1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <linux/if_bridge.h> 104 #include <linux/if_macvlan.h> 105 #include <net/dst.h> 106 #include <net/pkt_sched.h> 107 #include <net/checksum.h> 108 #include <net/xfrm.h> 109 #include <linux/highmem.h> 110 #include <linux/init.h> 111 #include <linux/kmod.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/wext.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 133 #include "net-sysfs.h" 134 135 /* Instead of increasing this, you should create a hash table. */ 136 #define MAX_GRO_SKBS 8 137 138 /* This should be increased if a protocol with a bigger head is added. */ 139 #define GRO_MAX_HEAD (MAX_HEADER + 128) 140 141 /* 142 * The list of packet types we will receive (as opposed to discard) 143 * and the routines to invoke. 144 * 145 * Why 16. Because with 16 the only overlap we get on a hash of the 146 * low nibble of the protocol value is RARP/SNAP/X.25. 147 * 148 * NOTE: That is no longer true with the addition of VLAN tags. Not 149 * sure which should go first, but I bet it won't make much 150 * difference if we are running VLANs. The good news is that 151 * this protocol won't be in the list unless compiled in, so 152 * the average user (w/out VLANs) will not be adversely affected. 153 * --BLG 154 * 155 * 0800 IP 156 * 8100 802.1Q VLAN 157 * 0001 802.3 158 * 0002 AX.25 159 * 0004 802.2 160 * 8035 RARP 161 * 0005 SNAP 162 * 0805 X.25 163 * 0806 ARP 164 * 8137 IPX 165 * 0009 Localtalk 166 * 86DD IPv6 167 */ 168 169 #define PTYPE_HASH_SIZE (16) 170 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 171 172 static DEFINE_SPINLOCK(ptype_lock); 173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 174 static struct list_head ptype_all __read_mostly; /* Taps */ 175 176 /* 177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 178 * semaphore. 179 * 180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 181 * 182 * Writers must hold the rtnl semaphore while they loop through the 183 * dev_base_head list, and hold dev_base_lock for writing when they do the 184 * actual updates. This allows pure readers to access the list even 185 * while a writer is preparing to update it. 186 * 187 * To put it another way, dev_base_lock is held for writing only to 188 * protect against pure readers; the rtnl semaphore provides the 189 * protection against other writers. 190 * 191 * See, for example usages, register_netdevice() and 192 * unregister_netdevice(), which must be called with the rtnl 193 * semaphore held. 194 */ 195 DEFINE_RWLOCK(dev_base_lock); 196 EXPORT_SYMBOL(dev_base_lock); 197 198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 199 { 200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 202 } 203 204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 205 { 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 207 } 208 209 /* Device list insertion */ 210 static int list_netdevice(struct net_device *dev) 211 { 212 struct net *net = dev_net(dev); 213 214 ASSERT_RTNL(); 215 216 write_lock_bh(&dev_base_lock); 217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 219 hlist_add_head_rcu(&dev->index_hlist, 220 dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223 } 224 225 /* Device list removal 226 * caller must respect a RCU grace period before freeing/reusing dev 227 */ 228 static void unlist_netdevice(struct net_device *dev) 229 { 230 ASSERT_RTNL(); 231 232 /* Unlink dev from the device chain */ 233 write_lock_bh(&dev_base_lock); 234 list_del_rcu(&dev->dev_list); 235 hlist_del_rcu(&dev->name_hlist); 236 hlist_del_rcu(&dev->index_hlist); 237 write_unlock_bh(&dev_base_lock); 238 } 239 240 /* 241 * Our notifier list 242 */ 243 244 static RAW_NOTIFIER_HEAD(netdev_chain); 245 246 /* 247 * Device drivers call our routines to queue packets here. We empty the 248 * queue in the local softnet handler. 249 */ 250 251 DEFINE_PER_CPU(struct softnet_data, softnet_data); 252 EXPORT_PER_CPU_SYMBOL(softnet_data); 253 254 #ifdef CONFIG_LOCKDEP 255 /* 256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 257 * according to dev->type 258 */ 259 static const unsigned short netdev_lock_type[] = 260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 275 ARPHRD_VOID, ARPHRD_NONE}; 276 277 static const char *const netdev_lock_name[] = 278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 293 "_xmit_VOID", "_xmit_NONE"}; 294 295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 296 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 297 298 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 299 { 300 int i; 301 302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 303 if (netdev_lock_type[i] == dev_type) 304 return i; 305 /* the last key is used by default */ 306 return ARRAY_SIZE(netdev_lock_type) - 1; 307 } 308 309 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 310 unsigned short dev_type) 311 { 312 int i; 313 314 i = netdev_lock_pos(dev_type); 315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 316 netdev_lock_name[i]); 317 } 318 319 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 320 { 321 int i; 322 323 i = netdev_lock_pos(dev->type); 324 lockdep_set_class_and_name(&dev->addr_list_lock, 325 &netdev_addr_lock_key[i], 326 netdev_lock_name[i]); 327 } 328 #else 329 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 330 unsigned short dev_type) 331 { 332 } 333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 334 { 335 } 336 #endif 337 338 /******************************************************************************* 339 340 Protocol management and registration routines 341 342 *******************************************************************************/ 343 344 /* 345 * Add a protocol ID to the list. Now that the input handler is 346 * smarter we can dispense with all the messy stuff that used to be 347 * here. 348 * 349 * BEWARE!!! Protocol handlers, mangling input packets, 350 * MUST BE last in hash buckets and checking protocol handlers 351 * MUST start from promiscuous ptype_all chain in net_bh. 352 * It is true now, do not change it. 353 * Explanation follows: if protocol handler, mangling packet, will 354 * be the first on list, it is not able to sense, that packet 355 * is cloned and should be copied-on-write, so that it will 356 * change it and subsequent readers will get broken packet. 357 * --ANK (980803) 358 */ 359 360 /** 361 * dev_add_pack - add packet handler 362 * @pt: packet type declaration 363 * 364 * Add a protocol handler to the networking stack. The passed &packet_type 365 * is linked into kernel lists and may not be freed until it has been 366 * removed from the kernel lists. 367 * 368 * This call does not sleep therefore it can not 369 * guarantee all CPU's that are in middle of receiving packets 370 * will see the new packet type (until the next received packet). 371 */ 372 373 void dev_add_pack(struct packet_type *pt) 374 { 375 int hash; 376 377 spin_lock_bh(&ptype_lock); 378 if (pt->type == htons(ETH_P_ALL)) 379 list_add_rcu(&pt->list, &ptype_all); 380 else { 381 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 382 list_add_rcu(&pt->list, &ptype_base[hash]); 383 } 384 spin_unlock_bh(&ptype_lock); 385 } 386 EXPORT_SYMBOL(dev_add_pack); 387 388 /** 389 * __dev_remove_pack - remove packet handler 390 * @pt: packet type declaration 391 * 392 * Remove a protocol handler that was previously added to the kernel 393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 394 * from the kernel lists and can be freed or reused once this function 395 * returns. 396 * 397 * The packet type might still be in use by receivers 398 * and must not be freed until after all the CPU's have gone 399 * through a quiescent state. 400 */ 401 void __dev_remove_pack(struct packet_type *pt) 402 { 403 struct list_head *head; 404 struct packet_type *pt1; 405 406 spin_lock_bh(&ptype_lock); 407 408 if (pt->type == htons(ETH_P_ALL)) 409 head = &ptype_all; 410 else 411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 412 413 list_for_each_entry(pt1, head, list) { 414 if (pt == pt1) { 415 list_del_rcu(&pt->list); 416 goto out; 417 } 418 } 419 420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 421 out: 422 spin_unlock_bh(&ptype_lock); 423 } 424 EXPORT_SYMBOL(__dev_remove_pack); 425 426 /** 427 * dev_remove_pack - remove packet handler 428 * @pt: packet type declaration 429 * 430 * Remove a protocol handler that was previously added to the kernel 431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 432 * from the kernel lists and can be freed or reused once this function 433 * returns. 434 * 435 * This call sleeps to guarantee that no CPU is looking at the packet 436 * type after return. 437 */ 438 void dev_remove_pack(struct packet_type *pt) 439 { 440 __dev_remove_pack(pt); 441 442 synchronize_net(); 443 } 444 EXPORT_SYMBOL(dev_remove_pack); 445 446 /****************************************************************************** 447 448 Device Boot-time Settings Routines 449 450 *******************************************************************************/ 451 452 /* Boot time configuration table */ 453 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 454 455 /** 456 * netdev_boot_setup_add - add new setup entry 457 * @name: name of the device 458 * @map: configured settings for the device 459 * 460 * Adds new setup entry to the dev_boot_setup list. The function 461 * returns 0 on error and 1 on success. This is a generic routine to 462 * all netdevices. 463 */ 464 static int netdev_boot_setup_add(char *name, struct ifmap *map) 465 { 466 struct netdev_boot_setup *s; 467 int i; 468 469 s = dev_boot_setup; 470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 472 memset(s[i].name, 0, sizeof(s[i].name)); 473 strlcpy(s[i].name, name, IFNAMSIZ); 474 memcpy(&s[i].map, map, sizeof(s[i].map)); 475 break; 476 } 477 } 478 479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 480 } 481 482 /** 483 * netdev_boot_setup_check - check boot time settings 484 * @dev: the netdevice 485 * 486 * Check boot time settings for the device. 487 * The found settings are set for the device to be used 488 * later in the device probing. 489 * Returns 0 if no settings found, 1 if they are. 490 */ 491 int netdev_boot_setup_check(struct net_device *dev) 492 { 493 struct netdev_boot_setup *s = dev_boot_setup; 494 int i; 495 496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 498 !strcmp(dev->name, s[i].name)) { 499 dev->irq = s[i].map.irq; 500 dev->base_addr = s[i].map.base_addr; 501 dev->mem_start = s[i].map.mem_start; 502 dev->mem_end = s[i].map.mem_end; 503 return 1; 504 } 505 } 506 return 0; 507 } 508 EXPORT_SYMBOL(netdev_boot_setup_check); 509 510 511 /** 512 * netdev_boot_base - get address from boot time settings 513 * @prefix: prefix for network device 514 * @unit: id for network device 515 * 516 * Check boot time settings for the base address of device. 517 * The found settings are set for the device to be used 518 * later in the device probing. 519 * Returns 0 if no settings found. 520 */ 521 unsigned long netdev_boot_base(const char *prefix, int unit) 522 { 523 const struct netdev_boot_setup *s = dev_boot_setup; 524 char name[IFNAMSIZ]; 525 int i; 526 527 sprintf(name, "%s%d", prefix, unit); 528 529 /* 530 * If device already registered then return base of 1 531 * to indicate not to probe for this interface 532 */ 533 if (__dev_get_by_name(&init_net, name)) 534 return 1; 535 536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 537 if (!strcmp(name, s[i].name)) 538 return s[i].map.base_addr; 539 return 0; 540 } 541 542 /* 543 * Saves at boot time configured settings for any netdevice. 544 */ 545 int __init netdev_boot_setup(char *str) 546 { 547 int ints[5]; 548 struct ifmap map; 549 550 str = get_options(str, ARRAY_SIZE(ints), ints); 551 if (!str || !*str) 552 return 0; 553 554 /* Save settings */ 555 memset(&map, 0, sizeof(map)); 556 if (ints[0] > 0) 557 map.irq = ints[1]; 558 if (ints[0] > 1) 559 map.base_addr = ints[2]; 560 if (ints[0] > 2) 561 map.mem_start = ints[3]; 562 if (ints[0] > 3) 563 map.mem_end = ints[4]; 564 565 /* Add new entry to the list */ 566 return netdev_boot_setup_add(str, &map); 567 } 568 569 __setup("netdev=", netdev_boot_setup); 570 571 /******************************************************************************* 572 573 Device Interface Subroutines 574 575 *******************************************************************************/ 576 577 /** 578 * __dev_get_by_name - find a device by its name 579 * @net: the applicable net namespace 580 * @name: name to find 581 * 582 * Find an interface by name. Must be called under RTNL semaphore 583 * or @dev_base_lock. If the name is found a pointer to the device 584 * is returned. If the name is not found then %NULL is returned. The 585 * reference counters are not incremented so the caller must be 586 * careful with locks. 587 */ 588 589 struct net_device *__dev_get_by_name(struct net *net, const char *name) 590 { 591 struct hlist_node *p; 592 struct net_device *dev; 593 struct hlist_head *head = dev_name_hash(net, name); 594 595 hlist_for_each_entry(dev, p, head, name_hlist) 596 if (!strncmp(dev->name, name, IFNAMSIZ)) 597 return dev; 598 599 return NULL; 600 } 601 EXPORT_SYMBOL(__dev_get_by_name); 602 603 /** 604 * dev_get_by_name_rcu - find a device by its name 605 * @net: the applicable net namespace 606 * @name: name to find 607 * 608 * Find an interface by name. 609 * If the name is found a pointer to the device is returned. 610 * If the name is not found then %NULL is returned. 611 * The reference counters are not incremented so the caller must be 612 * careful with locks. The caller must hold RCU lock. 613 */ 614 615 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 616 { 617 struct hlist_node *p; 618 struct net_device *dev; 619 struct hlist_head *head = dev_name_hash(net, name); 620 621 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 622 if (!strncmp(dev->name, name, IFNAMSIZ)) 623 return dev; 624 625 return NULL; 626 } 627 EXPORT_SYMBOL(dev_get_by_name_rcu); 628 629 /** 630 * dev_get_by_name - find a device by its name 631 * @net: the applicable net namespace 632 * @name: name to find 633 * 634 * Find an interface by name. This can be called from any 635 * context and does its own locking. The returned handle has 636 * the usage count incremented and the caller must use dev_put() to 637 * release it when it is no longer needed. %NULL is returned if no 638 * matching device is found. 639 */ 640 641 struct net_device *dev_get_by_name(struct net *net, const char *name) 642 { 643 struct net_device *dev; 644 645 rcu_read_lock(); 646 dev = dev_get_by_name_rcu(net, name); 647 if (dev) 648 dev_hold(dev); 649 rcu_read_unlock(); 650 return dev; 651 } 652 EXPORT_SYMBOL(dev_get_by_name); 653 654 /** 655 * __dev_get_by_index - find a device by its ifindex 656 * @net: the applicable net namespace 657 * @ifindex: index of device 658 * 659 * Search for an interface by index. Returns %NULL if the device 660 * is not found or a pointer to the device. The device has not 661 * had its reference counter increased so the caller must be careful 662 * about locking. The caller must hold either the RTNL semaphore 663 * or @dev_base_lock. 664 */ 665 666 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 667 { 668 struct hlist_node *p; 669 struct net_device *dev; 670 struct hlist_head *head = dev_index_hash(net, ifindex); 671 672 hlist_for_each_entry(dev, p, head, index_hlist) 673 if (dev->ifindex == ifindex) 674 return dev; 675 676 return NULL; 677 } 678 EXPORT_SYMBOL(__dev_get_by_index); 679 680 /** 681 * dev_get_by_index_rcu - find a device by its ifindex 682 * @net: the applicable net namespace 683 * @ifindex: index of device 684 * 685 * Search for an interface by index. Returns %NULL if the device 686 * is not found or a pointer to the device. The device has not 687 * had its reference counter increased so the caller must be careful 688 * about locking. The caller must hold RCU lock. 689 */ 690 691 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 692 { 693 struct hlist_node *p; 694 struct net_device *dev; 695 struct hlist_head *head = dev_index_hash(net, ifindex); 696 697 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 698 if (dev->ifindex == ifindex) 699 return dev; 700 701 return NULL; 702 } 703 EXPORT_SYMBOL(dev_get_by_index_rcu); 704 705 706 /** 707 * dev_get_by_index - find a device by its ifindex 708 * @net: the applicable net namespace 709 * @ifindex: index of device 710 * 711 * Search for an interface by index. Returns NULL if the device 712 * is not found or a pointer to the device. The device returned has 713 * had a reference added and the pointer is safe until the user calls 714 * dev_put to indicate they have finished with it. 715 */ 716 717 struct net_device *dev_get_by_index(struct net *net, int ifindex) 718 { 719 struct net_device *dev; 720 721 rcu_read_lock(); 722 dev = dev_get_by_index_rcu(net, ifindex); 723 if (dev) 724 dev_hold(dev); 725 rcu_read_unlock(); 726 return dev; 727 } 728 EXPORT_SYMBOL(dev_get_by_index); 729 730 /** 731 * dev_getbyhwaddr - find a device by its hardware address 732 * @net: the applicable net namespace 733 * @type: media type of device 734 * @ha: hardware address 735 * 736 * Search for an interface by MAC address. Returns NULL if the device 737 * is not found or a pointer to the device. The caller must hold the 738 * rtnl semaphore. The returned device has not had its ref count increased 739 * and the caller must therefore be careful about locking 740 * 741 * BUGS: 742 * If the API was consistent this would be __dev_get_by_hwaddr 743 */ 744 745 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 746 { 747 struct net_device *dev; 748 749 ASSERT_RTNL(); 750 751 for_each_netdev(net, dev) 752 if (dev->type == type && 753 !memcmp(dev->dev_addr, ha, dev->addr_len)) 754 return dev; 755 756 return NULL; 757 } 758 EXPORT_SYMBOL(dev_getbyhwaddr); 759 760 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 761 { 762 struct net_device *dev; 763 764 ASSERT_RTNL(); 765 for_each_netdev(net, dev) 766 if (dev->type == type) 767 return dev; 768 769 return NULL; 770 } 771 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 772 773 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 774 { 775 struct net_device *dev; 776 777 rtnl_lock(); 778 dev = __dev_getfirstbyhwtype(net, type); 779 if (dev) 780 dev_hold(dev); 781 rtnl_unlock(); 782 return dev; 783 } 784 EXPORT_SYMBOL(dev_getfirstbyhwtype); 785 786 /** 787 * dev_get_by_flags - find any device with given flags 788 * @net: the applicable net namespace 789 * @if_flags: IFF_* values 790 * @mask: bitmask of bits in if_flags to check 791 * 792 * Search for any interface with the given flags. Returns NULL if a device 793 * is not found or a pointer to the device. The device returned has 794 * had a reference added and the pointer is safe until the user calls 795 * dev_put to indicate they have finished with it. 796 */ 797 798 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags, 799 unsigned short mask) 800 { 801 struct net_device *dev, *ret; 802 803 ret = NULL; 804 rcu_read_lock(); 805 for_each_netdev_rcu(net, dev) { 806 if (((dev->flags ^ if_flags) & mask) == 0) { 807 dev_hold(dev); 808 ret = dev; 809 break; 810 } 811 } 812 rcu_read_unlock(); 813 return ret; 814 } 815 EXPORT_SYMBOL(dev_get_by_flags); 816 817 /** 818 * dev_valid_name - check if name is okay for network device 819 * @name: name string 820 * 821 * Network device names need to be valid file names to 822 * to allow sysfs to work. We also disallow any kind of 823 * whitespace. 824 */ 825 int dev_valid_name(const char *name) 826 { 827 if (*name == '\0') 828 return 0; 829 if (strlen(name) >= IFNAMSIZ) 830 return 0; 831 if (!strcmp(name, ".") || !strcmp(name, "..")) 832 return 0; 833 834 while (*name) { 835 if (*name == '/' || isspace(*name)) 836 return 0; 837 name++; 838 } 839 return 1; 840 } 841 EXPORT_SYMBOL(dev_valid_name); 842 843 /** 844 * __dev_alloc_name - allocate a name for a device 845 * @net: network namespace to allocate the device name in 846 * @name: name format string 847 * @buf: scratch buffer and result name string 848 * 849 * Passed a format string - eg "lt%d" it will try and find a suitable 850 * id. It scans list of devices to build up a free map, then chooses 851 * the first empty slot. The caller must hold the dev_base or rtnl lock 852 * while allocating the name and adding the device in order to avoid 853 * duplicates. 854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 855 * Returns the number of the unit assigned or a negative errno code. 856 */ 857 858 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 859 { 860 int i = 0; 861 const char *p; 862 const int max_netdevices = 8*PAGE_SIZE; 863 unsigned long *inuse; 864 struct net_device *d; 865 866 p = strnchr(name, IFNAMSIZ-1, '%'); 867 if (p) { 868 /* 869 * Verify the string as this thing may have come from 870 * the user. There must be either one "%d" and no other "%" 871 * characters. 872 */ 873 if (p[1] != 'd' || strchr(p + 2, '%')) 874 return -EINVAL; 875 876 /* Use one page as a bit array of possible slots */ 877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 878 if (!inuse) 879 return -ENOMEM; 880 881 for_each_netdev(net, d) { 882 if (!sscanf(d->name, name, &i)) 883 continue; 884 if (i < 0 || i >= max_netdevices) 885 continue; 886 887 /* avoid cases where sscanf is not exact inverse of printf */ 888 snprintf(buf, IFNAMSIZ, name, i); 889 if (!strncmp(buf, d->name, IFNAMSIZ)) 890 set_bit(i, inuse); 891 } 892 893 i = find_first_zero_bit(inuse, max_netdevices); 894 free_page((unsigned long) inuse); 895 } 896 897 if (buf != name) 898 snprintf(buf, IFNAMSIZ, name, i); 899 if (!__dev_get_by_name(net, buf)) 900 return i; 901 902 /* It is possible to run out of possible slots 903 * when the name is long and there isn't enough space left 904 * for the digits, or if all bits are used. 905 */ 906 return -ENFILE; 907 } 908 909 /** 910 * dev_alloc_name - allocate a name for a device 911 * @dev: device 912 * @name: name format string 913 * 914 * Passed a format string - eg "lt%d" it will try and find a suitable 915 * id. It scans list of devices to build up a free map, then chooses 916 * the first empty slot. The caller must hold the dev_base or rtnl lock 917 * while allocating the name and adding the device in order to avoid 918 * duplicates. 919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 920 * Returns the number of the unit assigned or a negative errno code. 921 */ 922 923 int dev_alloc_name(struct net_device *dev, const char *name) 924 { 925 char buf[IFNAMSIZ]; 926 struct net *net; 927 int ret; 928 929 BUG_ON(!dev_net(dev)); 930 net = dev_net(dev); 931 ret = __dev_alloc_name(net, name, buf); 932 if (ret >= 0) 933 strlcpy(dev->name, buf, IFNAMSIZ); 934 return ret; 935 } 936 EXPORT_SYMBOL(dev_alloc_name); 937 938 static int dev_get_valid_name(struct net *net, const char *name, char *buf, 939 bool fmt) 940 { 941 if (!dev_valid_name(name)) 942 return -EINVAL; 943 944 if (fmt && strchr(name, '%')) 945 return __dev_alloc_name(net, name, buf); 946 else if (__dev_get_by_name(net, name)) 947 return -EEXIST; 948 else if (buf != name) 949 strlcpy(buf, name, IFNAMSIZ); 950 951 return 0; 952 } 953 954 /** 955 * dev_change_name - change name of a device 956 * @dev: device 957 * @newname: name (or format string) must be at least IFNAMSIZ 958 * 959 * Change name of a device, can pass format strings "eth%d". 960 * for wildcarding. 961 */ 962 int dev_change_name(struct net_device *dev, const char *newname) 963 { 964 char oldname[IFNAMSIZ]; 965 int err = 0; 966 int ret; 967 struct net *net; 968 969 ASSERT_RTNL(); 970 BUG_ON(!dev_net(dev)); 971 972 net = dev_net(dev); 973 if (dev->flags & IFF_UP) 974 return -EBUSY; 975 976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 977 return 0; 978 979 memcpy(oldname, dev->name, IFNAMSIZ); 980 981 err = dev_get_valid_name(net, newname, dev->name, 1); 982 if (err < 0) 983 return err; 984 985 rollback: 986 /* For now only devices in the initial network namespace 987 * are in sysfs. 988 */ 989 if (net_eq(net, &init_net)) { 990 ret = device_rename(&dev->dev, dev->name); 991 if (ret) { 992 memcpy(dev->name, oldname, IFNAMSIZ); 993 return ret; 994 } 995 } 996 997 write_lock_bh(&dev_base_lock); 998 hlist_del(&dev->name_hlist); 999 write_unlock_bh(&dev_base_lock); 1000 1001 synchronize_rcu(); 1002 1003 write_lock_bh(&dev_base_lock); 1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1005 write_unlock_bh(&dev_base_lock); 1006 1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1008 ret = notifier_to_errno(ret); 1009 1010 if (ret) { 1011 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1012 if (err >= 0) { 1013 err = ret; 1014 memcpy(dev->name, oldname, IFNAMSIZ); 1015 goto rollback; 1016 } else { 1017 printk(KERN_ERR 1018 "%s: name change rollback failed: %d.\n", 1019 dev->name, ret); 1020 } 1021 } 1022 1023 return err; 1024 } 1025 1026 /** 1027 * dev_set_alias - change ifalias of a device 1028 * @dev: device 1029 * @alias: name up to IFALIASZ 1030 * @len: limit of bytes to copy from info 1031 * 1032 * Set ifalias for a device, 1033 */ 1034 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1035 { 1036 ASSERT_RTNL(); 1037 1038 if (len >= IFALIASZ) 1039 return -EINVAL; 1040 1041 if (!len) { 1042 if (dev->ifalias) { 1043 kfree(dev->ifalias); 1044 dev->ifalias = NULL; 1045 } 1046 return 0; 1047 } 1048 1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1050 if (!dev->ifalias) 1051 return -ENOMEM; 1052 1053 strlcpy(dev->ifalias, alias, len+1); 1054 return len; 1055 } 1056 1057 1058 /** 1059 * netdev_features_change - device changes features 1060 * @dev: device to cause notification 1061 * 1062 * Called to indicate a device has changed features. 1063 */ 1064 void netdev_features_change(struct net_device *dev) 1065 { 1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1067 } 1068 EXPORT_SYMBOL(netdev_features_change); 1069 1070 /** 1071 * netdev_state_change - device changes state 1072 * @dev: device to cause notification 1073 * 1074 * Called to indicate a device has changed state. This function calls 1075 * the notifier chains for netdev_chain and sends a NEWLINK message 1076 * to the routing socket. 1077 */ 1078 void netdev_state_change(struct net_device *dev) 1079 { 1080 if (dev->flags & IFF_UP) { 1081 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1083 } 1084 } 1085 EXPORT_SYMBOL(netdev_state_change); 1086 1087 void netdev_bonding_change(struct net_device *dev, unsigned long event) 1088 { 1089 call_netdevice_notifiers(event, dev); 1090 } 1091 EXPORT_SYMBOL(netdev_bonding_change); 1092 1093 /** 1094 * dev_load - load a network module 1095 * @net: the applicable net namespace 1096 * @name: name of interface 1097 * 1098 * If a network interface is not present and the process has suitable 1099 * privileges this function loads the module. If module loading is not 1100 * available in this kernel then it becomes a nop. 1101 */ 1102 1103 void dev_load(struct net *net, const char *name) 1104 { 1105 struct net_device *dev; 1106 1107 rcu_read_lock(); 1108 dev = dev_get_by_name_rcu(net, name); 1109 rcu_read_unlock(); 1110 1111 if (!dev && capable(CAP_NET_ADMIN)) 1112 request_module("%s", name); 1113 } 1114 EXPORT_SYMBOL(dev_load); 1115 1116 /** 1117 * dev_open - prepare an interface for use. 1118 * @dev: device to open 1119 * 1120 * Takes a device from down to up state. The device's private open 1121 * function is invoked and then the multicast lists are loaded. Finally 1122 * the device is moved into the up state and a %NETDEV_UP message is 1123 * sent to the netdev notifier chain. 1124 * 1125 * Calling this function on an active interface is a nop. On a failure 1126 * a negative errno code is returned. 1127 */ 1128 int dev_open(struct net_device *dev) 1129 { 1130 const struct net_device_ops *ops = dev->netdev_ops; 1131 int ret; 1132 1133 ASSERT_RTNL(); 1134 1135 /* 1136 * Is it already up? 1137 */ 1138 1139 if (dev->flags & IFF_UP) 1140 return 0; 1141 1142 /* 1143 * Is it even present? 1144 */ 1145 if (!netif_device_present(dev)) 1146 return -ENODEV; 1147 1148 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1149 ret = notifier_to_errno(ret); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * Call device private open method 1155 */ 1156 set_bit(__LINK_STATE_START, &dev->state); 1157 1158 if (ops->ndo_validate_addr) 1159 ret = ops->ndo_validate_addr(dev); 1160 1161 if (!ret && ops->ndo_open) 1162 ret = ops->ndo_open(dev); 1163 1164 /* 1165 * If it went open OK then: 1166 */ 1167 1168 if (ret) 1169 clear_bit(__LINK_STATE_START, &dev->state); 1170 else { 1171 /* 1172 * Set the flags. 1173 */ 1174 dev->flags |= IFF_UP; 1175 1176 /* 1177 * Enable NET_DMA 1178 */ 1179 net_dmaengine_get(); 1180 1181 /* 1182 * Initialize multicasting status 1183 */ 1184 dev_set_rx_mode(dev); 1185 1186 /* 1187 * Wakeup transmit queue engine 1188 */ 1189 dev_activate(dev); 1190 1191 /* 1192 * ... and announce new interface. 1193 */ 1194 call_netdevice_notifiers(NETDEV_UP, dev); 1195 } 1196 1197 return ret; 1198 } 1199 EXPORT_SYMBOL(dev_open); 1200 1201 /** 1202 * dev_close - shutdown an interface. 1203 * @dev: device to shutdown 1204 * 1205 * This function moves an active device into down state. A 1206 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1207 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1208 * chain. 1209 */ 1210 int dev_close(struct net_device *dev) 1211 { 1212 const struct net_device_ops *ops = dev->netdev_ops; 1213 ASSERT_RTNL(); 1214 1215 might_sleep(); 1216 1217 if (!(dev->flags & IFF_UP)) 1218 return 0; 1219 1220 /* 1221 * Tell people we are going down, so that they can 1222 * prepare to death, when device is still operating. 1223 */ 1224 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1225 1226 clear_bit(__LINK_STATE_START, &dev->state); 1227 1228 /* Synchronize to scheduled poll. We cannot touch poll list, 1229 * it can be even on different cpu. So just clear netif_running(). 1230 * 1231 * dev->stop() will invoke napi_disable() on all of it's 1232 * napi_struct instances on this device. 1233 */ 1234 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1235 1236 dev_deactivate(dev); 1237 1238 /* 1239 * Call the device specific close. This cannot fail. 1240 * Only if device is UP 1241 * 1242 * We allow it to be called even after a DETACH hot-plug 1243 * event. 1244 */ 1245 if (ops->ndo_stop) 1246 ops->ndo_stop(dev); 1247 1248 /* 1249 * Device is now down. 1250 */ 1251 1252 dev->flags &= ~IFF_UP; 1253 1254 /* 1255 * Tell people we are down 1256 */ 1257 call_netdevice_notifiers(NETDEV_DOWN, dev); 1258 1259 /* 1260 * Shutdown NET_DMA 1261 */ 1262 net_dmaengine_put(); 1263 1264 return 0; 1265 } 1266 EXPORT_SYMBOL(dev_close); 1267 1268 1269 /** 1270 * dev_disable_lro - disable Large Receive Offload on a device 1271 * @dev: device 1272 * 1273 * Disable Large Receive Offload (LRO) on a net device. Must be 1274 * called under RTNL. This is needed if received packets may be 1275 * forwarded to another interface. 1276 */ 1277 void dev_disable_lro(struct net_device *dev) 1278 { 1279 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1280 dev->ethtool_ops->set_flags) { 1281 u32 flags = dev->ethtool_ops->get_flags(dev); 1282 if (flags & ETH_FLAG_LRO) { 1283 flags &= ~ETH_FLAG_LRO; 1284 dev->ethtool_ops->set_flags(dev, flags); 1285 } 1286 } 1287 WARN_ON(dev->features & NETIF_F_LRO); 1288 } 1289 EXPORT_SYMBOL(dev_disable_lro); 1290 1291 1292 static int dev_boot_phase = 1; 1293 1294 /* 1295 * Device change register/unregister. These are not inline or static 1296 * as we export them to the world. 1297 */ 1298 1299 /** 1300 * register_netdevice_notifier - register a network notifier block 1301 * @nb: notifier 1302 * 1303 * Register a notifier to be called when network device events occur. 1304 * The notifier passed is linked into the kernel structures and must 1305 * not be reused until it has been unregistered. A negative errno code 1306 * is returned on a failure. 1307 * 1308 * When registered all registration and up events are replayed 1309 * to the new notifier to allow device to have a race free 1310 * view of the network device list. 1311 */ 1312 1313 int register_netdevice_notifier(struct notifier_block *nb) 1314 { 1315 struct net_device *dev; 1316 struct net_device *last; 1317 struct net *net; 1318 int err; 1319 1320 rtnl_lock(); 1321 err = raw_notifier_chain_register(&netdev_chain, nb); 1322 if (err) 1323 goto unlock; 1324 if (dev_boot_phase) 1325 goto unlock; 1326 for_each_net(net) { 1327 for_each_netdev(net, dev) { 1328 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1329 err = notifier_to_errno(err); 1330 if (err) 1331 goto rollback; 1332 1333 if (!(dev->flags & IFF_UP)) 1334 continue; 1335 1336 nb->notifier_call(nb, NETDEV_UP, dev); 1337 } 1338 } 1339 1340 unlock: 1341 rtnl_unlock(); 1342 return err; 1343 1344 rollback: 1345 last = dev; 1346 for_each_net(net) { 1347 for_each_netdev(net, dev) { 1348 if (dev == last) 1349 break; 1350 1351 if (dev->flags & IFF_UP) { 1352 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1353 nb->notifier_call(nb, NETDEV_DOWN, dev); 1354 } 1355 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1356 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1357 } 1358 } 1359 1360 raw_notifier_chain_unregister(&netdev_chain, nb); 1361 goto unlock; 1362 } 1363 EXPORT_SYMBOL(register_netdevice_notifier); 1364 1365 /** 1366 * unregister_netdevice_notifier - unregister a network notifier block 1367 * @nb: notifier 1368 * 1369 * Unregister a notifier previously registered by 1370 * register_netdevice_notifier(). The notifier is unlinked into the 1371 * kernel structures and may then be reused. A negative errno code 1372 * is returned on a failure. 1373 */ 1374 1375 int unregister_netdevice_notifier(struct notifier_block *nb) 1376 { 1377 int err; 1378 1379 rtnl_lock(); 1380 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1381 rtnl_unlock(); 1382 return err; 1383 } 1384 EXPORT_SYMBOL(unregister_netdevice_notifier); 1385 1386 /** 1387 * call_netdevice_notifiers - call all network notifier blocks 1388 * @val: value passed unmodified to notifier function 1389 * @dev: net_device pointer passed unmodified to notifier function 1390 * 1391 * Call all network notifier blocks. Parameters and return value 1392 * are as for raw_notifier_call_chain(). 1393 */ 1394 1395 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1396 { 1397 return raw_notifier_call_chain(&netdev_chain, val, dev); 1398 } 1399 1400 /* When > 0 there are consumers of rx skb time stamps */ 1401 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1402 1403 void net_enable_timestamp(void) 1404 { 1405 atomic_inc(&netstamp_needed); 1406 } 1407 EXPORT_SYMBOL(net_enable_timestamp); 1408 1409 void net_disable_timestamp(void) 1410 { 1411 atomic_dec(&netstamp_needed); 1412 } 1413 EXPORT_SYMBOL(net_disable_timestamp); 1414 1415 static inline void net_timestamp(struct sk_buff *skb) 1416 { 1417 if (atomic_read(&netstamp_needed)) 1418 __net_timestamp(skb); 1419 else 1420 skb->tstamp.tv64 = 0; 1421 } 1422 1423 /** 1424 * dev_forward_skb - loopback an skb to another netif 1425 * 1426 * @dev: destination network device 1427 * @skb: buffer to forward 1428 * 1429 * return values: 1430 * NET_RX_SUCCESS (no congestion) 1431 * NET_RX_DROP (packet was dropped) 1432 * 1433 * dev_forward_skb can be used for injecting an skb from the 1434 * start_xmit function of one device into the receive queue 1435 * of another device. 1436 * 1437 * The receiving device may be in another namespace, so 1438 * we have to clear all information in the skb that could 1439 * impact namespace isolation. 1440 */ 1441 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1442 { 1443 skb_orphan(skb); 1444 1445 if (!(dev->flags & IFF_UP)) 1446 return NET_RX_DROP; 1447 1448 if (skb->len > (dev->mtu + dev->hard_header_len)) 1449 return NET_RX_DROP; 1450 1451 skb_set_dev(skb, dev); 1452 skb->tstamp.tv64 = 0; 1453 skb->pkt_type = PACKET_HOST; 1454 skb->protocol = eth_type_trans(skb, dev); 1455 return netif_rx(skb); 1456 } 1457 EXPORT_SYMBOL_GPL(dev_forward_skb); 1458 1459 /* 1460 * Support routine. Sends outgoing frames to any network 1461 * taps currently in use. 1462 */ 1463 1464 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1465 { 1466 struct packet_type *ptype; 1467 1468 #ifdef CONFIG_NET_CLS_ACT 1469 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1470 net_timestamp(skb); 1471 #else 1472 net_timestamp(skb); 1473 #endif 1474 1475 rcu_read_lock(); 1476 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1477 /* Never send packets back to the socket 1478 * they originated from - MvS (miquels@drinkel.ow.org) 1479 */ 1480 if ((ptype->dev == dev || !ptype->dev) && 1481 (ptype->af_packet_priv == NULL || 1482 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1483 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1484 if (!skb2) 1485 break; 1486 1487 /* skb->nh should be correctly 1488 set by sender, so that the second statement is 1489 just protection against buggy protocols. 1490 */ 1491 skb_reset_mac_header(skb2); 1492 1493 if (skb_network_header(skb2) < skb2->data || 1494 skb2->network_header > skb2->tail) { 1495 if (net_ratelimit()) 1496 printk(KERN_CRIT "protocol %04x is " 1497 "buggy, dev %s\n", 1498 skb2->protocol, dev->name); 1499 skb_reset_network_header(skb2); 1500 } 1501 1502 skb2->transport_header = skb2->network_header; 1503 skb2->pkt_type = PACKET_OUTGOING; 1504 ptype->func(skb2, skb->dev, ptype, skb->dev); 1505 } 1506 } 1507 rcu_read_unlock(); 1508 } 1509 1510 1511 static inline void __netif_reschedule(struct Qdisc *q) 1512 { 1513 struct softnet_data *sd; 1514 unsigned long flags; 1515 1516 local_irq_save(flags); 1517 sd = &__get_cpu_var(softnet_data); 1518 q->next_sched = sd->output_queue; 1519 sd->output_queue = q; 1520 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1521 local_irq_restore(flags); 1522 } 1523 1524 void __netif_schedule(struct Qdisc *q) 1525 { 1526 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1527 __netif_reschedule(q); 1528 } 1529 EXPORT_SYMBOL(__netif_schedule); 1530 1531 void dev_kfree_skb_irq(struct sk_buff *skb) 1532 { 1533 if (atomic_dec_and_test(&skb->users)) { 1534 struct softnet_data *sd; 1535 unsigned long flags; 1536 1537 local_irq_save(flags); 1538 sd = &__get_cpu_var(softnet_data); 1539 skb->next = sd->completion_queue; 1540 sd->completion_queue = skb; 1541 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1542 local_irq_restore(flags); 1543 } 1544 } 1545 EXPORT_SYMBOL(dev_kfree_skb_irq); 1546 1547 void dev_kfree_skb_any(struct sk_buff *skb) 1548 { 1549 if (in_irq() || irqs_disabled()) 1550 dev_kfree_skb_irq(skb); 1551 else 1552 dev_kfree_skb(skb); 1553 } 1554 EXPORT_SYMBOL(dev_kfree_skb_any); 1555 1556 1557 /** 1558 * netif_device_detach - mark device as removed 1559 * @dev: network device 1560 * 1561 * Mark device as removed from system and therefore no longer available. 1562 */ 1563 void netif_device_detach(struct net_device *dev) 1564 { 1565 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1566 netif_running(dev)) { 1567 netif_tx_stop_all_queues(dev); 1568 } 1569 } 1570 EXPORT_SYMBOL(netif_device_detach); 1571 1572 /** 1573 * netif_device_attach - mark device as attached 1574 * @dev: network device 1575 * 1576 * Mark device as attached from system and restart if needed. 1577 */ 1578 void netif_device_attach(struct net_device *dev) 1579 { 1580 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1581 netif_running(dev)) { 1582 netif_tx_wake_all_queues(dev); 1583 __netdev_watchdog_up(dev); 1584 } 1585 } 1586 EXPORT_SYMBOL(netif_device_attach); 1587 1588 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1589 { 1590 return ((features & NETIF_F_GEN_CSUM) || 1591 ((features & NETIF_F_IP_CSUM) && 1592 protocol == htons(ETH_P_IP)) || 1593 ((features & NETIF_F_IPV6_CSUM) && 1594 protocol == htons(ETH_P_IPV6)) || 1595 ((features & NETIF_F_FCOE_CRC) && 1596 protocol == htons(ETH_P_FCOE))); 1597 } 1598 1599 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1600 { 1601 if (can_checksum_protocol(dev->features, skb->protocol)) 1602 return true; 1603 1604 if (skb->protocol == htons(ETH_P_8021Q)) { 1605 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1606 if (can_checksum_protocol(dev->features & dev->vlan_features, 1607 veh->h_vlan_encapsulated_proto)) 1608 return true; 1609 } 1610 1611 return false; 1612 } 1613 1614 /** 1615 * skb_dev_set -- assign a new device to a buffer 1616 * @skb: buffer for the new device 1617 * @dev: network device 1618 * 1619 * If an skb is owned by a device already, we have to reset 1620 * all data private to the namespace a device belongs to 1621 * before assigning it a new device. 1622 */ 1623 #ifdef CONFIG_NET_NS 1624 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1625 { 1626 skb_dst_drop(skb); 1627 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1628 secpath_reset(skb); 1629 nf_reset(skb); 1630 skb_init_secmark(skb); 1631 skb->mark = 0; 1632 skb->priority = 0; 1633 skb->nf_trace = 0; 1634 skb->ipvs_property = 0; 1635 #ifdef CONFIG_NET_SCHED 1636 skb->tc_index = 0; 1637 #endif 1638 } 1639 skb->dev = dev; 1640 } 1641 EXPORT_SYMBOL(skb_set_dev); 1642 #endif /* CONFIG_NET_NS */ 1643 1644 /* 1645 * Invalidate hardware checksum when packet is to be mangled, and 1646 * complete checksum manually on outgoing path. 1647 */ 1648 int skb_checksum_help(struct sk_buff *skb) 1649 { 1650 __wsum csum; 1651 int ret = 0, offset; 1652 1653 if (skb->ip_summed == CHECKSUM_COMPLETE) 1654 goto out_set_summed; 1655 1656 if (unlikely(skb_shinfo(skb)->gso_size)) { 1657 /* Let GSO fix up the checksum. */ 1658 goto out_set_summed; 1659 } 1660 1661 offset = skb->csum_start - skb_headroom(skb); 1662 BUG_ON(offset >= skb_headlen(skb)); 1663 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1664 1665 offset += skb->csum_offset; 1666 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1667 1668 if (skb_cloned(skb) && 1669 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1670 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1671 if (ret) 1672 goto out; 1673 } 1674 1675 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1676 out_set_summed: 1677 skb->ip_summed = CHECKSUM_NONE; 1678 out: 1679 return ret; 1680 } 1681 EXPORT_SYMBOL(skb_checksum_help); 1682 1683 /** 1684 * skb_gso_segment - Perform segmentation on skb. 1685 * @skb: buffer to segment 1686 * @features: features for the output path (see dev->features) 1687 * 1688 * This function segments the given skb and returns a list of segments. 1689 * 1690 * It may return NULL if the skb requires no segmentation. This is 1691 * only possible when GSO is used for verifying header integrity. 1692 */ 1693 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1694 { 1695 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1696 struct packet_type *ptype; 1697 __be16 type = skb->protocol; 1698 int err; 1699 1700 skb_reset_mac_header(skb); 1701 skb->mac_len = skb->network_header - skb->mac_header; 1702 __skb_pull(skb, skb->mac_len); 1703 1704 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1705 struct net_device *dev = skb->dev; 1706 struct ethtool_drvinfo info = {}; 1707 1708 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1709 dev->ethtool_ops->get_drvinfo(dev, &info); 1710 1711 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1712 "ip_summed=%d", 1713 info.driver, dev ? dev->features : 0L, 1714 skb->sk ? skb->sk->sk_route_caps : 0L, 1715 skb->len, skb->data_len, skb->ip_summed); 1716 1717 if (skb_header_cloned(skb) && 1718 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1719 return ERR_PTR(err); 1720 } 1721 1722 rcu_read_lock(); 1723 list_for_each_entry_rcu(ptype, 1724 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1725 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1727 err = ptype->gso_send_check(skb); 1728 segs = ERR_PTR(err); 1729 if (err || skb_gso_ok(skb, features)) 1730 break; 1731 __skb_push(skb, (skb->data - 1732 skb_network_header(skb))); 1733 } 1734 segs = ptype->gso_segment(skb, features); 1735 break; 1736 } 1737 } 1738 rcu_read_unlock(); 1739 1740 __skb_push(skb, skb->data - skb_mac_header(skb)); 1741 1742 return segs; 1743 } 1744 EXPORT_SYMBOL(skb_gso_segment); 1745 1746 /* Take action when hardware reception checksum errors are detected. */ 1747 #ifdef CONFIG_BUG 1748 void netdev_rx_csum_fault(struct net_device *dev) 1749 { 1750 if (net_ratelimit()) { 1751 printk(KERN_ERR "%s: hw csum failure.\n", 1752 dev ? dev->name : "<unknown>"); 1753 dump_stack(); 1754 } 1755 } 1756 EXPORT_SYMBOL(netdev_rx_csum_fault); 1757 #endif 1758 1759 /* Actually, we should eliminate this check as soon as we know, that: 1760 * 1. IOMMU is present and allows to map all the memory. 1761 * 2. No high memory really exists on this machine. 1762 */ 1763 1764 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1765 { 1766 #ifdef CONFIG_HIGHMEM 1767 int i; 1768 1769 if (dev->features & NETIF_F_HIGHDMA) 1770 return 0; 1771 1772 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1773 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1774 return 1; 1775 1776 #endif 1777 return 0; 1778 } 1779 1780 struct dev_gso_cb { 1781 void (*destructor)(struct sk_buff *skb); 1782 }; 1783 1784 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1785 1786 static void dev_gso_skb_destructor(struct sk_buff *skb) 1787 { 1788 struct dev_gso_cb *cb; 1789 1790 do { 1791 struct sk_buff *nskb = skb->next; 1792 1793 skb->next = nskb->next; 1794 nskb->next = NULL; 1795 kfree_skb(nskb); 1796 } while (skb->next); 1797 1798 cb = DEV_GSO_CB(skb); 1799 if (cb->destructor) 1800 cb->destructor(skb); 1801 } 1802 1803 /** 1804 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1805 * @skb: buffer to segment 1806 * 1807 * This function segments the given skb and stores the list of segments 1808 * in skb->next. 1809 */ 1810 static int dev_gso_segment(struct sk_buff *skb) 1811 { 1812 struct net_device *dev = skb->dev; 1813 struct sk_buff *segs; 1814 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1815 NETIF_F_SG : 0); 1816 1817 segs = skb_gso_segment(skb, features); 1818 1819 /* Verifying header integrity only. */ 1820 if (!segs) 1821 return 0; 1822 1823 if (IS_ERR(segs)) 1824 return PTR_ERR(segs); 1825 1826 skb->next = segs; 1827 DEV_GSO_CB(skb)->destructor = skb->destructor; 1828 skb->destructor = dev_gso_skb_destructor; 1829 1830 return 0; 1831 } 1832 1833 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1834 struct netdev_queue *txq) 1835 { 1836 const struct net_device_ops *ops = dev->netdev_ops; 1837 int rc = NETDEV_TX_OK; 1838 1839 if (likely(!skb->next)) { 1840 if (!list_empty(&ptype_all)) 1841 dev_queue_xmit_nit(skb, dev); 1842 1843 if (netif_needs_gso(dev, skb)) { 1844 if (unlikely(dev_gso_segment(skb))) 1845 goto out_kfree_skb; 1846 if (skb->next) 1847 goto gso; 1848 } 1849 1850 /* 1851 * If device doesnt need skb->dst, release it right now while 1852 * its hot in this cpu cache 1853 */ 1854 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1855 skb_dst_drop(skb); 1856 1857 rc = ops->ndo_start_xmit(skb, dev); 1858 if (rc == NETDEV_TX_OK) 1859 txq_trans_update(txq); 1860 /* 1861 * TODO: if skb_orphan() was called by 1862 * dev->hard_start_xmit() (for example, the unmodified 1863 * igb driver does that; bnx2 doesn't), then 1864 * skb_tx_software_timestamp() will be unable to send 1865 * back the time stamp. 1866 * 1867 * How can this be prevented? Always create another 1868 * reference to the socket before calling 1869 * dev->hard_start_xmit()? Prevent that skb_orphan() 1870 * does anything in dev->hard_start_xmit() by clearing 1871 * the skb destructor before the call and restoring it 1872 * afterwards, then doing the skb_orphan() ourselves? 1873 */ 1874 return rc; 1875 } 1876 1877 gso: 1878 do { 1879 struct sk_buff *nskb = skb->next; 1880 1881 skb->next = nskb->next; 1882 nskb->next = NULL; 1883 1884 /* 1885 * If device doesnt need nskb->dst, release it right now while 1886 * its hot in this cpu cache 1887 */ 1888 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1889 skb_dst_drop(nskb); 1890 1891 rc = ops->ndo_start_xmit(nskb, dev); 1892 if (unlikely(rc != NETDEV_TX_OK)) { 1893 if (rc & ~NETDEV_TX_MASK) 1894 goto out_kfree_gso_skb; 1895 nskb->next = skb->next; 1896 skb->next = nskb; 1897 return rc; 1898 } 1899 txq_trans_update(txq); 1900 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1901 return NETDEV_TX_BUSY; 1902 } while (skb->next); 1903 1904 out_kfree_gso_skb: 1905 if (likely(skb->next == NULL)) 1906 skb->destructor = DEV_GSO_CB(skb)->destructor; 1907 out_kfree_skb: 1908 kfree_skb(skb); 1909 return rc; 1910 } 1911 1912 static u32 skb_tx_hashrnd; 1913 1914 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1915 { 1916 u32 hash; 1917 1918 if (skb_rx_queue_recorded(skb)) { 1919 hash = skb_get_rx_queue(skb); 1920 while (unlikely(hash >= dev->real_num_tx_queues)) 1921 hash -= dev->real_num_tx_queues; 1922 return hash; 1923 } 1924 1925 if (skb->sk && skb->sk->sk_hash) 1926 hash = skb->sk->sk_hash; 1927 else 1928 hash = skb->protocol; 1929 1930 hash = jhash_1word(hash, skb_tx_hashrnd); 1931 1932 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1933 } 1934 EXPORT_SYMBOL(skb_tx_hash); 1935 1936 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 1937 { 1938 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 1939 if (net_ratelimit()) { 1940 WARN(1, "%s selects TX queue %d, but " 1941 "real number of TX queues is %d\n", 1942 dev->name, queue_index, 1943 dev->real_num_tx_queues); 1944 } 1945 return 0; 1946 } 1947 return queue_index; 1948 } 1949 1950 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1951 struct sk_buff *skb) 1952 { 1953 u16 queue_index; 1954 struct sock *sk = skb->sk; 1955 1956 if (sk_tx_queue_recorded(sk)) { 1957 queue_index = sk_tx_queue_get(sk); 1958 } else { 1959 const struct net_device_ops *ops = dev->netdev_ops; 1960 1961 if (ops->ndo_select_queue) { 1962 queue_index = ops->ndo_select_queue(dev, skb); 1963 queue_index = dev_cap_txqueue(dev, queue_index); 1964 } else { 1965 queue_index = 0; 1966 if (dev->real_num_tx_queues > 1) 1967 queue_index = skb_tx_hash(dev, skb); 1968 1969 if (sk && sk->sk_dst_cache) 1970 sk_tx_queue_set(sk, queue_index); 1971 } 1972 } 1973 1974 skb_set_queue_mapping(skb, queue_index); 1975 return netdev_get_tx_queue(dev, queue_index); 1976 } 1977 1978 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 1979 struct net_device *dev, 1980 struct netdev_queue *txq) 1981 { 1982 spinlock_t *root_lock = qdisc_lock(q); 1983 int rc; 1984 1985 spin_lock(root_lock); 1986 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1987 kfree_skb(skb); 1988 rc = NET_XMIT_DROP; 1989 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 1990 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) { 1991 /* 1992 * This is a work-conserving queue; there are no old skbs 1993 * waiting to be sent out; and the qdisc is not running - 1994 * xmit the skb directly. 1995 */ 1996 __qdisc_update_bstats(q, skb->len); 1997 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) 1998 __qdisc_run(q); 1999 else 2000 clear_bit(__QDISC_STATE_RUNNING, &q->state); 2001 2002 rc = NET_XMIT_SUCCESS; 2003 } else { 2004 rc = qdisc_enqueue_root(skb, q); 2005 qdisc_run(q); 2006 } 2007 spin_unlock(root_lock); 2008 2009 return rc; 2010 } 2011 2012 /* 2013 * Returns true if either: 2014 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2015 * 2. skb is fragmented and the device does not support SG, or if 2016 * at least one of fragments is in highmem and device does not 2017 * support DMA from it. 2018 */ 2019 static inline int skb_needs_linearize(struct sk_buff *skb, 2020 struct net_device *dev) 2021 { 2022 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 2023 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 2024 illegal_highdma(dev, skb))); 2025 } 2026 2027 /** 2028 * dev_queue_xmit - transmit a buffer 2029 * @skb: buffer to transmit 2030 * 2031 * Queue a buffer for transmission to a network device. The caller must 2032 * have set the device and priority and built the buffer before calling 2033 * this function. The function can be called from an interrupt. 2034 * 2035 * A negative errno code is returned on a failure. A success does not 2036 * guarantee the frame will be transmitted as it may be dropped due 2037 * to congestion or traffic shaping. 2038 * 2039 * ----------------------------------------------------------------------------------- 2040 * I notice this method can also return errors from the queue disciplines, 2041 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2042 * be positive. 2043 * 2044 * Regardless of the return value, the skb is consumed, so it is currently 2045 * difficult to retry a send to this method. (You can bump the ref count 2046 * before sending to hold a reference for retry if you are careful.) 2047 * 2048 * When calling this method, interrupts MUST be enabled. This is because 2049 * the BH enable code must have IRQs enabled so that it will not deadlock. 2050 * --BLG 2051 */ 2052 int dev_queue_xmit(struct sk_buff *skb) 2053 { 2054 struct net_device *dev = skb->dev; 2055 struct netdev_queue *txq; 2056 struct Qdisc *q; 2057 int rc = -ENOMEM; 2058 2059 /* GSO will handle the following emulations directly. */ 2060 if (netif_needs_gso(dev, skb)) 2061 goto gso; 2062 2063 /* Convert a paged skb to linear, if required */ 2064 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb)) 2065 goto out_kfree_skb; 2066 2067 /* If packet is not checksummed and device does not support 2068 * checksumming for this protocol, complete checksumming here. 2069 */ 2070 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2071 skb_set_transport_header(skb, skb->csum_start - 2072 skb_headroom(skb)); 2073 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 2074 goto out_kfree_skb; 2075 } 2076 2077 gso: 2078 /* Disable soft irqs for various locks below. Also 2079 * stops preemption for RCU. 2080 */ 2081 rcu_read_lock_bh(); 2082 2083 txq = dev_pick_tx(dev, skb); 2084 q = rcu_dereference(txq->qdisc); 2085 2086 #ifdef CONFIG_NET_CLS_ACT 2087 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2088 #endif 2089 if (q->enqueue) { 2090 rc = __dev_xmit_skb(skb, q, dev, txq); 2091 goto out; 2092 } 2093 2094 /* The device has no queue. Common case for software devices: 2095 loopback, all the sorts of tunnels... 2096 2097 Really, it is unlikely that netif_tx_lock protection is necessary 2098 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2099 counters.) 2100 However, it is possible, that they rely on protection 2101 made by us here. 2102 2103 Check this and shot the lock. It is not prone from deadlocks. 2104 Either shot noqueue qdisc, it is even simpler 8) 2105 */ 2106 if (dev->flags & IFF_UP) { 2107 int cpu = smp_processor_id(); /* ok because BHs are off */ 2108 2109 if (txq->xmit_lock_owner != cpu) { 2110 2111 HARD_TX_LOCK(dev, txq, cpu); 2112 2113 if (!netif_tx_queue_stopped(txq)) { 2114 rc = dev_hard_start_xmit(skb, dev, txq); 2115 if (dev_xmit_complete(rc)) { 2116 HARD_TX_UNLOCK(dev, txq); 2117 goto out; 2118 } 2119 } 2120 HARD_TX_UNLOCK(dev, txq); 2121 if (net_ratelimit()) 2122 printk(KERN_CRIT "Virtual device %s asks to " 2123 "queue packet!\n", dev->name); 2124 } else { 2125 /* Recursion is detected! It is possible, 2126 * unfortunately */ 2127 if (net_ratelimit()) 2128 printk(KERN_CRIT "Dead loop on virtual device " 2129 "%s, fix it urgently!\n", dev->name); 2130 } 2131 } 2132 2133 rc = -ENETDOWN; 2134 rcu_read_unlock_bh(); 2135 2136 out_kfree_skb: 2137 kfree_skb(skb); 2138 return rc; 2139 out: 2140 rcu_read_unlock_bh(); 2141 return rc; 2142 } 2143 EXPORT_SYMBOL(dev_queue_xmit); 2144 2145 2146 /*======================================================================= 2147 Receiver routines 2148 =======================================================================*/ 2149 2150 int netdev_max_backlog __read_mostly = 1000; 2151 int netdev_budget __read_mostly = 300; 2152 int weight_p __read_mostly = 64; /* old backlog weight */ 2153 2154 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 2155 2156 2157 /** 2158 * netif_rx - post buffer to the network code 2159 * @skb: buffer to post 2160 * 2161 * This function receives a packet from a device driver and queues it for 2162 * the upper (protocol) levels to process. It always succeeds. The buffer 2163 * may be dropped during processing for congestion control or by the 2164 * protocol layers. 2165 * 2166 * return values: 2167 * NET_RX_SUCCESS (no congestion) 2168 * NET_RX_DROP (packet was dropped) 2169 * 2170 */ 2171 2172 int netif_rx(struct sk_buff *skb) 2173 { 2174 struct softnet_data *queue; 2175 unsigned long flags; 2176 2177 /* if netpoll wants it, pretend we never saw it */ 2178 if (netpoll_rx(skb)) 2179 return NET_RX_DROP; 2180 2181 if (!skb->tstamp.tv64) 2182 net_timestamp(skb); 2183 2184 /* 2185 * The code is rearranged so that the path is the most 2186 * short when CPU is congested, but is still operating. 2187 */ 2188 local_irq_save(flags); 2189 queue = &__get_cpu_var(softnet_data); 2190 2191 __get_cpu_var(netdev_rx_stat).total++; 2192 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 2193 if (queue->input_pkt_queue.qlen) { 2194 enqueue: 2195 __skb_queue_tail(&queue->input_pkt_queue, skb); 2196 local_irq_restore(flags); 2197 return NET_RX_SUCCESS; 2198 } 2199 2200 napi_schedule(&queue->backlog); 2201 goto enqueue; 2202 } 2203 2204 __get_cpu_var(netdev_rx_stat).dropped++; 2205 local_irq_restore(flags); 2206 2207 kfree_skb(skb); 2208 return NET_RX_DROP; 2209 } 2210 EXPORT_SYMBOL(netif_rx); 2211 2212 int netif_rx_ni(struct sk_buff *skb) 2213 { 2214 int err; 2215 2216 preempt_disable(); 2217 err = netif_rx(skb); 2218 if (local_softirq_pending()) 2219 do_softirq(); 2220 preempt_enable(); 2221 2222 return err; 2223 } 2224 EXPORT_SYMBOL(netif_rx_ni); 2225 2226 static void net_tx_action(struct softirq_action *h) 2227 { 2228 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2229 2230 if (sd->completion_queue) { 2231 struct sk_buff *clist; 2232 2233 local_irq_disable(); 2234 clist = sd->completion_queue; 2235 sd->completion_queue = NULL; 2236 local_irq_enable(); 2237 2238 while (clist) { 2239 struct sk_buff *skb = clist; 2240 clist = clist->next; 2241 2242 WARN_ON(atomic_read(&skb->users)); 2243 __kfree_skb(skb); 2244 } 2245 } 2246 2247 if (sd->output_queue) { 2248 struct Qdisc *head; 2249 2250 local_irq_disable(); 2251 head = sd->output_queue; 2252 sd->output_queue = NULL; 2253 local_irq_enable(); 2254 2255 while (head) { 2256 struct Qdisc *q = head; 2257 spinlock_t *root_lock; 2258 2259 head = head->next_sched; 2260 2261 root_lock = qdisc_lock(q); 2262 if (spin_trylock(root_lock)) { 2263 smp_mb__before_clear_bit(); 2264 clear_bit(__QDISC_STATE_SCHED, 2265 &q->state); 2266 qdisc_run(q); 2267 spin_unlock(root_lock); 2268 } else { 2269 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2270 &q->state)) { 2271 __netif_reschedule(q); 2272 } else { 2273 smp_mb__before_clear_bit(); 2274 clear_bit(__QDISC_STATE_SCHED, 2275 &q->state); 2276 } 2277 } 2278 } 2279 } 2280 } 2281 2282 static inline int deliver_skb(struct sk_buff *skb, 2283 struct packet_type *pt_prev, 2284 struct net_device *orig_dev) 2285 { 2286 atomic_inc(&skb->users); 2287 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2288 } 2289 2290 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2291 2292 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2293 /* This hook is defined here for ATM LANE */ 2294 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2295 unsigned char *addr) __read_mostly; 2296 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2297 #endif 2298 2299 /* 2300 * If bridge module is loaded call bridging hook. 2301 * returns NULL if packet was consumed. 2302 */ 2303 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2304 struct sk_buff *skb) __read_mostly; 2305 EXPORT_SYMBOL_GPL(br_handle_frame_hook); 2306 2307 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2308 struct packet_type **pt_prev, int *ret, 2309 struct net_device *orig_dev) 2310 { 2311 struct net_bridge_port *port; 2312 2313 if (skb->pkt_type == PACKET_LOOPBACK || 2314 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2315 return skb; 2316 2317 if (*pt_prev) { 2318 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2319 *pt_prev = NULL; 2320 } 2321 2322 return br_handle_frame_hook(port, skb); 2323 } 2324 #else 2325 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2326 #endif 2327 2328 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2329 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2330 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2331 2332 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2333 struct packet_type **pt_prev, 2334 int *ret, 2335 struct net_device *orig_dev) 2336 { 2337 if (skb->dev->macvlan_port == NULL) 2338 return skb; 2339 2340 if (*pt_prev) { 2341 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2342 *pt_prev = NULL; 2343 } 2344 return macvlan_handle_frame_hook(skb); 2345 } 2346 #else 2347 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2348 #endif 2349 2350 #ifdef CONFIG_NET_CLS_ACT 2351 /* TODO: Maybe we should just force sch_ingress to be compiled in 2352 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2353 * a compare and 2 stores extra right now if we dont have it on 2354 * but have CONFIG_NET_CLS_ACT 2355 * NOTE: This doesnt stop any functionality; if you dont have 2356 * the ingress scheduler, you just cant add policies on ingress. 2357 * 2358 */ 2359 static int ing_filter(struct sk_buff *skb) 2360 { 2361 struct net_device *dev = skb->dev; 2362 u32 ttl = G_TC_RTTL(skb->tc_verd); 2363 struct netdev_queue *rxq; 2364 int result = TC_ACT_OK; 2365 struct Qdisc *q; 2366 2367 if (MAX_RED_LOOP < ttl++) { 2368 printk(KERN_WARNING 2369 "Redir loop detected Dropping packet (%d->%d)\n", 2370 skb->skb_iif, dev->ifindex); 2371 return TC_ACT_SHOT; 2372 } 2373 2374 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2375 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2376 2377 rxq = &dev->rx_queue; 2378 2379 q = rxq->qdisc; 2380 if (q != &noop_qdisc) { 2381 spin_lock(qdisc_lock(q)); 2382 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2383 result = qdisc_enqueue_root(skb, q); 2384 spin_unlock(qdisc_lock(q)); 2385 } 2386 2387 return result; 2388 } 2389 2390 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2391 struct packet_type **pt_prev, 2392 int *ret, struct net_device *orig_dev) 2393 { 2394 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2395 goto out; 2396 2397 if (*pt_prev) { 2398 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2399 *pt_prev = NULL; 2400 } else { 2401 /* Huh? Why does turning on AF_PACKET affect this? */ 2402 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2403 } 2404 2405 switch (ing_filter(skb)) { 2406 case TC_ACT_SHOT: 2407 case TC_ACT_STOLEN: 2408 kfree_skb(skb); 2409 return NULL; 2410 } 2411 2412 out: 2413 skb->tc_verd = 0; 2414 return skb; 2415 } 2416 #endif 2417 2418 /* 2419 * netif_nit_deliver - deliver received packets to network taps 2420 * @skb: buffer 2421 * 2422 * This function is used to deliver incoming packets to network 2423 * taps. It should be used when the normal netif_receive_skb path 2424 * is bypassed, for example because of VLAN acceleration. 2425 */ 2426 void netif_nit_deliver(struct sk_buff *skb) 2427 { 2428 struct packet_type *ptype; 2429 2430 if (list_empty(&ptype_all)) 2431 return; 2432 2433 skb_reset_network_header(skb); 2434 skb_reset_transport_header(skb); 2435 skb->mac_len = skb->network_header - skb->mac_header; 2436 2437 rcu_read_lock(); 2438 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2439 if (!ptype->dev || ptype->dev == skb->dev) 2440 deliver_skb(skb, ptype, skb->dev); 2441 } 2442 rcu_read_unlock(); 2443 } 2444 2445 /** 2446 * netif_receive_skb - process receive buffer from network 2447 * @skb: buffer to process 2448 * 2449 * netif_receive_skb() is the main receive data processing function. 2450 * It always succeeds. The buffer may be dropped during processing 2451 * for congestion control or by the protocol layers. 2452 * 2453 * This function may only be called from softirq context and interrupts 2454 * should be enabled. 2455 * 2456 * Return values (usually ignored): 2457 * NET_RX_SUCCESS: no congestion 2458 * NET_RX_DROP: packet was dropped 2459 */ 2460 int netif_receive_skb(struct sk_buff *skb) 2461 { 2462 struct packet_type *ptype, *pt_prev; 2463 struct net_device *orig_dev; 2464 struct net_device *null_or_orig; 2465 struct net_device *null_or_bond; 2466 int ret = NET_RX_DROP; 2467 __be16 type; 2468 2469 if (!skb->tstamp.tv64) 2470 net_timestamp(skb); 2471 2472 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb)) 2473 return NET_RX_SUCCESS; 2474 2475 /* if we've gotten here through NAPI, check netpoll */ 2476 if (netpoll_receive_skb(skb)) 2477 return NET_RX_DROP; 2478 2479 if (!skb->skb_iif) 2480 skb->skb_iif = skb->dev->ifindex; 2481 2482 null_or_orig = NULL; 2483 orig_dev = skb->dev; 2484 if (orig_dev->master) { 2485 if (skb_bond_should_drop(skb)) 2486 null_or_orig = orig_dev; /* deliver only exact match */ 2487 else 2488 skb->dev = orig_dev->master; 2489 } 2490 2491 __get_cpu_var(netdev_rx_stat).total++; 2492 2493 skb_reset_network_header(skb); 2494 skb_reset_transport_header(skb); 2495 skb->mac_len = skb->network_header - skb->mac_header; 2496 2497 pt_prev = NULL; 2498 2499 rcu_read_lock(); 2500 2501 #ifdef CONFIG_NET_CLS_ACT 2502 if (skb->tc_verd & TC_NCLS) { 2503 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2504 goto ncls; 2505 } 2506 #endif 2507 2508 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2509 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2510 ptype->dev == orig_dev) { 2511 if (pt_prev) 2512 ret = deliver_skb(skb, pt_prev, orig_dev); 2513 pt_prev = ptype; 2514 } 2515 } 2516 2517 #ifdef CONFIG_NET_CLS_ACT 2518 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2519 if (!skb) 2520 goto out; 2521 ncls: 2522 #endif 2523 2524 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2525 if (!skb) 2526 goto out; 2527 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2528 if (!skb) 2529 goto out; 2530 2531 /* 2532 * Make sure frames received on VLAN interfaces stacked on 2533 * bonding interfaces still make their way to any base bonding 2534 * device that may have registered for a specific ptype. The 2535 * handler may have to adjust skb->dev and orig_dev. 2536 */ 2537 null_or_bond = NULL; 2538 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2539 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2540 null_or_bond = vlan_dev_real_dev(skb->dev); 2541 } 2542 2543 type = skb->protocol; 2544 list_for_each_entry_rcu(ptype, 2545 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2546 if (ptype->type == type && (ptype->dev == null_or_orig || 2547 ptype->dev == skb->dev || ptype->dev == orig_dev || 2548 ptype->dev == null_or_bond)) { 2549 if (pt_prev) 2550 ret = deliver_skb(skb, pt_prev, orig_dev); 2551 pt_prev = ptype; 2552 } 2553 } 2554 2555 if (pt_prev) { 2556 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2557 } else { 2558 kfree_skb(skb); 2559 /* Jamal, now you will not able to escape explaining 2560 * me how you were going to use this. :-) 2561 */ 2562 ret = NET_RX_DROP; 2563 } 2564 2565 out: 2566 rcu_read_unlock(); 2567 return ret; 2568 } 2569 EXPORT_SYMBOL(netif_receive_skb); 2570 2571 /* Network device is going away, flush any packets still pending */ 2572 static void flush_backlog(void *arg) 2573 { 2574 struct net_device *dev = arg; 2575 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2576 struct sk_buff *skb, *tmp; 2577 2578 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2579 if (skb->dev == dev) { 2580 __skb_unlink(skb, &queue->input_pkt_queue); 2581 kfree_skb(skb); 2582 } 2583 } 2584 2585 static int napi_gro_complete(struct sk_buff *skb) 2586 { 2587 struct packet_type *ptype; 2588 __be16 type = skb->protocol; 2589 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2590 int err = -ENOENT; 2591 2592 if (NAPI_GRO_CB(skb)->count == 1) { 2593 skb_shinfo(skb)->gso_size = 0; 2594 goto out; 2595 } 2596 2597 rcu_read_lock(); 2598 list_for_each_entry_rcu(ptype, head, list) { 2599 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2600 continue; 2601 2602 err = ptype->gro_complete(skb); 2603 break; 2604 } 2605 rcu_read_unlock(); 2606 2607 if (err) { 2608 WARN_ON(&ptype->list == head); 2609 kfree_skb(skb); 2610 return NET_RX_SUCCESS; 2611 } 2612 2613 out: 2614 return netif_receive_skb(skb); 2615 } 2616 2617 static void napi_gro_flush(struct napi_struct *napi) 2618 { 2619 struct sk_buff *skb, *next; 2620 2621 for (skb = napi->gro_list; skb; skb = next) { 2622 next = skb->next; 2623 skb->next = NULL; 2624 napi_gro_complete(skb); 2625 } 2626 2627 napi->gro_count = 0; 2628 napi->gro_list = NULL; 2629 } 2630 2631 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2632 { 2633 struct sk_buff **pp = NULL; 2634 struct packet_type *ptype; 2635 __be16 type = skb->protocol; 2636 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2637 int same_flow; 2638 int mac_len; 2639 enum gro_result ret; 2640 2641 if (!(skb->dev->features & NETIF_F_GRO)) 2642 goto normal; 2643 2644 if (skb_is_gso(skb) || skb_has_frags(skb)) 2645 goto normal; 2646 2647 rcu_read_lock(); 2648 list_for_each_entry_rcu(ptype, head, list) { 2649 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2650 continue; 2651 2652 skb_set_network_header(skb, skb_gro_offset(skb)); 2653 mac_len = skb->network_header - skb->mac_header; 2654 skb->mac_len = mac_len; 2655 NAPI_GRO_CB(skb)->same_flow = 0; 2656 NAPI_GRO_CB(skb)->flush = 0; 2657 NAPI_GRO_CB(skb)->free = 0; 2658 2659 pp = ptype->gro_receive(&napi->gro_list, skb); 2660 break; 2661 } 2662 rcu_read_unlock(); 2663 2664 if (&ptype->list == head) 2665 goto normal; 2666 2667 same_flow = NAPI_GRO_CB(skb)->same_flow; 2668 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2669 2670 if (pp) { 2671 struct sk_buff *nskb = *pp; 2672 2673 *pp = nskb->next; 2674 nskb->next = NULL; 2675 napi_gro_complete(nskb); 2676 napi->gro_count--; 2677 } 2678 2679 if (same_flow) 2680 goto ok; 2681 2682 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2683 goto normal; 2684 2685 napi->gro_count++; 2686 NAPI_GRO_CB(skb)->count = 1; 2687 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2688 skb->next = napi->gro_list; 2689 napi->gro_list = skb; 2690 ret = GRO_HELD; 2691 2692 pull: 2693 if (skb_headlen(skb) < skb_gro_offset(skb)) { 2694 int grow = skb_gro_offset(skb) - skb_headlen(skb); 2695 2696 BUG_ON(skb->end - skb->tail < grow); 2697 2698 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 2699 2700 skb->tail += grow; 2701 skb->data_len -= grow; 2702 2703 skb_shinfo(skb)->frags[0].page_offset += grow; 2704 skb_shinfo(skb)->frags[0].size -= grow; 2705 2706 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 2707 put_page(skb_shinfo(skb)->frags[0].page); 2708 memmove(skb_shinfo(skb)->frags, 2709 skb_shinfo(skb)->frags + 1, 2710 --skb_shinfo(skb)->nr_frags); 2711 } 2712 } 2713 2714 ok: 2715 return ret; 2716 2717 normal: 2718 ret = GRO_NORMAL; 2719 goto pull; 2720 } 2721 EXPORT_SYMBOL(dev_gro_receive); 2722 2723 static gro_result_t 2724 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2725 { 2726 struct sk_buff *p; 2727 2728 if (netpoll_rx_on(skb)) 2729 return GRO_NORMAL; 2730 2731 for (p = napi->gro_list; p; p = p->next) { 2732 NAPI_GRO_CB(p)->same_flow = 2733 (p->dev == skb->dev) && 2734 !compare_ether_header(skb_mac_header(p), 2735 skb_gro_mac_header(skb)); 2736 NAPI_GRO_CB(p)->flush = 0; 2737 } 2738 2739 return dev_gro_receive(napi, skb); 2740 } 2741 2742 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 2743 { 2744 switch (ret) { 2745 case GRO_NORMAL: 2746 if (netif_receive_skb(skb)) 2747 ret = GRO_DROP; 2748 break; 2749 2750 case GRO_DROP: 2751 case GRO_MERGED_FREE: 2752 kfree_skb(skb); 2753 break; 2754 2755 case GRO_HELD: 2756 case GRO_MERGED: 2757 break; 2758 } 2759 2760 return ret; 2761 } 2762 EXPORT_SYMBOL(napi_skb_finish); 2763 2764 void skb_gro_reset_offset(struct sk_buff *skb) 2765 { 2766 NAPI_GRO_CB(skb)->data_offset = 0; 2767 NAPI_GRO_CB(skb)->frag0 = NULL; 2768 NAPI_GRO_CB(skb)->frag0_len = 0; 2769 2770 if (skb->mac_header == skb->tail && 2771 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 2772 NAPI_GRO_CB(skb)->frag0 = 2773 page_address(skb_shinfo(skb)->frags[0].page) + 2774 skb_shinfo(skb)->frags[0].page_offset; 2775 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 2776 } 2777 } 2778 EXPORT_SYMBOL(skb_gro_reset_offset); 2779 2780 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2781 { 2782 skb_gro_reset_offset(skb); 2783 2784 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2785 } 2786 EXPORT_SYMBOL(napi_gro_receive); 2787 2788 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2789 { 2790 __skb_pull(skb, skb_headlen(skb)); 2791 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2792 2793 napi->skb = skb; 2794 } 2795 EXPORT_SYMBOL(napi_reuse_skb); 2796 2797 struct sk_buff *napi_get_frags(struct napi_struct *napi) 2798 { 2799 struct sk_buff *skb = napi->skb; 2800 2801 if (!skb) { 2802 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 2803 if (skb) 2804 napi->skb = skb; 2805 } 2806 return skb; 2807 } 2808 EXPORT_SYMBOL(napi_get_frags); 2809 2810 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 2811 gro_result_t ret) 2812 { 2813 switch (ret) { 2814 case GRO_NORMAL: 2815 case GRO_HELD: 2816 skb->protocol = eth_type_trans(skb, skb->dev); 2817 2818 if (ret == GRO_HELD) 2819 skb_gro_pull(skb, -ETH_HLEN); 2820 else if (netif_receive_skb(skb)) 2821 ret = GRO_DROP; 2822 break; 2823 2824 case GRO_DROP: 2825 case GRO_MERGED_FREE: 2826 napi_reuse_skb(napi, skb); 2827 break; 2828 2829 case GRO_MERGED: 2830 break; 2831 } 2832 2833 return ret; 2834 } 2835 EXPORT_SYMBOL(napi_frags_finish); 2836 2837 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 2838 { 2839 struct sk_buff *skb = napi->skb; 2840 struct ethhdr *eth; 2841 unsigned int hlen; 2842 unsigned int off; 2843 2844 napi->skb = NULL; 2845 2846 skb_reset_mac_header(skb); 2847 skb_gro_reset_offset(skb); 2848 2849 off = skb_gro_offset(skb); 2850 hlen = off + sizeof(*eth); 2851 eth = skb_gro_header_fast(skb, off); 2852 if (skb_gro_header_hard(skb, hlen)) { 2853 eth = skb_gro_header_slow(skb, hlen, off); 2854 if (unlikely(!eth)) { 2855 napi_reuse_skb(napi, skb); 2856 skb = NULL; 2857 goto out; 2858 } 2859 } 2860 2861 skb_gro_pull(skb, sizeof(*eth)); 2862 2863 /* 2864 * This works because the only protocols we care about don't require 2865 * special handling. We'll fix it up properly at the end. 2866 */ 2867 skb->protocol = eth->h_proto; 2868 2869 out: 2870 return skb; 2871 } 2872 EXPORT_SYMBOL(napi_frags_skb); 2873 2874 gro_result_t napi_gro_frags(struct napi_struct *napi) 2875 { 2876 struct sk_buff *skb = napi_frags_skb(napi); 2877 2878 if (!skb) 2879 return GRO_DROP; 2880 2881 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2882 } 2883 EXPORT_SYMBOL(napi_gro_frags); 2884 2885 static int process_backlog(struct napi_struct *napi, int quota) 2886 { 2887 int work = 0; 2888 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2889 unsigned long start_time = jiffies; 2890 2891 napi->weight = weight_p; 2892 do { 2893 struct sk_buff *skb; 2894 2895 local_irq_disable(); 2896 skb = __skb_dequeue(&queue->input_pkt_queue); 2897 if (!skb) { 2898 __napi_complete(napi); 2899 local_irq_enable(); 2900 break; 2901 } 2902 local_irq_enable(); 2903 2904 netif_receive_skb(skb); 2905 } while (++work < quota && jiffies == start_time); 2906 2907 return work; 2908 } 2909 2910 /** 2911 * __napi_schedule - schedule for receive 2912 * @n: entry to schedule 2913 * 2914 * The entry's receive function will be scheduled to run 2915 */ 2916 void __napi_schedule(struct napi_struct *n) 2917 { 2918 unsigned long flags; 2919 2920 local_irq_save(flags); 2921 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2922 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2923 local_irq_restore(flags); 2924 } 2925 EXPORT_SYMBOL(__napi_schedule); 2926 2927 void __napi_complete(struct napi_struct *n) 2928 { 2929 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2930 BUG_ON(n->gro_list); 2931 2932 list_del(&n->poll_list); 2933 smp_mb__before_clear_bit(); 2934 clear_bit(NAPI_STATE_SCHED, &n->state); 2935 } 2936 EXPORT_SYMBOL(__napi_complete); 2937 2938 void napi_complete(struct napi_struct *n) 2939 { 2940 unsigned long flags; 2941 2942 /* 2943 * don't let napi dequeue from the cpu poll list 2944 * just in case its running on a different cpu 2945 */ 2946 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2947 return; 2948 2949 napi_gro_flush(n); 2950 local_irq_save(flags); 2951 __napi_complete(n); 2952 local_irq_restore(flags); 2953 } 2954 EXPORT_SYMBOL(napi_complete); 2955 2956 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2957 int (*poll)(struct napi_struct *, int), int weight) 2958 { 2959 INIT_LIST_HEAD(&napi->poll_list); 2960 napi->gro_count = 0; 2961 napi->gro_list = NULL; 2962 napi->skb = NULL; 2963 napi->poll = poll; 2964 napi->weight = weight; 2965 list_add(&napi->dev_list, &dev->napi_list); 2966 napi->dev = dev; 2967 #ifdef CONFIG_NETPOLL 2968 spin_lock_init(&napi->poll_lock); 2969 napi->poll_owner = -1; 2970 #endif 2971 set_bit(NAPI_STATE_SCHED, &napi->state); 2972 } 2973 EXPORT_SYMBOL(netif_napi_add); 2974 2975 void netif_napi_del(struct napi_struct *napi) 2976 { 2977 struct sk_buff *skb, *next; 2978 2979 list_del_init(&napi->dev_list); 2980 napi_free_frags(napi); 2981 2982 for (skb = napi->gro_list; skb; skb = next) { 2983 next = skb->next; 2984 skb->next = NULL; 2985 kfree_skb(skb); 2986 } 2987 2988 napi->gro_list = NULL; 2989 napi->gro_count = 0; 2990 } 2991 EXPORT_SYMBOL(netif_napi_del); 2992 2993 2994 static void net_rx_action(struct softirq_action *h) 2995 { 2996 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2997 unsigned long time_limit = jiffies + 2; 2998 int budget = netdev_budget; 2999 void *have; 3000 3001 local_irq_disable(); 3002 3003 while (!list_empty(list)) { 3004 struct napi_struct *n; 3005 int work, weight; 3006 3007 /* If softirq window is exhuasted then punt. 3008 * Allow this to run for 2 jiffies since which will allow 3009 * an average latency of 1.5/HZ. 3010 */ 3011 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3012 goto softnet_break; 3013 3014 local_irq_enable(); 3015 3016 /* Even though interrupts have been re-enabled, this 3017 * access is safe because interrupts can only add new 3018 * entries to the tail of this list, and only ->poll() 3019 * calls can remove this head entry from the list. 3020 */ 3021 n = list_first_entry(list, struct napi_struct, poll_list); 3022 3023 have = netpoll_poll_lock(n); 3024 3025 weight = n->weight; 3026 3027 /* This NAPI_STATE_SCHED test is for avoiding a race 3028 * with netpoll's poll_napi(). Only the entity which 3029 * obtains the lock and sees NAPI_STATE_SCHED set will 3030 * actually make the ->poll() call. Therefore we avoid 3031 * accidently calling ->poll() when NAPI is not scheduled. 3032 */ 3033 work = 0; 3034 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3035 work = n->poll(n, weight); 3036 trace_napi_poll(n); 3037 } 3038 3039 WARN_ON_ONCE(work > weight); 3040 3041 budget -= work; 3042 3043 local_irq_disable(); 3044 3045 /* Drivers must not modify the NAPI state if they 3046 * consume the entire weight. In such cases this code 3047 * still "owns" the NAPI instance and therefore can 3048 * move the instance around on the list at-will. 3049 */ 3050 if (unlikely(work == weight)) { 3051 if (unlikely(napi_disable_pending(n))) { 3052 local_irq_enable(); 3053 napi_complete(n); 3054 local_irq_disable(); 3055 } else 3056 list_move_tail(&n->poll_list, list); 3057 } 3058 3059 netpoll_poll_unlock(have); 3060 } 3061 out: 3062 local_irq_enable(); 3063 3064 #ifdef CONFIG_NET_DMA 3065 /* 3066 * There may not be any more sk_buffs coming right now, so push 3067 * any pending DMA copies to hardware 3068 */ 3069 dma_issue_pending_all(); 3070 #endif 3071 3072 return; 3073 3074 softnet_break: 3075 __get_cpu_var(netdev_rx_stat).time_squeeze++; 3076 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3077 goto out; 3078 } 3079 3080 static gifconf_func_t *gifconf_list[NPROTO]; 3081 3082 /** 3083 * register_gifconf - register a SIOCGIF handler 3084 * @family: Address family 3085 * @gifconf: Function handler 3086 * 3087 * Register protocol dependent address dumping routines. The handler 3088 * that is passed must not be freed or reused until it has been replaced 3089 * by another handler. 3090 */ 3091 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3092 { 3093 if (family >= NPROTO) 3094 return -EINVAL; 3095 gifconf_list[family] = gifconf; 3096 return 0; 3097 } 3098 EXPORT_SYMBOL(register_gifconf); 3099 3100 3101 /* 3102 * Map an interface index to its name (SIOCGIFNAME) 3103 */ 3104 3105 /* 3106 * We need this ioctl for efficient implementation of the 3107 * if_indextoname() function required by the IPv6 API. Without 3108 * it, we would have to search all the interfaces to find a 3109 * match. --pb 3110 */ 3111 3112 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3113 { 3114 struct net_device *dev; 3115 struct ifreq ifr; 3116 3117 /* 3118 * Fetch the caller's info block. 3119 */ 3120 3121 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3122 return -EFAULT; 3123 3124 rcu_read_lock(); 3125 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3126 if (!dev) { 3127 rcu_read_unlock(); 3128 return -ENODEV; 3129 } 3130 3131 strcpy(ifr.ifr_name, dev->name); 3132 rcu_read_unlock(); 3133 3134 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3135 return -EFAULT; 3136 return 0; 3137 } 3138 3139 /* 3140 * Perform a SIOCGIFCONF call. This structure will change 3141 * size eventually, and there is nothing I can do about it. 3142 * Thus we will need a 'compatibility mode'. 3143 */ 3144 3145 static int dev_ifconf(struct net *net, char __user *arg) 3146 { 3147 struct ifconf ifc; 3148 struct net_device *dev; 3149 char __user *pos; 3150 int len; 3151 int total; 3152 int i; 3153 3154 /* 3155 * Fetch the caller's info block. 3156 */ 3157 3158 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3159 return -EFAULT; 3160 3161 pos = ifc.ifc_buf; 3162 len = ifc.ifc_len; 3163 3164 /* 3165 * Loop over the interfaces, and write an info block for each. 3166 */ 3167 3168 total = 0; 3169 for_each_netdev(net, dev) { 3170 for (i = 0; i < NPROTO; i++) { 3171 if (gifconf_list[i]) { 3172 int done; 3173 if (!pos) 3174 done = gifconf_list[i](dev, NULL, 0); 3175 else 3176 done = gifconf_list[i](dev, pos + total, 3177 len - total); 3178 if (done < 0) 3179 return -EFAULT; 3180 total += done; 3181 } 3182 } 3183 } 3184 3185 /* 3186 * All done. Write the updated control block back to the caller. 3187 */ 3188 ifc.ifc_len = total; 3189 3190 /* 3191 * Both BSD and Solaris return 0 here, so we do too. 3192 */ 3193 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3194 } 3195 3196 #ifdef CONFIG_PROC_FS 3197 /* 3198 * This is invoked by the /proc filesystem handler to display a device 3199 * in detail. 3200 */ 3201 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3202 __acquires(RCU) 3203 { 3204 struct net *net = seq_file_net(seq); 3205 loff_t off; 3206 struct net_device *dev; 3207 3208 rcu_read_lock(); 3209 if (!*pos) 3210 return SEQ_START_TOKEN; 3211 3212 off = 1; 3213 for_each_netdev_rcu(net, dev) 3214 if (off++ == *pos) 3215 return dev; 3216 3217 return NULL; 3218 } 3219 3220 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3221 { 3222 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3223 first_net_device(seq_file_net(seq)) : 3224 next_net_device((struct net_device *)v); 3225 3226 ++*pos; 3227 return rcu_dereference(dev); 3228 } 3229 3230 void dev_seq_stop(struct seq_file *seq, void *v) 3231 __releases(RCU) 3232 { 3233 rcu_read_unlock(); 3234 } 3235 3236 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3237 { 3238 const struct net_device_stats *stats = dev_get_stats(dev); 3239 3240 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3241 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3242 dev->name, stats->rx_bytes, stats->rx_packets, 3243 stats->rx_errors, 3244 stats->rx_dropped + stats->rx_missed_errors, 3245 stats->rx_fifo_errors, 3246 stats->rx_length_errors + stats->rx_over_errors + 3247 stats->rx_crc_errors + stats->rx_frame_errors, 3248 stats->rx_compressed, stats->multicast, 3249 stats->tx_bytes, stats->tx_packets, 3250 stats->tx_errors, stats->tx_dropped, 3251 stats->tx_fifo_errors, stats->collisions, 3252 stats->tx_carrier_errors + 3253 stats->tx_aborted_errors + 3254 stats->tx_window_errors + 3255 stats->tx_heartbeat_errors, 3256 stats->tx_compressed); 3257 } 3258 3259 /* 3260 * Called from the PROCfs module. This now uses the new arbitrary sized 3261 * /proc/net interface to create /proc/net/dev 3262 */ 3263 static int dev_seq_show(struct seq_file *seq, void *v) 3264 { 3265 if (v == SEQ_START_TOKEN) 3266 seq_puts(seq, "Inter-| Receive " 3267 " | Transmit\n" 3268 " face |bytes packets errs drop fifo frame " 3269 "compressed multicast|bytes packets errs " 3270 "drop fifo colls carrier compressed\n"); 3271 else 3272 dev_seq_printf_stats(seq, v); 3273 return 0; 3274 } 3275 3276 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3277 { 3278 struct netif_rx_stats *rc = NULL; 3279 3280 while (*pos < nr_cpu_ids) 3281 if (cpu_online(*pos)) { 3282 rc = &per_cpu(netdev_rx_stat, *pos); 3283 break; 3284 } else 3285 ++*pos; 3286 return rc; 3287 } 3288 3289 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3290 { 3291 return softnet_get_online(pos); 3292 } 3293 3294 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3295 { 3296 ++*pos; 3297 return softnet_get_online(pos); 3298 } 3299 3300 static void softnet_seq_stop(struct seq_file *seq, void *v) 3301 { 3302 } 3303 3304 static int softnet_seq_show(struct seq_file *seq, void *v) 3305 { 3306 struct netif_rx_stats *s = v; 3307 3308 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3309 s->total, s->dropped, s->time_squeeze, 0, 3310 0, 0, 0, 0, /* was fastroute */ 3311 s->cpu_collision); 3312 return 0; 3313 } 3314 3315 static const struct seq_operations dev_seq_ops = { 3316 .start = dev_seq_start, 3317 .next = dev_seq_next, 3318 .stop = dev_seq_stop, 3319 .show = dev_seq_show, 3320 }; 3321 3322 static int dev_seq_open(struct inode *inode, struct file *file) 3323 { 3324 return seq_open_net(inode, file, &dev_seq_ops, 3325 sizeof(struct seq_net_private)); 3326 } 3327 3328 static const struct file_operations dev_seq_fops = { 3329 .owner = THIS_MODULE, 3330 .open = dev_seq_open, 3331 .read = seq_read, 3332 .llseek = seq_lseek, 3333 .release = seq_release_net, 3334 }; 3335 3336 static const struct seq_operations softnet_seq_ops = { 3337 .start = softnet_seq_start, 3338 .next = softnet_seq_next, 3339 .stop = softnet_seq_stop, 3340 .show = softnet_seq_show, 3341 }; 3342 3343 static int softnet_seq_open(struct inode *inode, struct file *file) 3344 { 3345 return seq_open(file, &softnet_seq_ops); 3346 } 3347 3348 static const struct file_operations softnet_seq_fops = { 3349 .owner = THIS_MODULE, 3350 .open = softnet_seq_open, 3351 .read = seq_read, 3352 .llseek = seq_lseek, 3353 .release = seq_release, 3354 }; 3355 3356 static void *ptype_get_idx(loff_t pos) 3357 { 3358 struct packet_type *pt = NULL; 3359 loff_t i = 0; 3360 int t; 3361 3362 list_for_each_entry_rcu(pt, &ptype_all, list) { 3363 if (i == pos) 3364 return pt; 3365 ++i; 3366 } 3367 3368 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3369 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3370 if (i == pos) 3371 return pt; 3372 ++i; 3373 } 3374 } 3375 return NULL; 3376 } 3377 3378 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3379 __acquires(RCU) 3380 { 3381 rcu_read_lock(); 3382 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3383 } 3384 3385 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3386 { 3387 struct packet_type *pt; 3388 struct list_head *nxt; 3389 int hash; 3390 3391 ++*pos; 3392 if (v == SEQ_START_TOKEN) 3393 return ptype_get_idx(0); 3394 3395 pt = v; 3396 nxt = pt->list.next; 3397 if (pt->type == htons(ETH_P_ALL)) { 3398 if (nxt != &ptype_all) 3399 goto found; 3400 hash = 0; 3401 nxt = ptype_base[0].next; 3402 } else 3403 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3404 3405 while (nxt == &ptype_base[hash]) { 3406 if (++hash >= PTYPE_HASH_SIZE) 3407 return NULL; 3408 nxt = ptype_base[hash].next; 3409 } 3410 found: 3411 return list_entry(nxt, struct packet_type, list); 3412 } 3413 3414 static void ptype_seq_stop(struct seq_file *seq, void *v) 3415 __releases(RCU) 3416 { 3417 rcu_read_unlock(); 3418 } 3419 3420 static int ptype_seq_show(struct seq_file *seq, void *v) 3421 { 3422 struct packet_type *pt = v; 3423 3424 if (v == SEQ_START_TOKEN) 3425 seq_puts(seq, "Type Device Function\n"); 3426 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3427 if (pt->type == htons(ETH_P_ALL)) 3428 seq_puts(seq, "ALL "); 3429 else 3430 seq_printf(seq, "%04x", ntohs(pt->type)); 3431 3432 seq_printf(seq, " %-8s %pF\n", 3433 pt->dev ? pt->dev->name : "", pt->func); 3434 } 3435 3436 return 0; 3437 } 3438 3439 static const struct seq_operations ptype_seq_ops = { 3440 .start = ptype_seq_start, 3441 .next = ptype_seq_next, 3442 .stop = ptype_seq_stop, 3443 .show = ptype_seq_show, 3444 }; 3445 3446 static int ptype_seq_open(struct inode *inode, struct file *file) 3447 { 3448 return seq_open_net(inode, file, &ptype_seq_ops, 3449 sizeof(struct seq_net_private)); 3450 } 3451 3452 static const struct file_operations ptype_seq_fops = { 3453 .owner = THIS_MODULE, 3454 .open = ptype_seq_open, 3455 .read = seq_read, 3456 .llseek = seq_lseek, 3457 .release = seq_release_net, 3458 }; 3459 3460 3461 static int __net_init dev_proc_net_init(struct net *net) 3462 { 3463 int rc = -ENOMEM; 3464 3465 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3466 goto out; 3467 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3468 goto out_dev; 3469 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3470 goto out_softnet; 3471 3472 if (wext_proc_init(net)) 3473 goto out_ptype; 3474 rc = 0; 3475 out: 3476 return rc; 3477 out_ptype: 3478 proc_net_remove(net, "ptype"); 3479 out_softnet: 3480 proc_net_remove(net, "softnet_stat"); 3481 out_dev: 3482 proc_net_remove(net, "dev"); 3483 goto out; 3484 } 3485 3486 static void __net_exit dev_proc_net_exit(struct net *net) 3487 { 3488 wext_proc_exit(net); 3489 3490 proc_net_remove(net, "ptype"); 3491 proc_net_remove(net, "softnet_stat"); 3492 proc_net_remove(net, "dev"); 3493 } 3494 3495 static struct pernet_operations __net_initdata dev_proc_ops = { 3496 .init = dev_proc_net_init, 3497 .exit = dev_proc_net_exit, 3498 }; 3499 3500 static int __init dev_proc_init(void) 3501 { 3502 return register_pernet_subsys(&dev_proc_ops); 3503 } 3504 #else 3505 #define dev_proc_init() 0 3506 #endif /* CONFIG_PROC_FS */ 3507 3508 3509 /** 3510 * netdev_set_master - set up master/slave pair 3511 * @slave: slave device 3512 * @master: new master device 3513 * 3514 * Changes the master device of the slave. Pass %NULL to break the 3515 * bonding. The caller must hold the RTNL semaphore. On a failure 3516 * a negative errno code is returned. On success the reference counts 3517 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3518 * function returns zero. 3519 */ 3520 int netdev_set_master(struct net_device *slave, struct net_device *master) 3521 { 3522 struct net_device *old = slave->master; 3523 3524 ASSERT_RTNL(); 3525 3526 if (master) { 3527 if (old) 3528 return -EBUSY; 3529 dev_hold(master); 3530 } 3531 3532 slave->master = master; 3533 3534 synchronize_net(); 3535 3536 if (old) 3537 dev_put(old); 3538 3539 if (master) 3540 slave->flags |= IFF_SLAVE; 3541 else 3542 slave->flags &= ~IFF_SLAVE; 3543 3544 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3545 return 0; 3546 } 3547 EXPORT_SYMBOL(netdev_set_master); 3548 3549 static void dev_change_rx_flags(struct net_device *dev, int flags) 3550 { 3551 const struct net_device_ops *ops = dev->netdev_ops; 3552 3553 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3554 ops->ndo_change_rx_flags(dev, flags); 3555 } 3556 3557 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3558 { 3559 unsigned short old_flags = dev->flags; 3560 uid_t uid; 3561 gid_t gid; 3562 3563 ASSERT_RTNL(); 3564 3565 dev->flags |= IFF_PROMISC; 3566 dev->promiscuity += inc; 3567 if (dev->promiscuity == 0) { 3568 /* 3569 * Avoid overflow. 3570 * If inc causes overflow, untouch promisc and return error. 3571 */ 3572 if (inc < 0) 3573 dev->flags &= ~IFF_PROMISC; 3574 else { 3575 dev->promiscuity -= inc; 3576 printk(KERN_WARNING "%s: promiscuity touches roof, " 3577 "set promiscuity failed, promiscuity feature " 3578 "of device might be broken.\n", dev->name); 3579 return -EOVERFLOW; 3580 } 3581 } 3582 if (dev->flags != old_flags) { 3583 printk(KERN_INFO "device %s %s promiscuous mode\n", 3584 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3585 "left"); 3586 if (audit_enabled) { 3587 current_uid_gid(&uid, &gid); 3588 audit_log(current->audit_context, GFP_ATOMIC, 3589 AUDIT_ANOM_PROMISCUOUS, 3590 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3591 dev->name, (dev->flags & IFF_PROMISC), 3592 (old_flags & IFF_PROMISC), 3593 audit_get_loginuid(current), 3594 uid, gid, 3595 audit_get_sessionid(current)); 3596 } 3597 3598 dev_change_rx_flags(dev, IFF_PROMISC); 3599 } 3600 return 0; 3601 } 3602 3603 /** 3604 * dev_set_promiscuity - update promiscuity count on a device 3605 * @dev: device 3606 * @inc: modifier 3607 * 3608 * Add or remove promiscuity from a device. While the count in the device 3609 * remains above zero the interface remains promiscuous. Once it hits zero 3610 * the device reverts back to normal filtering operation. A negative inc 3611 * value is used to drop promiscuity on the device. 3612 * Return 0 if successful or a negative errno code on error. 3613 */ 3614 int dev_set_promiscuity(struct net_device *dev, int inc) 3615 { 3616 unsigned short old_flags = dev->flags; 3617 int err; 3618 3619 err = __dev_set_promiscuity(dev, inc); 3620 if (err < 0) 3621 return err; 3622 if (dev->flags != old_flags) 3623 dev_set_rx_mode(dev); 3624 return err; 3625 } 3626 EXPORT_SYMBOL(dev_set_promiscuity); 3627 3628 /** 3629 * dev_set_allmulti - update allmulti count on a device 3630 * @dev: device 3631 * @inc: modifier 3632 * 3633 * Add or remove reception of all multicast frames to a device. While the 3634 * count in the device remains above zero the interface remains listening 3635 * to all interfaces. Once it hits zero the device reverts back to normal 3636 * filtering operation. A negative @inc value is used to drop the counter 3637 * when releasing a resource needing all multicasts. 3638 * Return 0 if successful or a negative errno code on error. 3639 */ 3640 3641 int dev_set_allmulti(struct net_device *dev, int inc) 3642 { 3643 unsigned short old_flags = dev->flags; 3644 3645 ASSERT_RTNL(); 3646 3647 dev->flags |= IFF_ALLMULTI; 3648 dev->allmulti += inc; 3649 if (dev->allmulti == 0) { 3650 /* 3651 * Avoid overflow. 3652 * If inc causes overflow, untouch allmulti and return error. 3653 */ 3654 if (inc < 0) 3655 dev->flags &= ~IFF_ALLMULTI; 3656 else { 3657 dev->allmulti -= inc; 3658 printk(KERN_WARNING "%s: allmulti touches roof, " 3659 "set allmulti failed, allmulti feature of " 3660 "device might be broken.\n", dev->name); 3661 return -EOVERFLOW; 3662 } 3663 } 3664 if (dev->flags ^ old_flags) { 3665 dev_change_rx_flags(dev, IFF_ALLMULTI); 3666 dev_set_rx_mode(dev); 3667 } 3668 return 0; 3669 } 3670 EXPORT_SYMBOL(dev_set_allmulti); 3671 3672 /* 3673 * Upload unicast and multicast address lists to device and 3674 * configure RX filtering. When the device doesn't support unicast 3675 * filtering it is put in promiscuous mode while unicast addresses 3676 * are present. 3677 */ 3678 void __dev_set_rx_mode(struct net_device *dev) 3679 { 3680 const struct net_device_ops *ops = dev->netdev_ops; 3681 3682 /* dev_open will call this function so the list will stay sane. */ 3683 if (!(dev->flags&IFF_UP)) 3684 return; 3685 3686 if (!netif_device_present(dev)) 3687 return; 3688 3689 if (ops->ndo_set_rx_mode) 3690 ops->ndo_set_rx_mode(dev); 3691 else { 3692 /* Unicast addresses changes may only happen under the rtnl, 3693 * therefore calling __dev_set_promiscuity here is safe. 3694 */ 3695 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 3696 __dev_set_promiscuity(dev, 1); 3697 dev->uc_promisc = 1; 3698 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 3699 __dev_set_promiscuity(dev, -1); 3700 dev->uc_promisc = 0; 3701 } 3702 3703 if (ops->ndo_set_multicast_list) 3704 ops->ndo_set_multicast_list(dev); 3705 } 3706 } 3707 3708 void dev_set_rx_mode(struct net_device *dev) 3709 { 3710 netif_addr_lock_bh(dev); 3711 __dev_set_rx_mode(dev); 3712 netif_addr_unlock_bh(dev); 3713 } 3714 3715 /* hw addresses list handling functions */ 3716 3717 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr, 3718 int addr_len, unsigned char addr_type) 3719 { 3720 struct netdev_hw_addr *ha; 3721 int alloc_size; 3722 3723 if (addr_len > MAX_ADDR_LEN) 3724 return -EINVAL; 3725 3726 list_for_each_entry(ha, &list->list, list) { 3727 if (!memcmp(ha->addr, addr, addr_len) && 3728 ha->type == addr_type) { 3729 ha->refcount++; 3730 return 0; 3731 } 3732 } 3733 3734 3735 alloc_size = sizeof(*ha); 3736 if (alloc_size < L1_CACHE_BYTES) 3737 alloc_size = L1_CACHE_BYTES; 3738 ha = kmalloc(alloc_size, GFP_ATOMIC); 3739 if (!ha) 3740 return -ENOMEM; 3741 memcpy(ha->addr, addr, addr_len); 3742 ha->type = addr_type; 3743 ha->refcount = 1; 3744 ha->synced = false; 3745 list_add_tail_rcu(&ha->list, &list->list); 3746 list->count++; 3747 return 0; 3748 } 3749 3750 static void ha_rcu_free(struct rcu_head *head) 3751 { 3752 struct netdev_hw_addr *ha; 3753 3754 ha = container_of(head, struct netdev_hw_addr, rcu_head); 3755 kfree(ha); 3756 } 3757 3758 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr, 3759 int addr_len, unsigned char addr_type) 3760 { 3761 struct netdev_hw_addr *ha; 3762 3763 list_for_each_entry(ha, &list->list, list) { 3764 if (!memcmp(ha->addr, addr, addr_len) && 3765 (ha->type == addr_type || !addr_type)) { 3766 if (--ha->refcount) 3767 return 0; 3768 list_del_rcu(&ha->list); 3769 call_rcu(&ha->rcu_head, ha_rcu_free); 3770 list->count--; 3771 return 0; 3772 } 3773 } 3774 return -ENOENT; 3775 } 3776 3777 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 3778 struct netdev_hw_addr_list *from_list, 3779 int addr_len, 3780 unsigned char addr_type) 3781 { 3782 int err; 3783 struct netdev_hw_addr *ha, *ha2; 3784 unsigned char type; 3785 3786 list_for_each_entry(ha, &from_list->list, list) { 3787 type = addr_type ? addr_type : ha->type; 3788 err = __hw_addr_add(to_list, ha->addr, addr_len, type); 3789 if (err) 3790 goto unroll; 3791 } 3792 return 0; 3793 3794 unroll: 3795 list_for_each_entry(ha2, &from_list->list, list) { 3796 if (ha2 == ha) 3797 break; 3798 type = addr_type ? addr_type : ha2->type; 3799 __hw_addr_del(to_list, ha2->addr, addr_len, type); 3800 } 3801 return err; 3802 } 3803 3804 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 3805 struct netdev_hw_addr_list *from_list, 3806 int addr_len, 3807 unsigned char addr_type) 3808 { 3809 struct netdev_hw_addr *ha; 3810 unsigned char type; 3811 3812 list_for_each_entry(ha, &from_list->list, list) { 3813 type = addr_type ? addr_type : ha->type; 3814 __hw_addr_del(to_list, ha->addr, addr_len, addr_type); 3815 } 3816 } 3817 3818 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3819 struct netdev_hw_addr_list *from_list, 3820 int addr_len) 3821 { 3822 int err = 0; 3823 struct netdev_hw_addr *ha, *tmp; 3824 3825 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3826 if (!ha->synced) { 3827 err = __hw_addr_add(to_list, ha->addr, 3828 addr_len, ha->type); 3829 if (err) 3830 break; 3831 ha->synced = true; 3832 ha->refcount++; 3833 } else if (ha->refcount == 1) { 3834 __hw_addr_del(to_list, ha->addr, addr_len, ha->type); 3835 __hw_addr_del(from_list, ha->addr, addr_len, ha->type); 3836 } 3837 } 3838 return err; 3839 } 3840 3841 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3842 struct netdev_hw_addr_list *from_list, 3843 int addr_len) 3844 { 3845 struct netdev_hw_addr *ha, *tmp; 3846 3847 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3848 if (ha->synced) { 3849 __hw_addr_del(to_list, ha->addr, 3850 addr_len, ha->type); 3851 ha->synced = false; 3852 __hw_addr_del(from_list, ha->addr, 3853 addr_len, ha->type); 3854 } 3855 } 3856 } 3857 3858 static void __hw_addr_flush(struct netdev_hw_addr_list *list) 3859 { 3860 struct netdev_hw_addr *ha, *tmp; 3861 3862 list_for_each_entry_safe(ha, tmp, &list->list, list) { 3863 list_del_rcu(&ha->list); 3864 call_rcu(&ha->rcu_head, ha_rcu_free); 3865 } 3866 list->count = 0; 3867 } 3868 3869 static void __hw_addr_init(struct netdev_hw_addr_list *list) 3870 { 3871 INIT_LIST_HEAD(&list->list); 3872 list->count = 0; 3873 } 3874 3875 /* Device addresses handling functions */ 3876 3877 static void dev_addr_flush(struct net_device *dev) 3878 { 3879 /* rtnl_mutex must be held here */ 3880 3881 __hw_addr_flush(&dev->dev_addrs); 3882 dev->dev_addr = NULL; 3883 } 3884 3885 static int dev_addr_init(struct net_device *dev) 3886 { 3887 unsigned char addr[MAX_ADDR_LEN]; 3888 struct netdev_hw_addr *ha; 3889 int err; 3890 3891 /* rtnl_mutex must be held here */ 3892 3893 __hw_addr_init(&dev->dev_addrs); 3894 memset(addr, 0, sizeof(addr)); 3895 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr), 3896 NETDEV_HW_ADDR_T_LAN); 3897 if (!err) { 3898 /* 3899 * Get the first (previously created) address from the list 3900 * and set dev_addr pointer to this location. 3901 */ 3902 ha = list_first_entry(&dev->dev_addrs.list, 3903 struct netdev_hw_addr, list); 3904 dev->dev_addr = ha->addr; 3905 } 3906 return err; 3907 } 3908 3909 /** 3910 * dev_addr_add - Add a device address 3911 * @dev: device 3912 * @addr: address to add 3913 * @addr_type: address type 3914 * 3915 * Add a device address to the device or increase the reference count if 3916 * it already exists. 3917 * 3918 * The caller must hold the rtnl_mutex. 3919 */ 3920 int dev_addr_add(struct net_device *dev, unsigned char *addr, 3921 unsigned char addr_type) 3922 { 3923 int err; 3924 3925 ASSERT_RTNL(); 3926 3927 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type); 3928 if (!err) 3929 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3930 return err; 3931 } 3932 EXPORT_SYMBOL(dev_addr_add); 3933 3934 /** 3935 * dev_addr_del - Release a device address. 3936 * @dev: device 3937 * @addr: address to delete 3938 * @addr_type: address type 3939 * 3940 * Release reference to a device address and remove it from the device 3941 * if the reference count drops to zero. 3942 * 3943 * The caller must hold the rtnl_mutex. 3944 */ 3945 int dev_addr_del(struct net_device *dev, unsigned char *addr, 3946 unsigned char addr_type) 3947 { 3948 int err; 3949 struct netdev_hw_addr *ha; 3950 3951 ASSERT_RTNL(); 3952 3953 /* 3954 * We can not remove the first address from the list because 3955 * dev->dev_addr points to that. 3956 */ 3957 ha = list_first_entry(&dev->dev_addrs.list, 3958 struct netdev_hw_addr, list); 3959 if (ha->addr == dev->dev_addr && ha->refcount == 1) 3960 return -ENOENT; 3961 3962 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len, 3963 addr_type); 3964 if (!err) 3965 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3966 return err; 3967 } 3968 EXPORT_SYMBOL(dev_addr_del); 3969 3970 /** 3971 * dev_addr_add_multiple - Add device addresses from another device 3972 * @to_dev: device to which addresses will be added 3973 * @from_dev: device from which addresses will be added 3974 * @addr_type: address type - 0 means type will be used from from_dev 3975 * 3976 * Add device addresses of the one device to another. 3977 ** 3978 * The caller must hold the rtnl_mutex. 3979 */ 3980 int dev_addr_add_multiple(struct net_device *to_dev, 3981 struct net_device *from_dev, 3982 unsigned char addr_type) 3983 { 3984 int err; 3985 3986 ASSERT_RTNL(); 3987 3988 if (from_dev->addr_len != to_dev->addr_len) 3989 return -EINVAL; 3990 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 3991 to_dev->addr_len, addr_type); 3992 if (!err) 3993 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 3994 return err; 3995 } 3996 EXPORT_SYMBOL(dev_addr_add_multiple); 3997 3998 /** 3999 * dev_addr_del_multiple - Delete device addresses by another device 4000 * @to_dev: device where the addresses will be deleted 4001 * @from_dev: device by which addresses the addresses will be deleted 4002 * @addr_type: address type - 0 means type will used from from_dev 4003 * 4004 * Deletes addresses in to device by the list of addresses in from device. 4005 * 4006 * The caller must hold the rtnl_mutex. 4007 */ 4008 int dev_addr_del_multiple(struct net_device *to_dev, 4009 struct net_device *from_dev, 4010 unsigned char addr_type) 4011 { 4012 ASSERT_RTNL(); 4013 4014 if (from_dev->addr_len != to_dev->addr_len) 4015 return -EINVAL; 4016 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 4017 to_dev->addr_len, addr_type); 4018 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 4019 return 0; 4020 } 4021 EXPORT_SYMBOL(dev_addr_del_multiple); 4022 4023 /* multicast addresses handling functions */ 4024 4025 int __dev_addr_delete(struct dev_addr_list **list, int *count, 4026 void *addr, int alen, int glbl) 4027 { 4028 struct dev_addr_list *da; 4029 4030 for (; (da = *list) != NULL; list = &da->next) { 4031 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 4032 alen == da->da_addrlen) { 4033 if (glbl) { 4034 int old_glbl = da->da_gusers; 4035 da->da_gusers = 0; 4036 if (old_glbl == 0) 4037 break; 4038 } 4039 if (--da->da_users) 4040 return 0; 4041 4042 *list = da->next; 4043 kfree(da); 4044 (*count)--; 4045 return 0; 4046 } 4047 } 4048 return -ENOENT; 4049 } 4050 4051 int __dev_addr_add(struct dev_addr_list **list, int *count, 4052 void *addr, int alen, int glbl) 4053 { 4054 struct dev_addr_list *da; 4055 4056 for (da = *list; da != NULL; da = da->next) { 4057 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 4058 da->da_addrlen == alen) { 4059 if (glbl) { 4060 int old_glbl = da->da_gusers; 4061 da->da_gusers = 1; 4062 if (old_glbl) 4063 return 0; 4064 } 4065 da->da_users++; 4066 return 0; 4067 } 4068 } 4069 4070 da = kzalloc(sizeof(*da), GFP_ATOMIC); 4071 if (da == NULL) 4072 return -ENOMEM; 4073 memcpy(da->da_addr, addr, alen); 4074 da->da_addrlen = alen; 4075 da->da_users = 1; 4076 da->da_gusers = glbl ? 1 : 0; 4077 da->next = *list; 4078 *list = da; 4079 (*count)++; 4080 return 0; 4081 } 4082 4083 /** 4084 * dev_unicast_delete - Release secondary unicast address. 4085 * @dev: device 4086 * @addr: address to delete 4087 * 4088 * Release reference to a secondary unicast address and remove it 4089 * from the device if the reference count drops to zero. 4090 * 4091 * The caller must hold the rtnl_mutex. 4092 */ 4093 int dev_unicast_delete(struct net_device *dev, void *addr) 4094 { 4095 int err; 4096 4097 ASSERT_RTNL(); 4098 4099 netif_addr_lock_bh(dev); 4100 err = __hw_addr_del(&dev->uc, addr, dev->addr_len, 4101 NETDEV_HW_ADDR_T_UNICAST); 4102 if (!err) 4103 __dev_set_rx_mode(dev); 4104 netif_addr_unlock_bh(dev); 4105 return err; 4106 } 4107 EXPORT_SYMBOL(dev_unicast_delete); 4108 4109 /** 4110 * dev_unicast_add - add a secondary unicast address 4111 * @dev: device 4112 * @addr: address to add 4113 * 4114 * Add a secondary unicast address to the device or increase 4115 * the reference count if it already exists. 4116 * 4117 * The caller must hold the rtnl_mutex. 4118 */ 4119 int dev_unicast_add(struct net_device *dev, void *addr) 4120 { 4121 int err; 4122 4123 ASSERT_RTNL(); 4124 4125 netif_addr_lock_bh(dev); 4126 err = __hw_addr_add(&dev->uc, addr, dev->addr_len, 4127 NETDEV_HW_ADDR_T_UNICAST); 4128 if (!err) 4129 __dev_set_rx_mode(dev); 4130 netif_addr_unlock_bh(dev); 4131 return err; 4132 } 4133 EXPORT_SYMBOL(dev_unicast_add); 4134 4135 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 4136 struct dev_addr_list **from, int *from_count) 4137 { 4138 struct dev_addr_list *da, *next; 4139 int err = 0; 4140 4141 da = *from; 4142 while (da != NULL) { 4143 next = da->next; 4144 if (!da->da_synced) { 4145 err = __dev_addr_add(to, to_count, 4146 da->da_addr, da->da_addrlen, 0); 4147 if (err < 0) 4148 break; 4149 da->da_synced = 1; 4150 da->da_users++; 4151 } else if (da->da_users == 1) { 4152 __dev_addr_delete(to, to_count, 4153 da->da_addr, da->da_addrlen, 0); 4154 __dev_addr_delete(from, from_count, 4155 da->da_addr, da->da_addrlen, 0); 4156 } 4157 da = next; 4158 } 4159 return err; 4160 } 4161 EXPORT_SYMBOL_GPL(__dev_addr_sync); 4162 4163 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 4164 struct dev_addr_list **from, int *from_count) 4165 { 4166 struct dev_addr_list *da, *next; 4167 4168 da = *from; 4169 while (da != NULL) { 4170 next = da->next; 4171 if (da->da_synced) { 4172 __dev_addr_delete(to, to_count, 4173 da->da_addr, da->da_addrlen, 0); 4174 da->da_synced = 0; 4175 __dev_addr_delete(from, from_count, 4176 da->da_addr, da->da_addrlen, 0); 4177 } 4178 da = next; 4179 } 4180 } 4181 EXPORT_SYMBOL_GPL(__dev_addr_unsync); 4182 4183 /** 4184 * dev_unicast_sync - Synchronize device's unicast list to another device 4185 * @to: destination device 4186 * @from: source device 4187 * 4188 * Add newly added addresses to the destination device and release 4189 * addresses that have no users left. The source device must be 4190 * locked by netif_tx_lock_bh. 4191 * 4192 * This function is intended to be called from the dev->set_rx_mode 4193 * function of layered software devices. 4194 */ 4195 int dev_unicast_sync(struct net_device *to, struct net_device *from) 4196 { 4197 int err = 0; 4198 4199 if (to->addr_len != from->addr_len) 4200 return -EINVAL; 4201 4202 netif_addr_lock_bh(to); 4203 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len); 4204 if (!err) 4205 __dev_set_rx_mode(to); 4206 netif_addr_unlock_bh(to); 4207 return err; 4208 } 4209 EXPORT_SYMBOL(dev_unicast_sync); 4210 4211 /** 4212 * dev_unicast_unsync - Remove synchronized addresses from the destination device 4213 * @to: destination device 4214 * @from: source device 4215 * 4216 * Remove all addresses that were added to the destination device by 4217 * dev_unicast_sync(). This function is intended to be called from the 4218 * dev->stop function of layered software devices. 4219 */ 4220 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 4221 { 4222 if (to->addr_len != from->addr_len) 4223 return; 4224 4225 netif_addr_lock_bh(from); 4226 netif_addr_lock(to); 4227 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len); 4228 __dev_set_rx_mode(to); 4229 netif_addr_unlock(to); 4230 netif_addr_unlock_bh(from); 4231 } 4232 EXPORT_SYMBOL(dev_unicast_unsync); 4233 4234 static void dev_unicast_flush(struct net_device *dev) 4235 { 4236 netif_addr_lock_bh(dev); 4237 __hw_addr_flush(&dev->uc); 4238 netif_addr_unlock_bh(dev); 4239 } 4240 4241 static void dev_unicast_init(struct net_device *dev) 4242 { 4243 __hw_addr_init(&dev->uc); 4244 } 4245 4246 4247 static void __dev_addr_discard(struct dev_addr_list **list) 4248 { 4249 struct dev_addr_list *tmp; 4250 4251 while (*list != NULL) { 4252 tmp = *list; 4253 *list = tmp->next; 4254 if (tmp->da_users > tmp->da_gusers) 4255 printk("__dev_addr_discard: address leakage! " 4256 "da_users=%d\n", tmp->da_users); 4257 kfree(tmp); 4258 } 4259 } 4260 4261 static void dev_addr_discard(struct net_device *dev) 4262 { 4263 netif_addr_lock_bh(dev); 4264 4265 __dev_addr_discard(&dev->mc_list); 4266 netdev_mc_count(dev) = 0; 4267 4268 netif_addr_unlock_bh(dev); 4269 } 4270 4271 /** 4272 * dev_get_flags - get flags reported to userspace 4273 * @dev: device 4274 * 4275 * Get the combination of flag bits exported through APIs to userspace. 4276 */ 4277 unsigned dev_get_flags(const struct net_device *dev) 4278 { 4279 unsigned flags; 4280 4281 flags = (dev->flags & ~(IFF_PROMISC | 4282 IFF_ALLMULTI | 4283 IFF_RUNNING | 4284 IFF_LOWER_UP | 4285 IFF_DORMANT)) | 4286 (dev->gflags & (IFF_PROMISC | 4287 IFF_ALLMULTI)); 4288 4289 if (netif_running(dev)) { 4290 if (netif_oper_up(dev)) 4291 flags |= IFF_RUNNING; 4292 if (netif_carrier_ok(dev)) 4293 flags |= IFF_LOWER_UP; 4294 if (netif_dormant(dev)) 4295 flags |= IFF_DORMANT; 4296 } 4297 4298 return flags; 4299 } 4300 EXPORT_SYMBOL(dev_get_flags); 4301 4302 /** 4303 * dev_change_flags - change device settings 4304 * @dev: device 4305 * @flags: device state flags 4306 * 4307 * Change settings on device based state flags. The flags are 4308 * in the userspace exported format. 4309 */ 4310 int dev_change_flags(struct net_device *dev, unsigned flags) 4311 { 4312 int ret, changes; 4313 int old_flags = dev->flags; 4314 4315 ASSERT_RTNL(); 4316 4317 /* 4318 * Set the flags on our device. 4319 */ 4320 4321 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4322 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4323 IFF_AUTOMEDIA)) | 4324 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4325 IFF_ALLMULTI)); 4326 4327 /* 4328 * Load in the correct multicast list now the flags have changed. 4329 */ 4330 4331 if ((old_flags ^ flags) & IFF_MULTICAST) 4332 dev_change_rx_flags(dev, IFF_MULTICAST); 4333 4334 dev_set_rx_mode(dev); 4335 4336 /* 4337 * Have we downed the interface. We handle IFF_UP ourselves 4338 * according to user attempts to set it, rather than blindly 4339 * setting it. 4340 */ 4341 4342 ret = 0; 4343 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4344 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 4345 4346 if (!ret) 4347 dev_set_rx_mode(dev); 4348 } 4349 4350 if (dev->flags & IFF_UP && 4351 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 4352 IFF_VOLATILE))) 4353 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4354 4355 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4356 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4357 4358 dev->gflags ^= IFF_PROMISC; 4359 dev_set_promiscuity(dev, inc); 4360 } 4361 4362 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4363 is important. Some (broken) drivers set IFF_PROMISC, when 4364 IFF_ALLMULTI is requested not asking us and not reporting. 4365 */ 4366 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4367 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4368 4369 dev->gflags ^= IFF_ALLMULTI; 4370 dev_set_allmulti(dev, inc); 4371 } 4372 4373 /* Exclude state transition flags, already notified */ 4374 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 4375 if (changes) 4376 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4377 4378 return ret; 4379 } 4380 EXPORT_SYMBOL(dev_change_flags); 4381 4382 /** 4383 * dev_set_mtu - Change maximum transfer unit 4384 * @dev: device 4385 * @new_mtu: new transfer unit 4386 * 4387 * Change the maximum transfer size of the network device. 4388 */ 4389 int dev_set_mtu(struct net_device *dev, int new_mtu) 4390 { 4391 const struct net_device_ops *ops = dev->netdev_ops; 4392 int err; 4393 4394 if (new_mtu == dev->mtu) 4395 return 0; 4396 4397 /* MTU must be positive. */ 4398 if (new_mtu < 0) 4399 return -EINVAL; 4400 4401 if (!netif_device_present(dev)) 4402 return -ENODEV; 4403 4404 err = 0; 4405 if (ops->ndo_change_mtu) 4406 err = ops->ndo_change_mtu(dev, new_mtu); 4407 else 4408 dev->mtu = new_mtu; 4409 4410 if (!err && dev->flags & IFF_UP) 4411 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4412 return err; 4413 } 4414 EXPORT_SYMBOL(dev_set_mtu); 4415 4416 /** 4417 * dev_set_mac_address - Change Media Access Control Address 4418 * @dev: device 4419 * @sa: new address 4420 * 4421 * Change the hardware (MAC) address of the device 4422 */ 4423 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4424 { 4425 const struct net_device_ops *ops = dev->netdev_ops; 4426 int err; 4427 4428 if (!ops->ndo_set_mac_address) 4429 return -EOPNOTSUPP; 4430 if (sa->sa_family != dev->type) 4431 return -EINVAL; 4432 if (!netif_device_present(dev)) 4433 return -ENODEV; 4434 err = ops->ndo_set_mac_address(dev, sa); 4435 if (!err) 4436 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4437 return err; 4438 } 4439 EXPORT_SYMBOL(dev_set_mac_address); 4440 4441 /* 4442 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4443 */ 4444 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4445 { 4446 int err; 4447 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4448 4449 if (!dev) 4450 return -ENODEV; 4451 4452 switch (cmd) { 4453 case SIOCGIFFLAGS: /* Get interface flags */ 4454 ifr->ifr_flags = (short) dev_get_flags(dev); 4455 return 0; 4456 4457 case SIOCGIFMETRIC: /* Get the metric on the interface 4458 (currently unused) */ 4459 ifr->ifr_metric = 0; 4460 return 0; 4461 4462 case SIOCGIFMTU: /* Get the MTU of a device */ 4463 ifr->ifr_mtu = dev->mtu; 4464 return 0; 4465 4466 case SIOCGIFHWADDR: 4467 if (!dev->addr_len) 4468 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4469 else 4470 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4471 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4472 ifr->ifr_hwaddr.sa_family = dev->type; 4473 return 0; 4474 4475 case SIOCGIFSLAVE: 4476 err = -EINVAL; 4477 break; 4478 4479 case SIOCGIFMAP: 4480 ifr->ifr_map.mem_start = dev->mem_start; 4481 ifr->ifr_map.mem_end = dev->mem_end; 4482 ifr->ifr_map.base_addr = dev->base_addr; 4483 ifr->ifr_map.irq = dev->irq; 4484 ifr->ifr_map.dma = dev->dma; 4485 ifr->ifr_map.port = dev->if_port; 4486 return 0; 4487 4488 case SIOCGIFINDEX: 4489 ifr->ifr_ifindex = dev->ifindex; 4490 return 0; 4491 4492 case SIOCGIFTXQLEN: 4493 ifr->ifr_qlen = dev->tx_queue_len; 4494 return 0; 4495 4496 default: 4497 /* dev_ioctl() should ensure this case 4498 * is never reached 4499 */ 4500 WARN_ON(1); 4501 err = -EINVAL; 4502 break; 4503 4504 } 4505 return err; 4506 } 4507 4508 /* 4509 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4510 */ 4511 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4512 { 4513 int err; 4514 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4515 const struct net_device_ops *ops; 4516 4517 if (!dev) 4518 return -ENODEV; 4519 4520 ops = dev->netdev_ops; 4521 4522 switch (cmd) { 4523 case SIOCSIFFLAGS: /* Set interface flags */ 4524 return dev_change_flags(dev, ifr->ifr_flags); 4525 4526 case SIOCSIFMETRIC: /* Set the metric on the interface 4527 (currently unused) */ 4528 return -EOPNOTSUPP; 4529 4530 case SIOCSIFMTU: /* Set the MTU of a device */ 4531 return dev_set_mtu(dev, ifr->ifr_mtu); 4532 4533 case SIOCSIFHWADDR: 4534 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4535 4536 case SIOCSIFHWBROADCAST: 4537 if (ifr->ifr_hwaddr.sa_family != dev->type) 4538 return -EINVAL; 4539 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4540 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4541 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4542 return 0; 4543 4544 case SIOCSIFMAP: 4545 if (ops->ndo_set_config) { 4546 if (!netif_device_present(dev)) 4547 return -ENODEV; 4548 return ops->ndo_set_config(dev, &ifr->ifr_map); 4549 } 4550 return -EOPNOTSUPP; 4551 4552 case SIOCADDMULTI: 4553 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4554 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4555 return -EINVAL; 4556 if (!netif_device_present(dev)) 4557 return -ENODEV; 4558 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 4559 dev->addr_len, 1); 4560 4561 case SIOCDELMULTI: 4562 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4563 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4564 return -EINVAL; 4565 if (!netif_device_present(dev)) 4566 return -ENODEV; 4567 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 4568 dev->addr_len, 1); 4569 4570 case SIOCSIFTXQLEN: 4571 if (ifr->ifr_qlen < 0) 4572 return -EINVAL; 4573 dev->tx_queue_len = ifr->ifr_qlen; 4574 return 0; 4575 4576 case SIOCSIFNAME: 4577 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4578 return dev_change_name(dev, ifr->ifr_newname); 4579 4580 /* 4581 * Unknown or private ioctl 4582 */ 4583 default: 4584 if ((cmd >= SIOCDEVPRIVATE && 4585 cmd <= SIOCDEVPRIVATE + 15) || 4586 cmd == SIOCBONDENSLAVE || 4587 cmd == SIOCBONDRELEASE || 4588 cmd == SIOCBONDSETHWADDR || 4589 cmd == SIOCBONDSLAVEINFOQUERY || 4590 cmd == SIOCBONDINFOQUERY || 4591 cmd == SIOCBONDCHANGEACTIVE || 4592 cmd == SIOCGMIIPHY || 4593 cmd == SIOCGMIIREG || 4594 cmd == SIOCSMIIREG || 4595 cmd == SIOCBRADDIF || 4596 cmd == SIOCBRDELIF || 4597 cmd == SIOCSHWTSTAMP || 4598 cmd == SIOCWANDEV) { 4599 err = -EOPNOTSUPP; 4600 if (ops->ndo_do_ioctl) { 4601 if (netif_device_present(dev)) 4602 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4603 else 4604 err = -ENODEV; 4605 } 4606 } else 4607 err = -EINVAL; 4608 4609 } 4610 return err; 4611 } 4612 4613 /* 4614 * This function handles all "interface"-type I/O control requests. The actual 4615 * 'doing' part of this is dev_ifsioc above. 4616 */ 4617 4618 /** 4619 * dev_ioctl - network device ioctl 4620 * @net: the applicable net namespace 4621 * @cmd: command to issue 4622 * @arg: pointer to a struct ifreq in user space 4623 * 4624 * Issue ioctl functions to devices. This is normally called by the 4625 * user space syscall interfaces but can sometimes be useful for 4626 * other purposes. The return value is the return from the syscall if 4627 * positive or a negative errno code on error. 4628 */ 4629 4630 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4631 { 4632 struct ifreq ifr; 4633 int ret; 4634 char *colon; 4635 4636 /* One special case: SIOCGIFCONF takes ifconf argument 4637 and requires shared lock, because it sleeps writing 4638 to user space. 4639 */ 4640 4641 if (cmd == SIOCGIFCONF) { 4642 rtnl_lock(); 4643 ret = dev_ifconf(net, (char __user *) arg); 4644 rtnl_unlock(); 4645 return ret; 4646 } 4647 if (cmd == SIOCGIFNAME) 4648 return dev_ifname(net, (struct ifreq __user *)arg); 4649 4650 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4651 return -EFAULT; 4652 4653 ifr.ifr_name[IFNAMSIZ-1] = 0; 4654 4655 colon = strchr(ifr.ifr_name, ':'); 4656 if (colon) 4657 *colon = 0; 4658 4659 /* 4660 * See which interface the caller is talking about. 4661 */ 4662 4663 switch (cmd) { 4664 /* 4665 * These ioctl calls: 4666 * - can be done by all. 4667 * - atomic and do not require locking. 4668 * - return a value 4669 */ 4670 case SIOCGIFFLAGS: 4671 case SIOCGIFMETRIC: 4672 case SIOCGIFMTU: 4673 case SIOCGIFHWADDR: 4674 case SIOCGIFSLAVE: 4675 case SIOCGIFMAP: 4676 case SIOCGIFINDEX: 4677 case SIOCGIFTXQLEN: 4678 dev_load(net, ifr.ifr_name); 4679 rcu_read_lock(); 4680 ret = dev_ifsioc_locked(net, &ifr, cmd); 4681 rcu_read_unlock(); 4682 if (!ret) { 4683 if (colon) 4684 *colon = ':'; 4685 if (copy_to_user(arg, &ifr, 4686 sizeof(struct ifreq))) 4687 ret = -EFAULT; 4688 } 4689 return ret; 4690 4691 case SIOCETHTOOL: 4692 dev_load(net, ifr.ifr_name); 4693 rtnl_lock(); 4694 ret = dev_ethtool(net, &ifr); 4695 rtnl_unlock(); 4696 if (!ret) { 4697 if (colon) 4698 *colon = ':'; 4699 if (copy_to_user(arg, &ifr, 4700 sizeof(struct ifreq))) 4701 ret = -EFAULT; 4702 } 4703 return ret; 4704 4705 /* 4706 * These ioctl calls: 4707 * - require superuser power. 4708 * - require strict serialization. 4709 * - return a value 4710 */ 4711 case SIOCGMIIPHY: 4712 case SIOCGMIIREG: 4713 case SIOCSIFNAME: 4714 if (!capable(CAP_NET_ADMIN)) 4715 return -EPERM; 4716 dev_load(net, ifr.ifr_name); 4717 rtnl_lock(); 4718 ret = dev_ifsioc(net, &ifr, cmd); 4719 rtnl_unlock(); 4720 if (!ret) { 4721 if (colon) 4722 *colon = ':'; 4723 if (copy_to_user(arg, &ifr, 4724 sizeof(struct ifreq))) 4725 ret = -EFAULT; 4726 } 4727 return ret; 4728 4729 /* 4730 * These ioctl calls: 4731 * - require superuser power. 4732 * - require strict serialization. 4733 * - do not return a value 4734 */ 4735 case SIOCSIFFLAGS: 4736 case SIOCSIFMETRIC: 4737 case SIOCSIFMTU: 4738 case SIOCSIFMAP: 4739 case SIOCSIFHWADDR: 4740 case SIOCSIFSLAVE: 4741 case SIOCADDMULTI: 4742 case SIOCDELMULTI: 4743 case SIOCSIFHWBROADCAST: 4744 case SIOCSIFTXQLEN: 4745 case SIOCSMIIREG: 4746 case SIOCBONDENSLAVE: 4747 case SIOCBONDRELEASE: 4748 case SIOCBONDSETHWADDR: 4749 case SIOCBONDCHANGEACTIVE: 4750 case SIOCBRADDIF: 4751 case SIOCBRDELIF: 4752 case SIOCSHWTSTAMP: 4753 if (!capable(CAP_NET_ADMIN)) 4754 return -EPERM; 4755 /* fall through */ 4756 case SIOCBONDSLAVEINFOQUERY: 4757 case SIOCBONDINFOQUERY: 4758 dev_load(net, ifr.ifr_name); 4759 rtnl_lock(); 4760 ret = dev_ifsioc(net, &ifr, cmd); 4761 rtnl_unlock(); 4762 return ret; 4763 4764 case SIOCGIFMEM: 4765 /* Get the per device memory space. We can add this but 4766 * currently do not support it */ 4767 case SIOCSIFMEM: 4768 /* Set the per device memory buffer space. 4769 * Not applicable in our case */ 4770 case SIOCSIFLINK: 4771 return -EINVAL; 4772 4773 /* 4774 * Unknown or private ioctl. 4775 */ 4776 default: 4777 if (cmd == SIOCWANDEV || 4778 (cmd >= SIOCDEVPRIVATE && 4779 cmd <= SIOCDEVPRIVATE + 15)) { 4780 dev_load(net, ifr.ifr_name); 4781 rtnl_lock(); 4782 ret = dev_ifsioc(net, &ifr, cmd); 4783 rtnl_unlock(); 4784 if (!ret && copy_to_user(arg, &ifr, 4785 sizeof(struct ifreq))) 4786 ret = -EFAULT; 4787 return ret; 4788 } 4789 /* Take care of Wireless Extensions */ 4790 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4791 return wext_handle_ioctl(net, &ifr, cmd, arg); 4792 return -EINVAL; 4793 } 4794 } 4795 4796 4797 /** 4798 * dev_new_index - allocate an ifindex 4799 * @net: the applicable net namespace 4800 * 4801 * Returns a suitable unique value for a new device interface 4802 * number. The caller must hold the rtnl semaphore or the 4803 * dev_base_lock to be sure it remains unique. 4804 */ 4805 static int dev_new_index(struct net *net) 4806 { 4807 static int ifindex; 4808 for (;;) { 4809 if (++ifindex <= 0) 4810 ifindex = 1; 4811 if (!__dev_get_by_index(net, ifindex)) 4812 return ifindex; 4813 } 4814 } 4815 4816 /* Delayed registration/unregisteration */ 4817 static LIST_HEAD(net_todo_list); 4818 4819 static void net_set_todo(struct net_device *dev) 4820 { 4821 list_add_tail(&dev->todo_list, &net_todo_list); 4822 } 4823 4824 static void rollback_registered_many(struct list_head *head) 4825 { 4826 struct net_device *dev, *tmp; 4827 4828 BUG_ON(dev_boot_phase); 4829 ASSERT_RTNL(); 4830 4831 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4832 /* Some devices call without registering 4833 * for initialization unwind. Remove those 4834 * devices and proceed with the remaining. 4835 */ 4836 if (dev->reg_state == NETREG_UNINITIALIZED) { 4837 pr_debug("unregister_netdevice: device %s/%p never " 4838 "was registered\n", dev->name, dev); 4839 4840 WARN_ON(1); 4841 list_del(&dev->unreg_list); 4842 continue; 4843 } 4844 4845 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4846 4847 /* If device is running, close it first. */ 4848 dev_close(dev); 4849 4850 /* And unlink it from device chain. */ 4851 unlist_netdevice(dev); 4852 4853 dev->reg_state = NETREG_UNREGISTERING; 4854 } 4855 4856 synchronize_net(); 4857 4858 list_for_each_entry(dev, head, unreg_list) { 4859 /* Shutdown queueing discipline. */ 4860 dev_shutdown(dev); 4861 4862 4863 /* Notify protocols, that we are about to destroy 4864 this device. They should clean all the things. 4865 */ 4866 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4867 4868 if (!dev->rtnl_link_ops || 4869 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4870 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4871 4872 /* 4873 * Flush the unicast and multicast chains 4874 */ 4875 dev_unicast_flush(dev); 4876 dev_addr_discard(dev); 4877 4878 if (dev->netdev_ops->ndo_uninit) 4879 dev->netdev_ops->ndo_uninit(dev); 4880 4881 /* Notifier chain MUST detach us from master device. */ 4882 WARN_ON(dev->master); 4883 4884 /* Remove entries from kobject tree */ 4885 netdev_unregister_kobject(dev); 4886 } 4887 4888 /* Process any work delayed until the end of the batch */ 4889 dev = list_first_entry(head, struct net_device, unreg_list); 4890 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4891 4892 synchronize_net(); 4893 4894 list_for_each_entry(dev, head, unreg_list) 4895 dev_put(dev); 4896 } 4897 4898 static void rollback_registered(struct net_device *dev) 4899 { 4900 LIST_HEAD(single); 4901 4902 list_add(&dev->unreg_list, &single); 4903 rollback_registered_many(&single); 4904 } 4905 4906 static void __netdev_init_queue_locks_one(struct net_device *dev, 4907 struct netdev_queue *dev_queue, 4908 void *_unused) 4909 { 4910 spin_lock_init(&dev_queue->_xmit_lock); 4911 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4912 dev_queue->xmit_lock_owner = -1; 4913 } 4914 4915 static void netdev_init_queue_locks(struct net_device *dev) 4916 { 4917 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4918 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4919 } 4920 4921 unsigned long netdev_fix_features(unsigned long features, const char *name) 4922 { 4923 /* Fix illegal SG+CSUM combinations. */ 4924 if ((features & NETIF_F_SG) && 4925 !(features & NETIF_F_ALL_CSUM)) { 4926 if (name) 4927 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4928 "checksum feature.\n", name); 4929 features &= ~NETIF_F_SG; 4930 } 4931 4932 /* TSO requires that SG is present as well. */ 4933 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4934 if (name) 4935 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4936 "SG feature.\n", name); 4937 features &= ~NETIF_F_TSO; 4938 } 4939 4940 if (features & NETIF_F_UFO) { 4941 if (!(features & NETIF_F_GEN_CSUM)) { 4942 if (name) 4943 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4944 "since no NETIF_F_HW_CSUM feature.\n", 4945 name); 4946 features &= ~NETIF_F_UFO; 4947 } 4948 4949 if (!(features & NETIF_F_SG)) { 4950 if (name) 4951 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4952 "since no NETIF_F_SG feature.\n", name); 4953 features &= ~NETIF_F_UFO; 4954 } 4955 } 4956 4957 return features; 4958 } 4959 EXPORT_SYMBOL(netdev_fix_features); 4960 4961 /** 4962 * netif_stacked_transfer_operstate - transfer operstate 4963 * @rootdev: the root or lower level device to transfer state from 4964 * @dev: the device to transfer operstate to 4965 * 4966 * Transfer operational state from root to device. This is normally 4967 * called when a stacking relationship exists between the root 4968 * device and the device(a leaf device). 4969 */ 4970 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4971 struct net_device *dev) 4972 { 4973 if (rootdev->operstate == IF_OPER_DORMANT) 4974 netif_dormant_on(dev); 4975 else 4976 netif_dormant_off(dev); 4977 4978 if (netif_carrier_ok(rootdev)) { 4979 if (!netif_carrier_ok(dev)) 4980 netif_carrier_on(dev); 4981 } else { 4982 if (netif_carrier_ok(dev)) 4983 netif_carrier_off(dev); 4984 } 4985 } 4986 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 4987 4988 /** 4989 * register_netdevice - register a network device 4990 * @dev: device to register 4991 * 4992 * Take a completed network device structure and add it to the kernel 4993 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4994 * chain. 0 is returned on success. A negative errno code is returned 4995 * on a failure to set up the device, or if the name is a duplicate. 4996 * 4997 * Callers must hold the rtnl semaphore. You may want 4998 * register_netdev() instead of this. 4999 * 5000 * BUGS: 5001 * The locking appears insufficient to guarantee two parallel registers 5002 * will not get the same name. 5003 */ 5004 5005 int register_netdevice(struct net_device *dev) 5006 { 5007 int ret; 5008 struct net *net = dev_net(dev); 5009 5010 BUG_ON(dev_boot_phase); 5011 ASSERT_RTNL(); 5012 5013 might_sleep(); 5014 5015 /* When net_device's are persistent, this will be fatal. */ 5016 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5017 BUG_ON(!net); 5018 5019 spin_lock_init(&dev->addr_list_lock); 5020 netdev_set_addr_lockdep_class(dev); 5021 netdev_init_queue_locks(dev); 5022 5023 dev->iflink = -1; 5024 5025 /* Init, if this function is available */ 5026 if (dev->netdev_ops->ndo_init) { 5027 ret = dev->netdev_ops->ndo_init(dev); 5028 if (ret) { 5029 if (ret > 0) 5030 ret = -EIO; 5031 goto out; 5032 } 5033 } 5034 5035 ret = dev_get_valid_name(net, dev->name, dev->name, 0); 5036 if (ret) 5037 goto err_uninit; 5038 5039 dev->ifindex = dev_new_index(net); 5040 if (dev->iflink == -1) 5041 dev->iflink = dev->ifindex; 5042 5043 /* Fix illegal checksum combinations */ 5044 if ((dev->features & NETIF_F_HW_CSUM) && 5045 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5046 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5047 dev->name); 5048 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5049 } 5050 5051 if ((dev->features & NETIF_F_NO_CSUM) && 5052 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5053 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5054 dev->name); 5055 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5056 } 5057 5058 dev->features = netdev_fix_features(dev->features, dev->name); 5059 5060 /* Enable software GSO if SG is supported. */ 5061 if (dev->features & NETIF_F_SG) 5062 dev->features |= NETIF_F_GSO; 5063 5064 netdev_initialize_kobject(dev); 5065 5066 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5067 ret = notifier_to_errno(ret); 5068 if (ret) 5069 goto err_uninit; 5070 5071 ret = netdev_register_kobject(dev); 5072 if (ret) 5073 goto err_uninit; 5074 dev->reg_state = NETREG_REGISTERED; 5075 5076 /* 5077 * Default initial state at registry is that the 5078 * device is present. 5079 */ 5080 5081 set_bit(__LINK_STATE_PRESENT, &dev->state); 5082 5083 dev_init_scheduler(dev); 5084 dev_hold(dev); 5085 list_netdevice(dev); 5086 5087 /* Notify protocols, that a new device appeared. */ 5088 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5089 ret = notifier_to_errno(ret); 5090 if (ret) { 5091 rollback_registered(dev); 5092 dev->reg_state = NETREG_UNREGISTERED; 5093 } 5094 /* 5095 * Prevent userspace races by waiting until the network 5096 * device is fully setup before sending notifications. 5097 */ 5098 if (!dev->rtnl_link_ops || 5099 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5100 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5101 5102 out: 5103 return ret; 5104 5105 err_uninit: 5106 if (dev->netdev_ops->ndo_uninit) 5107 dev->netdev_ops->ndo_uninit(dev); 5108 goto out; 5109 } 5110 EXPORT_SYMBOL(register_netdevice); 5111 5112 /** 5113 * init_dummy_netdev - init a dummy network device for NAPI 5114 * @dev: device to init 5115 * 5116 * This takes a network device structure and initialize the minimum 5117 * amount of fields so it can be used to schedule NAPI polls without 5118 * registering a full blown interface. This is to be used by drivers 5119 * that need to tie several hardware interfaces to a single NAPI 5120 * poll scheduler due to HW limitations. 5121 */ 5122 int init_dummy_netdev(struct net_device *dev) 5123 { 5124 /* Clear everything. Note we don't initialize spinlocks 5125 * are they aren't supposed to be taken by any of the 5126 * NAPI code and this dummy netdev is supposed to be 5127 * only ever used for NAPI polls 5128 */ 5129 memset(dev, 0, sizeof(struct net_device)); 5130 5131 /* make sure we BUG if trying to hit standard 5132 * register/unregister code path 5133 */ 5134 dev->reg_state = NETREG_DUMMY; 5135 5136 /* initialize the ref count */ 5137 atomic_set(&dev->refcnt, 1); 5138 5139 /* NAPI wants this */ 5140 INIT_LIST_HEAD(&dev->napi_list); 5141 5142 /* a dummy interface is started by default */ 5143 set_bit(__LINK_STATE_PRESENT, &dev->state); 5144 set_bit(__LINK_STATE_START, &dev->state); 5145 5146 return 0; 5147 } 5148 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5149 5150 5151 /** 5152 * register_netdev - register a network device 5153 * @dev: device to register 5154 * 5155 * Take a completed network device structure and add it to the kernel 5156 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5157 * chain. 0 is returned on success. A negative errno code is returned 5158 * on a failure to set up the device, or if the name is a duplicate. 5159 * 5160 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5161 * and expands the device name if you passed a format string to 5162 * alloc_netdev. 5163 */ 5164 int register_netdev(struct net_device *dev) 5165 { 5166 int err; 5167 5168 rtnl_lock(); 5169 5170 /* 5171 * If the name is a format string the caller wants us to do a 5172 * name allocation. 5173 */ 5174 if (strchr(dev->name, '%')) { 5175 err = dev_alloc_name(dev, dev->name); 5176 if (err < 0) 5177 goto out; 5178 } 5179 5180 err = register_netdevice(dev); 5181 out: 5182 rtnl_unlock(); 5183 return err; 5184 } 5185 EXPORT_SYMBOL(register_netdev); 5186 5187 /* 5188 * netdev_wait_allrefs - wait until all references are gone. 5189 * 5190 * This is called when unregistering network devices. 5191 * 5192 * Any protocol or device that holds a reference should register 5193 * for netdevice notification, and cleanup and put back the 5194 * reference if they receive an UNREGISTER event. 5195 * We can get stuck here if buggy protocols don't correctly 5196 * call dev_put. 5197 */ 5198 static void netdev_wait_allrefs(struct net_device *dev) 5199 { 5200 unsigned long rebroadcast_time, warning_time; 5201 5202 linkwatch_forget_dev(dev); 5203 5204 rebroadcast_time = warning_time = jiffies; 5205 while (atomic_read(&dev->refcnt) != 0) { 5206 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5207 rtnl_lock(); 5208 5209 /* Rebroadcast unregister notification */ 5210 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5211 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5212 * should have already handle it the first time */ 5213 5214 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5215 &dev->state)) { 5216 /* We must not have linkwatch events 5217 * pending on unregister. If this 5218 * happens, we simply run the queue 5219 * unscheduled, resulting in a noop 5220 * for this device. 5221 */ 5222 linkwatch_run_queue(); 5223 } 5224 5225 __rtnl_unlock(); 5226 5227 rebroadcast_time = jiffies; 5228 } 5229 5230 msleep(250); 5231 5232 if (time_after(jiffies, warning_time + 10 * HZ)) { 5233 printk(KERN_EMERG "unregister_netdevice: " 5234 "waiting for %s to become free. Usage " 5235 "count = %d\n", 5236 dev->name, atomic_read(&dev->refcnt)); 5237 warning_time = jiffies; 5238 } 5239 } 5240 } 5241 5242 /* The sequence is: 5243 * 5244 * rtnl_lock(); 5245 * ... 5246 * register_netdevice(x1); 5247 * register_netdevice(x2); 5248 * ... 5249 * unregister_netdevice(y1); 5250 * unregister_netdevice(y2); 5251 * ... 5252 * rtnl_unlock(); 5253 * free_netdev(y1); 5254 * free_netdev(y2); 5255 * 5256 * We are invoked by rtnl_unlock(). 5257 * This allows us to deal with problems: 5258 * 1) We can delete sysfs objects which invoke hotplug 5259 * without deadlocking with linkwatch via keventd. 5260 * 2) Since we run with the RTNL semaphore not held, we can sleep 5261 * safely in order to wait for the netdev refcnt to drop to zero. 5262 * 5263 * We must not return until all unregister events added during 5264 * the interval the lock was held have been completed. 5265 */ 5266 void netdev_run_todo(void) 5267 { 5268 struct list_head list; 5269 5270 /* Snapshot list, allow later requests */ 5271 list_replace_init(&net_todo_list, &list); 5272 5273 __rtnl_unlock(); 5274 5275 while (!list_empty(&list)) { 5276 struct net_device *dev 5277 = list_first_entry(&list, struct net_device, todo_list); 5278 list_del(&dev->todo_list); 5279 5280 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5281 printk(KERN_ERR "network todo '%s' but state %d\n", 5282 dev->name, dev->reg_state); 5283 dump_stack(); 5284 continue; 5285 } 5286 5287 dev->reg_state = NETREG_UNREGISTERED; 5288 5289 on_each_cpu(flush_backlog, dev, 1); 5290 5291 netdev_wait_allrefs(dev); 5292 5293 /* paranoia */ 5294 BUG_ON(atomic_read(&dev->refcnt)); 5295 WARN_ON(dev->ip_ptr); 5296 WARN_ON(dev->ip6_ptr); 5297 WARN_ON(dev->dn_ptr); 5298 5299 if (dev->destructor) 5300 dev->destructor(dev); 5301 5302 /* Free network device */ 5303 kobject_put(&dev->dev.kobj); 5304 } 5305 } 5306 5307 /** 5308 * dev_txq_stats_fold - fold tx_queues stats 5309 * @dev: device to get statistics from 5310 * @stats: struct net_device_stats to hold results 5311 */ 5312 void dev_txq_stats_fold(const struct net_device *dev, 5313 struct net_device_stats *stats) 5314 { 5315 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5316 unsigned int i; 5317 struct netdev_queue *txq; 5318 5319 for (i = 0; i < dev->num_tx_queues; i++) { 5320 txq = netdev_get_tx_queue(dev, i); 5321 tx_bytes += txq->tx_bytes; 5322 tx_packets += txq->tx_packets; 5323 tx_dropped += txq->tx_dropped; 5324 } 5325 if (tx_bytes || tx_packets || tx_dropped) { 5326 stats->tx_bytes = tx_bytes; 5327 stats->tx_packets = tx_packets; 5328 stats->tx_dropped = tx_dropped; 5329 } 5330 } 5331 EXPORT_SYMBOL(dev_txq_stats_fold); 5332 5333 /** 5334 * dev_get_stats - get network device statistics 5335 * @dev: device to get statistics from 5336 * 5337 * Get network statistics from device. The device driver may provide 5338 * its own method by setting dev->netdev_ops->get_stats; otherwise 5339 * the internal statistics structure is used. 5340 */ 5341 const struct net_device_stats *dev_get_stats(struct net_device *dev) 5342 { 5343 const struct net_device_ops *ops = dev->netdev_ops; 5344 5345 if (ops->ndo_get_stats) 5346 return ops->ndo_get_stats(dev); 5347 5348 dev_txq_stats_fold(dev, &dev->stats); 5349 return &dev->stats; 5350 } 5351 EXPORT_SYMBOL(dev_get_stats); 5352 5353 static void netdev_init_one_queue(struct net_device *dev, 5354 struct netdev_queue *queue, 5355 void *_unused) 5356 { 5357 queue->dev = dev; 5358 } 5359 5360 static void netdev_init_queues(struct net_device *dev) 5361 { 5362 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5363 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5364 spin_lock_init(&dev->tx_global_lock); 5365 } 5366 5367 /** 5368 * alloc_netdev_mq - allocate network device 5369 * @sizeof_priv: size of private data to allocate space for 5370 * @name: device name format string 5371 * @setup: callback to initialize device 5372 * @queue_count: the number of subqueues to allocate 5373 * 5374 * Allocates a struct net_device with private data area for driver use 5375 * and performs basic initialization. Also allocates subquue structs 5376 * for each queue on the device at the end of the netdevice. 5377 */ 5378 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5379 void (*setup)(struct net_device *), unsigned int queue_count) 5380 { 5381 struct netdev_queue *tx; 5382 struct net_device *dev; 5383 size_t alloc_size; 5384 struct net_device *p; 5385 5386 BUG_ON(strlen(name) >= sizeof(dev->name)); 5387 5388 alloc_size = sizeof(struct net_device); 5389 if (sizeof_priv) { 5390 /* ensure 32-byte alignment of private area */ 5391 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5392 alloc_size += sizeof_priv; 5393 } 5394 /* ensure 32-byte alignment of whole construct */ 5395 alloc_size += NETDEV_ALIGN - 1; 5396 5397 p = kzalloc(alloc_size, GFP_KERNEL); 5398 if (!p) { 5399 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5400 return NULL; 5401 } 5402 5403 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5404 if (!tx) { 5405 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5406 "tx qdiscs.\n"); 5407 goto free_p; 5408 } 5409 5410 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5411 dev->padded = (char *)dev - (char *)p; 5412 5413 if (dev_addr_init(dev)) 5414 goto free_tx; 5415 5416 dev_unicast_init(dev); 5417 5418 dev_net_set(dev, &init_net); 5419 5420 dev->_tx = tx; 5421 dev->num_tx_queues = queue_count; 5422 dev->real_num_tx_queues = queue_count; 5423 5424 dev->gso_max_size = GSO_MAX_SIZE; 5425 5426 netdev_init_queues(dev); 5427 5428 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5429 dev->ethtool_ntuple_list.count = 0; 5430 INIT_LIST_HEAD(&dev->napi_list); 5431 INIT_LIST_HEAD(&dev->unreg_list); 5432 INIT_LIST_HEAD(&dev->link_watch_list); 5433 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5434 setup(dev); 5435 strcpy(dev->name, name); 5436 return dev; 5437 5438 free_tx: 5439 kfree(tx); 5440 5441 free_p: 5442 kfree(p); 5443 return NULL; 5444 } 5445 EXPORT_SYMBOL(alloc_netdev_mq); 5446 5447 /** 5448 * free_netdev - free network device 5449 * @dev: device 5450 * 5451 * This function does the last stage of destroying an allocated device 5452 * interface. The reference to the device object is released. 5453 * If this is the last reference then it will be freed. 5454 */ 5455 void free_netdev(struct net_device *dev) 5456 { 5457 struct napi_struct *p, *n; 5458 5459 release_net(dev_net(dev)); 5460 5461 kfree(dev->_tx); 5462 5463 /* Flush device addresses */ 5464 dev_addr_flush(dev); 5465 5466 /* Clear ethtool n-tuple list */ 5467 ethtool_ntuple_flush(dev); 5468 5469 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5470 netif_napi_del(p); 5471 5472 /* Compatibility with error handling in drivers */ 5473 if (dev->reg_state == NETREG_UNINITIALIZED) { 5474 kfree((char *)dev - dev->padded); 5475 return; 5476 } 5477 5478 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5479 dev->reg_state = NETREG_RELEASED; 5480 5481 /* will free via device release */ 5482 put_device(&dev->dev); 5483 } 5484 EXPORT_SYMBOL(free_netdev); 5485 5486 /** 5487 * synchronize_net - Synchronize with packet receive processing 5488 * 5489 * Wait for packets currently being received to be done. 5490 * Does not block later packets from starting. 5491 */ 5492 void synchronize_net(void) 5493 { 5494 might_sleep(); 5495 synchronize_rcu(); 5496 } 5497 EXPORT_SYMBOL(synchronize_net); 5498 5499 /** 5500 * unregister_netdevice_queue - remove device from the kernel 5501 * @dev: device 5502 * @head: list 5503 * 5504 * This function shuts down a device interface and removes it 5505 * from the kernel tables. 5506 * If head not NULL, device is queued to be unregistered later. 5507 * 5508 * Callers must hold the rtnl semaphore. You may want 5509 * unregister_netdev() instead of this. 5510 */ 5511 5512 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5513 { 5514 ASSERT_RTNL(); 5515 5516 if (head) { 5517 list_move_tail(&dev->unreg_list, head); 5518 } else { 5519 rollback_registered(dev); 5520 /* Finish processing unregister after unlock */ 5521 net_set_todo(dev); 5522 } 5523 } 5524 EXPORT_SYMBOL(unregister_netdevice_queue); 5525 5526 /** 5527 * unregister_netdevice_many - unregister many devices 5528 * @head: list of devices 5529 */ 5530 void unregister_netdevice_many(struct list_head *head) 5531 { 5532 struct net_device *dev; 5533 5534 if (!list_empty(head)) { 5535 rollback_registered_many(head); 5536 list_for_each_entry(dev, head, unreg_list) 5537 net_set_todo(dev); 5538 } 5539 } 5540 EXPORT_SYMBOL(unregister_netdevice_many); 5541 5542 /** 5543 * unregister_netdev - remove device from the kernel 5544 * @dev: device 5545 * 5546 * This function shuts down a device interface and removes it 5547 * from the kernel tables. 5548 * 5549 * This is just a wrapper for unregister_netdevice that takes 5550 * the rtnl semaphore. In general you want to use this and not 5551 * unregister_netdevice. 5552 */ 5553 void unregister_netdev(struct net_device *dev) 5554 { 5555 rtnl_lock(); 5556 unregister_netdevice(dev); 5557 rtnl_unlock(); 5558 } 5559 EXPORT_SYMBOL(unregister_netdev); 5560 5561 /** 5562 * dev_change_net_namespace - move device to different nethost namespace 5563 * @dev: device 5564 * @net: network namespace 5565 * @pat: If not NULL name pattern to try if the current device name 5566 * is already taken in the destination network namespace. 5567 * 5568 * This function shuts down a device interface and moves it 5569 * to a new network namespace. On success 0 is returned, on 5570 * a failure a netagive errno code is returned. 5571 * 5572 * Callers must hold the rtnl semaphore. 5573 */ 5574 5575 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5576 { 5577 int err; 5578 5579 ASSERT_RTNL(); 5580 5581 /* Don't allow namespace local devices to be moved. */ 5582 err = -EINVAL; 5583 if (dev->features & NETIF_F_NETNS_LOCAL) 5584 goto out; 5585 5586 #ifdef CONFIG_SYSFS 5587 /* Don't allow real devices to be moved when sysfs 5588 * is enabled. 5589 */ 5590 err = -EINVAL; 5591 if (dev->dev.parent) 5592 goto out; 5593 #endif 5594 5595 /* Ensure the device has been registrered */ 5596 err = -EINVAL; 5597 if (dev->reg_state != NETREG_REGISTERED) 5598 goto out; 5599 5600 /* Get out if there is nothing todo */ 5601 err = 0; 5602 if (net_eq(dev_net(dev), net)) 5603 goto out; 5604 5605 /* Pick the destination device name, and ensure 5606 * we can use it in the destination network namespace. 5607 */ 5608 err = -EEXIST; 5609 if (__dev_get_by_name(net, dev->name)) { 5610 /* We get here if we can't use the current device name */ 5611 if (!pat) 5612 goto out; 5613 if (dev_get_valid_name(net, pat, dev->name, 1)) 5614 goto out; 5615 } 5616 5617 /* 5618 * And now a mini version of register_netdevice unregister_netdevice. 5619 */ 5620 5621 /* If device is running close it first. */ 5622 dev_close(dev); 5623 5624 /* And unlink it from device chain */ 5625 err = -ENODEV; 5626 unlist_netdevice(dev); 5627 5628 synchronize_net(); 5629 5630 /* Shutdown queueing discipline. */ 5631 dev_shutdown(dev); 5632 5633 /* Notify protocols, that we are about to destroy 5634 this device. They should clean all the things. 5635 */ 5636 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5637 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5638 5639 /* 5640 * Flush the unicast and multicast chains 5641 */ 5642 dev_unicast_flush(dev); 5643 dev_addr_discard(dev); 5644 5645 netdev_unregister_kobject(dev); 5646 5647 /* Actually switch the network namespace */ 5648 dev_net_set(dev, net); 5649 5650 /* If there is an ifindex conflict assign a new one */ 5651 if (__dev_get_by_index(net, dev->ifindex)) { 5652 int iflink = (dev->iflink == dev->ifindex); 5653 dev->ifindex = dev_new_index(net); 5654 if (iflink) 5655 dev->iflink = dev->ifindex; 5656 } 5657 5658 /* Fixup kobjects */ 5659 err = netdev_register_kobject(dev); 5660 WARN_ON(err); 5661 5662 /* Add the device back in the hashes */ 5663 list_netdevice(dev); 5664 5665 /* Notify protocols, that a new device appeared. */ 5666 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5667 5668 /* 5669 * Prevent userspace races by waiting until the network 5670 * device is fully setup before sending notifications. 5671 */ 5672 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5673 5674 synchronize_net(); 5675 err = 0; 5676 out: 5677 return err; 5678 } 5679 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5680 5681 static int dev_cpu_callback(struct notifier_block *nfb, 5682 unsigned long action, 5683 void *ocpu) 5684 { 5685 struct sk_buff **list_skb; 5686 struct Qdisc **list_net; 5687 struct sk_buff *skb; 5688 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5689 struct softnet_data *sd, *oldsd; 5690 5691 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5692 return NOTIFY_OK; 5693 5694 local_irq_disable(); 5695 cpu = smp_processor_id(); 5696 sd = &per_cpu(softnet_data, cpu); 5697 oldsd = &per_cpu(softnet_data, oldcpu); 5698 5699 /* Find end of our completion_queue. */ 5700 list_skb = &sd->completion_queue; 5701 while (*list_skb) 5702 list_skb = &(*list_skb)->next; 5703 /* Append completion queue from offline CPU. */ 5704 *list_skb = oldsd->completion_queue; 5705 oldsd->completion_queue = NULL; 5706 5707 /* Find end of our output_queue. */ 5708 list_net = &sd->output_queue; 5709 while (*list_net) 5710 list_net = &(*list_net)->next_sched; 5711 /* Append output queue from offline CPU. */ 5712 *list_net = oldsd->output_queue; 5713 oldsd->output_queue = NULL; 5714 5715 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5716 local_irq_enable(); 5717 5718 /* Process offline CPU's input_pkt_queue */ 5719 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5720 netif_rx(skb); 5721 5722 return NOTIFY_OK; 5723 } 5724 5725 5726 /** 5727 * netdev_increment_features - increment feature set by one 5728 * @all: current feature set 5729 * @one: new feature set 5730 * @mask: mask feature set 5731 * 5732 * Computes a new feature set after adding a device with feature set 5733 * @one to the master device with current feature set @all. Will not 5734 * enable anything that is off in @mask. Returns the new feature set. 5735 */ 5736 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5737 unsigned long mask) 5738 { 5739 /* If device needs checksumming, downgrade to it. */ 5740 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5741 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5742 else if (mask & NETIF_F_ALL_CSUM) { 5743 /* If one device supports v4/v6 checksumming, set for all. */ 5744 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5745 !(all & NETIF_F_GEN_CSUM)) { 5746 all &= ~NETIF_F_ALL_CSUM; 5747 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5748 } 5749 5750 /* If one device supports hw checksumming, set for all. */ 5751 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5752 all &= ~NETIF_F_ALL_CSUM; 5753 all |= NETIF_F_HW_CSUM; 5754 } 5755 } 5756 5757 one |= NETIF_F_ALL_CSUM; 5758 5759 one |= all & NETIF_F_ONE_FOR_ALL; 5760 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5761 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5762 5763 return all; 5764 } 5765 EXPORT_SYMBOL(netdev_increment_features); 5766 5767 static struct hlist_head *netdev_create_hash(void) 5768 { 5769 int i; 5770 struct hlist_head *hash; 5771 5772 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5773 if (hash != NULL) 5774 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5775 INIT_HLIST_HEAD(&hash[i]); 5776 5777 return hash; 5778 } 5779 5780 /* Initialize per network namespace state */ 5781 static int __net_init netdev_init(struct net *net) 5782 { 5783 INIT_LIST_HEAD(&net->dev_base_head); 5784 5785 net->dev_name_head = netdev_create_hash(); 5786 if (net->dev_name_head == NULL) 5787 goto err_name; 5788 5789 net->dev_index_head = netdev_create_hash(); 5790 if (net->dev_index_head == NULL) 5791 goto err_idx; 5792 5793 return 0; 5794 5795 err_idx: 5796 kfree(net->dev_name_head); 5797 err_name: 5798 return -ENOMEM; 5799 } 5800 5801 /** 5802 * netdev_drivername - network driver for the device 5803 * @dev: network device 5804 * @buffer: buffer for resulting name 5805 * @len: size of buffer 5806 * 5807 * Determine network driver for device. 5808 */ 5809 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5810 { 5811 const struct device_driver *driver; 5812 const struct device *parent; 5813 5814 if (len <= 0 || !buffer) 5815 return buffer; 5816 buffer[0] = 0; 5817 5818 parent = dev->dev.parent; 5819 5820 if (!parent) 5821 return buffer; 5822 5823 driver = parent->driver; 5824 if (driver && driver->name) 5825 strlcpy(buffer, driver->name, len); 5826 return buffer; 5827 } 5828 5829 static void __net_exit netdev_exit(struct net *net) 5830 { 5831 kfree(net->dev_name_head); 5832 kfree(net->dev_index_head); 5833 } 5834 5835 static struct pernet_operations __net_initdata netdev_net_ops = { 5836 .init = netdev_init, 5837 .exit = netdev_exit, 5838 }; 5839 5840 static void __net_exit default_device_exit(struct net *net) 5841 { 5842 struct net_device *dev, *aux; 5843 /* 5844 * Push all migratable network devices back to the 5845 * initial network namespace 5846 */ 5847 rtnl_lock(); 5848 for_each_netdev_safe(net, dev, aux) { 5849 int err; 5850 char fb_name[IFNAMSIZ]; 5851 5852 /* Ignore unmoveable devices (i.e. loopback) */ 5853 if (dev->features & NETIF_F_NETNS_LOCAL) 5854 continue; 5855 5856 /* Leave virtual devices for the generic cleanup */ 5857 if (dev->rtnl_link_ops) 5858 continue; 5859 5860 /* Push remaing network devices to init_net */ 5861 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5862 err = dev_change_net_namespace(dev, &init_net, fb_name); 5863 if (err) { 5864 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5865 __func__, dev->name, err); 5866 BUG(); 5867 } 5868 } 5869 rtnl_unlock(); 5870 } 5871 5872 static void __net_exit default_device_exit_batch(struct list_head *net_list) 5873 { 5874 /* At exit all network devices most be removed from a network 5875 * namespace. Do this in the reverse order of registeration. 5876 * Do this across as many network namespaces as possible to 5877 * improve batching efficiency. 5878 */ 5879 struct net_device *dev; 5880 struct net *net; 5881 LIST_HEAD(dev_kill_list); 5882 5883 rtnl_lock(); 5884 list_for_each_entry(net, net_list, exit_list) { 5885 for_each_netdev_reverse(net, dev) { 5886 if (dev->rtnl_link_ops) 5887 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 5888 else 5889 unregister_netdevice_queue(dev, &dev_kill_list); 5890 } 5891 } 5892 unregister_netdevice_many(&dev_kill_list); 5893 rtnl_unlock(); 5894 } 5895 5896 static struct pernet_operations __net_initdata default_device_ops = { 5897 .exit = default_device_exit, 5898 .exit_batch = default_device_exit_batch, 5899 }; 5900 5901 /* 5902 * Initialize the DEV module. At boot time this walks the device list and 5903 * unhooks any devices that fail to initialise (normally hardware not 5904 * present) and leaves us with a valid list of present and active devices. 5905 * 5906 */ 5907 5908 /* 5909 * This is called single threaded during boot, so no need 5910 * to take the rtnl semaphore. 5911 */ 5912 static int __init net_dev_init(void) 5913 { 5914 int i, rc = -ENOMEM; 5915 5916 BUG_ON(!dev_boot_phase); 5917 5918 if (dev_proc_init()) 5919 goto out; 5920 5921 if (netdev_kobject_init()) 5922 goto out; 5923 5924 INIT_LIST_HEAD(&ptype_all); 5925 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5926 INIT_LIST_HEAD(&ptype_base[i]); 5927 5928 if (register_pernet_subsys(&netdev_net_ops)) 5929 goto out; 5930 5931 /* 5932 * Initialise the packet receive queues. 5933 */ 5934 5935 for_each_possible_cpu(i) { 5936 struct softnet_data *queue; 5937 5938 queue = &per_cpu(softnet_data, i); 5939 skb_queue_head_init(&queue->input_pkt_queue); 5940 queue->completion_queue = NULL; 5941 INIT_LIST_HEAD(&queue->poll_list); 5942 5943 queue->backlog.poll = process_backlog; 5944 queue->backlog.weight = weight_p; 5945 queue->backlog.gro_list = NULL; 5946 queue->backlog.gro_count = 0; 5947 } 5948 5949 dev_boot_phase = 0; 5950 5951 /* The loopback device is special if any other network devices 5952 * is present in a network namespace the loopback device must 5953 * be present. Since we now dynamically allocate and free the 5954 * loopback device ensure this invariant is maintained by 5955 * keeping the loopback device as the first device on the 5956 * list of network devices. Ensuring the loopback devices 5957 * is the first device that appears and the last network device 5958 * that disappears. 5959 */ 5960 if (register_pernet_device(&loopback_net_ops)) 5961 goto out; 5962 5963 if (register_pernet_device(&default_device_ops)) 5964 goto out; 5965 5966 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5967 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5968 5969 hotcpu_notifier(dev_cpu_callback, 0); 5970 dst_init(); 5971 dev_mcast_init(); 5972 rc = 0; 5973 out: 5974 return rc; 5975 } 5976 5977 subsys_initcall(net_dev_init); 5978 5979 static int __init initialize_hashrnd(void) 5980 { 5981 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 5982 return 0; 5983 } 5984 5985 late_initcall_sync(initialize_hashrnd); 5986 5987