1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 #define MAX_NEST_DEV 8 150 151 /* This should be increased if a protocol with a bigger head is added. */ 152 #define GRO_MAX_HEAD (MAX_HEADER + 128) 153 154 static DEFINE_SPINLOCK(ptype_lock); 155 static DEFINE_SPINLOCK(offload_lock); 156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 157 struct list_head ptype_all __read_mostly; /* Taps */ 158 static struct list_head offload_base __read_mostly; 159 160 static int netif_rx_internal(struct sk_buff *skb); 161 static int call_netdevice_notifiers_info(unsigned long val, 162 struct netdev_notifier_info *info); 163 static int call_netdevice_notifiers_extack(unsigned long val, 164 struct net_device *dev, 165 struct netlink_ext_ack *extack); 166 static struct napi_struct *napi_by_id(unsigned int napi_id); 167 168 /* 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 170 * semaphore. 171 * 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 173 * 174 * Writers must hold the rtnl semaphore while they loop through the 175 * dev_base_head list, and hold dev_base_lock for writing when they do the 176 * actual updates. This allows pure readers to access the list even 177 * while a writer is preparing to update it. 178 * 179 * To put it another way, dev_base_lock is held for writing only to 180 * protect against pure readers; the rtnl semaphore provides the 181 * protection against other writers. 182 * 183 * See, for example usages, register_netdevice() and 184 * unregister_netdevice(), which must be called with the rtnl 185 * semaphore held. 186 */ 187 DEFINE_RWLOCK(dev_base_lock); 188 EXPORT_SYMBOL(dev_base_lock); 189 190 static DEFINE_MUTEX(ifalias_mutex); 191 192 /* protects napi_hash addition/deletion and napi_gen_id */ 193 static DEFINE_SPINLOCK(napi_hash_lock); 194 195 static unsigned int napi_gen_id = NR_CPUS; 196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 197 198 static seqcount_t devnet_rename_seq; 199 200 static inline void dev_base_seq_inc(struct net *net) 201 { 202 while (++net->dev_base_seq == 0) 203 ; 204 } 205 206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 207 { 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 209 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 211 } 212 213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 214 { 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 216 } 217 218 static inline void rps_lock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_lock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 static inline void rps_unlock(struct softnet_data *sd) 226 { 227 #ifdef CONFIG_RPS 228 spin_unlock(&sd->input_pkt_queue.lock); 229 #endif 230 } 231 232 /* Device list insertion */ 233 static void list_netdevice(struct net_device *dev) 234 { 235 struct net *net = dev_net(dev); 236 237 ASSERT_RTNL(); 238 239 write_lock_bh(&dev_base_lock); 240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 242 hlist_add_head_rcu(&dev->index_hlist, 243 dev_index_hash(net, dev->ifindex)); 244 write_unlock_bh(&dev_base_lock); 245 246 dev_base_seq_inc(net); 247 } 248 249 /* Device list removal 250 * caller must respect a RCU grace period before freeing/reusing dev 251 */ 252 static void unlist_netdevice(struct net_device *dev) 253 { 254 ASSERT_RTNL(); 255 256 /* Unlink dev from the device chain */ 257 write_lock_bh(&dev_base_lock); 258 list_del_rcu(&dev->dev_list); 259 hlist_del_rcu(&dev->name_hlist); 260 hlist_del_rcu(&dev->index_hlist); 261 write_unlock_bh(&dev_base_lock); 262 263 dev_base_seq_inc(dev_net(dev)); 264 } 265 266 /* 267 * Our notifier list 268 */ 269 270 static RAW_NOTIFIER_HEAD(netdev_chain); 271 272 /* 273 * Device drivers call our routines to queue packets here. We empty the 274 * queue in the local softnet handler. 275 */ 276 277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 278 EXPORT_PER_CPU_SYMBOL(softnet_data); 279 280 /******************************************************************************* 281 * 282 * Protocol management and registration routines 283 * 284 *******************************************************************************/ 285 286 287 /* 288 * Add a protocol ID to the list. Now that the input handler is 289 * smarter we can dispense with all the messy stuff that used to be 290 * here. 291 * 292 * BEWARE!!! Protocol handlers, mangling input packets, 293 * MUST BE last in hash buckets and checking protocol handlers 294 * MUST start from promiscuous ptype_all chain in net_bh. 295 * It is true now, do not change it. 296 * Explanation follows: if protocol handler, mangling packet, will 297 * be the first on list, it is not able to sense, that packet 298 * is cloned and should be copied-on-write, so that it will 299 * change it and subsequent readers will get broken packet. 300 * --ANK (980803) 301 */ 302 303 static inline struct list_head *ptype_head(const struct packet_type *pt) 304 { 305 if (pt->type == htons(ETH_P_ALL)) 306 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 307 else 308 return pt->dev ? &pt->dev->ptype_specific : 309 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 310 } 311 312 /** 313 * dev_add_pack - add packet handler 314 * @pt: packet type declaration 315 * 316 * Add a protocol handler to the networking stack. The passed &packet_type 317 * is linked into kernel lists and may not be freed until it has been 318 * removed from the kernel lists. 319 * 320 * This call does not sleep therefore it can not 321 * guarantee all CPU's that are in middle of receiving packets 322 * will see the new packet type (until the next received packet). 323 */ 324 325 void dev_add_pack(struct packet_type *pt) 326 { 327 struct list_head *head = ptype_head(pt); 328 329 spin_lock(&ptype_lock); 330 list_add_rcu(&pt->list, head); 331 spin_unlock(&ptype_lock); 332 } 333 EXPORT_SYMBOL(dev_add_pack); 334 335 /** 336 * __dev_remove_pack - remove packet handler 337 * @pt: packet type declaration 338 * 339 * Remove a protocol handler that was previously added to the kernel 340 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 341 * from the kernel lists and can be freed or reused once this function 342 * returns. 343 * 344 * The packet type might still be in use by receivers 345 * and must not be freed until after all the CPU's have gone 346 * through a quiescent state. 347 */ 348 void __dev_remove_pack(struct packet_type *pt) 349 { 350 struct list_head *head = ptype_head(pt); 351 struct packet_type *pt1; 352 353 spin_lock(&ptype_lock); 354 355 list_for_each_entry(pt1, head, list) { 356 if (pt == pt1) { 357 list_del_rcu(&pt->list); 358 goto out; 359 } 360 } 361 362 pr_warn("dev_remove_pack: %p not found\n", pt); 363 out: 364 spin_unlock(&ptype_lock); 365 } 366 EXPORT_SYMBOL(__dev_remove_pack); 367 368 /** 369 * dev_remove_pack - remove packet handler 370 * @pt: packet type declaration 371 * 372 * Remove a protocol handler that was previously added to the kernel 373 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 374 * from the kernel lists and can be freed or reused once this function 375 * returns. 376 * 377 * This call sleeps to guarantee that no CPU is looking at the packet 378 * type after return. 379 */ 380 void dev_remove_pack(struct packet_type *pt) 381 { 382 __dev_remove_pack(pt); 383 384 synchronize_net(); 385 } 386 EXPORT_SYMBOL(dev_remove_pack); 387 388 389 /** 390 * dev_add_offload - register offload handlers 391 * @po: protocol offload declaration 392 * 393 * Add protocol offload handlers to the networking stack. The passed 394 * &proto_offload is linked into kernel lists and may not be freed until 395 * it has been removed from the kernel lists. 396 * 397 * This call does not sleep therefore it can not 398 * guarantee all CPU's that are in middle of receiving packets 399 * will see the new offload handlers (until the next received packet). 400 */ 401 void dev_add_offload(struct packet_offload *po) 402 { 403 struct packet_offload *elem; 404 405 spin_lock(&offload_lock); 406 list_for_each_entry(elem, &offload_base, list) { 407 if (po->priority < elem->priority) 408 break; 409 } 410 list_add_rcu(&po->list, elem->list.prev); 411 spin_unlock(&offload_lock); 412 } 413 EXPORT_SYMBOL(dev_add_offload); 414 415 /** 416 * __dev_remove_offload - remove offload handler 417 * @po: packet offload declaration 418 * 419 * Remove a protocol offload handler that was previously added to the 420 * kernel offload handlers by dev_add_offload(). The passed &offload_type 421 * is removed from the kernel lists and can be freed or reused once this 422 * function returns. 423 * 424 * The packet type might still be in use by receivers 425 * and must not be freed until after all the CPU's have gone 426 * through a quiescent state. 427 */ 428 static void __dev_remove_offload(struct packet_offload *po) 429 { 430 struct list_head *head = &offload_base; 431 struct packet_offload *po1; 432 433 spin_lock(&offload_lock); 434 435 list_for_each_entry(po1, head, list) { 436 if (po == po1) { 437 list_del_rcu(&po->list); 438 goto out; 439 } 440 } 441 442 pr_warn("dev_remove_offload: %p not found\n", po); 443 out: 444 spin_unlock(&offload_lock); 445 } 446 447 /** 448 * dev_remove_offload - remove packet offload handler 449 * @po: packet offload declaration 450 * 451 * Remove a packet offload handler that was previously added to the kernel 452 * offload handlers by dev_add_offload(). The passed &offload_type is 453 * removed from the kernel lists and can be freed or reused once this 454 * function returns. 455 * 456 * This call sleeps to guarantee that no CPU is looking at the packet 457 * type after return. 458 */ 459 void dev_remove_offload(struct packet_offload *po) 460 { 461 __dev_remove_offload(po); 462 463 synchronize_net(); 464 } 465 EXPORT_SYMBOL(dev_remove_offload); 466 467 /****************************************************************************** 468 * 469 * Device Boot-time Settings Routines 470 * 471 ******************************************************************************/ 472 473 /* Boot time configuration table */ 474 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 475 476 /** 477 * netdev_boot_setup_add - add new setup entry 478 * @name: name of the device 479 * @map: configured settings for the device 480 * 481 * Adds new setup entry to the dev_boot_setup list. The function 482 * returns 0 on error and 1 on success. This is a generic routine to 483 * all netdevices. 484 */ 485 static int netdev_boot_setup_add(char *name, struct ifmap *map) 486 { 487 struct netdev_boot_setup *s; 488 int i; 489 490 s = dev_boot_setup; 491 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 492 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 493 memset(s[i].name, 0, sizeof(s[i].name)); 494 strlcpy(s[i].name, name, IFNAMSIZ); 495 memcpy(&s[i].map, map, sizeof(s[i].map)); 496 break; 497 } 498 } 499 500 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 501 } 502 503 /** 504 * netdev_boot_setup_check - check boot time settings 505 * @dev: the netdevice 506 * 507 * Check boot time settings for the device. 508 * The found settings are set for the device to be used 509 * later in the device probing. 510 * Returns 0 if no settings found, 1 if they are. 511 */ 512 int netdev_boot_setup_check(struct net_device *dev) 513 { 514 struct netdev_boot_setup *s = dev_boot_setup; 515 int i; 516 517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 518 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 519 !strcmp(dev->name, s[i].name)) { 520 dev->irq = s[i].map.irq; 521 dev->base_addr = s[i].map.base_addr; 522 dev->mem_start = s[i].map.mem_start; 523 dev->mem_end = s[i].map.mem_end; 524 return 1; 525 } 526 } 527 return 0; 528 } 529 EXPORT_SYMBOL(netdev_boot_setup_check); 530 531 532 /** 533 * netdev_boot_base - get address from boot time settings 534 * @prefix: prefix for network device 535 * @unit: id for network device 536 * 537 * Check boot time settings for the base address of device. 538 * The found settings are set for the device to be used 539 * later in the device probing. 540 * Returns 0 if no settings found. 541 */ 542 unsigned long netdev_boot_base(const char *prefix, int unit) 543 { 544 const struct netdev_boot_setup *s = dev_boot_setup; 545 char name[IFNAMSIZ]; 546 int i; 547 548 sprintf(name, "%s%d", prefix, unit); 549 550 /* 551 * If device already registered then return base of 1 552 * to indicate not to probe for this interface 553 */ 554 if (__dev_get_by_name(&init_net, name)) 555 return 1; 556 557 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 558 if (!strcmp(name, s[i].name)) 559 return s[i].map.base_addr; 560 return 0; 561 } 562 563 /* 564 * Saves at boot time configured settings for any netdevice. 565 */ 566 int __init netdev_boot_setup(char *str) 567 { 568 int ints[5]; 569 struct ifmap map; 570 571 str = get_options(str, ARRAY_SIZE(ints), ints); 572 if (!str || !*str) 573 return 0; 574 575 /* Save settings */ 576 memset(&map, 0, sizeof(map)); 577 if (ints[0] > 0) 578 map.irq = ints[1]; 579 if (ints[0] > 1) 580 map.base_addr = ints[2]; 581 if (ints[0] > 2) 582 map.mem_start = ints[3]; 583 if (ints[0] > 3) 584 map.mem_end = ints[4]; 585 586 /* Add new entry to the list */ 587 return netdev_boot_setup_add(str, &map); 588 } 589 590 __setup("netdev=", netdev_boot_setup); 591 592 /******************************************************************************* 593 * 594 * Device Interface Subroutines 595 * 596 *******************************************************************************/ 597 598 /** 599 * dev_get_iflink - get 'iflink' value of a interface 600 * @dev: targeted interface 601 * 602 * Indicates the ifindex the interface is linked to. 603 * Physical interfaces have the same 'ifindex' and 'iflink' values. 604 */ 605 606 int dev_get_iflink(const struct net_device *dev) 607 { 608 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 609 return dev->netdev_ops->ndo_get_iflink(dev); 610 611 return dev->ifindex; 612 } 613 EXPORT_SYMBOL(dev_get_iflink); 614 615 /** 616 * dev_fill_metadata_dst - Retrieve tunnel egress information. 617 * @dev: targeted interface 618 * @skb: The packet. 619 * 620 * For better visibility of tunnel traffic OVS needs to retrieve 621 * egress tunnel information for a packet. Following API allows 622 * user to get this info. 623 */ 624 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 625 { 626 struct ip_tunnel_info *info; 627 628 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 629 return -EINVAL; 630 631 info = skb_tunnel_info_unclone(skb); 632 if (!info) 633 return -ENOMEM; 634 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 635 return -EINVAL; 636 637 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 638 } 639 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 640 641 /** 642 * __dev_get_by_name - find a device by its name 643 * @net: the applicable net namespace 644 * @name: name to find 645 * 646 * Find an interface by name. Must be called under RTNL semaphore 647 * or @dev_base_lock. If the name is found a pointer to the device 648 * is returned. If the name is not found then %NULL is returned. The 649 * reference counters are not incremented so the caller must be 650 * careful with locks. 651 */ 652 653 struct net_device *__dev_get_by_name(struct net *net, const char *name) 654 { 655 struct net_device *dev; 656 struct hlist_head *head = dev_name_hash(net, name); 657 658 hlist_for_each_entry(dev, head, name_hlist) 659 if (!strncmp(dev->name, name, IFNAMSIZ)) 660 return dev; 661 662 return NULL; 663 } 664 EXPORT_SYMBOL(__dev_get_by_name); 665 666 /** 667 * dev_get_by_name_rcu - find a device by its name 668 * @net: the applicable net namespace 669 * @name: name to find 670 * 671 * Find an interface by name. 672 * If the name is found a pointer to the device is returned. 673 * If the name is not found then %NULL is returned. 674 * The reference counters are not incremented so the caller must be 675 * careful with locks. The caller must hold RCU lock. 676 */ 677 678 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 679 { 680 struct net_device *dev; 681 struct hlist_head *head = dev_name_hash(net, name); 682 683 hlist_for_each_entry_rcu(dev, head, name_hlist) 684 if (!strncmp(dev->name, name, IFNAMSIZ)) 685 return dev; 686 687 return NULL; 688 } 689 EXPORT_SYMBOL(dev_get_by_name_rcu); 690 691 /** 692 * dev_get_by_name - find a device by its name 693 * @net: the applicable net namespace 694 * @name: name to find 695 * 696 * Find an interface by name. This can be called from any 697 * context and does its own locking. The returned handle has 698 * the usage count incremented and the caller must use dev_put() to 699 * release it when it is no longer needed. %NULL is returned if no 700 * matching device is found. 701 */ 702 703 struct net_device *dev_get_by_name(struct net *net, const char *name) 704 { 705 struct net_device *dev; 706 707 rcu_read_lock(); 708 dev = dev_get_by_name_rcu(net, name); 709 if (dev) 710 dev_hold(dev); 711 rcu_read_unlock(); 712 return dev; 713 } 714 EXPORT_SYMBOL(dev_get_by_name); 715 716 /** 717 * __dev_get_by_index - find a device by its ifindex 718 * @net: the applicable net namespace 719 * @ifindex: index of device 720 * 721 * Search for an interface by index. Returns %NULL if the device 722 * is not found or a pointer to the device. The device has not 723 * had its reference counter increased so the caller must be careful 724 * about locking. The caller must hold either the RTNL semaphore 725 * or @dev_base_lock. 726 */ 727 728 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 729 { 730 struct net_device *dev; 731 struct hlist_head *head = dev_index_hash(net, ifindex); 732 733 hlist_for_each_entry(dev, head, index_hlist) 734 if (dev->ifindex == ifindex) 735 return dev; 736 737 return NULL; 738 } 739 EXPORT_SYMBOL(__dev_get_by_index); 740 741 /** 742 * dev_get_by_index_rcu - find a device by its ifindex 743 * @net: the applicable net namespace 744 * @ifindex: index of device 745 * 746 * Search for an interface by index. Returns %NULL if the device 747 * is not found or a pointer to the device. The device has not 748 * had its reference counter increased so the caller must be careful 749 * about locking. The caller must hold RCU lock. 750 */ 751 752 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 753 { 754 struct net_device *dev; 755 struct hlist_head *head = dev_index_hash(net, ifindex); 756 757 hlist_for_each_entry_rcu(dev, head, index_hlist) 758 if (dev->ifindex == ifindex) 759 return dev; 760 761 return NULL; 762 } 763 EXPORT_SYMBOL(dev_get_by_index_rcu); 764 765 766 /** 767 * dev_get_by_index - find a device by its ifindex 768 * @net: the applicable net namespace 769 * @ifindex: index of device 770 * 771 * Search for an interface by index. Returns NULL if the device 772 * is not found or a pointer to the device. The device returned has 773 * had a reference added and the pointer is safe until the user calls 774 * dev_put to indicate they have finished with it. 775 */ 776 777 struct net_device *dev_get_by_index(struct net *net, int ifindex) 778 { 779 struct net_device *dev; 780 781 rcu_read_lock(); 782 dev = dev_get_by_index_rcu(net, ifindex); 783 if (dev) 784 dev_hold(dev); 785 rcu_read_unlock(); 786 return dev; 787 } 788 EXPORT_SYMBOL(dev_get_by_index); 789 790 /** 791 * dev_get_by_napi_id - find a device by napi_id 792 * @napi_id: ID of the NAPI struct 793 * 794 * Search for an interface by NAPI ID. Returns %NULL if the device 795 * is not found or a pointer to the device. The device has not had 796 * its reference counter increased so the caller must be careful 797 * about locking. The caller must hold RCU lock. 798 */ 799 800 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 801 { 802 struct napi_struct *napi; 803 804 WARN_ON_ONCE(!rcu_read_lock_held()); 805 806 if (napi_id < MIN_NAPI_ID) 807 return NULL; 808 809 napi = napi_by_id(napi_id); 810 811 return napi ? napi->dev : NULL; 812 } 813 EXPORT_SYMBOL(dev_get_by_napi_id); 814 815 /** 816 * netdev_get_name - get a netdevice name, knowing its ifindex. 817 * @net: network namespace 818 * @name: a pointer to the buffer where the name will be stored. 819 * @ifindex: the ifindex of the interface to get the name from. 820 * 821 * The use of raw_seqcount_begin() and cond_resched() before 822 * retrying is required as we want to give the writers a chance 823 * to complete when CONFIG_PREEMPT is not set. 824 */ 825 int netdev_get_name(struct net *net, char *name, int ifindex) 826 { 827 struct net_device *dev; 828 unsigned int seq; 829 830 retry: 831 seq = raw_seqcount_begin(&devnet_rename_seq); 832 rcu_read_lock(); 833 dev = dev_get_by_index_rcu(net, ifindex); 834 if (!dev) { 835 rcu_read_unlock(); 836 return -ENODEV; 837 } 838 839 strcpy(name, dev->name); 840 rcu_read_unlock(); 841 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 842 cond_resched(); 843 goto retry; 844 } 845 846 return 0; 847 } 848 849 /** 850 * dev_getbyhwaddr_rcu - find a device by its hardware address 851 * @net: the applicable net namespace 852 * @type: media type of device 853 * @ha: hardware address 854 * 855 * Search for an interface by MAC address. Returns NULL if the device 856 * is not found or a pointer to the device. 857 * The caller must hold RCU or RTNL. 858 * The returned device has not had its ref count increased 859 * and the caller must therefore be careful about locking 860 * 861 */ 862 863 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 864 const char *ha) 865 { 866 struct net_device *dev; 867 868 for_each_netdev_rcu(net, dev) 869 if (dev->type == type && 870 !memcmp(dev->dev_addr, ha, dev->addr_len)) 871 return dev; 872 873 return NULL; 874 } 875 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 876 877 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 878 { 879 struct net_device *dev; 880 881 ASSERT_RTNL(); 882 for_each_netdev(net, dev) 883 if (dev->type == type) 884 return dev; 885 886 return NULL; 887 } 888 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 889 890 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 891 { 892 struct net_device *dev, *ret = NULL; 893 894 rcu_read_lock(); 895 for_each_netdev_rcu(net, dev) 896 if (dev->type == type) { 897 dev_hold(dev); 898 ret = dev; 899 break; 900 } 901 rcu_read_unlock(); 902 return ret; 903 } 904 EXPORT_SYMBOL(dev_getfirstbyhwtype); 905 906 /** 907 * __dev_get_by_flags - find any device with given flags 908 * @net: the applicable net namespace 909 * @if_flags: IFF_* values 910 * @mask: bitmask of bits in if_flags to check 911 * 912 * Search for any interface with the given flags. Returns NULL if a device 913 * is not found or a pointer to the device. Must be called inside 914 * rtnl_lock(), and result refcount is unchanged. 915 */ 916 917 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 918 unsigned short mask) 919 { 920 struct net_device *dev, *ret; 921 922 ASSERT_RTNL(); 923 924 ret = NULL; 925 for_each_netdev(net, dev) { 926 if (((dev->flags ^ if_flags) & mask) == 0) { 927 ret = dev; 928 break; 929 } 930 } 931 return ret; 932 } 933 EXPORT_SYMBOL(__dev_get_by_flags); 934 935 /** 936 * dev_valid_name - check if name is okay for network device 937 * @name: name string 938 * 939 * Network device names need to be valid file names to 940 * to allow sysfs to work. We also disallow any kind of 941 * whitespace. 942 */ 943 bool dev_valid_name(const char *name) 944 { 945 if (*name == '\0') 946 return false; 947 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 948 return false; 949 if (!strcmp(name, ".") || !strcmp(name, "..")) 950 return false; 951 952 while (*name) { 953 if (*name == '/' || *name == ':' || isspace(*name)) 954 return false; 955 name++; 956 } 957 return true; 958 } 959 EXPORT_SYMBOL(dev_valid_name); 960 961 /** 962 * __dev_alloc_name - allocate a name for a device 963 * @net: network namespace to allocate the device name in 964 * @name: name format string 965 * @buf: scratch buffer and result name string 966 * 967 * Passed a format string - eg "lt%d" it will try and find a suitable 968 * id. It scans list of devices to build up a free map, then chooses 969 * the first empty slot. The caller must hold the dev_base or rtnl lock 970 * while allocating the name and adding the device in order to avoid 971 * duplicates. 972 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 973 * Returns the number of the unit assigned or a negative errno code. 974 */ 975 976 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 977 { 978 int i = 0; 979 const char *p; 980 const int max_netdevices = 8*PAGE_SIZE; 981 unsigned long *inuse; 982 struct net_device *d; 983 984 if (!dev_valid_name(name)) 985 return -EINVAL; 986 987 p = strchr(name, '%'); 988 if (p) { 989 /* 990 * Verify the string as this thing may have come from 991 * the user. There must be either one "%d" and no other "%" 992 * characters. 993 */ 994 if (p[1] != 'd' || strchr(p + 2, '%')) 995 return -EINVAL; 996 997 /* Use one page as a bit array of possible slots */ 998 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 999 if (!inuse) 1000 return -ENOMEM; 1001 1002 for_each_netdev(net, d) { 1003 if (!sscanf(d->name, name, &i)) 1004 continue; 1005 if (i < 0 || i >= max_netdevices) 1006 continue; 1007 1008 /* avoid cases where sscanf is not exact inverse of printf */ 1009 snprintf(buf, IFNAMSIZ, name, i); 1010 if (!strncmp(buf, d->name, IFNAMSIZ)) 1011 set_bit(i, inuse); 1012 } 1013 1014 i = find_first_zero_bit(inuse, max_netdevices); 1015 free_page((unsigned long) inuse); 1016 } 1017 1018 snprintf(buf, IFNAMSIZ, name, i); 1019 if (!__dev_get_by_name(net, buf)) 1020 return i; 1021 1022 /* It is possible to run out of possible slots 1023 * when the name is long and there isn't enough space left 1024 * for the digits, or if all bits are used. 1025 */ 1026 return -ENFILE; 1027 } 1028 1029 static int dev_alloc_name_ns(struct net *net, 1030 struct net_device *dev, 1031 const char *name) 1032 { 1033 char buf[IFNAMSIZ]; 1034 int ret; 1035 1036 BUG_ON(!net); 1037 ret = __dev_alloc_name(net, name, buf); 1038 if (ret >= 0) 1039 strlcpy(dev->name, buf, IFNAMSIZ); 1040 return ret; 1041 } 1042 1043 /** 1044 * dev_alloc_name - allocate a name for a device 1045 * @dev: device 1046 * @name: name format string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 int dev_alloc_name(struct net_device *dev, const char *name) 1058 { 1059 return dev_alloc_name_ns(dev_net(dev), dev, name); 1060 } 1061 EXPORT_SYMBOL(dev_alloc_name); 1062 1063 int dev_get_valid_name(struct net *net, struct net_device *dev, 1064 const char *name) 1065 { 1066 BUG_ON(!net); 1067 1068 if (!dev_valid_name(name)) 1069 return -EINVAL; 1070 1071 if (strchr(name, '%')) 1072 return dev_alloc_name_ns(net, dev, name); 1073 else if (__dev_get_by_name(net, name)) 1074 return -EEXIST; 1075 else if (dev->name != name) 1076 strlcpy(dev->name, name, IFNAMSIZ); 1077 1078 return 0; 1079 } 1080 EXPORT_SYMBOL(dev_get_valid_name); 1081 1082 /** 1083 * dev_change_name - change name of a device 1084 * @dev: device 1085 * @newname: name (or format string) must be at least IFNAMSIZ 1086 * 1087 * Change name of a device, can pass format strings "eth%d". 1088 * for wildcarding. 1089 */ 1090 int dev_change_name(struct net_device *dev, const char *newname) 1091 { 1092 unsigned char old_assign_type; 1093 char oldname[IFNAMSIZ]; 1094 int err = 0; 1095 int ret; 1096 struct net *net; 1097 1098 ASSERT_RTNL(); 1099 BUG_ON(!dev_net(dev)); 1100 1101 net = dev_net(dev); 1102 1103 /* Some auto-enslaved devices e.g. failover slaves are 1104 * special, as userspace might rename the device after 1105 * the interface had been brought up and running since 1106 * the point kernel initiated auto-enslavement. Allow 1107 * live name change even when these slave devices are 1108 * up and running. 1109 * 1110 * Typically, users of these auto-enslaving devices 1111 * don't actually care about slave name change, as 1112 * they are supposed to operate on master interface 1113 * directly. 1114 */ 1115 if (dev->flags & IFF_UP && 1116 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1117 return -EBUSY; 1118 1119 write_seqcount_begin(&devnet_rename_seq); 1120 1121 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1122 write_seqcount_end(&devnet_rename_seq); 1123 return 0; 1124 } 1125 1126 memcpy(oldname, dev->name, IFNAMSIZ); 1127 1128 err = dev_get_valid_name(net, dev, newname); 1129 if (err < 0) { 1130 write_seqcount_end(&devnet_rename_seq); 1131 return err; 1132 } 1133 1134 if (oldname[0] && !strchr(oldname, '%')) 1135 netdev_info(dev, "renamed from %s\n", oldname); 1136 1137 old_assign_type = dev->name_assign_type; 1138 dev->name_assign_type = NET_NAME_RENAMED; 1139 1140 rollback: 1141 ret = device_rename(&dev->dev, dev->name); 1142 if (ret) { 1143 memcpy(dev->name, oldname, IFNAMSIZ); 1144 dev->name_assign_type = old_assign_type; 1145 write_seqcount_end(&devnet_rename_seq); 1146 return ret; 1147 } 1148 1149 write_seqcount_end(&devnet_rename_seq); 1150 1151 netdev_adjacent_rename_links(dev, oldname); 1152 1153 write_lock_bh(&dev_base_lock); 1154 hlist_del_rcu(&dev->name_hlist); 1155 write_unlock_bh(&dev_base_lock); 1156 1157 synchronize_rcu(); 1158 1159 write_lock_bh(&dev_base_lock); 1160 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1161 write_unlock_bh(&dev_base_lock); 1162 1163 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1164 ret = notifier_to_errno(ret); 1165 1166 if (ret) { 1167 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1168 if (err >= 0) { 1169 err = ret; 1170 write_seqcount_begin(&devnet_rename_seq); 1171 memcpy(dev->name, oldname, IFNAMSIZ); 1172 memcpy(oldname, newname, IFNAMSIZ); 1173 dev->name_assign_type = old_assign_type; 1174 old_assign_type = NET_NAME_RENAMED; 1175 goto rollback; 1176 } else { 1177 pr_err("%s: name change rollback failed: %d\n", 1178 dev->name, ret); 1179 } 1180 } 1181 1182 return err; 1183 } 1184 1185 /** 1186 * dev_set_alias - change ifalias of a device 1187 * @dev: device 1188 * @alias: name up to IFALIASZ 1189 * @len: limit of bytes to copy from info 1190 * 1191 * Set ifalias for a device, 1192 */ 1193 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1194 { 1195 struct dev_ifalias *new_alias = NULL; 1196 1197 if (len >= IFALIASZ) 1198 return -EINVAL; 1199 1200 if (len) { 1201 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1202 if (!new_alias) 1203 return -ENOMEM; 1204 1205 memcpy(new_alias->ifalias, alias, len); 1206 new_alias->ifalias[len] = 0; 1207 } 1208 1209 mutex_lock(&ifalias_mutex); 1210 rcu_swap_protected(dev->ifalias, new_alias, 1211 mutex_is_locked(&ifalias_mutex)); 1212 mutex_unlock(&ifalias_mutex); 1213 1214 if (new_alias) 1215 kfree_rcu(new_alias, rcuhead); 1216 1217 return len; 1218 } 1219 EXPORT_SYMBOL(dev_set_alias); 1220 1221 /** 1222 * dev_get_alias - get ifalias of a device 1223 * @dev: device 1224 * @name: buffer to store name of ifalias 1225 * @len: size of buffer 1226 * 1227 * get ifalias for a device. Caller must make sure dev cannot go 1228 * away, e.g. rcu read lock or own a reference count to device. 1229 */ 1230 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1231 { 1232 const struct dev_ifalias *alias; 1233 int ret = 0; 1234 1235 rcu_read_lock(); 1236 alias = rcu_dereference(dev->ifalias); 1237 if (alias) 1238 ret = snprintf(name, len, "%s", alias->ifalias); 1239 rcu_read_unlock(); 1240 1241 return ret; 1242 } 1243 1244 /** 1245 * netdev_features_change - device changes features 1246 * @dev: device to cause notification 1247 * 1248 * Called to indicate a device has changed features. 1249 */ 1250 void netdev_features_change(struct net_device *dev) 1251 { 1252 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1253 } 1254 EXPORT_SYMBOL(netdev_features_change); 1255 1256 /** 1257 * netdev_state_change - device changes state 1258 * @dev: device to cause notification 1259 * 1260 * Called to indicate a device has changed state. This function calls 1261 * the notifier chains for netdev_chain and sends a NEWLINK message 1262 * to the routing socket. 1263 */ 1264 void netdev_state_change(struct net_device *dev) 1265 { 1266 if (dev->flags & IFF_UP) { 1267 struct netdev_notifier_change_info change_info = { 1268 .info.dev = dev, 1269 }; 1270 1271 call_netdevice_notifiers_info(NETDEV_CHANGE, 1272 &change_info.info); 1273 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1274 } 1275 } 1276 EXPORT_SYMBOL(netdev_state_change); 1277 1278 /** 1279 * netdev_notify_peers - notify network peers about existence of @dev 1280 * @dev: network device 1281 * 1282 * Generate traffic such that interested network peers are aware of 1283 * @dev, such as by generating a gratuitous ARP. This may be used when 1284 * a device wants to inform the rest of the network about some sort of 1285 * reconfiguration such as a failover event or virtual machine 1286 * migration. 1287 */ 1288 void netdev_notify_peers(struct net_device *dev) 1289 { 1290 rtnl_lock(); 1291 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1292 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1293 rtnl_unlock(); 1294 } 1295 EXPORT_SYMBOL(netdev_notify_peers); 1296 1297 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1298 { 1299 const struct net_device_ops *ops = dev->netdev_ops; 1300 int ret; 1301 1302 ASSERT_RTNL(); 1303 1304 if (!netif_device_present(dev)) 1305 return -ENODEV; 1306 1307 /* Block netpoll from trying to do any rx path servicing. 1308 * If we don't do this there is a chance ndo_poll_controller 1309 * or ndo_poll may be running while we open the device 1310 */ 1311 netpoll_poll_disable(dev); 1312 1313 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1314 ret = notifier_to_errno(ret); 1315 if (ret) 1316 return ret; 1317 1318 set_bit(__LINK_STATE_START, &dev->state); 1319 1320 if (ops->ndo_validate_addr) 1321 ret = ops->ndo_validate_addr(dev); 1322 1323 if (!ret && ops->ndo_open) 1324 ret = ops->ndo_open(dev); 1325 1326 netpoll_poll_enable(dev); 1327 1328 if (ret) 1329 clear_bit(__LINK_STATE_START, &dev->state); 1330 else { 1331 dev->flags |= IFF_UP; 1332 dev_set_rx_mode(dev); 1333 dev_activate(dev); 1334 add_device_randomness(dev->dev_addr, dev->addr_len); 1335 } 1336 1337 return ret; 1338 } 1339 1340 /** 1341 * dev_open - prepare an interface for use. 1342 * @dev: device to open 1343 * @extack: netlink extended ack 1344 * 1345 * Takes a device from down to up state. The device's private open 1346 * function is invoked and then the multicast lists are loaded. Finally 1347 * the device is moved into the up state and a %NETDEV_UP message is 1348 * sent to the netdev notifier chain. 1349 * 1350 * Calling this function on an active interface is a nop. On a failure 1351 * a negative errno code is returned. 1352 */ 1353 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1354 { 1355 int ret; 1356 1357 if (dev->flags & IFF_UP) 1358 return 0; 1359 1360 ret = __dev_open(dev, extack); 1361 if (ret < 0) 1362 return ret; 1363 1364 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1365 call_netdevice_notifiers(NETDEV_UP, dev); 1366 1367 return ret; 1368 } 1369 EXPORT_SYMBOL(dev_open); 1370 1371 static void __dev_close_many(struct list_head *head) 1372 { 1373 struct net_device *dev; 1374 1375 ASSERT_RTNL(); 1376 might_sleep(); 1377 1378 list_for_each_entry(dev, head, close_list) { 1379 /* Temporarily disable netpoll until the interface is down */ 1380 netpoll_poll_disable(dev); 1381 1382 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1383 1384 clear_bit(__LINK_STATE_START, &dev->state); 1385 1386 /* Synchronize to scheduled poll. We cannot touch poll list, it 1387 * can be even on different cpu. So just clear netif_running(). 1388 * 1389 * dev->stop() will invoke napi_disable() on all of it's 1390 * napi_struct instances on this device. 1391 */ 1392 smp_mb__after_atomic(); /* Commit netif_running(). */ 1393 } 1394 1395 dev_deactivate_many(head); 1396 1397 list_for_each_entry(dev, head, close_list) { 1398 const struct net_device_ops *ops = dev->netdev_ops; 1399 1400 /* 1401 * Call the device specific close. This cannot fail. 1402 * Only if device is UP 1403 * 1404 * We allow it to be called even after a DETACH hot-plug 1405 * event. 1406 */ 1407 if (ops->ndo_stop) 1408 ops->ndo_stop(dev); 1409 1410 dev->flags &= ~IFF_UP; 1411 netpoll_poll_enable(dev); 1412 } 1413 } 1414 1415 static void __dev_close(struct net_device *dev) 1416 { 1417 LIST_HEAD(single); 1418 1419 list_add(&dev->close_list, &single); 1420 __dev_close_many(&single); 1421 list_del(&single); 1422 } 1423 1424 void dev_close_many(struct list_head *head, bool unlink) 1425 { 1426 struct net_device *dev, *tmp; 1427 1428 /* Remove the devices that don't need to be closed */ 1429 list_for_each_entry_safe(dev, tmp, head, close_list) 1430 if (!(dev->flags & IFF_UP)) 1431 list_del_init(&dev->close_list); 1432 1433 __dev_close_many(head); 1434 1435 list_for_each_entry_safe(dev, tmp, head, close_list) { 1436 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1437 call_netdevice_notifiers(NETDEV_DOWN, dev); 1438 if (unlink) 1439 list_del_init(&dev->close_list); 1440 } 1441 } 1442 EXPORT_SYMBOL(dev_close_many); 1443 1444 /** 1445 * dev_close - shutdown an interface. 1446 * @dev: device to shutdown 1447 * 1448 * This function moves an active device into down state. A 1449 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1450 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1451 * chain. 1452 */ 1453 void dev_close(struct net_device *dev) 1454 { 1455 if (dev->flags & IFF_UP) { 1456 LIST_HEAD(single); 1457 1458 list_add(&dev->close_list, &single); 1459 dev_close_many(&single, true); 1460 list_del(&single); 1461 } 1462 } 1463 EXPORT_SYMBOL(dev_close); 1464 1465 1466 /** 1467 * dev_disable_lro - disable Large Receive Offload on a device 1468 * @dev: device 1469 * 1470 * Disable Large Receive Offload (LRO) on a net device. Must be 1471 * called under RTNL. This is needed if received packets may be 1472 * forwarded to another interface. 1473 */ 1474 void dev_disable_lro(struct net_device *dev) 1475 { 1476 struct net_device *lower_dev; 1477 struct list_head *iter; 1478 1479 dev->wanted_features &= ~NETIF_F_LRO; 1480 netdev_update_features(dev); 1481 1482 if (unlikely(dev->features & NETIF_F_LRO)) 1483 netdev_WARN(dev, "failed to disable LRO!\n"); 1484 1485 netdev_for_each_lower_dev(dev, lower_dev, iter) 1486 dev_disable_lro(lower_dev); 1487 } 1488 EXPORT_SYMBOL(dev_disable_lro); 1489 1490 /** 1491 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1492 * @dev: device 1493 * 1494 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1495 * called under RTNL. This is needed if Generic XDP is installed on 1496 * the device. 1497 */ 1498 static void dev_disable_gro_hw(struct net_device *dev) 1499 { 1500 dev->wanted_features &= ~NETIF_F_GRO_HW; 1501 netdev_update_features(dev); 1502 1503 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1504 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1505 } 1506 1507 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1508 { 1509 #define N(val) \ 1510 case NETDEV_##val: \ 1511 return "NETDEV_" __stringify(val); 1512 switch (cmd) { 1513 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1514 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1515 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1516 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1517 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1518 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1519 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1520 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1521 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1522 N(PRE_CHANGEADDR) 1523 } 1524 #undef N 1525 return "UNKNOWN_NETDEV_EVENT"; 1526 } 1527 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1528 1529 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1530 struct net_device *dev) 1531 { 1532 struct netdev_notifier_info info = { 1533 .dev = dev, 1534 }; 1535 1536 return nb->notifier_call(nb, val, &info); 1537 } 1538 1539 static int dev_boot_phase = 1; 1540 1541 /** 1542 * register_netdevice_notifier - register a network notifier block 1543 * @nb: notifier 1544 * 1545 * Register a notifier to be called when network device events occur. 1546 * The notifier passed is linked into the kernel structures and must 1547 * not be reused until it has been unregistered. A negative errno code 1548 * is returned on a failure. 1549 * 1550 * When registered all registration and up events are replayed 1551 * to the new notifier to allow device to have a race free 1552 * view of the network device list. 1553 */ 1554 1555 int register_netdevice_notifier(struct notifier_block *nb) 1556 { 1557 struct net_device *dev; 1558 struct net_device *last; 1559 struct net *net; 1560 int err; 1561 1562 /* Close race with setup_net() and cleanup_net() */ 1563 down_write(&pernet_ops_rwsem); 1564 rtnl_lock(); 1565 err = raw_notifier_chain_register(&netdev_chain, nb); 1566 if (err) 1567 goto unlock; 1568 if (dev_boot_phase) 1569 goto unlock; 1570 for_each_net(net) { 1571 for_each_netdev(net, dev) { 1572 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1573 err = notifier_to_errno(err); 1574 if (err) 1575 goto rollback; 1576 1577 if (!(dev->flags & IFF_UP)) 1578 continue; 1579 1580 call_netdevice_notifier(nb, NETDEV_UP, dev); 1581 } 1582 } 1583 1584 unlock: 1585 rtnl_unlock(); 1586 up_write(&pernet_ops_rwsem); 1587 return err; 1588 1589 rollback: 1590 last = dev; 1591 for_each_net(net) { 1592 for_each_netdev(net, dev) { 1593 if (dev == last) 1594 goto outroll; 1595 1596 if (dev->flags & IFF_UP) { 1597 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1598 dev); 1599 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1600 } 1601 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1602 } 1603 } 1604 1605 outroll: 1606 raw_notifier_chain_unregister(&netdev_chain, nb); 1607 goto unlock; 1608 } 1609 EXPORT_SYMBOL(register_netdevice_notifier); 1610 1611 /** 1612 * unregister_netdevice_notifier - unregister a network notifier block 1613 * @nb: notifier 1614 * 1615 * Unregister a notifier previously registered by 1616 * register_netdevice_notifier(). The notifier is unlinked into the 1617 * kernel structures and may then be reused. A negative errno code 1618 * is returned on a failure. 1619 * 1620 * After unregistering unregister and down device events are synthesized 1621 * for all devices on the device list to the removed notifier to remove 1622 * the need for special case cleanup code. 1623 */ 1624 1625 int unregister_netdevice_notifier(struct notifier_block *nb) 1626 { 1627 struct net_device *dev; 1628 struct net *net; 1629 int err; 1630 1631 /* Close race with setup_net() and cleanup_net() */ 1632 down_write(&pernet_ops_rwsem); 1633 rtnl_lock(); 1634 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1635 if (err) 1636 goto unlock; 1637 1638 for_each_net(net) { 1639 for_each_netdev(net, dev) { 1640 if (dev->flags & IFF_UP) { 1641 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1642 dev); 1643 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1644 } 1645 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1646 } 1647 } 1648 unlock: 1649 rtnl_unlock(); 1650 up_write(&pernet_ops_rwsem); 1651 return err; 1652 } 1653 EXPORT_SYMBOL(unregister_netdevice_notifier); 1654 1655 /** 1656 * call_netdevice_notifiers_info - call all network notifier blocks 1657 * @val: value passed unmodified to notifier function 1658 * @info: notifier information data 1659 * 1660 * Call all network notifier blocks. Parameters and return value 1661 * are as for raw_notifier_call_chain(). 1662 */ 1663 1664 static int call_netdevice_notifiers_info(unsigned long val, 1665 struct netdev_notifier_info *info) 1666 { 1667 ASSERT_RTNL(); 1668 return raw_notifier_call_chain(&netdev_chain, val, info); 1669 } 1670 1671 static int call_netdevice_notifiers_extack(unsigned long val, 1672 struct net_device *dev, 1673 struct netlink_ext_ack *extack) 1674 { 1675 struct netdev_notifier_info info = { 1676 .dev = dev, 1677 .extack = extack, 1678 }; 1679 1680 return call_netdevice_notifiers_info(val, &info); 1681 } 1682 1683 /** 1684 * call_netdevice_notifiers - call all network notifier blocks 1685 * @val: value passed unmodified to notifier function 1686 * @dev: net_device pointer passed unmodified to notifier function 1687 * 1688 * Call all network notifier blocks. Parameters and return value 1689 * are as for raw_notifier_call_chain(). 1690 */ 1691 1692 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1693 { 1694 return call_netdevice_notifiers_extack(val, dev, NULL); 1695 } 1696 EXPORT_SYMBOL(call_netdevice_notifiers); 1697 1698 /** 1699 * call_netdevice_notifiers_mtu - call all network notifier blocks 1700 * @val: value passed unmodified to notifier function 1701 * @dev: net_device pointer passed unmodified to notifier function 1702 * @arg: additional u32 argument passed to the notifier function 1703 * 1704 * Call all network notifier blocks. Parameters and return value 1705 * are as for raw_notifier_call_chain(). 1706 */ 1707 static int call_netdevice_notifiers_mtu(unsigned long val, 1708 struct net_device *dev, u32 arg) 1709 { 1710 struct netdev_notifier_info_ext info = { 1711 .info.dev = dev, 1712 .ext.mtu = arg, 1713 }; 1714 1715 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1716 1717 return call_netdevice_notifiers_info(val, &info.info); 1718 } 1719 1720 #ifdef CONFIG_NET_INGRESS 1721 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1722 1723 void net_inc_ingress_queue(void) 1724 { 1725 static_branch_inc(&ingress_needed_key); 1726 } 1727 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1728 1729 void net_dec_ingress_queue(void) 1730 { 1731 static_branch_dec(&ingress_needed_key); 1732 } 1733 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1734 #endif 1735 1736 #ifdef CONFIG_NET_EGRESS 1737 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1738 1739 void net_inc_egress_queue(void) 1740 { 1741 static_branch_inc(&egress_needed_key); 1742 } 1743 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1744 1745 void net_dec_egress_queue(void) 1746 { 1747 static_branch_dec(&egress_needed_key); 1748 } 1749 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1750 #endif 1751 1752 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1753 #ifdef CONFIG_JUMP_LABEL 1754 static atomic_t netstamp_needed_deferred; 1755 static atomic_t netstamp_wanted; 1756 static void netstamp_clear(struct work_struct *work) 1757 { 1758 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1759 int wanted; 1760 1761 wanted = atomic_add_return(deferred, &netstamp_wanted); 1762 if (wanted > 0) 1763 static_branch_enable(&netstamp_needed_key); 1764 else 1765 static_branch_disable(&netstamp_needed_key); 1766 } 1767 static DECLARE_WORK(netstamp_work, netstamp_clear); 1768 #endif 1769 1770 void net_enable_timestamp(void) 1771 { 1772 #ifdef CONFIG_JUMP_LABEL 1773 int wanted; 1774 1775 while (1) { 1776 wanted = atomic_read(&netstamp_wanted); 1777 if (wanted <= 0) 1778 break; 1779 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1780 return; 1781 } 1782 atomic_inc(&netstamp_needed_deferred); 1783 schedule_work(&netstamp_work); 1784 #else 1785 static_branch_inc(&netstamp_needed_key); 1786 #endif 1787 } 1788 EXPORT_SYMBOL(net_enable_timestamp); 1789 1790 void net_disable_timestamp(void) 1791 { 1792 #ifdef CONFIG_JUMP_LABEL 1793 int wanted; 1794 1795 while (1) { 1796 wanted = atomic_read(&netstamp_wanted); 1797 if (wanted <= 1) 1798 break; 1799 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1800 return; 1801 } 1802 atomic_dec(&netstamp_needed_deferred); 1803 schedule_work(&netstamp_work); 1804 #else 1805 static_branch_dec(&netstamp_needed_key); 1806 #endif 1807 } 1808 EXPORT_SYMBOL(net_disable_timestamp); 1809 1810 static inline void net_timestamp_set(struct sk_buff *skb) 1811 { 1812 skb->tstamp = 0; 1813 if (static_branch_unlikely(&netstamp_needed_key)) 1814 __net_timestamp(skb); 1815 } 1816 1817 #define net_timestamp_check(COND, SKB) \ 1818 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1819 if ((COND) && !(SKB)->tstamp) \ 1820 __net_timestamp(SKB); \ 1821 } \ 1822 1823 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1824 { 1825 unsigned int len; 1826 1827 if (!(dev->flags & IFF_UP)) 1828 return false; 1829 1830 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1831 if (skb->len <= len) 1832 return true; 1833 1834 /* if TSO is enabled, we don't care about the length as the packet 1835 * could be forwarded without being segmented before 1836 */ 1837 if (skb_is_gso(skb)) 1838 return true; 1839 1840 return false; 1841 } 1842 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1843 1844 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1845 { 1846 int ret = ____dev_forward_skb(dev, skb); 1847 1848 if (likely(!ret)) { 1849 skb->protocol = eth_type_trans(skb, dev); 1850 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1851 } 1852 1853 return ret; 1854 } 1855 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1856 1857 /** 1858 * dev_forward_skb - loopback an skb to another netif 1859 * 1860 * @dev: destination network device 1861 * @skb: buffer to forward 1862 * 1863 * return values: 1864 * NET_RX_SUCCESS (no congestion) 1865 * NET_RX_DROP (packet was dropped, but freed) 1866 * 1867 * dev_forward_skb can be used for injecting an skb from the 1868 * start_xmit function of one device into the receive queue 1869 * of another device. 1870 * 1871 * The receiving device may be in another namespace, so 1872 * we have to clear all information in the skb that could 1873 * impact namespace isolation. 1874 */ 1875 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1876 { 1877 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1878 } 1879 EXPORT_SYMBOL_GPL(dev_forward_skb); 1880 1881 static inline int deliver_skb(struct sk_buff *skb, 1882 struct packet_type *pt_prev, 1883 struct net_device *orig_dev) 1884 { 1885 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1886 return -ENOMEM; 1887 refcount_inc(&skb->users); 1888 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1889 } 1890 1891 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1892 struct packet_type **pt, 1893 struct net_device *orig_dev, 1894 __be16 type, 1895 struct list_head *ptype_list) 1896 { 1897 struct packet_type *ptype, *pt_prev = *pt; 1898 1899 list_for_each_entry_rcu(ptype, ptype_list, list) { 1900 if (ptype->type != type) 1901 continue; 1902 if (pt_prev) 1903 deliver_skb(skb, pt_prev, orig_dev); 1904 pt_prev = ptype; 1905 } 1906 *pt = pt_prev; 1907 } 1908 1909 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1910 { 1911 if (!ptype->af_packet_priv || !skb->sk) 1912 return false; 1913 1914 if (ptype->id_match) 1915 return ptype->id_match(ptype, skb->sk); 1916 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1917 return true; 1918 1919 return false; 1920 } 1921 1922 /** 1923 * dev_nit_active - return true if any network interface taps are in use 1924 * 1925 * @dev: network device to check for the presence of taps 1926 */ 1927 bool dev_nit_active(struct net_device *dev) 1928 { 1929 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 1930 } 1931 EXPORT_SYMBOL_GPL(dev_nit_active); 1932 1933 /* 1934 * Support routine. Sends outgoing frames to any network 1935 * taps currently in use. 1936 */ 1937 1938 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1939 { 1940 struct packet_type *ptype; 1941 struct sk_buff *skb2 = NULL; 1942 struct packet_type *pt_prev = NULL; 1943 struct list_head *ptype_list = &ptype_all; 1944 1945 rcu_read_lock(); 1946 again: 1947 list_for_each_entry_rcu(ptype, ptype_list, list) { 1948 if (ptype->ignore_outgoing) 1949 continue; 1950 1951 /* Never send packets back to the socket 1952 * they originated from - MvS (miquels@drinkel.ow.org) 1953 */ 1954 if (skb_loop_sk(ptype, skb)) 1955 continue; 1956 1957 if (pt_prev) { 1958 deliver_skb(skb2, pt_prev, skb->dev); 1959 pt_prev = ptype; 1960 continue; 1961 } 1962 1963 /* need to clone skb, done only once */ 1964 skb2 = skb_clone(skb, GFP_ATOMIC); 1965 if (!skb2) 1966 goto out_unlock; 1967 1968 net_timestamp_set(skb2); 1969 1970 /* skb->nh should be correctly 1971 * set by sender, so that the second statement is 1972 * just protection against buggy protocols. 1973 */ 1974 skb_reset_mac_header(skb2); 1975 1976 if (skb_network_header(skb2) < skb2->data || 1977 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1978 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1979 ntohs(skb2->protocol), 1980 dev->name); 1981 skb_reset_network_header(skb2); 1982 } 1983 1984 skb2->transport_header = skb2->network_header; 1985 skb2->pkt_type = PACKET_OUTGOING; 1986 pt_prev = ptype; 1987 } 1988 1989 if (ptype_list == &ptype_all) { 1990 ptype_list = &dev->ptype_all; 1991 goto again; 1992 } 1993 out_unlock: 1994 if (pt_prev) { 1995 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1996 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1997 else 1998 kfree_skb(skb2); 1999 } 2000 rcu_read_unlock(); 2001 } 2002 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2003 2004 /** 2005 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2006 * @dev: Network device 2007 * @txq: number of queues available 2008 * 2009 * If real_num_tx_queues is changed the tc mappings may no longer be 2010 * valid. To resolve this verify the tc mapping remains valid and if 2011 * not NULL the mapping. With no priorities mapping to this 2012 * offset/count pair it will no longer be used. In the worst case TC0 2013 * is invalid nothing can be done so disable priority mappings. If is 2014 * expected that drivers will fix this mapping if they can before 2015 * calling netif_set_real_num_tx_queues. 2016 */ 2017 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2018 { 2019 int i; 2020 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2021 2022 /* If TC0 is invalidated disable TC mapping */ 2023 if (tc->offset + tc->count > txq) { 2024 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2025 dev->num_tc = 0; 2026 return; 2027 } 2028 2029 /* Invalidated prio to tc mappings set to TC0 */ 2030 for (i = 1; i < TC_BITMASK + 1; i++) { 2031 int q = netdev_get_prio_tc_map(dev, i); 2032 2033 tc = &dev->tc_to_txq[q]; 2034 if (tc->offset + tc->count > txq) { 2035 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2036 i, q); 2037 netdev_set_prio_tc_map(dev, i, 0); 2038 } 2039 } 2040 } 2041 2042 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2043 { 2044 if (dev->num_tc) { 2045 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2046 int i; 2047 2048 /* walk through the TCs and see if it falls into any of them */ 2049 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2050 if ((txq - tc->offset) < tc->count) 2051 return i; 2052 } 2053 2054 /* didn't find it, just return -1 to indicate no match */ 2055 return -1; 2056 } 2057 2058 return 0; 2059 } 2060 EXPORT_SYMBOL(netdev_txq_to_tc); 2061 2062 #ifdef CONFIG_XPS 2063 struct static_key xps_needed __read_mostly; 2064 EXPORT_SYMBOL(xps_needed); 2065 struct static_key xps_rxqs_needed __read_mostly; 2066 EXPORT_SYMBOL(xps_rxqs_needed); 2067 static DEFINE_MUTEX(xps_map_mutex); 2068 #define xmap_dereference(P) \ 2069 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2070 2071 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2072 int tci, u16 index) 2073 { 2074 struct xps_map *map = NULL; 2075 int pos; 2076 2077 if (dev_maps) 2078 map = xmap_dereference(dev_maps->attr_map[tci]); 2079 if (!map) 2080 return false; 2081 2082 for (pos = map->len; pos--;) { 2083 if (map->queues[pos] != index) 2084 continue; 2085 2086 if (map->len > 1) { 2087 map->queues[pos] = map->queues[--map->len]; 2088 break; 2089 } 2090 2091 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2092 kfree_rcu(map, rcu); 2093 return false; 2094 } 2095 2096 return true; 2097 } 2098 2099 static bool remove_xps_queue_cpu(struct net_device *dev, 2100 struct xps_dev_maps *dev_maps, 2101 int cpu, u16 offset, u16 count) 2102 { 2103 int num_tc = dev->num_tc ? : 1; 2104 bool active = false; 2105 int tci; 2106 2107 for (tci = cpu * num_tc; num_tc--; tci++) { 2108 int i, j; 2109 2110 for (i = count, j = offset; i--; j++) { 2111 if (!remove_xps_queue(dev_maps, tci, j)) 2112 break; 2113 } 2114 2115 active |= i < 0; 2116 } 2117 2118 return active; 2119 } 2120 2121 static void reset_xps_maps(struct net_device *dev, 2122 struct xps_dev_maps *dev_maps, 2123 bool is_rxqs_map) 2124 { 2125 if (is_rxqs_map) { 2126 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2127 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2128 } else { 2129 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2130 } 2131 static_key_slow_dec_cpuslocked(&xps_needed); 2132 kfree_rcu(dev_maps, rcu); 2133 } 2134 2135 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2136 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2137 u16 offset, u16 count, bool is_rxqs_map) 2138 { 2139 bool active = false; 2140 int i, j; 2141 2142 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2143 j < nr_ids;) 2144 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2145 count); 2146 if (!active) 2147 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2148 2149 if (!is_rxqs_map) { 2150 for (i = offset + (count - 1); count--; i--) { 2151 netdev_queue_numa_node_write( 2152 netdev_get_tx_queue(dev, i), 2153 NUMA_NO_NODE); 2154 } 2155 } 2156 } 2157 2158 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2159 u16 count) 2160 { 2161 const unsigned long *possible_mask = NULL; 2162 struct xps_dev_maps *dev_maps; 2163 unsigned int nr_ids; 2164 2165 if (!static_key_false(&xps_needed)) 2166 return; 2167 2168 cpus_read_lock(); 2169 mutex_lock(&xps_map_mutex); 2170 2171 if (static_key_false(&xps_rxqs_needed)) { 2172 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2173 if (dev_maps) { 2174 nr_ids = dev->num_rx_queues; 2175 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2176 offset, count, true); 2177 } 2178 } 2179 2180 dev_maps = xmap_dereference(dev->xps_cpus_map); 2181 if (!dev_maps) 2182 goto out_no_maps; 2183 2184 if (num_possible_cpus() > 1) 2185 possible_mask = cpumask_bits(cpu_possible_mask); 2186 nr_ids = nr_cpu_ids; 2187 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2188 false); 2189 2190 out_no_maps: 2191 mutex_unlock(&xps_map_mutex); 2192 cpus_read_unlock(); 2193 } 2194 2195 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2196 { 2197 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2198 } 2199 2200 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2201 u16 index, bool is_rxqs_map) 2202 { 2203 struct xps_map *new_map; 2204 int alloc_len = XPS_MIN_MAP_ALLOC; 2205 int i, pos; 2206 2207 for (pos = 0; map && pos < map->len; pos++) { 2208 if (map->queues[pos] != index) 2209 continue; 2210 return map; 2211 } 2212 2213 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2214 if (map) { 2215 if (pos < map->alloc_len) 2216 return map; 2217 2218 alloc_len = map->alloc_len * 2; 2219 } 2220 2221 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2222 * map 2223 */ 2224 if (is_rxqs_map) 2225 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2226 else 2227 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2228 cpu_to_node(attr_index)); 2229 if (!new_map) 2230 return NULL; 2231 2232 for (i = 0; i < pos; i++) 2233 new_map->queues[i] = map->queues[i]; 2234 new_map->alloc_len = alloc_len; 2235 new_map->len = pos; 2236 2237 return new_map; 2238 } 2239 2240 /* Must be called under cpus_read_lock */ 2241 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2242 u16 index, bool is_rxqs_map) 2243 { 2244 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2245 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2246 int i, j, tci, numa_node_id = -2; 2247 int maps_sz, num_tc = 1, tc = 0; 2248 struct xps_map *map, *new_map; 2249 bool active = false; 2250 unsigned int nr_ids; 2251 2252 if (dev->num_tc) { 2253 /* Do not allow XPS on subordinate device directly */ 2254 num_tc = dev->num_tc; 2255 if (num_tc < 0) 2256 return -EINVAL; 2257 2258 /* If queue belongs to subordinate dev use its map */ 2259 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2260 2261 tc = netdev_txq_to_tc(dev, index); 2262 if (tc < 0) 2263 return -EINVAL; 2264 } 2265 2266 mutex_lock(&xps_map_mutex); 2267 if (is_rxqs_map) { 2268 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2269 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2270 nr_ids = dev->num_rx_queues; 2271 } else { 2272 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2273 if (num_possible_cpus() > 1) { 2274 online_mask = cpumask_bits(cpu_online_mask); 2275 possible_mask = cpumask_bits(cpu_possible_mask); 2276 } 2277 dev_maps = xmap_dereference(dev->xps_cpus_map); 2278 nr_ids = nr_cpu_ids; 2279 } 2280 2281 if (maps_sz < L1_CACHE_BYTES) 2282 maps_sz = L1_CACHE_BYTES; 2283 2284 /* allocate memory for queue storage */ 2285 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2286 j < nr_ids;) { 2287 if (!new_dev_maps) 2288 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2289 if (!new_dev_maps) { 2290 mutex_unlock(&xps_map_mutex); 2291 return -ENOMEM; 2292 } 2293 2294 tci = j * num_tc + tc; 2295 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2296 NULL; 2297 2298 map = expand_xps_map(map, j, index, is_rxqs_map); 2299 if (!map) 2300 goto error; 2301 2302 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2303 } 2304 2305 if (!new_dev_maps) 2306 goto out_no_new_maps; 2307 2308 if (!dev_maps) { 2309 /* Increment static keys at most once per type */ 2310 static_key_slow_inc_cpuslocked(&xps_needed); 2311 if (is_rxqs_map) 2312 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2313 } 2314 2315 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2316 j < nr_ids;) { 2317 /* copy maps belonging to foreign traffic classes */ 2318 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2319 /* fill in the new device map from the old device map */ 2320 map = xmap_dereference(dev_maps->attr_map[tci]); 2321 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2322 } 2323 2324 /* We need to explicitly update tci as prevous loop 2325 * could break out early if dev_maps is NULL. 2326 */ 2327 tci = j * num_tc + tc; 2328 2329 if (netif_attr_test_mask(j, mask, nr_ids) && 2330 netif_attr_test_online(j, online_mask, nr_ids)) { 2331 /* add tx-queue to CPU/rx-queue maps */ 2332 int pos = 0; 2333 2334 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2335 while ((pos < map->len) && (map->queues[pos] != index)) 2336 pos++; 2337 2338 if (pos == map->len) 2339 map->queues[map->len++] = index; 2340 #ifdef CONFIG_NUMA 2341 if (!is_rxqs_map) { 2342 if (numa_node_id == -2) 2343 numa_node_id = cpu_to_node(j); 2344 else if (numa_node_id != cpu_to_node(j)) 2345 numa_node_id = -1; 2346 } 2347 #endif 2348 } else if (dev_maps) { 2349 /* fill in the new device map from the old device map */ 2350 map = xmap_dereference(dev_maps->attr_map[tci]); 2351 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2352 } 2353 2354 /* copy maps belonging to foreign traffic classes */ 2355 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2356 /* fill in the new device map from the old device map */ 2357 map = xmap_dereference(dev_maps->attr_map[tci]); 2358 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2359 } 2360 } 2361 2362 if (is_rxqs_map) 2363 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2364 else 2365 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2366 2367 /* Cleanup old maps */ 2368 if (!dev_maps) 2369 goto out_no_old_maps; 2370 2371 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2372 j < nr_ids;) { 2373 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2374 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2375 map = xmap_dereference(dev_maps->attr_map[tci]); 2376 if (map && map != new_map) 2377 kfree_rcu(map, rcu); 2378 } 2379 } 2380 2381 kfree_rcu(dev_maps, rcu); 2382 2383 out_no_old_maps: 2384 dev_maps = new_dev_maps; 2385 active = true; 2386 2387 out_no_new_maps: 2388 if (!is_rxqs_map) { 2389 /* update Tx queue numa node */ 2390 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2391 (numa_node_id >= 0) ? 2392 numa_node_id : NUMA_NO_NODE); 2393 } 2394 2395 if (!dev_maps) 2396 goto out_no_maps; 2397 2398 /* removes tx-queue from unused CPUs/rx-queues */ 2399 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2400 j < nr_ids;) { 2401 for (i = tc, tci = j * num_tc; i--; tci++) 2402 active |= remove_xps_queue(dev_maps, tci, index); 2403 if (!netif_attr_test_mask(j, mask, nr_ids) || 2404 !netif_attr_test_online(j, online_mask, nr_ids)) 2405 active |= remove_xps_queue(dev_maps, tci, index); 2406 for (i = num_tc - tc, tci++; --i; tci++) 2407 active |= remove_xps_queue(dev_maps, tci, index); 2408 } 2409 2410 /* free map if not active */ 2411 if (!active) 2412 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2413 2414 out_no_maps: 2415 mutex_unlock(&xps_map_mutex); 2416 2417 return 0; 2418 error: 2419 /* remove any maps that we added */ 2420 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2421 j < nr_ids;) { 2422 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2423 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2424 map = dev_maps ? 2425 xmap_dereference(dev_maps->attr_map[tci]) : 2426 NULL; 2427 if (new_map && new_map != map) 2428 kfree(new_map); 2429 } 2430 } 2431 2432 mutex_unlock(&xps_map_mutex); 2433 2434 kfree(new_dev_maps); 2435 return -ENOMEM; 2436 } 2437 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2438 2439 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2440 u16 index) 2441 { 2442 int ret; 2443 2444 cpus_read_lock(); 2445 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2446 cpus_read_unlock(); 2447 2448 return ret; 2449 } 2450 EXPORT_SYMBOL(netif_set_xps_queue); 2451 2452 #endif 2453 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2454 { 2455 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2456 2457 /* Unbind any subordinate channels */ 2458 while (txq-- != &dev->_tx[0]) { 2459 if (txq->sb_dev) 2460 netdev_unbind_sb_channel(dev, txq->sb_dev); 2461 } 2462 } 2463 2464 void netdev_reset_tc(struct net_device *dev) 2465 { 2466 #ifdef CONFIG_XPS 2467 netif_reset_xps_queues_gt(dev, 0); 2468 #endif 2469 netdev_unbind_all_sb_channels(dev); 2470 2471 /* Reset TC configuration of device */ 2472 dev->num_tc = 0; 2473 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2474 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2475 } 2476 EXPORT_SYMBOL(netdev_reset_tc); 2477 2478 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2479 { 2480 if (tc >= dev->num_tc) 2481 return -EINVAL; 2482 2483 #ifdef CONFIG_XPS 2484 netif_reset_xps_queues(dev, offset, count); 2485 #endif 2486 dev->tc_to_txq[tc].count = count; 2487 dev->tc_to_txq[tc].offset = offset; 2488 return 0; 2489 } 2490 EXPORT_SYMBOL(netdev_set_tc_queue); 2491 2492 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2493 { 2494 if (num_tc > TC_MAX_QUEUE) 2495 return -EINVAL; 2496 2497 #ifdef CONFIG_XPS 2498 netif_reset_xps_queues_gt(dev, 0); 2499 #endif 2500 netdev_unbind_all_sb_channels(dev); 2501 2502 dev->num_tc = num_tc; 2503 return 0; 2504 } 2505 EXPORT_SYMBOL(netdev_set_num_tc); 2506 2507 void netdev_unbind_sb_channel(struct net_device *dev, 2508 struct net_device *sb_dev) 2509 { 2510 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2511 2512 #ifdef CONFIG_XPS 2513 netif_reset_xps_queues_gt(sb_dev, 0); 2514 #endif 2515 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2516 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2517 2518 while (txq-- != &dev->_tx[0]) { 2519 if (txq->sb_dev == sb_dev) 2520 txq->sb_dev = NULL; 2521 } 2522 } 2523 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2524 2525 int netdev_bind_sb_channel_queue(struct net_device *dev, 2526 struct net_device *sb_dev, 2527 u8 tc, u16 count, u16 offset) 2528 { 2529 /* Make certain the sb_dev and dev are already configured */ 2530 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2531 return -EINVAL; 2532 2533 /* We cannot hand out queues we don't have */ 2534 if ((offset + count) > dev->real_num_tx_queues) 2535 return -EINVAL; 2536 2537 /* Record the mapping */ 2538 sb_dev->tc_to_txq[tc].count = count; 2539 sb_dev->tc_to_txq[tc].offset = offset; 2540 2541 /* Provide a way for Tx queue to find the tc_to_txq map or 2542 * XPS map for itself. 2543 */ 2544 while (count--) 2545 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2546 2547 return 0; 2548 } 2549 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2550 2551 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2552 { 2553 /* Do not use a multiqueue device to represent a subordinate channel */ 2554 if (netif_is_multiqueue(dev)) 2555 return -ENODEV; 2556 2557 /* We allow channels 1 - 32767 to be used for subordinate channels. 2558 * Channel 0 is meant to be "native" mode and used only to represent 2559 * the main root device. We allow writing 0 to reset the device back 2560 * to normal mode after being used as a subordinate channel. 2561 */ 2562 if (channel > S16_MAX) 2563 return -EINVAL; 2564 2565 dev->num_tc = -channel; 2566 2567 return 0; 2568 } 2569 EXPORT_SYMBOL(netdev_set_sb_channel); 2570 2571 /* 2572 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2573 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2574 */ 2575 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2576 { 2577 bool disabling; 2578 int rc; 2579 2580 disabling = txq < dev->real_num_tx_queues; 2581 2582 if (txq < 1 || txq > dev->num_tx_queues) 2583 return -EINVAL; 2584 2585 if (dev->reg_state == NETREG_REGISTERED || 2586 dev->reg_state == NETREG_UNREGISTERING) { 2587 ASSERT_RTNL(); 2588 2589 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2590 txq); 2591 if (rc) 2592 return rc; 2593 2594 if (dev->num_tc) 2595 netif_setup_tc(dev, txq); 2596 2597 dev->real_num_tx_queues = txq; 2598 2599 if (disabling) { 2600 synchronize_net(); 2601 qdisc_reset_all_tx_gt(dev, txq); 2602 #ifdef CONFIG_XPS 2603 netif_reset_xps_queues_gt(dev, txq); 2604 #endif 2605 } 2606 } else { 2607 dev->real_num_tx_queues = txq; 2608 } 2609 2610 return 0; 2611 } 2612 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2613 2614 #ifdef CONFIG_SYSFS 2615 /** 2616 * netif_set_real_num_rx_queues - set actual number of RX queues used 2617 * @dev: Network device 2618 * @rxq: Actual number of RX queues 2619 * 2620 * This must be called either with the rtnl_lock held or before 2621 * registration of the net device. Returns 0 on success, or a 2622 * negative error code. If called before registration, it always 2623 * succeeds. 2624 */ 2625 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2626 { 2627 int rc; 2628 2629 if (rxq < 1 || rxq > dev->num_rx_queues) 2630 return -EINVAL; 2631 2632 if (dev->reg_state == NETREG_REGISTERED) { 2633 ASSERT_RTNL(); 2634 2635 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2636 rxq); 2637 if (rc) 2638 return rc; 2639 } 2640 2641 dev->real_num_rx_queues = rxq; 2642 return 0; 2643 } 2644 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2645 #endif 2646 2647 /** 2648 * netif_get_num_default_rss_queues - default number of RSS queues 2649 * 2650 * This routine should set an upper limit on the number of RSS queues 2651 * used by default by multiqueue devices. 2652 */ 2653 int netif_get_num_default_rss_queues(void) 2654 { 2655 return is_kdump_kernel() ? 2656 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2657 } 2658 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2659 2660 static void __netif_reschedule(struct Qdisc *q) 2661 { 2662 struct softnet_data *sd; 2663 unsigned long flags; 2664 2665 local_irq_save(flags); 2666 sd = this_cpu_ptr(&softnet_data); 2667 q->next_sched = NULL; 2668 *sd->output_queue_tailp = q; 2669 sd->output_queue_tailp = &q->next_sched; 2670 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2671 local_irq_restore(flags); 2672 } 2673 2674 void __netif_schedule(struct Qdisc *q) 2675 { 2676 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2677 __netif_reschedule(q); 2678 } 2679 EXPORT_SYMBOL(__netif_schedule); 2680 2681 struct dev_kfree_skb_cb { 2682 enum skb_free_reason reason; 2683 }; 2684 2685 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2686 { 2687 return (struct dev_kfree_skb_cb *)skb->cb; 2688 } 2689 2690 void netif_schedule_queue(struct netdev_queue *txq) 2691 { 2692 rcu_read_lock(); 2693 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2694 struct Qdisc *q = rcu_dereference(txq->qdisc); 2695 2696 __netif_schedule(q); 2697 } 2698 rcu_read_unlock(); 2699 } 2700 EXPORT_SYMBOL(netif_schedule_queue); 2701 2702 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2703 { 2704 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2705 struct Qdisc *q; 2706 2707 rcu_read_lock(); 2708 q = rcu_dereference(dev_queue->qdisc); 2709 __netif_schedule(q); 2710 rcu_read_unlock(); 2711 } 2712 } 2713 EXPORT_SYMBOL(netif_tx_wake_queue); 2714 2715 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2716 { 2717 unsigned long flags; 2718 2719 if (unlikely(!skb)) 2720 return; 2721 2722 if (likely(refcount_read(&skb->users) == 1)) { 2723 smp_rmb(); 2724 refcount_set(&skb->users, 0); 2725 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2726 return; 2727 } 2728 get_kfree_skb_cb(skb)->reason = reason; 2729 local_irq_save(flags); 2730 skb->next = __this_cpu_read(softnet_data.completion_queue); 2731 __this_cpu_write(softnet_data.completion_queue, skb); 2732 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2733 local_irq_restore(flags); 2734 } 2735 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2736 2737 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2738 { 2739 if (in_irq() || irqs_disabled()) 2740 __dev_kfree_skb_irq(skb, reason); 2741 else 2742 dev_kfree_skb(skb); 2743 } 2744 EXPORT_SYMBOL(__dev_kfree_skb_any); 2745 2746 2747 /** 2748 * netif_device_detach - mark device as removed 2749 * @dev: network device 2750 * 2751 * Mark device as removed from system and therefore no longer available. 2752 */ 2753 void netif_device_detach(struct net_device *dev) 2754 { 2755 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2756 netif_running(dev)) { 2757 netif_tx_stop_all_queues(dev); 2758 } 2759 } 2760 EXPORT_SYMBOL(netif_device_detach); 2761 2762 /** 2763 * netif_device_attach - mark device as attached 2764 * @dev: network device 2765 * 2766 * Mark device as attached from system and restart if needed. 2767 */ 2768 void netif_device_attach(struct net_device *dev) 2769 { 2770 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2771 netif_running(dev)) { 2772 netif_tx_wake_all_queues(dev); 2773 __netdev_watchdog_up(dev); 2774 } 2775 } 2776 EXPORT_SYMBOL(netif_device_attach); 2777 2778 /* 2779 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2780 * to be used as a distribution range. 2781 */ 2782 static u16 skb_tx_hash(const struct net_device *dev, 2783 const struct net_device *sb_dev, 2784 struct sk_buff *skb) 2785 { 2786 u32 hash; 2787 u16 qoffset = 0; 2788 u16 qcount = dev->real_num_tx_queues; 2789 2790 if (dev->num_tc) { 2791 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2792 2793 qoffset = sb_dev->tc_to_txq[tc].offset; 2794 qcount = sb_dev->tc_to_txq[tc].count; 2795 } 2796 2797 if (skb_rx_queue_recorded(skb)) { 2798 hash = skb_get_rx_queue(skb); 2799 while (unlikely(hash >= qcount)) 2800 hash -= qcount; 2801 return hash + qoffset; 2802 } 2803 2804 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2805 } 2806 2807 static void skb_warn_bad_offload(const struct sk_buff *skb) 2808 { 2809 static const netdev_features_t null_features; 2810 struct net_device *dev = skb->dev; 2811 const char *name = ""; 2812 2813 if (!net_ratelimit()) 2814 return; 2815 2816 if (dev) { 2817 if (dev->dev.parent) 2818 name = dev_driver_string(dev->dev.parent); 2819 else 2820 name = netdev_name(dev); 2821 } 2822 skb_dump(KERN_WARNING, skb, false); 2823 WARN(1, "%s: caps=(%pNF, %pNF)\n", 2824 name, dev ? &dev->features : &null_features, 2825 skb->sk ? &skb->sk->sk_route_caps : &null_features); 2826 } 2827 2828 /* 2829 * Invalidate hardware checksum when packet is to be mangled, and 2830 * complete checksum manually on outgoing path. 2831 */ 2832 int skb_checksum_help(struct sk_buff *skb) 2833 { 2834 __wsum csum; 2835 int ret = 0, offset; 2836 2837 if (skb->ip_summed == CHECKSUM_COMPLETE) 2838 goto out_set_summed; 2839 2840 if (unlikely(skb_shinfo(skb)->gso_size)) { 2841 skb_warn_bad_offload(skb); 2842 return -EINVAL; 2843 } 2844 2845 /* Before computing a checksum, we should make sure no frag could 2846 * be modified by an external entity : checksum could be wrong. 2847 */ 2848 if (skb_has_shared_frag(skb)) { 2849 ret = __skb_linearize(skb); 2850 if (ret) 2851 goto out; 2852 } 2853 2854 offset = skb_checksum_start_offset(skb); 2855 BUG_ON(offset >= skb_headlen(skb)); 2856 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2857 2858 offset += skb->csum_offset; 2859 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2860 2861 if (skb_cloned(skb) && 2862 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2863 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2864 if (ret) 2865 goto out; 2866 } 2867 2868 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2869 out_set_summed: 2870 skb->ip_summed = CHECKSUM_NONE; 2871 out: 2872 return ret; 2873 } 2874 EXPORT_SYMBOL(skb_checksum_help); 2875 2876 int skb_crc32c_csum_help(struct sk_buff *skb) 2877 { 2878 __le32 crc32c_csum; 2879 int ret = 0, offset, start; 2880 2881 if (skb->ip_summed != CHECKSUM_PARTIAL) 2882 goto out; 2883 2884 if (unlikely(skb_is_gso(skb))) 2885 goto out; 2886 2887 /* Before computing a checksum, we should make sure no frag could 2888 * be modified by an external entity : checksum could be wrong. 2889 */ 2890 if (unlikely(skb_has_shared_frag(skb))) { 2891 ret = __skb_linearize(skb); 2892 if (ret) 2893 goto out; 2894 } 2895 start = skb_checksum_start_offset(skb); 2896 offset = start + offsetof(struct sctphdr, checksum); 2897 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2898 ret = -EINVAL; 2899 goto out; 2900 } 2901 if (skb_cloned(skb) && 2902 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2903 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2904 if (ret) 2905 goto out; 2906 } 2907 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2908 skb->len - start, ~(__u32)0, 2909 crc32c_csum_stub)); 2910 *(__le32 *)(skb->data + offset) = crc32c_csum; 2911 skb->ip_summed = CHECKSUM_NONE; 2912 skb->csum_not_inet = 0; 2913 out: 2914 return ret; 2915 } 2916 2917 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2918 { 2919 __be16 type = skb->protocol; 2920 2921 /* Tunnel gso handlers can set protocol to ethernet. */ 2922 if (type == htons(ETH_P_TEB)) { 2923 struct ethhdr *eth; 2924 2925 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2926 return 0; 2927 2928 eth = (struct ethhdr *)skb->data; 2929 type = eth->h_proto; 2930 } 2931 2932 return __vlan_get_protocol(skb, type, depth); 2933 } 2934 2935 /** 2936 * skb_mac_gso_segment - mac layer segmentation handler. 2937 * @skb: buffer to segment 2938 * @features: features for the output path (see dev->features) 2939 */ 2940 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2941 netdev_features_t features) 2942 { 2943 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2944 struct packet_offload *ptype; 2945 int vlan_depth = skb->mac_len; 2946 __be16 type = skb_network_protocol(skb, &vlan_depth); 2947 2948 if (unlikely(!type)) 2949 return ERR_PTR(-EINVAL); 2950 2951 __skb_pull(skb, vlan_depth); 2952 2953 rcu_read_lock(); 2954 list_for_each_entry_rcu(ptype, &offload_base, list) { 2955 if (ptype->type == type && ptype->callbacks.gso_segment) { 2956 segs = ptype->callbacks.gso_segment(skb, features); 2957 break; 2958 } 2959 } 2960 rcu_read_unlock(); 2961 2962 __skb_push(skb, skb->data - skb_mac_header(skb)); 2963 2964 return segs; 2965 } 2966 EXPORT_SYMBOL(skb_mac_gso_segment); 2967 2968 2969 /* openvswitch calls this on rx path, so we need a different check. 2970 */ 2971 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2972 { 2973 if (tx_path) 2974 return skb->ip_summed != CHECKSUM_PARTIAL && 2975 skb->ip_summed != CHECKSUM_UNNECESSARY; 2976 2977 return skb->ip_summed == CHECKSUM_NONE; 2978 } 2979 2980 /** 2981 * __skb_gso_segment - Perform segmentation on skb. 2982 * @skb: buffer to segment 2983 * @features: features for the output path (see dev->features) 2984 * @tx_path: whether it is called in TX path 2985 * 2986 * This function segments the given skb and returns a list of segments. 2987 * 2988 * It may return NULL if the skb requires no segmentation. This is 2989 * only possible when GSO is used for verifying header integrity. 2990 * 2991 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2992 */ 2993 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2994 netdev_features_t features, bool tx_path) 2995 { 2996 struct sk_buff *segs; 2997 2998 if (unlikely(skb_needs_check(skb, tx_path))) { 2999 int err; 3000 3001 /* We're going to init ->check field in TCP or UDP header */ 3002 err = skb_cow_head(skb, 0); 3003 if (err < 0) 3004 return ERR_PTR(err); 3005 } 3006 3007 /* Only report GSO partial support if it will enable us to 3008 * support segmentation on this frame without needing additional 3009 * work. 3010 */ 3011 if (features & NETIF_F_GSO_PARTIAL) { 3012 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3013 struct net_device *dev = skb->dev; 3014 3015 partial_features |= dev->features & dev->gso_partial_features; 3016 if (!skb_gso_ok(skb, features | partial_features)) 3017 features &= ~NETIF_F_GSO_PARTIAL; 3018 } 3019 3020 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3021 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3022 3023 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3024 SKB_GSO_CB(skb)->encap_level = 0; 3025 3026 skb_reset_mac_header(skb); 3027 skb_reset_mac_len(skb); 3028 3029 segs = skb_mac_gso_segment(skb, features); 3030 3031 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3032 skb_warn_bad_offload(skb); 3033 3034 return segs; 3035 } 3036 EXPORT_SYMBOL(__skb_gso_segment); 3037 3038 /* Take action when hardware reception checksum errors are detected. */ 3039 #ifdef CONFIG_BUG 3040 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3041 { 3042 if (net_ratelimit()) { 3043 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3044 skb_dump(KERN_ERR, skb, true); 3045 dump_stack(); 3046 } 3047 } 3048 EXPORT_SYMBOL(netdev_rx_csum_fault); 3049 #endif 3050 3051 /* XXX: check that highmem exists at all on the given machine. */ 3052 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3053 { 3054 #ifdef CONFIG_HIGHMEM 3055 int i; 3056 3057 if (!(dev->features & NETIF_F_HIGHDMA)) { 3058 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3059 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3060 3061 if (PageHighMem(skb_frag_page(frag))) 3062 return 1; 3063 } 3064 } 3065 #endif 3066 return 0; 3067 } 3068 3069 /* If MPLS offload request, verify we are testing hardware MPLS features 3070 * instead of standard features for the netdev. 3071 */ 3072 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3073 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3074 netdev_features_t features, 3075 __be16 type) 3076 { 3077 if (eth_p_mpls(type)) 3078 features &= skb->dev->mpls_features; 3079 3080 return features; 3081 } 3082 #else 3083 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3084 netdev_features_t features, 3085 __be16 type) 3086 { 3087 return features; 3088 } 3089 #endif 3090 3091 static netdev_features_t harmonize_features(struct sk_buff *skb, 3092 netdev_features_t features) 3093 { 3094 int tmp; 3095 __be16 type; 3096 3097 type = skb_network_protocol(skb, &tmp); 3098 features = net_mpls_features(skb, features, type); 3099 3100 if (skb->ip_summed != CHECKSUM_NONE && 3101 !can_checksum_protocol(features, type)) { 3102 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3103 } 3104 if (illegal_highdma(skb->dev, skb)) 3105 features &= ~NETIF_F_SG; 3106 3107 return features; 3108 } 3109 3110 netdev_features_t passthru_features_check(struct sk_buff *skb, 3111 struct net_device *dev, 3112 netdev_features_t features) 3113 { 3114 return features; 3115 } 3116 EXPORT_SYMBOL(passthru_features_check); 3117 3118 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3119 struct net_device *dev, 3120 netdev_features_t features) 3121 { 3122 return vlan_features_check(skb, features); 3123 } 3124 3125 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3126 struct net_device *dev, 3127 netdev_features_t features) 3128 { 3129 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3130 3131 if (gso_segs > dev->gso_max_segs) 3132 return features & ~NETIF_F_GSO_MASK; 3133 3134 /* Support for GSO partial features requires software 3135 * intervention before we can actually process the packets 3136 * so we need to strip support for any partial features now 3137 * and we can pull them back in after we have partially 3138 * segmented the frame. 3139 */ 3140 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3141 features &= ~dev->gso_partial_features; 3142 3143 /* Make sure to clear the IPv4 ID mangling feature if the 3144 * IPv4 header has the potential to be fragmented. 3145 */ 3146 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3147 struct iphdr *iph = skb->encapsulation ? 3148 inner_ip_hdr(skb) : ip_hdr(skb); 3149 3150 if (!(iph->frag_off & htons(IP_DF))) 3151 features &= ~NETIF_F_TSO_MANGLEID; 3152 } 3153 3154 return features; 3155 } 3156 3157 netdev_features_t netif_skb_features(struct sk_buff *skb) 3158 { 3159 struct net_device *dev = skb->dev; 3160 netdev_features_t features = dev->features; 3161 3162 if (skb_is_gso(skb)) 3163 features = gso_features_check(skb, dev, features); 3164 3165 /* If encapsulation offload request, verify we are testing 3166 * hardware encapsulation features instead of standard 3167 * features for the netdev 3168 */ 3169 if (skb->encapsulation) 3170 features &= dev->hw_enc_features; 3171 3172 if (skb_vlan_tagged(skb)) 3173 features = netdev_intersect_features(features, 3174 dev->vlan_features | 3175 NETIF_F_HW_VLAN_CTAG_TX | 3176 NETIF_F_HW_VLAN_STAG_TX); 3177 3178 if (dev->netdev_ops->ndo_features_check) 3179 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3180 features); 3181 else 3182 features &= dflt_features_check(skb, dev, features); 3183 3184 return harmonize_features(skb, features); 3185 } 3186 EXPORT_SYMBOL(netif_skb_features); 3187 3188 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3189 struct netdev_queue *txq, bool more) 3190 { 3191 unsigned int len; 3192 int rc; 3193 3194 if (dev_nit_active(dev)) 3195 dev_queue_xmit_nit(skb, dev); 3196 3197 len = skb->len; 3198 trace_net_dev_start_xmit(skb, dev); 3199 rc = netdev_start_xmit(skb, dev, txq, more); 3200 trace_net_dev_xmit(skb, rc, dev, len); 3201 3202 return rc; 3203 } 3204 3205 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3206 struct netdev_queue *txq, int *ret) 3207 { 3208 struct sk_buff *skb = first; 3209 int rc = NETDEV_TX_OK; 3210 3211 while (skb) { 3212 struct sk_buff *next = skb->next; 3213 3214 skb_mark_not_on_list(skb); 3215 rc = xmit_one(skb, dev, txq, next != NULL); 3216 if (unlikely(!dev_xmit_complete(rc))) { 3217 skb->next = next; 3218 goto out; 3219 } 3220 3221 skb = next; 3222 if (netif_tx_queue_stopped(txq) && skb) { 3223 rc = NETDEV_TX_BUSY; 3224 break; 3225 } 3226 } 3227 3228 out: 3229 *ret = rc; 3230 return skb; 3231 } 3232 3233 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3234 netdev_features_t features) 3235 { 3236 if (skb_vlan_tag_present(skb) && 3237 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3238 skb = __vlan_hwaccel_push_inside(skb); 3239 return skb; 3240 } 3241 3242 int skb_csum_hwoffload_help(struct sk_buff *skb, 3243 const netdev_features_t features) 3244 { 3245 if (unlikely(skb->csum_not_inet)) 3246 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3247 skb_crc32c_csum_help(skb); 3248 3249 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3250 } 3251 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3252 3253 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3254 { 3255 netdev_features_t features; 3256 3257 features = netif_skb_features(skb); 3258 skb = validate_xmit_vlan(skb, features); 3259 if (unlikely(!skb)) 3260 goto out_null; 3261 3262 skb = sk_validate_xmit_skb(skb, dev); 3263 if (unlikely(!skb)) 3264 goto out_null; 3265 3266 if (netif_needs_gso(skb, features)) { 3267 struct sk_buff *segs; 3268 3269 segs = skb_gso_segment(skb, features); 3270 if (IS_ERR(segs)) { 3271 goto out_kfree_skb; 3272 } else if (segs) { 3273 consume_skb(skb); 3274 skb = segs; 3275 } 3276 } else { 3277 if (skb_needs_linearize(skb, features) && 3278 __skb_linearize(skb)) 3279 goto out_kfree_skb; 3280 3281 /* If packet is not checksummed and device does not 3282 * support checksumming for this protocol, complete 3283 * checksumming here. 3284 */ 3285 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3286 if (skb->encapsulation) 3287 skb_set_inner_transport_header(skb, 3288 skb_checksum_start_offset(skb)); 3289 else 3290 skb_set_transport_header(skb, 3291 skb_checksum_start_offset(skb)); 3292 if (skb_csum_hwoffload_help(skb, features)) 3293 goto out_kfree_skb; 3294 } 3295 } 3296 3297 skb = validate_xmit_xfrm(skb, features, again); 3298 3299 return skb; 3300 3301 out_kfree_skb: 3302 kfree_skb(skb); 3303 out_null: 3304 atomic_long_inc(&dev->tx_dropped); 3305 return NULL; 3306 } 3307 3308 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3309 { 3310 struct sk_buff *next, *head = NULL, *tail; 3311 3312 for (; skb != NULL; skb = next) { 3313 next = skb->next; 3314 skb_mark_not_on_list(skb); 3315 3316 /* in case skb wont be segmented, point to itself */ 3317 skb->prev = skb; 3318 3319 skb = validate_xmit_skb(skb, dev, again); 3320 if (!skb) 3321 continue; 3322 3323 if (!head) 3324 head = skb; 3325 else 3326 tail->next = skb; 3327 /* If skb was segmented, skb->prev points to 3328 * the last segment. If not, it still contains skb. 3329 */ 3330 tail = skb->prev; 3331 } 3332 return head; 3333 } 3334 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3335 3336 static void qdisc_pkt_len_init(struct sk_buff *skb) 3337 { 3338 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3339 3340 qdisc_skb_cb(skb)->pkt_len = skb->len; 3341 3342 /* To get more precise estimation of bytes sent on wire, 3343 * we add to pkt_len the headers size of all segments 3344 */ 3345 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3346 unsigned int hdr_len; 3347 u16 gso_segs = shinfo->gso_segs; 3348 3349 /* mac layer + network layer */ 3350 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3351 3352 /* + transport layer */ 3353 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3354 const struct tcphdr *th; 3355 struct tcphdr _tcphdr; 3356 3357 th = skb_header_pointer(skb, skb_transport_offset(skb), 3358 sizeof(_tcphdr), &_tcphdr); 3359 if (likely(th)) 3360 hdr_len += __tcp_hdrlen(th); 3361 } else { 3362 struct udphdr _udphdr; 3363 3364 if (skb_header_pointer(skb, skb_transport_offset(skb), 3365 sizeof(_udphdr), &_udphdr)) 3366 hdr_len += sizeof(struct udphdr); 3367 } 3368 3369 if (shinfo->gso_type & SKB_GSO_DODGY) 3370 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3371 shinfo->gso_size); 3372 3373 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3374 } 3375 } 3376 3377 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3378 struct net_device *dev, 3379 struct netdev_queue *txq) 3380 { 3381 spinlock_t *root_lock = qdisc_lock(q); 3382 struct sk_buff *to_free = NULL; 3383 bool contended; 3384 int rc; 3385 3386 qdisc_calculate_pkt_len(skb, q); 3387 3388 if (q->flags & TCQ_F_NOLOCK) { 3389 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty && 3390 qdisc_run_begin(q)) { 3391 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 3392 &q->state))) { 3393 __qdisc_drop(skb, &to_free); 3394 rc = NET_XMIT_DROP; 3395 goto end_run; 3396 } 3397 qdisc_bstats_cpu_update(q, skb); 3398 3399 rc = NET_XMIT_SUCCESS; 3400 if (sch_direct_xmit(skb, q, dev, txq, NULL, true)) 3401 __qdisc_run(q); 3402 3403 end_run: 3404 qdisc_run_end(q); 3405 } else { 3406 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3407 qdisc_run(q); 3408 } 3409 3410 if (unlikely(to_free)) 3411 kfree_skb_list(to_free); 3412 return rc; 3413 } 3414 3415 /* 3416 * Heuristic to force contended enqueues to serialize on a 3417 * separate lock before trying to get qdisc main lock. 3418 * This permits qdisc->running owner to get the lock more 3419 * often and dequeue packets faster. 3420 */ 3421 contended = qdisc_is_running(q); 3422 if (unlikely(contended)) 3423 spin_lock(&q->busylock); 3424 3425 spin_lock(root_lock); 3426 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3427 __qdisc_drop(skb, &to_free); 3428 rc = NET_XMIT_DROP; 3429 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3430 qdisc_run_begin(q)) { 3431 /* 3432 * This is a work-conserving queue; there are no old skbs 3433 * waiting to be sent out; and the qdisc is not running - 3434 * xmit the skb directly. 3435 */ 3436 3437 qdisc_bstats_update(q, skb); 3438 3439 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3440 if (unlikely(contended)) { 3441 spin_unlock(&q->busylock); 3442 contended = false; 3443 } 3444 __qdisc_run(q); 3445 } 3446 3447 qdisc_run_end(q); 3448 rc = NET_XMIT_SUCCESS; 3449 } else { 3450 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3451 if (qdisc_run_begin(q)) { 3452 if (unlikely(contended)) { 3453 spin_unlock(&q->busylock); 3454 contended = false; 3455 } 3456 __qdisc_run(q); 3457 qdisc_run_end(q); 3458 } 3459 } 3460 spin_unlock(root_lock); 3461 if (unlikely(to_free)) 3462 kfree_skb_list(to_free); 3463 if (unlikely(contended)) 3464 spin_unlock(&q->busylock); 3465 return rc; 3466 } 3467 3468 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3469 static void skb_update_prio(struct sk_buff *skb) 3470 { 3471 const struct netprio_map *map; 3472 const struct sock *sk; 3473 unsigned int prioidx; 3474 3475 if (skb->priority) 3476 return; 3477 map = rcu_dereference_bh(skb->dev->priomap); 3478 if (!map) 3479 return; 3480 sk = skb_to_full_sk(skb); 3481 if (!sk) 3482 return; 3483 3484 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3485 3486 if (prioidx < map->priomap_len) 3487 skb->priority = map->priomap[prioidx]; 3488 } 3489 #else 3490 #define skb_update_prio(skb) 3491 #endif 3492 3493 /** 3494 * dev_loopback_xmit - loop back @skb 3495 * @net: network namespace this loopback is happening in 3496 * @sk: sk needed to be a netfilter okfn 3497 * @skb: buffer to transmit 3498 */ 3499 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3500 { 3501 skb_reset_mac_header(skb); 3502 __skb_pull(skb, skb_network_offset(skb)); 3503 skb->pkt_type = PACKET_LOOPBACK; 3504 skb->ip_summed = CHECKSUM_UNNECESSARY; 3505 WARN_ON(!skb_dst(skb)); 3506 skb_dst_force(skb); 3507 netif_rx_ni(skb); 3508 return 0; 3509 } 3510 EXPORT_SYMBOL(dev_loopback_xmit); 3511 3512 #ifdef CONFIG_NET_EGRESS 3513 static struct sk_buff * 3514 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3515 { 3516 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3517 struct tcf_result cl_res; 3518 3519 if (!miniq) 3520 return skb; 3521 3522 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3523 mini_qdisc_bstats_cpu_update(miniq, skb); 3524 3525 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3526 case TC_ACT_OK: 3527 case TC_ACT_RECLASSIFY: 3528 skb->tc_index = TC_H_MIN(cl_res.classid); 3529 break; 3530 case TC_ACT_SHOT: 3531 mini_qdisc_qstats_cpu_drop(miniq); 3532 *ret = NET_XMIT_DROP; 3533 kfree_skb(skb); 3534 return NULL; 3535 case TC_ACT_STOLEN: 3536 case TC_ACT_QUEUED: 3537 case TC_ACT_TRAP: 3538 *ret = NET_XMIT_SUCCESS; 3539 consume_skb(skb); 3540 return NULL; 3541 case TC_ACT_REDIRECT: 3542 /* No need to push/pop skb's mac_header here on egress! */ 3543 skb_do_redirect(skb); 3544 *ret = NET_XMIT_SUCCESS; 3545 return NULL; 3546 default: 3547 break; 3548 } 3549 3550 return skb; 3551 } 3552 #endif /* CONFIG_NET_EGRESS */ 3553 3554 #ifdef CONFIG_XPS 3555 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3556 struct xps_dev_maps *dev_maps, unsigned int tci) 3557 { 3558 struct xps_map *map; 3559 int queue_index = -1; 3560 3561 if (dev->num_tc) { 3562 tci *= dev->num_tc; 3563 tci += netdev_get_prio_tc_map(dev, skb->priority); 3564 } 3565 3566 map = rcu_dereference(dev_maps->attr_map[tci]); 3567 if (map) { 3568 if (map->len == 1) 3569 queue_index = map->queues[0]; 3570 else 3571 queue_index = map->queues[reciprocal_scale( 3572 skb_get_hash(skb), map->len)]; 3573 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3574 queue_index = -1; 3575 } 3576 return queue_index; 3577 } 3578 #endif 3579 3580 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3581 struct sk_buff *skb) 3582 { 3583 #ifdef CONFIG_XPS 3584 struct xps_dev_maps *dev_maps; 3585 struct sock *sk = skb->sk; 3586 int queue_index = -1; 3587 3588 if (!static_key_false(&xps_needed)) 3589 return -1; 3590 3591 rcu_read_lock(); 3592 if (!static_key_false(&xps_rxqs_needed)) 3593 goto get_cpus_map; 3594 3595 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3596 if (dev_maps) { 3597 int tci = sk_rx_queue_get(sk); 3598 3599 if (tci >= 0 && tci < dev->num_rx_queues) 3600 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3601 tci); 3602 } 3603 3604 get_cpus_map: 3605 if (queue_index < 0) { 3606 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3607 if (dev_maps) { 3608 unsigned int tci = skb->sender_cpu - 1; 3609 3610 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3611 tci); 3612 } 3613 } 3614 rcu_read_unlock(); 3615 3616 return queue_index; 3617 #else 3618 return -1; 3619 #endif 3620 } 3621 3622 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3623 struct net_device *sb_dev) 3624 { 3625 return 0; 3626 } 3627 EXPORT_SYMBOL(dev_pick_tx_zero); 3628 3629 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3630 struct net_device *sb_dev) 3631 { 3632 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3633 } 3634 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3635 3636 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3637 struct net_device *sb_dev) 3638 { 3639 struct sock *sk = skb->sk; 3640 int queue_index = sk_tx_queue_get(sk); 3641 3642 sb_dev = sb_dev ? : dev; 3643 3644 if (queue_index < 0 || skb->ooo_okay || 3645 queue_index >= dev->real_num_tx_queues) { 3646 int new_index = get_xps_queue(dev, sb_dev, skb); 3647 3648 if (new_index < 0) 3649 new_index = skb_tx_hash(dev, sb_dev, skb); 3650 3651 if (queue_index != new_index && sk && 3652 sk_fullsock(sk) && 3653 rcu_access_pointer(sk->sk_dst_cache)) 3654 sk_tx_queue_set(sk, new_index); 3655 3656 queue_index = new_index; 3657 } 3658 3659 return queue_index; 3660 } 3661 EXPORT_SYMBOL(netdev_pick_tx); 3662 3663 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3664 struct sk_buff *skb, 3665 struct net_device *sb_dev) 3666 { 3667 int queue_index = 0; 3668 3669 #ifdef CONFIG_XPS 3670 u32 sender_cpu = skb->sender_cpu - 1; 3671 3672 if (sender_cpu >= (u32)NR_CPUS) 3673 skb->sender_cpu = raw_smp_processor_id() + 1; 3674 #endif 3675 3676 if (dev->real_num_tx_queues != 1) { 3677 const struct net_device_ops *ops = dev->netdev_ops; 3678 3679 if (ops->ndo_select_queue) 3680 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3681 else 3682 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3683 3684 queue_index = netdev_cap_txqueue(dev, queue_index); 3685 } 3686 3687 skb_set_queue_mapping(skb, queue_index); 3688 return netdev_get_tx_queue(dev, queue_index); 3689 } 3690 3691 /** 3692 * __dev_queue_xmit - transmit a buffer 3693 * @skb: buffer to transmit 3694 * @sb_dev: suboordinate device used for L2 forwarding offload 3695 * 3696 * Queue a buffer for transmission to a network device. The caller must 3697 * have set the device and priority and built the buffer before calling 3698 * this function. The function can be called from an interrupt. 3699 * 3700 * A negative errno code is returned on a failure. A success does not 3701 * guarantee the frame will be transmitted as it may be dropped due 3702 * to congestion or traffic shaping. 3703 * 3704 * ----------------------------------------------------------------------------------- 3705 * I notice this method can also return errors from the queue disciplines, 3706 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3707 * be positive. 3708 * 3709 * Regardless of the return value, the skb is consumed, so it is currently 3710 * difficult to retry a send to this method. (You can bump the ref count 3711 * before sending to hold a reference for retry if you are careful.) 3712 * 3713 * When calling this method, interrupts MUST be enabled. This is because 3714 * the BH enable code must have IRQs enabled so that it will not deadlock. 3715 * --BLG 3716 */ 3717 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3718 { 3719 struct net_device *dev = skb->dev; 3720 struct netdev_queue *txq; 3721 struct Qdisc *q; 3722 int rc = -ENOMEM; 3723 bool again = false; 3724 3725 skb_reset_mac_header(skb); 3726 3727 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3728 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3729 3730 /* Disable soft irqs for various locks below. Also 3731 * stops preemption for RCU. 3732 */ 3733 rcu_read_lock_bh(); 3734 3735 skb_update_prio(skb); 3736 3737 qdisc_pkt_len_init(skb); 3738 #ifdef CONFIG_NET_CLS_ACT 3739 skb->tc_at_ingress = 0; 3740 # ifdef CONFIG_NET_EGRESS 3741 if (static_branch_unlikely(&egress_needed_key)) { 3742 skb = sch_handle_egress(skb, &rc, dev); 3743 if (!skb) 3744 goto out; 3745 } 3746 # endif 3747 #endif 3748 /* If device/qdisc don't need skb->dst, release it right now while 3749 * its hot in this cpu cache. 3750 */ 3751 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3752 skb_dst_drop(skb); 3753 else 3754 skb_dst_force(skb); 3755 3756 txq = netdev_core_pick_tx(dev, skb, sb_dev); 3757 q = rcu_dereference_bh(txq->qdisc); 3758 3759 trace_net_dev_queue(skb); 3760 if (q->enqueue) { 3761 rc = __dev_xmit_skb(skb, q, dev, txq); 3762 goto out; 3763 } 3764 3765 /* The device has no queue. Common case for software devices: 3766 * loopback, all the sorts of tunnels... 3767 3768 * Really, it is unlikely that netif_tx_lock protection is necessary 3769 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3770 * counters.) 3771 * However, it is possible, that they rely on protection 3772 * made by us here. 3773 3774 * Check this and shot the lock. It is not prone from deadlocks. 3775 *Either shot noqueue qdisc, it is even simpler 8) 3776 */ 3777 if (dev->flags & IFF_UP) { 3778 int cpu = smp_processor_id(); /* ok because BHs are off */ 3779 3780 if (txq->xmit_lock_owner != cpu) { 3781 if (dev_xmit_recursion()) 3782 goto recursion_alert; 3783 3784 skb = validate_xmit_skb(skb, dev, &again); 3785 if (!skb) 3786 goto out; 3787 3788 HARD_TX_LOCK(dev, txq, cpu); 3789 3790 if (!netif_xmit_stopped(txq)) { 3791 dev_xmit_recursion_inc(); 3792 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3793 dev_xmit_recursion_dec(); 3794 if (dev_xmit_complete(rc)) { 3795 HARD_TX_UNLOCK(dev, txq); 3796 goto out; 3797 } 3798 } 3799 HARD_TX_UNLOCK(dev, txq); 3800 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3801 dev->name); 3802 } else { 3803 /* Recursion is detected! It is possible, 3804 * unfortunately 3805 */ 3806 recursion_alert: 3807 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3808 dev->name); 3809 } 3810 } 3811 3812 rc = -ENETDOWN; 3813 rcu_read_unlock_bh(); 3814 3815 atomic_long_inc(&dev->tx_dropped); 3816 kfree_skb_list(skb); 3817 return rc; 3818 out: 3819 rcu_read_unlock_bh(); 3820 return rc; 3821 } 3822 3823 int dev_queue_xmit(struct sk_buff *skb) 3824 { 3825 return __dev_queue_xmit(skb, NULL); 3826 } 3827 EXPORT_SYMBOL(dev_queue_xmit); 3828 3829 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3830 { 3831 return __dev_queue_xmit(skb, sb_dev); 3832 } 3833 EXPORT_SYMBOL(dev_queue_xmit_accel); 3834 3835 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3836 { 3837 struct net_device *dev = skb->dev; 3838 struct sk_buff *orig_skb = skb; 3839 struct netdev_queue *txq; 3840 int ret = NETDEV_TX_BUSY; 3841 bool again = false; 3842 3843 if (unlikely(!netif_running(dev) || 3844 !netif_carrier_ok(dev))) 3845 goto drop; 3846 3847 skb = validate_xmit_skb_list(skb, dev, &again); 3848 if (skb != orig_skb) 3849 goto drop; 3850 3851 skb_set_queue_mapping(skb, queue_id); 3852 txq = skb_get_tx_queue(dev, skb); 3853 3854 local_bh_disable(); 3855 3856 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3857 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3858 ret = netdev_start_xmit(skb, dev, txq, false); 3859 HARD_TX_UNLOCK(dev, txq); 3860 3861 local_bh_enable(); 3862 3863 if (!dev_xmit_complete(ret)) 3864 kfree_skb(skb); 3865 3866 return ret; 3867 drop: 3868 atomic_long_inc(&dev->tx_dropped); 3869 kfree_skb_list(skb); 3870 return NET_XMIT_DROP; 3871 } 3872 EXPORT_SYMBOL(dev_direct_xmit); 3873 3874 /************************************************************************* 3875 * Receiver routines 3876 *************************************************************************/ 3877 3878 int netdev_max_backlog __read_mostly = 1000; 3879 EXPORT_SYMBOL(netdev_max_backlog); 3880 3881 int netdev_tstamp_prequeue __read_mostly = 1; 3882 int netdev_budget __read_mostly = 300; 3883 unsigned int __read_mostly netdev_budget_usecs = 2000; 3884 int weight_p __read_mostly = 64; /* old backlog weight */ 3885 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3886 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3887 int dev_rx_weight __read_mostly = 64; 3888 int dev_tx_weight __read_mostly = 64; 3889 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 3890 int gro_normal_batch __read_mostly = 8; 3891 3892 /* Called with irq disabled */ 3893 static inline void ____napi_schedule(struct softnet_data *sd, 3894 struct napi_struct *napi) 3895 { 3896 list_add_tail(&napi->poll_list, &sd->poll_list); 3897 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3898 } 3899 3900 #ifdef CONFIG_RPS 3901 3902 /* One global table that all flow-based protocols share. */ 3903 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3904 EXPORT_SYMBOL(rps_sock_flow_table); 3905 u32 rps_cpu_mask __read_mostly; 3906 EXPORT_SYMBOL(rps_cpu_mask); 3907 3908 struct static_key_false rps_needed __read_mostly; 3909 EXPORT_SYMBOL(rps_needed); 3910 struct static_key_false rfs_needed __read_mostly; 3911 EXPORT_SYMBOL(rfs_needed); 3912 3913 static struct rps_dev_flow * 3914 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3915 struct rps_dev_flow *rflow, u16 next_cpu) 3916 { 3917 if (next_cpu < nr_cpu_ids) { 3918 #ifdef CONFIG_RFS_ACCEL 3919 struct netdev_rx_queue *rxqueue; 3920 struct rps_dev_flow_table *flow_table; 3921 struct rps_dev_flow *old_rflow; 3922 u32 flow_id; 3923 u16 rxq_index; 3924 int rc; 3925 3926 /* Should we steer this flow to a different hardware queue? */ 3927 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3928 !(dev->features & NETIF_F_NTUPLE)) 3929 goto out; 3930 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3931 if (rxq_index == skb_get_rx_queue(skb)) 3932 goto out; 3933 3934 rxqueue = dev->_rx + rxq_index; 3935 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3936 if (!flow_table) 3937 goto out; 3938 flow_id = skb_get_hash(skb) & flow_table->mask; 3939 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3940 rxq_index, flow_id); 3941 if (rc < 0) 3942 goto out; 3943 old_rflow = rflow; 3944 rflow = &flow_table->flows[flow_id]; 3945 rflow->filter = rc; 3946 if (old_rflow->filter == rflow->filter) 3947 old_rflow->filter = RPS_NO_FILTER; 3948 out: 3949 #endif 3950 rflow->last_qtail = 3951 per_cpu(softnet_data, next_cpu).input_queue_head; 3952 } 3953 3954 rflow->cpu = next_cpu; 3955 return rflow; 3956 } 3957 3958 /* 3959 * get_rps_cpu is called from netif_receive_skb and returns the target 3960 * CPU from the RPS map of the receiving queue for a given skb. 3961 * rcu_read_lock must be held on entry. 3962 */ 3963 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3964 struct rps_dev_flow **rflowp) 3965 { 3966 const struct rps_sock_flow_table *sock_flow_table; 3967 struct netdev_rx_queue *rxqueue = dev->_rx; 3968 struct rps_dev_flow_table *flow_table; 3969 struct rps_map *map; 3970 int cpu = -1; 3971 u32 tcpu; 3972 u32 hash; 3973 3974 if (skb_rx_queue_recorded(skb)) { 3975 u16 index = skb_get_rx_queue(skb); 3976 3977 if (unlikely(index >= dev->real_num_rx_queues)) { 3978 WARN_ONCE(dev->real_num_rx_queues > 1, 3979 "%s received packet on queue %u, but number " 3980 "of RX queues is %u\n", 3981 dev->name, index, dev->real_num_rx_queues); 3982 goto done; 3983 } 3984 rxqueue += index; 3985 } 3986 3987 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3988 3989 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3990 map = rcu_dereference(rxqueue->rps_map); 3991 if (!flow_table && !map) 3992 goto done; 3993 3994 skb_reset_network_header(skb); 3995 hash = skb_get_hash(skb); 3996 if (!hash) 3997 goto done; 3998 3999 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4000 if (flow_table && sock_flow_table) { 4001 struct rps_dev_flow *rflow; 4002 u32 next_cpu; 4003 u32 ident; 4004 4005 /* First check into global flow table if there is a match */ 4006 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4007 if ((ident ^ hash) & ~rps_cpu_mask) 4008 goto try_rps; 4009 4010 next_cpu = ident & rps_cpu_mask; 4011 4012 /* OK, now we know there is a match, 4013 * we can look at the local (per receive queue) flow table 4014 */ 4015 rflow = &flow_table->flows[hash & flow_table->mask]; 4016 tcpu = rflow->cpu; 4017 4018 /* 4019 * If the desired CPU (where last recvmsg was done) is 4020 * different from current CPU (one in the rx-queue flow 4021 * table entry), switch if one of the following holds: 4022 * - Current CPU is unset (>= nr_cpu_ids). 4023 * - Current CPU is offline. 4024 * - The current CPU's queue tail has advanced beyond the 4025 * last packet that was enqueued using this table entry. 4026 * This guarantees that all previous packets for the flow 4027 * have been dequeued, thus preserving in order delivery. 4028 */ 4029 if (unlikely(tcpu != next_cpu) && 4030 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4031 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4032 rflow->last_qtail)) >= 0)) { 4033 tcpu = next_cpu; 4034 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4035 } 4036 4037 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4038 *rflowp = rflow; 4039 cpu = tcpu; 4040 goto done; 4041 } 4042 } 4043 4044 try_rps: 4045 4046 if (map) { 4047 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4048 if (cpu_online(tcpu)) { 4049 cpu = tcpu; 4050 goto done; 4051 } 4052 } 4053 4054 done: 4055 return cpu; 4056 } 4057 4058 #ifdef CONFIG_RFS_ACCEL 4059 4060 /** 4061 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4062 * @dev: Device on which the filter was set 4063 * @rxq_index: RX queue index 4064 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4065 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4066 * 4067 * Drivers that implement ndo_rx_flow_steer() should periodically call 4068 * this function for each installed filter and remove the filters for 4069 * which it returns %true. 4070 */ 4071 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4072 u32 flow_id, u16 filter_id) 4073 { 4074 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4075 struct rps_dev_flow_table *flow_table; 4076 struct rps_dev_flow *rflow; 4077 bool expire = true; 4078 unsigned int cpu; 4079 4080 rcu_read_lock(); 4081 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4082 if (flow_table && flow_id <= flow_table->mask) { 4083 rflow = &flow_table->flows[flow_id]; 4084 cpu = READ_ONCE(rflow->cpu); 4085 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4086 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4087 rflow->last_qtail) < 4088 (int)(10 * flow_table->mask))) 4089 expire = false; 4090 } 4091 rcu_read_unlock(); 4092 return expire; 4093 } 4094 EXPORT_SYMBOL(rps_may_expire_flow); 4095 4096 #endif /* CONFIG_RFS_ACCEL */ 4097 4098 /* Called from hardirq (IPI) context */ 4099 static void rps_trigger_softirq(void *data) 4100 { 4101 struct softnet_data *sd = data; 4102 4103 ____napi_schedule(sd, &sd->backlog); 4104 sd->received_rps++; 4105 } 4106 4107 #endif /* CONFIG_RPS */ 4108 4109 /* 4110 * Check if this softnet_data structure is another cpu one 4111 * If yes, queue it to our IPI list and return 1 4112 * If no, return 0 4113 */ 4114 static int rps_ipi_queued(struct softnet_data *sd) 4115 { 4116 #ifdef CONFIG_RPS 4117 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4118 4119 if (sd != mysd) { 4120 sd->rps_ipi_next = mysd->rps_ipi_list; 4121 mysd->rps_ipi_list = sd; 4122 4123 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4124 return 1; 4125 } 4126 #endif /* CONFIG_RPS */ 4127 return 0; 4128 } 4129 4130 #ifdef CONFIG_NET_FLOW_LIMIT 4131 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4132 #endif 4133 4134 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4135 { 4136 #ifdef CONFIG_NET_FLOW_LIMIT 4137 struct sd_flow_limit *fl; 4138 struct softnet_data *sd; 4139 unsigned int old_flow, new_flow; 4140 4141 if (qlen < (netdev_max_backlog >> 1)) 4142 return false; 4143 4144 sd = this_cpu_ptr(&softnet_data); 4145 4146 rcu_read_lock(); 4147 fl = rcu_dereference(sd->flow_limit); 4148 if (fl) { 4149 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4150 old_flow = fl->history[fl->history_head]; 4151 fl->history[fl->history_head] = new_flow; 4152 4153 fl->history_head++; 4154 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4155 4156 if (likely(fl->buckets[old_flow])) 4157 fl->buckets[old_flow]--; 4158 4159 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4160 fl->count++; 4161 rcu_read_unlock(); 4162 return true; 4163 } 4164 } 4165 rcu_read_unlock(); 4166 #endif 4167 return false; 4168 } 4169 4170 /* 4171 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4172 * queue (may be a remote CPU queue). 4173 */ 4174 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4175 unsigned int *qtail) 4176 { 4177 struct softnet_data *sd; 4178 unsigned long flags; 4179 unsigned int qlen; 4180 4181 sd = &per_cpu(softnet_data, cpu); 4182 4183 local_irq_save(flags); 4184 4185 rps_lock(sd); 4186 if (!netif_running(skb->dev)) 4187 goto drop; 4188 qlen = skb_queue_len(&sd->input_pkt_queue); 4189 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4190 if (qlen) { 4191 enqueue: 4192 __skb_queue_tail(&sd->input_pkt_queue, skb); 4193 input_queue_tail_incr_save(sd, qtail); 4194 rps_unlock(sd); 4195 local_irq_restore(flags); 4196 return NET_RX_SUCCESS; 4197 } 4198 4199 /* Schedule NAPI for backlog device 4200 * We can use non atomic operation since we own the queue lock 4201 */ 4202 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4203 if (!rps_ipi_queued(sd)) 4204 ____napi_schedule(sd, &sd->backlog); 4205 } 4206 goto enqueue; 4207 } 4208 4209 drop: 4210 sd->dropped++; 4211 rps_unlock(sd); 4212 4213 local_irq_restore(flags); 4214 4215 atomic_long_inc(&skb->dev->rx_dropped); 4216 kfree_skb(skb); 4217 return NET_RX_DROP; 4218 } 4219 4220 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4221 { 4222 struct net_device *dev = skb->dev; 4223 struct netdev_rx_queue *rxqueue; 4224 4225 rxqueue = dev->_rx; 4226 4227 if (skb_rx_queue_recorded(skb)) { 4228 u16 index = skb_get_rx_queue(skb); 4229 4230 if (unlikely(index >= dev->real_num_rx_queues)) { 4231 WARN_ONCE(dev->real_num_rx_queues > 1, 4232 "%s received packet on queue %u, but number " 4233 "of RX queues is %u\n", 4234 dev->name, index, dev->real_num_rx_queues); 4235 4236 return rxqueue; /* Return first rxqueue */ 4237 } 4238 rxqueue += index; 4239 } 4240 return rxqueue; 4241 } 4242 4243 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4244 struct xdp_buff *xdp, 4245 struct bpf_prog *xdp_prog) 4246 { 4247 struct netdev_rx_queue *rxqueue; 4248 void *orig_data, *orig_data_end; 4249 u32 metalen, act = XDP_DROP; 4250 __be16 orig_eth_type; 4251 struct ethhdr *eth; 4252 bool orig_bcast; 4253 int hlen, off; 4254 u32 mac_len; 4255 4256 /* Reinjected packets coming from act_mirred or similar should 4257 * not get XDP generic processing. 4258 */ 4259 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4260 return XDP_PASS; 4261 4262 /* XDP packets must be linear and must have sufficient headroom 4263 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4264 * native XDP provides, thus we need to do it here as well. 4265 */ 4266 if (skb_is_nonlinear(skb) || 4267 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4268 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4269 int troom = skb->tail + skb->data_len - skb->end; 4270 4271 /* In case we have to go down the path and also linearize, 4272 * then lets do the pskb_expand_head() work just once here. 4273 */ 4274 if (pskb_expand_head(skb, 4275 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4276 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4277 goto do_drop; 4278 if (skb_linearize(skb)) 4279 goto do_drop; 4280 } 4281 4282 /* The XDP program wants to see the packet starting at the MAC 4283 * header. 4284 */ 4285 mac_len = skb->data - skb_mac_header(skb); 4286 hlen = skb_headlen(skb) + mac_len; 4287 xdp->data = skb->data - mac_len; 4288 xdp->data_meta = xdp->data; 4289 xdp->data_end = xdp->data + hlen; 4290 xdp->data_hard_start = skb->data - skb_headroom(skb); 4291 orig_data_end = xdp->data_end; 4292 orig_data = xdp->data; 4293 eth = (struct ethhdr *)xdp->data; 4294 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4295 orig_eth_type = eth->h_proto; 4296 4297 rxqueue = netif_get_rxqueue(skb); 4298 xdp->rxq = &rxqueue->xdp_rxq; 4299 4300 act = bpf_prog_run_xdp(xdp_prog, xdp); 4301 4302 /* check if bpf_xdp_adjust_head was used */ 4303 off = xdp->data - orig_data; 4304 if (off) { 4305 if (off > 0) 4306 __skb_pull(skb, off); 4307 else if (off < 0) 4308 __skb_push(skb, -off); 4309 4310 skb->mac_header += off; 4311 skb_reset_network_header(skb); 4312 } 4313 4314 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4315 * pckt. 4316 */ 4317 off = orig_data_end - xdp->data_end; 4318 if (off != 0) { 4319 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4320 skb->len -= off; 4321 4322 } 4323 4324 /* check if XDP changed eth hdr such SKB needs update */ 4325 eth = (struct ethhdr *)xdp->data; 4326 if ((orig_eth_type != eth->h_proto) || 4327 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4328 __skb_push(skb, ETH_HLEN); 4329 skb->protocol = eth_type_trans(skb, skb->dev); 4330 } 4331 4332 switch (act) { 4333 case XDP_REDIRECT: 4334 case XDP_TX: 4335 __skb_push(skb, mac_len); 4336 break; 4337 case XDP_PASS: 4338 metalen = xdp->data - xdp->data_meta; 4339 if (metalen) 4340 skb_metadata_set(skb, metalen); 4341 break; 4342 default: 4343 bpf_warn_invalid_xdp_action(act); 4344 /* fall through */ 4345 case XDP_ABORTED: 4346 trace_xdp_exception(skb->dev, xdp_prog, act); 4347 /* fall through */ 4348 case XDP_DROP: 4349 do_drop: 4350 kfree_skb(skb); 4351 break; 4352 } 4353 4354 return act; 4355 } 4356 4357 /* When doing generic XDP we have to bypass the qdisc layer and the 4358 * network taps in order to match in-driver-XDP behavior. 4359 */ 4360 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4361 { 4362 struct net_device *dev = skb->dev; 4363 struct netdev_queue *txq; 4364 bool free_skb = true; 4365 int cpu, rc; 4366 4367 txq = netdev_core_pick_tx(dev, skb, NULL); 4368 cpu = smp_processor_id(); 4369 HARD_TX_LOCK(dev, txq, cpu); 4370 if (!netif_xmit_stopped(txq)) { 4371 rc = netdev_start_xmit(skb, dev, txq, 0); 4372 if (dev_xmit_complete(rc)) 4373 free_skb = false; 4374 } 4375 HARD_TX_UNLOCK(dev, txq); 4376 if (free_skb) { 4377 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4378 kfree_skb(skb); 4379 } 4380 } 4381 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4382 4383 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4384 4385 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4386 { 4387 if (xdp_prog) { 4388 struct xdp_buff xdp; 4389 u32 act; 4390 int err; 4391 4392 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4393 if (act != XDP_PASS) { 4394 switch (act) { 4395 case XDP_REDIRECT: 4396 err = xdp_do_generic_redirect(skb->dev, skb, 4397 &xdp, xdp_prog); 4398 if (err) 4399 goto out_redir; 4400 break; 4401 case XDP_TX: 4402 generic_xdp_tx(skb, xdp_prog); 4403 break; 4404 } 4405 return XDP_DROP; 4406 } 4407 } 4408 return XDP_PASS; 4409 out_redir: 4410 kfree_skb(skb); 4411 return XDP_DROP; 4412 } 4413 EXPORT_SYMBOL_GPL(do_xdp_generic); 4414 4415 static int netif_rx_internal(struct sk_buff *skb) 4416 { 4417 int ret; 4418 4419 net_timestamp_check(netdev_tstamp_prequeue, skb); 4420 4421 trace_netif_rx(skb); 4422 4423 #ifdef CONFIG_RPS 4424 if (static_branch_unlikely(&rps_needed)) { 4425 struct rps_dev_flow voidflow, *rflow = &voidflow; 4426 int cpu; 4427 4428 preempt_disable(); 4429 rcu_read_lock(); 4430 4431 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4432 if (cpu < 0) 4433 cpu = smp_processor_id(); 4434 4435 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4436 4437 rcu_read_unlock(); 4438 preempt_enable(); 4439 } else 4440 #endif 4441 { 4442 unsigned int qtail; 4443 4444 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4445 put_cpu(); 4446 } 4447 return ret; 4448 } 4449 4450 /** 4451 * netif_rx - post buffer to the network code 4452 * @skb: buffer to post 4453 * 4454 * This function receives a packet from a device driver and queues it for 4455 * the upper (protocol) levels to process. It always succeeds. The buffer 4456 * may be dropped during processing for congestion control or by the 4457 * protocol layers. 4458 * 4459 * return values: 4460 * NET_RX_SUCCESS (no congestion) 4461 * NET_RX_DROP (packet was dropped) 4462 * 4463 */ 4464 4465 int netif_rx(struct sk_buff *skb) 4466 { 4467 int ret; 4468 4469 trace_netif_rx_entry(skb); 4470 4471 ret = netif_rx_internal(skb); 4472 trace_netif_rx_exit(ret); 4473 4474 return ret; 4475 } 4476 EXPORT_SYMBOL(netif_rx); 4477 4478 int netif_rx_ni(struct sk_buff *skb) 4479 { 4480 int err; 4481 4482 trace_netif_rx_ni_entry(skb); 4483 4484 preempt_disable(); 4485 err = netif_rx_internal(skb); 4486 if (local_softirq_pending()) 4487 do_softirq(); 4488 preempt_enable(); 4489 trace_netif_rx_ni_exit(err); 4490 4491 return err; 4492 } 4493 EXPORT_SYMBOL(netif_rx_ni); 4494 4495 static __latent_entropy void net_tx_action(struct softirq_action *h) 4496 { 4497 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4498 4499 if (sd->completion_queue) { 4500 struct sk_buff *clist; 4501 4502 local_irq_disable(); 4503 clist = sd->completion_queue; 4504 sd->completion_queue = NULL; 4505 local_irq_enable(); 4506 4507 while (clist) { 4508 struct sk_buff *skb = clist; 4509 4510 clist = clist->next; 4511 4512 WARN_ON(refcount_read(&skb->users)); 4513 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4514 trace_consume_skb(skb); 4515 else 4516 trace_kfree_skb(skb, net_tx_action); 4517 4518 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4519 __kfree_skb(skb); 4520 else 4521 __kfree_skb_defer(skb); 4522 } 4523 4524 __kfree_skb_flush(); 4525 } 4526 4527 if (sd->output_queue) { 4528 struct Qdisc *head; 4529 4530 local_irq_disable(); 4531 head = sd->output_queue; 4532 sd->output_queue = NULL; 4533 sd->output_queue_tailp = &sd->output_queue; 4534 local_irq_enable(); 4535 4536 while (head) { 4537 struct Qdisc *q = head; 4538 spinlock_t *root_lock = NULL; 4539 4540 head = head->next_sched; 4541 4542 if (!(q->flags & TCQ_F_NOLOCK)) { 4543 root_lock = qdisc_lock(q); 4544 spin_lock(root_lock); 4545 } 4546 /* We need to make sure head->next_sched is read 4547 * before clearing __QDISC_STATE_SCHED 4548 */ 4549 smp_mb__before_atomic(); 4550 clear_bit(__QDISC_STATE_SCHED, &q->state); 4551 qdisc_run(q); 4552 if (root_lock) 4553 spin_unlock(root_lock); 4554 } 4555 } 4556 4557 xfrm_dev_backlog(sd); 4558 } 4559 4560 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4561 /* This hook is defined here for ATM LANE */ 4562 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4563 unsigned char *addr) __read_mostly; 4564 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4565 #endif 4566 4567 static inline struct sk_buff * 4568 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4569 struct net_device *orig_dev) 4570 { 4571 #ifdef CONFIG_NET_CLS_ACT 4572 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4573 struct tcf_result cl_res; 4574 4575 /* If there's at least one ingress present somewhere (so 4576 * we get here via enabled static key), remaining devices 4577 * that are not configured with an ingress qdisc will bail 4578 * out here. 4579 */ 4580 if (!miniq) 4581 return skb; 4582 4583 if (*pt_prev) { 4584 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4585 *pt_prev = NULL; 4586 } 4587 4588 qdisc_skb_cb(skb)->pkt_len = skb->len; 4589 skb->tc_at_ingress = 1; 4590 mini_qdisc_bstats_cpu_update(miniq, skb); 4591 4592 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4593 case TC_ACT_OK: 4594 case TC_ACT_RECLASSIFY: 4595 skb->tc_index = TC_H_MIN(cl_res.classid); 4596 break; 4597 case TC_ACT_SHOT: 4598 mini_qdisc_qstats_cpu_drop(miniq); 4599 kfree_skb(skb); 4600 return NULL; 4601 case TC_ACT_STOLEN: 4602 case TC_ACT_QUEUED: 4603 case TC_ACT_TRAP: 4604 consume_skb(skb); 4605 return NULL; 4606 case TC_ACT_REDIRECT: 4607 /* skb_mac_header check was done by cls/act_bpf, so 4608 * we can safely push the L2 header back before 4609 * redirecting to another netdev 4610 */ 4611 __skb_push(skb, skb->mac_len); 4612 skb_do_redirect(skb); 4613 return NULL; 4614 case TC_ACT_CONSUMED: 4615 return NULL; 4616 default: 4617 break; 4618 } 4619 #endif /* CONFIG_NET_CLS_ACT */ 4620 return skb; 4621 } 4622 4623 /** 4624 * netdev_is_rx_handler_busy - check if receive handler is registered 4625 * @dev: device to check 4626 * 4627 * Check if a receive handler is already registered for a given device. 4628 * Return true if there one. 4629 * 4630 * The caller must hold the rtnl_mutex. 4631 */ 4632 bool netdev_is_rx_handler_busy(struct net_device *dev) 4633 { 4634 ASSERT_RTNL(); 4635 return dev && rtnl_dereference(dev->rx_handler); 4636 } 4637 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4638 4639 /** 4640 * netdev_rx_handler_register - register receive handler 4641 * @dev: device to register a handler for 4642 * @rx_handler: receive handler to register 4643 * @rx_handler_data: data pointer that is used by rx handler 4644 * 4645 * Register a receive handler for a device. This handler will then be 4646 * called from __netif_receive_skb. A negative errno code is returned 4647 * on a failure. 4648 * 4649 * The caller must hold the rtnl_mutex. 4650 * 4651 * For a general description of rx_handler, see enum rx_handler_result. 4652 */ 4653 int netdev_rx_handler_register(struct net_device *dev, 4654 rx_handler_func_t *rx_handler, 4655 void *rx_handler_data) 4656 { 4657 if (netdev_is_rx_handler_busy(dev)) 4658 return -EBUSY; 4659 4660 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4661 return -EINVAL; 4662 4663 /* Note: rx_handler_data must be set before rx_handler */ 4664 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4665 rcu_assign_pointer(dev->rx_handler, rx_handler); 4666 4667 return 0; 4668 } 4669 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4670 4671 /** 4672 * netdev_rx_handler_unregister - unregister receive handler 4673 * @dev: device to unregister a handler from 4674 * 4675 * Unregister a receive handler from a device. 4676 * 4677 * The caller must hold the rtnl_mutex. 4678 */ 4679 void netdev_rx_handler_unregister(struct net_device *dev) 4680 { 4681 4682 ASSERT_RTNL(); 4683 RCU_INIT_POINTER(dev->rx_handler, NULL); 4684 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4685 * section has a guarantee to see a non NULL rx_handler_data 4686 * as well. 4687 */ 4688 synchronize_net(); 4689 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4690 } 4691 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4692 4693 /* 4694 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4695 * the special handling of PFMEMALLOC skbs. 4696 */ 4697 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4698 { 4699 switch (skb->protocol) { 4700 case htons(ETH_P_ARP): 4701 case htons(ETH_P_IP): 4702 case htons(ETH_P_IPV6): 4703 case htons(ETH_P_8021Q): 4704 case htons(ETH_P_8021AD): 4705 return true; 4706 default: 4707 return false; 4708 } 4709 } 4710 4711 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4712 int *ret, struct net_device *orig_dev) 4713 { 4714 #ifdef CONFIG_NETFILTER_INGRESS 4715 if (nf_hook_ingress_active(skb)) { 4716 int ingress_retval; 4717 4718 if (*pt_prev) { 4719 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4720 *pt_prev = NULL; 4721 } 4722 4723 rcu_read_lock(); 4724 ingress_retval = nf_hook_ingress(skb); 4725 rcu_read_unlock(); 4726 return ingress_retval; 4727 } 4728 #endif /* CONFIG_NETFILTER_INGRESS */ 4729 return 0; 4730 } 4731 4732 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4733 struct packet_type **ppt_prev) 4734 { 4735 struct packet_type *ptype, *pt_prev; 4736 rx_handler_func_t *rx_handler; 4737 struct net_device *orig_dev; 4738 bool deliver_exact = false; 4739 int ret = NET_RX_DROP; 4740 __be16 type; 4741 4742 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4743 4744 trace_netif_receive_skb(skb); 4745 4746 orig_dev = skb->dev; 4747 4748 skb_reset_network_header(skb); 4749 if (!skb_transport_header_was_set(skb)) 4750 skb_reset_transport_header(skb); 4751 skb_reset_mac_len(skb); 4752 4753 pt_prev = NULL; 4754 4755 another_round: 4756 skb->skb_iif = skb->dev->ifindex; 4757 4758 __this_cpu_inc(softnet_data.processed); 4759 4760 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4761 int ret2; 4762 4763 preempt_disable(); 4764 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4765 preempt_enable(); 4766 4767 if (ret2 != XDP_PASS) 4768 return NET_RX_DROP; 4769 skb_reset_mac_len(skb); 4770 } 4771 4772 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4773 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4774 skb = skb_vlan_untag(skb); 4775 if (unlikely(!skb)) 4776 goto out; 4777 } 4778 4779 if (skb_skip_tc_classify(skb)) 4780 goto skip_classify; 4781 4782 if (pfmemalloc) 4783 goto skip_taps; 4784 4785 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4786 if (pt_prev) 4787 ret = deliver_skb(skb, pt_prev, orig_dev); 4788 pt_prev = ptype; 4789 } 4790 4791 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4792 if (pt_prev) 4793 ret = deliver_skb(skb, pt_prev, orig_dev); 4794 pt_prev = ptype; 4795 } 4796 4797 skip_taps: 4798 #ifdef CONFIG_NET_INGRESS 4799 if (static_branch_unlikely(&ingress_needed_key)) { 4800 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4801 if (!skb) 4802 goto out; 4803 4804 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4805 goto out; 4806 } 4807 #endif 4808 skb_reset_tc(skb); 4809 skip_classify: 4810 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4811 goto drop; 4812 4813 if (skb_vlan_tag_present(skb)) { 4814 if (pt_prev) { 4815 ret = deliver_skb(skb, pt_prev, orig_dev); 4816 pt_prev = NULL; 4817 } 4818 if (vlan_do_receive(&skb)) 4819 goto another_round; 4820 else if (unlikely(!skb)) 4821 goto out; 4822 } 4823 4824 rx_handler = rcu_dereference(skb->dev->rx_handler); 4825 if (rx_handler) { 4826 if (pt_prev) { 4827 ret = deliver_skb(skb, pt_prev, orig_dev); 4828 pt_prev = NULL; 4829 } 4830 switch (rx_handler(&skb)) { 4831 case RX_HANDLER_CONSUMED: 4832 ret = NET_RX_SUCCESS; 4833 goto out; 4834 case RX_HANDLER_ANOTHER: 4835 goto another_round; 4836 case RX_HANDLER_EXACT: 4837 deliver_exact = true; 4838 case RX_HANDLER_PASS: 4839 break; 4840 default: 4841 BUG(); 4842 } 4843 } 4844 4845 if (unlikely(skb_vlan_tag_present(skb))) { 4846 check_vlan_id: 4847 if (skb_vlan_tag_get_id(skb)) { 4848 /* Vlan id is non 0 and vlan_do_receive() above couldn't 4849 * find vlan device. 4850 */ 4851 skb->pkt_type = PACKET_OTHERHOST; 4852 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4853 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4854 /* Outer header is 802.1P with vlan 0, inner header is 4855 * 802.1Q or 802.1AD and vlan_do_receive() above could 4856 * not find vlan dev for vlan id 0. 4857 */ 4858 __vlan_hwaccel_clear_tag(skb); 4859 skb = skb_vlan_untag(skb); 4860 if (unlikely(!skb)) 4861 goto out; 4862 if (vlan_do_receive(&skb)) 4863 /* After stripping off 802.1P header with vlan 0 4864 * vlan dev is found for inner header. 4865 */ 4866 goto another_round; 4867 else if (unlikely(!skb)) 4868 goto out; 4869 else 4870 /* We have stripped outer 802.1P vlan 0 header. 4871 * But could not find vlan dev. 4872 * check again for vlan id to set OTHERHOST. 4873 */ 4874 goto check_vlan_id; 4875 } 4876 /* Note: we might in the future use prio bits 4877 * and set skb->priority like in vlan_do_receive() 4878 * For the time being, just ignore Priority Code Point 4879 */ 4880 __vlan_hwaccel_clear_tag(skb); 4881 } 4882 4883 type = skb->protocol; 4884 4885 /* deliver only exact match when indicated */ 4886 if (likely(!deliver_exact)) { 4887 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4888 &ptype_base[ntohs(type) & 4889 PTYPE_HASH_MASK]); 4890 } 4891 4892 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4893 &orig_dev->ptype_specific); 4894 4895 if (unlikely(skb->dev != orig_dev)) { 4896 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4897 &skb->dev->ptype_specific); 4898 } 4899 4900 if (pt_prev) { 4901 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4902 goto drop; 4903 *ppt_prev = pt_prev; 4904 } else { 4905 drop: 4906 if (!deliver_exact) 4907 atomic_long_inc(&skb->dev->rx_dropped); 4908 else 4909 atomic_long_inc(&skb->dev->rx_nohandler); 4910 kfree_skb(skb); 4911 /* Jamal, now you will not able to escape explaining 4912 * me how you were going to use this. :-) 4913 */ 4914 ret = NET_RX_DROP; 4915 } 4916 4917 out: 4918 return ret; 4919 } 4920 4921 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4922 { 4923 struct net_device *orig_dev = skb->dev; 4924 struct packet_type *pt_prev = NULL; 4925 int ret; 4926 4927 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4928 if (pt_prev) 4929 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 4930 skb->dev, pt_prev, orig_dev); 4931 return ret; 4932 } 4933 4934 /** 4935 * netif_receive_skb_core - special purpose version of netif_receive_skb 4936 * @skb: buffer to process 4937 * 4938 * More direct receive version of netif_receive_skb(). It should 4939 * only be used by callers that have a need to skip RPS and Generic XDP. 4940 * Caller must also take care of handling if (page_is_)pfmemalloc. 4941 * 4942 * This function may only be called from softirq context and interrupts 4943 * should be enabled. 4944 * 4945 * Return values (usually ignored): 4946 * NET_RX_SUCCESS: no congestion 4947 * NET_RX_DROP: packet was dropped 4948 */ 4949 int netif_receive_skb_core(struct sk_buff *skb) 4950 { 4951 int ret; 4952 4953 rcu_read_lock(); 4954 ret = __netif_receive_skb_one_core(skb, false); 4955 rcu_read_unlock(); 4956 4957 return ret; 4958 } 4959 EXPORT_SYMBOL(netif_receive_skb_core); 4960 4961 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 4962 struct packet_type *pt_prev, 4963 struct net_device *orig_dev) 4964 { 4965 struct sk_buff *skb, *next; 4966 4967 if (!pt_prev) 4968 return; 4969 if (list_empty(head)) 4970 return; 4971 if (pt_prev->list_func != NULL) 4972 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 4973 ip_list_rcv, head, pt_prev, orig_dev); 4974 else 4975 list_for_each_entry_safe(skb, next, head, list) { 4976 skb_list_del_init(skb); 4977 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4978 } 4979 } 4980 4981 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 4982 { 4983 /* Fast-path assumptions: 4984 * - There is no RX handler. 4985 * - Only one packet_type matches. 4986 * If either of these fails, we will end up doing some per-packet 4987 * processing in-line, then handling the 'last ptype' for the whole 4988 * sublist. This can't cause out-of-order delivery to any single ptype, 4989 * because the 'last ptype' must be constant across the sublist, and all 4990 * other ptypes are handled per-packet. 4991 */ 4992 /* Current (common) ptype of sublist */ 4993 struct packet_type *pt_curr = NULL; 4994 /* Current (common) orig_dev of sublist */ 4995 struct net_device *od_curr = NULL; 4996 struct list_head sublist; 4997 struct sk_buff *skb, *next; 4998 4999 INIT_LIST_HEAD(&sublist); 5000 list_for_each_entry_safe(skb, next, head, list) { 5001 struct net_device *orig_dev = skb->dev; 5002 struct packet_type *pt_prev = NULL; 5003 5004 skb_list_del_init(skb); 5005 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5006 if (!pt_prev) 5007 continue; 5008 if (pt_curr != pt_prev || od_curr != orig_dev) { 5009 /* dispatch old sublist */ 5010 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5011 /* start new sublist */ 5012 INIT_LIST_HEAD(&sublist); 5013 pt_curr = pt_prev; 5014 od_curr = orig_dev; 5015 } 5016 list_add_tail(&skb->list, &sublist); 5017 } 5018 5019 /* dispatch final sublist */ 5020 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5021 } 5022 5023 static int __netif_receive_skb(struct sk_buff *skb) 5024 { 5025 int ret; 5026 5027 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5028 unsigned int noreclaim_flag; 5029 5030 /* 5031 * PFMEMALLOC skbs are special, they should 5032 * - be delivered to SOCK_MEMALLOC sockets only 5033 * - stay away from userspace 5034 * - have bounded memory usage 5035 * 5036 * Use PF_MEMALLOC as this saves us from propagating the allocation 5037 * context down to all allocation sites. 5038 */ 5039 noreclaim_flag = memalloc_noreclaim_save(); 5040 ret = __netif_receive_skb_one_core(skb, true); 5041 memalloc_noreclaim_restore(noreclaim_flag); 5042 } else 5043 ret = __netif_receive_skb_one_core(skb, false); 5044 5045 return ret; 5046 } 5047 5048 static void __netif_receive_skb_list(struct list_head *head) 5049 { 5050 unsigned long noreclaim_flag = 0; 5051 struct sk_buff *skb, *next; 5052 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5053 5054 list_for_each_entry_safe(skb, next, head, list) { 5055 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5056 struct list_head sublist; 5057 5058 /* Handle the previous sublist */ 5059 list_cut_before(&sublist, head, &skb->list); 5060 if (!list_empty(&sublist)) 5061 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5062 pfmemalloc = !pfmemalloc; 5063 /* See comments in __netif_receive_skb */ 5064 if (pfmemalloc) 5065 noreclaim_flag = memalloc_noreclaim_save(); 5066 else 5067 memalloc_noreclaim_restore(noreclaim_flag); 5068 } 5069 } 5070 /* Handle the remaining sublist */ 5071 if (!list_empty(head)) 5072 __netif_receive_skb_list_core(head, pfmemalloc); 5073 /* Restore pflags */ 5074 if (pfmemalloc) 5075 memalloc_noreclaim_restore(noreclaim_flag); 5076 } 5077 5078 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5079 { 5080 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5081 struct bpf_prog *new = xdp->prog; 5082 int ret = 0; 5083 5084 switch (xdp->command) { 5085 case XDP_SETUP_PROG: 5086 rcu_assign_pointer(dev->xdp_prog, new); 5087 if (old) 5088 bpf_prog_put(old); 5089 5090 if (old && !new) { 5091 static_branch_dec(&generic_xdp_needed_key); 5092 } else if (new && !old) { 5093 static_branch_inc(&generic_xdp_needed_key); 5094 dev_disable_lro(dev); 5095 dev_disable_gro_hw(dev); 5096 } 5097 break; 5098 5099 case XDP_QUERY_PROG: 5100 xdp->prog_id = old ? old->aux->id : 0; 5101 break; 5102 5103 default: 5104 ret = -EINVAL; 5105 break; 5106 } 5107 5108 return ret; 5109 } 5110 5111 static int netif_receive_skb_internal(struct sk_buff *skb) 5112 { 5113 int ret; 5114 5115 net_timestamp_check(netdev_tstamp_prequeue, skb); 5116 5117 if (skb_defer_rx_timestamp(skb)) 5118 return NET_RX_SUCCESS; 5119 5120 rcu_read_lock(); 5121 #ifdef CONFIG_RPS 5122 if (static_branch_unlikely(&rps_needed)) { 5123 struct rps_dev_flow voidflow, *rflow = &voidflow; 5124 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5125 5126 if (cpu >= 0) { 5127 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5128 rcu_read_unlock(); 5129 return ret; 5130 } 5131 } 5132 #endif 5133 ret = __netif_receive_skb(skb); 5134 rcu_read_unlock(); 5135 return ret; 5136 } 5137 5138 static void netif_receive_skb_list_internal(struct list_head *head) 5139 { 5140 struct sk_buff *skb, *next; 5141 struct list_head sublist; 5142 5143 INIT_LIST_HEAD(&sublist); 5144 list_for_each_entry_safe(skb, next, head, list) { 5145 net_timestamp_check(netdev_tstamp_prequeue, skb); 5146 skb_list_del_init(skb); 5147 if (!skb_defer_rx_timestamp(skb)) 5148 list_add_tail(&skb->list, &sublist); 5149 } 5150 list_splice_init(&sublist, head); 5151 5152 rcu_read_lock(); 5153 #ifdef CONFIG_RPS 5154 if (static_branch_unlikely(&rps_needed)) { 5155 list_for_each_entry_safe(skb, next, head, list) { 5156 struct rps_dev_flow voidflow, *rflow = &voidflow; 5157 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5158 5159 if (cpu >= 0) { 5160 /* Will be handled, remove from list */ 5161 skb_list_del_init(skb); 5162 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5163 } 5164 } 5165 } 5166 #endif 5167 __netif_receive_skb_list(head); 5168 rcu_read_unlock(); 5169 } 5170 5171 /** 5172 * netif_receive_skb - process receive buffer from network 5173 * @skb: buffer to process 5174 * 5175 * netif_receive_skb() is the main receive data processing function. 5176 * It always succeeds. The buffer may be dropped during processing 5177 * for congestion control or by the protocol layers. 5178 * 5179 * This function may only be called from softirq context and interrupts 5180 * should be enabled. 5181 * 5182 * Return values (usually ignored): 5183 * NET_RX_SUCCESS: no congestion 5184 * NET_RX_DROP: packet was dropped 5185 */ 5186 int netif_receive_skb(struct sk_buff *skb) 5187 { 5188 int ret; 5189 5190 trace_netif_receive_skb_entry(skb); 5191 5192 ret = netif_receive_skb_internal(skb); 5193 trace_netif_receive_skb_exit(ret); 5194 5195 return ret; 5196 } 5197 EXPORT_SYMBOL(netif_receive_skb); 5198 5199 /** 5200 * netif_receive_skb_list - process many receive buffers from network 5201 * @head: list of skbs to process. 5202 * 5203 * Since return value of netif_receive_skb() is normally ignored, and 5204 * wouldn't be meaningful for a list, this function returns void. 5205 * 5206 * This function may only be called from softirq context and interrupts 5207 * should be enabled. 5208 */ 5209 void netif_receive_skb_list(struct list_head *head) 5210 { 5211 struct sk_buff *skb; 5212 5213 if (list_empty(head)) 5214 return; 5215 if (trace_netif_receive_skb_list_entry_enabled()) { 5216 list_for_each_entry(skb, head, list) 5217 trace_netif_receive_skb_list_entry(skb); 5218 } 5219 netif_receive_skb_list_internal(head); 5220 trace_netif_receive_skb_list_exit(0); 5221 } 5222 EXPORT_SYMBOL(netif_receive_skb_list); 5223 5224 DEFINE_PER_CPU(struct work_struct, flush_works); 5225 5226 /* Network device is going away, flush any packets still pending */ 5227 static void flush_backlog(struct work_struct *work) 5228 { 5229 struct sk_buff *skb, *tmp; 5230 struct softnet_data *sd; 5231 5232 local_bh_disable(); 5233 sd = this_cpu_ptr(&softnet_data); 5234 5235 local_irq_disable(); 5236 rps_lock(sd); 5237 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5238 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5239 __skb_unlink(skb, &sd->input_pkt_queue); 5240 kfree_skb(skb); 5241 input_queue_head_incr(sd); 5242 } 5243 } 5244 rps_unlock(sd); 5245 local_irq_enable(); 5246 5247 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5248 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5249 __skb_unlink(skb, &sd->process_queue); 5250 kfree_skb(skb); 5251 input_queue_head_incr(sd); 5252 } 5253 } 5254 local_bh_enable(); 5255 } 5256 5257 static void flush_all_backlogs(void) 5258 { 5259 unsigned int cpu; 5260 5261 get_online_cpus(); 5262 5263 for_each_online_cpu(cpu) 5264 queue_work_on(cpu, system_highpri_wq, 5265 per_cpu_ptr(&flush_works, cpu)); 5266 5267 for_each_online_cpu(cpu) 5268 flush_work(per_cpu_ptr(&flush_works, cpu)); 5269 5270 put_online_cpus(); 5271 } 5272 5273 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5274 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5275 static int napi_gro_complete(struct sk_buff *skb) 5276 { 5277 struct packet_offload *ptype; 5278 __be16 type = skb->protocol; 5279 struct list_head *head = &offload_base; 5280 int err = -ENOENT; 5281 5282 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5283 5284 if (NAPI_GRO_CB(skb)->count == 1) { 5285 skb_shinfo(skb)->gso_size = 0; 5286 goto out; 5287 } 5288 5289 rcu_read_lock(); 5290 list_for_each_entry_rcu(ptype, head, list) { 5291 if (ptype->type != type || !ptype->callbacks.gro_complete) 5292 continue; 5293 5294 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5295 ipv6_gro_complete, inet_gro_complete, 5296 skb, 0); 5297 break; 5298 } 5299 rcu_read_unlock(); 5300 5301 if (err) { 5302 WARN_ON(&ptype->list == head); 5303 kfree_skb(skb); 5304 return NET_RX_SUCCESS; 5305 } 5306 5307 out: 5308 return netif_receive_skb_internal(skb); 5309 } 5310 5311 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5312 bool flush_old) 5313 { 5314 struct list_head *head = &napi->gro_hash[index].list; 5315 struct sk_buff *skb, *p; 5316 5317 list_for_each_entry_safe_reverse(skb, p, head, list) { 5318 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5319 return; 5320 skb_list_del_init(skb); 5321 napi_gro_complete(skb); 5322 napi->gro_hash[index].count--; 5323 } 5324 5325 if (!napi->gro_hash[index].count) 5326 __clear_bit(index, &napi->gro_bitmask); 5327 } 5328 5329 /* napi->gro_hash[].list contains packets ordered by age. 5330 * youngest packets at the head of it. 5331 * Complete skbs in reverse order to reduce latencies. 5332 */ 5333 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5334 { 5335 unsigned long bitmask = napi->gro_bitmask; 5336 unsigned int i, base = ~0U; 5337 5338 while ((i = ffs(bitmask)) != 0) { 5339 bitmask >>= i; 5340 base += i; 5341 __napi_gro_flush_chain(napi, base, flush_old); 5342 } 5343 } 5344 EXPORT_SYMBOL(napi_gro_flush); 5345 5346 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5347 struct sk_buff *skb) 5348 { 5349 unsigned int maclen = skb->dev->hard_header_len; 5350 u32 hash = skb_get_hash_raw(skb); 5351 struct list_head *head; 5352 struct sk_buff *p; 5353 5354 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5355 list_for_each_entry(p, head, list) { 5356 unsigned long diffs; 5357 5358 NAPI_GRO_CB(p)->flush = 0; 5359 5360 if (hash != skb_get_hash_raw(p)) { 5361 NAPI_GRO_CB(p)->same_flow = 0; 5362 continue; 5363 } 5364 5365 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5366 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5367 if (skb_vlan_tag_present(p)) 5368 diffs |= p->vlan_tci ^ skb->vlan_tci; 5369 diffs |= skb_metadata_dst_cmp(p, skb); 5370 diffs |= skb_metadata_differs(p, skb); 5371 if (maclen == ETH_HLEN) 5372 diffs |= compare_ether_header(skb_mac_header(p), 5373 skb_mac_header(skb)); 5374 else if (!diffs) 5375 diffs = memcmp(skb_mac_header(p), 5376 skb_mac_header(skb), 5377 maclen); 5378 NAPI_GRO_CB(p)->same_flow = !diffs; 5379 } 5380 5381 return head; 5382 } 5383 5384 static void skb_gro_reset_offset(struct sk_buff *skb) 5385 { 5386 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5387 const skb_frag_t *frag0 = &pinfo->frags[0]; 5388 5389 NAPI_GRO_CB(skb)->data_offset = 0; 5390 NAPI_GRO_CB(skb)->frag0 = NULL; 5391 NAPI_GRO_CB(skb)->frag0_len = 0; 5392 5393 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5394 pinfo->nr_frags && 5395 !PageHighMem(skb_frag_page(frag0))) { 5396 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5397 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5398 skb_frag_size(frag0), 5399 skb->end - skb->tail); 5400 } 5401 } 5402 5403 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5404 { 5405 struct skb_shared_info *pinfo = skb_shinfo(skb); 5406 5407 BUG_ON(skb->end - skb->tail < grow); 5408 5409 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5410 5411 skb->data_len -= grow; 5412 skb->tail += grow; 5413 5414 skb_frag_off_add(&pinfo->frags[0], grow); 5415 skb_frag_size_sub(&pinfo->frags[0], grow); 5416 5417 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5418 skb_frag_unref(skb, 0); 5419 memmove(pinfo->frags, pinfo->frags + 1, 5420 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5421 } 5422 } 5423 5424 static void gro_flush_oldest(struct list_head *head) 5425 { 5426 struct sk_buff *oldest; 5427 5428 oldest = list_last_entry(head, struct sk_buff, list); 5429 5430 /* We are called with head length >= MAX_GRO_SKBS, so this is 5431 * impossible. 5432 */ 5433 if (WARN_ON_ONCE(!oldest)) 5434 return; 5435 5436 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5437 * SKB to the chain. 5438 */ 5439 skb_list_del_init(oldest); 5440 napi_gro_complete(oldest); 5441 } 5442 5443 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5444 struct sk_buff *)); 5445 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5446 struct sk_buff *)); 5447 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5448 { 5449 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5450 struct list_head *head = &offload_base; 5451 struct packet_offload *ptype; 5452 __be16 type = skb->protocol; 5453 struct list_head *gro_head; 5454 struct sk_buff *pp = NULL; 5455 enum gro_result ret; 5456 int same_flow; 5457 int grow; 5458 5459 if (netif_elide_gro(skb->dev)) 5460 goto normal; 5461 5462 gro_head = gro_list_prepare(napi, skb); 5463 5464 rcu_read_lock(); 5465 list_for_each_entry_rcu(ptype, head, list) { 5466 if (ptype->type != type || !ptype->callbacks.gro_receive) 5467 continue; 5468 5469 skb_set_network_header(skb, skb_gro_offset(skb)); 5470 skb_reset_mac_len(skb); 5471 NAPI_GRO_CB(skb)->same_flow = 0; 5472 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5473 NAPI_GRO_CB(skb)->free = 0; 5474 NAPI_GRO_CB(skb)->encap_mark = 0; 5475 NAPI_GRO_CB(skb)->recursion_counter = 0; 5476 NAPI_GRO_CB(skb)->is_fou = 0; 5477 NAPI_GRO_CB(skb)->is_atomic = 1; 5478 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5479 5480 /* Setup for GRO checksum validation */ 5481 switch (skb->ip_summed) { 5482 case CHECKSUM_COMPLETE: 5483 NAPI_GRO_CB(skb)->csum = skb->csum; 5484 NAPI_GRO_CB(skb)->csum_valid = 1; 5485 NAPI_GRO_CB(skb)->csum_cnt = 0; 5486 break; 5487 case CHECKSUM_UNNECESSARY: 5488 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5489 NAPI_GRO_CB(skb)->csum_valid = 0; 5490 break; 5491 default: 5492 NAPI_GRO_CB(skb)->csum_cnt = 0; 5493 NAPI_GRO_CB(skb)->csum_valid = 0; 5494 } 5495 5496 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5497 ipv6_gro_receive, inet_gro_receive, 5498 gro_head, skb); 5499 break; 5500 } 5501 rcu_read_unlock(); 5502 5503 if (&ptype->list == head) 5504 goto normal; 5505 5506 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5507 ret = GRO_CONSUMED; 5508 goto ok; 5509 } 5510 5511 same_flow = NAPI_GRO_CB(skb)->same_flow; 5512 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5513 5514 if (pp) { 5515 skb_list_del_init(pp); 5516 napi_gro_complete(pp); 5517 napi->gro_hash[hash].count--; 5518 } 5519 5520 if (same_flow) 5521 goto ok; 5522 5523 if (NAPI_GRO_CB(skb)->flush) 5524 goto normal; 5525 5526 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5527 gro_flush_oldest(gro_head); 5528 } else { 5529 napi->gro_hash[hash].count++; 5530 } 5531 NAPI_GRO_CB(skb)->count = 1; 5532 NAPI_GRO_CB(skb)->age = jiffies; 5533 NAPI_GRO_CB(skb)->last = skb; 5534 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5535 list_add(&skb->list, gro_head); 5536 ret = GRO_HELD; 5537 5538 pull: 5539 grow = skb_gro_offset(skb) - skb_headlen(skb); 5540 if (grow > 0) 5541 gro_pull_from_frag0(skb, grow); 5542 ok: 5543 if (napi->gro_hash[hash].count) { 5544 if (!test_bit(hash, &napi->gro_bitmask)) 5545 __set_bit(hash, &napi->gro_bitmask); 5546 } else if (test_bit(hash, &napi->gro_bitmask)) { 5547 __clear_bit(hash, &napi->gro_bitmask); 5548 } 5549 5550 return ret; 5551 5552 normal: 5553 ret = GRO_NORMAL; 5554 goto pull; 5555 } 5556 5557 struct packet_offload *gro_find_receive_by_type(__be16 type) 5558 { 5559 struct list_head *offload_head = &offload_base; 5560 struct packet_offload *ptype; 5561 5562 list_for_each_entry_rcu(ptype, offload_head, list) { 5563 if (ptype->type != type || !ptype->callbacks.gro_receive) 5564 continue; 5565 return ptype; 5566 } 5567 return NULL; 5568 } 5569 EXPORT_SYMBOL(gro_find_receive_by_type); 5570 5571 struct packet_offload *gro_find_complete_by_type(__be16 type) 5572 { 5573 struct list_head *offload_head = &offload_base; 5574 struct packet_offload *ptype; 5575 5576 list_for_each_entry_rcu(ptype, offload_head, list) { 5577 if (ptype->type != type || !ptype->callbacks.gro_complete) 5578 continue; 5579 return ptype; 5580 } 5581 return NULL; 5582 } 5583 EXPORT_SYMBOL(gro_find_complete_by_type); 5584 5585 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5586 { 5587 skb_dst_drop(skb); 5588 skb_ext_put(skb); 5589 kmem_cache_free(skbuff_head_cache, skb); 5590 } 5591 5592 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5593 { 5594 switch (ret) { 5595 case GRO_NORMAL: 5596 if (netif_receive_skb_internal(skb)) 5597 ret = GRO_DROP; 5598 break; 5599 5600 case GRO_DROP: 5601 kfree_skb(skb); 5602 break; 5603 5604 case GRO_MERGED_FREE: 5605 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5606 napi_skb_free_stolen_head(skb); 5607 else 5608 __kfree_skb(skb); 5609 break; 5610 5611 case GRO_HELD: 5612 case GRO_MERGED: 5613 case GRO_CONSUMED: 5614 break; 5615 } 5616 5617 return ret; 5618 } 5619 5620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5621 { 5622 gro_result_t ret; 5623 5624 skb_mark_napi_id(skb, napi); 5625 trace_napi_gro_receive_entry(skb); 5626 5627 skb_gro_reset_offset(skb); 5628 5629 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb); 5630 trace_napi_gro_receive_exit(ret); 5631 5632 return ret; 5633 } 5634 EXPORT_SYMBOL(napi_gro_receive); 5635 5636 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5637 { 5638 if (unlikely(skb->pfmemalloc)) { 5639 consume_skb(skb); 5640 return; 5641 } 5642 __skb_pull(skb, skb_headlen(skb)); 5643 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5644 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5645 __vlan_hwaccel_clear_tag(skb); 5646 skb->dev = napi->dev; 5647 skb->skb_iif = 0; 5648 5649 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5650 skb->pkt_type = PACKET_HOST; 5651 5652 skb->encapsulation = 0; 5653 skb_shinfo(skb)->gso_type = 0; 5654 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5655 skb_ext_reset(skb); 5656 5657 napi->skb = skb; 5658 } 5659 5660 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5661 { 5662 struct sk_buff *skb = napi->skb; 5663 5664 if (!skb) { 5665 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5666 if (skb) { 5667 napi->skb = skb; 5668 skb_mark_napi_id(skb, napi); 5669 } 5670 } 5671 return skb; 5672 } 5673 EXPORT_SYMBOL(napi_get_frags); 5674 5675 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5676 static void gro_normal_list(struct napi_struct *napi) 5677 { 5678 if (!napi->rx_count) 5679 return; 5680 netif_receive_skb_list_internal(&napi->rx_list); 5681 INIT_LIST_HEAD(&napi->rx_list); 5682 napi->rx_count = 0; 5683 } 5684 5685 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5686 * pass the whole batch up to the stack. 5687 */ 5688 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5689 { 5690 list_add_tail(&skb->list, &napi->rx_list); 5691 if (++napi->rx_count >= gro_normal_batch) 5692 gro_normal_list(napi); 5693 } 5694 5695 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5696 struct sk_buff *skb, 5697 gro_result_t ret) 5698 { 5699 switch (ret) { 5700 case GRO_NORMAL: 5701 case GRO_HELD: 5702 __skb_push(skb, ETH_HLEN); 5703 skb->protocol = eth_type_trans(skb, skb->dev); 5704 if (ret == GRO_NORMAL) 5705 gro_normal_one(napi, skb); 5706 break; 5707 5708 case GRO_DROP: 5709 napi_reuse_skb(napi, skb); 5710 break; 5711 5712 case GRO_MERGED_FREE: 5713 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5714 napi_skb_free_stolen_head(skb); 5715 else 5716 napi_reuse_skb(napi, skb); 5717 break; 5718 5719 case GRO_MERGED: 5720 case GRO_CONSUMED: 5721 break; 5722 } 5723 5724 return ret; 5725 } 5726 5727 /* Upper GRO stack assumes network header starts at gro_offset=0 5728 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5729 * We copy ethernet header into skb->data to have a common layout. 5730 */ 5731 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5732 { 5733 struct sk_buff *skb = napi->skb; 5734 const struct ethhdr *eth; 5735 unsigned int hlen = sizeof(*eth); 5736 5737 napi->skb = NULL; 5738 5739 skb_reset_mac_header(skb); 5740 skb_gro_reset_offset(skb); 5741 5742 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5743 eth = skb_gro_header_slow(skb, hlen, 0); 5744 if (unlikely(!eth)) { 5745 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5746 __func__, napi->dev->name); 5747 napi_reuse_skb(napi, skb); 5748 return NULL; 5749 } 5750 } else { 5751 eth = (const struct ethhdr *)skb->data; 5752 gro_pull_from_frag0(skb, hlen); 5753 NAPI_GRO_CB(skb)->frag0 += hlen; 5754 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5755 } 5756 __skb_pull(skb, hlen); 5757 5758 /* 5759 * This works because the only protocols we care about don't require 5760 * special handling. 5761 * We'll fix it up properly in napi_frags_finish() 5762 */ 5763 skb->protocol = eth->h_proto; 5764 5765 return skb; 5766 } 5767 5768 gro_result_t napi_gro_frags(struct napi_struct *napi) 5769 { 5770 gro_result_t ret; 5771 struct sk_buff *skb = napi_frags_skb(napi); 5772 5773 if (!skb) 5774 return GRO_DROP; 5775 5776 trace_napi_gro_frags_entry(skb); 5777 5778 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5779 trace_napi_gro_frags_exit(ret); 5780 5781 return ret; 5782 } 5783 EXPORT_SYMBOL(napi_gro_frags); 5784 5785 /* Compute the checksum from gro_offset and return the folded value 5786 * after adding in any pseudo checksum. 5787 */ 5788 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5789 { 5790 __wsum wsum; 5791 __sum16 sum; 5792 5793 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5794 5795 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5796 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5797 /* See comments in __skb_checksum_complete(). */ 5798 if (likely(!sum)) { 5799 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5800 !skb->csum_complete_sw) 5801 netdev_rx_csum_fault(skb->dev, skb); 5802 } 5803 5804 NAPI_GRO_CB(skb)->csum = wsum; 5805 NAPI_GRO_CB(skb)->csum_valid = 1; 5806 5807 return sum; 5808 } 5809 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5810 5811 static void net_rps_send_ipi(struct softnet_data *remsd) 5812 { 5813 #ifdef CONFIG_RPS 5814 while (remsd) { 5815 struct softnet_data *next = remsd->rps_ipi_next; 5816 5817 if (cpu_online(remsd->cpu)) 5818 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5819 remsd = next; 5820 } 5821 #endif 5822 } 5823 5824 /* 5825 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5826 * Note: called with local irq disabled, but exits with local irq enabled. 5827 */ 5828 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5829 { 5830 #ifdef CONFIG_RPS 5831 struct softnet_data *remsd = sd->rps_ipi_list; 5832 5833 if (remsd) { 5834 sd->rps_ipi_list = NULL; 5835 5836 local_irq_enable(); 5837 5838 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5839 net_rps_send_ipi(remsd); 5840 } else 5841 #endif 5842 local_irq_enable(); 5843 } 5844 5845 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5846 { 5847 #ifdef CONFIG_RPS 5848 return sd->rps_ipi_list != NULL; 5849 #else 5850 return false; 5851 #endif 5852 } 5853 5854 static int process_backlog(struct napi_struct *napi, int quota) 5855 { 5856 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5857 bool again = true; 5858 int work = 0; 5859 5860 /* Check if we have pending ipi, its better to send them now, 5861 * not waiting net_rx_action() end. 5862 */ 5863 if (sd_has_rps_ipi_waiting(sd)) { 5864 local_irq_disable(); 5865 net_rps_action_and_irq_enable(sd); 5866 } 5867 5868 napi->weight = dev_rx_weight; 5869 while (again) { 5870 struct sk_buff *skb; 5871 5872 while ((skb = __skb_dequeue(&sd->process_queue))) { 5873 rcu_read_lock(); 5874 __netif_receive_skb(skb); 5875 rcu_read_unlock(); 5876 input_queue_head_incr(sd); 5877 if (++work >= quota) 5878 return work; 5879 5880 } 5881 5882 local_irq_disable(); 5883 rps_lock(sd); 5884 if (skb_queue_empty(&sd->input_pkt_queue)) { 5885 /* 5886 * Inline a custom version of __napi_complete(). 5887 * only current cpu owns and manipulates this napi, 5888 * and NAPI_STATE_SCHED is the only possible flag set 5889 * on backlog. 5890 * We can use a plain write instead of clear_bit(), 5891 * and we dont need an smp_mb() memory barrier. 5892 */ 5893 napi->state = 0; 5894 again = false; 5895 } else { 5896 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5897 &sd->process_queue); 5898 } 5899 rps_unlock(sd); 5900 local_irq_enable(); 5901 } 5902 5903 return work; 5904 } 5905 5906 /** 5907 * __napi_schedule - schedule for receive 5908 * @n: entry to schedule 5909 * 5910 * The entry's receive function will be scheduled to run. 5911 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5912 */ 5913 void __napi_schedule(struct napi_struct *n) 5914 { 5915 unsigned long flags; 5916 5917 local_irq_save(flags); 5918 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5919 local_irq_restore(flags); 5920 } 5921 EXPORT_SYMBOL(__napi_schedule); 5922 5923 /** 5924 * napi_schedule_prep - check if napi can be scheduled 5925 * @n: napi context 5926 * 5927 * Test if NAPI routine is already running, and if not mark 5928 * it as running. This is used as a condition variable 5929 * insure only one NAPI poll instance runs. We also make 5930 * sure there is no pending NAPI disable. 5931 */ 5932 bool napi_schedule_prep(struct napi_struct *n) 5933 { 5934 unsigned long val, new; 5935 5936 do { 5937 val = READ_ONCE(n->state); 5938 if (unlikely(val & NAPIF_STATE_DISABLE)) 5939 return false; 5940 new = val | NAPIF_STATE_SCHED; 5941 5942 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5943 * This was suggested by Alexander Duyck, as compiler 5944 * emits better code than : 5945 * if (val & NAPIF_STATE_SCHED) 5946 * new |= NAPIF_STATE_MISSED; 5947 */ 5948 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5949 NAPIF_STATE_MISSED; 5950 } while (cmpxchg(&n->state, val, new) != val); 5951 5952 return !(val & NAPIF_STATE_SCHED); 5953 } 5954 EXPORT_SYMBOL(napi_schedule_prep); 5955 5956 /** 5957 * __napi_schedule_irqoff - schedule for receive 5958 * @n: entry to schedule 5959 * 5960 * Variant of __napi_schedule() assuming hard irqs are masked 5961 */ 5962 void __napi_schedule_irqoff(struct napi_struct *n) 5963 { 5964 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5965 } 5966 EXPORT_SYMBOL(__napi_schedule_irqoff); 5967 5968 bool napi_complete_done(struct napi_struct *n, int work_done) 5969 { 5970 unsigned long flags, val, new; 5971 5972 /* 5973 * 1) Don't let napi dequeue from the cpu poll list 5974 * just in case its running on a different cpu. 5975 * 2) If we are busy polling, do nothing here, we have 5976 * the guarantee we will be called later. 5977 */ 5978 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5979 NAPIF_STATE_IN_BUSY_POLL))) 5980 return false; 5981 5982 gro_normal_list(n); 5983 5984 if (n->gro_bitmask) { 5985 unsigned long timeout = 0; 5986 5987 if (work_done) 5988 timeout = n->dev->gro_flush_timeout; 5989 5990 /* When the NAPI instance uses a timeout and keeps postponing 5991 * it, we need to bound somehow the time packets are kept in 5992 * the GRO layer 5993 */ 5994 napi_gro_flush(n, !!timeout); 5995 if (timeout) 5996 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5997 HRTIMER_MODE_REL_PINNED); 5998 } 5999 if (unlikely(!list_empty(&n->poll_list))) { 6000 /* If n->poll_list is not empty, we need to mask irqs */ 6001 local_irq_save(flags); 6002 list_del_init(&n->poll_list); 6003 local_irq_restore(flags); 6004 } 6005 6006 do { 6007 val = READ_ONCE(n->state); 6008 6009 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6010 6011 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6012 6013 /* If STATE_MISSED was set, leave STATE_SCHED set, 6014 * because we will call napi->poll() one more time. 6015 * This C code was suggested by Alexander Duyck to help gcc. 6016 */ 6017 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6018 NAPIF_STATE_SCHED; 6019 } while (cmpxchg(&n->state, val, new) != val); 6020 6021 if (unlikely(val & NAPIF_STATE_MISSED)) { 6022 __napi_schedule(n); 6023 return false; 6024 } 6025 6026 return true; 6027 } 6028 EXPORT_SYMBOL(napi_complete_done); 6029 6030 /* must be called under rcu_read_lock(), as we dont take a reference */ 6031 static struct napi_struct *napi_by_id(unsigned int napi_id) 6032 { 6033 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6034 struct napi_struct *napi; 6035 6036 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6037 if (napi->napi_id == napi_id) 6038 return napi; 6039 6040 return NULL; 6041 } 6042 6043 #if defined(CONFIG_NET_RX_BUSY_POLL) 6044 6045 #define BUSY_POLL_BUDGET 8 6046 6047 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6048 { 6049 int rc; 6050 6051 /* Busy polling means there is a high chance device driver hard irq 6052 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6053 * set in napi_schedule_prep(). 6054 * Since we are about to call napi->poll() once more, we can safely 6055 * clear NAPI_STATE_MISSED. 6056 * 6057 * Note: x86 could use a single "lock and ..." instruction 6058 * to perform these two clear_bit() 6059 */ 6060 clear_bit(NAPI_STATE_MISSED, &napi->state); 6061 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6062 6063 local_bh_disable(); 6064 6065 /* All we really want here is to re-enable device interrupts. 6066 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6067 */ 6068 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6069 /* We can't gro_normal_list() here, because napi->poll() might have 6070 * rearmed the napi (napi_complete_done()) in which case it could 6071 * already be running on another CPU. 6072 */ 6073 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6074 netpoll_poll_unlock(have_poll_lock); 6075 if (rc == BUSY_POLL_BUDGET) { 6076 /* As the whole budget was spent, we still own the napi so can 6077 * safely handle the rx_list. 6078 */ 6079 gro_normal_list(napi); 6080 __napi_schedule(napi); 6081 } 6082 local_bh_enable(); 6083 } 6084 6085 void napi_busy_loop(unsigned int napi_id, 6086 bool (*loop_end)(void *, unsigned long), 6087 void *loop_end_arg) 6088 { 6089 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6090 int (*napi_poll)(struct napi_struct *napi, int budget); 6091 void *have_poll_lock = NULL; 6092 struct napi_struct *napi; 6093 6094 restart: 6095 napi_poll = NULL; 6096 6097 rcu_read_lock(); 6098 6099 napi = napi_by_id(napi_id); 6100 if (!napi) 6101 goto out; 6102 6103 preempt_disable(); 6104 for (;;) { 6105 int work = 0; 6106 6107 local_bh_disable(); 6108 if (!napi_poll) { 6109 unsigned long val = READ_ONCE(napi->state); 6110 6111 /* If multiple threads are competing for this napi, 6112 * we avoid dirtying napi->state as much as we can. 6113 */ 6114 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6115 NAPIF_STATE_IN_BUSY_POLL)) 6116 goto count; 6117 if (cmpxchg(&napi->state, val, 6118 val | NAPIF_STATE_IN_BUSY_POLL | 6119 NAPIF_STATE_SCHED) != val) 6120 goto count; 6121 have_poll_lock = netpoll_poll_lock(napi); 6122 napi_poll = napi->poll; 6123 } 6124 work = napi_poll(napi, BUSY_POLL_BUDGET); 6125 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6126 gro_normal_list(napi); 6127 count: 6128 if (work > 0) 6129 __NET_ADD_STATS(dev_net(napi->dev), 6130 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6131 local_bh_enable(); 6132 6133 if (!loop_end || loop_end(loop_end_arg, start_time)) 6134 break; 6135 6136 if (unlikely(need_resched())) { 6137 if (napi_poll) 6138 busy_poll_stop(napi, have_poll_lock); 6139 preempt_enable(); 6140 rcu_read_unlock(); 6141 cond_resched(); 6142 if (loop_end(loop_end_arg, start_time)) 6143 return; 6144 goto restart; 6145 } 6146 cpu_relax(); 6147 } 6148 if (napi_poll) 6149 busy_poll_stop(napi, have_poll_lock); 6150 preempt_enable(); 6151 out: 6152 rcu_read_unlock(); 6153 } 6154 EXPORT_SYMBOL(napi_busy_loop); 6155 6156 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6157 6158 static void napi_hash_add(struct napi_struct *napi) 6159 { 6160 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6161 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6162 return; 6163 6164 spin_lock(&napi_hash_lock); 6165 6166 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6167 do { 6168 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6169 napi_gen_id = MIN_NAPI_ID; 6170 } while (napi_by_id(napi_gen_id)); 6171 napi->napi_id = napi_gen_id; 6172 6173 hlist_add_head_rcu(&napi->napi_hash_node, 6174 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6175 6176 spin_unlock(&napi_hash_lock); 6177 } 6178 6179 /* Warning : caller is responsible to make sure rcu grace period 6180 * is respected before freeing memory containing @napi 6181 */ 6182 bool napi_hash_del(struct napi_struct *napi) 6183 { 6184 bool rcu_sync_needed = false; 6185 6186 spin_lock(&napi_hash_lock); 6187 6188 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6189 rcu_sync_needed = true; 6190 hlist_del_rcu(&napi->napi_hash_node); 6191 } 6192 spin_unlock(&napi_hash_lock); 6193 return rcu_sync_needed; 6194 } 6195 EXPORT_SYMBOL_GPL(napi_hash_del); 6196 6197 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6198 { 6199 struct napi_struct *napi; 6200 6201 napi = container_of(timer, struct napi_struct, timer); 6202 6203 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6204 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6205 */ 6206 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6207 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6208 __napi_schedule_irqoff(napi); 6209 6210 return HRTIMER_NORESTART; 6211 } 6212 6213 static void init_gro_hash(struct napi_struct *napi) 6214 { 6215 int i; 6216 6217 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6218 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6219 napi->gro_hash[i].count = 0; 6220 } 6221 napi->gro_bitmask = 0; 6222 } 6223 6224 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6225 int (*poll)(struct napi_struct *, int), int weight) 6226 { 6227 INIT_LIST_HEAD(&napi->poll_list); 6228 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6229 napi->timer.function = napi_watchdog; 6230 init_gro_hash(napi); 6231 napi->skb = NULL; 6232 INIT_LIST_HEAD(&napi->rx_list); 6233 napi->rx_count = 0; 6234 napi->poll = poll; 6235 if (weight > NAPI_POLL_WEIGHT) 6236 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6237 weight); 6238 napi->weight = weight; 6239 list_add(&napi->dev_list, &dev->napi_list); 6240 napi->dev = dev; 6241 #ifdef CONFIG_NETPOLL 6242 napi->poll_owner = -1; 6243 #endif 6244 set_bit(NAPI_STATE_SCHED, &napi->state); 6245 napi_hash_add(napi); 6246 } 6247 EXPORT_SYMBOL(netif_napi_add); 6248 6249 void napi_disable(struct napi_struct *n) 6250 { 6251 might_sleep(); 6252 set_bit(NAPI_STATE_DISABLE, &n->state); 6253 6254 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6255 msleep(1); 6256 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6257 msleep(1); 6258 6259 hrtimer_cancel(&n->timer); 6260 6261 clear_bit(NAPI_STATE_DISABLE, &n->state); 6262 } 6263 EXPORT_SYMBOL(napi_disable); 6264 6265 static void flush_gro_hash(struct napi_struct *napi) 6266 { 6267 int i; 6268 6269 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6270 struct sk_buff *skb, *n; 6271 6272 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6273 kfree_skb(skb); 6274 napi->gro_hash[i].count = 0; 6275 } 6276 } 6277 6278 /* Must be called in process context */ 6279 void netif_napi_del(struct napi_struct *napi) 6280 { 6281 might_sleep(); 6282 if (napi_hash_del(napi)) 6283 synchronize_net(); 6284 list_del_init(&napi->dev_list); 6285 napi_free_frags(napi); 6286 6287 flush_gro_hash(napi); 6288 napi->gro_bitmask = 0; 6289 } 6290 EXPORT_SYMBOL(netif_napi_del); 6291 6292 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6293 { 6294 void *have; 6295 int work, weight; 6296 6297 list_del_init(&n->poll_list); 6298 6299 have = netpoll_poll_lock(n); 6300 6301 weight = n->weight; 6302 6303 /* This NAPI_STATE_SCHED test is for avoiding a race 6304 * with netpoll's poll_napi(). Only the entity which 6305 * obtains the lock and sees NAPI_STATE_SCHED set will 6306 * actually make the ->poll() call. Therefore we avoid 6307 * accidentally calling ->poll() when NAPI is not scheduled. 6308 */ 6309 work = 0; 6310 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6311 work = n->poll(n, weight); 6312 trace_napi_poll(n, work, weight); 6313 } 6314 6315 WARN_ON_ONCE(work > weight); 6316 6317 if (likely(work < weight)) 6318 goto out_unlock; 6319 6320 /* Drivers must not modify the NAPI state if they 6321 * consume the entire weight. In such cases this code 6322 * still "owns" the NAPI instance and therefore can 6323 * move the instance around on the list at-will. 6324 */ 6325 if (unlikely(napi_disable_pending(n))) { 6326 napi_complete(n); 6327 goto out_unlock; 6328 } 6329 6330 gro_normal_list(n); 6331 6332 if (n->gro_bitmask) { 6333 /* flush too old packets 6334 * If HZ < 1000, flush all packets. 6335 */ 6336 napi_gro_flush(n, HZ >= 1000); 6337 } 6338 6339 /* Some drivers may have called napi_schedule 6340 * prior to exhausting their budget. 6341 */ 6342 if (unlikely(!list_empty(&n->poll_list))) { 6343 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6344 n->dev ? n->dev->name : "backlog"); 6345 goto out_unlock; 6346 } 6347 6348 list_add_tail(&n->poll_list, repoll); 6349 6350 out_unlock: 6351 netpoll_poll_unlock(have); 6352 6353 return work; 6354 } 6355 6356 static __latent_entropy void net_rx_action(struct softirq_action *h) 6357 { 6358 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6359 unsigned long time_limit = jiffies + 6360 usecs_to_jiffies(netdev_budget_usecs); 6361 int budget = netdev_budget; 6362 LIST_HEAD(list); 6363 LIST_HEAD(repoll); 6364 6365 local_irq_disable(); 6366 list_splice_init(&sd->poll_list, &list); 6367 local_irq_enable(); 6368 6369 for (;;) { 6370 struct napi_struct *n; 6371 6372 if (list_empty(&list)) { 6373 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6374 goto out; 6375 break; 6376 } 6377 6378 n = list_first_entry(&list, struct napi_struct, poll_list); 6379 budget -= napi_poll(n, &repoll); 6380 6381 /* If softirq window is exhausted then punt. 6382 * Allow this to run for 2 jiffies since which will allow 6383 * an average latency of 1.5/HZ. 6384 */ 6385 if (unlikely(budget <= 0 || 6386 time_after_eq(jiffies, time_limit))) { 6387 sd->time_squeeze++; 6388 break; 6389 } 6390 } 6391 6392 local_irq_disable(); 6393 6394 list_splice_tail_init(&sd->poll_list, &list); 6395 list_splice_tail(&repoll, &list); 6396 list_splice(&list, &sd->poll_list); 6397 if (!list_empty(&sd->poll_list)) 6398 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6399 6400 net_rps_action_and_irq_enable(sd); 6401 out: 6402 __kfree_skb_flush(); 6403 } 6404 6405 struct netdev_adjacent { 6406 struct net_device *dev; 6407 6408 /* upper master flag, there can only be one master device per list */ 6409 bool master; 6410 6411 /* counter for the number of times this device was added to us */ 6412 u16 ref_nr; 6413 6414 /* private field for the users */ 6415 void *private; 6416 6417 struct list_head list; 6418 struct rcu_head rcu; 6419 }; 6420 6421 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6422 struct list_head *adj_list) 6423 { 6424 struct netdev_adjacent *adj; 6425 6426 list_for_each_entry(adj, adj_list, list) { 6427 if (adj->dev == adj_dev) 6428 return adj; 6429 } 6430 return NULL; 6431 } 6432 6433 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6434 { 6435 struct net_device *dev = data; 6436 6437 return upper_dev == dev; 6438 } 6439 6440 /** 6441 * netdev_has_upper_dev - Check if device is linked to an upper device 6442 * @dev: device 6443 * @upper_dev: upper device to check 6444 * 6445 * Find out if a device is linked to specified upper device and return true 6446 * in case it is. Note that this checks only immediate upper device, 6447 * not through a complete stack of devices. The caller must hold the RTNL lock. 6448 */ 6449 bool netdev_has_upper_dev(struct net_device *dev, 6450 struct net_device *upper_dev) 6451 { 6452 ASSERT_RTNL(); 6453 6454 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6455 upper_dev); 6456 } 6457 EXPORT_SYMBOL(netdev_has_upper_dev); 6458 6459 /** 6460 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6461 * @dev: device 6462 * @upper_dev: upper device to check 6463 * 6464 * Find out if a device is linked to specified upper device and return true 6465 * in case it is. Note that this checks the entire upper device chain. 6466 * The caller must hold rcu lock. 6467 */ 6468 6469 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6470 struct net_device *upper_dev) 6471 { 6472 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6473 upper_dev); 6474 } 6475 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6476 6477 /** 6478 * netdev_has_any_upper_dev - Check if device is linked to some device 6479 * @dev: device 6480 * 6481 * Find out if a device is linked to an upper device and return true in case 6482 * it is. The caller must hold the RTNL lock. 6483 */ 6484 bool netdev_has_any_upper_dev(struct net_device *dev) 6485 { 6486 ASSERT_RTNL(); 6487 6488 return !list_empty(&dev->adj_list.upper); 6489 } 6490 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6491 6492 /** 6493 * netdev_master_upper_dev_get - Get master upper device 6494 * @dev: device 6495 * 6496 * Find a master upper device and return pointer to it or NULL in case 6497 * it's not there. The caller must hold the RTNL lock. 6498 */ 6499 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6500 { 6501 struct netdev_adjacent *upper; 6502 6503 ASSERT_RTNL(); 6504 6505 if (list_empty(&dev->adj_list.upper)) 6506 return NULL; 6507 6508 upper = list_first_entry(&dev->adj_list.upper, 6509 struct netdev_adjacent, list); 6510 if (likely(upper->master)) 6511 return upper->dev; 6512 return NULL; 6513 } 6514 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6515 6516 /** 6517 * netdev_has_any_lower_dev - Check if device is linked to some device 6518 * @dev: device 6519 * 6520 * Find out if a device is linked to a lower device and return true in case 6521 * it is. The caller must hold the RTNL lock. 6522 */ 6523 static bool netdev_has_any_lower_dev(struct net_device *dev) 6524 { 6525 ASSERT_RTNL(); 6526 6527 return !list_empty(&dev->adj_list.lower); 6528 } 6529 6530 void *netdev_adjacent_get_private(struct list_head *adj_list) 6531 { 6532 struct netdev_adjacent *adj; 6533 6534 adj = list_entry(adj_list, struct netdev_adjacent, list); 6535 6536 return adj->private; 6537 } 6538 EXPORT_SYMBOL(netdev_adjacent_get_private); 6539 6540 /** 6541 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6542 * @dev: device 6543 * @iter: list_head ** of the current position 6544 * 6545 * Gets the next device from the dev's upper list, starting from iter 6546 * position. The caller must hold RCU read lock. 6547 */ 6548 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6549 struct list_head **iter) 6550 { 6551 struct netdev_adjacent *upper; 6552 6553 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6554 6555 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6556 6557 if (&upper->list == &dev->adj_list.upper) 6558 return NULL; 6559 6560 *iter = &upper->list; 6561 6562 return upper->dev; 6563 } 6564 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6565 6566 static struct net_device *netdev_next_upper_dev(struct net_device *dev, 6567 struct list_head **iter) 6568 { 6569 struct netdev_adjacent *upper; 6570 6571 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6572 6573 if (&upper->list == &dev->adj_list.upper) 6574 return NULL; 6575 6576 *iter = &upper->list; 6577 6578 return upper->dev; 6579 } 6580 6581 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6582 struct list_head **iter) 6583 { 6584 struct netdev_adjacent *upper; 6585 6586 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6587 6588 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6589 6590 if (&upper->list == &dev->adj_list.upper) 6591 return NULL; 6592 6593 *iter = &upper->list; 6594 6595 return upper->dev; 6596 } 6597 6598 static int netdev_walk_all_upper_dev(struct net_device *dev, 6599 int (*fn)(struct net_device *dev, 6600 void *data), 6601 void *data) 6602 { 6603 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6604 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6605 int ret, cur = 0; 6606 6607 now = dev; 6608 iter = &dev->adj_list.upper; 6609 6610 while (1) { 6611 if (now != dev) { 6612 ret = fn(now, data); 6613 if (ret) 6614 return ret; 6615 } 6616 6617 next = NULL; 6618 while (1) { 6619 udev = netdev_next_upper_dev(now, &iter); 6620 if (!udev) 6621 break; 6622 6623 next = udev; 6624 niter = &udev->adj_list.upper; 6625 dev_stack[cur] = now; 6626 iter_stack[cur++] = iter; 6627 break; 6628 } 6629 6630 if (!next) { 6631 if (!cur) 6632 return 0; 6633 next = dev_stack[--cur]; 6634 niter = iter_stack[cur]; 6635 } 6636 6637 now = next; 6638 iter = niter; 6639 } 6640 6641 return 0; 6642 } 6643 6644 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6645 int (*fn)(struct net_device *dev, 6646 void *data), 6647 void *data) 6648 { 6649 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6650 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6651 int ret, cur = 0; 6652 6653 now = dev; 6654 iter = &dev->adj_list.upper; 6655 6656 while (1) { 6657 if (now != dev) { 6658 ret = fn(now, data); 6659 if (ret) 6660 return ret; 6661 } 6662 6663 next = NULL; 6664 while (1) { 6665 udev = netdev_next_upper_dev_rcu(now, &iter); 6666 if (!udev) 6667 break; 6668 6669 next = udev; 6670 niter = &udev->adj_list.upper; 6671 dev_stack[cur] = now; 6672 iter_stack[cur++] = iter; 6673 break; 6674 } 6675 6676 if (!next) { 6677 if (!cur) 6678 return 0; 6679 next = dev_stack[--cur]; 6680 niter = iter_stack[cur]; 6681 } 6682 6683 now = next; 6684 iter = niter; 6685 } 6686 6687 return 0; 6688 } 6689 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6690 6691 /** 6692 * netdev_lower_get_next_private - Get the next ->private from the 6693 * lower neighbour list 6694 * @dev: device 6695 * @iter: list_head ** of the current position 6696 * 6697 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6698 * list, starting from iter position. The caller must hold either hold the 6699 * RTNL lock or its own locking that guarantees that the neighbour lower 6700 * list will remain unchanged. 6701 */ 6702 void *netdev_lower_get_next_private(struct net_device *dev, 6703 struct list_head **iter) 6704 { 6705 struct netdev_adjacent *lower; 6706 6707 lower = list_entry(*iter, struct netdev_adjacent, list); 6708 6709 if (&lower->list == &dev->adj_list.lower) 6710 return NULL; 6711 6712 *iter = lower->list.next; 6713 6714 return lower->private; 6715 } 6716 EXPORT_SYMBOL(netdev_lower_get_next_private); 6717 6718 /** 6719 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6720 * lower neighbour list, RCU 6721 * variant 6722 * @dev: device 6723 * @iter: list_head ** of the current position 6724 * 6725 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6726 * list, starting from iter position. The caller must hold RCU read lock. 6727 */ 6728 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6729 struct list_head **iter) 6730 { 6731 struct netdev_adjacent *lower; 6732 6733 WARN_ON_ONCE(!rcu_read_lock_held()); 6734 6735 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6736 6737 if (&lower->list == &dev->adj_list.lower) 6738 return NULL; 6739 6740 *iter = &lower->list; 6741 6742 return lower->private; 6743 } 6744 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6745 6746 /** 6747 * netdev_lower_get_next - Get the next device from the lower neighbour 6748 * list 6749 * @dev: device 6750 * @iter: list_head ** of the current position 6751 * 6752 * Gets the next netdev_adjacent from the dev's lower neighbour 6753 * list, starting from iter position. The caller must hold RTNL lock or 6754 * its own locking that guarantees that the neighbour lower 6755 * list will remain unchanged. 6756 */ 6757 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6758 { 6759 struct netdev_adjacent *lower; 6760 6761 lower = list_entry(*iter, struct netdev_adjacent, list); 6762 6763 if (&lower->list == &dev->adj_list.lower) 6764 return NULL; 6765 6766 *iter = lower->list.next; 6767 6768 return lower->dev; 6769 } 6770 EXPORT_SYMBOL(netdev_lower_get_next); 6771 6772 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6773 struct list_head **iter) 6774 { 6775 struct netdev_adjacent *lower; 6776 6777 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6778 6779 if (&lower->list == &dev->adj_list.lower) 6780 return NULL; 6781 6782 *iter = &lower->list; 6783 6784 return lower->dev; 6785 } 6786 6787 int netdev_walk_all_lower_dev(struct net_device *dev, 6788 int (*fn)(struct net_device *dev, 6789 void *data), 6790 void *data) 6791 { 6792 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6793 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6794 int ret, cur = 0; 6795 6796 now = dev; 6797 iter = &dev->adj_list.lower; 6798 6799 while (1) { 6800 if (now != dev) { 6801 ret = fn(now, data); 6802 if (ret) 6803 return ret; 6804 } 6805 6806 next = NULL; 6807 while (1) { 6808 ldev = netdev_next_lower_dev(now, &iter); 6809 if (!ldev) 6810 break; 6811 6812 next = ldev; 6813 niter = &ldev->adj_list.lower; 6814 dev_stack[cur] = now; 6815 iter_stack[cur++] = iter; 6816 break; 6817 } 6818 6819 if (!next) { 6820 if (!cur) 6821 return 0; 6822 next = dev_stack[--cur]; 6823 niter = iter_stack[cur]; 6824 } 6825 6826 now = next; 6827 iter = niter; 6828 } 6829 6830 return 0; 6831 } 6832 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6833 6834 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6835 struct list_head **iter) 6836 { 6837 struct netdev_adjacent *lower; 6838 6839 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6840 if (&lower->list == &dev->adj_list.lower) 6841 return NULL; 6842 6843 *iter = &lower->list; 6844 6845 return lower->dev; 6846 } 6847 6848 static u8 __netdev_upper_depth(struct net_device *dev) 6849 { 6850 struct net_device *udev; 6851 struct list_head *iter; 6852 u8 max_depth = 0; 6853 6854 for (iter = &dev->adj_list.upper, 6855 udev = netdev_next_upper_dev(dev, &iter); 6856 udev; 6857 udev = netdev_next_upper_dev(dev, &iter)) { 6858 if (max_depth < udev->upper_level) 6859 max_depth = udev->upper_level; 6860 } 6861 6862 return max_depth; 6863 } 6864 6865 static u8 __netdev_lower_depth(struct net_device *dev) 6866 { 6867 struct net_device *ldev; 6868 struct list_head *iter; 6869 u8 max_depth = 0; 6870 6871 for (iter = &dev->adj_list.lower, 6872 ldev = netdev_next_lower_dev(dev, &iter); 6873 ldev; 6874 ldev = netdev_next_lower_dev(dev, &iter)) { 6875 if (max_depth < ldev->lower_level) 6876 max_depth = ldev->lower_level; 6877 } 6878 6879 return max_depth; 6880 } 6881 6882 static int __netdev_update_upper_level(struct net_device *dev, void *data) 6883 { 6884 dev->upper_level = __netdev_upper_depth(dev) + 1; 6885 return 0; 6886 } 6887 6888 static int __netdev_update_lower_level(struct net_device *dev, void *data) 6889 { 6890 dev->lower_level = __netdev_lower_depth(dev) + 1; 6891 return 0; 6892 } 6893 6894 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6895 int (*fn)(struct net_device *dev, 6896 void *data), 6897 void *data) 6898 { 6899 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6900 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6901 int ret, cur = 0; 6902 6903 now = dev; 6904 iter = &dev->adj_list.lower; 6905 6906 while (1) { 6907 if (now != dev) { 6908 ret = fn(now, data); 6909 if (ret) 6910 return ret; 6911 } 6912 6913 next = NULL; 6914 while (1) { 6915 ldev = netdev_next_lower_dev_rcu(now, &iter); 6916 if (!ldev) 6917 break; 6918 6919 next = ldev; 6920 niter = &ldev->adj_list.lower; 6921 dev_stack[cur] = now; 6922 iter_stack[cur++] = iter; 6923 break; 6924 } 6925 6926 if (!next) { 6927 if (!cur) 6928 return 0; 6929 next = dev_stack[--cur]; 6930 niter = iter_stack[cur]; 6931 } 6932 6933 now = next; 6934 iter = niter; 6935 } 6936 6937 return 0; 6938 } 6939 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6940 6941 /** 6942 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6943 * lower neighbour list, RCU 6944 * variant 6945 * @dev: device 6946 * 6947 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6948 * list. The caller must hold RCU read lock. 6949 */ 6950 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6951 { 6952 struct netdev_adjacent *lower; 6953 6954 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6955 struct netdev_adjacent, list); 6956 if (lower) 6957 return lower->private; 6958 return NULL; 6959 } 6960 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6961 6962 /** 6963 * netdev_master_upper_dev_get_rcu - Get master upper device 6964 * @dev: device 6965 * 6966 * Find a master upper device and return pointer to it or NULL in case 6967 * it's not there. The caller must hold the RCU read lock. 6968 */ 6969 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6970 { 6971 struct netdev_adjacent *upper; 6972 6973 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6974 struct netdev_adjacent, list); 6975 if (upper && likely(upper->master)) 6976 return upper->dev; 6977 return NULL; 6978 } 6979 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6980 6981 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6982 struct net_device *adj_dev, 6983 struct list_head *dev_list) 6984 { 6985 char linkname[IFNAMSIZ+7]; 6986 6987 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6988 "upper_%s" : "lower_%s", adj_dev->name); 6989 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6990 linkname); 6991 } 6992 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6993 char *name, 6994 struct list_head *dev_list) 6995 { 6996 char linkname[IFNAMSIZ+7]; 6997 6998 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6999 "upper_%s" : "lower_%s", name); 7000 sysfs_remove_link(&(dev->dev.kobj), linkname); 7001 } 7002 7003 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7004 struct net_device *adj_dev, 7005 struct list_head *dev_list) 7006 { 7007 return (dev_list == &dev->adj_list.upper || 7008 dev_list == &dev->adj_list.lower) && 7009 net_eq(dev_net(dev), dev_net(adj_dev)); 7010 } 7011 7012 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7013 struct net_device *adj_dev, 7014 struct list_head *dev_list, 7015 void *private, bool master) 7016 { 7017 struct netdev_adjacent *adj; 7018 int ret; 7019 7020 adj = __netdev_find_adj(adj_dev, dev_list); 7021 7022 if (adj) { 7023 adj->ref_nr += 1; 7024 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7025 dev->name, adj_dev->name, adj->ref_nr); 7026 7027 return 0; 7028 } 7029 7030 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7031 if (!adj) 7032 return -ENOMEM; 7033 7034 adj->dev = adj_dev; 7035 adj->master = master; 7036 adj->ref_nr = 1; 7037 adj->private = private; 7038 dev_hold(adj_dev); 7039 7040 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7041 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7042 7043 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7044 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7045 if (ret) 7046 goto free_adj; 7047 } 7048 7049 /* Ensure that master link is always the first item in list. */ 7050 if (master) { 7051 ret = sysfs_create_link(&(dev->dev.kobj), 7052 &(adj_dev->dev.kobj), "master"); 7053 if (ret) 7054 goto remove_symlinks; 7055 7056 list_add_rcu(&adj->list, dev_list); 7057 } else { 7058 list_add_tail_rcu(&adj->list, dev_list); 7059 } 7060 7061 return 0; 7062 7063 remove_symlinks: 7064 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7065 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7066 free_adj: 7067 kfree(adj); 7068 dev_put(adj_dev); 7069 7070 return ret; 7071 } 7072 7073 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7074 struct net_device *adj_dev, 7075 u16 ref_nr, 7076 struct list_head *dev_list) 7077 { 7078 struct netdev_adjacent *adj; 7079 7080 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7081 dev->name, adj_dev->name, ref_nr); 7082 7083 adj = __netdev_find_adj(adj_dev, dev_list); 7084 7085 if (!adj) { 7086 pr_err("Adjacency does not exist for device %s from %s\n", 7087 dev->name, adj_dev->name); 7088 WARN_ON(1); 7089 return; 7090 } 7091 7092 if (adj->ref_nr > ref_nr) { 7093 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7094 dev->name, adj_dev->name, ref_nr, 7095 adj->ref_nr - ref_nr); 7096 adj->ref_nr -= ref_nr; 7097 return; 7098 } 7099 7100 if (adj->master) 7101 sysfs_remove_link(&(dev->dev.kobj), "master"); 7102 7103 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7104 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7105 7106 list_del_rcu(&adj->list); 7107 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7108 adj_dev->name, dev->name, adj_dev->name); 7109 dev_put(adj_dev); 7110 kfree_rcu(adj, rcu); 7111 } 7112 7113 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7114 struct net_device *upper_dev, 7115 struct list_head *up_list, 7116 struct list_head *down_list, 7117 void *private, bool master) 7118 { 7119 int ret; 7120 7121 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7122 private, master); 7123 if (ret) 7124 return ret; 7125 7126 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7127 private, false); 7128 if (ret) { 7129 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7130 return ret; 7131 } 7132 7133 return 0; 7134 } 7135 7136 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7137 struct net_device *upper_dev, 7138 u16 ref_nr, 7139 struct list_head *up_list, 7140 struct list_head *down_list) 7141 { 7142 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7143 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7144 } 7145 7146 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7147 struct net_device *upper_dev, 7148 void *private, bool master) 7149 { 7150 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7151 &dev->adj_list.upper, 7152 &upper_dev->adj_list.lower, 7153 private, master); 7154 } 7155 7156 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7157 struct net_device *upper_dev) 7158 { 7159 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7160 &dev->adj_list.upper, 7161 &upper_dev->adj_list.lower); 7162 } 7163 7164 static int __netdev_upper_dev_link(struct net_device *dev, 7165 struct net_device *upper_dev, bool master, 7166 void *upper_priv, void *upper_info, 7167 struct netlink_ext_ack *extack) 7168 { 7169 struct netdev_notifier_changeupper_info changeupper_info = { 7170 .info = { 7171 .dev = dev, 7172 .extack = extack, 7173 }, 7174 .upper_dev = upper_dev, 7175 .master = master, 7176 .linking = true, 7177 .upper_info = upper_info, 7178 }; 7179 struct net_device *master_dev; 7180 int ret = 0; 7181 7182 ASSERT_RTNL(); 7183 7184 if (dev == upper_dev) 7185 return -EBUSY; 7186 7187 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7188 if (netdev_has_upper_dev(upper_dev, dev)) 7189 return -EBUSY; 7190 7191 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7192 return -EMLINK; 7193 7194 if (!master) { 7195 if (netdev_has_upper_dev(dev, upper_dev)) 7196 return -EEXIST; 7197 } else { 7198 master_dev = netdev_master_upper_dev_get(dev); 7199 if (master_dev) 7200 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7201 } 7202 7203 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7204 &changeupper_info.info); 7205 ret = notifier_to_errno(ret); 7206 if (ret) 7207 return ret; 7208 7209 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7210 master); 7211 if (ret) 7212 return ret; 7213 7214 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7215 &changeupper_info.info); 7216 ret = notifier_to_errno(ret); 7217 if (ret) 7218 goto rollback; 7219 7220 __netdev_update_upper_level(dev, NULL); 7221 netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7222 7223 __netdev_update_lower_level(upper_dev, NULL); 7224 netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL); 7225 7226 return 0; 7227 7228 rollback: 7229 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7230 7231 return ret; 7232 } 7233 7234 /** 7235 * netdev_upper_dev_link - Add a link to the upper device 7236 * @dev: device 7237 * @upper_dev: new upper device 7238 * @extack: netlink extended ack 7239 * 7240 * Adds a link to device which is upper to this one. The caller must hold 7241 * the RTNL lock. On a failure a negative errno code is returned. 7242 * On success the reference counts are adjusted and the function 7243 * returns zero. 7244 */ 7245 int netdev_upper_dev_link(struct net_device *dev, 7246 struct net_device *upper_dev, 7247 struct netlink_ext_ack *extack) 7248 { 7249 return __netdev_upper_dev_link(dev, upper_dev, false, 7250 NULL, NULL, extack); 7251 } 7252 EXPORT_SYMBOL(netdev_upper_dev_link); 7253 7254 /** 7255 * netdev_master_upper_dev_link - Add a master link to the upper device 7256 * @dev: device 7257 * @upper_dev: new upper device 7258 * @upper_priv: upper device private 7259 * @upper_info: upper info to be passed down via notifier 7260 * @extack: netlink extended ack 7261 * 7262 * Adds a link to device which is upper to this one. In this case, only 7263 * one master upper device can be linked, although other non-master devices 7264 * might be linked as well. The caller must hold the RTNL lock. 7265 * On a failure a negative errno code is returned. On success the reference 7266 * counts are adjusted and the function returns zero. 7267 */ 7268 int netdev_master_upper_dev_link(struct net_device *dev, 7269 struct net_device *upper_dev, 7270 void *upper_priv, void *upper_info, 7271 struct netlink_ext_ack *extack) 7272 { 7273 return __netdev_upper_dev_link(dev, upper_dev, true, 7274 upper_priv, upper_info, extack); 7275 } 7276 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7277 7278 /** 7279 * netdev_upper_dev_unlink - Removes a link to upper device 7280 * @dev: device 7281 * @upper_dev: new upper device 7282 * 7283 * Removes a link to device which is upper to this one. The caller must hold 7284 * the RTNL lock. 7285 */ 7286 void netdev_upper_dev_unlink(struct net_device *dev, 7287 struct net_device *upper_dev) 7288 { 7289 struct netdev_notifier_changeupper_info changeupper_info = { 7290 .info = { 7291 .dev = dev, 7292 }, 7293 .upper_dev = upper_dev, 7294 .linking = false, 7295 }; 7296 7297 ASSERT_RTNL(); 7298 7299 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7300 7301 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7302 &changeupper_info.info); 7303 7304 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7305 7306 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7307 &changeupper_info.info); 7308 7309 __netdev_update_upper_level(dev, NULL); 7310 netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7311 7312 __netdev_update_lower_level(upper_dev, NULL); 7313 netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL); 7314 } 7315 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7316 7317 /** 7318 * netdev_bonding_info_change - Dispatch event about slave change 7319 * @dev: device 7320 * @bonding_info: info to dispatch 7321 * 7322 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7323 * The caller must hold the RTNL lock. 7324 */ 7325 void netdev_bonding_info_change(struct net_device *dev, 7326 struct netdev_bonding_info *bonding_info) 7327 { 7328 struct netdev_notifier_bonding_info info = { 7329 .info.dev = dev, 7330 }; 7331 7332 memcpy(&info.bonding_info, bonding_info, 7333 sizeof(struct netdev_bonding_info)); 7334 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7335 &info.info); 7336 } 7337 EXPORT_SYMBOL(netdev_bonding_info_change); 7338 7339 static void netdev_adjacent_add_links(struct net_device *dev) 7340 { 7341 struct netdev_adjacent *iter; 7342 7343 struct net *net = dev_net(dev); 7344 7345 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7346 if (!net_eq(net, dev_net(iter->dev))) 7347 continue; 7348 netdev_adjacent_sysfs_add(iter->dev, dev, 7349 &iter->dev->adj_list.lower); 7350 netdev_adjacent_sysfs_add(dev, iter->dev, 7351 &dev->adj_list.upper); 7352 } 7353 7354 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7355 if (!net_eq(net, dev_net(iter->dev))) 7356 continue; 7357 netdev_adjacent_sysfs_add(iter->dev, dev, 7358 &iter->dev->adj_list.upper); 7359 netdev_adjacent_sysfs_add(dev, iter->dev, 7360 &dev->adj_list.lower); 7361 } 7362 } 7363 7364 static void netdev_adjacent_del_links(struct net_device *dev) 7365 { 7366 struct netdev_adjacent *iter; 7367 7368 struct net *net = dev_net(dev); 7369 7370 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7371 if (!net_eq(net, dev_net(iter->dev))) 7372 continue; 7373 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7374 &iter->dev->adj_list.lower); 7375 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7376 &dev->adj_list.upper); 7377 } 7378 7379 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7380 if (!net_eq(net, dev_net(iter->dev))) 7381 continue; 7382 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7383 &iter->dev->adj_list.upper); 7384 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7385 &dev->adj_list.lower); 7386 } 7387 } 7388 7389 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7390 { 7391 struct netdev_adjacent *iter; 7392 7393 struct net *net = dev_net(dev); 7394 7395 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7396 if (!net_eq(net, dev_net(iter->dev))) 7397 continue; 7398 netdev_adjacent_sysfs_del(iter->dev, oldname, 7399 &iter->dev->adj_list.lower); 7400 netdev_adjacent_sysfs_add(iter->dev, dev, 7401 &iter->dev->adj_list.lower); 7402 } 7403 7404 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7405 if (!net_eq(net, dev_net(iter->dev))) 7406 continue; 7407 netdev_adjacent_sysfs_del(iter->dev, oldname, 7408 &iter->dev->adj_list.upper); 7409 netdev_adjacent_sysfs_add(iter->dev, dev, 7410 &iter->dev->adj_list.upper); 7411 } 7412 } 7413 7414 void *netdev_lower_dev_get_private(struct net_device *dev, 7415 struct net_device *lower_dev) 7416 { 7417 struct netdev_adjacent *lower; 7418 7419 if (!lower_dev) 7420 return NULL; 7421 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7422 if (!lower) 7423 return NULL; 7424 7425 return lower->private; 7426 } 7427 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7428 7429 7430 int dev_get_nest_level(struct net_device *dev) 7431 { 7432 struct net_device *lower = NULL; 7433 struct list_head *iter; 7434 int max_nest = -1; 7435 int nest; 7436 7437 ASSERT_RTNL(); 7438 7439 netdev_for_each_lower_dev(dev, lower, iter) { 7440 nest = dev_get_nest_level(lower); 7441 if (max_nest < nest) 7442 max_nest = nest; 7443 } 7444 7445 return max_nest + 1; 7446 } 7447 EXPORT_SYMBOL(dev_get_nest_level); 7448 7449 /** 7450 * netdev_lower_change - Dispatch event about lower device state change 7451 * @lower_dev: device 7452 * @lower_state_info: state to dispatch 7453 * 7454 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7455 * The caller must hold the RTNL lock. 7456 */ 7457 void netdev_lower_state_changed(struct net_device *lower_dev, 7458 void *lower_state_info) 7459 { 7460 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7461 .info.dev = lower_dev, 7462 }; 7463 7464 ASSERT_RTNL(); 7465 changelowerstate_info.lower_state_info = lower_state_info; 7466 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7467 &changelowerstate_info.info); 7468 } 7469 EXPORT_SYMBOL(netdev_lower_state_changed); 7470 7471 static void dev_change_rx_flags(struct net_device *dev, int flags) 7472 { 7473 const struct net_device_ops *ops = dev->netdev_ops; 7474 7475 if (ops->ndo_change_rx_flags) 7476 ops->ndo_change_rx_flags(dev, flags); 7477 } 7478 7479 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7480 { 7481 unsigned int old_flags = dev->flags; 7482 kuid_t uid; 7483 kgid_t gid; 7484 7485 ASSERT_RTNL(); 7486 7487 dev->flags |= IFF_PROMISC; 7488 dev->promiscuity += inc; 7489 if (dev->promiscuity == 0) { 7490 /* 7491 * Avoid overflow. 7492 * If inc causes overflow, untouch promisc and return error. 7493 */ 7494 if (inc < 0) 7495 dev->flags &= ~IFF_PROMISC; 7496 else { 7497 dev->promiscuity -= inc; 7498 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7499 dev->name); 7500 return -EOVERFLOW; 7501 } 7502 } 7503 if (dev->flags != old_flags) { 7504 pr_info("device %s %s promiscuous mode\n", 7505 dev->name, 7506 dev->flags & IFF_PROMISC ? "entered" : "left"); 7507 if (audit_enabled) { 7508 current_uid_gid(&uid, &gid); 7509 audit_log(audit_context(), GFP_ATOMIC, 7510 AUDIT_ANOM_PROMISCUOUS, 7511 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7512 dev->name, (dev->flags & IFF_PROMISC), 7513 (old_flags & IFF_PROMISC), 7514 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7515 from_kuid(&init_user_ns, uid), 7516 from_kgid(&init_user_ns, gid), 7517 audit_get_sessionid(current)); 7518 } 7519 7520 dev_change_rx_flags(dev, IFF_PROMISC); 7521 } 7522 if (notify) 7523 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7524 return 0; 7525 } 7526 7527 /** 7528 * dev_set_promiscuity - update promiscuity count on a device 7529 * @dev: device 7530 * @inc: modifier 7531 * 7532 * Add or remove promiscuity from a device. While the count in the device 7533 * remains above zero the interface remains promiscuous. Once it hits zero 7534 * the device reverts back to normal filtering operation. A negative inc 7535 * value is used to drop promiscuity on the device. 7536 * Return 0 if successful or a negative errno code on error. 7537 */ 7538 int dev_set_promiscuity(struct net_device *dev, int inc) 7539 { 7540 unsigned int old_flags = dev->flags; 7541 int err; 7542 7543 err = __dev_set_promiscuity(dev, inc, true); 7544 if (err < 0) 7545 return err; 7546 if (dev->flags != old_flags) 7547 dev_set_rx_mode(dev); 7548 return err; 7549 } 7550 EXPORT_SYMBOL(dev_set_promiscuity); 7551 7552 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7553 { 7554 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7555 7556 ASSERT_RTNL(); 7557 7558 dev->flags |= IFF_ALLMULTI; 7559 dev->allmulti += inc; 7560 if (dev->allmulti == 0) { 7561 /* 7562 * Avoid overflow. 7563 * If inc causes overflow, untouch allmulti and return error. 7564 */ 7565 if (inc < 0) 7566 dev->flags &= ~IFF_ALLMULTI; 7567 else { 7568 dev->allmulti -= inc; 7569 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7570 dev->name); 7571 return -EOVERFLOW; 7572 } 7573 } 7574 if (dev->flags ^ old_flags) { 7575 dev_change_rx_flags(dev, IFF_ALLMULTI); 7576 dev_set_rx_mode(dev); 7577 if (notify) 7578 __dev_notify_flags(dev, old_flags, 7579 dev->gflags ^ old_gflags); 7580 } 7581 return 0; 7582 } 7583 7584 /** 7585 * dev_set_allmulti - update allmulti count on a device 7586 * @dev: device 7587 * @inc: modifier 7588 * 7589 * Add or remove reception of all multicast frames to a device. While the 7590 * count in the device remains above zero the interface remains listening 7591 * to all interfaces. Once it hits zero the device reverts back to normal 7592 * filtering operation. A negative @inc value is used to drop the counter 7593 * when releasing a resource needing all multicasts. 7594 * Return 0 if successful or a negative errno code on error. 7595 */ 7596 7597 int dev_set_allmulti(struct net_device *dev, int inc) 7598 { 7599 return __dev_set_allmulti(dev, inc, true); 7600 } 7601 EXPORT_SYMBOL(dev_set_allmulti); 7602 7603 /* 7604 * Upload unicast and multicast address lists to device and 7605 * configure RX filtering. When the device doesn't support unicast 7606 * filtering it is put in promiscuous mode while unicast addresses 7607 * are present. 7608 */ 7609 void __dev_set_rx_mode(struct net_device *dev) 7610 { 7611 const struct net_device_ops *ops = dev->netdev_ops; 7612 7613 /* dev_open will call this function so the list will stay sane. */ 7614 if (!(dev->flags&IFF_UP)) 7615 return; 7616 7617 if (!netif_device_present(dev)) 7618 return; 7619 7620 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7621 /* Unicast addresses changes may only happen under the rtnl, 7622 * therefore calling __dev_set_promiscuity here is safe. 7623 */ 7624 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7625 __dev_set_promiscuity(dev, 1, false); 7626 dev->uc_promisc = true; 7627 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7628 __dev_set_promiscuity(dev, -1, false); 7629 dev->uc_promisc = false; 7630 } 7631 } 7632 7633 if (ops->ndo_set_rx_mode) 7634 ops->ndo_set_rx_mode(dev); 7635 } 7636 7637 void dev_set_rx_mode(struct net_device *dev) 7638 { 7639 netif_addr_lock_bh(dev); 7640 __dev_set_rx_mode(dev); 7641 netif_addr_unlock_bh(dev); 7642 } 7643 7644 /** 7645 * dev_get_flags - get flags reported to userspace 7646 * @dev: device 7647 * 7648 * Get the combination of flag bits exported through APIs to userspace. 7649 */ 7650 unsigned int dev_get_flags(const struct net_device *dev) 7651 { 7652 unsigned int flags; 7653 7654 flags = (dev->flags & ~(IFF_PROMISC | 7655 IFF_ALLMULTI | 7656 IFF_RUNNING | 7657 IFF_LOWER_UP | 7658 IFF_DORMANT)) | 7659 (dev->gflags & (IFF_PROMISC | 7660 IFF_ALLMULTI)); 7661 7662 if (netif_running(dev)) { 7663 if (netif_oper_up(dev)) 7664 flags |= IFF_RUNNING; 7665 if (netif_carrier_ok(dev)) 7666 flags |= IFF_LOWER_UP; 7667 if (netif_dormant(dev)) 7668 flags |= IFF_DORMANT; 7669 } 7670 7671 return flags; 7672 } 7673 EXPORT_SYMBOL(dev_get_flags); 7674 7675 int __dev_change_flags(struct net_device *dev, unsigned int flags, 7676 struct netlink_ext_ack *extack) 7677 { 7678 unsigned int old_flags = dev->flags; 7679 int ret; 7680 7681 ASSERT_RTNL(); 7682 7683 /* 7684 * Set the flags on our device. 7685 */ 7686 7687 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7688 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7689 IFF_AUTOMEDIA)) | 7690 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7691 IFF_ALLMULTI)); 7692 7693 /* 7694 * Load in the correct multicast list now the flags have changed. 7695 */ 7696 7697 if ((old_flags ^ flags) & IFF_MULTICAST) 7698 dev_change_rx_flags(dev, IFF_MULTICAST); 7699 7700 dev_set_rx_mode(dev); 7701 7702 /* 7703 * Have we downed the interface. We handle IFF_UP ourselves 7704 * according to user attempts to set it, rather than blindly 7705 * setting it. 7706 */ 7707 7708 ret = 0; 7709 if ((old_flags ^ flags) & IFF_UP) { 7710 if (old_flags & IFF_UP) 7711 __dev_close(dev); 7712 else 7713 ret = __dev_open(dev, extack); 7714 } 7715 7716 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7717 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7718 unsigned int old_flags = dev->flags; 7719 7720 dev->gflags ^= IFF_PROMISC; 7721 7722 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7723 if (dev->flags != old_flags) 7724 dev_set_rx_mode(dev); 7725 } 7726 7727 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7728 * is important. Some (broken) drivers set IFF_PROMISC, when 7729 * IFF_ALLMULTI is requested not asking us and not reporting. 7730 */ 7731 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7732 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7733 7734 dev->gflags ^= IFF_ALLMULTI; 7735 __dev_set_allmulti(dev, inc, false); 7736 } 7737 7738 return ret; 7739 } 7740 7741 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7742 unsigned int gchanges) 7743 { 7744 unsigned int changes = dev->flags ^ old_flags; 7745 7746 if (gchanges) 7747 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7748 7749 if (changes & IFF_UP) { 7750 if (dev->flags & IFF_UP) 7751 call_netdevice_notifiers(NETDEV_UP, dev); 7752 else 7753 call_netdevice_notifiers(NETDEV_DOWN, dev); 7754 } 7755 7756 if (dev->flags & IFF_UP && 7757 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7758 struct netdev_notifier_change_info change_info = { 7759 .info = { 7760 .dev = dev, 7761 }, 7762 .flags_changed = changes, 7763 }; 7764 7765 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7766 } 7767 } 7768 7769 /** 7770 * dev_change_flags - change device settings 7771 * @dev: device 7772 * @flags: device state flags 7773 * @extack: netlink extended ack 7774 * 7775 * Change settings on device based state flags. The flags are 7776 * in the userspace exported format. 7777 */ 7778 int dev_change_flags(struct net_device *dev, unsigned int flags, 7779 struct netlink_ext_ack *extack) 7780 { 7781 int ret; 7782 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7783 7784 ret = __dev_change_flags(dev, flags, extack); 7785 if (ret < 0) 7786 return ret; 7787 7788 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7789 __dev_notify_flags(dev, old_flags, changes); 7790 return ret; 7791 } 7792 EXPORT_SYMBOL(dev_change_flags); 7793 7794 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7795 { 7796 const struct net_device_ops *ops = dev->netdev_ops; 7797 7798 if (ops->ndo_change_mtu) 7799 return ops->ndo_change_mtu(dev, new_mtu); 7800 7801 dev->mtu = new_mtu; 7802 return 0; 7803 } 7804 EXPORT_SYMBOL(__dev_set_mtu); 7805 7806 /** 7807 * dev_set_mtu_ext - Change maximum transfer unit 7808 * @dev: device 7809 * @new_mtu: new transfer unit 7810 * @extack: netlink extended ack 7811 * 7812 * Change the maximum transfer size of the network device. 7813 */ 7814 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7815 struct netlink_ext_ack *extack) 7816 { 7817 int err, orig_mtu; 7818 7819 if (new_mtu == dev->mtu) 7820 return 0; 7821 7822 /* MTU must be positive, and in range */ 7823 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7824 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7825 return -EINVAL; 7826 } 7827 7828 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7829 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7830 return -EINVAL; 7831 } 7832 7833 if (!netif_device_present(dev)) 7834 return -ENODEV; 7835 7836 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7837 err = notifier_to_errno(err); 7838 if (err) 7839 return err; 7840 7841 orig_mtu = dev->mtu; 7842 err = __dev_set_mtu(dev, new_mtu); 7843 7844 if (!err) { 7845 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7846 orig_mtu); 7847 err = notifier_to_errno(err); 7848 if (err) { 7849 /* setting mtu back and notifying everyone again, 7850 * so that they have a chance to revert changes. 7851 */ 7852 __dev_set_mtu(dev, orig_mtu); 7853 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7854 new_mtu); 7855 } 7856 } 7857 return err; 7858 } 7859 7860 int dev_set_mtu(struct net_device *dev, int new_mtu) 7861 { 7862 struct netlink_ext_ack extack; 7863 int err; 7864 7865 memset(&extack, 0, sizeof(extack)); 7866 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7867 if (err && extack._msg) 7868 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7869 return err; 7870 } 7871 EXPORT_SYMBOL(dev_set_mtu); 7872 7873 /** 7874 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7875 * @dev: device 7876 * @new_len: new tx queue length 7877 */ 7878 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7879 { 7880 unsigned int orig_len = dev->tx_queue_len; 7881 int res; 7882 7883 if (new_len != (unsigned int)new_len) 7884 return -ERANGE; 7885 7886 if (new_len != orig_len) { 7887 dev->tx_queue_len = new_len; 7888 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7889 res = notifier_to_errno(res); 7890 if (res) 7891 goto err_rollback; 7892 res = dev_qdisc_change_tx_queue_len(dev); 7893 if (res) 7894 goto err_rollback; 7895 } 7896 7897 return 0; 7898 7899 err_rollback: 7900 netdev_err(dev, "refused to change device tx_queue_len\n"); 7901 dev->tx_queue_len = orig_len; 7902 return res; 7903 } 7904 7905 /** 7906 * dev_set_group - Change group this device belongs to 7907 * @dev: device 7908 * @new_group: group this device should belong to 7909 */ 7910 void dev_set_group(struct net_device *dev, int new_group) 7911 { 7912 dev->group = new_group; 7913 } 7914 EXPORT_SYMBOL(dev_set_group); 7915 7916 /** 7917 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 7918 * @dev: device 7919 * @addr: new address 7920 * @extack: netlink extended ack 7921 */ 7922 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 7923 struct netlink_ext_ack *extack) 7924 { 7925 struct netdev_notifier_pre_changeaddr_info info = { 7926 .info.dev = dev, 7927 .info.extack = extack, 7928 .dev_addr = addr, 7929 }; 7930 int rc; 7931 7932 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 7933 return notifier_to_errno(rc); 7934 } 7935 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 7936 7937 /** 7938 * dev_set_mac_address - Change Media Access Control Address 7939 * @dev: device 7940 * @sa: new address 7941 * @extack: netlink extended ack 7942 * 7943 * Change the hardware (MAC) address of the device 7944 */ 7945 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 7946 struct netlink_ext_ack *extack) 7947 { 7948 const struct net_device_ops *ops = dev->netdev_ops; 7949 int err; 7950 7951 if (!ops->ndo_set_mac_address) 7952 return -EOPNOTSUPP; 7953 if (sa->sa_family != dev->type) 7954 return -EINVAL; 7955 if (!netif_device_present(dev)) 7956 return -ENODEV; 7957 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 7958 if (err) 7959 return err; 7960 err = ops->ndo_set_mac_address(dev, sa); 7961 if (err) 7962 return err; 7963 dev->addr_assign_type = NET_ADDR_SET; 7964 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7965 add_device_randomness(dev->dev_addr, dev->addr_len); 7966 return 0; 7967 } 7968 EXPORT_SYMBOL(dev_set_mac_address); 7969 7970 /** 7971 * dev_change_carrier - Change device carrier 7972 * @dev: device 7973 * @new_carrier: new value 7974 * 7975 * Change device carrier 7976 */ 7977 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7978 { 7979 const struct net_device_ops *ops = dev->netdev_ops; 7980 7981 if (!ops->ndo_change_carrier) 7982 return -EOPNOTSUPP; 7983 if (!netif_device_present(dev)) 7984 return -ENODEV; 7985 return ops->ndo_change_carrier(dev, new_carrier); 7986 } 7987 EXPORT_SYMBOL(dev_change_carrier); 7988 7989 /** 7990 * dev_get_phys_port_id - Get device physical port ID 7991 * @dev: device 7992 * @ppid: port ID 7993 * 7994 * Get device physical port ID 7995 */ 7996 int dev_get_phys_port_id(struct net_device *dev, 7997 struct netdev_phys_item_id *ppid) 7998 { 7999 const struct net_device_ops *ops = dev->netdev_ops; 8000 8001 if (!ops->ndo_get_phys_port_id) 8002 return -EOPNOTSUPP; 8003 return ops->ndo_get_phys_port_id(dev, ppid); 8004 } 8005 EXPORT_SYMBOL(dev_get_phys_port_id); 8006 8007 /** 8008 * dev_get_phys_port_name - Get device physical port name 8009 * @dev: device 8010 * @name: port name 8011 * @len: limit of bytes to copy to name 8012 * 8013 * Get device physical port name 8014 */ 8015 int dev_get_phys_port_name(struct net_device *dev, 8016 char *name, size_t len) 8017 { 8018 const struct net_device_ops *ops = dev->netdev_ops; 8019 int err; 8020 8021 if (ops->ndo_get_phys_port_name) { 8022 err = ops->ndo_get_phys_port_name(dev, name, len); 8023 if (err != -EOPNOTSUPP) 8024 return err; 8025 } 8026 return devlink_compat_phys_port_name_get(dev, name, len); 8027 } 8028 EXPORT_SYMBOL(dev_get_phys_port_name); 8029 8030 /** 8031 * dev_get_port_parent_id - Get the device's port parent identifier 8032 * @dev: network device 8033 * @ppid: pointer to a storage for the port's parent identifier 8034 * @recurse: allow/disallow recursion to lower devices 8035 * 8036 * Get the devices's port parent identifier 8037 */ 8038 int dev_get_port_parent_id(struct net_device *dev, 8039 struct netdev_phys_item_id *ppid, 8040 bool recurse) 8041 { 8042 const struct net_device_ops *ops = dev->netdev_ops; 8043 struct netdev_phys_item_id first = { }; 8044 struct net_device *lower_dev; 8045 struct list_head *iter; 8046 int err; 8047 8048 if (ops->ndo_get_port_parent_id) { 8049 err = ops->ndo_get_port_parent_id(dev, ppid); 8050 if (err != -EOPNOTSUPP) 8051 return err; 8052 } 8053 8054 err = devlink_compat_switch_id_get(dev, ppid); 8055 if (!err || err != -EOPNOTSUPP) 8056 return err; 8057 8058 if (!recurse) 8059 return -EOPNOTSUPP; 8060 8061 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8062 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8063 if (err) 8064 break; 8065 if (!first.id_len) 8066 first = *ppid; 8067 else if (memcmp(&first, ppid, sizeof(*ppid))) 8068 return -ENODATA; 8069 } 8070 8071 return err; 8072 } 8073 EXPORT_SYMBOL(dev_get_port_parent_id); 8074 8075 /** 8076 * netdev_port_same_parent_id - Indicate if two network devices have 8077 * the same port parent identifier 8078 * @a: first network device 8079 * @b: second network device 8080 */ 8081 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8082 { 8083 struct netdev_phys_item_id a_id = { }; 8084 struct netdev_phys_item_id b_id = { }; 8085 8086 if (dev_get_port_parent_id(a, &a_id, true) || 8087 dev_get_port_parent_id(b, &b_id, true)) 8088 return false; 8089 8090 return netdev_phys_item_id_same(&a_id, &b_id); 8091 } 8092 EXPORT_SYMBOL(netdev_port_same_parent_id); 8093 8094 /** 8095 * dev_change_proto_down - update protocol port state information 8096 * @dev: device 8097 * @proto_down: new value 8098 * 8099 * This info can be used by switch drivers to set the phys state of the 8100 * port. 8101 */ 8102 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8103 { 8104 const struct net_device_ops *ops = dev->netdev_ops; 8105 8106 if (!ops->ndo_change_proto_down) 8107 return -EOPNOTSUPP; 8108 if (!netif_device_present(dev)) 8109 return -ENODEV; 8110 return ops->ndo_change_proto_down(dev, proto_down); 8111 } 8112 EXPORT_SYMBOL(dev_change_proto_down); 8113 8114 /** 8115 * dev_change_proto_down_generic - generic implementation for 8116 * ndo_change_proto_down that sets carrier according to 8117 * proto_down. 8118 * 8119 * @dev: device 8120 * @proto_down: new value 8121 */ 8122 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8123 { 8124 if (proto_down) 8125 netif_carrier_off(dev); 8126 else 8127 netif_carrier_on(dev); 8128 dev->proto_down = proto_down; 8129 return 0; 8130 } 8131 EXPORT_SYMBOL(dev_change_proto_down_generic); 8132 8133 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8134 enum bpf_netdev_command cmd) 8135 { 8136 struct netdev_bpf xdp; 8137 8138 if (!bpf_op) 8139 return 0; 8140 8141 memset(&xdp, 0, sizeof(xdp)); 8142 xdp.command = cmd; 8143 8144 /* Query must always succeed. */ 8145 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8146 8147 return xdp.prog_id; 8148 } 8149 8150 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8151 struct netlink_ext_ack *extack, u32 flags, 8152 struct bpf_prog *prog) 8153 { 8154 struct netdev_bpf xdp; 8155 8156 memset(&xdp, 0, sizeof(xdp)); 8157 if (flags & XDP_FLAGS_HW_MODE) 8158 xdp.command = XDP_SETUP_PROG_HW; 8159 else 8160 xdp.command = XDP_SETUP_PROG; 8161 xdp.extack = extack; 8162 xdp.flags = flags; 8163 xdp.prog = prog; 8164 8165 return bpf_op(dev, &xdp); 8166 } 8167 8168 static void dev_xdp_uninstall(struct net_device *dev) 8169 { 8170 struct netdev_bpf xdp; 8171 bpf_op_t ndo_bpf; 8172 8173 /* Remove generic XDP */ 8174 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8175 8176 /* Remove from the driver */ 8177 ndo_bpf = dev->netdev_ops->ndo_bpf; 8178 if (!ndo_bpf) 8179 return; 8180 8181 memset(&xdp, 0, sizeof(xdp)); 8182 xdp.command = XDP_QUERY_PROG; 8183 WARN_ON(ndo_bpf(dev, &xdp)); 8184 if (xdp.prog_id) 8185 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8186 NULL)); 8187 8188 /* Remove HW offload */ 8189 memset(&xdp, 0, sizeof(xdp)); 8190 xdp.command = XDP_QUERY_PROG_HW; 8191 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8192 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8193 NULL)); 8194 } 8195 8196 /** 8197 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8198 * @dev: device 8199 * @extack: netlink extended ack 8200 * @fd: new program fd or negative value to clear 8201 * @flags: xdp-related flags 8202 * 8203 * Set or clear a bpf program for a device 8204 */ 8205 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8206 int fd, u32 flags) 8207 { 8208 const struct net_device_ops *ops = dev->netdev_ops; 8209 enum bpf_netdev_command query; 8210 struct bpf_prog *prog = NULL; 8211 bpf_op_t bpf_op, bpf_chk; 8212 bool offload; 8213 int err; 8214 8215 ASSERT_RTNL(); 8216 8217 offload = flags & XDP_FLAGS_HW_MODE; 8218 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8219 8220 bpf_op = bpf_chk = ops->ndo_bpf; 8221 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8222 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8223 return -EOPNOTSUPP; 8224 } 8225 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8226 bpf_op = generic_xdp_install; 8227 if (bpf_op == bpf_chk) 8228 bpf_chk = generic_xdp_install; 8229 8230 if (fd >= 0) { 8231 u32 prog_id; 8232 8233 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8234 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8235 return -EEXIST; 8236 } 8237 8238 prog_id = __dev_xdp_query(dev, bpf_op, query); 8239 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8240 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8241 return -EBUSY; 8242 } 8243 8244 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8245 bpf_op == ops->ndo_bpf); 8246 if (IS_ERR(prog)) 8247 return PTR_ERR(prog); 8248 8249 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8250 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8251 bpf_prog_put(prog); 8252 return -EINVAL; 8253 } 8254 8255 if (prog->aux->id == prog_id) { 8256 bpf_prog_put(prog); 8257 return 0; 8258 } 8259 } else { 8260 if (!__dev_xdp_query(dev, bpf_op, query)) 8261 return 0; 8262 } 8263 8264 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8265 if (err < 0 && prog) 8266 bpf_prog_put(prog); 8267 8268 return err; 8269 } 8270 8271 /** 8272 * dev_new_index - allocate an ifindex 8273 * @net: the applicable net namespace 8274 * 8275 * Returns a suitable unique value for a new device interface 8276 * number. The caller must hold the rtnl semaphore or the 8277 * dev_base_lock to be sure it remains unique. 8278 */ 8279 static int dev_new_index(struct net *net) 8280 { 8281 int ifindex = net->ifindex; 8282 8283 for (;;) { 8284 if (++ifindex <= 0) 8285 ifindex = 1; 8286 if (!__dev_get_by_index(net, ifindex)) 8287 return net->ifindex = ifindex; 8288 } 8289 } 8290 8291 /* Delayed registration/unregisteration */ 8292 static LIST_HEAD(net_todo_list); 8293 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8294 8295 static void net_set_todo(struct net_device *dev) 8296 { 8297 list_add_tail(&dev->todo_list, &net_todo_list); 8298 dev_net(dev)->dev_unreg_count++; 8299 } 8300 8301 static void rollback_registered_many(struct list_head *head) 8302 { 8303 struct net_device *dev, *tmp; 8304 LIST_HEAD(close_head); 8305 8306 BUG_ON(dev_boot_phase); 8307 ASSERT_RTNL(); 8308 8309 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8310 /* Some devices call without registering 8311 * for initialization unwind. Remove those 8312 * devices and proceed with the remaining. 8313 */ 8314 if (dev->reg_state == NETREG_UNINITIALIZED) { 8315 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8316 dev->name, dev); 8317 8318 WARN_ON(1); 8319 list_del(&dev->unreg_list); 8320 continue; 8321 } 8322 dev->dismantle = true; 8323 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8324 } 8325 8326 /* If device is running, close it first. */ 8327 list_for_each_entry(dev, head, unreg_list) 8328 list_add_tail(&dev->close_list, &close_head); 8329 dev_close_many(&close_head, true); 8330 8331 list_for_each_entry(dev, head, unreg_list) { 8332 /* And unlink it from device chain. */ 8333 unlist_netdevice(dev); 8334 8335 dev->reg_state = NETREG_UNREGISTERING; 8336 } 8337 flush_all_backlogs(); 8338 8339 synchronize_net(); 8340 8341 list_for_each_entry(dev, head, unreg_list) { 8342 struct sk_buff *skb = NULL; 8343 8344 /* Shutdown queueing discipline. */ 8345 dev_shutdown(dev); 8346 8347 dev_xdp_uninstall(dev); 8348 8349 /* Notify protocols, that we are about to destroy 8350 * this device. They should clean all the things. 8351 */ 8352 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8353 8354 if (!dev->rtnl_link_ops || 8355 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8356 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8357 GFP_KERNEL, NULL, 0); 8358 8359 /* 8360 * Flush the unicast and multicast chains 8361 */ 8362 dev_uc_flush(dev); 8363 dev_mc_flush(dev); 8364 8365 if (dev->netdev_ops->ndo_uninit) 8366 dev->netdev_ops->ndo_uninit(dev); 8367 8368 if (skb) 8369 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8370 8371 /* Notifier chain MUST detach us all upper devices. */ 8372 WARN_ON(netdev_has_any_upper_dev(dev)); 8373 WARN_ON(netdev_has_any_lower_dev(dev)); 8374 8375 /* Remove entries from kobject tree */ 8376 netdev_unregister_kobject(dev); 8377 #ifdef CONFIG_XPS 8378 /* Remove XPS queueing entries */ 8379 netif_reset_xps_queues_gt(dev, 0); 8380 #endif 8381 } 8382 8383 synchronize_net(); 8384 8385 list_for_each_entry(dev, head, unreg_list) 8386 dev_put(dev); 8387 } 8388 8389 static void rollback_registered(struct net_device *dev) 8390 { 8391 LIST_HEAD(single); 8392 8393 list_add(&dev->unreg_list, &single); 8394 rollback_registered_many(&single); 8395 list_del(&single); 8396 } 8397 8398 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8399 struct net_device *upper, netdev_features_t features) 8400 { 8401 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8402 netdev_features_t feature; 8403 int feature_bit; 8404 8405 for_each_netdev_feature(upper_disables, feature_bit) { 8406 feature = __NETIF_F_BIT(feature_bit); 8407 if (!(upper->wanted_features & feature) 8408 && (features & feature)) { 8409 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8410 &feature, upper->name); 8411 features &= ~feature; 8412 } 8413 } 8414 8415 return features; 8416 } 8417 8418 static void netdev_sync_lower_features(struct net_device *upper, 8419 struct net_device *lower, netdev_features_t features) 8420 { 8421 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8422 netdev_features_t feature; 8423 int feature_bit; 8424 8425 for_each_netdev_feature(upper_disables, feature_bit) { 8426 feature = __NETIF_F_BIT(feature_bit); 8427 if (!(features & feature) && (lower->features & feature)) { 8428 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8429 &feature, lower->name); 8430 lower->wanted_features &= ~feature; 8431 netdev_update_features(lower); 8432 8433 if (unlikely(lower->features & feature)) 8434 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8435 &feature, lower->name); 8436 } 8437 } 8438 } 8439 8440 static netdev_features_t netdev_fix_features(struct net_device *dev, 8441 netdev_features_t features) 8442 { 8443 /* Fix illegal checksum combinations */ 8444 if ((features & NETIF_F_HW_CSUM) && 8445 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8446 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8447 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8448 } 8449 8450 /* TSO requires that SG is present as well. */ 8451 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8452 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8453 features &= ~NETIF_F_ALL_TSO; 8454 } 8455 8456 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8457 !(features & NETIF_F_IP_CSUM)) { 8458 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8459 features &= ~NETIF_F_TSO; 8460 features &= ~NETIF_F_TSO_ECN; 8461 } 8462 8463 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8464 !(features & NETIF_F_IPV6_CSUM)) { 8465 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8466 features &= ~NETIF_F_TSO6; 8467 } 8468 8469 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8470 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8471 features &= ~NETIF_F_TSO_MANGLEID; 8472 8473 /* TSO ECN requires that TSO is present as well. */ 8474 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8475 features &= ~NETIF_F_TSO_ECN; 8476 8477 /* Software GSO depends on SG. */ 8478 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8479 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8480 features &= ~NETIF_F_GSO; 8481 } 8482 8483 /* GSO partial features require GSO partial be set */ 8484 if ((features & dev->gso_partial_features) && 8485 !(features & NETIF_F_GSO_PARTIAL)) { 8486 netdev_dbg(dev, 8487 "Dropping partially supported GSO features since no GSO partial.\n"); 8488 features &= ~dev->gso_partial_features; 8489 } 8490 8491 if (!(features & NETIF_F_RXCSUM)) { 8492 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8493 * successfully merged by hardware must also have the 8494 * checksum verified by hardware. If the user does not 8495 * want to enable RXCSUM, logically, we should disable GRO_HW. 8496 */ 8497 if (features & NETIF_F_GRO_HW) { 8498 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8499 features &= ~NETIF_F_GRO_HW; 8500 } 8501 } 8502 8503 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8504 if (features & NETIF_F_RXFCS) { 8505 if (features & NETIF_F_LRO) { 8506 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8507 features &= ~NETIF_F_LRO; 8508 } 8509 8510 if (features & NETIF_F_GRO_HW) { 8511 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8512 features &= ~NETIF_F_GRO_HW; 8513 } 8514 } 8515 8516 return features; 8517 } 8518 8519 int __netdev_update_features(struct net_device *dev) 8520 { 8521 struct net_device *upper, *lower; 8522 netdev_features_t features; 8523 struct list_head *iter; 8524 int err = -1; 8525 8526 ASSERT_RTNL(); 8527 8528 features = netdev_get_wanted_features(dev); 8529 8530 if (dev->netdev_ops->ndo_fix_features) 8531 features = dev->netdev_ops->ndo_fix_features(dev, features); 8532 8533 /* driver might be less strict about feature dependencies */ 8534 features = netdev_fix_features(dev, features); 8535 8536 /* some features can't be enabled if they're off an an upper device */ 8537 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8538 features = netdev_sync_upper_features(dev, upper, features); 8539 8540 if (dev->features == features) 8541 goto sync_lower; 8542 8543 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8544 &dev->features, &features); 8545 8546 if (dev->netdev_ops->ndo_set_features) 8547 err = dev->netdev_ops->ndo_set_features(dev, features); 8548 else 8549 err = 0; 8550 8551 if (unlikely(err < 0)) { 8552 netdev_err(dev, 8553 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8554 err, &features, &dev->features); 8555 /* return non-0 since some features might have changed and 8556 * it's better to fire a spurious notification than miss it 8557 */ 8558 return -1; 8559 } 8560 8561 sync_lower: 8562 /* some features must be disabled on lower devices when disabled 8563 * on an upper device (think: bonding master or bridge) 8564 */ 8565 netdev_for_each_lower_dev(dev, lower, iter) 8566 netdev_sync_lower_features(dev, lower, features); 8567 8568 if (!err) { 8569 netdev_features_t diff = features ^ dev->features; 8570 8571 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8572 /* udp_tunnel_{get,drop}_rx_info both need 8573 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8574 * device, or they won't do anything. 8575 * Thus we need to update dev->features 8576 * *before* calling udp_tunnel_get_rx_info, 8577 * but *after* calling udp_tunnel_drop_rx_info. 8578 */ 8579 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8580 dev->features = features; 8581 udp_tunnel_get_rx_info(dev); 8582 } else { 8583 udp_tunnel_drop_rx_info(dev); 8584 } 8585 } 8586 8587 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8588 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8589 dev->features = features; 8590 err |= vlan_get_rx_ctag_filter_info(dev); 8591 } else { 8592 vlan_drop_rx_ctag_filter_info(dev); 8593 } 8594 } 8595 8596 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8597 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8598 dev->features = features; 8599 err |= vlan_get_rx_stag_filter_info(dev); 8600 } else { 8601 vlan_drop_rx_stag_filter_info(dev); 8602 } 8603 } 8604 8605 dev->features = features; 8606 } 8607 8608 return err < 0 ? 0 : 1; 8609 } 8610 8611 /** 8612 * netdev_update_features - recalculate device features 8613 * @dev: the device to check 8614 * 8615 * Recalculate dev->features set and send notifications if it 8616 * has changed. Should be called after driver or hardware dependent 8617 * conditions might have changed that influence the features. 8618 */ 8619 void netdev_update_features(struct net_device *dev) 8620 { 8621 if (__netdev_update_features(dev)) 8622 netdev_features_change(dev); 8623 } 8624 EXPORT_SYMBOL(netdev_update_features); 8625 8626 /** 8627 * netdev_change_features - recalculate device features 8628 * @dev: the device to check 8629 * 8630 * Recalculate dev->features set and send notifications even 8631 * if they have not changed. Should be called instead of 8632 * netdev_update_features() if also dev->vlan_features might 8633 * have changed to allow the changes to be propagated to stacked 8634 * VLAN devices. 8635 */ 8636 void netdev_change_features(struct net_device *dev) 8637 { 8638 __netdev_update_features(dev); 8639 netdev_features_change(dev); 8640 } 8641 EXPORT_SYMBOL(netdev_change_features); 8642 8643 /** 8644 * netif_stacked_transfer_operstate - transfer operstate 8645 * @rootdev: the root or lower level device to transfer state from 8646 * @dev: the device to transfer operstate to 8647 * 8648 * Transfer operational state from root to device. This is normally 8649 * called when a stacking relationship exists between the root 8650 * device and the device(a leaf device). 8651 */ 8652 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8653 struct net_device *dev) 8654 { 8655 if (rootdev->operstate == IF_OPER_DORMANT) 8656 netif_dormant_on(dev); 8657 else 8658 netif_dormant_off(dev); 8659 8660 if (netif_carrier_ok(rootdev)) 8661 netif_carrier_on(dev); 8662 else 8663 netif_carrier_off(dev); 8664 } 8665 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8666 8667 static int netif_alloc_rx_queues(struct net_device *dev) 8668 { 8669 unsigned int i, count = dev->num_rx_queues; 8670 struct netdev_rx_queue *rx; 8671 size_t sz = count * sizeof(*rx); 8672 int err = 0; 8673 8674 BUG_ON(count < 1); 8675 8676 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8677 if (!rx) 8678 return -ENOMEM; 8679 8680 dev->_rx = rx; 8681 8682 for (i = 0; i < count; i++) { 8683 rx[i].dev = dev; 8684 8685 /* XDP RX-queue setup */ 8686 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8687 if (err < 0) 8688 goto err_rxq_info; 8689 } 8690 return 0; 8691 8692 err_rxq_info: 8693 /* Rollback successful reg's and free other resources */ 8694 while (i--) 8695 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8696 kvfree(dev->_rx); 8697 dev->_rx = NULL; 8698 return err; 8699 } 8700 8701 static void netif_free_rx_queues(struct net_device *dev) 8702 { 8703 unsigned int i, count = dev->num_rx_queues; 8704 8705 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8706 if (!dev->_rx) 8707 return; 8708 8709 for (i = 0; i < count; i++) 8710 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8711 8712 kvfree(dev->_rx); 8713 } 8714 8715 static void netdev_init_one_queue(struct net_device *dev, 8716 struct netdev_queue *queue, void *_unused) 8717 { 8718 /* Initialize queue lock */ 8719 spin_lock_init(&queue->_xmit_lock); 8720 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key); 8721 queue->xmit_lock_owner = -1; 8722 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8723 queue->dev = dev; 8724 #ifdef CONFIG_BQL 8725 dql_init(&queue->dql, HZ); 8726 #endif 8727 } 8728 8729 static void netif_free_tx_queues(struct net_device *dev) 8730 { 8731 kvfree(dev->_tx); 8732 } 8733 8734 static int netif_alloc_netdev_queues(struct net_device *dev) 8735 { 8736 unsigned int count = dev->num_tx_queues; 8737 struct netdev_queue *tx; 8738 size_t sz = count * sizeof(*tx); 8739 8740 if (count < 1 || count > 0xffff) 8741 return -EINVAL; 8742 8743 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8744 if (!tx) 8745 return -ENOMEM; 8746 8747 dev->_tx = tx; 8748 8749 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8750 spin_lock_init(&dev->tx_global_lock); 8751 8752 return 0; 8753 } 8754 8755 void netif_tx_stop_all_queues(struct net_device *dev) 8756 { 8757 unsigned int i; 8758 8759 for (i = 0; i < dev->num_tx_queues; i++) { 8760 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8761 8762 netif_tx_stop_queue(txq); 8763 } 8764 } 8765 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8766 8767 static void netdev_register_lockdep_key(struct net_device *dev) 8768 { 8769 lockdep_register_key(&dev->qdisc_tx_busylock_key); 8770 lockdep_register_key(&dev->qdisc_running_key); 8771 lockdep_register_key(&dev->qdisc_xmit_lock_key); 8772 lockdep_register_key(&dev->addr_list_lock_key); 8773 } 8774 8775 static void netdev_unregister_lockdep_key(struct net_device *dev) 8776 { 8777 lockdep_unregister_key(&dev->qdisc_tx_busylock_key); 8778 lockdep_unregister_key(&dev->qdisc_running_key); 8779 lockdep_unregister_key(&dev->qdisc_xmit_lock_key); 8780 lockdep_unregister_key(&dev->addr_list_lock_key); 8781 } 8782 8783 void netdev_update_lockdep_key(struct net_device *dev) 8784 { 8785 struct netdev_queue *queue; 8786 int i; 8787 8788 lockdep_unregister_key(&dev->qdisc_xmit_lock_key); 8789 lockdep_unregister_key(&dev->addr_list_lock_key); 8790 8791 lockdep_register_key(&dev->qdisc_xmit_lock_key); 8792 lockdep_register_key(&dev->addr_list_lock_key); 8793 8794 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 8795 for (i = 0; i < dev->num_tx_queues; i++) { 8796 queue = netdev_get_tx_queue(dev, i); 8797 8798 lockdep_set_class(&queue->_xmit_lock, 8799 &dev->qdisc_xmit_lock_key); 8800 } 8801 } 8802 EXPORT_SYMBOL(netdev_update_lockdep_key); 8803 8804 /** 8805 * register_netdevice - register a network device 8806 * @dev: device to register 8807 * 8808 * Take a completed network device structure and add it to the kernel 8809 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8810 * chain. 0 is returned on success. A negative errno code is returned 8811 * on a failure to set up the device, or if the name is a duplicate. 8812 * 8813 * Callers must hold the rtnl semaphore. You may want 8814 * register_netdev() instead of this. 8815 * 8816 * BUGS: 8817 * The locking appears insufficient to guarantee two parallel registers 8818 * will not get the same name. 8819 */ 8820 8821 int register_netdevice(struct net_device *dev) 8822 { 8823 int ret; 8824 struct net *net = dev_net(dev); 8825 8826 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8827 NETDEV_FEATURE_COUNT); 8828 BUG_ON(dev_boot_phase); 8829 ASSERT_RTNL(); 8830 8831 might_sleep(); 8832 8833 /* When net_device's are persistent, this will be fatal. */ 8834 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8835 BUG_ON(!net); 8836 8837 spin_lock_init(&dev->addr_list_lock); 8838 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 8839 8840 ret = dev_get_valid_name(net, dev, dev->name); 8841 if (ret < 0) 8842 goto out; 8843 8844 /* Init, if this function is available */ 8845 if (dev->netdev_ops->ndo_init) { 8846 ret = dev->netdev_ops->ndo_init(dev); 8847 if (ret) { 8848 if (ret > 0) 8849 ret = -EIO; 8850 goto out; 8851 } 8852 } 8853 8854 if (((dev->hw_features | dev->features) & 8855 NETIF_F_HW_VLAN_CTAG_FILTER) && 8856 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8857 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8858 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8859 ret = -EINVAL; 8860 goto err_uninit; 8861 } 8862 8863 ret = -EBUSY; 8864 if (!dev->ifindex) 8865 dev->ifindex = dev_new_index(net); 8866 else if (__dev_get_by_index(net, dev->ifindex)) 8867 goto err_uninit; 8868 8869 /* Transfer changeable features to wanted_features and enable 8870 * software offloads (GSO and GRO). 8871 */ 8872 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8873 dev->features |= NETIF_F_SOFT_FEATURES; 8874 8875 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8876 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8877 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8878 } 8879 8880 dev->wanted_features = dev->features & dev->hw_features; 8881 8882 if (!(dev->flags & IFF_LOOPBACK)) 8883 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8884 8885 /* If IPv4 TCP segmentation offload is supported we should also 8886 * allow the device to enable segmenting the frame with the option 8887 * of ignoring a static IP ID value. This doesn't enable the 8888 * feature itself but allows the user to enable it later. 8889 */ 8890 if (dev->hw_features & NETIF_F_TSO) 8891 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8892 if (dev->vlan_features & NETIF_F_TSO) 8893 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8894 if (dev->mpls_features & NETIF_F_TSO) 8895 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8896 if (dev->hw_enc_features & NETIF_F_TSO) 8897 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8898 8899 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8900 */ 8901 dev->vlan_features |= NETIF_F_HIGHDMA; 8902 8903 /* Make NETIF_F_SG inheritable to tunnel devices. 8904 */ 8905 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8906 8907 /* Make NETIF_F_SG inheritable to MPLS. 8908 */ 8909 dev->mpls_features |= NETIF_F_SG; 8910 8911 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8912 ret = notifier_to_errno(ret); 8913 if (ret) 8914 goto err_uninit; 8915 8916 ret = netdev_register_kobject(dev); 8917 if (ret) 8918 goto err_uninit; 8919 dev->reg_state = NETREG_REGISTERED; 8920 8921 __netdev_update_features(dev); 8922 8923 /* 8924 * Default initial state at registry is that the 8925 * device is present. 8926 */ 8927 8928 set_bit(__LINK_STATE_PRESENT, &dev->state); 8929 8930 linkwatch_init_dev(dev); 8931 8932 dev_init_scheduler(dev); 8933 dev_hold(dev); 8934 list_netdevice(dev); 8935 add_device_randomness(dev->dev_addr, dev->addr_len); 8936 8937 /* If the device has permanent device address, driver should 8938 * set dev_addr and also addr_assign_type should be set to 8939 * NET_ADDR_PERM (default value). 8940 */ 8941 if (dev->addr_assign_type == NET_ADDR_PERM) 8942 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8943 8944 /* Notify protocols, that a new device appeared. */ 8945 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8946 ret = notifier_to_errno(ret); 8947 if (ret) { 8948 rollback_registered(dev); 8949 rcu_barrier(); 8950 8951 dev->reg_state = NETREG_UNREGISTERED; 8952 } 8953 /* 8954 * Prevent userspace races by waiting until the network 8955 * device is fully setup before sending notifications. 8956 */ 8957 if (!dev->rtnl_link_ops || 8958 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8959 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8960 8961 out: 8962 return ret; 8963 8964 err_uninit: 8965 if (dev->netdev_ops->ndo_uninit) 8966 dev->netdev_ops->ndo_uninit(dev); 8967 if (dev->priv_destructor) 8968 dev->priv_destructor(dev); 8969 goto out; 8970 } 8971 EXPORT_SYMBOL(register_netdevice); 8972 8973 /** 8974 * init_dummy_netdev - init a dummy network device for NAPI 8975 * @dev: device to init 8976 * 8977 * This takes a network device structure and initialize the minimum 8978 * amount of fields so it can be used to schedule NAPI polls without 8979 * registering a full blown interface. This is to be used by drivers 8980 * that need to tie several hardware interfaces to a single NAPI 8981 * poll scheduler due to HW limitations. 8982 */ 8983 int init_dummy_netdev(struct net_device *dev) 8984 { 8985 /* Clear everything. Note we don't initialize spinlocks 8986 * are they aren't supposed to be taken by any of the 8987 * NAPI code and this dummy netdev is supposed to be 8988 * only ever used for NAPI polls 8989 */ 8990 memset(dev, 0, sizeof(struct net_device)); 8991 8992 /* make sure we BUG if trying to hit standard 8993 * register/unregister code path 8994 */ 8995 dev->reg_state = NETREG_DUMMY; 8996 8997 /* NAPI wants this */ 8998 INIT_LIST_HEAD(&dev->napi_list); 8999 9000 /* a dummy interface is started by default */ 9001 set_bit(__LINK_STATE_PRESENT, &dev->state); 9002 set_bit(__LINK_STATE_START, &dev->state); 9003 9004 /* napi_busy_loop stats accounting wants this */ 9005 dev_net_set(dev, &init_net); 9006 9007 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9008 * because users of this 'device' dont need to change 9009 * its refcount. 9010 */ 9011 9012 return 0; 9013 } 9014 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9015 9016 9017 /** 9018 * register_netdev - register a network device 9019 * @dev: device to register 9020 * 9021 * Take a completed network device structure and add it to the kernel 9022 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9023 * chain. 0 is returned on success. A negative errno code is returned 9024 * on a failure to set up the device, or if the name is a duplicate. 9025 * 9026 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9027 * and expands the device name if you passed a format string to 9028 * alloc_netdev. 9029 */ 9030 int register_netdev(struct net_device *dev) 9031 { 9032 int err; 9033 9034 if (rtnl_lock_killable()) 9035 return -EINTR; 9036 err = register_netdevice(dev); 9037 rtnl_unlock(); 9038 return err; 9039 } 9040 EXPORT_SYMBOL(register_netdev); 9041 9042 int netdev_refcnt_read(const struct net_device *dev) 9043 { 9044 int i, refcnt = 0; 9045 9046 for_each_possible_cpu(i) 9047 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9048 return refcnt; 9049 } 9050 EXPORT_SYMBOL(netdev_refcnt_read); 9051 9052 /** 9053 * netdev_wait_allrefs - wait until all references are gone. 9054 * @dev: target net_device 9055 * 9056 * This is called when unregistering network devices. 9057 * 9058 * Any protocol or device that holds a reference should register 9059 * for netdevice notification, and cleanup and put back the 9060 * reference if they receive an UNREGISTER event. 9061 * We can get stuck here if buggy protocols don't correctly 9062 * call dev_put. 9063 */ 9064 static void netdev_wait_allrefs(struct net_device *dev) 9065 { 9066 unsigned long rebroadcast_time, warning_time; 9067 int refcnt; 9068 9069 linkwatch_forget_dev(dev); 9070 9071 rebroadcast_time = warning_time = jiffies; 9072 refcnt = netdev_refcnt_read(dev); 9073 9074 while (refcnt != 0) { 9075 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9076 rtnl_lock(); 9077 9078 /* Rebroadcast unregister notification */ 9079 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9080 9081 __rtnl_unlock(); 9082 rcu_barrier(); 9083 rtnl_lock(); 9084 9085 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9086 &dev->state)) { 9087 /* We must not have linkwatch events 9088 * pending on unregister. If this 9089 * happens, we simply run the queue 9090 * unscheduled, resulting in a noop 9091 * for this device. 9092 */ 9093 linkwatch_run_queue(); 9094 } 9095 9096 __rtnl_unlock(); 9097 9098 rebroadcast_time = jiffies; 9099 } 9100 9101 msleep(250); 9102 9103 refcnt = netdev_refcnt_read(dev); 9104 9105 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9106 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9107 dev->name, refcnt); 9108 warning_time = jiffies; 9109 } 9110 } 9111 } 9112 9113 /* The sequence is: 9114 * 9115 * rtnl_lock(); 9116 * ... 9117 * register_netdevice(x1); 9118 * register_netdevice(x2); 9119 * ... 9120 * unregister_netdevice(y1); 9121 * unregister_netdevice(y2); 9122 * ... 9123 * rtnl_unlock(); 9124 * free_netdev(y1); 9125 * free_netdev(y2); 9126 * 9127 * We are invoked by rtnl_unlock(). 9128 * This allows us to deal with problems: 9129 * 1) We can delete sysfs objects which invoke hotplug 9130 * without deadlocking with linkwatch via keventd. 9131 * 2) Since we run with the RTNL semaphore not held, we can sleep 9132 * safely in order to wait for the netdev refcnt to drop to zero. 9133 * 9134 * We must not return until all unregister events added during 9135 * the interval the lock was held have been completed. 9136 */ 9137 void netdev_run_todo(void) 9138 { 9139 struct list_head list; 9140 9141 /* Snapshot list, allow later requests */ 9142 list_replace_init(&net_todo_list, &list); 9143 9144 __rtnl_unlock(); 9145 9146 9147 /* Wait for rcu callbacks to finish before next phase */ 9148 if (!list_empty(&list)) 9149 rcu_barrier(); 9150 9151 while (!list_empty(&list)) { 9152 struct net_device *dev 9153 = list_first_entry(&list, struct net_device, todo_list); 9154 list_del(&dev->todo_list); 9155 9156 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9157 pr_err("network todo '%s' but state %d\n", 9158 dev->name, dev->reg_state); 9159 dump_stack(); 9160 continue; 9161 } 9162 9163 dev->reg_state = NETREG_UNREGISTERED; 9164 9165 netdev_wait_allrefs(dev); 9166 9167 /* paranoia */ 9168 BUG_ON(netdev_refcnt_read(dev)); 9169 BUG_ON(!list_empty(&dev->ptype_all)); 9170 BUG_ON(!list_empty(&dev->ptype_specific)); 9171 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9172 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9173 #if IS_ENABLED(CONFIG_DECNET) 9174 WARN_ON(dev->dn_ptr); 9175 #endif 9176 if (dev->priv_destructor) 9177 dev->priv_destructor(dev); 9178 if (dev->needs_free_netdev) 9179 free_netdev(dev); 9180 9181 /* Report a network device has been unregistered */ 9182 rtnl_lock(); 9183 dev_net(dev)->dev_unreg_count--; 9184 __rtnl_unlock(); 9185 wake_up(&netdev_unregistering_wq); 9186 9187 /* Free network device */ 9188 kobject_put(&dev->dev.kobj); 9189 } 9190 } 9191 9192 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9193 * all the same fields in the same order as net_device_stats, with only 9194 * the type differing, but rtnl_link_stats64 may have additional fields 9195 * at the end for newer counters. 9196 */ 9197 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9198 const struct net_device_stats *netdev_stats) 9199 { 9200 #if BITS_PER_LONG == 64 9201 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9202 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9203 /* zero out counters that only exist in rtnl_link_stats64 */ 9204 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9205 sizeof(*stats64) - sizeof(*netdev_stats)); 9206 #else 9207 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9208 const unsigned long *src = (const unsigned long *)netdev_stats; 9209 u64 *dst = (u64 *)stats64; 9210 9211 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9212 for (i = 0; i < n; i++) 9213 dst[i] = src[i]; 9214 /* zero out counters that only exist in rtnl_link_stats64 */ 9215 memset((char *)stats64 + n * sizeof(u64), 0, 9216 sizeof(*stats64) - n * sizeof(u64)); 9217 #endif 9218 } 9219 EXPORT_SYMBOL(netdev_stats_to_stats64); 9220 9221 /** 9222 * dev_get_stats - get network device statistics 9223 * @dev: device to get statistics from 9224 * @storage: place to store stats 9225 * 9226 * Get network statistics from device. Return @storage. 9227 * The device driver may provide its own method by setting 9228 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9229 * otherwise the internal statistics structure is used. 9230 */ 9231 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9232 struct rtnl_link_stats64 *storage) 9233 { 9234 const struct net_device_ops *ops = dev->netdev_ops; 9235 9236 if (ops->ndo_get_stats64) { 9237 memset(storage, 0, sizeof(*storage)); 9238 ops->ndo_get_stats64(dev, storage); 9239 } else if (ops->ndo_get_stats) { 9240 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9241 } else { 9242 netdev_stats_to_stats64(storage, &dev->stats); 9243 } 9244 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9245 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9246 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9247 return storage; 9248 } 9249 EXPORT_SYMBOL(dev_get_stats); 9250 9251 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9252 { 9253 struct netdev_queue *queue = dev_ingress_queue(dev); 9254 9255 #ifdef CONFIG_NET_CLS_ACT 9256 if (queue) 9257 return queue; 9258 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9259 if (!queue) 9260 return NULL; 9261 netdev_init_one_queue(dev, queue, NULL); 9262 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9263 queue->qdisc_sleeping = &noop_qdisc; 9264 rcu_assign_pointer(dev->ingress_queue, queue); 9265 #endif 9266 return queue; 9267 } 9268 9269 static const struct ethtool_ops default_ethtool_ops; 9270 9271 void netdev_set_default_ethtool_ops(struct net_device *dev, 9272 const struct ethtool_ops *ops) 9273 { 9274 if (dev->ethtool_ops == &default_ethtool_ops) 9275 dev->ethtool_ops = ops; 9276 } 9277 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9278 9279 void netdev_freemem(struct net_device *dev) 9280 { 9281 char *addr = (char *)dev - dev->padded; 9282 9283 kvfree(addr); 9284 } 9285 9286 /** 9287 * alloc_netdev_mqs - allocate network device 9288 * @sizeof_priv: size of private data to allocate space for 9289 * @name: device name format string 9290 * @name_assign_type: origin of device name 9291 * @setup: callback to initialize device 9292 * @txqs: the number of TX subqueues to allocate 9293 * @rxqs: the number of RX subqueues to allocate 9294 * 9295 * Allocates a struct net_device with private data area for driver use 9296 * and performs basic initialization. Also allocates subqueue structs 9297 * for each queue on the device. 9298 */ 9299 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9300 unsigned char name_assign_type, 9301 void (*setup)(struct net_device *), 9302 unsigned int txqs, unsigned int rxqs) 9303 { 9304 struct net_device *dev; 9305 unsigned int alloc_size; 9306 struct net_device *p; 9307 9308 BUG_ON(strlen(name) >= sizeof(dev->name)); 9309 9310 if (txqs < 1) { 9311 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9312 return NULL; 9313 } 9314 9315 if (rxqs < 1) { 9316 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9317 return NULL; 9318 } 9319 9320 alloc_size = sizeof(struct net_device); 9321 if (sizeof_priv) { 9322 /* ensure 32-byte alignment of private area */ 9323 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9324 alloc_size += sizeof_priv; 9325 } 9326 /* ensure 32-byte alignment of whole construct */ 9327 alloc_size += NETDEV_ALIGN - 1; 9328 9329 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9330 if (!p) 9331 return NULL; 9332 9333 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9334 dev->padded = (char *)dev - (char *)p; 9335 9336 dev->pcpu_refcnt = alloc_percpu(int); 9337 if (!dev->pcpu_refcnt) 9338 goto free_dev; 9339 9340 if (dev_addr_init(dev)) 9341 goto free_pcpu; 9342 9343 dev_mc_init(dev); 9344 dev_uc_init(dev); 9345 9346 dev_net_set(dev, &init_net); 9347 9348 netdev_register_lockdep_key(dev); 9349 9350 dev->gso_max_size = GSO_MAX_SIZE; 9351 dev->gso_max_segs = GSO_MAX_SEGS; 9352 dev->upper_level = 1; 9353 dev->lower_level = 1; 9354 9355 INIT_LIST_HEAD(&dev->napi_list); 9356 INIT_LIST_HEAD(&dev->unreg_list); 9357 INIT_LIST_HEAD(&dev->close_list); 9358 INIT_LIST_HEAD(&dev->link_watch_list); 9359 INIT_LIST_HEAD(&dev->adj_list.upper); 9360 INIT_LIST_HEAD(&dev->adj_list.lower); 9361 INIT_LIST_HEAD(&dev->ptype_all); 9362 INIT_LIST_HEAD(&dev->ptype_specific); 9363 #ifdef CONFIG_NET_SCHED 9364 hash_init(dev->qdisc_hash); 9365 #endif 9366 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9367 setup(dev); 9368 9369 if (!dev->tx_queue_len) { 9370 dev->priv_flags |= IFF_NO_QUEUE; 9371 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9372 } 9373 9374 dev->num_tx_queues = txqs; 9375 dev->real_num_tx_queues = txqs; 9376 if (netif_alloc_netdev_queues(dev)) 9377 goto free_all; 9378 9379 dev->num_rx_queues = rxqs; 9380 dev->real_num_rx_queues = rxqs; 9381 if (netif_alloc_rx_queues(dev)) 9382 goto free_all; 9383 9384 strcpy(dev->name, name); 9385 dev->name_assign_type = name_assign_type; 9386 dev->group = INIT_NETDEV_GROUP; 9387 if (!dev->ethtool_ops) 9388 dev->ethtool_ops = &default_ethtool_ops; 9389 9390 nf_hook_ingress_init(dev); 9391 9392 return dev; 9393 9394 free_all: 9395 free_netdev(dev); 9396 return NULL; 9397 9398 free_pcpu: 9399 free_percpu(dev->pcpu_refcnt); 9400 free_dev: 9401 netdev_freemem(dev); 9402 return NULL; 9403 } 9404 EXPORT_SYMBOL(alloc_netdev_mqs); 9405 9406 /** 9407 * free_netdev - free network device 9408 * @dev: device 9409 * 9410 * This function does the last stage of destroying an allocated device 9411 * interface. The reference to the device object is released. If this 9412 * is the last reference then it will be freed.Must be called in process 9413 * context. 9414 */ 9415 void free_netdev(struct net_device *dev) 9416 { 9417 struct napi_struct *p, *n; 9418 9419 might_sleep(); 9420 netif_free_tx_queues(dev); 9421 netif_free_rx_queues(dev); 9422 9423 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9424 9425 /* Flush device addresses */ 9426 dev_addr_flush(dev); 9427 9428 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9429 netif_napi_del(p); 9430 9431 free_percpu(dev->pcpu_refcnt); 9432 dev->pcpu_refcnt = NULL; 9433 9434 netdev_unregister_lockdep_key(dev); 9435 9436 /* Compatibility with error handling in drivers */ 9437 if (dev->reg_state == NETREG_UNINITIALIZED) { 9438 netdev_freemem(dev); 9439 return; 9440 } 9441 9442 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9443 dev->reg_state = NETREG_RELEASED; 9444 9445 /* will free via device release */ 9446 put_device(&dev->dev); 9447 } 9448 EXPORT_SYMBOL(free_netdev); 9449 9450 /** 9451 * synchronize_net - Synchronize with packet receive processing 9452 * 9453 * Wait for packets currently being received to be done. 9454 * Does not block later packets from starting. 9455 */ 9456 void synchronize_net(void) 9457 { 9458 might_sleep(); 9459 if (rtnl_is_locked()) 9460 synchronize_rcu_expedited(); 9461 else 9462 synchronize_rcu(); 9463 } 9464 EXPORT_SYMBOL(synchronize_net); 9465 9466 /** 9467 * unregister_netdevice_queue - remove device from the kernel 9468 * @dev: device 9469 * @head: list 9470 * 9471 * This function shuts down a device interface and removes it 9472 * from the kernel tables. 9473 * If head not NULL, device is queued to be unregistered later. 9474 * 9475 * Callers must hold the rtnl semaphore. You may want 9476 * unregister_netdev() instead of this. 9477 */ 9478 9479 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9480 { 9481 ASSERT_RTNL(); 9482 9483 if (head) { 9484 list_move_tail(&dev->unreg_list, head); 9485 } else { 9486 rollback_registered(dev); 9487 /* Finish processing unregister after unlock */ 9488 net_set_todo(dev); 9489 } 9490 } 9491 EXPORT_SYMBOL(unregister_netdevice_queue); 9492 9493 /** 9494 * unregister_netdevice_many - unregister many devices 9495 * @head: list of devices 9496 * 9497 * Note: As most callers use a stack allocated list_head, 9498 * we force a list_del() to make sure stack wont be corrupted later. 9499 */ 9500 void unregister_netdevice_many(struct list_head *head) 9501 { 9502 struct net_device *dev; 9503 9504 if (!list_empty(head)) { 9505 rollback_registered_many(head); 9506 list_for_each_entry(dev, head, unreg_list) 9507 net_set_todo(dev); 9508 list_del(head); 9509 } 9510 } 9511 EXPORT_SYMBOL(unregister_netdevice_many); 9512 9513 /** 9514 * unregister_netdev - remove device from the kernel 9515 * @dev: device 9516 * 9517 * This function shuts down a device interface and removes it 9518 * from the kernel tables. 9519 * 9520 * This is just a wrapper for unregister_netdevice that takes 9521 * the rtnl semaphore. In general you want to use this and not 9522 * unregister_netdevice. 9523 */ 9524 void unregister_netdev(struct net_device *dev) 9525 { 9526 rtnl_lock(); 9527 unregister_netdevice(dev); 9528 rtnl_unlock(); 9529 } 9530 EXPORT_SYMBOL(unregister_netdev); 9531 9532 /** 9533 * dev_change_net_namespace - move device to different nethost namespace 9534 * @dev: device 9535 * @net: network namespace 9536 * @pat: If not NULL name pattern to try if the current device name 9537 * is already taken in the destination network namespace. 9538 * 9539 * This function shuts down a device interface and moves it 9540 * to a new network namespace. On success 0 is returned, on 9541 * a failure a netagive errno code is returned. 9542 * 9543 * Callers must hold the rtnl semaphore. 9544 */ 9545 9546 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9547 { 9548 int err, new_nsid, new_ifindex; 9549 9550 ASSERT_RTNL(); 9551 9552 /* Don't allow namespace local devices to be moved. */ 9553 err = -EINVAL; 9554 if (dev->features & NETIF_F_NETNS_LOCAL) 9555 goto out; 9556 9557 /* Ensure the device has been registrered */ 9558 if (dev->reg_state != NETREG_REGISTERED) 9559 goto out; 9560 9561 /* Get out if there is nothing todo */ 9562 err = 0; 9563 if (net_eq(dev_net(dev), net)) 9564 goto out; 9565 9566 /* Pick the destination device name, and ensure 9567 * we can use it in the destination network namespace. 9568 */ 9569 err = -EEXIST; 9570 if (__dev_get_by_name(net, dev->name)) { 9571 /* We get here if we can't use the current device name */ 9572 if (!pat) 9573 goto out; 9574 err = dev_get_valid_name(net, dev, pat); 9575 if (err < 0) 9576 goto out; 9577 } 9578 9579 /* 9580 * And now a mini version of register_netdevice unregister_netdevice. 9581 */ 9582 9583 /* If device is running close it first. */ 9584 dev_close(dev); 9585 9586 /* And unlink it from device chain */ 9587 unlist_netdevice(dev); 9588 9589 synchronize_net(); 9590 9591 /* Shutdown queueing discipline. */ 9592 dev_shutdown(dev); 9593 9594 /* Notify protocols, that we are about to destroy 9595 * this device. They should clean all the things. 9596 * 9597 * Note that dev->reg_state stays at NETREG_REGISTERED. 9598 * This is wanted because this way 8021q and macvlan know 9599 * the device is just moving and can keep their slaves up. 9600 */ 9601 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9602 rcu_barrier(); 9603 9604 new_nsid = peernet2id_alloc(dev_net(dev), net); 9605 /* If there is an ifindex conflict assign a new one */ 9606 if (__dev_get_by_index(net, dev->ifindex)) 9607 new_ifindex = dev_new_index(net); 9608 else 9609 new_ifindex = dev->ifindex; 9610 9611 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9612 new_ifindex); 9613 9614 /* 9615 * Flush the unicast and multicast chains 9616 */ 9617 dev_uc_flush(dev); 9618 dev_mc_flush(dev); 9619 9620 /* Send a netdev-removed uevent to the old namespace */ 9621 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9622 netdev_adjacent_del_links(dev); 9623 9624 /* Actually switch the network namespace */ 9625 dev_net_set(dev, net); 9626 dev->ifindex = new_ifindex; 9627 9628 /* Send a netdev-add uevent to the new namespace */ 9629 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9630 netdev_adjacent_add_links(dev); 9631 9632 /* Fixup kobjects */ 9633 err = device_rename(&dev->dev, dev->name); 9634 WARN_ON(err); 9635 9636 /* Add the device back in the hashes */ 9637 list_netdevice(dev); 9638 9639 /* Notify protocols, that a new device appeared. */ 9640 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9641 9642 /* 9643 * Prevent userspace races by waiting until the network 9644 * device is fully setup before sending notifications. 9645 */ 9646 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9647 9648 synchronize_net(); 9649 err = 0; 9650 out: 9651 return err; 9652 } 9653 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9654 9655 static int dev_cpu_dead(unsigned int oldcpu) 9656 { 9657 struct sk_buff **list_skb; 9658 struct sk_buff *skb; 9659 unsigned int cpu; 9660 struct softnet_data *sd, *oldsd, *remsd = NULL; 9661 9662 local_irq_disable(); 9663 cpu = smp_processor_id(); 9664 sd = &per_cpu(softnet_data, cpu); 9665 oldsd = &per_cpu(softnet_data, oldcpu); 9666 9667 /* Find end of our completion_queue. */ 9668 list_skb = &sd->completion_queue; 9669 while (*list_skb) 9670 list_skb = &(*list_skb)->next; 9671 /* Append completion queue from offline CPU. */ 9672 *list_skb = oldsd->completion_queue; 9673 oldsd->completion_queue = NULL; 9674 9675 /* Append output queue from offline CPU. */ 9676 if (oldsd->output_queue) { 9677 *sd->output_queue_tailp = oldsd->output_queue; 9678 sd->output_queue_tailp = oldsd->output_queue_tailp; 9679 oldsd->output_queue = NULL; 9680 oldsd->output_queue_tailp = &oldsd->output_queue; 9681 } 9682 /* Append NAPI poll list from offline CPU, with one exception : 9683 * process_backlog() must be called by cpu owning percpu backlog. 9684 * We properly handle process_queue & input_pkt_queue later. 9685 */ 9686 while (!list_empty(&oldsd->poll_list)) { 9687 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9688 struct napi_struct, 9689 poll_list); 9690 9691 list_del_init(&napi->poll_list); 9692 if (napi->poll == process_backlog) 9693 napi->state = 0; 9694 else 9695 ____napi_schedule(sd, napi); 9696 } 9697 9698 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9699 local_irq_enable(); 9700 9701 #ifdef CONFIG_RPS 9702 remsd = oldsd->rps_ipi_list; 9703 oldsd->rps_ipi_list = NULL; 9704 #endif 9705 /* send out pending IPI's on offline CPU */ 9706 net_rps_send_ipi(remsd); 9707 9708 /* Process offline CPU's input_pkt_queue */ 9709 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9710 netif_rx_ni(skb); 9711 input_queue_head_incr(oldsd); 9712 } 9713 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9714 netif_rx_ni(skb); 9715 input_queue_head_incr(oldsd); 9716 } 9717 9718 return 0; 9719 } 9720 9721 /** 9722 * netdev_increment_features - increment feature set by one 9723 * @all: current feature set 9724 * @one: new feature set 9725 * @mask: mask feature set 9726 * 9727 * Computes a new feature set after adding a device with feature set 9728 * @one to the master device with current feature set @all. Will not 9729 * enable anything that is off in @mask. Returns the new feature set. 9730 */ 9731 netdev_features_t netdev_increment_features(netdev_features_t all, 9732 netdev_features_t one, netdev_features_t mask) 9733 { 9734 if (mask & NETIF_F_HW_CSUM) 9735 mask |= NETIF_F_CSUM_MASK; 9736 mask |= NETIF_F_VLAN_CHALLENGED; 9737 9738 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9739 all &= one | ~NETIF_F_ALL_FOR_ALL; 9740 9741 /* If one device supports hw checksumming, set for all. */ 9742 if (all & NETIF_F_HW_CSUM) 9743 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9744 9745 return all; 9746 } 9747 EXPORT_SYMBOL(netdev_increment_features); 9748 9749 static struct hlist_head * __net_init netdev_create_hash(void) 9750 { 9751 int i; 9752 struct hlist_head *hash; 9753 9754 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9755 if (hash != NULL) 9756 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9757 INIT_HLIST_HEAD(&hash[i]); 9758 9759 return hash; 9760 } 9761 9762 /* Initialize per network namespace state */ 9763 static int __net_init netdev_init(struct net *net) 9764 { 9765 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9766 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9767 9768 if (net != &init_net) 9769 INIT_LIST_HEAD(&net->dev_base_head); 9770 9771 net->dev_name_head = netdev_create_hash(); 9772 if (net->dev_name_head == NULL) 9773 goto err_name; 9774 9775 net->dev_index_head = netdev_create_hash(); 9776 if (net->dev_index_head == NULL) 9777 goto err_idx; 9778 9779 return 0; 9780 9781 err_idx: 9782 kfree(net->dev_name_head); 9783 err_name: 9784 return -ENOMEM; 9785 } 9786 9787 /** 9788 * netdev_drivername - network driver for the device 9789 * @dev: network device 9790 * 9791 * Determine network driver for device. 9792 */ 9793 const char *netdev_drivername(const struct net_device *dev) 9794 { 9795 const struct device_driver *driver; 9796 const struct device *parent; 9797 const char *empty = ""; 9798 9799 parent = dev->dev.parent; 9800 if (!parent) 9801 return empty; 9802 9803 driver = parent->driver; 9804 if (driver && driver->name) 9805 return driver->name; 9806 return empty; 9807 } 9808 9809 static void __netdev_printk(const char *level, const struct net_device *dev, 9810 struct va_format *vaf) 9811 { 9812 if (dev && dev->dev.parent) { 9813 dev_printk_emit(level[1] - '0', 9814 dev->dev.parent, 9815 "%s %s %s%s: %pV", 9816 dev_driver_string(dev->dev.parent), 9817 dev_name(dev->dev.parent), 9818 netdev_name(dev), netdev_reg_state(dev), 9819 vaf); 9820 } else if (dev) { 9821 printk("%s%s%s: %pV", 9822 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9823 } else { 9824 printk("%s(NULL net_device): %pV", level, vaf); 9825 } 9826 } 9827 9828 void netdev_printk(const char *level, const struct net_device *dev, 9829 const char *format, ...) 9830 { 9831 struct va_format vaf; 9832 va_list args; 9833 9834 va_start(args, format); 9835 9836 vaf.fmt = format; 9837 vaf.va = &args; 9838 9839 __netdev_printk(level, dev, &vaf); 9840 9841 va_end(args); 9842 } 9843 EXPORT_SYMBOL(netdev_printk); 9844 9845 #define define_netdev_printk_level(func, level) \ 9846 void func(const struct net_device *dev, const char *fmt, ...) \ 9847 { \ 9848 struct va_format vaf; \ 9849 va_list args; \ 9850 \ 9851 va_start(args, fmt); \ 9852 \ 9853 vaf.fmt = fmt; \ 9854 vaf.va = &args; \ 9855 \ 9856 __netdev_printk(level, dev, &vaf); \ 9857 \ 9858 va_end(args); \ 9859 } \ 9860 EXPORT_SYMBOL(func); 9861 9862 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9863 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9864 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9865 define_netdev_printk_level(netdev_err, KERN_ERR); 9866 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9867 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9868 define_netdev_printk_level(netdev_info, KERN_INFO); 9869 9870 static void __net_exit netdev_exit(struct net *net) 9871 { 9872 kfree(net->dev_name_head); 9873 kfree(net->dev_index_head); 9874 if (net != &init_net) 9875 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9876 } 9877 9878 static struct pernet_operations __net_initdata netdev_net_ops = { 9879 .init = netdev_init, 9880 .exit = netdev_exit, 9881 }; 9882 9883 static void __net_exit default_device_exit(struct net *net) 9884 { 9885 struct net_device *dev, *aux; 9886 /* 9887 * Push all migratable network devices back to the 9888 * initial network namespace 9889 */ 9890 rtnl_lock(); 9891 for_each_netdev_safe(net, dev, aux) { 9892 int err; 9893 char fb_name[IFNAMSIZ]; 9894 9895 /* Ignore unmoveable devices (i.e. loopback) */ 9896 if (dev->features & NETIF_F_NETNS_LOCAL) 9897 continue; 9898 9899 /* Leave virtual devices for the generic cleanup */ 9900 if (dev->rtnl_link_ops) 9901 continue; 9902 9903 /* Push remaining network devices to init_net */ 9904 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9905 if (__dev_get_by_name(&init_net, fb_name)) 9906 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 9907 err = dev_change_net_namespace(dev, &init_net, fb_name); 9908 if (err) { 9909 pr_emerg("%s: failed to move %s to init_net: %d\n", 9910 __func__, dev->name, err); 9911 BUG(); 9912 } 9913 } 9914 rtnl_unlock(); 9915 } 9916 9917 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9918 { 9919 /* Return with the rtnl_lock held when there are no network 9920 * devices unregistering in any network namespace in net_list. 9921 */ 9922 struct net *net; 9923 bool unregistering; 9924 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9925 9926 add_wait_queue(&netdev_unregistering_wq, &wait); 9927 for (;;) { 9928 unregistering = false; 9929 rtnl_lock(); 9930 list_for_each_entry(net, net_list, exit_list) { 9931 if (net->dev_unreg_count > 0) { 9932 unregistering = true; 9933 break; 9934 } 9935 } 9936 if (!unregistering) 9937 break; 9938 __rtnl_unlock(); 9939 9940 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9941 } 9942 remove_wait_queue(&netdev_unregistering_wq, &wait); 9943 } 9944 9945 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9946 { 9947 /* At exit all network devices most be removed from a network 9948 * namespace. Do this in the reverse order of registration. 9949 * Do this across as many network namespaces as possible to 9950 * improve batching efficiency. 9951 */ 9952 struct net_device *dev; 9953 struct net *net; 9954 LIST_HEAD(dev_kill_list); 9955 9956 /* To prevent network device cleanup code from dereferencing 9957 * loopback devices or network devices that have been freed 9958 * wait here for all pending unregistrations to complete, 9959 * before unregistring the loopback device and allowing the 9960 * network namespace be freed. 9961 * 9962 * The netdev todo list containing all network devices 9963 * unregistrations that happen in default_device_exit_batch 9964 * will run in the rtnl_unlock() at the end of 9965 * default_device_exit_batch. 9966 */ 9967 rtnl_lock_unregistering(net_list); 9968 list_for_each_entry(net, net_list, exit_list) { 9969 for_each_netdev_reverse(net, dev) { 9970 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9971 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9972 else 9973 unregister_netdevice_queue(dev, &dev_kill_list); 9974 } 9975 } 9976 unregister_netdevice_many(&dev_kill_list); 9977 rtnl_unlock(); 9978 } 9979 9980 static struct pernet_operations __net_initdata default_device_ops = { 9981 .exit = default_device_exit, 9982 .exit_batch = default_device_exit_batch, 9983 }; 9984 9985 /* 9986 * Initialize the DEV module. At boot time this walks the device list and 9987 * unhooks any devices that fail to initialise (normally hardware not 9988 * present) and leaves us with a valid list of present and active devices. 9989 * 9990 */ 9991 9992 /* 9993 * This is called single threaded during boot, so no need 9994 * to take the rtnl semaphore. 9995 */ 9996 static int __init net_dev_init(void) 9997 { 9998 int i, rc = -ENOMEM; 9999 10000 BUG_ON(!dev_boot_phase); 10001 10002 if (dev_proc_init()) 10003 goto out; 10004 10005 if (netdev_kobject_init()) 10006 goto out; 10007 10008 INIT_LIST_HEAD(&ptype_all); 10009 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10010 INIT_LIST_HEAD(&ptype_base[i]); 10011 10012 INIT_LIST_HEAD(&offload_base); 10013 10014 if (register_pernet_subsys(&netdev_net_ops)) 10015 goto out; 10016 10017 /* 10018 * Initialise the packet receive queues. 10019 */ 10020 10021 for_each_possible_cpu(i) { 10022 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10023 struct softnet_data *sd = &per_cpu(softnet_data, i); 10024 10025 INIT_WORK(flush, flush_backlog); 10026 10027 skb_queue_head_init(&sd->input_pkt_queue); 10028 skb_queue_head_init(&sd->process_queue); 10029 #ifdef CONFIG_XFRM_OFFLOAD 10030 skb_queue_head_init(&sd->xfrm_backlog); 10031 #endif 10032 INIT_LIST_HEAD(&sd->poll_list); 10033 sd->output_queue_tailp = &sd->output_queue; 10034 #ifdef CONFIG_RPS 10035 sd->csd.func = rps_trigger_softirq; 10036 sd->csd.info = sd; 10037 sd->cpu = i; 10038 #endif 10039 10040 init_gro_hash(&sd->backlog); 10041 sd->backlog.poll = process_backlog; 10042 sd->backlog.weight = weight_p; 10043 } 10044 10045 dev_boot_phase = 0; 10046 10047 /* The loopback device is special if any other network devices 10048 * is present in a network namespace the loopback device must 10049 * be present. Since we now dynamically allocate and free the 10050 * loopback device ensure this invariant is maintained by 10051 * keeping the loopback device as the first device on the 10052 * list of network devices. Ensuring the loopback devices 10053 * is the first device that appears and the last network device 10054 * that disappears. 10055 */ 10056 if (register_pernet_device(&loopback_net_ops)) 10057 goto out; 10058 10059 if (register_pernet_device(&default_device_ops)) 10060 goto out; 10061 10062 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10063 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10064 10065 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10066 NULL, dev_cpu_dead); 10067 WARN_ON(rc < 0); 10068 rc = 0; 10069 out: 10070 return rc; 10071 } 10072 10073 subsys_initcall(net_dev_init); 10074