 out:
2493 	++(*pos);
2494 	return rc;
2495 }
2496 EXPORT_SYMBOL(neigh_seq_next);
2497 
2498 void neigh_seq_stop(struct seq_file *seq, void *v)
2499 	__releases(rcu_bh)
2500 {
2501 	rcu_read_unlock_bh();
2502 }
2503 EXPORT_SYMBOL(neigh_seq_stop);
2504 
2505 /* statistics via seq_file */
2506 
2507 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2508 {
2509 	struct neigh_table *tbl = seq->private;
2510 	int cpu;
2511 
2512 	if (*pos == 0)
2513 		return SEQ_START_TOKEN;
2514 
2515 	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2516 		if (!cpu_possible(cpu))
2517 			continue;
2518 		*pos = cpu+1;
2519 		return per_cpu_ptr(tbl->stats, cpu);
2520 	}
2521 	return NULL;
2522 }
2523 
2524 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2525 {
2526 	struct neigh_table *tbl = seq->private;
2527 	int cpu;
2528 
2529 	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2530 		if (!cpu_possible(cpu))
2531 			continue;
2532 		*pos = cpu+1;
2533 		return per_cpu_ptr(tbl->stats, cpu);
2534 	}
2535 	return NULL;
2536 }
2537 
2538 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2539 {
2540 
2541 }
2542 
2543 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2544 {
2545 	struct neigh_table *tbl = seq->private;
2546 	struct neigh_statistics *st = v;
2547 
2548 	if (v == SEQ_START_TOKEN) {
2549 		seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs unresolved_discards\n");
2550 		return 0;
2551 	}
2552 
2553 	seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2554 			"%08lx %08lx  %08lx %08lx %08lx\n",
2555 		   atomic_read(&tbl->entries),
2556 
2557 		   st->allocs,
2558 		   st->destroys,
2559 		   st->hash_grows,
2560 
2561 		   st->lookups,
2562 		   st->hits,
2563 
2564 		   st->res_failed,
2565 
2566 		   st->rcv_probes_mcast,
2567 		   st->rcv_probes_ucast,
2568 
2569 		   st->periodic_gc_runs,
2570 		   st->forced_gc_runs,
2571 		   st->unres_discards
2572 		   );
2573 
2574 	return 0;
2575 }
2576 
2577 static const struct seq_operations neigh_stat_seq_ops = {
2578 	.start	= neigh_stat_seq_start,
2579 	.next	= neigh_stat_seq_next,
2580 	.stop	= neigh_stat_seq_stop,
2581 	.show	= neigh_stat_seq_show,
2582 };
2583 
2584 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2585 {
2586 	int ret = seq_open(file, &neigh_stat_seq_ops);
2587 
2588 	if (!ret) {
2589 		struct seq_file *sf = file->private_data;
2590 		sf->private = PDE(inode)->data;
2591 	}
2592 	return ret;
2593 };
2594 
2595 static const struct file_operations neigh_stat_seq_fops = {
2596 	.owner	 = THIS_MODULE,
2597 	.open 	 = neigh_stat_seq_open,
2598 	.read	 = seq_read,
2599 	.llseek	 = seq_lseek,
2600 	.release = seq_release,
2601 };
2602 
2603 #endif /* CONFIG_PROC_FS */
2604 
2605 static inline size_t neigh_nlmsg_size(void)
2606 {
2607 	return NLMSG_ALIGN(sizeof(struct ndmsg))
2608 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2609 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2610 	       + nla_total_size(sizeof(struct nda_cacheinfo))
2611 	       + nla_total_size(4); /* NDA_PROBES */
2612 }
2613 
2614 static void __neigh_notify(struct neighbour *n, int type, int flags)
2615 {
2616 	struct net *net = dev_net(n->dev);
2617 	struct sk_buff *skb;
2618 	int err = -ENOBUFS;
2619 
2620 	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2621 	if (skb == NULL)
2622 		goto errout;
2623 
2624 	err = neigh_fill_info(skb, n, 0, 0, type, flags);
2625 	if (err < 0) {
2626 		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2627 		WARN_ON(err == -EMSGSIZE);
2628 		kfree_skb(skb);
2629 		goto errout;
2630 	}
2631 	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2632 	return;
2633 errout:
2634 	if (err < 0)
2635 		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2636 }
2637 
2638 #ifdef CONFIG_ARPD
2639 void neigh_app_ns(struct neighbour *n)
2640 {
2641 	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2642 }
2643 EXPORT_SYMBOL(neigh_app_ns);
2644 #endif /* CONFIG_ARPD */
2645 
2646 #ifdef CONFIG_SYSCTL
2647 
2648 #define NEIGH_VARS_MAX 19
2649 
2650 static struct neigh_sysctl_table {
2651 	struct ctl_table_header *sysctl_header;
2652 	struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2653 	char *dev_name;
2654 } neigh_sysctl_template __read_mostly = {
2655 	.neigh_vars = {
2656 		{
2657 			.procname	= "mcast_solicit",
2658 			.maxlen		= sizeof(int),
2659 			.mode		= 0644,
2660 			.proc_handler	= proc_dointvec,
2661 		},
2662 		{
2663 			.procname	= "ucast_solicit",
2664 			.maxlen		= sizeof(int),
2665 			.mode		= 0644,
2666 			.proc_handler	= proc_dointvec,
2667 		},
2668 		{
2669 			.procname	= "app_solicit",
2670 			.maxlen		= sizeof(int),
2671 			.mode		= 0644,
2672 			.proc_handler	= proc_dointvec,
2673 		},
2674 		{
2675 			.procname	= "retrans_time",
2676 			.maxlen		= sizeof(int),
2677 			.mode		= 0644,
2678 			.proc_handler	= proc_dointvec_userhz_jiffies,
2679 		},
2680 		{
2681 			.procname	= "base_reachable_time",
2682 			.maxlen		= sizeof(int),
2683 			.mode		= 0644,
2684 			.proc_handler	= proc_dointvec_jiffies,
2685 		},
2686 		{
2687 			.procname	= "delay_first_probe_time",
2688 			.maxlen		= sizeof(int),
2689 			.mode		= 0644,
2690 			.proc_handler	= proc_dointvec_jiffies,
2691 		},
2692 		{
2693 			.procname	= "gc_stale_time",
2694 			.maxlen		= sizeof(int),
2695 			.mode		= 0644,
2696 			.proc_handler	= proc_dointvec_jiffies,
2697 		},
2698 		{
2699 			.procname	= "unres_qlen",
2700 			.maxlen		= sizeof(int),
2701 			.mode		= 0644,
2702 			.proc_handler	= proc_dointvec,
2703 		},
2704 		{
2705 			.procname	= "proxy_qlen",
2706 			.maxlen		= sizeof(int),
2707 			.mode		= 0644,
2708 			.proc_handler	= proc_dointvec,
2709 		},
2710 		{
2711 			.procname	= "anycast_delay",
2712 			.maxlen		= sizeof(int),
2713 			.mode		= 0644,
2714 			.proc_handler	= proc_dointvec_userhz_jiffies,
2715 		},
2716 		{
2717 			.procname	= "proxy_delay",
2718 			.maxlen		= sizeof(int),
2719 			.mode		= 0644,
2720 			.proc_handler	= proc_dointvec_userhz_jiffies,
2721 		},
2722 		{
2723 			.procname	= "locktime",
2724 			.maxlen		= sizeof(int),
2725 			.mode		= 0644,
2726 			.proc_handler	= proc_dointvec_userhz_jiffies,
2727 		},
2728 		{
2729 			.procname	= "retrans_time_ms",
2730 			.maxlen		= sizeof(int),
2731 			.mode		= 0644,
2732 			.proc_handler	= proc_dointvec_ms_jiffies,
2733 		},
2734 		{
2735 			.procname	= "base_reachable_time_ms",
2736 			.maxlen		= sizeof(int),
2737 			.mode		= 0644,
2738 			.proc_handler	= proc_dointvec_ms_jiffies,
2739 		},
2740 		{
2741 			.procname	= "gc_interval",
2742 			.maxlen		= sizeof(int),
2743 			.mode		= 0644,
2744 			.proc_handler	= proc_dointvec_jiffies,
2745 		},
2746 		{
2747 			.procname	= "gc_thresh1",
2748 			.maxlen		= sizeof(int),
2749 			.mode		= 0644,
2750 			.proc_handler	= proc_dointvec,
2751 		},
2752 		{
2753 			.procname	= "gc_thresh2",
2754 			.maxlen		= sizeof(int),
2755 			.mode		= 0644,
2756 			.proc_handler	= proc_dointvec,
2757 		},
2758 		{
2759 			.procname	= "gc_thresh3",
2760 			.maxlen		= sizeof(int),
2761 			.mode		= 0644,
2762 			.proc_handler	= proc_dointvec,
2763 		},
2764 		{},
2765 	},
2766 };
2767 
2768 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2769 			  char *p_name, proc_handler *handler)
2770 {
2771 	struct neigh_sysctl_table *t;
2772 	const char *dev_name_source = NULL;
2773 
2774 #define NEIGH_CTL_PATH_ROOT	0
2775 #define NEIGH_CTL_PATH_PROTO	1
2776 #define NEIGH_CTL_PATH_NEIGH	2
2777 #define NEIGH_CTL_PATH_DEV	3
2778 
2779 	struct ctl_path neigh_path[] = {
2780 		{ .procname = "net",	 },
2781 		{ .procname = "proto",	 },
2782 		{ .procname = "neigh",	 },
2783 		{ .procname = "default", },
2784 		{ },
2785 	};
2786 
2787 	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2788 	if (!t)
2789 		goto err;
2790 
2791 	t->neigh_vars[0].data  = &p->mcast_probes;
2792 	t->neigh_vars[1].data  = &p->ucast_probes;
2793 	t->neigh_vars[2].data  = &p->app_probes;
2794 	t->neigh_vars[3].data  = &p->retrans_time;
2795 	t->neigh_vars[4].data  = &p->base_reachable_time;
2796 	t->neigh_vars[5].data  = &p->delay_probe_time;
2797 	t->neigh_vars[6].data  = &p->gc_staletime;
2798 	t->neigh_vars[7].data  = &p->queue_len;
2799 	t->neigh_vars[8].data  = &p->proxy_qlen;
2800 	t->neigh_vars[9].data  = &p->anycast_delay;
2801 	t->neigh_vars[10].data = &p->proxy_delay;
2802 	t->neigh_vars[11].data = &p->locktime;
2803 	t->neigh_vars[12].data  = &p->retrans_time;
2804 	t->neigh_vars[13].data  = &p->base_reachable_time;
2805 
2806 	if (dev) {
2807 		dev_name_source = dev->name;
2808 		/* Terminate the table early */
2809 		memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2810 	} else {
2811 		dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2812 		t->neigh_vars[14].data = (int *)(p + 1);
2813 		t->neigh_vars[15].data = (int *)(p + 1) + 1;
2814 		t->neigh_vars[16].data = (int *)(p + 1) + 2;
2815 		t->neigh_vars[17].data = (int *)(p + 1) + 3;
2816 	}
2817 
2818 
2819 	if (handler) {
2820 		/* RetransTime */
2821 		t->neigh_vars[3].proc_handler = handler;
2822 		t->neigh_vars[3].extra1 = dev;
2823 		/* ReachableTime */
2824 		t->neigh_vars[4].proc_handler = handler;
2825 		t->neigh_vars[4].extra1 = dev;
2826 		/* RetransTime (in milliseconds)*/
2827 		t->neigh_vars[12].proc_handler = handler;
2828 		t->neigh_vars[12].extra1 = dev;
2829 		/* ReachableTime (in milliseconds) */
2830 		t->neigh_vars[13].proc_handler = handler;
2831 		t->neigh_vars[13].extra1 = dev;
2832 	}
2833 
2834 	t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2835 	if (!t->dev_name)
2836 		goto free;
2837 
2838 	neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2839 	neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2840 
2841 	t->sysctl_header =
2842 		register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2843 	if (!t->sysctl_header)
2844 		goto free_procname;
2845 
2846 	p->sysctl_table = t;
2847 	return 0;
2848 
2849 free_procname:
2850 	kfree(t->dev_name);
2851 free:
2852 	kfree(t);
2853 err:
2854 	return -ENOBUFS;
2855 }
2856 EXPORT_SYMBOL(neigh_sysctl_register);
2857 
2858 void neigh_sysctl_unregister(struct neigh_parms *p)
2859 {
2860 	if (p->sysctl_table) {
2861 		struct neigh_sysctl_table *t = p->sysctl_table;
2862 		p->sysctl_table = NULL;
2863 		unregister_sysctl_table(t->sysctl_header);
2864 		kfree(t->dev_name);
2865 		kfree(t);
2866 	}
2867 }
2868 EXPORT_SYMBOL(neigh_sysctl_unregister);
2869 
2870 #endif	/* CONFIG_SYSCTL */
2871 
2872 static int __init neigh_init(void)
2873 {
2874 	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
2875 	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
2876 	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
2877 
2878 	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
2879 		      NULL);
2880 	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
2881 
2882 	return 0;
2883 }
2884 
2885 subsys_initcall(neigh_init);
2886 
2887