1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/kallsyms.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 131 #include "net-sysfs.h" 132 133 /* 134 * The list of packet types we will receive (as opposed to discard) 135 * and the routines to invoke. 136 * 137 * Why 16. Because with 16 the only overlap we get on a hash of the 138 * low nibble of the protocol value is RARP/SNAP/X.25. 139 * 140 * NOTE: That is no longer true with the addition of VLAN tags. Not 141 * sure which should go first, but I bet it won't make much 142 * difference if we are running VLANs. The good news is that 143 * this protocol won't be in the list unless compiled in, so 144 * the average user (w/out VLANs) will not be adversely affected. 145 * --BLG 146 * 147 * 0800 IP 148 * 8100 802.1Q VLAN 149 * 0001 802.3 150 * 0002 AX.25 151 * 0004 802.2 152 * 8035 RARP 153 * 0005 SNAP 154 * 0805 X.25 155 * 0806 ARP 156 * 8137 IPX 157 * 0009 Localtalk 158 * 86DD IPv6 159 */ 160 161 #define PTYPE_HASH_SIZE (16) 162 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 163 164 static DEFINE_SPINLOCK(ptype_lock); 165 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 166 static struct list_head ptype_all __read_mostly; /* Taps */ 167 168 #ifdef CONFIG_NET_DMA 169 struct net_dma { 170 struct dma_client client; 171 spinlock_t lock; 172 cpumask_t channel_mask; 173 struct dma_chan **channels; 174 }; 175 176 static enum dma_state_client 177 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 178 enum dma_state state); 179 180 static struct net_dma net_dma = { 181 .client = { 182 .event_callback = netdev_dma_event, 183 }, 184 }; 185 #endif 186 187 /* 188 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 189 * semaphore. 190 * 191 * Pure readers hold dev_base_lock for reading. 192 * 193 * Writers must hold the rtnl semaphore while they loop through the 194 * dev_base_head list, and hold dev_base_lock for writing when they do the 195 * actual updates. This allows pure readers to access the list even 196 * while a writer is preparing to update it. 197 * 198 * To put it another way, dev_base_lock is held for writing only to 199 * protect against pure readers; the rtnl semaphore provides the 200 * protection against other writers. 201 * 202 * See, for example usages, register_netdevice() and 203 * unregister_netdevice(), which must be called with the rtnl 204 * semaphore held. 205 */ 206 DEFINE_RWLOCK(dev_base_lock); 207 208 EXPORT_SYMBOL(dev_base_lock); 209 210 #define NETDEV_HASHBITS 8 211 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 212 213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 214 { 215 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 216 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 217 } 218 219 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 220 { 221 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 222 } 223 224 /* Device list insertion */ 225 static int list_netdevice(struct net_device *dev) 226 { 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 235 write_unlock_bh(&dev_base_lock); 236 return 0; 237 } 238 239 /* Device list removal */ 240 static void unlist_netdevice(struct net_device *dev) 241 { 242 ASSERT_RTNL(); 243 244 /* Unlink dev from the device chain */ 245 write_lock_bh(&dev_base_lock); 246 list_del(&dev->dev_list); 247 hlist_del(&dev->name_hlist); 248 hlist_del(&dev->index_hlist); 249 write_unlock_bh(&dev_base_lock); 250 } 251 252 /* 253 * Our notifier list 254 */ 255 256 static RAW_NOTIFIER_HEAD(netdev_chain); 257 258 /* 259 * Device drivers call our routines to queue packets here. We empty the 260 * queue in the local softnet handler. 261 */ 262 263 DEFINE_PER_CPU(struct softnet_data, softnet_data); 264 265 #ifdef CONFIG_LOCKDEP 266 /* 267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 268 * according to dev->type 269 */ 270 static const unsigned short netdev_lock_type[] = 271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 283 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 284 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 285 ARPHRD_NONE}; 286 287 static const char *netdev_lock_name[] = 288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 300 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 301 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 302 "_xmit_NONE"}; 303 304 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 306 307 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 308 { 309 int i; 310 311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 312 if (netdev_lock_type[i] == dev_type) 313 return i; 314 /* the last key is used by default */ 315 return ARRAY_SIZE(netdev_lock_type) - 1; 316 } 317 318 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 319 unsigned short dev_type) 320 { 321 int i; 322 323 i = netdev_lock_pos(dev_type); 324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 325 netdev_lock_name[i]); 326 } 327 328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 329 { 330 int i; 331 332 i = netdev_lock_pos(dev->type); 333 lockdep_set_class_and_name(&dev->addr_list_lock, 334 &netdev_addr_lock_key[i], 335 netdev_lock_name[i]); 336 } 337 #else 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 } 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 } 345 #endif 346 347 /******************************************************************************* 348 349 Protocol management and registration routines 350 351 *******************************************************************************/ 352 353 /* 354 * Add a protocol ID to the list. Now that the input handler is 355 * smarter we can dispense with all the messy stuff that used to be 356 * here. 357 * 358 * BEWARE!!! Protocol handlers, mangling input packets, 359 * MUST BE last in hash buckets and checking protocol handlers 360 * MUST start from promiscuous ptype_all chain in net_bh. 361 * It is true now, do not change it. 362 * Explanation follows: if protocol handler, mangling packet, will 363 * be the first on list, it is not able to sense, that packet 364 * is cloned and should be copied-on-write, so that it will 365 * change it and subsequent readers will get broken packet. 366 * --ANK (980803) 367 */ 368 369 /** 370 * dev_add_pack - add packet handler 371 * @pt: packet type declaration 372 * 373 * Add a protocol handler to the networking stack. The passed &packet_type 374 * is linked into kernel lists and may not be freed until it has been 375 * removed from the kernel lists. 376 * 377 * This call does not sleep therefore it can not 378 * guarantee all CPU's that are in middle of receiving packets 379 * will see the new packet type (until the next received packet). 380 */ 381 382 void dev_add_pack(struct packet_type *pt) 383 { 384 int hash; 385 386 spin_lock_bh(&ptype_lock); 387 if (pt->type == htons(ETH_P_ALL)) 388 list_add_rcu(&pt->list, &ptype_all); 389 else { 390 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 391 list_add_rcu(&pt->list, &ptype_base[hash]); 392 } 393 spin_unlock_bh(&ptype_lock); 394 } 395 396 /** 397 * __dev_remove_pack - remove packet handler 398 * @pt: packet type declaration 399 * 400 * Remove a protocol handler that was previously added to the kernel 401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 402 * from the kernel lists and can be freed or reused once this function 403 * returns. 404 * 405 * The packet type might still be in use by receivers 406 * and must not be freed until after all the CPU's have gone 407 * through a quiescent state. 408 */ 409 void __dev_remove_pack(struct packet_type *pt) 410 { 411 struct list_head *head; 412 struct packet_type *pt1; 413 414 spin_lock_bh(&ptype_lock); 415 416 if (pt->type == htons(ETH_P_ALL)) 417 head = &ptype_all; 418 else 419 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 420 421 list_for_each_entry(pt1, head, list) { 422 if (pt == pt1) { 423 list_del_rcu(&pt->list); 424 goto out; 425 } 426 } 427 428 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 429 out: 430 spin_unlock_bh(&ptype_lock); 431 } 432 /** 433 * dev_remove_pack - remove packet handler 434 * @pt: packet type declaration 435 * 436 * Remove a protocol handler that was previously added to the kernel 437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 438 * from the kernel lists and can be freed or reused once this function 439 * returns. 440 * 441 * This call sleeps to guarantee that no CPU is looking at the packet 442 * type after return. 443 */ 444 void dev_remove_pack(struct packet_type *pt) 445 { 446 __dev_remove_pack(pt); 447 448 synchronize_net(); 449 } 450 451 /****************************************************************************** 452 453 Device Boot-time Settings Routines 454 455 *******************************************************************************/ 456 457 /* Boot time configuration table */ 458 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 459 460 /** 461 * netdev_boot_setup_add - add new setup entry 462 * @name: name of the device 463 * @map: configured settings for the device 464 * 465 * Adds new setup entry to the dev_boot_setup list. The function 466 * returns 0 on error and 1 on success. This is a generic routine to 467 * all netdevices. 468 */ 469 static int netdev_boot_setup_add(char *name, struct ifmap *map) 470 { 471 struct netdev_boot_setup *s; 472 int i; 473 474 s = dev_boot_setup; 475 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 476 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 477 memset(s[i].name, 0, sizeof(s[i].name)); 478 strlcpy(s[i].name, name, IFNAMSIZ); 479 memcpy(&s[i].map, map, sizeof(s[i].map)); 480 break; 481 } 482 } 483 484 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 485 } 486 487 /** 488 * netdev_boot_setup_check - check boot time settings 489 * @dev: the netdevice 490 * 491 * Check boot time settings for the device. 492 * The found settings are set for the device to be used 493 * later in the device probing. 494 * Returns 0 if no settings found, 1 if they are. 495 */ 496 int netdev_boot_setup_check(struct net_device *dev) 497 { 498 struct netdev_boot_setup *s = dev_boot_setup; 499 int i; 500 501 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 502 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 503 !strcmp(dev->name, s[i].name)) { 504 dev->irq = s[i].map.irq; 505 dev->base_addr = s[i].map.base_addr; 506 dev->mem_start = s[i].map.mem_start; 507 dev->mem_end = s[i].map.mem_end; 508 return 1; 509 } 510 } 511 return 0; 512 } 513 514 515 /** 516 * netdev_boot_base - get address from boot time settings 517 * @prefix: prefix for network device 518 * @unit: id for network device 519 * 520 * Check boot time settings for the base address of device. 521 * The found settings are set for the device to be used 522 * later in the device probing. 523 * Returns 0 if no settings found. 524 */ 525 unsigned long netdev_boot_base(const char *prefix, int unit) 526 { 527 const struct netdev_boot_setup *s = dev_boot_setup; 528 char name[IFNAMSIZ]; 529 int i; 530 531 sprintf(name, "%s%d", prefix, unit); 532 533 /* 534 * If device already registered then return base of 1 535 * to indicate not to probe for this interface 536 */ 537 if (__dev_get_by_name(&init_net, name)) 538 return 1; 539 540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 541 if (!strcmp(name, s[i].name)) 542 return s[i].map.base_addr; 543 return 0; 544 } 545 546 /* 547 * Saves at boot time configured settings for any netdevice. 548 */ 549 int __init netdev_boot_setup(char *str) 550 { 551 int ints[5]; 552 struct ifmap map; 553 554 str = get_options(str, ARRAY_SIZE(ints), ints); 555 if (!str || !*str) 556 return 0; 557 558 /* Save settings */ 559 memset(&map, 0, sizeof(map)); 560 if (ints[0] > 0) 561 map.irq = ints[1]; 562 if (ints[0] > 1) 563 map.base_addr = ints[2]; 564 if (ints[0] > 2) 565 map.mem_start = ints[3]; 566 if (ints[0] > 3) 567 map.mem_end = ints[4]; 568 569 /* Add new entry to the list */ 570 return netdev_boot_setup_add(str, &map); 571 } 572 573 __setup("netdev=", netdev_boot_setup); 574 575 /******************************************************************************* 576 577 Device Interface Subroutines 578 579 *******************************************************************************/ 580 581 /** 582 * __dev_get_by_name - find a device by its name 583 * @net: the applicable net namespace 584 * @name: name to find 585 * 586 * Find an interface by name. Must be called under RTNL semaphore 587 * or @dev_base_lock. If the name is found a pointer to the device 588 * is returned. If the name is not found then %NULL is returned. The 589 * reference counters are not incremented so the caller must be 590 * careful with locks. 591 */ 592 593 struct net_device *__dev_get_by_name(struct net *net, const char *name) 594 { 595 struct hlist_node *p; 596 597 hlist_for_each(p, dev_name_hash(net, name)) { 598 struct net_device *dev 599 = hlist_entry(p, struct net_device, name_hlist); 600 if (!strncmp(dev->name, name, IFNAMSIZ)) 601 return dev; 602 } 603 return NULL; 604 } 605 606 /** 607 * dev_get_by_name - find a device by its name 608 * @net: the applicable net namespace 609 * @name: name to find 610 * 611 * Find an interface by name. This can be called from any 612 * context and does its own locking. The returned handle has 613 * the usage count incremented and the caller must use dev_put() to 614 * release it when it is no longer needed. %NULL is returned if no 615 * matching device is found. 616 */ 617 618 struct net_device *dev_get_by_name(struct net *net, const char *name) 619 { 620 struct net_device *dev; 621 622 read_lock(&dev_base_lock); 623 dev = __dev_get_by_name(net, name); 624 if (dev) 625 dev_hold(dev); 626 read_unlock(&dev_base_lock); 627 return dev; 628 } 629 630 /** 631 * __dev_get_by_index - find a device by its ifindex 632 * @net: the applicable net namespace 633 * @ifindex: index of device 634 * 635 * Search for an interface by index. Returns %NULL if the device 636 * is not found or a pointer to the device. The device has not 637 * had its reference counter increased so the caller must be careful 638 * about locking. The caller must hold either the RTNL semaphore 639 * or @dev_base_lock. 640 */ 641 642 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 643 { 644 struct hlist_node *p; 645 646 hlist_for_each(p, dev_index_hash(net, ifindex)) { 647 struct net_device *dev 648 = hlist_entry(p, struct net_device, index_hlist); 649 if (dev->ifindex == ifindex) 650 return dev; 651 } 652 return NULL; 653 } 654 655 656 /** 657 * dev_get_by_index - find a device by its ifindex 658 * @net: the applicable net namespace 659 * @ifindex: index of device 660 * 661 * Search for an interface by index. Returns NULL if the device 662 * is not found or a pointer to the device. The device returned has 663 * had a reference added and the pointer is safe until the user calls 664 * dev_put to indicate they have finished with it. 665 */ 666 667 struct net_device *dev_get_by_index(struct net *net, int ifindex) 668 { 669 struct net_device *dev; 670 671 read_lock(&dev_base_lock); 672 dev = __dev_get_by_index(net, ifindex); 673 if (dev) 674 dev_hold(dev); 675 read_unlock(&dev_base_lock); 676 return dev; 677 } 678 679 /** 680 * dev_getbyhwaddr - find a device by its hardware address 681 * @net: the applicable net namespace 682 * @type: media type of device 683 * @ha: hardware address 684 * 685 * Search for an interface by MAC address. Returns NULL if the device 686 * is not found or a pointer to the device. The caller must hold the 687 * rtnl semaphore. The returned device has not had its ref count increased 688 * and the caller must therefore be careful about locking 689 * 690 * BUGS: 691 * If the API was consistent this would be __dev_get_by_hwaddr 692 */ 693 694 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 695 { 696 struct net_device *dev; 697 698 ASSERT_RTNL(); 699 700 for_each_netdev(net, dev) 701 if (dev->type == type && 702 !memcmp(dev->dev_addr, ha, dev->addr_len)) 703 return dev; 704 705 return NULL; 706 } 707 708 EXPORT_SYMBOL(dev_getbyhwaddr); 709 710 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 711 { 712 struct net_device *dev; 713 714 ASSERT_RTNL(); 715 for_each_netdev(net, dev) 716 if (dev->type == type) 717 return dev; 718 719 return NULL; 720 } 721 722 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 723 724 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 725 { 726 struct net_device *dev; 727 728 rtnl_lock(); 729 dev = __dev_getfirstbyhwtype(net, type); 730 if (dev) 731 dev_hold(dev); 732 rtnl_unlock(); 733 return dev; 734 } 735 736 EXPORT_SYMBOL(dev_getfirstbyhwtype); 737 738 /** 739 * dev_get_by_flags - find any device with given flags 740 * @net: the applicable net namespace 741 * @if_flags: IFF_* values 742 * @mask: bitmask of bits in if_flags to check 743 * 744 * Search for any interface with the given flags. Returns NULL if a device 745 * is not found or a pointer to the device. The device returned has 746 * had a reference added and the pointer is safe until the user calls 747 * dev_put to indicate they have finished with it. 748 */ 749 750 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 751 { 752 struct net_device *dev, *ret; 753 754 ret = NULL; 755 read_lock(&dev_base_lock); 756 for_each_netdev(net, dev) { 757 if (((dev->flags ^ if_flags) & mask) == 0) { 758 dev_hold(dev); 759 ret = dev; 760 break; 761 } 762 } 763 read_unlock(&dev_base_lock); 764 return ret; 765 } 766 767 /** 768 * dev_valid_name - check if name is okay for network device 769 * @name: name string 770 * 771 * Network device names need to be valid file names to 772 * to allow sysfs to work. We also disallow any kind of 773 * whitespace. 774 */ 775 int dev_valid_name(const char *name) 776 { 777 if (*name == '\0') 778 return 0; 779 if (strlen(name) >= IFNAMSIZ) 780 return 0; 781 if (!strcmp(name, ".") || !strcmp(name, "..")) 782 return 0; 783 784 while (*name) { 785 if (*name == '/' || isspace(*name)) 786 return 0; 787 name++; 788 } 789 return 1; 790 } 791 792 /** 793 * __dev_alloc_name - allocate a name for a device 794 * @net: network namespace to allocate the device name in 795 * @name: name format string 796 * @buf: scratch buffer and result name string 797 * 798 * Passed a format string - eg "lt%d" it will try and find a suitable 799 * id. It scans list of devices to build up a free map, then chooses 800 * the first empty slot. The caller must hold the dev_base or rtnl lock 801 * while allocating the name and adding the device in order to avoid 802 * duplicates. 803 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 804 * Returns the number of the unit assigned or a negative errno code. 805 */ 806 807 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 808 { 809 int i = 0; 810 const char *p; 811 const int max_netdevices = 8*PAGE_SIZE; 812 unsigned long *inuse; 813 struct net_device *d; 814 815 p = strnchr(name, IFNAMSIZ-1, '%'); 816 if (p) { 817 /* 818 * Verify the string as this thing may have come from 819 * the user. There must be either one "%d" and no other "%" 820 * characters. 821 */ 822 if (p[1] != 'd' || strchr(p + 2, '%')) 823 return -EINVAL; 824 825 /* Use one page as a bit array of possible slots */ 826 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 827 if (!inuse) 828 return -ENOMEM; 829 830 for_each_netdev(net, d) { 831 if (!sscanf(d->name, name, &i)) 832 continue; 833 if (i < 0 || i >= max_netdevices) 834 continue; 835 836 /* avoid cases where sscanf is not exact inverse of printf */ 837 snprintf(buf, IFNAMSIZ, name, i); 838 if (!strncmp(buf, d->name, IFNAMSIZ)) 839 set_bit(i, inuse); 840 } 841 842 i = find_first_zero_bit(inuse, max_netdevices); 843 free_page((unsigned long) inuse); 844 } 845 846 snprintf(buf, IFNAMSIZ, name, i); 847 if (!__dev_get_by_name(net, buf)) 848 return i; 849 850 /* It is possible to run out of possible slots 851 * when the name is long and there isn't enough space left 852 * for the digits, or if all bits are used. 853 */ 854 return -ENFILE; 855 } 856 857 /** 858 * dev_alloc_name - allocate a name for a device 859 * @dev: device 860 * @name: name format string 861 * 862 * Passed a format string - eg "lt%d" it will try and find a suitable 863 * id. It scans list of devices to build up a free map, then chooses 864 * the first empty slot. The caller must hold the dev_base or rtnl lock 865 * while allocating the name and adding the device in order to avoid 866 * duplicates. 867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 868 * Returns the number of the unit assigned or a negative errno code. 869 */ 870 871 int dev_alloc_name(struct net_device *dev, const char *name) 872 { 873 char buf[IFNAMSIZ]; 874 struct net *net; 875 int ret; 876 877 BUG_ON(!dev_net(dev)); 878 net = dev_net(dev); 879 ret = __dev_alloc_name(net, name, buf); 880 if (ret >= 0) 881 strlcpy(dev->name, buf, IFNAMSIZ); 882 return ret; 883 } 884 885 886 /** 887 * dev_change_name - change name of a device 888 * @dev: device 889 * @newname: name (or format string) must be at least IFNAMSIZ 890 * 891 * Change name of a device, can pass format strings "eth%d". 892 * for wildcarding. 893 */ 894 int dev_change_name(struct net_device *dev, const char *newname) 895 { 896 char oldname[IFNAMSIZ]; 897 int err = 0; 898 int ret; 899 struct net *net; 900 901 ASSERT_RTNL(); 902 BUG_ON(!dev_net(dev)); 903 904 net = dev_net(dev); 905 if (dev->flags & IFF_UP) 906 return -EBUSY; 907 908 if (!dev_valid_name(newname)) 909 return -EINVAL; 910 911 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 912 return 0; 913 914 memcpy(oldname, dev->name, IFNAMSIZ); 915 916 if (strchr(newname, '%')) { 917 err = dev_alloc_name(dev, newname); 918 if (err < 0) 919 return err; 920 } 921 else if (__dev_get_by_name(net, newname)) 922 return -EEXIST; 923 else 924 strlcpy(dev->name, newname, IFNAMSIZ); 925 926 rollback: 927 ret = device_rename(&dev->dev, dev->name); 928 if (ret) { 929 memcpy(dev->name, oldname, IFNAMSIZ); 930 return ret; 931 } 932 933 write_lock_bh(&dev_base_lock); 934 hlist_del(&dev->name_hlist); 935 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 936 write_unlock_bh(&dev_base_lock); 937 938 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 939 ret = notifier_to_errno(ret); 940 941 if (ret) { 942 if (err) { 943 printk(KERN_ERR 944 "%s: name change rollback failed: %d.\n", 945 dev->name, ret); 946 } else { 947 err = ret; 948 memcpy(dev->name, oldname, IFNAMSIZ); 949 goto rollback; 950 } 951 } 952 953 return err; 954 } 955 956 /** 957 * dev_set_alias - change ifalias of a device 958 * @dev: device 959 * @alias: name up to IFALIASZ 960 * @len: limit of bytes to copy from info 961 * 962 * Set ifalias for a device, 963 */ 964 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 965 { 966 ASSERT_RTNL(); 967 968 if (len >= IFALIASZ) 969 return -EINVAL; 970 971 if (!len) { 972 if (dev->ifalias) { 973 kfree(dev->ifalias); 974 dev->ifalias = NULL; 975 } 976 return 0; 977 } 978 979 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 980 if (!dev->ifalias) 981 return -ENOMEM; 982 983 strlcpy(dev->ifalias, alias, len+1); 984 return len; 985 } 986 987 988 /** 989 * netdev_features_change - device changes features 990 * @dev: device to cause notification 991 * 992 * Called to indicate a device has changed features. 993 */ 994 void netdev_features_change(struct net_device *dev) 995 { 996 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 997 } 998 EXPORT_SYMBOL(netdev_features_change); 999 1000 /** 1001 * netdev_state_change - device changes state 1002 * @dev: device to cause notification 1003 * 1004 * Called to indicate a device has changed state. This function calls 1005 * the notifier chains for netdev_chain and sends a NEWLINK message 1006 * to the routing socket. 1007 */ 1008 void netdev_state_change(struct net_device *dev) 1009 { 1010 if (dev->flags & IFF_UP) { 1011 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1012 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1013 } 1014 } 1015 1016 void netdev_bonding_change(struct net_device *dev) 1017 { 1018 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1019 } 1020 EXPORT_SYMBOL(netdev_bonding_change); 1021 1022 /** 1023 * dev_load - load a network module 1024 * @net: the applicable net namespace 1025 * @name: name of interface 1026 * 1027 * If a network interface is not present and the process has suitable 1028 * privileges this function loads the module. If module loading is not 1029 * available in this kernel then it becomes a nop. 1030 */ 1031 1032 void dev_load(struct net *net, const char *name) 1033 { 1034 struct net_device *dev; 1035 1036 read_lock(&dev_base_lock); 1037 dev = __dev_get_by_name(net, name); 1038 read_unlock(&dev_base_lock); 1039 1040 if (!dev && capable(CAP_SYS_MODULE)) 1041 request_module("%s", name); 1042 } 1043 1044 /** 1045 * dev_open - prepare an interface for use. 1046 * @dev: device to open 1047 * 1048 * Takes a device from down to up state. The device's private open 1049 * function is invoked and then the multicast lists are loaded. Finally 1050 * the device is moved into the up state and a %NETDEV_UP message is 1051 * sent to the netdev notifier chain. 1052 * 1053 * Calling this function on an active interface is a nop. On a failure 1054 * a negative errno code is returned. 1055 */ 1056 int dev_open(struct net_device *dev) 1057 { 1058 int ret = 0; 1059 1060 ASSERT_RTNL(); 1061 1062 /* 1063 * Is it already up? 1064 */ 1065 1066 if (dev->flags & IFF_UP) 1067 return 0; 1068 1069 /* 1070 * Is it even present? 1071 */ 1072 if (!netif_device_present(dev)) 1073 return -ENODEV; 1074 1075 /* 1076 * Call device private open method 1077 */ 1078 set_bit(__LINK_STATE_START, &dev->state); 1079 1080 if (dev->validate_addr) 1081 ret = dev->validate_addr(dev); 1082 1083 if (!ret && dev->open) 1084 ret = dev->open(dev); 1085 1086 /* 1087 * If it went open OK then: 1088 */ 1089 1090 if (ret) 1091 clear_bit(__LINK_STATE_START, &dev->state); 1092 else { 1093 /* 1094 * Set the flags. 1095 */ 1096 dev->flags |= IFF_UP; 1097 1098 /* 1099 * Initialize multicasting status 1100 */ 1101 dev_set_rx_mode(dev); 1102 1103 /* 1104 * Wakeup transmit queue engine 1105 */ 1106 dev_activate(dev); 1107 1108 /* 1109 * ... and announce new interface. 1110 */ 1111 call_netdevice_notifiers(NETDEV_UP, dev); 1112 } 1113 1114 return ret; 1115 } 1116 1117 /** 1118 * dev_close - shutdown an interface. 1119 * @dev: device to shutdown 1120 * 1121 * This function moves an active device into down state. A 1122 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1123 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1124 * chain. 1125 */ 1126 int dev_close(struct net_device *dev) 1127 { 1128 ASSERT_RTNL(); 1129 1130 might_sleep(); 1131 1132 if (!(dev->flags & IFF_UP)) 1133 return 0; 1134 1135 /* 1136 * Tell people we are going down, so that they can 1137 * prepare to death, when device is still operating. 1138 */ 1139 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1140 1141 clear_bit(__LINK_STATE_START, &dev->state); 1142 1143 /* Synchronize to scheduled poll. We cannot touch poll list, 1144 * it can be even on different cpu. So just clear netif_running(). 1145 * 1146 * dev->stop() will invoke napi_disable() on all of it's 1147 * napi_struct instances on this device. 1148 */ 1149 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1150 1151 dev_deactivate(dev); 1152 1153 /* 1154 * Call the device specific close. This cannot fail. 1155 * Only if device is UP 1156 * 1157 * We allow it to be called even after a DETACH hot-plug 1158 * event. 1159 */ 1160 if (dev->stop) 1161 dev->stop(dev); 1162 1163 /* 1164 * Device is now down. 1165 */ 1166 1167 dev->flags &= ~IFF_UP; 1168 1169 /* 1170 * Tell people we are down 1171 */ 1172 call_netdevice_notifiers(NETDEV_DOWN, dev); 1173 1174 return 0; 1175 } 1176 1177 1178 /** 1179 * dev_disable_lro - disable Large Receive Offload on a device 1180 * @dev: device 1181 * 1182 * Disable Large Receive Offload (LRO) on a net device. Must be 1183 * called under RTNL. This is needed if received packets may be 1184 * forwarded to another interface. 1185 */ 1186 void dev_disable_lro(struct net_device *dev) 1187 { 1188 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1189 dev->ethtool_ops->set_flags) { 1190 u32 flags = dev->ethtool_ops->get_flags(dev); 1191 if (flags & ETH_FLAG_LRO) { 1192 flags &= ~ETH_FLAG_LRO; 1193 dev->ethtool_ops->set_flags(dev, flags); 1194 } 1195 } 1196 WARN_ON(dev->features & NETIF_F_LRO); 1197 } 1198 EXPORT_SYMBOL(dev_disable_lro); 1199 1200 1201 static int dev_boot_phase = 1; 1202 1203 /* 1204 * Device change register/unregister. These are not inline or static 1205 * as we export them to the world. 1206 */ 1207 1208 /** 1209 * register_netdevice_notifier - register a network notifier block 1210 * @nb: notifier 1211 * 1212 * Register a notifier to be called when network device events occur. 1213 * The notifier passed is linked into the kernel structures and must 1214 * not be reused until it has been unregistered. A negative errno code 1215 * is returned on a failure. 1216 * 1217 * When registered all registration and up events are replayed 1218 * to the new notifier to allow device to have a race free 1219 * view of the network device list. 1220 */ 1221 1222 int register_netdevice_notifier(struct notifier_block *nb) 1223 { 1224 struct net_device *dev; 1225 struct net_device *last; 1226 struct net *net; 1227 int err; 1228 1229 rtnl_lock(); 1230 err = raw_notifier_chain_register(&netdev_chain, nb); 1231 if (err) 1232 goto unlock; 1233 if (dev_boot_phase) 1234 goto unlock; 1235 for_each_net(net) { 1236 for_each_netdev(net, dev) { 1237 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1238 err = notifier_to_errno(err); 1239 if (err) 1240 goto rollback; 1241 1242 if (!(dev->flags & IFF_UP)) 1243 continue; 1244 1245 nb->notifier_call(nb, NETDEV_UP, dev); 1246 } 1247 } 1248 1249 unlock: 1250 rtnl_unlock(); 1251 return err; 1252 1253 rollback: 1254 last = dev; 1255 for_each_net(net) { 1256 for_each_netdev(net, dev) { 1257 if (dev == last) 1258 break; 1259 1260 if (dev->flags & IFF_UP) { 1261 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1262 nb->notifier_call(nb, NETDEV_DOWN, dev); 1263 } 1264 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1265 } 1266 } 1267 1268 raw_notifier_chain_unregister(&netdev_chain, nb); 1269 goto unlock; 1270 } 1271 1272 /** 1273 * unregister_netdevice_notifier - unregister a network notifier block 1274 * @nb: notifier 1275 * 1276 * Unregister a notifier previously registered by 1277 * register_netdevice_notifier(). The notifier is unlinked into the 1278 * kernel structures and may then be reused. A negative errno code 1279 * is returned on a failure. 1280 */ 1281 1282 int unregister_netdevice_notifier(struct notifier_block *nb) 1283 { 1284 int err; 1285 1286 rtnl_lock(); 1287 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1288 rtnl_unlock(); 1289 return err; 1290 } 1291 1292 /** 1293 * call_netdevice_notifiers - call all network notifier blocks 1294 * @val: value passed unmodified to notifier function 1295 * @dev: net_device pointer passed unmodified to notifier function 1296 * 1297 * Call all network notifier blocks. Parameters and return value 1298 * are as for raw_notifier_call_chain(). 1299 */ 1300 1301 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1302 { 1303 return raw_notifier_call_chain(&netdev_chain, val, dev); 1304 } 1305 1306 /* When > 0 there are consumers of rx skb time stamps */ 1307 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1308 1309 void net_enable_timestamp(void) 1310 { 1311 atomic_inc(&netstamp_needed); 1312 } 1313 1314 void net_disable_timestamp(void) 1315 { 1316 atomic_dec(&netstamp_needed); 1317 } 1318 1319 static inline void net_timestamp(struct sk_buff *skb) 1320 { 1321 if (atomic_read(&netstamp_needed)) 1322 __net_timestamp(skb); 1323 else 1324 skb->tstamp.tv64 = 0; 1325 } 1326 1327 /* 1328 * Support routine. Sends outgoing frames to any network 1329 * taps currently in use. 1330 */ 1331 1332 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1333 { 1334 struct packet_type *ptype; 1335 1336 net_timestamp(skb); 1337 1338 rcu_read_lock(); 1339 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1340 /* Never send packets back to the socket 1341 * they originated from - MvS (miquels@drinkel.ow.org) 1342 */ 1343 if ((ptype->dev == dev || !ptype->dev) && 1344 (ptype->af_packet_priv == NULL || 1345 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1346 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1347 if (!skb2) 1348 break; 1349 1350 /* skb->nh should be correctly 1351 set by sender, so that the second statement is 1352 just protection against buggy protocols. 1353 */ 1354 skb_reset_mac_header(skb2); 1355 1356 if (skb_network_header(skb2) < skb2->data || 1357 skb2->network_header > skb2->tail) { 1358 if (net_ratelimit()) 1359 printk(KERN_CRIT "protocol %04x is " 1360 "buggy, dev %s\n", 1361 skb2->protocol, dev->name); 1362 skb_reset_network_header(skb2); 1363 } 1364 1365 skb2->transport_header = skb2->network_header; 1366 skb2->pkt_type = PACKET_OUTGOING; 1367 ptype->func(skb2, skb->dev, ptype, skb->dev); 1368 } 1369 } 1370 rcu_read_unlock(); 1371 } 1372 1373 1374 static inline void __netif_reschedule(struct Qdisc *q) 1375 { 1376 struct softnet_data *sd; 1377 unsigned long flags; 1378 1379 local_irq_save(flags); 1380 sd = &__get_cpu_var(softnet_data); 1381 q->next_sched = sd->output_queue; 1382 sd->output_queue = q; 1383 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1384 local_irq_restore(flags); 1385 } 1386 1387 void __netif_schedule(struct Qdisc *q) 1388 { 1389 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1390 __netif_reschedule(q); 1391 } 1392 EXPORT_SYMBOL(__netif_schedule); 1393 1394 void dev_kfree_skb_irq(struct sk_buff *skb) 1395 { 1396 if (atomic_dec_and_test(&skb->users)) { 1397 struct softnet_data *sd; 1398 unsigned long flags; 1399 1400 local_irq_save(flags); 1401 sd = &__get_cpu_var(softnet_data); 1402 skb->next = sd->completion_queue; 1403 sd->completion_queue = skb; 1404 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1405 local_irq_restore(flags); 1406 } 1407 } 1408 EXPORT_SYMBOL(dev_kfree_skb_irq); 1409 1410 void dev_kfree_skb_any(struct sk_buff *skb) 1411 { 1412 if (in_irq() || irqs_disabled()) 1413 dev_kfree_skb_irq(skb); 1414 else 1415 dev_kfree_skb(skb); 1416 } 1417 EXPORT_SYMBOL(dev_kfree_skb_any); 1418 1419 1420 /** 1421 * netif_device_detach - mark device as removed 1422 * @dev: network device 1423 * 1424 * Mark device as removed from system and therefore no longer available. 1425 */ 1426 void netif_device_detach(struct net_device *dev) 1427 { 1428 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1429 netif_running(dev)) { 1430 netif_stop_queue(dev); 1431 } 1432 } 1433 EXPORT_SYMBOL(netif_device_detach); 1434 1435 /** 1436 * netif_device_attach - mark device as attached 1437 * @dev: network device 1438 * 1439 * Mark device as attached from system and restart if needed. 1440 */ 1441 void netif_device_attach(struct net_device *dev) 1442 { 1443 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1444 netif_running(dev)) { 1445 netif_wake_queue(dev); 1446 __netdev_watchdog_up(dev); 1447 } 1448 } 1449 EXPORT_SYMBOL(netif_device_attach); 1450 1451 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1452 { 1453 return ((features & NETIF_F_GEN_CSUM) || 1454 ((features & NETIF_F_IP_CSUM) && 1455 protocol == htons(ETH_P_IP)) || 1456 ((features & NETIF_F_IPV6_CSUM) && 1457 protocol == htons(ETH_P_IPV6))); 1458 } 1459 1460 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1461 { 1462 if (can_checksum_protocol(dev->features, skb->protocol)) 1463 return true; 1464 1465 if (skb->protocol == htons(ETH_P_8021Q)) { 1466 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1467 if (can_checksum_protocol(dev->features & dev->vlan_features, 1468 veh->h_vlan_encapsulated_proto)) 1469 return true; 1470 } 1471 1472 return false; 1473 } 1474 1475 /* 1476 * Invalidate hardware checksum when packet is to be mangled, and 1477 * complete checksum manually on outgoing path. 1478 */ 1479 int skb_checksum_help(struct sk_buff *skb) 1480 { 1481 __wsum csum; 1482 int ret = 0, offset; 1483 1484 if (skb->ip_summed == CHECKSUM_COMPLETE) 1485 goto out_set_summed; 1486 1487 if (unlikely(skb_shinfo(skb)->gso_size)) { 1488 /* Let GSO fix up the checksum. */ 1489 goto out_set_summed; 1490 } 1491 1492 offset = skb->csum_start - skb_headroom(skb); 1493 BUG_ON(offset >= skb_headlen(skb)); 1494 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1495 1496 offset += skb->csum_offset; 1497 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1498 1499 if (skb_cloned(skb) && 1500 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1501 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1502 if (ret) 1503 goto out; 1504 } 1505 1506 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1507 out_set_summed: 1508 skb->ip_summed = CHECKSUM_NONE; 1509 out: 1510 return ret; 1511 } 1512 1513 /** 1514 * skb_gso_segment - Perform segmentation on skb. 1515 * @skb: buffer to segment 1516 * @features: features for the output path (see dev->features) 1517 * 1518 * This function segments the given skb and returns a list of segments. 1519 * 1520 * It may return NULL if the skb requires no segmentation. This is 1521 * only possible when GSO is used for verifying header integrity. 1522 */ 1523 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1524 { 1525 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1526 struct packet_type *ptype; 1527 __be16 type = skb->protocol; 1528 int err; 1529 1530 BUG_ON(skb_shinfo(skb)->frag_list); 1531 1532 skb_reset_mac_header(skb); 1533 skb->mac_len = skb->network_header - skb->mac_header; 1534 __skb_pull(skb, skb->mac_len); 1535 1536 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1537 if (skb_header_cloned(skb) && 1538 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1539 return ERR_PTR(err); 1540 } 1541 1542 rcu_read_lock(); 1543 list_for_each_entry_rcu(ptype, 1544 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1545 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1546 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1547 err = ptype->gso_send_check(skb); 1548 segs = ERR_PTR(err); 1549 if (err || skb_gso_ok(skb, features)) 1550 break; 1551 __skb_push(skb, (skb->data - 1552 skb_network_header(skb))); 1553 } 1554 segs = ptype->gso_segment(skb, features); 1555 break; 1556 } 1557 } 1558 rcu_read_unlock(); 1559 1560 __skb_push(skb, skb->data - skb_mac_header(skb)); 1561 1562 return segs; 1563 } 1564 1565 EXPORT_SYMBOL(skb_gso_segment); 1566 1567 /* Take action when hardware reception checksum errors are detected. */ 1568 #ifdef CONFIG_BUG 1569 void netdev_rx_csum_fault(struct net_device *dev) 1570 { 1571 if (net_ratelimit()) { 1572 printk(KERN_ERR "%s: hw csum failure.\n", 1573 dev ? dev->name : "<unknown>"); 1574 dump_stack(); 1575 } 1576 } 1577 EXPORT_SYMBOL(netdev_rx_csum_fault); 1578 #endif 1579 1580 /* Actually, we should eliminate this check as soon as we know, that: 1581 * 1. IOMMU is present and allows to map all the memory. 1582 * 2. No high memory really exists on this machine. 1583 */ 1584 1585 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1586 { 1587 #ifdef CONFIG_HIGHMEM 1588 int i; 1589 1590 if (dev->features & NETIF_F_HIGHDMA) 1591 return 0; 1592 1593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1594 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1595 return 1; 1596 1597 #endif 1598 return 0; 1599 } 1600 1601 struct dev_gso_cb { 1602 void (*destructor)(struct sk_buff *skb); 1603 }; 1604 1605 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1606 1607 static void dev_gso_skb_destructor(struct sk_buff *skb) 1608 { 1609 struct dev_gso_cb *cb; 1610 1611 do { 1612 struct sk_buff *nskb = skb->next; 1613 1614 skb->next = nskb->next; 1615 nskb->next = NULL; 1616 kfree_skb(nskb); 1617 } while (skb->next); 1618 1619 cb = DEV_GSO_CB(skb); 1620 if (cb->destructor) 1621 cb->destructor(skb); 1622 } 1623 1624 /** 1625 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1626 * @skb: buffer to segment 1627 * 1628 * This function segments the given skb and stores the list of segments 1629 * in skb->next. 1630 */ 1631 static int dev_gso_segment(struct sk_buff *skb) 1632 { 1633 struct net_device *dev = skb->dev; 1634 struct sk_buff *segs; 1635 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1636 NETIF_F_SG : 0); 1637 1638 segs = skb_gso_segment(skb, features); 1639 1640 /* Verifying header integrity only. */ 1641 if (!segs) 1642 return 0; 1643 1644 if (IS_ERR(segs)) 1645 return PTR_ERR(segs); 1646 1647 skb->next = segs; 1648 DEV_GSO_CB(skb)->destructor = skb->destructor; 1649 skb->destructor = dev_gso_skb_destructor; 1650 1651 return 0; 1652 } 1653 1654 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1655 struct netdev_queue *txq) 1656 { 1657 if (likely(!skb->next)) { 1658 if (!list_empty(&ptype_all)) 1659 dev_queue_xmit_nit(skb, dev); 1660 1661 if (netif_needs_gso(dev, skb)) { 1662 if (unlikely(dev_gso_segment(skb))) 1663 goto out_kfree_skb; 1664 if (skb->next) 1665 goto gso; 1666 } 1667 1668 return dev->hard_start_xmit(skb, dev); 1669 } 1670 1671 gso: 1672 do { 1673 struct sk_buff *nskb = skb->next; 1674 int rc; 1675 1676 skb->next = nskb->next; 1677 nskb->next = NULL; 1678 rc = dev->hard_start_xmit(nskb, dev); 1679 if (unlikely(rc)) { 1680 nskb->next = skb->next; 1681 skb->next = nskb; 1682 return rc; 1683 } 1684 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1685 return NETDEV_TX_BUSY; 1686 } while (skb->next); 1687 1688 skb->destructor = DEV_GSO_CB(skb)->destructor; 1689 1690 out_kfree_skb: 1691 kfree_skb(skb); 1692 return 0; 1693 } 1694 1695 static u32 simple_tx_hashrnd; 1696 static int simple_tx_hashrnd_initialized = 0; 1697 1698 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1699 { 1700 u32 addr1, addr2, ports; 1701 u32 hash, ihl; 1702 u8 ip_proto = 0; 1703 1704 if (unlikely(!simple_tx_hashrnd_initialized)) { 1705 get_random_bytes(&simple_tx_hashrnd, 4); 1706 simple_tx_hashrnd_initialized = 1; 1707 } 1708 1709 switch (skb->protocol) { 1710 case htons(ETH_P_IP): 1711 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET))) 1712 ip_proto = ip_hdr(skb)->protocol; 1713 addr1 = ip_hdr(skb)->saddr; 1714 addr2 = ip_hdr(skb)->daddr; 1715 ihl = ip_hdr(skb)->ihl; 1716 break; 1717 case htons(ETH_P_IPV6): 1718 ip_proto = ipv6_hdr(skb)->nexthdr; 1719 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1720 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1721 ihl = (40 >> 2); 1722 break; 1723 default: 1724 return 0; 1725 } 1726 1727 1728 switch (ip_proto) { 1729 case IPPROTO_TCP: 1730 case IPPROTO_UDP: 1731 case IPPROTO_DCCP: 1732 case IPPROTO_ESP: 1733 case IPPROTO_AH: 1734 case IPPROTO_SCTP: 1735 case IPPROTO_UDPLITE: 1736 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1737 break; 1738 1739 default: 1740 ports = 0; 1741 break; 1742 } 1743 1744 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1745 1746 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1747 } 1748 1749 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1750 struct sk_buff *skb) 1751 { 1752 u16 queue_index = 0; 1753 1754 if (dev->select_queue) 1755 queue_index = dev->select_queue(dev, skb); 1756 else if (dev->real_num_tx_queues > 1) 1757 queue_index = simple_tx_hash(dev, skb); 1758 1759 skb_set_queue_mapping(skb, queue_index); 1760 return netdev_get_tx_queue(dev, queue_index); 1761 } 1762 1763 /** 1764 * dev_queue_xmit - transmit a buffer 1765 * @skb: buffer to transmit 1766 * 1767 * Queue a buffer for transmission to a network device. The caller must 1768 * have set the device and priority and built the buffer before calling 1769 * this function. The function can be called from an interrupt. 1770 * 1771 * A negative errno code is returned on a failure. A success does not 1772 * guarantee the frame will be transmitted as it may be dropped due 1773 * to congestion or traffic shaping. 1774 * 1775 * ----------------------------------------------------------------------------------- 1776 * I notice this method can also return errors from the queue disciplines, 1777 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1778 * be positive. 1779 * 1780 * Regardless of the return value, the skb is consumed, so it is currently 1781 * difficult to retry a send to this method. (You can bump the ref count 1782 * before sending to hold a reference for retry if you are careful.) 1783 * 1784 * When calling this method, interrupts MUST be enabled. This is because 1785 * the BH enable code must have IRQs enabled so that it will not deadlock. 1786 * --BLG 1787 */ 1788 int dev_queue_xmit(struct sk_buff *skb) 1789 { 1790 struct net_device *dev = skb->dev; 1791 struct netdev_queue *txq; 1792 struct Qdisc *q; 1793 int rc = -ENOMEM; 1794 1795 /* GSO will handle the following emulations directly. */ 1796 if (netif_needs_gso(dev, skb)) 1797 goto gso; 1798 1799 if (skb_shinfo(skb)->frag_list && 1800 !(dev->features & NETIF_F_FRAGLIST) && 1801 __skb_linearize(skb)) 1802 goto out_kfree_skb; 1803 1804 /* Fragmented skb is linearized if device does not support SG, 1805 * or if at least one of fragments is in highmem and device 1806 * does not support DMA from it. 1807 */ 1808 if (skb_shinfo(skb)->nr_frags && 1809 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1810 __skb_linearize(skb)) 1811 goto out_kfree_skb; 1812 1813 /* If packet is not checksummed and device does not support 1814 * checksumming for this protocol, complete checksumming here. 1815 */ 1816 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1817 skb_set_transport_header(skb, skb->csum_start - 1818 skb_headroom(skb)); 1819 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1820 goto out_kfree_skb; 1821 } 1822 1823 gso: 1824 /* Disable soft irqs for various locks below. Also 1825 * stops preemption for RCU. 1826 */ 1827 rcu_read_lock_bh(); 1828 1829 txq = dev_pick_tx(dev, skb); 1830 q = rcu_dereference(txq->qdisc); 1831 1832 #ifdef CONFIG_NET_CLS_ACT 1833 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1834 #endif 1835 if (q->enqueue) { 1836 spinlock_t *root_lock = qdisc_lock(q); 1837 1838 spin_lock(root_lock); 1839 1840 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1841 kfree_skb(skb); 1842 rc = NET_XMIT_DROP; 1843 } else { 1844 rc = qdisc_enqueue_root(skb, q); 1845 qdisc_run(q); 1846 } 1847 spin_unlock(root_lock); 1848 1849 goto out; 1850 } 1851 1852 /* The device has no queue. Common case for software devices: 1853 loopback, all the sorts of tunnels... 1854 1855 Really, it is unlikely that netif_tx_lock protection is necessary 1856 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1857 counters.) 1858 However, it is possible, that they rely on protection 1859 made by us here. 1860 1861 Check this and shot the lock. It is not prone from deadlocks. 1862 Either shot noqueue qdisc, it is even simpler 8) 1863 */ 1864 if (dev->flags & IFF_UP) { 1865 int cpu = smp_processor_id(); /* ok because BHs are off */ 1866 1867 if (txq->xmit_lock_owner != cpu) { 1868 1869 HARD_TX_LOCK(dev, txq, cpu); 1870 1871 if (!netif_tx_queue_stopped(txq)) { 1872 rc = 0; 1873 if (!dev_hard_start_xmit(skb, dev, txq)) { 1874 HARD_TX_UNLOCK(dev, txq); 1875 goto out; 1876 } 1877 } 1878 HARD_TX_UNLOCK(dev, txq); 1879 if (net_ratelimit()) 1880 printk(KERN_CRIT "Virtual device %s asks to " 1881 "queue packet!\n", dev->name); 1882 } else { 1883 /* Recursion is detected! It is possible, 1884 * unfortunately */ 1885 if (net_ratelimit()) 1886 printk(KERN_CRIT "Dead loop on virtual device " 1887 "%s, fix it urgently!\n", dev->name); 1888 } 1889 } 1890 1891 rc = -ENETDOWN; 1892 rcu_read_unlock_bh(); 1893 1894 out_kfree_skb: 1895 kfree_skb(skb); 1896 return rc; 1897 out: 1898 rcu_read_unlock_bh(); 1899 return rc; 1900 } 1901 1902 1903 /*======================================================================= 1904 Receiver routines 1905 =======================================================================*/ 1906 1907 int netdev_max_backlog __read_mostly = 1000; 1908 int netdev_budget __read_mostly = 300; 1909 int weight_p __read_mostly = 64; /* old backlog weight */ 1910 1911 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1912 1913 1914 /** 1915 * netif_rx - post buffer to the network code 1916 * @skb: buffer to post 1917 * 1918 * This function receives a packet from a device driver and queues it for 1919 * the upper (protocol) levels to process. It always succeeds. The buffer 1920 * may be dropped during processing for congestion control or by the 1921 * protocol layers. 1922 * 1923 * return values: 1924 * NET_RX_SUCCESS (no congestion) 1925 * NET_RX_DROP (packet was dropped) 1926 * 1927 */ 1928 1929 int netif_rx(struct sk_buff *skb) 1930 { 1931 struct softnet_data *queue; 1932 unsigned long flags; 1933 1934 /* if netpoll wants it, pretend we never saw it */ 1935 if (netpoll_rx(skb)) 1936 return NET_RX_DROP; 1937 1938 if (!skb->tstamp.tv64) 1939 net_timestamp(skb); 1940 1941 /* 1942 * The code is rearranged so that the path is the most 1943 * short when CPU is congested, but is still operating. 1944 */ 1945 local_irq_save(flags); 1946 queue = &__get_cpu_var(softnet_data); 1947 1948 __get_cpu_var(netdev_rx_stat).total++; 1949 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1950 if (queue->input_pkt_queue.qlen) { 1951 enqueue: 1952 __skb_queue_tail(&queue->input_pkt_queue, skb); 1953 local_irq_restore(flags); 1954 return NET_RX_SUCCESS; 1955 } 1956 1957 napi_schedule(&queue->backlog); 1958 goto enqueue; 1959 } 1960 1961 __get_cpu_var(netdev_rx_stat).dropped++; 1962 local_irq_restore(flags); 1963 1964 kfree_skb(skb); 1965 return NET_RX_DROP; 1966 } 1967 1968 int netif_rx_ni(struct sk_buff *skb) 1969 { 1970 int err; 1971 1972 preempt_disable(); 1973 err = netif_rx(skb); 1974 if (local_softirq_pending()) 1975 do_softirq(); 1976 preempt_enable(); 1977 1978 return err; 1979 } 1980 1981 EXPORT_SYMBOL(netif_rx_ni); 1982 1983 static void net_tx_action(struct softirq_action *h) 1984 { 1985 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1986 1987 if (sd->completion_queue) { 1988 struct sk_buff *clist; 1989 1990 local_irq_disable(); 1991 clist = sd->completion_queue; 1992 sd->completion_queue = NULL; 1993 local_irq_enable(); 1994 1995 while (clist) { 1996 struct sk_buff *skb = clist; 1997 clist = clist->next; 1998 1999 WARN_ON(atomic_read(&skb->users)); 2000 __kfree_skb(skb); 2001 } 2002 } 2003 2004 if (sd->output_queue) { 2005 struct Qdisc *head; 2006 2007 local_irq_disable(); 2008 head = sd->output_queue; 2009 sd->output_queue = NULL; 2010 local_irq_enable(); 2011 2012 while (head) { 2013 struct Qdisc *q = head; 2014 spinlock_t *root_lock; 2015 2016 head = head->next_sched; 2017 2018 root_lock = qdisc_lock(q); 2019 if (spin_trylock(root_lock)) { 2020 smp_mb__before_clear_bit(); 2021 clear_bit(__QDISC_STATE_SCHED, 2022 &q->state); 2023 qdisc_run(q); 2024 spin_unlock(root_lock); 2025 } else { 2026 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2027 &q->state)) { 2028 __netif_reschedule(q); 2029 } else { 2030 smp_mb__before_clear_bit(); 2031 clear_bit(__QDISC_STATE_SCHED, 2032 &q->state); 2033 } 2034 } 2035 } 2036 } 2037 } 2038 2039 static inline int deliver_skb(struct sk_buff *skb, 2040 struct packet_type *pt_prev, 2041 struct net_device *orig_dev) 2042 { 2043 atomic_inc(&skb->users); 2044 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2045 } 2046 2047 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2048 /* These hooks defined here for ATM */ 2049 struct net_bridge; 2050 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2051 unsigned char *addr); 2052 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2053 2054 /* 2055 * If bridge module is loaded call bridging hook. 2056 * returns NULL if packet was consumed. 2057 */ 2058 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2059 struct sk_buff *skb) __read_mostly; 2060 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2061 struct packet_type **pt_prev, int *ret, 2062 struct net_device *orig_dev) 2063 { 2064 struct net_bridge_port *port; 2065 2066 if (skb->pkt_type == PACKET_LOOPBACK || 2067 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2068 return skb; 2069 2070 if (*pt_prev) { 2071 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2072 *pt_prev = NULL; 2073 } 2074 2075 return br_handle_frame_hook(port, skb); 2076 } 2077 #else 2078 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2079 #endif 2080 2081 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2082 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2083 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2084 2085 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2086 struct packet_type **pt_prev, 2087 int *ret, 2088 struct net_device *orig_dev) 2089 { 2090 if (skb->dev->macvlan_port == NULL) 2091 return skb; 2092 2093 if (*pt_prev) { 2094 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2095 *pt_prev = NULL; 2096 } 2097 return macvlan_handle_frame_hook(skb); 2098 } 2099 #else 2100 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2101 #endif 2102 2103 #ifdef CONFIG_NET_CLS_ACT 2104 /* TODO: Maybe we should just force sch_ingress to be compiled in 2105 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2106 * a compare and 2 stores extra right now if we dont have it on 2107 * but have CONFIG_NET_CLS_ACT 2108 * NOTE: This doesnt stop any functionality; if you dont have 2109 * the ingress scheduler, you just cant add policies on ingress. 2110 * 2111 */ 2112 static int ing_filter(struct sk_buff *skb) 2113 { 2114 struct net_device *dev = skb->dev; 2115 u32 ttl = G_TC_RTTL(skb->tc_verd); 2116 struct netdev_queue *rxq; 2117 int result = TC_ACT_OK; 2118 struct Qdisc *q; 2119 2120 if (MAX_RED_LOOP < ttl++) { 2121 printk(KERN_WARNING 2122 "Redir loop detected Dropping packet (%d->%d)\n", 2123 skb->iif, dev->ifindex); 2124 return TC_ACT_SHOT; 2125 } 2126 2127 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2128 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2129 2130 rxq = &dev->rx_queue; 2131 2132 q = rxq->qdisc; 2133 if (q != &noop_qdisc) { 2134 spin_lock(qdisc_lock(q)); 2135 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2136 result = qdisc_enqueue_root(skb, q); 2137 spin_unlock(qdisc_lock(q)); 2138 } 2139 2140 return result; 2141 } 2142 2143 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2144 struct packet_type **pt_prev, 2145 int *ret, struct net_device *orig_dev) 2146 { 2147 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2148 goto out; 2149 2150 if (*pt_prev) { 2151 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2152 *pt_prev = NULL; 2153 } else { 2154 /* Huh? Why does turning on AF_PACKET affect this? */ 2155 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2156 } 2157 2158 switch (ing_filter(skb)) { 2159 case TC_ACT_SHOT: 2160 case TC_ACT_STOLEN: 2161 kfree_skb(skb); 2162 return NULL; 2163 } 2164 2165 out: 2166 skb->tc_verd = 0; 2167 return skb; 2168 } 2169 #endif 2170 2171 /* 2172 * netif_nit_deliver - deliver received packets to network taps 2173 * @skb: buffer 2174 * 2175 * This function is used to deliver incoming packets to network 2176 * taps. It should be used when the normal netif_receive_skb path 2177 * is bypassed, for example because of VLAN acceleration. 2178 */ 2179 void netif_nit_deliver(struct sk_buff *skb) 2180 { 2181 struct packet_type *ptype; 2182 2183 if (list_empty(&ptype_all)) 2184 return; 2185 2186 skb_reset_network_header(skb); 2187 skb_reset_transport_header(skb); 2188 skb->mac_len = skb->network_header - skb->mac_header; 2189 2190 rcu_read_lock(); 2191 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2192 if (!ptype->dev || ptype->dev == skb->dev) 2193 deliver_skb(skb, ptype, skb->dev); 2194 } 2195 rcu_read_unlock(); 2196 } 2197 2198 /** 2199 * netif_receive_skb - process receive buffer from network 2200 * @skb: buffer to process 2201 * 2202 * netif_receive_skb() is the main receive data processing function. 2203 * It always succeeds. The buffer may be dropped during processing 2204 * for congestion control or by the protocol layers. 2205 * 2206 * This function may only be called from softirq context and interrupts 2207 * should be enabled. 2208 * 2209 * Return values (usually ignored): 2210 * NET_RX_SUCCESS: no congestion 2211 * NET_RX_DROP: packet was dropped 2212 */ 2213 int netif_receive_skb(struct sk_buff *skb) 2214 { 2215 struct packet_type *ptype, *pt_prev; 2216 struct net_device *orig_dev; 2217 struct net_device *null_or_orig; 2218 int ret = NET_RX_DROP; 2219 __be16 type; 2220 2221 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2222 return NET_RX_SUCCESS; 2223 2224 /* if we've gotten here through NAPI, check netpoll */ 2225 if (netpoll_receive_skb(skb)) 2226 return NET_RX_DROP; 2227 2228 if (!skb->tstamp.tv64) 2229 net_timestamp(skb); 2230 2231 if (!skb->iif) 2232 skb->iif = skb->dev->ifindex; 2233 2234 null_or_orig = NULL; 2235 orig_dev = skb->dev; 2236 if (orig_dev->master) { 2237 if (skb_bond_should_drop(skb)) 2238 null_or_orig = orig_dev; /* deliver only exact match */ 2239 else 2240 skb->dev = orig_dev->master; 2241 } 2242 2243 __get_cpu_var(netdev_rx_stat).total++; 2244 2245 skb_reset_network_header(skb); 2246 skb_reset_transport_header(skb); 2247 skb->mac_len = skb->network_header - skb->mac_header; 2248 2249 pt_prev = NULL; 2250 2251 rcu_read_lock(); 2252 2253 /* Don't receive packets in an exiting network namespace */ 2254 if (!net_alive(dev_net(skb->dev))) 2255 goto out; 2256 2257 #ifdef CONFIG_NET_CLS_ACT 2258 if (skb->tc_verd & TC_NCLS) { 2259 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2260 goto ncls; 2261 } 2262 #endif 2263 2264 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2265 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2266 ptype->dev == orig_dev) { 2267 if (pt_prev) 2268 ret = deliver_skb(skb, pt_prev, orig_dev); 2269 pt_prev = ptype; 2270 } 2271 } 2272 2273 #ifdef CONFIG_NET_CLS_ACT 2274 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2275 if (!skb) 2276 goto out; 2277 ncls: 2278 #endif 2279 2280 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2281 if (!skb) 2282 goto out; 2283 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2284 if (!skb) 2285 goto out; 2286 2287 type = skb->protocol; 2288 list_for_each_entry_rcu(ptype, 2289 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2290 if (ptype->type == type && 2291 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2292 ptype->dev == orig_dev)) { 2293 if (pt_prev) 2294 ret = deliver_skb(skb, pt_prev, orig_dev); 2295 pt_prev = ptype; 2296 } 2297 } 2298 2299 if (pt_prev) { 2300 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2301 } else { 2302 kfree_skb(skb); 2303 /* Jamal, now you will not able to escape explaining 2304 * me how you were going to use this. :-) 2305 */ 2306 ret = NET_RX_DROP; 2307 } 2308 2309 out: 2310 rcu_read_unlock(); 2311 return ret; 2312 } 2313 2314 /* Network device is going away, flush any packets still pending */ 2315 static void flush_backlog(void *arg) 2316 { 2317 struct net_device *dev = arg; 2318 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2319 struct sk_buff *skb, *tmp; 2320 2321 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2322 if (skb->dev == dev) { 2323 __skb_unlink(skb, &queue->input_pkt_queue); 2324 kfree_skb(skb); 2325 } 2326 } 2327 2328 static int process_backlog(struct napi_struct *napi, int quota) 2329 { 2330 int work = 0; 2331 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2332 unsigned long start_time = jiffies; 2333 2334 napi->weight = weight_p; 2335 do { 2336 struct sk_buff *skb; 2337 2338 local_irq_disable(); 2339 skb = __skb_dequeue(&queue->input_pkt_queue); 2340 if (!skb) { 2341 __napi_complete(napi); 2342 local_irq_enable(); 2343 break; 2344 } 2345 local_irq_enable(); 2346 2347 netif_receive_skb(skb); 2348 } while (++work < quota && jiffies == start_time); 2349 2350 return work; 2351 } 2352 2353 /** 2354 * __napi_schedule - schedule for receive 2355 * @n: entry to schedule 2356 * 2357 * The entry's receive function will be scheduled to run 2358 */ 2359 void __napi_schedule(struct napi_struct *n) 2360 { 2361 unsigned long flags; 2362 2363 local_irq_save(flags); 2364 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2365 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2366 local_irq_restore(flags); 2367 } 2368 EXPORT_SYMBOL(__napi_schedule); 2369 2370 2371 static void net_rx_action(struct softirq_action *h) 2372 { 2373 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2374 unsigned long start_time = jiffies; 2375 int budget = netdev_budget; 2376 void *have; 2377 2378 local_irq_disable(); 2379 2380 while (!list_empty(list)) { 2381 struct napi_struct *n; 2382 int work, weight; 2383 2384 /* If softirq window is exhuasted then punt. 2385 * 2386 * Note that this is a slight policy change from the 2387 * previous NAPI code, which would allow up to 2 2388 * jiffies to pass before breaking out. The test 2389 * used to be "jiffies - start_time > 1". 2390 */ 2391 if (unlikely(budget <= 0 || jiffies != start_time)) 2392 goto softnet_break; 2393 2394 local_irq_enable(); 2395 2396 /* Even though interrupts have been re-enabled, this 2397 * access is safe because interrupts can only add new 2398 * entries to the tail of this list, and only ->poll() 2399 * calls can remove this head entry from the list. 2400 */ 2401 n = list_entry(list->next, struct napi_struct, poll_list); 2402 2403 have = netpoll_poll_lock(n); 2404 2405 weight = n->weight; 2406 2407 /* This NAPI_STATE_SCHED test is for avoiding a race 2408 * with netpoll's poll_napi(). Only the entity which 2409 * obtains the lock and sees NAPI_STATE_SCHED set will 2410 * actually make the ->poll() call. Therefore we avoid 2411 * accidently calling ->poll() when NAPI is not scheduled. 2412 */ 2413 work = 0; 2414 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2415 work = n->poll(n, weight); 2416 2417 WARN_ON_ONCE(work > weight); 2418 2419 budget -= work; 2420 2421 local_irq_disable(); 2422 2423 /* Drivers must not modify the NAPI state if they 2424 * consume the entire weight. In such cases this code 2425 * still "owns" the NAPI instance and therefore can 2426 * move the instance around on the list at-will. 2427 */ 2428 if (unlikely(work == weight)) { 2429 if (unlikely(napi_disable_pending(n))) 2430 __napi_complete(n); 2431 else 2432 list_move_tail(&n->poll_list, list); 2433 } 2434 2435 netpoll_poll_unlock(have); 2436 } 2437 out: 2438 local_irq_enable(); 2439 2440 #ifdef CONFIG_NET_DMA 2441 /* 2442 * There may not be any more sk_buffs coming right now, so push 2443 * any pending DMA copies to hardware 2444 */ 2445 if (!cpus_empty(net_dma.channel_mask)) { 2446 int chan_idx; 2447 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) { 2448 struct dma_chan *chan = net_dma.channels[chan_idx]; 2449 if (chan) 2450 dma_async_memcpy_issue_pending(chan); 2451 } 2452 } 2453 #endif 2454 2455 return; 2456 2457 softnet_break: 2458 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2459 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2460 goto out; 2461 } 2462 2463 static gifconf_func_t * gifconf_list [NPROTO]; 2464 2465 /** 2466 * register_gifconf - register a SIOCGIF handler 2467 * @family: Address family 2468 * @gifconf: Function handler 2469 * 2470 * Register protocol dependent address dumping routines. The handler 2471 * that is passed must not be freed or reused until it has been replaced 2472 * by another handler. 2473 */ 2474 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2475 { 2476 if (family >= NPROTO) 2477 return -EINVAL; 2478 gifconf_list[family] = gifconf; 2479 return 0; 2480 } 2481 2482 2483 /* 2484 * Map an interface index to its name (SIOCGIFNAME) 2485 */ 2486 2487 /* 2488 * We need this ioctl for efficient implementation of the 2489 * if_indextoname() function required by the IPv6 API. Without 2490 * it, we would have to search all the interfaces to find a 2491 * match. --pb 2492 */ 2493 2494 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2495 { 2496 struct net_device *dev; 2497 struct ifreq ifr; 2498 2499 /* 2500 * Fetch the caller's info block. 2501 */ 2502 2503 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2504 return -EFAULT; 2505 2506 read_lock(&dev_base_lock); 2507 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2508 if (!dev) { 2509 read_unlock(&dev_base_lock); 2510 return -ENODEV; 2511 } 2512 2513 strcpy(ifr.ifr_name, dev->name); 2514 read_unlock(&dev_base_lock); 2515 2516 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2517 return -EFAULT; 2518 return 0; 2519 } 2520 2521 /* 2522 * Perform a SIOCGIFCONF call. This structure will change 2523 * size eventually, and there is nothing I can do about it. 2524 * Thus we will need a 'compatibility mode'. 2525 */ 2526 2527 static int dev_ifconf(struct net *net, char __user *arg) 2528 { 2529 struct ifconf ifc; 2530 struct net_device *dev; 2531 char __user *pos; 2532 int len; 2533 int total; 2534 int i; 2535 2536 /* 2537 * Fetch the caller's info block. 2538 */ 2539 2540 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2541 return -EFAULT; 2542 2543 pos = ifc.ifc_buf; 2544 len = ifc.ifc_len; 2545 2546 /* 2547 * Loop over the interfaces, and write an info block for each. 2548 */ 2549 2550 total = 0; 2551 for_each_netdev(net, dev) { 2552 for (i = 0; i < NPROTO; i++) { 2553 if (gifconf_list[i]) { 2554 int done; 2555 if (!pos) 2556 done = gifconf_list[i](dev, NULL, 0); 2557 else 2558 done = gifconf_list[i](dev, pos + total, 2559 len - total); 2560 if (done < 0) 2561 return -EFAULT; 2562 total += done; 2563 } 2564 } 2565 } 2566 2567 /* 2568 * All done. Write the updated control block back to the caller. 2569 */ 2570 ifc.ifc_len = total; 2571 2572 /* 2573 * Both BSD and Solaris return 0 here, so we do too. 2574 */ 2575 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2576 } 2577 2578 #ifdef CONFIG_PROC_FS 2579 /* 2580 * This is invoked by the /proc filesystem handler to display a device 2581 * in detail. 2582 */ 2583 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2584 __acquires(dev_base_lock) 2585 { 2586 struct net *net = seq_file_net(seq); 2587 loff_t off; 2588 struct net_device *dev; 2589 2590 read_lock(&dev_base_lock); 2591 if (!*pos) 2592 return SEQ_START_TOKEN; 2593 2594 off = 1; 2595 for_each_netdev(net, dev) 2596 if (off++ == *pos) 2597 return dev; 2598 2599 return NULL; 2600 } 2601 2602 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2603 { 2604 struct net *net = seq_file_net(seq); 2605 ++*pos; 2606 return v == SEQ_START_TOKEN ? 2607 first_net_device(net) : next_net_device((struct net_device *)v); 2608 } 2609 2610 void dev_seq_stop(struct seq_file *seq, void *v) 2611 __releases(dev_base_lock) 2612 { 2613 read_unlock(&dev_base_lock); 2614 } 2615 2616 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2617 { 2618 struct net_device_stats *stats = dev->get_stats(dev); 2619 2620 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2621 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2622 dev->name, stats->rx_bytes, stats->rx_packets, 2623 stats->rx_errors, 2624 stats->rx_dropped + stats->rx_missed_errors, 2625 stats->rx_fifo_errors, 2626 stats->rx_length_errors + stats->rx_over_errors + 2627 stats->rx_crc_errors + stats->rx_frame_errors, 2628 stats->rx_compressed, stats->multicast, 2629 stats->tx_bytes, stats->tx_packets, 2630 stats->tx_errors, stats->tx_dropped, 2631 stats->tx_fifo_errors, stats->collisions, 2632 stats->tx_carrier_errors + 2633 stats->tx_aborted_errors + 2634 stats->tx_window_errors + 2635 stats->tx_heartbeat_errors, 2636 stats->tx_compressed); 2637 } 2638 2639 /* 2640 * Called from the PROCfs module. This now uses the new arbitrary sized 2641 * /proc/net interface to create /proc/net/dev 2642 */ 2643 static int dev_seq_show(struct seq_file *seq, void *v) 2644 { 2645 if (v == SEQ_START_TOKEN) 2646 seq_puts(seq, "Inter-| Receive " 2647 " | Transmit\n" 2648 " face |bytes packets errs drop fifo frame " 2649 "compressed multicast|bytes packets errs " 2650 "drop fifo colls carrier compressed\n"); 2651 else 2652 dev_seq_printf_stats(seq, v); 2653 return 0; 2654 } 2655 2656 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2657 { 2658 struct netif_rx_stats *rc = NULL; 2659 2660 while (*pos < nr_cpu_ids) 2661 if (cpu_online(*pos)) { 2662 rc = &per_cpu(netdev_rx_stat, *pos); 2663 break; 2664 } else 2665 ++*pos; 2666 return rc; 2667 } 2668 2669 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2670 { 2671 return softnet_get_online(pos); 2672 } 2673 2674 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2675 { 2676 ++*pos; 2677 return softnet_get_online(pos); 2678 } 2679 2680 static void softnet_seq_stop(struct seq_file *seq, void *v) 2681 { 2682 } 2683 2684 static int softnet_seq_show(struct seq_file *seq, void *v) 2685 { 2686 struct netif_rx_stats *s = v; 2687 2688 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2689 s->total, s->dropped, s->time_squeeze, 0, 2690 0, 0, 0, 0, /* was fastroute */ 2691 s->cpu_collision ); 2692 return 0; 2693 } 2694 2695 static const struct seq_operations dev_seq_ops = { 2696 .start = dev_seq_start, 2697 .next = dev_seq_next, 2698 .stop = dev_seq_stop, 2699 .show = dev_seq_show, 2700 }; 2701 2702 static int dev_seq_open(struct inode *inode, struct file *file) 2703 { 2704 return seq_open_net(inode, file, &dev_seq_ops, 2705 sizeof(struct seq_net_private)); 2706 } 2707 2708 static const struct file_operations dev_seq_fops = { 2709 .owner = THIS_MODULE, 2710 .open = dev_seq_open, 2711 .read = seq_read, 2712 .llseek = seq_lseek, 2713 .release = seq_release_net, 2714 }; 2715 2716 static const struct seq_operations softnet_seq_ops = { 2717 .start = softnet_seq_start, 2718 .next = softnet_seq_next, 2719 .stop = softnet_seq_stop, 2720 .show = softnet_seq_show, 2721 }; 2722 2723 static int softnet_seq_open(struct inode *inode, struct file *file) 2724 { 2725 return seq_open(file, &softnet_seq_ops); 2726 } 2727 2728 static const struct file_operations softnet_seq_fops = { 2729 .owner = THIS_MODULE, 2730 .open = softnet_seq_open, 2731 .read = seq_read, 2732 .llseek = seq_lseek, 2733 .release = seq_release, 2734 }; 2735 2736 static void *ptype_get_idx(loff_t pos) 2737 { 2738 struct packet_type *pt = NULL; 2739 loff_t i = 0; 2740 int t; 2741 2742 list_for_each_entry_rcu(pt, &ptype_all, list) { 2743 if (i == pos) 2744 return pt; 2745 ++i; 2746 } 2747 2748 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 2749 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2750 if (i == pos) 2751 return pt; 2752 ++i; 2753 } 2754 } 2755 return NULL; 2756 } 2757 2758 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2759 __acquires(RCU) 2760 { 2761 rcu_read_lock(); 2762 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2763 } 2764 2765 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2766 { 2767 struct packet_type *pt; 2768 struct list_head *nxt; 2769 int hash; 2770 2771 ++*pos; 2772 if (v == SEQ_START_TOKEN) 2773 return ptype_get_idx(0); 2774 2775 pt = v; 2776 nxt = pt->list.next; 2777 if (pt->type == htons(ETH_P_ALL)) { 2778 if (nxt != &ptype_all) 2779 goto found; 2780 hash = 0; 2781 nxt = ptype_base[0].next; 2782 } else 2783 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 2784 2785 while (nxt == &ptype_base[hash]) { 2786 if (++hash >= PTYPE_HASH_SIZE) 2787 return NULL; 2788 nxt = ptype_base[hash].next; 2789 } 2790 found: 2791 return list_entry(nxt, struct packet_type, list); 2792 } 2793 2794 static void ptype_seq_stop(struct seq_file *seq, void *v) 2795 __releases(RCU) 2796 { 2797 rcu_read_unlock(); 2798 } 2799 2800 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2801 { 2802 #ifdef CONFIG_KALLSYMS 2803 unsigned long offset = 0, symsize; 2804 const char *symname; 2805 char *modname; 2806 char namebuf[128]; 2807 2808 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2809 &modname, namebuf); 2810 2811 if (symname) { 2812 char *delim = ":"; 2813 2814 if (!modname) 2815 modname = delim = ""; 2816 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2817 symname, offset); 2818 return; 2819 } 2820 #endif 2821 2822 seq_printf(seq, "[%p]", sym); 2823 } 2824 2825 static int ptype_seq_show(struct seq_file *seq, void *v) 2826 { 2827 struct packet_type *pt = v; 2828 2829 if (v == SEQ_START_TOKEN) 2830 seq_puts(seq, "Type Device Function\n"); 2831 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 2832 if (pt->type == htons(ETH_P_ALL)) 2833 seq_puts(seq, "ALL "); 2834 else 2835 seq_printf(seq, "%04x", ntohs(pt->type)); 2836 2837 seq_printf(seq, " %-8s ", 2838 pt->dev ? pt->dev->name : ""); 2839 ptype_seq_decode(seq, pt->func); 2840 seq_putc(seq, '\n'); 2841 } 2842 2843 return 0; 2844 } 2845 2846 static const struct seq_operations ptype_seq_ops = { 2847 .start = ptype_seq_start, 2848 .next = ptype_seq_next, 2849 .stop = ptype_seq_stop, 2850 .show = ptype_seq_show, 2851 }; 2852 2853 static int ptype_seq_open(struct inode *inode, struct file *file) 2854 { 2855 return seq_open_net(inode, file, &ptype_seq_ops, 2856 sizeof(struct seq_net_private)); 2857 } 2858 2859 static const struct file_operations ptype_seq_fops = { 2860 .owner = THIS_MODULE, 2861 .open = ptype_seq_open, 2862 .read = seq_read, 2863 .llseek = seq_lseek, 2864 .release = seq_release_net, 2865 }; 2866 2867 2868 static int __net_init dev_proc_net_init(struct net *net) 2869 { 2870 int rc = -ENOMEM; 2871 2872 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2873 goto out; 2874 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2875 goto out_dev; 2876 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2877 goto out_softnet; 2878 2879 if (wext_proc_init(net)) 2880 goto out_ptype; 2881 rc = 0; 2882 out: 2883 return rc; 2884 out_ptype: 2885 proc_net_remove(net, "ptype"); 2886 out_softnet: 2887 proc_net_remove(net, "softnet_stat"); 2888 out_dev: 2889 proc_net_remove(net, "dev"); 2890 goto out; 2891 } 2892 2893 static void __net_exit dev_proc_net_exit(struct net *net) 2894 { 2895 wext_proc_exit(net); 2896 2897 proc_net_remove(net, "ptype"); 2898 proc_net_remove(net, "softnet_stat"); 2899 proc_net_remove(net, "dev"); 2900 } 2901 2902 static struct pernet_operations __net_initdata dev_proc_ops = { 2903 .init = dev_proc_net_init, 2904 .exit = dev_proc_net_exit, 2905 }; 2906 2907 static int __init dev_proc_init(void) 2908 { 2909 return register_pernet_subsys(&dev_proc_ops); 2910 } 2911 #else 2912 #define dev_proc_init() 0 2913 #endif /* CONFIG_PROC_FS */ 2914 2915 2916 /** 2917 * netdev_set_master - set up master/slave pair 2918 * @slave: slave device 2919 * @master: new master device 2920 * 2921 * Changes the master device of the slave. Pass %NULL to break the 2922 * bonding. The caller must hold the RTNL semaphore. On a failure 2923 * a negative errno code is returned. On success the reference counts 2924 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2925 * function returns zero. 2926 */ 2927 int netdev_set_master(struct net_device *slave, struct net_device *master) 2928 { 2929 struct net_device *old = slave->master; 2930 2931 ASSERT_RTNL(); 2932 2933 if (master) { 2934 if (old) 2935 return -EBUSY; 2936 dev_hold(master); 2937 } 2938 2939 slave->master = master; 2940 2941 synchronize_net(); 2942 2943 if (old) 2944 dev_put(old); 2945 2946 if (master) 2947 slave->flags |= IFF_SLAVE; 2948 else 2949 slave->flags &= ~IFF_SLAVE; 2950 2951 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2952 return 0; 2953 } 2954 2955 static void dev_change_rx_flags(struct net_device *dev, int flags) 2956 { 2957 if (dev->flags & IFF_UP && dev->change_rx_flags) 2958 dev->change_rx_flags(dev, flags); 2959 } 2960 2961 static int __dev_set_promiscuity(struct net_device *dev, int inc) 2962 { 2963 unsigned short old_flags = dev->flags; 2964 2965 ASSERT_RTNL(); 2966 2967 dev->flags |= IFF_PROMISC; 2968 dev->promiscuity += inc; 2969 if (dev->promiscuity == 0) { 2970 /* 2971 * Avoid overflow. 2972 * If inc causes overflow, untouch promisc and return error. 2973 */ 2974 if (inc < 0) 2975 dev->flags &= ~IFF_PROMISC; 2976 else { 2977 dev->promiscuity -= inc; 2978 printk(KERN_WARNING "%s: promiscuity touches roof, " 2979 "set promiscuity failed, promiscuity feature " 2980 "of device might be broken.\n", dev->name); 2981 return -EOVERFLOW; 2982 } 2983 } 2984 if (dev->flags != old_flags) { 2985 printk(KERN_INFO "device %s %s promiscuous mode\n", 2986 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2987 "left"); 2988 if (audit_enabled) 2989 audit_log(current->audit_context, GFP_ATOMIC, 2990 AUDIT_ANOM_PROMISCUOUS, 2991 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 2992 dev->name, (dev->flags & IFF_PROMISC), 2993 (old_flags & IFF_PROMISC), 2994 audit_get_loginuid(current), 2995 current->uid, current->gid, 2996 audit_get_sessionid(current)); 2997 2998 dev_change_rx_flags(dev, IFF_PROMISC); 2999 } 3000 return 0; 3001 } 3002 3003 /** 3004 * dev_set_promiscuity - update promiscuity count on a device 3005 * @dev: device 3006 * @inc: modifier 3007 * 3008 * Add or remove promiscuity from a device. While the count in the device 3009 * remains above zero the interface remains promiscuous. Once it hits zero 3010 * the device reverts back to normal filtering operation. A negative inc 3011 * value is used to drop promiscuity on the device. 3012 * Return 0 if successful or a negative errno code on error. 3013 */ 3014 int dev_set_promiscuity(struct net_device *dev, int inc) 3015 { 3016 unsigned short old_flags = dev->flags; 3017 int err; 3018 3019 err = __dev_set_promiscuity(dev, inc); 3020 if (err < 0) 3021 return err; 3022 if (dev->flags != old_flags) 3023 dev_set_rx_mode(dev); 3024 return err; 3025 } 3026 3027 /** 3028 * dev_set_allmulti - update allmulti count on a device 3029 * @dev: device 3030 * @inc: modifier 3031 * 3032 * Add or remove reception of all multicast frames to a device. While the 3033 * count in the device remains above zero the interface remains listening 3034 * to all interfaces. Once it hits zero the device reverts back to normal 3035 * filtering operation. A negative @inc value is used to drop the counter 3036 * when releasing a resource needing all multicasts. 3037 * Return 0 if successful or a negative errno code on error. 3038 */ 3039 3040 int dev_set_allmulti(struct net_device *dev, int inc) 3041 { 3042 unsigned short old_flags = dev->flags; 3043 3044 ASSERT_RTNL(); 3045 3046 dev->flags |= IFF_ALLMULTI; 3047 dev->allmulti += inc; 3048 if (dev->allmulti == 0) { 3049 /* 3050 * Avoid overflow. 3051 * If inc causes overflow, untouch allmulti and return error. 3052 */ 3053 if (inc < 0) 3054 dev->flags &= ~IFF_ALLMULTI; 3055 else { 3056 dev->allmulti -= inc; 3057 printk(KERN_WARNING "%s: allmulti touches roof, " 3058 "set allmulti failed, allmulti feature of " 3059 "device might be broken.\n", dev->name); 3060 return -EOVERFLOW; 3061 } 3062 } 3063 if (dev->flags ^ old_flags) { 3064 dev_change_rx_flags(dev, IFF_ALLMULTI); 3065 dev_set_rx_mode(dev); 3066 } 3067 return 0; 3068 } 3069 3070 /* 3071 * Upload unicast and multicast address lists to device and 3072 * configure RX filtering. When the device doesn't support unicast 3073 * filtering it is put in promiscuous mode while unicast addresses 3074 * are present. 3075 */ 3076 void __dev_set_rx_mode(struct net_device *dev) 3077 { 3078 /* dev_open will call this function so the list will stay sane. */ 3079 if (!(dev->flags&IFF_UP)) 3080 return; 3081 3082 if (!netif_device_present(dev)) 3083 return; 3084 3085 if (dev->set_rx_mode) 3086 dev->set_rx_mode(dev); 3087 else { 3088 /* Unicast addresses changes may only happen under the rtnl, 3089 * therefore calling __dev_set_promiscuity here is safe. 3090 */ 3091 if (dev->uc_count > 0 && !dev->uc_promisc) { 3092 __dev_set_promiscuity(dev, 1); 3093 dev->uc_promisc = 1; 3094 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3095 __dev_set_promiscuity(dev, -1); 3096 dev->uc_promisc = 0; 3097 } 3098 3099 if (dev->set_multicast_list) 3100 dev->set_multicast_list(dev); 3101 } 3102 } 3103 3104 void dev_set_rx_mode(struct net_device *dev) 3105 { 3106 netif_addr_lock_bh(dev); 3107 __dev_set_rx_mode(dev); 3108 netif_addr_unlock_bh(dev); 3109 } 3110 3111 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3112 void *addr, int alen, int glbl) 3113 { 3114 struct dev_addr_list *da; 3115 3116 for (; (da = *list) != NULL; list = &da->next) { 3117 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3118 alen == da->da_addrlen) { 3119 if (glbl) { 3120 int old_glbl = da->da_gusers; 3121 da->da_gusers = 0; 3122 if (old_glbl == 0) 3123 break; 3124 } 3125 if (--da->da_users) 3126 return 0; 3127 3128 *list = da->next; 3129 kfree(da); 3130 (*count)--; 3131 return 0; 3132 } 3133 } 3134 return -ENOENT; 3135 } 3136 3137 int __dev_addr_add(struct dev_addr_list **list, int *count, 3138 void *addr, int alen, int glbl) 3139 { 3140 struct dev_addr_list *da; 3141 3142 for (da = *list; da != NULL; da = da->next) { 3143 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3144 da->da_addrlen == alen) { 3145 if (glbl) { 3146 int old_glbl = da->da_gusers; 3147 da->da_gusers = 1; 3148 if (old_glbl) 3149 return 0; 3150 } 3151 da->da_users++; 3152 return 0; 3153 } 3154 } 3155 3156 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3157 if (da == NULL) 3158 return -ENOMEM; 3159 memcpy(da->da_addr, addr, alen); 3160 da->da_addrlen = alen; 3161 da->da_users = 1; 3162 da->da_gusers = glbl ? 1 : 0; 3163 da->next = *list; 3164 *list = da; 3165 (*count)++; 3166 return 0; 3167 } 3168 3169 /** 3170 * dev_unicast_delete - Release secondary unicast address. 3171 * @dev: device 3172 * @addr: address to delete 3173 * @alen: length of @addr 3174 * 3175 * Release reference to a secondary unicast address and remove it 3176 * from the device if the reference count drops to zero. 3177 * 3178 * The caller must hold the rtnl_mutex. 3179 */ 3180 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3181 { 3182 int err; 3183 3184 ASSERT_RTNL(); 3185 3186 netif_addr_lock_bh(dev); 3187 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3188 if (!err) 3189 __dev_set_rx_mode(dev); 3190 netif_addr_unlock_bh(dev); 3191 return err; 3192 } 3193 EXPORT_SYMBOL(dev_unicast_delete); 3194 3195 /** 3196 * dev_unicast_add - add a secondary unicast address 3197 * @dev: device 3198 * @addr: address to add 3199 * @alen: length of @addr 3200 * 3201 * Add a secondary unicast address to the device or increase 3202 * the reference count if it already exists. 3203 * 3204 * The caller must hold the rtnl_mutex. 3205 */ 3206 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3207 { 3208 int err; 3209 3210 ASSERT_RTNL(); 3211 3212 netif_addr_lock_bh(dev); 3213 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3214 if (!err) 3215 __dev_set_rx_mode(dev); 3216 netif_addr_unlock_bh(dev); 3217 return err; 3218 } 3219 EXPORT_SYMBOL(dev_unicast_add); 3220 3221 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3222 struct dev_addr_list **from, int *from_count) 3223 { 3224 struct dev_addr_list *da, *next; 3225 int err = 0; 3226 3227 da = *from; 3228 while (da != NULL) { 3229 next = da->next; 3230 if (!da->da_synced) { 3231 err = __dev_addr_add(to, to_count, 3232 da->da_addr, da->da_addrlen, 0); 3233 if (err < 0) 3234 break; 3235 da->da_synced = 1; 3236 da->da_users++; 3237 } else if (da->da_users == 1) { 3238 __dev_addr_delete(to, to_count, 3239 da->da_addr, da->da_addrlen, 0); 3240 __dev_addr_delete(from, from_count, 3241 da->da_addr, da->da_addrlen, 0); 3242 } 3243 da = next; 3244 } 3245 return err; 3246 } 3247 3248 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3249 struct dev_addr_list **from, int *from_count) 3250 { 3251 struct dev_addr_list *da, *next; 3252 3253 da = *from; 3254 while (da != NULL) { 3255 next = da->next; 3256 if (da->da_synced) { 3257 __dev_addr_delete(to, to_count, 3258 da->da_addr, da->da_addrlen, 0); 3259 da->da_synced = 0; 3260 __dev_addr_delete(from, from_count, 3261 da->da_addr, da->da_addrlen, 0); 3262 } 3263 da = next; 3264 } 3265 } 3266 3267 /** 3268 * dev_unicast_sync - Synchronize device's unicast list to another device 3269 * @to: destination device 3270 * @from: source device 3271 * 3272 * Add newly added addresses to the destination device and release 3273 * addresses that have no users left. The source device must be 3274 * locked by netif_tx_lock_bh. 3275 * 3276 * This function is intended to be called from the dev->set_rx_mode 3277 * function of layered software devices. 3278 */ 3279 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3280 { 3281 int err = 0; 3282 3283 netif_addr_lock_bh(to); 3284 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3285 &from->uc_list, &from->uc_count); 3286 if (!err) 3287 __dev_set_rx_mode(to); 3288 netif_addr_unlock_bh(to); 3289 return err; 3290 } 3291 EXPORT_SYMBOL(dev_unicast_sync); 3292 3293 /** 3294 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3295 * @to: destination device 3296 * @from: source device 3297 * 3298 * Remove all addresses that were added to the destination device by 3299 * dev_unicast_sync(). This function is intended to be called from the 3300 * dev->stop function of layered software devices. 3301 */ 3302 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3303 { 3304 netif_addr_lock_bh(from); 3305 netif_addr_lock(to); 3306 3307 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3308 &from->uc_list, &from->uc_count); 3309 __dev_set_rx_mode(to); 3310 3311 netif_addr_unlock(to); 3312 netif_addr_unlock_bh(from); 3313 } 3314 EXPORT_SYMBOL(dev_unicast_unsync); 3315 3316 static void __dev_addr_discard(struct dev_addr_list **list) 3317 { 3318 struct dev_addr_list *tmp; 3319 3320 while (*list != NULL) { 3321 tmp = *list; 3322 *list = tmp->next; 3323 if (tmp->da_users > tmp->da_gusers) 3324 printk("__dev_addr_discard: address leakage! " 3325 "da_users=%d\n", tmp->da_users); 3326 kfree(tmp); 3327 } 3328 } 3329 3330 static void dev_addr_discard(struct net_device *dev) 3331 { 3332 netif_addr_lock_bh(dev); 3333 3334 __dev_addr_discard(&dev->uc_list); 3335 dev->uc_count = 0; 3336 3337 __dev_addr_discard(&dev->mc_list); 3338 dev->mc_count = 0; 3339 3340 netif_addr_unlock_bh(dev); 3341 } 3342 3343 /** 3344 * dev_get_flags - get flags reported to userspace 3345 * @dev: device 3346 * 3347 * Get the combination of flag bits exported through APIs to userspace. 3348 */ 3349 unsigned dev_get_flags(const struct net_device *dev) 3350 { 3351 unsigned flags; 3352 3353 flags = (dev->flags & ~(IFF_PROMISC | 3354 IFF_ALLMULTI | 3355 IFF_RUNNING | 3356 IFF_LOWER_UP | 3357 IFF_DORMANT)) | 3358 (dev->gflags & (IFF_PROMISC | 3359 IFF_ALLMULTI)); 3360 3361 if (netif_running(dev)) { 3362 if (netif_oper_up(dev)) 3363 flags |= IFF_RUNNING; 3364 if (netif_carrier_ok(dev)) 3365 flags |= IFF_LOWER_UP; 3366 if (netif_dormant(dev)) 3367 flags |= IFF_DORMANT; 3368 } 3369 3370 return flags; 3371 } 3372 3373 /** 3374 * dev_change_flags - change device settings 3375 * @dev: device 3376 * @flags: device state flags 3377 * 3378 * Change settings on device based state flags. The flags are 3379 * in the userspace exported format. 3380 */ 3381 int dev_change_flags(struct net_device *dev, unsigned flags) 3382 { 3383 int ret, changes; 3384 int old_flags = dev->flags; 3385 3386 ASSERT_RTNL(); 3387 3388 /* 3389 * Set the flags on our device. 3390 */ 3391 3392 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3393 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3394 IFF_AUTOMEDIA)) | 3395 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3396 IFF_ALLMULTI)); 3397 3398 /* 3399 * Load in the correct multicast list now the flags have changed. 3400 */ 3401 3402 if ((old_flags ^ flags) & IFF_MULTICAST) 3403 dev_change_rx_flags(dev, IFF_MULTICAST); 3404 3405 dev_set_rx_mode(dev); 3406 3407 /* 3408 * Have we downed the interface. We handle IFF_UP ourselves 3409 * according to user attempts to set it, rather than blindly 3410 * setting it. 3411 */ 3412 3413 ret = 0; 3414 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3415 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3416 3417 if (!ret) 3418 dev_set_rx_mode(dev); 3419 } 3420 3421 if (dev->flags & IFF_UP && 3422 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3423 IFF_VOLATILE))) 3424 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3425 3426 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3427 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3428 dev->gflags ^= IFF_PROMISC; 3429 dev_set_promiscuity(dev, inc); 3430 } 3431 3432 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3433 is important. Some (broken) drivers set IFF_PROMISC, when 3434 IFF_ALLMULTI is requested not asking us and not reporting. 3435 */ 3436 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3437 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3438 dev->gflags ^= IFF_ALLMULTI; 3439 dev_set_allmulti(dev, inc); 3440 } 3441 3442 /* Exclude state transition flags, already notified */ 3443 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3444 if (changes) 3445 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3446 3447 return ret; 3448 } 3449 3450 /** 3451 * dev_set_mtu - Change maximum transfer unit 3452 * @dev: device 3453 * @new_mtu: new transfer unit 3454 * 3455 * Change the maximum transfer size of the network device. 3456 */ 3457 int dev_set_mtu(struct net_device *dev, int new_mtu) 3458 { 3459 int err; 3460 3461 if (new_mtu == dev->mtu) 3462 return 0; 3463 3464 /* MTU must be positive. */ 3465 if (new_mtu < 0) 3466 return -EINVAL; 3467 3468 if (!netif_device_present(dev)) 3469 return -ENODEV; 3470 3471 err = 0; 3472 if (dev->change_mtu) 3473 err = dev->change_mtu(dev, new_mtu); 3474 else 3475 dev->mtu = new_mtu; 3476 if (!err && dev->flags & IFF_UP) 3477 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3478 return err; 3479 } 3480 3481 /** 3482 * dev_set_mac_address - Change Media Access Control Address 3483 * @dev: device 3484 * @sa: new address 3485 * 3486 * Change the hardware (MAC) address of the device 3487 */ 3488 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3489 { 3490 int err; 3491 3492 if (!dev->set_mac_address) 3493 return -EOPNOTSUPP; 3494 if (sa->sa_family != dev->type) 3495 return -EINVAL; 3496 if (!netif_device_present(dev)) 3497 return -ENODEV; 3498 err = dev->set_mac_address(dev, sa); 3499 if (!err) 3500 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3501 return err; 3502 } 3503 3504 /* 3505 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3506 */ 3507 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3508 { 3509 int err; 3510 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3511 3512 if (!dev) 3513 return -ENODEV; 3514 3515 switch (cmd) { 3516 case SIOCGIFFLAGS: /* Get interface flags */ 3517 ifr->ifr_flags = dev_get_flags(dev); 3518 return 0; 3519 3520 case SIOCGIFMETRIC: /* Get the metric on the interface 3521 (currently unused) */ 3522 ifr->ifr_metric = 0; 3523 return 0; 3524 3525 case SIOCGIFMTU: /* Get the MTU of a device */ 3526 ifr->ifr_mtu = dev->mtu; 3527 return 0; 3528 3529 case SIOCGIFHWADDR: 3530 if (!dev->addr_len) 3531 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3532 else 3533 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3534 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3535 ifr->ifr_hwaddr.sa_family = dev->type; 3536 return 0; 3537 3538 case SIOCGIFSLAVE: 3539 err = -EINVAL; 3540 break; 3541 3542 case SIOCGIFMAP: 3543 ifr->ifr_map.mem_start = dev->mem_start; 3544 ifr->ifr_map.mem_end = dev->mem_end; 3545 ifr->ifr_map.base_addr = dev->base_addr; 3546 ifr->ifr_map.irq = dev->irq; 3547 ifr->ifr_map.dma = dev->dma; 3548 ifr->ifr_map.port = dev->if_port; 3549 return 0; 3550 3551 case SIOCGIFINDEX: 3552 ifr->ifr_ifindex = dev->ifindex; 3553 return 0; 3554 3555 case SIOCGIFTXQLEN: 3556 ifr->ifr_qlen = dev->tx_queue_len; 3557 return 0; 3558 3559 default: 3560 /* dev_ioctl() should ensure this case 3561 * is never reached 3562 */ 3563 WARN_ON(1); 3564 err = -EINVAL; 3565 break; 3566 3567 } 3568 return err; 3569 } 3570 3571 /* 3572 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3573 */ 3574 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3575 { 3576 int err; 3577 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3578 3579 if (!dev) 3580 return -ENODEV; 3581 3582 switch (cmd) { 3583 case SIOCSIFFLAGS: /* Set interface flags */ 3584 return dev_change_flags(dev, ifr->ifr_flags); 3585 3586 case SIOCSIFMETRIC: /* Set the metric on the interface 3587 (currently unused) */ 3588 return -EOPNOTSUPP; 3589 3590 case SIOCSIFMTU: /* Set the MTU of a device */ 3591 return dev_set_mtu(dev, ifr->ifr_mtu); 3592 3593 case SIOCSIFHWADDR: 3594 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3595 3596 case SIOCSIFHWBROADCAST: 3597 if (ifr->ifr_hwaddr.sa_family != dev->type) 3598 return -EINVAL; 3599 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3600 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3601 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3602 return 0; 3603 3604 case SIOCSIFMAP: 3605 if (dev->set_config) { 3606 if (!netif_device_present(dev)) 3607 return -ENODEV; 3608 return dev->set_config(dev, &ifr->ifr_map); 3609 } 3610 return -EOPNOTSUPP; 3611 3612 case SIOCADDMULTI: 3613 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3614 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3615 return -EINVAL; 3616 if (!netif_device_present(dev)) 3617 return -ENODEV; 3618 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3619 dev->addr_len, 1); 3620 3621 case SIOCDELMULTI: 3622 if ((!dev->set_multicast_list && !dev->set_rx_mode) || 3623 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3624 return -EINVAL; 3625 if (!netif_device_present(dev)) 3626 return -ENODEV; 3627 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3628 dev->addr_len, 1); 3629 3630 case SIOCSIFTXQLEN: 3631 if (ifr->ifr_qlen < 0) 3632 return -EINVAL; 3633 dev->tx_queue_len = ifr->ifr_qlen; 3634 return 0; 3635 3636 case SIOCSIFNAME: 3637 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3638 return dev_change_name(dev, ifr->ifr_newname); 3639 3640 /* 3641 * Unknown or private ioctl 3642 */ 3643 3644 default: 3645 if ((cmd >= SIOCDEVPRIVATE && 3646 cmd <= SIOCDEVPRIVATE + 15) || 3647 cmd == SIOCBONDENSLAVE || 3648 cmd == SIOCBONDRELEASE || 3649 cmd == SIOCBONDSETHWADDR || 3650 cmd == SIOCBONDSLAVEINFOQUERY || 3651 cmd == SIOCBONDINFOQUERY || 3652 cmd == SIOCBONDCHANGEACTIVE || 3653 cmd == SIOCGMIIPHY || 3654 cmd == SIOCGMIIREG || 3655 cmd == SIOCSMIIREG || 3656 cmd == SIOCBRADDIF || 3657 cmd == SIOCBRDELIF || 3658 cmd == SIOCWANDEV) { 3659 err = -EOPNOTSUPP; 3660 if (dev->do_ioctl) { 3661 if (netif_device_present(dev)) 3662 err = dev->do_ioctl(dev, ifr, 3663 cmd); 3664 else 3665 err = -ENODEV; 3666 } 3667 } else 3668 err = -EINVAL; 3669 3670 } 3671 return err; 3672 } 3673 3674 /* 3675 * This function handles all "interface"-type I/O control requests. The actual 3676 * 'doing' part of this is dev_ifsioc above. 3677 */ 3678 3679 /** 3680 * dev_ioctl - network device ioctl 3681 * @net: the applicable net namespace 3682 * @cmd: command to issue 3683 * @arg: pointer to a struct ifreq in user space 3684 * 3685 * Issue ioctl functions to devices. This is normally called by the 3686 * user space syscall interfaces but can sometimes be useful for 3687 * other purposes. The return value is the return from the syscall if 3688 * positive or a negative errno code on error. 3689 */ 3690 3691 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3692 { 3693 struct ifreq ifr; 3694 int ret; 3695 char *colon; 3696 3697 /* One special case: SIOCGIFCONF takes ifconf argument 3698 and requires shared lock, because it sleeps writing 3699 to user space. 3700 */ 3701 3702 if (cmd == SIOCGIFCONF) { 3703 rtnl_lock(); 3704 ret = dev_ifconf(net, (char __user *) arg); 3705 rtnl_unlock(); 3706 return ret; 3707 } 3708 if (cmd == SIOCGIFNAME) 3709 return dev_ifname(net, (struct ifreq __user *)arg); 3710 3711 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3712 return -EFAULT; 3713 3714 ifr.ifr_name[IFNAMSIZ-1] = 0; 3715 3716 colon = strchr(ifr.ifr_name, ':'); 3717 if (colon) 3718 *colon = 0; 3719 3720 /* 3721 * See which interface the caller is talking about. 3722 */ 3723 3724 switch (cmd) { 3725 /* 3726 * These ioctl calls: 3727 * - can be done by all. 3728 * - atomic and do not require locking. 3729 * - return a value 3730 */ 3731 case SIOCGIFFLAGS: 3732 case SIOCGIFMETRIC: 3733 case SIOCGIFMTU: 3734 case SIOCGIFHWADDR: 3735 case SIOCGIFSLAVE: 3736 case SIOCGIFMAP: 3737 case SIOCGIFINDEX: 3738 case SIOCGIFTXQLEN: 3739 dev_load(net, ifr.ifr_name); 3740 read_lock(&dev_base_lock); 3741 ret = dev_ifsioc_locked(net, &ifr, cmd); 3742 read_unlock(&dev_base_lock); 3743 if (!ret) { 3744 if (colon) 3745 *colon = ':'; 3746 if (copy_to_user(arg, &ifr, 3747 sizeof(struct ifreq))) 3748 ret = -EFAULT; 3749 } 3750 return ret; 3751 3752 case SIOCETHTOOL: 3753 dev_load(net, ifr.ifr_name); 3754 rtnl_lock(); 3755 ret = dev_ethtool(net, &ifr); 3756 rtnl_unlock(); 3757 if (!ret) { 3758 if (colon) 3759 *colon = ':'; 3760 if (copy_to_user(arg, &ifr, 3761 sizeof(struct ifreq))) 3762 ret = -EFAULT; 3763 } 3764 return ret; 3765 3766 /* 3767 * These ioctl calls: 3768 * - require superuser power. 3769 * - require strict serialization. 3770 * - return a value 3771 */ 3772 case SIOCGMIIPHY: 3773 case SIOCGMIIREG: 3774 case SIOCSIFNAME: 3775 if (!capable(CAP_NET_ADMIN)) 3776 return -EPERM; 3777 dev_load(net, ifr.ifr_name); 3778 rtnl_lock(); 3779 ret = dev_ifsioc(net, &ifr, cmd); 3780 rtnl_unlock(); 3781 if (!ret) { 3782 if (colon) 3783 *colon = ':'; 3784 if (copy_to_user(arg, &ifr, 3785 sizeof(struct ifreq))) 3786 ret = -EFAULT; 3787 } 3788 return ret; 3789 3790 /* 3791 * These ioctl calls: 3792 * - require superuser power. 3793 * - require strict serialization. 3794 * - do not return a value 3795 */ 3796 case SIOCSIFFLAGS: 3797 case SIOCSIFMETRIC: 3798 case SIOCSIFMTU: 3799 case SIOCSIFMAP: 3800 case SIOCSIFHWADDR: 3801 case SIOCSIFSLAVE: 3802 case SIOCADDMULTI: 3803 case SIOCDELMULTI: 3804 case SIOCSIFHWBROADCAST: 3805 case SIOCSIFTXQLEN: 3806 case SIOCSMIIREG: 3807 case SIOCBONDENSLAVE: 3808 case SIOCBONDRELEASE: 3809 case SIOCBONDSETHWADDR: 3810 case SIOCBONDCHANGEACTIVE: 3811 case SIOCBRADDIF: 3812 case SIOCBRDELIF: 3813 if (!capable(CAP_NET_ADMIN)) 3814 return -EPERM; 3815 /* fall through */ 3816 case SIOCBONDSLAVEINFOQUERY: 3817 case SIOCBONDINFOQUERY: 3818 dev_load(net, ifr.ifr_name); 3819 rtnl_lock(); 3820 ret = dev_ifsioc(net, &ifr, cmd); 3821 rtnl_unlock(); 3822 return ret; 3823 3824 case SIOCGIFMEM: 3825 /* Get the per device memory space. We can add this but 3826 * currently do not support it */ 3827 case SIOCSIFMEM: 3828 /* Set the per device memory buffer space. 3829 * Not applicable in our case */ 3830 case SIOCSIFLINK: 3831 return -EINVAL; 3832 3833 /* 3834 * Unknown or private ioctl. 3835 */ 3836 default: 3837 if (cmd == SIOCWANDEV || 3838 (cmd >= SIOCDEVPRIVATE && 3839 cmd <= SIOCDEVPRIVATE + 15)) { 3840 dev_load(net, ifr.ifr_name); 3841 rtnl_lock(); 3842 ret = dev_ifsioc(net, &ifr, cmd); 3843 rtnl_unlock(); 3844 if (!ret && copy_to_user(arg, &ifr, 3845 sizeof(struct ifreq))) 3846 ret = -EFAULT; 3847 return ret; 3848 } 3849 /* Take care of Wireless Extensions */ 3850 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3851 return wext_handle_ioctl(net, &ifr, cmd, arg); 3852 return -EINVAL; 3853 } 3854 } 3855 3856 3857 /** 3858 * dev_new_index - allocate an ifindex 3859 * @net: the applicable net namespace 3860 * 3861 * Returns a suitable unique value for a new device interface 3862 * number. The caller must hold the rtnl semaphore or the 3863 * dev_base_lock to be sure it remains unique. 3864 */ 3865 static int dev_new_index(struct net *net) 3866 { 3867 static int ifindex; 3868 for (;;) { 3869 if (++ifindex <= 0) 3870 ifindex = 1; 3871 if (!__dev_get_by_index(net, ifindex)) 3872 return ifindex; 3873 } 3874 } 3875 3876 /* Delayed registration/unregisteration */ 3877 static LIST_HEAD(net_todo_list); 3878 3879 static void net_set_todo(struct net_device *dev) 3880 { 3881 list_add_tail(&dev->todo_list, &net_todo_list); 3882 } 3883 3884 static void rollback_registered(struct net_device *dev) 3885 { 3886 BUG_ON(dev_boot_phase); 3887 ASSERT_RTNL(); 3888 3889 /* Some devices call without registering for initialization unwind. */ 3890 if (dev->reg_state == NETREG_UNINITIALIZED) { 3891 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3892 "was registered\n", dev->name, dev); 3893 3894 WARN_ON(1); 3895 return; 3896 } 3897 3898 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3899 3900 /* If device is running, close it first. */ 3901 dev_close(dev); 3902 3903 /* And unlink it from device chain. */ 3904 unlist_netdevice(dev); 3905 3906 dev->reg_state = NETREG_UNREGISTERING; 3907 3908 synchronize_net(); 3909 3910 /* Shutdown queueing discipline. */ 3911 dev_shutdown(dev); 3912 3913 3914 /* Notify protocols, that we are about to destroy 3915 this device. They should clean all the things. 3916 */ 3917 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3918 3919 /* 3920 * Flush the unicast and multicast chains 3921 */ 3922 dev_addr_discard(dev); 3923 3924 if (dev->uninit) 3925 dev->uninit(dev); 3926 3927 /* Notifier chain MUST detach us from master device. */ 3928 WARN_ON(dev->master); 3929 3930 /* Remove entries from kobject tree */ 3931 netdev_unregister_kobject(dev); 3932 3933 synchronize_net(); 3934 3935 dev_put(dev); 3936 } 3937 3938 static void __netdev_init_queue_locks_one(struct net_device *dev, 3939 struct netdev_queue *dev_queue, 3940 void *_unused) 3941 { 3942 spin_lock_init(&dev_queue->_xmit_lock); 3943 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 3944 dev_queue->xmit_lock_owner = -1; 3945 } 3946 3947 static void netdev_init_queue_locks(struct net_device *dev) 3948 { 3949 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 3950 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 3951 } 3952 3953 unsigned long netdev_fix_features(unsigned long features, const char *name) 3954 { 3955 /* Fix illegal SG+CSUM combinations. */ 3956 if ((features & NETIF_F_SG) && 3957 !(features & NETIF_F_ALL_CSUM)) { 3958 if (name) 3959 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 3960 "checksum feature.\n", name); 3961 features &= ~NETIF_F_SG; 3962 } 3963 3964 /* TSO requires that SG is present as well. */ 3965 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 3966 if (name) 3967 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 3968 "SG feature.\n", name); 3969 features &= ~NETIF_F_TSO; 3970 } 3971 3972 if (features & NETIF_F_UFO) { 3973 if (!(features & NETIF_F_GEN_CSUM)) { 3974 if (name) 3975 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 3976 "since no NETIF_F_HW_CSUM feature.\n", 3977 name); 3978 features &= ~NETIF_F_UFO; 3979 } 3980 3981 if (!(features & NETIF_F_SG)) { 3982 if (name) 3983 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 3984 "since no NETIF_F_SG feature.\n", name); 3985 features &= ~NETIF_F_UFO; 3986 } 3987 } 3988 3989 return features; 3990 } 3991 EXPORT_SYMBOL(netdev_fix_features); 3992 3993 /** 3994 * register_netdevice - register a network device 3995 * @dev: device to register 3996 * 3997 * Take a completed network device structure and add it to the kernel 3998 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3999 * chain. 0 is returned on success. A negative errno code is returned 4000 * on a failure to set up the device, or if the name is a duplicate. 4001 * 4002 * Callers must hold the rtnl semaphore. You may want 4003 * register_netdev() instead of this. 4004 * 4005 * BUGS: 4006 * The locking appears insufficient to guarantee two parallel registers 4007 * will not get the same name. 4008 */ 4009 4010 int register_netdevice(struct net_device *dev) 4011 { 4012 struct hlist_head *head; 4013 struct hlist_node *p; 4014 int ret; 4015 struct net *net; 4016 4017 BUG_ON(dev_boot_phase); 4018 ASSERT_RTNL(); 4019 4020 might_sleep(); 4021 4022 /* When net_device's are persistent, this will be fatal. */ 4023 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4024 BUG_ON(!dev_net(dev)); 4025 net = dev_net(dev); 4026 4027 spin_lock_init(&dev->addr_list_lock); 4028 netdev_set_addr_lockdep_class(dev); 4029 netdev_init_queue_locks(dev); 4030 4031 dev->iflink = -1; 4032 4033 /* Init, if this function is available */ 4034 if (dev->init) { 4035 ret = dev->init(dev); 4036 if (ret) { 4037 if (ret > 0) 4038 ret = -EIO; 4039 goto out; 4040 } 4041 } 4042 4043 if (!dev_valid_name(dev->name)) { 4044 ret = -EINVAL; 4045 goto err_uninit; 4046 } 4047 4048 dev->ifindex = dev_new_index(net); 4049 if (dev->iflink == -1) 4050 dev->iflink = dev->ifindex; 4051 4052 /* Check for existence of name */ 4053 head = dev_name_hash(net, dev->name); 4054 hlist_for_each(p, head) { 4055 struct net_device *d 4056 = hlist_entry(p, struct net_device, name_hlist); 4057 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4058 ret = -EEXIST; 4059 goto err_uninit; 4060 } 4061 } 4062 4063 /* Fix illegal checksum combinations */ 4064 if ((dev->features & NETIF_F_HW_CSUM) && 4065 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4066 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4067 dev->name); 4068 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4069 } 4070 4071 if ((dev->features & NETIF_F_NO_CSUM) && 4072 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4073 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4074 dev->name); 4075 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4076 } 4077 4078 dev->features = netdev_fix_features(dev->features, dev->name); 4079 4080 /* Enable software GSO if SG is supported. */ 4081 if (dev->features & NETIF_F_SG) 4082 dev->features |= NETIF_F_GSO; 4083 4084 netdev_initialize_kobject(dev); 4085 ret = netdev_register_kobject(dev); 4086 if (ret) 4087 goto err_uninit; 4088 dev->reg_state = NETREG_REGISTERED; 4089 4090 /* 4091 * Default initial state at registry is that the 4092 * device is present. 4093 */ 4094 4095 set_bit(__LINK_STATE_PRESENT, &dev->state); 4096 4097 dev_init_scheduler(dev); 4098 dev_hold(dev); 4099 list_netdevice(dev); 4100 4101 /* Notify protocols, that a new device appeared. */ 4102 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4103 ret = notifier_to_errno(ret); 4104 if (ret) { 4105 rollback_registered(dev); 4106 dev->reg_state = NETREG_UNREGISTERED; 4107 } 4108 4109 out: 4110 return ret; 4111 4112 err_uninit: 4113 if (dev->uninit) 4114 dev->uninit(dev); 4115 goto out; 4116 } 4117 4118 /** 4119 * register_netdev - register a network device 4120 * @dev: device to register 4121 * 4122 * Take a completed network device structure and add it to the kernel 4123 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4124 * chain. 0 is returned on success. A negative errno code is returned 4125 * on a failure to set up the device, or if the name is a duplicate. 4126 * 4127 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4128 * and expands the device name if you passed a format string to 4129 * alloc_netdev. 4130 */ 4131 int register_netdev(struct net_device *dev) 4132 { 4133 int err; 4134 4135 rtnl_lock(); 4136 4137 /* 4138 * If the name is a format string the caller wants us to do a 4139 * name allocation. 4140 */ 4141 if (strchr(dev->name, '%')) { 4142 err = dev_alloc_name(dev, dev->name); 4143 if (err < 0) 4144 goto out; 4145 } 4146 4147 err = register_netdevice(dev); 4148 out: 4149 rtnl_unlock(); 4150 return err; 4151 } 4152 EXPORT_SYMBOL(register_netdev); 4153 4154 /* 4155 * netdev_wait_allrefs - wait until all references are gone. 4156 * 4157 * This is called when unregistering network devices. 4158 * 4159 * Any protocol or device that holds a reference should register 4160 * for netdevice notification, and cleanup and put back the 4161 * reference if they receive an UNREGISTER event. 4162 * We can get stuck here if buggy protocols don't correctly 4163 * call dev_put. 4164 */ 4165 static void netdev_wait_allrefs(struct net_device *dev) 4166 { 4167 unsigned long rebroadcast_time, warning_time; 4168 4169 rebroadcast_time = warning_time = jiffies; 4170 while (atomic_read(&dev->refcnt) != 0) { 4171 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4172 rtnl_lock(); 4173 4174 /* Rebroadcast unregister notification */ 4175 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4176 4177 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4178 &dev->state)) { 4179 /* We must not have linkwatch events 4180 * pending on unregister. If this 4181 * happens, we simply run the queue 4182 * unscheduled, resulting in a noop 4183 * for this device. 4184 */ 4185 linkwatch_run_queue(); 4186 } 4187 4188 __rtnl_unlock(); 4189 4190 rebroadcast_time = jiffies; 4191 } 4192 4193 msleep(250); 4194 4195 if (time_after(jiffies, warning_time + 10 * HZ)) { 4196 printk(KERN_EMERG "unregister_netdevice: " 4197 "waiting for %s to become free. Usage " 4198 "count = %d\n", 4199 dev->name, atomic_read(&dev->refcnt)); 4200 warning_time = jiffies; 4201 } 4202 } 4203 } 4204 4205 /* The sequence is: 4206 * 4207 * rtnl_lock(); 4208 * ... 4209 * register_netdevice(x1); 4210 * register_netdevice(x2); 4211 * ... 4212 * unregister_netdevice(y1); 4213 * unregister_netdevice(y2); 4214 * ... 4215 * rtnl_unlock(); 4216 * free_netdev(y1); 4217 * free_netdev(y2); 4218 * 4219 * We are invoked by rtnl_unlock(). 4220 * This allows us to deal with problems: 4221 * 1) We can delete sysfs objects which invoke hotplug 4222 * without deadlocking with linkwatch via keventd. 4223 * 2) Since we run with the RTNL semaphore not held, we can sleep 4224 * safely in order to wait for the netdev refcnt to drop to zero. 4225 * 4226 * We must not return until all unregister events added during 4227 * the interval the lock was held have been completed. 4228 */ 4229 void netdev_run_todo(void) 4230 { 4231 struct list_head list; 4232 4233 /* Snapshot list, allow later requests */ 4234 list_replace_init(&net_todo_list, &list); 4235 4236 __rtnl_unlock(); 4237 4238 while (!list_empty(&list)) { 4239 struct net_device *dev 4240 = list_entry(list.next, struct net_device, todo_list); 4241 list_del(&dev->todo_list); 4242 4243 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4244 printk(KERN_ERR "network todo '%s' but state %d\n", 4245 dev->name, dev->reg_state); 4246 dump_stack(); 4247 continue; 4248 } 4249 4250 dev->reg_state = NETREG_UNREGISTERED; 4251 4252 on_each_cpu(flush_backlog, dev, 1); 4253 4254 netdev_wait_allrefs(dev); 4255 4256 /* paranoia */ 4257 BUG_ON(atomic_read(&dev->refcnt)); 4258 WARN_ON(dev->ip_ptr); 4259 WARN_ON(dev->ip6_ptr); 4260 WARN_ON(dev->dn_ptr); 4261 4262 if (dev->destructor) 4263 dev->destructor(dev); 4264 4265 /* Free network device */ 4266 kobject_put(&dev->dev.kobj); 4267 } 4268 } 4269 4270 static struct net_device_stats *internal_stats(struct net_device *dev) 4271 { 4272 return &dev->stats; 4273 } 4274 4275 static void netdev_init_one_queue(struct net_device *dev, 4276 struct netdev_queue *queue, 4277 void *_unused) 4278 { 4279 queue->dev = dev; 4280 } 4281 4282 static void netdev_init_queues(struct net_device *dev) 4283 { 4284 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4285 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4286 spin_lock_init(&dev->tx_global_lock); 4287 } 4288 4289 /** 4290 * alloc_netdev_mq - allocate network device 4291 * @sizeof_priv: size of private data to allocate space for 4292 * @name: device name format string 4293 * @setup: callback to initialize device 4294 * @queue_count: the number of subqueues to allocate 4295 * 4296 * Allocates a struct net_device with private data area for driver use 4297 * and performs basic initialization. Also allocates subquue structs 4298 * for each queue on the device at the end of the netdevice. 4299 */ 4300 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4301 void (*setup)(struct net_device *), unsigned int queue_count) 4302 { 4303 struct netdev_queue *tx; 4304 struct net_device *dev; 4305 size_t alloc_size; 4306 void *p; 4307 4308 BUG_ON(strlen(name) >= sizeof(dev->name)); 4309 4310 alloc_size = sizeof(struct net_device); 4311 if (sizeof_priv) { 4312 /* ensure 32-byte alignment of private area */ 4313 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4314 alloc_size += sizeof_priv; 4315 } 4316 /* ensure 32-byte alignment of whole construct */ 4317 alloc_size += NETDEV_ALIGN_CONST; 4318 4319 p = kzalloc(alloc_size, GFP_KERNEL); 4320 if (!p) { 4321 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4322 return NULL; 4323 } 4324 4325 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4326 if (!tx) { 4327 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4328 "tx qdiscs.\n"); 4329 kfree(p); 4330 return NULL; 4331 } 4332 4333 dev = (struct net_device *) 4334 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4335 dev->padded = (char *)dev - (char *)p; 4336 dev_net_set(dev, &init_net); 4337 4338 dev->_tx = tx; 4339 dev->num_tx_queues = queue_count; 4340 dev->real_num_tx_queues = queue_count; 4341 4342 if (sizeof_priv) { 4343 dev->priv = ((char *)dev + 4344 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST) 4345 & ~NETDEV_ALIGN_CONST)); 4346 } 4347 4348 dev->gso_max_size = GSO_MAX_SIZE; 4349 4350 netdev_init_queues(dev); 4351 4352 dev->get_stats = internal_stats; 4353 netpoll_netdev_init(dev); 4354 setup(dev); 4355 strcpy(dev->name, name); 4356 return dev; 4357 } 4358 EXPORT_SYMBOL(alloc_netdev_mq); 4359 4360 /** 4361 * free_netdev - free network device 4362 * @dev: device 4363 * 4364 * This function does the last stage of destroying an allocated device 4365 * interface. The reference to the device object is released. 4366 * If this is the last reference then it will be freed. 4367 */ 4368 void free_netdev(struct net_device *dev) 4369 { 4370 release_net(dev_net(dev)); 4371 4372 kfree(dev->_tx); 4373 4374 /* Compatibility with error handling in drivers */ 4375 if (dev->reg_state == NETREG_UNINITIALIZED) { 4376 kfree((char *)dev - dev->padded); 4377 return; 4378 } 4379 4380 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4381 dev->reg_state = NETREG_RELEASED; 4382 4383 /* will free via device release */ 4384 put_device(&dev->dev); 4385 } 4386 4387 /** 4388 * synchronize_net - Synchronize with packet receive processing 4389 * 4390 * Wait for packets currently being received to be done. 4391 * Does not block later packets from starting. 4392 */ 4393 void synchronize_net(void) 4394 { 4395 might_sleep(); 4396 synchronize_rcu(); 4397 } 4398 4399 /** 4400 * unregister_netdevice - remove device from the kernel 4401 * @dev: device 4402 * 4403 * This function shuts down a device interface and removes it 4404 * from the kernel tables. 4405 * 4406 * Callers must hold the rtnl semaphore. You may want 4407 * unregister_netdev() instead of this. 4408 */ 4409 4410 void unregister_netdevice(struct net_device *dev) 4411 { 4412 ASSERT_RTNL(); 4413 4414 rollback_registered(dev); 4415 /* Finish processing unregister after unlock */ 4416 net_set_todo(dev); 4417 } 4418 4419 /** 4420 * unregister_netdev - remove device from the kernel 4421 * @dev: device 4422 * 4423 * This function shuts down a device interface and removes it 4424 * from the kernel tables. 4425 * 4426 * This is just a wrapper for unregister_netdevice that takes 4427 * the rtnl semaphore. In general you want to use this and not 4428 * unregister_netdevice. 4429 */ 4430 void unregister_netdev(struct net_device *dev) 4431 { 4432 rtnl_lock(); 4433 unregister_netdevice(dev); 4434 rtnl_unlock(); 4435 } 4436 4437 EXPORT_SYMBOL(unregister_netdev); 4438 4439 /** 4440 * dev_change_net_namespace - move device to different nethost namespace 4441 * @dev: device 4442 * @net: network namespace 4443 * @pat: If not NULL name pattern to try if the current device name 4444 * is already taken in the destination network namespace. 4445 * 4446 * This function shuts down a device interface and moves it 4447 * to a new network namespace. On success 0 is returned, on 4448 * a failure a netagive errno code is returned. 4449 * 4450 * Callers must hold the rtnl semaphore. 4451 */ 4452 4453 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4454 { 4455 char buf[IFNAMSIZ]; 4456 const char *destname; 4457 int err; 4458 4459 ASSERT_RTNL(); 4460 4461 /* Don't allow namespace local devices to be moved. */ 4462 err = -EINVAL; 4463 if (dev->features & NETIF_F_NETNS_LOCAL) 4464 goto out; 4465 4466 /* Ensure the device has been registrered */ 4467 err = -EINVAL; 4468 if (dev->reg_state != NETREG_REGISTERED) 4469 goto out; 4470 4471 /* Get out if there is nothing todo */ 4472 err = 0; 4473 if (net_eq(dev_net(dev), net)) 4474 goto out; 4475 4476 /* Pick the destination device name, and ensure 4477 * we can use it in the destination network namespace. 4478 */ 4479 err = -EEXIST; 4480 destname = dev->name; 4481 if (__dev_get_by_name(net, destname)) { 4482 /* We get here if we can't use the current device name */ 4483 if (!pat) 4484 goto out; 4485 if (!dev_valid_name(pat)) 4486 goto out; 4487 if (strchr(pat, '%')) { 4488 if (__dev_alloc_name(net, pat, buf) < 0) 4489 goto out; 4490 destname = buf; 4491 } else 4492 destname = pat; 4493 if (__dev_get_by_name(net, destname)) 4494 goto out; 4495 } 4496 4497 /* 4498 * And now a mini version of register_netdevice unregister_netdevice. 4499 */ 4500 4501 /* If device is running close it first. */ 4502 dev_close(dev); 4503 4504 /* And unlink it from device chain */ 4505 err = -ENODEV; 4506 unlist_netdevice(dev); 4507 4508 synchronize_net(); 4509 4510 /* Shutdown queueing discipline. */ 4511 dev_shutdown(dev); 4512 4513 /* Notify protocols, that we are about to destroy 4514 this device. They should clean all the things. 4515 */ 4516 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4517 4518 /* 4519 * Flush the unicast and multicast chains 4520 */ 4521 dev_addr_discard(dev); 4522 4523 /* Actually switch the network namespace */ 4524 dev_net_set(dev, net); 4525 4526 /* Assign the new device name */ 4527 if (destname != dev->name) 4528 strcpy(dev->name, destname); 4529 4530 /* If there is an ifindex conflict assign a new one */ 4531 if (__dev_get_by_index(net, dev->ifindex)) { 4532 int iflink = (dev->iflink == dev->ifindex); 4533 dev->ifindex = dev_new_index(net); 4534 if (iflink) 4535 dev->iflink = dev->ifindex; 4536 } 4537 4538 /* Fixup kobjects */ 4539 netdev_unregister_kobject(dev); 4540 err = netdev_register_kobject(dev); 4541 WARN_ON(err); 4542 4543 /* Add the device back in the hashes */ 4544 list_netdevice(dev); 4545 4546 /* Notify protocols, that a new device appeared. */ 4547 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4548 4549 synchronize_net(); 4550 err = 0; 4551 out: 4552 return err; 4553 } 4554 4555 static int dev_cpu_callback(struct notifier_block *nfb, 4556 unsigned long action, 4557 void *ocpu) 4558 { 4559 struct sk_buff **list_skb; 4560 struct Qdisc **list_net; 4561 struct sk_buff *skb; 4562 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4563 struct softnet_data *sd, *oldsd; 4564 4565 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4566 return NOTIFY_OK; 4567 4568 local_irq_disable(); 4569 cpu = smp_processor_id(); 4570 sd = &per_cpu(softnet_data, cpu); 4571 oldsd = &per_cpu(softnet_data, oldcpu); 4572 4573 /* Find end of our completion_queue. */ 4574 list_skb = &sd->completion_queue; 4575 while (*list_skb) 4576 list_skb = &(*list_skb)->next; 4577 /* Append completion queue from offline CPU. */ 4578 *list_skb = oldsd->completion_queue; 4579 oldsd->completion_queue = NULL; 4580 4581 /* Find end of our output_queue. */ 4582 list_net = &sd->output_queue; 4583 while (*list_net) 4584 list_net = &(*list_net)->next_sched; 4585 /* Append output queue from offline CPU. */ 4586 *list_net = oldsd->output_queue; 4587 oldsd->output_queue = NULL; 4588 4589 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4590 local_irq_enable(); 4591 4592 /* Process offline CPU's input_pkt_queue */ 4593 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4594 netif_rx(skb); 4595 4596 return NOTIFY_OK; 4597 } 4598 4599 #ifdef CONFIG_NET_DMA 4600 /** 4601 * net_dma_rebalance - try to maintain one DMA channel per CPU 4602 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4603 * 4604 * This is called when the number of channels allocated to the net_dma client 4605 * changes. The net_dma client tries to have one DMA channel per CPU. 4606 */ 4607 4608 static void net_dma_rebalance(struct net_dma *net_dma) 4609 { 4610 unsigned int cpu, i, n, chan_idx; 4611 struct dma_chan *chan; 4612 4613 if (cpus_empty(net_dma->channel_mask)) { 4614 for_each_online_cpu(cpu) 4615 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4616 return; 4617 } 4618 4619 i = 0; 4620 cpu = first_cpu(cpu_online_map); 4621 4622 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) { 4623 chan = net_dma->channels[chan_idx]; 4624 4625 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4626 + (i < (num_online_cpus() % 4627 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4628 4629 while(n) { 4630 per_cpu(softnet_data, cpu).net_dma = chan; 4631 cpu = next_cpu(cpu, cpu_online_map); 4632 n--; 4633 } 4634 i++; 4635 } 4636 } 4637 4638 /** 4639 * netdev_dma_event - event callback for the net_dma_client 4640 * @client: should always be net_dma_client 4641 * @chan: DMA channel for the event 4642 * @state: DMA state to be handled 4643 */ 4644 static enum dma_state_client 4645 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4646 enum dma_state state) 4647 { 4648 int i, found = 0, pos = -1; 4649 struct net_dma *net_dma = 4650 container_of(client, struct net_dma, client); 4651 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4652 4653 spin_lock(&net_dma->lock); 4654 switch (state) { 4655 case DMA_RESOURCE_AVAILABLE: 4656 for (i = 0; i < nr_cpu_ids; i++) 4657 if (net_dma->channels[i] == chan) { 4658 found = 1; 4659 break; 4660 } else if (net_dma->channels[i] == NULL && pos < 0) 4661 pos = i; 4662 4663 if (!found && pos >= 0) { 4664 ack = DMA_ACK; 4665 net_dma->channels[pos] = chan; 4666 cpu_set(pos, net_dma->channel_mask); 4667 net_dma_rebalance(net_dma); 4668 } 4669 break; 4670 case DMA_RESOURCE_REMOVED: 4671 for (i = 0; i < nr_cpu_ids; i++) 4672 if (net_dma->channels[i] == chan) { 4673 found = 1; 4674 pos = i; 4675 break; 4676 } 4677 4678 if (found) { 4679 ack = DMA_ACK; 4680 cpu_clear(pos, net_dma->channel_mask); 4681 net_dma->channels[i] = NULL; 4682 net_dma_rebalance(net_dma); 4683 } 4684 break; 4685 default: 4686 break; 4687 } 4688 spin_unlock(&net_dma->lock); 4689 4690 return ack; 4691 } 4692 4693 /** 4694 * netdev_dma_register - register the networking subsystem as a DMA client 4695 */ 4696 static int __init netdev_dma_register(void) 4697 { 4698 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 4699 GFP_KERNEL); 4700 if (unlikely(!net_dma.channels)) { 4701 printk(KERN_NOTICE 4702 "netdev_dma: no memory for net_dma.channels\n"); 4703 return -ENOMEM; 4704 } 4705 spin_lock_init(&net_dma.lock); 4706 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4707 dma_async_client_register(&net_dma.client); 4708 dma_async_client_chan_request(&net_dma.client); 4709 return 0; 4710 } 4711 4712 #else 4713 static int __init netdev_dma_register(void) { return -ENODEV; } 4714 #endif /* CONFIG_NET_DMA */ 4715 4716 /** 4717 * netdev_increment_features - increment feature set by one 4718 * @all: current feature set 4719 * @one: new feature set 4720 * @mask: mask feature set 4721 * 4722 * Computes a new feature set after adding a device with feature set 4723 * @one to the master device with current feature set @all. Will not 4724 * enable anything that is off in @mask. Returns the new feature set. 4725 */ 4726 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 4727 unsigned long mask) 4728 { 4729 /* If device needs checksumming, downgrade to it. */ 4730 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4731 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 4732 else if (mask & NETIF_F_ALL_CSUM) { 4733 /* If one device supports v4/v6 checksumming, set for all. */ 4734 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 4735 !(all & NETIF_F_GEN_CSUM)) { 4736 all &= ~NETIF_F_ALL_CSUM; 4737 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 4738 } 4739 4740 /* If one device supports hw checksumming, set for all. */ 4741 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 4742 all &= ~NETIF_F_ALL_CSUM; 4743 all |= NETIF_F_HW_CSUM; 4744 } 4745 } 4746 4747 one |= NETIF_F_ALL_CSUM; 4748 4749 one |= all & NETIF_F_ONE_FOR_ALL; 4750 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 4751 all |= one & mask & NETIF_F_ONE_FOR_ALL; 4752 4753 return all; 4754 } 4755 EXPORT_SYMBOL(netdev_increment_features); 4756 4757 static struct hlist_head *netdev_create_hash(void) 4758 { 4759 int i; 4760 struct hlist_head *hash; 4761 4762 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4763 if (hash != NULL) 4764 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4765 INIT_HLIST_HEAD(&hash[i]); 4766 4767 return hash; 4768 } 4769 4770 /* Initialize per network namespace state */ 4771 static int __net_init netdev_init(struct net *net) 4772 { 4773 INIT_LIST_HEAD(&net->dev_base_head); 4774 4775 net->dev_name_head = netdev_create_hash(); 4776 if (net->dev_name_head == NULL) 4777 goto err_name; 4778 4779 net->dev_index_head = netdev_create_hash(); 4780 if (net->dev_index_head == NULL) 4781 goto err_idx; 4782 4783 return 0; 4784 4785 err_idx: 4786 kfree(net->dev_name_head); 4787 err_name: 4788 return -ENOMEM; 4789 } 4790 4791 /** 4792 * netdev_drivername - network driver for the device 4793 * @dev: network device 4794 * @buffer: buffer for resulting name 4795 * @len: size of buffer 4796 * 4797 * Determine network driver for device. 4798 */ 4799 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 4800 { 4801 const struct device_driver *driver; 4802 const struct device *parent; 4803 4804 if (len <= 0 || !buffer) 4805 return buffer; 4806 buffer[0] = 0; 4807 4808 parent = dev->dev.parent; 4809 4810 if (!parent) 4811 return buffer; 4812 4813 driver = parent->driver; 4814 if (driver && driver->name) 4815 strlcpy(buffer, driver->name, len); 4816 return buffer; 4817 } 4818 4819 static void __net_exit netdev_exit(struct net *net) 4820 { 4821 kfree(net->dev_name_head); 4822 kfree(net->dev_index_head); 4823 } 4824 4825 static struct pernet_operations __net_initdata netdev_net_ops = { 4826 .init = netdev_init, 4827 .exit = netdev_exit, 4828 }; 4829 4830 static void __net_exit default_device_exit(struct net *net) 4831 { 4832 struct net_device *dev, *next; 4833 /* 4834 * Push all migratable of the network devices back to the 4835 * initial network namespace 4836 */ 4837 rtnl_lock(); 4838 for_each_netdev_safe(net, dev, next) { 4839 int err; 4840 char fb_name[IFNAMSIZ]; 4841 4842 /* Ignore unmoveable devices (i.e. loopback) */ 4843 if (dev->features & NETIF_F_NETNS_LOCAL) 4844 continue; 4845 4846 /* Push remaing network devices to init_net */ 4847 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 4848 err = dev_change_net_namespace(dev, &init_net, fb_name); 4849 if (err) { 4850 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 4851 __func__, dev->name, err); 4852 BUG(); 4853 } 4854 } 4855 rtnl_unlock(); 4856 } 4857 4858 static struct pernet_operations __net_initdata default_device_ops = { 4859 .exit = default_device_exit, 4860 }; 4861 4862 /* 4863 * Initialize the DEV module. At boot time this walks the device list and 4864 * unhooks any devices that fail to initialise (normally hardware not 4865 * present) and leaves us with a valid list of present and active devices. 4866 * 4867 */ 4868 4869 /* 4870 * This is called single threaded during boot, so no need 4871 * to take the rtnl semaphore. 4872 */ 4873 static int __init net_dev_init(void) 4874 { 4875 int i, rc = -ENOMEM; 4876 4877 BUG_ON(!dev_boot_phase); 4878 4879 if (dev_proc_init()) 4880 goto out; 4881 4882 if (netdev_kobject_init()) 4883 goto out; 4884 4885 INIT_LIST_HEAD(&ptype_all); 4886 for (i = 0; i < PTYPE_HASH_SIZE; i++) 4887 INIT_LIST_HEAD(&ptype_base[i]); 4888 4889 if (register_pernet_subsys(&netdev_net_ops)) 4890 goto out; 4891 4892 if (register_pernet_device(&default_device_ops)) 4893 goto out; 4894 4895 /* 4896 * Initialise the packet receive queues. 4897 */ 4898 4899 for_each_possible_cpu(i) { 4900 struct softnet_data *queue; 4901 4902 queue = &per_cpu(softnet_data, i); 4903 skb_queue_head_init(&queue->input_pkt_queue); 4904 queue->completion_queue = NULL; 4905 INIT_LIST_HEAD(&queue->poll_list); 4906 4907 queue->backlog.poll = process_backlog; 4908 queue->backlog.weight = weight_p; 4909 } 4910 4911 netdev_dma_register(); 4912 4913 dev_boot_phase = 0; 4914 4915 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 4916 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 4917 4918 hotcpu_notifier(dev_cpu_callback, 0); 4919 dst_init(); 4920 dev_mcast_init(); 4921 rc = 0; 4922 out: 4923 return rc; 4924 } 4925 4926 subsys_initcall(net_dev_init); 4927 4928 EXPORT_SYMBOL(__dev_get_by_index); 4929 EXPORT_SYMBOL(__dev_get_by_name); 4930 EXPORT_SYMBOL(__dev_remove_pack); 4931 EXPORT_SYMBOL(dev_valid_name); 4932 EXPORT_SYMBOL(dev_add_pack); 4933 EXPORT_SYMBOL(dev_alloc_name); 4934 EXPORT_SYMBOL(dev_close); 4935 EXPORT_SYMBOL(dev_get_by_flags); 4936 EXPORT_SYMBOL(dev_get_by_index); 4937 EXPORT_SYMBOL(dev_get_by_name); 4938 EXPORT_SYMBOL(dev_open); 4939 EXPORT_SYMBOL(dev_queue_xmit); 4940 EXPORT_SYMBOL(dev_remove_pack); 4941 EXPORT_SYMBOL(dev_set_allmulti); 4942 EXPORT_SYMBOL(dev_set_promiscuity); 4943 EXPORT_SYMBOL(dev_change_flags); 4944 EXPORT_SYMBOL(dev_set_mtu); 4945 EXPORT_SYMBOL(dev_set_mac_address); 4946 EXPORT_SYMBOL(free_netdev); 4947 EXPORT_SYMBOL(netdev_boot_setup_check); 4948 EXPORT_SYMBOL(netdev_set_master); 4949 EXPORT_SYMBOL(netdev_state_change); 4950 EXPORT_SYMBOL(netif_receive_skb); 4951 EXPORT_SYMBOL(netif_rx); 4952 EXPORT_SYMBOL(register_gifconf); 4953 EXPORT_SYMBOL(register_netdevice); 4954 EXPORT_SYMBOL(register_netdevice_notifier); 4955 EXPORT_SYMBOL(skb_checksum_help); 4956 EXPORT_SYMBOL(synchronize_net); 4957 EXPORT_SYMBOL(unregister_netdevice); 4958 EXPORT_SYMBOL(unregister_netdevice_notifier); 4959 EXPORT_SYMBOL(net_enable_timestamp); 4960 EXPORT_SYMBOL(net_disable_timestamp); 4961 EXPORT_SYMBOL(dev_get_flags); 4962 4963 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4964 EXPORT_SYMBOL(br_handle_frame_hook); 4965 EXPORT_SYMBOL(br_fdb_get_hook); 4966 EXPORT_SYMBOL(br_fdb_put_hook); 4967 #endif 4968 4969 EXPORT_SYMBOL(dev_load); 4970 4971 EXPORT_PER_CPU_SYMBOL(softnet_data); 4972