xref: /openbmc/linux/net/core/dev.c (revision 7364e445f62825758fa61195d237a5b8ecdd06ec)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/net_tstamp.h>
136 #include <linux/static_key.h>
137 #include <net/flow_keys.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 /*
148  *	The list of packet types we will receive (as opposed to discard)
149  *	and the routines to invoke.
150  *
151  *	Why 16. Because with 16 the only overlap we get on a hash of the
152  *	low nibble of the protocol value is RARP/SNAP/X.25.
153  *
154  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
155  *             sure which should go first, but I bet it won't make much
156  *             difference if we are running VLANs.  The good news is that
157  *             this protocol won't be in the list unless compiled in, so
158  *             the average user (w/out VLANs) will not be adversely affected.
159  *             --BLG
160  *
161  *		0800	IP
162  *		8100    802.1Q VLAN
163  *		0001	802.3
164  *		0002	AX.25
165  *		0004	802.2
166  *		8035	RARP
167  *		0005	SNAP
168  *		0805	X.25
169  *		0806	ARP
170  *		8137	IPX
171  *		0009	Localtalk
172  *		86DD	IPv6
173  */
174 
175 #define PTYPE_HASH_SIZE	(16)
176 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
177 
178 static DEFINE_SPINLOCK(ptype_lock);
179 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
180 static struct list_head ptype_all __read_mostly;	/* Taps */
181 
182 /*
183  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
184  * semaphore.
185  *
186  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
187  *
188  * Writers must hold the rtnl semaphore while they loop through the
189  * dev_base_head list, and hold dev_base_lock for writing when they do the
190  * actual updates.  This allows pure readers to access the list even
191  * while a writer is preparing to update it.
192  *
193  * To put it another way, dev_base_lock is held for writing only to
194  * protect against pure readers; the rtnl semaphore provides the
195  * protection against other writers.
196  *
197  * See, for example usages, register_netdevice() and
198  * unregister_netdevice(), which must be called with the rtnl
199  * semaphore held.
200  */
201 DEFINE_RWLOCK(dev_base_lock);
202 EXPORT_SYMBOL(dev_base_lock);
203 
204 static inline void dev_base_seq_inc(struct net *net)
205 {
206 	while (++net->dev_base_seq == 0);
207 }
208 
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
212 
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
304 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
305 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
306 
307 static const char *const netdev_lock_name[] =
308 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
309 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
310 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
311 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
312 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
313 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
314 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
315 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
316 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
317 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
318 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
319 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
320 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
321 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
322 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
323 
324 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
325 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
326 
327 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
328 {
329 	int i;
330 
331 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
332 		if (netdev_lock_type[i] == dev_type)
333 			return i;
334 	/* the last key is used by default */
335 	return ARRAY_SIZE(netdev_lock_type) - 1;
336 }
337 
338 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 						 unsigned short dev_type)
340 {
341 	int i;
342 
343 	i = netdev_lock_pos(dev_type);
344 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
345 				   netdev_lock_name[i]);
346 }
347 
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 	int i;
351 
352 	i = netdev_lock_pos(dev->type);
353 	lockdep_set_class_and_name(&dev->addr_list_lock,
354 				   &netdev_addr_lock_key[i],
355 				   netdev_lock_name[i]);
356 }
357 #else
358 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
359 						 unsigned short dev_type)
360 {
361 }
362 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
363 {
364 }
365 #endif
366 
367 /*******************************************************************************
368 
369 		Protocol management and registration routines
370 
371 *******************************************************************************/
372 
373 /*
374  *	Add a protocol ID to the list. Now that the input handler is
375  *	smarter we can dispense with all the messy stuff that used to be
376  *	here.
377  *
378  *	BEWARE!!! Protocol handlers, mangling input packets,
379  *	MUST BE last in hash buckets and checking protocol handlers
380  *	MUST start from promiscuous ptype_all chain in net_bh.
381  *	It is true now, do not change it.
382  *	Explanation follows: if protocol handler, mangling packet, will
383  *	be the first on list, it is not able to sense, that packet
384  *	is cloned and should be copied-on-write, so that it will
385  *	change it and subsequent readers will get broken packet.
386  *							--ANK (980803)
387  */
388 
389 static inline struct list_head *ptype_head(const struct packet_type *pt)
390 {
391 	if (pt->type == htons(ETH_P_ALL))
392 		return &ptype_all;
393 	else
394 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396 
397 /**
398  *	dev_add_pack - add packet handler
399  *	@pt: packet type declaration
400  *
401  *	Add a protocol handler to the networking stack. The passed &packet_type
402  *	is linked into kernel lists and may not be freed until it has been
403  *	removed from the kernel lists.
404  *
405  *	This call does not sleep therefore it can not
406  *	guarantee all CPU's that are in middle of receiving packets
407  *	will see the new packet type (until the next received packet).
408  */
409 
410 void dev_add_pack(struct packet_type *pt)
411 {
412 	struct list_head *head = ptype_head(pt);
413 
414 	spin_lock(&ptype_lock);
415 	list_add_rcu(&pt->list, head);
416 	spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419 
420 /**
421  *	__dev_remove_pack	 - remove packet handler
422  *	@pt: packet type declaration
423  *
424  *	Remove a protocol handler that was previously added to the kernel
425  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *	from the kernel lists and can be freed or reused once this function
427  *	returns.
428  *
429  *      The packet type might still be in use by receivers
430  *	and must not be freed until after all the CPU's have gone
431  *	through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435 	struct list_head *head = ptype_head(pt);
436 	struct packet_type *pt1;
437 
438 	spin_lock(&ptype_lock);
439 
440 	list_for_each_entry(pt1, head, list) {
441 		if (pt == pt1) {
442 			list_del_rcu(&pt->list);
443 			goto out;
444 		}
445 	}
446 
447 	pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449 	spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452 
453 /**
454  *	dev_remove_pack	 - remove packet handler
455  *	@pt: packet type declaration
456  *
457  *	Remove a protocol handler that was previously added to the kernel
458  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *	from the kernel lists and can be freed or reused once this function
460  *	returns.
461  *
462  *	This call sleeps to guarantee that no CPU is looking at the packet
463  *	type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467 	__dev_remove_pack(pt);
468 
469 	synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472 
473 /******************************************************************************
474 
475 		      Device Boot-time Settings Routines
476 
477 *******************************************************************************/
478 
479 /* Boot time configuration table */
480 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
481 
482 /**
483  *	netdev_boot_setup_add	- add new setup entry
484  *	@name: name of the device
485  *	@map: configured settings for the device
486  *
487  *	Adds new setup entry to the dev_boot_setup list.  The function
488  *	returns 0 on error and 1 on success.  This is a generic routine to
489  *	all netdevices.
490  */
491 static int netdev_boot_setup_add(char *name, struct ifmap *map)
492 {
493 	struct netdev_boot_setup *s;
494 	int i;
495 
496 	s = dev_boot_setup;
497 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
499 			memset(s[i].name, 0, sizeof(s[i].name));
500 			strlcpy(s[i].name, name, IFNAMSIZ);
501 			memcpy(&s[i].map, map, sizeof(s[i].map));
502 			break;
503 		}
504 	}
505 
506 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
507 }
508 
509 /**
510  *	netdev_boot_setup_check	- check boot time settings
511  *	@dev: the netdevice
512  *
513  * 	Check boot time settings for the device.
514  *	The found settings are set for the device to be used
515  *	later in the device probing.
516  *	Returns 0 if no settings found, 1 if they are.
517  */
518 int netdev_boot_setup_check(struct net_device *dev)
519 {
520 	struct netdev_boot_setup *s = dev_boot_setup;
521 	int i;
522 
523 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
524 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
525 		    !strcmp(dev->name, s[i].name)) {
526 			dev->irq 	= s[i].map.irq;
527 			dev->base_addr 	= s[i].map.base_addr;
528 			dev->mem_start 	= s[i].map.mem_start;
529 			dev->mem_end 	= s[i].map.mem_end;
530 			return 1;
531 		}
532 	}
533 	return 0;
534 }
535 EXPORT_SYMBOL(netdev_boot_setup_check);
536 
537 
538 /**
539  *	netdev_boot_base	- get address from boot time settings
540  *	@prefix: prefix for network device
541  *	@unit: id for network device
542  *
543  * 	Check boot time settings for the base address of device.
544  *	The found settings are set for the device to be used
545  *	later in the device probing.
546  *	Returns 0 if no settings found.
547  */
548 unsigned long netdev_boot_base(const char *prefix, int unit)
549 {
550 	const struct netdev_boot_setup *s = dev_boot_setup;
551 	char name[IFNAMSIZ];
552 	int i;
553 
554 	sprintf(name, "%s%d", prefix, unit);
555 
556 	/*
557 	 * If device already registered then return base of 1
558 	 * to indicate not to probe for this interface
559 	 */
560 	if (__dev_get_by_name(&init_net, name))
561 		return 1;
562 
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
564 		if (!strcmp(name, s[i].name))
565 			return s[i].map.base_addr;
566 	return 0;
567 }
568 
569 /*
570  * Saves at boot time configured settings for any netdevice.
571  */
572 int __init netdev_boot_setup(char *str)
573 {
574 	int ints[5];
575 	struct ifmap map;
576 
577 	str = get_options(str, ARRAY_SIZE(ints), ints);
578 	if (!str || !*str)
579 		return 0;
580 
581 	/* Save settings */
582 	memset(&map, 0, sizeof(map));
583 	if (ints[0] > 0)
584 		map.irq = ints[1];
585 	if (ints[0] > 1)
586 		map.base_addr = ints[2];
587 	if (ints[0] > 2)
588 		map.mem_start = ints[3];
589 	if (ints[0] > 3)
590 		map.mem_end = ints[4];
591 
592 	/* Add new entry to the list */
593 	return netdev_boot_setup_add(str, &map);
594 }
595 
596 __setup("netdev=", netdev_boot_setup);
597 
598 /*******************************************************************************
599 
600 			    Device Interface Subroutines
601 
602 *******************************************************************************/
603 
604 /**
605  *	__dev_get_by_name	- find a device by its name
606  *	@net: the applicable net namespace
607  *	@name: name to find
608  *
609  *	Find an interface by name. Must be called under RTNL semaphore
610  *	or @dev_base_lock. If the name is found a pointer to the device
611  *	is returned. If the name is not found then %NULL is returned. The
612  *	reference counters are not incremented so the caller must be
613  *	careful with locks.
614  */
615 
616 struct net_device *__dev_get_by_name(struct net *net, const char *name)
617 {
618 	struct hlist_node *p;
619 	struct net_device *dev;
620 	struct hlist_head *head = dev_name_hash(net, name);
621 
622 	hlist_for_each_entry(dev, p, head, name_hlist)
623 		if (!strncmp(dev->name, name, IFNAMSIZ))
624 			return dev;
625 
626 	return NULL;
627 }
628 EXPORT_SYMBOL(__dev_get_by_name);
629 
630 /**
631  *	dev_get_by_name_rcu	- find a device by its name
632  *	@net: the applicable net namespace
633  *	@name: name to find
634  *
635  *	Find an interface by name.
636  *	If the name is found a pointer to the device is returned.
637  * 	If the name is not found then %NULL is returned.
638  *	The reference counters are not incremented so the caller must be
639  *	careful with locks. The caller must hold RCU lock.
640  */
641 
642 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
643 {
644 	struct hlist_node *p;
645 	struct net_device *dev;
646 	struct hlist_head *head = dev_name_hash(net, name);
647 
648 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
649 		if (!strncmp(dev->name, name, IFNAMSIZ))
650 			return dev;
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL(dev_get_by_name_rcu);
655 
656 /**
657  *	dev_get_by_name		- find a device by its name
658  *	@net: the applicable net namespace
659  *	@name: name to find
660  *
661  *	Find an interface by name. This can be called from any
662  *	context and does its own locking. The returned handle has
663  *	the usage count incremented and the caller must use dev_put() to
664  *	release it when it is no longer needed. %NULL is returned if no
665  *	matching device is found.
666  */
667 
668 struct net_device *dev_get_by_name(struct net *net, const char *name)
669 {
670 	struct net_device *dev;
671 
672 	rcu_read_lock();
673 	dev = dev_get_by_name_rcu(net, name);
674 	if (dev)
675 		dev_hold(dev);
676 	rcu_read_unlock();
677 	return dev;
678 }
679 EXPORT_SYMBOL(dev_get_by_name);
680 
681 /**
682  *	__dev_get_by_index - find a device by its ifindex
683  *	@net: the applicable net namespace
684  *	@ifindex: index of device
685  *
686  *	Search for an interface by index. Returns %NULL if the device
687  *	is not found or a pointer to the device. The device has not
688  *	had its reference counter increased so the caller must be careful
689  *	about locking. The caller must hold either the RTNL semaphore
690  *	or @dev_base_lock.
691  */
692 
693 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
694 {
695 	struct hlist_node *p;
696 	struct net_device *dev;
697 	struct hlist_head *head = dev_index_hash(net, ifindex);
698 
699 	hlist_for_each_entry(dev, p, head, index_hlist)
700 		if (dev->ifindex == ifindex)
701 			return dev;
702 
703 	return NULL;
704 }
705 EXPORT_SYMBOL(__dev_get_by_index);
706 
707 /**
708  *	dev_get_by_index_rcu - find a device by its ifindex
709  *	@net: the applicable net namespace
710  *	@ifindex: index of device
711  *
712  *	Search for an interface by index. Returns %NULL if the device
713  *	is not found or a pointer to the device. The device has not
714  *	had its reference counter increased so the caller must be careful
715  *	about locking. The caller must hold RCU lock.
716  */
717 
718 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
719 {
720 	struct hlist_node *p;
721 	struct net_device *dev;
722 	struct hlist_head *head = dev_index_hash(net, ifindex);
723 
724 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
725 		if (dev->ifindex == ifindex)
726 			return dev;
727 
728 	return NULL;
729 }
730 EXPORT_SYMBOL(dev_get_by_index_rcu);
731 
732 
733 /**
734  *	dev_get_by_index - find a device by its ifindex
735  *	@net: the applicable net namespace
736  *	@ifindex: index of device
737  *
738  *	Search for an interface by index. Returns NULL if the device
739  *	is not found or a pointer to the device. The device returned has
740  *	had a reference added and the pointer is safe until the user calls
741  *	dev_put to indicate they have finished with it.
742  */
743 
744 struct net_device *dev_get_by_index(struct net *net, int ifindex)
745 {
746 	struct net_device *dev;
747 
748 	rcu_read_lock();
749 	dev = dev_get_by_index_rcu(net, ifindex);
750 	if (dev)
751 		dev_hold(dev);
752 	rcu_read_unlock();
753 	return dev;
754 }
755 EXPORT_SYMBOL(dev_get_by_index);
756 
757 /**
758  *	dev_getbyhwaddr_rcu - find a device by its hardware address
759  *	@net: the applicable net namespace
760  *	@type: media type of device
761  *	@ha: hardware address
762  *
763  *	Search for an interface by MAC address. Returns NULL if the device
764  *	is not found or a pointer to the device.
765  *	The caller must hold RCU or RTNL.
766  *	The returned device has not had its ref count increased
767  *	and the caller must therefore be careful about locking
768  *
769  */
770 
771 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
772 				       const char *ha)
773 {
774 	struct net_device *dev;
775 
776 	for_each_netdev_rcu(net, dev)
777 		if (dev->type == type &&
778 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
784 
785 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev;
788 
789 	ASSERT_RTNL();
790 	for_each_netdev(net, dev)
791 		if (dev->type == type)
792 			return dev;
793 
794 	return NULL;
795 }
796 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
797 
798 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
799 {
800 	struct net_device *dev, *ret = NULL;
801 
802 	rcu_read_lock();
803 	for_each_netdev_rcu(net, dev)
804 		if (dev->type == type) {
805 			dev_hold(dev);
806 			ret = dev;
807 			break;
808 		}
809 	rcu_read_unlock();
810 	return ret;
811 }
812 EXPORT_SYMBOL(dev_getfirstbyhwtype);
813 
814 /**
815  *	dev_get_by_flags_rcu - find any device with given flags
816  *	@net: the applicable net namespace
817  *	@if_flags: IFF_* values
818  *	@mask: bitmask of bits in if_flags to check
819  *
820  *	Search for any interface with the given flags. Returns NULL if a device
821  *	is not found or a pointer to the device. Must be called inside
822  *	rcu_read_lock(), and result refcount is unchanged.
823  */
824 
825 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
826 				    unsigned short mask)
827 {
828 	struct net_device *dev, *ret;
829 
830 	ret = NULL;
831 	for_each_netdev_rcu(net, dev) {
832 		if (((dev->flags ^ if_flags) & mask) == 0) {
833 			ret = dev;
834 			break;
835 		}
836 	}
837 	return ret;
838 }
839 EXPORT_SYMBOL(dev_get_by_flags_rcu);
840 
841 /**
842  *	dev_valid_name - check if name is okay for network device
843  *	@name: name string
844  *
845  *	Network device names need to be valid file names to
846  *	to allow sysfs to work.  We also disallow any kind of
847  *	whitespace.
848  */
849 bool dev_valid_name(const char *name)
850 {
851 	if (*name == '\0')
852 		return false;
853 	if (strlen(name) >= IFNAMSIZ)
854 		return false;
855 	if (!strcmp(name, ".") || !strcmp(name, ".."))
856 		return false;
857 
858 	while (*name) {
859 		if (*name == '/' || isspace(*name))
860 			return false;
861 		name++;
862 	}
863 	return true;
864 }
865 EXPORT_SYMBOL(dev_valid_name);
866 
867 /**
868  *	__dev_alloc_name - allocate a name for a device
869  *	@net: network namespace to allocate the device name in
870  *	@name: name format string
871  *	@buf:  scratch buffer and result name string
872  *
873  *	Passed a format string - eg "lt%d" it will try and find a suitable
874  *	id. It scans list of devices to build up a free map, then chooses
875  *	the first empty slot. The caller must hold the dev_base or rtnl lock
876  *	while allocating the name and adding the device in order to avoid
877  *	duplicates.
878  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
879  *	Returns the number of the unit assigned or a negative errno code.
880  */
881 
882 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
883 {
884 	int i = 0;
885 	const char *p;
886 	const int max_netdevices = 8*PAGE_SIZE;
887 	unsigned long *inuse;
888 	struct net_device *d;
889 
890 	p = strnchr(name, IFNAMSIZ-1, '%');
891 	if (p) {
892 		/*
893 		 * Verify the string as this thing may have come from
894 		 * the user.  There must be either one "%d" and no other "%"
895 		 * characters.
896 		 */
897 		if (p[1] != 'd' || strchr(p + 2, '%'))
898 			return -EINVAL;
899 
900 		/* Use one page as a bit array of possible slots */
901 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
902 		if (!inuse)
903 			return -ENOMEM;
904 
905 		for_each_netdev(net, d) {
906 			if (!sscanf(d->name, name, &i))
907 				continue;
908 			if (i < 0 || i >= max_netdevices)
909 				continue;
910 
911 			/*  avoid cases where sscanf is not exact inverse of printf */
912 			snprintf(buf, IFNAMSIZ, name, i);
913 			if (!strncmp(buf, d->name, IFNAMSIZ))
914 				set_bit(i, inuse);
915 		}
916 
917 		i = find_first_zero_bit(inuse, max_netdevices);
918 		free_page((unsigned long) inuse);
919 	}
920 
921 	if (buf != name)
922 		snprintf(buf, IFNAMSIZ, name, i);
923 	if (!__dev_get_by_name(net, buf))
924 		return i;
925 
926 	/* It is possible to run out of possible slots
927 	 * when the name is long and there isn't enough space left
928 	 * for the digits, or if all bits are used.
929 	 */
930 	return -ENFILE;
931 }
932 
933 /**
934  *	dev_alloc_name - allocate a name for a device
935  *	@dev: device
936  *	@name: name format string
937  *
938  *	Passed a format string - eg "lt%d" it will try and find a suitable
939  *	id. It scans list of devices to build up a free map, then chooses
940  *	the first empty slot. The caller must hold the dev_base or rtnl lock
941  *	while allocating the name and adding the device in order to avoid
942  *	duplicates.
943  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
944  *	Returns the number of the unit assigned or a negative errno code.
945  */
946 
947 int dev_alloc_name(struct net_device *dev, const char *name)
948 {
949 	char buf[IFNAMSIZ];
950 	struct net *net;
951 	int ret;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 	ret = __dev_alloc_name(net, name, buf);
956 	if (ret >= 0)
957 		strlcpy(dev->name, buf, IFNAMSIZ);
958 	return ret;
959 }
960 EXPORT_SYMBOL(dev_alloc_name);
961 
962 static int dev_get_valid_name(struct net_device *dev, const char *name)
963 {
964 	struct net *net;
965 
966 	BUG_ON(!dev_net(dev));
967 	net = dev_net(dev);
968 
969 	if (!dev_valid_name(name))
970 		return -EINVAL;
971 
972 	if (strchr(name, '%'))
973 		return dev_alloc_name(dev, name);
974 	else if (__dev_get_by_name(net, name))
975 		return -EEXIST;
976 	else if (dev->name != name)
977 		strlcpy(dev->name, name, IFNAMSIZ);
978 
979 	return 0;
980 }
981 
982 /**
983  *	dev_change_name - change name of a device
984  *	@dev: device
985  *	@newname: name (or format string) must be at least IFNAMSIZ
986  *
987  *	Change name of a device, can pass format strings "eth%d".
988  *	for wildcarding.
989  */
990 int dev_change_name(struct net_device *dev, const char *newname)
991 {
992 	char oldname[IFNAMSIZ];
993 	int err = 0;
994 	int ret;
995 	struct net *net;
996 
997 	ASSERT_RTNL();
998 	BUG_ON(!dev_net(dev));
999 
1000 	net = dev_net(dev);
1001 	if (dev->flags & IFF_UP)
1002 		return -EBUSY;
1003 
1004 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1005 		return 0;
1006 
1007 	memcpy(oldname, dev->name, IFNAMSIZ);
1008 
1009 	err = dev_get_valid_name(dev, newname);
1010 	if (err < 0)
1011 		return err;
1012 
1013 rollback:
1014 	ret = device_rename(&dev->dev, dev->name);
1015 	if (ret) {
1016 		memcpy(dev->name, oldname, IFNAMSIZ);
1017 		return ret;
1018 	}
1019 
1020 	write_lock_bh(&dev_base_lock);
1021 	hlist_del_rcu(&dev->name_hlist);
1022 	write_unlock_bh(&dev_base_lock);
1023 
1024 	synchronize_rcu();
1025 
1026 	write_lock_bh(&dev_base_lock);
1027 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1028 	write_unlock_bh(&dev_base_lock);
1029 
1030 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1031 	ret = notifier_to_errno(ret);
1032 
1033 	if (ret) {
1034 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1035 		if (err >= 0) {
1036 			err = ret;
1037 			memcpy(dev->name, oldname, IFNAMSIZ);
1038 			goto rollback;
1039 		} else {
1040 			pr_err("%s: name change rollback failed: %d\n",
1041 			       dev->name, ret);
1042 		}
1043 	}
1044 
1045 	return err;
1046 }
1047 
1048 /**
1049  *	dev_set_alias - change ifalias of a device
1050  *	@dev: device
1051  *	@alias: name up to IFALIASZ
1052  *	@len: limit of bytes to copy from info
1053  *
1054  *	Set ifalias for a device,
1055  */
1056 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057 {
1058 	char *new_ifalias;
1059 
1060 	ASSERT_RTNL();
1061 
1062 	if (len >= IFALIASZ)
1063 		return -EINVAL;
1064 
1065 	if (!len) {
1066 		if (dev->ifalias) {
1067 			kfree(dev->ifalias);
1068 			dev->ifalias = NULL;
1069 		}
1070 		return 0;
1071 	}
1072 
1073 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 	if (!new_ifalias)
1075 		return -ENOMEM;
1076 	dev->ifalias = new_ifalias;
1077 
1078 	strlcpy(dev->ifalias, alias, len+1);
1079 	return len;
1080 }
1081 
1082 
1083 /**
1084  *	netdev_features_change - device changes features
1085  *	@dev: device to cause notification
1086  *
1087  *	Called to indicate a device has changed features.
1088  */
1089 void netdev_features_change(struct net_device *dev)
1090 {
1091 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1092 }
1093 EXPORT_SYMBOL(netdev_features_change);
1094 
1095 /**
1096  *	netdev_state_change - device changes state
1097  *	@dev: device to cause notification
1098  *
1099  *	Called to indicate a device has changed state. This function calls
1100  *	the notifier chains for netdev_chain and sends a NEWLINK message
1101  *	to the routing socket.
1102  */
1103 void netdev_state_change(struct net_device *dev)
1104 {
1105 	if (dev->flags & IFF_UP) {
1106 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1107 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1108 	}
1109 }
1110 EXPORT_SYMBOL(netdev_state_change);
1111 
1112 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1113 {
1114 	return call_netdevice_notifiers(event, dev);
1115 }
1116 EXPORT_SYMBOL(netdev_bonding_change);
1117 
1118 /**
1119  *	dev_load 	- load a network module
1120  *	@net: the applicable net namespace
1121  *	@name: name of interface
1122  *
1123  *	If a network interface is not present and the process has suitable
1124  *	privileges this function loads the module. If module loading is not
1125  *	available in this kernel then it becomes a nop.
1126  */
1127 
1128 void dev_load(struct net *net, const char *name)
1129 {
1130 	struct net_device *dev;
1131 	int no_module;
1132 
1133 	rcu_read_lock();
1134 	dev = dev_get_by_name_rcu(net, name);
1135 	rcu_read_unlock();
1136 
1137 	no_module = !dev;
1138 	if (no_module && capable(CAP_NET_ADMIN))
1139 		no_module = request_module("netdev-%s", name);
1140 	if (no_module && capable(CAP_SYS_MODULE)) {
1141 		if (!request_module("%s", name))
1142 			pr_warn("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1143 				name);
1144 	}
1145 }
1146 EXPORT_SYMBOL(dev_load);
1147 
1148 static int __dev_open(struct net_device *dev)
1149 {
1150 	const struct net_device_ops *ops = dev->netdev_ops;
1151 	int ret;
1152 
1153 	ASSERT_RTNL();
1154 
1155 	if (!netif_device_present(dev))
1156 		return -ENODEV;
1157 
1158 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1159 	ret = notifier_to_errno(ret);
1160 	if (ret)
1161 		return ret;
1162 
1163 	set_bit(__LINK_STATE_START, &dev->state);
1164 
1165 	if (ops->ndo_validate_addr)
1166 		ret = ops->ndo_validate_addr(dev);
1167 
1168 	if (!ret && ops->ndo_open)
1169 		ret = ops->ndo_open(dev);
1170 
1171 	if (ret)
1172 		clear_bit(__LINK_STATE_START, &dev->state);
1173 	else {
1174 		dev->flags |= IFF_UP;
1175 		net_dmaengine_get();
1176 		dev_set_rx_mode(dev);
1177 		dev_activate(dev);
1178 		add_device_randomness(dev->dev_addr, dev->addr_len);
1179 	}
1180 
1181 	return ret;
1182 }
1183 
1184 /**
1185  *	dev_open	- prepare an interface for use.
1186  *	@dev:	device to open
1187  *
1188  *	Takes a device from down to up state. The device's private open
1189  *	function is invoked and then the multicast lists are loaded. Finally
1190  *	the device is moved into the up state and a %NETDEV_UP message is
1191  *	sent to the netdev notifier chain.
1192  *
1193  *	Calling this function on an active interface is a nop. On a failure
1194  *	a negative errno code is returned.
1195  */
1196 int dev_open(struct net_device *dev)
1197 {
1198 	int ret;
1199 
1200 	if (dev->flags & IFF_UP)
1201 		return 0;
1202 
1203 	ret = __dev_open(dev);
1204 	if (ret < 0)
1205 		return ret;
1206 
1207 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1208 	call_netdevice_notifiers(NETDEV_UP, dev);
1209 
1210 	return ret;
1211 }
1212 EXPORT_SYMBOL(dev_open);
1213 
1214 static int __dev_close_many(struct list_head *head)
1215 {
1216 	struct net_device *dev;
1217 
1218 	ASSERT_RTNL();
1219 	might_sleep();
1220 
1221 	list_for_each_entry(dev, head, unreg_list) {
1222 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1223 
1224 		clear_bit(__LINK_STATE_START, &dev->state);
1225 
1226 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1227 		 * can be even on different cpu. So just clear netif_running().
1228 		 *
1229 		 * dev->stop() will invoke napi_disable() on all of it's
1230 		 * napi_struct instances on this device.
1231 		 */
1232 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1233 	}
1234 
1235 	dev_deactivate_many(head);
1236 
1237 	list_for_each_entry(dev, head, unreg_list) {
1238 		const struct net_device_ops *ops = dev->netdev_ops;
1239 
1240 		/*
1241 		 *	Call the device specific close. This cannot fail.
1242 		 *	Only if device is UP
1243 		 *
1244 		 *	We allow it to be called even after a DETACH hot-plug
1245 		 *	event.
1246 		 */
1247 		if (ops->ndo_stop)
1248 			ops->ndo_stop(dev);
1249 
1250 		dev->flags &= ~IFF_UP;
1251 		net_dmaengine_put();
1252 	}
1253 
1254 	return 0;
1255 }
1256 
1257 static int __dev_close(struct net_device *dev)
1258 {
1259 	int retval;
1260 	LIST_HEAD(single);
1261 
1262 	list_add(&dev->unreg_list, &single);
1263 	retval = __dev_close_many(&single);
1264 	list_del(&single);
1265 	return retval;
1266 }
1267 
1268 static int dev_close_many(struct list_head *head)
1269 {
1270 	struct net_device *dev, *tmp;
1271 	LIST_HEAD(tmp_list);
1272 
1273 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1274 		if (!(dev->flags & IFF_UP))
1275 			list_move(&dev->unreg_list, &tmp_list);
1276 
1277 	__dev_close_many(head);
1278 
1279 	list_for_each_entry(dev, head, unreg_list) {
1280 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1281 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1282 	}
1283 
1284 	/* rollback_registered_many needs the complete original list */
1285 	list_splice(&tmp_list, head);
1286 	return 0;
1287 }
1288 
1289 /**
1290  *	dev_close - shutdown an interface.
1291  *	@dev: device to shutdown
1292  *
1293  *	This function moves an active device into down state. A
1294  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1295  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1296  *	chain.
1297  */
1298 int dev_close(struct net_device *dev)
1299 {
1300 	if (dev->flags & IFF_UP) {
1301 		LIST_HEAD(single);
1302 
1303 		list_add(&dev->unreg_list, &single);
1304 		dev_close_many(&single);
1305 		list_del(&single);
1306 	}
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL(dev_close);
1310 
1311 
1312 /**
1313  *	dev_disable_lro - disable Large Receive Offload on a device
1314  *	@dev: device
1315  *
1316  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1317  *	called under RTNL.  This is needed if received packets may be
1318  *	forwarded to another interface.
1319  */
1320 void dev_disable_lro(struct net_device *dev)
1321 {
1322 	/*
1323 	 * If we're trying to disable lro on a vlan device
1324 	 * use the underlying physical device instead
1325 	 */
1326 	if (is_vlan_dev(dev))
1327 		dev = vlan_dev_real_dev(dev);
1328 
1329 	dev->wanted_features &= ~NETIF_F_LRO;
1330 	netdev_update_features(dev);
1331 
1332 	if (unlikely(dev->features & NETIF_F_LRO))
1333 		netdev_WARN(dev, "failed to disable LRO!\n");
1334 }
1335 EXPORT_SYMBOL(dev_disable_lro);
1336 
1337 
1338 static int dev_boot_phase = 1;
1339 
1340 /**
1341  *	register_netdevice_notifier - register a network notifier block
1342  *	@nb: notifier
1343  *
1344  *	Register a notifier to be called when network device events occur.
1345  *	The notifier passed is linked into the kernel structures and must
1346  *	not be reused until it has been unregistered. A negative errno code
1347  *	is returned on a failure.
1348  *
1349  * 	When registered all registration and up events are replayed
1350  *	to the new notifier to allow device to have a race free
1351  *	view of the network device list.
1352  */
1353 
1354 int register_netdevice_notifier(struct notifier_block *nb)
1355 {
1356 	struct net_device *dev;
1357 	struct net_device *last;
1358 	struct net *net;
1359 	int err;
1360 
1361 	rtnl_lock();
1362 	err = raw_notifier_chain_register(&netdev_chain, nb);
1363 	if (err)
1364 		goto unlock;
1365 	if (dev_boot_phase)
1366 		goto unlock;
1367 	for_each_net(net) {
1368 		for_each_netdev(net, dev) {
1369 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1370 			err = notifier_to_errno(err);
1371 			if (err)
1372 				goto rollback;
1373 
1374 			if (!(dev->flags & IFF_UP))
1375 				continue;
1376 
1377 			nb->notifier_call(nb, NETDEV_UP, dev);
1378 		}
1379 	}
1380 
1381 unlock:
1382 	rtnl_unlock();
1383 	return err;
1384 
1385 rollback:
1386 	last = dev;
1387 	for_each_net(net) {
1388 		for_each_netdev(net, dev) {
1389 			if (dev == last)
1390 				goto outroll;
1391 
1392 			if (dev->flags & IFF_UP) {
1393 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1394 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1395 			}
1396 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1397 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1398 		}
1399 	}
1400 
1401 outroll:
1402 	raw_notifier_chain_unregister(&netdev_chain, nb);
1403 	goto unlock;
1404 }
1405 EXPORT_SYMBOL(register_netdevice_notifier);
1406 
1407 /**
1408  *	unregister_netdevice_notifier - unregister a network notifier block
1409  *	@nb: notifier
1410  *
1411  *	Unregister a notifier previously registered by
1412  *	register_netdevice_notifier(). The notifier is unlinked into the
1413  *	kernel structures and may then be reused. A negative errno code
1414  *	is returned on a failure.
1415  *
1416  * 	After unregistering unregister and down device events are synthesized
1417  *	for all devices on the device list to the removed notifier to remove
1418  *	the need for special case cleanup code.
1419  */
1420 
1421 int unregister_netdevice_notifier(struct notifier_block *nb)
1422 {
1423 	struct net_device *dev;
1424 	struct net *net;
1425 	int err;
1426 
1427 	rtnl_lock();
1428 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1429 	if (err)
1430 		goto unlock;
1431 
1432 	for_each_net(net) {
1433 		for_each_netdev(net, dev) {
1434 			if (dev->flags & IFF_UP) {
1435 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1436 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1437 			}
1438 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1439 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1440 		}
1441 	}
1442 unlock:
1443 	rtnl_unlock();
1444 	return err;
1445 }
1446 EXPORT_SYMBOL(unregister_netdevice_notifier);
1447 
1448 /**
1449  *	call_netdevice_notifiers - call all network notifier blocks
1450  *      @val: value passed unmodified to notifier function
1451  *      @dev: net_device pointer passed unmodified to notifier function
1452  *
1453  *	Call all network notifier blocks.  Parameters and return value
1454  *	are as for raw_notifier_call_chain().
1455  */
1456 
1457 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1458 {
1459 	ASSERT_RTNL();
1460 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1461 }
1462 EXPORT_SYMBOL(call_netdevice_notifiers);
1463 
1464 static struct static_key netstamp_needed __read_mostly;
1465 #ifdef HAVE_JUMP_LABEL
1466 /* We are not allowed to call static_key_slow_dec() from irq context
1467  * If net_disable_timestamp() is called from irq context, defer the
1468  * static_key_slow_dec() calls.
1469  */
1470 static atomic_t netstamp_needed_deferred;
1471 #endif
1472 
1473 void net_enable_timestamp(void)
1474 {
1475 #ifdef HAVE_JUMP_LABEL
1476 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1477 
1478 	if (deferred) {
1479 		while (--deferred)
1480 			static_key_slow_dec(&netstamp_needed);
1481 		return;
1482 	}
1483 #endif
1484 	WARN_ON(in_interrupt());
1485 	static_key_slow_inc(&netstamp_needed);
1486 }
1487 EXPORT_SYMBOL(net_enable_timestamp);
1488 
1489 void net_disable_timestamp(void)
1490 {
1491 #ifdef HAVE_JUMP_LABEL
1492 	if (in_interrupt()) {
1493 		atomic_inc(&netstamp_needed_deferred);
1494 		return;
1495 	}
1496 #endif
1497 	static_key_slow_dec(&netstamp_needed);
1498 }
1499 EXPORT_SYMBOL(net_disable_timestamp);
1500 
1501 static inline void net_timestamp_set(struct sk_buff *skb)
1502 {
1503 	skb->tstamp.tv64 = 0;
1504 	if (static_key_false(&netstamp_needed))
1505 		__net_timestamp(skb);
1506 }
1507 
1508 #define net_timestamp_check(COND, SKB)			\
1509 	if (static_key_false(&netstamp_needed)) {		\
1510 		if ((COND) && !(SKB)->tstamp.tv64)	\
1511 			__net_timestamp(SKB);		\
1512 	}						\
1513 
1514 static int net_hwtstamp_validate(struct ifreq *ifr)
1515 {
1516 	struct hwtstamp_config cfg;
1517 	enum hwtstamp_tx_types tx_type;
1518 	enum hwtstamp_rx_filters rx_filter;
1519 	int tx_type_valid = 0;
1520 	int rx_filter_valid = 0;
1521 
1522 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1523 		return -EFAULT;
1524 
1525 	if (cfg.flags) /* reserved for future extensions */
1526 		return -EINVAL;
1527 
1528 	tx_type = cfg.tx_type;
1529 	rx_filter = cfg.rx_filter;
1530 
1531 	switch (tx_type) {
1532 	case HWTSTAMP_TX_OFF:
1533 	case HWTSTAMP_TX_ON:
1534 	case HWTSTAMP_TX_ONESTEP_SYNC:
1535 		tx_type_valid = 1;
1536 		break;
1537 	}
1538 
1539 	switch (rx_filter) {
1540 	case HWTSTAMP_FILTER_NONE:
1541 	case HWTSTAMP_FILTER_ALL:
1542 	case HWTSTAMP_FILTER_SOME:
1543 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1544 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1545 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1546 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1547 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1548 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1549 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1550 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1551 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1552 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1553 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1554 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1555 		rx_filter_valid = 1;
1556 		break;
1557 	}
1558 
1559 	if (!tx_type_valid || !rx_filter_valid)
1560 		return -ERANGE;
1561 
1562 	return 0;
1563 }
1564 
1565 static inline bool is_skb_forwardable(struct net_device *dev,
1566 				      struct sk_buff *skb)
1567 {
1568 	unsigned int len;
1569 
1570 	if (!(dev->flags & IFF_UP))
1571 		return false;
1572 
1573 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1574 	if (skb->len <= len)
1575 		return true;
1576 
1577 	/* if TSO is enabled, we don't care about the length as the packet
1578 	 * could be forwarded without being segmented before
1579 	 */
1580 	if (skb_is_gso(skb))
1581 		return true;
1582 
1583 	return false;
1584 }
1585 
1586 /**
1587  * dev_forward_skb - loopback an skb to another netif
1588  *
1589  * @dev: destination network device
1590  * @skb: buffer to forward
1591  *
1592  * return values:
1593  *	NET_RX_SUCCESS	(no congestion)
1594  *	NET_RX_DROP     (packet was dropped, but freed)
1595  *
1596  * dev_forward_skb can be used for injecting an skb from the
1597  * start_xmit function of one device into the receive queue
1598  * of another device.
1599  *
1600  * The receiving device may be in another namespace, so
1601  * we have to clear all information in the skb that could
1602  * impact namespace isolation.
1603  */
1604 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1605 {
1606 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1607 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1608 			atomic_long_inc(&dev->rx_dropped);
1609 			kfree_skb(skb);
1610 			return NET_RX_DROP;
1611 		}
1612 	}
1613 
1614 	skb_orphan(skb);
1615 	nf_reset(skb);
1616 
1617 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1618 		atomic_long_inc(&dev->rx_dropped);
1619 		kfree_skb(skb);
1620 		return NET_RX_DROP;
1621 	}
1622 	skb->skb_iif = 0;
1623 	skb->dev = dev;
1624 	skb_dst_drop(skb);
1625 	skb->tstamp.tv64 = 0;
1626 	skb->pkt_type = PACKET_HOST;
1627 	skb->protocol = eth_type_trans(skb, dev);
1628 	skb->mark = 0;
1629 	secpath_reset(skb);
1630 	nf_reset(skb);
1631 	return netif_rx(skb);
1632 }
1633 EXPORT_SYMBOL_GPL(dev_forward_skb);
1634 
1635 static inline int deliver_skb(struct sk_buff *skb,
1636 			      struct packet_type *pt_prev,
1637 			      struct net_device *orig_dev)
1638 {
1639 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1640 		return -ENOMEM;
1641 	atomic_inc(&skb->users);
1642 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1643 }
1644 
1645 /*
1646  *	Support routine. Sends outgoing frames to any network
1647  *	taps currently in use.
1648  */
1649 
1650 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1651 {
1652 	struct packet_type *ptype;
1653 	struct sk_buff *skb2 = NULL;
1654 	struct packet_type *pt_prev = NULL;
1655 
1656 	rcu_read_lock();
1657 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1658 		/* Never send packets back to the socket
1659 		 * they originated from - MvS (miquels@drinkel.ow.org)
1660 		 */
1661 		if ((ptype->dev == dev || !ptype->dev) &&
1662 		    (ptype->af_packet_priv == NULL ||
1663 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1664 			if (pt_prev) {
1665 				deliver_skb(skb2, pt_prev, skb->dev);
1666 				pt_prev = ptype;
1667 				continue;
1668 			}
1669 
1670 			skb2 = skb_clone(skb, GFP_ATOMIC);
1671 			if (!skb2)
1672 				break;
1673 
1674 			net_timestamp_set(skb2);
1675 
1676 			/* skb->nh should be correctly
1677 			   set by sender, so that the second statement is
1678 			   just protection against buggy protocols.
1679 			 */
1680 			skb_reset_mac_header(skb2);
1681 
1682 			if (skb_network_header(skb2) < skb2->data ||
1683 			    skb2->network_header > skb2->tail) {
1684 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1685 						     ntohs(skb2->protocol),
1686 						     dev->name);
1687 				skb_reset_network_header(skb2);
1688 			}
1689 
1690 			skb2->transport_header = skb2->network_header;
1691 			skb2->pkt_type = PACKET_OUTGOING;
1692 			pt_prev = ptype;
1693 		}
1694 	}
1695 	if (pt_prev)
1696 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1697 	rcu_read_unlock();
1698 }
1699 
1700 /**
1701  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1702  * @dev: Network device
1703  * @txq: number of queues available
1704  *
1705  * If real_num_tx_queues is changed the tc mappings may no longer be
1706  * valid. To resolve this verify the tc mapping remains valid and if
1707  * not NULL the mapping. With no priorities mapping to this
1708  * offset/count pair it will no longer be used. In the worst case TC0
1709  * is invalid nothing can be done so disable priority mappings. If is
1710  * expected that drivers will fix this mapping if they can before
1711  * calling netif_set_real_num_tx_queues.
1712  */
1713 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1714 {
1715 	int i;
1716 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1717 
1718 	/* If TC0 is invalidated disable TC mapping */
1719 	if (tc->offset + tc->count > txq) {
1720 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1721 		dev->num_tc = 0;
1722 		return;
1723 	}
1724 
1725 	/* Invalidated prio to tc mappings set to TC0 */
1726 	for (i = 1; i < TC_BITMASK + 1; i++) {
1727 		int q = netdev_get_prio_tc_map(dev, i);
1728 
1729 		tc = &dev->tc_to_txq[q];
1730 		if (tc->offset + tc->count > txq) {
1731 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1732 				i, q);
1733 			netdev_set_prio_tc_map(dev, i, 0);
1734 		}
1735 	}
1736 }
1737 
1738 /*
1739  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1740  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1741  */
1742 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1743 {
1744 	int rc;
1745 
1746 	if (txq < 1 || txq > dev->num_tx_queues)
1747 		return -EINVAL;
1748 
1749 	if (dev->reg_state == NETREG_REGISTERED ||
1750 	    dev->reg_state == NETREG_UNREGISTERING) {
1751 		ASSERT_RTNL();
1752 
1753 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1754 						  txq);
1755 		if (rc)
1756 			return rc;
1757 
1758 		if (dev->num_tc)
1759 			netif_setup_tc(dev, txq);
1760 
1761 		if (txq < dev->real_num_tx_queues)
1762 			qdisc_reset_all_tx_gt(dev, txq);
1763 	}
1764 
1765 	dev->real_num_tx_queues = txq;
1766 	return 0;
1767 }
1768 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1769 
1770 #ifdef CONFIG_RPS
1771 /**
1772  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1773  *	@dev: Network device
1774  *	@rxq: Actual number of RX queues
1775  *
1776  *	This must be called either with the rtnl_lock held or before
1777  *	registration of the net device.  Returns 0 on success, or a
1778  *	negative error code.  If called before registration, it always
1779  *	succeeds.
1780  */
1781 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1782 {
1783 	int rc;
1784 
1785 	if (rxq < 1 || rxq > dev->num_rx_queues)
1786 		return -EINVAL;
1787 
1788 	if (dev->reg_state == NETREG_REGISTERED) {
1789 		ASSERT_RTNL();
1790 
1791 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1792 						  rxq);
1793 		if (rc)
1794 			return rc;
1795 	}
1796 
1797 	dev->real_num_rx_queues = rxq;
1798 	return 0;
1799 }
1800 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1801 #endif
1802 
1803 /**
1804  * netif_get_num_default_rss_queues - default number of RSS queues
1805  *
1806  * This routine should set an upper limit on the number of RSS queues
1807  * used by default by multiqueue devices.
1808  */
1809 int netif_get_num_default_rss_queues(void)
1810 {
1811 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
1812 }
1813 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
1814 
1815 static inline void __netif_reschedule(struct Qdisc *q)
1816 {
1817 	struct softnet_data *sd;
1818 	unsigned long flags;
1819 
1820 	local_irq_save(flags);
1821 	sd = &__get_cpu_var(softnet_data);
1822 	q->next_sched = NULL;
1823 	*sd->output_queue_tailp = q;
1824 	sd->output_queue_tailp = &q->next_sched;
1825 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1826 	local_irq_restore(flags);
1827 }
1828 
1829 void __netif_schedule(struct Qdisc *q)
1830 {
1831 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1832 		__netif_reschedule(q);
1833 }
1834 EXPORT_SYMBOL(__netif_schedule);
1835 
1836 void dev_kfree_skb_irq(struct sk_buff *skb)
1837 {
1838 	if (atomic_dec_and_test(&skb->users)) {
1839 		struct softnet_data *sd;
1840 		unsigned long flags;
1841 
1842 		local_irq_save(flags);
1843 		sd = &__get_cpu_var(softnet_data);
1844 		skb->next = sd->completion_queue;
1845 		sd->completion_queue = skb;
1846 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1847 		local_irq_restore(flags);
1848 	}
1849 }
1850 EXPORT_SYMBOL(dev_kfree_skb_irq);
1851 
1852 void dev_kfree_skb_any(struct sk_buff *skb)
1853 {
1854 	if (in_irq() || irqs_disabled())
1855 		dev_kfree_skb_irq(skb);
1856 	else
1857 		dev_kfree_skb(skb);
1858 }
1859 EXPORT_SYMBOL(dev_kfree_skb_any);
1860 
1861 
1862 /**
1863  * netif_device_detach - mark device as removed
1864  * @dev: network device
1865  *
1866  * Mark device as removed from system and therefore no longer available.
1867  */
1868 void netif_device_detach(struct net_device *dev)
1869 {
1870 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1871 	    netif_running(dev)) {
1872 		netif_tx_stop_all_queues(dev);
1873 	}
1874 }
1875 EXPORT_SYMBOL(netif_device_detach);
1876 
1877 /**
1878  * netif_device_attach - mark device as attached
1879  * @dev: network device
1880  *
1881  * Mark device as attached from system and restart if needed.
1882  */
1883 void netif_device_attach(struct net_device *dev)
1884 {
1885 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1886 	    netif_running(dev)) {
1887 		netif_tx_wake_all_queues(dev);
1888 		__netdev_watchdog_up(dev);
1889 	}
1890 }
1891 EXPORT_SYMBOL(netif_device_attach);
1892 
1893 static void skb_warn_bad_offload(const struct sk_buff *skb)
1894 {
1895 	static const netdev_features_t null_features = 0;
1896 	struct net_device *dev = skb->dev;
1897 	const char *driver = "";
1898 
1899 	if (dev && dev->dev.parent)
1900 		driver = dev_driver_string(dev->dev.parent);
1901 
1902 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1903 	     "gso_type=%d ip_summed=%d\n",
1904 	     driver, dev ? &dev->features : &null_features,
1905 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1906 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1907 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1908 }
1909 
1910 /*
1911  * Invalidate hardware checksum when packet is to be mangled, and
1912  * complete checksum manually on outgoing path.
1913  */
1914 int skb_checksum_help(struct sk_buff *skb)
1915 {
1916 	__wsum csum;
1917 	int ret = 0, offset;
1918 
1919 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1920 		goto out_set_summed;
1921 
1922 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1923 		skb_warn_bad_offload(skb);
1924 		return -EINVAL;
1925 	}
1926 
1927 	offset = skb_checksum_start_offset(skb);
1928 	BUG_ON(offset >= skb_headlen(skb));
1929 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1930 
1931 	offset += skb->csum_offset;
1932 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1933 
1934 	if (skb_cloned(skb) &&
1935 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1936 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1937 		if (ret)
1938 			goto out;
1939 	}
1940 
1941 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1942 out_set_summed:
1943 	skb->ip_summed = CHECKSUM_NONE;
1944 out:
1945 	return ret;
1946 }
1947 EXPORT_SYMBOL(skb_checksum_help);
1948 
1949 /**
1950  *	skb_gso_segment - Perform segmentation on skb.
1951  *	@skb: buffer to segment
1952  *	@features: features for the output path (see dev->features)
1953  *
1954  *	This function segments the given skb and returns a list of segments.
1955  *
1956  *	It may return NULL if the skb requires no segmentation.  This is
1957  *	only possible when GSO is used for verifying header integrity.
1958  */
1959 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1960 	netdev_features_t features)
1961 {
1962 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1963 	struct packet_type *ptype;
1964 	__be16 type = skb->protocol;
1965 	int vlan_depth = ETH_HLEN;
1966 	int err;
1967 
1968 	while (type == htons(ETH_P_8021Q)) {
1969 		struct vlan_hdr *vh;
1970 
1971 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1972 			return ERR_PTR(-EINVAL);
1973 
1974 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1975 		type = vh->h_vlan_encapsulated_proto;
1976 		vlan_depth += VLAN_HLEN;
1977 	}
1978 
1979 	skb_reset_mac_header(skb);
1980 	skb->mac_len = skb->network_header - skb->mac_header;
1981 	__skb_pull(skb, skb->mac_len);
1982 
1983 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1984 		skb_warn_bad_offload(skb);
1985 
1986 		if (skb_header_cloned(skb) &&
1987 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1988 			return ERR_PTR(err);
1989 	}
1990 
1991 	rcu_read_lock();
1992 	list_for_each_entry_rcu(ptype,
1993 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1994 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1995 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1996 				err = ptype->gso_send_check(skb);
1997 				segs = ERR_PTR(err);
1998 				if (err || skb_gso_ok(skb, features))
1999 					break;
2000 				__skb_push(skb, (skb->data -
2001 						 skb_network_header(skb)));
2002 			}
2003 			segs = ptype->gso_segment(skb, features);
2004 			break;
2005 		}
2006 	}
2007 	rcu_read_unlock();
2008 
2009 	__skb_push(skb, skb->data - skb_mac_header(skb));
2010 
2011 	return segs;
2012 }
2013 EXPORT_SYMBOL(skb_gso_segment);
2014 
2015 /* Take action when hardware reception checksum errors are detected. */
2016 #ifdef CONFIG_BUG
2017 void netdev_rx_csum_fault(struct net_device *dev)
2018 {
2019 	if (net_ratelimit()) {
2020 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2021 		dump_stack();
2022 	}
2023 }
2024 EXPORT_SYMBOL(netdev_rx_csum_fault);
2025 #endif
2026 
2027 /* Actually, we should eliminate this check as soon as we know, that:
2028  * 1. IOMMU is present and allows to map all the memory.
2029  * 2. No high memory really exists on this machine.
2030  */
2031 
2032 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2033 {
2034 #ifdef CONFIG_HIGHMEM
2035 	int i;
2036 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2037 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2038 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2039 			if (PageHighMem(skb_frag_page(frag)))
2040 				return 1;
2041 		}
2042 	}
2043 
2044 	if (PCI_DMA_BUS_IS_PHYS) {
2045 		struct device *pdev = dev->dev.parent;
2046 
2047 		if (!pdev)
2048 			return 0;
2049 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2050 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2051 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2052 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2053 				return 1;
2054 		}
2055 	}
2056 #endif
2057 	return 0;
2058 }
2059 
2060 struct dev_gso_cb {
2061 	void (*destructor)(struct sk_buff *skb);
2062 };
2063 
2064 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2065 
2066 static void dev_gso_skb_destructor(struct sk_buff *skb)
2067 {
2068 	struct dev_gso_cb *cb;
2069 
2070 	do {
2071 		struct sk_buff *nskb = skb->next;
2072 
2073 		skb->next = nskb->next;
2074 		nskb->next = NULL;
2075 		kfree_skb(nskb);
2076 	} while (skb->next);
2077 
2078 	cb = DEV_GSO_CB(skb);
2079 	if (cb->destructor)
2080 		cb->destructor(skb);
2081 }
2082 
2083 /**
2084  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2085  *	@skb: buffer to segment
2086  *	@features: device features as applicable to this skb
2087  *
2088  *	This function segments the given skb and stores the list of segments
2089  *	in skb->next.
2090  */
2091 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2092 {
2093 	struct sk_buff *segs;
2094 
2095 	segs = skb_gso_segment(skb, features);
2096 
2097 	/* Verifying header integrity only. */
2098 	if (!segs)
2099 		return 0;
2100 
2101 	if (IS_ERR(segs))
2102 		return PTR_ERR(segs);
2103 
2104 	skb->next = segs;
2105 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2106 	skb->destructor = dev_gso_skb_destructor;
2107 
2108 	return 0;
2109 }
2110 
2111 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2112 {
2113 	return ((features & NETIF_F_GEN_CSUM) ||
2114 		((features & NETIF_F_V4_CSUM) &&
2115 		 protocol == htons(ETH_P_IP)) ||
2116 		((features & NETIF_F_V6_CSUM) &&
2117 		 protocol == htons(ETH_P_IPV6)) ||
2118 		((features & NETIF_F_FCOE_CRC) &&
2119 		 protocol == htons(ETH_P_FCOE)));
2120 }
2121 
2122 static netdev_features_t harmonize_features(struct sk_buff *skb,
2123 	__be16 protocol, netdev_features_t features)
2124 {
2125 	if (!can_checksum_protocol(features, protocol)) {
2126 		features &= ~NETIF_F_ALL_CSUM;
2127 		features &= ~NETIF_F_SG;
2128 	} else if (illegal_highdma(skb->dev, skb)) {
2129 		features &= ~NETIF_F_SG;
2130 	}
2131 
2132 	return features;
2133 }
2134 
2135 netdev_features_t netif_skb_features(struct sk_buff *skb)
2136 {
2137 	__be16 protocol = skb->protocol;
2138 	netdev_features_t features = skb->dev->features;
2139 
2140 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2141 		features &= ~NETIF_F_GSO_MASK;
2142 
2143 	if (protocol == htons(ETH_P_8021Q)) {
2144 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2145 		protocol = veh->h_vlan_encapsulated_proto;
2146 	} else if (!vlan_tx_tag_present(skb)) {
2147 		return harmonize_features(skb, protocol, features);
2148 	}
2149 
2150 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2151 
2152 	if (protocol != htons(ETH_P_8021Q)) {
2153 		return harmonize_features(skb, protocol, features);
2154 	} else {
2155 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2156 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2157 		return harmonize_features(skb, protocol, features);
2158 	}
2159 }
2160 EXPORT_SYMBOL(netif_skb_features);
2161 
2162 /*
2163  * Returns true if either:
2164  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2165  *	2. skb is fragmented and the device does not support SG, or if
2166  *	   at least one of fragments is in highmem and device does not
2167  *	   support DMA from it.
2168  */
2169 static inline int skb_needs_linearize(struct sk_buff *skb,
2170 				      int features)
2171 {
2172 	return skb_is_nonlinear(skb) &&
2173 			((skb_has_frag_list(skb) &&
2174 				!(features & NETIF_F_FRAGLIST)) ||
2175 			(skb_shinfo(skb)->nr_frags &&
2176 				!(features & NETIF_F_SG)));
2177 }
2178 
2179 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2180 			struct netdev_queue *txq)
2181 {
2182 	const struct net_device_ops *ops = dev->netdev_ops;
2183 	int rc = NETDEV_TX_OK;
2184 	unsigned int skb_len;
2185 
2186 	if (likely(!skb->next)) {
2187 		netdev_features_t features;
2188 
2189 		/*
2190 		 * If device doesn't need skb->dst, release it right now while
2191 		 * its hot in this cpu cache
2192 		 */
2193 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2194 			skb_dst_drop(skb);
2195 
2196 		if (!list_empty(&ptype_all))
2197 			dev_queue_xmit_nit(skb, dev);
2198 
2199 		features = netif_skb_features(skb);
2200 
2201 		if (vlan_tx_tag_present(skb) &&
2202 		    !(features & NETIF_F_HW_VLAN_TX)) {
2203 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2204 			if (unlikely(!skb))
2205 				goto out;
2206 
2207 			skb->vlan_tci = 0;
2208 		}
2209 
2210 		if (netif_needs_gso(skb, features)) {
2211 			if (unlikely(dev_gso_segment(skb, features)))
2212 				goto out_kfree_skb;
2213 			if (skb->next)
2214 				goto gso;
2215 		} else {
2216 			if (skb_needs_linearize(skb, features) &&
2217 			    __skb_linearize(skb))
2218 				goto out_kfree_skb;
2219 
2220 			/* If packet is not checksummed and device does not
2221 			 * support checksumming for this protocol, complete
2222 			 * checksumming here.
2223 			 */
2224 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2225 				skb_set_transport_header(skb,
2226 					skb_checksum_start_offset(skb));
2227 				if (!(features & NETIF_F_ALL_CSUM) &&
2228 				     skb_checksum_help(skb))
2229 					goto out_kfree_skb;
2230 			}
2231 		}
2232 
2233 		skb_len = skb->len;
2234 		rc = ops->ndo_start_xmit(skb, dev);
2235 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2236 		if (rc == NETDEV_TX_OK)
2237 			txq_trans_update(txq);
2238 		return rc;
2239 	}
2240 
2241 gso:
2242 	do {
2243 		struct sk_buff *nskb = skb->next;
2244 
2245 		skb->next = nskb->next;
2246 		nskb->next = NULL;
2247 
2248 		/*
2249 		 * If device doesn't need nskb->dst, release it right now while
2250 		 * its hot in this cpu cache
2251 		 */
2252 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2253 			skb_dst_drop(nskb);
2254 
2255 		skb_len = nskb->len;
2256 		rc = ops->ndo_start_xmit(nskb, dev);
2257 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2258 		if (unlikely(rc != NETDEV_TX_OK)) {
2259 			if (rc & ~NETDEV_TX_MASK)
2260 				goto out_kfree_gso_skb;
2261 			nskb->next = skb->next;
2262 			skb->next = nskb;
2263 			return rc;
2264 		}
2265 		txq_trans_update(txq);
2266 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2267 			return NETDEV_TX_BUSY;
2268 	} while (skb->next);
2269 
2270 out_kfree_gso_skb:
2271 	if (likely(skb->next == NULL))
2272 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2273 out_kfree_skb:
2274 	kfree_skb(skb);
2275 out:
2276 	return rc;
2277 }
2278 
2279 static u32 hashrnd __read_mostly;
2280 
2281 /*
2282  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2283  * to be used as a distribution range.
2284  */
2285 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2286 		  unsigned int num_tx_queues)
2287 {
2288 	u32 hash;
2289 	u16 qoffset = 0;
2290 	u16 qcount = num_tx_queues;
2291 
2292 	if (skb_rx_queue_recorded(skb)) {
2293 		hash = skb_get_rx_queue(skb);
2294 		while (unlikely(hash >= num_tx_queues))
2295 			hash -= num_tx_queues;
2296 		return hash;
2297 	}
2298 
2299 	if (dev->num_tc) {
2300 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2301 		qoffset = dev->tc_to_txq[tc].offset;
2302 		qcount = dev->tc_to_txq[tc].count;
2303 	}
2304 
2305 	if (skb->sk && skb->sk->sk_hash)
2306 		hash = skb->sk->sk_hash;
2307 	else
2308 		hash = (__force u16) skb->protocol;
2309 	hash = jhash_1word(hash, hashrnd);
2310 
2311 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2312 }
2313 EXPORT_SYMBOL(__skb_tx_hash);
2314 
2315 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2316 {
2317 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2318 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2319 				     dev->name, queue_index,
2320 				     dev->real_num_tx_queues);
2321 		return 0;
2322 	}
2323 	return queue_index;
2324 }
2325 
2326 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2327 {
2328 #ifdef CONFIG_XPS
2329 	struct xps_dev_maps *dev_maps;
2330 	struct xps_map *map;
2331 	int queue_index = -1;
2332 
2333 	rcu_read_lock();
2334 	dev_maps = rcu_dereference(dev->xps_maps);
2335 	if (dev_maps) {
2336 		map = rcu_dereference(
2337 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2338 		if (map) {
2339 			if (map->len == 1)
2340 				queue_index = map->queues[0];
2341 			else {
2342 				u32 hash;
2343 				if (skb->sk && skb->sk->sk_hash)
2344 					hash = skb->sk->sk_hash;
2345 				else
2346 					hash = (__force u16) skb->protocol ^
2347 					    skb->rxhash;
2348 				hash = jhash_1word(hash, hashrnd);
2349 				queue_index = map->queues[
2350 				    ((u64)hash * map->len) >> 32];
2351 			}
2352 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2353 				queue_index = -1;
2354 		}
2355 	}
2356 	rcu_read_unlock();
2357 
2358 	return queue_index;
2359 #else
2360 	return -1;
2361 #endif
2362 }
2363 
2364 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2365 					struct sk_buff *skb)
2366 {
2367 	int queue_index;
2368 	const struct net_device_ops *ops = dev->netdev_ops;
2369 
2370 	if (dev->real_num_tx_queues == 1)
2371 		queue_index = 0;
2372 	else if (ops->ndo_select_queue) {
2373 		queue_index = ops->ndo_select_queue(dev, skb);
2374 		queue_index = dev_cap_txqueue(dev, queue_index);
2375 	} else {
2376 		struct sock *sk = skb->sk;
2377 		queue_index = sk_tx_queue_get(sk);
2378 
2379 		if (queue_index < 0 || skb->ooo_okay ||
2380 		    queue_index >= dev->real_num_tx_queues) {
2381 			int old_index = queue_index;
2382 
2383 			queue_index = get_xps_queue(dev, skb);
2384 			if (queue_index < 0)
2385 				queue_index = skb_tx_hash(dev, skb);
2386 
2387 			if (queue_index != old_index && sk) {
2388 				struct dst_entry *dst =
2389 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2390 
2391 				if (dst && skb_dst(skb) == dst)
2392 					sk_tx_queue_set(sk, queue_index);
2393 			}
2394 		}
2395 	}
2396 
2397 	skb_set_queue_mapping(skb, queue_index);
2398 	return netdev_get_tx_queue(dev, queue_index);
2399 }
2400 
2401 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2402 				 struct net_device *dev,
2403 				 struct netdev_queue *txq)
2404 {
2405 	spinlock_t *root_lock = qdisc_lock(q);
2406 	bool contended;
2407 	int rc;
2408 
2409 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2410 	qdisc_calculate_pkt_len(skb, q);
2411 	/*
2412 	 * Heuristic to force contended enqueues to serialize on a
2413 	 * separate lock before trying to get qdisc main lock.
2414 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2415 	 * and dequeue packets faster.
2416 	 */
2417 	contended = qdisc_is_running(q);
2418 	if (unlikely(contended))
2419 		spin_lock(&q->busylock);
2420 
2421 	spin_lock(root_lock);
2422 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2423 		kfree_skb(skb);
2424 		rc = NET_XMIT_DROP;
2425 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2426 		   qdisc_run_begin(q)) {
2427 		/*
2428 		 * This is a work-conserving queue; there are no old skbs
2429 		 * waiting to be sent out; and the qdisc is not running -
2430 		 * xmit the skb directly.
2431 		 */
2432 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2433 			skb_dst_force(skb);
2434 
2435 		qdisc_bstats_update(q, skb);
2436 
2437 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2438 			if (unlikely(contended)) {
2439 				spin_unlock(&q->busylock);
2440 				contended = false;
2441 			}
2442 			__qdisc_run(q);
2443 		} else
2444 			qdisc_run_end(q);
2445 
2446 		rc = NET_XMIT_SUCCESS;
2447 	} else {
2448 		skb_dst_force(skb);
2449 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2450 		if (qdisc_run_begin(q)) {
2451 			if (unlikely(contended)) {
2452 				spin_unlock(&q->busylock);
2453 				contended = false;
2454 			}
2455 			__qdisc_run(q);
2456 		}
2457 	}
2458 	spin_unlock(root_lock);
2459 	if (unlikely(contended))
2460 		spin_unlock(&q->busylock);
2461 	return rc;
2462 }
2463 
2464 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2465 static void skb_update_prio(struct sk_buff *skb)
2466 {
2467 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2468 
2469 	if (!skb->priority && skb->sk && map) {
2470 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2471 
2472 		if (prioidx < map->priomap_len)
2473 			skb->priority = map->priomap[prioidx];
2474 	}
2475 }
2476 #else
2477 #define skb_update_prio(skb)
2478 #endif
2479 
2480 static DEFINE_PER_CPU(int, xmit_recursion);
2481 #define RECURSION_LIMIT 10
2482 
2483 /**
2484  *	dev_loopback_xmit - loop back @skb
2485  *	@skb: buffer to transmit
2486  */
2487 int dev_loopback_xmit(struct sk_buff *skb)
2488 {
2489 	skb_reset_mac_header(skb);
2490 	__skb_pull(skb, skb_network_offset(skb));
2491 	skb->pkt_type = PACKET_LOOPBACK;
2492 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2493 	WARN_ON(!skb_dst(skb));
2494 	skb_dst_force(skb);
2495 	netif_rx_ni(skb);
2496 	return 0;
2497 }
2498 EXPORT_SYMBOL(dev_loopback_xmit);
2499 
2500 /**
2501  *	dev_queue_xmit - transmit a buffer
2502  *	@skb: buffer to transmit
2503  *
2504  *	Queue a buffer for transmission to a network device. The caller must
2505  *	have set the device and priority and built the buffer before calling
2506  *	this function. The function can be called from an interrupt.
2507  *
2508  *	A negative errno code is returned on a failure. A success does not
2509  *	guarantee the frame will be transmitted as it may be dropped due
2510  *	to congestion or traffic shaping.
2511  *
2512  * -----------------------------------------------------------------------------------
2513  *      I notice this method can also return errors from the queue disciplines,
2514  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2515  *      be positive.
2516  *
2517  *      Regardless of the return value, the skb is consumed, so it is currently
2518  *      difficult to retry a send to this method.  (You can bump the ref count
2519  *      before sending to hold a reference for retry if you are careful.)
2520  *
2521  *      When calling this method, interrupts MUST be enabled.  This is because
2522  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2523  *          --BLG
2524  */
2525 int dev_queue_xmit(struct sk_buff *skb)
2526 {
2527 	struct net_device *dev = skb->dev;
2528 	struct netdev_queue *txq;
2529 	struct Qdisc *q;
2530 	int rc = -ENOMEM;
2531 
2532 	/* Disable soft irqs for various locks below. Also
2533 	 * stops preemption for RCU.
2534 	 */
2535 	rcu_read_lock_bh();
2536 
2537 	skb_update_prio(skb);
2538 
2539 	txq = dev_pick_tx(dev, skb);
2540 	q = rcu_dereference_bh(txq->qdisc);
2541 
2542 #ifdef CONFIG_NET_CLS_ACT
2543 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2544 #endif
2545 	trace_net_dev_queue(skb);
2546 	if (q->enqueue) {
2547 		rc = __dev_xmit_skb(skb, q, dev, txq);
2548 		goto out;
2549 	}
2550 
2551 	/* The device has no queue. Common case for software devices:
2552 	   loopback, all the sorts of tunnels...
2553 
2554 	   Really, it is unlikely that netif_tx_lock protection is necessary
2555 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2556 	   counters.)
2557 	   However, it is possible, that they rely on protection
2558 	   made by us here.
2559 
2560 	   Check this and shot the lock. It is not prone from deadlocks.
2561 	   Either shot noqueue qdisc, it is even simpler 8)
2562 	 */
2563 	if (dev->flags & IFF_UP) {
2564 		int cpu = smp_processor_id(); /* ok because BHs are off */
2565 
2566 		if (txq->xmit_lock_owner != cpu) {
2567 
2568 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2569 				goto recursion_alert;
2570 
2571 			HARD_TX_LOCK(dev, txq, cpu);
2572 
2573 			if (!netif_xmit_stopped(txq)) {
2574 				__this_cpu_inc(xmit_recursion);
2575 				rc = dev_hard_start_xmit(skb, dev, txq);
2576 				__this_cpu_dec(xmit_recursion);
2577 				if (dev_xmit_complete(rc)) {
2578 					HARD_TX_UNLOCK(dev, txq);
2579 					goto out;
2580 				}
2581 			}
2582 			HARD_TX_UNLOCK(dev, txq);
2583 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2584 					     dev->name);
2585 		} else {
2586 			/* Recursion is detected! It is possible,
2587 			 * unfortunately
2588 			 */
2589 recursion_alert:
2590 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2591 					     dev->name);
2592 		}
2593 	}
2594 
2595 	rc = -ENETDOWN;
2596 	rcu_read_unlock_bh();
2597 
2598 	kfree_skb(skb);
2599 	return rc;
2600 out:
2601 	rcu_read_unlock_bh();
2602 	return rc;
2603 }
2604 EXPORT_SYMBOL(dev_queue_xmit);
2605 
2606 
2607 /*=======================================================================
2608 			Receiver routines
2609   =======================================================================*/
2610 
2611 int netdev_max_backlog __read_mostly = 1000;
2612 int netdev_tstamp_prequeue __read_mostly = 1;
2613 int netdev_budget __read_mostly = 300;
2614 int weight_p __read_mostly = 64;            /* old backlog weight */
2615 
2616 /* Called with irq disabled */
2617 static inline void ____napi_schedule(struct softnet_data *sd,
2618 				     struct napi_struct *napi)
2619 {
2620 	list_add_tail(&napi->poll_list, &sd->poll_list);
2621 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2622 }
2623 
2624 /*
2625  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2626  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2627  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2628  * if hash is a canonical 4-tuple hash over transport ports.
2629  */
2630 void __skb_get_rxhash(struct sk_buff *skb)
2631 {
2632 	struct flow_keys keys;
2633 	u32 hash;
2634 
2635 	if (!skb_flow_dissect(skb, &keys))
2636 		return;
2637 
2638 	if (keys.ports) {
2639 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2640 			swap(keys.port16[0], keys.port16[1]);
2641 		skb->l4_rxhash = 1;
2642 	}
2643 
2644 	/* get a consistent hash (same value on both flow directions) */
2645 	if ((__force u32)keys.dst < (__force u32)keys.src)
2646 		swap(keys.dst, keys.src);
2647 
2648 	hash = jhash_3words((__force u32)keys.dst,
2649 			    (__force u32)keys.src,
2650 			    (__force u32)keys.ports, hashrnd);
2651 	if (!hash)
2652 		hash = 1;
2653 
2654 	skb->rxhash = hash;
2655 }
2656 EXPORT_SYMBOL(__skb_get_rxhash);
2657 
2658 #ifdef CONFIG_RPS
2659 
2660 /* One global table that all flow-based protocols share. */
2661 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2662 EXPORT_SYMBOL(rps_sock_flow_table);
2663 
2664 struct static_key rps_needed __read_mostly;
2665 
2666 static struct rps_dev_flow *
2667 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2668 	    struct rps_dev_flow *rflow, u16 next_cpu)
2669 {
2670 	if (next_cpu != RPS_NO_CPU) {
2671 #ifdef CONFIG_RFS_ACCEL
2672 		struct netdev_rx_queue *rxqueue;
2673 		struct rps_dev_flow_table *flow_table;
2674 		struct rps_dev_flow *old_rflow;
2675 		u32 flow_id;
2676 		u16 rxq_index;
2677 		int rc;
2678 
2679 		/* Should we steer this flow to a different hardware queue? */
2680 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2681 		    !(dev->features & NETIF_F_NTUPLE))
2682 			goto out;
2683 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2684 		if (rxq_index == skb_get_rx_queue(skb))
2685 			goto out;
2686 
2687 		rxqueue = dev->_rx + rxq_index;
2688 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2689 		if (!flow_table)
2690 			goto out;
2691 		flow_id = skb->rxhash & flow_table->mask;
2692 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2693 							rxq_index, flow_id);
2694 		if (rc < 0)
2695 			goto out;
2696 		old_rflow = rflow;
2697 		rflow = &flow_table->flows[flow_id];
2698 		rflow->filter = rc;
2699 		if (old_rflow->filter == rflow->filter)
2700 			old_rflow->filter = RPS_NO_FILTER;
2701 	out:
2702 #endif
2703 		rflow->last_qtail =
2704 			per_cpu(softnet_data, next_cpu).input_queue_head;
2705 	}
2706 
2707 	rflow->cpu = next_cpu;
2708 	return rflow;
2709 }
2710 
2711 /*
2712  * get_rps_cpu is called from netif_receive_skb and returns the target
2713  * CPU from the RPS map of the receiving queue for a given skb.
2714  * rcu_read_lock must be held on entry.
2715  */
2716 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2717 		       struct rps_dev_flow **rflowp)
2718 {
2719 	struct netdev_rx_queue *rxqueue;
2720 	struct rps_map *map;
2721 	struct rps_dev_flow_table *flow_table;
2722 	struct rps_sock_flow_table *sock_flow_table;
2723 	int cpu = -1;
2724 	u16 tcpu;
2725 
2726 	if (skb_rx_queue_recorded(skb)) {
2727 		u16 index = skb_get_rx_queue(skb);
2728 		if (unlikely(index >= dev->real_num_rx_queues)) {
2729 			WARN_ONCE(dev->real_num_rx_queues > 1,
2730 				  "%s received packet on queue %u, but number "
2731 				  "of RX queues is %u\n",
2732 				  dev->name, index, dev->real_num_rx_queues);
2733 			goto done;
2734 		}
2735 		rxqueue = dev->_rx + index;
2736 	} else
2737 		rxqueue = dev->_rx;
2738 
2739 	map = rcu_dereference(rxqueue->rps_map);
2740 	if (map) {
2741 		if (map->len == 1 &&
2742 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2743 			tcpu = map->cpus[0];
2744 			if (cpu_online(tcpu))
2745 				cpu = tcpu;
2746 			goto done;
2747 		}
2748 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2749 		goto done;
2750 	}
2751 
2752 	skb_reset_network_header(skb);
2753 	if (!skb_get_rxhash(skb))
2754 		goto done;
2755 
2756 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2757 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2758 	if (flow_table && sock_flow_table) {
2759 		u16 next_cpu;
2760 		struct rps_dev_flow *rflow;
2761 
2762 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2763 		tcpu = rflow->cpu;
2764 
2765 		next_cpu = sock_flow_table->ents[skb->rxhash &
2766 		    sock_flow_table->mask];
2767 
2768 		/*
2769 		 * If the desired CPU (where last recvmsg was done) is
2770 		 * different from current CPU (one in the rx-queue flow
2771 		 * table entry), switch if one of the following holds:
2772 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2773 		 *   - Current CPU is offline.
2774 		 *   - The current CPU's queue tail has advanced beyond the
2775 		 *     last packet that was enqueued using this table entry.
2776 		 *     This guarantees that all previous packets for the flow
2777 		 *     have been dequeued, thus preserving in order delivery.
2778 		 */
2779 		if (unlikely(tcpu != next_cpu) &&
2780 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2781 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2782 		      rflow->last_qtail)) >= 0))
2783 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2784 
2785 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2786 			*rflowp = rflow;
2787 			cpu = tcpu;
2788 			goto done;
2789 		}
2790 	}
2791 
2792 	if (map) {
2793 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2794 
2795 		if (cpu_online(tcpu)) {
2796 			cpu = tcpu;
2797 			goto done;
2798 		}
2799 	}
2800 
2801 done:
2802 	return cpu;
2803 }
2804 
2805 #ifdef CONFIG_RFS_ACCEL
2806 
2807 /**
2808  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2809  * @dev: Device on which the filter was set
2810  * @rxq_index: RX queue index
2811  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2812  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2813  *
2814  * Drivers that implement ndo_rx_flow_steer() should periodically call
2815  * this function for each installed filter and remove the filters for
2816  * which it returns %true.
2817  */
2818 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2819 			 u32 flow_id, u16 filter_id)
2820 {
2821 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2822 	struct rps_dev_flow_table *flow_table;
2823 	struct rps_dev_flow *rflow;
2824 	bool expire = true;
2825 	int cpu;
2826 
2827 	rcu_read_lock();
2828 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2829 	if (flow_table && flow_id <= flow_table->mask) {
2830 		rflow = &flow_table->flows[flow_id];
2831 		cpu = ACCESS_ONCE(rflow->cpu);
2832 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2833 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2834 			   rflow->last_qtail) <
2835 		     (int)(10 * flow_table->mask)))
2836 			expire = false;
2837 	}
2838 	rcu_read_unlock();
2839 	return expire;
2840 }
2841 EXPORT_SYMBOL(rps_may_expire_flow);
2842 
2843 #endif /* CONFIG_RFS_ACCEL */
2844 
2845 /* Called from hardirq (IPI) context */
2846 static void rps_trigger_softirq(void *data)
2847 {
2848 	struct softnet_data *sd = data;
2849 
2850 	____napi_schedule(sd, &sd->backlog);
2851 	sd->received_rps++;
2852 }
2853 
2854 #endif /* CONFIG_RPS */
2855 
2856 /*
2857  * Check if this softnet_data structure is another cpu one
2858  * If yes, queue it to our IPI list and return 1
2859  * If no, return 0
2860  */
2861 static int rps_ipi_queued(struct softnet_data *sd)
2862 {
2863 #ifdef CONFIG_RPS
2864 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2865 
2866 	if (sd != mysd) {
2867 		sd->rps_ipi_next = mysd->rps_ipi_list;
2868 		mysd->rps_ipi_list = sd;
2869 
2870 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2871 		return 1;
2872 	}
2873 #endif /* CONFIG_RPS */
2874 	return 0;
2875 }
2876 
2877 /*
2878  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2879  * queue (may be a remote CPU queue).
2880  */
2881 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2882 			      unsigned int *qtail)
2883 {
2884 	struct softnet_data *sd;
2885 	unsigned long flags;
2886 
2887 	sd = &per_cpu(softnet_data, cpu);
2888 
2889 	local_irq_save(flags);
2890 
2891 	rps_lock(sd);
2892 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2893 		if (skb_queue_len(&sd->input_pkt_queue)) {
2894 enqueue:
2895 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2896 			input_queue_tail_incr_save(sd, qtail);
2897 			rps_unlock(sd);
2898 			local_irq_restore(flags);
2899 			return NET_RX_SUCCESS;
2900 		}
2901 
2902 		/* Schedule NAPI for backlog device
2903 		 * We can use non atomic operation since we own the queue lock
2904 		 */
2905 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2906 			if (!rps_ipi_queued(sd))
2907 				____napi_schedule(sd, &sd->backlog);
2908 		}
2909 		goto enqueue;
2910 	}
2911 
2912 	sd->dropped++;
2913 	rps_unlock(sd);
2914 
2915 	local_irq_restore(flags);
2916 
2917 	atomic_long_inc(&skb->dev->rx_dropped);
2918 	kfree_skb(skb);
2919 	return NET_RX_DROP;
2920 }
2921 
2922 /**
2923  *	netif_rx	-	post buffer to the network code
2924  *	@skb: buffer to post
2925  *
2926  *	This function receives a packet from a device driver and queues it for
2927  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2928  *	may be dropped during processing for congestion control or by the
2929  *	protocol layers.
2930  *
2931  *	return values:
2932  *	NET_RX_SUCCESS	(no congestion)
2933  *	NET_RX_DROP     (packet was dropped)
2934  *
2935  */
2936 
2937 int netif_rx(struct sk_buff *skb)
2938 {
2939 	int ret;
2940 
2941 	/* if netpoll wants it, pretend we never saw it */
2942 	if (netpoll_rx(skb))
2943 		return NET_RX_DROP;
2944 
2945 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2946 
2947 	trace_netif_rx(skb);
2948 #ifdef CONFIG_RPS
2949 	if (static_key_false(&rps_needed)) {
2950 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2951 		int cpu;
2952 
2953 		preempt_disable();
2954 		rcu_read_lock();
2955 
2956 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2957 		if (cpu < 0)
2958 			cpu = smp_processor_id();
2959 
2960 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2961 
2962 		rcu_read_unlock();
2963 		preempt_enable();
2964 	} else
2965 #endif
2966 	{
2967 		unsigned int qtail;
2968 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2969 		put_cpu();
2970 	}
2971 	return ret;
2972 }
2973 EXPORT_SYMBOL(netif_rx);
2974 
2975 int netif_rx_ni(struct sk_buff *skb)
2976 {
2977 	int err;
2978 
2979 	preempt_disable();
2980 	err = netif_rx(skb);
2981 	if (local_softirq_pending())
2982 		do_softirq();
2983 	preempt_enable();
2984 
2985 	return err;
2986 }
2987 EXPORT_SYMBOL(netif_rx_ni);
2988 
2989 static void net_tx_action(struct softirq_action *h)
2990 {
2991 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2992 
2993 	if (sd->completion_queue) {
2994 		struct sk_buff *clist;
2995 
2996 		local_irq_disable();
2997 		clist = sd->completion_queue;
2998 		sd->completion_queue = NULL;
2999 		local_irq_enable();
3000 
3001 		while (clist) {
3002 			struct sk_buff *skb = clist;
3003 			clist = clist->next;
3004 
3005 			WARN_ON(atomic_read(&skb->users));
3006 			trace_kfree_skb(skb, net_tx_action);
3007 			__kfree_skb(skb);
3008 		}
3009 	}
3010 
3011 	if (sd->output_queue) {
3012 		struct Qdisc *head;
3013 
3014 		local_irq_disable();
3015 		head = sd->output_queue;
3016 		sd->output_queue = NULL;
3017 		sd->output_queue_tailp = &sd->output_queue;
3018 		local_irq_enable();
3019 
3020 		while (head) {
3021 			struct Qdisc *q = head;
3022 			spinlock_t *root_lock;
3023 
3024 			head = head->next_sched;
3025 
3026 			root_lock = qdisc_lock(q);
3027 			if (spin_trylock(root_lock)) {
3028 				smp_mb__before_clear_bit();
3029 				clear_bit(__QDISC_STATE_SCHED,
3030 					  &q->state);
3031 				qdisc_run(q);
3032 				spin_unlock(root_lock);
3033 			} else {
3034 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3035 					      &q->state)) {
3036 					__netif_reschedule(q);
3037 				} else {
3038 					smp_mb__before_clear_bit();
3039 					clear_bit(__QDISC_STATE_SCHED,
3040 						  &q->state);
3041 				}
3042 			}
3043 		}
3044 	}
3045 }
3046 
3047 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3048     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3049 /* This hook is defined here for ATM LANE */
3050 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3051 			     unsigned char *addr) __read_mostly;
3052 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3053 #endif
3054 
3055 #ifdef CONFIG_NET_CLS_ACT
3056 /* TODO: Maybe we should just force sch_ingress to be compiled in
3057  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3058  * a compare and 2 stores extra right now if we dont have it on
3059  * but have CONFIG_NET_CLS_ACT
3060  * NOTE: This doesn't stop any functionality; if you dont have
3061  * the ingress scheduler, you just can't add policies on ingress.
3062  *
3063  */
3064 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3065 {
3066 	struct net_device *dev = skb->dev;
3067 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3068 	int result = TC_ACT_OK;
3069 	struct Qdisc *q;
3070 
3071 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3072 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3073 				     skb->skb_iif, dev->ifindex);
3074 		return TC_ACT_SHOT;
3075 	}
3076 
3077 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3078 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3079 
3080 	q = rxq->qdisc;
3081 	if (q != &noop_qdisc) {
3082 		spin_lock(qdisc_lock(q));
3083 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3084 			result = qdisc_enqueue_root(skb, q);
3085 		spin_unlock(qdisc_lock(q));
3086 	}
3087 
3088 	return result;
3089 }
3090 
3091 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3092 					 struct packet_type **pt_prev,
3093 					 int *ret, struct net_device *orig_dev)
3094 {
3095 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3096 
3097 	if (!rxq || rxq->qdisc == &noop_qdisc)
3098 		goto out;
3099 
3100 	if (*pt_prev) {
3101 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3102 		*pt_prev = NULL;
3103 	}
3104 
3105 	switch (ing_filter(skb, rxq)) {
3106 	case TC_ACT_SHOT:
3107 	case TC_ACT_STOLEN:
3108 		kfree_skb(skb);
3109 		return NULL;
3110 	}
3111 
3112 out:
3113 	skb->tc_verd = 0;
3114 	return skb;
3115 }
3116 #endif
3117 
3118 /**
3119  *	netdev_rx_handler_register - register receive handler
3120  *	@dev: device to register a handler for
3121  *	@rx_handler: receive handler to register
3122  *	@rx_handler_data: data pointer that is used by rx handler
3123  *
3124  *	Register a receive hander for a device. This handler will then be
3125  *	called from __netif_receive_skb. A negative errno code is returned
3126  *	on a failure.
3127  *
3128  *	The caller must hold the rtnl_mutex.
3129  *
3130  *	For a general description of rx_handler, see enum rx_handler_result.
3131  */
3132 int netdev_rx_handler_register(struct net_device *dev,
3133 			       rx_handler_func_t *rx_handler,
3134 			       void *rx_handler_data)
3135 {
3136 	ASSERT_RTNL();
3137 
3138 	if (dev->rx_handler)
3139 		return -EBUSY;
3140 
3141 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3142 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3143 
3144 	return 0;
3145 }
3146 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3147 
3148 /**
3149  *	netdev_rx_handler_unregister - unregister receive handler
3150  *	@dev: device to unregister a handler from
3151  *
3152  *	Unregister a receive hander from a device.
3153  *
3154  *	The caller must hold the rtnl_mutex.
3155  */
3156 void netdev_rx_handler_unregister(struct net_device *dev)
3157 {
3158 
3159 	ASSERT_RTNL();
3160 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3161 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3162 }
3163 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3164 
3165 /*
3166  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3167  * the special handling of PFMEMALLOC skbs.
3168  */
3169 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3170 {
3171 	switch (skb->protocol) {
3172 	case __constant_htons(ETH_P_ARP):
3173 	case __constant_htons(ETH_P_IP):
3174 	case __constant_htons(ETH_P_IPV6):
3175 	case __constant_htons(ETH_P_8021Q):
3176 		return true;
3177 	default:
3178 		return false;
3179 	}
3180 }
3181 
3182 static int __netif_receive_skb(struct sk_buff *skb)
3183 {
3184 	struct packet_type *ptype, *pt_prev;
3185 	rx_handler_func_t *rx_handler;
3186 	struct net_device *orig_dev;
3187 	struct net_device *null_or_dev;
3188 	bool deliver_exact = false;
3189 	int ret = NET_RX_DROP;
3190 	__be16 type;
3191 	unsigned long pflags = current->flags;
3192 
3193 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3194 
3195 	trace_netif_receive_skb(skb);
3196 
3197 	/*
3198 	 * PFMEMALLOC skbs are special, they should
3199 	 * - be delivered to SOCK_MEMALLOC sockets only
3200 	 * - stay away from userspace
3201 	 * - have bounded memory usage
3202 	 *
3203 	 * Use PF_MEMALLOC as this saves us from propagating the allocation
3204 	 * context down to all allocation sites.
3205 	 */
3206 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3207 		current->flags |= PF_MEMALLOC;
3208 
3209 	/* if we've gotten here through NAPI, check netpoll */
3210 	if (netpoll_receive_skb(skb))
3211 		goto out;
3212 
3213 	orig_dev = skb->dev;
3214 
3215 	skb_reset_network_header(skb);
3216 	skb_reset_transport_header(skb);
3217 	skb_reset_mac_len(skb);
3218 
3219 	pt_prev = NULL;
3220 
3221 	rcu_read_lock();
3222 
3223 another_round:
3224 	skb->skb_iif = skb->dev->ifindex;
3225 
3226 	__this_cpu_inc(softnet_data.processed);
3227 
3228 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3229 		skb = vlan_untag(skb);
3230 		if (unlikely(!skb))
3231 			goto unlock;
3232 	}
3233 
3234 #ifdef CONFIG_NET_CLS_ACT
3235 	if (skb->tc_verd & TC_NCLS) {
3236 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3237 		goto ncls;
3238 	}
3239 #endif
3240 
3241 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
3242 		goto skip_taps;
3243 
3244 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3245 		if (!ptype->dev || ptype->dev == skb->dev) {
3246 			if (pt_prev)
3247 				ret = deliver_skb(skb, pt_prev, orig_dev);
3248 			pt_prev = ptype;
3249 		}
3250 	}
3251 
3252 skip_taps:
3253 #ifdef CONFIG_NET_CLS_ACT
3254 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3255 	if (!skb)
3256 		goto unlock;
3257 ncls:
3258 #endif
3259 
3260 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)
3261 				&& !skb_pfmemalloc_protocol(skb))
3262 		goto drop;
3263 
3264 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3265 	if (vlan_tx_tag_present(skb)) {
3266 		if (pt_prev) {
3267 			ret = deliver_skb(skb, pt_prev, orig_dev);
3268 			pt_prev = NULL;
3269 		}
3270 		if (vlan_do_receive(&skb, !rx_handler))
3271 			goto another_round;
3272 		else if (unlikely(!skb))
3273 			goto unlock;
3274 	}
3275 
3276 	if (rx_handler) {
3277 		if (pt_prev) {
3278 			ret = deliver_skb(skb, pt_prev, orig_dev);
3279 			pt_prev = NULL;
3280 		}
3281 		switch (rx_handler(&skb)) {
3282 		case RX_HANDLER_CONSUMED:
3283 			goto unlock;
3284 		case RX_HANDLER_ANOTHER:
3285 			goto another_round;
3286 		case RX_HANDLER_EXACT:
3287 			deliver_exact = true;
3288 		case RX_HANDLER_PASS:
3289 			break;
3290 		default:
3291 			BUG();
3292 		}
3293 	}
3294 
3295 	/* deliver only exact match when indicated */
3296 	null_or_dev = deliver_exact ? skb->dev : NULL;
3297 
3298 	type = skb->protocol;
3299 	list_for_each_entry_rcu(ptype,
3300 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3301 		if (ptype->type == type &&
3302 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3303 		     ptype->dev == orig_dev)) {
3304 			if (pt_prev)
3305 				ret = deliver_skb(skb, pt_prev, orig_dev);
3306 			pt_prev = ptype;
3307 		}
3308 	}
3309 
3310 	if (pt_prev) {
3311 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3312 			ret = -ENOMEM;
3313 		else
3314 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3315 	} else {
3316 drop:
3317 		atomic_long_inc(&skb->dev->rx_dropped);
3318 		kfree_skb(skb);
3319 		/* Jamal, now you will not able to escape explaining
3320 		 * me how you were going to use this. :-)
3321 		 */
3322 		ret = NET_RX_DROP;
3323 	}
3324 
3325 unlock:
3326 	rcu_read_unlock();
3327 out:
3328 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
3329 	return ret;
3330 }
3331 
3332 /**
3333  *	netif_receive_skb - process receive buffer from network
3334  *	@skb: buffer to process
3335  *
3336  *	netif_receive_skb() is the main receive data processing function.
3337  *	It always succeeds. The buffer may be dropped during processing
3338  *	for congestion control or by the protocol layers.
3339  *
3340  *	This function may only be called from softirq context and interrupts
3341  *	should be enabled.
3342  *
3343  *	Return values (usually ignored):
3344  *	NET_RX_SUCCESS: no congestion
3345  *	NET_RX_DROP: packet was dropped
3346  */
3347 int netif_receive_skb(struct sk_buff *skb)
3348 {
3349 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3350 
3351 	if (skb_defer_rx_timestamp(skb))
3352 		return NET_RX_SUCCESS;
3353 
3354 #ifdef CONFIG_RPS
3355 	if (static_key_false(&rps_needed)) {
3356 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3357 		int cpu, ret;
3358 
3359 		rcu_read_lock();
3360 
3361 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3362 
3363 		if (cpu >= 0) {
3364 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3365 			rcu_read_unlock();
3366 			return ret;
3367 		}
3368 		rcu_read_unlock();
3369 	}
3370 #endif
3371 	return __netif_receive_skb(skb);
3372 }
3373 EXPORT_SYMBOL(netif_receive_skb);
3374 
3375 /* Network device is going away, flush any packets still pending
3376  * Called with irqs disabled.
3377  */
3378 static void flush_backlog(void *arg)
3379 {
3380 	struct net_device *dev = arg;
3381 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3382 	struct sk_buff *skb, *tmp;
3383 
3384 	rps_lock(sd);
3385 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3386 		if (skb->dev == dev) {
3387 			__skb_unlink(skb, &sd->input_pkt_queue);
3388 			kfree_skb(skb);
3389 			input_queue_head_incr(sd);
3390 		}
3391 	}
3392 	rps_unlock(sd);
3393 
3394 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3395 		if (skb->dev == dev) {
3396 			__skb_unlink(skb, &sd->process_queue);
3397 			kfree_skb(skb);
3398 			input_queue_head_incr(sd);
3399 		}
3400 	}
3401 }
3402 
3403 static int napi_gro_complete(struct sk_buff *skb)
3404 {
3405 	struct packet_type *ptype;
3406 	__be16 type = skb->protocol;
3407 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3408 	int err = -ENOENT;
3409 
3410 	if (NAPI_GRO_CB(skb)->count == 1) {
3411 		skb_shinfo(skb)->gso_size = 0;
3412 		goto out;
3413 	}
3414 
3415 	rcu_read_lock();
3416 	list_for_each_entry_rcu(ptype, head, list) {
3417 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3418 			continue;
3419 
3420 		err = ptype->gro_complete(skb);
3421 		break;
3422 	}
3423 	rcu_read_unlock();
3424 
3425 	if (err) {
3426 		WARN_ON(&ptype->list == head);
3427 		kfree_skb(skb);
3428 		return NET_RX_SUCCESS;
3429 	}
3430 
3431 out:
3432 	return netif_receive_skb(skb);
3433 }
3434 
3435 inline void napi_gro_flush(struct napi_struct *napi)
3436 {
3437 	struct sk_buff *skb, *next;
3438 
3439 	for (skb = napi->gro_list; skb; skb = next) {
3440 		next = skb->next;
3441 		skb->next = NULL;
3442 		napi_gro_complete(skb);
3443 	}
3444 
3445 	napi->gro_count = 0;
3446 	napi->gro_list = NULL;
3447 }
3448 EXPORT_SYMBOL(napi_gro_flush);
3449 
3450 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3451 {
3452 	struct sk_buff **pp = NULL;
3453 	struct packet_type *ptype;
3454 	__be16 type = skb->protocol;
3455 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3456 	int same_flow;
3457 	int mac_len;
3458 	enum gro_result ret;
3459 
3460 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3461 		goto normal;
3462 
3463 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3464 		goto normal;
3465 
3466 	rcu_read_lock();
3467 	list_for_each_entry_rcu(ptype, head, list) {
3468 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3469 			continue;
3470 
3471 		skb_set_network_header(skb, skb_gro_offset(skb));
3472 		mac_len = skb->network_header - skb->mac_header;
3473 		skb->mac_len = mac_len;
3474 		NAPI_GRO_CB(skb)->same_flow = 0;
3475 		NAPI_GRO_CB(skb)->flush = 0;
3476 		NAPI_GRO_CB(skb)->free = 0;
3477 
3478 		pp = ptype->gro_receive(&napi->gro_list, skb);
3479 		break;
3480 	}
3481 	rcu_read_unlock();
3482 
3483 	if (&ptype->list == head)
3484 		goto normal;
3485 
3486 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3487 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3488 
3489 	if (pp) {
3490 		struct sk_buff *nskb = *pp;
3491 
3492 		*pp = nskb->next;
3493 		nskb->next = NULL;
3494 		napi_gro_complete(nskb);
3495 		napi->gro_count--;
3496 	}
3497 
3498 	if (same_flow)
3499 		goto ok;
3500 
3501 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3502 		goto normal;
3503 
3504 	napi->gro_count++;
3505 	NAPI_GRO_CB(skb)->count = 1;
3506 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3507 	skb->next = napi->gro_list;
3508 	napi->gro_list = skb;
3509 	ret = GRO_HELD;
3510 
3511 pull:
3512 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3513 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3514 
3515 		BUG_ON(skb->end - skb->tail < grow);
3516 
3517 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3518 
3519 		skb->tail += grow;
3520 		skb->data_len -= grow;
3521 
3522 		skb_shinfo(skb)->frags[0].page_offset += grow;
3523 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3524 
3525 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3526 			skb_frag_unref(skb, 0);
3527 			memmove(skb_shinfo(skb)->frags,
3528 				skb_shinfo(skb)->frags + 1,
3529 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3530 		}
3531 	}
3532 
3533 ok:
3534 	return ret;
3535 
3536 normal:
3537 	ret = GRO_NORMAL;
3538 	goto pull;
3539 }
3540 EXPORT_SYMBOL(dev_gro_receive);
3541 
3542 static inline gro_result_t
3543 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3544 {
3545 	struct sk_buff *p;
3546 	unsigned int maclen = skb->dev->hard_header_len;
3547 
3548 	for (p = napi->gro_list; p; p = p->next) {
3549 		unsigned long diffs;
3550 
3551 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3552 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3553 		if (maclen == ETH_HLEN)
3554 			diffs |= compare_ether_header(skb_mac_header(p),
3555 						      skb_gro_mac_header(skb));
3556 		else if (!diffs)
3557 			diffs = memcmp(skb_mac_header(p),
3558 				       skb_gro_mac_header(skb),
3559 				       maclen);
3560 		NAPI_GRO_CB(p)->same_flow = !diffs;
3561 		NAPI_GRO_CB(p)->flush = 0;
3562 	}
3563 
3564 	return dev_gro_receive(napi, skb);
3565 }
3566 
3567 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3568 {
3569 	switch (ret) {
3570 	case GRO_NORMAL:
3571 		if (netif_receive_skb(skb))
3572 			ret = GRO_DROP;
3573 		break;
3574 
3575 	case GRO_DROP:
3576 		kfree_skb(skb);
3577 		break;
3578 
3579 	case GRO_MERGED_FREE:
3580 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3581 			kmem_cache_free(skbuff_head_cache, skb);
3582 		else
3583 			__kfree_skb(skb);
3584 		break;
3585 
3586 	case GRO_HELD:
3587 	case GRO_MERGED:
3588 		break;
3589 	}
3590 
3591 	return ret;
3592 }
3593 EXPORT_SYMBOL(napi_skb_finish);
3594 
3595 void skb_gro_reset_offset(struct sk_buff *skb)
3596 {
3597 	NAPI_GRO_CB(skb)->data_offset = 0;
3598 	NAPI_GRO_CB(skb)->frag0 = NULL;
3599 	NAPI_GRO_CB(skb)->frag0_len = 0;
3600 
3601 	if (skb->mac_header == skb->tail &&
3602 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3603 		NAPI_GRO_CB(skb)->frag0 =
3604 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3605 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3606 	}
3607 }
3608 EXPORT_SYMBOL(skb_gro_reset_offset);
3609 
3610 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3611 {
3612 	skb_gro_reset_offset(skb);
3613 
3614 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3615 }
3616 EXPORT_SYMBOL(napi_gro_receive);
3617 
3618 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3619 {
3620 	__skb_pull(skb, skb_headlen(skb));
3621 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3622 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3623 	skb->vlan_tci = 0;
3624 	skb->dev = napi->dev;
3625 	skb->skb_iif = 0;
3626 
3627 	napi->skb = skb;
3628 }
3629 
3630 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3631 {
3632 	struct sk_buff *skb = napi->skb;
3633 
3634 	if (!skb) {
3635 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3636 		if (skb)
3637 			napi->skb = skb;
3638 	}
3639 	return skb;
3640 }
3641 EXPORT_SYMBOL(napi_get_frags);
3642 
3643 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3644 			       gro_result_t ret)
3645 {
3646 	switch (ret) {
3647 	case GRO_NORMAL:
3648 	case GRO_HELD:
3649 		skb->protocol = eth_type_trans(skb, skb->dev);
3650 
3651 		if (ret == GRO_HELD)
3652 			skb_gro_pull(skb, -ETH_HLEN);
3653 		else if (netif_receive_skb(skb))
3654 			ret = GRO_DROP;
3655 		break;
3656 
3657 	case GRO_DROP:
3658 	case GRO_MERGED_FREE:
3659 		napi_reuse_skb(napi, skb);
3660 		break;
3661 
3662 	case GRO_MERGED:
3663 		break;
3664 	}
3665 
3666 	return ret;
3667 }
3668 EXPORT_SYMBOL(napi_frags_finish);
3669 
3670 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3671 {
3672 	struct sk_buff *skb = napi->skb;
3673 	struct ethhdr *eth;
3674 	unsigned int hlen;
3675 	unsigned int off;
3676 
3677 	napi->skb = NULL;
3678 
3679 	skb_reset_mac_header(skb);
3680 	skb_gro_reset_offset(skb);
3681 
3682 	off = skb_gro_offset(skb);
3683 	hlen = off + sizeof(*eth);
3684 	eth = skb_gro_header_fast(skb, off);
3685 	if (skb_gro_header_hard(skb, hlen)) {
3686 		eth = skb_gro_header_slow(skb, hlen, off);
3687 		if (unlikely(!eth)) {
3688 			napi_reuse_skb(napi, skb);
3689 			skb = NULL;
3690 			goto out;
3691 		}
3692 	}
3693 
3694 	skb_gro_pull(skb, sizeof(*eth));
3695 
3696 	/*
3697 	 * This works because the only protocols we care about don't require
3698 	 * special handling.  We'll fix it up properly at the end.
3699 	 */
3700 	skb->protocol = eth->h_proto;
3701 
3702 out:
3703 	return skb;
3704 }
3705 
3706 gro_result_t napi_gro_frags(struct napi_struct *napi)
3707 {
3708 	struct sk_buff *skb = napi_frags_skb(napi);
3709 
3710 	if (!skb)
3711 		return GRO_DROP;
3712 
3713 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3714 }
3715 EXPORT_SYMBOL(napi_gro_frags);
3716 
3717 /*
3718  * net_rps_action sends any pending IPI's for rps.
3719  * Note: called with local irq disabled, but exits with local irq enabled.
3720  */
3721 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3722 {
3723 #ifdef CONFIG_RPS
3724 	struct softnet_data *remsd = sd->rps_ipi_list;
3725 
3726 	if (remsd) {
3727 		sd->rps_ipi_list = NULL;
3728 
3729 		local_irq_enable();
3730 
3731 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3732 		while (remsd) {
3733 			struct softnet_data *next = remsd->rps_ipi_next;
3734 
3735 			if (cpu_online(remsd->cpu))
3736 				__smp_call_function_single(remsd->cpu,
3737 							   &remsd->csd, 0);
3738 			remsd = next;
3739 		}
3740 	} else
3741 #endif
3742 		local_irq_enable();
3743 }
3744 
3745 static int process_backlog(struct napi_struct *napi, int quota)
3746 {
3747 	int work = 0;
3748 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3749 
3750 #ifdef CONFIG_RPS
3751 	/* Check if we have pending ipi, its better to send them now,
3752 	 * not waiting net_rx_action() end.
3753 	 */
3754 	if (sd->rps_ipi_list) {
3755 		local_irq_disable();
3756 		net_rps_action_and_irq_enable(sd);
3757 	}
3758 #endif
3759 	napi->weight = weight_p;
3760 	local_irq_disable();
3761 	while (work < quota) {
3762 		struct sk_buff *skb;
3763 		unsigned int qlen;
3764 
3765 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3766 			local_irq_enable();
3767 			__netif_receive_skb(skb);
3768 			local_irq_disable();
3769 			input_queue_head_incr(sd);
3770 			if (++work >= quota) {
3771 				local_irq_enable();
3772 				return work;
3773 			}
3774 		}
3775 
3776 		rps_lock(sd);
3777 		qlen = skb_queue_len(&sd->input_pkt_queue);
3778 		if (qlen)
3779 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3780 						   &sd->process_queue);
3781 
3782 		if (qlen < quota - work) {
3783 			/*
3784 			 * Inline a custom version of __napi_complete().
3785 			 * only current cpu owns and manipulates this napi,
3786 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3787 			 * we can use a plain write instead of clear_bit(),
3788 			 * and we dont need an smp_mb() memory barrier.
3789 			 */
3790 			list_del(&napi->poll_list);
3791 			napi->state = 0;
3792 
3793 			quota = work + qlen;
3794 		}
3795 		rps_unlock(sd);
3796 	}
3797 	local_irq_enable();
3798 
3799 	return work;
3800 }
3801 
3802 /**
3803  * __napi_schedule - schedule for receive
3804  * @n: entry to schedule
3805  *
3806  * The entry's receive function will be scheduled to run
3807  */
3808 void __napi_schedule(struct napi_struct *n)
3809 {
3810 	unsigned long flags;
3811 
3812 	local_irq_save(flags);
3813 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3814 	local_irq_restore(flags);
3815 }
3816 EXPORT_SYMBOL(__napi_schedule);
3817 
3818 void __napi_complete(struct napi_struct *n)
3819 {
3820 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3821 	BUG_ON(n->gro_list);
3822 
3823 	list_del(&n->poll_list);
3824 	smp_mb__before_clear_bit();
3825 	clear_bit(NAPI_STATE_SCHED, &n->state);
3826 }
3827 EXPORT_SYMBOL(__napi_complete);
3828 
3829 void napi_complete(struct napi_struct *n)
3830 {
3831 	unsigned long flags;
3832 
3833 	/*
3834 	 * don't let napi dequeue from the cpu poll list
3835 	 * just in case its running on a different cpu
3836 	 */
3837 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3838 		return;
3839 
3840 	napi_gro_flush(n);
3841 	local_irq_save(flags);
3842 	__napi_complete(n);
3843 	local_irq_restore(flags);
3844 }
3845 EXPORT_SYMBOL(napi_complete);
3846 
3847 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3848 		    int (*poll)(struct napi_struct *, int), int weight)
3849 {
3850 	INIT_LIST_HEAD(&napi->poll_list);
3851 	napi->gro_count = 0;
3852 	napi->gro_list = NULL;
3853 	napi->skb = NULL;
3854 	napi->poll = poll;
3855 	napi->weight = weight;
3856 	list_add(&napi->dev_list, &dev->napi_list);
3857 	napi->dev = dev;
3858 #ifdef CONFIG_NETPOLL
3859 	spin_lock_init(&napi->poll_lock);
3860 	napi->poll_owner = -1;
3861 #endif
3862 	set_bit(NAPI_STATE_SCHED, &napi->state);
3863 }
3864 EXPORT_SYMBOL(netif_napi_add);
3865 
3866 void netif_napi_del(struct napi_struct *napi)
3867 {
3868 	struct sk_buff *skb, *next;
3869 
3870 	list_del_init(&napi->dev_list);
3871 	napi_free_frags(napi);
3872 
3873 	for (skb = napi->gro_list; skb; skb = next) {
3874 		next = skb->next;
3875 		skb->next = NULL;
3876 		kfree_skb(skb);
3877 	}
3878 
3879 	napi->gro_list = NULL;
3880 	napi->gro_count = 0;
3881 }
3882 EXPORT_SYMBOL(netif_napi_del);
3883 
3884 static void net_rx_action(struct softirq_action *h)
3885 {
3886 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3887 	unsigned long time_limit = jiffies + 2;
3888 	int budget = netdev_budget;
3889 	void *have;
3890 
3891 	local_irq_disable();
3892 
3893 	while (!list_empty(&sd->poll_list)) {
3894 		struct napi_struct *n;
3895 		int work, weight;
3896 
3897 		/* If softirq window is exhuasted then punt.
3898 		 * Allow this to run for 2 jiffies since which will allow
3899 		 * an average latency of 1.5/HZ.
3900 		 */
3901 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3902 			goto softnet_break;
3903 
3904 		local_irq_enable();
3905 
3906 		/* Even though interrupts have been re-enabled, this
3907 		 * access is safe because interrupts can only add new
3908 		 * entries to the tail of this list, and only ->poll()
3909 		 * calls can remove this head entry from the list.
3910 		 */
3911 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3912 
3913 		have = netpoll_poll_lock(n);
3914 
3915 		weight = n->weight;
3916 
3917 		/* This NAPI_STATE_SCHED test is for avoiding a race
3918 		 * with netpoll's poll_napi().  Only the entity which
3919 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3920 		 * actually make the ->poll() call.  Therefore we avoid
3921 		 * accidentally calling ->poll() when NAPI is not scheduled.
3922 		 */
3923 		work = 0;
3924 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3925 			work = n->poll(n, weight);
3926 			trace_napi_poll(n);
3927 		}
3928 
3929 		WARN_ON_ONCE(work > weight);
3930 
3931 		budget -= work;
3932 
3933 		local_irq_disable();
3934 
3935 		/* Drivers must not modify the NAPI state if they
3936 		 * consume the entire weight.  In such cases this code
3937 		 * still "owns" the NAPI instance and therefore can
3938 		 * move the instance around on the list at-will.
3939 		 */
3940 		if (unlikely(work == weight)) {
3941 			if (unlikely(napi_disable_pending(n))) {
3942 				local_irq_enable();
3943 				napi_complete(n);
3944 				local_irq_disable();
3945 			} else
3946 				list_move_tail(&n->poll_list, &sd->poll_list);
3947 		}
3948 
3949 		netpoll_poll_unlock(have);
3950 	}
3951 out:
3952 	net_rps_action_and_irq_enable(sd);
3953 
3954 #ifdef CONFIG_NET_DMA
3955 	/*
3956 	 * There may not be any more sk_buffs coming right now, so push
3957 	 * any pending DMA copies to hardware
3958 	 */
3959 	dma_issue_pending_all();
3960 #endif
3961 
3962 	return;
3963 
3964 softnet_break:
3965 	sd->time_squeeze++;
3966 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3967 	goto out;
3968 }
3969 
3970 static gifconf_func_t *gifconf_list[NPROTO];
3971 
3972 /**
3973  *	register_gifconf	-	register a SIOCGIF handler
3974  *	@family: Address family
3975  *	@gifconf: Function handler
3976  *
3977  *	Register protocol dependent address dumping routines. The handler
3978  *	that is passed must not be freed or reused until it has been replaced
3979  *	by another handler.
3980  */
3981 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3982 {
3983 	if (family >= NPROTO)
3984 		return -EINVAL;
3985 	gifconf_list[family] = gifconf;
3986 	return 0;
3987 }
3988 EXPORT_SYMBOL(register_gifconf);
3989 
3990 
3991 /*
3992  *	Map an interface index to its name (SIOCGIFNAME)
3993  */
3994 
3995 /*
3996  *	We need this ioctl for efficient implementation of the
3997  *	if_indextoname() function required by the IPv6 API.  Without
3998  *	it, we would have to search all the interfaces to find a
3999  *	match.  --pb
4000  */
4001 
4002 static int dev_ifname(struct net *net, struct ifreq __user *arg)
4003 {
4004 	struct net_device *dev;
4005 	struct ifreq ifr;
4006 
4007 	/*
4008 	 *	Fetch the caller's info block.
4009 	 */
4010 
4011 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4012 		return -EFAULT;
4013 
4014 	rcu_read_lock();
4015 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
4016 	if (!dev) {
4017 		rcu_read_unlock();
4018 		return -ENODEV;
4019 	}
4020 
4021 	strcpy(ifr.ifr_name, dev->name);
4022 	rcu_read_unlock();
4023 
4024 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
4025 		return -EFAULT;
4026 	return 0;
4027 }
4028 
4029 /*
4030  *	Perform a SIOCGIFCONF call. This structure will change
4031  *	size eventually, and there is nothing I can do about it.
4032  *	Thus we will need a 'compatibility mode'.
4033  */
4034 
4035 static int dev_ifconf(struct net *net, char __user *arg)
4036 {
4037 	struct ifconf ifc;
4038 	struct net_device *dev;
4039 	char __user *pos;
4040 	int len;
4041 	int total;
4042 	int i;
4043 
4044 	/*
4045 	 *	Fetch the caller's info block.
4046 	 */
4047 
4048 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
4049 		return -EFAULT;
4050 
4051 	pos = ifc.ifc_buf;
4052 	len = ifc.ifc_len;
4053 
4054 	/*
4055 	 *	Loop over the interfaces, and write an info block for each.
4056 	 */
4057 
4058 	total = 0;
4059 	for_each_netdev(net, dev) {
4060 		for (i = 0; i < NPROTO; i++) {
4061 			if (gifconf_list[i]) {
4062 				int done;
4063 				if (!pos)
4064 					done = gifconf_list[i](dev, NULL, 0);
4065 				else
4066 					done = gifconf_list[i](dev, pos + total,
4067 							       len - total);
4068 				if (done < 0)
4069 					return -EFAULT;
4070 				total += done;
4071 			}
4072 		}
4073 	}
4074 
4075 	/*
4076 	 *	All done.  Write the updated control block back to the caller.
4077 	 */
4078 	ifc.ifc_len = total;
4079 
4080 	/*
4081 	 * 	Both BSD and Solaris return 0 here, so we do too.
4082 	 */
4083 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4084 }
4085 
4086 #ifdef CONFIG_PROC_FS
4087 
4088 #define BUCKET_SPACE (32 - NETDEV_HASHBITS - 1)
4089 
4090 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4091 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4092 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4093 
4094 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq, loff_t *pos)
4095 {
4096 	struct net *net = seq_file_net(seq);
4097 	struct net_device *dev;
4098 	struct hlist_node *p;
4099 	struct hlist_head *h;
4100 	unsigned int count = 0, offset = get_offset(*pos);
4101 
4102 	h = &net->dev_name_head[get_bucket(*pos)];
4103 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4104 		if (++count == offset)
4105 			return dev;
4106 	}
4107 
4108 	return NULL;
4109 }
4110 
4111 static inline struct net_device *dev_from_bucket(struct seq_file *seq, loff_t *pos)
4112 {
4113 	struct net_device *dev;
4114 	unsigned int bucket;
4115 
4116 	do {
4117 		dev = dev_from_same_bucket(seq, pos);
4118 		if (dev)
4119 			return dev;
4120 
4121 		bucket = get_bucket(*pos) + 1;
4122 		*pos = set_bucket_offset(bucket, 1);
4123 	} while (bucket < NETDEV_HASHENTRIES);
4124 
4125 	return NULL;
4126 }
4127 
4128 /*
4129  *	This is invoked by the /proc filesystem handler to display a device
4130  *	in detail.
4131  */
4132 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4133 	__acquires(RCU)
4134 {
4135 	rcu_read_lock();
4136 	if (!*pos)
4137 		return SEQ_START_TOKEN;
4138 
4139 	if (get_bucket(*pos) >= NETDEV_HASHENTRIES)
4140 		return NULL;
4141 
4142 	return dev_from_bucket(seq, pos);
4143 }
4144 
4145 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4146 {
4147 	++*pos;
4148 	return dev_from_bucket(seq, pos);
4149 }
4150 
4151 void dev_seq_stop(struct seq_file *seq, void *v)
4152 	__releases(RCU)
4153 {
4154 	rcu_read_unlock();
4155 }
4156 
4157 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4158 {
4159 	struct rtnl_link_stats64 temp;
4160 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4161 
4162 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4163 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4164 		   dev->name, stats->rx_bytes, stats->rx_packets,
4165 		   stats->rx_errors,
4166 		   stats->rx_dropped + stats->rx_missed_errors,
4167 		   stats->rx_fifo_errors,
4168 		   stats->rx_length_errors + stats->rx_over_errors +
4169 		    stats->rx_crc_errors + stats->rx_frame_errors,
4170 		   stats->rx_compressed, stats->multicast,
4171 		   stats->tx_bytes, stats->tx_packets,
4172 		   stats->tx_errors, stats->tx_dropped,
4173 		   stats->tx_fifo_errors, stats->collisions,
4174 		   stats->tx_carrier_errors +
4175 		    stats->tx_aborted_errors +
4176 		    stats->tx_window_errors +
4177 		    stats->tx_heartbeat_errors,
4178 		   stats->tx_compressed);
4179 }
4180 
4181 /*
4182  *	Called from the PROCfs module. This now uses the new arbitrary sized
4183  *	/proc/net interface to create /proc/net/dev
4184  */
4185 static int dev_seq_show(struct seq_file *seq, void *v)
4186 {
4187 	if (v == SEQ_START_TOKEN)
4188 		seq_puts(seq, "Inter-|   Receive                            "
4189 			      "                    |  Transmit\n"
4190 			      " face |bytes    packets errs drop fifo frame "
4191 			      "compressed multicast|bytes    packets errs "
4192 			      "drop fifo colls carrier compressed\n");
4193 	else
4194 		dev_seq_printf_stats(seq, v);
4195 	return 0;
4196 }
4197 
4198 static struct softnet_data *softnet_get_online(loff_t *pos)
4199 {
4200 	struct softnet_data *sd = NULL;
4201 
4202 	while (*pos < nr_cpu_ids)
4203 		if (cpu_online(*pos)) {
4204 			sd = &per_cpu(softnet_data, *pos);
4205 			break;
4206 		} else
4207 			++*pos;
4208 	return sd;
4209 }
4210 
4211 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4212 {
4213 	return softnet_get_online(pos);
4214 }
4215 
4216 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4217 {
4218 	++*pos;
4219 	return softnet_get_online(pos);
4220 }
4221 
4222 static void softnet_seq_stop(struct seq_file *seq, void *v)
4223 {
4224 }
4225 
4226 static int softnet_seq_show(struct seq_file *seq, void *v)
4227 {
4228 	struct softnet_data *sd = v;
4229 
4230 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4231 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4232 		   0, 0, 0, 0, /* was fastroute */
4233 		   sd->cpu_collision, sd->received_rps);
4234 	return 0;
4235 }
4236 
4237 static const struct seq_operations dev_seq_ops = {
4238 	.start = dev_seq_start,
4239 	.next  = dev_seq_next,
4240 	.stop  = dev_seq_stop,
4241 	.show  = dev_seq_show,
4242 };
4243 
4244 static int dev_seq_open(struct inode *inode, struct file *file)
4245 {
4246 	return seq_open_net(inode, file, &dev_seq_ops,
4247 			    sizeof(struct seq_net_private));
4248 }
4249 
4250 static const struct file_operations dev_seq_fops = {
4251 	.owner	 = THIS_MODULE,
4252 	.open    = dev_seq_open,
4253 	.read    = seq_read,
4254 	.llseek  = seq_lseek,
4255 	.release = seq_release_net,
4256 };
4257 
4258 static const struct seq_operations softnet_seq_ops = {
4259 	.start = softnet_seq_start,
4260 	.next  = softnet_seq_next,
4261 	.stop  = softnet_seq_stop,
4262 	.show  = softnet_seq_show,
4263 };
4264 
4265 static int softnet_seq_open(struct inode *inode, struct file *file)
4266 {
4267 	return seq_open(file, &softnet_seq_ops);
4268 }
4269 
4270 static const struct file_operations softnet_seq_fops = {
4271 	.owner	 = THIS_MODULE,
4272 	.open    = softnet_seq_open,
4273 	.read    = seq_read,
4274 	.llseek  = seq_lseek,
4275 	.release = seq_release,
4276 };
4277 
4278 static void *ptype_get_idx(loff_t pos)
4279 {
4280 	struct packet_type *pt = NULL;
4281 	loff_t i = 0;
4282 	int t;
4283 
4284 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4285 		if (i == pos)
4286 			return pt;
4287 		++i;
4288 	}
4289 
4290 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4291 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4292 			if (i == pos)
4293 				return pt;
4294 			++i;
4295 		}
4296 	}
4297 	return NULL;
4298 }
4299 
4300 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4301 	__acquires(RCU)
4302 {
4303 	rcu_read_lock();
4304 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4305 }
4306 
4307 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4308 {
4309 	struct packet_type *pt;
4310 	struct list_head *nxt;
4311 	int hash;
4312 
4313 	++*pos;
4314 	if (v == SEQ_START_TOKEN)
4315 		return ptype_get_idx(0);
4316 
4317 	pt = v;
4318 	nxt = pt->list.next;
4319 	if (pt->type == htons(ETH_P_ALL)) {
4320 		if (nxt != &ptype_all)
4321 			goto found;
4322 		hash = 0;
4323 		nxt = ptype_base[0].next;
4324 	} else
4325 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4326 
4327 	while (nxt == &ptype_base[hash]) {
4328 		if (++hash >= PTYPE_HASH_SIZE)
4329 			return NULL;
4330 		nxt = ptype_base[hash].next;
4331 	}
4332 found:
4333 	return list_entry(nxt, struct packet_type, list);
4334 }
4335 
4336 static void ptype_seq_stop(struct seq_file *seq, void *v)
4337 	__releases(RCU)
4338 {
4339 	rcu_read_unlock();
4340 }
4341 
4342 static int ptype_seq_show(struct seq_file *seq, void *v)
4343 {
4344 	struct packet_type *pt = v;
4345 
4346 	if (v == SEQ_START_TOKEN)
4347 		seq_puts(seq, "Type Device      Function\n");
4348 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4349 		if (pt->type == htons(ETH_P_ALL))
4350 			seq_puts(seq, "ALL ");
4351 		else
4352 			seq_printf(seq, "%04x", ntohs(pt->type));
4353 
4354 		seq_printf(seq, " %-8s %pF\n",
4355 			   pt->dev ? pt->dev->name : "", pt->func);
4356 	}
4357 
4358 	return 0;
4359 }
4360 
4361 static const struct seq_operations ptype_seq_ops = {
4362 	.start = ptype_seq_start,
4363 	.next  = ptype_seq_next,
4364 	.stop  = ptype_seq_stop,
4365 	.show  = ptype_seq_show,
4366 };
4367 
4368 static int ptype_seq_open(struct inode *inode, struct file *file)
4369 {
4370 	return seq_open_net(inode, file, &ptype_seq_ops,
4371 			sizeof(struct seq_net_private));
4372 }
4373 
4374 static const struct file_operations ptype_seq_fops = {
4375 	.owner	 = THIS_MODULE,
4376 	.open    = ptype_seq_open,
4377 	.read    = seq_read,
4378 	.llseek  = seq_lseek,
4379 	.release = seq_release_net,
4380 };
4381 
4382 
4383 static int __net_init dev_proc_net_init(struct net *net)
4384 {
4385 	int rc = -ENOMEM;
4386 
4387 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4388 		goto out;
4389 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4390 		goto out_dev;
4391 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4392 		goto out_softnet;
4393 
4394 	if (wext_proc_init(net))
4395 		goto out_ptype;
4396 	rc = 0;
4397 out:
4398 	return rc;
4399 out_ptype:
4400 	proc_net_remove(net, "ptype");
4401 out_softnet:
4402 	proc_net_remove(net, "softnet_stat");
4403 out_dev:
4404 	proc_net_remove(net, "dev");
4405 	goto out;
4406 }
4407 
4408 static void __net_exit dev_proc_net_exit(struct net *net)
4409 {
4410 	wext_proc_exit(net);
4411 
4412 	proc_net_remove(net, "ptype");
4413 	proc_net_remove(net, "softnet_stat");
4414 	proc_net_remove(net, "dev");
4415 }
4416 
4417 static struct pernet_operations __net_initdata dev_proc_ops = {
4418 	.init = dev_proc_net_init,
4419 	.exit = dev_proc_net_exit,
4420 };
4421 
4422 static int __init dev_proc_init(void)
4423 {
4424 	return register_pernet_subsys(&dev_proc_ops);
4425 }
4426 #else
4427 #define dev_proc_init() 0
4428 #endif	/* CONFIG_PROC_FS */
4429 
4430 
4431 /**
4432  *	netdev_set_master	-	set up master pointer
4433  *	@slave: slave device
4434  *	@master: new master device
4435  *
4436  *	Changes the master device of the slave. Pass %NULL to break the
4437  *	bonding. The caller must hold the RTNL semaphore. On a failure
4438  *	a negative errno code is returned. On success the reference counts
4439  *	are adjusted and the function returns zero.
4440  */
4441 int netdev_set_master(struct net_device *slave, struct net_device *master)
4442 {
4443 	struct net_device *old = slave->master;
4444 
4445 	ASSERT_RTNL();
4446 
4447 	if (master) {
4448 		if (old)
4449 			return -EBUSY;
4450 		dev_hold(master);
4451 	}
4452 
4453 	slave->master = master;
4454 
4455 	if (old)
4456 		dev_put(old);
4457 	return 0;
4458 }
4459 EXPORT_SYMBOL(netdev_set_master);
4460 
4461 /**
4462  *	netdev_set_bond_master	-	set up bonding master/slave pair
4463  *	@slave: slave device
4464  *	@master: new master device
4465  *
4466  *	Changes the master device of the slave. Pass %NULL to break the
4467  *	bonding. The caller must hold the RTNL semaphore. On a failure
4468  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4469  *	to the routing socket and the function returns zero.
4470  */
4471 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4472 {
4473 	int err;
4474 
4475 	ASSERT_RTNL();
4476 
4477 	err = netdev_set_master(slave, master);
4478 	if (err)
4479 		return err;
4480 	if (master)
4481 		slave->flags |= IFF_SLAVE;
4482 	else
4483 		slave->flags &= ~IFF_SLAVE;
4484 
4485 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4486 	return 0;
4487 }
4488 EXPORT_SYMBOL(netdev_set_bond_master);
4489 
4490 static void dev_change_rx_flags(struct net_device *dev, int flags)
4491 {
4492 	const struct net_device_ops *ops = dev->netdev_ops;
4493 
4494 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4495 		ops->ndo_change_rx_flags(dev, flags);
4496 }
4497 
4498 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4499 {
4500 	unsigned int old_flags = dev->flags;
4501 	uid_t uid;
4502 	gid_t gid;
4503 
4504 	ASSERT_RTNL();
4505 
4506 	dev->flags |= IFF_PROMISC;
4507 	dev->promiscuity += inc;
4508 	if (dev->promiscuity == 0) {
4509 		/*
4510 		 * Avoid overflow.
4511 		 * If inc causes overflow, untouch promisc and return error.
4512 		 */
4513 		if (inc < 0)
4514 			dev->flags &= ~IFF_PROMISC;
4515 		else {
4516 			dev->promiscuity -= inc;
4517 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4518 				dev->name);
4519 			return -EOVERFLOW;
4520 		}
4521 	}
4522 	if (dev->flags != old_flags) {
4523 		pr_info("device %s %s promiscuous mode\n",
4524 			dev->name,
4525 			dev->flags & IFF_PROMISC ? "entered" : "left");
4526 		if (audit_enabled) {
4527 			current_uid_gid(&uid, &gid);
4528 			audit_log(current->audit_context, GFP_ATOMIC,
4529 				AUDIT_ANOM_PROMISCUOUS,
4530 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4531 				dev->name, (dev->flags & IFF_PROMISC),
4532 				(old_flags & IFF_PROMISC),
4533 				audit_get_loginuid(current),
4534 				uid, gid,
4535 				audit_get_sessionid(current));
4536 		}
4537 
4538 		dev_change_rx_flags(dev, IFF_PROMISC);
4539 	}
4540 	return 0;
4541 }
4542 
4543 /**
4544  *	dev_set_promiscuity	- update promiscuity count on a device
4545  *	@dev: device
4546  *	@inc: modifier
4547  *
4548  *	Add or remove promiscuity from a device. While the count in the device
4549  *	remains above zero the interface remains promiscuous. Once it hits zero
4550  *	the device reverts back to normal filtering operation. A negative inc
4551  *	value is used to drop promiscuity on the device.
4552  *	Return 0 if successful or a negative errno code on error.
4553  */
4554 int dev_set_promiscuity(struct net_device *dev, int inc)
4555 {
4556 	unsigned int old_flags = dev->flags;
4557 	int err;
4558 
4559 	err = __dev_set_promiscuity(dev, inc);
4560 	if (err < 0)
4561 		return err;
4562 	if (dev->flags != old_flags)
4563 		dev_set_rx_mode(dev);
4564 	return err;
4565 }
4566 EXPORT_SYMBOL(dev_set_promiscuity);
4567 
4568 /**
4569  *	dev_set_allmulti	- update allmulti count on a device
4570  *	@dev: device
4571  *	@inc: modifier
4572  *
4573  *	Add or remove reception of all multicast frames to a device. While the
4574  *	count in the device remains above zero the interface remains listening
4575  *	to all interfaces. Once it hits zero the device reverts back to normal
4576  *	filtering operation. A negative @inc value is used to drop the counter
4577  *	when releasing a resource needing all multicasts.
4578  *	Return 0 if successful or a negative errno code on error.
4579  */
4580 
4581 int dev_set_allmulti(struct net_device *dev, int inc)
4582 {
4583 	unsigned int old_flags = dev->flags;
4584 
4585 	ASSERT_RTNL();
4586 
4587 	dev->flags |= IFF_ALLMULTI;
4588 	dev->allmulti += inc;
4589 	if (dev->allmulti == 0) {
4590 		/*
4591 		 * Avoid overflow.
4592 		 * If inc causes overflow, untouch allmulti and return error.
4593 		 */
4594 		if (inc < 0)
4595 			dev->flags &= ~IFF_ALLMULTI;
4596 		else {
4597 			dev->allmulti -= inc;
4598 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4599 				dev->name);
4600 			return -EOVERFLOW;
4601 		}
4602 	}
4603 	if (dev->flags ^ old_flags) {
4604 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4605 		dev_set_rx_mode(dev);
4606 	}
4607 	return 0;
4608 }
4609 EXPORT_SYMBOL(dev_set_allmulti);
4610 
4611 /*
4612  *	Upload unicast and multicast address lists to device and
4613  *	configure RX filtering. When the device doesn't support unicast
4614  *	filtering it is put in promiscuous mode while unicast addresses
4615  *	are present.
4616  */
4617 void __dev_set_rx_mode(struct net_device *dev)
4618 {
4619 	const struct net_device_ops *ops = dev->netdev_ops;
4620 
4621 	/* dev_open will call this function so the list will stay sane. */
4622 	if (!(dev->flags&IFF_UP))
4623 		return;
4624 
4625 	if (!netif_device_present(dev))
4626 		return;
4627 
4628 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4629 		/* Unicast addresses changes may only happen under the rtnl,
4630 		 * therefore calling __dev_set_promiscuity here is safe.
4631 		 */
4632 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4633 			__dev_set_promiscuity(dev, 1);
4634 			dev->uc_promisc = true;
4635 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4636 			__dev_set_promiscuity(dev, -1);
4637 			dev->uc_promisc = false;
4638 		}
4639 	}
4640 
4641 	if (ops->ndo_set_rx_mode)
4642 		ops->ndo_set_rx_mode(dev);
4643 }
4644 
4645 void dev_set_rx_mode(struct net_device *dev)
4646 {
4647 	netif_addr_lock_bh(dev);
4648 	__dev_set_rx_mode(dev);
4649 	netif_addr_unlock_bh(dev);
4650 }
4651 
4652 /**
4653  *	dev_get_flags - get flags reported to userspace
4654  *	@dev: device
4655  *
4656  *	Get the combination of flag bits exported through APIs to userspace.
4657  */
4658 unsigned int dev_get_flags(const struct net_device *dev)
4659 {
4660 	unsigned int flags;
4661 
4662 	flags = (dev->flags & ~(IFF_PROMISC |
4663 				IFF_ALLMULTI |
4664 				IFF_RUNNING |
4665 				IFF_LOWER_UP |
4666 				IFF_DORMANT)) |
4667 		(dev->gflags & (IFF_PROMISC |
4668 				IFF_ALLMULTI));
4669 
4670 	if (netif_running(dev)) {
4671 		if (netif_oper_up(dev))
4672 			flags |= IFF_RUNNING;
4673 		if (netif_carrier_ok(dev))
4674 			flags |= IFF_LOWER_UP;
4675 		if (netif_dormant(dev))
4676 			flags |= IFF_DORMANT;
4677 	}
4678 
4679 	return flags;
4680 }
4681 EXPORT_SYMBOL(dev_get_flags);
4682 
4683 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4684 {
4685 	unsigned int old_flags = dev->flags;
4686 	int ret;
4687 
4688 	ASSERT_RTNL();
4689 
4690 	/*
4691 	 *	Set the flags on our device.
4692 	 */
4693 
4694 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4695 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4696 			       IFF_AUTOMEDIA)) |
4697 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4698 				    IFF_ALLMULTI));
4699 
4700 	/*
4701 	 *	Load in the correct multicast list now the flags have changed.
4702 	 */
4703 
4704 	if ((old_flags ^ flags) & IFF_MULTICAST)
4705 		dev_change_rx_flags(dev, IFF_MULTICAST);
4706 
4707 	dev_set_rx_mode(dev);
4708 
4709 	/*
4710 	 *	Have we downed the interface. We handle IFF_UP ourselves
4711 	 *	according to user attempts to set it, rather than blindly
4712 	 *	setting it.
4713 	 */
4714 
4715 	ret = 0;
4716 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4717 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4718 
4719 		if (!ret)
4720 			dev_set_rx_mode(dev);
4721 	}
4722 
4723 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4724 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4725 
4726 		dev->gflags ^= IFF_PROMISC;
4727 		dev_set_promiscuity(dev, inc);
4728 	}
4729 
4730 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4731 	   is important. Some (broken) drivers set IFF_PROMISC, when
4732 	   IFF_ALLMULTI is requested not asking us and not reporting.
4733 	 */
4734 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4735 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4736 
4737 		dev->gflags ^= IFF_ALLMULTI;
4738 		dev_set_allmulti(dev, inc);
4739 	}
4740 
4741 	return ret;
4742 }
4743 
4744 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4745 {
4746 	unsigned int changes = dev->flags ^ old_flags;
4747 
4748 	if (changes & IFF_UP) {
4749 		if (dev->flags & IFF_UP)
4750 			call_netdevice_notifiers(NETDEV_UP, dev);
4751 		else
4752 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4753 	}
4754 
4755 	if (dev->flags & IFF_UP &&
4756 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4757 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4758 }
4759 
4760 /**
4761  *	dev_change_flags - change device settings
4762  *	@dev: device
4763  *	@flags: device state flags
4764  *
4765  *	Change settings on device based state flags. The flags are
4766  *	in the userspace exported format.
4767  */
4768 int dev_change_flags(struct net_device *dev, unsigned int flags)
4769 {
4770 	int ret;
4771 	unsigned int changes, old_flags = dev->flags;
4772 
4773 	ret = __dev_change_flags(dev, flags);
4774 	if (ret < 0)
4775 		return ret;
4776 
4777 	changes = old_flags ^ dev->flags;
4778 	if (changes)
4779 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4780 
4781 	__dev_notify_flags(dev, old_flags);
4782 	return ret;
4783 }
4784 EXPORT_SYMBOL(dev_change_flags);
4785 
4786 /**
4787  *	dev_set_mtu - Change maximum transfer unit
4788  *	@dev: device
4789  *	@new_mtu: new transfer unit
4790  *
4791  *	Change the maximum transfer size of the network device.
4792  */
4793 int dev_set_mtu(struct net_device *dev, int new_mtu)
4794 {
4795 	const struct net_device_ops *ops = dev->netdev_ops;
4796 	int err;
4797 
4798 	if (new_mtu == dev->mtu)
4799 		return 0;
4800 
4801 	/*	MTU must be positive.	 */
4802 	if (new_mtu < 0)
4803 		return -EINVAL;
4804 
4805 	if (!netif_device_present(dev))
4806 		return -ENODEV;
4807 
4808 	err = 0;
4809 	if (ops->ndo_change_mtu)
4810 		err = ops->ndo_change_mtu(dev, new_mtu);
4811 	else
4812 		dev->mtu = new_mtu;
4813 
4814 	if (!err && dev->flags & IFF_UP)
4815 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4816 	return err;
4817 }
4818 EXPORT_SYMBOL(dev_set_mtu);
4819 
4820 /**
4821  *	dev_set_group - Change group this device belongs to
4822  *	@dev: device
4823  *	@new_group: group this device should belong to
4824  */
4825 void dev_set_group(struct net_device *dev, int new_group)
4826 {
4827 	dev->group = new_group;
4828 }
4829 EXPORT_SYMBOL(dev_set_group);
4830 
4831 /**
4832  *	dev_set_mac_address - Change Media Access Control Address
4833  *	@dev: device
4834  *	@sa: new address
4835  *
4836  *	Change the hardware (MAC) address of the device
4837  */
4838 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4839 {
4840 	const struct net_device_ops *ops = dev->netdev_ops;
4841 	int err;
4842 
4843 	if (!ops->ndo_set_mac_address)
4844 		return -EOPNOTSUPP;
4845 	if (sa->sa_family != dev->type)
4846 		return -EINVAL;
4847 	if (!netif_device_present(dev))
4848 		return -ENODEV;
4849 	err = ops->ndo_set_mac_address(dev, sa);
4850 	if (!err)
4851 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4852 	add_device_randomness(dev->dev_addr, dev->addr_len);
4853 	return err;
4854 }
4855 EXPORT_SYMBOL(dev_set_mac_address);
4856 
4857 /*
4858  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4859  */
4860 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4861 {
4862 	int err;
4863 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4864 
4865 	if (!dev)
4866 		return -ENODEV;
4867 
4868 	switch (cmd) {
4869 	case SIOCGIFFLAGS:	/* Get interface flags */
4870 		ifr->ifr_flags = (short) dev_get_flags(dev);
4871 		return 0;
4872 
4873 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4874 				   (currently unused) */
4875 		ifr->ifr_metric = 0;
4876 		return 0;
4877 
4878 	case SIOCGIFMTU:	/* Get the MTU of a device */
4879 		ifr->ifr_mtu = dev->mtu;
4880 		return 0;
4881 
4882 	case SIOCGIFHWADDR:
4883 		if (!dev->addr_len)
4884 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4885 		else
4886 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4887 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4888 		ifr->ifr_hwaddr.sa_family = dev->type;
4889 		return 0;
4890 
4891 	case SIOCGIFSLAVE:
4892 		err = -EINVAL;
4893 		break;
4894 
4895 	case SIOCGIFMAP:
4896 		ifr->ifr_map.mem_start = dev->mem_start;
4897 		ifr->ifr_map.mem_end   = dev->mem_end;
4898 		ifr->ifr_map.base_addr = dev->base_addr;
4899 		ifr->ifr_map.irq       = dev->irq;
4900 		ifr->ifr_map.dma       = dev->dma;
4901 		ifr->ifr_map.port      = dev->if_port;
4902 		return 0;
4903 
4904 	case SIOCGIFINDEX:
4905 		ifr->ifr_ifindex = dev->ifindex;
4906 		return 0;
4907 
4908 	case SIOCGIFTXQLEN:
4909 		ifr->ifr_qlen = dev->tx_queue_len;
4910 		return 0;
4911 
4912 	default:
4913 		/* dev_ioctl() should ensure this case
4914 		 * is never reached
4915 		 */
4916 		WARN_ON(1);
4917 		err = -ENOTTY;
4918 		break;
4919 
4920 	}
4921 	return err;
4922 }
4923 
4924 /*
4925  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4926  */
4927 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4928 {
4929 	int err;
4930 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4931 	const struct net_device_ops *ops;
4932 
4933 	if (!dev)
4934 		return -ENODEV;
4935 
4936 	ops = dev->netdev_ops;
4937 
4938 	switch (cmd) {
4939 	case SIOCSIFFLAGS:	/* Set interface flags */
4940 		return dev_change_flags(dev, ifr->ifr_flags);
4941 
4942 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4943 				   (currently unused) */
4944 		return -EOPNOTSUPP;
4945 
4946 	case SIOCSIFMTU:	/* Set the MTU of a device */
4947 		return dev_set_mtu(dev, ifr->ifr_mtu);
4948 
4949 	case SIOCSIFHWADDR:
4950 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4951 
4952 	case SIOCSIFHWBROADCAST:
4953 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4954 			return -EINVAL;
4955 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4956 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4957 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4958 		return 0;
4959 
4960 	case SIOCSIFMAP:
4961 		if (ops->ndo_set_config) {
4962 			if (!netif_device_present(dev))
4963 				return -ENODEV;
4964 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4965 		}
4966 		return -EOPNOTSUPP;
4967 
4968 	case SIOCADDMULTI:
4969 		if (!ops->ndo_set_rx_mode ||
4970 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4971 			return -EINVAL;
4972 		if (!netif_device_present(dev))
4973 			return -ENODEV;
4974 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4975 
4976 	case SIOCDELMULTI:
4977 		if (!ops->ndo_set_rx_mode ||
4978 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4979 			return -EINVAL;
4980 		if (!netif_device_present(dev))
4981 			return -ENODEV;
4982 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4983 
4984 	case SIOCSIFTXQLEN:
4985 		if (ifr->ifr_qlen < 0)
4986 			return -EINVAL;
4987 		dev->tx_queue_len = ifr->ifr_qlen;
4988 		return 0;
4989 
4990 	case SIOCSIFNAME:
4991 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4992 		return dev_change_name(dev, ifr->ifr_newname);
4993 
4994 	case SIOCSHWTSTAMP:
4995 		err = net_hwtstamp_validate(ifr);
4996 		if (err)
4997 			return err;
4998 		/* fall through */
4999 
5000 	/*
5001 	 *	Unknown or private ioctl
5002 	 */
5003 	default:
5004 		if ((cmd >= SIOCDEVPRIVATE &&
5005 		    cmd <= SIOCDEVPRIVATE + 15) ||
5006 		    cmd == SIOCBONDENSLAVE ||
5007 		    cmd == SIOCBONDRELEASE ||
5008 		    cmd == SIOCBONDSETHWADDR ||
5009 		    cmd == SIOCBONDSLAVEINFOQUERY ||
5010 		    cmd == SIOCBONDINFOQUERY ||
5011 		    cmd == SIOCBONDCHANGEACTIVE ||
5012 		    cmd == SIOCGMIIPHY ||
5013 		    cmd == SIOCGMIIREG ||
5014 		    cmd == SIOCSMIIREG ||
5015 		    cmd == SIOCBRADDIF ||
5016 		    cmd == SIOCBRDELIF ||
5017 		    cmd == SIOCSHWTSTAMP ||
5018 		    cmd == SIOCWANDEV) {
5019 			err = -EOPNOTSUPP;
5020 			if (ops->ndo_do_ioctl) {
5021 				if (netif_device_present(dev))
5022 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
5023 				else
5024 					err = -ENODEV;
5025 			}
5026 		} else
5027 			err = -EINVAL;
5028 
5029 	}
5030 	return err;
5031 }
5032 
5033 /*
5034  *	This function handles all "interface"-type I/O control requests. The actual
5035  *	'doing' part of this is dev_ifsioc above.
5036  */
5037 
5038 /**
5039  *	dev_ioctl	-	network device ioctl
5040  *	@net: the applicable net namespace
5041  *	@cmd: command to issue
5042  *	@arg: pointer to a struct ifreq in user space
5043  *
5044  *	Issue ioctl functions to devices. This is normally called by the
5045  *	user space syscall interfaces but can sometimes be useful for
5046  *	other purposes. The return value is the return from the syscall if
5047  *	positive or a negative errno code on error.
5048  */
5049 
5050 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5051 {
5052 	struct ifreq ifr;
5053 	int ret;
5054 	char *colon;
5055 
5056 	/* One special case: SIOCGIFCONF takes ifconf argument
5057 	   and requires shared lock, because it sleeps writing
5058 	   to user space.
5059 	 */
5060 
5061 	if (cmd == SIOCGIFCONF) {
5062 		rtnl_lock();
5063 		ret = dev_ifconf(net, (char __user *) arg);
5064 		rtnl_unlock();
5065 		return ret;
5066 	}
5067 	if (cmd == SIOCGIFNAME)
5068 		return dev_ifname(net, (struct ifreq __user *)arg);
5069 
5070 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5071 		return -EFAULT;
5072 
5073 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5074 
5075 	colon = strchr(ifr.ifr_name, ':');
5076 	if (colon)
5077 		*colon = 0;
5078 
5079 	/*
5080 	 *	See which interface the caller is talking about.
5081 	 */
5082 
5083 	switch (cmd) {
5084 	/*
5085 	 *	These ioctl calls:
5086 	 *	- can be done by all.
5087 	 *	- atomic and do not require locking.
5088 	 *	- return a value
5089 	 */
5090 	case SIOCGIFFLAGS:
5091 	case SIOCGIFMETRIC:
5092 	case SIOCGIFMTU:
5093 	case SIOCGIFHWADDR:
5094 	case SIOCGIFSLAVE:
5095 	case SIOCGIFMAP:
5096 	case SIOCGIFINDEX:
5097 	case SIOCGIFTXQLEN:
5098 		dev_load(net, ifr.ifr_name);
5099 		rcu_read_lock();
5100 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5101 		rcu_read_unlock();
5102 		if (!ret) {
5103 			if (colon)
5104 				*colon = ':';
5105 			if (copy_to_user(arg, &ifr,
5106 					 sizeof(struct ifreq)))
5107 				ret = -EFAULT;
5108 		}
5109 		return ret;
5110 
5111 	case SIOCETHTOOL:
5112 		dev_load(net, ifr.ifr_name);
5113 		rtnl_lock();
5114 		ret = dev_ethtool(net, &ifr);
5115 		rtnl_unlock();
5116 		if (!ret) {
5117 			if (colon)
5118 				*colon = ':';
5119 			if (copy_to_user(arg, &ifr,
5120 					 sizeof(struct ifreq)))
5121 				ret = -EFAULT;
5122 		}
5123 		return ret;
5124 
5125 	/*
5126 	 *	These ioctl calls:
5127 	 *	- require superuser power.
5128 	 *	- require strict serialization.
5129 	 *	- return a value
5130 	 */
5131 	case SIOCGMIIPHY:
5132 	case SIOCGMIIREG:
5133 	case SIOCSIFNAME:
5134 		if (!capable(CAP_NET_ADMIN))
5135 			return -EPERM;
5136 		dev_load(net, ifr.ifr_name);
5137 		rtnl_lock();
5138 		ret = dev_ifsioc(net, &ifr, cmd);
5139 		rtnl_unlock();
5140 		if (!ret) {
5141 			if (colon)
5142 				*colon = ':';
5143 			if (copy_to_user(arg, &ifr,
5144 					 sizeof(struct ifreq)))
5145 				ret = -EFAULT;
5146 		}
5147 		return ret;
5148 
5149 	/*
5150 	 *	These ioctl calls:
5151 	 *	- require superuser power.
5152 	 *	- require strict serialization.
5153 	 *	- do not return a value
5154 	 */
5155 	case SIOCSIFFLAGS:
5156 	case SIOCSIFMETRIC:
5157 	case SIOCSIFMTU:
5158 	case SIOCSIFMAP:
5159 	case SIOCSIFHWADDR:
5160 	case SIOCSIFSLAVE:
5161 	case SIOCADDMULTI:
5162 	case SIOCDELMULTI:
5163 	case SIOCSIFHWBROADCAST:
5164 	case SIOCSIFTXQLEN:
5165 	case SIOCSMIIREG:
5166 	case SIOCBONDENSLAVE:
5167 	case SIOCBONDRELEASE:
5168 	case SIOCBONDSETHWADDR:
5169 	case SIOCBONDCHANGEACTIVE:
5170 	case SIOCBRADDIF:
5171 	case SIOCBRDELIF:
5172 	case SIOCSHWTSTAMP:
5173 		if (!capable(CAP_NET_ADMIN))
5174 			return -EPERM;
5175 		/* fall through */
5176 	case SIOCBONDSLAVEINFOQUERY:
5177 	case SIOCBONDINFOQUERY:
5178 		dev_load(net, ifr.ifr_name);
5179 		rtnl_lock();
5180 		ret = dev_ifsioc(net, &ifr, cmd);
5181 		rtnl_unlock();
5182 		return ret;
5183 
5184 	case SIOCGIFMEM:
5185 		/* Get the per device memory space. We can add this but
5186 		 * currently do not support it */
5187 	case SIOCSIFMEM:
5188 		/* Set the per device memory buffer space.
5189 		 * Not applicable in our case */
5190 	case SIOCSIFLINK:
5191 		return -ENOTTY;
5192 
5193 	/*
5194 	 *	Unknown or private ioctl.
5195 	 */
5196 	default:
5197 		if (cmd == SIOCWANDEV ||
5198 		    (cmd >= SIOCDEVPRIVATE &&
5199 		     cmd <= SIOCDEVPRIVATE + 15)) {
5200 			dev_load(net, ifr.ifr_name);
5201 			rtnl_lock();
5202 			ret = dev_ifsioc(net, &ifr, cmd);
5203 			rtnl_unlock();
5204 			if (!ret && copy_to_user(arg, &ifr,
5205 						 sizeof(struct ifreq)))
5206 				ret = -EFAULT;
5207 			return ret;
5208 		}
5209 		/* Take care of Wireless Extensions */
5210 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5211 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5212 		return -ENOTTY;
5213 	}
5214 }
5215 
5216 
5217 /**
5218  *	dev_new_index	-	allocate an ifindex
5219  *	@net: the applicable net namespace
5220  *
5221  *	Returns a suitable unique value for a new device interface
5222  *	number.  The caller must hold the rtnl semaphore or the
5223  *	dev_base_lock to be sure it remains unique.
5224  */
5225 static int dev_new_index(struct net *net)
5226 {
5227 	static int ifindex;
5228 	for (;;) {
5229 		if (++ifindex <= 0)
5230 			ifindex = 1;
5231 		if (!__dev_get_by_index(net, ifindex))
5232 			return ifindex;
5233 	}
5234 }
5235 
5236 /* Delayed registration/unregisteration */
5237 static LIST_HEAD(net_todo_list);
5238 
5239 static void net_set_todo(struct net_device *dev)
5240 {
5241 	list_add_tail(&dev->todo_list, &net_todo_list);
5242 }
5243 
5244 static void rollback_registered_many(struct list_head *head)
5245 {
5246 	struct net_device *dev, *tmp;
5247 
5248 	BUG_ON(dev_boot_phase);
5249 	ASSERT_RTNL();
5250 
5251 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5252 		/* Some devices call without registering
5253 		 * for initialization unwind. Remove those
5254 		 * devices and proceed with the remaining.
5255 		 */
5256 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5257 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5258 				 dev->name, dev);
5259 
5260 			WARN_ON(1);
5261 			list_del(&dev->unreg_list);
5262 			continue;
5263 		}
5264 		dev->dismantle = true;
5265 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5266 	}
5267 
5268 	/* If device is running, close it first. */
5269 	dev_close_many(head);
5270 
5271 	list_for_each_entry(dev, head, unreg_list) {
5272 		/* And unlink it from device chain. */
5273 		unlist_netdevice(dev);
5274 
5275 		dev->reg_state = NETREG_UNREGISTERING;
5276 	}
5277 
5278 	synchronize_net();
5279 
5280 	list_for_each_entry(dev, head, unreg_list) {
5281 		/* Shutdown queueing discipline. */
5282 		dev_shutdown(dev);
5283 
5284 
5285 		/* Notify protocols, that we are about to destroy
5286 		   this device. They should clean all the things.
5287 		*/
5288 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5289 
5290 		if (!dev->rtnl_link_ops ||
5291 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5292 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5293 
5294 		/*
5295 		 *	Flush the unicast and multicast chains
5296 		 */
5297 		dev_uc_flush(dev);
5298 		dev_mc_flush(dev);
5299 
5300 		if (dev->netdev_ops->ndo_uninit)
5301 			dev->netdev_ops->ndo_uninit(dev);
5302 
5303 		/* Notifier chain MUST detach us from master device. */
5304 		WARN_ON(dev->master);
5305 
5306 		/* Remove entries from kobject tree */
5307 		netdev_unregister_kobject(dev);
5308 	}
5309 
5310 	/* Process any work delayed until the end of the batch */
5311 	dev = list_first_entry(head, struct net_device, unreg_list);
5312 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5313 
5314 	synchronize_net();
5315 
5316 	list_for_each_entry(dev, head, unreg_list)
5317 		dev_put(dev);
5318 }
5319 
5320 static void rollback_registered(struct net_device *dev)
5321 {
5322 	LIST_HEAD(single);
5323 
5324 	list_add(&dev->unreg_list, &single);
5325 	rollback_registered_many(&single);
5326 	list_del(&single);
5327 }
5328 
5329 static netdev_features_t netdev_fix_features(struct net_device *dev,
5330 	netdev_features_t features)
5331 {
5332 	/* Fix illegal checksum combinations */
5333 	if ((features & NETIF_F_HW_CSUM) &&
5334 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5335 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5336 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5337 	}
5338 
5339 	/* Fix illegal SG+CSUM combinations. */
5340 	if ((features & NETIF_F_SG) &&
5341 	    !(features & NETIF_F_ALL_CSUM)) {
5342 		netdev_dbg(dev,
5343 			"Dropping NETIF_F_SG since no checksum feature.\n");
5344 		features &= ~NETIF_F_SG;
5345 	}
5346 
5347 	/* TSO requires that SG is present as well. */
5348 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5349 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5350 		features &= ~NETIF_F_ALL_TSO;
5351 	}
5352 
5353 	/* TSO ECN requires that TSO is present as well. */
5354 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5355 		features &= ~NETIF_F_TSO_ECN;
5356 
5357 	/* Software GSO depends on SG. */
5358 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5359 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5360 		features &= ~NETIF_F_GSO;
5361 	}
5362 
5363 	/* UFO needs SG and checksumming */
5364 	if (features & NETIF_F_UFO) {
5365 		/* maybe split UFO into V4 and V6? */
5366 		if (!((features & NETIF_F_GEN_CSUM) ||
5367 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5368 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5369 			netdev_dbg(dev,
5370 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5371 			features &= ~NETIF_F_UFO;
5372 		}
5373 
5374 		if (!(features & NETIF_F_SG)) {
5375 			netdev_dbg(dev,
5376 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5377 			features &= ~NETIF_F_UFO;
5378 		}
5379 	}
5380 
5381 	return features;
5382 }
5383 
5384 int __netdev_update_features(struct net_device *dev)
5385 {
5386 	netdev_features_t features;
5387 	int err = 0;
5388 
5389 	ASSERT_RTNL();
5390 
5391 	features = netdev_get_wanted_features(dev);
5392 
5393 	if (dev->netdev_ops->ndo_fix_features)
5394 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5395 
5396 	/* driver might be less strict about feature dependencies */
5397 	features = netdev_fix_features(dev, features);
5398 
5399 	if (dev->features == features)
5400 		return 0;
5401 
5402 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5403 		&dev->features, &features);
5404 
5405 	if (dev->netdev_ops->ndo_set_features)
5406 		err = dev->netdev_ops->ndo_set_features(dev, features);
5407 
5408 	if (unlikely(err < 0)) {
5409 		netdev_err(dev,
5410 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5411 			err, &features, &dev->features);
5412 		return -1;
5413 	}
5414 
5415 	if (!err)
5416 		dev->features = features;
5417 
5418 	return 1;
5419 }
5420 
5421 /**
5422  *	netdev_update_features - recalculate device features
5423  *	@dev: the device to check
5424  *
5425  *	Recalculate dev->features set and send notifications if it
5426  *	has changed. Should be called after driver or hardware dependent
5427  *	conditions might have changed that influence the features.
5428  */
5429 void netdev_update_features(struct net_device *dev)
5430 {
5431 	if (__netdev_update_features(dev))
5432 		netdev_features_change(dev);
5433 }
5434 EXPORT_SYMBOL(netdev_update_features);
5435 
5436 /**
5437  *	netdev_change_features - recalculate device features
5438  *	@dev: the device to check
5439  *
5440  *	Recalculate dev->features set and send notifications even
5441  *	if they have not changed. Should be called instead of
5442  *	netdev_update_features() if also dev->vlan_features might
5443  *	have changed to allow the changes to be propagated to stacked
5444  *	VLAN devices.
5445  */
5446 void netdev_change_features(struct net_device *dev)
5447 {
5448 	__netdev_update_features(dev);
5449 	netdev_features_change(dev);
5450 }
5451 EXPORT_SYMBOL(netdev_change_features);
5452 
5453 /**
5454  *	netif_stacked_transfer_operstate -	transfer operstate
5455  *	@rootdev: the root or lower level device to transfer state from
5456  *	@dev: the device to transfer operstate to
5457  *
5458  *	Transfer operational state from root to device. This is normally
5459  *	called when a stacking relationship exists between the root
5460  *	device and the device(a leaf device).
5461  */
5462 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5463 					struct net_device *dev)
5464 {
5465 	if (rootdev->operstate == IF_OPER_DORMANT)
5466 		netif_dormant_on(dev);
5467 	else
5468 		netif_dormant_off(dev);
5469 
5470 	if (netif_carrier_ok(rootdev)) {
5471 		if (!netif_carrier_ok(dev))
5472 			netif_carrier_on(dev);
5473 	} else {
5474 		if (netif_carrier_ok(dev))
5475 			netif_carrier_off(dev);
5476 	}
5477 }
5478 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5479 
5480 #ifdef CONFIG_RPS
5481 static int netif_alloc_rx_queues(struct net_device *dev)
5482 {
5483 	unsigned int i, count = dev->num_rx_queues;
5484 	struct netdev_rx_queue *rx;
5485 
5486 	BUG_ON(count < 1);
5487 
5488 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5489 	if (!rx) {
5490 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5491 		return -ENOMEM;
5492 	}
5493 	dev->_rx = rx;
5494 
5495 	for (i = 0; i < count; i++)
5496 		rx[i].dev = dev;
5497 	return 0;
5498 }
5499 #endif
5500 
5501 static void netdev_init_one_queue(struct net_device *dev,
5502 				  struct netdev_queue *queue, void *_unused)
5503 {
5504 	/* Initialize queue lock */
5505 	spin_lock_init(&queue->_xmit_lock);
5506 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5507 	queue->xmit_lock_owner = -1;
5508 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5509 	queue->dev = dev;
5510 #ifdef CONFIG_BQL
5511 	dql_init(&queue->dql, HZ);
5512 #endif
5513 }
5514 
5515 static int netif_alloc_netdev_queues(struct net_device *dev)
5516 {
5517 	unsigned int count = dev->num_tx_queues;
5518 	struct netdev_queue *tx;
5519 
5520 	BUG_ON(count < 1);
5521 
5522 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5523 	if (!tx) {
5524 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5525 		return -ENOMEM;
5526 	}
5527 	dev->_tx = tx;
5528 
5529 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5530 	spin_lock_init(&dev->tx_global_lock);
5531 
5532 	return 0;
5533 }
5534 
5535 /**
5536  *	register_netdevice	- register a network device
5537  *	@dev: device to register
5538  *
5539  *	Take a completed network device structure and add it to the kernel
5540  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5541  *	chain. 0 is returned on success. A negative errno code is returned
5542  *	on a failure to set up the device, or if the name is a duplicate.
5543  *
5544  *	Callers must hold the rtnl semaphore. You may want
5545  *	register_netdev() instead of this.
5546  *
5547  *	BUGS:
5548  *	The locking appears insufficient to guarantee two parallel registers
5549  *	will not get the same name.
5550  */
5551 
5552 int register_netdevice(struct net_device *dev)
5553 {
5554 	int ret;
5555 	struct net *net = dev_net(dev);
5556 
5557 	BUG_ON(dev_boot_phase);
5558 	ASSERT_RTNL();
5559 
5560 	might_sleep();
5561 
5562 	/* When net_device's are persistent, this will be fatal. */
5563 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5564 	BUG_ON(!net);
5565 
5566 	spin_lock_init(&dev->addr_list_lock);
5567 	netdev_set_addr_lockdep_class(dev);
5568 
5569 	dev->iflink = -1;
5570 
5571 	ret = dev_get_valid_name(dev, dev->name);
5572 	if (ret < 0)
5573 		goto out;
5574 
5575 	/* Init, if this function is available */
5576 	if (dev->netdev_ops->ndo_init) {
5577 		ret = dev->netdev_ops->ndo_init(dev);
5578 		if (ret) {
5579 			if (ret > 0)
5580 				ret = -EIO;
5581 			goto out;
5582 		}
5583 	}
5584 
5585 	dev->ifindex = dev_new_index(net);
5586 	if (dev->iflink == -1)
5587 		dev->iflink = dev->ifindex;
5588 
5589 	/* Transfer changeable features to wanted_features and enable
5590 	 * software offloads (GSO and GRO).
5591 	 */
5592 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5593 	dev->features |= NETIF_F_SOFT_FEATURES;
5594 	dev->wanted_features = dev->features & dev->hw_features;
5595 
5596 	/* Turn on no cache copy if HW is doing checksum */
5597 	if (!(dev->flags & IFF_LOOPBACK)) {
5598 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5599 		if (dev->features & NETIF_F_ALL_CSUM) {
5600 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5601 			dev->features |= NETIF_F_NOCACHE_COPY;
5602 		}
5603 	}
5604 
5605 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5606 	 */
5607 	dev->vlan_features |= NETIF_F_HIGHDMA;
5608 
5609 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5610 	ret = notifier_to_errno(ret);
5611 	if (ret)
5612 		goto err_uninit;
5613 
5614 	ret = netdev_register_kobject(dev);
5615 	if (ret)
5616 		goto err_uninit;
5617 	dev->reg_state = NETREG_REGISTERED;
5618 
5619 	__netdev_update_features(dev);
5620 
5621 	/*
5622 	 *	Default initial state at registry is that the
5623 	 *	device is present.
5624 	 */
5625 
5626 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5627 
5628 	dev_init_scheduler(dev);
5629 	dev_hold(dev);
5630 	list_netdevice(dev);
5631 	add_device_randomness(dev->dev_addr, dev->addr_len);
5632 
5633 	/* Notify protocols, that a new device appeared. */
5634 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5635 	ret = notifier_to_errno(ret);
5636 	if (ret) {
5637 		rollback_registered(dev);
5638 		dev->reg_state = NETREG_UNREGISTERED;
5639 	}
5640 	/*
5641 	 *	Prevent userspace races by waiting until the network
5642 	 *	device is fully setup before sending notifications.
5643 	 */
5644 	if (!dev->rtnl_link_ops ||
5645 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5646 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5647 
5648 out:
5649 	return ret;
5650 
5651 err_uninit:
5652 	if (dev->netdev_ops->ndo_uninit)
5653 		dev->netdev_ops->ndo_uninit(dev);
5654 	goto out;
5655 }
5656 EXPORT_SYMBOL(register_netdevice);
5657 
5658 /**
5659  *	init_dummy_netdev	- init a dummy network device for NAPI
5660  *	@dev: device to init
5661  *
5662  *	This takes a network device structure and initialize the minimum
5663  *	amount of fields so it can be used to schedule NAPI polls without
5664  *	registering a full blown interface. This is to be used by drivers
5665  *	that need to tie several hardware interfaces to a single NAPI
5666  *	poll scheduler due to HW limitations.
5667  */
5668 int init_dummy_netdev(struct net_device *dev)
5669 {
5670 	/* Clear everything. Note we don't initialize spinlocks
5671 	 * are they aren't supposed to be taken by any of the
5672 	 * NAPI code and this dummy netdev is supposed to be
5673 	 * only ever used for NAPI polls
5674 	 */
5675 	memset(dev, 0, sizeof(struct net_device));
5676 
5677 	/* make sure we BUG if trying to hit standard
5678 	 * register/unregister code path
5679 	 */
5680 	dev->reg_state = NETREG_DUMMY;
5681 
5682 	/* NAPI wants this */
5683 	INIT_LIST_HEAD(&dev->napi_list);
5684 
5685 	/* a dummy interface is started by default */
5686 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5687 	set_bit(__LINK_STATE_START, &dev->state);
5688 
5689 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5690 	 * because users of this 'device' dont need to change
5691 	 * its refcount.
5692 	 */
5693 
5694 	return 0;
5695 }
5696 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5697 
5698 
5699 /**
5700  *	register_netdev	- register a network device
5701  *	@dev: device to register
5702  *
5703  *	Take a completed network device structure and add it to the kernel
5704  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5705  *	chain. 0 is returned on success. A negative errno code is returned
5706  *	on a failure to set up the device, or if the name is a duplicate.
5707  *
5708  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5709  *	and expands the device name if you passed a format string to
5710  *	alloc_netdev.
5711  */
5712 int register_netdev(struct net_device *dev)
5713 {
5714 	int err;
5715 
5716 	rtnl_lock();
5717 	err = register_netdevice(dev);
5718 	rtnl_unlock();
5719 	return err;
5720 }
5721 EXPORT_SYMBOL(register_netdev);
5722 
5723 int netdev_refcnt_read(const struct net_device *dev)
5724 {
5725 	int i, refcnt = 0;
5726 
5727 	for_each_possible_cpu(i)
5728 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5729 	return refcnt;
5730 }
5731 EXPORT_SYMBOL(netdev_refcnt_read);
5732 
5733 /**
5734  * netdev_wait_allrefs - wait until all references are gone.
5735  *
5736  * This is called when unregistering network devices.
5737  *
5738  * Any protocol or device that holds a reference should register
5739  * for netdevice notification, and cleanup and put back the
5740  * reference if they receive an UNREGISTER event.
5741  * We can get stuck here if buggy protocols don't correctly
5742  * call dev_put.
5743  */
5744 static void netdev_wait_allrefs(struct net_device *dev)
5745 {
5746 	unsigned long rebroadcast_time, warning_time;
5747 	int refcnt;
5748 
5749 	linkwatch_forget_dev(dev);
5750 
5751 	rebroadcast_time = warning_time = jiffies;
5752 	refcnt = netdev_refcnt_read(dev);
5753 
5754 	while (refcnt != 0) {
5755 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5756 			rtnl_lock();
5757 
5758 			/* Rebroadcast unregister notification */
5759 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5760 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5761 			 * should have already handle it the first time */
5762 
5763 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5764 				     &dev->state)) {
5765 				/* We must not have linkwatch events
5766 				 * pending on unregister. If this
5767 				 * happens, we simply run the queue
5768 				 * unscheduled, resulting in a noop
5769 				 * for this device.
5770 				 */
5771 				linkwatch_run_queue();
5772 			}
5773 
5774 			__rtnl_unlock();
5775 
5776 			rebroadcast_time = jiffies;
5777 		}
5778 
5779 		msleep(250);
5780 
5781 		refcnt = netdev_refcnt_read(dev);
5782 
5783 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5784 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5785 				 dev->name, refcnt);
5786 			warning_time = jiffies;
5787 		}
5788 	}
5789 }
5790 
5791 /* The sequence is:
5792  *
5793  *	rtnl_lock();
5794  *	...
5795  *	register_netdevice(x1);
5796  *	register_netdevice(x2);
5797  *	...
5798  *	unregister_netdevice(y1);
5799  *	unregister_netdevice(y2);
5800  *      ...
5801  *	rtnl_unlock();
5802  *	free_netdev(y1);
5803  *	free_netdev(y2);
5804  *
5805  * We are invoked by rtnl_unlock().
5806  * This allows us to deal with problems:
5807  * 1) We can delete sysfs objects which invoke hotplug
5808  *    without deadlocking with linkwatch via keventd.
5809  * 2) Since we run with the RTNL semaphore not held, we can sleep
5810  *    safely in order to wait for the netdev refcnt to drop to zero.
5811  *
5812  * We must not return until all unregister events added during
5813  * the interval the lock was held have been completed.
5814  */
5815 void netdev_run_todo(void)
5816 {
5817 	struct list_head list;
5818 
5819 	/* Snapshot list, allow later requests */
5820 	list_replace_init(&net_todo_list, &list);
5821 
5822 	__rtnl_unlock();
5823 
5824 	/* Wait for rcu callbacks to finish before attempting to drain
5825 	 * the device list.  This usually avoids a 250ms wait.
5826 	 */
5827 	if (!list_empty(&list))
5828 		rcu_barrier();
5829 
5830 	while (!list_empty(&list)) {
5831 		struct net_device *dev
5832 			= list_first_entry(&list, struct net_device, todo_list);
5833 		list_del(&dev->todo_list);
5834 
5835 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5836 			pr_err("network todo '%s' but state %d\n",
5837 			       dev->name, dev->reg_state);
5838 			dump_stack();
5839 			continue;
5840 		}
5841 
5842 		dev->reg_state = NETREG_UNREGISTERED;
5843 
5844 		on_each_cpu(flush_backlog, dev, 1);
5845 
5846 		netdev_wait_allrefs(dev);
5847 
5848 		/* paranoia */
5849 		BUG_ON(netdev_refcnt_read(dev));
5850 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5851 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5852 		WARN_ON(dev->dn_ptr);
5853 
5854 		if (dev->destructor)
5855 			dev->destructor(dev);
5856 
5857 		/* Free network device */
5858 		kobject_put(&dev->dev.kobj);
5859 	}
5860 }
5861 
5862 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5863  * fields in the same order, with only the type differing.
5864  */
5865 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5866 			     const struct net_device_stats *netdev_stats)
5867 {
5868 #if BITS_PER_LONG == 64
5869 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5870 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5871 #else
5872 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5873 	const unsigned long *src = (const unsigned long *)netdev_stats;
5874 	u64 *dst = (u64 *)stats64;
5875 
5876 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5877 		     sizeof(*stats64) / sizeof(u64));
5878 	for (i = 0; i < n; i++)
5879 		dst[i] = src[i];
5880 #endif
5881 }
5882 EXPORT_SYMBOL(netdev_stats_to_stats64);
5883 
5884 /**
5885  *	dev_get_stats	- get network device statistics
5886  *	@dev: device to get statistics from
5887  *	@storage: place to store stats
5888  *
5889  *	Get network statistics from device. Return @storage.
5890  *	The device driver may provide its own method by setting
5891  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5892  *	otherwise the internal statistics structure is used.
5893  */
5894 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5895 					struct rtnl_link_stats64 *storage)
5896 {
5897 	const struct net_device_ops *ops = dev->netdev_ops;
5898 
5899 	if (ops->ndo_get_stats64) {
5900 		memset(storage, 0, sizeof(*storage));
5901 		ops->ndo_get_stats64(dev, storage);
5902 	} else if (ops->ndo_get_stats) {
5903 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5904 	} else {
5905 		netdev_stats_to_stats64(storage, &dev->stats);
5906 	}
5907 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5908 	return storage;
5909 }
5910 EXPORT_SYMBOL(dev_get_stats);
5911 
5912 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5913 {
5914 	struct netdev_queue *queue = dev_ingress_queue(dev);
5915 
5916 #ifdef CONFIG_NET_CLS_ACT
5917 	if (queue)
5918 		return queue;
5919 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5920 	if (!queue)
5921 		return NULL;
5922 	netdev_init_one_queue(dev, queue, NULL);
5923 	queue->qdisc = &noop_qdisc;
5924 	queue->qdisc_sleeping = &noop_qdisc;
5925 	rcu_assign_pointer(dev->ingress_queue, queue);
5926 #endif
5927 	return queue;
5928 }
5929 
5930 /**
5931  *	alloc_netdev_mqs - allocate network device
5932  *	@sizeof_priv:	size of private data to allocate space for
5933  *	@name:		device name format string
5934  *	@setup:		callback to initialize device
5935  *	@txqs:		the number of TX subqueues to allocate
5936  *	@rxqs:		the number of RX subqueues to allocate
5937  *
5938  *	Allocates a struct net_device with private data area for driver use
5939  *	and performs basic initialization.  Also allocates subquue structs
5940  *	for each queue on the device.
5941  */
5942 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5943 		void (*setup)(struct net_device *),
5944 		unsigned int txqs, unsigned int rxqs)
5945 {
5946 	struct net_device *dev;
5947 	size_t alloc_size;
5948 	struct net_device *p;
5949 
5950 	BUG_ON(strlen(name) >= sizeof(dev->name));
5951 
5952 	if (txqs < 1) {
5953 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5954 		return NULL;
5955 	}
5956 
5957 #ifdef CONFIG_RPS
5958 	if (rxqs < 1) {
5959 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5960 		return NULL;
5961 	}
5962 #endif
5963 
5964 	alloc_size = sizeof(struct net_device);
5965 	if (sizeof_priv) {
5966 		/* ensure 32-byte alignment of private area */
5967 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5968 		alloc_size += sizeof_priv;
5969 	}
5970 	/* ensure 32-byte alignment of whole construct */
5971 	alloc_size += NETDEV_ALIGN - 1;
5972 
5973 	p = kzalloc(alloc_size, GFP_KERNEL);
5974 	if (!p) {
5975 		pr_err("alloc_netdev: Unable to allocate device\n");
5976 		return NULL;
5977 	}
5978 
5979 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5980 	dev->padded = (char *)dev - (char *)p;
5981 
5982 	dev->pcpu_refcnt = alloc_percpu(int);
5983 	if (!dev->pcpu_refcnt)
5984 		goto free_p;
5985 
5986 	if (dev_addr_init(dev))
5987 		goto free_pcpu;
5988 
5989 	dev_mc_init(dev);
5990 	dev_uc_init(dev);
5991 
5992 	dev_net_set(dev, &init_net);
5993 
5994 	dev->gso_max_size = GSO_MAX_SIZE;
5995 	dev->gso_max_segs = GSO_MAX_SEGS;
5996 
5997 	INIT_LIST_HEAD(&dev->napi_list);
5998 	INIT_LIST_HEAD(&dev->unreg_list);
5999 	INIT_LIST_HEAD(&dev->link_watch_list);
6000 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6001 	setup(dev);
6002 
6003 	dev->num_tx_queues = txqs;
6004 	dev->real_num_tx_queues = txqs;
6005 	if (netif_alloc_netdev_queues(dev))
6006 		goto free_all;
6007 
6008 #ifdef CONFIG_RPS
6009 	dev->num_rx_queues = rxqs;
6010 	dev->real_num_rx_queues = rxqs;
6011 	if (netif_alloc_rx_queues(dev))
6012 		goto free_all;
6013 #endif
6014 
6015 	strcpy(dev->name, name);
6016 	dev->group = INIT_NETDEV_GROUP;
6017 	return dev;
6018 
6019 free_all:
6020 	free_netdev(dev);
6021 	return NULL;
6022 
6023 free_pcpu:
6024 	free_percpu(dev->pcpu_refcnt);
6025 	kfree(dev->_tx);
6026 #ifdef CONFIG_RPS
6027 	kfree(dev->_rx);
6028 #endif
6029 
6030 free_p:
6031 	kfree(p);
6032 	return NULL;
6033 }
6034 EXPORT_SYMBOL(alloc_netdev_mqs);
6035 
6036 /**
6037  *	free_netdev - free network device
6038  *	@dev: device
6039  *
6040  *	This function does the last stage of destroying an allocated device
6041  * 	interface. The reference to the device object is released.
6042  *	If this is the last reference then it will be freed.
6043  */
6044 void free_netdev(struct net_device *dev)
6045 {
6046 	struct napi_struct *p, *n;
6047 
6048 	release_net(dev_net(dev));
6049 
6050 	kfree(dev->_tx);
6051 #ifdef CONFIG_RPS
6052 	kfree(dev->_rx);
6053 #endif
6054 
6055 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6056 
6057 	/* Flush device addresses */
6058 	dev_addr_flush(dev);
6059 
6060 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6061 		netif_napi_del(p);
6062 
6063 	free_percpu(dev->pcpu_refcnt);
6064 	dev->pcpu_refcnt = NULL;
6065 
6066 	/*  Compatibility with error handling in drivers */
6067 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6068 		kfree((char *)dev - dev->padded);
6069 		return;
6070 	}
6071 
6072 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6073 	dev->reg_state = NETREG_RELEASED;
6074 
6075 	/* will free via device release */
6076 	put_device(&dev->dev);
6077 }
6078 EXPORT_SYMBOL(free_netdev);
6079 
6080 /**
6081  *	synchronize_net -  Synchronize with packet receive processing
6082  *
6083  *	Wait for packets currently being received to be done.
6084  *	Does not block later packets from starting.
6085  */
6086 void synchronize_net(void)
6087 {
6088 	might_sleep();
6089 	if (rtnl_is_locked())
6090 		synchronize_rcu_expedited();
6091 	else
6092 		synchronize_rcu();
6093 }
6094 EXPORT_SYMBOL(synchronize_net);
6095 
6096 /**
6097  *	unregister_netdevice_queue - remove device from the kernel
6098  *	@dev: device
6099  *	@head: list
6100  *
6101  *	This function shuts down a device interface and removes it
6102  *	from the kernel tables.
6103  *	If head not NULL, device is queued to be unregistered later.
6104  *
6105  *	Callers must hold the rtnl semaphore.  You may want
6106  *	unregister_netdev() instead of this.
6107  */
6108 
6109 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6110 {
6111 	ASSERT_RTNL();
6112 
6113 	if (head) {
6114 		list_move_tail(&dev->unreg_list, head);
6115 	} else {
6116 		rollback_registered(dev);
6117 		/* Finish processing unregister after unlock */
6118 		net_set_todo(dev);
6119 	}
6120 }
6121 EXPORT_SYMBOL(unregister_netdevice_queue);
6122 
6123 /**
6124  *	unregister_netdevice_many - unregister many devices
6125  *	@head: list of devices
6126  */
6127 void unregister_netdevice_many(struct list_head *head)
6128 {
6129 	struct net_device *dev;
6130 
6131 	if (!list_empty(head)) {
6132 		rollback_registered_many(head);
6133 		list_for_each_entry(dev, head, unreg_list)
6134 			net_set_todo(dev);
6135 	}
6136 }
6137 EXPORT_SYMBOL(unregister_netdevice_many);
6138 
6139 /**
6140  *	unregister_netdev - remove device from the kernel
6141  *	@dev: device
6142  *
6143  *	This function shuts down a device interface and removes it
6144  *	from the kernel tables.
6145  *
6146  *	This is just a wrapper for unregister_netdevice that takes
6147  *	the rtnl semaphore.  In general you want to use this and not
6148  *	unregister_netdevice.
6149  */
6150 void unregister_netdev(struct net_device *dev)
6151 {
6152 	rtnl_lock();
6153 	unregister_netdevice(dev);
6154 	rtnl_unlock();
6155 }
6156 EXPORT_SYMBOL(unregister_netdev);
6157 
6158 /**
6159  *	dev_change_net_namespace - move device to different nethost namespace
6160  *	@dev: device
6161  *	@net: network namespace
6162  *	@pat: If not NULL name pattern to try if the current device name
6163  *	      is already taken in the destination network namespace.
6164  *
6165  *	This function shuts down a device interface and moves it
6166  *	to a new network namespace. On success 0 is returned, on
6167  *	a failure a netagive errno code is returned.
6168  *
6169  *	Callers must hold the rtnl semaphore.
6170  */
6171 
6172 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6173 {
6174 	int err;
6175 
6176 	ASSERT_RTNL();
6177 
6178 	/* Don't allow namespace local devices to be moved. */
6179 	err = -EINVAL;
6180 	if (dev->features & NETIF_F_NETNS_LOCAL)
6181 		goto out;
6182 
6183 	/* Ensure the device has been registrered */
6184 	err = -EINVAL;
6185 	if (dev->reg_state != NETREG_REGISTERED)
6186 		goto out;
6187 
6188 	/* Get out if there is nothing todo */
6189 	err = 0;
6190 	if (net_eq(dev_net(dev), net))
6191 		goto out;
6192 
6193 	/* Pick the destination device name, and ensure
6194 	 * we can use it in the destination network namespace.
6195 	 */
6196 	err = -EEXIST;
6197 	if (__dev_get_by_name(net, dev->name)) {
6198 		/* We get here if we can't use the current device name */
6199 		if (!pat)
6200 			goto out;
6201 		if (dev_get_valid_name(dev, pat) < 0)
6202 			goto out;
6203 	}
6204 
6205 	/*
6206 	 * And now a mini version of register_netdevice unregister_netdevice.
6207 	 */
6208 
6209 	/* If device is running close it first. */
6210 	dev_close(dev);
6211 
6212 	/* And unlink it from device chain */
6213 	err = -ENODEV;
6214 	unlist_netdevice(dev);
6215 
6216 	synchronize_net();
6217 
6218 	/* Shutdown queueing discipline. */
6219 	dev_shutdown(dev);
6220 
6221 	/* Notify protocols, that we are about to destroy
6222 	   this device. They should clean all the things.
6223 
6224 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6225 	   This is wanted because this way 8021q and macvlan know
6226 	   the device is just moving and can keep their slaves up.
6227 	*/
6228 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6229 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6230 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6231 
6232 	/*
6233 	 *	Flush the unicast and multicast chains
6234 	 */
6235 	dev_uc_flush(dev);
6236 	dev_mc_flush(dev);
6237 
6238 	/* Actually switch the network namespace */
6239 	dev_net_set(dev, net);
6240 
6241 	/* If there is an ifindex conflict assign a new one */
6242 	if (__dev_get_by_index(net, dev->ifindex)) {
6243 		int iflink = (dev->iflink == dev->ifindex);
6244 		dev->ifindex = dev_new_index(net);
6245 		if (iflink)
6246 			dev->iflink = dev->ifindex;
6247 	}
6248 
6249 	/* Fixup kobjects */
6250 	err = device_rename(&dev->dev, dev->name);
6251 	WARN_ON(err);
6252 
6253 	/* Add the device back in the hashes */
6254 	list_netdevice(dev);
6255 
6256 	/* Notify protocols, that a new device appeared. */
6257 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6258 
6259 	/*
6260 	 *	Prevent userspace races by waiting until the network
6261 	 *	device is fully setup before sending notifications.
6262 	 */
6263 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6264 
6265 	synchronize_net();
6266 	err = 0;
6267 out:
6268 	return err;
6269 }
6270 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6271 
6272 static int dev_cpu_callback(struct notifier_block *nfb,
6273 			    unsigned long action,
6274 			    void *ocpu)
6275 {
6276 	struct sk_buff **list_skb;
6277 	struct sk_buff *skb;
6278 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6279 	struct softnet_data *sd, *oldsd;
6280 
6281 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6282 		return NOTIFY_OK;
6283 
6284 	local_irq_disable();
6285 	cpu = smp_processor_id();
6286 	sd = &per_cpu(softnet_data, cpu);
6287 	oldsd = &per_cpu(softnet_data, oldcpu);
6288 
6289 	/* Find end of our completion_queue. */
6290 	list_skb = &sd->completion_queue;
6291 	while (*list_skb)
6292 		list_skb = &(*list_skb)->next;
6293 	/* Append completion queue from offline CPU. */
6294 	*list_skb = oldsd->completion_queue;
6295 	oldsd->completion_queue = NULL;
6296 
6297 	/* Append output queue from offline CPU. */
6298 	if (oldsd->output_queue) {
6299 		*sd->output_queue_tailp = oldsd->output_queue;
6300 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6301 		oldsd->output_queue = NULL;
6302 		oldsd->output_queue_tailp = &oldsd->output_queue;
6303 	}
6304 	/* Append NAPI poll list from offline CPU. */
6305 	if (!list_empty(&oldsd->poll_list)) {
6306 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6307 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6308 	}
6309 
6310 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6311 	local_irq_enable();
6312 
6313 	/* Process offline CPU's input_pkt_queue */
6314 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6315 		netif_rx(skb);
6316 		input_queue_head_incr(oldsd);
6317 	}
6318 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6319 		netif_rx(skb);
6320 		input_queue_head_incr(oldsd);
6321 	}
6322 
6323 	return NOTIFY_OK;
6324 }
6325 
6326 
6327 /**
6328  *	netdev_increment_features - increment feature set by one
6329  *	@all: current feature set
6330  *	@one: new feature set
6331  *	@mask: mask feature set
6332  *
6333  *	Computes a new feature set after adding a device with feature set
6334  *	@one to the master device with current feature set @all.  Will not
6335  *	enable anything that is off in @mask. Returns the new feature set.
6336  */
6337 netdev_features_t netdev_increment_features(netdev_features_t all,
6338 	netdev_features_t one, netdev_features_t mask)
6339 {
6340 	if (mask & NETIF_F_GEN_CSUM)
6341 		mask |= NETIF_F_ALL_CSUM;
6342 	mask |= NETIF_F_VLAN_CHALLENGED;
6343 
6344 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6345 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6346 
6347 	/* If one device supports hw checksumming, set for all. */
6348 	if (all & NETIF_F_GEN_CSUM)
6349 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6350 
6351 	return all;
6352 }
6353 EXPORT_SYMBOL(netdev_increment_features);
6354 
6355 static struct hlist_head *netdev_create_hash(void)
6356 {
6357 	int i;
6358 	struct hlist_head *hash;
6359 
6360 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6361 	if (hash != NULL)
6362 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6363 			INIT_HLIST_HEAD(&hash[i]);
6364 
6365 	return hash;
6366 }
6367 
6368 /* Initialize per network namespace state */
6369 static int __net_init netdev_init(struct net *net)
6370 {
6371 	if (net != &init_net)
6372 		INIT_LIST_HEAD(&net->dev_base_head);
6373 
6374 	net->dev_name_head = netdev_create_hash();
6375 	if (net->dev_name_head == NULL)
6376 		goto err_name;
6377 
6378 	net->dev_index_head = netdev_create_hash();
6379 	if (net->dev_index_head == NULL)
6380 		goto err_idx;
6381 
6382 	return 0;
6383 
6384 err_idx:
6385 	kfree(net->dev_name_head);
6386 err_name:
6387 	return -ENOMEM;
6388 }
6389 
6390 /**
6391  *	netdev_drivername - network driver for the device
6392  *	@dev: network device
6393  *
6394  *	Determine network driver for device.
6395  */
6396 const char *netdev_drivername(const struct net_device *dev)
6397 {
6398 	const struct device_driver *driver;
6399 	const struct device *parent;
6400 	const char *empty = "";
6401 
6402 	parent = dev->dev.parent;
6403 	if (!parent)
6404 		return empty;
6405 
6406 	driver = parent->driver;
6407 	if (driver && driver->name)
6408 		return driver->name;
6409 	return empty;
6410 }
6411 
6412 int __netdev_printk(const char *level, const struct net_device *dev,
6413 			   struct va_format *vaf)
6414 {
6415 	int r;
6416 
6417 	if (dev && dev->dev.parent)
6418 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6419 			       netdev_name(dev), vaf);
6420 	else if (dev)
6421 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6422 	else
6423 		r = printk("%s(NULL net_device): %pV", level, vaf);
6424 
6425 	return r;
6426 }
6427 EXPORT_SYMBOL(__netdev_printk);
6428 
6429 int netdev_printk(const char *level, const struct net_device *dev,
6430 		  const char *format, ...)
6431 {
6432 	struct va_format vaf;
6433 	va_list args;
6434 	int r;
6435 
6436 	va_start(args, format);
6437 
6438 	vaf.fmt = format;
6439 	vaf.va = &args;
6440 
6441 	r = __netdev_printk(level, dev, &vaf);
6442 	va_end(args);
6443 
6444 	return r;
6445 }
6446 EXPORT_SYMBOL(netdev_printk);
6447 
6448 #define define_netdev_printk_level(func, level)			\
6449 int func(const struct net_device *dev, const char *fmt, ...)	\
6450 {								\
6451 	int r;							\
6452 	struct va_format vaf;					\
6453 	va_list args;						\
6454 								\
6455 	va_start(args, fmt);					\
6456 								\
6457 	vaf.fmt = fmt;						\
6458 	vaf.va = &args;						\
6459 								\
6460 	r = __netdev_printk(level, dev, &vaf);			\
6461 	va_end(args);						\
6462 								\
6463 	return r;						\
6464 }								\
6465 EXPORT_SYMBOL(func);
6466 
6467 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6468 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6469 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6470 define_netdev_printk_level(netdev_err, KERN_ERR);
6471 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6472 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6473 define_netdev_printk_level(netdev_info, KERN_INFO);
6474 
6475 static void __net_exit netdev_exit(struct net *net)
6476 {
6477 	kfree(net->dev_name_head);
6478 	kfree(net->dev_index_head);
6479 }
6480 
6481 static struct pernet_operations __net_initdata netdev_net_ops = {
6482 	.init = netdev_init,
6483 	.exit = netdev_exit,
6484 };
6485 
6486 static void __net_exit default_device_exit(struct net *net)
6487 {
6488 	struct net_device *dev, *aux;
6489 	/*
6490 	 * Push all migratable network devices back to the
6491 	 * initial network namespace
6492 	 */
6493 	rtnl_lock();
6494 	for_each_netdev_safe(net, dev, aux) {
6495 		int err;
6496 		char fb_name[IFNAMSIZ];
6497 
6498 		/* Ignore unmoveable devices (i.e. loopback) */
6499 		if (dev->features & NETIF_F_NETNS_LOCAL)
6500 			continue;
6501 
6502 		/* Leave virtual devices for the generic cleanup */
6503 		if (dev->rtnl_link_ops)
6504 			continue;
6505 
6506 		/* Push remaining network devices to init_net */
6507 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6508 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6509 		if (err) {
6510 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6511 				 __func__, dev->name, err);
6512 			BUG();
6513 		}
6514 	}
6515 	rtnl_unlock();
6516 }
6517 
6518 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6519 {
6520 	/* At exit all network devices most be removed from a network
6521 	 * namespace.  Do this in the reverse order of registration.
6522 	 * Do this across as many network namespaces as possible to
6523 	 * improve batching efficiency.
6524 	 */
6525 	struct net_device *dev;
6526 	struct net *net;
6527 	LIST_HEAD(dev_kill_list);
6528 
6529 	rtnl_lock();
6530 	list_for_each_entry(net, net_list, exit_list) {
6531 		for_each_netdev_reverse(net, dev) {
6532 			if (dev->rtnl_link_ops)
6533 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6534 			else
6535 				unregister_netdevice_queue(dev, &dev_kill_list);
6536 		}
6537 	}
6538 	unregister_netdevice_many(&dev_kill_list);
6539 	list_del(&dev_kill_list);
6540 	rtnl_unlock();
6541 }
6542 
6543 static struct pernet_operations __net_initdata default_device_ops = {
6544 	.exit = default_device_exit,
6545 	.exit_batch = default_device_exit_batch,
6546 };
6547 
6548 /*
6549  *	Initialize the DEV module. At boot time this walks the device list and
6550  *	unhooks any devices that fail to initialise (normally hardware not
6551  *	present) and leaves us with a valid list of present and active devices.
6552  *
6553  */
6554 
6555 /*
6556  *       This is called single threaded during boot, so no need
6557  *       to take the rtnl semaphore.
6558  */
6559 static int __init net_dev_init(void)
6560 {
6561 	int i, rc = -ENOMEM;
6562 
6563 	BUG_ON(!dev_boot_phase);
6564 
6565 	if (dev_proc_init())
6566 		goto out;
6567 
6568 	if (netdev_kobject_init())
6569 		goto out;
6570 
6571 	INIT_LIST_HEAD(&ptype_all);
6572 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6573 		INIT_LIST_HEAD(&ptype_base[i]);
6574 
6575 	if (register_pernet_subsys(&netdev_net_ops))
6576 		goto out;
6577 
6578 	/*
6579 	 *	Initialise the packet receive queues.
6580 	 */
6581 
6582 	for_each_possible_cpu(i) {
6583 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6584 
6585 		memset(sd, 0, sizeof(*sd));
6586 		skb_queue_head_init(&sd->input_pkt_queue);
6587 		skb_queue_head_init(&sd->process_queue);
6588 		sd->completion_queue = NULL;
6589 		INIT_LIST_HEAD(&sd->poll_list);
6590 		sd->output_queue = NULL;
6591 		sd->output_queue_tailp = &sd->output_queue;
6592 #ifdef CONFIG_RPS
6593 		sd->csd.func = rps_trigger_softirq;
6594 		sd->csd.info = sd;
6595 		sd->csd.flags = 0;
6596 		sd->cpu = i;
6597 #endif
6598 
6599 		sd->backlog.poll = process_backlog;
6600 		sd->backlog.weight = weight_p;
6601 		sd->backlog.gro_list = NULL;
6602 		sd->backlog.gro_count = 0;
6603 	}
6604 
6605 	dev_boot_phase = 0;
6606 
6607 	/* The loopback device is special if any other network devices
6608 	 * is present in a network namespace the loopback device must
6609 	 * be present. Since we now dynamically allocate and free the
6610 	 * loopback device ensure this invariant is maintained by
6611 	 * keeping the loopback device as the first device on the
6612 	 * list of network devices.  Ensuring the loopback devices
6613 	 * is the first device that appears and the last network device
6614 	 * that disappears.
6615 	 */
6616 	if (register_pernet_device(&loopback_net_ops))
6617 		goto out;
6618 
6619 	if (register_pernet_device(&default_device_ops))
6620 		goto out;
6621 
6622 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6623 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6624 
6625 	hotcpu_notifier(dev_cpu_callback, 0);
6626 	dst_init();
6627 	dev_mcast_init();
6628 	rc = 0;
6629 out:
6630 	return rc;
6631 }
6632 
6633 subsys_initcall(net_dev_init);
6634 
6635 static int __init initialize_hashrnd(void)
6636 {
6637 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6638 	return 0;
6639 }
6640 
6641 late_initcall_sync(initialize_hashrnd);
6642 
6643