1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/proc_fs.h> 101 #include <linux/seq_file.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/net_tstamp.h> 136 #include <linux/static_key.h> 137 #include <net/flow_keys.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 /* 148 * The list of packet types we will receive (as opposed to discard) 149 * and the routines to invoke. 150 * 151 * Why 16. Because with 16 the only overlap we get on a hash of the 152 * low nibble of the protocol value is RARP/SNAP/X.25. 153 * 154 * NOTE: That is no longer true with the addition of VLAN tags. Not 155 * sure which should go first, but I bet it won't make much 156 * difference if we are running VLANs. The good news is that 157 * this protocol won't be in the list unless compiled in, so 158 * the average user (w/out VLANs) will not be adversely affected. 159 * --BLG 160 * 161 * 0800 IP 162 * 8100 802.1Q VLAN 163 * 0001 802.3 164 * 0002 AX.25 165 * 0004 802.2 166 * 8035 RARP 167 * 0005 SNAP 168 * 0805 X.25 169 * 0806 ARP 170 * 8137 IPX 171 * 0009 Localtalk 172 * 86DD IPv6 173 */ 174 175 #define PTYPE_HASH_SIZE (16) 176 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 177 178 static DEFINE_SPINLOCK(ptype_lock); 179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 180 static struct list_head ptype_all __read_mostly; /* Taps */ 181 182 /* 183 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 184 * semaphore. 185 * 186 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 187 * 188 * Writers must hold the rtnl semaphore while they loop through the 189 * dev_base_head list, and hold dev_base_lock for writing when they do the 190 * actual updates. This allows pure readers to access the list even 191 * while a writer is preparing to update it. 192 * 193 * To put it another way, dev_base_lock is held for writing only to 194 * protect against pure readers; the rtnl semaphore provides the 195 * protection against other writers. 196 * 197 * See, for example usages, register_netdevice() and 198 * unregister_netdevice(), which must be called with the rtnl 199 * semaphore held. 200 */ 201 DEFINE_RWLOCK(dev_base_lock); 202 EXPORT_SYMBOL(dev_base_lock); 203 204 static inline void dev_base_seq_inc(struct net *net) 205 { 206 while (++net->dev_base_seq == 0); 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 304 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 305 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 306 307 static const char *const netdev_lock_name[] = 308 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 309 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 310 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 311 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 312 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 313 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 314 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 315 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 316 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 317 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 318 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 319 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 320 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 321 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 322 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 323 324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 326 327 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 328 { 329 int i; 330 331 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 332 if (netdev_lock_type[i] == dev_type) 333 return i; 334 /* the last key is used by default */ 335 return ARRAY_SIZE(netdev_lock_type) - 1; 336 } 337 338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 339 unsigned short dev_type) 340 { 341 int i; 342 343 i = netdev_lock_pos(dev_type); 344 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 345 netdev_lock_name[i]); 346 } 347 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 int i; 351 352 i = netdev_lock_pos(dev->type); 353 lockdep_set_class_and_name(&dev->addr_list_lock, 354 &netdev_addr_lock_key[i], 355 netdev_lock_name[i]); 356 } 357 #else 358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 359 unsigned short dev_type) 360 { 361 } 362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 363 { 364 } 365 #endif 366 367 /******************************************************************************* 368 369 Protocol management and registration routines 370 371 *******************************************************************************/ 372 373 /* 374 * Add a protocol ID to the list. Now that the input handler is 375 * smarter we can dispense with all the messy stuff that used to be 376 * here. 377 * 378 * BEWARE!!! Protocol handlers, mangling input packets, 379 * MUST BE last in hash buckets and checking protocol handlers 380 * MUST start from promiscuous ptype_all chain in net_bh. 381 * It is true now, do not change it. 382 * Explanation follows: if protocol handler, mangling packet, will 383 * be the first on list, it is not able to sense, that packet 384 * is cloned and should be copied-on-write, so that it will 385 * change it and subsequent readers will get broken packet. 386 * --ANK (980803) 387 */ 388 389 static inline struct list_head *ptype_head(const struct packet_type *pt) 390 { 391 if (pt->type == htons(ETH_P_ALL)) 392 return &ptype_all; 393 else 394 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 /****************************************************************************** 474 475 Device Boot-time Settings Routines 476 477 *******************************************************************************/ 478 479 /* Boot time configuration table */ 480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 481 482 /** 483 * netdev_boot_setup_add - add new setup entry 484 * @name: name of the device 485 * @map: configured settings for the device 486 * 487 * Adds new setup entry to the dev_boot_setup list. The function 488 * returns 0 on error and 1 on success. This is a generic routine to 489 * all netdevices. 490 */ 491 static int netdev_boot_setup_add(char *name, struct ifmap *map) 492 { 493 struct netdev_boot_setup *s; 494 int i; 495 496 s = dev_boot_setup; 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 499 memset(s[i].name, 0, sizeof(s[i].name)); 500 strlcpy(s[i].name, name, IFNAMSIZ); 501 memcpy(&s[i].map, map, sizeof(s[i].map)); 502 break; 503 } 504 } 505 506 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 507 } 508 509 /** 510 * netdev_boot_setup_check - check boot time settings 511 * @dev: the netdevice 512 * 513 * Check boot time settings for the device. 514 * The found settings are set for the device to be used 515 * later in the device probing. 516 * Returns 0 if no settings found, 1 if they are. 517 */ 518 int netdev_boot_setup_check(struct net_device *dev) 519 { 520 struct netdev_boot_setup *s = dev_boot_setup; 521 int i; 522 523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 524 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 525 !strcmp(dev->name, s[i].name)) { 526 dev->irq = s[i].map.irq; 527 dev->base_addr = s[i].map.base_addr; 528 dev->mem_start = s[i].map.mem_start; 529 dev->mem_end = s[i].map.mem_end; 530 return 1; 531 } 532 } 533 return 0; 534 } 535 EXPORT_SYMBOL(netdev_boot_setup_check); 536 537 538 /** 539 * netdev_boot_base - get address from boot time settings 540 * @prefix: prefix for network device 541 * @unit: id for network device 542 * 543 * Check boot time settings for the base address of device. 544 * The found settings are set for the device to be used 545 * later in the device probing. 546 * Returns 0 if no settings found. 547 */ 548 unsigned long netdev_boot_base(const char *prefix, int unit) 549 { 550 const struct netdev_boot_setup *s = dev_boot_setup; 551 char name[IFNAMSIZ]; 552 int i; 553 554 sprintf(name, "%s%d", prefix, unit); 555 556 /* 557 * If device already registered then return base of 1 558 * to indicate not to probe for this interface 559 */ 560 if (__dev_get_by_name(&init_net, name)) 561 return 1; 562 563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 564 if (!strcmp(name, s[i].name)) 565 return s[i].map.base_addr; 566 return 0; 567 } 568 569 /* 570 * Saves at boot time configured settings for any netdevice. 571 */ 572 int __init netdev_boot_setup(char *str) 573 { 574 int ints[5]; 575 struct ifmap map; 576 577 str = get_options(str, ARRAY_SIZE(ints), ints); 578 if (!str || !*str) 579 return 0; 580 581 /* Save settings */ 582 memset(&map, 0, sizeof(map)); 583 if (ints[0] > 0) 584 map.irq = ints[1]; 585 if (ints[0] > 1) 586 map.base_addr = ints[2]; 587 if (ints[0] > 2) 588 map.mem_start = ints[3]; 589 if (ints[0] > 3) 590 map.mem_end = ints[4]; 591 592 /* Add new entry to the list */ 593 return netdev_boot_setup_add(str, &map); 594 } 595 596 __setup("netdev=", netdev_boot_setup); 597 598 /******************************************************************************* 599 600 Device Interface Subroutines 601 602 *******************************************************************************/ 603 604 /** 605 * __dev_get_by_name - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. Must be called under RTNL semaphore 610 * or @dev_base_lock. If the name is found a pointer to the device 611 * is returned. If the name is not found then %NULL is returned. The 612 * reference counters are not incremented so the caller must be 613 * careful with locks. 614 */ 615 616 struct net_device *__dev_get_by_name(struct net *net, const char *name) 617 { 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(__dev_get_by_name); 629 630 /** 631 * dev_get_by_name_rcu - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. 636 * If the name is found a pointer to the device is returned. 637 * If the name is not found then %NULL is returned. 638 * The reference counters are not incremented so the caller must be 639 * careful with locks. The caller must hold RCU lock. 640 */ 641 642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 643 { 644 struct hlist_node *p; 645 struct net_device *dev; 646 struct hlist_head *head = dev_name_hash(net, name); 647 648 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 649 if (!strncmp(dev->name, name, IFNAMSIZ)) 650 return dev; 651 652 return NULL; 653 } 654 EXPORT_SYMBOL(dev_get_by_name_rcu); 655 656 /** 657 * dev_get_by_name - find a device by its name 658 * @net: the applicable net namespace 659 * @name: name to find 660 * 661 * Find an interface by name. This can be called from any 662 * context and does its own locking. The returned handle has 663 * the usage count incremented and the caller must use dev_put() to 664 * release it when it is no longer needed. %NULL is returned if no 665 * matching device is found. 666 */ 667 668 struct net_device *dev_get_by_name(struct net *net, const char *name) 669 { 670 struct net_device *dev; 671 672 rcu_read_lock(); 673 dev = dev_get_by_name_rcu(net, name); 674 if (dev) 675 dev_hold(dev); 676 rcu_read_unlock(); 677 return dev; 678 } 679 EXPORT_SYMBOL(dev_get_by_name); 680 681 /** 682 * __dev_get_by_index - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold either the RTNL semaphore 690 * or @dev_base_lock. 691 */ 692 693 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 694 { 695 struct hlist_node *p; 696 struct net_device *dev; 697 struct hlist_head *head = dev_index_hash(net, ifindex); 698 699 hlist_for_each_entry(dev, p, head, index_hlist) 700 if (dev->ifindex == ifindex) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(__dev_get_by_index); 706 707 /** 708 * dev_get_by_index_rcu - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns %NULL if the device 713 * is not found or a pointer to the device. The device has not 714 * had its reference counter increased so the caller must be careful 715 * about locking. The caller must hold RCU lock. 716 */ 717 718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 719 { 720 struct hlist_node *p; 721 struct net_device *dev; 722 struct hlist_head *head = dev_index_hash(net, ifindex); 723 724 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 725 if (dev->ifindex == ifindex) 726 return dev; 727 728 return NULL; 729 } 730 EXPORT_SYMBOL(dev_get_by_index_rcu); 731 732 733 /** 734 * dev_get_by_index - find a device by its ifindex 735 * @net: the applicable net namespace 736 * @ifindex: index of device 737 * 738 * Search for an interface by index. Returns NULL if the device 739 * is not found or a pointer to the device. The device returned has 740 * had a reference added and the pointer is safe until the user calls 741 * dev_put to indicate they have finished with it. 742 */ 743 744 struct net_device *dev_get_by_index(struct net *net, int ifindex) 745 { 746 struct net_device *dev; 747 748 rcu_read_lock(); 749 dev = dev_get_by_index_rcu(net, ifindex); 750 if (dev) 751 dev_hold(dev); 752 rcu_read_unlock(); 753 return dev; 754 } 755 EXPORT_SYMBOL(dev_get_by_index); 756 757 /** 758 * dev_getbyhwaddr_rcu - find a device by its hardware address 759 * @net: the applicable net namespace 760 * @type: media type of device 761 * @ha: hardware address 762 * 763 * Search for an interface by MAC address. Returns NULL if the device 764 * is not found or a pointer to the device. 765 * The caller must hold RCU or RTNL. 766 * The returned device has not had its ref count increased 767 * and the caller must therefore be careful about locking 768 * 769 */ 770 771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 772 const char *ha) 773 { 774 struct net_device *dev; 775 776 for_each_netdev_rcu(net, dev) 777 if (dev->type == type && 778 !memcmp(dev->dev_addr, ha, dev->addr_len)) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 784 785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev; 788 789 ASSERT_RTNL(); 790 for_each_netdev(net, dev) 791 if (dev->type == type) 792 return dev; 793 794 return NULL; 795 } 796 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 797 798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 799 { 800 struct net_device *dev, *ret = NULL; 801 802 rcu_read_lock(); 803 for_each_netdev_rcu(net, dev) 804 if (dev->type == type) { 805 dev_hold(dev); 806 ret = dev; 807 break; 808 } 809 rcu_read_unlock(); 810 return ret; 811 } 812 EXPORT_SYMBOL(dev_getfirstbyhwtype); 813 814 /** 815 * dev_get_by_flags_rcu - find any device with given flags 816 * @net: the applicable net namespace 817 * @if_flags: IFF_* values 818 * @mask: bitmask of bits in if_flags to check 819 * 820 * Search for any interface with the given flags. Returns NULL if a device 821 * is not found or a pointer to the device. Must be called inside 822 * rcu_read_lock(), and result refcount is unchanged. 823 */ 824 825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 826 unsigned short mask) 827 { 828 struct net_device *dev, *ret; 829 830 ret = NULL; 831 for_each_netdev_rcu(net, dev) { 832 if (((dev->flags ^ if_flags) & mask) == 0) { 833 ret = dev; 834 break; 835 } 836 } 837 return ret; 838 } 839 EXPORT_SYMBOL(dev_get_by_flags_rcu); 840 841 /** 842 * dev_valid_name - check if name is okay for network device 843 * @name: name string 844 * 845 * Network device names need to be valid file names to 846 * to allow sysfs to work. We also disallow any kind of 847 * whitespace. 848 */ 849 bool dev_valid_name(const char *name) 850 { 851 if (*name == '\0') 852 return false; 853 if (strlen(name) >= IFNAMSIZ) 854 return false; 855 if (!strcmp(name, ".") || !strcmp(name, "..")) 856 return false; 857 858 while (*name) { 859 if (*name == '/' || isspace(*name)) 860 return false; 861 name++; 862 } 863 return true; 864 } 865 EXPORT_SYMBOL(dev_valid_name); 866 867 /** 868 * __dev_alloc_name - allocate a name for a device 869 * @net: network namespace to allocate the device name in 870 * @name: name format string 871 * @buf: scratch buffer and result name string 872 * 873 * Passed a format string - eg "lt%d" it will try and find a suitable 874 * id. It scans list of devices to build up a free map, then chooses 875 * the first empty slot. The caller must hold the dev_base or rtnl lock 876 * while allocating the name and adding the device in order to avoid 877 * duplicates. 878 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 879 * Returns the number of the unit assigned or a negative errno code. 880 */ 881 882 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 883 { 884 int i = 0; 885 const char *p; 886 const int max_netdevices = 8*PAGE_SIZE; 887 unsigned long *inuse; 888 struct net_device *d; 889 890 p = strnchr(name, IFNAMSIZ-1, '%'); 891 if (p) { 892 /* 893 * Verify the string as this thing may have come from 894 * the user. There must be either one "%d" and no other "%" 895 * characters. 896 */ 897 if (p[1] != 'd' || strchr(p + 2, '%')) 898 return -EINVAL; 899 900 /* Use one page as a bit array of possible slots */ 901 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 902 if (!inuse) 903 return -ENOMEM; 904 905 for_each_netdev(net, d) { 906 if (!sscanf(d->name, name, &i)) 907 continue; 908 if (i < 0 || i >= max_netdevices) 909 continue; 910 911 /* avoid cases where sscanf is not exact inverse of printf */ 912 snprintf(buf, IFNAMSIZ, name, i); 913 if (!strncmp(buf, d->name, IFNAMSIZ)) 914 set_bit(i, inuse); 915 } 916 917 i = find_first_zero_bit(inuse, max_netdevices); 918 free_page((unsigned long) inuse); 919 } 920 921 if (buf != name) 922 snprintf(buf, IFNAMSIZ, name, i); 923 if (!__dev_get_by_name(net, buf)) 924 return i; 925 926 /* It is possible to run out of possible slots 927 * when the name is long and there isn't enough space left 928 * for the digits, or if all bits are used. 929 */ 930 return -ENFILE; 931 } 932 933 /** 934 * dev_alloc_name - allocate a name for a device 935 * @dev: device 936 * @name: name format string 937 * 938 * Passed a format string - eg "lt%d" it will try and find a suitable 939 * id. It scans list of devices to build up a free map, then chooses 940 * the first empty slot. The caller must hold the dev_base or rtnl lock 941 * while allocating the name and adding the device in order to avoid 942 * duplicates. 943 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 944 * Returns the number of the unit assigned or a negative errno code. 945 */ 946 947 int dev_alloc_name(struct net_device *dev, const char *name) 948 { 949 char buf[IFNAMSIZ]; 950 struct net *net; 951 int ret; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 ret = __dev_alloc_name(net, name, buf); 956 if (ret >= 0) 957 strlcpy(dev->name, buf, IFNAMSIZ); 958 return ret; 959 } 960 EXPORT_SYMBOL(dev_alloc_name); 961 962 static int dev_get_valid_name(struct net_device *dev, const char *name) 963 { 964 struct net *net; 965 966 BUG_ON(!dev_net(dev)); 967 net = dev_net(dev); 968 969 if (!dev_valid_name(name)) 970 return -EINVAL; 971 972 if (strchr(name, '%')) 973 return dev_alloc_name(dev, name); 974 else if (__dev_get_by_name(net, name)) 975 return -EEXIST; 976 else if (dev->name != name) 977 strlcpy(dev->name, name, IFNAMSIZ); 978 979 return 0; 980 } 981 982 /** 983 * dev_change_name - change name of a device 984 * @dev: device 985 * @newname: name (or format string) must be at least IFNAMSIZ 986 * 987 * Change name of a device, can pass format strings "eth%d". 988 * for wildcarding. 989 */ 990 int dev_change_name(struct net_device *dev, const char *newname) 991 { 992 char oldname[IFNAMSIZ]; 993 int err = 0; 994 int ret; 995 struct net *net; 996 997 ASSERT_RTNL(); 998 BUG_ON(!dev_net(dev)); 999 1000 net = dev_net(dev); 1001 if (dev->flags & IFF_UP) 1002 return -EBUSY; 1003 1004 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1005 return 0; 1006 1007 memcpy(oldname, dev->name, IFNAMSIZ); 1008 1009 err = dev_get_valid_name(dev, newname); 1010 if (err < 0) 1011 return err; 1012 1013 rollback: 1014 ret = device_rename(&dev->dev, dev->name); 1015 if (ret) { 1016 memcpy(dev->name, oldname, IFNAMSIZ); 1017 return ret; 1018 } 1019 1020 write_lock_bh(&dev_base_lock); 1021 hlist_del_rcu(&dev->name_hlist); 1022 write_unlock_bh(&dev_base_lock); 1023 1024 synchronize_rcu(); 1025 1026 write_lock_bh(&dev_base_lock); 1027 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1028 write_unlock_bh(&dev_base_lock); 1029 1030 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1031 ret = notifier_to_errno(ret); 1032 1033 if (ret) { 1034 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1035 if (err >= 0) { 1036 err = ret; 1037 memcpy(dev->name, oldname, IFNAMSIZ); 1038 goto rollback; 1039 } else { 1040 pr_err("%s: name change rollback failed: %d\n", 1041 dev->name, ret); 1042 } 1043 } 1044 1045 return err; 1046 } 1047 1048 /** 1049 * dev_set_alias - change ifalias of a device 1050 * @dev: device 1051 * @alias: name up to IFALIASZ 1052 * @len: limit of bytes to copy from info 1053 * 1054 * Set ifalias for a device, 1055 */ 1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1057 { 1058 ASSERT_RTNL(); 1059 1060 if (len >= IFALIASZ) 1061 return -EINVAL; 1062 1063 if (!len) { 1064 if (dev->ifalias) { 1065 kfree(dev->ifalias); 1066 dev->ifalias = NULL; 1067 } 1068 return 0; 1069 } 1070 1071 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1072 if (!dev->ifalias) 1073 return -ENOMEM; 1074 1075 strlcpy(dev->ifalias, alias, len+1); 1076 return len; 1077 } 1078 1079 1080 /** 1081 * netdev_features_change - device changes features 1082 * @dev: device to cause notification 1083 * 1084 * Called to indicate a device has changed features. 1085 */ 1086 void netdev_features_change(struct net_device *dev) 1087 { 1088 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1089 } 1090 EXPORT_SYMBOL(netdev_features_change); 1091 1092 /** 1093 * netdev_state_change - device changes state 1094 * @dev: device to cause notification 1095 * 1096 * Called to indicate a device has changed state. This function calls 1097 * the notifier chains for netdev_chain and sends a NEWLINK message 1098 * to the routing socket. 1099 */ 1100 void netdev_state_change(struct net_device *dev) 1101 { 1102 if (dev->flags & IFF_UP) { 1103 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1104 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1105 } 1106 } 1107 EXPORT_SYMBOL(netdev_state_change); 1108 1109 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1110 { 1111 return call_netdevice_notifiers(event, dev); 1112 } 1113 EXPORT_SYMBOL(netdev_bonding_change); 1114 1115 /** 1116 * dev_load - load a network module 1117 * @net: the applicable net namespace 1118 * @name: name of interface 1119 * 1120 * If a network interface is not present and the process has suitable 1121 * privileges this function loads the module. If module loading is not 1122 * available in this kernel then it becomes a nop. 1123 */ 1124 1125 void dev_load(struct net *net, const char *name) 1126 { 1127 struct net_device *dev; 1128 int no_module; 1129 1130 rcu_read_lock(); 1131 dev = dev_get_by_name_rcu(net, name); 1132 rcu_read_unlock(); 1133 1134 no_module = !dev; 1135 if (no_module && capable(CAP_NET_ADMIN)) 1136 no_module = request_module("netdev-%s", name); 1137 if (no_module && capable(CAP_SYS_MODULE)) { 1138 if (!request_module("%s", name)) 1139 pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s instead.\n", 1140 name); 1141 } 1142 } 1143 EXPORT_SYMBOL(dev_load); 1144 1145 static int __dev_open(struct net_device *dev) 1146 { 1147 const struct net_device_ops *ops = dev->netdev_ops; 1148 int ret; 1149 1150 ASSERT_RTNL(); 1151 1152 if (!netif_device_present(dev)) 1153 return -ENODEV; 1154 1155 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1156 ret = notifier_to_errno(ret); 1157 if (ret) 1158 return ret; 1159 1160 set_bit(__LINK_STATE_START, &dev->state); 1161 1162 if (ops->ndo_validate_addr) 1163 ret = ops->ndo_validate_addr(dev); 1164 1165 if (!ret && ops->ndo_open) 1166 ret = ops->ndo_open(dev); 1167 1168 if (ret) 1169 clear_bit(__LINK_STATE_START, &dev->state); 1170 else { 1171 dev->flags |= IFF_UP; 1172 net_dmaengine_get(); 1173 dev_set_rx_mode(dev); 1174 dev_activate(dev); 1175 add_device_randomness(dev->dev_addr, dev->addr_len); 1176 } 1177 1178 return ret; 1179 } 1180 1181 /** 1182 * dev_open - prepare an interface for use. 1183 * @dev: device to open 1184 * 1185 * Takes a device from down to up state. The device's private open 1186 * function is invoked and then the multicast lists are loaded. Finally 1187 * the device is moved into the up state and a %NETDEV_UP message is 1188 * sent to the netdev notifier chain. 1189 * 1190 * Calling this function on an active interface is a nop. On a failure 1191 * a negative errno code is returned. 1192 */ 1193 int dev_open(struct net_device *dev) 1194 { 1195 int ret; 1196 1197 if (dev->flags & IFF_UP) 1198 return 0; 1199 1200 ret = __dev_open(dev); 1201 if (ret < 0) 1202 return ret; 1203 1204 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1205 call_netdevice_notifiers(NETDEV_UP, dev); 1206 1207 return ret; 1208 } 1209 EXPORT_SYMBOL(dev_open); 1210 1211 static int __dev_close_many(struct list_head *head) 1212 { 1213 struct net_device *dev; 1214 1215 ASSERT_RTNL(); 1216 might_sleep(); 1217 1218 list_for_each_entry(dev, head, unreg_list) { 1219 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1220 1221 clear_bit(__LINK_STATE_START, &dev->state); 1222 1223 /* Synchronize to scheduled poll. We cannot touch poll list, it 1224 * can be even on different cpu. So just clear netif_running(). 1225 * 1226 * dev->stop() will invoke napi_disable() on all of it's 1227 * napi_struct instances on this device. 1228 */ 1229 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1230 } 1231 1232 dev_deactivate_many(head); 1233 1234 list_for_each_entry(dev, head, unreg_list) { 1235 const struct net_device_ops *ops = dev->netdev_ops; 1236 1237 /* 1238 * Call the device specific close. This cannot fail. 1239 * Only if device is UP 1240 * 1241 * We allow it to be called even after a DETACH hot-plug 1242 * event. 1243 */ 1244 if (ops->ndo_stop) 1245 ops->ndo_stop(dev); 1246 1247 dev->flags &= ~IFF_UP; 1248 net_dmaengine_put(); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int __dev_close(struct net_device *dev) 1255 { 1256 int retval; 1257 LIST_HEAD(single); 1258 1259 list_add(&dev->unreg_list, &single); 1260 retval = __dev_close_many(&single); 1261 list_del(&single); 1262 return retval; 1263 } 1264 1265 static int dev_close_many(struct list_head *head) 1266 { 1267 struct net_device *dev, *tmp; 1268 LIST_HEAD(tmp_list); 1269 1270 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1271 if (!(dev->flags & IFF_UP)) 1272 list_move(&dev->unreg_list, &tmp_list); 1273 1274 __dev_close_many(head); 1275 1276 list_for_each_entry(dev, head, unreg_list) { 1277 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1278 call_netdevice_notifiers(NETDEV_DOWN, dev); 1279 } 1280 1281 /* rollback_registered_many needs the complete original list */ 1282 list_splice(&tmp_list, head); 1283 return 0; 1284 } 1285 1286 /** 1287 * dev_close - shutdown an interface. 1288 * @dev: device to shutdown 1289 * 1290 * This function moves an active device into down state. A 1291 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1292 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1293 * chain. 1294 */ 1295 int dev_close(struct net_device *dev) 1296 { 1297 if (dev->flags & IFF_UP) { 1298 LIST_HEAD(single); 1299 1300 list_add(&dev->unreg_list, &single); 1301 dev_close_many(&single); 1302 list_del(&single); 1303 } 1304 return 0; 1305 } 1306 EXPORT_SYMBOL(dev_close); 1307 1308 1309 /** 1310 * dev_disable_lro - disable Large Receive Offload on a device 1311 * @dev: device 1312 * 1313 * Disable Large Receive Offload (LRO) on a net device. Must be 1314 * called under RTNL. This is needed if received packets may be 1315 * forwarded to another interface. 1316 */ 1317 void dev_disable_lro(struct net_device *dev) 1318 { 1319 /* 1320 * If we're trying to disable lro on a vlan device 1321 * use the underlying physical device instead 1322 */ 1323 if (is_vlan_dev(dev)) 1324 dev = vlan_dev_real_dev(dev); 1325 1326 dev->wanted_features &= ~NETIF_F_LRO; 1327 netdev_update_features(dev); 1328 1329 if (unlikely(dev->features & NETIF_F_LRO)) 1330 netdev_WARN(dev, "failed to disable LRO!\n"); 1331 } 1332 EXPORT_SYMBOL(dev_disable_lro); 1333 1334 1335 static int dev_boot_phase = 1; 1336 1337 /** 1338 * register_netdevice_notifier - register a network notifier block 1339 * @nb: notifier 1340 * 1341 * Register a notifier to be called when network device events occur. 1342 * The notifier passed is linked into the kernel structures and must 1343 * not be reused until it has been unregistered. A negative errno code 1344 * is returned on a failure. 1345 * 1346 * When registered all registration and up events are replayed 1347 * to the new notifier to allow device to have a race free 1348 * view of the network device list. 1349 */ 1350 1351 int register_netdevice_notifier(struct notifier_block *nb) 1352 { 1353 struct net_device *dev; 1354 struct net_device *last; 1355 struct net *net; 1356 int err; 1357 1358 rtnl_lock(); 1359 err = raw_notifier_chain_register(&netdev_chain, nb); 1360 if (err) 1361 goto unlock; 1362 if (dev_boot_phase) 1363 goto unlock; 1364 for_each_net(net) { 1365 for_each_netdev(net, dev) { 1366 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1367 err = notifier_to_errno(err); 1368 if (err) 1369 goto rollback; 1370 1371 if (!(dev->flags & IFF_UP)) 1372 continue; 1373 1374 nb->notifier_call(nb, NETDEV_UP, dev); 1375 } 1376 } 1377 1378 unlock: 1379 rtnl_unlock(); 1380 return err; 1381 1382 rollback: 1383 last = dev; 1384 for_each_net(net) { 1385 for_each_netdev(net, dev) { 1386 if (dev == last) 1387 goto outroll; 1388 1389 if (dev->flags & IFF_UP) { 1390 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1391 nb->notifier_call(nb, NETDEV_DOWN, dev); 1392 } 1393 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1394 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1395 } 1396 } 1397 1398 outroll: 1399 raw_notifier_chain_unregister(&netdev_chain, nb); 1400 goto unlock; 1401 } 1402 EXPORT_SYMBOL(register_netdevice_notifier); 1403 1404 /** 1405 * unregister_netdevice_notifier - unregister a network notifier block 1406 * @nb: notifier 1407 * 1408 * Unregister a notifier previously registered by 1409 * register_netdevice_notifier(). The notifier is unlinked into the 1410 * kernel structures and may then be reused. A negative errno code 1411 * is returned on a failure. 1412 * 1413 * After unregistering unregister and down device events are synthesized 1414 * for all devices on the device list to the removed notifier to remove 1415 * the need for special case cleanup code. 1416 */ 1417 1418 int unregister_netdevice_notifier(struct notifier_block *nb) 1419 { 1420 struct net_device *dev; 1421 struct net *net; 1422 int err; 1423 1424 rtnl_lock(); 1425 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1426 if (err) 1427 goto unlock; 1428 1429 for_each_net(net) { 1430 for_each_netdev(net, dev) { 1431 if (dev->flags & IFF_UP) { 1432 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1433 nb->notifier_call(nb, NETDEV_DOWN, dev); 1434 } 1435 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1436 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1437 } 1438 } 1439 unlock: 1440 rtnl_unlock(); 1441 return err; 1442 } 1443 EXPORT_SYMBOL(unregister_netdevice_notifier); 1444 1445 /** 1446 * call_netdevice_notifiers - call all network notifier blocks 1447 * @val: value passed unmodified to notifier function 1448 * @dev: net_device pointer passed unmodified to notifier function 1449 * 1450 * Call all network notifier blocks. Parameters and return value 1451 * are as for raw_notifier_call_chain(). 1452 */ 1453 1454 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1455 { 1456 ASSERT_RTNL(); 1457 return raw_notifier_call_chain(&netdev_chain, val, dev); 1458 } 1459 EXPORT_SYMBOL(call_netdevice_notifiers); 1460 1461 static struct static_key netstamp_needed __read_mostly; 1462 #ifdef HAVE_JUMP_LABEL 1463 /* We are not allowed to call static_key_slow_dec() from irq context 1464 * If net_disable_timestamp() is called from irq context, defer the 1465 * static_key_slow_dec() calls. 1466 */ 1467 static atomic_t netstamp_needed_deferred; 1468 #endif 1469 1470 void net_enable_timestamp(void) 1471 { 1472 #ifdef HAVE_JUMP_LABEL 1473 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1474 1475 if (deferred) { 1476 while (--deferred) 1477 static_key_slow_dec(&netstamp_needed); 1478 return; 1479 } 1480 #endif 1481 WARN_ON(in_interrupt()); 1482 static_key_slow_inc(&netstamp_needed); 1483 } 1484 EXPORT_SYMBOL(net_enable_timestamp); 1485 1486 void net_disable_timestamp(void) 1487 { 1488 #ifdef HAVE_JUMP_LABEL 1489 if (in_interrupt()) { 1490 atomic_inc(&netstamp_needed_deferred); 1491 return; 1492 } 1493 #endif 1494 static_key_slow_dec(&netstamp_needed); 1495 } 1496 EXPORT_SYMBOL(net_disable_timestamp); 1497 1498 static inline void net_timestamp_set(struct sk_buff *skb) 1499 { 1500 skb->tstamp.tv64 = 0; 1501 if (static_key_false(&netstamp_needed)) 1502 __net_timestamp(skb); 1503 } 1504 1505 #define net_timestamp_check(COND, SKB) \ 1506 if (static_key_false(&netstamp_needed)) { \ 1507 if ((COND) && !(SKB)->tstamp.tv64) \ 1508 __net_timestamp(SKB); \ 1509 } \ 1510 1511 static int net_hwtstamp_validate(struct ifreq *ifr) 1512 { 1513 struct hwtstamp_config cfg; 1514 enum hwtstamp_tx_types tx_type; 1515 enum hwtstamp_rx_filters rx_filter; 1516 int tx_type_valid = 0; 1517 int rx_filter_valid = 0; 1518 1519 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1520 return -EFAULT; 1521 1522 if (cfg.flags) /* reserved for future extensions */ 1523 return -EINVAL; 1524 1525 tx_type = cfg.tx_type; 1526 rx_filter = cfg.rx_filter; 1527 1528 switch (tx_type) { 1529 case HWTSTAMP_TX_OFF: 1530 case HWTSTAMP_TX_ON: 1531 case HWTSTAMP_TX_ONESTEP_SYNC: 1532 tx_type_valid = 1; 1533 break; 1534 } 1535 1536 switch (rx_filter) { 1537 case HWTSTAMP_FILTER_NONE: 1538 case HWTSTAMP_FILTER_ALL: 1539 case HWTSTAMP_FILTER_SOME: 1540 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1541 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1542 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1543 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1544 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1545 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1546 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1547 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1548 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1549 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1550 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1551 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1552 rx_filter_valid = 1; 1553 break; 1554 } 1555 1556 if (!tx_type_valid || !rx_filter_valid) 1557 return -ERANGE; 1558 1559 return 0; 1560 } 1561 1562 static inline bool is_skb_forwardable(struct net_device *dev, 1563 struct sk_buff *skb) 1564 { 1565 unsigned int len; 1566 1567 if (!(dev->flags & IFF_UP)) 1568 return false; 1569 1570 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1571 if (skb->len <= len) 1572 return true; 1573 1574 /* if TSO is enabled, we don't care about the length as the packet 1575 * could be forwarded without being segmented before 1576 */ 1577 if (skb_is_gso(skb)) 1578 return true; 1579 1580 return false; 1581 } 1582 1583 /** 1584 * dev_forward_skb - loopback an skb to another netif 1585 * 1586 * @dev: destination network device 1587 * @skb: buffer to forward 1588 * 1589 * return values: 1590 * NET_RX_SUCCESS (no congestion) 1591 * NET_RX_DROP (packet was dropped, but freed) 1592 * 1593 * dev_forward_skb can be used for injecting an skb from the 1594 * start_xmit function of one device into the receive queue 1595 * of another device. 1596 * 1597 * The receiving device may be in another namespace, so 1598 * we have to clear all information in the skb that could 1599 * impact namespace isolation. 1600 */ 1601 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1602 { 1603 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1604 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1605 atomic_long_inc(&dev->rx_dropped); 1606 kfree_skb(skb); 1607 return NET_RX_DROP; 1608 } 1609 } 1610 1611 skb_orphan(skb); 1612 nf_reset(skb); 1613 1614 if (unlikely(!is_skb_forwardable(dev, skb))) { 1615 atomic_long_inc(&dev->rx_dropped); 1616 kfree_skb(skb); 1617 return NET_RX_DROP; 1618 } 1619 skb->skb_iif = 0; 1620 skb->dev = dev; 1621 skb_dst_drop(skb); 1622 skb->tstamp.tv64 = 0; 1623 skb->pkt_type = PACKET_HOST; 1624 skb->protocol = eth_type_trans(skb, dev); 1625 skb->mark = 0; 1626 secpath_reset(skb); 1627 nf_reset(skb); 1628 return netif_rx(skb); 1629 } 1630 EXPORT_SYMBOL_GPL(dev_forward_skb); 1631 1632 static inline int deliver_skb(struct sk_buff *skb, 1633 struct packet_type *pt_prev, 1634 struct net_device *orig_dev) 1635 { 1636 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1637 return -ENOMEM; 1638 atomic_inc(&skb->users); 1639 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1640 } 1641 1642 /* 1643 * Support routine. Sends outgoing frames to any network 1644 * taps currently in use. 1645 */ 1646 1647 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1648 { 1649 struct packet_type *ptype; 1650 struct sk_buff *skb2 = NULL; 1651 struct packet_type *pt_prev = NULL; 1652 1653 rcu_read_lock(); 1654 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1655 /* Never send packets back to the socket 1656 * they originated from - MvS (miquels@drinkel.ow.org) 1657 */ 1658 if ((ptype->dev == dev || !ptype->dev) && 1659 (ptype->af_packet_priv == NULL || 1660 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1661 if (pt_prev) { 1662 deliver_skb(skb2, pt_prev, skb->dev); 1663 pt_prev = ptype; 1664 continue; 1665 } 1666 1667 skb2 = skb_clone(skb, GFP_ATOMIC); 1668 if (!skb2) 1669 break; 1670 1671 net_timestamp_set(skb2); 1672 1673 /* skb->nh should be correctly 1674 set by sender, so that the second statement is 1675 just protection against buggy protocols. 1676 */ 1677 skb_reset_mac_header(skb2); 1678 1679 if (skb_network_header(skb2) < skb2->data || 1680 skb2->network_header > skb2->tail) { 1681 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1682 ntohs(skb2->protocol), 1683 dev->name); 1684 skb_reset_network_header(skb2); 1685 } 1686 1687 skb2->transport_header = skb2->network_header; 1688 skb2->pkt_type = PACKET_OUTGOING; 1689 pt_prev = ptype; 1690 } 1691 } 1692 if (pt_prev) 1693 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1694 rcu_read_unlock(); 1695 } 1696 1697 /** 1698 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1699 * @dev: Network device 1700 * @txq: number of queues available 1701 * 1702 * If real_num_tx_queues is changed the tc mappings may no longer be 1703 * valid. To resolve this verify the tc mapping remains valid and if 1704 * not NULL the mapping. With no priorities mapping to this 1705 * offset/count pair it will no longer be used. In the worst case TC0 1706 * is invalid nothing can be done so disable priority mappings. If is 1707 * expected that drivers will fix this mapping if they can before 1708 * calling netif_set_real_num_tx_queues. 1709 */ 1710 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1711 { 1712 int i; 1713 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1714 1715 /* If TC0 is invalidated disable TC mapping */ 1716 if (tc->offset + tc->count > txq) { 1717 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1718 dev->num_tc = 0; 1719 return; 1720 } 1721 1722 /* Invalidated prio to tc mappings set to TC0 */ 1723 for (i = 1; i < TC_BITMASK + 1; i++) { 1724 int q = netdev_get_prio_tc_map(dev, i); 1725 1726 tc = &dev->tc_to_txq[q]; 1727 if (tc->offset + tc->count > txq) { 1728 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1729 i, q); 1730 netdev_set_prio_tc_map(dev, i, 0); 1731 } 1732 } 1733 } 1734 1735 /* 1736 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1737 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1738 */ 1739 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1740 { 1741 int rc; 1742 1743 if (txq < 1 || txq > dev->num_tx_queues) 1744 return -EINVAL; 1745 1746 if (dev->reg_state == NETREG_REGISTERED || 1747 dev->reg_state == NETREG_UNREGISTERING) { 1748 ASSERT_RTNL(); 1749 1750 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1751 txq); 1752 if (rc) 1753 return rc; 1754 1755 if (dev->num_tc) 1756 netif_setup_tc(dev, txq); 1757 1758 if (txq < dev->real_num_tx_queues) 1759 qdisc_reset_all_tx_gt(dev, txq); 1760 } 1761 1762 dev->real_num_tx_queues = txq; 1763 return 0; 1764 } 1765 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1766 1767 #ifdef CONFIG_RPS 1768 /** 1769 * netif_set_real_num_rx_queues - set actual number of RX queues used 1770 * @dev: Network device 1771 * @rxq: Actual number of RX queues 1772 * 1773 * This must be called either with the rtnl_lock held or before 1774 * registration of the net device. Returns 0 on success, or a 1775 * negative error code. If called before registration, it always 1776 * succeeds. 1777 */ 1778 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1779 { 1780 int rc; 1781 1782 if (rxq < 1 || rxq > dev->num_rx_queues) 1783 return -EINVAL; 1784 1785 if (dev->reg_state == NETREG_REGISTERED) { 1786 ASSERT_RTNL(); 1787 1788 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1789 rxq); 1790 if (rc) 1791 return rc; 1792 } 1793 1794 dev->real_num_rx_queues = rxq; 1795 return 0; 1796 } 1797 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1798 #endif 1799 1800 /** 1801 * netif_get_num_default_rss_queues - default number of RSS queues 1802 * 1803 * This routine should set an upper limit on the number of RSS queues 1804 * used by default by multiqueue devices. 1805 */ 1806 int netif_get_num_default_rss_queues(void) 1807 { 1808 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 1809 } 1810 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 1811 1812 static inline void __netif_reschedule(struct Qdisc *q) 1813 { 1814 struct softnet_data *sd; 1815 unsigned long flags; 1816 1817 local_irq_save(flags); 1818 sd = &__get_cpu_var(softnet_data); 1819 q->next_sched = NULL; 1820 *sd->output_queue_tailp = q; 1821 sd->output_queue_tailp = &q->next_sched; 1822 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1823 local_irq_restore(flags); 1824 } 1825 1826 void __netif_schedule(struct Qdisc *q) 1827 { 1828 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1829 __netif_reschedule(q); 1830 } 1831 EXPORT_SYMBOL(__netif_schedule); 1832 1833 void dev_kfree_skb_irq(struct sk_buff *skb) 1834 { 1835 if (atomic_dec_and_test(&skb->users)) { 1836 struct softnet_data *sd; 1837 unsigned long flags; 1838 1839 local_irq_save(flags); 1840 sd = &__get_cpu_var(softnet_data); 1841 skb->next = sd->completion_queue; 1842 sd->completion_queue = skb; 1843 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1844 local_irq_restore(flags); 1845 } 1846 } 1847 EXPORT_SYMBOL(dev_kfree_skb_irq); 1848 1849 void dev_kfree_skb_any(struct sk_buff *skb) 1850 { 1851 if (in_irq() || irqs_disabled()) 1852 dev_kfree_skb_irq(skb); 1853 else 1854 dev_kfree_skb(skb); 1855 } 1856 EXPORT_SYMBOL(dev_kfree_skb_any); 1857 1858 1859 /** 1860 * netif_device_detach - mark device as removed 1861 * @dev: network device 1862 * 1863 * Mark device as removed from system and therefore no longer available. 1864 */ 1865 void netif_device_detach(struct net_device *dev) 1866 { 1867 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1868 netif_running(dev)) { 1869 netif_tx_stop_all_queues(dev); 1870 } 1871 } 1872 EXPORT_SYMBOL(netif_device_detach); 1873 1874 /** 1875 * netif_device_attach - mark device as attached 1876 * @dev: network device 1877 * 1878 * Mark device as attached from system and restart if needed. 1879 */ 1880 void netif_device_attach(struct net_device *dev) 1881 { 1882 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1883 netif_running(dev)) { 1884 netif_tx_wake_all_queues(dev); 1885 __netdev_watchdog_up(dev); 1886 } 1887 } 1888 EXPORT_SYMBOL(netif_device_attach); 1889 1890 static void skb_warn_bad_offload(const struct sk_buff *skb) 1891 { 1892 static const netdev_features_t null_features = 0; 1893 struct net_device *dev = skb->dev; 1894 const char *driver = ""; 1895 1896 if (dev && dev->dev.parent) 1897 driver = dev_driver_string(dev->dev.parent); 1898 1899 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1900 "gso_type=%d ip_summed=%d\n", 1901 driver, dev ? &dev->features : &null_features, 1902 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1903 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1904 skb_shinfo(skb)->gso_type, skb->ip_summed); 1905 } 1906 1907 /* 1908 * Invalidate hardware checksum when packet is to be mangled, and 1909 * complete checksum manually on outgoing path. 1910 */ 1911 int skb_checksum_help(struct sk_buff *skb) 1912 { 1913 __wsum csum; 1914 int ret = 0, offset; 1915 1916 if (skb->ip_summed == CHECKSUM_COMPLETE) 1917 goto out_set_summed; 1918 1919 if (unlikely(skb_shinfo(skb)->gso_size)) { 1920 skb_warn_bad_offload(skb); 1921 return -EINVAL; 1922 } 1923 1924 offset = skb_checksum_start_offset(skb); 1925 BUG_ON(offset >= skb_headlen(skb)); 1926 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1927 1928 offset += skb->csum_offset; 1929 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1930 1931 if (skb_cloned(skb) && 1932 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1933 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1934 if (ret) 1935 goto out; 1936 } 1937 1938 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1939 out_set_summed: 1940 skb->ip_summed = CHECKSUM_NONE; 1941 out: 1942 return ret; 1943 } 1944 EXPORT_SYMBOL(skb_checksum_help); 1945 1946 /** 1947 * skb_gso_segment - Perform segmentation on skb. 1948 * @skb: buffer to segment 1949 * @features: features for the output path (see dev->features) 1950 * 1951 * This function segments the given skb and returns a list of segments. 1952 * 1953 * It may return NULL if the skb requires no segmentation. This is 1954 * only possible when GSO is used for verifying header integrity. 1955 */ 1956 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1957 netdev_features_t features) 1958 { 1959 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1960 struct packet_type *ptype; 1961 __be16 type = skb->protocol; 1962 int vlan_depth = ETH_HLEN; 1963 int err; 1964 1965 while (type == htons(ETH_P_8021Q)) { 1966 struct vlan_hdr *vh; 1967 1968 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1969 return ERR_PTR(-EINVAL); 1970 1971 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1972 type = vh->h_vlan_encapsulated_proto; 1973 vlan_depth += VLAN_HLEN; 1974 } 1975 1976 skb_reset_mac_header(skb); 1977 skb->mac_len = skb->network_header - skb->mac_header; 1978 __skb_pull(skb, skb->mac_len); 1979 1980 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1981 skb_warn_bad_offload(skb); 1982 1983 if (skb_header_cloned(skb) && 1984 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1985 return ERR_PTR(err); 1986 } 1987 1988 rcu_read_lock(); 1989 list_for_each_entry_rcu(ptype, 1990 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1991 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1992 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1993 err = ptype->gso_send_check(skb); 1994 segs = ERR_PTR(err); 1995 if (err || skb_gso_ok(skb, features)) 1996 break; 1997 __skb_push(skb, (skb->data - 1998 skb_network_header(skb))); 1999 } 2000 segs = ptype->gso_segment(skb, features); 2001 break; 2002 } 2003 } 2004 rcu_read_unlock(); 2005 2006 __skb_push(skb, skb->data - skb_mac_header(skb)); 2007 2008 return segs; 2009 } 2010 EXPORT_SYMBOL(skb_gso_segment); 2011 2012 /* Take action when hardware reception checksum errors are detected. */ 2013 #ifdef CONFIG_BUG 2014 void netdev_rx_csum_fault(struct net_device *dev) 2015 { 2016 if (net_ratelimit()) { 2017 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2018 dump_stack(); 2019 } 2020 } 2021 EXPORT_SYMBOL(netdev_rx_csum_fault); 2022 #endif 2023 2024 /* Actually, we should eliminate this check as soon as we know, that: 2025 * 1. IOMMU is present and allows to map all the memory. 2026 * 2. No high memory really exists on this machine. 2027 */ 2028 2029 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2030 { 2031 #ifdef CONFIG_HIGHMEM 2032 int i; 2033 if (!(dev->features & NETIF_F_HIGHDMA)) { 2034 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2035 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2036 if (PageHighMem(skb_frag_page(frag))) 2037 return 1; 2038 } 2039 } 2040 2041 if (PCI_DMA_BUS_IS_PHYS) { 2042 struct device *pdev = dev->dev.parent; 2043 2044 if (!pdev) 2045 return 0; 2046 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2047 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2048 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2049 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2050 return 1; 2051 } 2052 } 2053 #endif 2054 return 0; 2055 } 2056 2057 struct dev_gso_cb { 2058 void (*destructor)(struct sk_buff *skb); 2059 }; 2060 2061 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2062 2063 static void dev_gso_skb_destructor(struct sk_buff *skb) 2064 { 2065 struct dev_gso_cb *cb; 2066 2067 do { 2068 struct sk_buff *nskb = skb->next; 2069 2070 skb->next = nskb->next; 2071 nskb->next = NULL; 2072 kfree_skb(nskb); 2073 } while (skb->next); 2074 2075 cb = DEV_GSO_CB(skb); 2076 if (cb->destructor) 2077 cb->destructor(skb); 2078 } 2079 2080 /** 2081 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2082 * @skb: buffer to segment 2083 * @features: device features as applicable to this skb 2084 * 2085 * This function segments the given skb and stores the list of segments 2086 * in skb->next. 2087 */ 2088 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2089 { 2090 struct sk_buff *segs; 2091 2092 segs = skb_gso_segment(skb, features); 2093 2094 /* Verifying header integrity only. */ 2095 if (!segs) 2096 return 0; 2097 2098 if (IS_ERR(segs)) 2099 return PTR_ERR(segs); 2100 2101 skb->next = segs; 2102 DEV_GSO_CB(skb)->destructor = skb->destructor; 2103 skb->destructor = dev_gso_skb_destructor; 2104 2105 return 0; 2106 } 2107 2108 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2109 { 2110 return ((features & NETIF_F_GEN_CSUM) || 2111 ((features & NETIF_F_V4_CSUM) && 2112 protocol == htons(ETH_P_IP)) || 2113 ((features & NETIF_F_V6_CSUM) && 2114 protocol == htons(ETH_P_IPV6)) || 2115 ((features & NETIF_F_FCOE_CRC) && 2116 protocol == htons(ETH_P_FCOE))); 2117 } 2118 2119 static netdev_features_t harmonize_features(struct sk_buff *skb, 2120 __be16 protocol, netdev_features_t features) 2121 { 2122 if (!can_checksum_protocol(features, protocol)) { 2123 features &= ~NETIF_F_ALL_CSUM; 2124 features &= ~NETIF_F_SG; 2125 } else if (illegal_highdma(skb->dev, skb)) { 2126 features &= ~NETIF_F_SG; 2127 } 2128 2129 return features; 2130 } 2131 2132 netdev_features_t netif_skb_features(struct sk_buff *skb) 2133 { 2134 __be16 protocol = skb->protocol; 2135 netdev_features_t features = skb->dev->features; 2136 2137 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2138 features &= ~NETIF_F_GSO_MASK; 2139 2140 if (protocol == htons(ETH_P_8021Q)) { 2141 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2142 protocol = veh->h_vlan_encapsulated_proto; 2143 } else if (!vlan_tx_tag_present(skb)) { 2144 return harmonize_features(skb, protocol, features); 2145 } 2146 2147 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2148 2149 if (protocol != htons(ETH_P_8021Q)) { 2150 return harmonize_features(skb, protocol, features); 2151 } else { 2152 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2153 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2154 return harmonize_features(skb, protocol, features); 2155 } 2156 } 2157 EXPORT_SYMBOL(netif_skb_features); 2158 2159 /* 2160 * Returns true if either: 2161 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2162 * 2. skb is fragmented and the device does not support SG, or if 2163 * at least one of fragments is in highmem and device does not 2164 * support DMA from it. 2165 */ 2166 static inline int skb_needs_linearize(struct sk_buff *skb, 2167 int features) 2168 { 2169 return skb_is_nonlinear(skb) && 2170 ((skb_has_frag_list(skb) && 2171 !(features & NETIF_F_FRAGLIST)) || 2172 (skb_shinfo(skb)->nr_frags && 2173 !(features & NETIF_F_SG))); 2174 } 2175 2176 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2177 struct netdev_queue *txq) 2178 { 2179 const struct net_device_ops *ops = dev->netdev_ops; 2180 int rc = NETDEV_TX_OK; 2181 unsigned int skb_len; 2182 2183 if (likely(!skb->next)) { 2184 netdev_features_t features; 2185 2186 /* 2187 * If device doesn't need skb->dst, release it right now while 2188 * its hot in this cpu cache 2189 */ 2190 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2191 skb_dst_drop(skb); 2192 2193 if (!list_empty(&ptype_all)) 2194 dev_queue_xmit_nit(skb, dev); 2195 2196 features = netif_skb_features(skb); 2197 2198 if (vlan_tx_tag_present(skb) && 2199 !(features & NETIF_F_HW_VLAN_TX)) { 2200 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2201 if (unlikely(!skb)) 2202 goto out; 2203 2204 skb->vlan_tci = 0; 2205 } 2206 2207 if (netif_needs_gso(skb, features)) { 2208 if (unlikely(dev_gso_segment(skb, features))) 2209 goto out_kfree_skb; 2210 if (skb->next) 2211 goto gso; 2212 } else { 2213 if (skb_needs_linearize(skb, features) && 2214 __skb_linearize(skb)) 2215 goto out_kfree_skb; 2216 2217 /* If packet is not checksummed and device does not 2218 * support checksumming for this protocol, complete 2219 * checksumming here. 2220 */ 2221 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2222 skb_set_transport_header(skb, 2223 skb_checksum_start_offset(skb)); 2224 if (!(features & NETIF_F_ALL_CSUM) && 2225 skb_checksum_help(skb)) 2226 goto out_kfree_skb; 2227 } 2228 } 2229 2230 skb_len = skb->len; 2231 rc = ops->ndo_start_xmit(skb, dev); 2232 trace_net_dev_xmit(skb, rc, dev, skb_len); 2233 if (rc == NETDEV_TX_OK) 2234 txq_trans_update(txq); 2235 return rc; 2236 } 2237 2238 gso: 2239 do { 2240 struct sk_buff *nskb = skb->next; 2241 2242 skb->next = nskb->next; 2243 nskb->next = NULL; 2244 2245 /* 2246 * If device doesn't need nskb->dst, release it right now while 2247 * its hot in this cpu cache 2248 */ 2249 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2250 skb_dst_drop(nskb); 2251 2252 skb_len = nskb->len; 2253 rc = ops->ndo_start_xmit(nskb, dev); 2254 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2255 if (unlikely(rc != NETDEV_TX_OK)) { 2256 if (rc & ~NETDEV_TX_MASK) 2257 goto out_kfree_gso_skb; 2258 nskb->next = skb->next; 2259 skb->next = nskb; 2260 return rc; 2261 } 2262 txq_trans_update(txq); 2263 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2264 return NETDEV_TX_BUSY; 2265 } while (skb->next); 2266 2267 out_kfree_gso_skb: 2268 if (likely(skb->next == NULL)) 2269 skb->destructor = DEV_GSO_CB(skb)->destructor; 2270 out_kfree_skb: 2271 kfree_skb(skb); 2272 out: 2273 return rc; 2274 } 2275 2276 static u32 hashrnd __read_mostly; 2277 2278 /* 2279 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2280 * to be used as a distribution range. 2281 */ 2282 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2283 unsigned int num_tx_queues) 2284 { 2285 u32 hash; 2286 u16 qoffset = 0; 2287 u16 qcount = num_tx_queues; 2288 2289 if (skb_rx_queue_recorded(skb)) { 2290 hash = skb_get_rx_queue(skb); 2291 while (unlikely(hash >= num_tx_queues)) 2292 hash -= num_tx_queues; 2293 return hash; 2294 } 2295 2296 if (dev->num_tc) { 2297 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2298 qoffset = dev->tc_to_txq[tc].offset; 2299 qcount = dev->tc_to_txq[tc].count; 2300 } 2301 2302 if (skb->sk && skb->sk->sk_hash) 2303 hash = skb->sk->sk_hash; 2304 else 2305 hash = (__force u16) skb->protocol; 2306 hash = jhash_1word(hash, hashrnd); 2307 2308 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2309 } 2310 EXPORT_SYMBOL(__skb_tx_hash); 2311 2312 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2313 { 2314 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2315 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2316 dev->name, queue_index, 2317 dev->real_num_tx_queues); 2318 return 0; 2319 } 2320 return queue_index; 2321 } 2322 2323 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2324 { 2325 #ifdef CONFIG_XPS 2326 struct xps_dev_maps *dev_maps; 2327 struct xps_map *map; 2328 int queue_index = -1; 2329 2330 rcu_read_lock(); 2331 dev_maps = rcu_dereference(dev->xps_maps); 2332 if (dev_maps) { 2333 map = rcu_dereference( 2334 dev_maps->cpu_map[raw_smp_processor_id()]); 2335 if (map) { 2336 if (map->len == 1) 2337 queue_index = map->queues[0]; 2338 else { 2339 u32 hash; 2340 if (skb->sk && skb->sk->sk_hash) 2341 hash = skb->sk->sk_hash; 2342 else 2343 hash = (__force u16) skb->protocol ^ 2344 skb->rxhash; 2345 hash = jhash_1word(hash, hashrnd); 2346 queue_index = map->queues[ 2347 ((u64)hash * map->len) >> 32]; 2348 } 2349 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2350 queue_index = -1; 2351 } 2352 } 2353 rcu_read_unlock(); 2354 2355 return queue_index; 2356 #else 2357 return -1; 2358 #endif 2359 } 2360 2361 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2362 struct sk_buff *skb) 2363 { 2364 int queue_index; 2365 const struct net_device_ops *ops = dev->netdev_ops; 2366 2367 if (dev->real_num_tx_queues == 1) 2368 queue_index = 0; 2369 else if (ops->ndo_select_queue) { 2370 queue_index = ops->ndo_select_queue(dev, skb); 2371 queue_index = dev_cap_txqueue(dev, queue_index); 2372 } else { 2373 struct sock *sk = skb->sk; 2374 queue_index = sk_tx_queue_get(sk); 2375 2376 if (queue_index < 0 || skb->ooo_okay || 2377 queue_index >= dev->real_num_tx_queues) { 2378 int old_index = queue_index; 2379 2380 queue_index = get_xps_queue(dev, skb); 2381 if (queue_index < 0) 2382 queue_index = skb_tx_hash(dev, skb); 2383 2384 if (queue_index != old_index && sk) { 2385 struct dst_entry *dst = 2386 rcu_dereference_check(sk->sk_dst_cache, 1); 2387 2388 if (dst && skb_dst(skb) == dst) 2389 sk_tx_queue_set(sk, queue_index); 2390 } 2391 } 2392 } 2393 2394 skb_set_queue_mapping(skb, queue_index); 2395 return netdev_get_tx_queue(dev, queue_index); 2396 } 2397 2398 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2399 struct net_device *dev, 2400 struct netdev_queue *txq) 2401 { 2402 spinlock_t *root_lock = qdisc_lock(q); 2403 bool contended; 2404 int rc; 2405 2406 qdisc_skb_cb(skb)->pkt_len = skb->len; 2407 qdisc_calculate_pkt_len(skb, q); 2408 /* 2409 * Heuristic to force contended enqueues to serialize on a 2410 * separate lock before trying to get qdisc main lock. 2411 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2412 * and dequeue packets faster. 2413 */ 2414 contended = qdisc_is_running(q); 2415 if (unlikely(contended)) 2416 spin_lock(&q->busylock); 2417 2418 spin_lock(root_lock); 2419 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2420 kfree_skb(skb); 2421 rc = NET_XMIT_DROP; 2422 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2423 qdisc_run_begin(q)) { 2424 /* 2425 * This is a work-conserving queue; there are no old skbs 2426 * waiting to be sent out; and the qdisc is not running - 2427 * xmit the skb directly. 2428 */ 2429 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2430 skb_dst_force(skb); 2431 2432 qdisc_bstats_update(q, skb); 2433 2434 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2435 if (unlikely(contended)) { 2436 spin_unlock(&q->busylock); 2437 contended = false; 2438 } 2439 __qdisc_run(q); 2440 } else 2441 qdisc_run_end(q); 2442 2443 rc = NET_XMIT_SUCCESS; 2444 } else { 2445 skb_dst_force(skb); 2446 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2447 if (qdisc_run_begin(q)) { 2448 if (unlikely(contended)) { 2449 spin_unlock(&q->busylock); 2450 contended = false; 2451 } 2452 __qdisc_run(q); 2453 } 2454 } 2455 spin_unlock(root_lock); 2456 if (unlikely(contended)) 2457 spin_unlock(&q->busylock); 2458 return rc; 2459 } 2460 2461 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2462 static void skb_update_prio(struct sk_buff *skb) 2463 { 2464 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2465 2466 if (!skb->priority && skb->sk && map) { 2467 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2468 2469 if (prioidx < map->priomap_len) 2470 skb->priority = map->priomap[prioidx]; 2471 } 2472 } 2473 #else 2474 #define skb_update_prio(skb) 2475 #endif 2476 2477 static DEFINE_PER_CPU(int, xmit_recursion); 2478 #define RECURSION_LIMIT 10 2479 2480 /** 2481 * dev_loopback_xmit - loop back @skb 2482 * @skb: buffer to transmit 2483 */ 2484 int dev_loopback_xmit(struct sk_buff *skb) 2485 { 2486 skb_reset_mac_header(skb); 2487 __skb_pull(skb, skb_network_offset(skb)); 2488 skb->pkt_type = PACKET_LOOPBACK; 2489 skb->ip_summed = CHECKSUM_UNNECESSARY; 2490 WARN_ON(!skb_dst(skb)); 2491 skb_dst_force(skb); 2492 netif_rx_ni(skb); 2493 return 0; 2494 } 2495 EXPORT_SYMBOL(dev_loopback_xmit); 2496 2497 /** 2498 * dev_queue_xmit - transmit a buffer 2499 * @skb: buffer to transmit 2500 * 2501 * Queue a buffer for transmission to a network device. The caller must 2502 * have set the device and priority and built the buffer before calling 2503 * this function. The function can be called from an interrupt. 2504 * 2505 * A negative errno code is returned on a failure. A success does not 2506 * guarantee the frame will be transmitted as it may be dropped due 2507 * to congestion or traffic shaping. 2508 * 2509 * ----------------------------------------------------------------------------------- 2510 * I notice this method can also return errors from the queue disciplines, 2511 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2512 * be positive. 2513 * 2514 * Regardless of the return value, the skb is consumed, so it is currently 2515 * difficult to retry a send to this method. (You can bump the ref count 2516 * before sending to hold a reference for retry if you are careful.) 2517 * 2518 * When calling this method, interrupts MUST be enabled. This is because 2519 * the BH enable code must have IRQs enabled so that it will not deadlock. 2520 * --BLG 2521 */ 2522 int dev_queue_xmit(struct sk_buff *skb) 2523 { 2524 struct net_device *dev = skb->dev; 2525 struct netdev_queue *txq; 2526 struct Qdisc *q; 2527 int rc = -ENOMEM; 2528 2529 /* Disable soft irqs for various locks below. Also 2530 * stops preemption for RCU. 2531 */ 2532 rcu_read_lock_bh(); 2533 2534 skb_update_prio(skb); 2535 2536 txq = dev_pick_tx(dev, skb); 2537 q = rcu_dereference_bh(txq->qdisc); 2538 2539 #ifdef CONFIG_NET_CLS_ACT 2540 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2541 #endif 2542 trace_net_dev_queue(skb); 2543 if (q->enqueue) { 2544 rc = __dev_xmit_skb(skb, q, dev, txq); 2545 goto out; 2546 } 2547 2548 /* The device has no queue. Common case for software devices: 2549 loopback, all the sorts of tunnels... 2550 2551 Really, it is unlikely that netif_tx_lock protection is necessary 2552 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2553 counters.) 2554 However, it is possible, that they rely on protection 2555 made by us here. 2556 2557 Check this and shot the lock. It is not prone from deadlocks. 2558 Either shot noqueue qdisc, it is even simpler 8) 2559 */ 2560 if (dev->flags & IFF_UP) { 2561 int cpu = smp_processor_id(); /* ok because BHs are off */ 2562 2563 if (txq->xmit_lock_owner != cpu) { 2564 2565 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2566 goto recursion_alert; 2567 2568 HARD_TX_LOCK(dev, txq, cpu); 2569 2570 if (!netif_xmit_stopped(txq)) { 2571 __this_cpu_inc(xmit_recursion); 2572 rc = dev_hard_start_xmit(skb, dev, txq); 2573 __this_cpu_dec(xmit_recursion); 2574 if (dev_xmit_complete(rc)) { 2575 HARD_TX_UNLOCK(dev, txq); 2576 goto out; 2577 } 2578 } 2579 HARD_TX_UNLOCK(dev, txq); 2580 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2581 dev->name); 2582 } else { 2583 /* Recursion is detected! It is possible, 2584 * unfortunately 2585 */ 2586 recursion_alert: 2587 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2588 dev->name); 2589 } 2590 } 2591 2592 rc = -ENETDOWN; 2593 rcu_read_unlock_bh(); 2594 2595 kfree_skb(skb); 2596 return rc; 2597 out: 2598 rcu_read_unlock_bh(); 2599 return rc; 2600 } 2601 EXPORT_SYMBOL(dev_queue_xmit); 2602 2603 2604 /*======================================================================= 2605 Receiver routines 2606 =======================================================================*/ 2607 2608 int netdev_max_backlog __read_mostly = 1000; 2609 int netdev_tstamp_prequeue __read_mostly = 1; 2610 int netdev_budget __read_mostly = 300; 2611 int weight_p __read_mostly = 64; /* old backlog weight */ 2612 2613 /* Called with irq disabled */ 2614 static inline void ____napi_schedule(struct softnet_data *sd, 2615 struct napi_struct *napi) 2616 { 2617 list_add_tail(&napi->poll_list, &sd->poll_list); 2618 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2619 } 2620 2621 /* 2622 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2623 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2624 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2625 * if hash is a canonical 4-tuple hash over transport ports. 2626 */ 2627 void __skb_get_rxhash(struct sk_buff *skb) 2628 { 2629 struct flow_keys keys; 2630 u32 hash; 2631 2632 if (!skb_flow_dissect(skb, &keys)) 2633 return; 2634 2635 if (keys.ports) { 2636 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2637 swap(keys.port16[0], keys.port16[1]); 2638 skb->l4_rxhash = 1; 2639 } 2640 2641 /* get a consistent hash (same value on both flow directions) */ 2642 if ((__force u32)keys.dst < (__force u32)keys.src) 2643 swap(keys.dst, keys.src); 2644 2645 hash = jhash_3words((__force u32)keys.dst, 2646 (__force u32)keys.src, 2647 (__force u32)keys.ports, hashrnd); 2648 if (!hash) 2649 hash = 1; 2650 2651 skb->rxhash = hash; 2652 } 2653 EXPORT_SYMBOL(__skb_get_rxhash); 2654 2655 #ifdef CONFIG_RPS 2656 2657 /* One global table that all flow-based protocols share. */ 2658 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2659 EXPORT_SYMBOL(rps_sock_flow_table); 2660 2661 struct static_key rps_needed __read_mostly; 2662 2663 static struct rps_dev_flow * 2664 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2665 struct rps_dev_flow *rflow, u16 next_cpu) 2666 { 2667 if (next_cpu != RPS_NO_CPU) { 2668 #ifdef CONFIG_RFS_ACCEL 2669 struct netdev_rx_queue *rxqueue; 2670 struct rps_dev_flow_table *flow_table; 2671 struct rps_dev_flow *old_rflow; 2672 u32 flow_id; 2673 u16 rxq_index; 2674 int rc; 2675 2676 /* Should we steer this flow to a different hardware queue? */ 2677 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2678 !(dev->features & NETIF_F_NTUPLE)) 2679 goto out; 2680 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2681 if (rxq_index == skb_get_rx_queue(skb)) 2682 goto out; 2683 2684 rxqueue = dev->_rx + rxq_index; 2685 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2686 if (!flow_table) 2687 goto out; 2688 flow_id = skb->rxhash & flow_table->mask; 2689 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2690 rxq_index, flow_id); 2691 if (rc < 0) 2692 goto out; 2693 old_rflow = rflow; 2694 rflow = &flow_table->flows[flow_id]; 2695 rflow->filter = rc; 2696 if (old_rflow->filter == rflow->filter) 2697 old_rflow->filter = RPS_NO_FILTER; 2698 out: 2699 #endif 2700 rflow->last_qtail = 2701 per_cpu(softnet_data, next_cpu).input_queue_head; 2702 } 2703 2704 rflow->cpu = next_cpu; 2705 return rflow; 2706 } 2707 2708 /* 2709 * get_rps_cpu is called from netif_receive_skb and returns the target 2710 * CPU from the RPS map of the receiving queue for a given skb. 2711 * rcu_read_lock must be held on entry. 2712 */ 2713 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2714 struct rps_dev_flow **rflowp) 2715 { 2716 struct netdev_rx_queue *rxqueue; 2717 struct rps_map *map; 2718 struct rps_dev_flow_table *flow_table; 2719 struct rps_sock_flow_table *sock_flow_table; 2720 int cpu = -1; 2721 u16 tcpu; 2722 2723 if (skb_rx_queue_recorded(skb)) { 2724 u16 index = skb_get_rx_queue(skb); 2725 if (unlikely(index >= dev->real_num_rx_queues)) { 2726 WARN_ONCE(dev->real_num_rx_queues > 1, 2727 "%s received packet on queue %u, but number " 2728 "of RX queues is %u\n", 2729 dev->name, index, dev->real_num_rx_queues); 2730 goto done; 2731 } 2732 rxqueue = dev->_rx + index; 2733 } else 2734 rxqueue = dev->_rx; 2735 2736 map = rcu_dereference(rxqueue->rps_map); 2737 if (map) { 2738 if (map->len == 1 && 2739 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2740 tcpu = map->cpus[0]; 2741 if (cpu_online(tcpu)) 2742 cpu = tcpu; 2743 goto done; 2744 } 2745 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2746 goto done; 2747 } 2748 2749 skb_reset_network_header(skb); 2750 if (!skb_get_rxhash(skb)) 2751 goto done; 2752 2753 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2754 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2755 if (flow_table && sock_flow_table) { 2756 u16 next_cpu; 2757 struct rps_dev_flow *rflow; 2758 2759 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2760 tcpu = rflow->cpu; 2761 2762 next_cpu = sock_flow_table->ents[skb->rxhash & 2763 sock_flow_table->mask]; 2764 2765 /* 2766 * If the desired CPU (where last recvmsg was done) is 2767 * different from current CPU (one in the rx-queue flow 2768 * table entry), switch if one of the following holds: 2769 * - Current CPU is unset (equal to RPS_NO_CPU). 2770 * - Current CPU is offline. 2771 * - The current CPU's queue tail has advanced beyond the 2772 * last packet that was enqueued using this table entry. 2773 * This guarantees that all previous packets for the flow 2774 * have been dequeued, thus preserving in order delivery. 2775 */ 2776 if (unlikely(tcpu != next_cpu) && 2777 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2778 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2779 rflow->last_qtail)) >= 0)) 2780 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2781 2782 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2783 *rflowp = rflow; 2784 cpu = tcpu; 2785 goto done; 2786 } 2787 } 2788 2789 if (map) { 2790 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2791 2792 if (cpu_online(tcpu)) { 2793 cpu = tcpu; 2794 goto done; 2795 } 2796 } 2797 2798 done: 2799 return cpu; 2800 } 2801 2802 #ifdef CONFIG_RFS_ACCEL 2803 2804 /** 2805 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2806 * @dev: Device on which the filter was set 2807 * @rxq_index: RX queue index 2808 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2809 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2810 * 2811 * Drivers that implement ndo_rx_flow_steer() should periodically call 2812 * this function for each installed filter and remove the filters for 2813 * which it returns %true. 2814 */ 2815 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2816 u32 flow_id, u16 filter_id) 2817 { 2818 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2819 struct rps_dev_flow_table *flow_table; 2820 struct rps_dev_flow *rflow; 2821 bool expire = true; 2822 int cpu; 2823 2824 rcu_read_lock(); 2825 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2826 if (flow_table && flow_id <= flow_table->mask) { 2827 rflow = &flow_table->flows[flow_id]; 2828 cpu = ACCESS_ONCE(rflow->cpu); 2829 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2830 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2831 rflow->last_qtail) < 2832 (int)(10 * flow_table->mask))) 2833 expire = false; 2834 } 2835 rcu_read_unlock(); 2836 return expire; 2837 } 2838 EXPORT_SYMBOL(rps_may_expire_flow); 2839 2840 #endif /* CONFIG_RFS_ACCEL */ 2841 2842 /* Called from hardirq (IPI) context */ 2843 static void rps_trigger_softirq(void *data) 2844 { 2845 struct softnet_data *sd = data; 2846 2847 ____napi_schedule(sd, &sd->backlog); 2848 sd->received_rps++; 2849 } 2850 2851 #endif /* CONFIG_RPS */ 2852 2853 /* 2854 * Check if this softnet_data structure is another cpu one 2855 * If yes, queue it to our IPI list and return 1 2856 * If no, return 0 2857 */ 2858 static int rps_ipi_queued(struct softnet_data *sd) 2859 { 2860 #ifdef CONFIG_RPS 2861 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2862 2863 if (sd != mysd) { 2864 sd->rps_ipi_next = mysd->rps_ipi_list; 2865 mysd->rps_ipi_list = sd; 2866 2867 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2868 return 1; 2869 } 2870 #endif /* CONFIG_RPS */ 2871 return 0; 2872 } 2873 2874 /* 2875 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2876 * queue (may be a remote CPU queue). 2877 */ 2878 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2879 unsigned int *qtail) 2880 { 2881 struct softnet_data *sd; 2882 unsigned long flags; 2883 2884 sd = &per_cpu(softnet_data, cpu); 2885 2886 local_irq_save(flags); 2887 2888 rps_lock(sd); 2889 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2890 if (skb_queue_len(&sd->input_pkt_queue)) { 2891 enqueue: 2892 __skb_queue_tail(&sd->input_pkt_queue, skb); 2893 input_queue_tail_incr_save(sd, qtail); 2894 rps_unlock(sd); 2895 local_irq_restore(flags); 2896 return NET_RX_SUCCESS; 2897 } 2898 2899 /* Schedule NAPI for backlog device 2900 * We can use non atomic operation since we own the queue lock 2901 */ 2902 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2903 if (!rps_ipi_queued(sd)) 2904 ____napi_schedule(sd, &sd->backlog); 2905 } 2906 goto enqueue; 2907 } 2908 2909 sd->dropped++; 2910 rps_unlock(sd); 2911 2912 local_irq_restore(flags); 2913 2914 atomic_long_inc(&skb->dev->rx_dropped); 2915 kfree_skb(skb); 2916 return NET_RX_DROP; 2917 } 2918 2919 /** 2920 * netif_rx - post buffer to the network code 2921 * @skb: buffer to post 2922 * 2923 * This function receives a packet from a device driver and queues it for 2924 * the upper (protocol) levels to process. It always succeeds. The buffer 2925 * may be dropped during processing for congestion control or by the 2926 * protocol layers. 2927 * 2928 * return values: 2929 * NET_RX_SUCCESS (no congestion) 2930 * NET_RX_DROP (packet was dropped) 2931 * 2932 */ 2933 2934 int netif_rx(struct sk_buff *skb) 2935 { 2936 int ret; 2937 2938 /* if netpoll wants it, pretend we never saw it */ 2939 if (netpoll_rx(skb)) 2940 return NET_RX_DROP; 2941 2942 net_timestamp_check(netdev_tstamp_prequeue, skb); 2943 2944 trace_netif_rx(skb); 2945 #ifdef CONFIG_RPS 2946 if (static_key_false(&rps_needed)) { 2947 struct rps_dev_flow voidflow, *rflow = &voidflow; 2948 int cpu; 2949 2950 preempt_disable(); 2951 rcu_read_lock(); 2952 2953 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2954 if (cpu < 0) 2955 cpu = smp_processor_id(); 2956 2957 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2958 2959 rcu_read_unlock(); 2960 preempt_enable(); 2961 } else 2962 #endif 2963 { 2964 unsigned int qtail; 2965 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2966 put_cpu(); 2967 } 2968 return ret; 2969 } 2970 EXPORT_SYMBOL(netif_rx); 2971 2972 int netif_rx_ni(struct sk_buff *skb) 2973 { 2974 int err; 2975 2976 preempt_disable(); 2977 err = netif_rx(skb); 2978 if (local_softirq_pending()) 2979 do_softirq(); 2980 preempt_enable(); 2981 2982 return err; 2983 } 2984 EXPORT_SYMBOL(netif_rx_ni); 2985 2986 static void net_tx_action(struct softirq_action *h) 2987 { 2988 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2989 2990 if (sd->completion_queue) { 2991 struct sk_buff *clist; 2992 2993 local_irq_disable(); 2994 clist = sd->completion_queue; 2995 sd->completion_queue = NULL; 2996 local_irq_enable(); 2997 2998 while (clist) { 2999 struct sk_buff *skb = clist; 3000 clist = clist->next; 3001 3002 WARN_ON(atomic_read(&skb->users)); 3003 trace_kfree_skb(skb, net_tx_action); 3004 __kfree_skb(skb); 3005 } 3006 } 3007 3008 if (sd->output_queue) { 3009 struct Qdisc *head; 3010 3011 local_irq_disable(); 3012 head = sd->output_queue; 3013 sd->output_queue = NULL; 3014 sd->output_queue_tailp = &sd->output_queue; 3015 local_irq_enable(); 3016 3017 while (head) { 3018 struct Qdisc *q = head; 3019 spinlock_t *root_lock; 3020 3021 head = head->next_sched; 3022 3023 root_lock = qdisc_lock(q); 3024 if (spin_trylock(root_lock)) { 3025 smp_mb__before_clear_bit(); 3026 clear_bit(__QDISC_STATE_SCHED, 3027 &q->state); 3028 qdisc_run(q); 3029 spin_unlock(root_lock); 3030 } else { 3031 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3032 &q->state)) { 3033 __netif_reschedule(q); 3034 } else { 3035 smp_mb__before_clear_bit(); 3036 clear_bit(__QDISC_STATE_SCHED, 3037 &q->state); 3038 } 3039 } 3040 } 3041 } 3042 } 3043 3044 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3045 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3046 /* This hook is defined here for ATM LANE */ 3047 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3048 unsigned char *addr) __read_mostly; 3049 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3050 #endif 3051 3052 #ifdef CONFIG_NET_CLS_ACT 3053 /* TODO: Maybe we should just force sch_ingress to be compiled in 3054 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3055 * a compare and 2 stores extra right now if we dont have it on 3056 * but have CONFIG_NET_CLS_ACT 3057 * NOTE: This doesn't stop any functionality; if you dont have 3058 * the ingress scheduler, you just can't add policies on ingress. 3059 * 3060 */ 3061 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3062 { 3063 struct net_device *dev = skb->dev; 3064 u32 ttl = G_TC_RTTL(skb->tc_verd); 3065 int result = TC_ACT_OK; 3066 struct Qdisc *q; 3067 3068 if (unlikely(MAX_RED_LOOP < ttl++)) { 3069 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3070 skb->skb_iif, dev->ifindex); 3071 return TC_ACT_SHOT; 3072 } 3073 3074 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3075 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3076 3077 q = rxq->qdisc; 3078 if (q != &noop_qdisc) { 3079 spin_lock(qdisc_lock(q)); 3080 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3081 result = qdisc_enqueue_root(skb, q); 3082 spin_unlock(qdisc_lock(q)); 3083 } 3084 3085 return result; 3086 } 3087 3088 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3089 struct packet_type **pt_prev, 3090 int *ret, struct net_device *orig_dev) 3091 { 3092 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3093 3094 if (!rxq || rxq->qdisc == &noop_qdisc) 3095 goto out; 3096 3097 if (*pt_prev) { 3098 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3099 *pt_prev = NULL; 3100 } 3101 3102 switch (ing_filter(skb, rxq)) { 3103 case TC_ACT_SHOT: 3104 case TC_ACT_STOLEN: 3105 kfree_skb(skb); 3106 return NULL; 3107 } 3108 3109 out: 3110 skb->tc_verd = 0; 3111 return skb; 3112 } 3113 #endif 3114 3115 /** 3116 * netdev_rx_handler_register - register receive handler 3117 * @dev: device to register a handler for 3118 * @rx_handler: receive handler to register 3119 * @rx_handler_data: data pointer that is used by rx handler 3120 * 3121 * Register a receive hander for a device. This handler will then be 3122 * called from __netif_receive_skb. A negative errno code is returned 3123 * on a failure. 3124 * 3125 * The caller must hold the rtnl_mutex. 3126 * 3127 * For a general description of rx_handler, see enum rx_handler_result. 3128 */ 3129 int netdev_rx_handler_register(struct net_device *dev, 3130 rx_handler_func_t *rx_handler, 3131 void *rx_handler_data) 3132 { 3133 ASSERT_RTNL(); 3134 3135 if (dev->rx_handler) 3136 return -EBUSY; 3137 3138 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3139 rcu_assign_pointer(dev->rx_handler, rx_handler); 3140 3141 return 0; 3142 } 3143 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3144 3145 /** 3146 * netdev_rx_handler_unregister - unregister receive handler 3147 * @dev: device to unregister a handler from 3148 * 3149 * Unregister a receive hander from a device. 3150 * 3151 * The caller must hold the rtnl_mutex. 3152 */ 3153 void netdev_rx_handler_unregister(struct net_device *dev) 3154 { 3155 3156 ASSERT_RTNL(); 3157 RCU_INIT_POINTER(dev->rx_handler, NULL); 3158 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3159 } 3160 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3161 3162 /* 3163 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3164 * the special handling of PFMEMALLOC skbs. 3165 */ 3166 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3167 { 3168 switch (skb->protocol) { 3169 case __constant_htons(ETH_P_ARP): 3170 case __constant_htons(ETH_P_IP): 3171 case __constant_htons(ETH_P_IPV6): 3172 case __constant_htons(ETH_P_8021Q): 3173 return true; 3174 default: 3175 return false; 3176 } 3177 } 3178 3179 static int __netif_receive_skb(struct sk_buff *skb) 3180 { 3181 struct packet_type *ptype, *pt_prev; 3182 rx_handler_func_t *rx_handler; 3183 struct net_device *orig_dev; 3184 struct net_device *null_or_dev; 3185 bool deliver_exact = false; 3186 int ret = NET_RX_DROP; 3187 __be16 type; 3188 unsigned long pflags = current->flags; 3189 3190 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3191 3192 trace_netif_receive_skb(skb); 3193 3194 /* 3195 * PFMEMALLOC skbs are special, they should 3196 * - be delivered to SOCK_MEMALLOC sockets only 3197 * - stay away from userspace 3198 * - have bounded memory usage 3199 * 3200 * Use PF_MEMALLOC as this saves us from propagating the allocation 3201 * context down to all allocation sites. 3202 */ 3203 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3204 current->flags |= PF_MEMALLOC; 3205 3206 /* if we've gotten here through NAPI, check netpoll */ 3207 if (netpoll_receive_skb(skb)) 3208 goto out; 3209 3210 orig_dev = skb->dev; 3211 3212 skb_reset_network_header(skb); 3213 skb_reset_transport_header(skb); 3214 skb_reset_mac_len(skb); 3215 3216 pt_prev = NULL; 3217 3218 rcu_read_lock(); 3219 3220 another_round: 3221 skb->skb_iif = skb->dev->ifindex; 3222 3223 __this_cpu_inc(softnet_data.processed); 3224 3225 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3226 skb = vlan_untag(skb); 3227 if (unlikely(!skb)) 3228 goto unlock; 3229 } 3230 3231 #ifdef CONFIG_NET_CLS_ACT 3232 if (skb->tc_verd & TC_NCLS) { 3233 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3234 goto ncls; 3235 } 3236 #endif 3237 3238 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) 3239 goto skip_taps; 3240 3241 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3242 if (!ptype->dev || ptype->dev == skb->dev) { 3243 if (pt_prev) 3244 ret = deliver_skb(skb, pt_prev, orig_dev); 3245 pt_prev = ptype; 3246 } 3247 } 3248 3249 skip_taps: 3250 #ifdef CONFIG_NET_CLS_ACT 3251 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3252 if (!skb) 3253 goto unlock; 3254 ncls: 3255 #endif 3256 3257 if (sk_memalloc_socks() && skb_pfmemalloc(skb) 3258 && !skb_pfmemalloc_protocol(skb)) 3259 goto drop; 3260 3261 rx_handler = rcu_dereference(skb->dev->rx_handler); 3262 if (vlan_tx_tag_present(skb)) { 3263 if (pt_prev) { 3264 ret = deliver_skb(skb, pt_prev, orig_dev); 3265 pt_prev = NULL; 3266 } 3267 if (vlan_do_receive(&skb, !rx_handler)) 3268 goto another_round; 3269 else if (unlikely(!skb)) 3270 goto unlock; 3271 } 3272 3273 if (rx_handler) { 3274 if (pt_prev) { 3275 ret = deliver_skb(skb, pt_prev, orig_dev); 3276 pt_prev = NULL; 3277 } 3278 switch (rx_handler(&skb)) { 3279 case RX_HANDLER_CONSUMED: 3280 goto unlock; 3281 case RX_HANDLER_ANOTHER: 3282 goto another_round; 3283 case RX_HANDLER_EXACT: 3284 deliver_exact = true; 3285 case RX_HANDLER_PASS: 3286 break; 3287 default: 3288 BUG(); 3289 } 3290 } 3291 3292 /* deliver only exact match when indicated */ 3293 null_or_dev = deliver_exact ? skb->dev : NULL; 3294 3295 type = skb->protocol; 3296 list_for_each_entry_rcu(ptype, 3297 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3298 if (ptype->type == type && 3299 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3300 ptype->dev == orig_dev)) { 3301 if (pt_prev) 3302 ret = deliver_skb(skb, pt_prev, orig_dev); 3303 pt_prev = ptype; 3304 } 3305 } 3306 3307 if (pt_prev) { 3308 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3309 ret = -ENOMEM; 3310 else 3311 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3312 } else { 3313 drop: 3314 atomic_long_inc(&skb->dev->rx_dropped); 3315 kfree_skb(skb); 3316 /* Jamal, now you will not able to escape explaining 3317 * me how you were going to use this. :-) 3318 */ 3319 ret = NET_RX_DROP; 3320 } 3321 3322 unlock: 3323 rcu_read_unlock(); 3324 out: 3325 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3326 return ret; 3327 } 3328 3329 /** 3330 * netif_receive_skb - process receive buffer from network 3331 * @skb: buffer to process 3332 * 3333 * netif_receive_skb() is the main receive data processing function. 3334 * It always succeeds. The buffer may be dropped during processing 3335 * for congestion control or by the protocol layers. 3336 * 3337 * This function may only be called from softirq context and interrupts 3338 * should be enabled. 3339 * 3340 * Return values (usually ignored): 3341 * NET_RX_SUCCESS: no congestion 3342 * NET_RX_DROP: packet was dropped 3343 */ 3344 int netif_receive_skb(struct sk_buff *skb) 3345 { 3346 net_timestamp_check(netdev_tstamp_prequeue, skb); 3347 3348 if (skb_defer_rx_timestamp(skb)) 3349 return NET_RX_SUCCESS; 3350 3351 #ifdef CONFIG_RPS 3352 if (static_key_false(&rps_needed)) { 3353 struct rps_dev_flow voidflow, *rflow = &voidflow; 3354 int cpu, ret; 3355 3356 rcu_read_lock(); 3357 3358 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3359 3360 if (cpu >= 0) { 3361 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3362 rcu_read_unlock(); 3363 return ret; 3364 } 3365 rcu_read_unlock(); 3366 } 3367 #endif 3368 return __netif_receive_skb(skb); 3369 } 3370 EXPORT_SYMBOL(netif_receive_skb); 3371 3372 /* Network device is going away, flush any packets still pending 3373 * Called with irqs disabled. 3374 */ 3375 static void flush_backlog(void *arg) 3376 { 3377 struct net_device *dev = arg; 3378 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3379 struct sk_buff *skb, *tmp; 3380 3381 rps_lock(sd); 3382 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3383 if (skb->dev == dev) { 3384 __skb_unlink(skb, &sd->input_pkt_queue); 3385 kfree_skb(skb); 3386 input_queue_head_incr(sd); 3387 } 3388 } 3389 rps_unlock(sd); 3390 3391 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3392 if (skb->dev == dev) { 3393 __skb_unlink(skb, &sd->process_queue); 3394 kfree_skb(skb); 3395 input_queue_head_incr(sd); 3396 } 3397 } 3398 } 3399 3400 static int napi_gro_complete(struct sk_buff *skb) 3401 { 3402 struct packet_type *ptype; 3403 __be16 type = skb->protocol; 3404 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3405 int err = -ENOENT; 3406 3407 if (NAPI_GRO_CB(skb)->count == 1) { 3408 skb_shinfo(skb)->gso_size = 0; 3409 goto out; 3410 } 3411 3412 rcu_read_lock(); 3413 list_for_each_entry_rcu(ptype, head, list) { 3414 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3415 continue; 3416 3417 err = ptype->gro_complete(skb); 3418 break; 3419 } 3420 rcu_read_unlock(); 3421 3422 if (err) { 3423 WARN_ON(&ptype->list == head); 3424 kfree_skb(skb); 3425 return NET_RX_SUCCESS; 3426 } 3427 3428 out: 3429 return netif_receive_skb(skb); 3430 } 3431 3432 inline void napi_gro_flush(struct napi_struct *napi) 3433 { 3434 struct sk_buff *skb, *next; 3435 3436 for (skb = napi->gro_list; skb; skb = next) { 3437 next = skb->next; 3438 skb->next = NULL; 3439 napi_gro_complete(skb); 3440 } 3441 3442 napi->gro_count = 0; 3443 napi->gro_list = NULL; 3444 } 3445 EXPORT_SYMBOL(napi_gro_flush); 3446 3447 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3448 { 3449 struct sk_buff **pp = NULL; 3450 struct packet_type *ptype; 3451 __be16 type = skb->protocol; 3452 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3453 int same_flow; 3454 int mac_len; 3455 enum gro_result ret; 3456 3457 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3458 goto normal; 3459 3460 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3461 goto normal; 3462 3463 rcu_read_lock(); 3464 list_for_each_entry_rcu(ptype, head, list) { 3465 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3466 continue; 3467 3468 skb_set_network_header(skb, skb_gro_offset(skb)); 3469 mac_len = skb->network_header - skb->mac_header; 3470 skb->mac_len = mac_len; 3471 NAPI_GRO_CB(skb)->same_flow = 0; 3472 NAPI_GRO_CB(skb)->flush = 0; 3473 NAPI_GRO_CB(skb)->free = 0; 3474 3475 pp = ptype->gro_receive(&napi->gro_list, skb); 3476 break; 3477 } 3478 rcu_read_unlock(); 3479 3480 if (&ptype->list == head) 3481 goto normal; 3482 3483 same_flow = NAPI_GRO_CB(skb)->same_flow; 3484 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3485 3486 if (pp) { 3487 struct sk_buff *nskb = *pp; 3488 3489 *pp = nskb->next; 3490 nskb->next = NULL; 3491 napi_gro_complete(nskb); 3492 napi->gro_count--; 3493 } 3494 3495 if (same_flow) 3496 goto ok; 3497 3498 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3499 goto normal; 3500 3501 napi->gro_count++; 3502 NAPI_GRO_CB(skb)->count = 1; 3503 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3504 skb->next = napi->gro_list; 3505 napi->gro_list = skb; 3506 ret = GRO_HELD; 3507 3508 pull: 3509 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3510 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3511 3512 BUG_ON(skb->end - skb->tail < grow); 3513 3514 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3515 3516 skb->tail += grow; 3517 skb->data_len -= grow; 3518 3519 skb_shinfo(skb)->frags[0].page_offset += grow; 3520 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3521 3522 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3523 skb_frag_unref(skb, 0); 3524 memmove(skb_shinfo(skb)->frags, 3525 skb_shinfo(skb)->frags + 1, 3526 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3527 } 3528 } 3529 3530 ok: 3531 return ret; 3532 3533 normal: 3534 ret = GRO_NORMAL; 3535 goto pull; 3536 } 3537 EXPORT_SYMBOL(dev_gro_receive); 3538 3539 static inline gro_result_t 3540 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3541 { 3542 struct sk_buff *p; 3543 unsigned int maclen = skb->dev->hard_header_len; 3544 3545 for (p = napi->gro_list; p; p = p->next) { 3546 unsigned long diffs; 3547 3548 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3549 diffs |= p->vlan_tci ^ skb->vlan_tci; 3550 if (maclen == ETH_HLEN) 3551 diffs |= compare_ether_header(skb_mac_header(p), 3552 skb_gro_mac_header(skb)); 3553 else if (!diffs) 3554 diffs = memcmp(skb_mac_header(p), 3555 skb_gro_mac_header(skb), 3556 maclen); 3557 NAPI_GRO_CB(p)->same_flow = !diffs; 3558 NAPI_GRO_CB(p)->flush = 0; 3559 } 3560 3561 return dev_gro_receive(napi, skb); 3562 } 3563 3564 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3565 { 3566 switch (ret) { 3567 case GRO_NORMAL: 3568 if (netif_receive_skb(skb)) 3569 ret = GRO_DROP; 3570 break; 3571 3572 case GRO_DROP: 3573 kfree_skb(skb); 3574 break; 3575 3576 case GRO_MERGED_FREE: 3577 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3578 kmem_cache_free(skbuff_head_cache, skb); 3579 else 3580 __kfree_skb(skb); 3581 break; 3582 3583 case GRO_HELD: 3584 case GRO_MERGED: 3585 break; 3586 } 3587 3588 return ret; 3589 } 3590 EXPORT_SYMBOL(napi_skb_finish); 3591 3592 void skb_gro_reset_offset(struct sk_buff *skb) 3593 { 3594 NAPI_GRO_CB(skb)->data_offset = 0; 3595 NAPI_GRO_CB(skb)->frag0 = NULL; 3596 NAPI_GRO_CB(skb)->frag0_len = 0; 3597 3598 if (skb->mac_header == skb->tail && 3599 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3600 NAPI_GRO_CB(skb)->frag0 = 3601 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3602 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3603 } 3604 } 3605 EXPORT_SYMBOL(skb_gro_reset_offset); 3606 3607 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3608 { 3609 skb_gro_reset_offset(skb); 3610 3611 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3612 } 3613 EXPORT_SYMBOL(napi_gro_receive); 3614 3615 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3616 { 3617 __skb_pull(skb, skb_headlen(skb)); 3618 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3619 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3620 skb->vlan_tci = 0; 3621 skb->dev = napi->dev; 3622 skb->skb_iif = 0; 3623 3624 napi->skb = skb; 3625 } 3626 3627 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3628 { 3629 struct sk_buff *skb = napi->skb; 3630 3631 if (!skb) { 3632 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3633 if (skb) 3634 napi->skb = skb; 3635 } 3636 return skb; 3637 } 3638 EXPORT_SYMBOL(napi_get_frags); 3639 3640 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3641 gro_result_t ret) 3642 { 3643 switch (ret) { 3644 case GRO_NORMAL: 3645 case GRO_HELD: 3646 skb->protocol = eth_type_trans(skb, skb->dev); 3647 3648 if (ret == GRO_HELD) 3649 skb_gro_pull(skb, -ETH_HLEN); 3650 else if (netif_receive_skb(skb)) 3651 ret = GRO_DROP; 3652 break; 3653 3654 case GRO_DROP: 3655 case GRO_MERGED_FREE: 3656 napi_reuse_skb(napi, skb); 3657 break; 3658 3659 case GRO_MERGED: 3660 break; 3661 } 3662 3663 return ret; 3664 } 3665 EXPORT_SYMBOL(napi_frags_finish); 3666 3667 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3668 { 3669 struct sk_buff *skb = napi->skb; 3670 struct ethhdr *eth; 3671 unsigned int hlen; 3672 unsigned int off; 3673 3674 napi->skb = NULL; 3675 3676 skb_reset_mac_header(skb); 3677 skb_gro_reset_offset(skb); 3678 3679 off = skb_gro_offset(skb); 3680 hlen = off + sizeof(*eth); 3681 eth = skb_gro_header_fast(skb, off); 3682 if (skb_gro_header_hard(skb, hlen)) { 3683 eth = skb_gro_header_slow(skb, hlen, off); 3684 if (unlikely(!eth)) { 3685 napi_reuse_skb(napi, skb); 3686 skb = NULL; 3687 goto out; 3688 } 3689 } 3690 3691 skb_gro_pull(skb, sizeof(*eth)); 3692 3693 /* 3694 * This works because the only protocols we care about don't require 3695 * special handling. We'll fix it up properly at the end. 3696 */ 3697 skb->protocol = eth->h_proto; 3698 3699 out: 3700 return skb; 3701 } 3702 3703 gro_result_t napi_gro_frags(struct napi_struct *napi) 3704 { 3705 struct sk_buff *skb = napi_frags_skb(napi); 3706 3707 if (!skb) 3708 return GRO_DROP; 3709 3710 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3711 } 3712 EXPORT_SYMBOL(napi_gro_frags); 3713 3714 /* 3715 * net_rps_action sends any pending IPI's for rps. 3716 * Note: called with local irq disabled, but exits with local irq enabled. 3717 */ 3718 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3719 { 3720 #ifdef CONFIG_RPS 3721 struct softnet_data *remsd = sd->rps_ipi_list; 3722 3723 if (remsd) { 3724 sd->rps_ipi_list = NULL; 3725 3726 local_irq_enable(); 3727 3728 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3729 while (remsd) { 3730 struct softnet_data *next = remsd->rps_ipi_next; 3731 3732 if (cpu_online(remsd->cpu)) 3733 __smp_call_function_single(remsd->cpu, 3734 &remsd->csd, 0); 3735 remsd = next; 3736 } 3737 } else 3738 #endif 3739 local_irq_enable(); 3740 } 3741 3742 static int process_backlog(struct napi_struct *napi, int quota) 3743 { 3744 int work = 0; 3745 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3746 3747 #ifdef CONFIG_RPS 3748 /* Check if we have pending ipi, its better to send them now, 3749 * not waiting net_rx_action() end. 3750 */ 3751 if (sd->rps_ipi_list) { 3752 local_irq_disable(); 3753 net_rps_action_and_irq_enable(sd); 3754 } 3755 #endif 3756 napi->weight = weight_p; 3757 local_irq_disable(); 3758 while (work < quota) { 3759 struct sk_buff *skb; 3760 unsigned int qlen; 3761 3762 while ((skb = __skb_dequeue(&sd->process_queue))) { 3763 local_irq_enable(); 3764 __netif_receive_skb(skb); 3765 local_irq_disable(); 3766 input_queue_head_incr(sd); 3767 if (++work >= quota) { 3768 local_irq_enable(); 3769 return work; 3770 } 3771 } 3772 3773 rps_lock(sd); 3774 qlen = skb_queue_len(&sd->input_pkt_queue); 3775 if (qlen) 3776 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3777 &sd->process_queue); 3778 3779 if (qlen < quota - work) { 3780 /* 3781 * Inline a custom version of __napi_complete(). 3782 * only current cpu owns and manipulates this napi, 3783 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3784 * we can use a plain write instead of clear_bit(), 3785 * and we dont need an smp_mb() memory barrier. 3786 */ 3787 list_del(&napi->poll_list); 3788 napi->state = 0; 3789 3790 quota = work + qlen; 3791 } 3792 rps_unlock(sd); 3793 } 3794 local_irq_enable(); 3795 3796 return work; 3797 } 3798 3799 /** 3800 * __napi_schedule - schedule for receive 3801 * @n: entry to schedule 3802 * 3803 * The entry's receive function will be scheduled to run 3804 */ 3805 void __napi_schedule(struct napi_struct *n) 3806 { 3807 unsigned long flags; 3808 3809 local_irq_save(flags); 3810 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3811 local_irq_restore(flags); 3812 } 3813 EXPORT_SYMBOL(__napi_schedule); 3814 3815 void __napi_complete(struct napi_struct *n) 3816 { 3817 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3818 BUG_ON(n->gro_list); 3819 3820 list_del(&n->poll_list); 3821 smp_mb__before_clear_bit(); 3822 clear_bit(NAPI_STATE_SCHED, &n->state); 3823 } 3824 EXPORT_SYMBOL(__napi_complete); 3825 3826 void napi_complete(struct napi_struct *n) 3827 { 3828 unsigned long flags; 3829 3830 /* 3831 * don't let napi dequeue from the cpu poll list 3832 * just in case its running on a different cpu 3833 */ 3834 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3835 return; 3836 3837 napi_gro_flush(n); 3838 local_irq_save(flags); 3839 __napi_complete(n); 3840 local_irq_restore(flags); 3841 } 3842 EXPORT_SYMBOL(napi_complete); 3843 3844 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3845 int (*poll)(struct napi_struct *, int), int weight) 3846 { 3847 INIT_LIST_HEAD(&napi->poll_list); 3848 napi->gro_count = 0; 3849 napi->gro_list = NULL; 3850 napi->skb = NULL; 3851 napi->poll = poll; 3852 napi->weight = weight; 3853 list_add(&napi->dev_list, &dev->napi_list); 3854 napi->dev = dev; 3855 #ifdef CONFIG_NETPOLL 3856 spin_lock_init(&napi->poll_lock); 3857 napi->poll_owner = -1; 3858 #endif 3859 set_bit(NAPI_STATE_SCHED, &napi->state); 3860 } 3861 EXPORT_SYMBOL(netif_napi_add); 3862 3863 void netif_napi_del(struct napi_struct *napi) 3864 { 3865 struct sk_buff *skb, *next; 3866 3867 list_del_init(&napi->dev_list); 3868 napi_free_frags(napi); 3869 3870 for (skb = napi->gro_list; skb; skb = next) { 3871 next = skb->next; 3872 skb->next = NULL; 3873 kfree_skb(skb); 3874 } 3875 3876 napi->gro_list = NULL; 3877 napi->gro_count = 0; 3878 } 3879 EXPORT_SYMBOL(netif_napi_del); 3880 3881 static void net_rx_action(struct softirq_action *h) 3882 { 3883 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3884 unsigned long time_limit = jiffies + 2; 3885 int budget = netdev_budget; 3886 void *have; 3887 3888 local_irq_disable(); 3889 3890 while (!list_empty(&sd->poll_list)) { 3891 struct napi_struct *n; 3892 int work, weight; 3893 3894 /* If softirq window is exhuasted then punt. 3895 * Allow this to run for 2 jiffies since which will allow 3896 * an average latency of 1.5/HZ. 3897 */ 3898 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3899 goto softnet_break; 3900 3901 local_irq_enable(); 3902 3903 /* Even though interrupts have been re-enabled, this 3904 * access is safe because interrupts can only add new 3905 * entries to the tail of this list, and only ->poll() 3906 * calls can remove this head entry from the list. 3907 */ 3908 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3909 3910 have = netpoll_poll_lock(n); 3911 3912 weight = n->weight; 3913 3914 /* This NAPI_STATE_SCHED test is for avoiding a race 3915 * with netpoll's poll_napi(). Only the entity which 3916 * obtains the lock and sees NAPI_STATE_SCHED set will 3917 * actually make the ->poll() call. Therefore we avoid 3918 * accidentally calling ->poll() when NAPI is not scheduled. 3919 */ 3920 work = 0; 3921 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3922 work = n->poll(n, weight); 3923 trace_napi_poll(n); 3924 } 3925 3926 WARN_ON_ONCE(work > weight); 3927 3928 budget -= work; 3929 3930 local_irq_disable(); 3931 3932 /* Drivers must not modify the NAPI state if they 3933 * consume the entire weight. In such cases this code 3934 * still "owns" the NAPI instance and therefore can 3935 * move the instance around on the list at-will. 3936 */ 3937 if (unlikely(work == weight)) { 3938 if (unlikely(napi_disable_pending(n))) { 3939 local_irq_enable(); 3940 napi_complete(n); 3941 local_irq_disable(); 3942 } else 3943 list_move_tail(&n->poll_list, &sd->poll_list); 3944 } 3945 3946 netpoll_poll_unlock(have); 3947 } 3948 out: 3949 net_rps_action_and_irq_enable(sd); 3950 3951 #ifdef CONFIG_NET_DMA 3952 /* 3953 * There may not be any more sk_buffs coming right now, so push 3954 * any pending DMA copies to hardware 3955 */ 3956 dma_issue_pending_all(); 3957 #endif 3958 3959 return; 3960 3961 softnet_break: 3962 sd->time_squeeze++; 3963 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3964 goto out; 3965 } 3966 3967 static gifconf_func_t *gifconf_list[NPROTO]; 3968 3969 /** 3970 * register_gifconf - register a SIOCGIF handler 3971 * @family: Address family 3972 * @gifconf: Function handler 3973 * 3974 * Register protocol dependent address dumping routines. The handler 3975 * that is passed must not be freed or reused until it has been replaced 3976 * by another handler. 3977 */ 3978 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3979 { 3980 if (family >= NPROTO) 3981 return -EINVAL; 3982 gifconf_list[family] = gifconf; 3983 return 0; 3984 } 3985 EXPORT_SYMBOL(register_gifconf); 3986 3987 3988 /* 3989 * Map an interface index to its name (SIOCGIFNAME) 3990 */ 3991 3992 /* 3993 * We need this ioctl for efficient implementation of the 3994 * if_indextoname() function required by the IPv6 API. Without 3995 * it, we would have to search all the interfaces to find a 3996 * match. --pb 3997 */ 3998 3999 static int dev_ifname(struct net *net, struct ifreq __user *arg) 4000 { 4001 struct net_device *dev; 4002 struct ifreq ifr; 4003 4004 /* 4005 * Fetch the caller's info block. 4006 */ 4007 4008 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4009 return -EFAULT; 4010 4011 rcu_read_lock(); 4012 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 4013 if (!dev) { 4014 rcu_read_unlock(); 4015 return -ENODEV; 4016 } 4017 4018 strcpy(ifr.ifr_name, dev->name); 4019 rcu_read_unlock(); 4020 4021 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 4022 return -EFAULT; 4023 return 0; 4024 } 4025 4026 /* 4027 * Perform a SIOCGIFCONF call. This structure will change 4028 * size eventually, and there is nothing I can do about it. 4029 * Thus we will need a 'compatibility mode'. 4030 */ 4031 4032 static int dev_ifconf(struct net *net, char __user *arg) 4033 { 4034 struct ifconf ifc; 4035 struct net_device *dev; 4036 char __user *pos; 4037 int len; 4038 int total; 4039 int i; 4040 4041 /* 4042 * Fetch the caller's info block. 4043 */ 4044 4045 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4046 return -EFAULT; 4047 4048 pos = ifc.ifc_buf; 4049 len = ifc.ifc_len; 4050 4051 /* 4052 * Loop over the interfaces, and write an info block for each. 4053 */ 4054 4055 total = 0; 4056 for_each_netdev(net, dev) { 4057 for (i = 0; i < NPROTO; i++) { 4058 if (gifconf_list[i]) { 4059 int done; 4060 if (!pos) 4061 done = gifconf_list[i](dev, NULL, 0); 4062 else 4063 done = gifconf_list[i](dev, pos + total, 4064 len - total); 4065 if (done < 0) 4066 return -EFAULT; 4067 total += done; 4068 } 4069 } 4070 } 4071 4072 /* 4073 * All done. Write the updated control block back to the caller. 4074 */ 4075 ifc.ifc_len = total; 4076 4077 /* 4078 * Both BSD and Solaris return 0 here, so we do too. 4079 */ 4080 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4081 } 4082 4083 #ifdef CONFIG_PROC_FS 4084 4085 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1) 4086 4087 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4088 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4089 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4090 4091 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos) 4092 { 4093 struct net *net = seq_file_net(seq); 4094 struct net_device *dev; 4095 struct hlist_node *p; 4096 struct hlist_head *h; 4097 unsigned int count = 0, offset = get_offset(*pos); 4098 4099 h = &net->dev_name_head[get_bucket(*pos)]; 4100 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4101 if (++count == offset) 4102 return dev; 4103 } 4104 4105 return NULL; 4106 } 4107 4108 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos) 4109 { 4110 struct net_device *dev; 4111 unsigned int bucket; 4112 4113 do { 4114 dev = dev_from_same_bucket(seq, pos); 4115 if (dev) 4116 return dev; 4117 4118 bucket = get_bucket(*pos) + 1; 4119 *pos = set_bucket_offset(bucket, 1); 4120 } while (bucket < NETDEV_HASHENTRIES); 4121 4122 return NULL; 4123 } 4124 4125 /* 4126 * This is invoked by the /proc filesystem handler to display a device 4127 * in detail. 4128 */ 4129 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4130 __acquires(RCU) 4131 { 4132 rcu_read_lock(); 4133 if (!*pos) 4134 return SEQ_START_TOKEN; 4135 4136 if (get_bucket(*pos) >= NETDEV_HASHENTRIES) 4137 return NULL; 4138 4139 return dev_from_bucket(seq, pos); 4140 } 4141 4142 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4143 { 4144 ++*pos; 4145 return dev_from_bucket(seq, pos); 4146 } 4147 4148 void dev_seq_stop(struct seq_file *seq, void *v) 4149 __releases(RCU) 4150 { 4151 rcu_read_unlock(); 4152 } 4153 4154 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4155 { 4156 struct rtnl_link_stats64 temp; 4157 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4158 4159 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4160 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4161 dev->name, stats->rx_bytes, stats->rx_packets, 4162 stats->rx_errors, 4163 stats->rx_dropped + stats->rx_missed_errors, 4164 stats->rx_fifo_errors, 4165 stats->rx_length_errors + stats->rx_over_errors + 4166 stats->rx_crc_errors + stats->rx_frame_errors, 4167 stats->rx_compressed, stats->multicast, 4168 stats->tx_bytes, stats->tx_packets, 4169 stats->tx_errors, stats->tx_dropped, 4170 stats->tx_fifo_errors, stats->collisions, 4171 stats->tx_carrier_errors + 4172 stats->tx_aborted_errors + 4173 stats->tx_window_errors + 4174 stats->tx_heartbeat_errors, 4175 stats->tx_compressed); 4176 } 4177 4178 /* 4179 * Called from the PROCfs module. This now uses the new arbitrary sized 4180 * /proc/net interface to create /proc/net/dev 4181 */ 4182 static int dev_seq_show(struct seq_file *seq, void *v) 4183 { 4184 if (v == SEQ_START_TOKEN) 4185 seq_puts(seq, "Inter-| Receive " 4186 " | Transmit\n" 4187 " face |bytes packets errs drop fifo frame " 4188 "compressed multicast|bytes packets errs " 4189 "drop fifo colls carrier compressed\n"); 4190 else 4191 dev_seq_printf_stats(seq, v); 4192 return 0; 4193 } 4194 4195 static struct softnet_data *softnet_get_online(loff_t *pos) 4196 { 4197 struct softnet_data *sd = NULL; 4198 4199 while (*pos < nr_cpu_ids) 4200 if (cpu_online(*pos)) { 4201 sd = &per_cpu(softnet_data, *pos); 4202 break; 4203 } else 4204 ++*pos; 4205 return sd; 4206 } 4207 4208 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4209 { 4210 return softnet_get_online(pos); 4211 } 4212 4213 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4214 { 4215 ++*pos; 4216 return softnet_get_online(pos); 4217 } 4218 4219 static void softnet_seq_stop(struct seq_file *seq, void *v) 4220 { 4221 } 4222 4223 static int softnet_seq_show(struct seq_file *seq, void *v) 4224 { 4225 struct softnet_data *sd = v; 4226 4227 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4228 sd->processed, sd->dropped, sd->time_squeeze, 0, 4229 0, 0, 0, 0, /* was fastroute */ 4230 sd->cpu_collision, sd->received_rps); 4231 return 0; 4232 } 4233 4234 static const struct seq_operations dev_seq_ops = { 4235 .start = dev_seq_start, 4236 .next = dev_seq_next, 4237 .stop = dev_seq_stop, 4238 .show = dev_seq_show, 4239 }; 4240 4241 static int dev_seq_open(struct inode *inode, struct file *file) 4242 { 4243 return seq_open_net(inode, file, &dev_seq_ops, 4244 sizeof(struct seq_net_private)); 4245 } 4246 4247 static const struct file_operations dev_seq_fops = { 4248 .owner = THIS_MODULE, 4249 .open = dev_seq_open, 4250 .read = seq_read, 4251 .llseek = seq_lseek, 4252 .release = seq_release_net, 4253 }; 4254 4255 static const struct seq_operations softnet_seq_ops = { 4256 .start = softnet_seq_start, 4257 .next = softnet_seq_next, 4258 .stop = softnet_seq_stop, 4259 .show = softnet_seq_show, 4260 }; 4261 4262 static int softnet_seq_open(struct inode *inode, struct file *file) 4263 { 4264 return seq_open(file, &softnet_seq_ops); 4265 } 4266 4267 static const struct file_operations softnet_seq_fops = { 4268 .owner = THIS_MODULE, 4269 .open = softnet_seq_open, 4270 .read = seq_read, 4271 .llseek = seq_lseek, 4272 .release = seq_release, 4273 }; 4274 4275 static void *ptype_get_idx(loff_t pos) 4276 { 4277 struct packet_type *pt = NULL; 4278 loff_t i = 0; 4279 int t; 4280 4281 list_for_each_entry_rcu(pt, &ptype_all, list) { 4282 if (i == pos) 4283 return pt; 4284 ++i; 4285 } 4286 4287 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4288 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4289 if (i == pos) 4290 return pt; 4291 ++i; 4292 } 4293 } 4294 return NULL; 4295 } 4296 4297 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4298 __acquires(RCU) 4299 { 4300 rcu_read_lock(); 4301 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4302 } 4303 4304 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4305 { 4306 struct packet_type *pt; 4307 struct list_head *nxt; 4308 int hash; 4309 4310 ++*pos; 4311 if (v == SEQ_START_TOKEN) 4312 return ptype_get_idx(0); 4313 4314 pt = v; 4315 nxt = pt->list.next; 4316 if (pt->type == htons(ETH_P_ALL)) { 4317 if (nxt != &ptype_all) 4318 goto found; 4319 hash = 0; 4320 nxt = ptype_base[0].next; 4321 } else 4322 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4323 4324 while (nxt == &ptype_base[hash]) { 4325 if (++hash >= PTYPE_HASH_SIZE) 4326 return NULL; 4327 nxt = ptype_base[hash].next; 4328 } 4329 found: 4330 return list_entry(nxt, struct packet_type, list); 4331 } 4332 4333 static void ptype_seq_stop(struct seq_file *seq, void *v) 4334 __releases(RCU) 4335 { 4336 rcu_read_unlock(); 4337 } 4338 4339 static int ptype_seq_show(struct seq_file *seq, void *v) 4340 { 4341 struct packet_type *pt = v; 4342 4343 if (v == SEQ_START_TOKEN) 4344 seq_puts(seq, "Type Device Function\n"); 4345 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4346 if (pt->type == htons(ETH_P_ALL)) 4347 seq_puts(seq, "ALL "); 4348 else 4349 seq_printf(seq, "%04x", ntohs(pt->type)); 4350 4351 seq_printf(seq, " %-8s %pF\n", 4352 pt->dev ? pt->dev->name : "", pt->func); 4353 } 4354 4355 return 0; 4356 } 4357 4358 static const struct seq_operations ptype_seq_ops = { 4359 .start = ptype_seq_start, 4360 .next = ptype_seq_next, 4361 .stop = ptype_seq_stop, 4362 .show = ptype_seq_show, 4363 }; 4364 4365 static int ptype_seq_open(struct inode *inode, struct file *file) 4366 { 4367 return seq_open_net(inode, file, &ptype_seq_ops, 4368 sizeof(struct seq_net_private)); 4369 } 4370 4371 static const struct file_operations ptype_seq_fops = { 4372 .owner = THIS_MODULE, 4373 .open = ptype_seq_open, 4374 .read = seq_read, 4375 .llseek = seq_lseek, 4376 .release = seq_release_net, 4377 }; 4378 4379 4380 static int __net_init dev_proc_net_init(struct net *net) 4381 { 4382 int rc = -ENOMEM; 4383 4384 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4385 goto out; 4386 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4387 goto out_dev; 4388 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4389 goto out_softnet; 4390 4391 if (wext_proc_init(net)) 4392 goto out_ptype; 4393 rc = 0; 4394 out: 4395 return rc; 4396 out_ptype: 4397 proc_net_remove(net, "ptype"); 4398 out_softnet: 4399 proc_net_remove(net, "softnet_stat"); 4400 out_dev: 4401 proc_net_remove(net, "dev"); 4402 goto out; 4403 } 4404 4405 static void __net_exit dev_proc_net_exit(struct net *net) 4406 { 4407 wext_proc_exit(net); 4408 4409 proc_net_remove(net, "ptype"); 4410 proc_net_remove(net, "softnet_stat"); 4411 proc_net_remove(net, "dev"); 4412 } 4413 4414 static struct pernet_operations __net_initdata dev_proc_ops = { 4415 .init = dev_proc_net_init, 4416 .exit = dev_proc_net_exit, 4417 }; 4418 4419 static int __init dev_proc_init(void) 4420 { 4421 return register_pernet_subsys(&dev_proc_ops); 4422 } 4423 #else 4424 #define dev_proc_init() 0 4425 #endif /* CONFIG_PROC_FS */ 4426 4427 4428 /** 4429 * netdev_set_master - set up master pointer 4430 * @slave: slave device 4431 * @master: new master device 4432 * 4433 * Changes the master device of the slave. Pass %NULL to break the 4434 * bonding. The caller must hold the RTNL semaphore. On a failure 4435 * a negative errno code is returned. On success the reference counts 4436 * are adjusted and the function returns zero. 4437 */ 4438 int netdev_set_master(struct net_device *slave, struct net_device *master) 4439 { 4440 struct net_device *old = slave->master; 4441 4442 ASSERT_RTNL(); 4443 4444 if (master) { 4445 if (old) 4446 return -EBUSY; 4447 dev_hold(master); 4448 } 4449 4450 slave->master = master; 4451 4452 if (old) 4453 dev_put(old); 4454 return 0; 4455 } 4456 EXPORT_SYMBOL(netdev_set_master); 4457 4458 /** 4459 * netdev_set_bond_master - set up bonding master/slave pair 4460 * @slave: slave device 4461 * @master: new master device 4462 * 4463 * Changes the master device of the slave. Pass %NULL to break the 4464 * bonding. The caller must hold the RTNL semaphore. On a failure 4465 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4466 * to the routing socket and the function returns zero. 4467 */ 4468 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4469 { 4470 int err; 4471 4472 ASSERT_RTNL(); 4473 4474 err = netdev_set_master(slave, master); 4475 if (err) 4476 return err; 4477 if (master) 4478 slave->flags |= IFF_SLAVE; 4479 else 4480 slave->flags &= ~IFF_SLAVE; 4481 4482 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4483 return 0; 4484 } 4485 EXPORT_SYMBOL(netdev_set_bond_master); 4486 4487 static void dev_change_rx_flags(struct net_device *dev, int flags) 4488 { 4489 const struct net_device_ops *ops = dev->netdev_ops; 4490 4491 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4492 ops->ndo_change_rx_flags(dev, flags); 4493 } 4494 4495 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4496 { 4497 unsigned int old_flags = dev->flags; 4498 uid_t uid; 4499 gid_t gid; 4500 4501 ASSERT_RTNL(); 4502 4503 dev->flags |= IFF_PROMISC; 4504 dev->promiscuity += inc; 4505 if (dev->promiscuity == 0) { 4506 /* 4507 * Avoid overflow. 4508 * If inc causes overflow, untouch promisc and return error. 4509 */ 4510 if (inc < 0) 4511 dev->flags &= ~IFF_PROMISC; 4512 else { 4513 dev->promiscuity -= inc; 4514 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4515 dev->name); 4516 return -EOVERFLOW; 4517 } 4518 } 4519 if (dev->flags != old_flags) { 4520 pr_info("device %s %s promiscuous mode\n", 4521 dev->name, 4522 dev->flags & IFF_PROMISC ? "entered" : "left"); 4523 if (audit_enabled) { 4524 current_uid_gid(&uid, &gid); 4525 audit_log(current->audit_context, GFP_ATOMIC, 4526 AUDIT_ANOM_PROMISCUOUS, 4527 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4528 dev->name, (dev->flags & IFF_PROMISC), 4529 (old_flags & IFF_PROMISC), 4530 audit_get_loginuid(current), 4531 uid, gid, 4532 audit_get_sessionid(current)); 4533 } 4534 4535 dev_change_rx_flags(dev, IFF_PROMISC); 4536 } 4537 return 0; 4538 } 4539 4540 /** 4541 * dev_set_promiscuity - update promiscuity count on a device 4542 * @dev: device 4543 * @inc: modifier 4544 * 4545 * Add or remove promiscuity from a device. While the count in the device 4546 * remains above zero the interface remains promiscuous. Once it hits zero 4547 * the device reverts back to normal filtering operation. A negative inc 4548 * value is used to drop promiscuity on the device. 4549 * Return 0 if successful or a negative errno code on error. 4550 */ 4551 int dev_set_promiscuity(struct net_device *dev, int inc) 4552 { 4553 unsigned int old_flags = dev->flags; 4554 int err; 4555 4556 err = __dev_set_promiscuity(dev, inc); 4557 if (err < 0) 4558 return err; 4559 if (dev->flags != old_flags) 4560 dev_set_rx_mode(dev); 4561 return err; 4562 } 4563 EXPORT_SYMBOL(dev_set_promiscuity); 4564 4565 /** 4566 * dev_set_allmulti - update allmulti count on a device 4567 * @dev: device 4568 * @inc: modifier 4569 * 4570 * Add or remove reception of all multicast frames to a device. While the 4571 * count in the device remains above zero the interface remains listening 4572 * to all interfaces. Once it hits zero the device reverts back to normal 4573 * filtering operation. A negative @inc value is used to drop the counter 4574 * when releasing a resource needing all multicasts. 4575 * Return 0 if successful or a negative errno code on error. 4576 */ 4577 4578 int dev_set_allmulti(struct net_device *dev, int inc) 4579 { 4580 unsigned int old_flags = dev->flags; 4581 4582 ASSERT_RTNL(); 4583 4584 dev->flags |= IFF_ALLMULTI; 4585 dev->allmulti += inc; 4586 if (dev->allmulti == 0) { 4587 /* 4588 * Avoid overflow. 4589 * If inc causes overflow, untouch allmulti and return error. 4590 */ 4591 if (inc < 0) 4592 dev->flags &= ~IFF_ALLMULTI; 4593 else { 4594 dev->allmulti -= inc; 4595 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4596 dev->name); 4597 return -EOVERFLOW; 4598 } 4599 } 4600 if (dev->flags ^ old_flags) { 4601 dev_change_rx_flags(dev, IFF_ALLMULTI); 4602 dev_set_rx_mode(dev); 4603 } 4604 return 0; 4605 } 4606 EXPORT_SYMBOL(dev_set_allmulti); 4607 4608 /* 4609 * Upload unicast and multicast address lists to device and 4610 * configure RX filtering. When the device doesn't support unicast 4611 * filtering it is put in promiscuous mode while unicast addresses 4612 * are present. 4613 */ 4614 void __dev_set_rx_mode(struct net_device *dev) 4615 { 4616 const struct net_device_ops *ops = dev->netdev_ops; 4617 4618 /* dev_open will call this function so the list will stay sane. */ 4619 if (!(dev->flags&IFF_UP)) 4620 return; 4621 4622 if (!netif_device_present(dev)) 4623 return; 4624 4625 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4626 /* Unicast addresses changes may only happen under the rtnl, 4627 * therefore calling __dev_set_promiscuity here is safe. 4628 */ 4629 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4630 __dev_set_promiscuity(dev, 1); 4631 dev->uc_promisc = true; 4632 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4633 __dev_set_promiscuity(dev, -1); 4634 dev->uc_promisc = false; 4635 } 4636 } 4637 4638 if (ops->ndo_set_rx_mode) 4639 ops->ndo_set_rx_mode(dev); 4640 } 4641 4642 void dev_set_rx_mode(struct net_device *dev) 4643 { 4644 netif_addr_lock_bh(dev); 4645 __dev_set_rx_mode(dev); 4646 netif_addr_unlock_bh(dev); 4647 } 4648 4649 /** 4650 * dev_get_flags - get flags reported to userspace 4651 * @dev: device 4652 * 4653 * Get the combination of flag bits exported through APIs to userspace. 4654 */ 4655 unsigned int dev_get_flags(const struct net_device *dev) 4656 { 4657 unsigned int flags; 4658 4659 flags = (dev->flags & ~(IFF_PROMISC | 4660 IFF_ALLMULTI | 4661 IFF_RUNNING | 4662 IFF_LOWER_UP | 4663 IFF_DORMANT)) | 4664 (dev->gflags & (IFF_PROMISC | 4665 IFF_ALLMULTI)); 4666 4667 if (netif_running(dev)) { 4668 if (netif_oper_up(dev)) 4669 flags |= IFF_RUNNING; 4670 if (netif_carrier_ok(dev)) 4671 flags |= IFF_LOWER_UP; 4672 if (netif_dormant(dev)) 4673 flags |= IFF_DORMANT; 4674 } 4675 4676 return flags; 4677 } 4678 EXPORT_SYMBOL(dev_get_flags); 4679 4680 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4681 { 4682 unsigned int old_flags = dev->flags; 4683 int ret; 4684 4685 ASSERT_RTNL(); 4686 4687 /* 4688 * Set the flags on our device. 4689 */ 4690 4691 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4692 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4693 IFF_AUTOMEDIA)) | 4694 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4695 IFF_ALLMULTI)); 4696 4697 /* 4698 * Load in the correct multicast list now the flags have changed. 4699 */ 4700 4701 if ((old_flags ^ flags) & IFF_MULTICAST) 4702 dev_change_rx_flags(dev, IFF_MULTICAST); 4703 4704 dev_set_rx_mode(dev); 4705 4706 /* 4707 * Have we downed the interface. We handle IFF_UP ourselves 4708 * according to user attempts to set it, rather than blindly 4709 * setting it. 4710 */ 4711 4712 ret = 0; 4713 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4714 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4715 4716 if (!ret) 4717 dev_set_rx_mode(dev); 4718 } 4719 4720 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4721 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4722 4723 dev->gflags ^= IFF_PROMISC; 4724 dev_set_promiscuity(dev, inc); 4725 } 4726 4727 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4728 is important. Some (broken) drivers set IFF_PROMISC, when 4729 IFF_ALLMULTI is requested not asking us and not reporting. 4730 */ 4731 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4732 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4733 4734 dev->gflags ^= IFF_ALLMULTI; 4735 dev_set_allmulti(dev, inc); 4736 } 4737 4738 return ret; 4739 } 4740 4741 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4742 { 4743 unsigned int changes = dev->flags ^ old_flags; 4744 4745 if (changes & IFF_UP) { 4746 if (dev->flags & IFF_UP) 4747 call_netdevice_notifiers(NETDEV_UP, dev); 4748 else 4749 call_netdevice_notifiers(NETDEV_DOWN, dev); 4750 } 4751 4752 if (dev->flags & IFF_UP && 4753 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4754 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4755 } 4756 4757 /** 4758 * dev_change_flags - change device settings 4759 * @dev: device 4760 * @flags: device state flags 4761 * 4762 * Change settings on device based state flags. The flags are 4763 * in the userspace exported format. 4764 */ 4765 int dev_change_flags(struct net_device *dev, unsigned int flags) 4766 { 4767 int ret; 4768 unsigned int changes, old_flags = dev->flags; 4769 4770 ret = __dev_change_flags(dev, flags); 4771 if (ret < 0) 4772 return ret; 4773 4774 changes = old_flags ^ dev->flags; 4775 if (changes) 4776 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4777 4778 __dev_notify_flags(dev, old_flags); 4779 return ret; 4780 } 4781 EXPORT_SYMBOL(dev_change_flags); 4782 4783 /** 4784 * dev_set_mtu - Change maximum transfer unit 4785 * @dev: device 4786 * @new_mtu: new transfer unit 4787 * 4788 * Change the maximum transfer size of the network device. 4789 */ 4790 int dev_set_mtu(struct net_device *dev, int new_mtu) 4791 { 4792 const struct net_device_ops *ops = dev->netdev_ops; 4793 int err; 4794 4795 if (new_mtu == dev->mtu) 4796 return 0; 4797 4798 /* MTU must be positive. */ 4799 if (new_mtu < 0) 4800 return -EINVAL; 4801 4802 if (!netif_device_present(dev)) 4803 return -ENODEV; 4804 4805 err = 0; 4806 if (ops->ndo_change_mtu) 4807 err = ops->ndo_change_mtu(dev, new_mtu); 4808 else 4809 dev->mtu = new_mtu; 4810 4811 if (!err && dev->flags & IFF_UP) 4812 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4813 return err; 4814 } 4815 EXPORT_SYMBOL(dev_set_mtu); 4816 4817 /** 4818 * dev_set_group - Change group this device belongs to 4819 * @dev: device 4820 * @new_group: group this device should belong to 4821 */ 4822 void dev_set_group(struct net_device *dev, int new_group) 4823 { 4824 dev->group = new_group; 4825 } 4826 EXPORT_SYMBOL(dev_set_group); 4827 4828 /** 4829 * dev_set_mac_address - Change Media Access Control Address 4830 * @dev: device 4831 * @sa: new address 4832 * 4833 * Change the hardware (MAC) address of the device 4834 */ 4835 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4836 { 4837 const struct net_device_ops *ops = dev->netdev_ops; 4838 int err; 4839 4840 if (!ops->ndo_set_mac_address) 4841 return -EOPNOTSUPP; 4842 if (sa->sa_family != dev->type) 4843 return -EINVAL; 4844 if (!netif_device_present(dev)) 4845 return -ENODEV; 4846 err = ops->ndo_set_mac_address(dev, sa); 4847 if (!err) 4848 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4849 add_device_randomness(dev->dev_addr, dev->addr_len); 4850 return err; 4851 } 4852 EXPORT_SYMBOL(dev_set_mac_address); 4853 4854 /* 4855 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4856 */ 4857 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4858 { 4859 int err; 4860 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4861 4862 if (!dev) 4863 return -ENODEV; 4864 4865 switch (cmd) { 4866 case SIOCGIFFLAGS: /* Get interface flags */ 4867 ifr->ifr_flags = (short) dev_get_flags(dev); 4868 return 0; 4869 4870 case SIOCGIFMETRIC: /* Get the metric on the interface 4871 (currently unused) */ 4872 ifr->ifr_metric = 0; 4873 return 0; 4874 4875 case SIOCGIFMTU: /* Get the MTU of a device */ 4876 ifr->ifr_mtu = dev->mtu; 4877 return 0; 4878 4879 case SIOCGIFHWADDR: 4880 if (!dev->addr_len) 4881 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4882 else 4883 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4884 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4885 ifr->ifr_hwaddr.sa_family = dev->type; 4886 return 0; 4887 4888 case SIOCGIFSLAVE: 4889 err = -EINVAL; 4890 break; 4891 4892 case SIOCGIFMAP: 4893 ifr->ifr_map.mem_start = dev->mem_start; 4894 ifr->ifr_map.mem_end = dev->mem_end; 4895 ifr->ifr_map.base_addr = dev->base_addr; 4896 ifr->ifr_map.irq = dev->irq; 4897 ifr->ifr_map.dma = dev->dma; 4898 ifr->ifr_map.port = dev->if_port; 4899 return 0; 4900 4901 case SIOCGIFINDEX: 4902 ifr->ifr_ifindex = dev->ifindex; 4903 return 0; 4904 4905 case SIOCGIFTXQLEN: 4906 ifr->ifr_qlen = dev->tx_queue_len; 4907 return 0; 4908 4909 default: 4910 /* dev_ioctl() should ensure this case 4911 * is never reached 4912 */ 4913 WARN_ON(1); 4914 err = -ENOTTY; 4915 break; 4916 4917 } 4918 return err; 4919 } 4920 4921 /* 4922 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4923 */ 4924 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4925 { 4926 int err; 4927 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4928 const struct net_device_ops *ops; 4929 4930 if (!dev) 4931 return -ENODEV; 4932 4933 ops = dev->netdev_ops; 4934 4935 switch (cmd) { 4936 case SIOCSIFFLAGS: /* Set interface flags */ 4937 return dev_change_flags(dev, ifr->ifr_flags); 4938 4939 case SIOCSIFMETRIC: /* Set the metric on the interface 4940 (currently unused) */ 4941 return -EOPNOTSUPP; 4942 4943 case SIOCSIFMTU: /* Set the MTU of a device */ 4944 return dev_set_mtu(dev, ifr->ifr_mtu); 4945 4946 case SIOCSIFHWADDR: 4947 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4948 4949 case SIOCSIFHWBROADCAST: 4950 if (ifr->ifr_hwaddr.sa_family != dev->type) 4951 return -EINVAL; 4952 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4953 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4954 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4955 return 0; 4956 4957 case SIOCSIFMAP: 4958 if (ops->ndo_set_config) { 4959 if (!netif_device_present(dev)) 4960 return -ENODEV; 4961 return ops->ndo_set_config(dev, &ifr->ifr_map); 4962 } 4963 return -EOPNOTSUPP; 4964 4965 case SIOCADDMULTI: 4966 if (!ops->ndo_set_rx_mode || 4967 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4968 return -EINVAL; 4969 if (!netif_device_present(dev)) 4970 return -ENODEV; 4971 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4972 4973 case SIOCDELMULTI: 4974 if (!ops->ndo_set_rx_mode || 4975 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4976 return -EINVAL; 4977 if (!netif_device_present(dev)) 4978 return -ENODEV; 4979 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4980 4981 case SIOCSIFTXQLEN: 4982 if (ifr->ifr_qlen < 0) 4983 return -EINVAL; 4984 dev->tx_queue_len = ifr->ifr_qlen; 4985 return 0; 4986 4987 case SIOCSIFNAME: 4988 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4989 return dev_change_name(dev, ifr->ifr_newname); 4990 4991 case SIOCSHWTSTAMP: 4992 err = net_hwtstamp_validate(ifr); 4993 if (err) 4994 return err; 4995 /* fall through */ 4996 4997 /* 4998 * Unknown or private ioctl 4999 */ 5000 default: 5001 if ((cmd >= SIOCDEVPRIVATE && 5002 cmd <= SIOCDEVPRIVATE + 15) || 5003 cmd == SIOCBONDENSLAVE || 5004 cmd == SIOCBONDRELEASE || 5005 cmd == SIOCBONDSETHWADDR || 5006 cmd == SIOCBONDSLAVEINFOQUERY || 5007 cmd == SIOCBONDINFOQUERY || 5008 cmd == SIOCBONDCHANGEACTIVE || 5009 cmd == SIOCGMIIPHY || 5010 cmd == SIOCGMIIREG || 5011 cmd == SIOCSMIIREG || 5012 cmd == SIOCBRADDIF || 5013 cmd == SIOCBRDELIF || 5014 cmd == SIOCSHWTSTAMP || 5015 cmd == SIOCWANDEV) { 5016 err = -EOPNOTSUPP; 5017 if (ops->ndo_do_ioctl) { 5018 if (netif_device_present(dev)) 5019 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5020 else 5021 err = -ENODEV; 5022 } 5023 } else 5024 err = -EINVAL; 5025 5026 } 5027 return err; 5028 } 5029 5030 /* 5031 * This function handles all "interface"-type I/O control requests. The actual 5032 * 'doing' part of this is dev_ifsioc above. 5033 */ 5034 5035 /** 5036 * dev_ioctl - network device ioctl 5037 * @net: the applicable net namespace 5038 * @cmd: command to issue 5039 * @arg: pointer to a struct ifreq in user space 5040 * 5041 * Issue ioctl functions to devices. This is normally called by the 5042 * user space syscall interfaces but can sometimes be useful for 5043 * other purposes. The return value is the return from the syscall if 5044 * positive or a negative errno code on error. 5045 */ 5046 5047 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5048 { 5049 struct ifreq ifr; 5050 int ret; 5051 char *colon; 5052 5053 /* One special case: SIOCGIFCONF takes ifconf argument 5054 and requires shared lock, because it sleeps writing 5055 to user space. 5056 */ 5057 5058 if (cmd == SIOCGIFCONF) { 5059 rtnl_lock(); 5060 ret = dev_ifconf(net, (char __user *) arg); 5061 rtnl_unlock(); 5062 return ret; 5063 } 5064 if (cmd == SIOCGIFNAME) 5065 return dev_ifname(net, (struct ifreq __user *)arg); 5066 5067 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5068 return -EFAULT; 5069 5070 ifr.ifr_name[IFNAMSIZ-1] = 0; 5071 5072 colon = strchr(ifr.ifr_name, ':'); 5073 if (colon) 5074 *colon = 0; 5075 5076 /* 5077 * See which interface the caller is talking about. 5078 */ 5079 5080 switch (cmd) { 5081 /* 5082 * These ioctl calls: 5083 * - can be done by all. 5084 * - atomic and do not require locking. 5085 * - return a value 5086 */ 5087 case SIOCGIFFLAGS: 5088 case SIOCGIFMETRIC: 5089 case SIOCGIFMTU: 5090 case SIOCGIFHWADDR: 5091 case SIOCGIFSLAVE: 5092 case SIOCGIFMAP: 5093 case SIOCGIFINDEX: 5094 case SIOCGIFTXQLEN: 5095 dev_load(net, ifr.ifr_name); 5096 rcu_read_lock(); 5097 ret = dev_ifsioc_locked(net, &ifr, cmd); 5098 rcu_read_unlock(); 5099 if (!ret) { 5100 if (colon) 5101 *colon = ':'; 5102 if (copy_to_user(arg, &ifr, 5103 sizeof(struct ifreq))) 5104 ret = -EFAULT; 5105 } 5106 return ret; 5107 5108 case SIOCETHTOOL: 5109 dev_load(net, ifr.ifr_name); 5110 rtnl_lock(); 5111 ret = dev_ethtool(net, &ifr); 5112 rtnl_unlock(); 5113 if (!ret) { 5114 if (colon) 5115 *colon = ':'; 5116 if (copy_to_user(arg, &ifr, 5117 sizeof(struct ifreq))) 5118 ret = -EFAULT; 5119 } 5120 return ret; 5121 5122 /* 5123 * These ioctl calls: 5124 * - require superuser power. 5125 * - require strict serialization. 5126 * - return a value 5127 */ 5128 case SIOCGMIIPHY: 5129 case SIOCGMIIREG: 5130 case SIOCSIFNAME: 5131 if (!capable(CAP_NET_ADMIN)) 5132 return -EPERM; 5133 dev_load(net, ifr.ifr_name); 5134 rtnl_lock(); 5135 ret = dev_ifsioc(net, &ifr, cmd); 5136 rtnl_unlock(); 5137 if (!ret) { 5138 if (colon) 5139 *colon = ':'; 5140 if (copy_to_user(arg, &ifr, 5141 sizeof(struct ifreq))) 5142 ret = -EFAULT; 5143 } 5144 return ret; 5145 5146 /* 5147 * These ioctl calls: 5148 * - require superuser power. 5149 * - require strict serialization. 5150 * - do not return a value 5151 */ 5152 case SIOCSIFFLAGS: 5153 case SIOCSIFMETRIC: 5154 case SIOCSIFMTU: 5155 case SIOCSIFMAP: 5156 case SIOCSIFHWADDR: 5157 case SIOCSIFSLAVE: 5158 case SIOCADDMULTI: 5159 case SIOCDELMULTI: 5160 case SIOCSIFHWBROADCAST: 5161 case SIOCSIFTXQLEN: 5162 case SIOCSMIIREG: 5163 case SIOCBONDENSLAVE: 5164 case SIOCBONDRELEASE: 5165 case SIOCBONDSETHWADDR: 5166 case SIOCBONDCHANGEACTIVE: 5167 case SIOCBRADDIF: 5168 case SIOCBRDELIF: 5169 case SIOCSHWTSTAMP: 5170 if (!capable(CAP_NET_ADMIN)) 5171 return -EPERM; 5172 /* fall through */ 5173 case SIOCBONDSLAVEINFOQUERY: 5174 case SIOCBONDINFOQUERY: 5175 dev_load(net, ifr.ifr_name); 5176 rtnl_lock(); 5177 ret = dev_ifsioc(net, &ifr, cmd); 5178 rtnl_unlock(); 5179 return ret; 5180 5181 case SIOCGIFMEM: 5182 /* Get the per device memory space. We can add this but 5183 * currently do not support it */ 5184 case SIOCSIFMEM: 5185 /* Set the per device memory buffer space. 5186 * Not applicable in our case */ 5187 case SIOCSIFLINK: 5188 return -ENOTTY; 5189 5190 /* 5191 * Unknown or private ioctl. 5192 */ 5193 default: 5194 if (cmd == SIOCWANDEV || 5195 (cmd >= SIOCDEVPRIVATE && 5196 cmd <= SIOCDEVPRIVATE + 15)) { 5197 dev_load(net, ifr.ifr_name); 5198 rtnl_lock(); 5199 ret = dev_ifsioc(net, &ifr, cmd); 5200 rtnl_unlock(); 5201 if (!ret && copy_to_user(arg, &ifr, 5202 sizeof(struct ifreq))) 5203 ret = -EFAULT; 5204 return ret; 5205 } 5206 /* Take care of Wireless Extensions */ 5207 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5208 return wext_handle_ioctl(net, &ifr, cmd, arg); 5209 return -ENOTTY; 5210 } 5211 } 5212 5213 5214 /** 5215 * dev_new_index - allocate an ifindex 5216 * @net: the applicable net namespace 5217 * 5218 * Returns a suitable unique value for a new device interface 5219 * number. The caller must hold the rtnl semaphore or the 5220 * dev_base_lock to be sure it remains unique. 5221 */ 5222 static int dev_new_index(struct net *net) 5223 { 5224 static int ifindex; 5225 for (;;) { 5226 if (++ifindex <= 0) 5227 ifindex = 1; 5228 if (!__dev_get_by_index(net, ifindex)) 5229 return ifindex; 5230 } 5231 } 5232 5233 /* Delayed registration/unregisteration */ 5234 static LIST_HEAD(net_todo_list); 5235 5236 static void net_set_todo(struct net_device *dev) 5237 { 5238 list_add_tail(&dev->todo_list, &net_todo_list); 5239 } 5240 5241 static void rollback_registered_many(struct list_head *head) 5242 { 5243 struct net_device *dev, *tmp; 5244 5245 BUG_ON(dev_boot_phase); 5246 ASSERT_RTNL(); 5247 5248 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5249 /* Some devices call without registering 5250 * for initialization unwind. Remove those 5251 * devices and proceed with the remaining. 5252 */ 5253 if (dev->reg_state == NETREG_UNINITIALIZED) { 5254 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5255 dev->name, dev); 5256 5257 WARN_ON(1); 5258 list_del(&dev->unreg_list); 5259 continue; 5260 } 5261 dev->dismantle = true; 5262 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5263 } 5264 5265 /* If device is running, close it first. */ 5266 dev_close_many(head); 5267 5268 list_for_each_entry(dev, head, unreg_list) { 5269 /* And unlink it from device chain. */ 5270 unlist_netdevice(dev); 5271 5272 dev->reg_state = NETREG_UNREGISTERING; 5273 } 5274 5275 synchronize_net(); 5276 5277 list_for_each_entry(dev, head, unreg_list) { 5278 /* Shutdown queueing discipline. */ 5279 dev_shutdown(dev); 5280 5281 5282 /* Notify protocols, that we are about to destroy 5283 this device. They should clean all the things. 5284 */ 5285 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5286 5287 if (!dev->rtnl_link_ops || 5288 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5289 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5290 5291 /* 5292 * Flush the unicast and multicast chains 5293 */ 5294 dev_uc_flush(dev); 5295 dev_mc_flush(dev); 5296 5297 if (dev->netdev_ops->ndo_uninit) 5298 dev->netdev_ops->ndo_uninit(dev); 5299 5300 /* Notifier chain MUST detach us from master device. */ 5301 WARN_ON(dev->master); 5302 5303 /* Remove entries from kobject tree */ 5304 netdev_unregister_kobject(dev); 5305 } 5306 5307 /* Process any work delayed until the end of the batch */ 5308 dev = list_first_entry(head, struct net_device, unreg_list); 5309 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5310 5311 synchronize_net(); 5312 5313 list_for_each_entry(dev, head, unreg_list) 5314 dev_put(dev); 5315 } 5316 5317 static void rollback_registered(struct net_device *dev) 5318 { 5319 LIST_HEAD(single); 5320 5321 list_add(&dev->unreg_list, &single); 5322 rollback_registered_many(&single); 5323 list_del(&single); 5324 } 5325 5326 static netdev_features_t netdev_fix_features(struct net_device *dev, 5327 netdev_features_t features) 5328 { 5329 /* Fix illegal checksum combinations */ 5330 if ((features & NETIF_F_HW_CSUM) && 5331 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5332 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5333 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5334 } 5335 5336 /* Fix illegal SG+CSUM combinations. */ 5337 if ((features & NETIF_F_SG) && 5338 !(features & NETIF_F_ALL_CSUM)) { 5339 netdev_dbg(dev, 5340 "Dropping NETIF_F_SG since no checksum feature.\n"); 5341 features &= ~NETIF_F_SG; 5342 } 5343 5344 /* TSO requires that SG is present as well. */ 5345 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5346 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5347 features &= ~NETIF_F_ALL_TSO; 5348 } 5349 5350 /* TSO ECN requires that TSO is present as well. */ 5351 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5352 features &= ~NETIF_F_TSO_ECN; 5353 5354 /* Software GSO depends on SG. */ 5355 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5356 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5357 features &= ~NETIF_F_GSO; 5358 } 5359 5360 /* UFO needs SG and checksumming */ 5361 if (features & NETIF_F_UFO) { 5362 /* maybe split UFO into V4 and V6? */ 5363 if (!((features & NETIF_F_GEN_CSUM) || 5364 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5365 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5366 netdev_dbg(dev, 5367 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5368 features &= ~NETIF_F_UFO; 5369 } 5370 5371 if (!(features & NETIF_F_SG)) { 5372 netdev_dbg(dev, 5373 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5374 features &= ~NETIF_F_UFO; 5375 } 5376 } 5377 5378 return features; 5379 } 5380 5381 int __netdev_update_features(struct net_device *dev) 5382 { 5383 netdev_features_t features; 5384 int err = 0; 5385 5386 ASSERT_RTNL(); 5387 5388 features = netdev_get_wanted_features(dev); 5389 5390 if (dev->netdev_ops->ndo_fix_features) 5391 features = dev->netdev_ops->ndo_fix_features(dev, features); 5392 5393 /* driver might be less strict about feature dependencies */ 5394 features = netdev_fix_features(dev, features); 5395 5396 if (dev->features == features) 5397 return 0; 5398 5399 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5400 &dev->features, &features); 5401 5402 if (dev->netdev_ops->ndo_set_features) 5403 err = dev->netdev_ops->ndo_set_features(dev, features); 5404 5405 if (unlikely(err < 0)) { 5406 netdev_err(dev, 5407 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5408 err, &features, &dev->features); 5409 return -1; 5410 } 5411 5412 if (!err) 5413 dev->features = features; 5414 5415 return 1; 5416 } 5417 5418 /** 5419 * netdev_update_features - recalculate device features 5420 * @dev: the device to check 5421 * 5422 * Recalculate dev->features set and send notifications if it 5423 * has changed. Should be called after driver or hardware dependent 5424 * conditions might have changed that influence the features. 5425 */ 5426 void netdev_update_features(struct net_device *dev) 5427 { 5428 if (__netdev_update_features(dev)) 5429 netdev_features_change(dev); 5430 } 5431 EXPORT_SYMBOL(netdev_update_features); 5432 5433 /** 5434 * netdev_change_features - recalculate device features 5435 * @dev: the device to check 5436 * 5437 * Recalculate dev->features set and send notifications even 5438 * if they have not changed. Should be called instead of 5439 * netdev_update_features() if also dev->vlan_features might 5440 * have changed to allow the changes to be propagated to stacked 5441 * VLAN devices. 5442 */ 5443 void netdev_change_features(struct net_device *dev) 5444 { 5445 __netdev_update_features(dev); 5446 netdev_features_change(dev); 5447 } 5448 EXPORT_SYMBOL(netdev_change_features); 5449 5450 /** 5451 * netif_stacked_transfer_operstate - transfer operstate 5452 * @rootdev: the root or lower level device to transfer state from 5453 * @dev: the device to transfer operstate to 5454 * 5455 * Transfer operational state from root to device. This is normally 5456 * called when a stacking relationship exists between the root 5457 * device and the device(a leaf device). 5458 */ 5459 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5460 struct net_device *dev) 5461 { 5462 if (rootdev->operstate == IF_OPER_DORMANT) 5463 netif_dormant_on(dev); 5464 else 5465 netif_dormant_off(dev); 5466 5467 if (netif_carrier_ok(rootdev)) { 5468 if (!netif_carrier_ok(dev)) 5469 netif_carrier_on(dev); 5470 } else { 5471 if (netif_carrier_ok(dev)) 5472 netif_carrier_off(dev); 5473 } 5474 } 5475 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5476 5477 #ifdef CONFIG_RPS 5478 static int netif_alloc_rx_queues(struct net_device *dev) 5479 { 5480 unsigned int i, count = dev->num_rx_queues; 5481 struct netdev_rx_queue *rx; 5482 5483 BUG_ON(count < 1); 5484 5485 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5486 if (!rx) { 5487 pr_err("netdev: Unable to allocate %u rx queues\n", count); 5488 return -ENOMEM; 5489 } 5490 dev->_rx = rx; 5491 5492 for (i = 0; i < count; i++) 5493 rx[i].dev = dev; 5494 return 0; 5495 } 5496 #endif 5497 5498 static void netdev_init_one_queue(struct net_device *dev, 5499 struct netdev_queue *queue, void *_unused) 5500 { 5501 /* Initialize queue lock */ 5502 spin_lock_init(&queue->_xmit_lock); 5503 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5504 queue->xmit_lock_owner = -1; 5505 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5506 queue->dev = dev; 5507 #ifdef CONFIG_BQL 5508 dql_init(&queue->dql, HZ); 5509 #endif 5510 } 5511 5512 static int netif_alloc_netdev_queues(struct net_device *dev) 5513 { 5514 unsigned int count = dev->num_tx_queues; 5515 struct netdev_queue *tx; 5516 5517 BUG_ON(count < 1); 5518 5519 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5520 if (!tx) { 5521 pr_err("netdev: Unable to allocate %u tx queues\n", count); 5522 return -ENOMEM; 5523 } 5524 dev->_tx = tx; 5525 5526 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5527 spin_lock_init(&dev->tx_global_lock); 5528 5529 return 0; 5530 } 5531 5532 /** 5533 * register_netdevice - register a network device 5534 * @dev: device to register 5535 * 5536 * Take a completed network device structure and add it to the kernel 5537 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5538 * chain. 0 is returned on success. A negative errno code is returned 5539 * on a failure to set up the device, or if the name is a duplicate. 5540 * 5541 * Callers must hold the rtnl semaphore. You may want 5542 * register_netdev() instead of this. 5543 * 5544 * BUGS: 5545 * The locking appears insufficient to guarantee two parallel registers 5546 * will not get the same name. 5547 */ 5548 5549 int register_netdevice(struct net_device *dev) 5550 { 5551 int ret; 5552 struct net *net = dev_net(dev); 5553 5554 BUG_ON(dev_boot_phase); 5555 ASSERT_RTNL(); 5556 5557 might_sleep(); 5558 5559 /* When net_device's are persistent, this will be fatal. */ 5560 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5561 BUG_ON(!net); 5562 5563 spin_lock_init(&dev->addr_list_lock); 5564 netdev_set_addr_lockdep_class(dev); 5565 5566 dev->iflink = -1; 5567 5568 ret = dev_get_valid_name(dev, dev->name); 5569 if (ret < 0) 5570 goto out; 5571 5572 /* Init, if this function is available */ 5573 if (dev->netdev_ops->ndo_init) { 5574 ret = dev->netdev_ops->ndo_init(dev); 5575 if (ret) { 5576 if (ret > 0) 5577 ret = -EIO; 5578 goto out; 5579 } 5580 } 5581 5582 ret = -EBUSY; 5583 if (!dev->ifindex) 5584 dev->ifindex = dev_new_index(net); 5585 else if (__dev_get_by_index(net, dev->ifindex)) 5586 goto err_uninit; 5587 5588 if (dev->iflink == -1) 5589 dev->iflink = dev->ifindex; 5590 5591 /* Transfer changeable features to wanted_features and enable 5592 * software offloads (GSO and GRO). 5593 */ 5594 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5595 dev->features |= NETIF_F_SOFT_FEATURES; 5596 dev->wanted_features = dev->features & dev->hw_features; 5597 5598 /* Turn on no cache copy if HW is doing checksum */ 5599 if (!(dev->flags & IFF_LOOPBACK)) { 5600 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5601 if (dev->features & NETIF_F_ALL_CSUM) { 5602 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5603 dev->features |= NETIF_F_NOCACHE_COPY; 5604 } 5605 } 5606 5607 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5608 */ 5609 dev->vlan_features |= NETIF_F_HIGHDMA; 5610 5611 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5612 ret = notifier_to_errno(ret); 5613 if (ret) 5614 goto err_uninit; 5615 5616 ret = netdev_register_kobject(dev); 5617 if (ret) 5618 goto err_uninit; 5619 dev->reg_state = NETREG_REGISTERED; 5620 5621 __netdev_update_features(dev); 5622 5623 /* 5624 * Default initial state at registry is that the 5625 * device is present. 5626 */ 5627 5628 set_bit(__LINK_STATE_PRESENT, &dev->state); 5629 5630 dev_init_scheduler(dev); 5631 dev_hold(dev); 5632 list_netdevice(dev); 5633 add_device_randomness(dev->dev_addr, dev->addr_len); 5634 5635 /* Notify protocols, that a new device appeared. */ 5636 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5637 ret = notifier_to_errno(ret); 5638 if (ret) { 5639 rollback_registered(dev); 5640 dev->reg_state = NETREG_UNREGISTERED; 5641 } 5642 /* 5643 * Prevent userspace races by waiting until the network 5644 * device is fully setup before sending notifications. 5645 */ 5646 if (!dev->rtnl_link_ops || 5647 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5648 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5649 5650 out: 5651 return ret; 5652 5653 err_uninit: 5654 if (dev->netdev_ops->ndo_uninit) 5655 dev->netdev_ops->ndo_uninit(dev); 5656 goto out; 5657 } 5658 EXPORT_SYMBOL(register_netdevice); 5659 5660 /** 5661 * init_dummy_netdev - init a dummy network device for NAPI 5662 * @dev: device to init 5663 * 5664 * This takes a network device structure and initialize the minimum 5665 * amount of fields so it can be used to schedule NAPI polls without 5666 * registering a full blown interface. This is to be used by drivers 5667 * that need to tie several hardware interfaces to a single NAPI 5668 * poll scheduler due to HW limitations. 5669 */ 5670 int init_dummy_netdev(struct net_device *dev) 5671 { 5672 /* Clear everything. Note we don't initialize spinlocks 5673 * are they aren't supposed to be taken by any of the 5674 * NAPI code and this dummy netdev is supposed to be 5675 * only ever used for NAPI polls 5676 */ 5677 memset(dev, 0, sizeof(struct net_device)); 5678 5679 /* make sure we BUG if trying to hit standard 5680 * register/unregister code path 5681 */ 5682 dev->reg_state = NETREG_DUMMY; 5683 5684 /* NAPI wants this */ 5685 INIT_LIST_HEAD(&dev->napi_list); 5686 5687 /* a dummy interface is started by default */ 5688 set_bit(__LINK_STATE_PRESENT, &dev->state); 5689 set_bit(__LINK_STATE_START, &dev->state); 5690 5691 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5692 * because users of this 'device' dont need to change 5693 * its refcount. 5694 */ 5695 5696 return 0; 5697 } 5698 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5699 5700 5701 /** 5702 * register_netdev - register a network device 5703 * @dev: device to register 5704 * 5705 * Take a completed network device structure and add it to the kernel 5706 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5707 * chain. 0 is returned on success. A negative errno code is returned 5708 * on a failure to set up the device, or if the name is a duplicate. 5709 * 5710 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5711 * and expands the device name if you passed a format string to 5712 * alloc_netdev. 5713 */ 5714 int register_netdev(struct net_device *dev) 5715 { 5716 int err; 5717 5718 rtnl_lock(); 5719 err = register_netdevice(dev); 5720 rtnl_unlock(); 5721 return err; 5722 } 5723 EXPORT_SYMBOL(register_netdev); 5724 5725 int netdev_refcnt_read(const struct net_device *dev) 5726 { 5727 int i, refcnt = 0; 5728 5729 for_each_possible_cpu(i) 5730 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5731 return refcnt; 5732 } 5733 EXPORT_SYMBOL(netdev_refcnt_read); 5734 5735 /** 5736 * netdev_wait_allrefs - wait until all references are gone. 5737 * 5738 * This is called when unregistering network devices. 5739 * 5740 * Any protocol or device that holds a reference should register 5741 * for netdevice notification, and cleanup and put back the 5742 * reference if they receive an UNREGISTER event. 5743 * We can get stuck here if buggy protocols don't correctly 5744 * call dev_put. 5745 */ 5746 static void netdev_wait_allrefs(struct net_device *dev) 5747 { 5748 unsigned long rebroadcast_time, warning_time; 5749 int refcnt; 5750 5751 linkwatch_forget_dev(dev); 5752 5753 rebroadcast_time = warning_time = jiffies; 5754 refcnt = netdev_refcnt_read(dev); 5755 5756 while (refcnt != 0) { 5757 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5758 rtnl_lock(); 5759 5760 /* Rebroadcast unregister notification */ 5761 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5762 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5763 * should have already handle it the first time */ 5764 5765 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5766 &dev->state)) { 5767 /* We must not have linkwatch events 5768 * pending on unregister. If this 5769 * happens, we simply run the queue 5770 * unscheduled, resulting in a noop 5771 * for this device. 5772 */ 5773 linkwatch_run_queue(); 5774 } 5775 5776 __rtnl_unlock(); 5777 5778 rebroadcast_time = jiffies; 5779 } 5780 5781 msleep(250); 5782 5783 refcnt = netdev_refcnt_read(dev); 5784 5785 if (time_after(jiffies, warning_time + 10 * HZ)) { 5786 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5787 dev->name, refcnt); 5788 warning_time = jiffies; 5789 } 5790 } 5791 } 5792 5793 /* The sequence is: 5794 * 5795 * rtnl_lock(); 5796 * ... 5797 * register_netdevice(x1); 5798 * register_netdevice(x2); 5799 * ... 5800 * unregister_netdevice(y1); 5801 * unregister_netdevice(y2); 5802 * ... 5803 * rtnl_unlock(); 5804 * free_netdev(y1); 5805 * free_netdev(y2); 5806 * 5807 * We are invoked by rtnl_unlock(). 5808 * This allows us to deal with problems: 5809 * 1) We can delete sysfs objects which invoke hotplug 5810 * without deadlocking with linkwatch via keventd. 5811 * 2) Since we run with the RTNL semaphore not held, we can sleep 5812 * safely in order to wait for the netdev refcnt to drop to zero. 5813 * 5814 * We must not return until all unregister events added during 5815 * the interval the lock was held have been completed. 5816 */ 5817 void netdev_run_todo(void) 5818 { 5819 struct list_head list; 5820 5821 /* Snapshot list, allow later requests */ 5822 list_replace_init(&net_todo_list, &list); 5823 5824 __rtnl_unlock(); 5825 5826 /* Wait for rcu callbacks to finish before attempting to drain 5827 * the device list. This usually avoids a 250ms wait. 5828 */ 5829 if (!list_empty(&list)) 5830 rcu_barrier(); 5831 5832 while (!list_empty(&list)) { 5833 struct net_device *dev 5834 = list_first_entry(&list, struct net_device, todo_list); 5835 list_del(&dev->todo_list); 5836 5837 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5838 pr_err("network todo '%s' but state %d\n", 5839 dev->name, dev->reg_state); 5840 dump_stack(); 5841 continue; 5842 } 5843 5844 dev->reg_state = NETREG_UNREGISTERED; 5845 5846 on_each_cpu(flush_backlog, dev, 1); 5847 5848 netdev_wait_allrefs(dev); 5849 5850 /* paranoia */ 5851 BUG_ON(netdev_refcnt_read(dev)); 5852 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5853 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5854 WARN_ON(dev->dn_ptr); 5855 5856 if (dev->destructor) 5857 dev->destructor(dev); 5858 5859 /* Free network device */ 5860 kobject_put(&dev->dev.kobj); 5861 } 5862 } 5863 5864 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5865 * fields in the same order, with only the type differing. 5866 */ 5867 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5868 const struct net_device_stats *netdev_stats) 5869 { 5870 #if BITS_PER_LONG == 64 5871 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5872 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5873 #else 5874 size_t i, n = sizeof(*stats64) / sizeof(u64); 5875 const unsigned long *src = (const unsigned long *)netdev_stats; 5876 u64 *dst = (u64 *)stats64; 5877 5878 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5879 sizeof(*stats64) / sizeof(u64)); 5880 for (i = 0; i < n; i++) 5881 dst[i] = src[i]; 5882 #endif 5883 } 5884 EXPORT_SYMBOL(netdev_stats_to_stats64); 5885 5886 /** 5887 * dev_get_stats - get network device statistics 5888 * @dev: device to get statistics from 5889 * @storage: place to store stats 5890 * 5891 * Get network statistics from device. Return @storage. 5892 * The device driver may provide its own method by setting 5893 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5894 * otherwise the internal statistics structure is used. 5895 */ 5896 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5897 struct rtnl_link_stats64 *storage) 5898 { 5899 const struct net_device_ops *ops = dev->netdev_ops; 5900 5901 if (ops->ndo_get_stats64) { 5902 memset(storage, 0, sizeof(*storage)); 5903 ops->ndo_get_stats64(dev, storage); 5904 } else if (ops->ndo_get_stats) { 5905 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5906 } else { 5907 netdev_stats_to_stats64(storage, &dev->stats); 5908 } 5909 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5910 return storage; 5911 } 5912 EXPORT_SYMBOL(dev_get_stats); 5913 5914 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5915 { 5916 struct netdev_queue *queue = dev_ingress_queue(dev); 5917 5918 #ifdef CONFIG_NET_CLS_ACT 5919 if (queue) 5920 return queue; 5921 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5922 if (!queue) 5923 return NULL; 5924 netdev_init_one_queue(dev, queue, NULL); 5925 queue->qdisc = &noop_qdisc; 5926 queue->qdisc_sleeping = &noop_qdisc; 5927 rcu_assign_pointer(dev->ingress_queue, queue); 5928 #endif 5929 return queue; 5930 } 5931 5932 /** 5933 * alloc_netdev_mqs - allocate network device 5934 * @sizeof_priv: size of private data to allocate space for 5935 * @name: device name format string 5936 * @setup: callback to initialize device 5937 * @txqs: the number of TX subqueues to allocate 5938 * @rxqs: the number of RX subqueues to allocate 5939 * 5940 * Allocates a struct net_device with private data area for driver use 5941 * and performs basic initialization. Also allocates subquue structs 5942 * for each queue on the device. 5943 */ 5944 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5945 void (*setup)(struct net_device *), 5946 unsigned int txqs, unsigned int rxqs) 5947 { 5948 struct net_device *dev; 5949 size_t alloc_size; 5950 struct net_device *p; 5951 5952 BUG_ON(strlen(name) >= sizeof(dev->name)); 5953 5954 if (txqs < 1) { 5955 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5956 return NULL; 5957 } 5958 5959 #ifdef CONFIG_RPS 5960 if (rxqs < 1) { 5961 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5962 return NULL; 5963 } 5964 #endif 5965 5966 alloc_size = sizeof(struct net_device); 5967 if (sizeof_priv) { 5968 /* ensure 32-byte alignment of private area */ 5969 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5970 alloc_size += sizeof_priv; 5971 } 5972 /* ensure 32-byte alignment of whole construct */ 5973 alloc_size += NETDEV_ALIGN - 1; 5974 5975 p = kzalloc(alloc_size, GFP_KERNEL); 5976 if (!p) { 5977 pr_err("alloc_netdev: Unable to allocate device\n"); 5978 return NULL; 5979 } 5980 5981 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5982 dev->padded = (char *)dev - (char *)p; 5983 5984 dev->pcpu_refcnt = alloc_percpu(int); 5985 if (!dev->pcpu_refcnt) 5986 goto free_p; 5987 5988 if (dev_addr_init(dev)) 5989 goto free_pcpu; 5990 5991 dev_mc_init(dev); 5992 dev_uc_init(dev); 5993 5994 dev_net_set(dev, &init_net); 5995 5996 dev->gso_max_size = GSO_MAX_SIZE; 5997 dev->gso_max_segs = GSO_MAX_SEGS; 5998 5999 INIT_LIST_HEAD(&dev->napi_list); 6000 INIT_LIST_HEAD(&dev->unreg_list); 6001 INIT_LIST_HEAD(&dev->link_watch_list); 6002 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6003 setup(dev); 6004 6005 dev->num_tx_queues = txqs; 6006 dev->real_num_tx_queues = txqs; 6007 if (netif_alloc_netdev_queues(dev)) 6008 goto free_all; 6009 6010 #ifdef CONFIG_RPS 6011 dev->num_rx_queues = rxqs; 6012 dev->real_num_rx_queues = rxqs; 6013 if (netif_alloc_rx_queues(dev)) 6014 goto free_all; 6015 #endif 6016 6017 strcpy(dev->name, name); 6018 dev->group = INIT_NETDEV_GROUP; 6019 return dev; 6020 6021 free_all: 6022 free_netdev(dev); 6023 return NULL; 6024 6025 free_pcpu: 6026 free_percpu(dev->pcpu_refcnt); 6027 kfree(dev->_tx); 6028 #ifdef CONFIG_RPS 6029 kfree(dev->_rx); 6030 #endif 6031 6032 free_p: 6033 kfree(p); 6034 return NULL; 6035 } 6036 EXPORT_SYMBOL(alloc_netdev_mqs); 6037 6038 /** 6039 * free_netdev - free network device 6040 * @dev: device 6041 * 6042 * This function does the last stage of destroying an allocated device 6043 * interface. The reference to the device object is released. 6044 * If this is the last reference then it will be freed. 6045 */ 6046 void free_netdev(struct net_device *dev) 6047 { 6048 struct napi_struct *p, *n; 6049 6050 release_net(dev_net(dev)); 6051 6052 kfree(dev->_tx); 6053 #ifdef CONFIG_RPS 6054 kfree(dev->_rx); 6055 #endif 6056 6057 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6058 6059 /* Flush device addresses */ 6060 dev_addr_flush(dev); 6061 6062 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6063 netif_napi_del(p); 6064 6065 free_percpu(dev->pcpu_refcnt); 6066 dev->pcpu_refcnt = NULL; 6067 6068 /* Compatibility with error handling in drivers */ 6069 if (dev->reg_state == NETREG_UNINITIALIZED) { 6070 kfree((char *)dev - dev->padded); 6071 return; 6072 } 6073 6074 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6075 dev->reg_state = NETREG_RELEASED; 6076 6077 /* will free via device release */ 6078 put_device(&dev->dev); 6079 } 6080 EXPORT_SYMBOL(free_netdev); 6081 6082 /** 6083 * synchronize_net - Synchronize with packet receive processing 6084 * 6085 * Wait for packets currently being received to be done. 6086 * Does not block later packets from starting. 6087 */ 6088 void synchronize_net(void) 6089 { 6090 might_sleep(); 6091 if (rtnl_is_locked()) 6092 synchronize_rcu_expedited(); 6093 else 6094 synchronize_rcu(); 6095 } 6096 EXPORT_SYMBOL(synchronize_net); 6097 6098 /** 6099 * unregister_netdevice_queue - remove device from the kernel 6100 * @dev: device 6101 * @head: list 6102 * 6103 * This function shuts down a device interface and removes it 6104 * from the kernel tables. 6105 * If head not NULL, device is queued to be unregistered later. 6106 * 6107 * Callers must hold the rtnl semaphore. You may want 6108 * unregister_netdev() instead of this. 6109 */ 6110 6111 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6112 { 6113 ASSERT_RTNL(); 6114 6115 if (head) { 6116 list_move_tail(&dev->unreg_list, head); 6117 } else { 6118 rollback_registered(dev); 6119 /* Finish processing unregister after unlock */ 6120 net_set_todo(dev); 6121 } 6122 } 6123 EXPORT_SYMBOL(unregister_netdevice_queue); 6124 6125 /** 6126 * unregister_netdevice_many - unregister many devices 6127 * @head: list of devices 6128 */ 6129 void unregister_netdevice_many(struct list_head *head) 6130 { 6131 struct net_device *dev; 6132 6133 if (!list_empty(head)) { 6134 rollback_registered_many(head); 6135 list_for_each_entry(dev, head, unreg_list) 6136 net_set_todo(dev); 6137 } 6138 } 6139 EXPORT_SYMBOL(unregister_netdevice_many); 6140 6141 /** 6142 * unregister_netdev - remove device from the kernel 6143 * @dev: device 6144 * 6145 * This function shuts down a device interface and removes it 6146 * from the kernel tables. 6147 * 6148 * This is just a wrapper for unregister_netdevice that takes 6149 * the rtnl semaphore. In general you want to use this and not 6150 * unregister_netdevice. 6151 */ 6152 void unregister_netdev(struct net_device *dev) 6153 { 6154 rtnl_lock(); 6155 unregister_netdevice(dev); 6156 rtnl_unlock(); 6157 } 6158 EXPORT_SYMBOL(unregister_netdev); 6159 6160 /** 6161 * dev_change_net_namespace - move device to different nethost namespace 6162 * @dev: device 6163 * @net: network namespace 6164 * @pat: If not NULL name pattern to try if the current device name 6165 * is already taken in the destination network namespace. 6166 * 6167 * This function shuts down a device interface and moves it 6168 * to a new network namespace. On success 0 is returned, on 6169 * a failure a netagive errno code is returned. 6170 * 6171 * Callers must hold the rtnl semaphore. 6172 */ 6173 6174 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6175 { 6176 int err; 6177 6178 ASSERT_RTNL(); 6179 6180 /* Don't allow namespace local devices to be moved. */ 6181 err = -EINVAL; 6182 if (dev->features & NETIF_F_NETNS_LOCAL) 6183 goto out; 6184 6185 /* Ensure the device has been registrered */ 6186 err = -EINVAL; 6187 if (dev->reg_state != NETREG_REGISTERED) 6188 goto out; 6189 6190 /* Get out if there is nothing todo */ 6191 err = 0; 6192 if (net_eq(dev_net(dev), net)) 6193 goto out; 6194 6195 /* Pick the destination device name, and ensure 6196 * we can use it in the destination network namespace. 6197 */ 6198 err = -EEXIST; 6199 if (__dev_get_by_name(net, dev->name)) { 6200 /* We get here if we can't use the current device name */ 6201 if (!pat) 6202 goto out; 6203 if (dev_get_valid_name(dev, pat) < 0) 6204 goto out; 6205 } 6206 6207 /* 6208 * And now a mini version of register_netdevice unregister_netdevice. 6209 */ 6210 6211 /* If device is running close it first. */ 6212 dev_close(dev); 6213 6214 /* And unlink it from device chain */ 6215 err = -ENODEV; 6216 unlist_netdevice(dev); 6217 6218 synchronize_net(); 6219 6220 /* Shutdown queueing discipline. */ 6221 dev_shutdown(dev); 6222 6223 /* Notify protocols, that we are about to destroy 6224 this device. They should clean all the things. 6225 6226 Note that dev->reg_state stays at NETREG_REGISTERED. 6227 This is wanted because this way 8021q and macvlan know 6228 the device is just moving and can keep their slaves up. 6229 */ 6230 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6231 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6232 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6233 6234 /* 6235 * Flush the unicast and multicast chains 6236 */ 6237 dev_uc_flush(dev); 6238 dev_mc_flush(dev); 6239 6240 /* Actually switch the network namespace */ 6241 dev_net_set(dev, net); 6242 6243 /* If there is an ifindex conflict assign a new one */ 6244 if (__dev_get_by_index(net, dev->ifindex)) { 6245 int iflink = (dev->iflink == dev->ifindex); 6246 dev->ifindex = dev_new_index(net); 6247 if (iflink) 6248 dev->iflink = dev->ifindex; 6249 } 6250 6251 /* Fixup kobjects */ 6252 err = device_rename(&dev->dev, dev->name); 6253 WARN_ON(err); 6254 6255 /* Add the device back in the hashes */ 6256 list_netdevice(dev); 6257 6258 /* Notify protocols, that a new device appeared. */ 6259 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6260 6261 /* 6262 * Prevent userspace races by waiting until the network 6263 * device is fully setup before sending notifications. 6264 */ 6265 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6266 6267 synchronize_net(); 6268 err = 0; 6269 out: 6270 return err; 6271 } 6272 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6273 6274 static int dev_cpu_callback(struct notifier_block *nfb, 6275 unsigned long action, 6276 void *ocpu) 6277 { 6278 struct sk_buff **list_skb; 6279 struct sk_buff *skb; 6280 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6281 struct softnet_data *sd, *oldsd; 6282 6283 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6284 return NOTIFY_OK; 6285 6286 local_irq_disable(); 6287 cpu = smp_processor_id(); 6288 sd = &per_cpu(softnet_data, cpu); 6289 oldsd = &per_cpu(softnet_data, oldcpu); 6290 6291 /* Find end of our completion_queue. */ 6292 list_skb = &sd->completion_queue; 6293 while (*list_skb) 6294 list_skb = &(*list_skb)->next; 6295 /* Append completion queue from offline CPU. */ 6296 *list_skb = oldsd->completion_queue; 6297 oldsd->completion_queue = NULL; 6298 6299 /* Append output queue from offline CPU. */ 6300 if (oldsd->output_queue) { 6301 *sd->output_queue_tailp = oldsd->output_queue; 6302 sd->output_queue_tailp = oldsd->output_queue_tailp; 6303 oldsd->output_queue = NULL; 6304 oldsd->output_queue_tailp = &oldsd->output_queue; 6305 } 6306 /* Append NAPI poll list from offline CPU. */ 6307 if (!list_empty(&oldsd->poll_list)) { 6308 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6309 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6310 } 6311 6312 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6313 local_irq_enable(); 6314 6315 /* Process offline CPU's input_pkt_queue */ 6316 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6317 netif_rx(skb); 6318 input_queue_head_incr(oldsd); 6319 } 6320 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6321 netif_rx(skb); 6322 input_queue_head_incr(oldsd); 6323 } 6324 6325 return NOTIFY_OK; 6326 } 6327 6328 6329 /** 6330 * netdev_increment_features - increment feature set by one 6331 * @all: current feature set 6332 * @one: new feature set 6333 * @mask: mask feature set 6334 * 6335 * Computes a new feature set after adding a device with feature set 6336 * @one to the master device with current feature set @all. Will not 6337 * enable anything that is off in @mask. Returns the new feature set. 6338 */ 6339 netdev_features_t netdev_increment_features(netdev_features_t all, 6340 netdev_features_t one, netdev_features_t mask) 6341 { 6342 if (mask & NETIF_F_GEN_CSUM) 6343 mask |= NETIF_F_ALL_CSUM; 6344 mask |= NETIF_F_VLAN_CHALLENGED; 6345 6346 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6347 all &= one | ~NETIF_F_ALL_FOR_ALL; 6348 6349 /* If one device supports hw checksumming, set for all. */ 6350 if (all & NETIF_F_GEN_CSUM) 6351 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6352 6353 return all; 6354 } 6355 EXPORT_SYMBOL(netdev_increment_features); 6356 6357 static struct hlist_head *netdev_create_hash(void) 6358 { 6359 int i; 6360 struct hlist_head *hash; 6361 6362 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6363 if (hash != NULL) 6364 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6365 INIT_HLIST_HEAD(&hash[i]); 6366 6367 return hash; 6368 } 6369 6370 /* Initialize per network namespace state */ 6371 static int __net_init netdev_init(struct net *net) 6372 { 6373 if (net != &init_net) 6374 INIT_LIST_HEAD(&net->dev_base_head); 6375 6376 net->dev_name_head = netdev_create_hash(); 6377 if (net->dev_name_head == NULL) 6378 goto err_name; 6379 6380 net->dev_index_head = netdev_create_hash(); 6381 if (net->dev_index_head == NULL) 6382 goto err_idx; 6383 6384 return 0; 6385 6386 err_idx: 6387 kfree(net->dev_name_head); 6388 err_name: 6389 return -ENOMEM; 6390 } 6391 6392 /** 6393 * netdev_drivername - network driver for the device 6394 * @dev: network device 6395 * 6396 * Determine network driver for device. 6397 */ 6398 const char *netdev_drivername(const struct net_device *dev) 6399 { 6400 const struct device_driver *driver; 6401 const struct device *parent; 6402 const char *empty = ""; 6403 6404 parent = dev->dev.parent; 6405 if (!parent) 6406 return empty; 6407 6408 driver = parent->driver; 6409 if (driver && driver->name) 6410 return driver->name; 6411 return empty; 6412 } 6413 6414 int __netdev_printk(const char *level, const struct net_device *dev, 6415 struct va_format *vaf) 6416 { 6417 int r; 6418 6419 if (dev && dev->dev.parent) 6420 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6421 netdev_name(dev), vaf); 6422 else if (dev) 6423 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6424 else 6425 r = printk("%s(NULL net_device): %pV", level, vaf); 6426 6427 return r; 6428 } 6429 EXPORT_SYMBOL(__netdev_printk); 6430 6431 int netdev_printk(const char *level, const struct net_device *dev, 6432 const char *format, ...) 6433 { 6434 struct va_format vaf; 6435 va_list args; 6436 int r; 6437 6438 va_start(args, format); 6439 6440 vaf.fmt = format; 6441 vaf.va = &args; 6442 6443 r = __netdev_printk(level, dev, &vaf); 6444 va_end(args); 6445 6446 return r; 6447 } 6448 EXPORT_SYMBOL(netdev_printk); 6449 6450 #define define_netdev_printk_level(func, level) \ 6451 int func(const struct net_device *dev, const char *fmt, ...) \ 6452 { \ 6453 int r; \ 6454 struct va_format vaf; \ 6455 va_list args; \ 6456 \ 6457 va_start(args, fmt); \ 6458 \ 6459 vaf.fmt = fmt; \ 6460 vaf.va = &args; \ 6461 \ 6462 r = __netdev_printk(level, dev, &vaf); \ 6463 va_end(args); \ 6464 \ 6465 return r; \ 6466 } \ 6467 EXPORT_SYMBOL(func); 6468 6469 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6470 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6471 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6472 define_netdev_printk_level(netdev_err, KERN_ERR); 6473 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6474 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6475 define_netdev_printk_level(netdev_info, KERN_INFO); 6476 6477 static void __net_exit netdev_exit(struct net *net) 6478 { 6479 kfree(net->dev_name_head); 6480 kfree(net->dev_index_head); 6481 } 6482 6483 static struct pernet_operations __net_initdata netdev_net_ops = { 6484 .init = netdev_init, 6485 .exit = netdev_exit, 6486 }; 6487 6488 static void __net_exit default_device_exit(struct net *net) 6489 { 6490 struct net_device *dev, *aux; 6491 /* 6492 * Push all migratable network devices back to the 6493 * initial network namespace 6494 */ 6495 rtnl_lock(); 6496 for_each_netdev_safe(net, dev, aux) { 6497 int err; 6498 char fb_name[IFNAMSIZ]; 6499 6500 /* Ignore unmoveable devices (i.e. loopback) */ 6501 if (dev->features & NETIF_F_NETNS_LOCAL) 6502 continue; 6503 6504 /* Leave virtual devices for the generic cleanup */ 6505 if (dev->rtnl_link_ops) 6506 continue; 6507 6508 /* Push remaining network devices to init_net */ 6509 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6510 err = dev_change_net_namespace(dev, &init_net, fb_name); 6511 if (err) { 6512 pr_emerg("%s: failed to move %s to init_net: %d\n", 6513 __func__, dev->name, err); 6514 BUG(); 6515 } 6516 } 6517 rtnl_unlock(); 6518 } 6519 6520 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6521 { 6522 /* At exit all network devices most be removed from a network 6523 * namespace. Do this in the reverse order of registration. 6524 * Do this across as many network namespaces as possible to 6525 * improve batching efficiency. 6526 */ 6527 struct net_device *dev; 6528 struct net *net; 6529 LIST_HEAD(dev_kill_list); 6530 6531 rtnl_lock(); 6532 list_for_each_entry(net, net_list, exit_list) { 6533 for_each_netdev_reverse(net, dev) { 6534 if (dev->rtnl_link_ops) 6535 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6536 else 6537 unregister_netdevice_queue(dev, &dev_kill_list); 6538 } 6539 } 6540 unregister_netdevice_many(&dev_kill_list); 6541 list_del(&dev_kill_list); 6542 rtnl_unlock(); 6543 } 6544 6545 static struct pernet_operations __net_initdata default_device_ops = { 6546 .exit = default_device_exit, 6547 .exit_batch = default_device_exit_batch, 6548 }; 6549 6550 /* 6551 * Initialize the DEV module. At boot time this walks the device list and 6552 * unhooks any devices that fail to initialise (normally hardware not 6553 * present) and leaves us with a valid list of present and active devices. 6554 * 6555 */ 6556 6557 /* 6558 * This is called single threaded during boot, so no need 6559 * to take the rtnl semaphore. 6560 */ 6561 static int __init net_dev_init(void) 6562 { 6563 int i, rc = -ENOMEM; 6564 6565 BUG_ON(!dev_boot_phase); 6566 6567 if (dev_proc_init()) 6568 goto out; 6569 6570 if (netdev_kobject_init()) 6571 goto out; 6572 6573 INIT_LIST_HEAD(&ptype_all); 6574 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6575 INIT_LIST_HEAD(&ptype_base[i]); 6576 6577 if (register_pernet_subsys(&netdev_net_ops)) 6578 goto out; 6579 6580 /* 6581 * Initialise the packet receive queues. 6582 */ 6583 6584 for_each_possible_cpu(i) { 6585 struct softnet_data *sd = &per_cpu(softnet_data, i); 6586 6587 memset(sd, 0, sizeof(*sd)); 6588 skb_queue_head_init(&sd->input_pkt_queue); 6589 skb_queue_head_init(&sd->process_queue); 6590 sd->completion_queue = NULL; 6591 INIT_LIST_HEAD(&sd->poll_list); 6592 sd->output_queue = NULL; 6593 sd->output_queue_tailp = &sd->output_queue; 6594 #ifdef CONFIG_RPS 6595 sd->csd.func = rps_trigger_softirq; 6596 sd->csd.info = sd; 6597 sd->csd.flags = 0; 6598 sd->cpu = i; 6599 #endif 6600 6601 sd->backlog.poll = process_backlog; 6602 sd->backlog.weight = weight_p; 6603 sd->backlog.gro_list = NULL; 6604 sd->backlog.gro_count = 0; 6605 } 6606 6607 dev_boot_phase = 0; 6608 6609 /* The loopback device is special if any other network devices 6610 * is present in a network namespace the loopback device must 6611 * be present. Since we now dynamically allocate and free the 6612 * loopback device ensure this invariant is maintained by 6613 * keeping the loopback device as the first device on the 6614 * list of network devices. Ensuring the loopback devices 6615 * is the first device that appears and the last network device 6616 * that disappears. 6617 */ 6618 if (register_pernet_device(&loopback_net_ops)) 6619 goto out; 6620 6621 if (register_pernet_device(&default_device_ops)) 6622 goto out; 6623 6624 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6625 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6626 6627 hotcpu_notifier(dev_cpu_callback, 0); 6628 dst_init(); 6629 dev_mcast_init(); 6630 rc = 0; 6631 out: 6632 return rc; 6633 } 6634 6635 subsys_initcall(net_dev_init); 6636 6637 static int __init initialize_hashrnd(void) 6638 { 6639 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6640 return 0; 6641 } 6642 6643 late_initcall_sync(initialize_hashrnd); 6644 6645