xref: /openbmc/linux/net/core/dev.c (revision a54acb3a6f853e8394c4cb7b6a4d93c88f13eefd)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;	/* Taps */
151 static struct list_head offload_base __read_mostly;
152 
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 					 struct net_device *dev,
156 					 struct netdev_notifier_info *info);
157 
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179 
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182 
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185 
186 static seqcount_t devnet_rename_seq;
187 
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 	while (++net->dev_base_seq == 0);
191 }
192 
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 	spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211 
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 	struct net *net = dev_net(dev);
223 
224 	ASSERT_RTNL();
225 
226 	write_lock_bh(&dev_base_lock);
227 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 	hlist_add_head_rcu(&dev->index_hlist,
230 			   dev_index_hash(net, dev->ifindex));
231 	write_unlock_bh(&dev_base_lock);
232 
233 	dev_base_seq_inc(net);
234 }
235 
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del_rcu(&dev->dev_list);
246 	hlist_del_rcu(&dev->name_hlist);
247 	hlist_del_rcu(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 
250 	dev_base_seq_inc(dev_net(dev));
251 }
252 
253 /*
254  *	Our notifier list
255  */
256 
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258 
259 /*
260  *	Device drivers call our routines to queue packets here. We empty the
261  *	queue in the local softnet handler.
262  */
263 
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266 
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288 
289 static const char *const netdev_lock_name[] =
290 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305 
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 	int i;
312 
313 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 		if (netdev_lock_type[i] == dev_type)
315 			return i;
316 	/* the last key is used by default */
317 	return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319 
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 						 unsigned short dev_type)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev_type);
326 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 				   netdev_lock_name[i]);
328 }
329 
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 	int i;
333 
334 	i = netdev_lock_pos(dev->type);
335 	lockdep_set_class_and_name(&dev->addr_list_lock,
336 				   &netdev_addr_lock_key[i],
337 				   netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 						 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348 
349 /*******************************************************************************
350 
351 		Protocol management and registration routines
352 
353 *******************************************************************************/
354 
355 /*
356  *	Add a protocol ID to the list. Now that the input handler is
357  *	smarter we can dispense with all the messy stuff that used to be
358  *	here.
359  *
360  *	BEWARE!!! Protocol handlers, mangling input packets,
361  *	MUST BE last in hash buckets and checking protocol handlers
362  *	MUST start from promiscuous ptype_all chain in net_bh.
363  *	It is true now, do not change it.
364  *	Explanation follows: if protocol handler, mangling packet, will
365  *	be the first on list, it is not able to sense, that packet
366  *	is cloned and should be copied-on-write, so that it will
367  *	change it and subsequent readers will get broken packet.
368  *							--ANK (980803)
369  */
370 
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 	if (pt->type == htons(ETH_P_ALL))
374 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 	else
376 		return pt->dev ? &pt->dev->ptype_specific :
377 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379 
380 /**
381  *	dev_add_pack - add packet handler
382  *	@pt: packet type declaration
383  *
384  *	Add a protocol handler to the networking stack. The passed &packet_type
385  *	is linked into kernel lists and may not be freed until it has been
386  *	removed from the kernel lists.
387  *
388  *	This call does not sleep therefore it can not
389  *	guarantee all CPU's that are in middle of receiving packets
390  *	will see the new packet type (until the next received packet).
391  */
392 
393 void dev_add_pack(struct packet_type *pt)
394 {
395 	struct list_head *head = ptype_head(pt);
396 
397 	spin_lock(&ptype_lock);
398 	list_add_rcu(&pt->list, head);
399 	spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402 
403 /**
404  *	__dev_remove_pack	 - remove packet handler
405  *	@pt: packet type declaration
406  *
407  *	Remove a protocol handler that was previously added to the kernel
408  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
409  *	from the kernel lists and can be freed or reused once this function
410  *	returns.
411  *
412  *      The packet type might still be in use by receivers
413  *	and must not be freed until after all the CPU's have gone
414  *	through a quiescent state.
415  */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 	struct list_head *head = ptype_head(pt);
419 	struct packet_type *pt1;
420 
421 	spin_lock(&ptype_lock);
422 
423 	list_for_each_entry(pt1, head, list) {
424 		if (pt == pt1) {
425 			list_del_rcu(&pt->list);
426 			goto out;
427 		}
428 	}
429 
430 	pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 	spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435 
436 /**
437  *	dev_remove_pack	 - remove packet handler
438  *	@pt: packet type declaration
439  *
440  *	Remove a protocol handler that was previously added to the kernel
441  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
442  *	from the kernel lists and can be freed or reused once this function
443  *	returns.
444  *
445  *	This call sleeps to guarantee that no CPU is looking at the packet
446  *	type after return.
447  */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 	__dev_remove_pack(pt);
451 
452 	synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455 
456 
457 /**
458  *	dev_add_offload - register offload handlers
459  *	@po: protocol offload declaration
460  *
461  *	Add protocol offload handlers to the networking stack. The passed
462  *	&proto_offload is linked into kernel lists and may not be freed until
463  *	it has been removed from the kernel lists.
464  *
465  *	This call does not sleep therefore it can not
466  *	guarantee all CPU's that are in middle of receiving packets
467  *	will see the new offload handlers (until the next received packet).
468  */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 	struct list_head *head = &offload_base;
472 
473 	spin_lock(&offload_lock);
474 	list_add_rcu(&po->list, head);
475 	spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478 
479 /**
480  *	__dev_remove_offload	 - remove offload handler
481  *	@po: packet offload declaration
482  *
483  *	Remove a protocol offload handler that was previously added to the
484  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
485  *	is removed from the kernel lists and can be freed or reused once this
486  *	function returns.
487  *
488  *      The packet type might still be in use by receivers
489  *	and must not be freed until after all the CPU's have gone
490  *	through a quiescent state.
491  */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 	struct list_head *head = &offload_base;
495 	struct packet_offload *po1;
496 
497 	spin_lock(&offload_lock);
498 
499 	list_for_each_entry(po1, head, list) {
500 		if (po == po1) {
501 			list_del_rcu(&po->list);
502 			goto out;
503 		}
504 	}
505 
506 	pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 	spin_unlock(&offload_lock);
509 }
510 
511 /**
512  *	dev_remove_offload	 - remove packet offload handler
513  *	@po: packet offload declaration
514  *
515  *	Remove a packet offload handler that was previously added to the kernel
516  *	offload handlers by dev_add_offload(). The passed &offload_type is
517  *	removed from the kernel lists and can be freed or reused once this
518  *	function returns.
519  *
520  *	This call sleeps to guarantee that no CPU is looking at the packet
521  *	type after return.
522  */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 	__dev_remove_offload(po);
526 
527 	synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530 
531 /******************************************************************************
532 
533 		      Device Boot-time Settings Routines
534 
535 *******************************************************************************/
536 
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539 
540 /**
541  *	netdev_boot_setup_add	- add new setup entry
542  *	@name: name of the device
543  *	@map: configured settings for the device
544  *
545  *	Adds new setup entry to the dev_boot_setup list.  The function
546  *	returns 0 on error and 1 on success.  This is a generic routine to
547  *	all netdevices.
548  */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 	struct netdev_boot_setup *s;
552 	int i;
553 
554 	s = dev_boot_setup;
555 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 			memset(s[i].name, 0, sizeof(s[i].name));
558 			strlcpy(s[i].name, name, IFNAMSIZ);
559 			memcpy(&s[i].map, map, sizeof(s[i].map));
560 			break;
561 		}
562 	}
563 
564 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566 
567 /**
568  *	netdev_boot_setup_check	- check boot time settings
569  *	@dev: the netdevice
570  *
571  * 	Check boot time settings for the device.
572  *	The found settings are set for the device to be used
573  *	later in the device probing.
574  *	Returns 0 if no settings found, 1 if they are.
575  */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 	struct netdev_boot_setup *s = dev_boot_setup;
579 	int i;
580 
581 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 		    !strcmp(dev->name, s[i].name)) {
584 			dev->irq 	= s[i].map.irq;
585 			dev->base_addr 	= s[i].map.base_addr;
586 			dev->mem_start 	= s[i].map.mem_start;
587 			dev->mem_end 	= s[i].map.mem_end;
588 			return 1;
589 		}
590 	}
591 	return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594 
595 
596 /**
597  *	netdev_boot_base	- get address from boot time settings
598  *	@prefix: prefix for network device
599  *	@unit: id for network device
600  *
601  * 	Check boot time settings for the base address of device.
602  *	The found settings are set for the device to be used
603  *	later in the device probing.
604  *	Returns 0 if no settings found.
605  */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 	const struct netdev_boot_setup *s = dev_boot_setup;
609 	char name[IFNAMSIZ];
610 	int i;
611 
612 	sprintf(name, "%s%d", prefix, unit);
613 
614 	/*
615 	 * If device already registered then return base of 1
616 	 * to indicate not to probe for this interface
617 	 */
618 	if (__dev_get_by_name(&init_net, name))
619 		return 1;
620 
621 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 		if (!strcmp(name, s[i].name))
623 			return s[i].map.base_addr;
624 	return 0;
625 }
626 
627 /*
628  * Saves at boot time configured settings for any netdevice.
629  */
630 int __init netdev_boot_setup(char *str)
631 {
632 	int ints[5];
633 	struct ifmap map;
634 
635 	str = get_options(str, ARRAY_SIZE(ints), ints);
636 	if (!str || !*str)
637 		return 0;
638 
639 	/* Save settings */
640 	memset(&map, 0, sizeof(map));
641 	if (ints[0] > 0)
642 		map.irq = ints[1];
643 	if (ints[0] > 1)
644 		map.base_addr = ints[2];
645 	if (ints[0] > 2)
646 		map.mem_start = ints[3];
647 	if (ints[0] > 3)
648 		map.mem_end = ints[4];
649 
650 	/* Add new entry to the list */
651 	return netdev_boot_setup_add(str, &map);
652 }
653 
654 __setup("netdev=", netdev_boot_setup);
655 
656 /*******************************************************************************
657 
658 			    Device Interface Subroutines
659 
660 *******************************************************************************/
661 
662 /**
663  *	dev_get_iflink	- get 'iflink' value of a interface
664  *	@dev: targeted interface
665  *
666  *	Indicates the ifindex the interface is linked to.
667  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
668  */
669 
670 int dev_get_iflink(const struct net_device *dev)
671 {
672 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 		return dev->netdev_ops->ndo_get_iflink(dev);
674 
675 	return dev->iflink;
676 }
677 EXPORT_SYMBOL(dev_get_iflink);
678 
679 /**
680  *	__dev_get_by_name	- find a device by its name
681  *	@net: the applicable net namespace
682  *	@name: name to find
683  *
684  *	Find an interface by name. Must be called under RTNL semaphore
685  *	or @dev_base_lock. If the name is found a pointer to the device
686  *	is returned. If the name is not found then %NULL is returned. The
687  *	reference counters are not incremented so the caller must be
688  *	careful with locks.
689  */
690 
691 struct net_device *__dev_get_by_name(struct net *net, const char *name)
692 {
693 	struct net_device *dev;
694 	struct hlist_head *head = dev_name_hash(net, name);
695 
696 	hlist_for_each_entry(dev, head, name_hlist)
697 		if (!strncmp(dev->name, name, IFNAMSIZ))
698 			return dev;
699 
700 	return NULL;
701 }
702 EXPORT_SYMBOL(__dev_get_by_name);
703 
704 /**
705  *	dev_get_by_name_rcu	- find a device by its name
706  *	@net: the applicable net namespace
707  *	@name: name to find
708  *
709  *	Find an interface by name.
710  *	If the name is found a pointer to the device is returned.
711  * 	If the name is not found then %NULL is returned.
712  *	The reference counters are not incremented so the caller must be
713  *	careful with locks. The caller must hold RCU lock.
714  */
715 
716 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
717 {
718 	struct net_device *dev;
719 	struct hlist_head *head = dev_name_hash(net, name);
720 
721 	hlist_for_each_entry_rcu(dev, head, name_hlist)
722 		if (!strncmp(dev->name, name, IFNAMSIZ))
723 			return dev;
724 
725 	return NULL;
726 }
727 EXPORT_SYMBOL(dev_get_by_name_rcu);
728 
729 /**
730  *	dev_get_by_name		- find a device by its name
731  *	@net: the applicable net namespace
732  *	@name: name to find
733  *
734  *	Find an interface by name. This can be called from any
735  *	context and does its own locking. The returned handle has
736  *	the usage count incremented and the caller must use dev_put() to
737  *	release it when it is no longer needed. %NULL is returned if no
738  *	matching device is found.
739  */
740 
741 struct net_device *dev_get_by_name(struct net *net, const char *name)
742 {
743 	struct net_device *dev;
744 
745 	rcu_read_lock();
746 	dev = dev_get_by_name_rcu(net, name);
747 	if (dev)
748 		dev_hold(dev);
749 	rcu_read_unlock();
750 	return dev;
751 }
752 EXPORT_SYMBOL(dev_get_by_name);
753 
754 /**
755  *	__dev_get_by_index - find a device by its ifindex
756  *	@net: the applicable net namespace
757  *	@ifindex: index of device
758  *
759  *	Search for an interface by index. Returns %NULL if the device
760  *	is not found or a pointer to the device. The device has not
761  *	had its reference counter increased so the caller must be careful
762  *	about locking. The caller must hold either the RTNL semaphore
763  *	or @dev_base_lock.
764  */
765 
766 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
767 {
768 	struct net_device *dev;
769 	struct hlist_head *head = dev_index_hash(net, ifindex);
770 
771 	hlist_for_each_entry(dev, head, index_hlist)
772 		if (dev->ifindex == ifindex)
773 			return dev;
774 
775 	return NULL;
776 }
777 EXPORT_SYMBOL(__dev_get_by_index);
778 
779 /**
780  *	dev_get_by_index_rcu - find a device by its ifindex
781  *	@net: the applicable net namespace
782  *	@ifindex: index of device
783  *
784  *	Search for an interface by index. Returns %NULL if the device
785  *	is not found or a pointer to the device. The device has not
786  *	had its reference counter increased so the caller must be careful
787  *	about locking. The caller must hold RCU lock.
788  */
789 
790 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
791 {
792 	struct net_device *dev;
793 	struct hlist_head *head = dev_index_hash(net, ifindex);
794 
795 	hlist_for_each_entry_rcu(dev, head, index_hlist)
796 		if (dev->ifindex == ifindex)
797 			return dev;
798 
799 	return NULL;
800 }
801 EXPORT_SYMBOL(dev_get_by_index_rcu);
802 
803 
804 /**
805  *	dev_get_by_index - find a device by its ifindex
806  *	@net: the applicable net namespace
807  *	@ifindex: index of device
808  *
809  *	Search for an interface by index. Returns NULL if the device
810  *	is not found or a pointer to the device. The device returned has
811  *	had a reference added and the pointer is safe until the user calls
812  *	dev_put to indicate they have finished with it.
813  */
814 
815 struct net_device *dev_get_by_index(struct net *net, int ifindex)
816 {
817 	struct net_device *dev;
818 
819 	rcu_read_lock();
820 	dev = dev_get_by_index_rcu(net, ifindex);
821 	if (dev)
822 		dev_hold(dev);
823 	rcu_read_unlock();
824 	return dev;
825 }
826 EXPORT_SYMBOL(dev_get_by_index);
827 
828 /**
829  *	netdev_get_name - get a netdevice name, knowing its ifindex.
830  *	@net: network namespace
831  *	@name: a pointer to the buffer where the name will be stored.
832  *	@ifindex: the ifindex of the interface to get the name from.
833  *
834  *	The use of raw_seqcount_begin() and cond_resched() before
835  *	retrying is required as we want to give the writers a chance
836  *	to complete when CONFIG_PREEMPT is not set.
837  */
838 int netdev_get_name(struct net *net, char *name, int ifindex)
839 {
840 	struct net_device *dev;
841 	unsigned int seq;
842 
843 retry:
844 	seq = raw_seqcount_begin(&devnet_rename_seq);
845 	rcu_read_lock();
846 	dev = dev_get_by_index_rcu(net, ifindex);
847 	if (!dev) {
848 		rcu_read_unlock();
849 		return -ENODEV;
850 	}
851 
852 	strcpy(name, dev->name);
853 	rcu_read_unlock();
854 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
855 		cond_resched();
856 		goto retry;
857 	}
858 
859 	return 0;
860 }
861 
862 /**
863  *	dev_getbyhwaddr_rcu - find a device by its hardware address
864  *	@net: the applicable net namespace
865  *	@type: media type of device
866  *	@ha: hardware address
867  *
868  *	Search for an interface by MAC address. Returns NULL if the device
869  *	is not found or a pointer to the device.
870  *	The caller must hold RCU or RTNL.
871  *	The returned device has not had its ref count increased
872  *	and the caller must therefore be careful about locking
873  *
874  */
875 
876 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
877 				       const char *ha)
878 {
879 	struct net_device *dev;
880 
881 	for_each_netdev_rcu(net, dev)
882 		if (dev->type == type &&
883 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
884 			return dev;
885 
886 	return NULL;
887 }
888 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
889 
890 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
891 {
892 	struct net_device *dev;
893 
894 	ASSERT_RTNL();
895 	for_each_netdev(net, dev)
896 		if (dev->type == type)
897 			return dev;
898 
899 	return NULL;
900 }
901 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
902 
903 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
904 {
905 	struct net_device *dev, *ret = NULL;
906 
907 	rcu_read_lock();
908 	for_each_netdev_rcu(net, dev)
909 		if (dev->type == type) {
910 			dev_hold(dev);
911 			ret = dev;
912 			break;
913 		}
914 	rcu_read_unlock();
915 	return ret;
916 }
917 EXPORT_SYMBOL(dev_getfirstbyhwtype);
918 
919 /**
920  *	__dev_get_by_flags - find any device with given flags
921  *	@net: the applicable net namespace
922  *	@if_flags: IFF_* values
923  *	@mask: bitmask of bits in if_flags to check
924  *
925  *	Search for any interface with the given flags. Returns NULL if a device
926  *	is not found or a pointer to the device. Must be called inside
927  *	rtnl_lock(), and result refcount is unchanged.
928  */
929 
930 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
931 				      unsigned short mask)
932 {
933 	struct net_device *dev, *ret;
934 
935 	ASSERT_RTNL();
936 
937 	ret = NULL;
938 	for_each_netdev(net, dev) {
939 		if (((dev->flags ^ if_flags) & mask) == 0) {
940 			ret = dev;
941 			break;
942 		}
943 	}
944 	return ret;
945 }
946 EXPORT_SYMBOL(__dev_get_by_flags);
947 
948 /**
949  *	dev_valid_name - check if name is okay for network device
950  *	@name: name string
951  *
952  *	Network device names need to be valid file names to
953  *	to allow sysfs to work.  We also disallow any kind of
954  *	whitespace.
955  */
956 bool dev_valid_name(const char *name)
957 {
958 	if (*name == '\0')
959 		return false;
960 	if (strlen(name) >= IFNAMSIZ)
961 		return false;
962 	if (!strcmp(name, ".") || !strcmp(name, ".."))
963 		return false;
964 
965 	while (*name) {
966 		if (*name == '/' || *name == ':' || isspace(*name))
967 			return false;
968 		name++;
969 	}
970 	return true;
971 }
972 EXPORT_SYMBOL(dev_valid_name);
973 
974 /**
975  *	__dev_alloc_name - allocate a name for a device
976  *	@net: network namespace to allocate the device name in
977  *	@name: name format string
978  *	@buf:  scratch buffer and result name string
979  *
980  *	Passed a format string - eg "lt%d" it will try and find a suitable
981  *	id. It scans list of devices to build up a free map, then chooses
982  *	the first empty slot. The caller must hold the dev_base or rtnl lock
983  *	while allocating the name and adding the device in order to avoid
984  *	duplicates.
985  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
986  *	Returns the number of the unit assigned or a negative errno code.
987  */
988 
989 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
990 {
991 	int i = 0;
992 	const char *p;
993 	const int max_netdevices = 8*PAGE_SIZE;
994 	unsigned long *inuse;
995 	struct net_device *d;
996 
997 	p = strnchr(name, IFNAMSIZ-1, '%');
998 	if (p) {
999 		/*
1000 		 * Verify the string as this thing may have come from
1001 		 * the user.  There must be either one "%d" and no other "%"
1002 		 * characters.
1003 		 */
1004 		if (p[1] != 'd' || strchr(p + 2, '%'))
1005 			return -EINVAL;
1006 
1007 		/* Use one page as a bit array of possible slots */
1008 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1009 		if (!inuse)
1010 			return -ENOMEM;
1011 
1012 		for_each_netdev(net, d) {
1013 			if (!sscanf(d->name, name, &i))
1014 				continue;
1015 			if (i < 0 || i >= max_netdevices)
1016 				continue;
1017 
1018 			/*  avoid cases where sscanf is not exact inverse of printf */
1019 			snprintf(buf, IFNAMSIZ, name, i);
1020 			if (!strncmp(buf, d->name, IFNAMSIZ))
1021 				set_bit(i, inuse);
1022 		}
1023 
1024 		i = find_first_zero_bit(inuse, max_netdevices);
1025 		free_page((unsigned long) inuse);
1026 	}
1027 
1028 	if (buf != name)
1029 		snprintf(buf, IFNAMSIZ, name, i);
1030 	if (!__dev_get_by_name(net, buf))
1031 		return i;
1032 
1033 	/* It is possible to run out of possible slots
1034 	 * when the name is long and there isn't enough space left
1035 	 * for the digits, or if all bits are used.
1036 	 */
1037 	return -ENFILE;
1038 }
1039 
1040 /**
1041  *	dev_alloc_name - allocate a name for a device
1042  *	@dev: device
1043  *	@name: name format string
1044  *
1045  *	Passed a format string - eg "lt%d" it will try and find a suitable
1046  *	id. It scans list of devices to build up a free map, then chooses
1047  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1048  *	while allocating the name and adding the device in order to avoid
1049  *	duplicates.
1050  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1051  *	Returns the number of the unit assigned or a negative errno code.
1052  */
1053 
1054 int dev_alloc_name(struct net_device *dev, const char *name)
1055 {
1056 	char buf[IFNAMSIZ];
1057 	struct net *net;
1058 	int ret;
1059 
1060 	BUG_ON(!dev_net(dev));
1061 	net = dev_net(dev);
1062 	ret = __dev_alloc_name(net, name, buf);
1063 	if (ret >= 0)
1064 		strlcpy(dev->name, buf, IFNAMSIZ);
1065 	return ret;
1066 }
1067 EXPORT_SYMBOL(dev_alloc_name);
1068 
1069 static int dev_alloc_name_ns(struct net *net,
1070 			     struct net_device *dev,
1071 			     const char *name)
1072 {
1073 	char buf[IFNAMSIZ];
1074 	int ret;
1075 
1076 	ret = __dev_alloc_name(net, name, buf);
1077 	if (ret >= 0)
1078 		strlcpy(dev->name, buf, IFNAMSIZ);
1079 	return ret;
1080 }
1081 
1082 static int dev_get_valid_name(struct net *net,
1083 			      struct net_device *dev,
1084 			      const char *name)
1085 {
1086 	BUG_ON(!net);
1087 
1088 	if (!dev_valid_name(name))
1089 		return -EINVAL;
1090 
1091 	if (strchr(name, '%'))
1092 		return dev_alloc_name_ns(net, dev, name);
1093 	else if (__dev_get_by_name(net, name))
1094 		return -EEXIST;
1095 	else if (dev->name != name)
1096 		strlcpy(dev->name, name, IFNAMSIZ);
1097 
1098 	return 0;
1099 }
1100 
1101 /**
1102  *	dev_change_name - change name of a device
1103  *	@dev: device
1104  *	@newname: name (or format string) must be at least IFNAMSIZ
1105  *
1106  *	Change name of a device, can pass format strings "eth%d".
1107  *	for wildcarding.
1108  */
1109 int dev_change_name(struct net_device *dev, const char *newname)
1110 {
1111 	unsigned char old_assign_type;
1112 	char oldname[IFNAMSIZ];
1113 	int err = 0;
1114 	int ret;
1115 	struct net *net;
1116 
1117 	ASSERT_RTNL();
1118 	BUG_ON(!dev_net(dev));
1119 
1120 	net = dev_net(dev);
1121 	if (dev->flags & IFF_UP)
1122 		return -EBUSY;
1123 
1124 	write_seqcount_begin(&devnet_rename_seq);
1125 
1126 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1127 		write_seqcount_end(&devnet_rename_seq);
1128 		return 0;
1129 	}
1130 
1131 	memcpy(oldname, dev->name, IFNAMSIZ);
1132 
1133 	err = dev_get_valid_name(net, dev, newname);
1134 	if (err < 0) {
1135 		write_seqcount_end(&devnet_rename_seq);
1136 		return err;
1137 	}
1138 
1139 	if (oldname[0] && !strchr(oldname, '%'))
1140 		netdev_info(dev, "renamed from %s\n", oldname);
1141 
1142 	old_assign_type = dev->name_assign_type;
1143 	dev->name_assign_type = NET_NAME_RENAMED;
1144 
1145 rollback:
1146 	ret = device_rename(&dev->dev, dev->name);
1147 	if (ret) {
1148 		memcpy(dev->name, oldname, IFNAMSIZ);
1149 		dev->name_assign_type = old_assign_type;
1150 		write_seqcount_end(&devnet_rename_seq);
1151 		return ret;
1152 	}
1153 
1154 	write_seqcount_end(&devnet_rename_seq);
1155 
1156 	netdev_adjacent_rename_links(dev, oldname);
1157 
1158 	write_lock_bh(&dev_base_lock);
1159 	hlist_del_rcu(&dev->name_hlist);
1160 	write_unlock_bh(&dev_base_lock);
1161 
1162 	synchronize_rcu();
1163 
1164 	write_lock_bh(&dev_base_lock);
1165 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1166 	write_unlock_bh(&dev_base_lock);
1167 
1168 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1169 	ret = notifier_to_errno(ret);
1170 
1171 	if (ret) {
1172 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1173 		if (err >= 0) {
1174 			err = ret;
1175 			write_seqcount_begin(&devnet_rename_seq);
1176 			memcpy(dev->name, oldname, IFNAMSIZ);
1177 			memcpy(oldname, newname, IFNAMSIZ);
1178 			dev->name_assign_type = old_assign_type;
1179 			old_assign_type = NET_NAME_RENAMED;
1180 			goto rollback;
1181 		} else {
1182 			pr_err("%s: name change rollback failed: %d\n",
1183 			       dev->name, ret);
1184 		}
1185 	}
1186 
1187 	return err;
1188 }
1189 
1190 /**
1191  *	dev_set_alias - change ifalias of a device
1192  *	@dev: device
1193  *	@alias: name up to IFALIASZ
1194  *	@len: limit of bytes to copy from info
1195  *
1196  *	Set ifalias for a device,
1197  */
1198 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1199 {
1200 	char *new_ifalias;
1201 
1202 	ASSERT_RTNL();
1203 
1204 	if (len >= IFALIASZ)
1205 		return -EINVAL;
1206 
1207 	if (!len) {
1208 		kfree(dev->ifalias);
1209 		dev->ifalias = NULL;
1210 		return 0;
1211 	}
1212 
1213 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1214 	if (!new_ifalias)
1215 		return -ENOMEM;
1216 	dev->ifalias = new_ifalias;
1217 
1218 	strlcpy(dev->ifalias, alias, len+1);
1219 	return len;
1220 }
1221 
1222 
1223 /**
1224  *	netdev_features_change - device changes features
1225  *	@dev: device to cause notification
1226  *
1227  *	Called to indicate a device has changed features.
1228  */
1229 void netdev_features_change(struct net_device *dev)
1230 {
1231 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1232 }
1233 EXPORT_SYMBOL(netdev_features_change);
1234 
1235 /**
1236  *	netdev_state_change - device changes state
1237  *	@dev: device to cause notification
1238  *
1239  *	Called to indicate a device has changed state. This function calls
1240  *	the notifier chains for netdev_chain and sends a NEWLINK message
1241  *	to the routing socket.
1242  */
1243 void netdev_state_change(struct net_device *dev)
1244 {
1245 	if (dev->flags & IFF_UP) {
1246 		struct netdev_notifier_change_info change_info;
1247 
1248 		change_info.flags_changed = 0;
1249 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1250 					      &change_info.info);
1251 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1252 	}
1253 }
1254 EXPORT_SYMBOL(netdev_state_change);
1255 
1256 /**
1257  * 	netdev_notify_peers - notify network peers about existence of @dev
1258  * 	@dev: network device
1259  *
1260  * Generate traffic such that interested network peers are aware of
1261  * @dev, such as by generating a gratuitous ARP. This may be used when
1262  * a device wants to inform the rest of the network about some sort of
1263  * reconfiguration such as a failover event or virtual machine
1264  * migration.
1265  */
1266 void netdev_notify_peers(struct net_device *dev)
1267 {
1268 	rtnl_lock();
1269 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1270 	rtnl_unlock();
1271 }
1272 EXPORT_SYMBOL(netdev_notify_peers);
1273 
1274 static int __dev_open(struct net_device *dev)
1275 {
1276 	const struct net_device_ops *ops = dev->netdev_ops;
1277 	int ret;
1278 
1279 	ASSERT_RTNL();
1280 
1281 	if (!netif_device_present(dev))
1282 		return -ENODEV;
1283 
1284 	/* Block netpoll from trying to do any rx path servicing.
1285 	 * If we don't do this there is a chance ndo_poll_controller
1286 	 * or ndo_poll may be running while we open the device
1287 	 */
1288 	netpoll_poll_disable(dev);
1289 
1290 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1291 	ret = notifier_to_errno(ret);
1292 	if (ret)
1293 		return ret;
1294 
1295 	set_bit(__LINK_STATE_START, &dev->state);
1296 
1297 	if (ops->ndo_validate_addr)
1298 		ret = ops->ndo_validate_addr(dev);
1299 
1300 	if (!ret && ops->ndo_open)
1301 		ret = ops->ndo_open(dev);
1302 
1303 	netpoll_poll_enable(dev);
1304 
1305 	if (ret)
1306 		clear_bit(__LINK_STATE_START, &dev->state);
1307 	else {
1308 		dev->flags |= IFF_UP;
1309 		dev_set_rx_mode(dev);
1310 		dev_activate(dev);
1311 		add_device_randomness(dev->dev_addr, dev->addr_len);
1312 	}
1313 
1314 	return ret;
1315 }
1316 
1317 /**
1318  *	dev_open	- prepare an interface for use.
1319  *	@dev:	device to open
1320  *
1321  *	Takes a device from down to up state. The device's private open
1322  *	function is invoked and then the multicast lists are loaded. Finally
1323  *	the device is moved into the up state and a %NETDEV_UP message is
1324  *	sent to the netdev notifier chain.
1325  *
1326  *	Calling this function on an active interface is a nop. On a failure
1327  *	a negative errno code is returned.
1328  */
1329 int dev_open(struct net_device *dev)
1330 {
1331 	int ret;
1332 
1333 	if (dev->flags & IFF_UP)
1334 		return 0;
1335 
1336 	ret = __dev_open(dev);
1337 	if (ret < 0)
1338 		return ret;
1339 
1340 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1341 	call_netdevice_notifiers(NETDEV_UP, dev);
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL(dev_open);
1346 
1347 static int __dev_close_many(struct list_head *head)
1348 {
1349 	struct net_device *dev;
1350 
1351 	ASSERT_RTNL();
1352 	might_sleep();
1353 
1354 	list_for_each_entry(dev, head, close_list) {
1355 		/* Temporarily disable netpoll until the interface is down */
1356 		netpoll_poll_disable(dev);
1357 
1358 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1359 
1360 		clear_bit(__LINK_STATE_START, &dev->state);
1361 
1362 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1363 		 * can be even on different cpu. So just clear netif_running().
1364 		 *
1365 		 * dev->stop() will invoke napi_disable() on all of it's
1366 		 * napi_struct instances on this device.
1367 		 */
1368 		smp_mb__after_atomic(); /* Commit netif_running(). */
1369 	}
1370 
1371 	dev_deactivate_many(head);
1372 
1373 	list_for_each_entry(dev, head, close_list) {
1374 		const struct net_device_ops *ops = dev->netdev_ops;
1375 
1376 		/*
1377 		 *	Call the device specific close. This cannot fail.
1378 		 *	Only if device is UP
1379 		 *
1380 		 *	We allow it to be called even after a DETACH hot-plug
1381 		 *	event.
1382 		 */
1383 		if (ops->ndo_stop)
1384 			ops->ndo_stop(dev);
1385 
1386 		dev->flags &= ~IFF_UP;
1387 		netpoll_poll_enable(dev);
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 static int __dev_close(struct net_device *dev)
1394 {
1395 	int retval;
1396 	LIST_HEAD(single);
1397 
1398 	list_add(&dev->close_list, &single);
1399 	retval = __dev_close_many(&single);
1400 	list_del(&single);
1401 
1402 	return retval;
1403 }
1404 
1405 int dev_close_many(struct list_head *head, bool unlink)
1406 {
1407 	struct net_device *dev, *tmp;
1408 
1409 	/* Remove the devices that don't need to be closed */
1410 	list_for_each_entry_safe(dev, tmp, head, close_list)
1411 		if (!(dev->flags & IFF_UP))
1412 			list_del_init(&dev->close_list);
1413 
1414 	__dev_close_many(head);
1415 
1416 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1417 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1418 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1419 		if (unlink)
1420 			list_del_init(&dev->close_list);
1421 	}
1422 
1423 	return 0;
1424 }
1425 EXPORT_SYMBOL(dev_close_many);
1426 
1427 /**
1428  *	dev_close - shutdown an interface.
1429  *	@dev: device to shutdown
1430  *
1431  *	This function moves an active device into down state. A
1432  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1433  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1434  *	chain.
1435  */
1436 int dev_close(struct net_device *dev)
1437 {
1438 	if (dev->flags & IFF_UP) {
1439 		LIST_HEAD(single);
1440 
1441 		list_add(&dev->close_list, &single);
1442 		dev_close_many(&single, true);
1443 		list_del(&single);
1444 	}
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL(dev_close);
1448 
1449 
1450 /**
1451  *	dev_disable_lro - disable Large Receive Offload on a device
1452  *	@dev: device
1453  *
1454  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1455  *	called under RTNL.  This is needed if received packets may be
1456  *	forwarded to another interface.
1457  */
1458 void dev_disable_lro(struct net_device *dev)
1459 {
1460 	struct net_device *lower_dev;
1461 	struct list_head *iter;
1462 
1463 	dev->wanted_features &= ~NETIF_F_LRO;
1464 	netdev_update_features(dev);
1465 
1466 	if (unlikely(dev->features & NETIF_F_LRO))
1467 		netdev_WARN(dev, "failed to disable LRO!\n");
1468 
1469 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1470 		dev_disable_lro(lower_dev);
1471 }
1472 EXPORT_SYMBOL(dev_disable_lro);
1473 
1474 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1475 				   struct net_device *dev)
1476 {
1477 	struct netdev_notifier_info info;
1478 
1479 	netdev_notifier_info_init(&info, dev);
1480 	return nb->notifier_call(nb, val, &info);
1481 }
1482 
1483 static int dev_boot_phase = 1;
1484 
1485 /**
1486  *	register_netdevice_notifier - register a network notifier block
1487  *	@nb: notifier
1488  *
1489  *	Register a notifier to be called when network device events occur.
1490  *	The notifier passed is linked into the kernel structures and must
1491  *	not be reused until it has been unregistered. A negative errno code
1492  *	is returned on a failure.
1493  *
1494  * 	When registered all registration and up events are replayed
1495  *	to the new notifier to allow device to have a race free
1496  *	view of the network device list.
1497  */
1498 
1499 int register_netdevice_notifier(struct notifier_block *nb)
1500 {
1501 	struct net_device *dev;
1502 	struct net_device *last;
1503 	struct net *net;
1504 	int err;
1505 
1506 	rtnl_lock();
1507 	err = raw_notifier_chain_register(&netdev_chain, nb);
1508 	if (err)
1509 		goto unlock;
1510 	if (dev_boot_phase)
1511 		goto unlock;
1512 	for_each_net(net) {
1513 		for_each_netdev(net, dev) {
1514 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1515 			err = notifier_to_errno(err);
1516 			if (err)
1517 				goto rollback;
1518 
1519 			if (!(dev->flags & IFF_UP))
1520 				continue;
1521 
1522 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1523 		}
1524 	}
1525 
1526 unlock:
1527 	rtnl_unlock();
1528 	return err;
1529 
1530 rollback:
1531 	last = dev;
1532 	for_each_net(net) {
1533 		for_each_netdev(net, dev) {
1534 			if (dev == last)
1535 				goto outroll;
1536 
1537 			if (dev->flags & IFF_UP) {
1538 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1539 							dev);
1540 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1541 			}
1542 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1543 		}
1544 	}
1545 
1546 outroll:
1547 	raw_notifier_chain_unregister(&netdev_chain, nb);
1548 	goto unlock;
1549 }
1550 EXPORT_SYMBOL(register_netdevice_notifier);
1551 
1552 /**
1553  *	unregister_netdevice_notifier - unregister a network notifier block
1554  *	@nb: notifier
1555  *
1556  *	Unregister a notifier previously registered by
1557  *	register_netdevice_notifier(). The notifier is unlinked into the
1558  *	kernel structures and may then be reused. A negative errno code
1559  *	is returned on a failure.
1560  *
1561  * 	After unregistering unregister and down device events are synthesized
1562  *	for all devices on the device list to the removed notifier to remove
1563  *	the need for special case cleanup code.
1564  */
1565 
1566 int unregister_netdevice_notifier(struct notifier_block *nb)
1567 {
1568 	struct net_device *dev;
1569 	struct net *net;
1570 	int err;
1571 
1572 	rtnl_lock();
1573 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1574 	if (err)
1575 		goto unlock;
1576 
1577 	for_each_net(net) {
1578 		for_each_netdev(net, dev) {
1579 			if (dev->flags & IFF_UP) {
1580 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1581 							dev);
1582 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1583 			}
1584 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1585 		}
1586 	}
1587 unlock:
1588 	rtnl_unlock();
1589 	return err;
1590 }
1591 EXPORT_SYMBOL(unregister_netdevice_notifier);
1592 
1593 /**
1594  *	call_netdevice_notifiers_info - call all network notifier blocks
1595  *	@val: value passed unmodified to notifier function
1596  *	@dev: net_device pointer passed unmodified to notifier function
1597  *	@info: notifier information data
1598  *
1599  *	Call all network notifier blocks.  Parameters and return value
1600  *	are as for raw_notifier_call_chain().
1601  */
1602 
1603 static int call_netdevice_notifiers_info(unsigned long val,
1604 					 struct net_device *dev,
1605 					 struct netdev_notifier_info *info)
1606 {
1607 	ASSERT_RTNL();
1608 	netdev_notifier_info_init(info, dev);
1609 	return raw_notifier_call_chain(&netdev_chain, val, info);
1610 }
1611 
1612 /**
1613  *	call_netdevice_notifiers - call all network notifier blocks
1614  *      @val: value passed unmodified to notifier function
1615  *      @dev: net_device pointer passed unmodified to notifier function
1616  *
1617  *	Call all network notifier blocks.  Parameters and return value
1618  *	are as for raw_notifier_call_chain().
1619  */
1620 
1621 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1622 {
1623 	struct netdev_notifier_info info;
1624 
1625 	return call_netdevice_notifiers_info(val, dev, &info);
1626 }
1627 EXPORT_SYMBOL(call_netdevice_notifiers);
1628 
1629 static struct static_key netstamp_needed __read_mostly;
1630 #ifdef HAVE_JUMP_LABEL
1631 /* We are not allowed to call static_key_slow_dec() from irq context
1632  * If net_disable_timestamp() is called from irq context, defer the
1633  * static_key_slow_dec() calls.
1634  */
1635 static atomic_t netstamp_needed_deferred;
1636 #endif
1637 
1638 void net_enable_timestamp(void)
1639 {
1640 #ifdef HAVE_JUMP_LABEL
1641 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1642 
1643 	if (deferred) {
1644 		while (--deferred)
1645 			static_key_slow_dec(&netstamp_needed);
1646 		return;
1647 	}
1648 #endif
1649 	static_key_slow_inc(&netstamp_needed);
1650 }
1651 EXPORT_SYMBOL(net_enable_timestamp);
1652 
1653 void net_disable_timestamp(void)
1654 {
1655 #ifdef HAVE_JUMP_LABEL
1656 	if (in_interrupt()) {
1657 		atomic_inc(&netstamp_needed_deferred);
1658 		return;
1659 	}
1660 #endif
1661 	static_key_slow_dec(&netstamp_needed);
1662 }
1663 EXPORT_SYMBOL(net_disable_timestamp);
1664 
1665 static inline void net_timestamp_set(struct sk_buff *skb)
1666 {
1667 	skb->tstamp.tv64 = 0;
1668 	if (static_key_false(&netstamp_needed))
1669 		__net_timestamp(skb);
1670 }
1671 
1672 #define net_timestamp_check(COND, SKB)			\
1673 	if (static_key_false(&netstamp_needed)) {		\
1674 		if ((COND) && !(SKB)->tstamp.tv64)	\
1675 			__net_timestamp(SKB);		\
1676 	}						\
1677 
1678 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1679 {
1680 	unsigned int len;
1681 
1682 	if (!(dev->flags & IFF_UP))
1683 		return false;
1684 
1685 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1686 	if (skb->len <= len)
1687 		return true;
1688 
1689 	/* if TSO is enabled, we don't care about the length as the packet
1690 	 * could be forwarded without being segmented before
1691 	 */
1692 	if (skb_is_gso(skb))
1693 		return true;
1694 
1695 	return false;
1696 }
1697 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1698 
1699 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1700 {
1701 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1702 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1703 			atomic_long_inc(&dev->rx_dropped);
1704 			kfree_skb(skb);
1705 			return NET_RX_DROP;
1706 		}
1707 	}
1708 
1709 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1710 		atomic_long_inc(&dev->rx_dropped);
1711 		kfree_skb(skb);
1712 		return NET_RX_DROP;
1713 	}
1714 
1715 	skb_scrub_packet(skb, true);
1716 	skb->priority = 0;
1717 	skb->protocol = eth_type_trans(skb, dev);
1718 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1719 
1720 	return 0;
1721 }
1722 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1723 
1724 /**
1725  * dev_forward_skb - loopback an skb to another netif
1726  *
1727  * @dev: destination network device
1728  * @skb: buffer to forward
1729  *
1730  * return values:
1731  *	NET_RX_SUCCESS	(no congestion)
1732  *	NET_RX_DROP     (packet was dropped, but freed)
1733  *
1734  * dev_forward_skb can be used for injecting an skb from the
1735  * start_xmit function of one device into the receive queue
1736  * of another device.
1737  *
1738  * The receiving device may be in another namespace, so
1739  * we have to clear all information in the skb that could
1740  * impact namespace isolation.
1741  */
1742 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1743 {
1744 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1745 }
1746 EXPORT_SYMBOL_GPL(dev_forward_skb);
1747 
1748 static inline int deliver_skb(struct sk_buff *skb,
1749 			      struct packet_type *pt_prev,
1750 			      struct net_device *orig_dev)
1751 {
1752 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1753 		return -ENOMEM;
1754 	atomic_inc(&skb->users);
1755 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1756 }
1757 
1758 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1759 					  struct packet_type **pt,
1760 					  struct net_device *orig_dev,
1761 					  __be16 type,
1762 					  struct list_head *ptype_list)
1763 {
1764 	struct packet_type *ptype, *pt_prev = *pt;
1765 
1766 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1767 		if (ptype->type != type)
1768 			continue;
1769 		if (pt_prev)
1770 			deliver_skb(skb, pt_prev, orig_dev);
1771 		pt_prev = ptype;
1772 	}
1773 	*pt = pt_prev;
1774 }
1775 
1776 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1777 {
1778 	if (!ptype->af_packet_priv || !skb->sk)
1779 		return false;
1780 
1781 	if (ptype->id_match)
1782 		return ptype->id_match(ptype, skb->sk);
1783 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1784 		return true;
1785 
1786 	return false;
1787 }
1788 
1789 /*
1790  *	Support routine. Sends outgoing frames to any network
1791  *	taps currently in use.
1792  */
1793 
1794 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1795 {
1796 	struct packet_type *ptype;
1797 	struct sk_buff *skb2 = NULL;
1798 	struct packet_type *pt_prev = NULL;
1799 	struct list_head *ptype_list = &ptype_all;
1800 
1801 	rcu_read_lock();
1802 again:
1803 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1804 		/* Never send packets back to the socket
1805 		 * they originated from - MvS (miquels@drinkel.ow.org)
1806 		 */
1807 		if (skb_loop_sk(ptype, skb))
1808 			continue;
1809 
1810 		if (pt_prev) {
1811 			deliver_skb(skb2, pt_prev, skb->dev);
1812 			pt_prev = ptype;
1813 			continue;
1814 		}
1815 
1816 		/* need to clone skb, done only once */
1817 		skb2 = skb_clone(skb, GFP_ATOMIC);
1818 		if (!skb2)
1819 			goto out_unlock;
1820 
1821 		net_timestamp_set(skb2);
1822 
1823 		/* skb->nh should be correctly
1824 		 * set by sender, so that the second statement is
1825 		 * just protection against buggy protocols.
1826 		 */
1827 		skb_reset_mac_header(skb2);
1828 
1829 		if (skb_network_header(skb2) < skb2->data ||
1830 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1831 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1832 					     ntohs(skb2->protocol),
1833 					     dev->name);
1834 			skb_reset_network_header(skb2);
1835 		}
1836 
1837 		skb2->transport_header = skb2->network_header;
1838 		skb2->pkt_type = PACKET_OUTGOING;
1839 		pt_prev = ptype;
1840 	}
1841 
1842 	if (ptype_list == &ptype_all) {
1843 		ptype_list = &dev->ptype_all;
1844 		goto again;
1845 	}
1846 out_unlock:
1847 	if (pt_prev)
1848 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1849 	rcu_read_unlock();
1850 }
1851 
1852 /**
1853  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1854  * @dev: Network device
1855  * @txq: number of queues available
1856  *
1857  * If real_num_tx_queues is changed the tc mappings may no longer be
1858  * valid. To resolve this verify the tc mapping remains valid and if
1859  * not NULL the mapping. With no priorities mapping to this
1860  * offset/count pair it will no longer be used. In the worst case TC0
1861  * is invalid nothing can be done so disable priority mappings. If is
1862  * expected that drivers will fix this mapping if they can before
1863  * calling netif_set_real_num_tx_queues.
1864  */
1865 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1866 {
1867 	int i;
1868 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1869 
1870 	/* If TC0 is invalidated disable TC mapping */
1871 	if (tc->offset + tc->count > txq) {
1872 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1873 		dev->num_tc = 0;
1874 		return;
1875 	}
1876 
1877 	/* Invalidated prio to tc mappings set to TC0 */
1878 	for (i = 1; i < TC_BITMASK + 1; i++) {
1879 		int q = netdev_get_prio_tc_map(dev, i);
1880 
1881 		tc = &dev->tc_to_txq[q];
1882 		if (tc->offset + tc->count > txq) {
1883 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1884 				i, q);
1885 			netdev_set_prio_tc_map(dev, i, 0);
1886 		}
1887 	}
1888 }
1889 
1890 #ifdef CONFIG_XPS
1891 static DEFINE_MUTEX(xps_map_mutex);
1892 #define xmap_dereference(P)		\
1893 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1894 
1895 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1896 					int cpu, u16 index)
1897 {
1898 	struct xps_map *map = NULL;
1899 	int pos;
1900 
1901 	if (dev_maps)
1902 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1903 
1904 	for (pos = 0; map && pos < map->len; pos++) {
1905 		if (map->queues[pos] == index) {
1906 			if (map->len > 1) {
1907 				map->queues[pos] = map->queues[--map->len];
1908 			} else {
1909 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1910 				kfree_rcu(map, rcu);
1911 				map = NULL;
1912 			}
1913 			break;
1914 		}
1915 	}
1916 
1917 	return map;
1918 }
1919 
1920 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1921 {
1922 	struct xps_dev_maps *dev_maps;
1923 	int cpu, i;
1924 	bool active = false;
1925 
1926 	mutex_lock(&xps_map_mutex);
1927 	dev_maps = xmap_dereference(dev->xps_maps);
1928 
1929 	if (!dev_maps)
1930 		goto out_no_maps;
1931 
1932 	for_each_possible_cpu(cpu) {
1933 		for (i = index; i < dev->num_tx_queues; i++) {
1934 			if (!remove_xps_queue(dev_maps, cpu, i))
1935 				break;
1936 		}
1937 		if (i == dev->num_tx_queues)
1938 			active = true;
1939 	}
1940 
1941 	if (!active) {
1942 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1943 		kfree_rcu(dev_maps, rcu);
1944 	}
1945 
1946 	for (i = index; i < dev->num_tx_queues; i++)
1947 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1948 					     NUMA_NO_NODE);
1949 
1950 out_no_maps:
1951 	mutex_unlock(&xps_map_mutex);
1952 }
1953 
1954 static struct xps_map *expand_xps_map(struct xps_map *map,
1955 				      int cpu, u16 index)
1956 {
1957 	struct xps_map *new_map;
1958 	int alloc_len = XPS_MIN_MAP_ALLOC;
1959 	int i, pos;
1960 
1961 	for (pos = 0; map && pos < map->len; pos++) {
1962 		if (map->queues[pos] != index)
1963 			continue;
1964 		return map;
1965 	}
1966 
1967 	/* Need to add queue to this CPU's existing map */
1968 	if (map) {
1969 		if (pos < map->alloc_len)
1970 			return map;
1971 
1972 		alloc_len = map->alloc_len * 2;
1973 	}
1974 
1975 	/* Need to allocate new map to store queue on this CPU's map */
1976 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1977 			       cpu_to_node(cpu));
1978 	if (!new_map)
1979 		return NULL;
1980 
1981 	for (i = 0; i < pos; i++)
1982 		new_map->queues[i] = map->queues[i];
1983 	new_map->alloc_len = alloc_len;
1984 	new_map->len = pos;
1985 
1986 	return new_map;
1987 }
1988 
1989 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1990 			u16 index)
1991 {
1992 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1993 	struct xps_map *map, *new_map;
1994 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1995 	int cpu, numa_node_id = -2;
1996 	bool active = false;
1997 
1998 	mutex_lock(&xps_map_mutex);
1999 
2000 	dev_maps = xmap_dereference(dev->xps_maps);
2001 
2002 	/* allocate memory for queue storage */
2003 	for_each_online_cpu(cpu) {
2004 		if (!cpumask_test_cpu(cpu, mask))
2005 			continue;
2006 
2007 		if (!new_dev_maps)
2008 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2009 		if (!new_dev_maps) {
2010 			mutex_unlock(&xps_map_mutex);
2011 			return -ENOMEM;
2012 		}
2013 
2014 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2015 				 NULL;
2016 
2017 		map = expand_xps_map(map, cpu, index);
2018 		if (!map)
2019 			goto error;
2020 
2021 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2022 	}
2023 
2024 	if (!new_dev_maps)
2025 		goto out_no_new_maps;
2026 
2027 	for_each_possible_cpu(cpu) {
2028 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2029 			/* add queue to CPU maps */
2030 			int pos = 0;
2031 
2032 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2033 			while ((pos < map->len) && (map->queues[pos] != index))
2034 				pos++;
2035 
2036 			if (pos == map->len)
2037 				map->queues[map->len++] = index;
2038 #ifdef CONFIG_NUMA
2039 			if (numa_node_id == -2)
2040 				numa_node_id = cpu_to_node(cpu);
2041 			else if (numa_node_id != cpu_to_node(cpu))
2042 				numa_node_id = -1;
2043 #endif
2044 		} else if (dev_maps) {
2045 			/* fill in the new device map from the old device map */
2046 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2047 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2048 		}
2049 
2050 	}
2051 
2052 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2053 
2054 	/* Cleanup old maps */
2055 	if (dev_maps) {
2056 		for_each_possible_cpu(cpu) {
2057 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2058 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2059 			if (map && map != new_map)
2060 				kfree_rcu(map, rcu);
2061 		}
2062 
2063 		kfree_rcu(dev_maps, rcu);
2064 	}
2065 
2066 	dev_maps = new_dev_maps;
2067 	active = true;
2068 
2069 out_no_new_maps:
2070 	/* update Tx queue numa node */
2071 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2072 				     (numa_node_id >= 0) ? numa_node_id :
2073 				     NUMA_NO_NODE);
2074 
2075 	if (!dev_maps)
2076 		goto out_no_maps;
2077 
2078 	/* removes queue from unused CPUs */
2079 	for_each_possible_cpu(cpu) {
2080 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2081 			continue;
2082 
2083 		if (remove_xps_queue(dev_maps, cpu, index))
2084 			active = true;
2085 	}
2086 
2087 	/* free map if not active */
2088 	if (!active) {
2089 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2090 		kfree_rcu(dev_maps, rcu);
2091 	}
2092 
2093 out_no_maps:
2094 	mutex_unlock(&xps_map_mutex);
2095 
2096 	return 0;
2097 error:
2098 	/* remove any maps that we added */
2099 	for_each_possible_cpu(cpu) {
2100 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2101 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2102 				 NULL;
2103 		if (new_map && new_map != map)
2104 			kfree(new_map);
2105 	}
2106 
2107 	mutex_unlock(&xps_map_mutex);
2108 
2109 	kfree(new_dev_maps);
2110 	return -ENOMEM;
2111 }
2112 EXPORT_SYMBOL(netif_set_xps_queue);
2113 
2114 #endif
2115 /*
2116  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2117  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2118  */
2119 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2120 {
2121 	int rc;
2122 
2123 	if (txq < 1 || txq > dev->num_tx_queues)
2124 		return -EINVAL;
2125 
2126 	if (dev->reg_state == NETREG_REGISTERED ||
2127 	    dev->reg_state == NETREG_UNREGISTERING) {
2128 		ASSERT_RTNL();
2129 
2130 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2131 						  txq);
2132 		if (rc)
2133 			return rc;
2134 
2135 		if (dev->num_tc)
2136 			netif_setup_tc(dev, txq);
2137 
2138 		if (txq < dev->real_num_tx_queues) {
2139 			qdisc_reset_all_tx_gt(dev, txq);
2140 #ifdef CONFIG_XPS
2141 			netif_reset_xps_queues_gt(dev, txq);
2142 #endif
2143 		}
2144 	}
2145 
2146 	dev->real_num_tx_queues = txq;
2147 	return 0;
2148 }
2149 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2150 
2151 #ifdef CONFIG_SYSFS
2152 /**
2153  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2154  *	@dev: Network device
2155  *	@rxq: Actual number of RX queues
2156  *
2157  *	This must be called either with the rtnl_lock held or before
2158  *	registration of the net device.  Returns 0 on success, or a
2159  *	negative error code.  If called before registration, it always
2160  *	succeeds.
2161  */
2162 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2163 {
2164 	int rc;
2165 
2166 	if (rxq < 1 || rxq > dev->num_rx_queues)
2167 		return -EINVAL;
2168 
2169 	if (dev->reg_state == NETREG_REGISTERED) {
2170 		ASSERT_RTNL();
2171 
2172 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2173 						  rxq);
2174 		if (rc)
2175 			return rc;
2176 	}
2177 
2178 	dev->real_num_rx_queues = rxq;
2179 	return 0;
2180 }
2181 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2182 #endif
2183 
2184 /**
2185  * netif_get_num_default_rss_queues - default number of RSS queues
2186  *
2187  * This routine should set an upper limit on the number of RSS queues
2188  * used by default by multiqueue devices.
2189  */
2190 int netif_get_num_default_rss_queues(void)
2191 {
2192 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2193 }
2194 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2195 
2196 static inline void __netif_reschedule(struct Qdisc *q)
2197 {
2198 	struct softnet_data *sd;
2199 	unsigned long flags;
2200 
2201 	local_irq_save(flags);
2202 	sd = this_cpu_ptr(&softnet_data);
2203 	q->next_sched = NULL;
2204 	*sd->output_queue_tailp = q;
2205 	sd->output_queue_tailp = &q->next_sched;
2206 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2207 	local_irq_restore(flags);
2208 }
2209 
2210 void __netif_schedule(struct Qdisc *q)
2211 {
2212 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2213 		__netif_reschedule(q);
2214 }
2215 EXPORT_SYMBOL(__netif_schedule);
2216 
2217 struct dev_kfree_skb_cb {
2218 	enum skb_free_reason reason;
2219 };
2220 
2221 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2222 {
2223 	return (struct dev_kfree_skb_cb *)skb->cb;
2224 }
2225 
2226 void netif_schedule_queue(struct netdev_queue *txq)
2227 {
2228 	rcu_read_lock();
2229 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2230 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2231 
2232 		__netif_schedule(q);
2233 	}
2234 	rcu_read_unlock();
2235 }
2236 EXPORT_SYMBOL(netif_schedule_queue);
2237 
2238 /**
2239  *	netif_wake_subqueue - allow sending packets on subqueue
2240  *	@dev: network device
2241  *	@queue_index: sub queue index
2242  *
2243  * Resume individual transmit queue of a device with multiple transmit queues.
2244  */
2245 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2246 {
2247 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2248 
2249 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2250 		struct Qdisc *q;
2251 
2252 		rcu_read_lock();
2253 		q = rcu_dereference(txq->qdisc);
2254 		__netif_schedule(q);
2255 		rcu_read_unlock();
2256 	}
2257 }
2258 EXPORT_SYMBOL(netif_wake_subqueue);
2259 
2260 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2261 {
2262 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2263 		struct Qdisc *q;
2264 
2265 		rcu_read_lock();
2266 		q = rcu_dereference(dev_queue->qdisc);
2267 		__netif_schedule(q);
2268 		rcu_read_unlock();
2269 	}
2270 }
2271 EXPORT_SYMBOL(netif_tx_wake_queue);
2272 
2273 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2274 {
2275 	unsigned long flags;
2276 
2277 	if (likely(atomic_read(&skb->users) == 1)) {
2278 		smp_rmb();
2279 		atomic_set(&skb->users, 0);
2280 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2281 		return;
2282 	}
2283 	get_kfree_skb_cb(skb)->reason = reason;
2284 	local_irq_save(flags);
2285 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2286 	__this_cpu_write(softnet_data.completion_queue, skb);
2287 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2288 	local_irq_restore(flags);
2289 }
2290 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2291 
2292 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2293 {
2294 	if (in_irq() || irqs_disabled())
2295 		__dev_kfree_skb_irq(skb, reason);
2296 	else
2297 		dev_kfree_skb(skb);
2298 }
2299 EXPORT_SYMBOL(__dev_kfree_skb_any);
2300 
2301 
2302 /**
2303  * netif_device_detach - mark device as removed
2304  * @dev: network device
2305  *
2306  * Mark device as removed from system and therefore no longer available.
2307  */
2308 void netif_device_detach(struct net_device *dev)
2309 {
2310 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2311 	    netif_running(dev)) {
2312 		netif_tx_stop_all_queues(dev);
2313 	}
2314 }
2315 EXPORT_SYMBOL(netif_device_detach);
2316 
2317 /**
2318  * netif_device_attach - mark device as attached
2319  * @dev: network device
2320  *
2321  * Mark device as attached from system and restart if needed.
2322  */
2323 void netif_device_attach(struct net_device *dev)
2324 {
2325 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2326 	    netif_running(dev)) {
2327 		netif_tx_wake_all_queues(dev);
2328 		__netdev_watchdog_up(dev);
2329 	}
2330 }
2331 EXPORT_SYMBOL(netif_device_attach);
2332 
2333 static void skb_warn_bad_offload(const struct sk_buff *skb)
2334 {
2335 	static const netdev_features_t null_features = 0;
2336 	struct net_device *dev = skb->dev;
2337 	const char *driver = "";
2338 
2339 	if (!net_ratelimit())
2340 		return;
2341 
2342 	if (dev && dev->dev.parent)
2343 		driver = dev_driver_string(dev->dev.parent);
2344 
2345 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2346 	     "gso_type=%d ip_summed=%d\n",
2347 	     driver, dev ? &dev->features : &null_features,
2348 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2349 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2350 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2351 }
2352 
2353 /*
2354  * Invalidate hardware checksum when packet is to be mangled, and
2355  * complete checksum manually on outgoing path.
2356  */
2357 int skb_checksum_help(struct sk_buff *skb)
2358 {
2359 	__wsum csum;
2360 	int ret = 0, offset;
2361 
2362 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2363 		goto out_set_summed;
2364 
2365 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2366 		skb_warn_bad_offload(skb);
2367 		return -EINVAL;
2368 	}
2369 
2370 	/* Before computing a checksum, we should make sure no frag could
2371 	 * be modified by an external entity : checksum could be wrong.
2372 	 */
2373 	if (skb_has_shared_frag(skb)) {
2374 		ret = __skb_linearize(skb);
2375 		if (ret)
2376 			goto out;
2377 	}
2378 
2379 	offset = skb_checksum_start_offset(skb);
2380 	BUG_ON(offset >= skb_headlen(skb));
2381 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2382 
2383 	offset += skb->csum_offset;
2384 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2385 
2386 	if (skb_cloned(skb) &&
2387 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2388 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2389 		if (ret)
2390 			goto out;
2391 	}
2392 
2393 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2394 out_set_summed:
2395 	skb->ip_summed = CHECKSUM_NONE;
2396 out:
2397 	return ret;
2398 }
2399 EXPORT_SYMBOL(skb_checksum_help);
2400 
2401 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2402 {
2403 	__be16 type = skb->protocol;
2404 
2405 	/* Tunnel gso handlers can set protocol to ethernet. */
2406 	if (type == htons(ETH_P_TEB)) {
2407 		struct ethhdr *eth;
2408 
2409 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2410 			return 0;
2411 
2412 		eth = (struct ethhdr *)skb_mac_header(skb);
2413 		type = eth->h_proto;
2414 	}
2415 
2416 	return __vlan_get_protocol(skb, type, depth);
2417 }
2418 
2419 /**
2420  *	skb_mac_gso_segment - mac layer segmentation handler.
2421  *	@skb: buffer to segment
2422  *	@features: features for the output path (see dev->features)
2423  */
2424 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2425 				    netdev_features_t features)
2426 {
2427 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2428 	struct packet_offload *ptype;
2429 	int vlan_depth = skb->mac_len;
2430 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2431 
2432 	if (unlikely(!type))
2433 		return ERR_PTR(-EINVAL);
2434 
2435 	__skb_pull(skb, vlan_depth);
2436 
2437 	rcu_read_lock();
2438 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2439 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2440 			segs = ptype->callbacks.gso_segment(skb, features);
2441 			break;
2442 		}
2443 	}
2444 	rcu_read_unlock();
2445 
2446 	__skb_push(skb, skb->data - skb_mac_header(skb));
2447 
2448 	return segs;
2449 }
2450 EXPORT_SYMBOL(skb_mac_gso_segment);
2451 
2452 
2453 /* openvswitch calls this on rx path, so we need a different check.
2454  */
2455 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2456 {
2457 	if (tx_path)
2458 		return skb->ip_summed != CHECKSUM_PARTIAL;
2459 	else
2460 		return skb->ip_summed == CHECKSUM_NONE;
2461 }
2462 
2463 /**
2464  *	__skb_gso_segment - Perform segmentation on skb.
2465  *	@skb: buffer to segment
2466  *	@features: features for the output path (see dev->features)
2467  *	@tx_path: whether it is called in TX path
2468  *
2469  *	This function segments the given skb and returns a list of segments.
2470  *
2471  *	It may return NULL if the skb requires no segmentation.  This is
2472  *	only possible when GSO is used for verifying header integrity.
2473  */
2474 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2475 				  netdev_features_t features, bool tx_path)
2476 {
2477 	if (unlikely(skb_needs_check(skb, tx_path))) {
2478 		int err;
2479 
2480 		skb_warn_bad_offload(skb);
2481 
2482 		err = skb_cow_head(skb, 0);
2483 		if (err < 0)
2484 			return ERR_PTR(err);
2485 	}
2486 
2487 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2488 	SKB_GSO_CB(skb)->encap_level = 0;
2489 
2490 	skb_reset_mac_header(skb);
2491 	skb_reset_mac_len(skb);
2492 
2493 	return skb_mac_gso_segment(skb, features);
2494 }
2495 EXPORT_SYMBOL(__skb_gso_segment);
2496 
2497 /* Take action when hardware reception checksum errors are detected. */
2498 #ifdef CONFIG_BUG
2499 void netdev_rx_csum_fault(struct net_device *dev)
2500 {
2501 	if (net_ratelimit()) {
2502 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2503 		dump_stack();
2504 	}
2505 }
2506 EXPORT_SYMBOL(netdev_rx_csum_fault);
2507 #endif
2508 
2509 /* Actually, we should eliminate this check as soon as we know, that:
2510  * 1. IOMMU is present and allows to map all the memory.
2511  * 2. No high memory really exists on this machine.
2512  */
2513 
2514 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2515 {
2516 #ifdef CONFIG_HIGHMEM
2517 	int i;
2518 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2519 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2520 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2521 			if (PageHighMem(skb_frag_page(frag)))
2522 				return 1;
2523 		}
2524 	}
2525 
2526 	if (PCI_DMA_BUS_IS_PHYS) {
2527 		struct device *pdev = dev->dev.parent;
2528 
2529 		if (!pdev)
2530 			return 0;
2531 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2532 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2533 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2534 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2535 				return 1;
2536 		}
2537 	}
2538 #endif
2539 	return 0;
2540 }
2541 
2542 /* If MPLS offload request, verify we are testing hardware MPLS features
2543  * instead of standard features for the netdev.
2544  */
2545 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2546 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2547 					   netdev_features_t features,
2548 					   __be16 type)
2549 {
2550 	if (eth_p_mpls(type))
2551 		features &= skb->dev->mpls_features;
2552 
2553 	return features;
2554 }
2555 #else
2556 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2557 					   netdev_features_t features,
2558 					   __be16 type)
2559 {
2560 	return features;
2561 }
2562 #endif
2563 
2564 static netdev_features_t harmonize_features(struct sk_buff *skb,
2565 	netdev_features_t features)
2566 {
2567 	int tmp;
2568 	__be16 type;
2569 
2570 	type = skb_network_protocol(skb, &tmp);
2571 	features = net_mpls_features(skb, features, type);
2572 
2573 	if (skb->ip_summed != CHECKSUM_NONE &&
2574 	    !can_checksum_protocol(features, type)) {
2575 		features &= ~NETIF_F_ALL_CSUM;
2576 	} else if (illegal_highdma(skb->dev, skb)) {
2577 		features &= ~NETIF_F_SG;
2578 	}
2579 
2580 	return features;
2581 }
2582 
2583 netdev_features_t passthru_features_check(struct sk_buff *skb,
2584 					  struct net_device *dev,
2585 					  netdev_features_t features)
2586 {
2587 	return features;
2588 }
2589 EXPORT_SYMBOL(passthru_features_check);
2590 
2591 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2592 					     struct net_device *dev,
2593 					     netdev_features_t features)
2594 {
2595 	return vlan_features_check(skb, features);
2596 }
2597 
2598 netdev_features_t netif_skb_features(struct sk_buff *skb)
2599 {
2600 	struct net_device *dev = skb->dev;
2601 	netdev_features_t features = dev->features;
2602 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2603 
2604 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2605 		features &= ~NETIF_F_GSO_MASK;
2606 
2607 	/* If encapsulation offload request, verify we are testing
2608 	 * hardware encapsulation features instead of standard
2609 	 * features for the netdev
2610 	 */
2611 	if (skb->encapsulation)
2612 		features &= dev->hw_enc_features;
2613 
2614 	if (skb_vlan_tagged(skb))
2615 		features = netdev_intersect_features(features,
2616 						     dev->vlan_features |
2617 						     NETIF_F_HW_VLAN_CTAG_TX |
2618 						     NETIF_F_HW_VLAN_STAG_TX);
2619 
2620 	if (dev->netdev_ops->ndo_features_check)
2621 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2622 								features);
2623 	else
2624 		features &= dflt_features_check(skb, dev, features);
2625 
2626 	return harmonize_features(skb, features);
2627 }
2628 EXPORT_SYMBOL(netif_skb_features);
2629 
2630 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2631 		    struct netdev_queue *txq, bool more)
2632 {
2633 	unsigned int len;
2634 	int rc;
2635 
2636 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2637 		dev_queue_xmit_nit(skb, dev);
2638 
2639 	len = skb->len;
2640 	trace_net_dev_start_xmit(skb, dev);
2641 	rc = netdev_start_xmit(skb, dev, txq, more);
2642 	trace_net_dev_xmit(skb, rc, dev, len);
2643 
2644 	return rc;
2645 }
2646 
2647 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2648 				    struct netdev_queue *txq, int *ret)
2649 {
2650 	struct sk_buff *skb = first;
2651 	int rc = NETDEV_TX_OK;
2652 
2653 	while (skb) {
2654 		struct sk_buff *next = skb->next;
2655 
2656 		skb->next = NULL;
2657 		rc = xmit_one(skb, dev, txq, next != NULL);
2658 		if (unlikely(!dev_xmit_complete(rc))) {
2659 			skb->next = next;
2660 			goto out;
2661 		}
2662 
2663 		skb = next;
2664 		if (netif_xmit_stopped(txq) && skb) {
2665 			rc = NETDEV_TX_BUSY;
2666 			break;
2667 		}
2668 	}
2669 
2670 out:
2671 	*ret = rc;
2672 	return skb;
2673 }
2674 
2675 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2676 					  netdev_features_t features)
2677 {
2678 	if (skb_vlan_tag_present(skb) &&
2679 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2680 		skb = __vlan_hwaccel_push_inside(skb);
2681 	return skb;
2682 }
2683 
2684 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2685 {
2686 	netdev_features_t features;
2687 
2688 	if (skb->next)
2689 		return skb;
2690 
2691 	features = netif_skb_features(skb);
2692 	skb = validate_xmit_vlan(skb, features);
2693 	if (unlikely(!skb))
2694 		goto out_null;
2695 
2696 	if (netif_needs_gso(dev, skb, features)) {
2697 		struct sk_buff *segs;
2698 
2699 		segs = skb_gso_segment(skb, features);
2700 		if (IS_ERR(segs)) {
2701 			goto out_kfree_skb;
2702 		} else if (segs) {
2703 			consume_skb(skb);
2704 			skb = segs;
2705 		}
2706 	} else {
2707 		if (skb_needs_linearize(skb, features) &&
2708 		    __skb_linearize(skb))
2709 			goto out_kfree_skb;
2710 
2711 		/* If packet is not checksummed and device does not
2712 		 * support checksumming for this protocol, complete
2713 		 * checksumming here.
2714 		 */
2715 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2716 			if (skb->encapsulation)
2717 				skb_set_inner_transport_header(skb,
2718 							       skb_checksum_start_offset(skb));
2719 			else
2720 				skb_set_transport_header(skb,
2721 							 skb_checksum_start_offset(skb));
2722 			if (!(features & NETIF_F_ALL_CSUM) &&
2723 			    skb_checksum_help(skb))
2724 				goto out_kfree_skb;
2725 		}
2726 	}
2727 
2728 	return skb;
2729 
2730 out_kfree_skb:
2731 	kfree_skb(skb);
2732 out_null:
2733 	return NULL;
2734 }
2735 
2736 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2737 {
2738 	struct sk_buff *next, *head = NULL, *tail;
2739 
2740 	for (; skb != NULL; skb = next) {
2741 		next = skb->next;
2742 		skb->next = NULL;
2743 
2744 		/* in case skb wont be segmented, point to itself */
2745 		skb->prev = skb;
2746 
2747 		skb = validate_xmit_skb(skb, dev);
2748 		if (!skb)
2749 			continue;
2750 
2751 		if (!head)
2752 			head = skb;
2753 		else
2754 			tail->next = skb;
2755 		/* If skb was segmented, skb->prev points to
2756 		 * the last segment. If not, it still contains skb.
2757 		 */
2758 		tail = skb->prev;
2759 	}
2760 	return head;
2761 }
2762 
2763 static void qdisc_pkt_len_init(struct sk_buff *skb)
2764 {
2765 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2766 
2767 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2768 
2769 	/* To get more precise estimation of bytes sent on wire,
2770 	 * we add to pkt_len the headers size of all segments
2771 	 */
2772 	if (shinfo->gso_size)  {
2773 		unsigned int hdr_len;
2774 		u16 gso_segs = shinfo->gso_segs;
2775 
2776 		/* mac layer + network layer */
2777 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2778 
2779 		/* + transport layer */
2780 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2781 			hdr_len += tcp_hdrlen(skb);
2782 		else
2783 			hdr_len += sizeof(struct udphdr);
2784 
2785 		if (shinfo->gso_type & SKB_GSO_DODGY)
2786 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2787 						shinfo->gso_size);
2788 
2789 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2790 	}
2791 }
2792 
2793 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2794 				 struct net_device *dev,
2795 				 struct netdev_queue *txq)
2796 {
2797 	spinlock_t *root_lock = qdisc_lock(q);
2798 	bool contended;
2799 	int rc;
2800 
2801 	qdisc_pkt_len_init(skb);
2802 	qdisc_calculate_pkt_len(skb, q);
2803 	/*
2804 	 * Heuristic to force contended enqueues to serialize on a
2805 	 * separate lock before trying to get qdisc main lock.
2806 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2807 	 * often and dequeue packets faster.
2808 	 */
2809 	contended = qdisc_is_running(q);
2810 	if (unlikely(contended))
2811 		spin_lock(&q->busylock);
2812 
2813 	spin_lock(root_lock);
2814 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2815 		kfree_skb(skb);
2816 		rc = NET_XMIT_DROP;
2817 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2818 		   qdisc_run_begin(q)) {
2819 		/*
2820 		 * This is a work-conserving queue; there are no old skbs
2821 		 * waiting to be sent out; and the qdisc is not running -
2822 		 * xmit the skb directly.
2823 		 */
2824 
2825 		qdisc_bstats_update(q, skb);
2826 
2827 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2828 			if (unlikely(contended)) {
2829 				spin_unlock(&q->busylock);
2830 				contended = false;
2831 			}
2832 			__qdisc_run(q);
2833 		} else
2834 			qdisc_run_end(q);
2835 
2836 		rc = NET_XMIT_SUCCESS;
2837 	} else {
2838 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2839 		if (qdisc_run_begin(q)) {
2840 			if (unlikely(contended)) {
2841 				spin_unlock(&q->busylock);
2842 				contended = false;
2843 			}
2844 			__qdisc_run(q);
2845 		}
2846 	}
2847 	spin_unlock(root_lock);
2848 	if (unlikely(contended))
2849 		spin_unlock(&q->busylock);
2850 	return rc;
2851 }
2852 
2853 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2854 static void skb_update_prio(struct sk_buff *skb)
2855 {
2856 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2857 
2858 	if (!skb->priority && skb->sk && map) {
2859 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2860 
2861 		if (prioidx < map->priomap_len)
2862 			skb->priority = map->priomap[prioidx];
2863 	}
2864 }
2865 #else
2866 #define skb_update_prio(skb)
2867 #endif
2868 
2869 static DEFINE_PER_CPU(int, xmit_recursion);
2870 #define RECURSION_LIMIT 10
2871 
2872 /**
2873  *	dev_loopback_xmit - loop back @skb
2874  *	@skb: buffer to transmit
2875  */
2876 int dev_loopback_xmit(struct sk_buff *skb)
2877 {
2878 	skb_reset_mac_header(skb);
2879 	__skb_pull(skb, skb_network_offset(skb));
2880 	skb->pkt_type = PACKET_LOOPBACK;
2881 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2882 	WARN_ON(!skb_dst(skb));
2883 	skb_dst_force(skb);
2884 	netif_rx_ni(skb);
2885 	return 0;
2886 }
2887 EXPORT_SYMBOL(dev_loopback_xmit);
2888 
2889 /**
2890  *	__dev_queue_xmit - transmit a buffer
2891  *	@skb: buffer to transmit
2892  *	@accel_priv: private data used for L2 forwarding offload
2893  *
2894  *	Queue a buffer for transmission to a network device. The caller must
2895  *	have set the device and priority and built the buffer before calling
2896  *	this function. The function can be called from an interrupt.
2897  *
2898  *	A negative errno code is returned on a failure. A success does not
2899  *	guarantee the frame will be transmitted as it may be dropped due
2900  *	to congestion or traffic shaping.
2901  *
2902  * -----------------------------------------------------------------------------------
2903  *      I notice this method can also return errors from the queue disciplines,
2904  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2905  *      be positive.
2906  *
2907  *      Regardless of the return value, the skb is consumed, so it is currently
2908  *      difficult to retry a send to this method.  (You can bump the ref count
2909  *      before sending to hold a reference for retry if you are careful.)
2910  *
2911  *      When calling this method, interrupts MUST be enabled.  This is because
2912  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2913  *          --BLG
2914  */
2915 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2916 {
2917 	struct net_device *dev = skb->dev;
2918 	struct netdev_queue *txq;
2919 	struct Qdisc *q;
2920 	int rc = -ENOMEM;
2921 
2922 	skb_reset_mac_header(skb);
2923 
2924 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2925 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2926 
2927 	/* Disable soft irqs for various locks below. Also
2928 	 * stops preemption for RCU.
2929 	 */
2930 	rcu_read_lock_bh();
2931 
2932 	skb_update_prio(skb);
2933 
2934 	/* If device/qdisc don't need skb->dst, release it right now while
2935 	 * its hot in this cpu cache.
2936 	 */
2937 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2938 		skb_dst_drop(skb);
2939 	else
2940 		skb_dst_force(skb);
2941 
2942 	txq = netdev_pick_tx(dev, skb, accel_priv);
2943 	q = rcu_dereference_bh(txq->qdisc);
2944 
2945 #ifdef CONFIG_NET_CLS_ACT
2946 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2947 #endif
2948 	trace_net_dev_queue(skb);
2949 	if (q->enqueue) {
2950 		rc = __dev_xmit_skb(skb, q, dev, txq);
2951 		goto out;
2952 	}
2953 
2954 	/* The device has no queue. Common case for software devices:
2955 	   loopback, all the sorts of tunnels...
2956 
2957 	   Really, it is unlikely that netif_tx_lock protection is necessary
2958 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2959 	   counters.)
2960 	   However, it is possible, that they rely on protection
2961 	   made by us here.
2962 
2963 	   Check this and shot the lock. It is not prone from deadlocks.
2964 	   Either shot noqueue qdisc, it is even simpler 8)
2965 	 */
2966 	if (dev->flags & IFF_UP) {
2967 		int cpu = smp_processor_id(); /* ok because BHs are off */
2968 
2969 		if (txq->xmit_lock_owner != cpu) {
2970 
2971 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2972 				goto recursion_alert;
2973 
2974 			skb = validate_xmit_skb(skb, dev);
2975 			if (!skb)
2976 				goto drop;
2977 
2978 			HARD_TX_LOCK(dev, txq, cpu);
2979 
2980 			if (!netif_xmit_stopped(txq)) {
2981 				__this_cpu_inc(xmit_recursion);
2982 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2983 				__this_cpu_dec(xmit_recursion);
2984 				if (dev_xmit_complete(rc)) {
2985 					HARD_TX_UNLOCK(dev, txq);
2986 					goto out;
2987 				}
2988 			}
2989 			HARD_TX_UNLOCK(dev, txq);
2990 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2991 					     dev->name);
2992 		} else {
2993 			/* Recursion is detected! It is possible,
2994 			 * unfortunately
2995 			 */
2996 recursion_alert:
2997 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2998 					     dev->name);
2999 		}
3000 	}
3001 
3002 	rc = -ENETDOWN;
3003 drop:
3004 	rcu_read_unlock_bh();
3005 
3006 	atomic_long_inc(&dev->tx_dropped);
3007 	kfree_skb_list(skb);
3008 	return rc;
3009 out:
3010 	rcu_read_unlock_bh();
3011 	return rc;
3012 }
3013 
3014 int dev_queue_xmit(struct sk_buff *skb)
3015 {
3016 	return __dev_queue_xmit(skb, NULL);
3017 }
3018 EXPORT_SYMBOL(dev_queue_xmit);
3019 
3020 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3021 {
3022 	return __dev_queue_xmit(skb, accel_priv);
3023 }
3024 EXPORT_SYMBOL(dev_queue_xmit_accel);
3025 
3026 
3027 /*=======================================================================
3028 			Receiver routines
3029   =======================================================================*/
3030 
3031 int netdev_max_backlog __read_mostly = 1000;
3032 EXPORT_SYMBOL(netdev_max_backlog);
3033 
3034 int netdev_tstamp_prequeue __read_mostly = 1;
3035 int netdev_budget __read_mostly = 300;
3036 int weight_p __read_mostly = 64;            /* old backlog weight */
3037 
3038 /* Called with irq disabled */
3039 static inline void ____napi_schedule(struct softnet_data *sd,
3040 				     struct napi_struct *napi)
3041 {
3042 	list_add_tail(&napi->poll_list, &sd->poll_list);
3043 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3044 }
3045 
3046 #ifdef CONFIG_RPS
3047 
3048 /* One global table that all flow-based protocols share. */
3049 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3050 EXPORT_SYMBOL(rps_sock_flow_table);
3051 u32 rps_cpu_mask __read_mostly;
3052 EXPORT_SYMBOL(rps_cpu_mask);
3053 
3054 struct static_key rps_needed __read_mostly;
3055 
3056 static struct rps_dev_flow *
3057 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3058 	    struct rps_dev_flow *rflow, u16 next_cpu)
3059 {
3060 	if (next_cpu != RPS_NO_CPU) {
3061 #ifdef CONFIG_RFS_ACCEL
3062 		struct netdev_rx_queue *rxqueue;
3063 		struct rps_dev_flow_table *flow_table;
3064 		struct rps_dev_flow *old_rflow;
3065 		u32 flow_id;
3066 		u16 rxq_index;
3067 		int rc;
3068 
3069 		/* Should we steer this flow to a different hardware queue? */
3070 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3071 		    !(dev->features & NETIF_F_NTUPLE))
3072 			goto out;
3073 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3074 		if (rxq_index == skb_get_rx_queue(skb))
3075 			goto out;
3076 
3077 		rxqueue = dev->_rx + rxq_index;
3078 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3079 		if (!flow_table)
3080 			goto out;
3081 		flow_id = skb_get_hash(skb) & flow_table->mask;
3082 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3083 							rxq_index, flow_id);
3084 		if (rc < 0)
3085 			goto out;
3086 		old_rflow = rflow;
3087 		rflow = &flow_table->flows[flow_id];
3088 		rflow->filter = rc;
3089 		if (old_rflow->filter == rflow->filter)
3090 			old_rflow->filter = RPS_NO_FILTER;
3091 	out:
3092 #endif
3093 		rflow->last_qtail =
3094 			per_cpu(softnet_data, next_cpu).input_queue_head;
3095 	}
3096 
3097 	rflow->cpu = next_cpu;
3098 	return rflow;
3099 }
3100 
3101 /*
3102  * get_rps_cpu is called from netif_receive_skb and returns the target
3103  * CPU from the RPS map of the receiving queue for a given skb.
3104  * rcu_read_lock must be held on entry.
3105  */
3106 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3107 		       struct rps_dev_flow **rflowp)
3108 {
3109 	const struct rps_sock_flow_table *sock_flow_table;
3110 	struct netdev_rx_queue *rxqueue = dev->_rx;
3111 	struct rps_dev_flow_table *flow_table;
3112 	struct rps_map *map;
3113 	int cpu = -1;
3114 	u32 tcpu;
3115 	u32 hash;
3116 
3117 	if (skb_rx_queue_recorded(skb)) {
3118 		u16 index = skb_get_rx_queue(skb);
3119 
3120 		if (unlikely(index >= dev->real_num_rx_queues)) {
3121 			WARN_ONCE(dev->real_num_rx_queues > 1,
3122 				  "%s received packet on queue %u, but number "
3123 				  "of RX queues is %u\n",
3124 				  dev->name, index, dev->real_num_rx_queues);
3125 			goto done;
3126 		}
3127 		rxqueue += index;
3128 	}
3129 
3130 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3131 
3132 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3133 	map = rcu_dereference(rxqueue->rps_map);
3134 	if (!flow_table && !map)
3135 		goto done;
3136 
3137 	skb_reset_network_header(skb);
3138 	hash = skb_get_hash(skb);
3139 	if (!hash)
3140 		goto done;
3141 
3142 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3143 	if (flow_table && sock_flow_table) {
3144 		struct rps_dev_flow *rflow;
3145 		u32 next_cpu;
3146 		u32 ident;
3147 
3148 		/* First check into global flow table if there is a match */
3149 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3150 		if ((ident ^ hash) & ~rps_cpu_mask)
3151 			goto try_rps;
3152 
3153 		next_cpu = ident & rps_cpu_mask;
3154 
3155 		/* OK, now we know there is a match,
3156 		 * we can look at the local (per receive queue) flow table
3157 		 */
3158 		rflow = &flow_table->flows[hash & flow_table->mask];
3159 		tcpu = rflow->cpu;
3160 
3161 		/*
3162 		 * If the desired CPU (where last recvmsg was done) is
3163 		 * different from current CPU (one in the rx-queue flow
3164 		 * table entry), switch if one of the following holds:
3165 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3166 		 *   - Current CPU is offline.
3167 		 *   - The current CPU's queue tail has advanced beyond the
3168 		 *     last packet that was enqueued using this table entry.
3169 		 *     This guarantees that all previous packets for the flow
3170 		 *     have been dequeued, thus preserving in order delivery.
3171 		 */
3172 		if (unlikely(tcpu != next_cpu) &&
3173 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3174 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3175 		      rflow->last_qtail)) >= 0)) {
3176 			tcpu = next_cpu;
3177 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3178 		}
3179 
3180 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3181 			*rflowp = rflow;
3182 			cpu = tcpu;
3183 			goto done;
3184 		}
3185 	}
3186 
3187 try_rps:
3188 
3189 	if (map) {
3190 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3191 		if (cpu_online(tcpu)) {
3192 			cpu = tcpu;
3193 			goto done;
3194 		}
3195 	}
3196 
3197 done:
3198 	return cpu;
3199 }
3200 
3201 #ifdef CONFIG_RFS_ACCEL
3202 
3203 /**
3204  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3205  * @dev: Device on which the filter was set
3206  * @rxq_index: RX queue index
3207  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3208  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3209  *
3210  * Drivers that implement ndo_rx_flow_steer() should periodically call
3211  * this function for each installed filter and remove the filters for
3212  * which it returns %true.
3213  */
3214 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3215 			 u32 flow_id, u16 filter_id)
3216 {
3217 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3218 	struct rps_dev_flow_table *flow_table;
3219 	struct rps_dev_flow *rflow;
3220 	bool expire = true;
3221 	int cpu;
3222 
3223 	rcu_read_lock();
3224 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3225 	if (flow_table && flow_id <= flow_table->mask) {
3226 		rflow = &flow_table->flows[flow_id];
3227 		cpu = ACCESS_ONCE(rflow->cpu);
3228 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3229 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3230 			   rflow->last_qtail) <
3231 		     (int)(10 * flow_table->mask)))
3232 			expire = false;
3233 	}
3234 	rcu_read_unlock();
3235 	return expire;
3236 }
3237 EXPORT_SYMBOL(rps_may_expire_flow);
3238 
3239 #endif /* CONFIG_RFS_ACCEL */
3240 
3241 /* Called from hardirq (IPI) context */
3242 static void rps_trigger_softirq(void *data)
3243 {
3244 	struct softnet_data *sd = data;
3245 
3246 	____napi_schedule(sd, &sd->backlog);
3247 	sd->received_rps++;
3248 }
3249 
3250 #endif /* CONFIG_RPS */
3251 
3252 /*
3253  * Check if this softnet_data structure is another cpu one
3254  * If yes, queue it to our IPI list and return 1
3255  * If no, return 0
3256  */
3257 static int rps_ipi_queued(struct softnet_data *sd)
3258 {
3259 #ifdef CONFIG_RPS
3260 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3261 
3262 	if (sd != mysd) {
3263 		sd->rps_ipi_next = mysd->rps_ipi_list;
3264 		mysd->rps_ipi_list = sd;
3265 
3266 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3267 		return 1;
3268 	}
3269 #endif /* CONFIG_RPS */
3270 	return 0;
3271 }
3272 
3273 #ifdef CONFIG_NET_FLOW_LIMIT
3274 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3275 #endif
3276 
3277 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3278 {
3279 #ifdef CONFIG_NET_FLOW_LIMIT
3280 	struct sd_flow_limit *fl;
3281 	struct softnet_data *sd;
3282 	unsigned int old_flow, new_flow;
3283 
3284 	if (qlen < (netdev_max_backlog >> 1))
3285 		return false;
3286 
3287 	sd = this_cpu_ptr(&softnet_data);
3288 
3289 	rcu_read_lock();
3290 	fl = rcu_dereference(sd->flow_limit);
3291 	if (fl) {
3292 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3293 		old_flow = fl->history[fl->history_head];
3294 		fl->history[fl->history_head] = new_flow;
3295 
3296 		fl->history_head++;
3297 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3298 
3299 		if (likely(fl->buckets[old_flow]))
3300 			fl->buckets[old_flow]--;
3301 
3302 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3303 			fl->count++;
3304 			rcu_read_unlock();
3305 			return true;
3306 		}
3307 	}
3308 	rcu_read_unlock();
3309 #endif
3310 	return false;
3311 }
3312 
3313 /*
3314  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3315  * queue (may be a remote CPU queue).
3316  */
3317 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3318 			      unsigned int *qtail)
3319 {
3320 	struct softnet_data *sd;
3321 	unsigned long flags;
3322 	unsigned int qlen;
3323 
3324 	sd = &per_cpu(softnet_data, cpu);
3325 
3326 	local_irq_save(flags);
3327 
3328 	rps_lock(sd);
3329 	qlen = skb_queue_len(&sd->input_pkt_queue);
3330 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3331 		if (qlen) {
3332 enqueue:
3333 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3334 			input_queue_tail_incr_save(sd, qtail);
3335 			rps_unlock(sd);
3336 			local_irq_restore(flags);
3337 			return NET_RX_SUCCESS;
3338 		}
3339 
3340 		/* Schedule NAPI for backlog device
3341 		 * We can use non atomic operation since we own the queue lock
3342 		 */
3343 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3344 			if (!rps_ipi_queued(sd))
3345 				____napi_schedule(sd, &sd->backlog);
3346 		}
3347 		goto enqueue;
3348 	}
3349 
3350 	sd->dropped++;
3351 	rps_unlock(sd);
3352 
3353 	local_irq_restore(flags);
3354 
3355 	atomic_long_inc(&skb->dev->rx_dropped);
3356 	kfree_skb(skb);
3357 	return NET_RX_DROP;
3358 }
3359 
3360 static int netif_rx_internal(struct sk_buff *skb)
3361 {
3362 	int ret;
3363 
3364 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3365 
3366 	trace_netif_rx(skb);
3367 #ifdef CONFIG_RPS
3368 	if (static_key_false(&rps_needed)) {
3369 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3370 		int cpu;
3371 
3372 		preempt_disable();
3373 		rcu_read_lock();
3374 
3375 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3376 		if (cpu < 0)
3377 			cpu = smp_processor_id();
3378 
3379 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3380 
3381 		rcu_read_unlock();
3382 		preempt_enable();
3383 	} else
3384 #endif
3385 	{
3386 		unsigned int qtail;
3387 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3388 		put_cpu();
3389 	}
3390 	return ret;
3391 }
3392 
3393 /**
3394  *	netif_rx	-	post buffer to the network code
3395  *	@skb: buffer to post
3396  *
3397  *	This function receives a packet from a device driver and queues it for
3398  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3399  *	may be dropped during processing for congestion control or by the
3400  *	protocol layers.
3401  *
3402  *	return values:
3403  *	NET_RX_SUCCESS	(no congestion)
3404  *	NET_RX_DROP     (packet was dropped)
3405  *
3406  */
3407 
3408 int netif_rx(struct sk_buff *skb)
3409 {
3410 	trace_netif_rx_entry(skb);
3411 
3412 	return netif_rx_internal(skb);
3413 }
3414 EXPORT_SYMBOL(netif_rx);
3415 
3416 int netif_rx_ni(struct sk_buff *skb)
3417 {
3418 	int err;
3419 
3420 	trace_netif_rx_ni_entry(skb);
3421 
3422 	preempt_disable();
3423 	err = netif_rx_internal(skb);
3424 	if (local_softirq_pending())
3425 		do_softirq();
3426 	preempt_enable();
3427 
3428 	return err;
3429 }
3430 EXPORT_SYMBOL(netif_rx_ni);
3431 
3432 static void net_tx_action(struct softirq_action *h)
3433 {
3434 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3435 
3436 	if (sd->completion_queue) {
3437 		struct sk_buff *clist;
3438 
3439 		local_irq_disable();
3440 		clist = sd->completion_queue;
3441 		sd->completion_queue = NULL;
3442 		local_irq_enable();
3443 
3444 		while (clist) {
3445 			struct sk_buff *skb = clist;
3446 			clist = clist->next;
3447 
3448 			WARN_ON(atomic_read(&skb->users));
3449 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3450 				trace_consume_skb(skb);
3451 			else
3452 				trace_kfree_skb(skb, net_tx_action);
3453 			__kfree_skb(skb);
3454 		}
3455 	}
3456 
3457 	if (sd->output_queue) {
3458 		struct Qdisc *head;
3459 
3460 		local_irq_disable();
3461 		head = sd->output_queue;
3462 		sd->output_queue = NULL;
3463 		sd->output_queue_tailp = &sd->output_queue;
3464 		local_irq_enable();
3465 
3466 		while (head) {
3467 			struct Qdisc *q = head;
3468 			spinlock_t *root_lock;
3469 
3470 			head = head->next_sched;
3471 
3472 			root_lock = qdisc_lock(q);
3473 			if (spin_trylock(root_lock)) {
3474 				smp_mb__before_atomic();
3475 				clear_bit(__QDISC_STATE_SCHED,
3476 					  &q->state);
3477 				qdisc_run(q);
3478 				spin_unlock(root_lock);
3479 			} else {
3480 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3481 					      &q->state)) {
3482 					__netif_reschedule(q);
3483 				} else {
3484 					smp_mb__before_atomic();
3485 					clear_bit(__QDISC_STATE_SCHED,
3486 						  &q->state);
3487 				}
3488 			}
3489 		}
3490 	}
3491 }
3492 
3493 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3494     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3495 /* This hook is defined here for ATM LANE */
3496 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3497 			     unsigned char *addr) __read_mostly;
3498 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3499 #endif
3500 
3501 #ifdef CONFIG_NET_CLS_ACT
3502 /* TODO: Maybe we should just force sch_ingress to be compiled in
3503  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3504  * a compare and 2 stores extra right now if we dont have it on
3505  * but have CONFIG_NET_CLS_ACT
3506  * NOTE: This doesn't stop any functionality; if you dont have
3507  * the ingress scheduler, you just can't add policies on ingress.
3508  *
3509  */
3510 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3511 {
3512 	struct net_device *dev = skb->dev;
3513 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3514 	int result = TC_ACT_OK;
3515 	struct Qdisc *q;
3516 
3517 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3518 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3519 				     skb->skb_iif, dev->ifindex);
3520 		return TC_ACT_SHOT;
3521 	}
3522 
3523 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3524 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3525 
3526 	q = rcu_dereference(rxq->qdisc);
3527 	if (q != &noop_qdisc) {
3528 		spin_lock(qdisc_lock(q));
3529 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3530 			result = qdisc_enqueue_root(skb, q);
3531 		spin_unlock(qdisc_lock(q));
3532 	}
3533 
3534 	return result;
3535 }
3536 
3537 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3538 					 struct packet_type **pt_prev,
3539 					 int *ret, struct net_device *orig_dev)
3540 {
3541 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3542 
3543 	if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3544 		goto out;
3545 
3546 	if (*pt_prev) {
3547 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3548 		*pt_prev = NULL;
3549 	}
3550 
3551 	switch (ing_filter(skb, rxq)) {
3552 	case TC_ACT_SHOT:
3553 	case TC_ACT_STOLEN:
3554 		kfree_skb(skb);
3555 		return NULL;
3556 	}
3557 
3558 out:
3559 	skb->tc_verd = 0;
3560 	return skb;
3561 }
3562 #endif
3563 
3564 /**
3565  *	netdev_rx_handler_register - register receive handler
3566  *	@dev: device to register a handler for
3567  *	@rx_handler: receive handler to register
3568  *	@rx_handler_data: data pointer that is used by rx handler
3569  *
3570  *	Register a receive handler for a device. This handler will then be
3571  *	called from __netif_receive_skb. A negative errno code is returned
3572  *	on a failure.
3573  *
3574  *	The caller must hold the rtnl_mutex.
3575  *
3576  *	For a general description of rx_handler, see enum rx_handler_result.
3577  */
3578 int netdev_rx_handler_register(struct net_device *dev,
3579 			       rx_handler_func_t *rx_handler,
3580 			       void *rx_handler_data)
3581 {
3582 	ASSERT_RTNL();
3583 
3584 	if (dev->rx_handler)
3585 		return -EBUSY;
3586 
3587 	/* Note: rx_handler_data must be set before rx_handler */
3588 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3589 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3590 
3591 	return 0;
3592 }
3593 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3594 
3595 /**
3596  *	netdev_rx_handler_unregister - unregister receive handler
3597  *	@dev: device to unregister a handler from
3598  *
3599  *	Unregister a receive handler from a device.
3600  *
3601  *	The caller must hold the rtnl_mutex.
3602  */
3603 void netdev_rx_handler_unregister(struct net_device *dev)
3604 {
3605 
3606 	ASSERT_RTNL();
3607 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3608 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3609 	 * section has a guarantee to see a non NULL rx_handler_data
3610 	 * as well.
3611 	 */
3612 	synchronize_net();
3613 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3614 }
3615 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3616 
3617 /*
3618  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3619  * the special handling of PFMEMALLOC skbs.
3620  */
3621 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3622 {
3623 	switch (skb->protocol) {
3624 	case htons(ETH_P_ARP):
3625 	case htons(ETH_P_IP):
3626 	case htons(ETH_P_IPV6):
3627 	case htons(ETH_P_8021Q):
3628 	case htons(ETH_P_8021AD):
3629 		return true;
3630 	default:
3631 		return false;
3632 	}
3633 }
3634 
3635 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3636 {
3637 	struct packet_type *ptype, *pt_prev;
3638 	rx_handler_func_t *rx_handler;
3639 	struct net_device *orig_dev;
3640 	bool deliver_exact = false;
3641 	int ret = NET_RX_DROP;
3642 	__be16 type;
3643 
3644 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3645 
3646 	trace_netif_receive_skb(skb);
3647 
3648 	orig_dev = skb->dev;
3649 
3650 	skb_reset_network_header(skb);
3651 	if (!skb_transport_header_was_set(skb))
3652 		skb_reset_transport_header(skb);
3653 	skb_reset_mac_len(skb);
3654 
3655 	pt_prev = NULL;
3656 
3657 	rcu_read_lock();
3658 
3659 another_round:
3660 	skb->skb_iif = skb->dev->ifindex;
3661 
3662 	__this_cpu_inc(softnet_data.processed);
3663 
3664 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3665 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3666 		skb = skb_vlan_untag(skb);
3667 		if (unlikely(!skb))
3668 			goto unlock;
3669 	}
3670 
3671 #ifdef CONFIG_NET_CLS_ACT
3672 	if (skb->tc_verd & TC_NCLS) {
3673 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3674 		goto ncls;
3675 	}
3676 #endif
3677 
3678 	if (pfmemalloc)
3679 		goto skip_taps;
3680 
3681 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3682 		if (pt_prev)
3683 			ret = deliver_skb(skb, pt_prev, orig_dev);
3684 		pt_prev = ptype;
3685 	}
3686 
3687 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3688 		if (pt_prev)
3689 			ret = deliver_skb(skb, pt_prev, orig_dev);
3690 		pt_prev = ptype;
3691 	}
3692 
3693 skip_taps:
3694 #ifdef CONFIG_NET_CLS_ACT
3695 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3696 	if (!skb)
3697 		goto unlock;
3698 ncls:
3699 #endif
3700 
3701 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3702 		goto drop;
3703 
3704 	if (skb_vlan_tag_present(skb)) {
3705 		if (pt_prev) {
3706 			ret = deliver_skb(skb, pt_prev, orig_dev);
3707 			pt_prev = NULL;
3708 		}
3709 		if (vlan_do_receive(&skb))
3710 			goto another_round;
3711 		else if (unlikely(!skb))
3712 			goto unlock;
3713 	}
3714 
3715 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3716 	if (rx_handler) {
3717 		if (pt_prev) {
3718 			ret = deliver_skb(skb, pt_prev, orig_dev);
3719 			pt_prev = NULL;
3720 		}
3721 		switch (rx_handler(&skb)) {
3722 		case RX_HANDLER_CONSUMED:
3723 			ret = NET_RX_SUCCESS;
3724 			goto unlock;
3725 		case RX_HANDLER_ANOTHER:
3726 			goto another_round;
3727 		case RX_HANDLER_EXACT:
3728 			deliver_exact = true;
3729 		case RX_HANDLER_PASS:
3730 			break;
3731 		default:
3732 			BUG();
3733 		}
3734 	}
3735 
3736 	if (unlikely(skb_vlan_tag_present(skb))) {
3737 		if (skb_vlan_tag_get_id(skb))
3738 			skb->pkt_type = PACKET_OTHERHOST;
3739 		/* Note: we might in the future use prio bits
3740 		 * and set skb->priority like in vlan_do_receive()
3741 		 * For the time being, just ignore Priority Code Point
3742 		 */
3743 		skb->vlan_tci = 0;
3744 	}
3745 
3746 	type = skb->protocol;
3747 
3748 	/* deliver only exact match when indicated */
3749 	if (likely(!deliver_exact)) {
3750 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3751 				       &ptype_base[ntohs(type) &
3752 						   PTYPE_HASH_MASK]);
3753 	}
3754 
3755 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3756 			       &orig_dev->ptype_specific);
3757 
3758 	if (unlikely(skb->dev != orig_dev)) {
3759 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3760 				       &skb->dev->ptype_specific);
3761 	}
3762 
3763 	if (pt_prev) {
3764 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3765 			goto drop;
3766 		else
3767 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3768 	} else {
3769 drop:
3770 		atomic_long_inc(&skb->dev->rx_dropped);
3771 		kfree_skb(skb);
3772 		/* Jamal, now you will not able to escape explaining
3773 		 * me how you were going to use this. :-)
3774 		 */
3775 		ret = NET_RX_DROP;
3776 	}
3777 
3778 unlock:
3779 	rcu_read_unlock();
3780 	return ret;
3781 }
3782 
3783 static int __netif_receive_skb(struct sk_buff *skb)
3784 {
3785 	int ret;
3786 
3787 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3788 		unsigned long pflags = current->flags;
3789 
3790 		/*
3791 		 * PFMEMALLOC skbs are special, they should
3792 		 * - be delivered to SOCK_MEMALLOC sockets only
3793 		 * - stay away from userspace
3794 		 * - have bounded memory usage
3795 		 *
3796 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3797 		 * context down to all allocation sites.
3798 		 */
3799 		current->flags |= PF_MEMALLOC;
3800 		ret = __netif_receive_skb_core(skb, true);
3801 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3802 	} else
3803 		ret = __netif_receive_skb_core(skb, false);
3804 
3805 	return ret;
3806 }
3807 
3808 static int netif_receive_skb_internal(struct sk_buff *skb)
3809 {
3810 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3811 
3812 	if (skb_defer_rx_timestamp(skb))
3813 		return NET_RX_SUCCESS;
3814 
3815 #ifdef CONFIG_RPS
3816 	if (static_key_false(&rps_needed)) {
3817 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3818 		int cpu, ret;
3819 
3820 		rcu_read_lock();
3821 
3822 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3823 
3824 		if (cpu >= 0) {
3825 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3826 			rcu_read_unlock();
3827 			return ret;
3828 		}
3829 		rcu_read_unlock();
3830 	}
3831 #endif
3832 	return __netif_receive_skb(skb);
3833 }
3834 
3835 /**
3836  *	netif_receive_skb - process receive buffer from network
3837  *	@skb: buffer to process
3838  *
3839  *	netif_receive_skb() is the main receive data processing function.
3840  *	It always succeeds. The buffer may be dropped during processing
3841  *	for congestion control or by the protocol layers.
3842  *
3843  *	This function may only be called from softirq context and interrupts
3844  *	should be enabled.
3845  *
3846  *	Return values (usually ignored):
3847  *	NET_RX_SUCCESS: no congestion
3848  *	NET_RX_DROP: packet was dropped
3849  */
3850 int netif_receive_skb(struct sk_buff *skb)
3851 {
3852 	trace_netif_receive_skb_entry(skb);
3853 
3854 	return netif_receive_skb_internal(skb);
3855 }
3856 EXPORT_SYMBOL(netif_receive_skb);
3857 
3858 /* Network device is going away, flush any packets still pending
3859  * Called with irqs disabled.
3860  */
3861 static void flush_backlog(void *arg)
3862 {
3863 	struct net_device *dev = arg;
3864 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3865 	struct sk_buff *skb, *tmp;
3866 
3867 	rps_lock(sd);
3868 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3869 		if (skb->dev == dev) {
3870 			__skb_unlink(skb, &sd->input_pkt_queue);
3871 			kfree_skb(skb);
3872 			input_queue_head_incr(sd);
3873 		}
3874 	}
3875 	rps_unlock(sd);
3876 
3877 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3878 		if (skb->dev == dev) {
3879 			__skb_unlink(skb, &sd->process_queue);
3880 			kfree_skb(skb);
3881 			input_queue_head_incr(sd);
3882 		}
3883 	}
3884 }
3885 
3886 static int napi_gro_complete(struct sk_buff *skb)
3887 {
3888 	struct packet_offload *ptype;
3889 	__be16 type = skb->protocol;
3890 	struct list_head *head = &offload_base;
3891 	int err = -ENOENT;
3892 
3893 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3894 
3895 	if (NAPI_GRO_CB(skb)->count == 1) {
3896 		skb_shinfo(skb)->gso_size = 0;
3897 		goto out;
3898 	}
3899 
3900 	rcu_read_lock();
3901 	list_for_each_entry_rcu(ptype, head, list) {
3902 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3903 			continue;
3904 
3905 		err = ptype->callbacks.gro_complete(skb, 0);
3906 		break;
3907 	}
3908 	rcu_read_unlock();
3909 
3910 	if (err) {
3911 		WARN_ON(&ptype->list == head);
3912 		kfree_skb(skb);
3913 		return NET_RX_SUCCESS;
3914 	}
3915 
3916 out:
3917 	return netif_receive_skb_internal(skb);
3918 }
3919 
3920 /* napi->gro_list contains packets ordered by age.
3921  * youngest packets at the head of it.
3922  * Complete skbs in reverse order to reduce latencies.
3923  */
3924 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3925 {
3926 	struct sk_buff *skb, *prev = NULL;
3927 
3928 	/* scan list and build reverse chain */
3929 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3930 		skb->prev = prev;
3931 		prev = skb;
3932 	}
3933 
3934 	for (skb = prev; skb; skb = prev) {
3935 		skb->next = NULL;
3936 
3937 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3938 			return;
3939 
3940 		prev = skb->prev;
3941 		napi_gro_complete(skb);
3942 		napi->gro_count--;
3943 	}
3944 
3945 	napi->gro_list = NULL;
3946 }
3947 EXPORT_SYMBOL(napi_gro_flush);
3948 
3949 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3950 {
3951 	struct sk_buff *p;
3952 	unsigned int maclen = skb->dev->hard_header_len;
3953 	u32 hash = skb_get_hash_raw(skb);
3954 
3955 	for (p = napi->gro_list; p; p = p->next) {
3956 		unsigned long diffs;
3957 
3958 		NAPI_GRO_CB(p)->flush = 0;
3959 
3960 		if (hash != skb_get_hash_raw(p)) {
3961 			NAPI_GRO_CB(p)->same_flow = 0;
3962 			continue;
3963 		}
3964 
3965 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3966 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3967 		if (maclen == ETH_HLEN)
3968 			diffs |= compare_ether_header(skb_mac_header(p),
3969 						      skb_mac_header(skb));
3970 		else if (!diffs)
3971 			diffs = memcmp(skb_mac_header(p),
3972 				       skb_mac_header(skb),
3973 				       maclen);
3974 		NAPI_GRO_CB(p)->same_flow = !diffs;
3975 	}
3976 }
3977 
3978 static void skb_gro_reset_offset(struct sk_buff *skb)
3979 {
3980 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3981 	const skb_frag_t *frag0 = &pinfo->frags[0];
3982 
3983 	NAPI_GRO_CB(skb)->data_offset = 0;
3984 	NAPI_GRO_CB(skb)->frag0 = NULL;
3985 	NAPI_GRO_CB(skb)->frag0_len = 0;
3986 
3987 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3988 	    pinfo->nr_frags &&
3989 	    !PageHighMem(skb_frag_page(frag0))) {
3990 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3991 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3992 	}
3993 }
3994 
3995 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3996 {
3997 	struct skb_shared_info *pinfo = skb_shinfo(skb);
3998 
3999 	BUG_ON(skb->end - skb->tail < grow);
4000 
4001 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4002 
4003 	skb->data_len -= grow;
4004 	skb->tail += grow;
4005 
4006 	pinfo->frags[0].page_offset += grow;
4007 	skb_frag_size_sub(&pinfo->frags[0], grow);
4008 
4009 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4010 		skb_frag_unref(skb, 0);
4011 		memmove(pinfo->frags, pinfo->frags + 1,
4012 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4013 	}
4014 }
4015 
4016 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4017 {
4018 	struct sk_buff **pp = NULL;
4019 	struct packet_offload *ptype;
4020 	__be16 type = skb->protocol;
4021 	struct list_head *head = &offload_base;
4022 	int same_flow;
4023 	enum gro_result ret;
4024 	int grow;
4025 
4026 	if (!(skb->dev->features & NETIF_F_GRO))
4027 		goto normal;
4028 
4029 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4030 		goto normal;
4031 
4032 	gro_list_prepare(napi, skb);
4033 
4034 	rcu_read_lock();
4035 	list_for_each_entry_rcu(ptype, head, list) {
4036 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4037 			continue;
4038 
4039 		skb_set_network_header(skb, skb_gro_offset(skb));
4040 		skb_reset_mac_len(skb);
4041 		NAPI_GRO_CB(skb)->same_flow = 0;
4042 		NAPI_GRO_CB(skb)->flush = 0;
4043 		NAPI_GRO_CB(skb)->free = 0;
4044 		NAPI_GRO_CB(skb)->udp_mark = 0;
4045 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4046 
4047 		/* Setup for GRO checksum validation */
4048 		switch (skb->ip_summed) {
4049 		case CHECKSUM_COMPLETE:
4050 			NAPI_GRO_CB(skb)->csum = skb->csum;
4051 			NAPI_GRO_CB(skb)->csum_valid = 1;
4052 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4053 			break;
4054 		case CHECKSUM_UNNECESSARY:
4055 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4056 			NAPI_GRO_CB(skb)->csum_valid = 0;
4057 			break;
4058 		default:
4059 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4060 			NAPI_GRO_CB(skb)->csum_valid = 0;
4061 		}
4062 
4063 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4064 		break;
4065 	}
4066 	rcu_read_unlock();
4067 
4068 	if (&ptype->list == head)
4069 		goto normal;
4070 
4071 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4072 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4073 
4074 	if (pp) {
4075 		struct sk_buff *nskb = *pp;
4076 
4077 		*pp = nskb->next;
4078 		nskb->next = NULL;
4079 		napi_gro_complete(nskb);
4080 		napi->gro_count--;
4081 	}
4082 
4083 	if (same_flow)
4084 		goto ok;
4085 
4086 	if (NAPI_GRO_CB(skb)->flush)
4087 		goto normal;
4088 
4089 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4090 		struct sk_buff *nskb = napi->gro_list;
4091 
4092 		/* locate the end of the list to select the 'oldest' flow */
4093 		while (nskb->next) {
4094 			pp = &nskb->next;
4095 			nskb = *pp;
4096 		}
4097 		*pp = NULL;
4098 		nskb->next = NULL;
4099 		napi_gro_complete(nskb);
4100 	} else {
4101 		napi->gro_count++;
4102 	}
4103 	NAPI_GRO_CB(skb)->count = 1;
4104 	NAPI_GRO_CB(skb)->age = jiffies;
4105 	NAPI_GRO_CB(skb)->last = skb;
4106 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4107 	skb->next = napi->gro_list;
4108 	napi->gro_list = skb;
4109 	ret = GRO_HELD;
4110 
4111 pull:
4112 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4113 	if (grow > 0)
4114 		gro_pull_from_frag0(skb, grow);
4115 ok:
4116 	return ret;
4117 
4118 normal:
4119 	ret = GRO_NORMAL;
4120 	goto pull;
4121 }
4122 
4123 struct packet_offload *gro_find_receive_by_type(__be16 type)
4124 {
4125 	struct list_head *offload_head = &offload_base;
4126 	struct packet_offload *ptype;
4127 
4128 	list_for_each_entry_rcu(ptype, offload_head, list) {
4129 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4130 			continue;
4131 		return ptype;
4132 	}
4133 	return NULL;
4134 }
4135 EXPORT_SYMBOL(gro_find_receive_by_type);
4136 
4137 struct packet_offload *gro_find_complete_by_type(__be16 type)
4138 {
4139 	struct list_head *offload_head = &offload_base;
4140 	struct packet_offload *ptype;
4141 
4142 	list_for_each_entry_rcu(ptype, offload_head, list) {
4143 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4144 			continue;
4145 		return ptype;
4146 	}
4147 	return NULL;
4148 }
4149 EXPORT_SYMBOL(gro_find_complete_by_type);
4150 
4151 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4152 {
4153 	switch (ret) {
4154 	case GRO_NORMAL:
4155 		if (netif_receive_skb_internal(skb))
4156 			ret = GRO_DROP;
4157 		break;
4158 
4159 	case GRO_DROP:
4160 		kfree_skb(skb);
4161 		break;
4162 
4163 	case GRO_MERGED_FREE:
4164 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4165 			kmem_cache_free(skbuff_head_cache, skb);
4166 		else
4167 			__kfree_skb(skb);
4168 		break;
4169 
4170 	case GRO_HELD:
4171 	case GRO_MERGED:
4172 		break;
4173 	}
4174 
4175 	return ret;
4176 }
4177 
4178 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4179 {
4180 	trace_napi_gro_receive_entry(skb);
4181 
4182 	skb_gro_reset_offset(skb);
4183 
4184 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4185 }
4186 EXPORT_SYMBOL(napi_gro_receive);
4187 
4188 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4189 {
4190 	if (unlikely(skb->pfmemalloc)) {
4191 		consume_skb(skb);
4192 		return;
4193 	}
4194 	__skb_pull(skb, skb_headlen(skb));
4195 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4196 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4197 	skb->vlan_tci = 0;
4198 	skb->dev = napi->dev;
4199 	skb->skb_iif = 0;
4200 	skb->encapsulation = 0;
4201 	skb_shinfo(skb)->gso_type = 0;
4202 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4203 
4204 	napi->skb = skb;
4205 }
4206 
4207 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4208 {
4209 	struct sk_buff *skb = napi->skb;
4210 
4211 	if (!skb) {
4212 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4213 		napi->skb = skb;
4214 	}
4215 	return skb;
4216 }
4217 EXPORT_SYMBOL(napi_get_frags);
4218 
4219 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4220 				      struct sk_buff *skb,
4221 				      gro_result_t ret)
4222 {
4223 	switch (ret) {
4224 	case GRO_NORMAL:
4225 	case GRO_HELD:
4226 		__skb_push(skb, ETH_HLEN);
4227 		skb->protocol = eth_type_trans(skb, skb->dev);
4228 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4229 			ret = GRO_DROP;
4230 		break;
4231 
4232 	case GRO_DROP:
4233 	case GRO_MERGED_FREE:
4234 		napi_reuse_skb(napi, skb);
4235 		break;
4236 
4237 	case GRO_MERGED:
4238 		break;
4239 	}
4240 
4241 	return ret;
4242 }
4243 
4244 /* Upper GRO stack assumes network header starts at gro_offset=0
4245  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4246  * We copy ethernet header into skb->data to have a common layout.
4247  */
4248 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4249 {
4250 	struct sk_buff *skb = napi->skb;
4251 	const struct ethhdr *eth;
4252 	unsigned int hlen = sizeof(*eth);
4253 
4254 	napi->skb = NULL;
4255 
4256 	skb_reset_mac_header(skb);
4257 	skb_gro_reset_offset(skb);
4258 
4259 	eth = skb_gro_header_fast(skb, 0);
4260 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4261 		eth = skb_gro_header_slow(skb, hlen, 0);
4262 		if (unlikely(!eth)) {
4263 			napi_reuse_skb(napi, skb);
4264 			return NULL;
4265 		}
4266 	} else {
4267 		gro_pull_from_frag0(skb, hlen);
4268 		NAPI_GRO_CB(skb)->frag0 += hlen;
4269 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4270 	}
4271 	__skb_pull(skb, hlen);
4272 
4273 	/*
4274 	 * This works because the only protocols we care about don't require
4275 	 * special handling.
4276 	 * We'll fix it up properly in napi_frags_finish()
4277 	 */
4278 	skb->protocol = eth->h_proto;
4279 
4280 	return skb;
4281 }
4282 
4283 gro_result_t napi_gro_frags(struct napi_struct *napi)
4284 {
4285 	struct sk_buff *skb = napi_frags_skb(napi);
4286 
4287 	if (!skb)
4288 		return GRO_DROP;
4289 
4290 	trace_napi_gro_frags_entry(skb);
4291 
4292 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4293 }
4294 EXPORT_SYMBOL(napi_gro_frags);
4295 
4296 /* Compute the checksum from gro_offset and return the folded value
4297  * after adding in any pseudo checksum.
4298  */
4299 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4300 {
4301 	__wsum wsum;
4302 	__sum16 sum;
4303 
4304 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4305 
4306 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4307 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4308 	if (likely(!sum)) {
4309 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4310 		    !skb->csum_complete_sw)
4311 			netdev_rx_csum_fault(skb->dev);
4312 	}
4313 
4314 	NAPI_GRO_CB(skb)->csum = wsum;
4315 	NAPI_GRO_CB(skb)->csum_valid = 1;
4316 
4317 	return sum;
4318 }
4319 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4320 
4321 /*
4322  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4323  * Note: called with local irq disabled, but exits with local irq enabled.
4324  */
4325 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4326 {
4327 #ifdef CONFIG_RPS
4328 	struct softnet_data *remsd = sd->rps_ipi_list;
4329 
4330 	if (remsd) {
4331 		sd->rps_ipi_list = NULL;
4332 
4333 		local_irq_enable();
4334 
4335 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4336 		while (remsd) {
4337 			struct softnet_data *next = remsd->rps_ipi_next;
4338 
4339 			if (cpu_online(remsd->cpu))
4340 				smp_call_function_single_async(remsd->cpu,
4341 							   &remsd->csd);
4342 			remsd = next;
4343 		}
4344 	} else
4345 #endif
4346 		local_irq_enable();
4347 }
4348 
4349 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4350 {
4351 #ifdef CONFIG_RPS
4352 	return sd->rps_ipi_list != NULL;
4353 #else
4354 	return false;
4355 #endif
4356 }
4357 
4358 static int process_backlog(struct napi_struct *napi, int quota)
4359 {
4360 	int work = 0;
4361 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4362 
4363 	/* Check if we have pending ipi, its better to send them now,
4364 	 * not waiting net_rx_action() end.
4365 	 */
4366 	if (sd_has_rps_ipi_waiting(sd)) {
4367 		local_irq_disable();
4368 		net_rps_action_and_irq_enable(sd);
4369 	}
4370 
4371 	napi->weight = weight_p;
4372 	local_irq_disable();
4373 	while (1) {
4374 		struct sk_buff *skb;
4375 
4376 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4377 			local_irq_enable();
4378 			__netif_receive_skb(skb);
4379 			local_irq_disable();
4380 			input_queue_head_incr(sd);
4381 			if (++work >= quota) {
4382 				local_irq_enable();
4383 				return work;
4384 			}
4385 		}
4386 
4387 		rps_lock(sd);
4388 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4389 			/*
4390 			 * Inline a custom version of __napi_complete().
4391 			 * only current cpu owns and manipulates this napi,
4392 			 * and NAPI_STATE_SCHED is the only possible flag set
4393 			 * on backlog.
4394 			 * We can use a plain write instead of clear_bit(),
4395 			 * and we dont need an smp_mb() memory barrier.
4396 			 */
4397 			napi->state = 0;
4398 			rps_unlock(sd);
4399 
4400 			break;
4401 		}
4402 
4403 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4404 					   &sd->process_queue);
4405 		rps_unlock(sd);
4406 	}
4407 	local_irq_enable();
4408 
4409 	return work;
4410 }
4411 
4412 /**
4413  * __napi_schedule - schedule for receive
4414  * @n: entry to schedule
4415  *
4416  * The entry's receive function will be scheduled to run.
4417  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4418  */
4419 void __napi_schedule(struct napi_struct *n)
4420 {
4421 	unsigned long flags;
4422 
4423 	local_irq_save(flags);
4424 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4425 	local_irq_restore(flags);
4426 }
4427 EXPORT_SYMBOL(__napi_schedule);
4428 
4429 /**
4430  * __napi_schedule_irqoff - schedule for receive
4431  * @n: entry to schedule
4432  *
4433  * Variant of __napi_schedule() assuming hard irqs are masked
4434  */
4435 void __napi_schedule_irqoff(struct napi_struct *n)
4436 {
4437 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4438 }
4439 EXPORT_SYMBOL(__napi_schedule_irqoff);
4440 
4441 void __napi_complete(struct napi_struct *n)
4442 {
4443 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4444 
4445 	list_del_init(&n->poll_list);
4446 	smp_mb__before_atomic();
4447 	clear_bit(NAPI_STATE_SCHED, &n->state);
4448 }
4449 EXPORT_SYMBOL(__napi_complete);
4450 
4451 void napi_complete_done(struct napi_struct *n, int work_done)
4452 {
4453 	unsigned long flags;
4454 
4455 	/*
4456 	 * don't let napi dequeue from the cpu poll list
4457 	 * just in case its running on a different cpu
4458 	 */
4459 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4460 		return;
4461 
4462 	if (n->gro_list) {
4463 		unsigned long timeout = 0;
4464 
4465 		if (work_done)
4466 			timeout = n->dev->gro_flush_timeout;
4467 
4468 		if (timeout)
4469 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4470 				      HRTIMER_MODE_REL_PINNED);
4471 		else
4472 			napi_gro_flush(n, false);
4473 	}
4474 	if (likely(list_empty(&n->poll_list))) {
4475 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4476 	} else {
4477 		/* If n->poll_list is not empty, we need to mask irqs */
4478 		local_irq_save(flags);
4479 		__napi_complete(n);
4480 		local_irq_restore(flags);
4481 	}
4482 }
4483 EXPORT_SYMBOL(napi_complete_done);
4484 
4485 /* must be called under rcu_read_lock(), as we dont take a reference */
4486 struct napi_struct *napi_by_id(unsigned int napi_id)
4487 {
4488 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4489 	struct napi_struct *napi;
4490 
4491 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4492 		if (napi->napi_id == napi_id)
4493 			return napi;
4494 
4495 	return NULL;
4496 }
4497 EXPORT_SYMBOL_GPL(napi_by_id);
4498 
4499 void napi_hash_add(struct napi_struct *napi)
4500 {
4501 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4502 
4503 		spin_lock(&napi_hash_lock);
4504 
4505 		/* 0 is not a valid id, we also skip an id that is taken
4506 		 * we expect both events to be extremely rare
4507 		 */
4508 		napi->napi_id = 0;
4509 		while (!napi->napi_id) {
4510 			napi->napi_id = ++napi_gen_id;
4511 			if (napi_by_id(napi->napi_id))
4512 				napi->napi_id = 0;
4513 		}
4514 
4515 		hlist_add_head_rcu(&napi->napi_hash_node,
4516 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4517 
4518 		spin_unlock(&napi_hash_lock);
4519 	}
4520 }
4521 EXPORT_SYMBOL_GPL(napi_hash_add);
4522 
4523 /* Warning : caller is responsible to make sure rcu grace period
4524  * is respected before freeing memory containing @napi
4525  */
4526 void napi_hash_del(struct napi_struct *napi)
4527 {
4528 	spin_lock(&napi_hash_lock);
4529 
4530 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4531 		hlist_del_rcu(&napi->napi_hash_node);
4532 
4533 	spin_unlock(&napi_hash_lock);
4534 }
4535 EXPORT_SYMBOL_GPL(napi_hash_del);
4536 
4537 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4538 {
4539 	struct napi_struct *napi;
4540 
4541 	napi = container_of(timer, struct napi_struct, timer);
4542 	if (napi->gro_list)
4543 		napi_schedule(napi);
4544 
4545 	return HRTIMER_NORESTART;
4546 }
4547 
4548 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4549 		    int (*poll)(struct napi_struct *, int), int weight)
4550 {
4551 	INIT_LIST_HEAD(&napi->poll_list);
4552 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4553 	napi->timer.function = napi_watchdog;
4554 	napi->gro_count = 0;
4555 	napi->gro_list = NULL;
4556 	napi->skb = NULL;
4557 	napi->poll = poll;
4558 	if (weight > NAPI_POLL_WEIGHT)
4559 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4560 			    weight, dev->name);
4561 	napi->weight = weight;
4562 	list_add(&napi->dev_list, &dev->napi_list);
4563 	napi->dev = dev;
4564 #ifdef CONFIG_NETPOLL
4565 	spin_lock_init(&napi->poll_lock);
4566 	napi->poll_owner = -1;
4567 #endif
4568 	set_bit(NAPI_STATE_SCHED, &napi->state);
4569 }
4570 EXPORT_SYMBOL(netif_napi_add);
4571 
4572 void napi_disable(struct napi_struct *n)
4573 {
4574 	might_sleep();
4575 	set_bit(NAPI_STATE_DISABLE, &n->state);
4576 
4577 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4578 		msleep(1);
4579 
4580 	hrtimer_cancel(&n->timer);
4581 
4582 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4583 }
4584 EXPORT_SYMBOL(napi_disable);
4585 
4586 void netif_napi_del(struct napi_struct *napi)
4587 {
4588 	list_del_init(&napi->dev_list);
4589 	napi_free_frags(napi);
4590 
4591 	kfree_skb_list(napi->gro_list);
4592 	napi->gro_list = NULL;
4593 	napi->gro_count = 0;
4594 }
4595 EXPORT_SYMBOL(netif_napi_del);
4596 
4597 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4598 {
4599 	void *have;
4600 	int work, weight;
4601 
4602 	list_del_init(&n->poll_list);
4603 
4604 	have = netpoll_poll_lock(n);
4605 
4606 	weight = n->weight;
4607 
4608 	/* This NAPI_STATE_SCHED test is for avoiding a race
4609 	 * with netpoll's poll_napi().  Only the entity which
4610 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4611 	 * actually make the ->poll() call.  Therefore we avoid
4612 	 * accidentally calling ->poll() when NAPI is not scheduled.
4613 	 */
4614 	work = 0;
4615 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4616 		work = n->poll(n, weight);
4617 		trace_napi_poll(n);
4618 	}
4619 
4620 	WARN_ON_ONCE(work > weight);
4621 
4622 	if (likely(work < weight))
4623 		goto out_unlock;
4624 
4625 	/* Drivers must not modify the NAPI state if they
4626 	 * consume the entire weight.  In such cases this code
4627 	 * still "owns" the NAPI instance and therefore can
4628 	 * move the instance around on the list at-will.
4629 	 */
4630 	if (unlikely(napi_disable_pending(n))) {
4631 		napi_complete(n);
4632 		goto out_unlock;
4633 	}
4634 
4635 	if (n->gro_list) {
4636 		/* flush too old packets
4637 		 * If HZ < 1000, flush all packets.
4638 		 */
4639 		napi_gro_flush(n, HZ >= 1000);
4640 	}
4641 
4642 	/* Some drivers may have called napi_schedule
4643 	 * prior to exhausting their budget.
4644 	 */
4645 	if (unlikely(!list_empty(&n->poll_list))) {
4646 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4647 			     n->dev ? n->dev->name : "backlog");
4648 		goto out_unlock;
4649 	}
4650 
4651 	list_add_tail(&n->poll_list, repoll);
4652 
4653 out_unlock:
4654 	netpoll_poll_unlock(have);
4655 
4656 	return work;
4657 }
4658 
4659 static void net_rx_action(struct softirq_action *h)
4660 {
4661 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4662 	unsigned long time_limit = jiffies + 2;
4663 	int budget = netdev_budget;
4664 	LIST_HEAD(list);
4665 	LIST_HEAD(repoll);
4666 
4667 	local_irq_disable();
4668 	list_splice_init(&sd->poll_list, &list);
4669 	local_irq_enable();
4670 
4671 	for (;;) {
4672 		struct napi_struct *n;
4673 
4674 		if (list_empty(&list)) {
4675 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4676 				return;
4677 			break;
4678 		}
4679 
4680 		n = list_first_entry(&list, struct napi_struct, poll_list);
4681 		budget -= napi_poll(n, &repoll);
4682 
4683 		/* If softirq window is exhausted then punt.
4684 		 * Allow this to run for 2 jiffies since which will allow
4685 		 * an average latency of 1.5/HZ.
4686 		 */
4687 		if (unlikely(budget <= 0 ||
4688 			     time_after_eq(jiffies, time_limit))) {
4689 			sd->time_squeeze++;
4690 			break;
4691 		}
4692 	}
4693 
4694 	local_irq_disable();
4695 
4696 	list_splice_tail_init(&sd->poll_list, &list);
4697 	list_splice_tail(&repoll, &list);
4698 	list_splice(&list, &sd->poll_list);
4699 	if (!list_empty(&sd->poll_list))
4700 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4701 
4702 	net_rps_action_and_irq_enable(sd);
4703 }
4704 
4705 struct netdev_adjacent {
4706 	struct net_device *dev;
4707 
4708 	/* upper master flag, there can only be one master device per list */
4709 	bool master;
4710 
4711 	/* counter for the number of times this device was added to us */
4712 	u16 ref_nr;
4713 
4714 	/* private field for the users */
4715 	void *private;
4716 
4717 	struct list_head list;
4718 	struct rcu_head rcu;
4719 };
4720 
4721 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4722 						 struct net_device *adj_dev,
4723 						 struct list_head *adj_list)
4724 {
4725 	struct netdev_adjacent *adj;
4726 
4727 	list_for_each_entry(adj, adj_list, list) {
4728 		if (adj->dev == adj_dev)
4729 			return adj;
4730 	}
4731 	return NULL;
4732 }
4733 
4734 /**
4735  * netdev_has_upper_dev - Check if device is linked to an upper device
4736  * @dev: device
4737  * @upper_dev: upper device to check
4738  *
4739  * Find out if a device is linked to specified upper device and return true
4740  * in case it is. Note that this checks only immediate upper device,
4741  * not through a complete stack of devices. The caller must hold the RTNL lock.
4742  */
4743 bool netdev_has_upper_dev(struct net_device *dev,
4744 			  struct net_device *upper_dev)
4745 {
4746 	ASSERT_RTNL();
4747 
4748 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4749 }
4750 EXPORT_SYMBOL(netdev_has_upper_dev);
4751 
4752 /**
4753  * netdev_has_any_upper_dev - Check if device is linked to some device
4754  * @dev: device
4755  *
4756  * Find out if a device is linked to an upper device and return true in case
4757  * it is. The caller must hold the RTNL lock.
4758  */
4759 static bool netdev_has_any_upper_dev(struct net_device *dev)
4760 {
4761 	ASSERT_RTNL();
4762 
4763 	return !list_empty(&dev->all_adj_list.upper);
4764 }
4765 
4766 /**
4767  * netdev_master_upper_dev_get - Get master upper device
4768  * @dev: device
4769  *
4770  * Find a master upper device and return pointer to it or NULL in case
4771  * it's not there. The caller must hold the RTNL lock.
4772  */
4773 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4774 {
4775 	struct netdev_adjacent *upper;
4776 
4777 	ASSERT_RTNL();
4778 
4779 	if (list_empty(&dev->adj_list.upper))
4780 		return NULL;
4781 
4782 	upper = list_first_entry(&dev->adj_list.upper,
4783 				 struct netdev_adjacent, list);
4784 	if (likely(upper->master))
4785 		return upper->dev;
4786 	return NULL;
4787 }
4788 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4789 
4790 void *netdev_adjacent_get_private(struct list_head *adj_list)
4791 {
4792 	struct netdev_adjacent *adj;
4793 
4794 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4795 
4796 	return adj->private;
4797 }
4798 EXPORT_SYMBOL(netdev_adjacent_get_private);
4799 
4800 /**
4801  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4802  * @dev: device
4803  * @iter: list_head ** of the current position
4804  *
4805  * Gets the next device from the dev's upper list, starting from iter
4806  * position. The caller must hold RCU read lock.
4807  */
4808 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4809 						 struct list_head **iter)
4810 {
4811 	struct netdev_adjacent *upper;
4812 
4813 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4814 
4815 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4816 
4817 	if (&upper->list == &dev->adj_list.upper)
4818 		return NULL;
4819 
4820 	*iter = &upper->list;
4821 
4822 	return upper->dev;
4823 }
4824 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4825 
4826 /**
4827  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4828  * @dev: device
4829  * @iter: list_head ** of the current position
4830  *
4831  * Gets the next device from the dev's upper list, starting from iter
4832  * position. The caller must hold RCU read lock.
4833  */
4834 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4835 						     struct list_head **iter)
4836 {
4837 	struct netdev_adjacent *upper;
4838 
4839 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4840 
4841 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4842 
4843 	if (&upper->list == &dev->all_adj_list.upper)
4844 		return NULL;
4845 
4846 	*iter = &upper->list;
4847 
4848 	return upper->dev;
4849 }
4850 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4851 
4852 /**
4853  * netdev_lower_get_next_private - Get the next ->private from the
4854  *				   lower neighbour list
4855  * @dev: device
4856  * @iter: list_head ** of the current position
4857  *
4858  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4859  * list, starting from iter position. The caller must hold either hold the
4860  * RTNL lock or its own locking that guarantees that the neighbour lower
4861  * list will remain unchainged.
4862  */
4863 void *netdev_lower_get_next_private(struct net_device *dev,
4864 				    struct list_head **iter)
4865 {
4866 	struct netdev_adjacent *lower;
4867 
4868 	lower = list_entry(*iter, struct netdev_adjacent, list);
4869 
4870 	if (&lower->list == &dev->adj_list.lower)
4871 		return NULL;
4872 
4873 	*iter = lower->list.next;
4874 
4875 	return lower->private;
4876 }
4877 EXPORT_SYMBOL(netdev_lower_get_next_private);
4878 
4879 /**
4880  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4881  *				       lower neighbour list, RCU
4882  *				       variant
4883  * @dev: device
4884  * @iter: list_head ** of the current position
4885  *
4886  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4887  * list, starting from iter position. The caller must hold RCU read lock.
4888  */
4889 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4890 					struct list_head **iter)
4891 {
4892 	struct netdev_adjacent *lower;
4893 
4894 	WARN_ON_ONCE(!rcu_read_lock_held());
4895 
4896 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4897 
4898 	if (&lower->list == &dev->adj_list.lower)
4899 		return NULL;
4900 
4901 	*iter = &lower->list;
4902 
4903 	return lower->private;
4904 }
4905 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4906 
4907 /**
4908  * netdev_lower_get_next - Get the next device from the lower neighbour
4909  *                         list
4910  * @dev: device
4911  * @iter: list_head ** of the current position
4912  *
4913  * Gets the next netdev_adjacent from the dev's lower neighbour
4914  * list, starting from iter position. The caller must hold RTNL lock or
4915  * its own locking that guarantees that the neighbour lower
4916  * list will remain unchainged.
4917  */
4918 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4919 {
4920 	struct netdev_adjacent *lower;
4921 
4922 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4923 
4924 	if (&lower->list == &dev->adj_list.lower)
4925 		return NULL;
4926 
4927 	*iter = &lower->list;
4928 
4929 	return lower->dev;
4930 }
4931 EXPORT_SYMBOL(netdev_lower_get_next);
4932 
4933 /**
4934  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4935  *				       lower neighbour list, RCU
4936  *				       variant
4937  * @dev: device
4938  *
4939  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4940  * list. The caller must hold RCU read lock.
4941  */
4942 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4943 {
4944 	struct netdev_adjacent *lower;
4945 
4946 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4947 			struct netdev_adjacent, list);
4948 	if (lower)
4949 		return lower->private;
4950 	return NULL;
4951 }
4952 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4953 
4954 /**
4955  * netdev_master_upper_dev_get_rcu - Get master upper device
4956  * @dev: device
4957  *
4958  * Find a master upper device and return pointer to it or NULL in case
4959  * it's not there. The caller must hold the RCU read lock.
4960  */
4961 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4962 {
4963 	struct netdev_adjacent *upper;
4964 
4965 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4966 				       struct netdev_adjacent, list);
4967 	if (upper && likely(upper->master))
4968 		return upper->dev;
4969 	return NULL;
4970 }
4971 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4972 
4973 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4974 			      struct net_device *adj_dev,
4975 			      struct list_head *dev_list)
4976 {
4977 	char linkname[IFNAMSIZ+7];
4978 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4979 		"upper_%s" : "lower_%s", adj_dev->name);
4980 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4981 				 linkname);
4982 }
4983 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4984 			       char *name,
4985 			       struct list_head *dev_list)
4986 {
4987 	char linkname[IFNAMSIZ+7];
4988 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4989 		"upper_%s" : "lower_%s", name);
4990 	sysfs_remove_link(&(dev->dev.kobj), linkname);
4991 }
4992 
4993 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4994 						 struct net_device *adj_dev,
4995 						 struct list_head *dev_list)
4996 {
4997 	return (dev_list == &dev->adj_list.upper ||
4998 		dev_list == &dev->adj_list.lower) &&
4999 		net_eq(dev_net(dev), dev_net(adj_dev));
5000 }
5001 
5002 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5003 					struct net_device *adj_dev,
5004 					struct list_head *dev_list,
5005 					void *private, bool master)
5006 {
5007 	struct netdev_adjacent *adj;
5008 	int ret;
5009 
5010 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5011 
5012 	if (adj) {
5013 		adj->ref_nr++;
5014 		return 0;
5015 	}
5016 
5017 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5018 	if (!adj)
5019 		return -ENOMEM;
5020 
5021 	adj->dev = adj_dev;
5022 	adj->master = master;
5023 	adj->ref_nr = 1;
5024 	adj->private = private;
5025 	dev_hold(adj_dev);
5026 
5027 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5028 		 adj_dev->name, dev->name, adj_dev->name);
5029 
5030 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5031 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5032 		if (ret)
5033 			goto free_adj;
5034 	}
5035 
5036 	/* Ensure that master link is always the first item in list. */
5037 	if (master) {
5038 		ret = sysfs_create_link(&(dev->dev.kobj),
5039 					&(adj_dev->dev.kobj), "master");
5040 		if (ret)
5041 			goto remove_symlinks;
5042 
5043 		list_add_rcu(&adj->list, dev_list);
5044 	} else {
5045 		list_add_tail_rcu(&adj->list, dev_list);
5046 	}
5047 
5048 	return 0;
5049 
5050 remove_symlinks:
5051 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5052 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5053 free_adj:
5054 	kfree(adj);
5055 	dev_put(adj_dev);
5056 
5057 	return ret;
5058 }
5059 
5060 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5061 					 struct net_device *adj_dev,
5062 					 struct list_head *dev_list)
5063 {
5064 	struct netdev_adjacent *adj;
5065 
5066 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5067 
5068 	if (!adj) {
5069 		pr_err("tried to remove device %s from %s\n",
5070 		       dev->name, adj_dev->name);
5071 		BUG();
5072 	}
5073 
5074 	if (adj->ref_nr > 1) {
5075 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5076 			 adj->ref_nr-1);
5077 		adj->ref_nr--;
5078 		return;
5079 	}
5080 
5081 	if (adj->master)
5082 		sysfs_remove_link(&(dev->dev.kobj), "master");
5083 
5084 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5085 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5086 
5087 	list_del_rcu(&adj->list);
5088 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5089 		 adj_dev->name, dev->name, adj_dev->name);
5090 	dev_put(adj_dev);
5091 	kfree_rcu(adj, rcu);
5092 }
5093 
5094 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5095 					    struct net_device *upper_dev,
5096 					    struct list_head *up_list,
5097 					    struct list_head *down_list,
5098 					    void *private, bool master)
5099 {
5100 	int ret;
5101 
5102 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5103 					   master);
5104 	if (ret)
5105 		return ret;
5106 
5107 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5108 					   false);
5109 	if (ret) {
5110 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5111 		return ret;
5112 	}
5113 
5114 	return 0;
5115 }
5116 
5117 static int __netdev_adjacent_dev_link(struct net_device *dev,
5118 				      struct net_device *upper_dev)
5119 {
5120 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5121 						&dev->all_adj_list.upper,
5122 						&upper_dev->all_adj_list.lower,
5123 						NULL, false);
5124 }
5125 
5126 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5127 					       struct net_device *upper_dev,
5128 					       struct list_head *up_list,
5129 					       struct list_head *down_list)
5130 {
5131 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5132 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5133 }
5134 
5135 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5136 					 struct net_device *upper_dev)
5137 {
5138 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5139 					   &dev->all_adj_list.upper,
5140 					   &upper_dev->all_adj_list.lower);
5141 }
5142 
5143 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5144 						struct net_device *upper_dev,
5145 						void *private, bool master)
5146 {
5147 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5148 
5149 	if (ret)
5150 		return ret;
5151 
5152 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5153 					       &dev->adj_list.upper,
5154 					       &upper_dev->adj_list.lower,
5155 					       private, master);
5156 	if (ret) {
5157 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5158 		return ret;
5159 	}
5160 
5161 	return 0;
5162 }
5163 
5164 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5165 						   struct net_device *upper_dev)
5166 {
5167 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5168 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5169 					   &dev->adj_list.upper,
5170 					   &upper_dev->adj_list.lower);
5171 }
5172 
5173 static int __netdev_upper_dev_link(struct net_device *dev,
5174 				   struct net_device *upper_dev, bool master,
5175 				   void *private)
5176 {
5177 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5178 	int ret = 0;
5179 
5180 	ASSERT_RTNL();
5181 
5182 	if (dev == upper_dev)
5183 		return -EBUSY;
5184 
5185 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5186 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5187 		return -EBUSY;
5188 
5189 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5190 		return -EEXIST;
5191 
5192 	if (master && netdev_master_upper_dev_get(dev))
5193 		return -EBUSY;
5194 
5195 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5196 						   master);
5197 	if (ret)
5198 		return ret;
5199 
5200 	/* Now that we linked these devs, make all the upper_dev's
5201 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5202 	 * versa, and don't forget the devices itself. All of these
5203 	 * links are non-neighbours.
5204 	 */
5205 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5206 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5207 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5208 				 i->dev->name, j->dev->name);
5209 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5210 			if (ret)
5211 				goto rollback_mesh;
5212 		}
5213 	}
5214 
5215 	/* add dev to every upper_dev's upper device */
5216 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5217 		pr_debug("linking %s's upper device %s with %s\n",
5218 			 upper_dev->name, i->dev->name, dev->name);
5219 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5220 		if (ret)
5221 			goto rollback_upper_mesh;
5222 	}
5223 
5224 	/* add upper_dev to every dev's lower device */
5225 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5226 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5227 			 i->dev->name, upper_dev->name);
5228 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5229 		if (ret)
5230 			goto rollback_lower_mesh;
5231 	}
5232 
5233 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5234 	return 0;
5235 
5236 rollback_lower_mesh:
5237 	to_i = i;
5238 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5239 		if (i == to_i)
5240 			break;
5241 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5242 	}
5243 
5244 	i = NULL;
5245 
5246 rollback_upper_mesh:
5247 	to_i = i;
5248 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5249 		if (i == to_i)
5250 			break;
5251 		__netdev_adjacent_dev_unlink(dev, i->dev);
5252 	}
5253 
5254 	i = j = NULL;
5255 
5256 rollback_mesh:
5257 	to_i = i;
5258 	to_j = j;
5259 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5260 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5261 			if (i == to_i && j == to_j)
5262 				break;
5263 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5264 		}
5265 		if (i == to_i)
5266 			break;
5267 	}
5268 
5269 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5270 
5271 	return ret;
5272 }
5273 
5274 /**
5275  * netdev_upper_dev_link - Add a link to the upper device
5276  * @dev: device
5277  * @upper_dev: new upper device
5278  *
5279  * Adds a link to device which is upper to this one. The caller must hold
5280  * the RTNL lock. On a failure a negative errno code is returned.
5281  * On success the reference counts are adjusted and the function
5282  * returns zero.
5283  */
5284 int netdev_upper_dev_link(struct net_device *dev,
5285 			  struct net_device *upper_dev)
5286 {
5287 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5288 }
5289 EXPORT_SYMBOL(netdev_upper_dev_link);
5290 
5291 /**
5292  * netdev_master_upper_dev_link - Add a master link to the upper device
5293  * @dev: device
5294  * @upper_dev: new upper device
5295  *
5296  * Adds a link to device which is upper to this one. In this case, only
5297  * one master upper device can be linked, although other non-master devices
5298  * might be linked as well. The caller must hold the RTNL lock.
5299  * On a failure a negative errno code is returned. On success the reference
5300  * counts are adjusted and the function returns zero.
5301  */
5302 int netdev_master_upper_dev_link(struct net_device *dev,
5303 				 struct net_device *upper_dev)
5304 {
5305 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5306 }
5307 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5308 
5309 int netdev_master_upper_dev_link_private(struct net_device *dev,
5310 					 struct net_device *upper_dev,
5311 					 void *private)
5312 {
5313 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5314 }
5315 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5316 
5317 /**
5318  * netdev_upper_dev_unlink - Removes a link to upper device
5319  * @dev: device
5320  * @upper_dev: new upper device
5321  *
5322  * Removes a link to device which is upper to this one. The caller must hold
5323  * the RTNL lock.
5324  */
5325 void netdev_upper_dev_unlink(struct net_device *dev,
5326 			     struct net_device *upper_dev)
5327 {
5328 	struct netdev_adjacent *i, *j;
5329 	ASSERT_RTNL();
5330 
5331 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5332 
5333 	/* Here is the tricky part. We must remove all dev's lower
5334 	 * devices from all upper_dev's upper devices and vice
5335 	 * versa, to maintain the graph relationship.
5336 	 */
5337 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5338 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5339 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5340 
5341 	/* remove also the devices itself from lower/upper device
5342 	 * list
5343 	 */
5344 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5345 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5346 
5347 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5348 		__netdev_adjacent_dev_unlink(dev, i->dev);
5349 
5350 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5351 }
5352 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5353 
5354 /**
5355  * netdev_bonding_info_change - Dispatch event about slave change
5356  * @dev: device
5357  * @bonding_info: info to dispatch
5358  *
5359  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5360  * The caller must hold the RTNL lock.
5361  */
5362 void netdev_bonding_info_change(struct net_device *dev,
5363 				struct netdev_bonding_info *bonding_info)
5364 {
5365 	struct netdev_notifier_bonding_info	info;
5366 
5367 	memcpy(&info.bonding_info, bonding_info,
5368 	       sizeof(struct netdev_bonding_info));
5369 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5370 				      &info.info);
5371 }
5372 EXPORT_SYMBOL(netdev_bonding_info_change);
5373 
5374 static void netdev_adjacent_add_links(struct net_device *dev)
5375 {
5376 	struct netdev_adjacent *iter;
5377 
5378 	struct net *net = dev_net(dev);
5379 
5380 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5381 		if (!net_eq(net,dev_net(iter->dev)))
5382 			continue;
5383 		netdev_adjacent_sysfs_add(iter->dev, dev,
5384 					  &iter->dev->adj_list.lower);
5385 		netdev_adjacent_sysfs_add(dev, iter->dev,
5386 					  &dev->adj_list.upper);
5387 	}
5388 
5389 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5390 		if (!net_eq(net,dev_net(iter->dev)))
5391 			continue;
5392 		netdev_adjacent_sysfs_add(iter->dev, dev,
5393 					  &iter->dev->adj_list.upper);
5394 		netdev_adjacent_sysfs_add(dev, iter->dev,
5395 					  &dev->adj_list.lower);
5396 	}
5397 }
5398 
5399 static void netdev_adjacent_del_links(struct net_device *dev)
5400 {
5401 	struct netdev_adjacent *iter;
5402 
5403 	struct net *net = dev_net(dev);
5404 
5405 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5406 		if (!net_eq(net,dev_net(iter->dev)))
5407 			continue;
5408 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5409 					  &iter->dev->adj_list.lower);
5410 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5411 					  &dev->adj_list.upper);
5412 	}
5413 
5414 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5415 		if (!net_eq(net,dev_net(iter->dev)))
5416 			continue;
5417 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5418 					  &iter->dev->adj_list.upper);
5419 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5420 					  &dev->adj_list.lower);
5421 	}
5422 }
5423 
5424 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5425 {
5426 	struct netdev_adjacent *iter;
5427 
5428 	struct net *net = dev_net(dev);
5429 
5430 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5431 		if (!net_eq(net,dev_net(iter->dev)))
5432 			continue;
5433 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5434 					  &iter->dev->adj_list.lower);
5435 		netdev_adjacent_sysfs_add(iter->dev, dev,
5436 					  &iter->dev->adj_list.lower);
5437 	}
5438 
5439 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5440 		if (!net_eq(net,dev_net(iter->dev)))
5441 			continue;
5442 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5443 					  &iter->dev->adj_list.upper);
5444 		netdev_adjacent_sysfs_add(iter->dev, dev,
5445 					  &iter->dev->adj_list.upper);
5446 	}
5447 }
5448 
5449 void *netdev_lower_dev_get_private(struct net_device *dev,
5450 				   struct net_device *lower_dev)
5451 {
5452 	struct netdev_adjacent *lower;
5453 
5454 	if (!lower_dev)
5455 		return NULL;
5456 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5457 	if (!lower)
5458 		return NULL;
5459 
5460 	return lower->private;
5461 }
5462 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5463 
5464 
5465 int dev_get_nest_level(struct net_device *dev,
5466 		       bool (*type_check)(struct net_device *dev))
5467 {
5468 	struct net_device *lower = NULL;
5469 	struct list_head *iter;
5470 	int max_nest = -1;
5471 	int nest;
5472 
5473 	ASSERT_RTNL();
5474 
5475 	netdev_for_each_lower_dev(dev, lower, iter) {
5476 		nest = dev_get_nest_level(lower, type_check);
5477 		if (max_nest < nest)
5478 			max_nest = nest;
5479 	}
5480 
5481 	if (type_check(dev))
5482 		max_nest++;
5483 
5484 	return max_nest;
5485 }
5486 EXPORT_SYMBOL(dev_get_nest_level);
5487 
5488 static void dev_change_rx_flags(struct net_device *dev, int flags)
5489 {
5490 	const struct net_device_ops *ops = dev->netdev_ops;
5491 
5492 	if (ops->ndo_change_rx_flags)
5493 		ops->ndo_change_rx_flags(dev, flags);
5494 }
5495 
5496 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5497 {
5498 	unsigned int old_flags = dev->flags;
5499 	kuid_t uid;
5500 	kgid_t gid;
5501 
5502 	ASSERT_RTNL();
5503 
5504 	dev->flags |= IFF_PROMISC;
5505 	dev->promiscuity += inc;
5506 	if (dev->promiscuity == 0) {
5507 		/*
5508 		 * Avoid overflow.
5509 		 * If inc causes overflow, untouch promisc and return error.
5510 		 */
5511 		if (inc < 0)
5512 			dev->flags &= ~IFF_PROMISC;
5513 		else {
5514 			dev->promiscuity -= inc;
5515 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5516 				dev->name);
5517 			return -EOVERFLOW;
5518 		}
5519 	}
5520 	if (dev->flags != old_flags) {
5521 		pr_info("device %s %s promiscuous mode\n",
5522 			dev->name,
5523 			dev->flags & IFF_PROMISC ? "entered" : "left");
5524 		if (audit_enabled) {
5525 			current_uid_gid(&uid, &gid);
5526 			audit_log(current->audit_context, GFP_ATOMIC,
5527 				AUDIT_ANOM_PROMISCUOUS,
5528 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5529 				dev->name, (dev->flags & IFF_PROMISC),
5530 				(old_flags & IFF_PROMISC),
5531 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5532 				from_kuid(&init_user_ns, uid),
5533 				from_kgid(&init_user_ns, gid),
5534 				audit_get_sessionid(current));
5535 		}
5536 
5537 		dev_change_rx_flags(dev, IFF_PROMISC);
5538 	}
5539 	if (notify)
5540 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5541 	return 0;
5542 }
5543 
5544 /**
5545  *	dev_set_promiscuity	- update promiscuity count on a device
5546  *	@dev: device
5547  *	@inc: modifier
5548  *
5549  *	Add or remove promiscuity from a device. While the count in the device
5550  *	remains above zero the interface remains promiscuous. Once it hits zero
5551  *	the device reverts back to normal filtering operation. A negative inc
5552  *	value is used to drop promiscuity on the device.
5553  *	Return 0 if successful or a negative errno code on error.
5554  */
5555 int dev_set_promiscuity(struct net_device *dev, int inc)
5556 {
5557 	unsigned int old_flags = dev->flags;
5558 	int err;
5559 
5560 	err = __dev_set_promiscuity(dev, inc, true);
5561 	if (err < 0)
5562 		return err;
5563 	if (dev->flags != old_flags)
5564 		dev_set_rx_mode(dev);
5565 	return err;
5566 }
5567 EXPORT_SYMBOL(dev_set_promiscuity);
5568 
5569 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5570 {
5571 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5572 
5573 	ASSERT_RTNL();
5574 
5575 	dev->flags |= IFF_ALLMULTI;
5576 	dev->allmulti += inc;
5577 	if (dev->allmulti == 0) {
5578 		/*
5579 		 * Avoid overflow.
5580 		 * If inc causes overflow, untouch allmulti and return error.
5581 		 */
5582 		if (inc < 0)
5583 			dev->flags &= ~IFF_ALLMULTI;
5584 		else {
5585 			dev->allmulti -= inc;
5586 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5587 				dev->name);
5588 			return -EOVERFLOW;
5589 		}
5590 	}
5591 	if (dev->flags ^ old_flags) {
5592 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5593 		dev_set_rx_mode(dev);
5594 		if (notify)
5595 			__dev_notify_flags(dev, old_flags,
5596 					   dev->gflags ^ old_gflags);
5597 	}
5598 	return 0;
5599 }
5600 
5601 /**
5602  *	dev_set_allmulti	- update allmulti count on a device
5603  *	@dev: device
5604  *	@inc: modifier
5605  *
5606  *	Add or remove reception of all multicast frames to a device. While the
5607  *	count in the device remains above zero the interface remains listening
5608  *	to all interfaces. Once it hits zero the device reverts back to normal
5609  *	filtering operation. A negative @inc value is used to drop the counter
5610  *	when releasing a resource needing all multicasts.
5611  *	Return 0 if successful or a negative errno code on error.
5612  */
5613 
5614 int dev_set_allmulti(struct net_device *dev, int inc)
5615 {
5616 	return __dev_set_allmulti(dev, inc, true);
5617 }
5618 EXPORT_SYMBOL(dev_set_allmulti);
5619 
5620 /*
5621  *	Upload unicast and multicast address lists to device and
5622  *	configure RX filtering. When the device doesn't support unicast
5623  *	filtering it is put in promiscuous mode while unicast addresses
5624  *	are present.
5625  */
5626 void __dev_set_rx_mode(struct net_device *dev)
5627 {
5628 	const struct net_device_ops *ops = dev->netdev_ops;
5629 
5630 	/* dev_open will call this function so the list will stay sane. */
5631 	if (!(dev->flags&IFF_UP))
5632 		return;
5633 
5634 	if (!netif_device_present(dev))
5635 		return;
5636 
5637 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5638 		/* Unicast addresses changes may only happen under the rtnl,
5639 		 * therefore calling __dev_set_promiscuity here is safe.
5640 		 */
5641 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5642 			__dev_set_promiscuity(dev, 1, false);
5643 			dev->uc_promisc = true;
5644 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5645 			__dev_set_promiscuity(dev, -1, false);
5646 			dev->uc_promisc = false;
5647 		}
5648 	}
5649 
5650 	if (ops->ndo_set_rx_mode)
5651 		ops->ndo_set_rx_mode(dev);
5652 }
5653 
5654 void dev_set_rx_mode(struct net_device *dev)
5655 {
5656 	netif_addr_lock_bh(dev);
5657 	__dev_set_rx_mode(dev);
5658 	netif_addr_unlock_bh(dev);
5659 }
5660 
5661 /**
5662  *	dev_get_flags - get flags reported to userspace
5663  *	@dev: device
5664  *
5665  *	Get the combination of flag bits exported through APIs to userspace.
5666  */
5667 unsigned int dev_get_flags(const struct net_device *dev)
5668 {
5669 	unsigned int flags;
5670 
5671 	flags = (dev->flags & ~(IFF_PROMISC |
5672 				IFF_ALLMULTI |
5673 				IFF_RUNNING |
5674 				IFF_LOWER_UP |
5675 				IFF_DORMANT)) |
5676 		(dev->gflags & (IFF_PROMISC |
5677 				IFF_ALLMULTI));
5678 
5679 	if (netif_running(dev)) {
5680 		if (netif_oper_up(dev))
5681 			flags |= IFF_RUNNING;
5682 		if (netif_carrier_ok(dev))
5683 			flags |= IFF_LOWER_UP;
5684 		if (netif_dormant(dev))
5685 			flags |= IFF_DORMANT;
5686 	}
5687 
5688 	return flags;
5689 }
5690 EXPORT_SYMBOL(dev_get_flags);
5691 
5692 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5693 {
5694 	unsigned int old_flags = dev->flags;
5695 	int ret;
5696 
5697 	ASSERT_RTNL();
5698 
5699 	/*
5700 	 *	Set the flags on our device.
5701 	 */
5702 
5703 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5704 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5705 			       IFF_AUTOMEDIA)) |
5706 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5707 				    IFF_ALLMULTI));
5708 
5709 	/*
5710 	 *	Load in the correct multicast list now the flags have changed.
5711 	 */
5712 
5713 	if ((old_flags ^ flags) & IFF_MULTICAST)
5714 		dev_change_rx_flags(dev, IFF_MULTICAST);
5715 
5716 	dev_set_rx_mode(dev);
5717 
5718 	/*
5719 	 *	Have we downed the interface. We handle IFF_UP ourselves
5720 	 *	according to user attempts to set it, rather than blindly
5721 	 *	setting it.
5722 	 */
5723 
5724 	ret = 0;
5725 	if ((old_flags ^ flags) & IFF_UP)
5726 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5727 
5728 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5729 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5730 		unsigned int old_flags = dev->flags;
5731 
5732 		dev->gflags ^= IFF_PROMISC;
5733 
5734 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5735 			if (dev->flags != old_flags)
5736 				dev_set_rx_mode(dev);
5737 	}
5738 
5739 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5740 	   is important. Some (broken) drivers set IFF_PROMISC, when
5741 	   IFF_ALLMULTI is requested not asking us and not reporting.
5742 	 */
5743 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5744 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5745 
5746 		dev->gflags ^= IFF_ALLMULTI;
5747 		__dev_set_allmulti(dev, inc, false);
5748 	}
5749 
5750 	return ret;
5751 }
5752 
5753 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5754 			unsigned int gchanges)
5755 {
5756 	unsigned int changes = dev->flags ^ old_flags;
5757 
5758 	if (gchanges)
5759 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5760 
5761 	if (changes & IFF_UP) {
5762 		if (dev->flags & IFF_UP)
5763 			call_netdevice_notifiers(NETDEV_UP, dev);
5764 		else
5765 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5766 	}
5767 
5768 	if (dev->flags & IFF_UP &&
5769 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5770 		struct netdev_notifier_change_info change_info;
5771 
5772 		change_info.flags_changed = changes;
5773 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5774 					      &change_info.info);
5775 	}
5776 }
5777 
5778 /**
5779  *	dev_change_flags - change device settings
5780  *	@dev: device
5781  *	@flags: device state flags
5782  *
5783  *	Change settings on device based state flags. The flags are
5784  *	in the userspace exported format.
5785  */
5786 int dev_change_flags(struct net_device *dev, unsigned int flags)
5787 {
5788 	int ret;
5789 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5790 
5791 	ret = __dev_change_flags(dev, flags);
5792 	if (ret < 0)
5793 		return ret;
5794 
5795 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5796 	__dev_notify_flags(dev, old_flags, changes);
5797 	return ret;
5798 }
5799 EXPORT_SYMBOL(dev_change_flags);
5800 
5801 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5802 {
5803 	const struct net_device_ops *ops = dev->netdev_ops;
5804 
5805 	if (ops->ndo_change_mtu)
5806 		return ops->ndo_change_mtu(dev, new_mtu);
5807 
5808 	dev->mtu = new_mtu;
5809 	return 0;
5810 }
5811 
5812 /**
5813  *	dev_set_mtu - Change maximum transfer unit
5814  *	@dev: device
5815  *	@new_mtu: new transfer unit
5816  *
5817  *	Change the maximum transfer size of the network device.
5818  */
5819 int dev_set_mtu(struct net_device *dev, int new_mtu)
5820 {
5821 	int err, orig_mtu;
5822 
5823 	if (new_mtu == dev->mtu)
5824 		return 0;
5825 
5826 	/*	MTU must be positive.	 */
5827 	if (new_mtu < 0)
5828 		return -EINVAL;
5829 
5830 	if (!netif_device_present(dev))
5831 		return -ENODEV;
5832 
5833 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5834 	err = notifier_to_errno(err);
5835 	if (err)
5836 		return err;
5837 
5838 	orig_mtu = dev->mtu;
5839 	err = __dev_set_mtu(dev, new_mtu);
5840 
5841 	if (!err) {
5842 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5843 		err = notifier_to_errno(err);
5844 		if (err) {
5845 			/* setting mtu back and notifying everyone again,
5846 			 * so that they have a chance to revert changes.
5847 			 */
5848 			__dev_set_mtu(dev, orig_mtu);
5849 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5850 		}
5851 	}
5852 	return err;
5853 }
5854 EXPORT_SYMBOL(dev_set_mtu);
5855 
5856 /**
5857  *	dev_set_group - Change group this device belongs to
5858  *	@dev: device
5859  *	@new_group: group this device should belong to
5860  */
5861 void dev_set_group(struct net_device *dev, int new_group)
5862 {
5863 	dev->group = new_group;
5864 }
5865 EXPORT_SYMBOL(dev_set_group);
5866 
5867 /**
5868  *	dev_set_mac_address - Change Media Access Control Address
5869  *	@dev: device
5870  *	@sa: new address
5871  *
5872  *	Change the hardware (MAC) address of the device
5873  */
5874 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5875 {
5876 	const struct net_device_ops *ops = dev->netdev_ops;
5877 	int err;
5878 
5879 	if (!ops->ndo_set_mac_address)
5880 		return -EOPNOTSUPP;
5881 	if (sa->sa_family != dev->type)
5882 		return -EINVAL;
5883 	if (!netif_device_present(dev))
5884 		return -ENODEV;
5885 	err = ops->ndo_set_mac_address(dev, sa);
5886 	if (err)
5887 		return err;
5888 	dev->addr_assign_type = NET_ADDR_SET;
5889 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5890 	add_device_randomness(dev->dev_addr, dev->addr_len);
5891 	return 0;
5892 }
5893 EXPORT_SYMBOL(dev_set_mac_address);
5894 
5895 /**
5896  *	dev_change_carrier - Change device carrier
5897  *	@dev: device
5898  *	@new_carrier: new value
5899  *
5900  *	Change device carrier
5901  */
5902 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5903 {
5904 	const struct net_device_ops *ops = dev->netdev_ops;
5905 
5906 	if (!ops->ndo_change_carrier)
5907 		return -EOPNOTSUPP;
5908 	if (!netif_device_present(dev))
5909 		return -ENODEV;
5910 	return ops->ndo_change_carrier(dev, new_carrier);
5911 }
5912 EXPORT_SYMBOL(dev_change_carrier);
5913 
5914 /**
5915  *	dev_get_phys_port_id - Get device physical port ID
5916  *	@dev: device
5917  *	@ppid: port ID
5918  *
5919  *	Get device physical port ID
5920  */
5921 int dev_get_phys_port_id(struct net_device *dev,
5922 			 struct netdev_phys_item_id *ppid)
5923 {
5924 	const struct net_device_ops *ops = dev->netdev_ops;
5925 
5926 	if (!ops->ndo_get_phys_port_id)
5927 		return -EOPNOTSUPP;
5928 	return ops->ndo_get_phys_port_id(dev, ppid);
5929 }
5930 EXPORT_SYMBOL(dev_get_phys_port_id);
5931 
5932 /**
5933  *	dev_get_phys_port_name - Get device physical port name
5934  *	@dev: device
5935  *	@name: port name
5936  *
5937  *	Get device physical port name
5938  */
5939 int dev_get_phys_port_name(struct net_device *dev,
5940 			   char *name, size_t len)
5941 {
5942 	const struct net_device_ops *ops = dev->netdev_ops;
5943 
5944 	if (!ops->ndo_get_phys_port_name)
5945 		return -EOPNOTSUPP;
5946 	return ops->ndo_get_phys_port_name(dev, name, len);
5947 }
5948 EXPORT_SYMBOL(dev_get_phys_port_name);
5949 
5950 /**
5951  *	dev_new_index	-	allocate an ifindex
5952  *	@net: the applicable net namespace
5953  *
5954  *	Returns a suitable unique value for a new device interface
5955  *	number.  The caller must hold the rtnl semaphore or the
5956  *	dev_base_lock to be sure it remains unique.
5957  */
5958 static int dev_new_index(struct net *net)
5959 {
5960 	int ifindex = net->ifindex;
5961 	for (;;) {
5962 		if (++ifindex <= 0)
5963 			ifindex = 1;
5964 		if (!__dev_get_by_index(net, ifindex))
5965 			return net->ifindex = ifindex;
5966 	}
5967 }
5968 
5969 /* Delayed registration/unregisteration */
5970 static LIST_HEAD(net_todo_list);
5971 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5972 
5973 static void net_set_todo(struct net_device *dev)
5974 {
5975 	list_add_tail(&dev->todo_list, &net_todo_list);
5976 	dev_net(dev)->dev_unreg_count++;
5977 }
5978 
5979 static void rollback_registered_many(struct list_head *head)
5980 {
5981 	struct net_device *dev, *tmp;
5982 	LIST_HEAD(close_head);
5983 
5984 	BUG_ON(dev_boot_phase);
5985 	ASSERT_RTNL();
5986 
5987 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5988 		/* Some devices call without registering
5989 		 * for initialization unwind. Remove those
5990 		 * devices and proceed with the remaining.
5991 		 */
5992 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5993 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5994 				 dev->name, dev);
5995 
5996 			WARN_ON(1);
5997 			list_del(&dev->unreg_list);
5998 			continue;
5999 		}
6000 		dev->dismantle = true;
6001 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6002 	}
6003 
6004 	/* If device is running, close it first. */
6005 	list_for_each_entry(dev, head, unreg_list)
6006 		list_add_tail(&dev->close_list, &close_head);
6007 	dev_close_many(&close_head, true);
6008 
6009 	list_for_each_entry(dev, head, unreg_list) {
6010 		/* And unlink it from device chain. */
6011 		unlist_netdevice(dev);
6012 
6013 		dev->reg_state = NETREG_UNREGISTERING;
6014 	}
6015 
6016 	synchronize_net();
6017 
6018 	list_for_each_entry(dev, head, unreg_list) {
6019 		struct sk_buff *skb = NULL;
6020 
6021 		/* Shutdown queueing discipline. */
6022 		dev_shutdown(dev);
6023 
6024 
6025 		/* Notify protocols, that we are about to destroy
6026 		   this device. They should clean all the things.
6027 		*/
6028 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6029 
6030 		if (!dev->rtnl_link_ops ||
6031 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6032 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6033 						     GFP_KERNEL);
6034 
6035 		/*
6036 		 *	Flush the unicast and multicast chains
6037 		 */
6038 		dev_uc_flush(dev);
6039 		dev_mc_flush(dev);
6040 
6041 		if (dev->netdev_ops->ndo_uninit)
6042 			dev->netdev_ops->ndo_uninit(dev);
6043 
6044 		if (skb)
6045 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6046 
6047 		/* Notifier chain MUST detach us all upper devices. */
6048 		WARN_ON(netdev_has_any_upper_dev(dev));
6049 
6050 		/* Remove entries from kobject tree */
6051 		netdev_unregister_kobject(dev);
6052 #ifdef CONFIG_XPS
6053 		/* Remove XPS queueing entries */
6054 		netif_reset_xps_queues_gt(dev, 0);
6055 #endif
6056 	}
6057 
6058 	synchronize_net();
6059 
6060 	list_for_each_entry(dev, head, unreg_list)
6061 		dev_put(dev);
6062 }
6063 
6064 static void rollback_registered(struct net_device *dev)
6065 {
6066 	LIST_HEAD(single);
6067 
6068 	list_add(&dev->unreg_list, &single);
6069 	rollback_registered_many(&single);
6070 	list_del(&single);
6071 }
6072 
6073 static netdev_features_t netdev_fix_features(struct net_device *dev,
6074 	netdev_features_t features)
6075 {
6076 	/* Fix illegal checksum combinations */
6077 	if ((features & NETIF_F_HW_CSUM) &&
6078 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6079 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6080 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6081 	}
6082 
6083 	/* TSO requires that SG is present as well. */
6084 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6085 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6086 		features &= ~NETIF_F_ALL_TSO;
6087 	}
6088 
6089 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6090 					!(features & NETIF_F_IP_CSUM)) {
6091 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6092 		features &= ~NETIF_F_TSO;
6093 		features &= ~NETIF_F_TSO_ECN;
6094 	}
6095 
6096 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6097 					 !(features & NETIF_F_IPV6_CSUM)) {
6098 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6099 		features &= ~NETIF_F_TSO6;
6100 	}
6101 
6102 	/* TSO ECN requires that TSO is present as well. */
6103 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6104 		features &= ~NETIF_F_TSO_ECN;
6105 
6106 	/* Software GSO depends on SG. */
6107 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6108 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6109 		features &= ~NETIF_F_GSO;
6110 	}
6111 
6112 	/* UFO needs SG and checksumming */
6113 	if (features & NETIF_F_UFO) {
6114 		/* maybe split UFO into V4 and V6? */
6115 		if (!((features & NETIF_F_GEN_CSUM) ||
6116 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6117 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6118 			netdev_dbg(dev,
6119 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6120 			features &= ~NETIF_F_UFO;
6121 		}
6122 
6123 		if (!(features & NETIF_F_SG)) {
6124 			netdev_dbg(dev,
6125 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6126 			features &= ~NETIF_F_UFO;
6127 		}
6128 	}
6129 
6130 #ifdef CONFIG_NET_RX_BUSY_POLL
6131 	if (dev->netdev_ops->ndo_busy_poll)
6132 		features |= NETIF_F_BUSY_POLL;
6133 	else
6134 #endif
6135 		features &= ~NETIF_F_BUSY_POLL;
6136 
6137 	return features;
6138 }
6139 
6140 int __netdev_update_features(struct net_device *dev)
6141 {
6142 	netdev_features_t features;
6143 	int err = 0;
6144 
6145 	ASSERT_RTNL();
6146 
6147 	features = netdev_get_wanted_features(dev);
6148 
6149 	if (dev->netdev_ops->ndo_fix_features)
6150 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6151 
6152 	/* driver might be less strict about feature dependencies */
6153 	features = netdev_fix_features(dev, features);
6154 
6155 	if (dev->features == features)
6156 		return 0;
6157 
6158 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6159 		&dev->features, &features);
6160 
6161 	if (dev->netdev_ops->ndo_set_features)
6162 		err = dev->netdev_ops->ndo_set_features(dev, features);
6163 
6164 	if (unlikely(err < 0)) {
6165 		netdev_err(dev,
6166 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6167 			err, &features, &dev->features);
6168 		return -1;
6169 	}
6170 
6171 	if (!err)
6172 		dev->features = features;
6173 
6174 	return 1;
6175 }
6176 
6177 /**
6178  *	netdev_update_features - recalculate device features
6179  *	@dev: the device to check
6180  *
6181  *	Recalculate dev->features set and send notifications if it
6182  *	has changed. Should be called after driver or hardware dependent
6183  *	conditions might have changed that influence the features.
6184  */
6185 void netdev_update_features(struct net_device *dev)
6186 {
6187 	if (__netdev_update_features(dev))
6188 		netdev_features_change(dev);
6189 }
6190 EXPORT_SYMBOL(netdev_update_features);
6191 
6192 /**
6193  *	netdev_change_features - recalculate device features
6194  *	@dev: the device to check
6195  *
6196  *	Recalculate dev->features set and send notifications even
6197  *	if they have not changed. Should be called instead of
6198  *	netdev_update_features() if also dev->vlan_features might
6199  *	have changed to allow the changes to be propagated to stacked
6200  *	VLAN devices.
6201  */
6202 void netdev_change_features(struct net_device *dev)
6203 {
6204 	__netdev_update_features(dev);
6205 	netdev_features_change(dev);
6206 }
6207 EXPORT_SYMBOL(netdev_change_features);
6208 
6209 /**
6210  *	netif_stacked_transfer_operstate -	transfer operstate
6211  *	@rootdev: the root or lower level device to transfer state from
6212  *	@dev: the device to transfer operstate to
6213  *
6214  *	Transfer operational state from root to device. This is normally
6215  *	called when a stacking relationship exists between the root
6216  *	device and the device(a leaf device).
6217  */
6218 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6219 					struct net_device *dev)
6220 {
6221 	if (rootdev->operstate == IF_OPER_DORMANT)
6222 		netif_dormant_on(dev);
6223 	else
6224 		netif_dormant_off(dev);
6225 
6226 	if (netif_carrier_ok(rootdev)) {
6227 		if (!netif_carrier_ok(dev))
6228 			netif_carrier_on(dev);
6229 	} else {
6230 		if (netif_carrier_ok(dev))
6231 			netif_carrier_off(dev);
6232 	}
6233 }
6234 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6235 
6236 #ifdef CONFIG_SYSFS
6237 static int netif_alloc_rx_queues(struct net_device *dev)
6238 {
6239 	unsigned int i, count = dev->num_rx_queues;
6240 	struct netdev_rx_queue *rx;
6241 	size_t sz = count * sizeof(*rx);
6242 
6243 	BUG_ON(count < 1);
6244 
6245 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6246 	if (!rx) {
6247 		rx = vzalloc(sz);
6248 		if (!rx)
6249 			return -ENOMEM;
6250 	}
6251 	dev->_rx = rx;
6252 
6253 	for (i = 0; i < count; i++)
6254 		rx[i].dev = dev;
6255 	return 0;
6256 }
6257 #endif
6258 
6259 static void netdev_init_one_queue(struct net_device *dev,
6260 				  struct netdev_queue *queue, void *_unused)
6261 {
6262 	/* Initialize queue lock */
6263 	spin_lock_init(&queue->_xmit_lock);
6264 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6265 	queue->xmit_lock_owner = -1;
6266 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6267 	queue->dev = dev;
6268 #ifdef CONFIG_BQL
6269 	dql_init(&queue->dql, HZ);
6270 #endif
6271 }
6272 
6273 static void netif_free_tx_queues(struct net_device *dev)
6274 {
6275 	kvfree(dev->_tx);
6276 }
6277 
6278 static int netif_alloc_netdev_queues(struct net_device *dev)
6279 {
6280 	unsigned int count = dev->num_tx_queues;
6281 	struct netdev_queue *tx;
6282 	size_t sz = count * sizeof(*tx);
6283 
6284 	BUG_ON(count < 1 || count > 0xffff);
6285 
6286 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6287 	if (!tx) {
6288 		tx = vzalloc(sz);
6289 		if (!tx)
6290 			return -ENOMEM;
6291 	}
6292 	dev->_tx = tx;
6293 
6294 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6295 	spin_lock_init(&dev->tx_global_lock);
6296 
6297 	return 0;
6298 }
6299 
6300 /**
6301  *	register_netdevice	- register a network device
6302  *	@dev: device to register
6303  *
6304  *	Take a completed network device structure and add it to the kernel
6305  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6306  *	chain. 0 is returned on success. A negative errno code is returned
6307  *	on a failure to set up the device, or if the name is a duplicate.
6308  *
6309  *	Callers must hold the rtnl semaphore. You may want
6310  *	register_netdev() instead of this.
6311  *
6312  *	BUGS:
6313  *	The locking appears insufficient to guarantee two parallel registers
6314  *	will not get the same name.
6315  */
6316 
6317 int register_netdevice(struct net_device *dev)
6318 {
6319 	int ret;
6320 	struct net *net = dev_net(dev);
6321 
6322 	BUG_ON(dev_boot_phase);
6323 	ASSERT_RTNL();
6324 
6325 	might_sleep();
6326 
6327 	/* When net_device's are persistent, this will be fatal. */
6328 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6329 	BUG_ON(!net);
6330 
6331 	spin_lock_init(&dev->addr_list_lock);
6332 	netdev_set_addr_lockdep_class(dev);
6333 
6334 	dev->iflink = -1;
6335 
6336 	ret = dev_get_valid_name(net, dev, dev->name);
6337 	if (ret < 0)
6338 		goto out;
6339 
6340 	/* Init, if this function is available */
6341 	if (dev->netdev_ops->ndo_init) {
6342 		ret = dev->netdev_ops->ndo_init(dev);
6343 		if (ret) {
6344 			if (ret > 0)
6345 				ret = -EIO;
6346 			goto out;
6347 		}
6348 	}
6349 
6350 	if (((dev->hw_features | dev->features) &
6351 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6352 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6353 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6354 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6355 		ret = -EINVAL;
6356 		goto err_uninit;
6357 	}
6358 
6359 	ret = -EBUSY;
6360 	if (!dev->ifindex)
6361 		dev->ifindex = dev_new_index(net);
6362 	else if (__dev_get_by_index(net, dev->ifindex))
6363 		goto err_uninit;
6364 
6365 	if (dev_get_iflink(dev) == -1)
6366 		dev->iflink = dev->ifindex;
6367 
6368 	/* Transfer changeable features to wanted_features and enable
6369 	 * software offloads (GSO and GRO).
6370 	 */
6371 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6372 	dev->features |= NETIF_F_SOFT_FEATURES;
6373 	dev->wanted_features = dev->features & dev->hw_features;
6374 
6375 	if (!(dev->flags & IFF_LOOPBACK)) {
6376 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6377 	}
6378 
6379 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6380 	 */
6381 	dev->vlan_features |= NETIF_F_HIGHDMA;
6382 
6383 	/* Make NETIF_F_SG inheritable to tunnel devices.
6384 	 */
6385 	dev->hw_enc_features |= NETIF_F_SG;
6386 
6387 	/* Make NETIF_F_SG inheritable to MPLS.
6388 	 */
6389 	dev->mpls_features |= NETIF_F_SG;
6390 
6391 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6392 	ret = notifier_to_errno(ret);
6393 	if (ret)
6394 		goto err_uninit;
6395 
6396 	ret = netdev_register_kobject(dev);
6397 	if (ret)
6398 		goto err_uninit;
6399 	dev->reg_state = NETREG_REGISTERED;
6400 
6401 	__netdev_update_features(dev);
6402 
6403 	/*
6404 	 *	Default initial state at registry is that the
6405 	 *	device is present.
6406 	 */
6407 
6408 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6409 
6410 	linkwatch_init_dev(dev);
6411 
6412 	dev_init_scheduler(dev);
6413 	dev_hold(dev);
6414 	list_netdevice(dev);
6415 	add_device_randomness(dev->dev_addr, dev->addr_len);
6416 
6417 	/* If the device has permanent device address, driver should
6418 	 * set dev_addr and also addr_assign_type should be set to
6419 	 * NET_ADDR_PERM (default value).
6420 	 */
6421 	if (dev->addr_assign_type == NET_ADDR_PERM)
6422 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6423 
6424 	/* Notify protocols, that a new device appeared. */
6425 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6426 	ret = notifier_to_errno(ret);
6427 	if (ret) {
6428 		rollback_registered(dev);
6429 		dev->reg_state = NETREG_UNREGISTERED;
6430 	}
6431 	/*
6432 	 *	Prevent userspace races by waiting until the network
6433 	 *	device is fully setup before sending notifications.
6434 	 */
6435 	if (!dev->rtnl_link_ops ||
6436 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6437 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6438 
6439 out:
6440 	return ret;
6441 
6442 err_uninit:
6443 	if (dev->netdev_ops->ndo_uninit)
6444 		dev->netdev_ops->ndo_uninit(dev);
6445 	goto out;
6446 }
6447 EXPORT_SYMBOL(register_netdevice);
6448 
6449 /**
6450  *	init_dummy_netdev	- init a dummy network device for NAPI
6451  *	@dev: device to init
6452  *
6453  *	This takes a network device structure and initialize the minimum
6454  *	amount of fields so it can be used to schedule NAPI polls without
6455  *	registering a full blown interface. This is to be used by drivers
6456  *	that need to tie several hardware interfaces to a single NAPI
6457  *	poll scheduler due to HW limitations.
6458  */
6459 int init_dummy_netdev(struct net_device *dev)
6460 {
6461 	/* Clear everything. Note we don't initialize spinlocks
6462 	 * are they aren't supposed to be taken by any of the
6463 	 * NAPI code and this dummy netdev is supposed to be
6464 	 * only ever used for NAPI polls
6465 	 */
6466 	memset(dev, 0, sizeof(struct net_device));
6467 
6468 	/* make sure we BUG if trying to hit standard
6469 	 * register/unregister code path
6470 	 */
6471 	dev->reg_state = NETREG_DUMMY;
6472 
6473 	/* NAPI wants this */
6474 	INIT_LIST_HEAD(&dev->napi_list);
6475 
6476 	/* a dummy interface is started by default */
6477 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6478 	set_bit(__LINK_STATE_START, &dev->state);
6479 
6480 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6481 	 * because users of this 'device' dont need to change
6482 	 * its refcount.
6483 	 */
6484 
6485 	return 0;
6486 }
6487 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6488 
6489 
6490 /**
6491  *	register_netdev	- register a network device
6492  *	@dev: device to register
6493  *
6494  *	Take a completed network device structure and add it to the kernel
6495  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6496  *	chain. 0 is returned on success. A negative errno code is returned
6497  *	on a failure to set up the device, or if the name is a duplicate.
6498  *
6499  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6500  *	and expands the device name if you passed a format string to
6501  *	alloc_netdev.
6502  */
6503 int register_netdev(struct net_device *dev)
6504 {
6505 	int err;
6506 
6507 	rtnl_lock();
6508 	err = register_netdevice(dev);
6509 	rtnl_unlock();
6510 	return err;
6511 }
6512 EXPORT_SYMBOL(register_netdev);
6513 
6514 int netdev_refcnt_read(const struct net_device *dev)
6515 {
6516 	int i, refcnt = 0;
6517 
6518 	for_each_possible_cpu(i)
6519 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6520 	return refcnt;
6521 }
6522 EXPORT_SYMBOL(netdev_refcnt_read);
6523 
6524 /**
6525  * netdev_wait_allrefs - wait until all references are gone.
6526  * @dev: target net_device
6527  *
6528  * This is called when unregistering network devices.
6529  *
6530  * Any protocol or device that holds a reference should register
6531  * for netdevice notification, and cleanup and put back the
6532  * reference if they receive an UNREGISTER event.
6533  * We can get stuck here if buggy protocols don't correctly
6534  * call dev_put.
6535  */
6536 static void netdev_wait_allrefs(struct net_device *dev)
6537 {
6538 	unsigned long rebroadcast_time, warning_time;
6539 	int refcnt;
6540 
6541 	linkwatch_forget_dev(dev);
6542 
6543 	rebroadcast_time = warning_time = jiffies;
6544 	refcnt = netdev_refcnt_read(dev);
6545 
6546 	while (refcnt != 0) {
6547 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6548 			rtnl_lock();
6549 
6550 			/* Rebroadcast unregister notification */
6551 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6552 
6553 			__rtnl_unlock();
6554 			rcu_barrier();
6555 			rtnl_lock();
6556 
6557 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6558 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6559 				     &dev->state)) {
6560 				/* We must not have linkwatch events
6561 				 * pending on unregister. If this
6562 				 * happens, we simply run the queue
6563 				 * unscheduled, resulting in a noop
6564 				 * for this device.
6565 				 */
6566 				linkwatch_run_queue();
6567 			}
6568 
6569 			__rtnl_unlock();
6570 
6571 			rebroadcast_time = jiffies;
6572 		}
6573 
6574 		msleep(250);
6575 
6576 		refcnt = netdev_refcnt_read(dev);
6577 
6578 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6579 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6580 				 dev->name, refcnt);
6581 			warning_time = jiffies;
6582 		}
6583 	}
6584 }
6585 
6586 /* The sequence is:
6587  *
6588  *	rtnl_lock();
6589  *	...
6590  *	register_netdevice(x1);
6591  *	register_netdevice(x2);
6592  *	...
6593  *	unregister_netdevice(y1);
6594  *	unregister_netdevice(y2);
6595  *      ...
6596  *	rtnl_unlock();
6597  *	free_netdev(y1);
6598  *	free_netdev(y2);
6599  *
6600  * We are invoked by rtnl_unlock().
6601  * This allows us to deal with problems:
6602  * 1) We can delete sysfs objects which invoke hotplug
6603  *    without deadlocking with linkwatch via keventd.
6604  * 2) Since we run with the RTNL semaphore not held, we can sleep
6605  *    safely in order to wait for the netdev refcnt to drop to zero.
6606  *
6607  * We must not return until all unregister events added during
6608  * the interval the lock was held have been completed.
6609  */
6610 void netdev_run_todo(void)
6611 {
6612 	struct list_head list;
6613 
6614 	/* Snapshot list, allow later requests */
6615 	list_replace_init(&net_todo_list, &list);
6616 
6617 	__rtnl_unlock();
6618 
6619 
6620 	/* Wait for rcu callbacks to finish before next phase */
6621 	if (!list_empty(&list))
6622 		rcu_barrier();
6623 
6624 	while (!list_empty(&list)) {
6625 		struct net_device *dev
6626 			= list_first_entry(&list, struct net_device, todo_list);
6627 		list_del(&dev->todo_list);
6628 
6629 		rtnl_lock();
6630 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6631 		__rtnl_unlock();
6632 
6633 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6634 			pr_err("network todo '%s' but state %d\n",
6635 			       dev->name, dev->reg_state);
6636 			dump_stack();
6637 			continue;
6638 		}
6639 
6640 		dev->reg_state = NETREG_UNREGISTERED;
6641 
6642 		on_each_cpu(flush_backlog, dev, 1);
6643 
6644 		netdev_wait_allrefs(dev);
6645 
6646 		/* paranoia */
6647 		BUG_ON(netdev_refcnt_read(dev));
6648 		BUG_ON(!list_empty(&dev->ptype_all));
6649 		BUG_ON(!list_empty(&dev->ptype_specific));
6650 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6651 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6652 		WARN_ON(dev->dn_ptr);
6653 
6654 		if (dev->destructor)
6655 			dev->destructor(dev);
6656 
6657 		/* Report a network device has been unregistered */
6658 		rtnl_lock();
6659 		dev_net(dev)->dev_unreg_count--;
6660 		__rtnl_unlock();
6661 		wake_up(&netdev_unregistering_wq);
6662 
6663 		/* Free network device */
6664 		kobject_put(&dev->dev.kobj);
6665 	}
6666 }
6667 
6668 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6669  * fields in the same order, with only the type differing.
6670  */
6671 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6672 			     const struct net_device_stats *netdev_stats)
6673 {
6674 #if BITS_PER_LONG == 64
6675 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6676 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6677 #else
6678 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6679 	const unsigned long *src = (const unsigned long *)netdev_stats;
6680 	u64 *dst = (u64 *)stats64;
6681 
6682 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6683 		     sizeof(*stats64) / sizeof(u64));
6684 	for (i = 0; i < n; i++)
6685 		dst[i] = src[i];
6686 #endif
6687 }
6688 EXPORT_SYMBOL(netdev_stats_to_stats64);
6689 
6690 /**
6691  *	dev_get_stats	- get network device statistics
6692  *	@dev: device to get statistics from
6693  *	@storage: place to store stats
6694  *
6695  *	Get network statistics from device. Return @storage.
6696  *	The device driver may provide its own method by setting
6697  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6698  *	otherwise the internal statistics structure is used.
6699  */
6700 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6701 					struct rtnl_link_stats64 *storage)
6702 {
6703 	const struct net_device_ops *ops = dev->netdev_ops;
6704 
6705 	if (ops->ndo_get_stats64) {
6706 		memset(storage, 0, sizeof(*storage));
6707 		ops->ndo_get_stats64(dev, storage);
6708 	} else if (ops->ndo_get_stats) {
6709 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6710 	} else {
6711 		netdev_stats_to_stats64(storage, &dev->stats);
6712 	}
6713 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6714 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6715 	return storage;
6716 }
6717 EXPORT_SYMBOL(dev_get_stats);
6718 
6719 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6720 {
6721 	struct netdev_queue *queue = dev_ingress_queue(dev);
6722 
6723 #ifdef CONFIG_NET_CLS_ACT
6724 	if (queue)
6725 		return queue;
6726 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6727 	if (!queue)
6728 		return NULL;
6729 	netdev_init_one_queue(dev, queue, NULL);
6730 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6731 	queue->qdisc_sleeping = &noop_qdisc;
6732 	rcu_assign_pointer(dev->ingress_queue, queue);
6733 #endif
6734 	return queue;
6735 }
6736 
6737 static const struct ethtool_ops default_ethtool_ops;
6738 
6739 void netdev_set_default_ethtool_ops(struct net_device *dev,
6740 				    const struct ethtool_ops *ops)
6741 {
6742 	if (dev->ethtool_ops == &default_ethtool_ops)
6743 		dev->ethtool_ops = ops;
6744 }
6745 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6746 
6747 void netdev_freemem(struct net_device *dev)
6748 {
6749 	char *addr = (char *)dev - dev->padded;
6750 
6751 	kvfree(addr);
6752 }
6753 
6754 /**
6755  *	alloc_netdev_mqs - allocate network device
6756  *	@sizeof_priv:		size of private data to allocate space for
6757  *	@name:			device name format string
6758  *	@name_assign_type: 	origin of device name
6759  *	@setup:			callback to initialize device
6760  *	@txqs:			the number of TX subqueues to allocate
6761  *	@rxqs:			the number of RX subqueues to allocate
6762  *
6763  *	Allocates a struct net_device with private data area for driver use
6764  *	and performs basic initialization.  Also allocates subqueue structs
6765  *	for each queue on the device.
6766  */
6767 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6768 		unsigned char name_assign_type,
6769 		void (*setup)(struct net_device *),
6770 		unsigned int txqs, unsigned int rxqs)
6771 {
6772 	struct net_device *dev;
6773 	size_t alloc_size;
6774 	struct net_device *p;
6775 
6776 	BUG_ON(strlen(name) >= sizeof(dev->name));
6777 
6778 	if (txqs < 1) {
6779 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6780 		return NULL;
6781 	}
6782 
6783 #ifdef CONFIG_SYSFS
6784 	if (rxqs < 1) {
6785 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6786 		return NULL;
6787 	}
6788 #endif
6789 
6790 	alloc_size = sizeof(struct net_device);
6791 	if (sizeof_priv) {
6792 		/* ensure 32-byte alignment of private area */
6793 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6794 		alloc_size += sizeof_priv;
6795 	}
6796 	/* ensure 32-byte alignment of whole construct */
6797 	alloc_size += NETDEV_ALIGN - 1;
6798 
6799 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6800 	if (!p)
6801 		p = vzalloc(alloc_size);
6802 	if (!p)
6803 		return NULL;
6804 
6805 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6806 	dev->padded = (char *)dev - (char *)p;
6807 
6808 	dev->pcpu_refcnt = alloc_percpu(int);
6809 	if (!dev->pcpu_refcnt)
6810 		goto free_dev;
6811 
6812 	if (dev_addr_init(dev))
6813 		goto free_pcpu;
6814 
6815 	dev_mc_init(dev);
6816 	dev_uc_init(dev);
6817 
6818 	dev_net_set(dev, &init_net);
6819 
6820 	dev->gso_max_size = GSO_MAX_SIZE;
6821 	dev->gso_max_segs = GSO_MAX_SEGS;
6822 	dev->gso_min_segs = 0;
6823 
6824 	INIT_LIST_HEAD(&dev->napi_list);
6825 	INIT_LIST_HEAD(&dev->unreg_list);
6826 	INIT_LIST_HEAD(&dev->close_list);
6827 	INIT_LIST_HEAD(&dev->link_watch_list);
6828 	INIT_LIST_HEAD(&dev->adj_list.upper);
6829 	INIT_LIST_HEAD(&dev->adj_list.lower);
6830 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6831 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6832 	INIT_LIST_HEAD(&dev->ptype_all);
6833 	INIT_LIST_HEAD(&dev->ptype_specific);
6834 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6835 	setup(dev);
6836 
6837 	dev->num_tx_queues = txqs;
6838 	dev->real_num_tx_queues = txqs;
6839 	if (netif_alloc_netdev_queues(dev))
6840 		goto free_all;
6841 
6842 #ifdef CONFIG_SYSFS
6843 	dev->num_rx_queues = rxqs;
6844 	dev->real_num_rx_queues = rxqs;
6845 	if (netif_alloc_rx_queues(dev))
6846 		goto free_all;
6847 #endif
6848 
6849 	strcpy(dev->name, name);
6850 	dev->name_assign_type = name_assign_type;
6851 	dev->group = INIT_NETDEV_GROUP;
6852 	if (!dev->ethtool_ops)
6853 		dev->ethtool_ops = &default_ethtool_ops;
6854 	return dev;
6855 
6856 free_all:
6857 	free_netdev(dev);
6858 	return NULL;
6859 
6860 free_pcpu:
6861 	free_percpu(dev->pcpu_refcnt);
6862 free_dev:
6863 	netdev_freemem(dev);
6864 	return NULL;
6865 }
6866 EXPORT_SYMBOL(alloc_netdev_mqs);
6867 
6868 /**
6869  *	free_netdev - free network device
6870  *	@dev: device
6871  *
6872  *	This function does the last stage of destroying an allocated device
6873  * 	interface. The reference to the device object is released.
6874  *	If this is the last reference then it will be freed.
6875  */
6876 void free_netdev(struct net_device *dev)
6877 {
6878 	struct napi_struct *p, *n;
6879 
6880 	netif_free_tx_queues(dev);
6881 #ifdef CONFIG_SYSFS
6882 	kvfree(dev->_rx);
6883 #endif
6884 
6885 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6886 
6887 	/* Flush device addresses */
6888 	dev_addr_flush(dev);
6889 
6890 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6891 		netif_napi_del(p);
6892 
6893 	free_percpu(dev->pcpu_refcnt);
6894 	dev->pcpu_refcnt = NULL;
6895 
6896 	/*  Compatibility with error handling in drivers */
6897 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6898 		netdev_freemem(dev);
6899 		return;
6900 	}
6901 
6902 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6903 	dev->reg_state = NETREG_RELEASED;
6904 
6905 	/* will free via device release */
6906 	put_device(&dev->dev);
6907 }
6908 EXPORT_SYMBOL(free_netdev);
6909 
6910 /**
6911  *	synchronize_net -  Synchronize with packet receive processing
6912  *
6913  *	Wait for packets currently being received to be done.
6914  *	Does not block later packets from starting.
6915  */
6916 void synchronize_net(void)
6917 {
6918 	might_sleep();
6919 	if (rtnl_is_locked())
6920 		synchronize_rcu_expedited();
6921 	else
6922 		synchronize_rcu();
6923 }
6924 EXPORT_SYMBOL(synchronize_net);
6925 
6926 /**
6927  *	unregister_netdevice_queue - remove device from the kernel
6928  *	@dev: device
6929  *	@head: list
6930  *
6931  *	This function shuts down a device interface and removes it
6932  *	from the kernel tables.
6933  *	If head not NULL, device is queued to be unregistered later.
6934  *
6935  *	Callers must hold the rtnl semaphore.  You may want
6936  *	unregister_netdev() instead of this.
6937  */
6938 
6939 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6940 {
6941 	ASSERT_RTNL();
6942 
6943 	if (head) {
6944 		list_move_tail(&dev->unreg_list, head);
6945 	} else {
6946 		rollback_registered(dev);
6947 		/* Finish processing unregister after unlock */
6948 		net_set_todo(dev);
6949 	}
6950 }
6951 EXPORT_SYMBOL(unregister_netdevice_queue);
6952 
6953 /**
6954  *	unregister_netdevice_many - unregister many devices
6955  *	@head: list of devices
6956  *
6957  *  Note: As most callers use a stack allocated list_head,
6958  *  we force a list_del() to make sure stack wont be corrupted later.
6959  */
6960 void unregister_netdevice_many(struct list_head *head)
6961 {
6962 	struct net_device *dev;
6963 
6964 	if (!list_empty(head)) {
6965 		rollback_registered_many(head);
6966 		list_for_each_entry(dev, head, unreg_list)
6967 			net_set_todo(dev);
6968 		list_del(head);
6969 	}
6970 }
6971 EXPORT_SYMBOL(unregister_netdevice_many);
6972 
6973 /**
6974  *	unregister_netdev - remove device from the kernel
6975  *	@dev: device
6976  *
6977  *	This function shuts down a device interface and removes it
6978  *	from the kernel tables.
6979  *
6980  *	This is just a wrapper for unregister_netdevice that takes
6981  *	the rtnl semaphore.  In general you want to use this and not
6982  *	unregister_netdevice.
6983  */
6984 void unregister_netdev(struct net_device *dev)
6985 {
6986 	rtnl_lock();
6987 	unregister_netdevice(dev);
6988 	rtnl_unlock();
6989 }
6990 EXPORT_SYMBOL(unregister_netdev);
6991 
6992 /**
6993  *	dev_change_net_namespace - move device to different nethost namespace
6994  *	@dev: device
6995  *	@net: network namespace
6996  *	@pat: If not NULL name pattern to try if the current device name
6997  *	      is already taken in the destination network namespace.
6998  *
6999  *	This function shuts down a device interface and moves it
7000  *	to a new network namespace. On success 0 is returned, on
7001  *	a failure a netagive errno code is returned.
7002  *
7003  *	Callers must hold the rtnl semaphore.
7004  */
7005 
7006 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7007 {
7008 	int err;
7009 
7010 	ASSERT_RTNL();
7011 
7012 	/* Don't allow namespace local devices to be moved. */
7013 	err = -EINVAL;
7014 	if (dev->features & NETIF_F_NETNS_LOCAL)
7015 		goto out;
7016 
7017 	/* Ensure the device has been registrered */
7018 	if (dev->reg_state != NETREG_REGISTERED)
7019 		goto out;
7020 
7021 	/* Get out if there is nothing todo */
7022 	err = 0;
7023 	if (net_eq(dev_net(dev), net))
7024 		goto out;
7025 
7026 	/* Pick the destination device name, and ensure
7027 	 * we can use it in the destination network namespace.
7028 	 */
7029 	err = -EEXIST;
7030 	if (__dev_get_by_name(net, dev->name)) {
7031 		/* We get here if we can't use the current device name */
7032 		if (!pat)
7033 			goto out;
7034 		if (dev_get_valid_name(net, dev, pat) < 0)
7035 			goto out;
7036 	}
7037 
7038 	/*
7039 	 * And now a mini version of register_netdevice unregister_netdevice.
7040 	 */
7041 
7042 	/* If device is running close it first. */
7043 	dev_close(dev);
7044 
7045 	/* And unlink it from device chain */
7046 	err = -ENODEV;
7047 	unlist_netdevice(dev);
7048 
7049 	synchronize_net();
7050 
7051 	/* Shutdown queueing discipline. */
7052 	dev_shutdown(dev);
7053 
7054 	/* Notify protocols, that we are about to destroy
7055 	   this device. They should clean all the things.
7056 
7057 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7058 	   This is wanted because this way 8021q and macvlan know
7059 	   the device is just moving and can keep their slaves up.
7060 	*/
7061 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7062 	rcu_barrier();
7063 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7064 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7065 
7066 	/*
7067 	 *	Flush the unicast and multicast chains
7068 	 */
7069 	dev_uc_flush(dev);
7070 	dev_mc_flush(dev);
7071 
7072 	/* Send a netdev-removed uevent to the old namespace */
7073 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7074 	netdev_adjacent_del_links(dev);
7075 
7076 	/* Actually switch the network namespace */
7077 	dev_net_set(dev, net);
7078 
7079 	/* If there is an ifindex conflict assign a new one */
7080 	if (__dev_get_by_index(net, dev->ifindex)) {
7081 		int iflink = (dev_get_iflink(dev) == dev->ifindex);
7082 		dev->ifindex = dev_new_index(net);
7083 		if (iflink)
7084 			dev->iflink = dev->ifindex;
7085 	}
7086 
7087 	/* Send a netdev-add uevent to the new namespace */
7088 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7089 	netdev_adjacent_add_links(dev);
7090 
7091 	/* Fixup kobjects */
7092 	err = device_rename(&dev->dev, dev->name);
7093 	WARN_ON(err);
7094 
7095 	/* Add the device back in the hashes */
7096 	list_netdevice(dev);
7097 
7098 	/* Notify protocols, that a new device appeared. */
7099 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7100 
7101 	/*
7102 	 *	Prevent userspace races by waiting until the network
7103 	 *	device is fully setup before sending notifications.
7104 	 */
7105 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7106 
7107 	synchronize_net();
7108 	err = 0;
7109 out:
7110 	return err;
7111 }
7112 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7113 
7114 static int dev_cpu_callback(struct notifier_block *nfb,
7115 			    unsigned long action,
7116 			    void *ocpu)
7117 {
7118 	struct sk_buff **list_skb;
7119 	struct sk_buff *skb;
7120 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7121 	struct softnet_data *sd, *oldsd;
7122 
7123 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7124 		return NOTIFY_OK;
7125 
7126 	local_irq_disable();
7127 	cpu = smp_processor_id();
7128 	sd = &per_cpu(softnet_data, cpu);
7129 	oldsd = &per_cpu(softnet_data, oldcpu);
7130 
7131 	/* Find end of our completion_queue. */
7132 	list_skb = &sd->completion_queue;
7133 	while (*list_skb)
7134 		list_skb = &(*list_skb)->next;
7135 	/* Append completion queue from offline CPU. */
7136 	*list_skb = oldsd->completion_queue;
7137 	oldsd->completion_queue = NULL;
7138 
7139 	/* Append output queue from offline CPU. */
7140 	if (oldsd->output_queue) {
7141 		*sd->output_queue_tailp = oldsd->output_queue;
7142 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7143 		oldsd->output_queue = NULL;
7144 		oldsd->output_queue_tailp = &oldsd->output_queue;
7145 	}
7146 	/* Append NAPI poll list from offline CPU, with one exception :
7147 	 * process_backlog() must be called by cpu owning percpu backlog.
7148 	 * We properly handle process_queue & input_pkt_queue later.
7149 	 */
7150 	while (!list_empty(&oldsd->poll_list)) {
7151 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7152 							    struct napi_struct,
7153 							    poll_list);
7154 
7155 		list_del_init(&napi->poll_list);
7156 		if (napi->poll == process_backlog)
7157 			napi->state = 0;
7158 		else
7159 			____napi_schedule(sd, napi);
7160 	}
7161 
7162 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7163 	local_irq_enable();
7164 
7165 	/* Process offline CPU's input_pkt_queue */
7166 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7167 		netif_rx_ni(skb);
7168 		input_queue_head_incr(oldsd);
7169 	}
7170 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7171 		netif_rx_ni(skb);
7172 		input_queue_head_incr(oldsd);
7173 	}
7174 
7175 	return NOTIFY_OK;
7176 }
7177 
7178 
7179 /**
7180  *	netdev_increment_features - increment feature set by one
7181  *	@all: current feature set
7182  *	@one: new feature set
7183  *	@mask: mask feature set
7184  *
7185  *	Computes a new feature set after adding a device with feature set
7186  *	@one to the master device with current feature set @all.  Will not
7187  *	enable anything that is off in @mask. Returns the new feature set.
7188  */
7189 netdev_features_t netdev_increment_features(netdev_features_t all,
7190 	netdev_features_t one, netdev_features_t mask)
7191 {
7192 	if (mask & NETIF_F_GEN_CSUM)
7193 		mask |= NETIF_F_ALL_CSUM;
7194 	mask |= NETIF_F_VLAN_CHALLENGED;
7195 
7196 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7197 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7198 
7199 	/* If one device supports hw checksumming, set for all. */
7200 	if (all & NETIF_F_GEN_CSUM)
7201 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7202 
7203 	return all;
7204 }
7205 EXPORT_SYMBOL(netdev_increment_features);
7206 
7207 static struct hlist_head * __net_init netdev_create_hash(void)
7208 {
7209 	int i;
7210 	struct hlist_head *hash;
7211 
7212 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7213 	if (hash != NULL)
7214 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7215 			INIT_HLIST_HEAD(&hash[i]);
7216 
7217 	return hash;
7218 }
7219 
7220 /* Initialize per network namespace state */
7221 static int __net_init netdev_init(struct net *net)
7222 {
7223 	if (net != &init_net)
7224 		INIT_LIST_HEAD(&net->dev_base_head);
7225 
7226 	net->dev_name_head = netdev_create_hash();
7227 	if (net->dev_name_head == NULL)
7228 		goto err_name;
7229 
7230 	net->dev_index_head = netdev_create_hash();
7231 	if (net->dev_index_head == NULL)
7232 		goto err_idx;
7233 
7234 	return 0;
7235 
7236 err_idx:
7237 	kfree(net->dev_name_head);
7238 err_name:
7239 	return -ENOMEM;
7240 }
7241 
7242 /**
7243  *	netdev_drivername - network driver for the device
7244  *	@dev: network device
7245  *
7246  *	Determine network driver for device.
7247  */
7248 const char *netdev_drivername(const struct net_device *dev)
7249 {
7250 	const struct device_driver *driver;
7251 	const struct device *parent;
7252 	const char *empty = "";
7253 
7254 	parent = dev->dev.parent;
7255 	if (!parent)
7256 		return empty;
7257 
7258 	driver = parent->driver;
7259 	if (driver && driver->name)
7260 		return driver->name;
7261 	return empty;
7262 }
7263 
7264 static void __netdev_printk(const char *level, const struct net_device *dev,
7265 			    struct va_format *vaf)
7266 {
7267 	if (dev && dev->dev.parent) {
7268 		dev_printk_emit(level[1] - '0',
7269 				dev->dev.parent,
7270 				"%s %s %s%s: %pV",
7271 				dev_driver_string(dev->dev.parent),
7272 				dev_name(dev->dev.parent),
7273 				netdev_name(dev), netdev_reg_state(dev),
7274 				vaf);
7275 	} else if (dev) {
7276 		printk("%s%s%s: %pV",
7277 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7278 	} else {
7279 		printk("%s(NULL net_device): %pV", level, vaf);
7280 	}
7281 }
7282 
7283 void netdev_printk(const char *level, const struct net_device *dev,
7284 		   const char *format, ...)
7285 {
7286 	struct va_format vaf;
7287 	va_list args;
7288 
7289 	va_start(args, format);
7290 
7291 	vaf.fmt = format;
7292 	vaf.va = &args;
7293 
7294 	__netdev_printk(level, dev, &vaf);
7295 
7296 	va_end(args);
7297 }
7298 EXPORT_SYMBOL(netdev_printk);
7299 
7300 #define define_netdev_printk_level(func, level)			\
7301 void func(const struct net_device *dev, const char *fmt, ...)	\
7302 {								\
7303 	struct va_format vaf;					\
7304 	va_list args;						\
7305 								\
7306 	va_start(args, fmt);					\
7307 								\
7308 	vaf.fmt = fmt;						\
7309 	vaf.va = &args;						\
7310 								\
7311 	__netdev_printk(level, dev, &vaf);			\
7312 								\
7313 	va_end(args);						\
7314 }								\
7315 EXPORT_SYMBOL(func);
7316 
7317 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7318 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7319 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7320 define_netdev_printk_level(netdev_err, KERN_ERR);
7321 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7322 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7323 define_netdev_printk_level(netdev_info, KERN_INFO);
7324 
7325 static void __net_exit netdev_exit(struct net *net)
7326 {
7327 	kfree(net->dev_name_head);
7328 	kfree(net->dev_index_head);
7329 }
7330 
7331 static struct pernet_operations __net_initdata netdev_net_ops = {
7332 	.init = netdev_init,
7333 	.exit = netdev_exit,
7334 };
7335 
7336 static void __net_exit default_device_exit(struct net *net)
7337 {
7338 	struct net_device *dev, *aux;
7339 	/*
7340 	 * Push all migratable network devices back to the
7341 	 * initial network namespace
7342 	 */
7343 	rtnl_lock();
7344 	for_each_netdev_safe(net, dev, aux) {
7345 		int err;
7346 		char fb_name[IFNAMSIZ];
7347 
7348 		/* Ignore unmoveable devices (i.e. loopback) */
7349 		if (dev->features & NETIF_F_NETNS_LOCAL)
7350 			continue;
7351 
7352 		/* Leave virtual devices for the generic cleanup */
7353 		if (dev->rtnl_link_ops)
7354 			continue;
7355 
7356 		/* Push remaining network devices to init_net */
7357 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7358 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7359 		if (err) {
7360 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7361 				 __func__, dev->name, err);
7362 			BUG();
7363 		}
7364 	}
7365 	rtnl_unlock();
7366 }
7367 
7368 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7369 {
7370 	/* Return with the rtnl_lock held when there are no network
7371 	 * devices unregistering in any network namespace in net_list.
7372 	 */
7373 	struct net *net;
7374 	bool unregistering;
7375 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7376 
7377 	add_wait_queue(&netdev_unregistering_wq, &wait);
7378 	for (;;) {
7379 		unregistering = false;
7380 		rtnl_lock();
7381 		list_for_each_entry(net, net_list, exit_list) {
7382 			if (net->dev_unreg_count > 0) {
7383 				unregistering = true;
7384 				break;
7385 			}
7386 		}
7387 		if (!unregistering)
7388 			break;
7389 		__rtnl_unlock();
7390 
7391 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7392 	}
7393 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7394 }
7395 
7396 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7397 {
7398 	/* At exit all network devices most be removed from a network
7399 	 * namespace.  Do this in the reverse order of registration.
7400 	 * Do this across as many network namespaces as possible to
7401 	 * improve batching efficiency.
7402 	 */
7403 	struct net_device *dev;
7404 	struct net *net;
7405 	LIST_HEAD(dev_kill_list);
7406 
7407 	/* To prevent network device cleanup code from dereferencing
7408 	 * loopback devices or network devices that have been freed
7409 	 * wait here for all pending unregistrations to complete,
7410 	 * before unregistring the loopback device and allowing the
7411 	 * network namespace be freed.
7412 	 *
7413 	 * The netdev todo list containing all network devices
7414 	 * unregistrations that happen in default_device_exit_batch
7415 	 * will run in the rtnl_unlock() at the end of
7416 	 * default_device_exit_batch.
7417 	 */
7418 	rtnl_lock_unregistering(net_list);
7419 	list_for_each_entry(net, net_list, exit_list) {
7420 		for_each_netdev_reverse(net, dev) {
7421 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7422 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7423 			else
7424 				unregister_netdevice_queue(dev, &dev_kill_list);
7425 		}
7426 	}
7427 	unregister_netdevice_many(&dev_kill_list);
7428 	rtnl_unlock();
7429 }
7430 
7431 static struct pernet_operations __net_initdata default_device_ops = {
7432 	.exit = default_device_exit,
7433 	.exit_batch = default_device_exit_batch,
7434 };
7435 
7436 /*
7437  *	Initialize the DEV module. At boot time this walks the device list and
7438  *	unhooks any devices that fail to initialise (normally hardware not
7439  *	present) and leaves us with a valid list of present and active devices.
7440  *
7441  */
7442 
7443 /*
7444  *       This is called single threaded during boot, so no need
7445  *       to take the rtnl semaphore.
7446  */
7447 static int __init net_dev_init(void)
7448 {
7449 	int i, rc = -ENOMEM;
7450 
7451 	BUG_ON(!dev_boot_phase);
7452 
7453 	if (dev_proc_init())
7454 		goto out;
7455 
7456 	if (netdev_kobject_init())
7457 		goto out;
7458 
7459 	INIT_LIST_HEAD(&ptype_all);
7460 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7461 		INIT_LIST_HEAD(&ptype_base[i]);
7462 
7463 	INIT_LIST_HEAD(&offload_base);
7464 
7465 	if (register_pernet_subsys(&netdev_net_ops))
7466 		goto out;
7467 
7468 	/*
7469 	 *	Initialise the packet receive queues.
7470 	 */
7471 
7472 	for_each_possible_cpu(i) {
7473 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7474 
7475 		skb_queue_head_init(&sd->input_pkt_queue);
7476 		skb_queue_head_init(&sd->process_queue);
7477 		INIT_LIST_HEAD(&sd->poll_list);
7478 		sd->output_queue_tailp = &sd->output_queue;
7479 #ifdef CONFIG_RPS
7480 		sd->csd.func = rps_trigger_softirq;
7481 		sd->csd.info = sd;
7482 		sd->cpu = i;
7483 #endif
7484 
7485 		sd->backlog.poll = process_backlog;
7486 		sd->backlog.weight = weight_p;
7487 	}
7488 
7489 	dev_boot_phase = 0;
7490 
7491 	/* The loopback device is special if any other network devices
7492 	 * is present in a network namespace the loopback device must
7493 	 * be present. Since we now dynamically allocate and free the
7494 	 * loopback device ensure this invariant is maintained by
7495 	 * keeping the loopback device as the first device on the
7496 	 * list of network devices.  Ensuring the loopback devices
7497 	 * is the first device that appears and the last network device
7498 	 * that disappears.
7499 	 */
7500 	if (register_pernet_device(&loopback_net_ops))
7501 		goto out;
7502 
7503 	if (register_pernet_device(&default_device_ops))
7504 		goto out;
7505 
7506 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7507 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7508 
7509 	hotcpu_notifier(dev_cpu_callback, 0);
7510 	dst_init();
7511 	rc = 0;
7512 out:
7513 	return rc;
7514 }
7515 
7516 subsys_initcall(net_dev_init);
7517