1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 130 #include "net-sysfs.h" 131 132 /* 133 * The list of packet types we will receive (as opposed to discard) 134 * and the routines to invoke. 135 * 136 * Why 16. Because with 16 the only overlap we get on a hash of the 137 * low nibble of the protocol value is RARP/SNAP/X.25. 138 * 139 * NOTE: That is no longer true with the addition of VLAN tags. Not 140 * sure which should go first, but I bet it won't make much 141 * difference if we are running VLANs. The good news is that 142 * this protocol won't be in the list unless compiled in, so 143 * the average user (w/out VLANs) will not be adversely affected. 144 * --BLG 145 * 146 * 0800 IP 147 * 8100 802.1Q VLAN 148 * 0001 802.3 149 * 0002 AX.25 150 * 0004 802.2 151 * 8035 RARP 152 * 0005 SNAP 153 * 0805 X.25 154 * 0806 ARP 155 * 8137 IPX 156 * 0009 Localtalk 157 * 86DD IPv6 158 */ 159 160 #define PTYPE_HASH_SIZE (16) 161 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 162 163 static DEFINE_SPINLOCK(ptype_lock); 164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 165 static struct list_head ptype_all __read_mostly; /* Taps */ 166 167 #ifdef CONFIG_NET_DMA 168 struct net_dma { 169 struct dma_client client; 170 spinlock_t lock; 171 cpumask_t channel_mask; 172 struct dma_chan **channels; 173 }; 174 175 static enum dma_state_client 176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 177 enum dma_state state); 178 179 static struct net_dma net_dma = { 180 .client = { 181 .event_callback = netdev_dma_event, 182 }, 183 }; 184 #endif 185 186 /* 187 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 188 * semaphore. 189 * 190 * Pure readers hold dev_base_lock for reading. 191 * 192 * Writers must hold the rtnl semaphore while they loop through the 193 * dev_base_head list, and hold dev_base_lock for writing when they do the 194 * actual updates. This allows pure readers to access the list even 195 * while a writer is preparing to update it. 196 * 197 * To put it another way, dev_base_lock is held for writing only to 198 * protect against pure readers; the rtnl semaphore provides the 199 * protection against other writers. 200 * 201 * See, for example usages, register_netdevice() and 202 * unregister_netdevice(), which must be called with the rtnl 203 * semaphore held. 204 */ 205 DEFINE_RWLOCK(dev_base_lock); 206 207 EXPORT_SYMBOL(dev_base_lock); 208 209 #define NETDEV_HASHBITS 8 210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 211 212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 213 { 214 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 215 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 216 } 217 218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 219 { 220 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 221 } 222 223 /* Device list insertion */ 224 static int list_netdevice(struct net_device *dev) 225 { 226 struct net *net = dev_net(dev); 227 228 ASSERT_RTNL(); 229 230 write_lock_bh(&dev_base_lock); 231 list_add_tail(&dev->dev_list, &net->dev_base_head); 232 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 233 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 234 write_unlock_bh(&dev_base_lock); 235 return 0; 236 } 237 238 /* Device list removal */ 239 static void unlist_netdevice(struct net_device *dev) 240 { 241 ASSERT_RTNL(); 242 243 /* Unlink dev from the device chain */ 244 write_lock_bh(&dev_base_lock); 245 list_del(&dev->dev_list); 246 hlist_del(&dev->name_hlist); 247 hlist_del(&dev->index_hlist); 248 write_unlock_bh(&dev_base_lock); 249 } 250 251 /* 252 * Our notifier list 253 */ 254 255 static RAW_NOTIFIER_HEAD(netdev_chain); 256 257 /* 258 * Device drivers call our routines to queue packets here. We empty the 259 * queue in the local softnet handler. 260 */ 261 262 DEFINE_PER_CPU(struct softnet_data, softnet_data); 263 264 #ifdef CONFIG_LOCKDEP 265 /* 266 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 267 * according to dev->type 268 */ 269 static const unsigned short netdev_lock_type[] = 270 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 271 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 272 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 273 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 274 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 275 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 276 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 277 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 278 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 279 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 280 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 281 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 282 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 283 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 284 ARPHRD_NONE}; 285 286 static const char *netdev_lock_name[] = 287 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 288 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 289 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 290 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 291 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 292 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 293 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 294 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 295 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 296 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 297 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 298 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 299 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 300 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 301 "_xmit_NONE"}; 302 303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 306 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 307 { 308 int i; 309 310 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 311 if (netdev_lock_type[i] == dev_type) 312 return i; 313 /* the last key is used by default */ 314 return ARRAY_SIZE(netdev_lock_type) - 1; 315 } 316 317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 318 unsigned short dev_type) 319 { 320 int i; 321 322 i = netdev_lock_pos(dev_type); 323 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 324 netdev_lock_name[i]); 325 } 326 327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev->type); 332 lockdep_set_class_and_name(&dev->addr_list_lock, 333 &netdev_addr_lock_key[i], 334 netdev_lock_name[i]); 335 } 336 #else 337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 338 unsigned short dev_type) 339 { 340 } 341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 342 { 343 } 344 #endif 345 346 /******************************************************************************* 347 348 Protocol management and registration routines 349 350 *******************************************************************************/ 351 352 /* 353 * Add a protocol ID to the list. Now that the input handler is 354 * smarter we can dispense with all the messy stuff that used to be 355 * here. 356 * 357 * BEWARE!!! Protocol handlers, mangling input packets, 358 * MUST BE last in hash buckets and checking protocol handlers 359 * MUST start from promiscuous ptype_all chain in net_bh. 360 * It is true now, do not change it. 361 * Explanation follows: if protocol handler, mangling packet, will 362 * be the first on list, it is not able to sense, that packet 363 * is cloned and should be copied-on-write, so that it will 364 * change it and subsequent readers will get broken packet. 365 * --ANK (980803) 366 */ 367 368 /** 369 * dev_add_pack - add packet handler 370 * @pt: packet type declaration 371 * 372 * Add a protocol handler to the networking stack. The passed &packet_type 373 * is linked into kernel lists and may not be freed until it has been 374 * removed from the kernel lists. 375 * 376 * This call does not sleep therefore it can not 377 * guarantee all CPU's that are in middle of receiving packets 378 * will see the new packet type (until the next received packet). 379 */ 380 381 void dev_add_pack(struct packet_type *pt) 382 { 383 int hash; 384 385 spin_lock_bh(&ptype_lock); 386 if (pt->type == htons(ETH_P_ALL)) 387 list_add_rcu(&pt->list, &ptype_all); 388 else { 389 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 390 list_add_rcu(&pt->list, &ptype_base[hash]); 391 } 392 spin_unlock_bh(&ptype_lock); 393 } 394 395 /** 396 * __dev_remove_pack - remove packet handler 397 * @pt: packet type declaration 398 * 399 * Remove a protocol handler that was previously added to the kernel 400 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 401 * from the kernel lists and can be freed or reused once this function 402 * returns. 403 * 404 * The packet type might still be in use by receivers 405 * and must not be freed until after all the CPU's have gone 406 * through a quiescent state. 407 */ 408 void __dev_remove_pack(struct packet_type *pt) 409 { 410 struct list_head *head; 411 struct packet_type *pt1; 412 413 spin_lock_bh(&ptype_lock); 414 415 if (pt->type == htons(ETH_P_ALL)) 416 head = &ptype_all; 417 else 418 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 419 420 list_for_each_entry(pt1, head, list) { 421 if (pt == pt1) { 422 list_del_rcu(&pt->list); 423 goto out; 424 } 425 } 426 427 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 428 out: 429 spin_unlock_bh(&ptype_lock); 430 } 431 /** 432 * dev_remove_pack - remove packet handler 433 * @pt: packet type declaration 434 * 435 * Remove a protocol handler that was previously added to the kernel 436 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 437 * from the kernel lists and can be freed or reused once this function 438 * returns. 439 * 440 * This call sleeps to guarantee that no CPU is looking at the packet 441 * type after return. 442 */ 443 void dev_remove_pack(struct packet_type *pt) 444 { 445 __dev_remove_pack(pt); 446 447 synchronize_net(); 448 } 449 450 /****************************************************************************** 451 452 Device Boot-time Settings Routines 453 454 *******************************************************************************/ 455 456 /* Boot time configuration table */ 457 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 458 459 /** 460 * netdev_boot_setup_add - add new setup entry 461 * @name: name of the device 462 * @map: configured settings for the device 463 * 464 * Adds new setup entry to the dev_boot_setup list. The function 465 * returns 0 on error and 1 on success. This is a generic routine to 466 * all netdevices. 467 */ 468 static int netdev_boot_setup_add(char *name, struct ifmap *map) 469 { 470 struct netdev_boot_setup *s; 471 int i; 472 473 s = dev_boot_setup; 474 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 475 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 476 memset(s[i].name, 0, sizeof(s[i].name)); 477 strlcpy(s[i].name, name, IFNAMSIZ); 478 memcpy(&s[i].map, map, sizeof(s[i].map)); 479 break; 480 } 481 } 482 483 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 484 } 485 486 /** 487 * netdev_boot_setup_check - check boot time settings 488 * @dev: the netdevice 489 * 490 * Check boot time settings for the device. 491 * The found settings are set for the device to be used 492 * later in the device probing. 493 * Returns 0 if no settings found, 1 if they are. 494 */ 495 int netdev_boot_setup_check(struct net_device *dev) 496 { 497 struct netdev_boot_setup *s = dev_boot_setup; 498 int i; 499 500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 501 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 502 !strcmp(dev->name, s[i].name)) { 503 dev->irq = s[i].map.irq; 504 dev->base_addr = s[i].map.base_addr; 505 dev->mem_start = s[i].map.mem_start; 506 dev->mem_end = s[i].map.mem_end; 507 return 1; 508 } 509 } 510 return 0; 511 } 512 513 514 /** 515 * netdev_boot_base - get address from boot time settings 516 * @prefix: prefix for network device 517 * @unit: id for network device 518 * 519 * Check boot time settings for the base address of device. 520 * The found settings are set for the device to be used 521 * later in the device probing. 522 * Returns 0 if no settings found. 523 */ 524 unsigned long netdev_boot_base(const char *prefix, int unit) 525 { 526 const struct netdev_boot_setup *s = dev_boot_setup; 527 char name[IFNAMSIZ]; 528 int i; 529 530 sprintf(name, "%s%d", prefix, unit); 531 532 /* 533 * If device already registered then return base of 1 534 * to indicate not to probe for this interface 535 */ 536 if (__dev_get_by_name(&init_net, name)) 537 return 1; 538 539 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 540 if (!strcmp(name, s[i].name)) 541 return s[i].map.base_addr; 542 return 0; 543 } 544 545 /* 546 * Saves at boot time configured settings for any netdevice. 547 */ 548 int __init netdev_boot_setup(char *str) 549 { 550 int ints[5]; 551 struct ifmap map; 552 553 str = get_options(str, ARRAY_SIZE(ints), ints); 554 if (!str || !*str) 555 return 0; 556 557 /* Save settings */ 558 memset(&map, 0, sizeof(map)); 559 if (ints[0] > 0) 560 map.irq = ints[1]; 561 if (ints[0] > 1) 562 map.base_addr = ints[2]; 563 if (ints[0] > 2) 564 map.mem_start = ints[3]; 565 if (ints[0] > 3) 566 map.mem_end = ints[4]; 567 568 /* Add new entry to the list */ 569 return netdev_boot_setup_add(str, &map); 570 } 571 572 __setup("netdev=", netdev_boot_setup); 573 574 /******************************************************************************* 575 576 Device Interface Subroutines 577 578 *******************************************************************************/ 579 580 /** 581 * __dev_get_by_name - find a device by its name 582 * @net: the applicable net namespace 583 * @name: name to find 584 * 585 * Find an interface by name. Must be called under RTNL semaphore 586 * or @dev_base_lock. If the name is found a pointer to the device 587 * is returned. If the name is not found then %NULL is returned. The 588 * reference counters are not incremented so the caller must be 589 * careful with locks. 590 */ 591 592 struct net_device *__dev_get_by_name(struct net *net, const char *name) 593 { 594 struct hlist_node *p; 595 596 hlist_for_each(p, dev_name_hash(net, name)) { 597 struct net_device *dev 598 = hlist_entry(p, struct net_device, name_hlist); 599 if (!strncmp(dev->name, name, IFNAMSIZ)) 600 return dev; 601 } 602 return NULL; 603 } 604 605 /** 606 * dev_get_by_name - find a device by its name 607 * @net: the applicable net namespace 608 * @name: name to find 609 * 610 * Find an interface by name. This can be called from any 611 * context and does its own locking. The returned handle has 612 * the usage count incremented and the caller must use dev_put() to 613 * release it when it is no longer needed. %NULL is returned if no 614 * matching device is found. 615 */ 616 617 struct net_device *dev_get_by_name(struct net *net, const char *name) 618 { 619 struct net_device *dev; 620 621 read_lock(&dev_base_lock); 622 dev = __dev_get_by_name(net, name); 623 if (dev) 624 dev_hold(dev); 625 read_unlock(&dev_base_lock); 626 return dev; 627 } 628 629 /** 630 * __dev_get_by_index - find a device by its ifindex 631 * @net: the applicable net namespace 632 * @ifindex: index of device 633 * 634 * Search for an interface by index. Returns %NULL if the device 635 * is not found or a pointer to the device. The device has not 636 * had its reference counter increased so the caller must be careful 637 * about locking. The caller must hold either the RTNL semaphore 638 * or @dev_base_lock. 639 */ 640 641 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 642 { 643 struct hlist_node *p; 644 645 hlist_for_each(p, dev_index_hash(net, ifindex)) { 646 struct net_device *dev 647 = hlist_entry(p, struct net_device, index_hlist); 648 if (dev->ifindex == ifindex) 649 return dev; 650 } 651 return NULL; 652 } 653 654 655 /** 656 * dev_get_by_index - find a device by its ifindex 657 * @net: the applicable net namespace 658 * @ifindex: index of device 659 * 660 * Search for an interface by index. Returns NULL if the device 661 * is not found or a pointer to the device. The device returned has 662 * had a reference added and the pointer is safe until the user calls 663 * dev_put to indicate they have finished with it. 664 */ 665 666 struct net_device *dev_get_by_index(struct net *net, int ifindex) 667 { 668 struct net_device *dev; 669 670 read_lock(&dev_base_lock); 671 dev = __dev_get_by_index(net, ifindex); 672 if (dev) 673 dev_hold(dev); 674 read_unlock(&dev_base_lock); 675 return dev; 676 } 677 678 /** 679 * dev_getbyhwaddr - find a device by its hardware address 680 * @net: the applicable net namespace 681 * @type: media type of device 682 * @ha: hardware address 683 * 684 * Search for an interface by MAC address. Returns NULL if the device 685 * is not found or a pointer to the device. The caller must hold the 686 * rtnl semaphore. The returned device has not had its ref count increased 687 * and the caller must therefore be careful about locking 688 * 689 * BUGS: 690 * If the API was consistent this would be __dev_get_by_hwaddr 691 */ 692 693 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 694 { 695 struct net_device *dev; 696 697 ASSERT_RTNL(); 698 699 for_each_netdev(net, dev) 700 if (dev->type == type && 701 !memcmp(dev->dev_addr, ha, dev->addr_len)) 702 return dev; 703 704 return NULL; 705 } 706 707 EXPORT_SYMBOL(dev_getbyhwaddr); 708 709 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 710 { 711 struct net_device *dev; 712 713 ASSERT_RTNL(); 714 for_each_netdev(net, dev) 715 if (dev->type == type) 716 return dev; 717 718 return NULL; 719 } 720 721 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 722 723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 724 { 725 struct net_device *dev; 726 727 rtnl_lock(); 728 dev = __dev_getfirstbyhwtype(net, type); 729 if (dev) 730 dev_hold(dev); 731 rtnl_unlock(); 732 return dev; 733 } 734 735 EXPORT_SYMBOL(dev_getfirstbyhwtype); 736 737 /** 738 * dev_get_by_flags - find any device with given flags 739 * @net: the applicable net namespace 740 * @if_flags: IFF_* values 741 * @mask: bitmask of bits in if_flags to check 742 * 743 * Search for any interface with the given flags. Returns NULL if a device 744 * is not found or a pointer to the device. The device returned has 745 * had a reference added and the pointer is safe until the user calls 746 * dev_put to indicate they have finished with it. 747 */ 748 749 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 750 { 751 struct net_device *dev, *ret; 752 753 ret = NULL; 754 read_lock(&dev_base_lock); 755 for_each_netdev(net, dev) { 756 if (((dev->flags ^ if_flags) & mask) == 0) { 757 dev_hold(dev); 758 ret = dev; 759 break; 760 } 761 } 762 read_unlock(&dev_base_lock); 763 return ret; 764 } 765 766 /** 767 * dev_valid_name - check if name is okay for network device 768 * @name: name string 769 * 770 * Network device names need to be valid file names to 771 * to allow sysfs to work. We also disallow any kind of 772 * whitespace. 773 */ 774 int dev_valid_name(const char *name) 775 { 776 if (*name == '\0') 777 return 0; 778 if (strlen(name) >= IFNAMSIZ) 779 return 0; 780 if (!strcmp(name, ".") || !strcmp(name, "..")) 781 return 0; 782 783 while (*name) { 784 if (*name == '/' || isspace(*name)) 785 return 0; 786 name++; 787 } 788 return 1; 789 } 790 791 /** 792 * __dev_alloc_name - allocate a name for a device 793 * @net: network namespace to allocate the device name in 794 * @name: name format string 795 * @buf: scratch buffer and result name string 796 * 797 * Passed a format string - eg "lt%d" it will try and find a suitable 798 * id. It scans list of devices to build up a free map, then chooses 799 * the first empty slot. The caller must hold the dev_base or rtnl lock 800 * while allocating the name and adding the device in order to avoid 801 * duplicates. 802 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 803 * Returns the number of the unit assigned or a negative errno code. 804 */ 805 806 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 807 { 808 int i = 0; 809 const char *p; 810 const int max_netdevices = 8*PAGE_SIZE; 811 unsigned long *inuse; 812 struct net_device *d; 813 814 p = strnchr(name, IFNAMSIZ-1, '%'); 815 if (p) { 816 /* 817 * Verify the string as this thing may have come from 818 * the user. There must be either one "%d" and no other "%" 819 * characters. 820 */ 821 if (p[1] != 'd' || strchr(p + 2, '%')) 822 return -EINVAL; 823 824 /* Use one page as a bit array of possible slots */ 825 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 826 if (!inuse) 827 return -ENOMEM; 828 829 for_each_netdev(net, d) { 830 if (!sscanf(d->name, name, &i)) 831 continue; 832 if (i < 0 || i >= max_netdevices) 833 continue; 834 835 /* avoid cases where sscanf is not exact inverse of printf */ 836 snprintf(buf, IFNAMSIZ, name, i); 837 if (!strncmp(buf, d->name, IFNAMSIZ)) 838 set_bit(i, inuse); 839 } 840 841 i = find_first_zero_bit(inuse, max_netdevices); 842 free_page((unsigned long) inuse); 843 } 844 845 snprintf(buf, IFNAMSIZ, name, i); 846 if (!__dev_get_by_name(net, buf)) 847 return i; 848 849 /* It is possible to run out of possible slots 850 * when the name is long and there isn't enough space left 851 * for the digits, or if all bits are used. 852 */ 853 return -ENFILE; 854 } 855 856 /** 857 * dev_alloc_name - allocate a name for a device 858 * @dev: device 859 * @name: name format string 860 * 861 * Passed a format string - eg "lt%d" it will try and find a suitable 862 * id. It scans list of devices to build up a free map, then chooses 863 * the first empty slot. The caller must hold the dev_base or rtnl lock 864 * while allocating the name and adding the device in order to avoid 865 * duplicates. 866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 867 * Returns the number of the unit assigned or a negative errno code. 868 */ 869 870 int dev_alloc_name(struct net_device *dev, const char *name) 871 { 872 char buf[IFNAMSIZ]; 873 struct net *net; 874 int ret; 875 876 BUG_ON(!dev_net(dev)); 877 net = dev_net(dev); 878 ret = __dev_alloc_name(net, name, buf); 879 if (ret >= 0) 880 strlcpy(dev->name, buf, IFNAMSIZ); 881 return ret; 882 } 883 884 885 /** 886 * dev_change_name - change name of a device 887 * @dev: device 888 * @newname: name (or format string) must be at least IFNAMSIZ 889 * 890 * Change name of a device, can pass format strings "eth%d". 891 * for wildcarding. 892 */ 893 int dev_change_name(struct net_device *dev, const char *newname) 894 { 895 char oldname[IFNAMSIZ]; 896 int err = 0; 897 int ret; 898 struct net *net; 899 900 ASSERT_RTNL(); 901 BUG_ON(!dev_net(dev)); 902 903 net = dev_net(dev); 904 if (dev->flags & IFF_UP) 905 return -EBUSY; 906 907 if (!dev_valid_name(newname)) 908 return -EINVAL; 909 910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 911 return 0; 912 913 memcpy(oldname, dev->name, IFNAMSIZ); 914 915 if (strchr(newname, '%')) { 916 err = dev_alloc_name(dev, newname); 917 if (err < 0) 918 return err; 919 } 920 else if (__dev_get_by_name(net, newname)) 921 return -EEXIST; 922 else 923 strlcpy(dev->name, newname, IFNAMSIZ); 924 925 rollback: 926 /* For now only devices in the initial network namespace 927 * are in sysfs. 928 */ 929 if (net == &init_net) { 930 ret = device_rename(&dev->dev, dev->name); 931 if (ret) { 932 memcpy(dev->name, oldname, IFNAMSIZ); 933 return ret; 934 } 935 } 936 937 write_lock_bh(&dev_base_lock); 938 hlist_del(&dev->name_hlist); 939 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 940 write_unlock_bh(&dev_base_lock); 941 942 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 943 ret = notifier_to_errno(ret); 944 945 if (ret) { 946 if (err) { 947 printk(KERN_ERR 948 "%s: name change rollback failed: %d.\n", 949 dev->name, ret); 950 } else { 951 err = ret; 952 memcpy(dev->name, oldname, IFNAMSIZ); 953 goto rollback; 954 } 955 } 956 957 return err; 958 } 959 960 /** 961 * dev_set_alias - change ifalias of a device 962 * @dev: device 963 * @alias: name up to IFALIASZ 964 * @len: limit of bytes to copy from info 965 * 966 * Set ifalias for a device, 967 */ 968 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 969 { 970 ASSERT_RTNL(); 971 972 if (len >= IFALIASZ) 973 return -EINVAL; 974 975 if (!len) { 976 if (dev->ifalias) { 977 kfree(dev->ifalias); 978 dev->ifalias = NULL; 979 } 980 return 0; 981 } 982 983 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 984 if (!dev->ifalias) 985 return -ENOMEM; 986 987 strlcpy(dev->ifalias, alias, len+1); 988 return len; 989 } 990 991 992 /** 993 * netdev_features_change - device changes features 994 * @dev: device to cause notification 995 * 996 * Called to indicate a device has changed features. 997 */ 998 void netdev_features_change(struct net_device *dev) 999 { 1000 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1001 } 1002 EXPORT_SYMBOL(netdev_features_change); 1003 1004 /** 1005 * netdev_state_change - device changes state 1006 * @dev: device to cause notification 1007 * 1008 * Called to indicate a device has changed state. This function calls 1009 * the notifier chains for netdev_chain and sends a NEWLINK message 1010 * to the routing socket. 1011 */ 1012 void netdev_state_change(struct net_device *dev) 1013 { 1014 if (dev->flags & IFF_UP) { 1015 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1016 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1017 } 1018 } 1019 1020 void netdev_bonding_change(struct net_device *dev) 1021 { 1022 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1023 } 1024 EXPORT_SYMBOL(netdev_bonding_change); 1025 1026 /** 1027 * dev_load - load a network module 1028 * @net: the applicable net namespace 1029 * @name: name of interface 1030 * 1031 * If a network interface is not present and the process has suitable 1032 * privileges this function loads the module. If module loading is not 1033 * available in this kernel then it becomes a nop. 1034 */ 1035 1036 void dev_load(struct net *net, const char *name) 1037 { 1038 struct net_device *dev; 1039 1040 read_lock(&dev_base_lock); 1041 dev = __dev_get_by_name(net, name); 1042 read_unlock(&dev_base_lock); 1043 1044 if (!dev && capable(CAP_SYS_MODULE)) 1045 request_module("%s", name); 1046 } 1047 1048 /** 1049 * dev_open - prepare an interface for use. 1050 * @dev: device to open 1051 * 1052 * Takes a device from down to up state. The device's private open 1053 * function is invoked and then the multicast lists are loaded. Finally 1054 * the device is moved into the up state and a %NETDEV_UP message is 1055 * sent to the netdev notifier chain. 1056 * 1057 * Calling this function on an active interface is a nop. On a failure 1058 * a negative errno code is returned. 1059 */ 1060 int dev_open(struct net_device *dev) 1061 { 1062 const struct net_device_ops *ops = dev->netdev_ops; 1063 int ret = 0; 1064 1065 ASSERT_RTNL(); 1066 1067 /* 1068 * Is it already up? 1069 */ 1070 1071 if (dev->flags & IFF_UP) 1072 return 0; 1073 1074 /* 1075 * Is it even present? 1076 */ 1077 if (!netif_device_present(dev)) 1078 return -ENODEV; 1079 1080 /* 1081 * Call device private open method 1082 */ 1083 set_bit(__LINK_STATE_START, &dev->state); 1084 1085 if (ops->ndo_validate_addr) 1086 ret = ops->ndo_validate_addr(dev); 1087 1088 if (!ret && ops->ndo_open) 1089 ret = ops->ndo_open(dev); 1090 1091 /* 1092 * If it went open OK then: 1093 */ 1094 1095 if (ret) 1096 clear_bit(__LINK_STATE_START, &dev->state); 1097 else { 1098 /* 1099 * Set the flags. 1100 */ 1101 dev->flags |= IFF_UP; 1102 1103 /* 1104 * Initialize multicasting status 1105 */ 1106 dev_set_rx_mode(dev); 1107 1108 /* 1109 * Wakeup transmit queue engine 1110 */ 1111 dev_activate(dev); 1112 1113 /* 1114 * ... and announce new interface. 1115 */ 1116 call_netdevice_notifiers(NETDEV_UP, dev); 1117 } 1118 1119 return ret; 1120 } 1121 1122 /** 1123 * dev_close - shutdown an interface. 1124 * @dev: device to shutdown 1125 * 1126 * This function moves an active device into down state. A 1127 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1128 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1129 * chain. 1130 */ 1131 int dev_close(struct net_device *dev) 1132 { 1133 const struct net_device_ops *ops = dev->netdev_ops; 1134 ASSERT_RTNL(); 1135 1136 might_sleep(); 1137 1138 if (!(dev->flags & IFF_UP)) 1139 return 0; 1140 1141 /* 1142 * Tell people we are going down, so that they can 1143 * prepare to death, when device is still operating. 1144 */ 1145 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1146 1147 clear_bit(__LINK_STATE_START, &dev->state); 1148 1149 /* Synchronize to scheduled poll. We cannot touch poll list, 1150 * it can be even on different cpu. So just clear netif_running(). 1151 * 1152 * dev->stop() will invoke napi_disable() on all of it's 1153 * napi_struct instances on this device. 1154 */ 1155 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1156 1157 dev_deactivate(dev); 1158 1159 /* 1160 * Call the device specific close. This cannot fail. 1161 * Only if device is UP 1162 * 1163 * We allow it to be called even after a DETACH hot-plug 1164 * event. 1165 */ 1166 if (ops->ndo_stop) 1167 ops->ndo_stop(dev); 1168 1169 /* 1170 * Device is now down. 1171 */ 1172 1173 dev->flags &= ~IFF_UP; 1174 1175 /* 1176 * Tell people we are down 1177 */ 1178 call_netdevice_notifiers(NETDEV_DOWN, dev); 1179 1180 return 0; 1181 } 1182 1183 1184 /** 1185 * dev_disable_lro - disable Large Receive Offload on a device 1186 * @dev: device 1187 * 1188 * Disable Large Receive Offload (LRO) on a net device. Must be 1189 * called under RTNL. This is needed if received packets may be 1190 * forwarded to another interface. 1191 */ 1192 void dev_disable_lro(struct net_device *dev) 1193 { 1194 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1195 dev->ethtool_ops->set_flags) { 1196 u32 flags = dev->ethtool_ops->get_flags(dev); 1197 if (flags & ETH_FLAG_LRO) { 1198 flags &= ~ETH_FLAG_LRO; 1199 dev->ethtool_ops->set_flags(dev, flags); 1200 } 1201 } 1202 WARN_ON(dev->features & NETIF_F_LRO); 1203 } 1204 EXPORT_SYMBOL(dev_disable_lro); 1205 1206 1207 static int dev_boot_phase = 1; 1208 1209 /* 1210 * Device change register/unregister. These are not inline or static 1211 * as we export them to the world. 1212 */ 1213 1214 /** 1215 * register_netdevice_notifier - register a network notifier block 1216 * @nb: notifier 1217 * 1218 * Register a notifier to be called when network device events occur. 1219 * The notifier passed is linked into the kernel structures and must 1220 * not be reused until it has been unregistered. A negative errno code 1221 * is returned on a failure. 1222 * 1223 * When registered all registration and up events are replayed 1224 * to the new notifier to allow device to have a race free 1225 * view of the network device list. 1226 */ 1227 1228 int register_netdevice_notifier(struct notifier_block *nb) 1229 { 1230 struct net_device *dev; 1231 struct net_device *last; 1232 struct net *net; 1233 int err; 1234 1235 rtnl_lock(); 1236 err = raw_notifier_chain_register(&netdev_chain, nb); 1237 if (err) 1238 goto unlock; 1239 if (dev_boot_phase) 1240 goto unlock; 1241 for_each_net(net) { 1242 for_each_netdev(net, dev) { 1243 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1244 err = notifier_to_errno(err); 1245 if (err) 1246 goto rollback; 1247 1248 if (!(dev->flags & IFF_UP)) 1249 continue; 1250 1251 nb->notifier_call(nb, NETDEV_UP, dev); 1252 } 1253 } 1254 1255 unlock: 1256 rtnl_unlock(); 1257 return err; 1258 1259 rollback: 1260 last = dev; 1261 for_each_net(net) { 1262 for_each_netdev(net, dev) { 1263 if (dev == last) 1264 break; 1265 1266 if (dev->flags & IFF_UP) { 1267 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1268 nb->notifier_call(nb, NETDEV_DOWN, dev); 1269 } 1270 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1271 } 1272 } 1273 1274 raw_notifier_chain_unregister(&netdev_chain, nb); 1275 goto unlock; 1276 } 1277 1278 /** 1279 * unregister_netdevice_notifier - unregister a network notifier block 1280 * @nb: notifier 1281 * 1282 * Unregister a notifier previously registered by 1283 * register_netdevice_notifier(). The notifier is unlinked into the 1284 * kernel structures and may then be reused. A negative errno code 1285 * is returned on a failure. 1286 */ 1287 1288 int unregister_netdevice_notifier(struct notifier_block *nb) 1289 { 1290 int err; 1291 1292 rtnl_lock(); 1293 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1294 rtnl_unlock(); 1295 return err; 1296 } 1297 1298 /** 1299 * call_netdevice_notifiers - call all network notifier blocks 1300 * @val: value passed unmodified to notifier function 1301 * @dev: net_device pointer passed unmodified to notifier function 1302 * 1303 * Call all network notifier blocks. Parameters and return value 1304 * are as for raw_notifier_call_chain(). 1305 */ 1306 1307 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1308 { 1309 return raw_notifier_call_chain(&netdev_chain, val, dev); 1310 } 1311 1312 /* When > 0 there are consumers of rx skb time stamps */ 1313 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1314 1315 void net_enable_timestamp(void) 1316 { 1317 atomic_inc(&netstamp_needed); 1318 } 1319 1320 void net_disable_timestamp(void) 1321 { 1322 atomic_dec(&netstamp_needed); 1323 } 1324 1325 static inline void net_timestamp(struct sk_buff *skb) 1326 { 1327 if (atomic_read(&netstamp_needed)) 1328 __net_timestamp(skb); 1329 else 1330 skb->tstamp.tv64 = 0; 1331 } 1332 1333 /* 1334 * Support routine. Sends outgoing frames to any network 1335 * taps currently in use. 1336 */ 1337 1338 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1339 { 1340 struct packet_type *ptype; 1341 1342 net_timestamp(skb); 1343 1344 rcu_read_lock(); 1345 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1346 /* Never send packets back to the socket 1347 * they originated from - MvS (miquels@drinkel.ow.org) 1348 */ 1349 if ((ptype->dev == dev || !ptype->dev) && 1350 (ptype->af_packet_priv == NULL || 1351 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1352 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1353 if (!skb2) 1354 break; 1355 1356 /* skb->nh should be correctly 1357 set by sender, so that the second statement is 1358 just protection against buggy protocols. 1359 */ 1360 skb_reset_mac_header(skb2); 1361 1362 if (skb_network_header(skb2) < skb2->data || 1363 skb2->network_header > skb2->tail) { 1364 if (net_ratelimit()) 1365 printk(KERN_CRIT "protocol %04x is " 1366 "buggy, dev %s\n", 1367 skb2->protocol, dev->name); 1368 skb_reset_network_header(skb2); 1369 } 1370 1371 skb2->transport_header = skb2->network_header; 1372 skb2->pkt_type = PACKET_OUTGOING; 1373 ptype->func(skb2, skb->dev, ptype, skb->dev); 1374 } 1375 } 1376 rcu_read_unlock(); 1377 } 1378 1379 1380 static inline void __netif_reschedule(struct Qdisc *q) 1381 { 1382 struct softnet_data *sd; 1383 unsigned long flags; 1384 1385 local_irq_save(flags); 1386 sd = &__get_cpu_var(softnet_data); 1387 q->next_sched = sd->output_queue; 1388 sd->output_queue = q; 1389 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1390 local_irq_restore(flags); 1391 } 1392 1393 void __netif_schedule(struct Qdisc *q) 1394 { 1395 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1396 __netif_reschedule(q); 1397 } 1398 EXPORT_SYMBOL(__netif_schedule); 1399 1400 void dev_kfree_skb_irq(struct sk_buff *skb) 1401 { 1402 if (atomic_dec_and_test(&skb->users)) { 1403 struct softnet_data *sd; 1404 unsigned long flags; 1405 1406 local_irq_save(flags); 1407 sd = &__get_cpu_var(softnet_data); 1408 skb->next = sd->completion_queue; 1409 sd->completion_queue = skb; 1410 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1411 local_irq_restore(flags); 1412 } 1413 } 1414 EXPORT_SYMBOL(dev_kfree_skb_irq); 1415 1416 void dev_kfree_skb_any(struct sk_buff *skb) 1417 { 1418 if (in_irq() || irqs_disabled()) 1419 dev_kfree_skb_irq(skb); 1420 else 1421 dev_kfree_skb(skb); 1422 } 1423 EXPORT_SYMBOL(dev_kfree_skb_any); 1424 1425 1426 /** 1427 * netif_device_detach - mark device as removed 1428 * @dev: network device 1429 * 1430 * Mark device as removed from system and therefore no longer available. 1431 */ 1432 void netif_device_detach(struct net_device *dev) 1433 { 1434 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1435 netif_running(dev)) { 1436 netif_stop_queue(dev); 1437 } 1438 } 1439 EXPORT_SYMBOL(netif_device_detach); 1440 1441 /** 1442 * netif_device_attach - mark device as attached 1443 * @dev: network device 1444 * 1445 * Mark device as attached from system and restart if needed. 1446 */ 1447 void netif_device_attach(struct net_device *dev) 1448 { 1449 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1450 netif_running(dev)) { 1451 netif_wake_queue(dev); 1452 __netdev_watchdog_up(dev); 1453 } 1454 } 1455 EXPORT_SYMBOL(netif_device_attach); 1456 1457 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1458 { 1459 return ((features & NETIF_F_GEN_CSUM) || 1460 ((features & NETIF_F_IP_CSUM) && 1461 protocol == htons(ETH_P_IP)) || 1462 ((features & NETIF_F_IPV6_CSUM) && 1463 protocol == htons(ETH_P_IPV6))); 1464 } 1465 1466 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1467 { 1468 if (can_checksum_protocol(dev->features, skb->protocol)) 1469 return true; 1470 1471 if (skb->protocol == htons(ETH_P_8021Q)) { 1472 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1473 if (can_checksum_protocol(dev->features & dev->vlan_features, 1474 veh->h_vlan_encapsulated_proto)) 1475 return true; 1476 } 1477 1478 return false; 1479 } 1480 1481 /* 1482 * Invalidate hardware checksum when packet is to be mangled, and 1483 * complete checksum manually on outgoing path. 1484 */ 1485 int skb_checksum_help(struct sk_buff *skb) 1486 { 1487 __wsum csum; 1488 int ret = 0, offset; 1489 1490 if (skb->ip_summed == CHECKSUM_COMPLETE) 1491 goto out_set_summed; 1492 1493 if (unlikely(skb_shinfo(skb)->gso_size)) { 1494 /* Let GSO fix up the checksum. */ 1495 goto out_set_summed; 1496 } 1497 1498 offset = skb->csum_start - skb_headroom(skb); 1499 BUG_ON(offset >= skb_headlen(skb)); 1500 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1501 1502 offset += skb->csum_offset; 1503 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1504 1505 if (skb_cloned(skb) && 1506 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1507 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1508 if (ret) 1509 goto out; 1510 } 1511 1512 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1513 out_set_summed: 1514 skb->ip_summed = CHECKSUM_NONE; 1515 out: 1516 return ret; 1517 } 1518 1519 /** 1520 * skb_gso_segment - Perform segmentation on skb. 1521 * @skb: buffer to segment 1522 * @features: features for the output path (see dev->features) 1523 * 1524 * This function segments the given skb and returns a list of segments. 1525 * 1526 * It may return NULL if the skb requires no segmentation. This is 1527 * only possible when GSO is used for verifying header integrity. 1528 */ 1529 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1530 { 1531 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1532 struct packet_type *ptype; 1533 __be16 type = skb->protocol; 1534 int err; 1535 1536 BUG_ON(skb_shinfo(skb)->frag_list); 1537 1538 skb_reset_mac_header(skb); 1539 skb->mac_len = skb->network_header - skb->mac_header; 1540 __skb_pull(skb, skb->mac_len); 1541 1542 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1543 if (skb_header_cloned(skb) && 1544 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1545 return ERR_PTR(err); 1546 } 1547 1548 rcu_read_lock(); 1549 list_for_each_entry_rcu(ptype, 1550 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1551 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1552 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1553 err = ptype->gso_send_check(skb); 1554 segs = ERR_PTR(err); 1555 if (err || skb_gso_ok(skb, features)) 1556 break; 1557 __skb_push(skb, (skb->data - 1558 skb_network_header(skb))); 1559 } 1560 segs = ptype->gso_segment(skb, features); 1561 break; 1562 } 1563 } 1564 rcu_read_unlock(); 1565 1566 __skb_push(skb, skb->data - skb_mac_header(skb)); 1567 1568 return segs; 1569 } 1570 1571 EXPORT_SYMBOL(skb_gso_segment); 1572 1573 /* Take action when hardware reception checksum errors are detected. */ 1574 #ifdef CONFIG_BUG 1575 void netdev_rx_csum_fault(struct net_device *dev) 1576 { 1577 if (net_ratelimit()) { 1578 printk(KERN_ERR "%s: hw csum failure.\n", 1579 dev ? dev->name : "<unknown>"); 1580 dump_stack(); 1581 } 1582 } 1583 EXPORT_SYMBOL(netdev_rx_csum_fault); 1584 #endif 1585 1586 /* Actually, we should eliminate this check as soon as we know, that: 1587 * 1. IOMMU is present and allows to map all the memory. 1588 * 2. No high memory really exists on this machine. 1589 */ 1590 1591 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1592 { 1593 #ifdef CONFIG_HIGHMEM 1594 int i; 1595 1596 if (dev->features & NETIF_F_HIGHDMA) 1597 return 0; 1598 1599 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1600 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1601 return 1; 1602 1603 #endif 1604 return 0; 1605 } 1606 1607 struct dev_gso_cb { 1608 void (*destructor)(struct sk_buff *skb); 1609 }; 1610 1611 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1612 1613 static void dev_gso_skb_destructor(struct sk_buff *skb) 1614 { 1615 struct dev_gso_cb *cb; 1616 1617 do { 1618 struct sk_buff *nskb = skb->next; 1619 1620 skb->next = nskb->next; 1621 nskb->next = NULL; 1622 kfree_skb(nskb); 1623 } while (skb->next); 1624 1625 cb = DEV_GSO_CB(skb); 1626 if (cb->destructor) 1627 cb->destructor(skb); 1628 } 1629 1630 /** 1631 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1632 * @skb: buffer to segment 1633 * 1634 * This function segments the given skb and stores the list of segments 1635 * in skb->next. 1636 */ 1637 static int dev_gso_segment(struct sk_buff *skb) 1638 { 1639 struct net_device *dev = skb->dev; 1640 struct sk_buff *segs; 1641 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1642 NETIF_F_SG : 0); 1643 1644 segs = skb_gso_segment(skb, features); 1645 1646 /* Verifying header integrity only. */ 1647 if (!segs) 1648 return 0; 1649 1650 if (IS_ERR(segs)) 1651 return PTR_ERR(segs); 1652 1653 skb->next = segs; 1654 DEV_GSO_CB(skb)->destructor = skb->destructor; 1655 skb->destructor = dev_gso_skb_destructor; 1656 1657 return 0; 1658 } 1659 1660 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1661 struct netdev_queue *txq) 1662 { 1663 if (likely(!skb->next)) { 1664 if (!list_empty(&ptype_all)) 1665 dev_queue_xmit_nit(skb, dev); 1666 1667 if (netif_needs_gso(dev, skb)) { 1668 if (unlikely(dev_gso_segment(skb))) 1669 goto out_kfree_skb; 1670 if (skb->next) 1671 goto gso; 1672 } 1673 1674 return dev->hard_start_xmit(skb, dev); 1675 } 1676 1677 gso: 1678 do { 1679 struct sk_buff *nskb = skb->next; 1680 int rc; 1681 1682 skb->next = nskb->next; 1683 nskb->next = NULL; 1684 rc = dev->hard_start_xmit(nskb, dev); 1685 if (unlikely(rc)) { 1686 nskb->next = skb->next; 1687 skb->next = nskb; 1688 return rc; 1689 } 1690 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1691 return NETDEV_TX_BUSY; 1692 } while (skb->next); 1693 1694 skb->destructor = DEV_GSO_CB(skb)->destructor; 1695 1696 out_kfree_skb: 1697 kfree_skb(skb); 1698 return 0; 1699 } 1700 1701 static u32 simple_tx_hashrnd; 1702 static int simple_tx_hashrnd_initialized = 0; 1703 1704 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1705 { 1706 u32 addr1, addr2, ports; 1707 u32 hash, ihl; 1708 u8 ip_proto = 0; 1709 1710 if (unlikely(!simple_tx_hashrnd_initialized)) { 1711 get_random_bytes(&simple_tx_hashrnd, 4); 1712 simple_tx_hashrnd_initialized = 1; 1713 } 1714 1715 switch (skb->protocol) { 1716 case htons(ETH_P_IP): 1717 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET))) 1718 ip_proto = ip_hdr(skb)->protocol; 1719 addr1 = ip_hdr(skb)->saddr; 1720 addr2 = ip_hdr(skb)->daddr; 1721 ihl = ip_hdr(skb)->ihl; 1722 break; 1723 case htons(ETH_P_IPV6): 1724 ip_proto = ipv6_hdr(skb)->nexthdr; 1725 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1726 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1727 ihl = (40 >> 2); 1728 break; 1729 default: 1730 return 0; 1731 } 1732 1733 1734 switch (ip_proto) { 1735 case IPPROTO_TCP: 1736 case IPPROTO_UDP: 1737 case IPPROTO_DCCP: 1738 case IPPROTO_ESP: 1739 case IPPROTO_AH: 1740 case IPPROTO_SCTP: 1741 case IPPROTO_UDPLITE: 1742 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1743 break; 1744 1745 default: 1746 ports = 0; 1747 break; 1748 } 1749 1750 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1751 1752 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1753 } 1754 1755 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1756 struct sk_buff *skb) 1757 { 1758 u16 queue_index = 0; 1759 1760 if (dev->select_queue) 1761 queue_index = dev->select_queue(dev, skb); 1762 else if (dev->real_num_tx_queues > 1) 1763 queue_index = simple_tx_hash(dev, skb); 1764 1765 skb_set_queue_mapping(skb, queue_index); 1766 return netdev_get_tx_queue(dev, queue_index); 1767 } 1768 1769 /** 1770 * dev_queue_xmit - transmit a buffer 1771 * @skb: buffer to transmit 1772 * 1773 * Queue a buffer for transmission to a network device. The caller must 1774 * have set the device and priority and built the buffer before calling 1775 * this function. The function can be called from an interrupt. 1776 * 1777 * A negative errno code is returned on a failure. A success does not 1778 * guarantee the frame will be transmitted as it may be dropped due 1779 * to congestion or traffic shaping. 1780 * 1781 * ----------------------------------------------------------------------------------- 1782 * I notice this method can also return errors from the queue disciplines, 1783 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1784 * be positive. 1785 * 1786 * Regardless of the return value, the skb is consumed, so it is currently 1787 * difficult to retry a send to this method. (You can bump the ref count 1788 * before sending to hold a reference for retry if you are careful.) 1789 * 1790 * When calling this method, interrupts MUST be enabled. This is because 1791 * the BH enable code must have IRQs enabled so that it will not deadlock. 1792 * --BLG 1793 */ 1794 int dev_queue_xmit(struct sk_buff *skb) 1795 { 1796 struct net_device *dev = skb->dev; 1797 struct netdev_queue *txq; 1798 struct Qdisc *q; 1799 int rc = -ENOMEM; 1800 1801 /* GSO will handle the following emulations directly. */ 1802 if (netif_needs_gso(dev, skb)) 1803 goto gso; 1804 1805 if (skb_shinfo(skb)->frag_list && 1806 !(dev->features & NETIF_F_FRAGLIST) && 1807 __skb_linearize(skb)) 1808 goto out_kfree_skb; 1809 1810 /* Fragmented skb is linearized if device does not support SG, 1811 * or if at least one of fragments is in highmem and device 1812 * does not support DMA from it. 1813 */ 1814 if (skb_shinfo(skb)->nr_frags && 1815 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1816 __skb_linearize(skb)) 1817 goto out_kfree_skb; 1818 1819 /* If packet is not checksummed and device does not support 1820 * checksumming for this protocol, complete checksumming here. 1821 */ 1822 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1823 skb_set_transport_header(skb, skb->csum_start - 1824 skb_headroom(skb)); 1825 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1826 goto out_kfree_skb; 1827 } 1828 1829 gso: 1830 /* Disable soft irqs for various locks below. Also 1831 * stops preemption for RCU. 1832 */ 1833 rcu_read_lock_bh(); 1834 1835 txq = dev_pick_tx(dev, skb); 1836 q = rcu_dereference(txq->qdisc); 1837 1838 #ifdef CONFIG_NET_CLS_ACT 1839 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1840 #endif 1841 if (q->enqueue) { 1842 spinlock_t *root_lock = qdisc_lock(q); 1843 1844 spin_lock(root_lock); 1845 1846 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1847 kfree_skb(skb); 1848 rc = NET_XMIT_DROP; 1849 } else { 1850 rc = qdisc_enqueue_root(skb, q); 1851 qdisc_run(q); 1852 } 1853 spin_unlock(root_lock); 1854 1855 goto out; 1856 } 1857 1858 /* The device has no queue. Common case for software devices: 1859 loopback, all the sorts of tunnels... 1860 1861 Really, it is unlikely that netif_tx_lock protection is necessary 1862 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1863 counters.) 1864 However, it is possible, that they rely on protection 1865 made by us here. 1866 1867 Check this and shot the lock. It is not prone from deadlocks. 1868 Either shot noqueue qdisc, it is even simpler 8) 1869 */ 1870 if (dev->flags & IFF_UP) { 1871 int cpu = smp_processor_id(); /* ok because BHs are off */ 1872 1873 if (txq->xmit_lock_owner != cpu) { 1874 1875 HARD_TX_LOCK(dev, txq, cpu); 1876 1877 if (!netif_tx_queue_stopped(txq)) { 1878 rc = 0; 1879 if (!dev_hard_start_xmit(skb, dev, txq)) { 1880 HARD_TX_UNLOCK(dev, txq); 1881 goto out; 1882 } 1883 } 1884 HARD_TX_UNLOCK(dev, txq); 1885 if (net_ratelimit()) 1886 printk(KERN_CRIT "Virtual device %s asks to " 1887 "queue packet!\n", dev->name); 1888 } else { 1889 /* Recursion is detected! It is possible, 1890 * unfortunately */ 1891 if (net_ratelimit()) 1892 printk(KERN_CRIT "Dead loop on virtual device " 1893 "%s, fix it urgently!\n", dev->name); 1894 } 1895 } 1896 1897 rc = -ENETDOWN; 1898 rcu_read_unlock_bh(); 1899 1900 out_kfree_skb: 1901 kfree_skb(skb); 1902 return rc; 1903 out: 1904 rcu_read_unlock_bh(); 1905 return rc; 1906 } 1907 1908 1909 /*======================================================================= 1910 Receiver routines 1911 =======================================================================*/ 1912 1913 int netdev_max_backlog __read_mostly = 1000; 1914 int netdev_budget __read_mostly = 300; 1915 int weight_p __read_mostly = 64; /* old backlog weight */ 1916 1917 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1918 1919 1920 /** 1921 * netif_rx - post buffer to the network code 1922 * @skb: buffer to post 1923 * 1924 * This function receives a packet from a device driver and queues it for 1925 * the upper (protocol) levels to process. It always succeeds. The buffer 1926 * may be dropped during processing for congestion control or by the 1927 * protocol layers. 1928 * 1929 * return values: 1930 * NET_RX_SUCCESS (no congestion) 1931 * NET_RX_DROP (packet was dropped) 1932 * 1933 */ 1934 1935 int netif_rx(struct sk_buff *skb) 1936 { 1937 struct softnet_data *queue; 1938 unsigned long flags; 1939 1940 /* if netpoll wants it, pretend we never saw it */ 1941 if (netpoll_rx(skb)) 1942 return NET_RX_DROP; 1943 1944 if (!skb->tstamp.tv64) 1945 net_timestamp(skb); 1946 1947 /* 1948 * The code is rearranged so that the path is the most 1949 * short when CPU is congested, but is still operating. 1950 */ 1951 local_irq_save(flags); 1952 queue = &__get_cpu_var(softnet_data); 1953 1954 __get_cpu_var(netdev_rx_stat).total++; 1955 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1956 if (queue->input_pkt_queue.qlen) { 1957 enqueue: 1958 __skb_queue_tail(&queue->input_pkt_queue, skb); 1959 local_irq_restore(flags); 1960 return NET_RX_SUCCESS; 1961 } 1962 1963 napi_schedule(&queue->backlog); 1964 goto enqueue; 1965 } 1966 1967 __get_cpu_var(netdev_rx_stat).dropped++; 1968 local_irq_restore(flags); 1969 1970 kfree_skb(skb); 1971 return NET_RX_DROP; 1972 } 1973 1974 int netif_rx_ni(struct sk_buff *skb) 1975 { 1976 int err; 1977 1978 preempt_disable(); 1979 err = netif_rx(skb); 1980 if (local_softirq_pending()) 1981 do_softirq(); 1982 preempt_enable(); 1983 1984 return err; 1985 } 1986 1987 EXPORT_SYMBOL(netif_rx_ni); 1988 1989 static void net_tx_action(struct softirq_action *h) 1990 { 1991 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1992 1993 if (sd->completion_queue) { 1994 struct sk_buff *clist; 1995 1996 local_irq_disable(); 1997 clist = sd->completion_queue; 1998 sd->completion_queue = NULL; 1999 local_irq_enable(); 2000 2001 while (clist) { 2002 struct sk_buff *skb = clist; 2003 clist = clist->next; 2004 2005 WARN_ON(atomic_read(&skb->users)); 2006 __kfree_skb(skb); 2007 } 2008 } 2009 2010 if (sd->output_queue) { 2011 struct Qdisc *head; 2012 2013 local_irq_disable(); 2014 head = sd->output_queue; 2015 sd->output_queue = NULL; 2016 local_irq_enable(); 2017 2018 while (head) { 2019 struct Qdisc *q = head; 2020 spinlock_t *root_lock; 2021 2022 head = head->next_sched; 2023 2024 root_lock = qdisc_lock(q); 2025 if (spin_trylock(root_lock)) { 2026 smp_mb__before_clear_bit(); 2027 clear_bit(__QDISC_STATE_SCHED, 2028 &q->state); 2029 qdisc_run(q); 2030 spin_unlock(root_lock); 2031 } else { 2032 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2033 &q->state)) { 2034 __netif_reschedule(q); 2035 } else { 2036 smp_mb__before_clear_bit(); 2037 clear_bit(__QDISC_STATE_SCHED, 2038 &q->state); 2039 } 2040 } 2041 } 2042 } 2043 } 2044 2045 static inline int deliver_skb(struct sk_buff *skb, 2046 struct packet_type *pt_prev, 2047 struct net_device *orig_dev) 2048 { 2049 atomic_inc(&skb->users); 2050 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2051 } 2052 2053 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2054 /* These hooks defined here for ATM */ 2055 struct net_bridge; 2056 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2057 unsigned char *addr); 2058 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2059 2060 /* 2061 * If bridge module is loaded call bridging hook. 2062 * returns NULL if packet was consumed. 2063 */ 2064 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2065 struct sk_buff *skb) __read_mostly; 2066 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2067 struct packet_type **pt_prev, int *ret, 2068 struct net_device *orig_dev) 2069 { 2070 struct net_bridge_port *port; 2071 2072 if (skb->pkt_type == PACKET_LOOPBACK || 2073 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2074 return skb; 2075 2076 if (*pt_prev) { 2077 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2078 *pt_prev = NULL; 2079 } 2080 2081 return br_handle_frame_hook(port, skb); 2082 } 2083 #else 2084 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2085 #endif 2086 2087 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2088 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2089 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2090 2091 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2092 struct packet_type **pt_prev, 2093 int *ret, 2094 struct net_device *orig_dev) 2095 { 2096 if (skb->dev->macvlan_port == NULL) 2097 return skb; 2098 2099 if (*pt_prev) { 2100 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2101 *pt_prev = NULL; 2102 } 2103 return macvlan_handle_frame_hook(skb); 2104 } 2105 #else 2106 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2107 #endif 2108 2109 #ifdef CONFIG_NET_CLS_ACT 2110 /* TODO: Maybe we should just force sch_ingress to be compiled in 2111 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2112 * a compare and 2 stores extra right now if we dont have it on 2113 * but have CONFIG_NET_CLS_ACT 2114 * NOTE: This doesnt stop any functionality; if you dont have 2115 * the ingress scheduler, you just cant add policies on ingress. 2116 * 2117 */ 2118 static int ing_filter(struct sk_buff *skb) 2119 { 2120 struct net_device *dev = skb->dev; 2121 u32 ttl = G_TC_RTTL(skb->tc_verd); 2122 struct netdev_queue *rxq; 2123 int result = TC_ACT_OK; 2124 struct Qdisc *q; 2125 2126 if (MAX_RED_LOOP < ttl++) { 2127 printk(KERN_WARNING 2128 "Redir loop detected Dropping packet (%d->%d)\n", 2129 skb->iif, dev->ifindex); 2130 return TC_ACT_SHOT; 2131 } 2132 2133 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2134 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2135 2136 rxq = &dev->rx_queue; 2137 2138 q = rxq->qdisc; 2139 if (q != &noop_qdisc) { 2140 spin_lock(qdisc_lock(q)); 2141 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2142 result = qdisc_enqueue_root(skb, q); 2143 spin_unlock(qdisc_lock(q)); 2144 } 2145 2146 return result; 2147 } 2148 2149 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2150 struct packet_type **pt_prev, 2151 int *ret, struct net_device *orig_dev) 2152 { 2153 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2154 goto out; 2155 2156 if (*pt_prev) { 2157 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2158 *pt_prev = NULL; 2159 } else { 2160 /* Huh? Why does turning on AF_PACKET affect this? */ 2161 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2162 } 2163 2164 switch (ing_filter(skb)) { 2165 case TC_ACT_SHOT: 2166 case TC_ACT_STOLEN: 2167 kfree_skb(skb); 2168 return NULL; 2169 } 2170 2171 out: 2172 skb->tc_verd = 0; 2173 return skb; 2174 } 2175 #endif 2176 2177 /* 2178 * netif_nit_deliver - deliver received packets to network taps 2179 * @skb: buffer 2180 * 2181 * This function is used to deliver incoming packets to network 2182 * taps. It should be used when the normal netif_receive_skb path 2183 * is bypassed, for example because of VLAN acceleration. 2184 */ 2185 void netif_nit_deliver(struct sk_buff *skb) 2186 { 2187 struct packet_type *ptype; 2188 2189 if (list_empty(&ptype_all)) 2190 return; 2191 2192 skb_reset_network_header(skb); 2193 skb_reset_transport_header(skb); 2194 skb->mac_len = skb->network_header - skb->mac_header; 2195 2196 rcu_read_lock(); 2197 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2198 if (!ptype->dev || ptype->dev == skb->dev) 2199 deliver_skb(skb, ptype, skb->dev); 2200 } 2201 rcu_read_unlock(); 2202 } 2203 2204 /** 2205 * netif_receive_skb - process receive buffer from network 2206 * @skb: buffer to process 2207 * 2208 * netif_receive_skb() is the main receive data processing function. 2209 * It always succeeds. The buffer may be dropped during processing 2210 * for congestion control or by the protocol layers. 2211 * 2212 * This function may only be called from softirq context and interrupts 2213 * should be enabled. 2214 * 2215 * Return values (usually ignored): 2216 * NET_RX_SUCCESS: no congestion 2217 * NET_RX_DROP: packet was dropped 2218 */ 2219 int netif_receive_skb(struct sk_buff *skb) 2220 { 2221 struct packet_type *ptype, *pt_prev; 2222 struct net_device *orig_dev; 2223 struct net_device *null_or_orig; 2224 int ret = NET_RX_DROP; 2225 __be16 type; 2226 2227 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2228 return NET_RX_SUCCESS; 2229 2230 /* if we've gotten here through NAPI, check netpoll */ 2231 if (netpoll_receive_skb(skb)) 2232 return NET_RX_DROP; 2233 2234 if (!skb->tstamp.tv64) 2235 net_timestamp(skb); 2236 2237 if (!skb->iif) 2238 skb->iif = skb->dev->ifindex; 2239 2240 null_or_orig = NULL; 2241 orig_dev = skb->dev; 2242 if (orig_dev->master) { 2243 if (skb_bond_should_drop(skb)) 2244 null_or_orig = orig_dev; /* deliver only exact match */ 2245 else 2246 skb->dev = orig_dev->master; 2247 } 2248 2249 __get_cpu_var(netdev_rx_stat).total++; 2250 2251 skb_reset_network_header(skb); 2252 skb_reset_transport_header(skb); 2253 skb->mac_len = skb->network_header - skb->mac_header; 2254 2255 pt_prev = NULL; 2256 2257 rcu_read_lock(); 2258 2259 /* Don't receive packets in an exiting network namespace */ 2260 if (!net_alive(dev_net(skb->dev))) { 2261 kfree_skb(skb); 2262 goto out; 2263 } 2264 2265 #ifdef CONFIG_NET_CLS_ACT 2266 if (skb->tc_verd & TC_NCLS) { 2267 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2268 goto ncls; 2269 } 2270 #endif 2271 2272 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2273 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2274 ptype->dev == orig_dev) { 2275 if (pt_prev) 2276 ret = deliver_skb(skb, pt_prev, orig_dev); 2277 pt_prev = ptype; 2278 } 2279 } 2280 2281 #ifdef CONFIG_NET_CLS_ACT 2282 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2283 if (!skb) 2284 goto out; 2285 ncls: 2286 #endif 2287 2288 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2289 if (!skb) 2290 goto out; 2291 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2292 if (!skb) 2293 goto out; 2294 2295 type = skb->protocol; 2296 list_for_each_entry_rcu(ptype, 2297 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2298 if (ptype->type == type && 2299 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2300 ptype->dev == orig_dev)) { 2301 if (pt_prev) 2302 ret = deliver_skb(skb, pt_prev, orig_dev); 2303 pt_prev = ptype; 2304 } 2305 } 2306 2307 if (pt_prev) { 2308 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2309 } else { 2310 kfree_skb(skb); 2311 /* Jamal, now you will not able to escape explaining 2312 * me how you were going to use this. :-) 2313 */ 2314 ret = NET_RX_DROP; 2315 } 2316 2317 out: 2318 rcu_read_unlock(); 2319 return ret; 2320 } 2321 2322 /* Network device is going away, flush any packets still pending */ 2323 static void flush_backlog(void *arg) 2324 { 2325 struct net_device *dev = arg; 2326 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2327 struct sk_buff *skb, *tmp; 2328 2329 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2330 if (skb->dev == dev) { 2331 __skb_unlink(skb, &queue->input_pkt_queue); 2332 kfree_skb(skb); 2333 } 2334 } 2335 2336 static int process_backlog(struct napi_struct *napi, int quota) 2337 { 2338 int work = 0; 2339 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2340 unsigned long start_time = jiffies; 2341 2342 napi->weight = weight_p; 2343 do { 2344 struct sk_buff *skb; 2345 2346 local_irq_disable(); 2347 skb = __skb_dequeue(&queue->input_pkt_queue); 2348 if (!skb) { 2349 __napi_complete(napi); 2350 local_irq_enable(); 2351 break; 2352 } 2353 local_irq_enable(); 2354 2355 netif_receive_skb(skb); 2356 } while (++work < quota && jiffies == start_time); 2357 2358 return work; 2359 } 2360 2361 /** 2362 * __napi_schedule - schedule for receive 2363 * @n: entry to schedule 2364 * 2365 * The entry's receive function will be scheduled to run 2366 */ 2367 void __napi_schedule(struct napi_struct *n) 2368 { 2369 unsigned long flags; 2370 2371 local_irq_save(flags); 2372 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2373 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2374 local_irq_restore(flags); 2375 } 2376 EXPORT_SYMBOL(__napi_schedule); 2377 2378 2379 static void net_rx_action(struct softirq_action *h) 2380 { 2381 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2382 unsigned long time_limit = jiffies + 2; 2383 int budget = netdev_budget; 2384 void *have; 2385 2386 local_irq_disable(); 2387 2388 while (!list_empty(list)) { 2389 struct napi_struct *n; 2390 int work, weight; 2391 2392 /* If softirq window is exhuasted then punt. 2393 * Allow this to run for 2 jiffies since which will allow 2394 * an average latency of 1.5/HZ. 2395 */ 2396 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2397 goto softnet_break; 2398 2399 local_irq_enable(); 2400 2401 /* Even though interrupts have been re-enabled, this 2402 * access is safe because interrupts can only add new 2403 * entries to the tail of this list, and only ->poll() 2404 * calls can remove this head entry from the list. 2405 */ 2406 n = list_entry(list->next, struct napi_struct, poll_list); 2407 2408 have = netpoll_poll_lock(n); 2409 2410 weight = n->weight; 2411 2412 /* This NAPI_STATE_SCHED test is for avoiding a race 2413 * with netpoll's poll_napi(). Only the entity which 2414 * obtains the lock and sees NAPI_STATE_SCHED set will 2415 * actually make the ->poll() call. Therefore we avoid 2416 * accidently calling ->poll() when NAPI is not scheduled. 2417 */ 2418 work = 0; 2419 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2420 work = n->poll(n, weight); 2421 2422 WARN_ON_ONCE(work > weight); 2423 2424 budget -= work; 2425 2426 local_irq_disable(); 2427 2428 /* Drivers must not modify the NAPI state if they 2429 * consume the entire weight. In such cases this code 2430 * still "owns" the NAPI instance and therefore can 2431 * move the instance around on the list at-will. 2432 */ 2433 if (unlikely(work == weight)) { 2434 if (unlikely(napi_disable_pending(n))) 2435 __napi_complete(n); 2436 else 2437 list_move_tail(&n->poll_list, list); 2438 } 2439 2440 netpoll_poll_unlock(have); 2441 } 2442 out: 2443 local_irq_enable(); 2444 2445 #ifdef CONFIG_NET_DMA 2446 /* 2447 * There may not be any more sk_buffs coming right now, so push 2448 * any pending DMA copies to hardware 2449 */ 2450 if (!cpus_empty(net_dma.channel_mask)) { 2451 int chan_idx; 2452 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) { 2453 struct dma_chan *chan = net_dma.channels[chan_idx]; 2454 if (chan) 2455 dma_async_memcpy_issue_pending(chan); 2456 } 2457 } 2458 #endif 2459 2460 return; 2461 2462 softnet_break: 2463 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2464 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2465 goto out; 2466 } 2467 2468 static gifconf_func_t * gifconf_list [NPROTO]; 2469 2470 /** 2471 * register_gifconf - register a SIOCGIF handler 2472 * @family: Address family 2473 * @gifconf: Function handler 2474 * 2475 * Register protocol dependent address dumping routines. The handler 2476 * that is passed must not be freed or reused until it has been replaced 2477 * by another handler. 2478 */ 2479 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2480 { 2481 if (family >= NPROTO) 2482 return -EINVAL; 2483 gifconf_list[family] = gifconf; 2484 return 0; 2485 } 2486 2487 2488 /* 2489 * Map an interface index to its name (SIOCGIFNAME) 2490 */ 2491 2492 /* 2493 * We need this ioctl for efficient implementation of the 2494 * if_indextoname() function required by the IPv6 API. Without 2495 * it, we would have to search all the interfaces to find a 2496 * match. --pb 2497 */ 2498 2499 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2500 { 2501 struct net_device *dev; 2502 struct ifreq ifr; 2503 2504 /* 2505 * Fetch the caller's info block. 2506 */ 2507 2508 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2509 return -EFAULT; 2510 2511 read_lock(&dev_base_lock); 2512 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2513 if (!dev) { 2514 read_unlock(&dev_base_lock); 2515 return -ENODEV; 2516 } 2517 2518 strcpy(ifr.ifr_name, dev->name); 2519 read_unlock(&dev_base_lock); 2520 2521 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2522 return -EFAULT; 2523 return 0; 2524 } 2525 2526 /* 2527 * Perform a SIOCGIFCONF call. This structure will change 2528 * size eventually, and there is nothing I can do about it. 2529 * Thus we will need a 'compatibility mode'. 2530 */ 2531 2532 static int dev_ifconf(struct net *net, char __user *arg) 2533 { 2534 struct ifconf ifc; 2535 struct net_device *dev; 2536 char __user *pos; 2537 int len; 2538 int total; 2539 int i; 2540 2541 /* 2542 * Fetch the caller's info block. 2543 */ 2544 2545 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2546 return -EFAULT; 2547 2548 pos = ifc.ifc_buf; 2549 len = ifc.ifc_len; 2550 2551 /* 2552 * Loop over the interfaces, and write an info block for each. 2553 */ 2554 2555 total = 0; 2556 for_each_netdev(net, dev) { 2557 for (i = 0; i < NPROTO; i++) { 2558 if (gifconf_list[i]) { 2559 int done; 2560 if (!pos) 2561 done = gifconf_list[i](dev, NULL, 0); 2562 else 2563 done = gifconf_list[i](dev, pos + total, 2564 len - total); 2565 if (done < 0) 2566 return -EFAULT; 2567 total += done; 2568 } 2569 } 2570 } 2571 2572 /* 2573 * All done. Write the updated control block back to the caller. 2574 */ 2575 ifc.ifc_len = total; 2576 2577 /* 2578 * Both BSD and Solaris return 0 here, so we do too. 2579 */ 2580 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2581 } 2582 2583 #ifdef CONFIG_PROC_FS 2584 /* 2585 * This is invoked by the /proc filesystem handler to display a device 2586 * in detail. 2587 */ 2588 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2589 __acquires(dev_base_lock) 2590 { 2591 struct net *net = seq_file_net(seq); 2592 loff_t off; 2593 struct net_device *dev; 2594 2595 read_lock(&dev_base_lock); 2596 if (!*pos) 2597 return SEQ_START_TOKEN; 2598 2599 off = 1; 2600 for_each_netdev(net, dev) 2601 if (off++ == *pos) 2602 return dev; 2603 2604 return NULL; 2605 } 2606 2607 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2608 { 2609 struct net *net = seq_file_net(seq); 2610 ++*pos; 2611 return v == SEQ_START_TOKEN ? 2612 first_net_device(net) : next_net_device((struct net_device *)v); 2613 } 2614 2615 void dev_seq_stop(struct seq_file *seq, void *v) 2616 __releases(dev_base_lock) 2617 { 2618 read_unlock(&dev_base_lock); 2619 } 2620 2621 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2622 { 2623 const struct net_device_stats *stats = dev_get_stats(dev); 2624 2625 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2626 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2627 dev->name, stats->rx_bytes, stats->rx_packets, 2628 stats->rx_errors, 2629 stats->rx_dropped + stats->rx_missed_errors, 2630 stats->rx_fifo_errors, 2631 stats->rx_length_errors + stats->rx_over_errors + 2632 stats->rx_crc_errors + stats->rx_frame_errors, 2633 stats->rx_compressed, stats->multicast, 2634 stats->tx_bytes, stats->tx_packets, 2635 stats->tx_errors, stats->tx_dropped, 2636 stats->tx_fifo_errors, stats->collisions, 2637 stats->tx_carrier_errors + 2638 stats->tx_aborted_errors + 2639 stats->tx_window_errors + 2640 stats->tx_heartbeat_errors, 2641 stats->tx_compressed); 2642 } 2643 2644 /* 2645 * Called from the PROCfs module. This now uses the new arbitrary sized 2646 * /proc/net interface to create /proc/net/dev 2647 */ 2648 static int dev_seq_show(struct seq_file *seq, void *v) 2649 { 2650 if (v == SEQ_START_TOKEN) 2651 seq_puts(seq, "Inter-| Receive " 2652 " | Transmit\n" 2653 " face |bytes packets errs drop fifo frame " 2654 "compressed multicast|bytes packets errs " 2655 "drop fifo colls carrier compressed\n"); 2656 else 2657 dev_seq_printf_stats(seq, v); 2658 return 0; 2659 } 2660 2661 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2662 { 2663 struct netif_rx_stats *rc = NULL; 2664 2665 while (*pos < nr_cpu_ids) 2666 if (cpu_online(*pos)) { 2667 rc = &per_cpu(netdev_rx_stat, *pos); 2668 break; 2669 } else 2670 ++*pos; 2671 return rc; 2672 } 2673 2674 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2675 { 2676 return softnet_get_online(pos); 2677 } 2678 2679 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2680 { 2681 ++*pos; 2682 return softnet_get_online(pos); 2683 } 2684 2685 static void softnet_seq_stop(struct seq_file *seq, void *v) 2686 { 2687 } 2688 2689 static int softnet_seq_show(struct seq_file *seq, void *v) 2690 { 2691 struct netif_rx_stats *s = v; 2692 2693 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2694 s->total, s->dropped, s->time_squeeze, 0, 2695 0, 0, 0, 0, /* was fastroute */ 2696 s->cpu_collision ); 2697 return 0; 2698 } 2699 2700 static const struct seq_operations dev_seq_ops = { 2701 .start = dev_seq_start, 2702 .next = dev_seq_next, 2703 .stop = dev_seq_stop, 2704 .show = dev_seq_show, 2705 }; 2706 2707 static int dev_seq_open(struct inode *inode, struct file *file) 2708 { 2709 return seq_open_net(inode, file, &dev_seq_ops, 2710 sizeof(struct seq_net_private)); 2711 } 2712 2713 static const struct file_operations dev_seq_fops = { 2714 .owner = THIS_MODULE, 2715 .open = dev_seq_open, 2716 .read = seq_read, 2717 .llseek = seq_lseek, 2718 .release = seq_release_net, 2719 }; 2720 2721 static const struct seq_operations softnet_seq_ops = { 2722 .start = softnet_seq_start, 2723 .next = softnet_seq_next, 2724 .stop = softnet_seq_stop, 2725 .show = softnet_seq_show, 2726 }; 2727 2728 static int softnet_seq_open(struct inode *inode, struct file *file) 2729 { 2730 return seq_open(file, &softnet_seq_ops); 2731 } 2732 2733 static const struct file_operations softnet_seq_fops = { 2734 .owner = THIS_MODULE, 2735 .open = softnet_seq_open, 2736 .read = seq_read, 2737 .llseek = seq_lseek, 2738 .release = seq_release, 2739 }; 2740 2741 static void *ptype_get_idx(loff_t pos) 2742 { 2743 struct packet_type *pt = NULL; 2744 loff_t i = 0; 2745 int t; 2746 2747 list_for_each_entry_rcu(pt, &ptype_all, list) { 2748 if (i == pos) 2749 return pt; 2750 ++i; 2751 } 2752 2753 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 2754 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2755 if (i == pos) 2756 return pt; 2757 ++i; 2758 } 2759 } 2760 return NULL; 2761 } 2762 2763 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2764 __acquires(RCU) 2765 { 2766 rcu_read_lock(); 2767 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2768 } 2769 2770 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2771 { 2772 struct packet_type *pt; 2773 struct list_head *nxt; 2774 int hash; 2775 2776 ++*pos; 2777 if (v == SEQ_START_TOKEN) 2778 return ptype_get_idx(0); 2779 2780 pt = v; 2781 nxt = pt->list.next; 2782 if (pt->type == htons(ETH_P_ALL)) { 2783 if (nxt != &ptype_all) 2784 goto found; 2785 hash = 0; 2786 nxt = ptype_base[0].next; 2787 } else 2788 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 2789 2790 while (nxt == &ptype_base[hash]) { 2791 if (++hash >= PTYPE_HASH_SIZE) 2792 return NULL; 2793 nxt = ptype_base[hash].next; 2794 } 2795 found: 2796 return list_entry(nxt, struct packet_type, list); 2797 } 2798 2799 static void ptype_seq_stop(struct seq_file *seq, void *v) 2800 __releases(RCU) 2801 { 2802 rcu_read_unlock(); 2803 } 2804 2805 static int ptype_seq_show(struct seq_file *seq, void *v) 2806 { 2807 struct packet_type *pt = v; 2808 2809 if (v == SEQ_START_TOKEN) 2810 seq_puts(seq, "Type Device Function\n"); 2811 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 2812 if (pt->type == htons(ETH_P_ALL)) 2813 seq_puts(seq, "ALL "); 2814 else 2815 seq_printf(seq, "%04x", ntohs(pt->type)); 2816 2817 seq_printf(seq, " %-8s %pF\n", 2818 pt->dev ? pt->dev->name : "", pt->func); 2819 } 2820 2821 return 0; 2822 } 2823 2824 static const struct seq_operations ptype_seq_ops = { 2825 .start = ptype_seq_start, 2826 .next = ptype_seq_next, 2827 .stop = ptype_seq_stop, 2828 .show = ptype_seq_show, 2829 }; 2830 2831 static int ptype_seq_open(struct inode *inode, struct file *file) 2832 { 2833 return seq_open_net(inode, file, &ptype_seq_ops, 2834 sizeof(struct seq_net_private)); 2835 } 2836 2837 static const struct file_operations ptype_seq_fops = { 2838 .owner = THIS_MODULE, 2839 .open = ptype_seq_open, 2840 .read = seq_read, 2841 .llseek = seq_lseek, 2842 .release = seq_release_net, 2843 }; 2844 2845 2846 static int __net_init dev_proc_net_init(struct net *net) 2847 { 2848 int rc = -ENOMEM; 2849 2850 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2851 goto out; 2852 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2853 goto out_dev; 2854 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2855 goto out_softnet; 2856 2857 if (wext_proc_init(net)) 2858 goto out_ptype; 2859 rc = 0; 2860 out: 2861 return rc; 2862 out_ptype: 2863 proc_net_remove(net, "ptype"); 2864 out_softnet: 2865 proc_net_remove(net, "softnet_stat"); 2866 out_dev: 2867 proc_net_remove(net, "dev"); 2868 goto out; 2869 } 2870 2871 static void __net_exit dev_proc_net_exit(struct net *net) 2872 { 2873 wext_proc_exit(net); 2874 2875 proc_net_remove(net, "ptype"); 2876 proc_net_remove(net, "softnet_stat"); 2877 proc_net_remove(net, "dev"); 2878 } 2879 2880 static struct pernet_operations __net_initdata dev_proc_ops = { 2881 .init = dev_proc_net_init, 2882 .exit = dev_proc_net_exit, 2883 }; 2884 2885 static int __init dev_proc_init(void) 2886 { 2887 return register_pernet_subsys(&dev_proc_ops); 2888 } 2889 #else 2890 #define dev_proc_init() 0 2891 #endif /* CONFIG_PROC_FS */ 2892 2893 2894 /** 2895 * netdev_set_master - set up master/slave pair 2896 * @slave: slave device 2897 * @master: new master device 2898 * 2899 * Changes the master device of the slave. Pass %NULL to break the 2900 * bonding. The caller must hold the RTNL semaphore. On a failure 2901 * a negative errno code is returned. On success the reference counts 2902 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2903 * function returns zero. 2904 */ 2905 int netdev_set_master(struct net_device *slave, struct net_device *master) 2906 { 2907 struct net_device *old = slave->master; 2908 2909 ASSERT_RTNL(); 2910 2911 if (master) { 2912 if (old) 2913 return -EBUSY; 2914 dev_hold(master); 2915 } 2916 2917 slave->master = master; 2918 2919 synchronize_net(); 2920 2921 if (old) 2922 dev_put(old); 2923 2924 if (master) 2925 slave->flags |= IFF_SLAVE; 2926 else 2927 slave->flags &= ~IFF_SLAVE; 2928 2929 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2930 return 0; 2931 } 2932 2933 static void dev_change_rx_flags(struct net_device *dev, int flags) 2934 { 2935 const struct net_device_ops *ops = dev->netdev_ops; 2936 2937 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 2938 ops->ndo_change_rx_flags(dev, flags); 2939 } 2940 2941 static int __dev_set_promiscuity(struct net_device *dev, int inc) 2942 { 2943 unsigned short old_flags = dev->flags; 2944 2945 ASSERT_RTNL(); 2946 2947 dev->flags |= IFF_PROMISC; 2948 dev->promiscuity += inc; 2949 if (dev->promiscuity == 0) { 2950 /* 2951 * Avoid overflow. 2952 * If inc causes overflow, untouch promisc and return error. 2953 */ 2954 if (inc < 0) 2955 dev->flags &= ~IFF_PROMISC; 2956 else { 2957 dev->promiscuity -= inc; 2958 printk(KERN_WARNING "%s: promiscuity touches roof, " 2959 "set promiscuity failed, promiscuity feature " 2960 "of device might be broken.\n", dev->name); 2961 return -EOVERFLOW; 2962 } 2963 } 2964 if (dev->flags != old_flags) { 2965 printk(KERN_INFO "device %s %s promiscuous mode\n", 2966 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2967 "left"); 2968 if (audit_enabled) 2969 audit_log(current->audit_context, GFP_ATOMIC, 2970 AUDIT_ANOM_PROMISCUOUS, 2971 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 2972 dev->name, (dev->flags & IFF_PROMISC), 2973 (old_flags & IFF_PROMISC), 2974 audit_get_loginuid(current), 2975 current->uid, current->gid, 2976 audit_get_sessionid(current)); 2977 2978 dev_change_rx_flags(dev, IFF_PROMISC); 2979 } 2980 return 0; 2981 } 2982 2983 /** 2984 * dev_set_promiscuity - update promiscuity count on a device 2985 * @dev: device 2986 * @inc: modifier 2987 * 2988 * Add or remove promiscuity from a device. While the count in the device 2989 * remains above zero the interface remains promiscuous. Once it hits zero 2990 * the device reverts back to normal filtering operation. A negative inc 2991 * value is used to drop promiscuity on the device. 2992 * Return 0 if successful or a negative errno code on error. 2993 */ 2994 int dev_set_promiscuity(struct net_device *dev, int inc) 2995 { 2996 unsigned short old_flags = dev->flags; 2997 int err; 2998 2999 err = __dev_set_promiscuity(dev, inc); 3000 if (err < 0) 3001 return err; 3002 if (dev->flags != old_flags) 3003 dev_set_rx_mode(dev); 3004 return err; 3005 } 3006 3007 /** 3008 * dev_set_allmulti - update allmulti count on a device 3009 * @dev: device 3010 * @inc: modifier 3011 * 3012 * Add or remove reception of all multicast frames to a device. While the 3013 * count in the device remains above zero the interface remains listening 3014 * to all interfaces. Once it hits zero the device reverts back to normal 3015 * filtering operation. A negative @inc value is used to drop the counter 3016 * when releasing a resource needing all multicasts. 3017 * Return 0 if successful or a negative errno code on error. 3018 */ 3019 3020 int dev_set_allmulti(struct net_device *dev, int inc) 3021 { 3022 unsigned short old_flags = dev->flags; 3023 3024 ASSERT_RTNL(); 3025 3026 dev->flags |= IFF_ALLMULTI; 3027 dev->allmulti += inc; 3028 if (dev->allmulti == 0) { 3029 /* 3030 * Avoid overflow. 3031 * If inc causes overflow, untouch allmulti and return error. 3032 */ 3033 if (inc < 0) 3034 dev->flags &= ~IFF_ALLMULTI; 3035 else { 3036 dev->allmulti -= inc; 3037 printk(KERN_WARNING "%s: allmulti touches roof, " 3038 "set allmulti failed, allmulti feature of " 3039 "device might be broken.\n", dev->name); 3040 return -EOVERFLOW; 3041 } 3042 } 3043 if (dev->flags ^ old_flags) { 3044 dev_change_rx_flags(dev, IFF_ALLMULTI); 3045 dev_set_rx_mode(dev); 3046 } 3047 return 0; 3048 } 3049 3050 /* 3051 * Upload unicast and multicast address lists to device and 3052 * configure RX filtering. When the device doesn't support unicast 3053 * filtering it is put in promiscuous mode while unicast addresses 3054 * are present. 3055 */ 3056 void __dev_set_rx_mode(struct net_device *dev) 3057 { 3058 const struct net_device_ops *ops = dev->netdev_ops; 3059 3060 /* dev_open will call this function so the list will stay sane. */ 3061 if (!(dev->flags&IFF_UP)) 3062 return; 3063 3064 if (!netif_device_present(dev)) 3065 return; 3066 3067 if (ops->ndo_set_rx_mode) 3068 ops->ndo_set_rx_mode(dev); 3069 else { 3070 /* Unicast addresses changes may only happen under the rtnl, 3071 * therefore calling __dev_set_promiscuity here is safe. 3072 */ 3073 if (dev->uc_count > 0 && !dev->uc_promisc) { 3074 __dev_set_promiscuity(dev, 1); 3075 dev->uc_promisc = 1; 3076 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3077 __dev_set_promiscuity(dev, -1); 3078 dev->uc_promisc = 0; 3079 } 3080 3081 if (ops->ndo_set_multicast_list) 3082 ops->ndo_set_multicast_list(dev); 3083 } 3084 } 3085 3086 void dev_set_rx_mode(struct net_device *dev) 3087 { 3088 netif_addr_lock_bh(dev); 3089 __dev_set_rx_mode(dev); 3090 netif_addr_unlock_bh(dev); 3091 } 3092 3093 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3094 void *addr, int alen, int glbl) 3095 { 3096 struct dev_addr_list *da; 3097 3098 for (; (da = *list) != NULL; list = &da->next) { 3099 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3100 alen == da->da_addrlen) { 3101 if (glbl) { 3102 int old_glbl = da->da_gusers; 3103 da->da_gusers = 0; 3104 if (old_glbl == 0) 3105 break; 3106 } 3107 if (--da->da_users) 3108 return 0; 3109 3110 *list = da->next; 3111 kfree(da); 3112 (*count)--; 3113 return 0; 3114 } 3115 } 3116 return -ENOENT; 3117 } 3118 3119 int __dev_addr_add(struct dev_addr_list **list, int *count, 3120 void *addr, int alen, int glbl) 3121 { 3122 struct dev_addr_list *da; 3123 3124 for (da = *list; da != NULL; da = da->next) { 3125 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3126 da->da_addrlen == alen) { 3127 if (glbl) { 3128 int old_glbl = da->da_gusers; 3129 da->da_gusers = 1; 3130 if (old_glbl) 3131 return 0; 3132 } 3133 da->da_users++; 3134 return 0; 3135 } 3136 } 3137 3138 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3139 if (da == NULL) 3140 return -ENOMEM; 3141 memcpy(da->da_addr, addr, alen); 3142 da->da_addrlen = alen; 3143 da->da_users = 1; 3144 da->da_gusers = glbl ? 1 : 0; 3145 da->next = *list; 3146 *list = da; 3147 (*count)++; 3148 return 0; 3149 } 3150 3151 /** 3152 * dev_unicast_delete - Release secondary unicast address. 3153 * @dev: device 3154 * @addr: address to delete 3155 * @alen: length of @addr 3156 * 3157 * Release reference to a secondary unicast address and remove it 3158 * from the device if the reference count drops to zero. 3159 * 3160 * The caller must hold the rtnl_mutex. 3161 */ 3162 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3163 { 3164 int err; 3165 3166 ASSERT_RTNL(); 3167 3168 netif_addr_lock_bh(dev); 3169 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3170 if (!err) 3171 __dev_set_rx_mode(dev); 3172 netif_addr_unlock_bh(dev); 3173 return err; 3174 } 3175 EXPORT_SYMBOL(dev_unicast_delete); 3176 3177 /** 3178 * dev_unicast_add - add a secondary unicast address 3179 * @dev: device 3180 * @addr: address to add 3181 * @alen: length of @addr 3182 * 3183 * Add a secondary unicast address to the device or increase 3184 * the reference count if it already exists. 3185 * 3186 * The caller must hold the rtnl_mutex. 3187 */ 3188 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3189 { 3190 int err; 3191 3192 ASSERT_RTNL(); 3193 3194 netif_addr_lock_bh(dev); 3195 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3196 if (!err) 3197 __dev_set_rx_mode(dev); 3198 netif_addr_unlock_bh(dev); 3199 return err; 3200 } 3201 EXPORT_SYMBOL(dev_unicast_add); 3202 3203 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3204 struct dev_addr_list **from, int *from_count) 3205 { 3206 struct dev_addr_list *da, *next; 3207 int err = 0; 3208 3209 da = *from; 3210 while (da != NULL) { 3211 next = da->next; 3212 if (!da->da_synced) { 3213 err = __dev_addr_add(to, to_count, 3214 da->da_addr, da->da_addrlen, 0); 3215 if (err < 0) 3216 break; 3217 da->da_synced = 1; 3218 da->da_users++; 3219 } else if (da->da_users == 1) { 3220 __dev_addr_delete(to, to_count, 3221 da->da_addr, da->da_addrlen, 0); 3222 __dev_addr_delete(from, from_count, 3223 da->da_addr, da->da_addrlen, 0); 3224 } 3225 da = next; 3226 } 3227 return err; 3228 } 3229 3230 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3231 struct dev_addr_list **from, int *from_count) 3232 { 3233 struct dev_addr_list *da, *next; 3234 3235 da = *from; 3236 while (da != NULL) { 3237 next = da->next; 3238 if (da->da_synced) { 3239 __dev_addr_delete(to, to_count, 3240 da->da_addr, da->da_addrlen, 0); 3241 da->da_synced = 0; 3242 __dev_addr_delete(from, from_count, 3243 da->da_addr, da->da_addrlen, 0); 3244 } 3245 da = next; 3246 } 3247 } 3248 3249 /** 3250 * dev_unicast_sync - Synchronize device's unicast list to another device 3251 * @to: destination device 3252 * @from: source device 3253 * 3254 * Add newly added addresses to the destination device and release 3255 * addresses that have no users left. The source device must be 3256 * locked by netif_tx_lock_bh. 3257 * 3258 * This function is intended to be called from the dev->set_rx_mode 3259 * function of layered software devices. 3260 */ 3261 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3262 { 3263 int err = 0; 3264 3265 netif_addr_lock_bh(to); 3266 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3267 &from->uc_list, &from->uc_count); 3268 if (!err) 3269 __dev_set_rx_mode(to); 3270 netif_addr_unlock_bh(to); 3271 return err; 3272 } 3273 EXPORT_SYMBOL(dev_unicast_sync); 3274 3275 /** 3276 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3277 * @to: destination device 3278 * @from: source device 3279 * 3280 * Remove all addresses that were added to the destination device by 3281 * dev_unicast_sync(). This function is intended to be called from the 3282 * dev->stop function of layered software devices. 3283 */ 3284 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3285 { 3286 netif_addr_lock_bh(from); 3287 netif_addr_lock(to); 3288 3289 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3290 &from->uc_list, &from->uc_count); 3291 __dev_set_rx_mode(to); 3292 3293 netif_addr_unlock(to); 3294 netif_addr_unlock_bh(from); 3295 } 3296 EXPORT_SYMBOL(dev_unicast_unsync); 3297 3298 static void __dev_addr_discard(struct dev_addr_list **list) 3299 { 3300 struct dev_addr_list *tmp; 3301 3302 while (*list != NULL) { 3303 tmp = *list; 3304 *list = tmp->next; 3305 if (tmp->da_users > tmp->da_gusers) 3306 printk("__dev_addr_discard: address leakage! " 3307 "da_users=%d\n", tmp->da_users); 3308 kfree(tmp); 3309 } 3310 } 3311 3312 static void dev_addr_discard(struct net_device *dev) 3313 { 3314 netif_addr_lock_bh(dev); 3315 3316 __dev_addr_discard(&dev->uc_list); 3317 dev->uc_count = 0; 3318 3319 __dev_addr_discard(&dev->mc_list); 3320 dev->mc_count = 0; 3321 3322 netif_addr_unlock_bh(dev); 3323 } 3324 3325 /** 3326 * dev_get_flags - get flags reported to userspace 3327 * @dev: device 3328 * 3329 * Get the combination of flag bits exported through APIs to userspace. 3330 */ 3331 unsigned dev_get_flags(const struct net_device *dev) 3332 { 3333 unsigned flags; 3334 3335 flags = (dev->flags & ~(IFF_PROMISC | 3336 IFF_ALLMULTI | 3337 IFF_RUNNING | 3338 IFF_LOWER_UP | 3339 IFF_DORMANT)) | 3340 (dev->gflags & (IFF_PROMISC | 3341 IFF_ALLMULTI)); 3342 3343 if (netif_running(dev)) { 3344 if (netif_oper_up(dev)) 3345 flags |= IFF_RUNNING; 3346 if (netif_carrier_ok(dev)) 3347 flags |= IFF_LOWER_UP; 3348 if (netif_dormant(dev)) 3349 flags |= IFF_DORMANT; 3350 } 3351 3352 return flags; 3353 } 3354 3355 /** 3356 * dev_change_flags - change device settings 3357 * @dev: device 3358 * @flags: device state flags 3359 * 3360 * Change settings on device based state flags. The flags are 3361 * in the userspace exported format. 3362 */ 3363 int dev_change_flags(struct net_device *dev, unsigned flags) 3364 { 3365 int ret, changes; 3366 int old_flags = dev->flags; 3367 3368 ASSERT_RTNL(); 3369 3370 /* 3371 * Set the flags on our device. 3372 */ 3373 3374 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3375 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3376 IFF_AUTOMEDIA)) | 3377 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3378 IFF_ALLMULTI)); 3379 3380 /* 3381 * Load in the correct multicast list now the flags have changed. 3382 */ 3383 3384 if ((old_flags ^ flags) & IFF_MULTICAST) 3385 dev_change_rx_flags(dev, IFF_MULTICAST); 3386 3387 dev_set_rx_mode(dev); 3388 3389 /* 3390 * Have we downed the interface. We handle IFF_UP ourselves 3391 * according to user attempts to set it, rather than blindly 3392 * setting it. 3393 */ 3394 3395 ret = 0; 3396 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3397 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3398 3399 if (!ret) 3400 dev_set_rx_mode(dev); 3401 } 3402 3403 if (dev->flags & IFF_UP && 3404 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3405 IFF_VOLATILE))) 3406 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3407 3408 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3409 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3410 dev->gflags ^= IFF_PROMISC; 3411 dev_set_promiscuity(dev, inc); 3412 } 3413 3414 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3415 is important. Some (broken) drivers set IFF_PROMISC, when 3416 IFF_ALLMULTI is requested not asking us and not reporting. 3417 */ 3418 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3419 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3420 dev->gflags ^= IFF_ALLMULTI; 3421 dev_set_allmulti(dev, inc); 3422 } 3423 3424 /* Exclude state transition flags, already notified */ 3425 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3426 if (changes) 3427 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3428 3429 return ret; 3430 } 3431 3432 /** 3433 * dev_set_mtu - Change maximum transfer unit 3434 * @dev: device 3435 * @new_mtu: new transfer unit 3436 * 3437 * Change the maximum transfer size of the network device. 3438 */ 3439 int dev_set_mtu(struct net_device *dev, int new_mtu) 3440 { 3441 const struct net_device_ops *ops = dev->netdev_ops; 3442 int err; 3443 3444 if (new_mtu == dev->mtu) 3445 return 0; 3446 3447 /* MTU must be positive. */ 3448 if (new_mtu < 0) 3449 return -EINVAL; 3450 3451 if (!netif_device_present(dev)) 3452 return -ENODEV; 3453 3454 err = 0; 3455 if (ops->ndo_change_mtu) 3456 err = ops->ndo_change_mtu(dev, new_mtu); 3457 else 3458 dev->mtu = new_mtu; 3459 3460 if (!err && dev->flags & IFF_UP) 3461 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3462 return err; 3463 } 3464 3465 /** 3466 * dev_set_mac_address - Change Media Access Control Address 3467 * @dev: device 3468 * @sa: new address 3469 * 3470 * Change the hardware (MAC) address of the device 3471 */ 3472 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3473 { 3474 const struct net_device_ops *ops = dev->netdev_ops; 3475 int err; 3476 3477 if (!ops->ndo_set_mac_address) 3478 return -EOPNOTSUPP; 3479 if (sa->sa_family != dev->type) 3480 return -EINVAL; 3481 if (!netif_device_present(dev)) 3482 return -ENODEV; 3483 err = ops->ndo_set_mac_address(dev, sa); 3484 if (!err) 3485 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3486 return err; 3487 } 3488 3489 /* 3490 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3491 */ 3492 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3493 { 3494 int err; 3495 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3496 3497 if (!dev) 3498 return -ENODEV; 3499 3500 switch (cmd) { 3501 case SIOCGIFFLAGS: /* Get interface flags */ 3502 ifr->ifr_flags = dev_get_flags(dev); 3503 return 0; 3504 3505 case SIOCGIFMETRIC: /* Get the metric on the interface 3506 (currently unused) */ 3507 ifr->ifr_metric = 0; 3508 return 0; 3509 3510 case SIOCGIFMTU: /* Get the MTU of a device */ 3511 ifr->ifr_mtu = dev->mtu; 3512 return 0; 3513 3514 case SIOCGIFHWADDR: 3515 if (!dev->addr_len) 3516 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3517 else 3518 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3519 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3520 ifr->ifr_hwaddr.sa_family = dev->type; 3521 return 0; 3522 3523 case SIOCGIFSLAVE: 3524 err = -EINVAL; 3525 break; 3526 3527 case SIOCGIFMAP: 3528 ifr->ifr_map.mem_start = dev->mem_start; 3529 ifr->ifr_map.mem_end = dev->mem_end; 3530 ifr->ifr_map.base_addr = dev->base_addr; 3531 ifr->ifr_map.irq = dev->irq; 3532 ifr->ifr_map.dma = dev->dma; 3533 ifr->ifr_map.port = dev->if_port; 3534 return 0; 3535 3536 case SIOCGIFINDEX: 3537 ifr->ifr_ifindex = dev->ifindex; 3538 return 0; 3539 3540 case SIOCGIFTXQLEN: 3541 ifr->ifr_qlen = dev->tx_queue_len; 3542 return 0; 3543 3544 default: 3545 /* dev_ioctl() should ensure this case 3546 * is never reached 3547 */ 3548 WARN_ON(1); 3549 err = -EINVAL; 3550 break; 3551 3552 } 3553 return err; 3554 } 3555 3556 /* 3557 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3558 */ 3559 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3560 { 3561 int err; 3562 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3563 const struct net_device_ops *ops = dev->netdev_ops; 3564 3565 if (!dev) 3566 return -ENODEV; 3567 3568 switch (cmd) { 3569 case SIOCSIFFLAGS: /* Set interface flags */ 3570 return dev_change_flags(dev, ifr->ifr_flags); 3571 3572 case SIOCSIFMETRIC: /* Set the metric on the interface 3573 (currently unused) */ 3574 return -EOPNOTSUPP; 3575 3576 case SIOCSIFMTU: /* Set the MTU of a device */ 3577 return dev_set_mtu(dev, ifr->ifr_mtu); 3578 3579 case SIOCSIFHWADDR: 3580 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3581 3582 case SIOCSIFHWBROADCAST: 3583 if (ifr->ifr_hwaddr.sa_family != dev->type) 3584 return -EINVAL; 3585 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3586 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3587 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3588 return 0; 3589 3590 case SIOCSIFMAP: 3591 if (ops->ndo_set_config) { 3592 if (!netif_device_present(dev)) 3593 return -ENODEV; 3594 return ops->ndo_set_config(dev, &ifr->ifr_map); 3595 } 3596 return -EOPNOTSUPP; 3597 3598 case SIOCADDMULTI: 3599 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3600 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3601 return -EINVAL; 3602 if (!netif_device_present(dev)) 3603 return -ENODEV; 3604 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3605 dev->addr_len, 1); 3606 3607 case SIOCDELMULTI: 3608 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3609 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3610 return -EINVAL; 3611 if (!netif_device_present(dev)) 3612 return -ENODEV; 3613 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3614 dev->addr_len, 1); 3615 3616 case SIOCSIFTXQLEN: 3617 if (ifr->ifr_qlen < 0) 3618 return -EINVAL; 3619 dev->tx_queue_len = ifr->ifr_qlen; 3620 return 0; 3621 3622 case SIOCSIFNAME: 3623 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3624 return dev_change_name(dev, ifr->ifr_newname); 3625 3626 /* 3627 * Unknown or private ioctl 3628 */ 3629 3630 default: 3631 if ((cmd >= SIOCDEVPRIVATE && 3632 cmd <= SIOCDEVPRIVATE + 15) || 3633 cmd == SIOCBONDENSLAVE || 3634 cmd == SIOCBONDRELEASE || 3635 cmd == SIOCBONDSETHWADDR || 3636 cmd == SIOCBONDSLAVEINFOQUERY || 3637 cmd == SIOCBONDINFOQUERY || 3638 cmd == SIOCBONDCHANGEACTIVE || 3639 cmd == SIOCGMIIPHY || 3640 cmd == SIOCGMIIREG || 3641 cmd == SIOCSMIIREG || 3642 cmd == SIOCBRADDIF || 3643 cmd == SIOCBRDELIF || 3644 cmd == SIOCWANDEV) { 3645 err = -EOPNOTSUPP; 3646 if (ops->ndo_do_ioctl) { 3647 if (netif_device_present(dev)) 3648 err = ops->ndo_do_ioctl(dev, ifr, cmd); 3649 else 3650 err = -ENODEV; 3651 } 3652 } else 3653 err = -EINVAL; 3654 3655 } 3656 return err; 3657 } 3658 3659 /* 3660 * This function handles all "interface"-type I/O control requests. The actual 3661 * 'doing' part of this is dev_ifsioc above. 3662 */ 3663 3664 /** 3665 * dev_ioctl - network device ioctl 3666 * @net: the applicable net namespace 3667 * @cmd: command to issue 3668 * @arg: pointer to a struct ifreq in user space 3669 * 3670 * Issue ioctl functions to devices. This is normally called by the 3671 * user space syscall interfaces but can sometimes be useful for 3672 * other purposes. The return value is the return from the syscall if 3673 * positive or a negative errno code on error. 3674 */ 3675 3676 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3677 { 3678 struct ifreq ifr; 3679 int ret; 3680 char *colon; 3681 3682 /* One special case: SIOCGIFCONF takes ifconf argument 3683 and requires shared lock, because it sleeps writing 3684 to user space. 3685 */ 3686 3687 if (cmd == SIOCGIFCONF) { 3688 rtnl_lock(); 3689 ret = dev_ifconf(net, (char __user *) arg); 3690 rtnl_unlock(); 3691 return ret; 3692 } 3693 if (cmd == SIOCGIFNAME) 3694 return dev_ifname(net, (struct ifreq __user *)arg); 3695 3696 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3697 return -EFAULT; 3698 3699 ifr.ifr_name[IFNAMSIZ-1] = 0; 3700 3701 colon = strchr(ifr.ifr_name, ':'); 3702 if (colon) 3703 *colon = 0; 3704 3705 /* 3706 * See which interface the caller is talking about. 3707 */ 3708 3709 switch (cmd) { 3710 /* 3711 * These ioctl calls: 3712 * - can be done by all. 3713 * - atomic and do not require locking. 3714 * - return a value 3715 */ 3716 case SIOCGIFFLAGS: 3717 case SIOCGIFMETRIC: 3718 case SIOCGIFMTU: 3719 case SIOCGIFHWADDR: 3720 case SIOCGIFSLAVE: 3721 case SIOCGIFMAP: 3722 case SIOCGIFINDEX: 3723 case SIOCGIFTXQLEN: 3724 dev_load(net, ifr.ifr_name); 3725 read_lock(&dev_base_lock); 3726 ret = dev_ifsioc_locked(net, &ifr, cmd); 3727 read_unlock(&dev_base_lock); 3728 if (!ret) { 3729 if (colon) 3730 *colon = ':'; 3731 if (copy_to_user(arg, &ifr, 3732 sizeof(struct ifreq))) 3733 ret = -EFAULT; 3734 } 3735 return ret; 3736 3737 case SIOCETHTOOL: 3738 dev_load(net, ifr.ifr_name); 3739 rtnl_lock(); 3740 ret = dev_ethtool(net, &ifr); 3741 rtnl_unlock(); 3742 if (!ret) { 3743 if (colon) 3744 *colon = ':'; 3745 if (copy_to_user(arg, &ifr, 3746 sizeof(struct ifreq))) 3747 ret = -EFAULT; 3748 } 3749 return ret; 3750 3751 /* 3752 * These ioctl calls: 3753 * - require superuser power. 3754 * - require strict serialization. 3755 * - return a value 3756 */ 3757 case SIOCGMIIPHY: 3758 case SIOCGMIIREG: 3759 case SIOCSIFNAME: 3760 if (!capable(CAP_NET_ADMIN)) 3761 return -EPERM; 3762 dev_load(net, ifr.ifr_name); 3763 rtnl_lock(); 3764 ret = dev_ifsioc(net, &ifr, cmd); 3765 rtnl_unlock(); 3766 if (!ret) { 3767 if (colon) 3768 *colon = ':'; 3769 if (copy_to_user(arg, &ifr, 3770 sizeof(struct ifreq))) 3771 ret = -EFAULT; 3772 } 3773 return ret; 3774 3775 /* 3776 * These ioctl calls: 3777 * - require superuser power. 3778 * - require strict serialization. 3779 * - do not return a value 3780 */ 3781 case SIOCSIFFLAGS: 3782 case SIOCSIFMETRIC: 3783 case SIOCSIFMTU: 3784 case SIOCSIFMAP: 3785 case SIOCSIFHWADDR: 3786 case SIOCSIFSLAVE: 3787 case SIOCADDMULTI: 3788 case SIOCDELMULTI: 3789 case SIOCSIFHWBROADCAST: 3790 case SIOCSIFTXQLEN: 3791 case SIOCSMIIREG: 3792 case SIOCBONDENSLAVE: 3793 case SIOCBONDRELEASE: 3794 case SIOCBONDSETHWADDR: 3795 case SIOCBONDCHANGEACTIVE: 3796 case SIOCBRADDIF: 3797 case SIOCBRDELIF: 3798 if (!capable(CAP_NET_ADMIN)) 3799 return -EPERM; 3800 /* fall through */ 3801 case SIOCBONDSLAVEINFOQUERY: 3802 case SIOCBONDINFOQUERY: 3803 dev_load(net, ifr.ifr_name); 3804 rtnl_lock(); 3805 ret = dev_ifsioc(net, &ifr, cmd); 3806 rtnl_unlock(); 3807 return ret; 3808 3809 case SIOCGIFMEM: 3810 /* Get the per device memory space. We can add this but 3811 * currently do not support it */ 3812 case SIOCSIFMEM: 3813 /* Set the per device memory buffer space. 3814 * Not applicable in our case */ 3815 case SIOCSIFLINK: 3816 return -EINVAL; 3817 3818 /* 3819 * Unknown or private ioctl. 3820 */ 3821 default: 3822 if (cmd == SIOCWANDEV || 3823 (cmd >= SIOCDEVPRIVATE && 3824 cmd <= SIOCDEVPRIVATE + 15)) { 3825 dev_load(net, ifr.ifr_name); 3826 rtnl_lock(); 3827 ret = dev_ifsioc(net, &ifr, cmd); 3828 rtnl_unlock(); 3829 if (!ret && copy_to_user(arg, &ifr, 3830 sizeof(struct ifreq))) 3831 ret = -EFAULT; 3832 return ret; 3833 } 3834 /* Take care of Wireless Extensions */ 3835 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3836 return wext_handle_ioctl(net, &ifr, cmd, arg); 3837 return -EINVAL; 3838 } 3839 } 3840 3841 3842 /** 3843 * dev_new_index - allocate an ifindex 3844 * @net: the applicable net namespace 3845 * 3846 * Returns a suitable unique value for a new device interface 3847 * number. The caller must hold the rtnl semaphore or the 3848 * dev_base_lock to be sure it remains unique. 3849 */ 3850 static int dev_new_index(struct net *net) 3851 { 3852 static int ifindex; 3853 for (;;) { 3854 if (++ifindex <= 0) 3855 ifindex = 1; 3856 if (!__dev_get_by_index(net, ifindex)) 3857 return ifindex; 3858 } 3859 } 3860 3861 /* Delayed registration/unregisteration */ 3862 static LIST_HEAD(net_todo_list); 3863 3864 static void net_set_todo(struct net_device *dev) 3865 { 3866 list_add_tail(&dev->todo_list, &net_todo_list); 3867 } 3868 3869 static void rollback_registered(struct net_device *dev) 3870 { 3871 BUG_ON(dev_boot_phase); 3872 ASSERT_RTNL(); 3873 3874 /* Some devices call without registering for initialization unwind. */ 3875 if (dev->reg_state == NETREG_UNINITIALIZED) { 3876 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3877 "was registered\n", dev->name, dev); 3878 3879 WARN_ON(1); 3880 return; 3881 } 3882 3883 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3884 3885 /* If device is running, close it first. */ 3886 dev_close(dev); 3887 3888 /* And unlink it from device chain. */ 3889 unlist_netdevice(dev); 3890 3891 dev->reg_state = NETREG_UNREGISTERING; 3892 3893 synchronize_net(); 3894 3895 /* Shutdown queueing discipline. */ 3896 dev_shutdown(dev); 3897 3898 3899 /* Notify protocols, that we are about to destroy 3900 this device. They should clean all the things. 3901 */ 3902 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3903 3904 /* 3905 * Flush the unicast and multicast chains 3906 */ 3907 dev_addr_discard(dev); 3908 3909 if (dev->netdev_ops->ndo_uninit) 3910 dev->netdev_ops->ndo_uninit(dev); 3911 3912 /* Notifier chain MUST detach us from master device. */ 3913 WARN_ON(dev->master); 3914 3915 /* Remove entries from kobject tree */ 3916 netdev_unregister_kobject(dev); 3917 3918 synchronize_net(); 3919 3920 dev_put(dev); 3921 } 3922 3923 static void __netdev_init_queue_locks_one(struct net_device *dev, 3924 struct netdev_queue *dev_queue, 3925 void *_unused) 3926 { 3927 spin_lock_init(&dev_queue->_xmit_lock); 3928 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 3929 dev_queue->xmit_lock_owner = -1; 3930 } 3931 3932 static void netdev_init_queue_locks(struct net_device *dev) 3933 { 3934 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 3935 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 3936 } 3937 3938 unsigned long netdev_fix_features(unsigned long features, const char *name) 3939 { 3940 /* Fix illegal SG+CSUM combinations. */ 3941 if ((features & NETIF_F_SG) && 3942 !(features & NETIF_F_ALL_CSUM)) { 3943 if (name) 3944 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 3945 "checksum feature.\n", name); 3946 features &= ~NETIF_F_SG; 3947 } 3948 3949 /* TSO requires that SG is present as well. */ 3950 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 3951 if (name) 3952 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 3953 "SG feature.\n", name); 3954 features &= ~NETIF_F_TSO; 3955 } 3956 3957 if (features & NETIF_F_UFO) { 3958 if (!(features & NETIF_F_GEN_CSUM)) { 3959 if (name) 3960 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 3961 "since no NETIF_F_HW_CSUM feature.\n", 3962 name); 3963 features &= ~NETIF_F_UFO; 3964 } 3965 3966 if (!(features & NETIF_F_SG)) { 3967 if (name) 3968 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 3969 "since no NETIF_F_SG feature.\n", name); 3970 features &= ~NETIF_F_UFO; 3971 } 3972 } 3973 3974 return features; 3975 } 3976 EXPORT_SYMBOL(netdev_fix_features); 3977 3978 /** 3979 * register_netdevice - register a network device 3980 * @dev: device to register 3981 * 3982 * Take a completed network device structure and add it to the kernel 3983 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3984 * chain. 0 is returned on success. A negative errno code is returned 3985 * on a failure to set up the device, or if the name is a duplicate. 3986 * 3987 * Callers must hold the rtnl semaphore. You may want 3988 * register_netdev() instead of this. 3989 * 3990 * BUGS: 3991 * The locking appears insufficient to guarantee two parallel registers 3992 * will not get the same name. 3993 */ 3994 3995 int register_netdevice(struct net_device *dev) 3996 { 3997 struct hlist_head *head; 3998 struct hlist_node *p; 3999 int ret; 4000 struct net *net = dev_net(dev); 4001 4002 BUG_ON(dev_boot_phase); 4003 ASSERT_RTNL(); 4004 4005 might_sleep(); 4006 4007 /* When net_device's are persistent, this will be fatal. */ 4008 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4009 BUG_ON(!net); 4010 4011 spin_lock_init(&dev->addr_list_lock); 4012 netdev_set_addr_lockdep_class(dev); 4013 netdev_init_queue_locks(dev); 4014 4015 dev->iflink = -1; 4016 4017 #ifdef CONFIG_COMPAT_NET_DEV_OPS 4018 /* Netdevice_ops API compatiability support. 4019 * This is temporary until all network devices are converted. 4020 */ 4021 if (dev->netdev_ops) { 4022 const struct net_device_ops *ops = dev->netdev_ops; 4023 4024 dev->init = ops->ndo_init; 4025 dev->uninit = ops->ndo_uninit; 4026 dev->open = ops->ndo_open; 4027 dev->change_rx_flags = ops->ndo_change_rx_flags; 4028 dev->set_rx_mode = ops->ndo_set_rx_mode; 4029 dev->set_multicast_list = ops->ndo_set_multicast_list; 4030 dev->set_mac_address = ops->ndo_set_mac_address; 4031 dev->validate_addr = ops->ndo_validate_addr; 4032 dev->do_ioctl = ops->ndo_do_ioctl; 4033 dev->set_config = ops->ndo_set_config; 4034 dev->change_mtu = ops->ndo_change_mtu; 4035 dev->tx_timeout = ops->ndo_tx_timeout; 4036 dev->get_stats = ops->ndo_get_stats; 4037 dev->vlan_rx_register = ops->ndo_vlan_rx_register; 4038 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid; 4039 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid; 4040 #ifdef CONFIG_NET_POLL_CONTROLLER 4041 dev->poll_controller = ops->ndo_poll_controller; 4042 #endif 4043 } else { 4044 char drivername[64]; 4045 pr_info("%s (%s): not using net_device_ops yet\n", 4046 dev->name, netdev_drivername(dev, drivername, 64)); 4047 4048 /* This works only because net_device_ops and the 4049 compatiablity structure are the same. */ 4050 dev->netdev_ops = (void *) &(dev->init); 4051 } 4052 #endif 4053 4054 /* Init, if this function is available */ 4055 if (dev->netdev_ops->ndo_init) { 4056 ret = dev->netdev_ops->ndo_init(dev); 4057 if (ret) { 4058 if (ret > 0) 4059 ret = -EIO; 4060 goto out; 4061 } 4062 } 4063 4064 if (!dev_valid_name(dev->name)) { 4065 ret = -EINVAL; 4066 goto err_uninit; 4067 } 4068 4069 dev->ifindex = dev_new_index(net); 4070 if (dev->iflink == -1) 4071 dev->iflink = dev->ifindex; 4072 4073 /* Check for existence of name */ 4074 head = dev_name_hash(net, dev->name); 4075 hlist_for_each(p, head) { 4076 struct net_device *d 4077 = hlist_entry(p, struct net_device, name_hlist); 4078 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4079 ret = -EEXIST; 4080 goto err_uninit; 4081 } 4082 } 4083 4084 /* Fix illegal checksum combinations */ 4085 if ((dev->features & NETIF_F_HW_CSUM) && 4086 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4087 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4088 dev->name); 4089 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4090 } 4091 4092 if ((dev->features & NETIF_F_NO_CSUM) && 4093 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4094 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4095 dev->name); 4096 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4097 } 4098 4099 dev->features = netdev_fix_features(dev->features, dev->name); 4100 4101 /* Enable software GSO if SG is supported. */ 4102 if (dev->features & NETIF_F_SG) 4103 dev->features |= NETIF_F_GSO; 4104 4105 netdev_initialize_kobject(dev); 4106 ret = netdev_register_kobject(dev); 4107 if (ret) 4108 goto err_uninit; 4109 dev->reg_state = NETREG_REGISTERED; 4110 4111 /* 4112 * Default initial state at registry is that the 4113 * device is present. 4114 */ 4115 4116 set_bit(__LINK_STATE_PRESENT, &dev->state); 4117 4118 dev_init_scheduler(dev); 4119 dev_hold(dev); 4120 list_netdevice(dev); 4121 4122 /* Notify protocols, that a new device appeared. */ 4123 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4124 ret = notifier_to_errno(ret); 4125 if (ret) { 4126 rollback_registered(dev); 4127 dev->reg_state = NETREG_UNREGISTERED; 4128 } 4129 4130 out: 4131 return ret; 4132 4133 err_uninit: 4134 if (dev->netdev_ops->ndo_uninit) 4135 dev->netdev_ops->ndo_uninit(dev); 4136 goto out; 4137 } 4138 4139 /** 4140 * register_netdev - register a network device 4141 * @dev: device to register 4142 * 4143 * Take a completed network device structure and add it to the kernel 4144 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4145 * chain. 0 is returned on success. A negative errno code is returned 4146 * on a failure to set up the device, or if the name is a duplicate. 4147 * 4148 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4149 * and expands the device name if you passed a format string to 4150 * alloc_netdev. 4151 */ 4152 int register_netdev(struct net_device *dev) 4153 { 4154 int err; 4155 4156 rtnl_lock(); 4157 4158 /* 4159 * If the name is a format string the caller wants us to do a 4160 * name allocation. 4161 */ 4162 if (strchr(dev->name, '%')) { 4163 err = dev_alloc_name(dev, dev->name); 4164 if (err < 0) 4165 goto out; 4166 } 4167 4168 err = register_netdevice(dev); 4169 out: 4170 rtnl_unlock(); 4171 return err; 4172 } 4173 EXPORT_SYMBOL(register_netdev); 4174 4175 /* 4176 * netdev_wait_allrefs - wait until all references are gone. 4177 * 4178 * This is called when unregistering network devices. 4179 * 4180 * Any protocol or device that holds a reference should register 4181 * for netdevice notification, and cleanup and put back the 4182 * reference if they receive an UNREGISTER event. 4183 * We can get stuck here if buggy protocols don't correctly 4184 * call dev_put. 4185 */ 4186 static void netdev_wait_allrefs(struct net_device *dev) 4187 { 4188 unsigned long rebroadcast_time, warning_time; 4189 4190 rebroadcast_time = warning_time = jiffies; 4191 while (atomic_read(&dev->refcnt) != 0) { 4192 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4193 rtnl_lock(); 4194 4195 /* Rebroadcast unregister notification */ 4196 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4197 4198 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4199 &dev->state)) { 4200 /* We must not have linkwatch events 4201 * pending on unregister. If this 4202 * happens, we simply run the queue 4203 * unscheduled, resulting in a noop 4204 * for this device. 4205 */ 4206 linkwatch_run_queue(); 4207 } 4208 4209 __rtnl_unlock(); 4210 4211 rebroadcast_time = jiffies; 4212 } 4213 4214 msleep(250); 4215 4216 if (time_after(jiffies, warning_time + 10 * HZ)) { 4217 printk(KERN_EMERG "unregister_netdevice: " 4218 "waiting for %s to become free. Usage " 4219 "count = %d\n", 4220 dev->name, atomic_read(&dev->refcnt)); 4221 warning_time = jiffies; 4222 } 4223 } 4224 } 4225 4226 /* The sequence is: 4227 * 4228 * rtnl_lock(); 4229 * ... 4230 * register_netdevice(x1); 4231 * register_netdevice(x2); 4232 * ... 4233 * unregister_netdevice(y1); 4234 * unregister_netdevice(y2); 4235 * ... 4236 * rtnl_unlock(); 4237 * free_netdev(y1); 4238 * free_netdev(y2); 4239 * 4240 * We are invoked by rtnl_unlock(). 4241 * This allows us to deal with problems: 4242 * 1) We can delete sysfs objects which invoke hotplug 4243 * without deadlocking with linkwatch via keventd. 4244 * 2) Since we run with the RTNL semaphore not held, we can sleep 4245 * safely in order to wait for the netdev refcnt to drop to zero. 4246 * 4247 * We must not return until all unregister events added during 4248 * the interval the lock was held have been completed. 4249 */ 4250 void netdev_run_todo(void) 4251 { 4252 struct list_head list; 4253 4254 /* Snapshot list, allow later requests */ 4255 list_replace_init(&net_todo_list, &list); 4256 4257 __rtnl_unlock(); 4258 4259 while (!list_empty(&list)) { 4260 struct net_device *dev 4261 = list_entry(list.next, struct net_device, todo_list); 4262 list_del(&dev->todo_list); 4263 4264 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4265 printk(KERN_ERR "network todo '%s' but state %d\n", 4266 dev->name, dev->reg_state); 4267 dump_stack(); 4268 continue; 4269 } 4270 4271 dev->reg_state = NETREG_UNREGISTERED; 4272 4273 on_each_cpu(flush_backlog, dev, 1); 4274 4275 netdev_wait_allrefs(dev); 4276 4277 /* paranoia */ 4278 BUG_ON(atomic_read(&dev->refcnt)); 4279 WARN_ON(dev->ip_ptr); 4280 WARN_ON(dev->ip6_ptr); 4281 WARN_ON(dev->dn_ptr); 4282 4283 if (dev->destructor) 4284 dev->destructor(dev); 4285 4286 /* Free network device */ 4287 kobject_put(&dev->dev.kobj); 4288 } 4289 } 4290 4291 /** 4292 * dev_get_stats - get network device statistics 4293 * @dev: device to get statistics from 4294 * 4295 * Get network statistics from device. The device driver may provide 4296 * its own method by setting dev->netdev_ops->get_stats; otherwise 4297 * the internal statistics structure is used. 4298 */ 4299 const struct net_device_stats *dev_get_stats(struct net_device *dev) 4300 { 4301 const struct net_device_ops *ops = dev->netdev_ops; 4302 4303 if (ops->ndo_get_stats) 4304 return ops->ndo_get_stats(dev); 4305 else 4306 return &dev->stats; 4307 } 4308 EXPORT_SYMBOL(dev_get_stats); 4309 4310 static void netdev_init_one_queue(struct net_device *dev, 4311 struct netdev_queue *queue, 4312 void *_unused) 4313 { 4314 queue->dev = dev; 4315 } 4316 4317 static void netdev_init_queues(struct net_device *dev) 4318 { 4319 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4320 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4321 spin_lock_init(&dev->tx_global_lock); 4322 } 4323 4324 /** 4325 * alloc_netdev_mq - allocate network device 4326 * @sizeof_priv: size of private data to allocate space for 4327 * @name: device name format string 4328 * @setup: callback to initialize device 4329 * @queue_count: the number of subqueues to allocate 4330 * 4331 * Allocates a struct net_device with private data area for driver use 4332 * and performs basic initialization. Also allocates subquue structs 4333 * for each queue on the device at the end of the netdevice. 4334 */ 4335 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4336 void (*setup)(struct net_device *), unsigned int queue_count) 4337 { 4338 struct netdev_queue *tx; 4339 struct net_device *dev; 4340 size_t alloc_size; 4341 void *p; 4342 4343 BUG_ON(strlen(name) >= sizeof(dev->name)); 4344 4345 alloc_size = sizeof(struct net_device); 4346 if (sizeof_priv) { 4347 /* ensure 32-byte alignment of private area */ 4348 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4349 alloc_size += sizeof_priv; 4350 } 4351 /* ensure 32-byte alignment of whole construct */ 4352 alloc_size += NETDEV_ALIGN_CONST; 4353 4354 p = kzalloc(alloc_size, GFP_KERNEL); 4355 if (!p) { 4356 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4357 return NULL; 4358 } 4359 4360 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4361 if (!tx) { 4362 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4363 "tx qdiscs.\n"); 4364 kfree(p); 4365 return NULL; 4366 } 4367 4368 dev = (struct net_device *) 4369 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4370 dev->padded = (char *)dev - (char *)p; 4371 dev_net_set(dev, &init_net); 4372 4373 dev->_tx = tx; 4374 dev->num_tx_queues = queue_count; 4375 dev->real_num_tx_queues = queue_count; 4376 4377 if (sizeof_priv) { 4378 dev->priv = ((char *)dev + 4379 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST) 4380 & ~NETDEV_ALIGN_CONST)); 4381 } 4382 4383 dev->gso_max_size = GSO_MAX_SIZE; 4384 4385 netdev_init_queues(dev); 4386 4387 netpoll_netdev_init(dev); 4388 setup(dev); 4389 strcpy(dev->name, name); 4390 return dev; 4391 } 4392 EXPORT_SYMBOL(alloc_netdev_mq); 4393 4394 /** 4395 * free_netdev - free network device 4396 * @dev: device 4397 * 4398 * This function does the last stage of destroying an allocated device 4399 * interface. The reference to the device object is released. 4400 * If this is the last reference then it will be freed. 4401 */ 4402 void free_netdev(struct net_device *dev) 4403 { 4404 release_net(dev_net(dev)); 4405 4406 kfree(dev->_tx); 4407 4408 /* Compatibility with error handling in drivers */ 4409 if (dev->reg_state == NETREG_UNINITIALIZED) { 4410 kfree((char *)dev - dev->padded); 4411 return; 4412 } 4413 4414 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4415 dev->reg_state = NETREG_RELEASED; 4416 4417 /* will free via device release */ 4418 put_device(&dev->dev); 4419 } 4420 4421 /** 4422 * synchronize_net - Synchronize with packet receive processing 4423 * 4424 * Wait for packets currently being received to be done. 4425 * Does not block later packets from starting. 4426 */ 4427 void synchronize_net(void) 4428 { 4429 might_sleep(); 4430 synchronize_rcu(); 4431 } 4432 4433 /** 4434 * unregister_netdevice - remove device from the kernel 4435 * @dev: device 4436 * 4437 * This function shuts down a device interface and removes it 4438 * from the kernel tables. 4439 * 4440 * Callers must hold the rtnl semaphore. You may want 4441 * unregister_netdev() instead of this. 4442 */ 4443 4444 void unregister_netdevice(struct net_device *dev) 4445 { 4446 ASSERT_RTNL(); 4447 4448 rollback_registered(dev); 4449 /* Finish processing unregister after unlock */ 4450 net_set_todo(dev); 4451 } 4452 4453 /** 4454 * unregister_netdev - remove device from the kernel 4455 * @dev: device 4456 * 4457 * This function shuts down a device interface and removes it 4458 * from the kernel tables. 4459 * 4460 * This is just a wrapper for unregister_netdevice that takes 4461 * the rtnl semaphore. In general you want to use this and not 4462 * unregister_netdevice. 4463 */ 4464 void unregister_netdev(struct net_device *dev) 4465 { 4466 rtnl_lock(); 4467 unregister_netdevice(dev); 4468 rtnl_unlock(); 4469 } 4470 4471 EXPORT_SYMBOL(unregister_netdev); 4472 4473 /** 4474 * dev_change_net_namespace - move device to different nethost namespace 4475 * @dev: device 4476 * @net: network namespace 4477 * @pat: If not NULL name pattern to try if the current device name 4478 * is already taken in the destination network namespace. 4479 * 4480 * This function shuts down a device interface and moves it 4481 * to a new network namespace. On success 0 is returned, on 4482 * a failure a netagive errno code is returned. 4483 * 4484 * Callers must hold the rtnl semaphore. 4485 */ 4486 4487 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4488 { 4489 char buf[IFNAMSIZ]; 4490 const char *destname; 4491 int err; 4492 4493 ASSERT_RTNL(); 4494 4495 /* Don't allow namespace local devices to be moved. */ 4496 err = -EINVAL; 4497 if (dev->features & NETIF_F_NETNS_LOCAL) 4498 goto out; 4499 4500 #ifdef CONFIG_SYSFS 4501 /* Don't allow real devices to be moved when sysfs 4502 * is enabled. 4503 */ 4504 err = -EINVAL; 4505 if (dev->dev.parent) 4506 goto out; 4507 #endif 4508 4509 /* Ensure the device has been registrered */ 4510 err = -EINVAL; 4511 if (dev->reg_state != NETREG_REGISTERED) 4512 goto out; 4513 4514 /* Get out if there is nothing todo */ 4515 err = 0; 4516 if (net_eq(dev_net(dev), net)) 4517 goto out; 4518 4519 /* Pick the destination device name, and ensure 4520 * we can use it in the destination network namespace. 4521 */ 4522 err = -EEXIST; 4523 destname = dev->name; 4524 if (__dev_get_by_name(net, destname)) { 4525 /* We get here if we can't use the current device name */ 4526 if (!pat) 4527 goto out; 4528 if (!dev_valid_name(pat)) 4529 goto out; 4530 if (strchr(pat, '%')) { 4531 if (__dev_alloc_name(net, pat, buf) < 0) 4532 goto out; 4533 destname = buf; 4534 } else 4535 destname = pat; 4536 if (__dev_get_by_name(net, destname)) 4537 goto out; 4538 } 4539 4540 /* 4541 * And now a mini version of register_netdevice unregister_netdevice. 4542 */ 4543 4544 /* If device is running close it first. */ 4545 dev_close(dev); 4546 4547 /* And unlink it from device chain */ 4548 err = -ENODEV; 4549 unlist_netdevice(dev); 4550 4551 synchronize_net(); 4552 4553 /* Shutdown queueing discipline. */ 4554 dev_shutdown(dev); 4555 4556 /* Notify protocols, that we are about to destroy 4557 this device. They should clean all the things. 4558 */ 4559 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4560 4561 /* 4562 * Flush the unicast and multicast chains 4563 */ 4564 dev_addr_discard(dev); 4565 4566 netdev_unregister_kobject(dev); 4567 4568 /* Actually switch the network namespace */ 4569 dev_net_set(dev, net); 4570 4571 /* Assign the new device name */ 4572 if (destname != dev->name) 4573 strcpy(dev->name, destname); 4574 4575 /* If there is an ifindex conflict assign a new one */ 4576 if (__dev_get_by_index(net, dev->ifindex)) { 4577 int iflink = (dev->iflink == dev->ifindex); 4578 dev->ifindex = dev_new_index(net); 4579 if (iflink) 4580 dev->iflink = dev->ifindex; 4581 } 4582 4583 /* Fixup kobjects */ 4584 err = netdev_register_kobject(dev); 4585 WARN_ON(err); 4586 4587 /* Add the device back in the hashes */ 4588 list_netdevice(dev); 4589 4590 /* Notify protocols, that a new device appeared. */ 4591 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4592 4593 synchronize_net(); 4594 err = 0; 4595 out: 4596 return err; 4597 } 4598 4599 static int dev_cpu_callback(struct notifier_block *nfb, 4600 unsigned long action, 4601 void *ocpu) 4602 { 4603 struct sk_buff **list_skb; 4604 struct Qdisc **list_net; 4605 struct sk_buff *skb; 4606 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4607 struct softnet_data *sd, *oldsd; 4608 4609 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4610 return NOTIFY_OK; 4611 4612 local_irq_disable(); 4613 cpu = smp_processor_id(); 4614 sd = &per_cpu(softnet_data, cpu); 4615 oldsd = &per_cpu(softnet_data, oldcpu); 4616 4617 /* Find end of our completion_queue. */ 4618 list_skb = &sd->completion_queue; 4619 while (*list_skb) 4620 list_skb = &(*list_skb)->next; 4621 /* Append completion queue from offline CPU. */ 4622 *list_skb = oldsd->completion_queue; 4623 oldsd->completion_queue = NULL; 4624 4625 /* Find end of our output_queue. */ 4626 list_net = &sd->output_queue; 4627 while (*list_net) 4628 list_net = &(*list_net)->next_sched; 4629 /* Append output queue from offline CPU. */ 4630 *list_net = oldsd->output_queue; 4631 oldsd->output_queue = NULL; 4632 4633 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4634 local_irq_enable(); 4635 4636 /* Process offline CPU's input_pkt_queue */ 4637 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4638 netif_rx(skb); 4639 4640 return NOTIFY_OK; 4641 } 4642 4643 #ifdef CONFIG_NET_DMA 4644 /** 4645 * net_dma_rebalance - try to maintain one DMA channel per CPU 4646 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4647 * 4648 * This is called when the number of channels allocated to the net_dma client 4649 * changes. The net_dma client tries to have one DMA channel per CPU. 4650 */ 4651 4652 static void net_dma_rebalance(struct net_dma *net_dma) 4653 { 4654 unsigned int cpu, i, n, chan_idx; 4655 struct dma_chan *chan; 4656 4657 if (cpus_empty(net_dma->channel_mask)) { 4658 for_each_online_cpu(cpu) 4659 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4660 return; 4661 } 4662 4663 i = 0; 4664 cpu = first_cpu(cpu_online_map); 4665 4666 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) { 4667 chan = net_dma->channels[chan_idx]; 4668 4669 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4670 + (i < (num_online_cpus() % 4671 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4672 4673 while(n) { 4674 per_cpu(softnet_data, cpu).net_dma = chan; 4675 cpu = next_cpu(cpu, cpu_online_map); 4676 n--; 4677 } 4678 i++; 4679 } 4680 } 4681 4682 /** 4683 * netdev_dma_event - event callback for the net_dma_client 4684 * @client: should always be net_dma_client 4685 * @chan: DMA channel for the event 4686 * @state: DMA state to be handled 4687 */ 4688 static enum dma_state_client 4689 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4690 enum dma_state state) 4691 { 4692 int i, found = 0, pos = -1; 4693 struct net_dma *net_dma = 4694 container_of(client, struct net_dma, client); 4695 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4696 4697 spin_lock(&net_dma->lock); 4698 switch (state) { 4699 case DMA_RESOURCE_AVAILABLE: 4700 for (i = 0; i < nr_cpu_ids; i++) 4701 if (net_dma->channels[i] == chan) { 4702 found = 1; 4703 break; 4704 } else if (net_dma->channels[i] == NULL && pos < 0) 4705 pos = i; 4706 4707 if (!found && pos >= 0) { 4708 ack = DMA_ACK; 4709 net_dma->channels[pos] = chan; 4710 cpu_set(pos, net_dma->channel_mask); 4711 net_dma_rebalance(net_dma); 4712 } 4713 break; 4714 case DMA_RESOURCE_REMOVED: 4715 for (i = 0; i < nr_cpu_ids; i++) 4716 if (net_dma->channels[i] == chan) { 4717 found = 1; 4718 pos = i; 4719 break; 4720 } 4721 4722 if (found) { 4723 ack = DMA_ACK; 4724 cpu_clear(pos, net_dma->channel_mask); 4725 net_dma->channels[i] = NULL; 4726 net_dma_rebalance(net_dma); 4727 } 4728 break; 4729 default: 4730 break; 4731 } 4732 spin_unlock(&net_dma->lock); 4733 4734 return ack; 4735 } 4736 4737 /** 4738 * netdev_dma_register - register the networking subsystem as a DMA client 4739 */ 4740 static int __init netdev_dma_register(void) 4741 { 4742 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 4743 GFP_KERNEL); 4744 if (unlikely(!net_dma.channels)) { 4745 printk(KERN_NOTICE 4746 "netdev_dma: no memory for net_dma.channels\n"); 4747 return -ENOMEM; 4748 } 4749 spin_lock_init(&net_dma.lock); 4750 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4751 dma_async_client_register(&net_dma.client); 4752 dma_async_client_chan_request(&net_dma.client); 4753 return 0; 4754 } 4755 4756 #else 4757 static int __init netdev_dma_register(void) { return -ENODEV; } 4758 #endif /* CONFIG_NET_DMA */ 4759 4760 /** 4761 * netdev_increment_features - increment feature set by one 4762 * @all: current feature set 4763 * @one: new feature set 4764 * @mask: mask feature set 4765 * 4766 * Computes a new feature set after adding a device with feature set 4767 * @one to the master device with current feature set @all. Will not 4768 * enable anything that is off in @mask. Returns the new feature set. 4769 */ 4770 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 4771 unsigned long mask) 4772 { 4773 /* If device needs checksumming, downgrade to it. */ 4774 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4775 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 4776 else if (mask & NETIF_F_ALL_CSUM) { 4777 /* If one device supports v4/v6 checksumming, set for all. */ 4778 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 4779 !(all & NETIF_F_GEN_CSUM)) { 4780 all &= ~NETIF_F_ALL_CSUM; 4781 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 4782 } 4783 4784 /* If one device supports hw checksumming, set for all. */ 4785 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 4786 all &= ~NETIF_F_ALL_CSUM; 4787 all |= NETIF_F_HW_CSUM; 4788 } 4789 } 4790 4791 one |= NETIF_F_ALL_CSUM; 4792 4793 one |= all & NETIF_F_ONE_FOR_ALL; 4794 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 4795 all |= one & mask & NETIF_F_ONE_FOR_ALL; 4796 4797 return all; 4798 } 4799 EXPORT_SYMBOL(netdev_increment_features); 4800 4801 static struct hlist_head *netdev_create_hash(void) 4802 { 4803 int i; 4804 struct hlist_head *hash; 4805 4806 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4807 if (hash != NULL) 4808 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4809 INIT_HLIST_HEAD(&hash[i]); 4810 4811 return hash; 4812 } 4813 4814 /* Initialize per network namespace state */ 4815 static int __net_init netdev_init(struct net *net) 4816 { 4817 INIT_LIST_HEAD(&net->dev_base_head); 4818 4819 net->dev_name_head = netdev_create_hash(); 4820 if (net->dev_name_head == NULL) 4821 goto err_name; 4822 4823 net->dev_index_head = netdev_create_hash(); 4824 if (net->dev_index_head == NULL) 4825 goto err_idx; 4826 4827 return 0; 4828 4829 err_idx: 4830 kfree(net->dev_name_head); 4831 err_name: 4832 return -ENOMEM; 4833 } 4834 4835 /** 4836 * netdev_drivername - network driver for the device 4837 * @dev: network device 4838 * @buffer: buffer for resulting name 4839 * @len: size of buffer 4840 * 4841 * Determine network driver for device. 4842 */ 4843 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 4844 { 4845 const struct device_driver *driver; 4846 const struct device *parent; 4847 4848 if (len <= 0 || !buffer) 4849 return buffer; 4850 buffer[0] = 0; 4851 4852 parent = dev->dev.parent; 4853 4854 if (!parent) 4855 return buffer; 4856 4857 driver = parent->driver; 4858 if (driver && driver->name) 4859 strlcpy(buffer, driver->name, len); 4860 return buffer; 4861 } 4862 4863 static void __net_exit netdev_exit(struct net *net) 4864 { 4865 kfree(net->dev_name_head); 4866 kfree(net->dev_index_head); 4867 } 4868 4869 static struct pernet_operations __net_initdata netdev_net_ops = { 4870 .init = netdev_init, 4871 .exit = netdev_exit, 4872 }; 4873 4874 static void __net_exit default_device_exit(struct net *net) 4875 { 4876 struct net_device *dev, *next; 4877 /* 4878 * Push all migratable of the network devices back to the 4879 * initial network namespace 4880 */ 4881 rtnl_lock(); 4882 for_each_netdev_safe(net, dev, next) { 4883 int err; 4884 char fb_name[IFNAMSIZ]; 4885 4886 /* Ignore unmoveable devices (i.e. loopback) */ 4887 if (dev->features & NETIF_F_NETNS_LOCAL) 4888 continue; 4889 4890 /* Delete virtual devices */ 4891 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 4892 dev->rtnl_link_ops->dellink(dev); 4893 continue; 4894 } 4895 4896 /* Push remaing network devices to init_net */ 4897 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 4898 err = dev_change_net_namespace(dev, &init_net, fb_name); 4899 if (err) { 4900 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 4901 __func__, dev->name, err); 4902 BUG(); 4903 } 4904 } 4905 rtnl_unlock(); 4906 } 4907 4908 static struct pernet_operations __net_initdata default_device_ops = { 4909 .exit = default_device_exit, 4910 }; 4911 4912 /* 4913 * Initialize the DEV module. At boot time this walks the device list and 4914 * unhooks any devices that fail to initialise (normally hardware not 4915 * present) and leaves us with a valid list of present and active devices. 4916 * 4917 */ 4918 4919 /* 4920 * This is called single threaded during boot, so no need 4921 * to take the rtnl semaphore. 4922 */ 4923 static int __init net_dev_init(void) 4924 { 4925 int i, rc = -ENOMEM; 4926 4927 BUG_ON(!dev_boot_phase); 4928 4929 if (dev_proc_init()) 4930 goto out; 4931 4932 if (netdev_kobject_init()) 4933 goto out; 4934 4935 INIT_LIST_HEAD(&ptype_all); 4936 for (i = 0; i < PTYPE_HASH_SIZE; i++) 4937 INIT_LIST_HEAD(&ptype_base[i]); 4938 4939 if (register_pernet_subsys(&netdev_net_ops)) 4940 goto out; 4941 4942 /* 4943 * Initialise the packet receive queues. 4944 */ 4945 4946 for_each_possible_cpu(i) { 4947 struct softnet_data *queue; 4948 4949 queue = &per_cpu(softnet_data, i); 4950 skb_queue_head_init(&queue->input_pkt_queue); 4951 queue->completion_queue = NULL; 4952 INIT_LIST_HEAD(&queue->poll_list); 4953 4954 queue->backlog.poll = process_backlog; 4955 queue->backlog.weight = weight_p; 4956 } 4957 4958 dev_boot_phase = 0; 4959 4960 /* The loopback device is special if any other network devices 4961 * is present in a network namespace the loopback device must 4962 * be present. Since we now dynamically allocate and free the 4963 * loopback device ensure this invariant is maintained by 4964 * keeping the loopback device as the first device on the 4965 * list of network devices. Ensuring the loopback devices 4966 * is the first device that appears and the last network device 4967 * that disappears. 4968 */ 4969 if (register_pernet_device(&loopback_net_ops)) 4970 goto out; 4971 4972 if (register_pernet_device(&default_device_ops)) 4973 goto out; 4974 4975 netdev_dma_register(); 4976 4977 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 4978 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 4979 4980 hotcpu_notifier(dev_cpu_callback, 0); 4981 dst_init(); 4982 dev_mcast_init(); 4983 rc = 0; 4984 out: 4985 return rc; 4986 } 4987 4988 subsys_initcall(net_dev_init); 4989 4990 EXPORT_SYMBOL(__dev_get_by_index); 4991 EXPORT_SYMBOL(__dev_get_by_name); 4992 EXPORT_SYMBOL(__dev_remove_pack); 4993 EXPORT_SYMBOL(dev_valid_name); 4994 EXPORT_SYMBOL(dev_add_pack); 4995 EXPORT_SYMBOL(dev_alloc_name); 4996 EXPORT_SYMBOL(dev_close); 4997 EXPORT_SYMBOL(dev_get_by_flags); 4998 EXPORT_SYMBOL(dev_get_by_index); 4999 EXPORT_SYMBOL(dev_get_by_name); 5000 EXPORT_SYMBOL(dev_open); 5001 EXPORT_SYMBOL(dev_queue_xmit); 5002 EXPORT_SYMBOL(dev_remove_pack); 5003 EXPORT_SYMBOL(dev_set_allmulti); 5004 EXPORT_SYMBOL(dev_set_promiscuity); 5005 EXPORT_SYMBOL(dev_change_flags); 5006 EXPORT_SYMBOL(dev_set_mtu); 5007 EXPORT_SYMBOL(dev_set_mac_address); 5008 EXPORT_SYMBOL(free_netdev); 5009 EXPORT_SYMBOL(netdev_boot_setup_check); 5010 EXPORT_SYMBOL(netdev_set_master); 5011 EXPORT_SYMBOL(netdev_state_change); 5012 EXPORT_SYMBOL(netif_receive_skb); 5013 EXPORT_SYMBOL(netif_rx); 5014 EXPORT_SYMBOL(register_gifconf); 5015 EXPORT_SYMBOL(register_netdevice); 5016 EXPORT_SYMBOL(register_netdevice_notifier); 5017 EXPORT_SYMBOL(skb_checksum_help); 5018 EXPORT_SYMBOL(synchronize_net); 5019 EXPORT_SYMBOL(unregister_netdevice); 5020 EXPORT_SYMBOL(unregister_netdevice_notifier); 5021 EXPORT_SYMBOL(net_enable_timestamp); 5022 EXPORT_SYMBOL(net_disable_timestamp); 5023 EXPORT_SYMBOL(dev_get_flags); 5024 5025 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 5026 EXPORT_SYMBOL(br_handle_frame_hook); 5027 EXPORT_SYMBOL(br_fdb_get_hook); 5028 EXPORT_SYMBOL(br_fdb_put_hook); 5029 #endif 5030 5031 EXPORT_SYMBOL(dev_load); 5032 5033 EXPORT_PER_CPU_SYMBOL(softnet_data); 5034