1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 /* 145 * The list of packet types we will receive (as opposed to discard) 146 * and the routines to invoke. 147 * 148 * Why 16. Because with 16 the only overlap we get on a hash of the 149 * low nibble of the protocol value is RARP/SNAP/X.25. 150 * 151 * NOTE: That is no longer true with the addition of VLAN tags. Not 152 * sure which should go first, but I bet it won't make much 153 * difference if we are running VLANs. The good news is that 154 * this protocol won't be in the list unless compiled in, so 155 * the average user (w/out VLANs) will not be adversely affected. 156 * --BLG 157 * 158 * 0800 IP 159 * 8100 802.1Q VLAN 160 * 0001 802.3 161 * 0002 AX.25 162 * 0004 802.2 163 * 8035 RARP 164 * 0005 SNAP 165 * 0805 X.25 166 * 0806 ARP 167 * 8137 IPX 168 * 0009 Localtalk 169 * 86DD IPv6 170 */ 171 172 #define PTYPE_HASH_SIZE (16) 173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 174 175 static DEFINE_SPINLOCK(ptype_lock); 176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 177 static struct list_head ptype_all __read_mostly; /* Taps */ 178 179 /* 180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 181 * semaphore. 182 * 183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 184 * 185 * Writers must hold the rtnl semaphore while they loop through the 186 * dev_base_head list, and hold dev_base_lock for writing when they do the 187 * actual updates. This allows pure readers to access the list even 188 * while a writer is preparing to update it. 189 * 190 * To put it another way, dev_base_lock is held for writing only to 191 * protect against pure readers; the rtnl semaphore provides the 192 * protection against other writers. 193 * 194 * See, for example usages, register_netdevice() and 195 * unregister_netdevice(), which must be called with the rtnl 196 * semaphore held. 197 */ 198 DEFINE_RWLOCK(dev_base_lock); 199 EXPORT_SYMBOL(dev_base_lock); 200 201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 202 { 203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 205 } 206 207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 208 { 209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 210 } 211 212 static inline void rps_lock(struct softnet_data *sd) 213 { 214 #ifdef CONFIG_RPS 215 spin_lock(&sd->input_pkt_queue.lock); 216 #endif 217 } 218 219 static inline void rps_unlock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_unlock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 /* Device list insertion */ 227 static int list_netdevice(struct net_device *dev) 228 { 229 struct net *net = dev_net(dev); 230 231 ASSERT_RTNL(); 232 233 write_lock_bh(&dev_base_lock); 234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 236 hlist_add_head_rcu(&dev->index_hlist, 237 dev_index_hash(net, dev->ifindex)); 238 write_unlock_bh(&dev_base_lock); 239 return 0; 240 } 241 242 /* Device list removal 243 * caller must respect a RCU grace period before freeing/reusing dev 244 */ 245 static void unlist_netdevice(struct net_device *dev) 246 { 247 ASSERT_RTNL(); 248 249 /* Unlink dev from the device chain */ 250 write_lock_bh(&dev_base_lock); 251 list_del_rcu(&dev->dev_list); 252 hlist_del_rcu(&dev->name_hlist); 253 hlist_del_rcu(&dev->index_hlist); 254 write_unlock_bh(&dev_base_lock); 255 } 256 257 /* 258 * Our notifier list 259 */ 260 261 static RAW_NOTIFIER_HEAD(netdev_chain); 262 263 /* 264 * Device drivers call our routines to queue packets here. We empty the 265 * queue in the local softnet handler. 266 */ 267 268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 269 EXPORT_PER_CPU_SYMBOL(softnet_data); 270 271 #ifdef CONFIG_LOCKDEP 272 /* 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 274 * according to dev->type 275 */ 276 static const unsigned short netdev_lock_type[] = 277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 292 ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 310 "_xmit_VOID", "_xmit_NONE"}; 311 312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 315 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 316 { 317 int i; 318 319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 320 if (netdev_lock_type[i] == dev_type) 321 return i; 322 /* the last key is used by default */ 323 return ARRAY_SIZE(netdev_lock_type) - 1; 324 } 325 326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 327 unsigned short dev_type) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev_type); 332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 333 netdev_lock_name[i]); 334 } 335 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 int i; 339 340 i = netdev_lock_pos(dev->type); 341 lockdep_set_class_and_name(&dev->addr_list_lock, 342 &netdev_addr_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 #else 346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 347 unsigned short dev_type) 348 { 349 } 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 } 353 #endif 354 355 /******************************************************************************* 356 357 Protocol management and registration routines 358 359 *******************************************************************************/ 360 361 /* 362 * Add a protocol ID to the list. Now that the input handler is 363 * smarter we can dispense with all the messy stuff that used to be 364 * here. 365 * 366 * BEWARE!!! Protocol handlers, mangling input packets, 367 * MUST BE last in hash buckets and checking protocol handlers 368 * MUST start from promiscuous ptype_all chain in net_bh. 369 * It is true now, do not change it. 370 * Explanation follows: if protocol handler, mangling packet, will 371 * be the first on list, it is not able to sense, that packet 372 * is cloned and should be copied-on-write, so that it will 373 * change it and subsequent readers will get broken packet. 374 * --ANK (980803) 375 */ 376 377 static inline struct list_head *ptype_head(const struct packet_type *pt) 378 { 379 if (pt->type == htons(ETH_P_ALL)) 380 return &ptype_all; 381 else 382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 /****************************************************************************** 462 463 Device Boot-time Settings Routines 464 465 *******************************************************************************/ 466 467 /* Boot time configuration table */ 468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 469 470 /** 471 * netdev_boot_setup_add - add new setup entry 472 * @name: name of the device 473 * @map: configured settings for the device 474 * 475 * Adds new setup entry to the dev_boot_setup list. The function 476 * returns 0 on error and 1 on success. This is a generic routine to 477 * all netdevices. 478 */ 479 static int netdev_boot_setup_add(char *name, struct ifmap *map) 480 { 481 struct netdev_boot_setup *s; 482 int i; 483 484 s = dev_boot_setup; 485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 487 memset(s[i].name, 0, sizeof(s[i].name)); 488 strlcpy(s[i].name, name, IFNAMSIZ); 489 memcpy(&s[i].map, map, sizeof(s[i].map)); 490 break; 491 } 492 } 493 494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 495 } 496 497 /** 498 * netdev_boot_setup_check - check boot time settings 499 * @dev: the netdevice 500 * 501 * Check boot time settings for the device. 502 * The found settings are set for the device to be used 503 * later in the device probing. 504 * Returns 0 if no settings found, 1 if they are. 505 */ 506 int netdev_boot_setup_check(struct net_device *dev) 507 { 508 struct netdev_boot_setup *s = dev_boot_setup; 509 int i; 510 511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 513 !strcmp(dev->name, s[i].name)) { 514 dev->irq = s[i].map.irq; 515 dev->base_addr = s[i].map.base_addr; 516 dev->mem_start = s[i].map.mem_start; 517 dev->mem_end = s[i].map.mem_end; 518 return 1; 519 } 520 } 521 return 0; 522 } 523 EXPORT_SYMBOL(netdev_boot_setup_check); 524 525 526 /** 527 * netdev_boot_base - get address from boot time settings 528 * @prefix: prefix for network device 529 * @unit: id for network device 530 * 531 * Check boot time settings for the base address of device. 532 * The found settings are set for the device to be used 533 * later in the device probing. 534 * Returns 0 if no settings found. 535 */ 536 unsigned long netdev_boot_base(const char *prefix, int unit) 537 { 538 const struct netdev_boot_setup *s = dev_boot_setup; 539 char name[IFNAMSIZ]; 540 int i; 541 542 sprintf(name, "%s%d", prefix, unit); 543 544 /* 545 * If device already registered then return base of 1 546 * to indicate not to probe for this interface 547 */ 548 if (__dev_get_by_name(&init_net, name)) 549 return 1; 550 551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 552 if (!strcmp(name, s[i].name)) 553 return s[i].map.base_addr; 554 return 0; 555 } 556 557 /* 558 * Saves at boot time configured settings for any netdevice. 559 */ 560 int __init netdev_boot_setup(char *str) 561 { 562 int ints[5]; 563 struct ifmap map; 564 565 str = get_options(str, ARRAY_SIZE(ints), ints); 566 if (!str || !*str) 567 return 0; 568 569 /* Save settings */ 570 memset(&map, 0, sizeof(map)); 571 if (ints[0] > 0) 572 map.irq = ints[1]; 573 if (ints[0] > 1) 574 map.base_addr = ints[2]; 575 if (ints[0] > 2) 576 map.mem_start = ints[3]; 577 if (ints[0] > 3) 578 map.mem_end = ints[4]; 579 580 /* Add new entry to the list */ 581 return netdev_boot_setup_add(str, &map); 582 } 583 584 __setup("netdev=", netdev_boot_setup); 585 586 /******************************************************************************* 587 588 Device Interface Subroutines 589 590 *******************************************************************************/ 591 592 /** 593 * __dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. Must be called under RTNL semaphore 598 * or @dev_base_lock. If the name is found a pointer to the device 599 * is returned. If the name is not found then %NULL is returned. The 600 * reference counters are not incremented so the caller must be 601 * careful with locks. 602 */ 603 604 struct net_device *__dev_get_by_name(struct net *net, const char *name) 605 { 606 struct hlist_node *p; 607 struct net_device *dev; 608 struct hlist_head *head = dev_name_hash(net, name); 609 610 hlist_for_each_entry(dev, p, head, name_hlist) 611 if (!strncmp(dev->name, name, IFNAMSIZ)) 612 return dev; 613 614 return NULL; 615 } 616 EXPORT_SYMBOL(__dev_get_by_name); 617 618 /** 619 * dev_get_by_name_rcu - find a device by its name 620 * @net: the applicable net namespace 621 * @name: name to find 622 * 623 * Find an interface by name. 624 * If the name is found a pointer to the device is returned. 625 * If the name is not found then %NULL is returned. 626 * The reference counters are not incremented so the caller must be 627 * careful with locks. The caller must hold RCU lock. 628 */ 629 630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 631 { 632 struct hlist_node *p; 633 struct net_device *dev; 634 struct hlist_head *head = dev_name_hash(net, name); 635 636 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 637 if (!strncmp(dev->name, name, IFNAMSIZ)) 638 return dev; 639 640 return NULL; 641 } 642 EXPORT_SYMBOL(dev_get_by_name_rcu); 643 644 /** 645 * dev_get_by_name - find a device by its name 646 * @net: the applicable net namespace 647 * @name: name to find 648 * 649 * Find an interface by name. This can be called from any 650 * context and does its own locking. The returned handle has 651 * the usage count incremented and the caller must use dev_put() to 652 * release it when it is no longer needed. %NULL is returned if no 653 * matching device is found. 654 */ 655 656 struct net_device *dev_get_by_name(struct net *net, const char *name) 657 { 658 struct net_device *dev; 659 660 rcu_read_lock(); 661 dev = dev_get_by_name_rcu(net, name); 662 if (dev) 663 dev_hold(dev); 664 rcu_read_unlock(); 665 return dev; 666 } 667 EXPORT_SYMBOL(dev_get_by_name); 668 669 /** 670 * __dev_get_by_index - find a device by its ifindex 671 * @net: the applicable net namespace 672 * @ifindex: index of device 673 * 674 * Search for an interface by index. Returns %NULL if the device 675 * is not found or a pointer to the device. The device has not 676 * had its reference counter increased so the caller must be careful 677 * about locking. The caller must hold either the RTNL semaphore 678 * or @dev_base_lock. 679 */ 680 681 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 682 { 683 struct hlist_node *p; 684 struct net_device *dev; 685 struct hlist_head *head = dev_index_hash(net, ifindex); 686 687 hlist_for_each_entry(dev, p, head, index_hlist) 688 if (dev->ifindex == ifindex) 689 return dev; 690 691 return NULL; 692 } 693 EXPORT_SYMBOL(__dev_get_by_index); 694 695 /** 696 * dev_get_by_index_rcu - find a device by its ifindex 697 * @net: the applicable net namespace 698 * @ifindex: index of device 699 * 700 * Search for an interface by index. Returns %NULL if the device 701 * is not found or a pointer to the device. The device has not 702 * had its reference counter increased so the caller must be careful 703 * about locking. The caller must hold RCU lock. 704 */ 705 706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 707 { 708 struct hlist_node *p; 709 struct net_device *dev; 710 struct hlist_head *head = dev_index_hash(net, ifindex); 711 712 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 713 if (dev->ifindex == ifindex) 714 return dev; 715 716 return NULL; 717 } 718 EXPORT_SYMBOL(dev_get_by_index_rcu); 719 720 721 /** 722 * dev_get_by_index - find a device by its ifindex 723 * @net: the applicable net namespace 724 * @ifindex: index of device 725 * 726 * Search for an interface by index. Returns NULL if the device 727 * is not found or a pointer to the device. The device returned has 728 * had a reference added and the pointer is safe until the user calls 729 * dev_put to indicate they have finished with it. 730 */ 731 732 struct net_device *dev_get_by_index(struct net *net, int ifindex) 733 { 734 struct net_device *dev; 735 736 rcu_read_lock(); 737 dev = dev_get_by_index_rcu(net, ifindex); 738 if (dev) 739 dev_hold(dev); 740 rcu_read_unlock(); 741 return dev; 742 } 743 EXPORT_SYMBOL(dev_get_by_index); 744 745 /** 746 * dev_getbyhwaddr_rcu - find a device by its hardware address 747 * @net: the applicable net namespace 748 * @type: media type of device 749 * @ha: hardware address 750 * 751 * Search for an interface by MAC address. Returns NULL if the device 752 * is not found or a pointer to the device. The caller must hold RCU 753 * The returned device has not had its ref count increased 754 * and the caller must therefore be careful about locking 755 * 756 */ 757 758 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 759 const char *ha) 760 { 761 struct net_device *dev; 762 763 for_each_netdev_rcu(net, dev) 764 if (dev->type == type && 765 !memcmp(dev->dev_addr, ha, dev->addr_len)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 771 772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 773 { 774 struct net_device *dev; 775 776 ASSERT_RTNL(); 777 for_each_netdev(net, dev) 778 if (dev->type == type) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 784 785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev, *ret = NULL; 788 789 rcu_read_lock(); 790 for_each_netdev_rcu(net, dev) 791 if (dev->type == type) { 792 dev_hold(dev); 793 ret = dev; 794 break; 795 } 796 rcu_read_unlock(); 797 return ret; 798 } 799 EXPORT_SYMBOL(dev_getfirstbyhwtype); 800 801 /** 802 * dev_get_by_flags_rcu - find any device with given flags 803 * @net: the applicable net namespace 804 * @if_flags: IFF_* values 805 * @mask: bitmask of bits in if_flags to check 806 * 807 * Search for any interface with the given flags. Returns NULL if a device 808 * is not found or a pointer to the device. Must be called inside 809 * rcu_read_lock(), and result refcount is unchanged. 810 */ 811 812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 813 unsigned short mask) 814 { 815 struct net_device *dev, *ret; 816 817 ret = NULL; 818 for_each_netdev_rcu(net, dev) { 819 if (((dev->flags ^ if_flags) & mask) == 0) { 820 ret = dev; 821 break; 822 } 823 } 824 return ret; 825 } 826 EXPORT_SYMBOL(dev_get_by_flags_rcu); 827 828 /** 829 * dev_valid_name - check if name is okay for network device 830 * @name: name string 831 * 832 * Network device names need to be valid file names to 833 * to allow sysfs to work. We also disallow any kind of 834 * whitespace. 835 */ 836 int dev_valid_name(const char *name) 837 { 838 if (*name == '\0') 839 return 0; 840 if (strlen(name) >= IFNAMSIZ) 841 return 0; 842 if (!strcmp(name, ".") || !strcmp(name, "..")) 843 return 0; 844 845 while (*name) { 846 if (*name == '/' || isspace(*name)) 847 return 0; 848 name++; 849 } 850 return 1; 851 } 852 EXPORT_SYMBOL(dev_valid_name); 853 854 /** 855 * __dev_alloc_name - allocate a name for a device 856 * @net: network namespace to allocate the device name in 857 * @name: name format string 858 * @buf: scratch buffer and result name string 859 * 860 * Passed a format string - eg "lt%d" it will try and find a suitable 861 * id. It scans list of devices to build up a free map, then chooses 862 * the first empty slot. The caller must hold the dev_base or rtnl lock 863 * while allocating the name and adding the device in order to avoid 864 * duplicates. 865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 866 * Returns the number of the unit assigned or a negative errno code. 867 */ 868 869 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 870 { 871 int i = 0; 872 const char *p; 873 const int max_netdevices = 8*PAGE_SIZE; 874 unsigned long *inuse; 875 struct net_device *d; 876 877 p = strnchr(name, IFNAMSIZ-1, '%'); 878 if (p) { 879 /* 880 * Verify the string as this thing may have come from 881 * the user. There must be either one "%d" and no other "%" 882 * characters. 883 */ 884 if (p[1] != 'd' || strchr(p + 2, '%')) 885 return -EINVAL; 886 887 /* Use one page as a bit array of possible slots */ 888 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 889 if (!inuse) 890 return -ENOMEM; 891 892 for_each_netdev(net, d) { 893 if (!sscanf(d->name, name, &i)) 894 continue; 895 if (i < 0 || i >= max_netdevices) 896 continue; 897 898 /* avoid cases where sscanf is not exact inverse of printf */ 899 snprintf(buf, IFNAMSIZ, name, i); 900 if (!strncmp(buf, d->name, IFNAMSIZ)) 901 set_bit(i, inuse); 902 } 903 904 i = find_first_zero_bit(inuse, max_netdevices); 905 free_page((unsigned long) inuse); 906 } 907 908 if (buf != name) 909 snprintf(buf, IFNAMSIZ, name, i); 910 if (!__dev_get_by_name(net, buf)) 911 return i; 912 913 /* It is possible to run out of possible slots 914 * when the name is long and there isn't enough space left 915 * for the digits, or if all bits are used. 916 */ 917 return -ENFILE; 918 } 919 920 /** 921 * dev_alloc_name - allocate a name for a device 922 * @dev: device 923 * @name: name format string 924 * 925 * Passed a format string - eg "lt%d" it will try and find a suitable 926 * id. It scans list of devices to build up a free map, then chooses 927 * the first empty slot. The caller must hold the dev_base or rtnl lock 928 * while allocating the name and adding the device in order to avoid 929 * duplicates. 930 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 931 * Returns the number of the unit assigned or a negative errno code. 932 */ 933 934 int dev_alloc_name(struct net_device *dev, const char *name) 935 { 936 char buf[IFNAMSIZ]; 937 struct net *net; 938 int ret; 939 940 BUG_ON(!dev_net(dev)); 941 net = dev_net(dev); 942 ret = __dev_alloc_name(net, name, buf); 943 if (ret >= 0) 944 strlcpy(dev->name, buf, IFNAMSIZ); 945 return ret; 946 } 947 EXPORT_SYMBOL(dev_alloc_name); 948 949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 950 { 951 struct net *net; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 956 if (!dev_valid_name(name)) 957 return -EINVAL; 958 959 if (fmt && strchr(name, '%')) 960 return dev_alloc_name(dev, name); 961 else if (__dev_get_by_name(net, name)) 962 return -EEXIST; 963 else if (dev->name != name) 964 strlcpy(dev->name, name, IFNAMSIZ); 965 966 return 0; 967 } 968 969 /** 970 * dev_change_name - change name of a device 971 * @dev: device 972 * @newname: name (or format string) must be at least IFNAMSIZ 973 * 974 * Change name of a device, can pass format strings "eth%d". 975 * for wildcarding. 976 */ 977 int dev_change_name(struct net_device *dev, const char *newname) 978 { 979 char oldname[IFNAMSIZ]; 980 int err = 0; 981 int ret; 982 struct net *net; 983 984 ASSERT_RTNL(); 985 BUG_ON(!dev_net(dev)); 986 987 net = dev_net(dev); 988 if (dev->flags & IFF_UP) 989 return -EBUSY; 990 991 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 992 return 0; 993 994 memcpy(oldname, dev->name, IFNAMSIZ); 995 996 err = dev_get_valid_name(dev, newname, 1); 997 if (err < 0) 998 return err; 999 1000 rollback: 1001 ret = device_rename(&dev->dev, dev->name); 1002 if (ret) { 1003 memcpy(dev->name, oldname, IFNAMSIZ); 1004 return ret; 1005 } 1006 1007 write_lock_bh(&dev_base_lock); 1008 hlist_del(&dev->name_hlist); 1009 write_unlock_bh(&dev_base_lock); 1010 1011 synchronize_rcu(); 1012 1013 write_lock_bh(&dev_base_lock); 1014 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1015 write_unlock_bh(&dev_base_lock); 1016 1017 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1018 ret = notifier_to_errno(ret); 1019 1020 if (ret) { 1021 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1022 if (err >= 0) { 1023 err = ret; 1024 memcpy(dev->name, oldname, IFNAMSIZ); 1025 goto rollback; 1026 } else { 1027 printk(KERN_ERR 1028 "%s: name change rollback failed: %d.\n", 1029 dev->name, ret); 1030 } 1031 } 1032 1033 return err; 1034 } 1035 1036 /** 1037 * dev_set_alias - change ifalias of a device 1038 * @dev: device 1039 * @alias: name up to IFALIASZ 1040 * @len: limit of bytes to copy from info 1041 * 1042 * Set ifalias for a device, 1043 */ 1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1045 { 1046 ASSERT_RTNL(); 1047 1048 if (len >= IFALIASZ) 1049 return -EINVAL; 1050 1051 if (!len) { 1052 if (dev->ifalias) { 1053 kfree(dev->ifalias); 1054 dev->ifalias = NULL; 1055 } 1056 return 0; 1057 } 1058 1059 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1060 if (!dev->ifalias) 1061 return -ENOMEM; 1062 1063 strlcpy(dev->ifalias, alias, len+1); 1064 return len; 1065 } 1066 1067 1068 /** 1069 * netdev_features_change - device changes features 1070 * @dev: device to cause notification 1071 * 1072 * Called to indicate a device has changed features. 1073 */ 1074 void netdev_features_change(struct net_device *dev) 1075 { 1076 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1077 } 1078 EXPORT_SYMBOL(netdev_features_change); 1079 1080 /** 1081 * netdev_state_change - device changes state 1082 * @dev: device to cause notification 1083 * 1084 * Called to indicate a device has changed state. This function calls 1085 * the notifier chains for netdev_chain and sends a NEWLINK message 1086 * to the routing socket. 1087 */ 1088 void netdev_state_change(struct net_device *dev) 1089 { 1090 if (dev->flags & IFF_UP) { 1091 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1092 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1093 } 1094 } 1095 EXPORT_SYMBOL(netdev_state_change); 1096 1097 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1098 { 1099 return call_netdevice_notifiers(event, dev); 1100 } 1101 EXPORT_SYMBOL(netdev_bonding_change); 1102 1103 /** 1104 * dev_load - load a network module 1105 * @net: the applicable net namespace 1106 * @name: name of interface 1107 * 1108 * If a network interface is not present and the process has suitable 1109 * privileges this function loads the module. If module loading is not 1110 * available in this kernel then it becomes a nop. 1111 */ 1112 1113 void dev_load(struct net *net, const char *name) 1114 { 1115 struct net_device *dev; 1116 1117 rcu_read_lock(); 1118 dev = dev_get_by_name_rcu(net, name); 1119 rcu_read_unlock(); 1120 1121 if (!dev && capable(CAP_NET_ADMIN)) 1122 request_module("%s", name); 1123 } 1124 EXPORT_SYMBOL(dev_load); 1125 1126 static int __dev_open(struct net_device *dev) 1127 { 1128 const struct net_device_ops *ops = dev->netdev_ops; 1129 int ret; 1130 1131 ASSERT_RTNL(); 1132 1133 /* 1134 * Is it even present? 1135 */ 1136 if (!netif_device_present(dev)) 1137 return -ENODEV; 1138 1139 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1140 ret = notifier_to_errno(ret); 1141 if (ret) 1142 return ret; 1143 1144 /* 1145 * Call device private open method 1146 */ 1147 set_bit(__LINK_STATE_START, &dev->state); 1148 1149 if (ops->ndo_validate_addr) 1150 ret = ops->ndo_validate_addr(dev); 1151 1152 if (!ret && ops->ndo_open) 1153 ret = ops->ndo_open(dev); 1154 1155 /* 1156 * If it went open OK then: 1157 */ 1158 1159 if (ret) 1160 clear_bit(__LINK_STATE_START, &dev->state); 1161 else { 1162 /* 1163 * Set the flags. 1164 */ 1165 dev->flags |= IFF_UP; 1166 1167 /* 1168 * Enable NET_DMA 1169 */ 1170 net_dmaengine_get(); 1171 1172 /* 1173 * Initialize multicasting status 1174 */ 1175 dev_set_rx_mode(dev); 1176 1177 /* 1178 * Wakeup transmit queue engine 1179 */ 1180 dev_activate(dev); 1181 } 1182 1183 return ret; 1184 } 1185 1186 /** 1187 * dev_open - prepare an interface for use. 1188 * @dev: device to open 1189 * 1190 * Takes a device from down to up state. The device's private open 1191 * function is invoked and then the multicast lists are loaded. Finally 1192 * the device is moved into the up state and a %NETDEV_UP message is 1193 * sent to the netdev notifier chain. 1194 * 1195 * Calling this function on an active interface is a nop. On a failure 1196 * a negative errno code is returned. 1197 */ 1198 int dev_open(struct net_device *dev) 1199 { 1200 int ret; 1201 1202 /* 1203 * Is it already up? 1204 */ 1205 if (dev->flags & IFF_UP) 1206 return 0; 1207 1208 /* 1209 * Open device 1210 */ 1211 ret = __dev_open(dev); 1212 if (ret < 0) 1213 return ret; 1214 1215 /* 1216 * ... and announce new interface. 1217 */ 1218 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1219 call_netdevice_notifiers(NETDEV_UP, dev); 1220 1221 return ret; 1222 } 1223 EXPORT_SYMBOL(dev_open); 1224 1225 static int __dev_close_many(struct list_head *head) 1226 { 1227 struct net_device *dev; 1228 1229 ASSERT_RTNL(); 1230 might_sleep(); 1231 1232 list_for_each_entry(dev, head, unreg_list) { 1233 /* 1234 * Tell people we are going down, so that they can 1235 * prepare to death, when device is still operating. 1236 */ 1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1238 1239 clear_bit(__LINK_STATE_START, &dev->state); 1240 1241 /* Synchronize to scheduled poll. We cannot touch poll list, it 1242 * can be even on different cpu. So just clear netif_running(). 1243 * 1244 * dev->stop() will invoke napi_disable() on all of it's 1245 * napi_struct instances on this device. 1246 */ 1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1248 } 1249 1250 dev_deactivate_many(head); 1251 1252 list_for_each_entry(dev, head, unreg_list) { 1253 const struct net_device_ops *ops = dev->netdev_ops; 1254 1255 /* 1256 * Call the device specific close. This cannot fail. 1257 * Only if device is UP 1258 * 1259 * We allow it to be called even after a DETACH hot-plug 1260 * event. 1261 */ 1262 if (ops->ndo_stop) 1263 ops->ndo_stop(dev); 1264 1265 /* 1266 * Device is now down. 1267 */ 1268 1269 dev->flags &= ~IFF_UP; 1270 1271 /* 1272 * Shutdown NET_DMA 1273 */ 1274 net_dmaengine_put(); 1275 } 1276 1277 return 0; 1278 } 1279 1280 static int __dev_close(struct net_device *dev) 1281 { 1282 LIST_HEAD(single); 1283 1284 list_add(&dev->unreg_list, &single); 1285 return __dev_close_many(&single); 1286 } 1287 1288 int dev_close_many(struct list_head *head) 1289 { 1290 struct net_device *dev, *tmp; 1291 LIST_HEAD(tmp_list); 1292 1293 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1294 if (!(dev->flags & IFF_UP)) 1295 list_move(&dev->unreg_list, &tmp_list); 1296 1297 __dev_close_many(head); 1298 1299 /* 1300 * Tell people we are down 1301 */ 1302 list_for_each_entry(dev, head, unreg_list) { 1303 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1304 call_netdevice_notifiers(NETDEV_DOWN, dev); 1305 } 1306 1307 /* rollback_registered_many needs the complete original list */ 1308 list_splice(&tmp_list, head); 1309 return 0; 1310 } 1311 1312 /** 1313 * dev_close - shutdown an interface. 1314 * @dev: device to shutdown 1315 * 1316 * This function moves an active device into down state. A 1317 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1318 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1319 * chain. 1320 */ 1321 int dev_close(struct net_device *dev) 1322 { 1323 LIST_HEAD(single); 1324 1325 list_add(&dev->unreg_list, &single); 1326 dev_close_many(&single); 1327 1328 return 0; 1329 } 1330 EXPORT_SYMBOL(dev_close); 1331 1332 1333 /** 1334 * dev_disable_lro - disable Large Receive Offload on a device 1335 * @dev: device 1336 * 1337 * Disable Large Receive Offload (LRO) on a net device. Must be 1338 * called under RTNL. This is needed if received packets may be 1339 * forwarded to another interface. 1340 */ 1341 void dev_disable_lro(struct net_device *dev) 1342 { 1343 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1344 dev->ethtool_ops->set_flags) { 1345 u32 flags = dev->ethtool_ops->get_flags(dev); 1346 if (flags & ETH_FLAG_LRO) { 1347 flags &= ~ETH_FLAG_LRO; 1348 dev->ethtool_ops->set_flags(dev, flags); 1349 } 1350 } 1351 WARN_ON(dev->features & NETIF_F_LRO); 1352 } 1353 EXPORT_SYMBOL(dev_disable_lro); 1354 1355 1356 static int dev_boot_phase = 1; 1357 1358 /* 1359 * Device change register/unregister. These are not inline or static 1360 * as we export them to the world. 1361 */ 1362 1363 /** 1364 * register_netdevice_notifier - register a network notifier block 1365 * @nb: notifier 1366 * 1367 * Register a notifier to be called when network device events occur. 1368 * The notifier passed is linked into the kernel structures and must 1369 * not be reused until it has been unregistered. A negative errno code 1370 * is returned on a failure. 1371 * 1372 * When registered all registration and up events are replayed 1373 * to the new notifier to allow device to have a race free 1374 * view of the network device list. 1375 */ 1376 1377 int register_netdevice_notifier(struct notifier_block *nb) 1378 { 1379 struct net_device *dev; 1380 struct net_device *last; 1381 struct net *net; 1382 int err; 1383 1384 rtnl_lock(); 1385 err = raw_notifier_chain_register(&netdev_chain, nb); 1386 if (err) 1387 goto unlock; 1388 if (dev_boot_phase) 1389 goto unlock; 1390 for_each_net(net) { 1391 for_each_netdev(net, dev) { 1392 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1393 err = notifier_to_errno(err); 1394 if (err) 1395 goto rollback; 1396 1397 if (!(dev->flags & IFF_UP)) 1398 continue; 1399 1400 nb->notifier_call(nb, NETDEV_UP, dev); 1401 } 1402 } 1403 1404 unlock: 1405 rtnl_unlock(); 1406 return err; 1407 1408 rollback: 1409 last = dev; 1410 for_each_net(net) { 1411 for_each_netdev(net, dev) { 1412 if (dev == last) 1413 break; 1414 1415 if (dev->flags & IFF_UP) { 1416 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1417 nb->notifier_call(nb, NETDEV_DOWN, dev); 1418 } 1419 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1420 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1421 } 1422 } 1423 1424 raw_notifier_chain_unregister(&netdev_chain, nb); 1425 goto unlock; 1426 } 1427 EXPORT_SYMBOL(register_netdevice_notifier); 1428 1429 /** 1430 * unregister_netdevice_notifier - unregister a network notifier block 1431 * @nb: notifier 1432 * 1433 * Unregister a notifier previously registered by 1434 * register_netdevice_notifier(). The notifier is unlinked into the 1435 * kernel structures and may then be reused. A negative errno code 1436 * is returned on a failure. 1437 */ 1438 1439 int unregister_netdevice_notifier(struct notifier_block *nb) 1440 { 1441 int err; 1442 1443 rtnl_lock(); 1444 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1445 rtnl_unlock(); 1446 return err; 1447 } 1448 EXPORT_SYMBOL(unregister_netdevice_notifier); 1449 1450 /** 1451 * call_netdevice_notifiers - call all network notifier blocks 1452 * @val: value passed unmodified to notifier function 1453 * @dev: net_device pointer passed unmodified to notifier function 1454 * 1455 * Call all network notifier blocks. Parameters and return value 1456 * are as for raw_notifier_call_chain(). 1457 */ 1458 1459 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1460 { 1461 ASSERT_RTNL(); 1462 return raw_notifier_call_chain(&netdev_chain, val, dev); 1463 } 1464 1465 /* When > 0 there are consumers of rx skb time stamps */ 1466 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1467 1468 void net_enable_timestamp(void) 1469 { 1470 atomic_inc(&netstamp_needed); 1471 } 1472 EXPORT_SYMBOL(net_enable_timestamp); 1473 1474 void net_disable_timestamp(void) 1475 { 1476 atomic_dec(&netstamp_needed); 1477 } 1478 EXPORT_SYMBOL(net_disable_timestamp); 1479 1480 static inline void net_timestamp_set(struct sk_buff *skb) 1481 { 1482 if (atomic_read(&netstamp_needed)) 1483 __net_timestamp(skb); 1484 else 1485 skb->tstamp.tv64 = 0; 1486 } 1487 1488 static inline void net_timestamp_check(struct sk_buff *skb) 1489 { 1490 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1491 __net_timestamp(skb); 1492 } 1493 1494 /** 1495 * dev_forward_skb - loopback an skb to another netif 1496 * 1497 * @dev: destination network device 1498 * @skb: buffer to forward 1499 * 1500 * return values: 1501 * NET_RX_SUCCESS (no congestion) 1502 * NET_RX_DROP (packet was dropped, but freed) 1503 * 1504 * dev_forward_skb can be used for injecting an skb from the 1505 * start_xmit function of one device into the receive queue 1506 * of another device. 1507 * 1508 * The receiving device may be in another namespace, so 1509 * we have to clear all information in the skb that could 1510 * impact namespace isolation. 1511 */ 1512 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1513 { 1514 skb_orphan(skb); 1515 nf_reset(skb); 1516 1517 if (unlikely(!(dev->flags & IFF_UP) || 1518 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) { 1519 atomic_long_inc(&dev->rx_dropped); 1520 kfree_skb(skb); 1521 return NET_RX_DROP; 1522 } 1523 skb_set_dev(skb, dev); 1524 skb->tstamp.tv64 = 0; 1525 skb->pkt_type = PACKET_HOST; 1526 skb->protocol = eth_type_trans(skb, dev); 1527 return netif_rx(skb); 1528 } 1529 EXPORT_SYMBOL_GPL(dev_forward_skb); 1530 1531 static inline int deliver_skb(struct sk_buff *skb, 1532 struct packet_type *pt_prev, 1533 struct net_device *orig_dev) 1534 { 1535 atomic_inc(&skb->users); 1536 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1537 } 1538 1539 /* 1540 * Support routine. Sends outgoing frames to any network 1541 * taps currently in use. 1542 */ 1543 1544 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1545 { 1546 struct packet_type *ptype; 1547 struct sk_buff *skb2 = NULL; 1548 struct packet_type *pt_prev = NULL; 1549 1550 rcu_read_lock(); 1551 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1552 /* Never send packets back to the socket 1553 * they originated from - MvS (miquels@drinkel.ow.org) 1554 */ 1555 if ((ptype->dev == dev || !ptype->dev) && 1556 (ptype->af_packet_priv == NULL || 1557 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1558 if (pt_prev) { 1559 deliver_skb(skb2, pt_prev, skb->dev); 1560 pt_prev = ptype; 1561 continue; 1562 } 1563 1564 skb2 = skb_clone(skb, GFP_ATOMIC); 1565 if (!skb2) 1566 break; 1567 1568 net_timestamp_set(skb2); 1569 1570 /* skb->nh should be correctly 1571 set by sender, so that the second statement is 1572 just protection against buggy protocols. 1573 */ 1574 skb_reset_mac_header(skb2); 1575 1576 if (skb_network_header(skb2) < skb2->data || 1577 skb2->network_header > skb2->tail) { 1578 if (net_ratelimit()) 1579 printk(KERN_CRIT "protocol %04x is " 1580 "buggy, dev %s\n", 1581 ntohs(skb2->protocol), 1582 dev->name); 1583 skb_reset_network_header(skb2); 1584 } 1585 1586 skb2->transport_header = skb2->network_header; 1587 skb2->pkt_type = PACKET_OUTGOING; 1588 pt_prev = ptype; 1589 } 1590 } 1591 if (pt_prev) 1592 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1593 rcu_read_unlock(); 1594 } 1595 1596 /* 1597 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1598 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1599 */ 1600 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1601 { 1602 int rc; 1603 1604 if (txq < 1 || txq > dev->num_tx_queues) 1605 return -EINVAL; 1606 1607 if (dev->reg_state == NETREG_REGISTERED) { 1608 ASSERT_RTNL(); 1609 1610 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1611 txq); 1612 if (rc) 1613 return rc; 1614 1615 if (txq < dev->real_num_tx_queues) 1616 qdisc_reset_all_tx_gt(dev, txq); 1617 } 1618 1619 dev->real_num_tx_queues = txq; 1620 return 0; 1621 } 1622 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1623 1624 #ifdef CONFIG_RPS 1625 /** 1626 * netif_set_real_num_rx_queues - set actual number of RX queues used 1627 * @dev: Network device 1628 * @rxq: Actual number of RX queues 1629 * 1630 * This must be called either with the rtnl_lock held or before 1631 * registration of the net device. Returns 0 on success, or a 1632 * negative error code. If called before registration, it always 1633 * succeeds. 1634 */ 1635 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1636 { 1637 int rc; 1638 1639 if (rxq < 1 || rxq > dev->num_rx_queues) 1640 return -EINVAL; 1641 1642 if (dev->reg_state == NETREG_REGISTERED) { 1643 ASSERT_RTNL(); 1644 1645 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1646 rxq); 1647 if (rc) 1648 return rc; 1649 } 1650 1651 dev->real_num_rx_queues = rxq; 1652 return 0; 1653 } 1654 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1655 #endif 1656 1657 static inline void __netif_reschedule(struct Qdisc *q) 1658 { 1659 struct softnet_data *sd; 1660 unsigned long flags; 1661 1662 local_irq_save(flags); 1663 sd = &__get_cpu_var(softnet_data); 1664 q->next_sched = NULL; 1665 *sd->output_queue_tailp = q; 1666 sd->output_queue_tailp = &q->next_sched; 1667 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1668 local_irq_restore(flags); 1669 } 1670 1671 void __netif_schedule(struct Qdisc *q) 1672 { 1673 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1674 __netif_reschedule(q); 1675 } 1676 EXPORT_SYMBOL(__netif_schedule); 1677 1678 void dev_kfree_skb_irq(struct sk_buff *skb) 1679 { 1680 if (atomic_dec_and_test(&skb->users)) { 1681 struct softnet_data *sd; 1682 unsigned long flags; 1683 1684 local_irq_save(flags); 1685 sd = &__get_cpu_var(softnet_data); 1686 skb->next = sd->completion_queue; 1687 sd->completion_queue = skb; 1688 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1689 local_irq_restore(flags); 1690 } 1691 } 1692 EXPORT_SYMBOL(dev_kfree_skb_irq); 1693 1694 void dev_kfree_skb_any(struct sk_buff *skb) 1695 { 1696 if (in_irq() || irqs_disabled()) 1697 dev_kfree_skb_irq(skb); 1698 else 1699 dev_kfree_skb(skb); 1700 } 1701 EXPORT_SYMBOL(dev_kfree_skb_any); 1702 1703 1704 /** 1705 * netif_device_detach - mark device as removed 1706 * @dev: network device 1707 * 1708 * Mark device as removed from system and therefore no longer available. 1709 */ 1710 void netif_device_detach(struct net_device *dev) 1711 { 1712 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1713 netif_running(dev)) { 1714 netif_tx_stop_all_queues(dev); 1715 } 1716 } 1717 EXPORT_SYMBOL(netif_device_detach); 1718 1719 /** 1720 * netif_device_attach - mark device as attached 1721 * @dev: network device 1722 * 1723 * Mark device as attached from system and restart if needed. 1724 */ 1725 void netif_device_attach(struct net_device *dev) 1726 { 1727 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1728 netif_running(dev)) { 1729 netif_tx_wake_all_queues(dev); 1730 __netdev_watchdog_up(dev); 1731 } 1732 } 1733 EXPORT_SYMBOL(netif_device_attach); 1734 1735 /** 1736 * skb_dev_set -- assign a new device to a buffer 1737 * @skb: buffer for the new device 1738 * @dev: network device 1739 * 1740 * If an skb is owned by a device already, we have to reset 1741 * all data private to the namespace a device belongs to 1742 * before assigning it a new device. 1743 */ 1744 #ifdef CONFIG_NET_NS 1745 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1746 { 1747 skb_dst_drop(skb); 1748 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1749 secpath_reset(skb); 1750 nf_reset(skb); 1751 skb_init_secmark(skb); 1752 skb->mark = 0; 1753 skb->priority = 0; 1754 skb->nf_trace = 0; 1755 skb->ipvs_property = 0; 1756 #ifdef CONFIG_NET_SCHED 1757 skb->tc_index = 0; 1758 #endif 1759 } 1760 skb->dev = dev; 1761 } 1762 EXPORT_SYMBOL(skb_set_dev); 1763 #endif /* CONFIG_NET_NS */ 1764 1765 /* 1766 * Invalidate hardware checksum when packet is to be mangled, and 1767 * complete checksum manually on outgoing path. 1768 */ 1769 int skb_checksum_help(struct sk_buff *skb) 1770 { 1771 __wsum csum; 1772 int ret = 0, offset; 1773 1774 if (skb->ip_summed == CHECKSUM_COMPLETE) 1775 goto out_set_summed; 1776 1777 if (unlikely(skb_shinfo(skb)->gso_size)) { 1778 /* Let GSO fix up the checksum. */ 1779 goto out_set_summed; 1780 } 1781 1782 offset = skb_checksum_start_offset(skb); 1783 BUG_ON(offset >= skb_headlen(skb)); 1784 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1785 1786 offset += skb->csum_offset; 1787 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1788 1789 if (skb_cloned(skb) && 1790 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1791 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1792 if (ret) 1793 goto out; 1794 } 1795 1796 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1797 out_set_summed: 1798 skb->ip_summed = CHECKSUM_NONE; 1799 out: 1800 return ret; 1801 } 1802 EXPORT_SYMBOL(skb_checksum_help); 1803 1804 /** 1805 * skb_gso_segment - Perform segmentation on skb. 1806 * @skb: buffer to segment 1807 * @features: features for the output path (see dev->features) 1808 * 1809 * This function segments the given skb and returns a list of segments. 1810 * 1811 * It may return NULL if the skb requires no segmentation. This is 1812 * only possible when GSO is used for verifying header integrity. 1813 */ 1814 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1815 { 1816 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1817 struct packet_type *ptype; 1818 __be16 type = skb->protocol; 1819 int vlan_depth = ETH_HLEN; 1820 int err; 1821 1822 while (type == htons(ETH_P_8021Q)) { 1823 struct vlan_hdr *vh; 1824 1825 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1826 return ERR_PTR(-EINVAL); 1827 1828 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1829 type = vh->h_vlan_encapsulated_proto; 1830 vlan_depth += VLAN_HLEN; 1831 } 1832 1833 skb_reset_mac_header(skb); 1834 skb->mac_len = skb->network_header - skb->mac_header; 1835 __skb_pull(skb, skb->mac_len); 1836 1837 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1838 struct net_device *dev = skb->dev; 1839 struct ethtool_drvinfo info = {}; 1840 1841 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1842 dev->ethtool_ops->get_drvinfo(dev, &info); 1843 1844 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1845 info.driver, dev ? dev->features : 0L, 1846 skb->sk ? skb->sk->sk_route_caps : 0L, 1847 skb->len, skb->data_len, skb->ip_summed); 1848 1849 if (skb_header_cloned(skb) && 1850 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1851 return ERR_PTR(err); 1852 } 1853 1854 rcu_read_lock(); 1855 list_for_each_entry_rcu(ptype, 1856 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1857 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1858 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1859 err = ptype->gso_send_check(skb); 1860 segs = ERR_PTR(err); 1861 if (err || skb_gso_ok(skb, features)) 1862 break; 1863 __skb_push(skb, (skb->data - 1864 skb_network_header(skb))); 1865 } 1866 segs = ptype->gso_segment(skb, features); 1867 break; 1868 } 1869 } 1870 rcu_read_unlock(); 1871 1872 __skb_push(skb, skb->data - skb_mac_header(skb)); 1873 1874 return segs; 1875 } 1876 EXPORT_SYMBOL(skb_gso_segment); 1877 1878 /* Take action when hardware reception checksum errors are detected. */ 1879 #ifdef CONFIG_BUG 1880 void netdev_rx_csum_fault(struct net_device *dev) 1881 { 1882 if (net_ratelimit()) { 1883 printk(KERN_ERR "%s: hw csum failure.\n", 1884 dev ? dev->name : "<unknown>"); 1885 dump_stack(); 1886 } 1887 } 1888 EXPORT_SYMBOL(netdev_rx_csum_fault); 1889 #endif 1890 1891 /* Actually, we should eliminate this check as soon as we know, that: 1892 * 1. IOMMU is present and allows to map all the memory. 1893 * 2. No high memory really exists on this machine. 1894 */ 1895 1896 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1897 { 1898 #ifdef CONFIG_HIGHMEM 1899 int i; 1900 if (!(dev->features & NETIF_F_HIGHDMA)) { 1901 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1902 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1903 return 1; 1904 } 1905 1906 if (PCI_DMA_BUS_IS_PHYS) { 1907 struct device *pdev = dev->dev.parent; 1908 1909 if (!pdev) 1910 return 0; 1911 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1912 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1913 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1914 return 1; 1915 } 1916 } 1917 #endif 1918 return 0; 1919 } 1920 1921 struct dev_gso_cb { 1922 void (*destructor)(struct sk_buff *skb); 1923 }; 1924 1925 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1926 1927 static void dev_gso_skb_destructor(struct sk_buff *skb) 1928 { 1929 struct dev_gso_cb *cb; 1930 1931 do { 1932 struct sk_buff *nskb = skb->next; 1933 1934 skb->next = nskb->next; 1935 nskb->next = NULL; 1936 kfree_skb(nskb); 1937 } while (skb->next); 1938 1939 cb = DEV_GSO_CB(skb); 1940 if (cb->destructor) 1941 cb->destructor(skb); 1942 } 1943 1944 /** 1945 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1946 * @skb: buffer to segment 1947 * @features: device features as applicable to this skb 1948 * 1949 * This function segments the given skb and stores the list of segments 1950 * in skb->next. 1951 */ 1952 static int dev_gso_segment(struct sk_buff *skb, int features) 1953 { 1954 struct sk_buff *segs; 1955 1956 segs = skb_gso_segment(skb, features); 1957 1958 /* Verifying header integrity only. */ 1959 if (!segs) 1960 return 0; 1961 1962 if (IS_ERR(segs)) 1963 return PTR_ERR(segs); 1964 1965 skb->next = segs; 1966 DEV_GSO_CB(skb)->destructor = skb->destructor; 1967 skb->destructor = dev_gso_skb_destructor; 1968 1969 return 0; 1970 } 1971 1972 /* 1973 * Try to orphan skb early, right before transmission by the device. 1974 * We cannot orphan skb if tx timestamp is requested or the sk-reference 1975 * is needed on driver level for other reasons, e.g. see net/can/raw.c 1976 */ 1977 static inline void skb_orphan_try(struct sk_buff *skb) 1978 { 1979 struct sock *sk = skb->sk; 1980 1981 if (sk && !skb_shinfo(skb)->tx_flags) { 1982 /* skb_tx_hash() wont be able to get sk. 1983 * We copy sk_hash into skb->rxhash 1984 */ 1985 if (!skb->rxhash) 1986 skb->rxhash = sk->sk_hash; 1987 skb_orphan(skb); 1988 } 1989 } 1990 1991 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1992 { 1993 return ((features & NETIF_F_GEN_CSUM) || 1994 ((features & NETIF_F_V4_CSUM) && 1995 protocol == htons(ETH_P_IP)) || 1996 ((features & NETIF_F_V6_CSUM) && 1997 protocol == htons(ETH_P_IPV6)) || 1998 ((features & NETIF_F_FCOE_CRC) && 1999 protocol == htons(ETH_P_FCOE))); 2000 } 2001 2002 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features) 2003 { 2004 if (!can_checksum_protocol(protocol, features)) { 2005 features &= ~NETIF_F_ALL_CSUM; 2006 features &= ~NETIF_F_SG; 2007 } else if (illegal_highdma(skb->dev, skb)) { 2008 features &= ~NETIF_F_SG; 2009 } 2010 2011 return features; 2012 } 2013 2014 int netif_skb_features(struct sk_buff *skb) 2015 { 2016 __be16 protocol = skb->protocol; 2017 int features = skb->dev->features; 2018 2019 if (protocol == htons(ETH_P_8021Q)) { 2020 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2021 protocol = veh->h_vlan_encapsulated_proto; 2022 } else if (!vlan_tx_tag_present(skb)) { 2023 return harmonize_features(skb, protocol, features); 2024 } 2025 2026 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2027 2028 if (protocol != htons(ETH_P_8021Q)) { 2029 return harmonize_features(skb, protocol, features); 2030 } else { 2031 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2032 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2033 return harmonize_features(skb, protocol, features); 2034 } 2035 } 2036 EXPORT_SYMBOL(netif_skb_features); 2037 2038 /* 2039 * Returns true if either: 2040 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2041 * 2. skb is fragmented and the device does not support SG, or if 2042 * at least one of fragments is in highmem and device does not 2043 * support DMA from it. 2044 */ 2045 static inline int skb_needs_linearize(struct sk_buff *skb, 2046 int features) 2047 { 2048 return skb_is_nonlinear(skb) && 2049 ((skb_has_frag_list(skb) && 2050 !(features & NETIF_F_FRAGLIST)) || 2051 (skb_shinfo(skb)->nr_frags && 2052 !(features & NETIF_F_SG))); 2053 } 2054 2055 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2056 struct netdev_queue *txq) 2057 { 2058 const struct net_device_ops *ops = dev->netdev_ops; 2059 int rc = NETDEV_TX_OK; 2060 2061 if (likely(!skb->next)) { 2062 int features; 2063 2064 /* 2065 * If device doesnt need skb->dst, release it right now while 2066 * its hot in this cpu cache 2067 */ 2068 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2069 skb_dst_drop(skb); 2070 2071 if (!list_empty(&ptype_all)) 2072 dev_queue_xmit_nit(skb, dev); 2073 2074 skb_orphan_try(skb); 2075 2076 features = netif_skb_features(skb); 2077 2078 if (vlan_tx_tag_present(skb) && 2079 !(features & NETIF_F_HW_VLAN_TX)) { 2080 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2081 if (unlikely(!skb)) 2082 goto out; 2083 2084 skb->vlan_tci = 0; 2085 } 2086 2087 if (netif_needs_gso(skb, features)) { 2088 if (unlikely(dev_gso_segment(skb, features))) 2089 goto out_kfree_skb; 2090 if (skb->next) 2091 goto gso; 2092 } else { 2093 if (skb_needs_linearize(skb, features) && 2094 __skb_linearize(skb)) 2095 goto out_kfree_skb; 2096 2097 /* If packet is not checksummed and device does not 2098 * support checksumming for this protocol, complete 2099 * checksumming here. 2100 */ 2101 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2102 skb_set_transport_header(skb, 2103 skb_checksum_start_offset(skb)); 2104 if (!(features & NETIF_F_ALL_CSUM) && 2105 skb_checksum_help(skb)) 2106 goto out_kfree_skb; 2107 } 2108 } 2109 2110 rc = ops->ndo_start_xmit(skb, dev); 2111 trace_net_dev_xmit(skb, rc); 2112 if (rc == NETDEV_TX_OK) 2113 txq_trans_update(txq); 2114 return rc; 2115 } 2116 2117 gso: 2118 do { 2119 struct sk_buff *nskb = skb->next; 2120 2121 skb->next = nskb->next; 2122 nskb->next = NULL; 2123 2124 /* 2125 * If device doesnt need nskb->dst, release it right now while 2126 * its hot in this cpu cache 2127 */ 2128 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2129 skb_dst_drop(nskb); 2130 2131 rc = ops->ndo_start_xmit(nskb, dev); 2132 trace_net_dev_xmit(nskb, rc); 2133 if (unlikely(rc != NETDEV_TX_OK)) { 2134 if (rc & ~NETDEV_TX_MASK) 2135 goto out_kfree_gso_skb; 2136 nskb->next = skb->next; 2137 skb->next = nskb; 2138 return rc; 2139 } 2140 txq_trans_update(txq); 2141 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2142 return NETDEV_TX_BUSY; 2143 } while (skb->next); 2144 2145 out_kfree_gso_skb: 2146 if (likely(skb->next == NULL)) 2147 skb->destructor = DEV_GSO_CB(skb)->destructor; 2148 out_kfree_skb: 2149 kfree_skb(skb); 2150 out: 2151 return rc; 2152 } 2153 2154 static u32 hashrnd __read_mostly; 2155 2156 /* 2157 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2158 * to be used as a distribution range. 2159 */ 2160 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2161 unsigned int num_tx_queues) 2162 { 2163 u32 hash; 2164 2165 if (skb_rx_queue_recorded(skb)) { 2166 hash = skb_get_rx_queue(skb); 2167 while (unlikely(hash >= num_tx_queues)) 2168 hash -= num_tx_queues; 2169 return hash; 2170 } 2171 2172 if (skb->sk && skb->sk->sk_hash) 2173 hash = skb->sk->sk_hash; 2174 else 2175 hash = (__force u16) skb->protocol ^ skb->rxhash; 2176 hash = jhash_1word(hash, hashrnd); 2177 2178 return (u16) (((u64) hash * num_tx_queues) >> 32); 2179 } 2180 EXPORT_SYMBOL(__skb_tx_hash); 2181 2182 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2183 { 2184 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2185 if (net_ratelimit()) { 2186 pr_warning("%s selects TX queue %d, but " 2187 "real number of TX queues is %d\n", 2188 dev->name, queue_index, dev->real_num_tx_queues); 2189 } 2190 return 0; 2191 } 2192 return queue_index; 2193 } 2194 2195 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2196 { 2197 #ifdef CONFIG_XPS 2198 struct xps_dev_maps *dev_maps; 2199 struct xps_map *map; 2200 int queue_index = -1; 2201 2202 rcu_read_lock(); 2203 dev_maps = rcu_dereference(dev->xps_maps); 2204 if (dev_maps) { 2205 map = rcu_dereference( 2206 dev_maps->cpu_map[raw_smp_processor_id()]); 2207 if (map) { 2208 if (map->len == 1) 2209 queue_index = map->queues[0]; 2210 else { 2211 u32 hash; 2212 if (skb->sk && skb->sk->sk_hash) 2213 hash = skb->sk->sk_hash; 2214 else 2215 hash = (__force u16) skb->protocol ^ 2216 skb->rxhash; 2217 hash = jhash_1word(hash, hashrnd); 2218 queue_index = map->queues[ 2219 ((u64)hash * map->len) >> 32]; 2220 } 2221 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2222 queue_index = -1; 2223 } 2224 } 2225 rcu_read_unlock(); 2226 2227 return queue_index; 2228 #else 2229 return -1; 2230 #endif 2231 } 2232 2233 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2234 struct sk_buff *skb) 2235 { 2236 int queue_index; 2237 const struct net_device_ops *ops = dev->netdev_ops; 2238 2239 if (dev->real_num_tx_queues == 1) 2240 queue_index = 0; 2241 else if (ops->ndo_select_queue) { 2242 queue_index = ops->ndo_select_queue(dev, skb); 2243 queue_index = dev_cap_txqueue(dev, queue_index); 2244 } else { 2245 struct sock *sk = skb->sk; 2246 queue_index = sk_tx_queue_get(sk); 2247 2248 if (queue_index < 0 || skb->ooo_okay || 2249 queue_index >= dev->real_num_tx_queues) { 2250 int old_index = queue_index; 2251 2252 queue_index = get_xps_queue(dev, skb); 2253 if (queue_index < 0) 2254 queue_index = skb_tx_hash(dev, skb); 2255 2256 if (queue_index != old_index && sk) { 2257 struct dst_entry *dst = 2258 rcu_dereference_check(sk->sk_dst_cache, 1); 2259 2260 if (dst && skb_dst(skb) == dst) 2261 sk_tx_queue_set(sk, queue_index); 2262 } 2263 } 2264 } 2265 2266 skb_set_queue_mapping(skb, queue_index); 2267 return netdev_get_tx_queue(dev, queue_index); 2268 } 2269 2270 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2271 struct net_device *dev, 2272 struct netdev_queue *txq) 2273 { 2274 spinlock_t *root_lock = qdisc_lock(q); 2275 bool contended = qdisc_is_running(q); 2276 int rc; 2277 2278 /* 2279 * Heuristic to force contended enqueues to serialize on a 2280 * separate lock before trying to get qdisc main lock. 2281 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2282 * and dequeue packets faster. 2283 */ 2284 if (unlikely(contended)) 2285 spin_lock(&q->busylock); 2286 2287 spin_lock(root_lock); 2288 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2289 kfree_skb(skb); 2290 rc = NET_XMIT_DROP; 2291 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2292 qdisc_run_begin(q)) { 2293 /* 2294 * This is a work-conserving queue; there are no old skbs 2295 * waiting to be sent out; and the qdisc is not running - 2296 * xmit the skb directly. 2297 */ 2298 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2299 skb_dst_force(skb); 2300 2301 qdisc_skb_cb(skb)->pkt_len = skb->len; 2302 qdisc_bstats_update(q, skb); 2303 2304 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2305 if (unlikely(contended)) { 2306 spin_unlock(&q->busylock); 2307 contended = false; 2308 } 2309 __qdisc_run(q); 2310 } else 2311 qdisc_run_end(q); 2312 2313 rc = NET_XMIT_SUCCESS; 2314 } else { 2315 skb_dst_force(skb); 2316 rc = qdisc_enqueue_root(skb, q); 2317 if (qdisc_run_begin(q)) { 2318 if (unlikely(contended)) { 2319 spin_unlock(&q->busylock); 2320 contended = false; 2321 } 2322 __qdisc_run(q); 2323 } 2324 } 2325 spin_unlock(root_lock); 2326 if (unlikely(contended)) 2327 spin_unlock(&q->busylock); 2328 return rc; 2329 } 2330 2331 static DEFINE_PER_CPU(int, xmit_recursion); 2332 #define RECURSION_LIMIT 10 2333 2334 /** 2335 * dev_queue_xmit - transmit a buffer 2336 * @skb: buffer to transmit 2337 * 2338 * Queue a buffer for transmission to a network device. The caller must 2339 * have set the device and priority and built the buffer before calling 2340 * this function. The function can be called from an interrupt. 2341 * 2342 * A negative errno code is returned on a failure. A success does not 2343 * guarantee the frame will be transmitted as it may be dropped due 2344 * to congestion or traffic shaping. 2345 * 2346 * ----------------------------------------------------------------------------------- 2347 * I notice this method can also return errors from the queue disciplines, 2348 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2349 * be positive. 2350 * 2351 * Regardless of the return value, the skb is consumed, so it is currently 2352 * difficult to retry a send to this method. (You can bump the ref count 2353 * before sending to hold a reference for retry if you are careful.) 2354 * 2355 * When calling this method, interrupts MUST be enabled. This is because 2356 * the BH enable code must have IRQs enabled so that it will not deadlock. 2357 * --BLG 2358 */ 2359 int dev_queue_xmit(struct sk_buff *skb) 2360 { 2361 struct net_device *dev = skb->dev; 2362 struct netdev_queue *txq; 2363 struct Qdisc *q; 2364 int rc = -ENOMEM; 2365 2366 /* Disable soft irqs for various locks below. Also 2367 * stops preemption for RCU. 2368 */ 2369 rcu_read_lock_bh(); 2370 2371 txq = dev_pick_tx(dev, skb); 2372 q = rcu_dereference_bh(txq->qdisc); 2373 2374 #ifdef CONFIG_NET_CLS_ACT 2375 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2376 #endif 2377 trace_net_dev_queue(skb); 2378 if (q->enqueue) { 2379 rc = __dev_xmit_skb(skb, q, dev, txq); 2380 goto out; 2381 } 2382 2383 /* The device has no queue. Common case for software devices: 2384 loopback, all the sorts of tunnels... 2385 2386 Really, it is unlikely that netif_tx_lock protection is necessary 2387 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2388 counters.) 2389 However, it is possible, that they rely on protection 2390 made by us here. 2391 2392 Check this and shot the lock. It is not prone from deadlocks. 2393 Either shot noqueue qdisc, it is even simpler 8) 2394 */ 2395 if (dev->flags & IFF_UP) { 2396 int cpu = smp_processor_id(); /* ok because BHs are off */ 2397 2398 if (txq->xmit_lock_owner != cpu) { 2399 2400 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2401 goto recursion_alert; 2402 2403 HARD_TX_LOCK(dev, txq, cpu); 2404 2405 if (!netif_tx_queue_stopped(txq)) { 2406 __this_cpu_inc(xmit_recursion); 2407 rc = dev_hard_start_xmit(skb, dev, txq); 2408 __this_cpu_dec(xmit_recursion); 2409 if (dev_xmit_complete(rc)) { 2410 HARD_TX_UNLOCK(dev, txq); 2411 goto out; 2412 } 2413 } 2414 HARD_TX_UNLOCK(dev, txq); 2415 if (net_ratelimit()) 2416 printk(KERN_CRIT "Virtual device %s asks to " 2417 "queue packet!\n", dev->name); 2418 } else { 2419 /* Recursion is detected! It is possible, 2420 * unfortunately 2421 */ 2422 recursion_alert: 2423 if (net_ratelimit()) 2424 printk(KERN_CRIT "Dead loop on virtual device " 2425 "%s, fix it urgently!\n", dev->name); 2426 } 2427 } 2428 2429 rc = -ENETDOWN; 2430 rcu_read_unlock_bh(); 2431 2432 kfree_skb(skb); 2433 return rc; 2434 out: 2435 rcu_read_unlock_bh(); 2436 return rc; 2437 } 2438 EXPORT_SYMBOL(dev_queue_xmit); 2439 2440 2441 /*======================================================================= 2442 Receiver routines 2443 =======================================================================*/ 2444 2445 int netdev_max_backlog __read_mostly = 1000; 2446 int netdev_tstamp_prequeue __read_mostly = 1; 2447 int netdev_budget __read_mostly = 300; 2448 int weight_p __read_mostly = 64; /* old backlog weight */ 2449 2450 /* Called with irq disabled */ 2451 static inline void ____napi_schedule(struct softnet_data *sd, 2452 struct napi_struct *napi) 2453 { 2454 list_add_tail(&napi->poll_list, &sd->poll_list); 2455 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2456 } 2457 2458 /* 2459 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2460 * and src/dst port numbers. Returns a non-zero hash number on success 2461 * and 0 on failure. 2462 */ 2463 __u32 __skb_get_rxhash(struct sk_buff *skb) 2464 { 2465 int nhoff, hash = 0, poff; 2466 struct ipv6hdr *ip6; 2467 struct iphdr *ip; 2468 u8 ip_proto; 2469 u32 addr1, addr2, ihl; 2470 union { 2471 u32 v32; 2472 u16 v16[2]; 2473 } ports; 2474 2475 nhoff = skb_network_offset(skb); 2476 2477 switch (skb->protocol) { 2478 case __constant_htons(ETH_P_IP): 2479 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2480 goto done; 2481 2482 ip = (struct iphdr *) (skb->data + nhoff); 2483 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2484 ip_proto = 0; 2485 else 2486 ip_proto = ip->protocol; 2487 addr1 = (__force u32) ip->saddr; 2488 addr2 = (__force u32) ip->daddr; 2489 ihl = ip->ihl; 2490 break; 2491 case __constant_htons(ETH_P_IPV6): 2492 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2493 goto done; 2494 2495 ip6 = (struct ipv6hdr *) (skb->data + nhoff); 2496 ip_proto = ip6->nexthdr; 2497 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2498 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2499 ihl = (40 >> 2); 2500 break; 2501 default: 2502 goto done; 2503 } 2504 2505 ports.v32 = 0; 2506 poff = proto_ports_offset(ip_proto); 2507 if (poff >= 0) { 2508 nhoff += ihl * 4 + poff; 2509 if (pskb_may_pull(skb, nhoff + 4)) { 2510 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2511 if (ports.v16[1] < ports.v16[0]) 2512 swap(ports.v16[0], ports.v16[1]); 2513 } 2514 } 2515 2516 /* get a consistent hash (same value on both flow directions) */ 2517 if (addr2 < addr1) 2518 swap(addr1, addr2); 2519 2520 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2521 if (!hash) 2522 hash = 1; 2523 2524 done: 2525 return hash; 2526 } 2527 EXPORT_SYMBOL(__skb_get_rxhash); 2528 2529 #ifdef CONFIG_RPS 2530 2531 /* One global table that all flow-based protocols share. */ 2532 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2533 EXPORT_SYMBOL(rps_sock_flow_table); 2534 2535 /* 2536 * get_rps_cpu is called from netif_receive_skb and returns the target 2537 * CPU from the RPS map of the receiving queue for a given skb. 2538 * rcu_read_lock must be held on entry. 2539 */ 2540 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2541 struct rps_dev_flow **rflowp) 2542 { 2543 struct netdev_rx_queue *rxqueue; 2544 struct rps_map *map; 2545 struct rps_dev_flow_table *flow_table; 2546 struct rps_sock_flow_table *sock_flow_table; 2547 int cpu = -1; 2548 u16 tcpu; 2549 2550 if (skb_rx_queue_recorded(skb)) { 2551 u16 index = skb_get_rx_queue(skb); 2552 if (unlikely(index >= dev->real_num_rx_queues)) { 2553 WARN_ONCE(dev->real_num_rx_queues > 1, 2554 "%s received packet on queue %u, but number " 2555 "of RX queues is %u\n", 2556 dev->name, index, dev->real_num_rx_queues); 2557 goto done; 2558 } 2559 rxqueue = dev->_rx + index; 2560 } else 2561 rxqueue = dev->_rx; 2562 2563 map = rcu_dereference(rxqueue->rps_map); 2564 if (map) { 2565 if (map->len == 1) { 2566 tcpu = map->cpus[0]; 2567 if (cpu_online(tcpu)) 2568 cpu = tcpu; 2569 goto done; 2570 } 2571 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) { 2572 goto done; 2573 } 2574 2575 skb_reset_network_header(skb); 2576 if (!skb_get_rxhash(skb)) 2577 goto done; 2578 2579 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2580 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2581 if (flow_table && sock_flow_table) { 2582 u16 next_cpu; 2583 struct rps_dev_flow *rflow; 2584 2585 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2586 tcpu = rflow->cpu; 2587 2588 next_cpu = sock_flow_table->ents[skb->rxhash & 2589 sock_flow_table->mask]; 2590 2591 /* 2592 * If the desired CPU (where last recvmsg was done) is 2593 * different from current CPU (one in the rx-queue flow 2594 * table entry), switch if one of the following holds: 2595 * - Current CPU is unset (equal to RPS_NO_CPU). 2596 * - Current CPU is offline. 2597 * - The current CPU's queue tail has advanced beyond the 2598 * last packet that was enqueued using this table entry. 2599 * This guarantees that all previous packets for the flow 2600 * have been dequeued, thus preserving in order delivery. 2601 */ 2602 if (unlikely(tcpu != next_cpu) && 2603 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2604 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2605 rflow->last_qtail)) >= 0)) { 2606 tcpu = rflow->cpu = next_cpu; 2607 if (tcpu != RPS_NO_CPU) 2608 rflow->last_qtail = per_cpu(softnet_data, 2609 tcpu).input_queue_head; 2610 } 2611 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2612 *rflowp = rflow; 2613 cpu = tcpu; 2614 goto done; 2615 } 2616 } 2617 2618 if (map) { 2619 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2620 2621 if (cpu_online(tcpu)) { 2622 cpu = tcpu; 2623 goto done; 2624 } 2625 } 2626 2627 done: 2628 return cpu; 2629 } 2630 2631 /* Called from hardirq (IPI) context */ 2632 static void rps_trigger_softirq(void *data) 2633 { 2634 struct softnet_data *sd = data; 2635 2636 ____napi_schedule(sd, &sd->backlog); 2637 sd->received_rps++; 2638 } 2639 2640 #endif /* CONFIG_RPS */ 2641 2642 /* 2643 * Check if this softnet_data structure is another cpu one 2644 * If yes, queue it to our IPI list and return 1 2645 * If no, return 0 2646 */ 2647 static int rps_ipi_queued(struct softnet_data *sd) 2648 { 2649 #ifdef CONFIG_RPS 2650 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2651 2652 if (sd != mysd) { 2653 sd->rps_ipi_next = mysd->rps_ipi_list; 2654 mysd->rps_ipi_list = sd; 2655 2656 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2657 return 1; 2658 } 2659 #endif /* CONFIG_RPS */ 2660 return 0; 2661 } 2662 2663 /* 2664 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2665 * queue (may be a remote CPU queue). 2666 */ 2667 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2668 unsigned int *qtail) 2669 { 2670 struct softnet_data *sd; 2671 unsigned long flags; 2672 2673 sd = &per_cpu(softnet_data, cpu); 2674 2675 local_irq_save(flags); 2676 2677 rps_lock(sd); 2678 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2679 if (skb_queue_len(&sd->input_pkt_queue)) { 2680 enqueue: 2681 __skb_queue_tail(&sd->input_pkt_queue, skb); 2682 input_queue_tail_incr_save(sd, qtail); 2683 rps_unlock(sd); 2684 local_irq_restore(flags); 2685 return NET_RX_SUCCESS; 2686 } 2687 2688 /* Schedule NAPI for backlog device 2689 * We can use non atomic operation since we own the queue lock 2690 */ 2691 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2692 if (!rps_ipi_queued(sd)) 2693 ____napi_schedule(sd, &sd->backlog); 2694 } 2695 goto enqueue; 2696 } 2697 2698 sd->dropped++; 2699 rps_unlock(sd); 2700 2701 local_irq_restore(flags); 2702 2703 atomic_long_inc(&skb->dev->rx_dropped); 2704 kfree_skb(skb); 2705 return NET_RX_DROP; 2706 } 2707 2708 /** 2709 * netif_rx - post buffer to the network code 2710 * @skb: buffer to post 2711 * 2712 * This function receives a packet from a device driver and queues it for 2713 * the upper (protocol) levels to process. It always succeeds. The buffer 2714 * may be dropped during processing for congestion control or by the 2715 * protocol layers. 2716 * 2717 * return values: 2718 * NET_RX_SUCCESS (no congestion) 2719 * NET_RX_DROP (packet was dropped) 2720 * 2721 */ 2722 2723 int netif_rx(struct sk_buff *skb) 2724 { 2725 int ret; 2726 2727 /* if netpoll wants it, pretend we never saw it */ 2728 if (netpoll_rx(skb)) 2729 return NET_RX_DROP; 2730 2731 if (netdev_tstamp_prequeue) 2732 net_timestamp_check(skb); 2733 2734 trace_netif_rx(skb); 2735 #ifdef CONFIG_RPS 2736 { 2737 struct rps_dev_flow voidflow, *rflow = &voidflow; 2738 int cpu; 2739 2740 preempt_disable(); 2741 rcu_read_lock(); 2742 2743 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2744 if (cpu < 0) 2745 cpu = smp_processor_id(); 2746 2747 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2748 2749 rcu_read_unlock(); 2750 preempt_enable(); 2751 } 2752 #else 2753 { 2754 unsigned int qtail; 2755 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2756 put_cpu(); 2757 } 2758 #endif 2759 return ret; 2760 } 2761 EXPORT_SYMBOL(netif_rx); 2762 2763 int netif_rx_ni(struct sk_buff *skb) 2764 { 2765 int err; 2766 2767 preempt_disable(); 2768 err = netif_rx(skb); 2769 if (local_softirq_pending()) 2770 do_softirq(); 2771 preempt_enable(); 2772 2773 return err; 2774 } 2775 EXPORT_SYMBOL(netif_rx_ni); 2776 2777 static void net_tx_action(struct softirq_action *h) 2778 { 2779 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2780 2781 if (sd->completion_queue) { 2782 struct sk_buff *clist; 2783 2784 local_irq_disable(); 2785 clist = sd->completion_queue; 2786 sd->completion_queue = NULL; 2787 local_irq_enable(); 2788 2789 while (clist) { 2790 struct sk_buff *skb = clist; 2791 clist = clist->next; 2792 2793 WARN_ON(atomic_read(&skb->users)); 2794 trace_kfree_skb(skb, net_tx_action); 2795 __kfree_skb(skb); 2796 } 2797 } 2798 2799 if (sd->output_queue) { 2800 struct Qdisc *head; 2801 2802 local_irq_disable(); 2803 head = sd->output_queue; 2804 sd->output_queue = NULL; 2805 sd->output_queue_tailp = &sd->output_queue; 2806 local_irq_enable(); 2807 2808 while (head) { 2809 struct Qdisc *q = head; 2810 spinlock_t *root_lock; 2811 2812 head = head->next_sched; 2813 2814 root_lock = qdisc_lock(q); 2815 if (spin_trylock(root_lock)) { 2816 smp_mb__before_clear_bit(); 2817 clear_bit(__QDISC_STATE_SCHED, 2818 &q->state); 2819 qdisc_run(q); 2820 spin_unlock(root_lock); 2821 } else { 2822 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2823 &q->state)) { 2824 __netif_reschedule(q); 2825 } else { 2826 smp_mb__before_clear_bit(); 2827 clear_bit(__QDISC_STATE_SCHED, 2828 &q->state); 2829 } 2830 } 2831 } 2832 } 2833 } 2834 2835 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2836 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2837 /* This hook is defined here for ATM LANE */ 2838 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2839 unsigned char *addr) __read_mostly; 2840 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2841 #endif 2842 2843 #ifdef CONFIG_NET_CLS_ACT 2844 /* TODO: Maybe we should just force sch_ingress to be compiled in 2845 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2846 * a compare and 2 stores extra right now if we dont have it on 2847 * but have CONFIG_NET_CLS_ACT 2848 * NOTE: This doesnt stop any functionality; if you dont have 2849 * the ingress scheduler, you just cant add policies on ingress. 2850 * 2851 */ 2852 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 2853 { 2854 struct net_device *dev = skb->dev; 2855 u32 ttl = G_TC_RTTL(skb->tc_verd); 2856 int result = TC_ACT_OK; 2857 struct Qdisc *q; 2858 2859 if (unlikely(MAX_RED_LOOP < ttl++)) { 2860 if (net_ratelimit()) 2861 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 2862 skb->skb_iif, dev->ifindex); 2863 return TC_ACT_SHOT; 2864 } 2865 2866 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2867 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2868 2869 q = rxq->qdisc; 2870 if (q != &noop_qdisc) { 2871 spin_lock(qdisc_lock(q)); 2872 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2873 result = qdisc_enqueue_root(skb, q); 2874 spin_unlock(qdisc_lock(q)); 2875 } 2876 2877 return result; 2878 } 2879 2880 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2881 struct packet_type **pt_prev, 2882 int *ret, struct net_device *orig_dev) 2883 { 2884 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 2885 2886 if (!rxq || rxq->qdisc == &noop_qdisc) 2887 goto out; 2888 2889 if (*pt_prev) { 2890 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2891 *pt_prev = NULL; 2892 } 2893 2894 switch (ing_filter(skb, rxq)) { 2895 case TC_ACT_SHOT: 2896 case TC_ACT_STOLEN: 2897 kfree_skb(skb); 2898 return NULL; 2899 } 2900 2901 out: 2902 skb->tc_verd = 0; 2903 return skb; 2904 } 2905 #endif 2906 2907 /** 2908 * netdev_rx_handler_register - register receive handler 2909 * @dev: device to register a handler for 2910 * @rx_handler: receive handler to register 2911 * @rx_handler_data: data pointer that is used by rx handler 2912 * 2913 * Register a receive hander for a device. This handler will then be 2914 * called from __netif_receive_skb. A negative errno code is returned 2915 * on a failure. 2916 * 2917 * The caller must hold the rtnl_mutex. 2918 */ 2919 int netdev_rx_handler_register(struct net_device *dev, 2920 rx_handler_func_t *rx_handler, 2921 void *rx_handler_data) 2922 { 2923 ASSERT_RTNL(); 2924 2925 if (dev->rx_handler) 2926 return -EBUSY; 2927 2928 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 2929 rcu_assign_pointer(dev->rx_handler, rx_handler); 2930 2931 return 0; 2932 } 2933 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 2934 2935 /** 2936 * netdev_rx_handler_unregister - unregister receive handler 2937 * @dev: device to unregister a handler from 2938 * 2939 * Unregister a receive hander from a device. 2940 * 2941 * The caller must hold the rtnl_mutex. 2942 */ 2943 void netdev_rx_handler_unregister(struct net_device *dev) 2944 { 2945 2946 ASSERT_RTNL(); 2947 rcu_assign_pointer(dev->rx_handler, NULL); 2948 rcu_assign_pointer(dev->rx_handler_data, NULL); 2949 } 2950 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 2951 2952 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2953 struct net_device *master) 2954 { 2955 if (skb->pkt_type == PACKET_HOST) { 2956 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2957 2958 memcpy(dest, master->dev_addr, ETH_ALEN); 2959 } 2960 } 2961 2962 /* On bonding slaves other than the currently active slave, suppress 2963 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2964 * ARP on active-backup slaves with arp_validate enabled. 2965 */ 2966 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2967 { 2968 struct net_device *dev = skb->dev; 2969 2970 if (master->priv_flags & IFF_MASTER_ARPMON) 2971 dev->last_rx = jiffies; 2972 2973 if ((master->priv_flags & IFF_MASTER_ALB) && 2974 (master->priv_flags & IFF_BRIDGE_PORT)) { 2975 /* Do address unmangle. The local destination address 2976 * will be always the one master has. Provides the right 2977 * functionality in a bridge. 2978 */ 2979 skb_bond_set_mac_by_master(skb, master); 2980 } 2981 2982 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2983 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2984 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2985 return 0; 2986 2987 if (master->priv_flags & IFF_MASTER_ALB) { 2988 if (skb->pkt_type != PACKET_BROADCAST && 2989 skb->pkt_type != PACKET_MULTICAST) 2990 return 0; 2991 } 2992 if (master->priv_flags & IFF_MASTER_8023AD && 2993 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2994 return 0; 2995 2996 return 1; 2997 } 2998 return 0; 2999 } 3000 EXPORT_SYMBOL(__skb_bond_should_drop); 3001 3002 static int __netif_receive_skb(struct sk_buff *skb) 3003 { 3004 struct packet_type *ptype, *pt_prev; 3005 rx_handler_func_t *rx_handler; 3006 struct net_device *orig_dev; 3007 struct net_device *master; 3008 struct net_device *null_or_orig; 3009 struct net_device *orig_or_bond; 3010 int ret = NET_RX_DROP; 3011 __be16 type; 3012 3013 if (!netdev_tstamp_prequeue) 3014 net_timestamp_check(skb); 3015 3016 trace_netif_receive_skb(skb); 3017 3018 /* if we've gotten here through NAPI, check netpoll */ 3019 if (netpoll_receive_skb(skb)) 3020 return NET_RX_DROP; 3021 3022 if (!skb->skb_iif) 3023 skb->skb_iif = skb->dev->ifindex; 3024 3025 /* 3026 * bonding note: skbs received on inactive slaves should only 3027 * be delivered to pkt handlers that are exact matches. Also 3028 * the deliver_no_wcard flag will be set. If packet handlers 3029 * are sensitive to duplicate packets these skbs will need to 3030 * be dropped at the handler. 3031 */ 3032 null_or_orig = NULL; 3033 orig_dev = skb->dev; 3034 master = ACCESS_ONCE(orig_dev->master); 3035 if (skb->deliver_no_wcard) 3036 null_or_orig = orig_dev; 3037 else if (master) { 3038 if (skb_bond_should_drop(skb, master)) { 3039 skb->deliver_no_wcard = 1; 3040 null_or_orig = orig_dev; /* deliver only exact match */ 3041 } else 3042 skb->dev = master; 3043 } 3044 3045 __this_cpu_inc(softnet_data.processed); 3046 skb_reset_network_header(skb); 3047 skb_reset_transport_header(skb); 3048 skb->mac_len = skb->network_header - skb->mac_header; 3049 3050 pt_prev = NULL; 3051 3052 rcu_read_lock(); 3053 3054 #ifdef CONFIG_NET_CLS_ACT 3055 if (skb->tc_verd & TC_NCLS) { 3056 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3057 goto ncls; 3058 } 3059 #endif 3060 3061 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3062 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 3063 ptype->dev == orig_dev) { 3064 if (pt_prev) 3065 ret = deliver_skb(skb, pt_prev, orig_dev); 3066 pt_prev = ptype; 3067 } 3068 } 3069 3070 #ifdef CONFIG_NET_CLS_ACT 3071 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3072 if (!skb) 3073 goto out; 3074 ncls: 3075 #endif 3076 3077 /* Handle special case of bridge or macvlan */ 3078 rx_handler = rcu_dereference(skb->dev->rx_handler); 3079 if (rx_handler) { 3080 if (pt_prev) { 3081 ret = deliver_skb(skb, pt_prev, orig_dev); 3082 pt_prev = NULL; 3083 } 3084 skb = rx_handler(skb); 3085 if (!skb) 3086 goto out; 3087 } 3088 3089 if (vlan_tx_tag_present(skb)) { 3090 if (pt_prev) { 3091 ret = deliver_skb(skb, pt_prev, orig_dev); 3092 pt_prev = NULL; 3093 } 3094 if (vlan_hwaccel_do_receive(&skb)) { 3095 ret = __netif_receive_skb(skb); 3096 goto out; 3097 } else if (unlikely(!skb)) 3098 goto out; 3099 } 3100 3101 /* 3102 * Make sure frames received on VLAN interfaces stacked on 3103 * bonding interfaces still make their way to any base bonding 3104 * device that may have registered for a specific ptype. The 3105 * handler may have to adjust skb->dev and orig_dev. 3106 */ 3107 orig_or_bond = orig_dev; 3108 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 3109 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 3110 orig_or_bond = vlan_dev_real_dev(skb->dev); 3111 } 3112 3113 type = skb->protocol; 3114 list_for_each_entry_rcu(ptype, 3115 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3116 if (ptype->type == type && (ptype->dev == null_or_orig || 3117 ptype->dev == skb->dev || ptype->dev == orig_dev || 3118 ptype->dev == orig_or_bond)) { 3119 if (pt_prev) 3120 ret = deliver_skb(skb, pt_prev, orig_dev); 3121 pt_prev = ptype; 3122 } 3123 } 3124 3125 if (pt_prev) { 3126 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3127 } else { 3128 atomic_long_inc(&skb->dev->rx_dropped); 3129 kfree_skb(skb); 3130 /* Jamal, now you will not able to escape explaining 3131 * me how you were going to use this. :-) 3132 */ 3133 ret = NET_RX_DROP; 3134 } 3135 3136 out: 3137 rcu_read_unlock(); 3138 return ret; 3139 } 3140 3141 /** 3142 * netif_receive_skb - process receive buffer from network 3143 * @skb: buffer to process 3144 * 3145 * netif_receive_skb() is the main receive data processing function. 3146 * It always succeeds. The buffer may be dropped during processing 3147 * for congestion control or by the protocol layers. 3148 * 3149 * This function may only be called from softirq context and interrupts 3150 * should be enabled. 3151 * 3152 * Return values (usually ignored): 3153 * NET_RX_SUCCESS: no congestion 3154 * NET_RX_DROP: packet was dropped 3155 */ 3156 int netif_receive_skb(struct sk_buff *skb) 3157 { 3158 if (netdev_tstamp_prequeue) 3159 net_timestamp_check(skb); 3160 3161 if (skb_defer_rx_timestamp(skb)) 3162 return NET_RX_SUCCESS; 3163 3164 #ifdef CONFIG_RPS 3165 { 3166 struct rps_dev_flow voidflow, *rflow = &voidflow; 3167 int cpu, ret; 3168 3169 rcu_read_lock(); 3170 3171 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3172 3173 if (cpu >= 0) { 3174 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3175 rcu_read_unlock(); 3176 } else { 3177 rcu_read_unlock(); 3178 ret = __netif_receive_skb(skb); 3179 } 3180 3181 return ret; 3182 } 3183 #else 3184 return __netif_receive_skb(skb); 3185 #endif 3186 } 3187 EXPORT_SYMBOL(netif_receive_skb); 3188 3189 /* Network device is going away, flush any packets still pending 3190 * Called with irqs disabled. 3191 */ 3192 static void flush_backlog(void *arg) 3193 { 3194 struct net_device *dev = arg; 3195 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3196 struct sk_buff *skb, *tmp; 3197 3198 rps_lock(sd); 3199 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3200 if (skb->dev == dev) { 3201 __skb_unlink(skb, &sd->input_pkt_queue); 3202 kfree_skb(skb); 3203 input_queue_head_incr(sd); 3204 } 3205 } 3206 rps_unlock(sd); 3207 3208 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3209 if (skb->dev == dev) { 3210 __skb_unlink(skb, &sd->process_queue); 3211 kfree_skb(skb); 3212 input_queue_head_incr(sd); 3213 } 3214 } 3215 } 3216 3217 static int napi_gro_complete(struct sk_buff *skb) 3218 { 3219 struct packet_type *ptype; 3220 __be16 type = skb->protocol; 3221 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3222 int err = -ENOENT; 3223 3224 if (NAPI_GRO_CB(skb)->count == 1) { 3225 skb_shinfo(skb)->gso_size = 0; 3226 goto out; 3227 } 3228 3229 rcu_read_lock(); 3230 list_for_each_entry_rcu(ptype, head, list) { 3231 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3232 continue; 3233 3234 err = ptype->gro_complete(skb); 3235 break; 3236 } 3237 rcu_read_unlock(); 3238 3239 if (err) { 3240 WARN_ON(&ptype->list == head); 3241 kfree_skb(skb); 3242 return NET_RX_SUCCESS; 3243 } 3244 3245 out: 3246 return netif_receive_skb(skb); 3247 } 3248 3249 inline void napi_gro_flush(struct napi_struct *napi) 3250 { 3251 struct sk_buff *skb, *next; 3252 3253 for (skb = napi->gro_list; skb; skb = next) { 3254 next = skb->next; 3255 skb->next = NULL; 3256 napi_gro_complete(skb); 3257 } 3258 3259 napi->gro_count = 0; 3260 napi->gro_list = NULL; 3261 } 3262 EXPORT_SYMBOL(napi_gro_flush); 3263 3264 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3265 { 3266 struct sk_buff **pp = NULL; 3267 struct packet_type *ptype; 3268 __be16 type = skb->protocol; 3269 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3270 int same_flow; 3271 int mac_len; 3272 enum gro_result ret; 3273 3274 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3275 goto normal; 3276 3277 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3278 goto normal; 3279 3280 rcu_read_lock(); 3281 list_for_each_entry_rcu(ptype, head, list) { 3282 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3283 continue; 3284 3285 skb_set_network_header(skb, skb_gro_offset(skb)); 3286 mac_len = skb->network_header - skb->mac_header; 3287 skb->mac_len = mac_len; 3288 NAPI_GRO_CB(skb)->same_flow = 0; 3289 NAPI_GRO_CB(skb)->flush = 0; 3290 NAPI_GRO_CB(skb)->free = 0; 3291 3292 pp = ptype->gro_receive(&napi->gro_list, skb); 3293 break; 3294 } 3295 rcu_read_unlock(); 3296 3297 if (&ptype->list == head) 3298 goto normal; 3299 3300 same_flow = NAPI_GRO_CB(skb)->same_flow; 3301 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3302 3303 if (pp) { 3304 struct sk_buff *nskb = *pp; 3305 3306 *pp = nskb->next; 3307 nskb->next = NULL; 3308 napi_gro_complete(nskb); 3309 napi->gro_count--; 3310 } 3311 3312 if (same_flow) 3313 goto ok; 3314 3315 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3316 goto normal; 3317 3318 napi->gro_count++; 3319 NAPI_GRO_CB(skb)->count = 1; 3320 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3321 skb->next = napi->gro_list; 3322 napi->gro_list = skb; 3323 ret = GRO_HELD; 3324 3325 pull: 3326 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3327 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3328 3329 BUG_ON(skb->end - skb->tail < grow); 3330 3331 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3332 3333 skb->tail += grow; 3334 skb->data_len -= grow; 3335 3336 skb_shinfo(skb)->frags[0].page_offset += grow; 3337 skb_shinfo(skb)->frags[0].size -= grow; 3338 3339 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3340 put_page(skb_shinfo(skb)->frags[0].page); 3341 memmove(skb_shinfo(skb)->frags, 3342 skb_shinfo(skb)->frags + 1, 3343 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3344 } 3345 } 3346 3347 ok: 3348 return ret; 3349 3350 normal: 3351 ret = GRO_NORMAL; 3352 goto pull; 3353 } 3354 EXPORT_SYMBOL(dev_gro_receive); 3355 3356 static inline gro_result_t 3357 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3358 { 3359 struct sk_buff *p; 3360 3361 for (p = napi->gro_list; p; p = p->next) { 3362 unsigned long diffs; 3363 3364 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3365 diffs |= p->vlan_tci ^ skb->vlan_tci; 3366 diffs |= compare_ether_header(skb_mac_header(p), 3367 skb_gro_mac_header(skb)); 3368 NAPI_GRO_CB(p)->same_flow = !diffs; 3369 NAPI_GRO_CB(p)->flush = 0; 3370 } 3371 3372 return dev_gro_receive(napi, skb); 3373 } 3374 3375 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3376 { 3377 switch (ret) { 3378 case GRO_NORMAL: 3379 if (netif_receive_skb(skb)) 3380 ret = GRO_DROP; 3381 break; 3382 3383 case GRO_DROP: 3384 case GRO_MERGED_FREE: 3385 kfree_skb(skb); 3386 break; 3387 3388 case GRO_HELD: 3389 case GRO_MERGED: 3390 break; 3391 } 3392 3393 return ret; 3394 } 3395 EXPORT_SYMBOL(napi_skb_finish); 3396 3397 void skb_gro_reset_offset(struct sk_buff *skb) 3398 { 3399 NAPI_GRO_CB(skb)->data_offset = 0; 3400 NAPI_GRO_CB(skb)->frag0 = NULL; 3401 NAPI_GRO_CB(skb)->frag0_len = 0; 3402 3403 if (skb->mac_header == skb->tail && 3404 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3405 NAPI_GRO_CB(skb)->frag0 = 3406 page_address(skb_shinfo(skb)->frags[0].page) + 3407 skb_shinfo(skb)->frags[0].page_offset; 3408 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3409 } 3410 } 3411 EXPORT_SYMBOL(skb_gro_reset_offset); 3412 3413 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3414 { 3415 skb_gro_reset_offset(skb); 3416 3417 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3418 } 3419 EXPORT_SYMBOL(napi_gro_receive); 3420 3421 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3422 { 3423 __skb_pull(skb, skb_headlen(skb)); 3424 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3425 skb->vlan_tci = 0; 3426 3427 napi->skb = skb; 3428 } 3429 3430 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3431 { 3432 struct sk_buff *skb = napi->skb; 3433 3434 if (!skb) { 3435 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3436 if (skb) 3437 napi->skb = skb; 3438 } 3439 return skb; 3440 } 3441 EXPORT_SYMBOL(napi_get_frags); 3442 3443 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3444 gro_result_t ret) 3445 { 3446 switch (ret) { 3447 case GRO_NORMAL: 3448 case GRO_HELD: 3449 skb->protocol = eth_type_trans(skb, skb->dev); 3450 3451 if (ret == GRO_HELD) 3452 skb_gro_pull(skb, -ETH_HLEN); 3453 else if (netif_receive_skb(skb)) 3454 ret = GRO_DROP; 3455 break; 3456 3457 case GRO_DROP: 3458 case GRO_MERGED_FREE: 3459 napi_reuse_skb(napi, skb); 3460 break; 3461 3462 case GRO_MERGED: 3463 break; 3464 } 3465 3466 return ret; 3467 } 3468 EXPORT_SYMBOL(napi_frags_finish); 3469 3470 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3471 { 3472 struct sk_buff *skb = napi->skb; 3473 struct ethhdr *eth; 3474 unsigned int hlen; 3475 unsigned int off; 3476 3477 napi->skb = NULL; 3478 3479 skb_reset_mac_header(skb); 3480 skb_gro_reset_offset(skb); 3481 3482 off = skb_gro_offset(skb); 3483 hlen = off + sizeof(*eth); 3484 eth = skb_gro_header_fast(skb, off); 3485 if (skb_gro_header_hard(skb, hlen)) { 3486 eth = skb_gro_header_slow(skb, hlen, off); 3487 if (unlikely(!eth)) { 3488 napi_reuse_skb(napi, skb); 3489 skb = NULL; 3490 goto out; 3491 } 3492 } 3493 3494 skb_gro_pull(skb, sizeof(*eth)); 3495 3496 /* 3497 * This works because the only protocols we care about don't require 3498 * special handling. We'll fix it up properly at the end. 3499 */ 3500 skb->protocol = eth->h_proto; 3501 3502 out: 3503 return skb; 3504 } 3505 EXPORT_SYMBOL(napi_frags_skb); 3506 3507 gro_result_t napi_gro_frags(struct napi_struct *napi) 3508 { 3509 struct sk_buff *skb = napi_frags_skb(napi); 3510 3511 if (!skb) 3512 return GRO_DROP; 3513 3514 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3515 } 3516 EXPORT_SYMBOL(napi_gro_frags); 3517 3518 /* 3519 * net_rps_action sends any pending IPI's for rps. 3520 * Note: called with local irq disabled, but exits with local irq enabled. 3521 */ 3522 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3523 { 3524 #ifdef CONFIG_RPS 3525 struct softnet_data *remsd = sd->rps_ipi_list; 3526 3527 if (remsd) { 3528 sd->rps_ipi_list = NULL; 3529 3530 local_irq_enable(); 3531 3532 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3533 while (remsd) { 3534 struct softnet_data *next = remsd->rps_ipi_next; 3535 3536 if (cpu_online(remsd->cpu)) 3537 __smp_call_function_single(remsd->cpu, 3538 &remsd->csd, 0); 3539 remsd = next; 3540 } 3541 } else 3542 #endif 3543 local_irq_enable(); 3544 } 3545 3546 static int process_backlog(struct napi_struct *napi, int quota) 3547 { 3548 int work = 0; 3549 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3550 3551 #ifdef CONFIG_RPS 3552 /* Check if we have pending ipi, its better to send them now, 3553 * not waiting net_rx_action() end. 3554 */ 3555 if (sd->rps_ipi_list) { 3556 local_irq_disable(); 3557 net_rps_action_and_irq_enable(sd); 3558 } 3559 #endif 3560 napi->weight = weight_p; 3561 local_irq_disable(); 3562 while (work < quota) { 3563 struct sk_buff *skb; 3564 unsigned int qlen; 3565 3566 while ((skb = __skb_dequeue(&sd->process_queue))) { 3567 local_irq_enable(); 3568 __netif_receive_skb(skb); 3569 local_irq_disable(); 3570 input_queue_head_incr(sd); 3571 if (++work >= quota) { 3572 local_irq_enable(); 3573 return work; 3574 } 3575 } 3576 3577 rps_lock(sd); 3578 qlen = skb_queue_len(&sd->input_pkt_queue); 3579 if (qlen) 3580 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3581 &sd->process_queue); 3582 3583 if (qlen < quota - work) { 3584 /* 3585 * Inline a custom version of __napi_complete(). 3586 * only current cpu owns and manipulates this napi, 3587 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3588 * we can use a plain write instead of clear_bit(), 3589 * and we dont need an smp_mb() memory barrier. 3590 */ 3591 list_del(&napi->poll_list); 3592 napi->state = 0; 3593 3594 quota = work + qlen; 3595 } 3596 rps_unlock(sd); 3597 } 3598 local_irq_enable(); 3599 3600 return work; 3601 } 3602 3603 /** 3604 * __napi_schedule - schedule for receive 3605 * @n: entry to schedule 3606 * 3607 * The entry's receive function will be scheduled to run 3608 */ 3609 void __napi_schedule(struct napi_struct *n) 3610 { 3611 unsigned long flags; 3612 3613 local_irq_save(flags); 3614 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3615 local_irq_restore(flags); 3616 } 3617 EXPORT_SYMBOL(__napi_schedule); 3618 3619 void __napi_complete(struct napi_struct *n) 3620 { 3621 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3622 BUG_ON(n->gro_list); 3623 3624 list_del(&n->poll_list); 3625 smp_mb__before_clear_bit(); 3626 clear_bit(NAPI_STATE_SCHED, &n->state); 3627 } 3628 EXPORT_SYMBOL(__napi_complete); 3629 3630 void napi_complete(struct napi_struct *n) 3631 { 3632 unsigned long flags; 3633 3634 /* 3635 * don't let napi dequeue from the cpu poll list 3636 * just in case its running on a different cpu 3637 */ 3638 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3639 return; 3640 3641 napi_gro_flush(n); 3642 local_irq_save(flags); 3643 __napi_complete(n); 3644 local_irq_restore(flags); 3645 } 3646 EXPORT_SYMBOL(napi_complete); 3647 3648 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3649 int (*poll)(struct napi_struct *, int), int weight) 3650 { 3651 INIT_LIST_HEAD(&napi->poll_list); 3652 napi->gro_count = 0; 3653 napi->gro_list = NULL; 3654 napi->skb = NULL; 3655 napi->poll = poll; 3656 napi->weight = weight; 3657 list_add(&napi->dev_list, &dev->napi_list); 3658 napi->dev = dev; 3659 #ifdef CONFIG_NETPOLL 3660 spin_lock_init(&napi->poll_lock); 3661 napi->poll_owner = -1; 3662 #endif 3663 set_bit(NAPI_STATE_SCHED, &napi->state); 3664 } 3665 EXPORT_SYMBOL(netif_napi_add); 3666 3667 void netif_napi_del(struct napi_struct *napi) 3668 { 3669 struct sk_buff *skb, *next; 3670 3671 list_del_init(&napi->dev_list); 3672 napi_free_frags(napi); 3673 3674 for (skb = napi->gro_list; skb; skb = next) { 3675 next = skb->next; 3676 skb->next = NULL; 3677 kfree_skb(skb); 3678 } 3679 3680 napi->gro_list = NULL; 3681 napi->gro_count = 0; 3682 } 3683 EXPORT_SYMBOL(netif_napi_del); 3684 3685 static void net_rx_action(struct softirq_action *h) 3686 { 3687 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3688 unsigned long time_limit = jiffies + 2; 3689 int budget = netdev_budget; 3690 void *have; 3691 3692 local_irq_disable(); 3693 3694 while (!list_empty(&sd->poll_list)) { 3695 struct napi_struct *n; 3696 int work, weight; 3697 3698 /* If softirq window is exhuasted then punt. 3699 * Allow this to run for 2 jiffies since which will allow 3700 * an average latency of 1.5/HZ. 3701 */ 3702 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3703 goto softnet_break; 3704 3705 local_irq_enable(); 3706 3707 /* Even though interrupts have been re-enabled, this 3708 * access is safe because interrupts can only add new 3709 * entries to the tail of this list, and only ->poll() 3710 * calls can remove this head entry from the list. 3711 */ 3712 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3713 3714 have = netpoll_poll_lock(n); 3715 3716 weight = n->weight; 3717 3718 /* This NAPI_STATE_SCHED test is for avoiding a race 3719 * with netpoll's poll_napi(). Only the entity which 3720 * obtains the lock and sees NAPI_STATE_SCHED set will 3721 * actually make the ->poll() call. Therefore we avoid 3722 * accidently calling ->poll() when NAPI is not scheduled. 3723 */ 3724 work = 0; 3725 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3726 work = n->poll(n, weight); 3727 trace_napi_poll(n); 3728 } 3729 3730 WARN_ON_ONCE(work > weight); 3731 3732 budget -= work; 3733 3734 local_irq_disable(); 3735 3736 /* Drivers must not modify the NAPI state if they 3737 * consume the entire weight. In such cases this code 3738 * still "owns" the NAPI instance and therefore can 3739 * move the instance around on the list at-will. 3740 */ 3741 if (unlikely(work == weight)) { 3742 if (unlikely(napi_disable_pending(n))) { 3743 local_irq_enable(); 3744 napi_complete(n); 3745 local_irq_disable(); 3746 } else 3747 list_move_tail(&n->poll_list, &sd->poll_list); 3748 } 3749 3750 netpoll_poll_unlock(have); 3751 } 3752 out: 3753 net_rps_action_and_irq_enable(sd); 3754 3755 #ifdef CONFIG_NET_DMA 3756 /* 3757 * There may not be any more sk_buffs coming right now, so push 3758 * any pending DMA copies to hardware 3759 */ 3760 dma_issue_pending_all(); 3761 #endif 3762 3763 return; 3764 3765 softnet_break: 3766 sd->time_squeeze++; 3767 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3768 goto out; 3769 } 3770 3771 static gifconf_func_t *gifconf_list[NPROTO]; 3772 3773 /** 3774 * register_gifconf - register a SIOCGIF handler 3775 * @family: Address family 3776 * @gifconf: Function handler 3777 * 3778 * Register protocol dependent address dumping routines. The handler 3779 * that is passed must not be freed or reused until it has been replaced 3780 * by another handler. 3781 */ 3782 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3783 { 3784 if (family >= NPROTO) 3785 return -EINVAL; 3786 gifconf_list[family] = gifconf; 3787 return 0; 3788 } 3789 EXPORT_SYMBOL(register_gifconf); 3790 3791 3792 /* 3793 * Map an interface index to its name (SIOCGIFNAME) 3794 */ 3795 3796 /* 3797 * We need this ioctl for efficient implementation of the 3798 * if_indextoname() function required by the IPv6 API. Without 3799 * it, we would have to search all the interfaces to find a 3800 * match. --pb 3801 */ 3802 3803 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3804 { 3805 struct net_device *dev; 3806 struct ifreq ifr; 3807 3808 /* 3809 * Fetch the caller's info block. 3810 */ 3811 3812 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3813 return -EFAULT; 3814 3815 rcu_read_lock(); 3816 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3817 if (!dev) { 3818 rcu_read_unlock(); 3819 return -ENODEV; 3820 } 3821 3822 strcpy(ifr.ifr_name, dev->name); 3823 rcu_read_unlock(); 3824 3825 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3826 return -EFAULT; 3827 return 0; 3828 } 3829 3830 /* 3831 * Perform a SIOCGIFCONF call. This structure will change 3832 * size eventually, and there is nothing I can do about it. 3833 * Thus we will need a 'compatibility mode'. 3834 */ 3835 3836 static int dev_ifconf(struct net *net, char __user *arg) 3837 { 3838 struct ifconf ifc; 3839 struct net_device *dev; 3840 char __user *pos; 3841 int len; 3842 int total; 3843 int i; 3844 3845 /* 3846 * Fetch the caller's info block. 3847 */ 3848 3849 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3850 return -EFAULT; 3851 3852 pos = ifc.ifc_buf; 3853 len = ifc.ifc_len; 3854 3855 /* 3856 * Loop over the interfaces, and write an info block for each. 3857 */ 3858 3859 total = 0; 3860 for_each_netdev(net, dev) { 3861 for (i = 0; i < NPROTO; i++) { 3862 if (gifconf_list[i]) { 3863 int done; 3864 if (!pos) 3865 done = gifconf_list[i](dev, NULL, 0); 3866 else 3867 done = gifconf_list[i](dev, pos + total, 3868 len - total); 3869 if (done < 0) 3870 return -EFAULT; 3871 total += done; 3872 } 3873 } 3874 } 3875 3876 /* 3877 * All done. Write the updated control block back to the caller. 3878 */ 3879 ifc.ifc_len = total; 3880 3881 /* 3882 * Both BSD and Solaris return 0 here, so we do too. 3883 */ 3884 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3885 } 3886 3887 #ifdef CONFIG_PROC_FS 3888 /* 3889 * This is invoked by the /proc filesystem handler to display a device 3890 * in detail. 3891 */ 3892 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3893 __acquires(RCU) 3894 { 3895 struct net *net = seq_file_net(seq); 3896 loff_t off; 3897 struct net_device *dev; 3898 3899 rcu_read_lock(); 3900 if (!*pos) 3901 return SEQ_START_TOKEN; 3902 3903 off = 1; 3904 for_each_netdev_rcu(net, dev) 3905 if (off++ == *pos) 3906 return dev; 3907 3908 return NULL; 3909 } 3910 3911 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3912 { 3913 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3914 first_net_device(seq_file_net(seq)) : 3915 next_net_device((struct net_device *)v); 3916 3917 ++*pos; 3918 return rcu_dereference(dev); 3919 } 3920 3921 void dev_seq_stop(struct seq_file *seq, void *v) 3922 __releases(RCU) 3923 { 3924 rcu_read_unlock(); 3925 } 3926 3927 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3928 { 3929 struct rtnl_link_stats64 temp; 3930 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 3931 3932 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 3933 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 3934 dev->name, stats->rx_bytes, stats->rx_packets, 3935 stats->rx_errors, 3936 stats->rx_dropped + stats->rx_missed_errors, 3937 stats->rx_fifo_errors, 3938 stats->rx_length_errors + stats->rx_over_errors + 3939 stats->rx_crc_errors + stats->rx_frame_errors, 3940 stats->rx_compressed, stats->multicast, 3941 stats->tx_bytes, stats->tx_packets, 3942 stats->tx_errors, stats->tx_dropped, 3943 stats->tx_fifo_errors, stats->collisions, 3944 stats->tx_carrier_errors + 3945 stats->tx_aborted_errors + 3946 stats->tx_window_errors + 3947 stats->tx_heartbeat_errors, 3948 stats->tx_compressed); 3949 } 3950 3951 /* 3952 * Called from the PROCfs module. This now uses the new arbitrary sized 3953 * /proc/net interface to create /proc/net/dev 3954 */ 3955 static int dev_seq_show(struct seq_file *seq, void *v) 3956 { 3957 if (v == SEQ_START_TOKEN) 3958 seq_puts(seq, "Inter-| Receive " 3959 " | Transmit\n" 3960 " face |bytes packets errs drop fifo frame " 3961 "compressed multicast|bytes packets errs " 3962 "drop fifo colls carrier compressed\n"); 3963 else 3964 dev_seq_printf_stats(seq, v); 3965 return 0; 3966 } 3967 3968 static struct softnet_data *softnet_get_online(loff_t *pos) 3969 { 3970 struct softnet_data *sd = NULL; 3971 3972 while (*pos < nr_cpu_ids) 3973 if (cpu_online(*pos)) { 3974 sd = &per_cpu(softnet_data, *pos); 3975 break; 3976 } else 3977 ++*pos; 3978 return sd; 3979 } 3980 3981 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3982 { 3983 return softnet_get_online(pos); 3984 } 3985 3986 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3987 { 3988 ++*pos; 3989 return softnet_get_online(pos); 3990 } 3991 3992 static void softnet_seq_stop(struct seq_file *seq, void *v) 3993 { 3994 } 3995 3996 static int softnet_seq_show(struct seq_file *seq, void *v) 3997 { 3998 struct softnet_data *sd = v; 3999 4000 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4001 sd->processed, sd->dropped, sd->time_squeeze, 0, 4002 0, 0, 0, 0, /* was fastroute */ 4003 sd->cpu_collision, sd->received_rps); 4004 return 0; 4005 } 4006 4007 static const struct seq_operations dev_seq_ops = { 4008 .start = dev_seq_start, 4009 .next = dev_seq_next, 4010 .stop = dev_seq_stop, 4011 .show = dev_seq_show, 4012 }; 4013 4014 static int dev_seq_open(struct inode *inode, struct file *file) 4015 { 4016 return seq_open_net(inode, file, &dev_seq_ops, 4017 sizeof(struct seq_net_private)); 4018 } 4019 4020 static const struct file_operations dev_seq_fops = { 4021 .owner = THIS_MODULE, 4022 .open = dev_seq_open, 4023 .read = seq_read, 4024 .llseek = seq_lseek, 4025 .release = seq_release_net, 4026 }; 4027 4028 static const struct seq_operations softnet_seq_ops = { 4029 .start = softnet_seq_start, 4030 .next = softnet_seq_next, 4031 .stop = softnet_seq_stop, 4032 .show = softnet_seq_show, 4033 }; 4034 4035 static int softnet_seq_open(struct inode *inode, struct file *file) 4036 { 4037 return seq_open(file, &softnet_seq_ops); 4038 } 4039 4040 static const struct file_operations softnet_seq_fops = { 4041 .owner = THIS_MODULE, 4042 .open = softnet_seq_open, 4043 .read = seq_read, 4044 .llseek = seq_lseek, 4045 .release = seq_release, 4046 }; 4047 4048 static void *ptype_get_idx(loff_t pos) 4049 { 4050 struct packet_type *pt = NULL; 4051 loff_t i = 0; 4052 int t; 4053 4054 list_for_each_entry_rcu(pt, &ptype_all, list) { 4055 if (i == pos) 4056 return pt; 4057 ++i; 4058 } 4059 4060 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4061 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4062 if (i == pos) 4063 return pt; 4064 ++i; 4065 } 4066 } 4067 return NULL; 4068 } 4069 4070 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4071 __acquires(RCU) 4072 { 4073 rcu_read_lock(); 4074 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4075 } 4076 4077 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4078 { 4079 struct packet_type *pt; 4080 struct list_head *nxt; 4081 int hash; 4082 4083 ++*pos; 4084 if (v == SEQ_START_TOKEN) 4085 return ptype_get_idx(0); 4086 4087 pt = v; 4088 nxt = pt->list.next; 4089 if (pt->type == htons(ETH_P_ALL)) { 4090 if (nxt != &ptype_all) 4091 goto found; 4092 hash = 0; 4093 nxt = ptype_base[0].next; 4094 } else 4095 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4096 4097 while (nxt == &ptype_base[hash]) { 4098 if (++hash >= PTYPE_HASH_SIZE) 4099 return NULL; 4100 nxt = ptype_base[hash].next; 4101 } 4102 found: 4103 return list_entry(nxt, struct packet_type, list); 4104 } 4105 4106 static void ptype_seq_stop(struct seq_file *seq, void *v) 4107 __releases(RCU) 4108 { 4109 rcu_read_unlock(); 4110 } 4111 4112 static int ptype_seq_show(struct seq_file *seq, void *v) 4113 { 4114 struct packet_type *pt = v; 4115 4116 if (v == SEQ_START_TOKEN) 4117 seq_puts(seq, "Type Device Function\n"); 4118 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4119 if (pt->type == htons(ETH_P_ALL)) 4120 seq_puts(seq, "ALL "); 4121 else 4122 seq_printf(seq, "%04x", ntohs(pt->type)); 4123 4124 seq_printf(seq, " %-8s %pF\n", 4125 pt->dev ? pt->dev->name : "", pt->func); 4126 } 4127 4128 return 0; 4129 } 4130 4131 static const struct seq_operations ptype_seq_ops = { 4132 .start = ptype_seq_start, 4133 .next = ptype_seq_next, 4134 .stop = ptype_seq_stop, 4135 .show = ptype_seq_show, 4136 }; 4137 4138 static int ptype_seq_open(struct inode *inode, struct file *file) 4139 { 4140 return seq_open_net(inode, file, &ptype_seq_ops, 4141 sizeof(struct seq_net_private)); 4142 } 4143 4144 static const struct file_operations ptype_seq_fops = { 4145 .owner = THIS_MODULE, 4146 .open = ptype_seq_open, 4147 .read = seq_read, 4148 .llseek = seq_lseek, 4149 .release = seq_release_net, 4150 }; 4151 4152 4153 static int __net_init dev_proc_net_init(struct net *net) 4154 { 4155 int rc = -ENOMEM; 4156 4157 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4158 goto out; 4159 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4160 goto out_dev; 4161 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4162 goto out_softnet; 4163 4164 if (wext_proc_init(net)) 4165 goto out_ptype; 4166 rc = 0; 4167 out: 4168 return rc; 4169 out_ptype: 4170 proc_net_remove(net, "ptype"); 4171 out_softnet: 4172 proc_net_remove(net, "softnet_stat"); 4173 out_dev: 4174 proc_net_remove(net, "dev"); 4175 goto out; 4176 } 4177 4178 static void __net_exit dev_proc_net_exit(struct net *net) 4179 { 4180 wext_proc_exit(net); 4181 4182 proc_net_remove(net, "ptype"); 4183 proc_net_remove(net, "softnet_stat"); 4184 proc_net_remove(net, "dev"); 4185 } 4186 4187 static struct pernet_operations __net_initdata dev_proc_ops = { 4188 .init = dev_proc_net_init, 4189 .exit = dev_proc_net_exit, 4190 }; 4191 4192 static int __init dev_proc_init(void) 4193 { 4194 return register_pernet_subsys(&dev_proc_ops); 4195 } 4196 #else 4197 #define dev_proc_init() 0 4198 #endif /* CONFIG_PROC_FS */ 4199 4200 4201 /** 4202 * netdev_set_master - set up master/slave pair 4203 * @slave: slave device 4204 * @master: new master device 4205 * 4206 * Changes the master device of the slave. Pass %NULL to break the 4207 * bonding. The caller must hold the RTNL semaphore. On a failure 4208 * a negative errno code is returned. On success the reference counts 4209 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 4210 * function returns zero. 4211 */ 4212 int netdev_set_master(struct net_device *slave, struct net_device *master) 4213 { 4214 struct net_device *old = slave->master; 4215 4216 ASSERT_RTNL(); 4217 4218 if (master) { 4219 if (old) 4220 return -EBUSY; 4221 dev_hold(master); 4222 } 4223 4224 slave->master = master; 4225 4226 if (old) { 4227 synchronize_net(); 4228 dev_put(old); 4229 } 4230 if (master) 4231 slave->flags |= IFF_SLAVE; 4232 else 4233 slave->flags &= ~IFF_SLAVE; 4234 4235 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4236 return 0; 4237 } 4238 EXPORT_SYMBOL(netdev_set_master); 4239 4240 static void dev_change_rx_flags(struct net_device *dev, int flags) 4241 { 4242 const struct net_device_ops *ops = dev->netdev_ops; 4243 4244 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4245 ops->ndo_change_rx_flags(dev, flags); 4246 } 4247 4248 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4249 { 4250 unsigned short old_flags = dev->flags; 4251 uid_t uid; 4252 gid_t gid; 4253 4254 ASSERT_RTNL(); 4255 4256 dev->flags |= IFF_PROMISC; 4257 dev->promiscuity += inc; 4258 if (dev->promiscuity == 0) { 4259 /* 4260 * Avoid overflow. 4261 * If inc causes overflow, untouch promisc and return error. 4262 */ 4263 if (inc < 0) 4264 dev->flags &= ~IFF_PROMISC; 4265 else { 4266 dev->promiscuity -= inc; 4267 printk(KERN_WARNING "%s: promiscuity touches roof, " 4268 "set promiscuity failed, promiscuity feature " 4269 "of device might be broken.\n", dev->name); 4270 return -EOVERFLOW; 4271 } 4272 } 4273 if (dev->flags != old_flags) { 4274 printk(KERN_INFO "device %s %s promiscuous mode\n", 4275 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4276 "left"); 4277 if (audit_enabled) { 4278 current_uid_gid(&uid, &gid); 4279 audit_log(current->audit_context, GFP_ATOMIC, 4280 AUDIT_ANOM_PROMISCUOUS, 4281 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4282 dev->name, (dev->flags & IFF_PROMISC), 4283 (old_flags & IFF_PROMISC), 4284 audit_get_loginuid(current), 4285 uid, gid, 4286 audit_get_sessionid(current)); 4287 } 4288 4289 dev_change_rx_flags(dev, IFF_PROMISC); 4290 } 4291 return 0; 4292 } 4293 4294 /** 4295 * dev_set_promiscuity - update promiscuity count on a device 4296 * @dev: device 4297 * @inc: modifier 4298 * 4299 * Add or remove promiscuity from a device. While the count in the device 4300 * remains above zero the interface remains promiscuous. Once it hits zero 4301 * the device reverts back to normal filtering operation. A negative inc 4302 * value is used to drop promiscuity on the device. 4303 * Return 0 if successful or a negative errno code on error. 4304 */ 4305 int dev_set_promiscuity(struct net_device *dev, int inc) 4306 { 4307 unsigned short old_flags = dev->flags; 4308 int err; 4309 4310 err = __dev_set_promiscuity(dev, inc); 4311 if (err < 0) 4312 return err; 4313 if (dev->flags != old_flags) 4314 dev_set_rx_mode(dev); 4315 return err; 4316 } 4317 EXPORT_SYMBOL(dev_set_promiscuity); 4318 4319 /** 4320 * dev_set_allmulti - update allmulti count on a device 4321 * @dev: device 4322 * @inc: modifier 4323 * 4324 * Add or remove reception of all multicast frames to a device. While the 4325 * count in the device remains above zero the interface remains listening 4326 * to all interfaces. Once it hits zero the device reverts back to normal 4327 * filtering operation. A negative @inc value is used to drop the counter 4328 * when releasing a resource needing all multicasts. 4329 * Return 0 if successful or a negative errno code on error. 4330 */ 4331 4332 int dev_set_allmulti(struct net_device *dev, int inc) 4333 { 4334 unsigned short old_flags = dev->flags; 4335 4336 ASSERT_RTNL(); 4337 4338 dev->flags |= IFF_ALLMULTI; 4339 dev->allmulti += inc; 4340 if (dev->allmulti == 0) { 4341 /* 4342 * Avoid overflow. 4343 * If inc causes overflow, untouch allmulti and return error. 4344 */ 4345 if (inc < 0) 4346 dev->flags &= ~IFF_ALLMULTI; 4347 else { 4348 dev->allmulti -= inc; 4349 printk(KERN_WARNING "%s: allmulti touches roof, " 4350 "set allmulti failed, allmulti feature of " 4351 "device might be broken.\n", dev->name); 4352 return -EOVERFLOW; 4353 } 4354 } 4355 if (dev->flags ^ old_flags) { 4356 dev_change_rx_flags(dev, IFF_ALLMULTI); 4357 dev_set_rx_mode(dev); 4358 } 4359 return 0; 4360 } 4361 EXPORT_SYMBOL(dev_set_allmulti); 4362 4363 /* 4364 * Upload unicast and multicast address lists to device and 4365 * configure RX filtering. When the device doesn't support unicast 4366 * filtering it is put in promiscuous mode while unicast addresses 4367 * are present. 4368 */ 4369 void __dev_set_rx_mode(struct net_device *dev) 4370 { 4371 const struct net_device_ops *ops = dev->netdev_ops; 4372 4373 /* dev_open will call this function so the list will stay sane. */ 4374 if (!(dev->flags&IFF_UP)) 4375 return; 4376 4377 if (!netif_device_present(dev)) 4378 return; 4379 4380 if (ops->ndo_set_rx_mode) 4381 ops->ndo_set_rx_mode(dev); 4382 else { 4383 /* Unicast addresses changes may only happen under the rtnl, 4384 * therefore calling __dev_set_promiscuity here is safe. 4385 */ 4386 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4387 __dev_set_promiscuity(dev, 1); 4388 dev->uc_promisc = 1; 4389 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4390 __dev_set_promiscuity(dev, -1); 4391 dev->uc_promisc = 0; 4392 } 4393 4394 if (ops->ndo_set_multicast_list) 4395 ops->ndo_set_multicast_list(dev); 4396 } 4397 } 4398 4399 void dev_set_rx_mode(struct net_device *dev) 4400 { 4401 netif_addr_lock_bh(dev); 4402 __dev_set_rx_mode(dev); 4403 netif_addr_unlock_bh(dev); 4404 } 4405 4406 /** 4407 * dev_get_flags - get flags reported to userspace 4408 * @dev: device 4409 * 4410 * Get the combination of flag bits exported through APIs to userspace. 4411 */ 4412 unsigned dev_get_flags(const struct net_device *dev) 4413 { 4414 unsigned flags; 4415 4416 flags = (dev->flags & ~(IFF_PROMISC | 4417 IFF_ALLMULTI | 4418 IFF_RUNNING | 4419 IFF_LOWER_UP | 4420 IFF_DORMANT)) | 4421 (dev->gflags & (IFF_PROMISC | 4422 IFF_ALLMULTI)); 4423 4424 if (netif_running(dev)) { 4425 if (netif_oper_up(dev)) 4426 flags |= IFF_RUNNING; 4427 if (netif_carrier_ok(dev)) 4428 flags |= IFF_LOWER_UP; 4429 if (netif_dormant(dev)) 4430 flags |= IFF_DORMANT; 4431 } 4432 4433 return flags; 4434 } 4435 EXPORT_SYMBOL(dev_get_flags); 4436 4437 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4438 { 4439 int old_flags = dev->flags; 4440 int ret; 4441 4442 ASSERT_RTNL(); 4443 4444 /* 4445 * Set the flags on our device. 4446 */ 4447 4448 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4449 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4450 IFF_AUTOMEDIA)) | 4451 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4452 IFF_ALLMULTI)); 4453 4454 /* 4455 * Load in the correct multicast list now the flags have changed. 4456 */ 4457 4458 if ((old_flags ^ flags) & IFF_MULTICAST) 4459 dev_change_rx_flags(dev, IFF_MULTICAST); 4460 4461 dev_set_rx_mode(dev); 4462 4463 /* 4464 * Have we downed the interface. We handle IFF_UP ourselves 4465 * according to user attempts to set it, rather than blindly 4466 * setting it. 4467 */ 4468 4469 ret = 0; 4470 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4471 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4472 4473 if (!ret) 4474 dev_set_rx_mode(dev); 4475 } 4476 4477 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4478 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4479 4480 dev->gflags ^= IFF_PROMISC; 4481 dev_set_promiscuity(dev, inc); 4482 } 4483 4484 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4485 is important. Some (broken) drivers set IFF_PROMISC, when 4486 IFF_ALLMULTI is requested not asking us and not reporting. 4487 */ 4488 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4489 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4490 4491 dev->gflags ^= IFF_ALLMULTI; 4492 dev_set_allmulti(dev, inc); 4493 } 4494 4495 return ret; 4496 } 4497 4498 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4499 { 4500 unsigned int changes = dev->flags ^ old_flags; 4501 4502 if (changes & IFF_UP) { 4503 if (dev->flags & IFF_UP) 4504 call_netdevice_notifiers(NETDEV_UP, dev); 4505 else 4506 call_netdevice_notifiers(NETDEV_DOWN, dev); 4507 } 4508 4509 if (dev->flags & IFF_UP && 4510 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4511 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4512 } 4513 4514 /** 4515 * dev_change_flags - change device settings 4516 * @dev: device 4517 * @flags: device state flags 4518 * 4519 * Change settings on device based state flags. The flags are 4520 * in the userspace exported format. 4521 */ 4522 int dev_change_flags(struct net_device *dev, unsigned flags) 4523 { 4524 int ret, changes; 4525 int old_flags = dev->flags; 4526 4527 ret = __dev_change_flags(dev, flags); 4528 if (ret < 0) 4529 return ret; 4530 4531 changes = old_flags ^ dev->flags; 4532 if (changes) 4533 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4534 4535 __dev_notify_flags(dev, old_flags); 4536 return ret; 4537 } 4538 EXPORT_SYMBOL(dev_change_flags); 4539 4540 /** 4541 * dev_set_mtu - Change maximum transfer unit 4542 * @dev: device 4543 * @new_mtu: new transfer unit 4544 * 4545 * Change the maximum transfer size of the network device. 4546 */ 4547 int dev_set_mtu(struct net_device *dev, int new_mtu) 4548 { 4549 const struct net_device_ops *ops = dev->netdev_ops; 4550 int err; 4551 4552 if (new_mtu == dev->mtu) 4553 return 0; 4554 4555 /* MTU must be positive. */ 4556 if (new_mtu < 0) 4557 return -EINVAL; 4558 4559 if (!netif_device_present(dev)) 4560 return -ENODEV; 4561 4562 err = 0; 4563 if (ops->ndo_change_mtu) 4564 err = ops->ndo_change_mtu(dev, new_mtu); 4565 else 4566 dev->mtu = new_mtu; 4567 4568 if (!err && dev->flags & IFF_UP) 4569 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4570 return err; 4571 } 4572 EXPORT_SYMBOL(dev_set_mtu); 4573 4574 /** 4575 * dev_set_group - Change group this device belongs to 4576 * @dev: device 4577 * @new_group: group this device should belong to 4578 */ 4579 void dev_set_group(struct net_device *dev, int new_group) 4580 { 4581 dev->group = new_group; 4582 } 4583 EXPORT_SYMBOL(dev_set_group); 4584 4585 /** 4586 * dev_set_mac_address - Change Media Access Control Address 4587 * @dev: device 4588 * @sa: new address 4589 * 4590 * Change the hardware (MAC) address of the device 4591 */ 4592 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4593 { 4594 const struct net_device_ops *ops = dev->netdev_ops; 4595 int err; 4596 4597 if (!ops->ndo_set_mac_address) 4598 return -EOPNOTSUPP; 4599 if (sa->sa_family != dev->type) 4600 return -EINVAL; 4601 if (!netif_device_present(dev)) 4602 return -ENODEV; 4603 err = ops->ndo_set_mac_address(dev, sa); 4604 if (!err) 4605 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4606 return err; 4607 } 4608 EXPORT_SYMBOL(dev_set_mac_address); 4609 4610 /* 4611 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4612 */ 4613 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4614 { 4615 int err; 4616 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4617 4618 if (!dev) 4619 return -ENODEV; 4620 4621 switch (cmd) { 4622 case SIOCGIFFLAGS: /* Get interface flags */ 4623 ifr->ifr_flags = (short) dev_get_flags(dev); 4624 return 0; 4625 4626 case SIOCGIFMETRIC: /* Get the metric on the interface 4627 (currently unused) */ 4628 ifr->ifr_metric = 0; 4629 return 0; 4630 4631 case SIOCGIFMTU: /* Get the MTU of a device */ 4632 ifr->ifr_mtu = dev->mtu; 4633 return 0; 4634 4635 case SIOCGIFHWADDR: 4636 if (!dev->addr_len) 4637 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4638 else 4639 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4640 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4641 ifr->ifr_hwaddr.sa_family = dev->type; 4642 return 0; 4643 4644 case SIOCGIFSLAVE: 4645 err = -EINVAL; 4646 break; 4647 4648 case SIOCGIFMAP: 4649 ifr->ifr_map.mem_start = dev->mem_start; 4650 ifr->ifr_map.mem_end = dev->mem_end; 4651 ifr->ifr_map.base_addr = dev->base_addr; 4652 ifr->ifr_map.irq = dev->irq; 4653 ifr->ifr_map.dma = dev->dma; 4654 ifr->ifr_map.port = dev->if_port; 4655 return 0; 4656 4657 case SIOCGIFINDEX: 4658 ifr->ifr_ifindex = dev->ifindex; 4659 return 0; 4660 4661 case SIOCGIFTXQLEN: 4662 ifr->ifr_qlen = dev->tx_queue_len; 4663 return 0; 4664 4665 default: 4666 /* dev_ioctl() should ensure this case 4667 * is never reached 4668 */ 4669 WARN_ON(1); 4670 err = -EINVAL; 4671 break; 4672 4673 } 4674 return err; 4675 } 4676 4677 /* 4678 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4679 */ 4680 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4681 { 4682 int err; 4683 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4684 const struct net_device_ops *ops; 4685 4686 if (!dev) 4687 return -ENODEV; 4688 4689 ops = dev->netdev_ops; 4690 4691 switch (cmd) { 4692 case SIOCSIFFLAGS: /* Set interface flags */ 4693 return dev_change_flags(dev, ifr->ifr_flags); 4694 4695 case SIOCSIFMETRIC: /* Set the metric on the interface 4696 (currently unused) */ 4697 return -EOPNOTSUPP; 4698 4699 case SIOCSIFMTU: /* Set the MTU of a device */ 4700 return dev_set_mtu(dev, ifr->ifr_mtu); 4701 4702 case SIOCSIFHWADDR: 4703 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4704 4705 case SIOCSIFHWBROADCAST: 4706 if (ifr->ifr_hwaddr.sa_family != dev->type) 4707 return -EINVAL; 4708 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4709 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4710 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4711 return 0; 4712 4713 case SIOCSIFMAP: 4714 if (ops->ndo_set_config) { 4715 if (!netif_device_present(dev)) 4716 return -ENODEV; 4717 return ops->ndo_set_config(dev, &ifr->ifr_map); 4718 } 4719 return -EOPNOTSUPP; 4720 4721 case SIOCADDMULTI: 4722 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4723 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4724 return -EINVAL; 4725 if (!netif_device_present(dev)) 4726 return -ENODEV; 4727 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4728 4729 case SIOCDELMULTI: 4730 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4731 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4732 return -EINVAL; 4733 if (!netif_device_present(dev)) 4734 return -ENODEV; 4735 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4736 4737 case SIOCSIFTXQLEN: 4738 if (ifr->ifr_qlen < 0) 4739 return -EINVAL; 4740 dev->tx_queue_len = ifr->ifr_qlen; 4741 return 0; 4742 4743 case SIOCSIFNAME: 4744 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4745 return dev_change_name(dev, ifr->ifr_newname); 4746 4747 /* 4748 * Unknown or private ioctl 4749 */ 4750 default: 4751 if ((cmd >= SIOCDEVPRIVATE && 4752 cmd <= SIOCDEVPRIVATE + 15) || 4753 cmd == SIOCBONDENSLAVE || 4754 cmd == SIOCBONDRELEASE || 4755 cmd == SIOCBONDSETHWADDR || 4756 cmd == SIOCBONDSLAVEINFOQUERY || 4757 cmd == SIOCBONDINFOQUERY || 4758 cmd == SIOCBONDCHANGEACTIVE || 4759 cmd == SIOCGMIIPHY || 4760 cmd == SIOCGMIIREG || 4761 cmd == SIOCSMIIREG || 4762 cmd == SIOCBRADDIF || 4763 cmd == SIOCBRDELIF || 4764 cmd == SIOCSHWTSTAMP || 4765 cmd == SIOCWANDEV) { 4766 err = -EOPNOTSUPP; 4767 if (ops->ndo_do_ioctl) { 4768 if (netif_device_present(dev)) 4769 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4770 else 4771 err = -ENODEV; 4772 } 4773 } else 4774 err = -EINVAL; 4775 4776 } 4777 return err; 4778 } 4779 4780 /* 4781 * This function handles all "interface"-type I/O control requests. The actual 4782 * 'doing' part of this is dev_ifsioc above. 4783 */ 4784 4785 /** 4786 * dev_ioctl - network device ioctl 4787 * @net: the applicable net namespace 4788 * @cmd: command to issue 4789 * @arg: pointer to a struct ifreq in user space 4790 * 4791 * Issue ioctl functions to devices. This is normally called by the 4792 * user space syscall interfaces but can sometimes be useful for 4793 * other purposes. The return value is the return from the syscall if 4794 * positive or a negative errno code on error. 4795 */ 4796 4797 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4798 { 4799 struct ifreq ifr; 4800 int ret; 4801 char *colon; 4802 4803 /* One special case: SIOCGIFCONF takes ifconf argument 4804 and requires shared lock, because it sleeps writing 4805 to user space. 4806 */ 4807 4808 if (cmd == SIOCGIFCONF) { 4809 rtnl_lock(); 4810 ret = dev_ifconf(net, (char __user *) arg); 4811 rtnl_unlock(); 4812 return ret; 4813 } 4814 if (cmd == SIOCGIFNAME) 4815 return dev_ifname(net, (struct ifreq __user *)arg); 4816 4817 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4818 return -EFAULT; 4819 4820 ifr.ifr_name[IFNAMSIZ-1] = 0; 4821 4822 colon = strchr(ifr.ifr_name, ':'); 4823 if (colon) 4824 *colon = 0; 4825 4826 /* 4827 * See which interface the caller is talking about. 4828 */ 4829 4830 switch (cmd) { 4831 /* 4832 * These ioctl calls: 4833 * - can be done by all. 4834 * - atomic and do not require locking. 4835 * - return a value 4836 */ 4837 case SIOCGIFFLAGS: 4838 case SIOCGIFMETRIC: 4839 case SIOCGIFMTU: 4840 case SIOCGIFHWADDR: 4841 case SIOCGIFSLAVE: 4842 case SIOCGIFMAP: 4843 case SIOCGIFINDEX: 4844 case SIOCGIFTXQLEN: 4845 dev_load(net, ifr.ifr_name); 4846 rcu_read_lock(); 4847 ret = dev_ifsioc_locked(net, &ifr, cmd); 4848 rcu_read_unlock(); 4849 if (!ret) { 4850 if (colon) 4851 *colon = ':'; 4852 if (copy_to_user(arg, &ifr, 4853 sizeof(struct ifreq))) 4854 ret = -EFAULT; 4855 } 4856 return ret; 4857 4858 case SIOCETHTOOL: 4859 dev_load(net, ifr.ifr_name); 4860 rtnl_lock(); 4861 ret = dev_ethtool(net, &ifr); 4862 rtnl_unlock(); 4863 if (!ret) { 4864 if (colon) 4865 *colon = ':'; 4866 if (copy_to_user(arg, &ifr, 4867 sizeof(struct ifreq))) 4868 ret = -EFAULT; 4869 } 4870 return ret; 4871 4872 /* 4873 * These ioctl calls: 4874 * - require superuser power. 4875 * - require strict serialization. 4876 * - return a value 4877 */ 4878 case SIOCGMIIPHY: 4879 case SIOCGMIIREG: 4880 case SIOCSIFNAME: 4881 if (!capable(CAP_NET_ADMIN)) 4882 return -EPERM; 4883 dev_load(net, ifr.ifr_name); 4884 rtnl_lock(); 4885 ret = dev_ifsioc(net, &ifr, cmd); 4886 rtnl_unlock(); 4887 if (!ret) { 4888 if (colon) 4889 *colon = ':'; 4890 if (copy_to_user(arg, &ifr, 4891 sizeof(struct ifreq))) 4892 ret = -EFAULT; 4893 } 4894 return ret; 4895 4896 /* 4897 * These ioctl calls: 4898 * - require superuser power. 4899 * - require strict serialization. 4900 * - do not return a value 4901 */ 4902 case SIOCSIFFLAGS: 4903 case SIOCSIFMETRIC: 4904 case SIOCSIFMTU: 4905 case SIOCSIFMAP: 4906 case SIOCSIFHWADDR: 4907 case SIOCSIFSLAVE: 4908 case SIOCADDMULTI: 4909 case SIOCDELMULTI: 4910 case SIOCSIFHWBROADCAST: 4911 case SIOCSIFTXQLEN: 4912 case SIOCSMIIREG: 4913 case SIOCBONDENSLAVE: 4914 case SIOCBONDRELEASE: 4915 case SIOCBONDSETHWADDR: 4916 case SIOCBONDCHANGEACTIVE: 4917 case SIOCBRADDIF: 4918 case SIOCBRDELIF: 4919 case SIOCSHWTSTAMP: 4920 if (!capable(CAP_NET_ADMIN)) 4921 return -EPERM; 4922 /* fall through */ 4923 case SIOCBONDSLAVEINFOQUERY: 4924 case SIOCBONDINFOQUERY: 4925 dev_load(net, ifr.ifr_name); 4926 rtnl_lock(); 4927 ret = dev_ifsioc(net, &ifr, cmd); 4928 rtnl_unlock(); 4929 return ret; 4930 4931 case SIOCGIFMEM: 4932 /* Get the per device memory space. We can add this but 4933 * currently do not support it */ 4934 case SIOCSIFMEM: 4935 /* Set the per device memory buffer space. 4936 * Not applicable in our case */ 4937 case SIOCSIFLINK: 4938 return -EINVAL; 4939 4940 /* 4941 * Unknown or private ioctl. 4942 */ 4943 default: 4944 if (cmd == SIOCWANDEV || 4945 (cmd >= SIOCDEVPRIVATE && 4946 cmd <= SIOCDEVPRIVATE + 15)) { 4947 dev_load(net, ifr.ifr_name); 4948 rtnl_lock(); 4949 ret = dev_ifsioc(net, &ifr, cmd); 4950 rtnl_unlock(); 4951 if (!ret && copy_to_user(arg, &ifr, 4952 sizeof(struct ifreq))) 4953 ret = -EFAULT; 4954 return ret; 4955 } 4956 /* Take care of Wireless Extensions */ 4957 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4958 return wext_handle_ioctl(net, &ifr, cmd, arg); 4959 return -EINVAL; 4960 } 4961 } 4962 4963 4964 /** 4965 * dev_new_index - allocate an ifindex 4966 * @net: the applicable net namespace 4967 * 4968 * Returns a suitable unique value for a new device interface 4969 * number. The caller must hold the rtnl semaphore or the 4970 * dev_base_lock to be sure it remains unique. 4971 */ 4972 static int dev_new_index(struct net *net) 4973 { 4974 static int ifindex; 4975 for (;;) { 4976 if (++ifindex <= 0) 4977 ifindex = 1; 4978 if (!__dev_get_by_index(net, ifindex)) 4979 return ifindex; 4980 } 4981 } 4982 4983 /* Delayed registration/unregisteration */ 4984 static LIST_HEAD(net_todo_list); 4985 4986 static void net_set_todo(struct net_device *dev) 4987 { 4988 list_add_tail(&dev->todo_list, &net_todo_list); 4989 } 4990 4991 static void rollback_registered_many(struct list_head *head) 4992 { 4993 struct net_device *dev, *tmp; 4994 4995 BUG_ON(dev_boot_phase); 4996 ASSERT_RTNL(); 4997 4998 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4999 /* Some devices call without registering 5000 * for initialization unwind. Remove those 5001 * devices and proceed with the remaining. 5002 */ 5003 if (dev->reg_state == NETREG_UNINITIALIZED) { 5004 pr_debug("unregister_netdevice: device %s/%p never " 5005 "was registered\n", dev->name, dev); 5006 5007 WARN_ON(1); 5008 list_del(&dev->unreg_list); 5009 continue; 5010 } 5011 5012 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5013 } 5014 5015 /* If device is running, close it first. */ 5016 dev_close_many(head); 5017 5018 list_for_each_entry(dev, head, unreg_list) { 5019 /* And unlink it from device chain. */ 5020 unlist_netdevice(dev); 5021 5022 dev->reg_state = NETREG_UNREGISTERING; 5023 } 5024 5025 synchronize_net(); 5026 5027 list_for_each_entry(dev, head, unreg_list) { 5028 /* Shutdown queueing discipline. */ 5029 dev_shutdown(dev); 5030 5031 5032 /* Notify protocols, that we are about to destroy 5033 this device. They should clean all the things. 5034 */ 5035 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5036 5037 if (!dev->rtnl_link_ops || 5038 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5039 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5040 5041 /* 5042 * Flush the unicast and multicast chains 5043 */ 5044 dev_uc_flush(dev); 5045 dev_mc_flush(dev); 5046 5047 if (dev->netdev_ops->ndo_uninit) 5048 dev->netdev_ops->ndo_uninit(dev); 5049 5050 /* Notifier chain MUST detach us from master device. */ 5051 WARN_ON(dev->master); 5052 5053 /* Remove entries from kobject tree */ 5054 netdev_unregister_kobject(dev); 5055 } 5056 5057 /* Process any work delayed until the end of the batch */ 5058 dev = list_first_entry(head, struct net_device, unreg_list); 5059 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5060 5061 rcu_barrier(); 5062 5063 list_for_each_entry(dev, head, unreg_list) 5064 dev_put(dev); 5065 } 5066 5067 static void rollback_registered(struct net_device *dev) 5068 { 5069 LIST_HEAD(single); 5070 5071 list_add(&dev->unreg_list, &single); 5072 rollback_registered_many(&single); 5073 } 5074 5075 unsigned long netdev_fix_features(unsigned long features, const char *name) 5076 { 5077 /* Fix illegal SG+CSUM combinations. */ 5078 if ((features & NETIF_F_SG) && 5079 !(features & NETIF_F_ALL_CSUM)) { 5080 if (name) 5081 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 5082 "checksum feature.\n", name); 5083 features &= ~NETIF_F_SG; 5084 } 5085 5086 /* TSO requires that SG is present as well. */ 5087 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 5088 if (name) 5089 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 5090 "SG feature.\n", name); 5091 features &= ~NETIF_F_TSO; 5092 } 5093 5094 if (features & NETIF_F_UFO) { 5095 /* maybe split UFO into V4 and V6? */ 5096 if (!((features & NETIF_F_GEN_CSUM) || 5097 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5098 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5099 if (name) 5100 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5101 "since no checksum offload features.\n", 5102 name); 5103 features &= ~NETIF_F_UFO; 5104 } 5105 5106 if (!(features & NETIF_F_SG)) { 5107 if (name) 5108 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5109 "since no NETIF_F_SG feature.\n", name); 5110 features &= ~NETIF_F_UFO; 5111 } 5112 } 5113 5114 return features; 5115 } 5116 EXPORT_SYMBOL(netdev_fix_features); 5117 5118 /** 5119 * netif_stacked_transfer_operstate - transfer operstate 5120 * @rootdev: the root or lower level device to transfer state from 5121 * @dev: the device to transfer operstate to 5122 * 5123 * Transfer operational state from root to device. This is normally 5124 * called when a stacking relationship exists between the root 5125 * device and the device(a leaf device). 5126 */ 5127 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5128 struct net_device *dev) 5129 { 5130 if (rootdev->operstate == IF_OPER_DORMANT) 5131 netif_dormant_on(dev); 5132 else 5133 netif_dormant_off(dev); 5134 5135 if (netif_carrier_ok(rootdev)) { 5136 if (!netif_carrier_ok(dev)) 5137 netif_carrier_on(dev); 5138 } else { 5139 if (netif_carrier_ok(dev)) 5140 netif_carrier_off(dev); 5141 } 5142 } 5143 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5144 5145 #ifdef CONFIG_RPS 5146 static int netif_alloc_rx_queues(struct net_device *dev) 5147 { 5148 unsigned int i, count = dev->num_rx_queues; 5149 struct netdev_rx_queue *rx; 5150 5151 BUG_ON(count < 1); 5152 5153 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5154 if (!rx) { 5155 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5156 return -ENOMEM; 5157 } 5158 dev->_rx = rx; 5159 5160 for (i = 0; i < count; i++) 5161 rx[i].dev = dev; 5162 return 0; 5163 } 5164 #endif 5165 5166 static void netdev_init_one_queue(struct net_device *dev, 5167 struct netdev_queue *queue, void *_unused) 5168 { 5169 /* Initialize queue lock */ 5170 spin_lock_init(&queue->_xmit_lock); 5171 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5172 queue->xmit_lock_owner = -1; 5173 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5174 queue->dev = dev; 5175 } 5176 5177 static int netif_alloc_netdev_queues(struct net_device *dev) 5178 { 5179 unsigned int count = dev->num_tx_queues; 5180 struct netdev_queue *tx; 5181 5182 BUG_ON(count < 1); 5183 5184 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5185 if (!tx) { 5186 pr_err("netdev: Unable to allocate %u tx queues.\n", 5187 count); 5188 return -ENOMEM; 5189 } 5190 dev->_tx = tx; 5191 5192 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5193 spin_lock_init(&dev->tx_global_lock); 5194 5195 return 0; 5196 } 5197 5198 /** 5199 * register_netdevice - register a network device 5200 * @dev: device to register 5201 * 5202 * Take a completed network device structure and add it to the kernel 5203 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5204 * chain. 0 is returned on success. A negative errno code is returned 5205 * on a failure to set up the device, or if the name is a duplicate. 5206 * 5207 * Callers must hold the rtnl semaphore. You may want 5208 * register_netdev() instead of this. 5209 * 5210 * BUGS: 5211 * The locking appears insufficient to guarantee two parallel registers 5212 * will not get the same name. 5213 */ 5214 5215 int register_netdevice(struct net_device *dev) 5216 { 5217 int ret; 5218 struct net *net = dev_net(dev); 5219 5220 BUG_ON(dev_boot_phase); 5221 ASSERT_RTNL(); 5222 5223 might_sleep(); 5224 5225 /* When net_device's are persistent, this will be fatal. */ 5226 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5227 BUG_ON(!net); 5228 5229 spin_lock_init(&dev->addr_list_lock); 5230 netdev_set_addr_lockdep_class(dev); 5231 5232 dev->iflink = -1; 5233 5234 /* Init, if this function is available */ 5235 if (dev->netdev_ops->ndo_init) { 5236 ret = dev->netdev_ops->ndo_init(dev); 5237 if (ret) { 5238 if (ret > 0) 5239 ret = -EIO; 5240 goto out; 5241 } 5242 } 5243 5244 ret = dev_get_valid_name(dev, dev->name, 0); 5245 if (ret) 5246 goto err_uninit; 5247 5248 dev->ifindex = dev_new_index(net); 5249 if (dev->iflink == -1) 5250 dev->iflink = dev->ifindex; 5251 5252 /* Fix illegal checksum combinations */ 5253 if ((dev->features & NETIF_F_HW_CSUM) && 5254 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5255 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5256 dev->name); 5257 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5258 } 5259 5260 if ((dev->features & NETIF_F_NO_CSUM) && 5261 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5262 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5263 dev->name); 5264 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5265 } 5266 5267 dev->features = netdev_fix_features(dev->features, dev->name); 5268 5269 /* Enable software GSO if SG is supported. */ 5270 if (dev->features & NETIF_F_SG) 5271 dev->features |= NETIF_F_GSO; 5272 5273 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5274 * vlan_dev_init() will do the dev->features check, so these features 5275 * are enabled only if supported by underlying device. 5276 */ 5277 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5278 5279 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5280 ret = notifier_to_errno(ret); 5281 if (ret) 5282 goto err_uninit; 5283 5284 ret = netdev_register_kobject(dev); 5285 if (ret) 5286 goto err_uninit; 5287 dev->reg_state = NETREG_REGISTERED; 5288 5289 /* 5290 * Default initial state at registry is that the 5291 * device is present. 5292 */ 5293 5294 set_bit(__LINK_STATE_PRESENT, &dev->state); 5295 5296 dev_init_scheduler(dev); 5297 dev_hold(dev); 5298 list_netdevice(dev); 5299 5300 /* Notify protocols, that a new device appeared. */ 5301 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5302 ret = notifier_to_errno(ret); 5303 if (ret) { 5304 rollback_registered(dev); 5305 dev->reg_state = NETREG_UNREGISTERED; 5306 } 5307 /* 5308 * Prevent userspace races by waiting until the network 5309 * device is fully setup before sending notifications. 5310 */ 5311 if (!dev->rtnl_link_ops || 5312 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5313 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5314 5315 out: 5316 return ret; 5317 5318 err_uninit: 5319 if (dev->netdev_ops->ndo_uninit) 5320 dev->netdev_ops->ndo_uninit(dev); 5321 goto out; 5322 } 5323 EXPORT_SYMBOL(register_netdevice); 5324 5325 /** 5326 * init_dummy_netdev - init a dummy network device for NAPI 5327 * @dev: device to init 5328 * 5329 * This takes a network device structure and initialize the minimum 5330 * amount of fields so it can be used to schedule NAPI polls without 5331 * registering a full blown interface. This is to be used by drivers 5332 * that need to tie several hardware interfaces to a single NAPI 5333 * poll scheduler due to HW limitations. 5334 */ 5335 int init_dummy_netdev(struct net_device *dev) 5336 { 5337 /* Clear everything. Note we don't initialize spinlocks 5338 * are they aren't supposed to be taken by any of the 5339 * NAPI code and this dummy netdev is supposed to be 5340 * only ever used for NAPI polls 5341 */ 5342 memset(dev, 0, sizeof(struct net_device)); 5343 5344 /* make sure we BUG if trying to hit standard 5345 * register/unregister code path 5346 */ 5347 dev->reg_state = NETREG_DUMMY; 5348 5349 /* NAPI wants this */ 5350 INIT_LIST_HEAD(&dev->napi_list); 5351 5352 /* a dummy interface is started by default */ 5353 set_bit(__LINK_STATE_PRESENT, &dev->state); 5354 set_bit(__LINK_STATE_START, &dev->state); 5355 5356 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5357 * because users of this 'device' dont need to change 5358 * its refcount. 5359 */ 5360 5361 return 0; 5362 } 5363 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5364 5365 5366 /** 5367 * register_netdev - register a network device 5368 * @dev: device to register 5369 * 5370 * Take a completed network device structure and add it to the kernel 5371 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5372 * chain. 0 is returned on success. A negative errno code is returned 5373 * on a failure to set up the device, or if the name is a duplicate. 5374 * 5375 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5376 * and expands the device name if you passed a format string to 5377 * alloc_netdev. 5378 */ 5379 int register_netdev(struct net_device *dev) 5380 { 5381 int err; 5382 5383 rtnl_lock(); 5384 5385 /* 5386 * If the name is a format string the caller wants us to do a 5387 * name allocation. 5388 */ 5389 if (strchr(dev->name, '%')) { 5390 err = dev_alloc_name(dev, dev->name); 5391 if (err < 0) 5392 goto out; 5393 } 5394 5395 err = register_netdevice(dev); 5396 out: 5397 rtnl_unlock(); 5398 return err; 5399 } 5400 EXPORT_SYMBOL(register_netdev); 5401 5402 int netdev_refcnt_read(const struct net_device *dev) 5403 { 5404 int i, refcnt = 0; 5405 5406 for_each_possible_cpu(i) 5407 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5408 return refcnt; 5409 } 5410 EXPORT_SYMBOL(netdev_refcnt_read); 5411 5412 /* 5413 * netdev_wait_allrefs - wait until all references are gone. 5414 * 5415 * This is called when unregistering network devices. 5416 * 5417 * Any protocol or device that holds a reference should register 5418 * for netdevice notification, and cleanup and put back the 5419 * reference if they receive an UNREGISTER event. 5420 * We can get stuck here if buggy protocols don't correctly 5421 * call dev_put. 5422 */ 5423 static void netdev_wait_allrefs(struct net_device *dev) 5424 { 5425 unsigned long rebroadcast_time, warning_time; 5426 int refcnt; 5427 5428 linkwatch_forget_dev(dev); 5429 5430 rebroadcast_time = warning_time = jiffies; 5431 refcnt = netdev_refcnt_read(dev); 5432 5433 while (refcnt != 0) { 5434 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5435 rtnl_lock(); 5436 5437 /* Rebroadcast unregister notification */ 5438 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5439 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5440 * should have already handle it the first time */ 5441 5442 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5443 &dev->state)) { 5444 /* We must not have linkwatch events 5445 * pending on unregister. If this 5446 * happens, we simply run the queue 5447 * unscheduled, resulting in a noop 5448 * for this device. 5449 */ 5450 linkwatch_run_queue(); 5451 } 5452 5453 __rtnl_unlock(); 5454 5455 rebroadcast_time = jiffies; 5456 } 5457 5458 msleep(250); 5459 5460 refcnt = netdev_refcnt_read(dev); 5461 5462 if (time_after(jiffies, warning_time + 10 * HZ)) { 5463 printk(KERN_EMERG "unregister_netdevice: " 5464 "waiting for %s to become free. Usage " 5465 "count = %d\n", 5466 dev->name, refcnt); 5467 warning_time = jiffies; 5468 } 5469 } 5470 } 5471 5472 /* The sequence is: 5473 * 5474 * rtnl_lock(); 5475 * ... 5476 * register_netdevice(x1); 5477 * register_netdevice(x2); 5478 * ... 5479 * unregister_netdevice(y1); 5480 * unregister_netdevice(y2); 5481 * ... 5482 * rtnl_unlock(); 5483 * free_netdev(y1); 5484 * free_netdev(y2); 5485 * 5486 * We are invoked by rtnl_unlock(). 5487 * This allows us to deal with problems: 5488 * 1) We can delete sysfs objects which invoke hotplug 5489 * without deadlocking with linkwatch via keventd. 5490 * 2) Since we run with the RTNL semaphore not held, we can sleep 5491 * safely in order to wait for the netdev refcnt to drop to zero. 5492 * 5493 * We must not return until all unregister events added during 5494 * the interval the lock was held have been completed. 5495 */ 5496 void netdev_run_todo(void) 5497 { 5498 struct list_head list; 5499 5500 /* Snapshot list, allow later requests */ 5501 list_replace_init(&net_todo_list, &list); 5502 5503 __rtnl_unlock(); 5504 5505 while (!list_empty(&list)) { 5506 struct net_device *dev 5507 = list_first_entry(&list, struct net_device, todo_list); 5508 list_del(&dev->todo_list); 5509 5510 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5511 printk(KERN_ERR "network todo '%s' but state %d\n", 5512 dev->name, dev->reg_state); 5513 dump_stack(); 5514 continue; 5515 } 5516 5517 dev->reg_state = NETREG_UNREGISTERED; 5518 5519 on_each_cpu(flush_backlog, dev, 1); 5520 5521 netdev_wait_allrefs(dev); 5522 5523 /* paranoia */ 5524 BUG_ON(netdev_refcnt_read(dev)); 5525 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5526 WARN_ON(rcu_dereference_raw(dev->ip6_ptr)); 5527 WARN_ON(dev->dn_ptr); 5528 5529 if (dev->destructor) 5530 dev->destructor(dev); 5531 5532 /* Free network device */ 5533 kobject_put(&dev->dev.kobj); 5534 } 5535 } 5536 5537 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5538 * fields in the same order, with only the type differing. 5539 */ 5540 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5541 const struct net_device_stats *netdev_stats) 5542 { 5543 #if BITS_PER_LONG == 64 5544 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5545 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5546 #else 5547 size_t i, n = sizeof(*stats64) / sizeof(u64); 5548 const unsigned long *src = (const unsigned long *)netdev_stats; 5549 u64 *dst = (u64 *)stats64; 5550 5551 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5552 sizeof(*stats64) / sizeof(u64)); 5553 for (i = 0; i < n; i++) 5554 dst[i] = src[i]; 5555 #endif 5556 } 5557 5558 /** 5559 * dev_get_stats - get network device statistics 5560 * @dev: device to get statistics from 5561 * @storage: place to store stats 5562 * 5563 * Get network statistics from device. Return @storage. 5564 * The device driver may provide its own method by setting 5565 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5566 * otherwise the internal statistics structure is used. 5567 */ 5568 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5569 struct rtnl_link_stats64 *storage) 5570 { 5571 const struct net_device_ops *ops = dev->netdev_ops; 5572 5573 if (ops->ndo_get_stats64) { 5574 memset(storage, 0, sizeof(*storage)); 5575 ops->ndo_get_stats64(dev, storage); 5576 } else if (ops->ndo_get_stats) { 5577 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5578 } else { 5579 netdev_stats_to_stats64(storage, &dev->stats); 5580 } 5581 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5582 return storage; 5583 } 5584 EXPORT_SYMBOL(dev_get_stats); 5585 5586 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5587 { 5588 struct netdev_queue *queue = dev_ingress_queue(dev); 5589 5590 #ifdef CONFIG_NET_CLS_ACT 5591 if (queue) 5592 return queue; 5593 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5594 if (!queue) 5595 return NULL; 5596 netdev_init_one_queue(dev, queue, NULL); 5597 queue->qdisc = &noop_qdisc; 5598 queue->qdisc_sleeping = &noop_qdisc; 5599 rcu_assign_pointer(dev->ingress_queue, queue); 5600 #endif 5601 return queue; 5602 } 5603 5604 /** 5605 * alloc_netdev_mqs - allocate network device 5606 * @sizeof_priv: size of private data to allocate space for 5607 * @name: device name format string 5608 * @setup: callback to initialize device 5609 * @txqs: the number of TX subqueues to allocate 5610 * @rxqs: the number of RX subqueues to allocate 5611 * 5612 * Allocates a struct net_device with private data area for driver use 5613 * and performs basic initialization. Also allocates subquue structs 5614 * for each queue on the device. 5615 */ 5616 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5617 void (*setup)(struct net_device *), 5618 unsigned int txqs, unsigned int rxqs) 5619 { 5620 struct net_device *dev; 5621 size_t alloc_size; 5622 struct net_device *p; 5623 5624 BUG_ON(strlen(name) >= sizeof(dev->name)); 5625 5626 if (txqs < 1) { 5627 pr_err("alloc_netdev: Unable to allocate device " 5628 "with zero queues.\n"); 5629 return NULL; 5630 } 5631 5632 #ifdef CONFIG_RPS 5633 if (rxqs < 1) { 5634 pr_err("alloc_netdev: Unable to allocate device " 5635 "with zero RX queues.\n"); 5636 return NULL; 5637 } 5638 #endif 5639 5640 alloc_size = sizeof(struct net_device); 5641 if (sizeof_priv) { 5642 /* ensure 32-byte alignment of private area */ 5643 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5644 alloc_size += sizeof_priv; 5645 } 5646 /* ensure 32-byte alignment of whole construct */ 5647 alloc_size += NETDEV_ALIGN - 1; 5648 5649 p = kzalloc(alloc_size, GFP_KERNEL); 5650 if (!p) { 5651 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5652 return NULL; 5653 } 5654 5655 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5656 dev->padded = (char *)dev - (char *)p; 5657 5658 dev->pcpu_refcnt = alloc_percpu(int); 5659 if (!dev->pcpu_refcnt) 5660 goto free_p; 5661 5662 if (dev_addr_init(dev)) 5663 goto free_pcpu; 5664 5665 dev_mc_init(dev); 5666 dev_uc_init(dev); 5667 5668 dev_net_set(dev, &init_net); 5669 5670 dev->num_tx_queues = txqs; 5671 dev->real_num_tx_queues = txqs; 5672 if (netif_alloc_netdev_queues(dev)) 5673 goto free_pcpu; 5674 5675 #ifdef CONFIG_RPS 5676 dev->num_rx_queues = rxqs; 5677 dev->real_num_rx_queues = rxqs; 5678 if (netif_alloc_rx_queues(dev)) 5679 goto free_pcpu; 5680 #endif 5681 5682 dev->gso_max_size = GSO_MAX_SIZE; 5683 5684 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5685 dev->ethtool_ntuple_list.count = 0; 5686 INIT_LIST_HEAD(&dev->napi_list); 5687 INIT_LIST_HEAD(&dev->unreg_list); 5688 INIT_LIST_HEAD(&dev->link_watch_list); 5689 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5690 setup(dev); 5691 strcpy(dev->name, name); 5692 dev->group = INIT_NETDEV_GROUP; 5693 return dev; 5694 5695 free_pcpu: 5696 free_percpu(dev->pcpu_refcnt); 5697 kfree(dev->_tx); 5698 #ifdef CONFIG_RPS 5699 kfree(dev->_rx); 5700 #endif 5701 5702 free_p: 5703 kfree(p); 5704 return NULL; 5705 } 5706 EXPORT_SYMBOL(alloc_netdev_mqs); 5707 5708 /** 5709 * free_netdev - free network device 5710 * @dev: device 5711 * 5712 * This function does the last stage of destroying an allocated device 5713 * interface. The reference to the device object is released. 5714 * If this is the last reference then it will be freed. 5715 */ 5716 void free_netdev(struct net_device *dev) 5717 { 5718 struct napi_struct *p, *n; 5719 5720 release_net(dev_net(dev)); 5721 5722 kfree(dev->_tx); 5723 #ifdef CONFIG_RPS 5724 kfree(dev->_rx); 5725 #endif 5726 5727 kfree(rcu_dereference_raw(dev->ingress_queue)); 5728 5729 /* Flush device addresses */ 5730 dev_addr_flush(dev); 5731 5732 /* Clear ethtool n-tuple list */ 5733 ethtool_ntuple_flush(dev); 5734 5735 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5736 netif_napi_del(p); 5737 5738 free_percpu(dev->pcpu_refcnt); 5739 dev->pcpu_refcnt = NULL; 5740 5741 /* Compatibility with error handling in drivers */ 5742 if (dev->reg_state == NETREG_UNINITIALIZED) { 5743 kfree((char *)dev - dev->padded); 5744 return; 5745 } 5746 5747 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5748 dev->reg_state = NETREG_RELEASED; 5749 5750 /* will free via device release */ 5751 put_device(&dev->dev); 5752 } 5753 EXPORT_SYMBOL(free_netdev); 5754 5755 /** 5756 * synchronize_net - Synchronize with packet receive processing 5757 * 5758 * Wait for packets currently being received to be done. 5759 * Does not block later packets from starting. 5760 */ 5761 void synchronize_net(void) 5762 { 5763 might_sleep(); 5764 synchronize_rcu(); 5765 } 5766 EXPORT_SYMBOL(synchronize_net); 5767 5768 /** 5769 * unregister_netdevice_queue - remove device from the kernel 5770 * @dev: device 5771 * @head: list 5772 * 5773 * This function shuts down a device interface and removes it 5774 * from the kernel tables. 5775 * If head not NULL, device is queued to be unregistered later. 5776 * 5777 * Callers must hold the rtnl semaphore. You may want 5778 * unregister_netdev() instead of this. 5779 */ 5780 5781 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5782 { 5783 ASSERT_RTNL(); 5784 5785 if (head) { 5786 list_move_tail(&dev->unreg_list, head); 5787 } else { 5788 rollback_registered(dev); 5789 /* Finish processing unregister after unlock */ 5790 net_set_todo(dev); 5791 } 5792 } 5793 EXPORT_SYMBOL(unregister_netdevice_queue); 5794 5795 /** 5796 * unregister_netdevice_many - unregister many devices 5797 * @head: list of devices 5798 */ 5799 void unregister_netdevice_many(struct list_head *head) 5800 { 5801 struct net_device *dev; 5802 5803 if (!list_empty(head)) { 5804 rollback_registered_many(head); 5805 list_for_each_entry(dev, head, unreg_list) 5806 net_set_todo(dev); 5807 } 5808 } 5809 EXPORT_SYMBOL(unregister_netdevice_many); 5810 5811 /** 5812 * unregister_netdev - remove device from the kernel 5813 * @dev: device 5814 * 5815 * This function shuts down a device interface and removes it 5816 * from the kernel tables. 5817 * 5818 * This is just a wrapper for unregister_netdevice that takes 5819 * the rtnl semaphore. In general you want to use this and not 5820 * unregister_netdevice. 5821 */ 5822 void unregister_netdev(struct net_device *dev) 5823 { 5824 rtnl_lock(); 5825 unregister_netdevice(dev); 5826 rtnl_unlock(); 5827 } 5828 EXPORT_SYMBOL(unregister_netdev); 5829 5830 /** 5831 * dev_change_net_namespace - move device to different nethost namespace 5832 * @dev: device 5833 * @net: network namespace 5834 * @pat: If not NULL name pattern to try if the current device name 5835 * is already taken in the destination network namespace. 5836 * 5837 * This function shuts down a device interface and moves it 5838 * to a new network namespace. On success 0 is returned, on 5839 * a failure a netagive errno code is returned. 5840 * 5841 * Callers must hold the rtnl semaphore. 5842 */ 5843 5844 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5845 { 5846 int err; 5847 5848 ASSERT_RTNL(); 5849 5850 /* Don't allow namespace local devices to be moved. */ 5851 err = -EINVAL; 5852 if (dev->features & NETIF_F_NETNS_LOCAL) 5853 goto out; 5854 5855 /* Ensure the device has been registrered */ 5856 err = -EINVAL; 5857 if (dev->reg_state != NETREG_REGISTERED) 5858 goto out; 5859 5860 /* Get out if there is nothing todo */ 5861 err = 0; 5862 if (net_eq(dev_net(dev), net)) 5863 goto out; 5864 5865 /* Pick the destination device name, and ensure 5866 * we can use it in the destination network namespace. 5867 */ 5868 err = -EEXIST; 5869 if (__dev_get_by_name(net, dev->name)) { 5870 /* We get here if we can't use the current device name */ 5871 if (!pat) 5872 goto out; 5873 if (dev_get_valid_name(dev, pat, 1)) 5874 goto out; 5875 } 5876 5877 /* 5878 * And now a mini version of register_netdevice unregister_netdevice. 5879 */ 5880 5881 /* If device is running close it first. */ 5882 dev_close(dev); 5883 5884 /* And unlink it from device chain */ 5885 err = -ENODEV; 5886 unlist_netdevice(dev); 5887 5888 synchronize_net(); 5889 5890 /* Shutdown queueing discipline. */ 5891 dev_shutdown(dev); 5892 5893 /* Notify protocols, that we are about to destroy 5894 this device. They should clean all the things. 5895 5896 Note that dev->reg_state stays at NETREG_REGISTERED. 5897 This is wanted because this way 8021q and macvlan know 5898 the device is just moving and can keep their slaves up. 5899 */ 5900 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5901 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5902 5903 /* 5904 * Flush the unicast and multicast chains 5905 */ 5906 dev_uc_flush(dev); 5907 dev_mc_flush(dev); 5908 5909 /* Actually switch the network namespace */ 5910 dev_net_set(dev, net); 5911 5912 /* If there is an ifindex conflict assign a new one */ 5913 if (__dev_get_by_index(net, dev->ifindex)) { 5914 int iflink = (dev->iflink == dev->ifindex); 5915 dev->ifindex = dev_new_index(net); 5916 if (iflink) 5917 dev->iflink = dev->ifindex; 5918 } 5919 5920 /* Fixup kobjects */ 5921 err = device_rename(&dev->dev, dev->name); 5922 WARN_ON(err); 5923 5924 /* Add the device back in the hashes */ 5925 list_netdevice(dev); 5926 5927 /* Notify protocols, that a new device appeared. */ 5928 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5929 5930 /* 5931 * Prevent userspace races by waiting until the network 5932 * device is fully setup before sending notifications. 5933 */ 5934 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5935 5936 synchronize_net(); 5937 err = 0; 5938 out: 5939 return err; 5940 } 5941 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5942 5943 static int dev_cpu_callback(struct notifier_block *nfb, 5944 unsigned long action, 5945 void *ocpu) 5946 { 5947 struct sk_buff **list_skb; 5948 struct sk_buff *skb; 5949 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5950 struct softnet_data *sd, *oldsd; 5951 5952 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5953 return NOTIFY_OK; 5954 5955 local_irq_disable(); 5956 cpu = smp_processor_id(); 5957 sd = &per_cpu(softnet_data, cpu); 5958 oldsd = &per_cpu(softnet_data, oldcpu); 5959 5960 /* Find end of our completion_queue. */ 5961 list_skb = &sd->completion_queue; 5962 while (*list_skb) 5963 list_skb = &(*list_skb)->next; 5964 /* Append completion queue from offline CPU. */ 5965 *list_skb = oldsd->completion_queue; 5966 oldsd->completion_queue = NULL; 5967 5968 /* Append output queue from offline CPU. */ 5969 if (oldsd->output_queue) { 5970 *sd->output_queue_tailp = oldsd->output_queue; 5971 sd->output_queue_tailp = oldsd->output_queue_tailp; 5972 oldsd->output_queue = NULL; 5973 oldsd->output_queue_tailp = &oldsd->output_queue; 5974 } 5975 5976 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5977 local_irq_enable(); 5978 5979 /* Process offline CPU's input_pkt_queue */ 5980 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5981 netif_rx(skb); 5982 input_queue_head_incr(oldsd); 5983 } 5984 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5985 netif_rx(skb); 5986 input_queue_head_incr(oldsd); 5987 } 5988 5989 return NOTIFY_OK; 5990 } 5991 5992 5993 /** 5994 * netdev_increment_features - increment feature set by one 5995 * @all: current feature set 5996 * @one: new feature set 5997 * @mask: mask feature set 5998 * 5999 * Computes a new feature set after adding a device with feature set 6000 * @one to the master device with current feature set @all. Will not 6001 * enable anything that is off in @mask. Returns the new feature set. 6002 */ 6003 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 6004 unsigned long mask) 6005 { 6006 /* If device needs checksumming, downgrade to it. */ 6007 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 6008 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 6009 else if (mask & NETIF_F_ALL_CSUM) { 6010 /* If one device supports v4/v6 checksumming, set for all. */ 6011 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 6012 !(all & NETIF_F_GEN_CSUM)) { 6013 all &= ~NETIF_F_ALL_CSUM; 6014 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 6015 } 6016 6017 /* If one device supports hw checksumming, set for all. */ 6018 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 6019 all &= ~NETIF_F_ALL_CSUM; 6020 all |= NETIF_F_HW_CSUM; 6021 } 6022 } 6023 6024 one |= NETIF_F_ALL_CSUM; 6025 6026 one |= all & NETIF_F_ONE_FOR_ALL; 6027 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 6028 all |= one & mask & NETIF_F_ONE_FOR_ALL; 6029 6030 return all; 6031 } 6032 EXPORT_SYMBOL(netdev_increment_features); 6033 6034 static struct hlist_head *netdev_create_hash(void) 6035 { 6036 int i; 6037 struct hlist_head *hash; 6038 6039 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6040 if (hash != NULL) 6041 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6042 INIT_HLIST_HEAD(&hash[i]); 6043 6044 return hash; 6045 } 6046 6047 /* Initialize per network namespace state */ 6048 static int __net_init netdev_init(struct net *net) 6049 { 6050 INIT_LIST_HEAD(&net->dev_base_head); 6051 6052 net->dev_name_head = netdev_create_hash(); 6053 if (net->dev_name_head == NULL) 6054 goto err_name; 6055 6056 net->dev_index_head = netdev_create_hash(); 6057 if (net->dev_index_head == NULL) 6058 goto err_idx; 6059 6060 return 0; 6061 6062 err_idx: 6063 kfree(net->dev_name_head); 6064 err_name: 6065 return -ENOMEM; 6066 } 6067 6068 /** 6069 * netdev_drivername - network driver for the device 6070 * @dev: network device 6071 * @buffer: buffer for resulting name 6072 * @len: size of buffer 6073 * 6074 * Determine network driver for device. 6075 */ 6076 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 6077 { 6078 const struct device_driver *driver; 6079 const struct device *parent; 6080 6081 if (len <= 0 || !buffer) 6082 return buffer; 6083 buffer[0] = 0; 6084 6085 parent = dev->dev.parent; 6086 6087 if (!parent) 6088 return buffer; 6089 6090 driver = parent->driver; 6091 if (driver && driver->name) 6092 strlcpy(buffer, driver->name, len); 6093 return buffer; 6094 } 6095 6096 static int __netdev_printk(const char *level, const struct net_device *dev, 6097 struct va_format *vaf) 6098 { 6099 int r; 6100 6101 if (dev && dev->dev.parent) 6102 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6103 netdev_name(dev), vaf); 6104 else if (dev) 6105 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6106 else 6107 r = printk("%s(NULL net_device): %pV", level, vaf); 6108 6109 return r; 6110 } 6111 6112 int netdev_printk(const char *level, const struct net_device *dev, 6113 const char *format, ...) 6114 { 6115 struct va_format vaf; 6116 va_list args; 6117 int r; 6118 6119 va_start(args, format); 6120 6121 vaf.fmt = format; 6122 vaf.va = &args; 6123 6124 r = __netdev_printk(level, dev, &vaf); 6125 va_end(args); 6126 6127 return r; 6128 } 6129 EXPORT_SYMBOL(netdev_printk); 6130 6131 #define define_netdev_printk_level(func, level) \ 6132 int func(const struct net_device *dev, const char *fmt, ...) \ 6133 { \ 6134 int r; \ 6135 struct va_format vaf; \ 6136 va_list args; \ 6137 \ 6138 va_start(args, fmt); \ 6139 \ 6140 vaf.fmt = fmt; \ 6141 vaf.va = &args; \ 6142 \ 6143 r = __netdev_printk(level, dev, &vaf); \ 6144 va_end(args); \ 6145 \ 6146 return r; \ 6147 } \ 6148 EXPORT_SYMBOL(func); 6149 6150 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6151 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6152 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6153 define_netdev_printk_level(netdev_err, KERN_ERR); 6154 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6155 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6156 define_netdev_printk_level(netdev_info, KERN_INFO); 6157 6158 static void __net_exit netdev_exit(struct net *net) 6159 { 6160 kfree(net->dev_name_head); 6161 kfree(net->dev_index_head); 6162 } 6163 6164 static struct pernet_operations __net_initdata netdev_net_ops = { 6165 .init = netdev_init, 6166 .exit = netdev_exit, 6167 }; 6168 6169 static void __net_exit default_device_exit(struct net *net) 6170 { 6171 struct net_device *dev, *aux; 6172 /* 6173 * Push all migratable network devices back to the 6174 * initial network namespace 6175 */ 6176 rtnl_lock(); 6177 for_each_netdev_safe(net, dev, aux) { 6178 int err; 6179 char fb_name[IFNAMSIZ]; 6180 6181 /* Ignore unmoveable devices (i.e. loopback) */ 6182 if (dev->features & NETIF_F_NETNS_LOCAL) 6183 continue; 6184 6185 /* Leave virtual devices for the generic cleanup */ 6186 if (dev->rtnl_link_ops) 6187 continue; 6188 6189 /* Push remaing network devices to init_net */ 6190 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6191 err = dev_change_net_namespace(dev, &init_net, fb_name); 6192 if (err) { 6193 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6194 __func__, dev->name, err); 6195 BUG(); 6196 } 6197 } 6198 rtnl_unlock(); 6199 } 6200 6201 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6202 { 6203 /* At exit all network devices most be removed from a network 6204 * namespace. Do this in the reverse order of registration. 6205 * Do this across as many network namespaces as possible to 6206 * improve batching efficiency. 6207 */ 6208 struct net_device *dev; 6209 struct net *net; 6210 LIST_HEAD(dev_kill_list); 6211 6212 rtnl_lock(); 6213 list_for_each_entry(net, net_list, exit_list) { 6214 for_each_netdev_reverse(net, dev) { 6215 if (dev->rtnl_link_ops) 6216 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6217 else 6218 unregister_netdevice_queue(dev, &dev_kill_list); 6219 } 6220 } 6221 unregister_netdevice_many(&dev_kill_list); 6222 rtnl_unlock(); 6223 } 6224 6225 static struct pernet_operations __net_initdata default_device_ops = { 6226 .exit = default_device_exit, 6227 .exit_batch = default_device_exit_batch, 6228 }; 6229 6230 /* 6231 * Initialize the DEV module. At boot time this walks the device list and 6232 * unhooks any devices that fail to initialise (normally hardware not 6233 * present) and leaves us with a valid list of present and active devices. 6234 * 6235 */ 6236 6237 /* 6238 * This is called single threaded during boot, so no need 6239 * to take the rtnl semaphore. 6240 */ 6241 static int __init net_dev_init(void) 6242 { 6243 int i, rc = -ENOMEM; 6244 6245 BUG_ON(!dev_boot_phase); 6246 6247 if (dev_proc_init()) 6248 goto out; 6249 6250 if (netdev_kobject_init()) 6251 goto out; 6252 6253 INIT_LIST_HEAD(&ptype_all); 6254 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6255 INIT_LIST_HEAD(&ptype_base[i]); 6256 6257 if (register_pernet_subsys(&netdev_net_ops)) 6258 goto out; 6259 6260 /* 6261 * Initialise the packet receive queues. 6262 */ 6263 6264 for_each_possible_cpu(i) { 6265 struct softnet_data *sd = &per_cpu(softnet_data, i); 6266 6267 memset(sd, 0, sizeof(*sd)); 6268 skb_queue_head_init(&sd->input_pkt_queue); 6269 skb_queue_head_init(&sd->process_queue); 6270 sd->completion_queue = NULL; 6271 INIT_LIST_HEAD(&sd->poll_list); 6272 sd->output_queue = NULL; 6273 sd->output_queue_tailp = &sd->output_queue; 6274 #ifdef CONFIG_RPS 6275 sd->csd.func = rps_trigger_softirq; 6276 sd->csd.info = sd; 6277 sd->csd.flags = 0; 6278 sd->cpu = i; 6279 #endif 6280 6281 sd->backlog.poll = process_backlog; 6282 sd->backlog.weight = weight_p; 6283 sd->backlog.gro_list = NULL; 6284 sd->backlog.gro_count = 0; 6285 } 6286 6287 dev_boot_phase = 0; 6288 6289 /* The loopback device is special if any other network devices 6290 * is present in a network namespace the loopback device must 6291 * be present. Since we now dynamically allocate and free the 6292 * loopback device ensure this invariant is maintained by 6293 * keeping the loopback device as the first device on the 6294 * list of network devices. Ensuring the loopback devices 6295 * is the first device that appears and the last network device 6296 * that disappears. 6297 */ 6298 if (register_pernet_device(&loopback_net_ops)) 6299 goto out; 6300 6301 if (register_pernet_device(&default_device_ops)) 6302 goto out; 6303 6304 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6305 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6306 6307 hotcpu_notifier(dev_cpu_callback, 0); 6308 dst_init(); 6309 dev_mcast_init(); 6310 rc = 0; 6311 out: 6312 return rc; 6313 } 6314 6315 subsys_initcall(net_dev_init); 6316 6317 static int __init initialize_hashrnd(void) 6318 { 6319 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6320 return 0; 6321 } 6322 6323 late_initcall_sync(initialize_hashrnd); 6324 6325