xref: /openbmc/linux/net/core/dev.c (revision 6df6398f7c8b481ce83f28143bc08a5231616deb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 
394 	dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev)
401 {
402 	ASSERT_RTNL();
403 
404 	/* Unlink dev from the device chain */
405 	write_lock(&dev_base_lock);
406 	list_del_rcu(&dev->dev_list);
407 	netdev_name_node_del(dev->name_node);
408 	hlist_del_rcu(&dev->index_hlist);
409 	write_unlock(&dev_base_lock);
410 
411 	dev_base_seq_inc(dev_net(dev));
412 }
413 
414 /*
415  *	Our notifier list
416  */
417 
418 static RAW_NOTIFIER_HEAD(netdev_chain);
419 
420 /*
421  *	Device drivers call our routines to queue packets here. We empty the
422  *	queue in the local softnet handler.
423  */
424 
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
427 
428 #ifdef CONFIG_LOCKDEP
429 /*
430  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431  * according to dev->type
432  */
433 static const unsigned short netdev_lock_type[] = {
434 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
449 
450 static const char *const netdev_lock_name[] = {
451 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
466 
467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
469 
470 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
471 {
472 	int i;
473 
474 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475 		if (netdev_lock_type[i] == dev_type)
476 			return i;
477 	/* the last key is used by default */
478 	return ARRAY_SIZE(netdev_lock_type) - 1;
479 }
480 
481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 						 unsigned short dev_type)
483 {
484 	int i;
485 
486 	i = netdev_lock_pos(dev_type);
487 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488 				   netdev_lock_name[i]);
489 }
490 
491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492 {
493 	int i;
494 
495 	i = netdev_lock_pos(dev->type);
496 	lockdep_set_class_and_name(&dev->addr_list_lock,
497 				   &netdev_addr_lock_key[i],
498 				   netdev_lock_name[i]);
499 }
500 #else
501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502 						 unsigned short dev_type)
503 {
504 }
505 
506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
507 {
508 }
509 #endif
510 
511 /*******************************************************************************
512  *
513  *		Protocol management and registration routines
514  *
515  *******************************************************************************/
516 
517 
518 /*
519  *	Add a protocol ID to the list. Now that the input handler is
520  *	smarter we can dispense with all the messy stuff that used to be
521  *	here.
522  *
523  *	BEWARE!!! Protocol handlers, mangling input packets,
524  *	MUST BE last in hash buckets and checking protocol handlers
525  *	MUST start from promiscuous ptype_all chain in net_bh.
526  *	It is true now, do not change it.
527  *	Explanation follows: if protocol handler, mangling packet, will
528  *	be the first on list, it is not able to sense, that packet
529  *	is cloned and should be copied-on-write, so that it will
530  *	change it and subsequent readers will get broken packet.
531  *							--ANK (980803)
532  */
533 
534 static inline struct list_head *ptype_head(const struct packet_type *pt)
535 {
536 	if (pt->type == htons(ETH_P_ALL))
537 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
538 	else
539 		return pt->dev ? &pt->dev->ptype_specific :
540 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
541 }
542 
543 /**
544  *	dev_add_pack - add packet handler
545  *	@pt: packet type declaration
546  *
547  *	Add a protocol handler to the networking stack. The passed &packet_type
548  *	is linked into kernel lists and may not be freed until it has been
549  *	removed from the kernel lists.
550  *
551  *	This call does not sleep therefore it can not
552  *	guarantee all CPU's that are in middle of receiving packets
553  *	will see the new packet type (until the next received packet).
554  */
555 
556 void dev_add_pack(struct packet_type *pt)
557 {
558 	struct list_head *head = ptype_head(pt);
559 
560 	spin_lock(&ptype_lock);
561 	list_add_rcu(&pt->list, head);
562 	spin_unlock(&ptype_lock);
563 }
564 EXPORT_SYMBOL(dev_add_pack);
565 
566 /**
567  *	__dev_remove_pack	 - remove packet handler
568  *	@pt: packet type declaration
569  *
570  *	Remove a protocol handler that was previously added to the kernel
571  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
572  *	from the kernel lists and can be freed or reused once this function
573  *	returns.
574  *
575  *      The packet type might still be in use by receivers
576  *	and must not be freed until after all the CPU's have gone
577  *	through a quiescent state.
578  */
579 void __dev_remove_pack(struct packet_type *pt)
580 {
581 	struct list_head *head = ptype_head(pt);
582 	struct packet_type *pt1;
583 
584 	spin_lock(&ptype_lock);
585 
586 	list_for_each_entry(pt1, head, list) {
587 		if (pt == pt1) {
588 			list_del_rcu(&pt->list);
589 			goto out;
590 		}
591 	}
592 
593 	pr_warn("dev_remove_pack: %p not found\n", pt);
594 out:
595 	spin_unlock(&ptype_lock);
596 }
597 EXPORT_SYMBOL(__dev_remove_pack);
598 
599 /**
600  *	dev_remove_pack	 - remove packet handler
601  *	@pt: packet type declaration
602  *
603  *	Remove a protocol handler that was previously added to the kernel
604  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
605  *	from the kernel lists and can be freed or reused once this function
606  *	returns.
607  *
608  *	This call sleeps to guarantee that no CPU is looking at the packet
609  *	type after return.
610  */
611 void dev_remove_pack(struct packet_type *pt)
612 {
613 	__dev_remove_pack(pt);
614 
615 	synchronize_net();
616 }
617 EXPORT_SYMBOL(dev_remove_pack);
618 
619 
620 /*******************************************************************************
621  *
622  *			    Device Interface Subroutines
623  *
624  *******************************************************************************/
625 
626 /**
627  *	dev_get_iflink	- get 'iflink' value of a interface
628  *	@dev: targeted interface
629  *
630  *	Indicates the ifindex the interface is linked to.
631  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
632  */
633 
634 int dev_get_iflink(const struct net_device *dev)
635 {
636 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637 		return dev->netdev_ops->ndo_get_iflink(dev);
638 
639 	return dev->ifindex;
640 }
641 EXPORT_SYMBOL(dev_get_iflink);
642 
643 /**
644  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
645  *	@dev: targeted interface
646  *	@skb: The packet.
647  *
648  *	For better visibility of tunnel traffic OVS needs to retrieve
649  *	egress tunnel information for a packet. Following API allows
650  *	user to get this info.
651  */
652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
653 {
654 	struct ip_tunnel_info *info;
655 
656 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
657 		return -EINVAL;
658 
659 	info = skb_tunnel_info_unclone(skb);
660 	if (!info)
661 		return -ENOMEM;
662 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
663 		return -EINVAL;
664 
665 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
666 }
667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
668 
669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
670 {
671 	int k = stack->num_paths++;
672 
673 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
674 		return NULL;
675 
676 	return &stack->path[k];
677 }
678 
679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680 			  struct net_device_path_stack *stack)
681 {
682 	const struct net_device *last_dev;
683 	struct net_device_path_ctx ctx = {
684 		.dev	= dev,
685 		.daddr	= daddr,
686 	};
687 	struct net_device_path *path;
688 	int ret = 0;
689 
690 	stack->num_paths = 0;
691 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
692 		last_dev = ctx.dev;
693 		path = dev_fwd_path(stack);
694 		if (!path)
695 			return -1;
696 
697 		memset(path, 0, sizeof(struct net_device_path));
698 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
699 		if (ret < 0)
700 			return -1;
701 
702 		if (WARN_ON_ONCE(last_dev == ctx.dev))
703 			return -1;
704 	}
705 
706 	if (!ctx.dev)
707 		return ret;
708 
709 	path = dev_fwd_path(stack);
710 	if (!path)
711 		return -1;
712 	path->type = DEV_PATH_ETHERNET;
713 	path->dev = ctx.dev;
714 
715 	return ret;
716 }
717 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
718 
719 /**
720  *	__dev_get_by_name	- find a device by its name
721  *	@net: the applicable net namespace
722  *	@name: name to find
723  *
724  *	Find an interface by name. Must be called under RTNL semaphore
725  *	or @dev_base_lock. If the name is found a pointer to the device
726  *	is returned. If the name is not found then %NULL is returned. The
727  *	reference counters are not incremented so the caller must be
728  *	careful with locks.
729  */
730 
731 struct net_device *__dev_get_by_name(struct net *net, const char *name)
732 {
733 	struct netdev_name_node *node_name;
734 
735 	node_name = netdev_name_node_lookup(net, name);
736 	return node_name ? node_name->dev : NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739 
740 /**
741  * dev_get_by_name_rcu	- find a device by its name
742  * @net: the applicable net namespace
743  * @name: name to find
744  *
745  * Find an interface by name.
746  * If the name is found a pointer to the device is returned.
747  * If the name is not found then %NULL is returned.
748  * The reference counters are not incremented so the caller must be
749  * careful with locks. The caller must hold RCU lock.
750  */
751 
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 	struct netdev_name_node *node_name;
755 
756 	node_name = netdev_name_node_lookup_rcu(net, name);
757 	return node_name ? node_name->dev : NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760 
761 /**
762  *	dev_get_by_name		- find a device by its name
763  *	@net: the applicable net namespace
764  *	@name: name to find
765  *
766  *	Find an interface by name. This can be called from any
767  *	context and does its own locking. The returned handle has
768  *	the usage count incremented and the caller must use dev_put() to
769  *	release it when it is no longer needed. %NULL is returned if no
770  *	matching device is found.
771  */
772 
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775 	struct net_device *dev;
776 
777 	rcu_read_lock();
778 	dev = dev_get_by_name_rcu(net, name);
779 	dev_hold(dev);
780 	rcu_read_unlock();
781 	return dev;
782 }
783 EXPORT_SYMBOL(dev_get_by_name);
784 
785 /**
786  *	__dev_get_by_index - find a device by its ifindex
787  *	@net: the applicable net namespace
788  *	@ifindex: index of device
789  *
790  *	Search for an interface by index. Returns %NULL if the device
791  *	is not found or a pointer to the device. The device has not
792  *	had its reference counter increased so the caller must be careful
793  *	about locking. The caller must hold either the RTNL semaphore
794  *	or @dev_base_lock.
795  */
796 
797 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
798 {
799 	struct net_device *dev;
800 	struct hlist_head *head = dev_index_hash(net, ifindex);
801 
802 	hlist_for_each_entry(dev, head, index_hlist)
803 		if (dev->ifindex == ifindex)
804 			return dev;
805 
806 	return NULL;
807 }
808 EXPORT_SYMBOL(__dev_get_by_index);
809 
810 /**
811  *	dev_get_by_index_rcu - find a device by its ifindex
812  *	@net: the applicable net namespace
813  *	@ifindex: index of device
814  *
815  *	Search for an interface by index. Returns %NULL if the device
816  *	is not found or a pointer to the device. The device has not
817  *	had its reference counter increased so the caller must be careful
818  *	about locking. The caller must hold RCU lock.
819  */
820 
821 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
822 {
823 	struct net_device *dev;
824 	struct hlist_head *head = dev_index_hash(net, ifindex);
825 
826 	hlist_for_each_entry_rcu(dev, head, index_hlist)
827 		if (dev->ifindex == ifindex)
828 			return dev;
829 
830 	return NULL;
831 }
832 EXPORT_SYMBOL(dev_get_by_index_rcu);
833 
834 
835 /**
836  *	dev_get_by_index - find a device by its ifindex
837  *	@net: the applicable net namespace
838  *	@ifindex: index of device
839  *
840  *	Search for an interface by index. Returns NULL if the device
841  *	is not found or a pointer to the device. The device returned has
842  *	had a reference added and the pointer is safe until the user calls
843  *	dev_put to indicate they have finished with it.
844  */
845 
846 struct net_device *dev_get_by_index(struct net *net, int ifindex)
847 {
848 	struct net_device *dev;
849 
850 	rcu_read_lock();
851 	dev = dev_get_by_index_rcu(net, ifindex);
852 	dev_hold(dev);
853 	rcu_read_unlock();
854 	return dev;
855 }
856 EXPORT_SYMBOL(dev_get_by_index);
857 
858 /**
859  *	dev_get_by_napi_id - find a device by napi_id
860  *	@napi_id: ID of the NAPI struct
861  *
862  *	Search for an interface by NAPI ID. Returns %NULL if the device
863  *	is not found or a pointer to the device. The device has not had
864  *	its reference counter increased so the caller must be careful
865  *	about locking. The caller must hold RCU lock.
866  */
867 
868 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
869 {
870 	struct napi_struct *napi;
871 
872 	WARN_ON_ONCE(!rcu_read_lock_held());
873 
874 	if (napi_id < MIN_NAPI_ID)
875 		return NULL;
876 
877 	napi = napi_by_id(napi_id);
878 
879 	return napi ? napi->dev : NULL;
880 }
881 EXPORT_SYMBOL(dev_get_by_napi_id);
882 
883 /**
884  *	netdev_get_name - get a netdevice name, knowing its ifindex.
885  *	@net: network namespace
886  *	@name: a pointer to the buffer where the name will be stored.
887  *	@ifindex: the ifindex of the interface to get the name from.
888  */
889 int netdev_get_name(struct net *net, char *name, int ifindex)
890 {
891 	struct net_device *dev;
892 	int ret;
893 
894 	down_read(&devnet_rename_sem);
895 	rcu_read_lock();
896 
897 	dev = dev_get_by_index_rcu(net, ifindex);
898 	if (!dev) {
899 		ret = -ENODEV;
900 		goto out;
901 	}
902 
903 	strcpy(name, dev->name);
904 
905 	ret = 0;
906 out:
907 	rcu_read_unlock();
908 	up_read(&devnet_rename_sem);
909 	return ret;
910 }
911 
912 /**
913  *	dev_getbyhwaddr_rcu - find a device by its hardware address
914  *	@net: the applicable net namespace
915  *	@type: media type of device
916  *	@ha: hardware address
917  *
918  *	Search for an interface by MAC address. Returns NULL if the device
919  *	is not found or a pointer to the device.
920  *	The caller must hold RCU or RTNL.
921  *	The returned device has not had its ref count increased
922  *	and the caller must therefore be careful about locking
923  *
924  */
925 
926 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
927 				       const char *ha)
928 {
929 	struct net_device *dev;
930 
931 	for_each_netdev_rcu(net, dev)
932 		if (dev->type == type &&
933 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
934 			return dev;
935 
936 	return NULL;
937 }
938 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
939 
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942 	struct net_device *dev, *ret = NULL;
943 
944 	rcu_read_lock();
945 	for_each_netdev_rcu(net, dev)
946 		if (dev->type == type) {
947 			dev_hold(dev);
948 			ret = dev;
949 			break;
950 		}
951 	rcu_read_unlock();
952 	return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955 
956 /**
957  *	__dev_get_by_flags - find any device with given flags
958  *	@net: the applicable net namespace
959  *	@if_flags: IFF_* values
960  *	@mask: bitmask of bits in if_flags to check
961  *
962  *	Search for any interface with the given flags. Returns NULL if a device
963  *	is not found or a pointer to the device. Must be called inside
964  *	rtnl_lock(), and result refcount is unchanged.
965  */
966 
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 				      unsigned short mask)
969 {
970 	struct net_device *dev, *ret;
971 
972 	ASSERT_RTNL();
973 
974 	ret = NULL;
975 	for_each_netdev(net, dev) {
976 		if (((dev->flags ^ if_flags) & mask) == 0) {
977 			ret = dev;
978 			break;
979 		}
980 	}
981 	return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984 
985 /**
986  *	dev_valid_name - check if name is okay for network device
987  *	@name: name string
988  *
989  *	Network device names need to be valid file names to
990  *	allow sysfs to work.  We also disallow any kind of
991  *	whitespace.
992  */
993 bool dev_valid_name(const char *name)
994 {
995 	if (*name == '\0')
996 		return false;
997 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
998 		return false;
999 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 		return false;
1001 
1002 	while (*name) {
1003 		if (*name == '/' || *name == ':' || isspace(*name))
1004 			return false;
1005 		name++;
1006 	}
1007 	return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010 
1011 /**
1012  *	__dev_alloc_name - allocate a name for a device
1013  *	@net: network namespace to allocate the device name in
1014  *	@name: name format string
1015  *	@buf:  scratch buffer and result name string
1016  *
1017  *	Passed a format string - eg "lt%d" it will try and find a suitable
1018  *	id. It scans list of devices to build up a free map, then chooses
1019  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *	while allocating the name and adding the device in order to avoid
1021  *	duplicates.
1022  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *	Returns the number of the unit assigned or a negative errno code.
1024  */
1025 
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028 	int i = 0;
1029 	const char *p;
1030 	const int max_netdevices = 8*PAGE_SIZE;
1031 	unsigned long *inuse;
1032 	struct net_device *d;
1033 
1034 	if (!dev_valid_name(name))
1035 		return -EINVAL;
1036 
1037 	p = strchr(name, '%');
1038 	if (p) {
1039 		/*
1040 		 * Verify the string as this thing may have come from
1041 		 * the user.  There must be either one "%d" and no other "%"
1042 		 * characters.
1043 		 */
1044 		if (p[1] != 'd' || strchr(p + 2, '%'))
1045 			return -EINVAL;
1046 
1047 		/* Use one page as a bit array of possible slots */
1048 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1049 		if (!inuse)
1050 			return -ENOMEM;
1051 
1052 		for_each_netdev(net, d) {
1053 			struct netdev_name_node *name_node;
1054 			list_for_each_entry(name_node, &d->name_node->list, list) {
1055 				if (!sscanf(name_node->name, name, &i))
1056 					continue;
1057 				if (i < 0 || i >= max_netdevices)
1058 					continue;
1059 
1060 				/*  avoid cases where sscanf is not exact inverse of printf */
1061 				snprintf(buf, IFNAMSIZ, name, i);
1062 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1063 					__set_bit(i, inuse);
1064 			}
1065 			if (!sscanf(d->name, name, &i))
1066 				continue;
1067 			if (i < 0 || i >= max_netdevices)
1068 				continue;
1069 
1070 			/*  avoid cases where sscanf is not exact inverse of printf */
1071 			snprintf(buf, IFNAMSIZ, name, i);
1072 			if (!strncmp(buf, d->name, IFNAMSIZ))
1073 				__set_bit(i, inuse);
1074 		}
1075 
1076 		i = find_first_zero_bit(inuse, max_netdevices);
1077 		free_page((unsigned long) inuse);
1078 	}
1079 
1080 	snprintf(buf, IFNAMSIZ, name, i);
1081 	if (!netdev_name_in_use(net, buf))
1082 		return i;
1083 
1084 	/* It is possible to run out of possible slots
1085 	 * when the name is long and there isn't enough space left
1086 	 * for the digits, or if all bits are used.
1087 	 */
1088 	return -ENFILE;
1089 }
1090 
1091 static int dev_alloc_name_ns(struct net *net,
1092 			     struct net_device *dev,
1093 			     const char *name)
1094 {
1095 	char buf[IFNAMSIZ];
1096 	int ret;
1097 
1098 	BUG_ON(!net);
1099 	ret = __dev_alloc_name(net, name, buf);
1100 	if (ret >= 0)
1101 		strlcpy(dev->name, buf, IFNAMSIZ);
1102 	return ret;
1103 }
1104 
1105 /**
1106  *	dev_alloc_name - allocate a name for a device
1107  *	@dev: device
1108  *	@name: name format string
1109  *
1110  *	Passed a format string - eg "lt%d" it will try and find a suitable
1111  *	id. It scans list of devices to build up a free map, then chooses
1112  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1113  *	while allocating the name and adding the device in order to avoid
1114  *	duplicates.
1115  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1116  *	Returns the number of the unit assigned or a negative errno code.
1117  */
1118 
1119 int dev_alloc_name(struct net_device *dev, const char *name)
1120 {
1121 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1122 }
1123 EXPORT_SYMBOL(dev_alloc_name);
1124 
1125 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1126 			      const char *name)
1127 {
1128 	BUG_ON(!net);
1129 
1130 	if (!dev_valid_name(name))
1131 		return -EINVAL;
1132 
1133 	if (strchr(name, '%'))
1134 		return dev_alloc_name_ns(net, dev, name);
1135 	else if (netdev_name_in_use(net, name))
1136 		return -EEXIST;
1137 	else if (dev->name != name)
1138 		strlcpy(dev->name, name, IFNAMSIZ);
1139 
1140 	return 0;
1141 }
1142 
1143 /**
1144  *	dev_change_name - change name of a device
1145  *	@dev: device
1146  *	@newname: name (or format string) must be at least IFNAMSIZ
1147  *
1148  *	Change name of a device, can pass format strings "eth%d".
1149  *	for wildcarding.
1150  */
1151 int dev_change_name(struct net_device *dev, const char *newname)
1152 {
1153 	unsigned char old_assign_type;
1154 	char oldname[IFNAMSIZ];
1155 	int err = 0;
1156 	int ret;
1157 	struct net *net;
1158 
1159 	ASSERT_RTNL();
1160 	BUG_ON(!dev_net(dev));
1161 
1162 	net = dev_net(dev);
1163 
1164 	/* Some auto-enslaved devices e.g. failover slaves are
1165 	 * special, as userspace might rename the device after
1166 	 * the interface had been brought up and running since
1167 	 * the point kernel initiated auto-enslavement. Allow
1168 	 * live name change even when these slave devices are
1169 	 * up and running.
1170 	 *
1171 	 * Typically, users of these auto-enslaving devices
1172 	 * don't actually care about slave name change, as
1173 	 * they are supposed to operate on master interface
1174 	 * directly.
1175 	 */
1176 	if (dev->flags & IFF_UP &&
1177 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1178 		return -EBUSY;
1179 
1180 	down_write(&devnet_rename_sem);
1181 
1182 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1183 		up_write(&devnet_rename_sem);
1184 		return 0;
1185 	}
1186 
1187 	memcpy(oldname, dev->name, IFNAMSIZ);
1188 
1189 	err = dev_get_valid_name(net, dev, newname);
1190 	if (err < 0) {
1191 		up_write(&devnet_rename_sem);
1192 		return err;
1193 	}
1194 
1195 	if (oldname[0] && !strchr(oldname, '%'))
1196 		netdev_info(dev, "renamed from %s\n", oldname);
1197 
1198 	old_assign_type = dev->name_assign_type;
1199 	dev->name_assign_type = NET_NAME_RENAMED;
1200 
1201 rollback:
1202 	ret = device_rename(&dev->dev, dev->name);
1203 	if (ret) {
1204 		memcpy(dev->name, oldname, IFNAMSIZ);
1205 		dev->name_assign_type = old_assign_type;
1206 		up_write(&devnet_rename_sem);
1207 		return ret;
1208 	}
1209 
1210 	up_write(&devnet_rename_sem);
1211 
1212 	netdev_adjacent_rename_links(dev, oldname);
1213 
1214 	write_lock(&dev_base_lock);
1215 	netdev_name_node_del(dev->name_node);
1216 	write_unlock(&dev_base_lock);
1217 
1218 	synchronize_rcu();
1219 
1220 	write_lock(&dev_base_lock);
1221 	netdev_name_node_add(net, dev->name_node);
1222 	write_unlock(&dev_base_lock);
1223 
1224 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1225 	ret = notifier_to_errno(ret);
1226 
1227 	if (ret) {
1228 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1229 		if (err >= 0) {
1230 			err = ret;
1231 			down_write(&devnet_rename_sem);
1232 			memcpy(dev->name, oldname, IFNAMSIZ);
1233 			memcpy(oldname, newname, IFNAMSIZ);
1234 			dev->name_assign_type = old_assign_type;
1235 			old_assign_type = NET_NAME_RENAMED;
1236 			goto rollback;
1237 		} else {
1238 			netdev_err(dev, "name change rollback failed: %d\n",
1239 				   ret);
1240 		}
1241 	}
1242 
1243 	return err;
1244 }
1245 
1246 /**
1247  *	dev_set_alias - change ifalias of a device
1248  *	@dev: device
1249  *	@alias: name up to IFALIASZ
1250  *	@len: limit of bytes to copy from info
1251  *
1252  *	Set ifalias for a device,
1253  */
1254 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255 {
1256 	struct dev_ifalias *new_alias = NULL;
1257 
1258 	if (len >= IFALIASZ)
1259 		return -EINVAL;
1260 
1261 	if (len) {
1262 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263 		if (!new_alias)
1264 			return -ENOMEM;
1265 
1266 		memcpy(new_alias->ifalias, alias, len);
1267 		new_alias->ifalias[len] = 0;
1268 	}
1269 
1270 	mutex_lock(&ifalias_mutex);
1271 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272 					mutex_is_locked(&ifalias_mutex));
1273 	mutex_unlock(&ifalias_mutex);
1274 
1275 	if (new_alias)
1276 		kfree_rcu(new_alias, rcuhead);
1277 
1278 	return len;
1279 }
1280 EXPORT_SYMBOL(dev_set_alias);
1281 
1282 /**
1283  *	dev_get_alias - get ifalias of a device
1284  *	@dev: device
1285  *	@name: buffer to store name of ifalias
1286  *	@len: size of buffer
1287  *
1288  *	get ifalias for a device.  Caller must make sure dev cannot go
1289  *	away,  e.g. rcu read lock or own a reference count to device.
1290  */
1291 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292 {
1293 	const struct dev_ifalias *alias;
1294 	int ret = 0;
1295 
1296 	rcu_read_lock();
1297 	alias = rcu_dereference(dev->ifalias);
1298 	if (alias)
1299 		ret = snprintf(name, len, "%s", alias->ifalias);
1300 	rcu_read_unlock();
1301 
1302 	return ret;
1303 }
1304 
1305 /**
1306  *	netdev_features_change - device changes features
1307  *	@dev: device to cause notification
1308  *
1309  *	Called to indicate a device has changed features.
1310  */
1311 void netdev_features_change(struct net_device *dev)
1312 {
1313 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1314 }
1315 EXPORT_SYMBOL(netdev_features_change);
1316 
1317 /**
1318  *	netdev_state_change - device changes state
1319  *	@dev: device to cause notification
1320  *
1321  *	Called to indicate a device has changed state. This function calls
1322  *	the notifier chains for netdev_chain and sends a NEWLINK message
1323  *	to the routing socket.
1324  */
1325 void netdev_state_change(struct net_device *dev)
1326 {
1327 	if (dev->flags & IFF_UP) {
1328 		struct netdev_notifier_change_info change_info = {
1329 			.info.dev = dev,
1330 		};
1331 
1332 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1333 					      &change_info.info);
1334 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1335 	}
1336 }
1337 EXPORT_SYMBOL(netdev_state_change);
1338 
1339 /**
1340  * __netdev_notify_peers - notify network peers about existence of @dev,
1341  * to be called when rtnl lock is already held.
1342  * @dev: network device
1343  *
1344  * Generate traffic such that interested network peers are aware of
1345  * @dev, such as by generating a gratuitous ARP. This may be used when
1346  * a device wants to inform the rest of the network about some sort of
1347  * reconfiguration such as a failover event or virtual machine
1348  * migration.
1349  */
1350 void __netdev_notify_peers(struct net_device *dev)
1351 {
1352 	ASSERT_RTNL();
1353 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1355 }
1356 EXPORT_SYMBOL(__netdev_notify_peers);
1357 
1358 /**
1359  * netdev_notify_peers - notify network peers about existence of @dev
1360  * @dev: network device
1361  *
1362  * Generate traffic such that interested network peers are aware of
1363  * @dev, such as by generating a gratuitous ARP. This may be used when
1364  * a device wants to inform the rest of the network about some sort of
1365  * reconfiguration such as a failover event or virtual machine
1366  * migration.
1367  */
1368 void netdev_notify_peers(struct net_device *dev)
1369 {
1370 	rtnl_lock();
1371 	__netdev_notify_peers(dev);
1372 	rtnl_unlock();
1373 }
1374 EXPORT_SYMBOL(netdev_notify_peers);
1375 
1376 static int napi_threaded_poll(void *data);
1377 
1378 static int napi_kthread_create(struct napi_struct *n)
1379 {
1380 	int err = 0;
1381 
1382 	/* Create and wake up the kthread once to put it in
1383 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384 	 * warning and work with loadavg.
1385 	 */
1386 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387 				n->dev->name, n->napi_id);
1388 	if (IS_ERR(n->thread)) {
1389 		err = PTR_ERR(n->thread);
1390 		pr_err("kthread_run failed with err %d\n", err);
1391 		n->thread = NULL;
1392 	}
1393 
1394 	return err;
1395 }
1396 
1397 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1398 {
1399 	const struct net_device_ops *ops = dev->netdev_ops;
1400 	int ret;
1401 
1402 	ASSERT_RTNL();
1403 	dev_addr_check(dev);
1404 
1405 	if (!netif_device_present(dev)) {
1406 		/* may be detached because parent is runtime-suspended */
1407 		if (dev->dev.parent)
1408 			pm_runtime_resume(dev->dev.parent);
1409 		if (!netif_device_present(dev))
1410 			return -ENODEV;
1411 	}
1412 
1413 	/* Block netpoll from trying to do any rx path servicing.
1414 	 * If we don't do this there is a chance ndo_poll_controller
1415 	 * or ndo_poll may be running while we open the device
1416 	 */
1417 	netpoll_poll_disable(dev);
1418 
1419 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1420 	ret = notifier_to_errno(ret);
1421 	if (ret)
1422 		return ret;
1423 
1424 	set_bit(__LINK_STATE_START, &dev->state);
1425 
1426 	if (ops->ndo_validate_addr)
1427 		ret = ops->ndo_validate_addr(dev);
1428 
1429 	if (!ret && ops->ndo_open)
1430 		ret = ops->ndo_open(dev);
1431 
1432 	netpoll_poll_enable(dev);
1433 
1434 	if (ret)
1435 		clear_bit(__LINK_STATE_START, &dev->state);
1436 	else {
1437 		dev->flags |= IFF_UP;
1438 		dev_set_rx_mode(dev);
1439 		dev_activate(dev);
1440 		add_device_randomness(dev->dev_addr, dev->addr_len);
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 /**
1447  *	dev_open	- prepare an interface for use.
1448  *	@dev: device to open
1449  *	@extack: netlink extended ack
1450  *
1451  *	Takes a device from down to up state. The device's private open
1452  *	function is invoked and then the multicast lists are loaded. Finally
1453  *	the device is moved into the up state and a %NETDEV_UP message is
1454  *	sent to the netdev notifier chain.
1455  *
1456  *	Calling this function on an active interface is a nop. On a failure
1457  *	a negative errno code is returned.
1458  */
1459 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1460 {
1461 	int ret;
1462 
1463 	if (dev->flags & IFF_UP)
1464 		return 0;
1465 
1466 	ret = __dev_open(dev, extack);
1467 	if (ret < 0)
1468 		return ret;
1469 
1470 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1471 	call_netdevice_notifiers(NETDEV_UP, dev);
1472 
1473 	return ret;
1474 }
1475 EXPORT_SYMBOL(dev_open);
1476 
1477 static void __dev_close_many(struct list_head *head)
1478 {
1479 	struct net_device *dev;
1480 
1481 	ASSERT_RTNL();
1482 	might_sleep();
1483 
1484 	list_for_each_entry(dev, head, close_list) {
1485 		/* Temporarily disable netpoll until the interface is down */
1486 		netpoll_poll_disable(dev);
1487 
1488 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1489 
1490 		clear_bit(__LINK_STATE_START, &dev->state);
1491 
1492 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1493 		 * can be even on different cpu. So just clear netif_running().
1494 		 *
1495 		 * dev->stop() will invoke napi_disable() on all of it's
1496 		 * napi_struct instances on this device.
1497 		 */
1498 		smp_mb__after_atomic(); /* Commit netif_running(). */
1499 	}
1500 
1501 	dev_deactivate_many(head);
1502 
1503 	list_for_each_entry(dev, head, close_list) {
1504 		const struct net_device_ops *ops = dev->netdev_ops;
1505 
1506 		/*
1507 		 *	Call the device specific close. This cannot fail.
1508 		 *	Only if device is UP
1509 		 *
1510 		 *	We allow it to be called even after a DETACH hot-plug
1511 		 *	event.
1512 		 */
1513 		if (ops->ndo_stop)
1514 			ops->ndo_stop(dev);
1515 
1516 		dev->flags &= ~IFF_UP;
1517 		netpoll_poll_enable(dev);
1518 	}
1519 }
1520 
1521 static void __dev_close(struct net_device *dev)
1522 {
1523 	LIST_HEAD(single);
1524 
1525 	list_add(&dev->close_list, &single);
1526 	__dev_close_many(&single);
1527 	list_del(&single);
1528 }
1529 
1530 void dev_close_many(struct list_head *head, bool unlink)
1531 {
1532 	struct net_device *dev, *tmp;
1533 
1534 	/* Remove the devices that don't need to be closed */
1535 	list_for_each_entry_safe(dev, tmp, head, close_list)
1536 		if (!(dev->flags & IFF_UP))
1537 			list_del_init(&dev->close_list);
1538 
1539 	__dev_close_many(head);
1540 
1541 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1542 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1543 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1544 		if (unlink)
1545 			list_del_init(&dev->close_list);
1546 	}
1547 }
1548 EXPORT_SYMBOL(dev_close_many);
1549 
1550 /**
1551  *	dev_close - shutdown an interface.
1552  *	@dev: device to shutdown
1553  *
1554  *	This function moves an active device into down state. A
1555  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557  *	chain.
1558  */
1559 void dev_close(struct net_device *dev)
1560 {
1561 	if (dev->flags & IFF_UP) {
1562 		LIST_HEAD(single);
1563 
1564 		list_add(&dev->close_list, &single);
1565 		dev_close_many(&single, true);
1566 		list_del(&single);
1567 	}
1568 }
1569 EXPORT_SYMBOL(dev_close);
1570 
1571 
1572 /**
1573  *	dev_disable_lro - disable Large Receive Offload on a device
1574  *	@dev: device
1575  *
1576  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1577  *	called under RTNL.  This is needed if received packets may be
1578  *	forwarded to another interface.
1579  */
1580 void dev_disable_lro(struct net_device *dev)
1581 {
1582 	struct net_device *lower_dev;
1583 	struct list_head *iter;
1584 
1585 	dev->wanted_features &= ~NETIF_F_LRO;
1586 	netdev_update_features(dev);
1587 
1588 	if (unlikely(dev->features & NETIF_F_LRO))
1589 		netdev_WARN(dev, "failed to disable LRO!\n");
1590 
1591 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1592 		dev_disable_lro(lower_dev);
1593 }
1594 EXPORT_SYMBOL(dev_disable_lro);
1595 
1596 /**
1597  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598  *	@dev: device
1599  *
1600  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1601  *	called under RTNL.  This is needed if Generic XDP is installed on
1602  *	the device.
1603  */
1604 static void dev_disable_gro_hw(struct net_device *dev)
1605 {
1606 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1607 	netdev_update_features(dev);
1608 
1609 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1610 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611 }
1612 
1613 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614 {
1615 #define N(val) 						\
1616 	case NETDEV_##val:				\
1617 		return "NETDEV_" __stringify(val);
1618 	switch (cmd) {
1619 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1623 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1624 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1625 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1630 	}
1631 #undef N
1632 	return "UNKNOWN_NETDEV_EVENT";
1633 }
1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635 
1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637 				   struct net_device *dev)
1638 {
1639 	struct netdev_notifier_info info = {
1640 		.dev = dev,
1641 	};
1642 
1643 	return nb->notifier_call(nb, val, &info);
1644 }
1645 
1646 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647 					     struct net_device *dev)
1648 {
1649 	int err;
1650 
1651 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652 	err = notifier_to_errno(err);
1653 	if (err)
1654 		return err;
1655 
1656 	if (!(dev->flags & IFF_UP))
1657 		return 0;
1658 
1659 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1660 	return 0;
1661 }
1662 
1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664 						struct net_device *dev)
1665 {
1666 	if (dev->flags & IFF_UP) {
1667 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668 					dev);
1669 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670 	}
1671 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672 }
1673 
1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675 						 struct net *net)
1676 {
1677 	struct net_device *dev;
1678 	int err;
1679 
1680 	for_each_netdev(net, dev) {
1681 		err = call_netdevice_register_notifiers(nb, dev);
1682 		if (err)
1683 			goto rollback;
1684 	}
1685 	return 0;
1686 
1687 rollback:
1688 	for_each_netdev_continue_reverse(net, dev)
1689 		call_netdevice_unregister_notifiers(nb, dev);
1690 	return err;
1691 }
1692 
1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694 						    struct net *net)
1695 {
1696 	struct net_device *dev;
1697 
1698 	for_each_netdev(net, dev)
1699 		call_netdevice_unregister_notifiers(nb, dev);
1700 }
1701 
1702 static int dev_boot_phase = 1;
1703 
1704 /**
1705  * register_netdevice_notifier - register a network notifier block
1706  * @nb: notifier
1707  *
1708  * Register a notifier to be called when network device events occur.
1709  * The notifier passed is linked into the kernel structures and must
1710  * not be reused until it has been unregistered. A negative errno code
1711  * is returned on a failure.
1712  *
1713  * When registered all registration and up events are replayed
1714  * to the new notifier to allow device to have a race free
1715  * view of the network device list.
1716  */
1717 
1718 int register_netdevice_notifier(struct notifier_block *nb)
1719 {
1720 	struct net *net;
1721 	int err;
1722 
1723 	/* Close race with setup_net() and cleanup_net() */
1724 	down_write(&pernet_ops_rwsem);
1725 	rtnl_lock();
1726 	err = raw_notifier_chain_register(&netdev_chain, nb);
1727 	if (err)
1728 		goto unlock;
1729 	if (dev_boot_phase)
1730 		goto unlock;
1731 	for_each_net(net) {
1732 		err = call_netdevice_register_net_notifiers(nb, net);
1733 		if (err)
1734 			goto rollback;
1735 	}
1736 
1737 unlock:
1738 	rtnl_unlock();
1739 	up_write(&pernet_ops_rwsem);
1740 	return err;
1741 
1742 rollback:
1743 	for_each_net_continue_reverse(net)
1744 		call_netdevice_unregister_net_notifiers(nb, net);
1745 
1746 	raw_notifier_chain_unregister(&netdev_chain, nb);
1747 	goto unlock;
1748 }
1749 EXPORT_SYMBOL(register_netdevice_notifier);
1750 
1751 /**
1752  * unregister_netdevice_notifier - unregister a network notifier block
1753  * @nb: notifier
1754  *
1755  * Unregister a notifier previously registered by
1756  * register_netdevice_notifier(). The notifier is unlinked into the
1757  * kernel structures and may then be reused. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * After unregistering unregister and down device events are synthesized
1761  * for all devices on the device list to the removed notifier to remove
1762  * the need for special case cleanup code.
1763  */
1764 
1765 int unregister_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 	struct net *net;
1768 	int err;
1769 
1770 	/* Close race with setup_net() and cleanup_net() */
1771 	down_write(&pernet_ops_rwsem);
1772 	rtnl_lock();
1773 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1774 	if (err)
1775 		goto unlock;
1776 
1777 	for_each_net(net)
1778 		call_netdevice_unregister_net_notifiers(nb, net);
1779 
1780 unlock:
1781 	rtnl_unlock();
1782 	up_write(&pernet_ops_rwsem);
1783 	return err;
1784 }
1785 EXPORT_SYMBOL(unregister_netdevice_notifier);
1786 
1787 static int __register_netdevice_notifier_net(struct net *net,
1788 					     struct notifier_block *nb,
1789 					     bool ignore_call_fail)
1790 {
1791 	int err;
1792 
1793 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1794 	if (err)
1795 		return err;
1796 	if (dev_boot_phase)
1797 		return 0;
1798 
1799 	err = call_netdevice_register_net_notifiers(nb, net);
1800 	if (err && !ignore_call_fail)
1801 		goto chain_unregister;
1802 
1803 	return 0;
1804 
1805 chain_unregister:
1806 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1807 	return err;
1808 }
1809 
1810 static int __unregister_netdevice_notifier_net(struct net *net,
1811 					       struct notifier_block *nb)
1812 {
1813 	int err;
1814 
1815 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1816 	if (err)
1817 		return err;
1818 
1819 	call_netdevice_unregister_net_notifiers(nb, net);
1820 	return 0;
1821 }
1822 
1823 /**
1824  * register_netdevice_notifier_net - register a per-netns network notifier block
1825  * @net: network namespace
1826  * @nb: notifier
1827  *
1828  * Register a notifier to be called when network device events occur.
1829  * The notifier passed is linked into the kernel structures and must
1830  * not be reused until it has been unregistered. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * When registered all registration and up events are replayed
1834  * to the new notifier to allow device to have a race free
1835  * view of the network device list.
1836  */
1837 
1838 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1839 {
1840 	int err;
1841 
1842 	rtnl_lock();
1843 	err = __register_netdevice_notifier_net(net, nb, false);
1844 	rtnl_unlock();
1845 	return err;
1846 }
1847 EXPORT_SYMBOL(register_netdevice_notifier_net);
1848 
1849 /**
1850  * unregister_netdevice_notifier_net - unregister a per-netns
1851  *                                     network notifier block
1852  * @net: network namespace
1853  * @nb: notifier
1854  *
1855  * Unregister a notifier previously registered by
1856  * register_netdevice_notifier(). The notifier is unlinked into the
1857  * kernel structures and may then be reused. A negative errno code
1858  * is returned on a failure.
1859  *
1860  * After unregistering unregister and down device events are synthesized
1861  * for all devices on the device list to the removed notifier to remove
1862  * the need for special case cleanup code.
1863  */
1864 
1865 int unregister_netdevice_notifier_net(struct net *net,
1866 				      struct notifier_block *nb)
1867 {
1868 	int err;
1869 
1870 	rtnl_lock();
1871 	err = __unregister_netdevice_notifier_net(net, nb);
1872 	rtnl_unlock();
1873 	return err;
1874 }
1875 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1876 
1877 int register_netdevice_notifier_dev_net(struct net_device *dev,
1878 					struct notifier_block *nb,
1879 					struct netdev_net_notifier *nn)
1880 {
1881 	int err;
1882 
1883 	rtnl_lock();
1884 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1885 	if (!err) {
1886 		nn->nb = nb;
1887 		list_add(&nn->list, &dev->net_notifier_list);
1888 	}
1889 	rtnl_unlock();
1890 	return err;
1891 }
1892 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1893 
1894 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1895 					  struct notifier_block *nb,
1896 					  struct netdev_net_notifier *nn)
1897 {
1898 	int err;
1899 
1900 	rtnl_lock();
1901 	list_del(&nn->list);
1902 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1903 	rtnl_unlock();
1904 	return err;
1905 }
1906 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1907 
1908 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1909 					     struct net *net)
1910 {
1911 	struct netdev_net_notifier *nn;
1912 
1913 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1914 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1915 		__register_netdevice_notifier_net(net, nn->nb, true);
1916 	}
1917 }
1918 
1919 /**
1920  *	call_netdevice_notifiers_info - call all network notifier blocks
1921  *	@val: value passed unmodified to notifier function
1922  *	@info: notifier information data
1923  *
1924  *	Call all network notifier blocks.  Parameters and return value
1925  *	are as for raw_notifier_call_chain().
1926  */
1927 
1928 static int call_netdevice_notifiers_info(unsigned long val,
1929 					 struct netdev_notifier_info *info)
1930 {
1931 	struct net *net = dev_net(info->dev);
1932 	int ret;
1933 
1934 	ASSERT_RTNL();
1935 
1936 	/* Run per-netns notifier block chain first, then run the global one.
1937 	 * Hopefully, one day, the global one is going to be removed after
1938 	 * all notifier block registrators get converted to be per-netns.
1939 	 */
1940 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1941 	if (ret & NOTIFY_STOP_MASK)
1942 		return ret;
1943 	return raw_notifier_call_chain(&netdev_chain, val, info);
1944 }
1945 
1946 /**
1947  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1948  *	                                       for and rollback on error
1949  *	@val_up: value passed unmodified to notifier function
1950  *	@val_down: value passed unmodified to the notifier function when
1951  *	           recovering from an error on @val_up
1952  *	@info: notifier information data
1953  *
1954  *	Call all per-netns network notifier blocks, but not notifier blocks on
1955  *	the global notifier chain. Parameters and return value are as for
1956  *	raw_notifier_call_chain_robust().
1957  */
1958 
1959 static int
1960 call_netdevice_notifiers_info_robust(unsigned long val_up,
1961 				     unsigned long val_down,
1962 				     struct netdev_notifier_info *info)
1963 {
1964 	struct net *net = dev_net(info->dev);
1965 
1966 	ASSERT_RTNL();
1967 
1968 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1969 					      val_up, val_down, info);
1970 }
1971 
1972 static int call_netdevice_notifiers_extack(unsigned long val,
1973 					   struct net_device *dev,
1974 					   struct netlink_ext_ack *extack)
1975 {
1976 	struct netdev_notifier_info info = {
1977 		.dev = dev,
1978 		.extack = extack,
1979 	};
1980 
1981 	return call_netdevice_notifiers_info(val, &info);
1982 }
1983 
1984 /**
1985  *	call_netdevice_notifiers - call all network notifier blocks
1986  *      @val: value passed unmodified to notifier function
1987  *      @dev: net_device pointer passed unmodified to notifier function
1988  *
1989  *	Call all network notifier blocks.  Parameters and return value
1990  *	are as for raw_notifier_call_chain().
1991  */
1992 
1993 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1994 {
1995 	return call_netdevice_notifiers_extack(val, dev, NULL);
1996 }
1997 EXPORT_SYMBOL(call_netdevice_notifiers);
1998 
1999 /**
2000  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2001  *	@val: value passed unmodified to notifier function
2002  *	@dev: net_device pointer passed unmodified to notifier function
2003  *	@arg: additional u32 argument passed to the notifier function
2004  *
2005  *	Call all network notifier blocks.  Parameters and return value
2006  *	are as for raw_notifier_call_chain().
2007  */
2008 static int call_netdevice_notifiers_mtu(unsigned long val,
2009 					struct net_device *dev, u32 arg)
2010 {
2011 	struct netdev_notifier_info_ext info = {
2012 		.info.dev = dev,
2013 		.ext.mtu = arg,
2014 	};
2015 
2016 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2017 
2018 	return call_netdevice_notifiers_info(val, &info.info);
2019 }
2020 
2021 #ifdef CONFIG_NET_INGRESS
2022 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2023 
2024 void net_inc_ingress_queue(void)
2025 {
2026 	static_branch_inc(&ingress_needed_key);
2027 }
2028 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2029 
2030 void net_dec_ingress_queue(void)
2031 {
2032 	static_branch_dec(&ingress_needed_key);
2033 }
2034 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2035 #endif
2036 
2037 #ifdef CONFIG_NET_EGRESS
2038 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2039 
2040 void net_inc_egress_queue(void)
2041 {
2042 	static_branch_inc(&egress_needed_key);
2043 }
2044 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2045 
2046 void net_dec_egress_queue(void)
2047 {
2048 	static_branch_dec(&egress_needed_key);
2049 }
2050 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2051 #endif
2052 
2053 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2054 EXPORT_SYMBOL(netstamp_needed_key);
2055 #ifdef CONFIG_JUMP_LABEL
2056 static atomic_t netstamp_needed_deferred;
2057 static atomic_t netstamp_wanted;
2058 static void netstamp_clear(struct work_struct *work)
2059 {
2060 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2061 	int wanted;
2062 
2063 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2064 	if (wanted > 0)
2065 		static_branch_enable(&netstamp_needed_key);
2066 	else
2067 		static_branch_disable(&netstamp_needed_key);
2068 }
2069 static DECLARE_WORK(netstamp_work, netstamp_clear);
2070 #endif
2071 
2072 void net_enable_timestamp(void)
2073 {
2074 #ifdef CONFIG_JUMP_LABEL
2075 	int wanted;
2076 
2077 	while (1) {
2078 		wanted = atomic_read(&netstamp_wanted);
2079 		if (wanted <= 0)
2080 			break;
2081 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2082 			return;
2083 	}
2084 	atomic_inc(&netstamp_needed_deferred);
2085 	schedule_work(&netstamp_work);
2086 #else
2087 	static_branch_inc(&netstamp_needed_key);
2088 #endif
2089 }
2090 EXPORT_SYMBOL(net_enable_timestamp);
2091 
2092 void net_disable_timestamp(void)
2093 {
2094 #ifdef CONFIG_JUMP_LABEL
2095 	int wanted;
2096 
2097 	while (1) {
2098 		wanted = atomic_read(&netstamp_wanted);
2099 		if (wanted <= 1)
2100 			break;
2101 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2102 			return;
2103 	}
2104 	atomic_dec(&netstamp_needed_deferred);
2105 	schedule_work(&netstamp_work);
2106 #else
2107 	static_branch_dec(&netstamp_needed_key);
2108 #endif
2109 }
2110 EXPORT_SYMBOL(net_disable_timestamp);
2111 
2112 static inline void net_timestamp_set(struct sk_buff *skb)
2113 {
2114 	skb->tstamp = 0;
2115 	skb->mono_delivery_time = 0;
2116 	if (static_branch_unlikely(&netstamp_needed_key))
2117 		skb->tstamp = ktime_get_real();
2118 }
2119 
2120 #define net_timestamp_check(COND, SKB)				\
2121 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2122 		if ((COND) && !(SKB)->tstamp)			\
2123 			(SKB)->tstamp = ktime_get_real();	\
2124 	}							\
2125 
2126 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2127 {
2128 	return __is_skb_forwardable(dev, skb, true);
2129 }
2130 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2131 
2132 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2133 			      bool check_mtu)
2134 {
2135 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2136 
2137 	if (likely(!ret)) {
2138 		skb->protocol = eth_type_trans(skb, dev);
2139 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2140 	}
2141 
2142 	return ret;
2143 }
2144 
2145 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2146 {
2147 	return __dev_forward_skb2(dev, skb, true);
2148 }
2149 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2150 
2151 /**
2152  * dev_forward_skb - loopback an skb to another netif
2153  *
2154  * @dev: destination network device
2155  * @skb: buffer to forward
2156  *
2157  * return values:
2158  *	NET_RX_SUCCESS	(no congestion)
2159  *	NET_RX_DROP     (packet was dropped, but freed)
2160  *
2161  * dev_forward_skb can be used for injecting an skb from the
2162  * start_xmit function of one device into the receive queue
2163  * of another device.
2164  *
2165  * The receiving device may be in another namespace, so
2166  * we have to clear all information in the skb that could
2167  * impact namespace isolation.
2168  */
2169 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2170 {
2171 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2172 }
2173 EXPORT_SYMBOL_GPL(dev_forward_skb);
2174 
2175 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2176 {
2177 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2178 }
2179 
2180 static inline int deliver_skb(struct sk_buff *skb,
2181 			      struct packet_type *pt_prev,
2182 			      struct net_device *orig_dev)
2183 {
2184 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2185 		return -ENOMEM;
2186 	refcount_inc(&skb->users);
2187 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2188 }
2189 
2190 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2191 					  struct packet_type **pt,
2192 					  struct net_device *orig_dev,
2193 					  __be16 type,
2194 					  struct list_head *ptype_list)
2195 {
2196 	struct packet_type *ptype, *pt_prev = *pt;
2197 
2198 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2199 		if (ptype->type != type)
2200 			continue;
2201 		if (pt_prev)
2202 			deliver_skb(skb, pt_prev, orig_dev);
2203 		pt_prev = ptype;
2204 	}
2205 	*pt = pt_prev;
2206 }
2207 
2208 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2209 {
2210 	if (!ptype->af_packet_priv || !skb->sk)
2211 		return false;
2212 
2213 	if (ptype->id_match)
2214 		return ptype->id_match(ptype, skb->sk);
2215 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2216 		return true;
2217 
2218 	return false;
2219 }
2220 
2221 /**
2222  * dev_nit_active - return true if any network interface taps are in use
2223  *
2224  * @dev: network device to check for the presence of taps
2225  */
2226 bool dev_nit_active(struct net_device *dev)
2227 {
2228 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2229 }
2230 EXPORT_SYMBOL_GPL(dev_nit_active);
2231 
2232 /*
2233  *	Support routine. Sends outgoing frames to any network
2234  *	taps currently in use.
2235  */
2236 
2237 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2238 {
2239 	struct packet_type *ptype;
2240 	struct sk_buff *skb2 = NULL;
2241 	struct packet_type *pt_prev = NULL;
2242 	struct list_head *ptype_list = &ptype_all;
2243 
2244 	rcu_read_lock();
2245 again:
2246 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2247 		if (ptype->ignore_outgoing)
2248 			continue;
2249 
2250 		/* Never send packets back to the socket
2251 		 * they originated from - MvS (miquels@drinkel.ow.org)
2252 		 */
2253 		if (skb_loop_sk(ptype, skb))
2254 			continue;
2255 
2256 		if (pt_prev) {
2257 			deliver_skb(skb2, pt_prev, skb->dev);
2258 			pt_prev = ptype;
2259 			continue;
2260 		}
2261 
2262 		/* need to clone skb, done only once */
2263 		skb2 = skb_clone(skb, GFP_ATOMIC);
2264 		if (!skb2)
2265 			goto out_unlock;
2266 
2267 		net_timestamp_set(skb2);
2268 
2269 		/* skb->nh should be correctly
2270 		 * set by sender, so that the second statement is
2271 		 * just protection against buggy protocols.
2272 		 */
2273 		skb_reset_mac_header(skb2);
2274 
2275 		if (skb_network_header(skb2) < skb2->data ||
2276 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2277 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2278 					     ntohs(skb2->protocol),
2279 					     dev->name);
2280 			skb_reset_network_header(skb2);
2281 		}
2282 
2283 		skb2->transport_header = skb2->network_header;
2284 		skb2->pkt_type = PACKET_OUTGOING;
2285 		pt_prev = ptype;
2286 	}
2287 
2288 	if (ptype_list == &ptype_all) {
2289 		ptype_list = &dev->ptype_all;
2290 		goto again;
2291 	}
2292 out_unlock:
2293 	if (pt_prev) {
2294 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2295 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2296 		else
2297 			kfree_skb(skb2);
2298 	}
2299 	rcu_read_unlock();
2300 }
2301 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2302 
2303 /**
2304  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2305  * @dev: Network device
2306  * @txq: number of queues available
2307  *
2308  * If real_num_tx_queues is changed the tc mappings may no longer be
2309  * valid. To resolve this verify the tc mapping remains valid and if
2310  * not NULL the mapping. With no priorities mapping to this
2311  * offset/count pair it will no longer be used. In the worst case TC0
2312  * is invalid nothing can be done so disable priority mappings. If is
2313  * expected that drivers will fix this mapping if they can before
2314  * calling netif_set_real_num_tx_queues.
2315  */
2316 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2317 {
2318 	int i;
2319 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2320 
2321 	/* If TC0 is invalidated disable TC mapping */
2322 	if (tc->offset + tc->count > txq) {
2323 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2324 		dev->num_tc = 0;
2325 		return;
2326 	}
2327 
2328 	/* Invalidated prio to tc mappings set to TC0 */
2329 	for (i = 1; i < TC_BITMASK + 1; i++) {
2330 		int q = netdev_get_prio_tc_map(dev, i);
2331 
2332 		tc = &dev->tc_to_txq[q];
2333 		if (tc->offset + tc->count > txq) {
2334 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2335 				    i, q);
2336 			netdev_set_prio_tc_map(dev, i, 0);
2337 		}
2338 	}
2339 }
2340 
2341 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2342 {
2343 	if (dev->num_tc) {
2344 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345 		int i;
2346 
2347 		/* walk through the TCs and see if it falls into any of them */
2348 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2349 			if ((txq - tc->offset) < tc->count)
2350 				return i;
2351 		}
2352 
2353 		/* didn't find it, just return -1 to indicate no match */
2354 		return -1;
2355 	}
2356 
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL(netdev_txq_to_tc);
2360 
2361 #ifdef CONFIG_XPS
2362 static struct static_key xps_needed __read_mostly;
2363 static struct static_key xps_rxqs_needed __read_mostly;
2364 static DEFINE_MUTEX(xps_map_mutex);
2365 #define xmap_dereference(P)		\
2366 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2367 
2368 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2369 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2370 {
2371 	struct xps_map *map = NULL;
2372 	int pos;
2373 
2374 	if (dev_maps)
2375 		map = xmap_dereference(dev_maps->attr_map[tci]);
2376 	if (!map)
2377 		return false;
2378 
2379 	for (pos = map->len; pos--;) {
2380 		if (map->queues[pos] != index)
2381 			continue;
2382 
2383 		if (map->len > 1) {
2384 			map->queues[pos] = map->queues[--map->len];
2385 			break;
2386 		}
2387 
2388 		if (old_maps)
2389 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391 		kfree_rcu(map, rcu);
2392 		return false;
2393 	}
2394 
2395 	return true;
2396 }
2397 
2398 static bool remove_xps_queue_cpu(struct net_device *dev,
2399 				 struct xps_dev_maps *dev_maps,
2400 				 int cpu, u16 offset, u16 count)
2401 {
2402 	int num_tc = dev_maps->num_tc;
2403 	bool active = false;
2404 	int tci;
2405 
2406 	for (tci = cpu * num_tc; num_tc--; tci++) {
2407 		int i, j;
2408 
2409 		for (i = count, j = offset; i--; j++) {
2410 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2411 				break;
2412 		}
2413 
2414 		active |= i < 0;
2415 	}
2416 
2417 	return active;
2418 }
2419 
2420 static void reset_xps_maps(struct net_device *dev,
2421 			   struct xps_dev_maps *dev_maps,
2422 			   enum xps_map_type type)
2423 {
2424 	static_key_slow_dec_cpuslocked(&xps_needed);
2425 	if (type == XPS_RXQS)
2426 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2427 
2428 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429 
2430 	kfree_rcu(dev_maps, rcu);
2431 }
2432 
2433 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434 			   u16 offset, u16 count)
2435 {
2436 	struct xps_dev_maps *dev_maps;
2437 	bool active = false;
2438 	int i, j;
2439 
2440 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2441 	if (!dev_maps)
2442 		return;
2443 
2444 	for (j = 0; j < dev_maps->nr_ids; j++)
2445 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2446 	if (!active)
2447 		reset_xps_maps(dev, dev_maps, type);
2448 
2449 	if (type == XPS_CPUS) {
2450 		for (i = offset + (count - 1); count--; i--)
2451 			netdev_queue_numa_node_write(
2452 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2453 	}
2454 }
2455 
2456 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457 				   u16 count)
2458 {
2459 	if (!static_key_false(&xps_needed))
2460 		return;
2461 
2462 	cpus_read_lock();
2463 	mutex_lock(&xps_map_mutex);
2464 
2465 	if (static_key_false(&xps_rxqs_needed))
2466 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2467 
2468 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2469 
2470 	mutex_unlock(&xps_map_mutex);
2471 	cpus_read_unlock();
2472 }
2473 
2474 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475 {
2476 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2477 }
2478 
2479 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480 				      u16 index, bool is_rxqs_map)
2481 {
2482 	struct xps_map *new_map;
2483 	int alloc_len = XPS_MIN_MAP_ALLOC;
2484 	int i, pos;
2485 
2486 	for (pos = 0; map && pos < map->len; pos++) {
2487 		if (map->queues[pos] != index)
2488 			continue;
2489 		return map;
2490 	}
2491 
2492 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2493 	if (map) {
2494 		if (pos < map->alloc_len)
2495 			return map;
2496 
2497 		alloc_len = map->alloc_len * 2;
2498 	}
2499 
2500 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501 	 *  map
2502 	 */
2503 	if (is_rxqs_map)
2504 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505 	else
2506 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507 				       cpu_to_node(attr_index));
2508 	if (!new_map)
2509 		return NULL;
2510 
2511 	for (i = 0; i < pos; i++)
2512 		new_map->queues[i] = map->queues[i];
2513 	new_map->alloc_len = alloc_len;
2514 	new_map->len = pos;
2515 
2516 	return new_map;
2517 }
2518 
2519 /* Copy xps maps at a given index */
2520 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521 			      struct xps_dev_maps *new_dev_maps, int index,
2522 			      int tc, bool skip_tc)
2523 {
2524 	int i, tci = index * dev_maps->num_tc;
2525 	struct xps_map *map;
2526 
2527 	/* copy maps belonging to foreign traffic classes */
2528 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529 		if (i == tc && skip_tc)
2530 			continue;
2531 
2532 		/* fill in the new device map from the old device map */
2533 		map = xmap_dereference(dev_maps->attr_map[tci]);
2534 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535 	}
2536 }
2537 
2538 /* Must be called under cpus_read_lock */
2539 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540 			  u16 index, enum xps_map_type type)
2541 {
2542 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543 	const unsigned long *online_mask = NULL;
2544 	bool active = false, copy = false;
2545 	int i, j, tci, numa_node_id = -2;
2546 	int maps_sz, num_tc = 1, tc = 0;
2547 	struct xps_map *map, *new_map;
2548 	unsigned int nr_ids;
2549 
2550 	if (dev->num_tc) {
2551 		/* Do not allow XPS on subordinate device directly */
2552 		num_tc = dev->num_tc;
2553 		if (num_tc < 0)
2554 			return -EINVAL;
2555 
2556 		/* If queue belongs to subordinate dev use its map */
2557 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2558 
2559 		tc = netdev_txq_to_tc(dev, index);
2560 		if (tc < 0)
2561 			return -EINVAL;
2562 	}
2563 
2564 	mutex_lock(&xps_map_mutex);
2565 
2566 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2567 	if (type == XPS_RXQS) {
2568 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2569 		nr_ids = dev->num_rx_queues;
2570 	} else {
2571 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2572 		if (num_possible_cpus() > 1)
2573 			online_mask = cpumask_bits(cpu_online_mask);
2574 		nr_ids = nr_cpu_ids;
2575 	}
2576 
2577 	if (maps_sz < L1_CACHE_BYTES)
2578 		maps_sz = L1_CACHE_BYTES;
2579 
2580 	/* The old dev_maps could be larger or smaller than the one we're
2581 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2582 	 * between. We could try to be smart, but let's be safe instead and only
2583 	 * copy foreign traffic classes if the two map sizes match.
2584 	 */
2585 	if (dev_maps &&
2586 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2587 		copy = true;
2588 
2589 	/* allocate memory for queue storage */
2590 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2591 	     j < nr_ids;) {
2592 		if (!new_dev_maps) {
2593 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2594 			if (!new_dev_maps) {
2595 				mutex_unlock(&xps_map_mutex);
2596 				return -ENOMEM;
2597 			}
2598 
2599 			new_dev_maps->nr_ids = nr_ids;
2600 			new_dev_maps->num_tc = num_tc;
2601 		}
2602 
2603 		tci = j * num_tc + tc;
2604 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2605 
2606 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2607 		if (!map)
2608 			goto error;
2609 
2610 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2611 	}
2612 
2613 	if (!new_dev_maps)
2614 		goto out_no_new_maps;
2615 
2616 	if (!dev_maps) {
2617 		/* Increment static keys at most once per type */
2618 		static_key_slow_inc_cpuslocked(&xps_needed);
2619 		if (type == XPS_RXQS)
2620 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2621 	}
2622 
2623 	for (j = 0; j < nr_ids; j++) {
2624 		bool skip_tc = false;
2625 
2626 		tci = j * num_tc + tc;
2627 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2628 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2629 			/* add tx-queue to CPU/rx-queue maps */
2630 			int pos = 0;
2631 
2632 			skip_tc = true;
2633 
2634 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2635 			while ((pos < map->len) && (map->queues[pos] != index))
2636 				pos++;
2637 
2638 			if (pos == map->len)
2639 				map->queues[map->len++] = index;
2640 #ifdef CONFIG_NUMA
2641 			if (type == XPS_CPUS) {
2642 				if (numa_node_id == -2)
2643 					numa_node_id = cpu_to_node(j);
2644 				else if (numa_node_id != cpu_to_node(j))
2645 					numa_node_id = -1;
2646 			}
2647 #endif
2648 		}
2649 
2650 		if (copy)
2651 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2652 					  skip_tc);
2653 	}
2654 
2655 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2656 
2657 	/* Cleanup old maps */
2658 	if (!dev_maps)
2659 		goto out_no_old_maps;
2660 
2661 	for (j = 0; j < dev_maps->nr_ids; j++) {
2662 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2663 			map = xmap_dereference(dev_maps->attr_map[tci]);
2664 			if (!map)
2665 				continue;
2666 
2667 			if (copy) {
2668 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2669 				if (map == new_map)
2670 					continue;
2671 			}
2672 
2673 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2674 			kfree_rcu(map, rcu);
2675 		}
2676 	}
2677 
2678 	old_dev_maps = dev_maps;
2679 
2680 out_no_old_maps:
2681 	dev_maps = new_dev_maps;
2682 	active = true;
2683 
2684 out_no_new_maps:
2685 	if (type == XPS_CPUS)
2686 		/* update Tx queue numa node */
2687 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2688 					     (numa_node_id >= 0) ?
2689 					     numa_node_id : NUMA_NO_NODE);
2690 
2691 	if (!dev_maps)
2692 		goto out_no_maps;
2693 
2694 	/* removes tx-queue from unused CPUs/rx-queues */
2695 	for (j = 0; j < dev_maps->nr_ids; j++) {
2696 		tci = j * dev_maps->num_tc;
2697 
2698 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2699 			if (i == tc &&
2700 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2701 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2702 				continue;
2703 
2704 			active |= remove_xps_queue(dev_maps,
2705 						   copy ? old_dev_maps : NULL,
2706 						   tci, index);
2707 		}
2708 	}
2709 
2710 	if (old_dev_maps)
2711 		kfree_rcu(old_dev_maps, rcu);
2712 
2713 	/* free map if not active */
2714 	if (!active)
2715 		reset_xps_maps(dev, dev_maps, type);
2716 
2717 out_no_maps:
2718 	mutex_unlock(&xps_map_mutex);
2719 
2720 	return 0;
2721 error:
2722 	/* remove any maps that we added */
2723 	for (j = 0; j < nr_ids; j++) {
2724 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2725 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2726 			map = copy ?
2727 			      xmap_dereference(dev_maps->attr_map[tci]) :
2728 			      NULL;
2729 			if (new_map && new_map != map)
2730 				kfree(new_map);
2731 		}
2732 	}
2733 
2734 	mutex_unlock(&xps_map_mutex);
2735 
2736 	kfree(new_dev_maps);
2737 	return -ENOMEM;
2738 }
2739 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2740 
2741 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2742 			u16 index)
2743 {
2744 	int ret;
2745 
2746 	cpus_read_lock();
2747 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2748 	cpus_read_unlock();
2749 
2750 	return ret;
2751 }
2752 EXPORT_SYMBOL(netif_set_xps_queue);
2753 
2754 #endif
2755 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2756 {
2757 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2758 
2759 	/* Unbind any subordinate channels */
2760 	while (txq-- != &dev->_tx[0]) {
2761 		if (txq->sb_dev)
2762 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2763 	}
2764 }
2765 
2766 void netdev_reset_tc(struct net_device *dev)
2767 {
2768 #ifdef CONFIG_XPS
2769 	netif_reset_xps_queues_gt(dev, 0);
2770 #endif
2771 	netdev_unbind_all_sb_channels(dev);
2772 
2773 	/* Reset TC configuration of device */
2774 	dev->num_tc = 0;
2775 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2776 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2777 }
2778 EXPORT_SYMBOL(netdev_reset_tc);
2779 
2780 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2781 {
2782 	if (tc >= dev->num_tc)
2783 		return -EINVAL;
2784 
2785 #ifdef CONFIG_XPS
2786 	netif_reset_xps_queues(dev, offset, count);
2787 #endif
2788 	dev->tc_to_txq[tc].count = count;
2789 	dev->tc_to_txq[tc].offset = offset;
2790 	return 0;
2791 }
2792 EXPORT_SYMBOL(netdev_set_tc_queue);
2793 
2794 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2795 {
2796 	if (num_tc > TC_MAX_QUEUE)
2797 		return -EINVAL;
2798 
2799 #ifdef CONFIG_XPS
2800 	netif_reset_xps_queues_gt(dev, 0);
2801 #endif
2802 	netdev_unbind_all_sb_channels(dev);
2803 
2804 	dev->num_tc = num_tc;
2805 	return 0;
2806 }
2807 EXPORT_SYMBOL(netdev_set_num_tc);
2808 
2809 void netdev_unbind_sb_channel(struct net_device *dev,
2810 			      struct net_device *sb_dev)
2811 {
2812 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2813 
2814 #ifdef CONFIG_XPS
2815 	netif_reset_xps_queues_gt(sb_dev, 0);
2816 #endif
2817 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2818 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2819 
2820 	while (txq-- != &dev->_tx[0]) {
2821 		if (txq->sb_dev == sb_dev)
2822 			txq->sb_dev = NULL;
2823 	}
2824 }
2825 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2826 
2827 int netdev_bind_sb_channel_queue(struct net_device *dev,
2828 				 struct net_device *sb_dev,
2829 				 u8 tc, u16 count, u16 offset)
2830 {
2831 	/* Make certain the sb_dev and dev are already configured */
2832 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2833 		return -EINVAL;
2834 
2835 	/* We cannot hand out queues we don't have */
2836 	if ((offset + count) > dev->real_num_tx_queues)
2837 		return -EINVAL;
2838 
2839 	/* Record the mapping */
2840 	sb_dev->tc_to_txq[tc].count = count;
2841 	sb_dev->tc_to_txq[tc].offset = offset;
2842 
2843 	/* Provide a way for Tx queue to find the tc_to_txq map or
2844 	 * XPS map for itself.
2845 	 */
2846 	while (count--)
2847 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2848 
2849 	return 0;
2850 }
2851 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2852 
2853 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2854 {
2855 	/* Do not use a multiqueue device to represent a subordinate channel */
2856 	if (netif_is_multiqueue(dev))
2857 		return -ENODEV;
2858 
2859 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2860 	 * Channel 0 is meant to be "native" mode and used only to represent
2861 	 * the main root device. We allow writing 0 to reset the device back
2862 	 * to normal mode after being used as a subordinate channel.
2863 	 */
2864 	if (channel > S16_MAX)
2865 		return -EINVAL;
2866 
2867 	dev->num_tc = -channel;
2868 
2869 	return 0;
2870 }
2871 EXPORT_SYMBOL(netdev_set_sb_channel);
2872 
2873 /*
2874  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2875  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2876  */
2877 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2878 {
2879 	bool disabling;
2880 	int rc;
2881 
2882 	disabling = txq < dev->real_num_tx_queues;
2883 
2884 	if (txq < 1 || txq > dev->num_tx_queues)
2885 		return -EINVAL;
2886 
2887 	if (dev->reg_state == NETREG_REGISTERED ||
2888 	    dev->reg_state == NETREG_UNREGISTERING) {
2889 		ASSERT_RTNL();
2890 
2891 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2892 						  txq);
2893 		if (rc)
2894 			return rc;
2895 
2896 		if (dev->num_tc)
2897 			netif_setup_tc(dev, txq);
2898 
2899 		dev_qdisc_change_real_num_tx(dev, txq);
2900 
2901 		dev->real_num_tx_queues = txq;
2902 
2903 		if (disabling) {
2904 			synchronize_net();
2905 			qdisc_reset_all_tx_gt(dev, txq);
2906 #ifdef CONFIG_XPS
2907 			netif_reset_xps_queues_gt(dev, txq);
2908 #endif
2909 		}
2910 	} else {
2911 		dev->real_num_tx_queues = txq;
2912 	}
2913 
2914 	return 0;
2915 }
2916 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2917 
2918 #ifdef CONFIG_SYSFS
2919 /**
2920  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2921  *	@dev: Network device
2922  *	@rxq: Actual number of RX queues
2923  *
2924  *	This must be called either with the rtnl_lock held or before
2925  *	registration of the net device.  Returns 0 on success, or a
2926  *	negative error code.  If called before registration, it always
2927  *	succeeds.
2928  */
2929 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2930 {
2931 	int rc;
2932 
2933 	if (rxq < 1 || rxq > dev->num_rx_queues)
2934 		return -EINVAL;
2935 
2936 	if (dev->reg_state == NETREG_REGISTERED) {
2937 		ASSERT_RTNL();
2938 
2939 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2940 						  rxq);
2941 		if (rc)
2942 			return rc;
2943 	}
2944 
2945 	dev->real_num_rx_queues = rxq;
2946 	return 0;
2947 }
2948 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2949 #endif
2950 
2951 /**
2952  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2953  *	@dev: Network device
2954  *	@txq: Actual number of TX queues
2955  *	@rxq: Actual number of RX queues
2956  *
2957  *	Set the real number of both TX and RX queues.
2958  *	Does nothing if the number of queues is already correct.
2959  */
2960 int netif_set_real_num_queues(struct net_device *dev,
2961 			      unsigned int txq, unsigned int rxq)
2962 {
2963 	unsigned int old_rxq = dev->real_num_rx_queues;
2964 	int err;
2965 
2966 	if (txq < 1 || txq > dev->num_tx_queues ||
2967 	    rxq < 1 || rxq > dev->num_rx_queues)
2968 		return -EINVAL;
2969 
2970 	/* Start from increases, so the error path only does decreases -
2971 	 * decreases can't fail.
2972 	 */
2973 	if (rxq > dev->real_num_rx_queues) {
2974 		err = netif_set_real_num_rx_queues(dev, rxq);
2975 		if (err)
2976 			return err;
2977 	}
2978 	if (txq > dev->real_num_tx_queues) {
2979 		err = netif_set_real_num_tx_queues(dev, txq);
2980 		if (err)
2981 			goto undo_rx;
2982 	}
2983 	if (rxq < dev->real_num_rx_queues)
2984 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2985 	if (txq < dev->real_num_tx_queues)
2986 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2987 
2988 	return 0;
2989 undo_rx:
2990 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2991 	return err;
2992 }
2993 EXPORT_SYMBOL(netif_set_real_num_queues);
2994 
2995 /**
2996  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
2997  * @to:		netdev to update
2998  * @from:	netdev from which to copy the limits
2999  */
3000 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3001 {
3002 	netif_set_gso_max_size(to, from->gso_max_size);
3003 	netif_set_gso_max_segs(to, from->gso_max_segs);
3004 }
3005 EXPORT_SYMBOL(netif_inherit_tso_max);
3006 
3007 /**
3008  * netif_get_num_default_rss_queues - default number of RSS queues
3009  *
3010  * Default value is the number of physical cores if there are only 1 or 2, or
3011  * divided by 2 if there are more.
3012  */
3013 int netif_get_num_default_rss_queues(void)
3014 {
3015 	cpumask_var_t cpus;
3016 	int cpu, count = 0;
3017 
3018 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3019 		return 1;
3020 
3021 	cpumask_copy(cpus, cpu_online_mask);
3022 	for_each_cpu(cpu, cpus) {
3023 		++count;
3024 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3025 	}
3026 	free_cpumask_var(cpus);
3027 
3028 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3029 }
3030 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3031 
3032 static void __netif_reschedule(struct Qdisc *q)
3033 {
3034 	struct softnet_data *sd;
3035 	unsigned long flags;
3036 
3037 	local_irq_save(flags);
3038 	sd = this_cpu_ptr(&softnet_data);
3039 	q->next_sched = NULL;
3040 	*sd->output_queue_tailp = q;
3041 	sd->output_queue_tailp = &q->next_sched;
3042 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3043 	local_irq_restore(flags);
3044 }
3045 
3046 void __netif_schedule(struct Qdisc *q)
3047 {
3048 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3049 		__netif_reschedule(q);
3050 }
3051 EXPORT_SYMBOL(__netif_schedule);
3052 
3053 struct dev_kfree_skb_cb {
3054 	enum skb_free_reason reason;
3055 };
3056 
3057 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3058 {
3059 	return (struct dev_kfree_skb_cb *)skb->cb;
3060 }
3061 
3062 void netif_schedule_queue(struct netdev_queue *txq)
3063 {
3064 	rcu_read_lock();
3065 	if (!netif_xmit_stopped(txq)) {
3066 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3067 
3068 		__netif_schedule(q);
3069 	}
3070 	rcu_read_unlock();
3071 }
3072 EXPORT_SYMBOL(netif_schedule_queue);
3073 
3074 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3075 {
3076 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3077 		struct Qdisc *q;
3078 
3079 		rcu_read_lock();
3080 		q = rcu_dereference(dev_queue->qdisc);
3081 		__netif_schedule(q);
3082 		rcu_read_unlock();
3083 	}
3084 }
3085 EXPORT_SYMBOL(netif_tx_wake_queue);
3086 
3087 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3088 {
3089 	unsigned long flags;
3090 
3091 	if (unlikely(!skb))
3092 		return;
3093 
3094 	if (likely(refcount_read(&skb->users) == 1)) {
3095 		smp_rmb();
3096 		refcount_set(&skb->users, 0);
3097 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3098 		return;
3099 	}
3100 	get_kfree_skb_cb(skb)->reason = reason;
3101 	local_irq_save(flags);
3102 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3103 	__this_cpu_write(softnet_data.completion_queue, skb);
3104 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3105 	local_irq_restore(flags);
3106 }
3107 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3108 
3109 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3110 {
3111 	if (in_hardirq() || irqs_disabled())
3112 		__dev_kfree_skb_irq(skb, reason);
3113 	else
3114 		dev_kfree_skb(skb);
3115 }
3116 EXPORT_SYMBOL(__dev_kfree_skb_any);
3117 
3118 
3119 /**
3120  * netif_device_detach - mark device as removed
3121  * @dev: network device
3122  *
3123  * Mark device as removed from system and therefore no longer available.
3124  */
3125 void netif_device_detach(struct net_device *dev)
3126 {
3127 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3128 	    netif_running(dev)) {
3129 		netif_tx_stop_all_queues(dev);
3130 	}
3131 }
3132 EXPORT_SYMBOL(netif_device_detach);
3133 
3134 /**
3135  * netif_device_attach - mark device as attached
3136  * @dev: network device
3137  *
3138  * Mark device as attached from system and restart if needed.
3139  */
3140 void netif_device_attach(struct net_device *dev)
3141 {
3142 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3143 	    netif_running(dev)) {
3144 		netif_tx_wake_all_queues(dev);
3145 		__netdev_watchdog_up(dev);
3146 	}
3147 }
3148 EXPORT_SYMBOL(netif_device_attach);
3149 
3150 /*
3151  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3152  * to be used as a distribution range.
3153  */
3154 static u16 skb_tx_hash(const struct net_device *dev,
3155 		       const struct net_device *sb_dev,
3156 		       struct sk_buff *skb)
3157 {
3158 	u32 hash;
3159 	u16 qoffset = 0;
3160 	u16 qcount = dev->real_num_tx_queues;
3161 
3162 	if (dev->num_tc) {
3163 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3164 
3165 		qoffset = sb_dev->tc_to_txq[tc].offset;
3166 		qcount = sb_dev->tc_to_txq[tc].count;
3167 		if (unlikely(!qcount)) {
3168 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3169 					     sb_dev->name, qoffset, tc);
3170 			qoffset = 0;
3171 			qcount = dev->real_num_tx_queues;
3172 		}
3173 	}
3174 
3175 	if (skb_rx_queue_recorded(skb)) {
3176 		hash = skb_get_rx_queue(skb);
3177 		if (hash >= qoffset)
3178 			hash -= qoffset;
3179 		while (unlikely(hash >= qcount))
3180 			hash -= qcount;
3181 		return hash + qoffset;
3182 	}
3183 
3184 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3185 }
3186 
3187 static void skb_warn_bad_offload(const struct sk_buff *skb)
3188 {
3189 	static const netdev_features_t null_features;
3190 	struct net_device *dev = skb->dev;
3191 	const char *name = "";
3192 
3193 	if (!net_ratelimit())
3194 		return;
3195 
3196 	if (dev) {
3197 		if (dev->dev.parent)
3198 			name = dev_driver_string(dev->dev.parent);
3199 		else
3200 			name = netdev_name(dev);
3201 	}
3202 	skb_dump(KERN_WARNING, skb, false);
3203 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3204 	     name, dev ? &dev->features : &null_features,
3205 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3206 }
3207 
3208 /*
3209  * Invalidate hardware checksum when packet is to be mangled, and
3210  * complete checksum manually on outgoing path.
3211  */
3212 int skb_checksum_help(struct sk_buff *skb)
3213 {
3214 	__wsum csum;
3215 	int ret = 0, offset;
3216 
3217 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3218 		goto out_set_summed;
3219 
3220 	if (unlikely(skb_is_gso(skb))) {
3221 		skb_warn_bad_offload(skb);
3222 		return -EINVAL;
3223 	}
3224 
3225 	/* Before computing a checksum, we should make sure no frag could
3226 	 * be modified by an external entity : checksum could be wrong.
3227 	 */
3228 	if (skb_has_shared_frag(skb)) {
3229 		ret = __skb_linearize(skb);
3230 		if (ret)
3231 			goto out;
3232 	}
3233 
3234 	offset = skb_checksum_start_offset(skb);
3235 	BUG_ON(offset >= skb_headlen(skb));
3236 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3237 
3238 	offset += skb->csum_offset;
3239 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3240 
3241 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3242 	if (ret)
3243 		goto out;
3244 
3245 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3246 out_set_summed:
3247 	skb->ip_summed = CHECKSUM_NONE;
3248 out:
3249 	return ret;
3250 }
3251 EXPORT_SYMBOL(skb_checksum_help);
3252 
3253 int skb_crc32c_csum_help(struct sk_buff *skb)
3254 {
3255 	__le32 crc32c_csum;
3256 	int ret = 0, offset, start;
3257 
3258 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3259 		goto out;
3260 
3261 	if (unlikely(skb_is_gso(skb)))
3262 		goto out;
3263 
3264 	/* Before computing a checksum, we should make sure no frag could
3265 	 * be modified by an external entity : checksum could be wrong.
3266 	 */
3267 	if (unlikely(skb_has_shared_frag(skb))) {
3268 		ret = __skb_linearize(skb);
3269 		if (ret)
3270 			goto out;
3271 	}
3272 	start = skb_checksum_start_offset(skb);
3273 	offset = start + offsetof(struct sctphdr, checksum);
3274 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3275 		ret = -EINVAL;
3276 		goto out;
3277 	}
3278 
3279 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3280 	if (ret)
3281 		goto out;
3282 
3283 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3284 						  skb->len - start, ~(__u32)0,
3285 						  crc32c_csum_stub));
3286 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3287 	skb->ip_summed = CHECKSUM_NONE;
3288 	skb->csum_not_inet = 0;
3289 out:
3290 	return ret;
3291 }
3292 
3293 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3294 {
3295 	__be16 type = skb->protocol;
3296 
3297 	/* Tunnel gso handlers can set protocol to ethernet. */
3298 	if (type == htons(ETH_P_TEB)) {
3299 		struct ethhdr *eth;
3300 
3301 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3302 			return 0;
3303 
3304 		eth = (struct ethhdr *)skb->data;
3305 		type = eth->h_proto;
3306 	}
3307 
3308 	return __vlan_get_protocol(skb, type, depth);
3309 }
3310 
3311 /* openvswitch calls this on rx path, so we need a different check.
3312  */
3313 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3314 {
3315 	if (tx_path)
3316 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3317 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3318 
3319 	return skb->ip_summed == CHECKSUM_NONE;
3320 }
3321 
3322 /**
3323  *	__skb_gso_segment - Perform segmentation on skb.
3324  *	@skb: buffer to segment
3325  *	@features: features for the output path (see dev->features)
3326  *	@tx_path: whether it is called in TX path
3327  *
3328  *	This function segments the given skb and returns a list of segments.
3329  *
3330  *	It may return NULL if the skb requires no segmentation.  This is
3331  *	only possible when GSO is used for verifying header integrity.
3332  *
3333  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3334  */
3335 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3336 				  netdev_features_t features, bool tx_path)
3337 {
3338 	struct sk_buff *segs;
3339 
3340 	if (unlikely(skb_needs_check(skb, tx_path))) {
3341 		int err;
3342 
3343 		/* We're going to init ->check field in TCP or UDP header */
3344 		err = skb_cow_head(skb, 0);
3345 		if (err < 0)
3346 			return ERR_PTR(err);
3347 	}
3348 
3349 	/* Only report GSO partial support if it will enable us to
3350 	 * support segmentation on this frame without needing additional
3351 	 * work.
3352 	 */
3353 	if (features & NETIF_F_GSO_PARTIAL) {
3354 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3355 		struct net_device *dev = skb->dev;
3356 
3357 		partial_features |= dev->features & dev->gso_partial_features;
3358 		if (!skb_gso_ok(skb, features | partial_features))
3359 			features &= ~NETIF_F_GSO_PARTIAL;
3360 	}
3361 
3362 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3363 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3364 
3365 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3366 	SKB_GSO_CB(skb)->encap_level = 0;
3367 
3368 	skb_reset_mac_header(skb);
3369 	skb_reset_mac_len(skb);
3370 
3371 	segs = skb_mac_gso_segment(skb, features);
3372 
3373 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3374 		skb_warn_bad_offload(skb);
3375 
3376 	return segs;
3377 }
3378 EXPORT_SYMBOL(__skb_gso_segment);
3379 
3380 /* Take action when hardware reception checksum errors are detected. */
3381 #ifdef CONFIG_BUG
3382 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3383 {
3384 	netdev_err(dev, "hw csum failure\n");
3385 	skb_dump(KERN_ERR, skb, true);
3386 	dump_stack();
3387 }
3388 
3389 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3390 {
3391 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3392 }
3393 EXPORT_SYMBOL(netdev_rx_csum_fault);
3394 #endif
3395 
3396 /* XXX: check that highmem exists at all on the given machine. */
3397 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3398 {
3399 #ifdef CONFIG_HIGHMEM
3400 	int i;
3401 
3402 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3403 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3404 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3405 
3406 			if (PageHighMem(skb_frag_page(frag)))
3407 				return 1;
3408 		}
3409 	}
3410 #endif
3411 	return 0;
3412 }
3413 
3414 /* If MPLS offload request, verify we are testing hardware MPLS features
3415  * instead of standard features for the netdev.
3416  */
3417 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3418 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3419 					   netdev_features_t features,
3420 					   __be16 type)
3421 {
3422 	if (eth_p_mpls(type))
3423 		features &= skb->dev->mpls_features;
3424 
3425 	return features;
3426 }
3427 #else
3428 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3429 					   netdev_features_t features,
3430 					   __be16 type)
3431 {
3432 	return features;
3433 }
3434 #endif
3435 
3436 static netdev_features_t harmonize_features(struct sk_buff *skb,
3437 	netdev_features_t features)
3438 {
3439 	__be16 type;
3440 
3441 	type = skb_network_protocol(skb, NULL);
3442 	features = net_mpls_features(skb, features, type);
3443 
3444 	if (skb->ip_summed != CHECKSUM_NONE &&
3445 	    !can_checksum_protocol(features, type)) {
3446 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3447 	}
3448 	if (illegal_highdma(skb->dev, skb))
3449 		features &= ~NETIF_F_SG;
3450 
3451 	return features;
3452 }
3453 
3454 netdev_features_t passthru_features_check(struct sk_buff *skb,
3455 					  struct net_device *dev,
3456 					  netdev_features_t features)
3457 {
3458 	return features;
3459 }
3460 EXPORT_SYMBOL(passthru_features_check);
3461 
3462 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3463 					     struct net_device *dev,
3464 					     netdev_features_t features)
3465 {
3466 	return vlan_features_check(skb, features);
3467 }
3468 
3469 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3470 					    struct net_device *dev,
3471 					    netdev_features_t features)
3472 {
3473 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3474 
3475 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3476 		return features & ~NETIF_F_GSO_MASK;
3477 
3478 	if (!skb_shinfo(skb)->gso_type) {
3479 		skb_warn_bad_offload(skb);
3480 		return features & ~NETIF_F_GSO_MASK;
3481 	}
3482 
3483 	/* Support for GSO partial features requires software
3484 	 * intervention before we can actually process the packets
3485 	 * so we need to strip support for any partial features now
3486 	 * and we can pull them back in after we have partially
3487 	 * segmented the frame.
3488 	 */
3489 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3490 		features &= ~dev->gso_partial_features;
3491 
3492 	/* Make sure to clear the IPv4 ID mangling feature if the
3493 	 * IPv4 header has the potential to be fragmented.
3494 	 */
3495 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3496 		struct iphdr *iph = skb->encapsulation ?
3497 				    inner_ip_hdr(skb) : ip_hdr(skb);
3498 
3499 		if (!(iph->frag_off & htons(IP_DF)))
3500 			features &= ~NETIF_F_TSO_MANGLEID;
3501 	}
3502 
3503 	return features;
3504 }
3505 
3506 netdev_features_t netif_skb_features(struct sk_buff *skb)
3507 {
3508 	struct net_device *dev = skb->dev;
3509 	netdev_features_t features = dev->features;
3510 
3511 	if (skb_is_gso(skb))
3512 		features = gso_features_check(skb, dev, features);
3513 
3514 	/* If encapsulation offload request, verify we are testing
3515 	 * hardware encapsulation features instead of standard
3516 	 * features for the netdev
3517 	 */
3518 	if (skb->encapsulation)
3519 		features &= dev->hw_enc_features;
3520 
3521 	if (skb_vlan_tagged(skb))
3522 		features = netdev_intersect_features(features,
3523 						     dev->vlan_features |
3524 						     NETIF_F_HW_VLAN_CTAG_TX |
3525 						     NETIF_F_HW_VLAN_STAG_TX);
3526 
3527 	if (dev->netdev_ops->ndo_features_check)
3528 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3529 								features);
3530 	else
3531 		features &= dflt_features_check(skb, dev, features);
3532 
3533 	return harmonize_features(skb, features);
3534 }
3535 EXPORT_SYMBOL(netif_skb_features);
3536 
3537 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3538 		    struct netdev_queue *txq, bool more)
3539 {
3540 	unsigned int len;
3541 	int rc;
3542 
3543 	if (dev_nit_active(dev))
3544 		dev_queue_xmit_nit(skb, dev);
3545 
3546 	len = skb->len;
3547 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3548 	trace_net_dev_start_xmit(skb, dev);
3549 	rc = netdev_start_xmit(skb, dev, txq, more);
3550 	trace_net_dev_xmit(skb, rc, dev, len);
3551 
3552 	return rc;
3553 }
3554 
3555 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3556 				    struct netdev_queue *txq, int *ret)
3557 {
3558 	struct sk_buff *skb = first;
3559 	int rc = NETDEV_TX_OK;
3560 
3561 	while (skb) {
3562 		struct sk_buff *next = skb->next;
3563 
3564 		skb_mark_not_on_list(skb);
3565 		rc = xmit_one(skb, dev, txq, next != NULL);
3566 		if (unlikely(!dev_xmit_complete(rc))) {
3567 			skb->next = next;
3568 			goto out;
3569 		}
3570 
3571 		skb = next;
3572 		if (netif_tx_queue_stopped(txq) && skb) {
3573 			rc = NETDEV_TX_BUSY;
3574 			break;
3575 		}
3576 	}
3577 
3578 out:
3579 	*ret = rc;
3580 	return skb;
3581 }
3582 
3583 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3584 					  netdev_features_t features)
3585 {
3586 	if (skb_vlan_tag_present(skb) &&
3587 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3588 		skb = __vlan_hwaccel_push_inside(skb);
3589 	return skb;
3590 }
3591 
3592 int skb_csum_hwoffload_help(struct sk_buff *skb,
3593 			    const netdev_features_t features)
3594 {
3595 	if (unlikely(skb_csum_is_sctp(skb)))
3596 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3597 			skb_crc32c_csum_help(skb);
3598 
3599 	if (features & NETIF_F_HW_CSUM)
3600 		return 0;
3601 
3602 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3603 		switch (skb->csum_offset) {
3604 		case offsetof(struct tcphdr, check):
3605 		case offsetof(struct udphdr, check):
3606 			return 0;
3607 		}
3608 	}
3609 
3610 	return skb_checksum_help(skb);
3611 }
3612 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3613 
3614 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3615 {
3616 	netdev_features_t features;
3617 
3618 	features = netif_skb_features(skb);
3619 	skb = validate_xmit_vlan(skb, features);
3620 	if (unlikely(!skb))
3621 		goto out_null;
3622 
3623 	skb = sk_validate_xmit_skb(skb, dev);
3624 	if (unlikely(!skb))
3625 		goto out_null;
3626 
3627 	if (netif_needs_gso(skb, features)) {
3628 		struct sk_buff *segs;
3629 
3630 		segs = skb_gso_segment(skb, features);
3631 		if (IS_ERR(segs)) {
3632 			goto out_kfree_skb;
3633 		} else if (segs) {
3634 			consume_skb(skb);
3635 			skb = segs;
3636 		}
3637 	} else {
3638 		if (skb_needs_linearize(skb, features) &&
3639 		    __skb_linearize(skb))
3640 			goto out_kfree_skb;
3641 
3642 		/* If packet is not checksummed and device does not
3643 		 * support checksumming for this protocol, complete
3644 		 * checksumming here.
3645 		 */
3646 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3647 			if (skb->encapsulation)
3648 				skb_set_inner_transport_header(skb,
3649 							       skb_checksum_start_offset(skb));
3650 			else
3651 				skb_set_transport_header(skb,
3652 							 skb_checksum_start_offset(skb));
3653 			if (skb_csum_hwoffload_help(skb, features))
3654 				goto out_kfree_skb;
3655 		}
3656 	}
3657 
3658 	skb = validate_xmit_xfrm(skb, features, again);
3659 
3660 	return skb;
3661 
3662 out_kfree_skb:
3663 	kfree_skb(skb);
3664 out_null:
3665 	dev_core_stats_tx_dropped_inc(dev);
3666 	return NULL;
3667 }
3668 
3669 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3670 {
3671 	struct sk_buff *next, *head = NULL, *tail;
3672 
3673 	for (; skb != NULL; skb = next) {
3674 		next = skb->next;
3675 		skb_mark_not_on_list(skb);
3676 
3677 		/* in case skb wont be segmented, point to itself */
3678 		skb->prev = skb;
3679 
3680 		skb = validate_xmit_skb(skb, dev, again);
3681 		if (!skb)
3682 			continue;
3683 
3684 		if (!head)
3685 			head = skb;
3686 		else
3687 			tail->next = skb;
3688 		/* If skb was segmented, skb->prev points to
3689 		 * the last segment. If not, it still contains skb.
3690 		 */
3691 		tail = skb->prev;
3692 	}
3693 	return head;
3694 }
3695 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3696 
3697 static void qdisc_pkt_len_init(struct sk_buff *skb)
3698 {
3699 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3700 
3701 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3702 
3703 	/* To get more precise estimation of bytes sent on wire,
3704 	 * we add to pkt_len the headers size of all segments
3705 	 */
3706 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3707 		unsigned int hdr_len;
3708 		u16 gso_segs = shinfo->gso_segs;
3709 
3710 		/* mac layer + network layer */
3711 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3712 
3713 		/* + transport layer */
3714 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3715 			const struct tcphdr *th;
3716 			struct tcphdr _tcphdr;
3717 
3718 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3719 						sizeof(_tcphdr), &_tcphdr);
3720 			if (likely(th))
3721 				hdr_len += __tcp_hdrlen(th);
3722 		} else {
3723 			struct udphdr _udphdr;
3724 
3725 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3726 					       sizeof(_udphdr), &_udphdr))
3727 				hdr_len += sizeof(struct udphdr);
3728 		}
3729 
3730 		if (shinfo->gso_type & SKB_GSO_DODGY)
3731 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3732 						shinfo->gso_size);
3733 
3734 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3735 	}
3736 }
3737 
3738 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3739 			     struct sk_buff **to_free,
3740 			     struct netdev_queue *txq)
3741 {
3742 	int rc;
3743 
3744 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3745 	if (rc == NET_XMIT_SUCCESS)
3746 		trace_qdisc_enqueue(q, txq, skb);
3747 	return rc;
3748 }
3749 
3750 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3751 				 struct net_device *dev,
3752 				 struct netdev_queue *txq)
3753 {
3754 	spinlock_t *root_lock = qdisc_lock(q);
3755 	struct sk_buff *to_free = NULL;
3756 	bool contended;
3757 	int rc;
3758 
3759 	qdisc_calculate_pkt_len(skb, q);
3760 
3761 	if (q->flags & TCQ_F_NOLOCK) {
3762 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3763 		    qdisc_run_begin(q)) {
3764 			/* Retest nolock_qdisc_is_empty() within the protection
3765 			 * of q->seqlock to protect from racing with requeuing.
3766 			 */
3767 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3768 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769 				__qdisc_run(q);
3770 				qdisc_run_end(q);
3771 
3772 				goto no_lock_out;
3773 			}
3774 
3775 			qdisc_bstats_cpu_update(q, skb);
3776 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3777 			    !nolock_qdisc_is_empty(q))
3778 				__qdisc_run(q);
3779 
3780 			qdisc_run_end(q);
3781 			return NET_XMIT_SUCCESS;
3782 		}
3783 
3784 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3785 		qdisc_run(q);
3786 
3787 no_lock_out:
3788 		if (unlikely(to_free))
3789 			kfree_skb_list_reason(to_free,
3790 					      SKB_DROP_REASON_QDISC_DROP);
3791 		return rc;
3792 	}
3793 
3794 	/*
3795 	 * Heuristic to force contended enqueues to serialize on a
3796 	 * separate lock before trying to get qdisc main lock.
3797 	 * This permits qdisc->running owner to get the lock more
3798 	 * often and dequeue packets faster.
3799 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3800 	 * and then other tasks will only enqueue packets. The packets will be
3801 	 * sent after the qdisc owner is scheduled again. To prevent this
3802 	 * scenario the task always serialize on the lock.
3803 	 */
3804 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3805 	if (unlikely(contended))
3806 		spin_lock(&q->busylock);
3807 
3808 	spin_lock(root_lock);
3809 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3810 		__qdisc_drop(skb, &to_free);
3811 		rc = NET_XMIT_DROP;
3812 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3813 		   qdisc_run_begin(q)) {
3814 		/*
3815 		 * This is a work-conserving queue; there are no old skbs
3816 		 * waiting to be sent out; and the qdisc is not running -
3817 		 * xmit the skb directly.
3818 		 */
3819 
3820 		qdisc_bstats_update(q, skb);
3821 
3822 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3823 			if (unlikely(contended)) {
3824 				spin_unlock(&q->busylock);
3825 				contended = false;
3826 			}
3827 			__qdisc_run(q);
3828 		}
3829 
3830 		qdisc_run_end(q);
3831 		rc = NET_XMIT_SUCCESS;
3832 	} else {
3833 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3834 		if (qdisc_run_begin(q)) {
3835 			if (unlikely(contended)) {
3836 				spin_unlock(&q->busylock);
3837 				contended = false;
3838 			}
3839 			__qdisc_run(q);
3840 			qdisc_run_end(q);
3841 		}
3842 	}
3843 	spin_unlock(root_lock);
3844 	if (unlikely(to_free))
3845 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3846 	if (unlikely(contended))
3847 		spin_unlock(&q->busylock);
3848 	return rc;
3849 }
3850 
3851 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3852 static void skb_update_prio(struct sk_buff *skb)
3853 {
3854 	const struct netprio_map *map;
3855 	const struct sock *sk;
3856 	unsigned int prioidx;
3857 
3858 	if (skb->priority)
3859 		return;
3860 	map = rcu_dereference_bh(skb->dev->priomap);
3861 	if (!map)
3862 		return;
3863 	sk = skb_to_full_sk(skb);
3864 	if (!sk)
3865 		return;
3866 
3867 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3868 
3869 	if (prioidx < map->priomap_len)
3870 		skb->priority = map->priomap[prioidx];
3871 }
3872 #else
3873 #define skb_update_prio(skb)
3874 #endif
3875 
3876 /**
3877  *	dev_loopback_xmit - loop back @skb
3878  *	@net: network namespace this loopback is happening in
3879  *	@sk:  sk needed to be a netfilter okfn
3880  *	@skb: buffer to transmit
3881  */
3882 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3883 {
3884 	skb_reset_mac_header(skb);
3885 	__skb_pull(skb, skb_network_offset(skb));
3886 	skb->pkt_type = PACKET_LOOPBACK;
3887 	if (skb->ip_summed == CHECKSUM_NONE)
3888 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3889 	WARN_ON(!skb_dst(skb));
3890 	skb_dst_force(skb);
3891 	netif_rx(skb);
3892 	return 0;
3893 }
3894 EXPORT_SYMBOL(dev_loopback_xmit);
3895 
3896 #ifdef CONFIG_NET_EGRESS
3897 static struct sk_buff *
3898 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3899 {
3900 #ifdef CONFIG_NET_CLS_ACT
3901 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3902 	struct tcf_result cl_res;
3903 
3904 	if (!miniq)
3905 		return skb;
3906 
3907 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3908 	tc_skb_cb(skb)->mru = 0;
3909 	tc_skb_cb(skb)->post_ct = false;
3910 	mini_qdisc_bstats_cpu_update(miniq, skb);
3911 
3912 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3913 	case TC_ACT_OK:
3914 	case TC_ACT_RECLASSIFY:
3915 		skb->tc_index = TC_H_MIN(cl_res.classid);
3916 		break;
3917 	case TC_ACT_SHOT:
3918 		mini_qdisc_qstats_cpu_drop(miniq);
3919 		*ret = NET_XMIT_DROP;
3920 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3921 		return NULL;
3922 	case TC_ACT_STOLEN:
3923 	case TC_ACT_QUEUED:
3924 	case TC_ACT_TRAP:
3925 		*ret = NET_XMIT_SUCCESS;
3926 		consume_skb(skb);
3927 		return NULL;
3928 	case TC_ACT_REDIRECT:
3929 		/* No need to push/pop skb's mac_header here on egress! */
3930 		skb_do_redirect(skb);
3931 		*ret = NET_XMIT_SUCCESS;
3932 		return NULL;
3933 	default:
3934 		break;
3935 	}
3936 #endif /* CONFIG_NET_CLS_ACT */
3937 
3938 	return skb;
3939 }
3940 
3941 static struct netdev_queue *
3942 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3943 {
3944 	int qm = skb_get_queue_mapping(skb);
3945 
3946 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3947 }
3948 
3949 static bool netdev_xmit_txqueue_skipped(void)
3950 {
3951 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3952 }
3953 
3954 void netdev_xmit_skip_txqueue(bool skip)
3955 {
3956 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3957 }
3958 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3959 #endif /* CONFIG_NET_EGRESS */
3960 
3961 #ifdef CONFIG_XPS
3962 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3963 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3964 {
3965 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3966 	struct xps_map *map;
3967 	int queue_index = -1;
3968 
3969 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3970 		return queue_index;
3971 
3972 	tci *= dev_maps->num_tc;
3973 	tci += tc;
3974 
3975 	map = rcu_dereference(dev_maps->attr_map[tci]);
3976 	if (map) {
3977 		if (map->len == 1)
3978 			queue_index = map->queues[0];
3979 		else
3980 			queue_index = map->queues[reciprocal_scale(
3981 						skb_get_hash(skb), map->len)];
3982 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3983 			queue_index = -1;
3984 	}
3985 	return queue_index;
3986 }
3987 #endif
3988 
3989 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3990 			 struct sk_buff *skb)
3991 {
3992 #ifdef CONFIG_XPS
3993 	struct xps_dev_maps *dev_maps;
3994 	struct sock *sk = skb->sk;
3995 	int queue_index = -1;
3996 
3997 	if (!static_key_false(&xps_needed))
3998 		return -1;
3999 
4000 	rcu_read_lock();
4001 	if (!static_key_false(&xps_rxqs_needed))
4002 		goto get_cpus_map;
4003 
4004 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4005 	if (dev_maps) {
4006 		int tci = sk_rx_queue_get(sk);
4007 
4008 		if (tci >= 0)
4009 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4010 							  tci);
4011 	}
4012 
4013 get_cpus_map:
4014 	if (queue_index < 0) {
4015 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4016 		if (dev_maps) {
4017 			unsigned int tci = skb->sender_cpu - 1;
4018 
4019 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4020 							  tci);
4021 		}
4022 	}
4023 	rcu_read_unlock();
4024 
4025 	return queue_index;
4026 #else
4027 	return -1;
4028 #endif
4029 }
4030 
4031 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4032 		     struct net_device *sb_dev)
4033 {
4034 	return 0;
4035 }
4036 EXPORT_SYMBOL(dev_pick_tx_zero);
4037 
4038 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4039 		       struct net_device *sb_dev)
4040 {
4041 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4042 }
4043 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4044 
4045 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4046 		     struct net_device *sb_dev)
4047 {
4048 	struct sock *sk = skb->sk;
4049 	int queue_index = sk_tx_queue_get(sk);
4050 
4051 	sb_dev = sb_dev ? : dev;
4052 
4053 	if (queue_index < 0 || skb->ooo_okay ||
4054 	    queue_index >= dev->real_num_tx_queues) {
4055 		int new_index = get_xps_queue(dev, sb_dev, skb);
4056 
4057 		if (new_index < 0)
4058 			new_index = skb_tx_hash(dev, sb_dev, skb);
4059 
4060 		if (queue_index != new_index && sk &&
4061 		    sk_fullsock(sk) &&
4062 		    rcu_access_pointer(sk->sk_dst_cache))
4063 			sk_tx_queue_set(sk, new_index);
4064 
4065 		queue_index = new_index;
4066 	}
4067 
4068 	return queue_index;
4069 }
4070 EXPORT_SYMBOL(netdev_pick_tx);
4071 
4072 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4073 					 struct sk_buff *skb,
4074 					 struct net_device *sb_dev)
4075 {
4076 	int queue_index = 0;
4077 
4078 #ifdef CONFIG_XPS
4079 	u32 sender_cpu = skb->sender_cpu - 1;
4080 
4081 	if (sender_cpu >= (u32)NR_CPUS)
4082 		skb->sender_cpu = raw_smp_processor_id() + 1;
4083 #endif
4084 
4085 	if (dev->real_num_tx_queues != 1) {
4086 		const struct net_device_ops *ops = dev->netdev_ops;
4087 
4088 		if (ops->ndo_select_queue)
4089 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4090 		else
4091 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4092 
4093 		queue_index = netdev_cap_txqueue(dev, queue_index);
4094 	}
4095 
4096 	skb_set_queue_mapping(skb, queue_index);
4097 	return netdev_get_tx_queue(dev, queue_index);
4098 }
4099 
4100 /**
4101  *	__dev_queue_xmit - transmit a buffer
4102  *	@skb: buffer to transmit
4103  *	@sb_dev: suboordinate device used for L2 forwarding offload
4104  *
4105  *	Queue a buffer for transmission to a network device. The caller must
4106  *	have set the device and priority and built the buffer before calling
4107  *	this function. The function can be called from an interrupt.
4108  *
4109  *	A negative errno code is returned on a failure. A success does not
4110  *	guarantee the frame will be transmitted as it may be dropped due
4111  *	to congestion or traffic shaping.
4112  *
4113  * -----------------------------------------------------------------------------------
4114  *      I notice this method can also return errors from the queue disciplines,
4115  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4116  *      be positive.
4117  *
4118  *      Regardless of the return value, the skb is consumed, so it is currently
4119  *      difficult to retry a send to this method.  (You can bump the ref count
4120  *      before sending to hold a reference for retry if you are careful.)
4121  *
4122  *      When calling this method, interrupts MUST be enabled.  This is because
4123  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4124  *          --BLG
4125  */
4126 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4127 {
4128 	struct net_device *dev = skb->dev;
4129 	struct netdev_queue *txq = NULL;
4130 	struct Qdisc *q;
4131 	int rc = -ENOMEM;
4132 	bool again = false;
4133 
4134 	skb_reset_mac_header(skb);
4135 
4136 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4137 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4138 
4139 	/* Disable soft irqs for various locks below. Also
4140 	 * stops preemption for RCU.
4141 	 */
4142 	rcu_read_lock_bh();
4143 
4144 	skb_update_prio(skb);
4145 
4146 	qdisc_pkt_len_init(skb);
4147 #ifdef CONFIG_NET_CLS_ACT
4148 	skb->tc_at_ingress = 0;
4149 #endif
4150 #ifdef CONFIG_NET_EGRESS
4151 	if (static_branch_unlikely(&egress_needed_key)) {
4152 		if (nf_hook_egress_active()) {
4153 			skb = nf_hook_egress(skb, &rc, dev);
4154 			if (!skb)
4155 				goto out;
4156 		}
4157 
4158 		netdev_xmit_skip_txqueue(false);
4159 
4160 		nf_skip_egress(skb, true);
4161 		skb = sch_handle_egress(skb, &rc, dev);
4162 		if (!skb)
4163 			goto out;
4164 		nf_skip_egress(skb, false);
4165 
4166 		if (netdev_xmit_txqueue_skipped())
4167 			txq = netdev_tx_queue_mapping(dev, skb);
4168 	}
4169 #endif
4170 	/* If device/qdisc don't need skb->dst, release it right now while
4171 	 * its hot in this cpu cache.
4172 	 */
4173 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4174 		skb_dst_drop(skb);
4175 	else
4176 		skb_dst_force(skb);
4177 
4178 	if (!txq)
4179 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4180 
4181 	q = rcu_dereference_bh(txq->qdisc);
4182 
4183 	trace_net_dev_queue(skb);
4184 	if (q->enqueue) {
4185 		rc = __dev_xmit_skb(skb, q, dev, txq);
4186 		goto out;
4187 	}
4188 
4189 	/* The device has no queue. Common case for software devices:
4190 	 * loopback, all the sorts of tunnels...
4191 
4192 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4193 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4194 	 * counters.)
4195 	 * However, it is possible, that they rely on protection
4196 	 * made by us here.
4197 
4198 	 * Check this and shot the lock. It is not prone from deadlocks.
4199 	 *Either shot noqueue qdisc, it is even simpler 8)
4200 	 */
4201 	if (dev->flags & IFF_UP) {
4202 		int cpu = smp_processor_id(); /* ok because BHs are off */
4203 
4204 		/* Other cpus might concurrently change txq->xmit_lock_owner
4205 		 * to -1 or to their cpu id, but not to our id.
4206 		 */
4207 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4208 			if (dev_xmit_recursion())
4209 				goto recursion_alert;
4210 
4211 			skb = validate_xmit_skb(skb, dev, &again);
4212 			if (!skb)
4213 				goto out;
4214 
4215 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4216 			HARD_TX_LOCK(dev, txq, cpu);
4217 
4218 			if (!netif_xmit_stopped(txq)) {
4219 				dev_xmit_recursion_inc();
4220 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4221 				dev_xmit_recursion_dec();
4222 				if (dev_xmit_complete(rc)) {
4223 					HARD_TX_UNLOCK(dev, txq);
4224 					goto out;
4225 				}
4226 			}
4227 			HARD_TX_UNLOCK(dev, txq);
4228 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4229 					     dev->name);
4230 		} else {
4231 			/* Recursion is detected! It is possible,
4232 			 * unfortunately
4233 			 */
4234 recursion_alert:
4235 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4236 					     dev->name);
4237 		}
4238 	}
4239 
4240 	rc = -ENETDOWN;
4241 	rcu_read_unlock_bh();
4242 
4243 	dev_core_stats_tx_dropped_inc(dev);
4244 	kfree_skb_list(skb);
4245 	return rc;
4246 out:
4247 	rcu_read_unlock_bh();
4248 	return rc;
4249 }
4250 EXPORT_SYMBOL(__dev_queue_xmit);
4251 
4252 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4253 {
4254 	struct net_device *dev = skb->dev;
4255 	struct sk_buff *orig_skb = skb;
4256 	struct netdev_queue *txq;
4257 	int ret = NETDEV_TX_BUSY;
4258 	bool again = false;
4259 
4260 	if (unlikely(!netif_running(dev) ||
4261 		     !netif_carrier_ok(dev)))
4262 		goto drop;
4263 
4264 	skb = validate_xmit_skb_list(skb, dev, &again);
4265 	if (skb != orig_skb)
4266 		goto drop;
4267 
4268 	skb_set_queue_mapping(skb, queue_id);
4269 	txq = skb_get_tx_queue(dev, skb);
4270 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4271 
4272 	local_bh_disable();
4273 
4274 	dev_xmit_recursion_inc();
4275 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4276 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4277 		ret = netdev_start_xmit(skb, dev, txq, false);
4278 	HARD_TX_UNLOCK(dev, txq);
4279 	dev_xmit_recursion_dec();
4280 
4281 	local_bh_enable();
4282 	return ret;
4283 drop:
4284 	dev_core_stats_tx_dropped_inc(dev);
4285 	kfree_skb_list(skb);
4286 	return NET_XMIT_DROP;
4287 }
4288 EXPORT_SYMBOL(__dev_direct_xmit);
4289 
4290 /*************************************************************************
4291  *			Receiver routines
4292  *************************************************************************/
4293 
4294 int netdev_max_backlog __read_mostly = 1000;
4295 EXPORT_SYMBOL(netdev_max_backlog);
4296 
4297 int netdev_tstamp_prequeue __read_mostly = 1;
4298 int netdev_budget __read_mostly = 300;
4299 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4300 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4301 int weight_p __read_mostly = 64;           /* old backlog weight */
4302 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4303 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4304 int dev_rx_weight __read_mostly = 64;
4305 int dev_tx_weight __read_mostly = 64;
4306 
4307 /* Called with irq disabled */
4308 static inline void ____napi_schedule(struct softnet_data *sd,
4309 				     struct napi_struct *napi)
4310 {
4311 	struct task_struct *thread;
4312 
4313 	lockdep_assert_irqs_disabled();
4314 
4315 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4316 		/* Paired with smp_mb__before_atomic() in
4317 		 * napi_enable()/dev_set_threaded().
4318 		 * Use READ_ONCE() to guarantee a complete
4319 		 * read on napi->thread. Only call
4320 		 * wake_up_process() when it's not NULL.
4321 		 */
4322 		thread = READ_ONCE(napi->thread);
4323 		if (thread) {
4324 			/* Avoid doing set_bit() if the thread is in
4325 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4326 			 * makes sure to proceed with napi polling
4327 			 * if the thread is explicitly woken from here.
4328 			 */
4329 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4330 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4331 			wake_up_process(thread);
4332 			return;
4333 		}
4334 	}
4335 
4336 	list_add_tail(&napi->poll_list, &sd->poll_list);
4337 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4338 }
4339 
4340 #ifdef CONFIG_RPS
4341 
4342 /* One global table that all flow-based protocols share. */
4343 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4344 EXPORT_SYMBOL(rps_sock_flow_table);
4345 u32 rps_cpu_mask __read_mostly;
4346 EXPORT_SYMBOL(rps_cpu_mask);
4347 
4348 struct static_key_false rps_needed __read_mostly;
4349 EXPORT_SYMBOL(rps_needed);
4350 struct static_key_false rfs_needed __read_mostly;
4351 EXPORT_SYMBOL(rfs_needed);
4352 
4353 static struct rps_dev_flow *
4354 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4355 	    struct rps_dev_flow *rflow, u16 next_cpu)
4356 {
4357 	if (next_cpu < nr_cpu_ids) {
4358 #ifdef CONFIG_RFS_ACCEL
4359 		struct netdev_rx_queue *rxqueue;
4360 		struct rps_dev_flow_table *flow_table;
4361 		struct rps_dev_flow *old_rflow;
4362 		u32 flow_id;
4363 		u16 rxq_index;
4364 		int rc;
4365 
4366 		/* Should we steer this flow to a different hardware queue? */
4367 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4368 		    !(dev->features & NETIF_F_NTUPLE))
4369 			goto out;
4370 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4371 		if (rxq_index == skb_get_rx_queue(skb))
4372 			goto out;
4373 
4374 		rxqueue = dev->_rx + rxq_index;
4375 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4376 		if (!flow_table)
4377 			goto out;
4378 		flow_id = skb_get_hash(skb) & flow_table->mask;
4379 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4380 							rxq_index, flow_id);
4381 		if (rc < 0)
4382 			goto out;
4383 		old_rflow = rflow;
4384 		rflow = &flow_table->flows[flow_id];
4385 		rflow->filter = rc;
4386 		if (old_rflow->filter == rflow->filter)
4387 			old_rflow->filter = RPS_NO_FILTER;
4388 	out:
4389 #endif
4390 		rflow->last_qtail =
4391 			per_cpu(softnet_data, next_cpu).input_queue_head;
4392 	}
4393 
4394 	rflow->cpu = next_cpu;
4395 	return rflow;
4396 }
4397 
4398 /*
4399  * get_rps_cpu is called from netif_receive_skb and returns the target
4400  * CPU from the RPS map of the receiving queue for a given skb.
4401  * rcu_read_lock must be held on entry.
4402  */
4403 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4404 		       struct rps_dev_flow **rflowp)
4405 {
4406 	const struct rps_sock_flow_table *sock_flow_table;
4407 	struct netdev_rx_queue *rxqueue = dev->_rx;
4408 	struct rps_dev_flow_table *flow_table;
4409 	struct rps_map *map;
4410 	int cpu = -1;
4411 	u32 tcpu;
4412 	u32 hash;
4413 
4414 	if (skb_rx_queue_recorded(skb)) {
4415 		u16 index = skb_get_rx_queue(skb);
4416 
4417 		if (unlikely(index >= dev->real_num_rx_queues)) {
4418 			WARN_ONCE(dev->real_num_rx_queues > 1,
4419 				  "%s received packet on queue %u, but number "
4420 				  "of RX queues is %u\n",
4421 				  dev->name, index, dev->real_num_rx_queues);
4422 			goto done;
4423 		}
4424 		rxqueue += index;
4425 	}
4426 
4427 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4428 
4429 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430 	map = rcu_dereference(rxqueue->rps_map);
4431 	if (!flow_table && !map)
4432 		goto done;
4433 
4434 	skb_reset_network_header(skb);
4435 	hash = skb_get_hash(skb);
4436 	if (!hash)
4437 		goto done;
4438 
4439 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4440 	if (flow_table && sock_flow_table) {
4441 		struct rps_dev_flow *rflow;
4442 		u32 next_cpu;
4443 		u32 ident;
4444 
4445 		/* First check into global flow table if there is a match */
4446 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4447 		if ((ident ^ hash) & ~rps_cpu_mask)
4448 			goto try_rps;
4449 
4450 		next_cpu = ident & rps_cpu_mask;
4451 
4452 		/* OK, now we know there is a match,
4453 		 * we can look at the local (per receive queue) flow table
4454 		 */
4455 		rflow = &flow_table->flows[hash & flow_table->mask];
4456 		tcpu = rflow->cpu;
4457 
4458 		/*
4459 		 * If the desired CPU (where last recvmsg was done) is
4460 		 * different from current CPU (one in the rx-queue flow
4461 		 * table entry), switch if one of the following holds:
4462 		 *   - Current CPU is unset (>= nr_cpu_ids).
4463 		 *   - Current CPU is offline.
4464 		 *   - The current CPU's queue tail has advanced beyond the
4465 		 *     last packet that was enqueued using this table entry.
4466 		 *     This guarantees that all previous packets for the flow
4467 		 *     have been dequeued, thus preserving in order delivery.
4468 		 */
4469 		if (unlikely(tcpu != next_cpu) &&
4470 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4471 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4472 		      rflow->last_qtail)) >= 0)) {
4473 			tcpu = next_cpu;
4474 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4475 		}
4476 
4477 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4478 			*rflowp = rflow;
4479 			cpu = tcpu;
4480 			goto done;
4481 		}
4482 	}
4483 
4484 try_rps:
4485 
4486 	if (map) {
4487 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4488 		if (cpu_online(tcpu)) {
4489 			cpu = tcpu;
4490 			goto done;
4491 		}
4492 	}
4493 
4494 done:
4495 	return cpu;
4496 }
4497 
4498 #ifdef CONFIG_RFS_ACCEL
4499 
4500 /**
4501  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4502  * @dev: Device on which the filter was set
4503  * @rxq_index: RX queue index
4504  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4505  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4506  *
4507  * Drivers that implement ndo_rx_flow_steer() should periodically call
4508  * this function for each installed filter and remove the filters for
4509  * which it returns %true.
4510  */
4511 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4512 			 u32 flow_id, u16 filter_id)
4513 {
4514 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4515 	struct rps_dev_flow_table *flow_table;
4516 	struct rps_dev_flow *rflow;
4517 	bool expire = true;
4518 	unsigned int cpu;
4519 
4520 	rcu_read_lock();
4521 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4522 	if (flow_table && flow_id <= flow_table->mask) {
4523 		rflow = &flow_table->flows[flow_id];
4524 		cpu = READ_ONCE(rflow->cpu);
4525 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4526 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4527 			   rflow->last_qtail) <
4528 		     (int)(10 * flow_table->mask)))
4529 			expire = false;
4530 	}
4531 	rcu_read_unlock();
4532 	return expire;
4533 }
4534 EXPORT_SYMBOL(rps_may_expire_flow);
4535 
4536 #endif /* CONFIG_RFS_ACCEL */
4537 
4538 /* Called from hardirq (IPI) context */
4539 static void rps_trigger_softirq(void *data)
4540 {
4541 	struct softnet_data *sd = data;
4542 
4543 	____napi_schedule(sd, &sd->backlog);
4544 	sd->received_rps++;
4545 }
4546 
4547 #endif /* CONFIG_RPS */
4548 
4549 /* Called from hardirq (IPI) context */
4550 static void trigger_rx_softirq(void *data __always_unused)
4551 {
4552 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4553 }
4554 
4555 /*
4556  * Check if this softnet_data structure is another cpu one
4557  * If yes, queue it to our IPI list and return 1
4558  * If no, return 0
4559  */
4560 static int napi_schedule_rps(struct softnet_data *sd)
4561 {
4562 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4563 
4564 #ifdef CONFIG_RPS
4565 	if (sd != mysd) {
4566 		sd->rps_ipi_next = mysd->rps_ipi_list;
4567 		mysd->rps_ipi_list = sd;
4568 
4569 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4570 		return 1;
4571 	}
4572 #endif /* CONFIG_RPS */
4573 	__napi_schedule_irqoff(&mysd->backlog);
4574 	return 0;
4575 }
4576 
4577 #ifdef CONFIG_NET_FLOW_LIMIT
4578 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4579 #endif
4580 
4581 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4582 {
4583 #ifdef CONFIG_NET_FLOW_LIMIT
4584 	struct sd_flow_limit *fl;
4585 	struct softnet_data *sd;
4586 	unsigned int old_flow, new_flow;
4587 
4588 	if (qlen < (netdev_max_backlog >> 1))
4589 		return false;
4590 
4591 	sd = this_cpu_ptr(&softnet_data);
4592 
4593 	rcu_read_lock();
4594 	fl = rcu_dereference(sd->flow_limit);
4595 	if (fl) {
4596 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4597 		old_flow = fl->history[fl->history_head];
4598 		fl->history[fl->history_head] = new_flow;
4599 
4600 		fl->history_head++;
4601 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4602 
4603 		if (likely(fl->buckets[old_flow]))
4604 			fl->buckets[old_flow]--;
4605 
4606 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4607 			fl->count++;
4608 			rcu_read_unlock();
4609 			return true;
4610 		}
4611 	}
4612 	rcu_read_unlock();
4613 #endif
4614 	return false;
4615 }
4616 
4617 /*
4618  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4619  * queue (may be a remote CPU queue).
4620  */
4621 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4622 			      unsigned int *qtail)
4623 {
4624 	enum skb_drop_reason reason;
4625 	struct softnet_data *sd;
4626 	unsigned long flags;
4627 	unsigned int qlen;
4628 
4629 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4630 	sd = &per_cpu(softnet_data, cpu);
4631 
4632 	rps_lock_irqsave(sd, &flags);
4633 	if (!netif_running(skb->dev))
4634 		goto drop;
4635 	qlen = skb_queue_len(&sd->input_pkt_queue);
4636 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4637 		if (qlen) {
4638 enqueue:
4639 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4640 			input_queue_tail_incr_save(sd, qtail);
4641 			rps_unlock_irq_restore(sd, &flags);
4642 			return NET_RX_SUCCESS;
4643 		}
4644 
4645 		/* Schedule NAPI for backlog device
4646 		 * We can use non atomic operation since we own the queue lock
4647 		 */
4648 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4649 			napi_schedule_rps(sd);
4650 		goto enqueue;
4651 	}
4652 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4653 
4654 drop:
4655 	sd->dropped++;
4656 	rps_unlock_irq_restore(sd, &flags);
4657 
4658 	dev_core_stats_rx_dropped_inc(skb->dev);
4659 	kfree_skb_reason(skb, reason);
4660 	return NET_RX_DROP;
4661 }
4662 
4663 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4664 {
4665 	struct net_device *dev = skb->dev;
4666 	struct netdev_rx_queue *rxqueue;
4667 
4668 	rxqueue = dev->_rx;
4669 
4670 	if (skb_rx_queue_recorded(skb)) {
4671 		u16 index = skb_get_rx_queue(skb);
4672 
4673 		if (unlikely(index >= dev->real_num_rx_queues)) {
4674 			WARN_ONCE(dev->real_num_rx_queues > 1,
4675 				  "%s received packet on queue %u, but number "
4676 				  "of RX queues is %u\n",
4677 				  dev->name, index, dev->real_num_rx_queues);
4678 
4679 			return rxqueue; /* Return first rxqueue */
4680 		}
4681 		rxqueue += index;
4682 	}
4683 	return rxqueue;
4684 }
4685 
4686 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4687 			     struct bpf_prog *xdp_prog)
4688 {
4689 	void *orig_data, *orig_data_end, *hard_start;
4690 	struct netdev_rx_queue *rxqueue;
4691 	bool orig_bcast, orig_host;
4692 	u32 mac_len, frame_sz;
4693 	__be16 orig_eth_type;
4694 	struct ethhdr *eth;
4695 	u32 metalen, act;
4696 	int off;
4697 
4698 	/* The XDP program wants to see the packet starting at the MAC
4699 	 * header.
4700 	 */
4701 	mac_len = skb->data - skb_mac_header(skb);
4702 	hard_start = skb->data - skb_headroom(skb);
4703 
4704 	/* SKB "head" area always have tailroom for skb_shared_info */
4705 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4706 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4707 
4708 	rxqueue = netif_get_rxqueue(skb);
4709 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4710 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4711 			 skb_headlen(skb) + mac_len, true);
4712 
4713 	orig_data_end = xdp->data_end;
4714 	orig_data = xdp->data;
4715 	eth = (struct ethhdr *)xdp->data;
4716 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4717 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4718 	orig_eth_type = eth->h_proto;
4719 
4720 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4721 
4722 	/* check if bpf_xdp_adjust_head was used */
4723 	off = xdp->data - orig_data;
4724 	if (off) {
4725 		if (off > 0)
4726 			__skb_pull(skb, off);
4727 		else if (off < 0)
4728 			__skb_push(skb, -off);
4729 
4730 		skb->mac_header += off;
4731 		skb_reset_network_header(skb);
4732 	}
4733 
4734 	/* check if bpf_xdp_adjust_tail was used */
4735 	off = xdp->data_end - orig_data_end;
4736 	if (off != 0) {
4737 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4738 		skb->len += off; /* positive on grow, negative on shrink */
4739 	}
4740 
4741 	/* check if XDP changed eth hdr such SKB needs update */
4742 	eth = (struct ethhdr *)xdp->data;
4743 	if ((orig_eth_type != eth->h_proto) ||
4744 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4745 						  skb->dev->dev_addr)) ||
4746 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4747 		__skb_push(skb, ETH_HLEN);
4748 		skb->pkt_type = PACKET_HOST;
4749 		skb->protocol = eth_type_trans(skb, skb->dev);
4750 	}
4751 
4752 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4753 	 * before calling us again on redirect path. We do not call do_redirect
4754 	 * as we leave that up to the caller.
4755 	 *
4756 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4757 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4758 	 */
4759 	switch (act) {
4760 	case XDP_REDIRECT:
4761 	case XDP_TX:
4762 		__skb_push(skb, mac_len);
4763 		break;
4764 	case XDP_PASS:
4765 		metalen = xdp->data - xdp->data_meta;
4766 		if (metalen)
4767 			skb_metadata_set(skb, metalen);
4768 		break;
4769 	}
4770 
4771 	return act;
4772 }
4773 
4774 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4775 				     struct xdp_buff *xdp,
4776 				     struct bpf_prog *xdp_prog)
4777 {
4778 	u32 act = XDP_DROP;
4779 
4780 	/* Reinjected packets coming from act_mirred or similar should
4781 	 * not get XDP generic processing.
4782 	 */
4783 	if (skb_is_redirected(skb))
4784 		return XDP_PASS;
4785 
4786 	/* XDP packets must be linear and must have sufficient headroom
4787 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4788 	 * native XDP provides, thus we need to do it here as well.
4789 	 */
4790 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4791 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4792 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4793 		int troom = skb->tail + skb->data_len - skb->end;
4794 
4795 		/* In case we have to go down the path and also linearize,
4796 		 * then lets do the pskb_expand_head() work just once here.
4797 		 */
4798 		if (pskb_expand_head(skb,
4799 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4800 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4801 			goto do_drop;
4802 		if (skb_linearize(skb))
4803 			goto do_drop;
4804 	}
4805 
4806 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4807 	switch (act) {
4808 	case XDP_REDIRECT:
4809 	case XDP_TX:
4810 	case XDP_PASS:
4811 		break;
4812 	default:
4813 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4814 		fallthrough;
4815 	case XDP_ABORTED:
4816 		trace_xdp_exception(skb->dev, xdp_prog, act);
4817 		fallthrough;
4818 	case XDP_DROP:
4819 	do_drop:
4820 		kfree_skb(skb);
4821 		break;
4822 	}
4823 
4824 	return act;
4825 }
4826 
4827 /* When doing generic XDP we have to bypass the qdisc layer and the
4828  * network taps in order to match in-driver-XDP behavior.
4829  */
4830 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4831 {
4832 	struct net_device *dev = skb->dev;
4833 	struct netdev_queue *txq;
4834 	bool free_skb = true;
4835 	int cpu, rc;
4836 
4837 	txq = netdev_core_pick_tx(dev, skb, NULL);
4838 	cpu = smp_processor_id();
4839 	HARD_TX_LOCK(dev, txq, cpu);
4840 	if (!netif_xmit_stopped(txq)) {
4841 		rc = netdev_start_xmit(skb, dev, txq, 0);
4842 		if (dev_xmit_complete(rc))
4843 			free_skb = false;
4844 	}
4845 	HARD_TX_UNLOCK(dev, txq);
4846 	if (free_skb) {
4847 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4848 		kfree_skb(skb);
4849 	}
4850 }
4851 
4852 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4853 
4854 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4855 {
4856 	if (xdp_prog) {
4857 		struct xdp_buff xdp;
4858 		u32 act;
4859 		int err;
4860 
4861 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4862 		if (act != XDP_PASS) {
4863 			switch (act) {
4864 			case XDP_REDIRECT:
4865 				err = xdp_do_generic_redirect(skb->dev, skb,
4866 							      &xdp, xdp_prog);
4867 				if (err)
4868 					goto out_redir;
4869 				break;
4870 			case XDP_TX:
4871 				generic_xdp_tx(skb, xdp_prog);
4872 				break;
4873 			}
4874 			return XDP_DROP;
4875 		}
4876 	}
4877 	return XDP_PASS;
4878 out_redir:
4879 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4880 	return XDP_DROP;
4881 }
4882 EXPORT_SYMBOL_GPL(do_xdp_generic);
4883 
4884 static int netif_rx_internal(struct sk_buff *skb)
4885 {
4886 	int ret;
4887 
4888 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4889 
4890 	trace_netif_rx(skb);
4891 
4892 #ifdef CONFIG_RPS
4893 	if (static_branch_unlikely(&rps_needed)) {
4894 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4895 		int cpu;
4896 
4897 		rcu_read_lock();
4898 
4899 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4900 		if (cpu < 0)
4901 			cpu = smp_processor_id();
4902 
4903 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4904 
4905 		rcu_read_unlock();
4906 	} else
4907 #endif
4908 	{
4909 		unsigned int qtail;
4910 
4911 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4912 	}
4913 	return ret;
4914 }
4915 
4916 /**
4917  *	__netif_rx	-	Slightly optimized version of netif_rx
4918  *	@skb: buffer to post
4919  *
4920  *	This behaves as netif_rx except that it does not disable bottom halves.
4921  *	As a result this function may only be invoked from the interrupt context
4922  *	(either hard or soft interrupt).
4923  */
4924 int __netif_rx(struct sk_buff *skb)
4925 {
4926 	int ret;
4927 
4928 	lockdep_assert_once(hardirq_count() | softirq_count());
4929 
4930 	trace_netif_rx_entry(skb);
4931 	ret = netif_rx_internal(skb);
4932 	trace_netif_rx_exit(ret);
4933 	return ret;
4934 }
4935 EXPORT_SYMBOL(__netif_rx);
4936 
4937 /**
4938  *	netif_rx	-	post buffer to the network code
4939  *	@skb: buffer to post
4940  *
4941  *	This function receives a packet from a device driver and queues it for
4942  *	the upper (protocol) levels to process via the backlog NAPI device. It
4943  *	always succeeds. The buffer may be dropped during processing for
4944  *	congestion control or by the protocol layers.
4945  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4946  *	driver should use NAPI and GRO.
4947  *	This function can used from interrupt and from process context. The
4948  *	caller from process context must not disable interrupts before invoking
4949  *	this function.
4950  *
4951  *	return values:
4952  *	NET_RX_SUCCESS	(no congestion)
4953  *	NET_RX_DROP     (packet was dropped)
4954  *
4955  */
4956 int netif_rx(struct sk_buff *skb)
4957 {
4958 	bool need_bh_off = !(hardirq_count() | softirq_count());
4959 	int ret;
4960 
4961 	if (need_bh_off)
4962 		local_bh_disable();
4963 	trace_netif_rx_entry(skb);
4964 	ret = netif_rx_internal(skb);
4965 	trace_netif_rx_exit(ret);
4966 	if (need_bh_off)
4967 		local_bh_enable();
4968 	return ret;
4969 }
4970 EXPORT_SYMBOL(netif_rx);
4971 
4972 static __latent_entropy void net_tx_action(struct softirq_action *h)
4973 {
4974 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4975 
4976 	if (sd->completion_queue) {
4977 		struct sk_buff *clist;
4978 
4979 		local_irq_disable();
4980 		clist = sd->completion_queue;
4981 		sd->completion_queue = NULL;
4982 		local_irq_enable();
4983 
4984 		while (clist) {
4985 			struct sk_buff *skb = clist;
4986 
4987 			clist = clist->next;
4988 
4989 			WARN_ON(refcount_read(&skb->users));
4990 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4991 				trace_consume_skb(skb);
4992 			else
4993 				trace_kfree_skb(skb, net_tx_action,
4994 						SKB_DROP_REASON_NOT_SPECIFIED);
4995 
4996 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4997 				__kfree_skb(skb);
4998 			else
4999 				__kfree_skb_defer(skb);
5000 		}
5001 	}
5002 
5003 	if (sd->output_queue) {
5004 		struct Qdisc *head;
5005 
5006 		local_irq_disable();
5007 		head = sd->output_queue;
5008 		sd->output_queue = NULL;
5009 		sd->output_queue_tailp = &sd->output_queue;
5010 		local_irq_enable();
5011 
5012 		rcu_read_lock();
5013 
5014 		while (head) {
5015 			struct Qdisc *q = head;
5016 			spinlock_t *root_lock = NULL;
5017 
5018 			head = head->next_sched;
5019 
5020 			/* We need to make sure head->next_sched is read
5021 			 * before clearing __QDISC_STATE_SCHED
5022 			 */
5023 			smp_mb__before_atomic();
5024 
5025 			if (!(q->flags & TCQ_F_NOLOCK)) {
5026 				root_lock = qdisc_lock(q);
5027 				spin_lock(root_lock);
5028 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5029 						     &q->state))) {
5030 				/* There is a synchronize_net() between
5031 				 * STATE_DEACTIVATED flag being set and
5032 				 * qdisc_reset()/some_qdisc_is_busy() in
5033 				 * dev_deactivate(), so we can safely bail out
5034 				 * early here to avoid data race between
5035 				 * qdisc_deactivate() and some_qdisc_is_busy()
5036 				 * for lockless qdisc.
5037 				 */
5038 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5039 				continue;
5040 			}
5041 
5042 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5043 			qdisc_run(q);
5044 			if (root_lock)
5045 				spin_unlock(root_lock);
5046 		}
5047 
5048 		rcu_read_unlock();
5049 	}
5050 
5051 	xfrm_dev_backlog(sd);
5052 }
5053 
5054 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5055 /* This hook is defined here for ATM LANE */
5056 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5057 			     unsigned char *addr) __read_mostly;
5058 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5059 #endif
5060 
5061 static inline struct sk_buff *
5062 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5063 		   struct net_device *orig_dev, bool *another)
5064 {
5065 #ifdef CONFIG_NET_CLS_ACT
5066 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5067 	struct tcf_result cl_res;
5068 
5069 	/* If there's at least one ingress present somewhere (so
5070 	 * we get here via enabled static key), remaining devices
5071 	 * that are not configured with an ingress qdisc will bail
5072 	 * out here.
5073 	 */
5074 	if (!miniq)
5075 		return skb;
5076 
5077 	if (*pt_prev) {
5078 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5079 		*pt_prev = NULL;
5080 	}
5081 
5082 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5083 	tc_skb_cb(skb)->mru = 0;
5084 	tc_skb_cb(skb)->post_ct = false;
5085 	skb->tc_at_ingress = 1;
5086 	mini_qdisc_bstats_cpu_update(miniq, skb);
5087 
5088 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5089 	case TC_ACT_OK:
5090 	case TC_ACT_RECLASSIFY:
5091 		skb->tc_index = TC_H_MIN(cl_res.classid);
5092 		break;
5093 	case TC_ACT_SHOT:
5094 		mini_qdisc_qstats_cpu_drop(miniq);
5095 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5096 		return NULL;
5097 	case TC_ACT_STOLEN:
5098 	case TC_ACT_QUEUED:
5099 	case TC_ACT_TRAP:
5100 		consume_skb(skb);
5101 		return NULL;
5102 	case TC_ACT_REDIRECT:
5103 		/* skb_mac_header check was done by cls/act_bpf, so
5104 		 * we can safely push the L2 header back before
5105 		 * redirecting to another netdev
5106 		 */
5107 		__skb_push(skb, skb->mac_len);
5108 		if (skb_do_redirect(skb) == -EAGAIN) {
5109 			__skb_pull(skb, skb->mac_len);
5110 			*another = true;
5111 			break;
5112 		}
5113 		return NULL;
5114 	case TC_ACT_CONSUMED:
5115 		return NULL;
5116 	default:
5117 		break;
5118 	}
5119 #endif /* CONFIG_NET_CLS_ACT */
5120 	return skb;
5121 }
5122 
5123 /**
5124  *	netdev_is_rx_handler_busy - check if receive handler is registered
5125  *	@dev: device to check
5126  *
5127  *	Check if a receive handler is already registered for a given device.
5128  *	Return true if there one.
5129  *
5130  *	The caller must hold the rtnl_mutex.
5131  */
5132 bool netdev_is_rx_handler_busy(struct net_device *dev)
5133 {
5134 	ASSERT_RTNL();
5135 	return dev && rtnl_dereference(dev->rx_handler);
5136 }
5137 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5138 
5139 /**
5140  *	netdev_rx_handler_register - register receive handler
5141  *	@dev: device to register a handler for
5142  *	@rx_handler: receive handler to register
5143  *	@rx_handler_data: data pointer that is used by rx handler
5144  *
5145  *	Register a receive handler for a device. This handler will then be
5146  *	called from __netif_receive_skb. A negative errno code is returned
5147  *	on a failure.
5148  *
5149  *	The caller must hold the rtnl_mutex.
5150  *
5151  *	For a general description of rx_handler, see enum rx_handler_result.
5152  */
5153 int netdev_rx_handler_register(struct net_device *dev,
5154 			       rx_handler_func_t *rx_handler,
5155 			       void *rx_handler_data)
5156 {
5157 	if (netdev_is_rx_handler_busy(dev))
5158 		return -EBUSY;
5159 
5160 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5161 		return -EINVAL;
5162 
5163 	/* Note: rx_handler_data must be set before rx_handler */
5164 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5165 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5166 
5167 	return 0;
5168 }
5169 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5170 
5171 /**
5172  *	netdev_rx_handler_unregister - unregister receive handler
5173  *	@dev: device to unregister a handler from
5174  *
5175  *	Unregister a receive handler from a device.
5176  *
5177  *	The caller must hold the rtnl_mutex.
5178  */
5179 void netdev_rx_handler_unregister(struct net_device *dev)
5180 {
5181 
5182 	ASSERT_RTNL();
5183 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5184 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5185 	 * section has a guarantee to see a non NULL rx_handler_data
5186 	 * as well.
5187 	 */
5188 	synchronize_net();
5189 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5190 }
5191 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5192 
5193 /*
5194  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5195  * the special handling of PFMEMALLOC skbs.
5196  */
5197 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5198 {
5199 	switch (skb->protocol) {
5200 	case htons(ETH_P_ARP):
5201 	case htons(ETH_P_IP):
5202 	case htons(ETH_P_IPV6):
5203 	case htons(ETH_P_8021Q):
5204 	case htons(ETH_P_8021AD):
5205 		return true;
5206 	default:
5207 		return false;
5208 	}
5209 }
5210 
5211 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5212 			     int *ret, struct net_device *orig_dev)
5213 {
5214 	if (nf_hook_ingress_active(skb)) {
5215 		int ingress_retval;
5216 
5217 		if (*pt_prev) {
5218 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5219 			*pt_prev = NULL;
5220 		}
5221 
5222 		rcu_read_lock();
5223 		ingress_retval = nf_hook_ingress(skb);
5224 		rcu_read_unlock();
5225 		return ingress_retval;
5226 	}
5227 	return 0;
5228 }
5229 
5230 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5231 				    struct packet_type **ppt_prev)
5232 {
5233 	struct packet_type *ptype, *pt_prev;
5234 	rx_handler_func_t *rx_handler;
5235 	struct sk_buff *skb = *pskb;
5236 	struct net_device *orig_dev;
5237 	bool deliver_exact = false;
5238 	int ret = NET_RX_DROP;
5239 	__be16 type;
5240 
5241 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5242 
5243 	trace_netif_receive_skb(skb);
5244 
5245 	orig_dev = skb->dev;
5246 
5247 	skb_reset_network_header(skb);
5248 	if (!skb_transport_header_was_set(skb))
5249 		skb_reset_transport_header(skb);
5250 	skb_reset_mac_len(skb);
5251 
5252 	pt_prev = NULL;
5253 
5254 another_round:
5255 	skb->skb_iif = skb->dev->ifindex;
5256 
5257 	__this_cpu_inc(softnet_data.processed);
5258 
5259 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5260 		int ret2;
5261 
5262 		migrate_disable();
5263 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5264 		migrate_enable();
5265 
5266 		if (ret2 != XDP_PASS) {
5267 			ret = NET_RX_DROP;
5268 			goto out;
5269 		}
5270 	}
5271 
5272 	if (eth_type_vlan(skb->protocol)) {
5273 		skb = skb_vlan_untag(skb);
5274 		if (unlikely(!skb))
5275 			goto out;
5276 	}
5277 
5278 	if (skb_skip_tc_classify(skb))
5279 		goto skip_classify;
5280 
5281 	if (pfmemalloc)
5282 		goto skip_taps;
5283 
5284 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5285 		if (pt_prev)
5286 			ret = deliver_skb(skb, pt_prev, orig_dev);
5287 		pt_prev = ptype;
5288 	}
5289 
5290 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5291 		if (pt_prev)
5292 			ret = deliver_skb(skb, pt_prev, orig_dev);
5293 		pt_prev = ptype;
5294 	}
5295 
5296 skip_taps:
5297 #ifdef CONFIG_NET_INGRESS
5298 	if (static_branch_unlikely(&ingress_needed_key)) {
5299 		bool another = false;
5300 
5301 		nf_skip_egress(skb, true);
5302 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5303 					 &another);
5304 		if (another)
5305 			goto another_round;
5306 		if (!skb)
5307 			goto out;
5308 
5309 		nf_skip_egress(skb, false);
5310 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5311 			goto out;
5312 	}
5313 #endif
5314 	skb_reset_redirect(skb);
5315 skip_classify:
5316 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5317 		goto drop;
5318 
5319 	if (skb_vlan_tag_present(skb)) {
5320 		if (pt_prev) {
5321 			ret = deliver_skb(skb, pt_prev, orig_dev);
5322 			pt_prev = NULL;
5323 		}
5324 		if (vlan_do_receive(&skb))
5325 			goto another_round;
5326 		else if (unlikely(!skb))
5327 			goto out;
5328 	}
5329 
5330 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5331 	if (rx_handler) {
5332 		if (pt_prev) {
5333 			ret = deliver_skb(skb, pt_prev, orig_dev);
5334 			pt_prev = NULL;
5335 		}
5336 		switch (rx_handler(&skb)) {
5337 		case RX_HANDLER_CONSUMED:
5338 			ret = NET_RX_SUCCESS;
5339 			goto out;
5340 		case RX_HANDLER_ANOTHER:
5341 			goto another_round;
5342 		case RX_HANDLER_EXACT:
5343 			deliver_exact = true;
5344 			break;
5345 		case RX_HANDLER_PASS:
5346 			break;
5347 		default:
5348 			BUG();
5349 		}
5350 	}
5351 
5352 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5353 check_vlan_id:
5354 		if (skb_vlan_tag_get_id(skb)) {
5355 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5356 			 * find vlan device.
5357 			 */
5358 			skb->pkt_type = PACKET_OTHERHOST;
5359 		} else if (eth_type_vlan(skb->protocol)) {
5360 			/* Outer header is 802.1P with vlan 0, inner header is
5361 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5362 			 * not find vlan dev for vlan id 0.
5363 			 */
5364 			__vlan_hwaccel_clear_tag(skb);
5365 			skb = skb_vlan_untag(skb);
5366 			if (unlikely(!skb))
5367 				goto out;
5368 			if (vlan_do_receive(&skb))
5369 				/* After stripping off 802.1P header with vlan 0
5370 				 * vlan dev is found for inner header.
5371 				 */
5372 				goto another_round;
5373 			else if (unlikely(!skb))
5374 				goto out;
5375 			else
5376 				/* We have stripped outer 802.1P vlan 0 header.
5377 				 * But could not find vlan dev.
5378 				 * check again for vlan id to set OTHERHOST.
5379 				 */
5380 				goto check_vlan_id;
5381 		}
5382 		/* Note: we might in the future use prio bits
5383 		 * and set skb->priority like in vlan_do_receive()
5384 		 * For the time being, just ignore Priority Code Point
5385 		 */
5386 		__vlan_hwaccel_clear_tag(skb);
5387 	}
5388 
5389 	type = skb->protocol;
5390 
5391 	/* deliver only exact match when indicated */
5392 	if (likely(!deliver_exact)) {
5393 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5394 				       &ptype_base[ntohs(type) &
5395 						   PTYPE_HASH_MASK]);
5396 	}
5397 
5398 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5399 			       &orig_dev->ptype_specific);
5400 
5401 	if (unlikely(skb->dev != orig_dev)) {
5402 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5403 				       &skb->dev->ptype_specific);
5404 	}
5405 
5406 	if (pt_prev) {
5407 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5408 			goto drop;
5409 		*ppt_prev = pt_prev;
5410 	} else {
5411 drop:
5412 		if (!deliver_exact)
5413 			dev_core_stats_rx_dropped_inc(skb->dev);
5414 		else
5415 			dev_core_stats_rx_nohandler_inc(skb->dev);
5416 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5417 		/* Jamal, now you will not able to escape explaining
5418 		 * me how you were going to use this. :-)
5419 		 */
5420 		ret = NET_RX_DROP;
5421 	}
5422 
5423 out:
5424 	/* The invariant here is that if *ppt_prev is not NULL
5425 	 * then skb should also be non-NULL.
5426 	 *
5427 	 * Apparently *ppt_prev assignment above holds this invariant due to
5428 	 * skb dereferencing near it.
5429 	 */
5430 	*pskb = skb;
5431 	return ret;
5432 }
5433 
5434 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5435 {
5436 	struct net_device *orig_dev = skb->dev;
5437 	struct packet_type *pt_prev = NULL;
5438 	int ret;
5439 
5440 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5441 	if (pt_prev)
5442 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5443 					 skb->dev, pt_prev, orig_dev);
5444 	return ret;
5445 }
5446 
5447 /**
5448  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5449  *	@skb: buffer to process
5450  *
5451  *	More direct receive version of netif_receive_skb().  It should
5452  *	only be used by callers that have a need to skip RPS and Generic XDP.
5453  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5454  *
5455  *	This function may only be called from softirq context and interrupts
5456  *	should be enabled.
5457  *
5458  *	Return values (usually ignored):
5459  *	NET_RX_SUCCESS: no congestion
5460  *	NET_RX_DROP: packet was dropped
5461  */
5462 int netif_receive_skb_core(struct sk_buff *skb)
5463 {
5464 	int ret;
5465 
5466 	rcu_read_lock();
5467 	ret = __netif_receive_skb_one_core(skb, false);
5468 	rcu_read_unlock();
5469 
5470 	return ret;
5471 }
5472 EXPORT_SYMBOL(netif_receive_skb_core);
5473 
5474 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5475 						  struct packet_type *pt_prev,
5476 						  struct net_device *orig_dev)
5477 {
5478 	struct sk_buff *skb, *next;
5479 
5480 	if (!pt_prev)
5481 		return;
5482 	if (list_empty(head))
5483 		return;
5484 	if (pt_prev->list_func != NULL)
5485 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5486 				   ip_list_rcv, head, pt_prev, orig_dev);
5487 	else
5488 		list_for_each_entry_safe(skb, next, head, list) {
5489 			skb_list_del_init(skb);
5490 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5491 		}
5492 }
5493 
5494 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5495 {
5496 	/* Fast-path assumptions:
5497 	 * - There is no RX handler.
5498 	 * - Only one packet_type matches.
5499 	 * If either of these fails, we will end up doing some per-packet
5500 	 * processing in-line, then handling the 'last ptype' for the whole
5501 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5502 	 * because the 'last ptype' must be constant across the sublist, and all
5503 	 * other ptypes are handled per-packet.
5504 	 */
5505 	/* Current (common) ptype of sublist */
5506 	struct packet_type *pt_curr = NULL;
5507 	/* Current (common) orig_dev of sublist */
5508 	struct net_device *od_curr = NULL;
5509 	struct list_head sublist;
5510 	struct sk_buff *skb, *next;
5511 
5512 	INIT_LIST_HEAD(&sublist);
5513 	list_for_each_entry_safe(skb, next, head, list) {
5514 		struct net_device *orig_dev = skb->dev;
5515 		struct packet_type *pt_prev = NULL;
5516 
5517 		skb_list_del_init(skb);
5518 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5519 		if (!pt_prev)
5520 			continue;
5521 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5522 			/* dispatch old sublist */
5523 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5524 			/* start new sublist */
5525 			INIT_LIST_HEAD(&sublist);
5526 			pt_curr = pt_prev;
5527 			od_curr = orig_dev;
5528 		}
5529 		list_add_tail(&skb->list, &sublist);
5530 	}
5531 
5532 	/* dispatch final sublist */
5533 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5534 }
5535 
5536 static int __netif_receive_skb(struct sk_buff *skb)
5537 {
5538 	int ret;
5539 
5540 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5541 		unsigned int noreclaim_flag;
5542 
5543 		/*
5544 		 * PFMEMALLOC skbs are special, they should
5545 		 * - be delivered to SOCK_MEMALLOC sockets only
5546 		 * - stay away from userspace
5547 		 * - have bounded memory usage
5548 		 *
5549 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5550 		 * context down to all allocation sites.
5551 		 */
5552 		noreclaim_flag = memalloc_noreclaim_save();
5553 		ret = __netif_receive_skb_one_core(skb, true);
5554 		memalloc_noreclaim_restore(noreclaim_flag);
5555 	} else
5556 		ret = __netif_receive_skb_one_core(skb, false);
5557 
5558 	return ret;
5559 }
5560 
5561 static void __netif_receive_skb_list(struct list_head *head)
5562 {
5563 	unsigned long noreclaim_flag = 0;
5564 	struct sk_buff *skb, *next;
5565 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5566 
5567 	list_for_each_entry_safe(skb, next, head, list) {
5568 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5569 			struct list_head sublist;
5570 
5571 			/* Handle the previous sublist */
5572 			list_cut_before(&sublist, head, &skb->list);
5573 			if (!list_empty(&sublist))
5574 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5575 			pfmemalloc = !pfmemalloc;
5576 			/* See comments in __netif_receive_skb */
5577 			if (pfmemalloc)
5578 				noreclaim_flag = memalloc_noreclaim_save();
5579 			else
5580 				memalloc_noreclaim_restore(noreclaim_flag);
5581 		}
5582 	}
5583 	/* Handle the remaining sublist */
5584 	if (!list_empty(head))
5585 		__netif_receive_skb_list_core(head, pfmemalloc);
5586 	/* Restore pflags */
5587 	if (pfmemalloc)
5588 		memalloc_noreclaim_restore(noreclaim_flag);
5589 }
5590 
5591 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5592 {
5593 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5594 	struct bpf_prog *new = xdp->prog;
5595 	int ret = 0;
5596 
5597 	switch (xdp->command) {
5598 	case XDP_SETUP_PROG:
5599 		rcu_assign_pointer(dev->xdp_prog, new);
5600 		if (old)
5601 			bpf_prog_put(old);
5602 
5603 		if (old && !new) {
5604 			static_branch_dec(&generic_xdp_needed_key);
5605 		} else if (new && !old) {
5606 			static_branch_inc(&generic_xdp_needed_key);
5607 			dev_disable_lro(dev);
5608 			dev_disable_gro_hw(dev);
5609 		}
5610 		break;
5611 
5612 	default:
5613 		ret = -EINVAL;
5614 		break;
5615 	}
5616 
5617 	return ret;
5618 }
5619 
5620 static int netif_receive_skb_internal(struct sk_buff *skb)
5621 {
5622 	int ret;
5623 
5624 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5625 
5626 	if (skb_defer_rx_timestamp(skb))
5627 		return NET_RX_SUCCESS;
5628 
5629 	rcu_read_lock();
5630 #ifdef CONFIG_RPS
5631 	if (static_branch_unlikely(&rps_needed)) {
5632 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5633 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5634 
5635 		if (cpu >= 0) {
5636 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5637 			rcu_read_unlock();
5638 			return ret;
5639 		}
5640 	}
5641 #endif
5642 	ret = __netif_receive_skb(skb);
5643 	rcu_read_unlock();
5644 	return ret;
5645 }
5646 
5647 void netif_receive_skb_list_internal(struct list_head *head)
5648 {
5649 	struct sk_buff *skb, *next;
5650 	struct list_head sublist;
5651 
5652 	INIT_LIST_HEAD(&sublist);
5653 	list_for_each_entry_safe(skb, next, head, list) {
5654 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5655 		skb_list_del_init(skb);
5656 		if (!skb_defer_rx_timestamp(skb))
5657 			list_add_tail(&skb->list, &sublist);
5658 	}
5659 	list_splice_init(&sublist, head);
5660 
5661 	rcu_read_lock();
5662 #ifdef CONFIG_RPS
5663 	if (static_branch_unlikely(&rps_needed)) {
5664 		list_for_each_entry_safe(skb, next, head, list) {
5665 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5666 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5667 
5668 			if (cpu >= 0) {
5669 				/* Will be handled, remove from list */
5670 				skb_list_del_init(skb);
5671 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5672 			}
5673 		}
5674 	}
5675 #endif
5676 	__netif_receive_skb_list(head);
5677 	rcu_read_unlock();
5678 }
5679 
5680 /**
5681  *	netif_receive_skb - process receive buffer from network
5682  *	@skb: buffer to process
5683  *
5684  *	netif_receive_skb() is the main receive data processing function.
5685  *	It always succeeds. The buffer may be dropped during processing
5686  *	for congestion control or by the protocol layers.
5687  *
5688  *	This function may only be called from softirq context and interrupts
5689  *	should be enabled.
5690  *
5691  *	Return values (usually ignored):
5692  *	NET_RX_SUCCESS: no congestion
5693  *	NET_RX_DROP: packet was dropped
5694  */
5695 int netif_receive_skb(struct sk_buff *skb)
5696 {
5697 	int ret;
5698 
5699 	trace_netif_receive_skb_entry(skb);
5700 
5701 	ret = netif_receive_skb_internal(skb);
5702 	trace_netif_receive_skb_exit(ret);
5703 
5704 	return ret;
5705 }
5706 EXPORT_SYMBOL(netif_receive_skb);
5707 
5708 /**
5709  *	netif_receive_skb_list - process many receive buffers from network
5710  *	@head: list of skbs to process.
5711  *
5712  *	Since return value of netif_receive_skb() is normally ignored, and
5713  *	wouldn't be meaningful for a list, this function returns void.
5714  *
5715  *	This function may only be called from softirq context and interrupts
5716  *	should be enabled.
5717  */
5718 void netif_receive_skb_list(struct list_head *head)
5719 {
5720 	struct sk_buff *skb;
5721 
5722 	if (list_empty(head))
5723 		return;
5724 	if (trace_netif_receive_skb_list_entry_enabled()) {
5725 		list_for_each_entry(skb, head, list)
5726 			trace_netif_receive_skb_list_entry(skb);
5727 	}
5728 	netif_receive_skb_list_internal(head);
5729 	trace_netif_receive_skb_list_exit(0);
5730 }
5731 EXPORT_SYMBOL(netif_receive_skb_list);
5732 
5733 static DEFINE_PER_CPU(struct work_struct, flush_works);
5734 
5735 /* Network device is going away, flush any packets still pending */
5736 static void flush_backlog(struct work_struct *work)
5737 {
5738 	struct sk_buff *skb, *tmp;
5739 	struct softnet_data *sd;
5740 
5741 	local_bh_disable();
5742 	sd = this_cpu_ptr(&softnet_data);
5743 
5744 	rps_lock_irq_disable(sd);
5745 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5746 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5747 			__skb_unlink(skb, &sd->input_pkt_queue);
5748 			dev_kfree_skb_irq(skb);
5749 			input_queue_head_incr(sd);
5750 		}
5751 	}
5752 	rps_unlock_irq_enable(sd);
5753 
5754 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5755 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5756 			__skb_unlink(skb, &sd->process_queue);
5757 			kfree_skb(skb);
5758 			input_queue_head_incr(sd);
5759 		}
5760 	}
5761 	local_bh_enable();
5762 }
5763 
5764 static bool flush_required(int cpu)
5765 {
5766 #if IS_ENABLED(CONFIG_RPS)
5767 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5768 	bool do_flush;
5769 
5770 	rps_lock_irq_disable(sd);
5771 
5772 	/* as insertion into process_queue happens with the rps lock held,
5773 	 * process_queue access may race only with dequeue
5774 	 */
5775 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5776 		   !skb_queue_empty_lockless(&sd->process_queue);
5777 	rps_unlock_irq_enable(sd);
5778 
5779 	return do_flush;
5780 #endif
5781 	/* without RPS we can't safely check input_pkt_queue: during a
5782 	 * concurrent remote skb_queue_splice() we can detect as empty both
5783 	 * input_pkt_queue and process_queue even if the latter could end-up
5784 	 * containing a lot of packets.
5785 	 */
5786 	return true;
5787 }
5788 
5789 static void flush_all_backlogs(void)
5790 {
5791 	static cpumask_t flush_cpus;
5792 	unsigned int cpu;
5793 
5794 	/* since we are under rtnl lock protection we can use static data
5795 	 * for the cpumask and avoid allocating on stack the possibly
5796 	 * large mask
5797 	 */
5798 	ASSERT_RTNL();
5799 
5800 	cpus_read_lock();
5801 
5802 	cpumask_clear(&flush_cpus);
5803 	for_each_online_cpu(cpu) {
5804 		if (flush_required(cpu)) {
5805 			queue_work_on(cpu, system_highpri_wq,
5806 				      per_cpu_ptr(&flush_works, cpu));
5807 			cpumask_set_cpu(cpu, &flush_cpus);
5808 		}
5809 	}
5810 
5811 	/* we can have in flight packet[s] on the cpus we are not flushing,
5812 	 * synchronize_net() in unregister_netdevice_many() will take care of
5813 	 * them
5814 	 */
5815 	for_each_cpu(cpu, &flush_cpus)
5816 		flush_work(per_cpu_ptr(&flush_works, cpu));
5817 
5818 	cpus_read_unlock();
5819 }
5820 
5821 static void net_rps_send_ipi(struct softnet_data *remsd)
5822 {
5823 #ifdef CONFIG_RPS
5824 	while (remsd) {
5825 		struct softnet_data *next = remsd->rps_ipi_next;
5826 
5827 		if (cpu_online(remsd->cpu))
5828 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5829 		remsd = next;
5830 	}
5831 #endif
5832 }
5833 
5834 /*
5835  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5836  * Note: called with local irq disabled, but exits with local irq enabled.
5837  */
5838 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5839 {
5840 #ifdef CONFIG_RPS
5841 	struct softnet_data *remsd = sd->rps_ipi_list;
5842 
5843 	if (remsd) {
5844 		sd->rps_ipi_list = NULL;
5845 
5846 		local_irq_enable();
5847 
5848 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5849 		net_rps_send_ipi(remsd);
5850 	} else
5851 #endif
5852 		local_irq_enable();
5853 }
5854 
5855 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5856 {
5857 #ifdef CONFIG_RPS
5858 	return sd->rps_ipi_list != NULL;
5859 #else
5860 	return false;
5861 #endif
5862 }
5863 
5864 static int process_backlog(struct napi_struct *napi, int quota)
5865 {
5866 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5867 	bool again = true;
5868 	int work = 0;
5869 
5870 	/* Check if we have pending ipi, its better to send them now,
5871 	 * not waiting net_rx_action() end.
5872 	 */
5873 	if (sd_has_rps_ipi_waiting(sd)) {
5874 		local_irq_disable();
5875 		net_rps_action_and_irq_enable(sd);
5876 	}
5877 
5878 	napi->weight = dev_rx_weight;
5879 	while (again) {
5880 		struct sk_buff *skb;
5881 
5882 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5883 			rcu_read_lock();
5884 			__netif_receive_skb(skb);
5885 			rcu_read_unlock();
5886 			input_queue_head_incr(sd);
5887 			if (++work >= quota)
5888 				return work;
5889 
5890 		}
5891 
5892 		rps_lock_irq_disable(sd);
5893 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5894 			/*
5895 			 * Inline a custom version of __napi_complete().
5896 			 * only current cpu owns and manipulates this napi,
5897 			 * and NAPI_STATE_SCHED is the only possible flag set
5898 			 * on backlog.
5899 			 * We can use a plain write instead of clear_bit(),
5900 			 * and we dont need an smp_mb() memory barrier.
5901 			 */
5902 			napi->state = 0;
5903 			again = false;
5904 		} else {
5905 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5906 						   &sd->process_queue);
5907 		}
5908 		rps_unlock_irq_enable(sd);
5909 	}
5910 
5911 	return work;
5912 }
5913 
5914 /**
5915  * __napi_schedule - schedule for receive
5916  * @n: entry to schedule
5917  *
5918  * The entry's receive function will be scheduled to run.
5919  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5920  */
5921 void __napi_schedule(struct napi_struct *n)
5922 {
5923 	unsigned long flags;
5924 
5925 	local_irq_save(flags);
5926 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5927 	local_irq_restore(flags);
5928 }
5929 EXPORT_SYMBOL(__napi_schedule);
5930 
5931 /**
5932  *	napi_schedule_prep - check if napi can be scheduled
5933  *	@n: napi context
5934  *
5935  * Test if NAPI routine is already running, and if not mark
5936  * it as running.  This is used as a condition variable to
5937  * insure only one NAPI poll instance runs.  We also make
5938  * sure there is no pending NAPI disable.
5939  */
5940 bool napi_schedule_prep(struct napi_struct *n)
5941 {
5942 	unsigned long val, new;
5943 
5944 	do {
5945 		val = READ_ONCE(n->state);
5946 		if (unlikely(val & NAPIF_STATE_DISABLE))
5947 			return false;
5948 		new = val | NAPIF_STATE_SCHED;
5949 
5950 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5951 		 * This was suggested by Alexander Duyck, as compiler
5952 		 * emits better code than :
5953 		 * if (val & NAPIF_STATE_SCHED)
5954 		 *     new |= NAPIF_STATE_MISSED;
5955 		 */
5956 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5957 						   NAPIF_STATE_MISSED;
5958 	} while (cmpxchg(&n->state, val, new) != val);
5959 
5960 	return !(val & NAPIF_STATE_SCHED);
5961 }
5962 EXPORT_SYMBOL(napi_schedule_prep);
5963 
5964 /**
5965  * __napi_schedule_irqoff - schedule for receive
5966  * @n: entry to schedule
5967  *
5968  * Variant of __napi_schedule() assuming hard irqs are masked.
5969  *
5970  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5971  * because the interrupt disabled assumption might not be true
5972  * due to force-threaded interrupts and spinlock substitution.
5973  */
5974 void __napi_schedule_irqoff(struct napi_struct *n)
5975 {
5976 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5977 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
5978 	else
5979 		__napi_schedule(n);
5980 }
5981 EXPORT_SYMBOL(__napi_schedule_irqoff);
5982 
5983 bool napi_complete_done(struct napi_struct *n, int work_done)
5984 {
5985 	unsigned long flags, val, new, timeout = 0;
5986 	bool ret = true;
5987 
5988 	/*
5989 	 * 1) Don't let napi dequeue from the cpu poll list
5990 	 *    just in case its running on a different cpu.
5991 	 * 2) If we are busy polling, do nothing here, we have
5992 	 *    the guarantee we will be called later.
5993 	 */
5994 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5995 				 NAPIF_STATE_IN_BUSY_POLL)))
5996 		return false;
5997 
5998 	if (work_done) {
5999 		if (n->gro_bitmask)
6000 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6001 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6002 	}
6003 	if (n->defer_hard_irqs_count > 0) {
6004 		n->defer_hard_irqs_count--;
6005 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6006 		if (timeout)
6007 			ret = false;
6008 	}
6009 	if (n->gro_bitmask) {
6010 		/* When the NAPI instance uses a timeout and keeps postponing
6011 		 * it, we need to bound somehow the time packets are kept in
6012 		 * the GRO layer
6013 		 */
6014 		napi_gro_flush(n, !!timeout);
6015 	}
6016 
6017 	gro_normal_list(n);
6018 
6019 	if (unlikely(!list_empty(&n->poll_list))) {
6020 		/* If n->poll_list is not empty, we need to mask irqs */
6021 		local_irq_save(flags);
6022 		list_del_init(&n->poll_list);
6023 		local_irq_restore(flags);
6024 	}
6025 
6026 	do {
6027 		val = READ_ONCE(n->state);
6028 
6029 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6030 
6031 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6032 			      NAPIF_STATE_SCHED_THREADED |
6033 			      NAPIF_STATE_PREFER_BUSY_POLL);
6034 
6035 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6036 		 * because we will call napi->poll() one more time.
6037 		 * This C code was suggested by Alexander Duyck to help gcc.
6038 		 */
6039 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6040 						    NAPIF_STATE_SCHED;
6041 	} while (cmpxchg(&n->state, val, new) != val);
6042 
6043 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6044 		__napi_schedule(n);
6045 		return false;
6046 	}
6047 
6048 	if (timeout)
6049 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6050 			      HRTIMER_MODE_REL_PINNED);
6051 	return ret;
6052 }
6053 EXPORT_SYMBOL(napi_complete_done);
6054 
6055 /* must be called under rcu_read_lock(), as we dont take a reference */
6056 static struct napi_struct *napi_by_id(unsigned int napi_id)
6057 {
6058 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6059 	struct napi_struct *napi;
6060 
6061 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6062 		if (napi->napi_id == napi_id)
6063 			return napi;
6064 
6065 	return NULL;
6066 }
6067 
6068 #if defined(CONFIG_NET_RX_BUSY_POLL)
6069 
6070 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6071 {
6072 	if (!skip_schedule) {
6073 		gro_normal_list(napi);
6074 		__napi_schedule(napi);
6075 		return;
6076 	}
6077 
6078 	if (napi->gro_bitmask) {
6079 		/* flush too old packets
6080 		 * If HZ < 1000, flush all packets.
6081 		 */
6082 		napi_gro_flush(napi, HZ >= 1000);
6083 	}
6084 
6085 	gro_normal_list(napi);
6086 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6087 }
6088 
6089 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6090 			   u16 budget)
6091 {
6092 	bool skip_schedule = false;
6093 	unsigned long timeout;
6094 	int rc;
6095 
6096 	/* Busy polling means there is a high chance device driver hard irq
6097 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6098 	 * set in napi_schedule_prep().
6099 	 * Since we are about to call napi->poll() once more, we can safely
6100 	 * clear NAPI_STATE_MISSED.
6101 	 *
6102 	 * Note: x86 could use a single "lock and ..." instruction
6103 	 * to perform these two clear_bit()
6104 	 */
6105 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6106 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6107 
6108 	local_bh_disable();
6109 
6110 	if (prefer_busy_poll) {
6111 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6112 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6113 		if (napi->defer_hard_irqs_count && timeout) {
6114 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6115 			skip_schedule = true;
6116 		}
6117 	}
6118 
6119 	/* All we really want here is to re-enable device interrupts.
6120 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6121 	 */
6122 	rc = napi->poll(napi, budget);
6123 	/* We can't gro_normal_list() here, because napi->poll() might have
6124 	 * rearmed the napi (napi_complete_done()) in which case it could
6125 	 * already be running on another CPU.
6126 	 */
6127 	trace_napi_poll(napi, rc, budget);
6128 	netpoll_poll_unlock(have_poll_lock);
6129 	if (rc == budget)
6130 		__busy_poll_stop(napi, skip_schedule);
6131 	local_bh_enable();
6132 }
6133 
6134 void napi_busy_loop(unsigned int napi_id,
6135 		    bool (*loop_end)(void *, unsigned long),
6136 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6137 {
6138 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6139 	int (*napi_poll)(struct napi_struct *napi, int budget);
6140 	void *have_poll_lock = NULL;
6141 	struct napi_struct *napi;
6142 
6143 restart:
6144 	napi_poll = NULL;
6145 
6146 	rcu_read_lock();
6147 
6148 	napi = napi_by_id(napi_id);
6149 	if (!napi)
6150 		goto out;
6151 
6152 	preempt_disable();
6153 	for (;;) {
6154 		int work = 0;
6155 
6156 		local_bh_disable();
6157 		if (!napi_poll) {
6158 			unsigned long val = READ_ONCE(napi->state);
6159 
6160 			/* If multiple threads are competing for this napi,
6161 			 * we avoid dirtying napi->state as much as we can.
6162 			 */
6163 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6164 				   NAPIF_STATE_IN_BUSY_POLL)) {
6165 				if (prefer_busy_poll)
6166 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6167 				goto count;
6168 			}
6169 			if (cmpxchg(&napi->state, val,
6170 				    val | NAPIF_STATE_IN_BUSY_POLL |
6171 					  NAPIF_STATE_SCHED) != val) {
6172 				if (prefer_busy_poll)
6173 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6174 				goto count;
6175 			}
6176 			have_poll_lock = netpoll_poll_lock(napi);
6177 			napi_poll = napi->poll;
6178 		}
6179 		work = napi_poll(napi, budget);
6180 		trace_napi_poll(napi, work, budget);
6181 		gro_normal_list(napi);
6182 count:
6183 		if (work > 0)
6184 			__NET_ADD_STATS(dev_net(napi->dev),
6185 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6186 		local_bh_enable();
6187 
6188 		if (!loop_end || loop_end(loop_end_arg, start_time))
6189 			break;
6190 
6191 		if (unlikely(need_resched())) {
6192 			if (napi_poll)
6193 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6194 			preempt_enable();
6195 			rcu_read_unlock();
6196 			cond_resched();
6197 			if (loop_end(loop_end_arg, start_time))
6198 				return;
6199 			goto restart;
6200 		}
6201 		cpu_relax();
6202 	}
6203 	if (napi_poll)
6204 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6205 	preempt_enable();
6206 out:
6207 	rcu_read_unlock();
6208 }
6209 EXPORT_SYMBOL(napi_busy_loop);
6210 
6211 #endif /* CONFIG_NET_RX_BUSY_POLL */
6212 
6213 static void napi_hash_add(struct napi_struct *napi)
6214 {
6215 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6216 		return;
6217 
6218 	spin_lock(&napi_hash_lock);
6219 
6220 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6221 	do {
6222 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6223 			napi_gen_id = MIN_NAPI_ID;
6224 	} while (napi_by_id(napi_gen_id));
6225 	napi->napi_id = napi_gen_id;
6226 
6227 	hlist_add_head_rcu(&napi->napi_hash_node,
6228 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6229 
6230 	spin_unlock(&napi_hash_lock);
6231 }
6232 
6233 /* Warning : caller is responsible to make sure rcu grace period
6234  * is respected before freeing memory containing @napi
6235  */
6236 static void napi_hash_del(struct napi_struct *napi)
6237 {
6238 	spin_lock(&napi_hash_lock);
6239 
6240 	hlist_del_init_rcu(&napi->napi_hash_node);
6241 
6242 	spin_unlock(&napi_hash_lock);
6243 }
6244 
6245 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6246 {
6247 	struct napi_struct *napi;
6248 
6249 	napi = container_of(timer, struct napi_struct, timer);
6250 
6251 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6252 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6253 	 */
6254 	if (!napi_disable_pending(napi) &&
6255 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6256 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6257 		__napi_schedule_irqoff(napi);
6258 	}
6259 
6260 	return HRTIMER_NORESTART;
6261 }
6262 
6263 static void init_gro_hash(struct napi_struct *napi)
6264 {
6265 	int i;
6266 
6267 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6268 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6269 		napi->gro_hash[i].count = 0;
6270 	}
6271 	napi->gro_bitmask = 0;
6272 }
6273 
6274 int dev_set_threaded(struct net_device *dev, bool threaded)
6275 {
6276 	struct napi_struct *napi;
6277 	int err = 0;
6278 
6279 	if (dev->threaded == threaded)
6280 		return 0;
6281 
6282 	if (threaded) {
6283 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6284 			if (!napi->thread) {
6285 				err = napi_kthread_create(napi);
6286 				if (err) {
6287 					threaded = false;
6288 					break;
6289 				}
6290 			}
6291 		}
6292 	}
6293 
6294 	dev->threaded = threaded;
6295 
6296 	/* Make sure kthread is created before THREADED bit
6297 	 * is set.
6298 	 */
6299 	smp_mb__before_atomic();
6300 
6301 	/* Setting/unsetting threaded mode on a napi might not immediately
6302 	 * take effect, if the current napi instance is actively being
6303 	 * polled. In this case, the switch between threaded mode and
6304 	 * softirq mode will happen in the next round of napi_schedule().
6305 	 * This should not cause hiccups/stalls to the live traffic.
6306 	 */
6307 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6308 		if (threaded)
6309 			set_bit(NAPI_STATE_THREADED, &napi->state);
6310 		else
6311 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6312 	}
6313 
6314 	return err;
6315 }
6316 EXPORT_SYMBOL(dev_set_threaded);
6317 
6318 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6319 			   int (*poll)(struct napi_struct *, int), int weight)
6320 {
6321 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6322 		return;
6323 
6324 	INIT_LIST_HEAD(&napi->poll_list);
6325 	INIT_HLIST_NODE(&napi->napi_hash_node);
6326 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6327 	napi->timer.function = napi_watchdog;
6328 	init_gro_hash(napi);
6329 	napi->skb = NULL;
6330 	INIT_LIST_HEAD(&napi->rx_list);
6331 	napi->rx_count = 0;
6332 	napi->poll = poll;
6333 	if (weight > NAPI_POLL_WEIGHT)
6334 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6335 				weight);
6336 	napi->weight = weight;
6337 	napi->dev = dev;
6338 #ifdef CONFIG_NETPOLL
6339 	napi->poll_owner = -1;
6340 #endif
6341 	set_bit(NAPI_STATE_SCHED, &napi->state);
6342 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6343 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6344 	napi_hash_add(napi);
6345 	/* Create kthread for this napi if dev->threaded is set.
6346 	 * Clear dev->threaded if kthread creation failed so that
6347 	 * threaded mode will not be enabled in napi_enable().
6348 	 */
6349 	if (dev->threaded && napi_kthread_create(napi))
6350 		dev->threaded = 0;
6351 }
6352 EXPORT_SYMBOL(netif_napi_add_weight);
6353 
6354 void napi_disable(struct napi_struct *n)
6355 {
6356 	unsigned long val, new;
6357 
6358 	might_sleep();
6359 	set_bit(NAPI_STATE_DISABLE, &n->state);
6360 
6361 	for ( ; ; ) {
6362 		val = READ_ONCE(n->state);
6363 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6364 			usleep_range(20, 200);
6365 			continue;
6366 		}
6367 
6368 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6369 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6370 
6371 		if (cmpxchg(&n->state, val, new) == val)
6372 			break;
6373 	}
6374 
6375 	hrtimer_cancel(&n->timer);
6376 
6377 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6378 }
6379 EXPORT_SYMBOL(napi_disable);
6380 
6381 /**
6382  *	napi_enable - enable NAPI scheduling
6383  *	@n: NAPI context
6384  *
6385  * Resume NAPI from being scheduled on this context.
6386  * Must be paired with napi_disable.
6387  */
6388 void napi_enable(struct napi_struct *n)
6389 {
6390 	unsigned long val, new;
6391 
6392 	do {
6393 		val = READ_ONCE(n->state);
6394 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6395 
6396 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6397 		if (n->dev->threaded && n->thread)
6398 			new |= NAPIF_STATE_THREADED;
6399 	} while (cmpxchg(&n->state, val, new) != val);
6400 }
6401 EXPORT_SYMBOL(napi_enable);
6402 
6403 static void flush_gro_hash(struct napi_struct *napi)
6404 {
6405 	int i;
6406 
6407 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6408 		struct sk_buff *skb, *n;
6409 
6410 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6411 			kfree_skb(skb);
6412 		napi->gro_hash[i].count = 0;
6413 	}
6414 }
6415 
6416 /* Must be called in process context */
6417 void __netif_napi_del(struct napi_struct *napi)
6418 {
6419 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6420 		return;
6421 
6422 	napi_hash_del(napi);
6423 	list_del_rcu(&napi->dev_list);
6424 	napi_free_frags(napi);
6425 
6426 	flush_gro_hash(napi);
6427 	napi->gro_bitmask = 0;
6428 
6429 	if (napi->thread) {
6430 		kthread_stop(napi->thread);
6431 		napi->thread = NULL;
6432 	}
6433 }
6434 EXPORT_SYMBOL(__netif_napi_del);
6435 
6436 static int __napi_poll(struct napi_struct *n, bool *repoll)
6437 {
6438 	int work, weight;
6439 
6440 	weight = n->weight;
6441 
6442 	/* This NAPI_STATE_SCHED test is for avoiding a race
6443 	 * with netpoll's poll_napi().  Only the entity which
6444 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6445 	 * actually make the ->poll() call.  Therefore we avoid
6446 	 * accidentally calling ->poll() when NAPI is not scheduled.
6447 	 */
6448 	work = 0;
6449 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6450 		work = n->poll(n, weight);
6451 		trace_napi_poll(n, work, weight);
6452 	}
6453 
6454 	if (unlikely(work > weight))
6455 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6456 				n->poll, work, weight);
6457 
6458 	if (likely(work < weight))
6459 		return work;
6460 
6461 	/* Drivers must not modify the NAPI state if they
6462 	 * consume the entire weight.  In such cases this code
6463 	 * still "owns" the NAPI instance and therefore can
6464 	 * move the instance around on the list at-will.
6465 	 */
6466 	if (unlikely(napi_disable_pending(n))) {
6467 		napi_complete(n);
6468 		return work;
6469 	}
6470 
6471 	/* The NAPI context has more processing work, but busy-polling
6472 	 * is preferred. Exit early.
6473 	 */
6474 	if (napi_prefer_busy_poll(n)) {
6475 		if (napi_complete_done(n, work)) {
6476 			/* If timeout is not set, we need to make sure
6477 			 * that the NAPI is re-scheduled.
6478 			 */
6479 			napi_schedule(n);
6480 		}
6481 		return work;
6482 	}
6483 
6484 	if (n->gro_bitmask) {
6485 		/* flush too old packets
6486 		 * If HZ < 1000, flush all packets.
6487 		 */
6488 		napi_gro_flush(n, HZ >= 1000);
6489 	}
6490 
6491 	gro_normal_list(n);
6492 
6493 	/* Some drivers may have called napi_schedule
6494 	 * prior to exhausting their budget.
6495 	 */
6496 	if (unlikely(!list_empty(&n->poll_list))) {
6497 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6498 			     n->dev ? n->dev->name : "backlog");
6499 		return work;
6500 	}
6501 
6502 	*repoll = true;
6503 
6504 	return work;
6505 }
6506 
6507 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6508 {
6509 	bool do_repoll = false;
6510 	void *have;
6511 	int work;
6512 
6513 	list_del_init(&n->poll_list);
6514 
6515 	have = netpoll_poll_lock(n);
6516 
6517 	work = __napi_poll(n, &do_repoll);
6518 
6519 	if (do_repoll)
6520 		list_add_tail(&n->poll_list, repoll);
6521 
6522 	netpoll_poll_unlock(have);
6523 
6524 	return work;
6525 }
6526 
6527 static int napi_thread_wait(struct napi_struct *napi)
6528 {
6529 	bool woken = false;
6530 
6531 	set_current_state(TASK_INTERRUPTIBLE);
6532 
6533 	while (!kthread_should_stop()) {
6534 		/* Testing SCHED_THREADED bit here to make sure the current
6535 		 * kthread owns this napi and could poll on this napi.
6536 		 * Testing SCHED bit is not enough because SCHED bit might be
6537 		 * set by some other busy poll thread or by napi_disable().
6538 		 */
6539 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6540 			WARN_ON(!list_empty(&napi->poll_list));
6541 			__set_current_state(TASK_RUNNING);
6542 			return 0;
6543 		}
6544 
6545 		schedule();
6546 		/* woken being true indicates this thread owns this napi. */
6547 		woken = true;
6548 		set_current_state(TASK_INTERRUPTIBLE);
6549 	}
6550 	__set_current_state(TASK_RUNNING);
6551 
6552 	return -1;
6553 }
6554 
6555 static int napi_threaded_poll(void *data)
6556 {
6557 	struct napi_struct *napi = data;
6558 	void *have;
6559 
6560 	while (!napi_thread_wait(napi)) {
6561 		for (;;) {
6562 			bool repoll = false;
6563 
6564 			local_bh_disable();
6565 
6566 			have = netpoll_poll_lock(napi);
6567 			__napi_poll(napi, &repoll);
6568 			netpoll_poll_unlock(have);
6569 
6570 			local_bh_enable();
6571 
6572 			if (!repoll)
6573 				break;
6574 
6575 			cond_resched();
6576 		}
6577 	}
6578 	return 0;
6579 }
6580 
6581 static void skb_defer_free_flush(struct softnet_data *sd)
6582 {
6583 	struct sk_buff *skb, *next;
6584 	unsigned long flags;
6585 
6586 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6587 	if (!READ_ONCE(sd->defer_list))
6588 		return;
6589 
6590 	spin_lock_irqsave(&sd->defer_lock, flags);
6591 	skb = sd->defer_list;
6592 	sd->defer_list = NULL;
6593 	sd->defer_count = 0;
6594 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6595 
6596 	while (skb != NULL) {
6597 		next = skb->next;
6598 		__kfree_skb(skb);
6599 		skb = next;
6600 	}
6601 }
6602 
6603 static __latent_entropy void net_rx_action(struct softirq_action *h)
6604 {
6605 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6606 	unsigned long time_limit = jiffies +
6607 		usecs_to_jiffies(netdev_budget_usecs);
6608 	int budget = netdev_budget;
6609 	LIST_HEAD(list);
6610 	LIST_HEAD(repoll);
6611 
6612 	local_irq_disable();
6613 	list_splice_init(&sd->poll_list, &list);
6614 	local_irq_enable();
6615 
6616 	for (;;) {
6617 		struct napi_struct *n;
6618 
6619 		if (list_empty(&list)) {
6620 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6621 				goto end;
6622 			break;
6623 		}
6624 
6625 		n = list_first_entry(&list, struct napi_struct, poll_list);
6626 		budget -= napi_poll(n, &repoll);
6627 
6628 		/* If softirq window is exhausted then punt.
6629 		 * Allow this to run for 2 jiffies since which will allow
6630 		 * an average latency of 1.5/HZ.
6631 		 */
6632 		if (unlikely(budget <= 0 ||
6633 			     time_after_eq(jiffies, time_limit))) {
6634 			sd->time_squeeze++;
6635 			break;
6636 		}
6637 	}
6638 
6639 	local_irq_disable();
6640 
6641 	list_splice_tail_init(&sd->poll_list, &list);
6642 	list_splice_tail(&repoll, &list);
6643 	list_splice(&list, &sd->poll_list);
6644 	if (!list_empty(&sd->poll_list))
6645 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6646 
6647 	net_rps_action_and_irq_enable(sd);
6648 end:
6649 	skb_defer_free_flush(sd);
6650 }
6651 
6652 struct netdev_adjacent {
6653 	struct net_device *dev;
6654 	netdevice_tracker dev_tracker;
6655 
6656 	/* upper master flag, there can only be one master device per list */
6657 	bool master;
6658 
6659 	/* lookup ignore flag */
6660 	bool ignore;
6661 
6662 	/* counter for the number of times this device was added to us */
6663 	u16 ref_nr;
6664 
6665 	/* private field for the users */
6666 	void *private;
6667 
6668 	struct list_head list;
6669 	struct rcu_head rcu;
6670 };
6671 
6672 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6673 						 struct list_head *adj_list)
6674 {
6675 	struct netdev_adjacent *adj;
6676 
6677 	list_for_each_entry(adj, adj_list, list) {
6678 		if (adj->dev == adj_dev)
6679 			return adj;
6680 	}
6681 	return NULL;
6682 }
6683 
6684 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6685 				    struct netdev_nested_priv *priv)
6686 {
6687 	struct net_device *dev = (struct net_device *)priv->data;
6688 
6689 	return upper_dev == dev;
6690 }
6691 
6692 /**
6693  * netdev_has_upper_dev - Check if device is linked to an upper device
6694  * @dev: device
6695  * @upper_dev: upper device to check
6696  *
6697  * Find out if a device is linked to specified upper device and return true
6698  * in case it is. Note that this checks only immediate upper device,
6699  * not through a complete stack of devices. The caller must hold the RTNL lock.
6700  */
6701 bool netdev_has_upper_dev(struct net_device *dev,
6702 			  struct net_device *upper_dev)
6703 {
6704 	struct netdev_nested_priv priv = {
6705 		.data = (void *)upper_dev,
6706 	};
6707 
6708 	ASSERT_RTNL();
6709 
6710 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6711 					     &priv);
6712 }
6713 EXPORT_SYMBOL(netdev_has_upper_dev);
6714 
6715 /**
6716  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6717  * @dev: device
6718  * @upper_dev: upper device to check
6719  *
6720  * Find out if a device is linked to specified upper device and return true
6721  * in case it is. Note that this checks the entire upper device chain.
6722  * The caller must hold rcu lock.
6723  */
6724 
6725 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6726 				  struct net_device *upper_dev)
6727 {
6728 	struct netdev_nested_priv priv = {
6729 		.data = (void *)upper_dev,
6730 	};
6731 
6732 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6733 					       &priv);
6734 }
6735 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6736 
6737 /**
6738  * netdev_has_any_upper_dev - Check if device is linked to some device
6739  * @dev: device
6740  *
6741  * Find out if a device is linked to an upper device and return true in case
6742  * it is. The caller must hold the RTNL lock.
6743  */
6744 bool netdev_has_any_upper_dev(struct net_device *dev)
6745 {
6746 	ASSERT_RTNL();
6747 
6748 	return !list_empty(&dev->adj_list.upper);
6749 }
6750 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6751 
6752 /**
6753  * netdev_master_upper_dev_get - Get master upper device
6754  * @dev: device
6755  *
6756  * Find a master upper device and return pointer to it or NULL in case
6757  * it's not there. The caller must hold the RTNL lock.
6758  */
6759 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6760 {
6761 	struct netdev_adjacent *upper;
6762 
6763 	ASSERT_RTNL();
6764 
6765 	if (list_empty(&dev->adj_list.upper))
6766 		return NULL;
6767 
6768 	upper = list_first_entry(&dev->adj_list.upper,
6769 				 struct netdev_adjacent, list);
6770 	if (likely(upper->master))
6771 		return upper->dev;
6772 	return NULL;
6773 }
6774 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6775 
6776 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6777 {
6778 	struct netdev_adjacent *upper;
6779 
6780 	ASSERT_RTNL();
6781 
6782 	if (list_empty(&dev->adj_list.upper))
6783 		return NULL;
6784 
6785 	upper = list_first_entry(&dev->adj_list.upper,
6786 				 struct netdev_adjacent, list);
6787 	if (likely(upper->master) && !upper->ignore)
6788 		return upper->dev;
6789 	return NULL;
6790 }
6791 
6792 /**
6793  * netdev_has_any_lower_dev - Check if device is linked to some device
6794  * @dev: device
6795  *
6796  * Find out if a device is linked to a lower device and return true in case
6797  * it is. The caller must hold the RTNL lock.
6798  */
6799 static bool netdev_has_any_lower_dev(struct net_device *dev)
6800 {
6801 	ASSERT_RTNL();
6802 
6803 	return !list_empty(&dev->adj_list.lower);
6804 }
6805 
6806 void *netdev_adjacent_get_private(struct list_head *adj_list)
6807 {
6808 	struct netdev_adjacent *adj;
6809 
6810 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6811 
6812 	return adj->private;
6813 }
6814 EXPORT_SYMBOL(netdev_adjacent_get_private);
6815 
6816 /**
6817  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6818  * @dev: device
6819  * @iter: list_head ** of the current position
6820  *
6821  * Gets the next device from the dev's upper list, starting from iter
6822  * position. The caller must hold RCU read lock.
6823  */
6824 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6825 						 struct list_head **iter)
6826 {
6827 	struct netdev_adjacent *upper;
6828 
6829 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6830 
6831 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6832 
6833 	if (&upper->list == &dev->adj_list.upper)
6834 		return NULL;
6835 
6836 	*iter = &upper->list;
6837 
6838 	return upper->dev;
6839 }
6840 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6841 
6842 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6843 						  struct list_head **iter,
6844 						  bool *ignore)
6845 {
6846 	struct netdev_adjacent *upper;
6847 
6848 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6849 
6850 	if (&upper->list == &dev->adj_list.upper)
6851 		return NULL;
6852 
6853 	*iter = &upper->list;
6854 	*ignore = upper->ignore;
6855 
6856 	return upper->dev;
6857 }
6858 
6859 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6860 						    struct list_head **iter)
6861 {
6862 	struct netdev_adjacent *upper;
6863 
6864 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6865 
6866 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6867 
6868 	if (&upper->list == &dev->adj_list.upper)
6869 		return NULL;
6870 
6871 	*iter = &upper->list;
6872 
6873 	return upper->dev;
6874 }
6875 
6876 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6877 				       int (*fn)(struct net_device *dev,
6878 					 struct netdev_nested_priv *priv),
6879 				       struct netdev_nested_priv *priv)
6880 {
6881 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6882 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6883 	int ret, cur = 0;
6884 	bool ignore;
6885 
6886 	now = dev;
6887 	iter = &dev->adj_list.upper;
6888 
6889 	while (1) {
6890 		if (now != dev) {
6891 			ret = fn(now, priv);
6892 			if (ret)
6893 				return ret;
6894 		}
6895 
6896 		next = NULL;
6897 		while (1) {
6898 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6899 			if (!udev)
6900 				break;
6901 			if (ignore)
6902 				continue;
6903 
6904 			next = udev;
6905 			niter = &udev->adj_list.upper;
6906 			dev_stack[cur] = now;
6907 			iter_stack[cur++] = iter;
6908 			break;
6909 		}
6910 
6911 		if (!next) {
6912 			if (!cur)
6913 				return 0;
6914 			next = dev_stack[--cur];
6915 			niter = iter_stack[cur];
6916 		}
6917 
6918 		now = next;
6919 		iter = niter;
6920 	}
6921 
6922 	return 0;
6923 }
6924 
6925 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6926 				  int (*fn)(struct net_device *dev,
6927 					    struct netdev_nested_priv *priv),
6928 				  struct netdev_nested_priv *priv)
6929 {
6930 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6931 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6932 	int ret, cur = 0;
6933 
6934 	now = dev;
6935 	iter = &dev->adj_list.upper;
6936 
6937 	while (1) {
6938 		if (now != dev) {
6939 			ret = fn(now, priv);
6940 			if (ret)
6941 				return ret;
6942 		}
6943 
6944 		next = NULL;
6945 		while (1) {
6946 			udev = netdev_next_upper_dev_rcu(now, &iter);
6947 			if (!udev)
6948 				break;
6949 
6950 			next = udev;
6951 			niter = &udev->adj_list.upper;
6952 			dev_stack[cur] = now;
6953 			iter_stack[cur++] = iter;
6954 			break;
6955 		}
6956 
6957 		if (!next) {
6958 			if (!cur)
6959 				return 0;
6960 			next = dev_stack[--cur];
6961 			niter = iter_stack[cur];
6962 		}
6963 
6964 		now = next;
6965 		iter = niter;
6966 	}
6967 
6968 	return 0;
6969 }
6970 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6971 
6972 static bool __netdev_has_upper_dev(struct net_device *dev,
6973 				   struct net_device *upper_dev)
6974 {
6975 	struct netdev_nested_priv priv = {
6976 		.flags = 0,
6977 		.data = (void *)upper_dev,
6978 	};
6979 
6980 	ASSERT_RTNL();
6981 
6982 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6983 					   &priv);
6984 }
6985 
6986 /**
6987  * netdev_lower_get_next_private - Get the next ->private from the
6988  *				   lower neighbour list
6989  * @dev: device
6990  * @iter: list_head ** of the current position
6991  *
6992  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6993  * list, starting from iter position. The caller must hold either hold the
6994  * RTNL lock or its own locking that guarantees that the neighbour lower
6995  * list will remain unchanged.
6996  */
6997 void *netdev_lower_get_next_private(struct net_device *dev,
6998 				    struct list_head **iter)
6999 {
7000 	struct netdev_adjacent *lower;
7001 
7002 	lower = list_entry(*iter, struct netdev_adjacent, list);
7003 
7004 	if (&lower->list == &dev->adj_list.lower)
7005 		return NULL;
7006 
7007 	*iter = lower->list.next;
7008 
7009 	return lower->private;
7010 }
7011 EXPORT_SYMBOL(netdev_lower_get_next_private);
7012 
7013 /**
7014  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7015  *				       lower neighbour list, RCU
7016  *				       variant
7017  * @dev: device
7018  * @iter: list_head ** of the current position
7019  *
7020  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7021  * list, starting from iter position. The caller must hold RCU read lock.
7022  */
7023 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7024 					struct list_head **iter)
7025 {
7026 	struct netdev_adjacent *lower;
7027 
7028 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7029 
7030 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7031 
7032 	if (&lower->list == &dev->adj_list.lower)
7033 		return NULL;
7034 
7035 	*iter = &lower->list;
7036 
7037 	return lower->private;
7038 }
7039 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7040 
7041 /**
7042  * netdev_lower_get_next - Get the next device from the lower neighbour
7043  *                         list
7044  * @dev: device
7045  * @iter: list_head ** of the current position
7046  *
7047  * Gets the next netdev_adjacent from the dev's lower neighbour
7048  * list, starting from iter position. The caller must hold RTNL lock or
7049  * its own locking that guarantees that the neighbour lower
7050  * list will remain unchanged.
7051  */
7052 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7053 {
7054 	struct netdev_adjacent *lower;
7055 
7056 	lower = list_entry(*iter, struct netdev_adjacent, list);
7057 
7058 	if (&lower->list == &dev->adj_list.lower)
7059 		return NULL;
7060 
7061 	*iter = lower->list.next;
7062 
7063 	return lower->dev;
7064 }
7065 EXPORT_SYMBOL(netdev_lower_get_next);
7066 
7067 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7068 						struct list_head **iter)
7069 {
7070 	struct netdev_adjacent *lower;
7071 
7072 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7073 
7074 	if (&lower->list == &dev->adj_list.lower)
7075 		return NULL;
7076 
7077 	*iter = &lower->list;
7078 
7079 	return lower->dev;
7080 }
7081 
7082 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7083 						  struct list_head **iter,
7084 						  bool *ignore)
7085 {
7086 	struct netdev_adjacent *lower;
7087 
7088 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7089 
7090 	if (&lower->list == &dev->adj_list.lower)
7091 		return NULL;
7092 
7093 	*iter = &lower->list;
7094 	*ignore = lower->ignore;
7095 
7096 	return lower->dev;
7097 }
7098 
7099 int netdev_walk_all_lower_dev(struct net_device *dev,
7100 			      int (*fn)(struct net_device *dev,
7101 					struct netdev_nested_priv *priv),
7102 			      struct netdev_nested_priv *priv)
7103 {
7104 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7105 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7106 	int ret, cur = 0;
7107 
7108 	now = dev;
7109 	iter = &dev->adj_list.lower;
7110 
7111 	while (1) {
7112 		if (now != dev) {
7113 			ret = fn(now, priv);
7114 			if (ret)
7115 				return ret;
7116 		}
7117 
7118 		next = NULL;
7119 		while (1) {
7120 			ldev = netdev_next_lower_dev(now, &iter);
7121 			if (!ldev)
7122 				break;
7123 
7124 			next = ldev;
7125 			niter = &ldev->adj_list.lower;
7126 			dev_stack[cur] = now;
7127 			iter_stack[cur++] = iter;
7128 			break;
7129 		}
7130 
7131 		if (!next) {
7132 			if (!cur)
7133 				return 0;
7134 			next = dev_stack[--cur];
7135 			niter = iter_stack[cur];
7136 		}
7137 
7138 		now = next;
7139 		iter = niter;
7140 	}
7141 
7142 	return 0;
7143 }
7144 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7145 
7146 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7147 				       int (*fn)(struct net_device *dev,
7148 					 struct netdev_nested_priv *priv),
7149 				       struct netdev_nested_priv *priv)
7150 {
7151 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7152 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7153 	int ret, cur = 0;
7154 	bool ignore;
7155 
7156 	now = dev;
7157 	iter = &dev->adj_list.lower;
7158 
7159 	while (1) {
7160 		if (now != dev) {
7161 			ret = fn(now, priv);
7162 			if (ret)
7163 				return ret;
7164 		}
7165 
7166 		next = NULL;
7167 		while (1) {
7168 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7169 			if (!ldev)
7170 				break;
7171 			if (ignore)
7172 				continue;
7173 
7174 			next = ldev;
7175 			niter = &ldev->adj_list.lower;
7176 			dev_stack[cur] = now;
7177 			iter_stack[cur++] = iter;
7178 			break;
7179 		}
7180 
7181 		if (!next) {
7182 			if (!cur)
7183 				return 0;
7184 			next = dev_stack[--cur];
7185 			niter = iter_stack[cur];
7186 		}
7187 
7188 		now = next;
7189 		iter = niter;
7190 	}
7191 
7192 	return 0;
7193 }
7194 
7195 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7196 					     struct list_head **iter)
7197 {
7198 	struct netdev_adjacent *lower;
7199 
7200 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7201 	if (&lower->list == &dev->adj_list.lower)
7202 		return NULL;
7203 
7204 	*iter = &lower->list;
7205 
7206 	return lower->dev;
7207 }
7208 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7209 
7210 static u8 __netdev_upper_depth(struct net_device *dev)
7211 {
7212 	struct net_device *udev;
7213 	struct list_head *iter;
7214 	u8 max_depth = 0;
7215 	bool ignore;
7216 
7217 	for (iter = &dev->adj_list.upper,
7218 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7219 	     udev;
7220 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7221 		if (ignore)
7222 			continue;
7223 		if (max_depth < udev->upper_level)
7224 			max_depth = udev->upper_level;
7225 	}
7226 
7227 	return max_depth;
7228 }
7229 
7230 static u8 __netdev_lower_depth(struct net_device *dev)
7231 {
7232 	struct net_device *ldev;
7233 	struct list_head *iter;
7234 	u8 max_depth = 0;
7235 	bool ignore;
7236 
7237 	for (iter = &dev->adj_list.lower,
7238 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7239 	     ldev;
7240 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7241 		if (ignore)
7242 			continue;
7243 		if (max_depth < ldev->lower_level)
7244 			max_depth = ldev->lower_level;
7245 	}
7246 
7247 	return max_depth;
7248 }
7249 
7250 static int __netdev_update_upper_level(struct net_device *dev,
7251 				       struct netdev_nested_priv *__unused)
7252 {
7253 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7254 	return 0;
7255 }
7256 
7257 #ifdef CONFIG_LOCKDEP
7258 static LIST_HEAD(net_unlink_list);
7259 
7260 static void net_unlink_todo(struct net_device *dev)
7261 {
7262 	if (list_empty(&dev->unlink_list))
7263 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7264 }
7265 #endif
7266 
7267 static int __netdev_update_lower_level(struct net_device *dev,
7268 				       struct netdev_nested_priv *priv)
7269 {
7270 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7271 
7272 #ifdef CONFIG_LOCKDEP
7273 	if (!priv)
7274 		return 0;
7275 
7276 	if (priv->flags & NESTED_SYNC_IMM)
7277 		dev->nested_level = dev->lower_level - 1;
7278 	if (priv->flags & NESTED_SYNC_TODO)
7279 		net_unlink_todo(dev);
7280 #endif
7281 	return 0;
7282 }
7283 
7284 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7285 				  int (*fn)(struct net_device *dev,
7286 					    struct netdev_nested_priv *priv),
7287 				  struct netdev_nested_priv *priv)
7288 {
7289 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7290 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7291 	int ret, cur = 0;
7292 
7293 	now = dev;
7294 	iter = &dev->adj_list.lower;
7295 
7296 	while (1) {
7297 		if (now != dev) {
7298 			ret = fn(now, priv);
7299 			if (ret)
7300 				return ret;
7301 		}
7302 
7303 		next = NULL;
7304 		while (1) {
7305 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7306 			if (!ldev)
7307 				break;
7308 
7309 			next = ldev;
7310 			niter = &ldev->adj_list.lower;
7311 			dev_stack[cur] = now;
7312 			iter_stack[cur++] = iter;
7313 			break;
7314 		}
7315 
7316 		if (!next) {
7317 			if (!cur)
7318 				return 0;
7319 			next = dev_stack[--cur];
7320 			niter = iter_stack[cur];
7321 		}
7322 
7323 		now = next;
7324 		iter = niter;
7325 	}
7326 
7327 	return 0;
7328 }
7329 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7330 
7331 /**
7332  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7333  *				       lower neighbour list, RCU
7334  *				       variant
7335  * @dev: device
7336  *
7337  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7338  * list. The caller must hold RCU read lock.
7339  */
7340 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7341 {
7342 	struct netdev_adjacent *lower;
7343 
7344 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7345 			struct netdev_adjacent, list);
7346 	if (lower)
7347 		return lower->private;
7348 	return NULL;
7349 }
7350 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7351 
7352 /**
7353  * netdev_master_upper_dev_get_rcu - Get master upper device
7354  * @dev: device
7355  *
7356  * Find a master upper device and return pointer to it or NULL in case
7357  * it's not there. The caller must hold the RCU read lock.
7358  */
7359 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7360 {
7361 	struct netdev_adjacent *upper;
7362 
7363 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7364 				       struct netdev_adjacent, list);
7365 	if (upper && likely(upper->master))
7366 		return upper->dev;
7367 	return NULL;
7368 }
7369 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7370 
7371 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7372 			      struct net_device *adj_dev,
7373 			      struct list_head *dev_list)
7374 {
7375 	char linkname[IFNAMSIZ+7];
7376 
7377 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7378 		"upper_%s" : "lower_%s", adj_dev->name);
7379 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7380 				 linkname);
7381 }
7382 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7383 			       char *name,
7384 			       struct list_head *dev_list)
7385 {
7386 	char linkname[IFNAMSIZ+7];
7387 
7388 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7389 		"upper_%s" : "lower_%s", name);
7390 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7391 }
7392 
7393 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7394 						 struct net_device *adj_dev,
7395 						 struct list_head *dev_list)
7396 {
7397 	return (dev_list == &dev->adj_list.upper ||
7398 		dev_list == &dev->adj_list.lower) &&
7399 		net_eq(dev_net(dev), dev_net(adj_dev));
7400 }
7401 
7402 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7403 					struct net_device *adj_dev,
7404 					struct list_head *dev_list,
7405 					void *private, bool master)
7406 {
7407 	struct netdev_adjacent *adj;
7408 	int ret;
7409 
7410 	adj = __netdev_find_adj(adj_dev, dev_list);
7411 
7412 	if (adj) {
7413 		adj->ref_nr += 1;
7414 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7415 			 dev->name, adj_dev->name, adj->ref_nr);
7416 
7417 		return 0;
7418 	}
7419 
7420 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7421 	if (!adj)
7422 		return -ENOMEM;
7423 
7424 	adj->dev = adj_dev;
7425 	adj->master = master;
7426 	adj->ref_nr = 1;
7427 	adj->private = private;
7428 	adj->ignore = false;
7429 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7430 
7431 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7432 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7433 
7434 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7435 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7436 		if (ret)
7437 			goto free_adj;
7438 	}
7439 
7440 	/* Ensure that master link is always the first item in list. */
7441 	if (master) {
7442 		ret = sysfs_create_link(&(dev->dev.kobj),
7443 					&(adj_dev->dev.kobj), "master");
7444 		if (ret)
7445 			goto remove_symlinks;
7446 
7447 		list_add_rcu(&adj->list, dev_list);
7448 	} else {
7449 		list_add_tail_rcu(&adj->list, dev_list);
7450 	}
7451 
7452 	return 0;
7453 
7454 remove_symlinks:
7455 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7456 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7457 free_adj:
7458 	dev_put_track(adj_dev, &adj->dev_tracker);
7459 	kfree(adj);
7460 
7461 	return ret;
7462 }
7463 
7464 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7465 					 struct net_device *adj_dev,
7466 					 u16 ref_nr,
7467 					 struct list_head *dev_list)
7468 {
7469 	struct netdev_adjacent *adj;
7470 
7471 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7472 		 dev->name, adj_dev->name, ref_nr);
7473 
7474 	adj = __netdev_find_adj(adj_dev, dev_list);
7475 
7476 	if (!adj) {
7477 		pr_err("Adjacency does not exist for device %s from %s\n",
7478 		       dev->name, adj_dev->name);
7479 		WARN_ON(1);
7480 		return;
7481 	}
7482 
7483 	if (adj->ref_nr > ref_nr) {
7484 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7485 			 dev->name, adj_dev->name, ref_nr,
7486 			 adj->ref_nr - ref_nr);
7487 		adj->ref_nr -= ref_nr;
7488 		return;
7489 	}
7490 
7491 	if (adj->master)
7492 		sysfs_remove_link(&(dev->dev.kobj), "master");
7493 
7494 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7495 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7496 
7497 	list_del_rcu(&adj->list);
7498 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7499 		 adj_dev->name, dev->name, adj_dev->name);
7500 	dev_put_track(adj_dev, &adj->dev_tracker);
7501 	kfree_rcu(adj, rcu);
7502 }
7503 
7504 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7505 					    struct net_device *upper_dev,
7506 					    struct list_head *up_list,
7507 					    struct list_head *down_list,
7508 					    void *private, bool master)
7509 {
7510 	int ret;
7511 
7512 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7513 					   private, master);
7514 	if (ret)
7515 		return ret;
7516 
7517 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7518 					   private, false);
7519 	if (ret) {
7520 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7521 		return ret;
7522 	}
7523 
7524 	return 0;
7525 }
7526 
7527 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7528 					       struct net_device *upper_dev,
7529 					       u16 ref_nr,
7530 					       struct list_head *up_list,
7531 					       struct list_head *down_list)
7532 {
7533 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7534 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7535 }
7536 
7537 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7538 						struct net_device *upper_dev,
7539 						void *private, bool master)
7540 {
7541 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7542 						&dev->adj_list.upper,
7543 						&upper_dev->adj_list.lower,
7544 						private, master);
7545 }
7546 
7547 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7548 						   struct net_device *upper_dev)
7549 {
7550 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7551 					   &dev->adj_list.upper,
7552 					   &upper_dev->adj_list.lower);
7553 }
7554 
7555 static int __netdev_upper_dev_link(struct net_device *dev,
7556 				   struct net_device *upper_dev, bool master,
7557 				   void *upper_priv, void *upper_info,
7558 				   struct netdev_nested_priv *priv,
7559 				   struct netlink_ext_ack *extack)
7560 {
7561 	struct netdev_notifier_changeupper_info changeupper_info = {
7562 		.info = {
7563 			.dev = dev,
7564 			.extack = extack,
7565 		},
7566 		.upper_dev = upper_dev,
7567 		.master = master,
7568 		.linking = true,
7569 		.upper_info = upper_info,
7570 	};
7571 	struct net_device *master_dev;
7572 	int ret = 0;
7573 
7574 	ASSERT_RTNL();
7575 
7576 	if (dev == upper_dev)
7577 		return -EBUSY;
7578 
7579 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7580 	if (__netdev_has_upper_dev(upper_dev, dev))
7581 		return -EBUSY;
7582 
7583 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7584 		return -EMLINK;
7585 
7586 	if (!master) {
7587 		if (__netdev_has_upper_dev(dev, upper_dev))
7588 			return -EEXIST;
7589 	} else {
7590 		master_dev = __netdev_master_upper_dev_get(dev);
7591 		if (master_dev)
7592 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7593 	}
7594 
7595 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7596 					    &changeupper_info.info);
7597 	ret = notifier_to_errno(ret);
7598 	if (ret)
7599 		return ret;
7600 
7601 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7602 						   master);
7603 	if (ret)
7604 		return ret;
7605 
7606 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7607 					    &changeupper_info.info);
7608 	ret = notifier_to_errno(ret);
7609 	if (ret)
7610 		goto rollback;
7611 
7612 	__netdev_update_upper_level(dev, NULL);
7613 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7614 
7615 	__netdev_update_lower_level(upper_dev, priv);
7616 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7617 				    priv);
7618 
7619 	return 0;
7620 
7621 rollback:
7622 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7623 
7624 	return ret;
7625 }
7626 
7627 /**
7628  * netdev_upper_dev_link - Add a link to the upper device
7629  * @dev: device
7630  * @upper_dev: new upper device
7631  * @extack: netlink extended ack
7632  *
7633  * Adds a link to device which is upper to this one. The caller must hold
7634  * the RTNL lock. On a failure a negative errno code is returned.
7635  * On success the reference counts are adjusted and the function
7636  * returns zero.
7637  */
7638 int netdev_upper_dev_link(struct net_device *dev,
7639 			  struct net_device *upper_dev,
7640 			  struct netlink_ext_ack *extack)
7641 {
7642 	struct netdev_nested_priv priv = {
7643 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7644 		.data = NULL,
7645 	};
7646 
7647 	return __netdev_upper_dev_link(dev, upper_dev, false,
7648 				       NULL, NULL, &priv, extack);
7649 }
7650 EXPORT_SYMBOL(netdev_upper_dev_link);
7651 
7652 /**
7653  * netdev_master_upper_dev_link - Add a master link to the upper device
7654  * @dev: device
7655  * @upper_dev: new upper device
7656  * @upper_priv: upper device private
7657  * @upper_info: upper info to be passed down via notifier
7658  * @extack: netlink extended ack
7659  *
7660  * Adds a link to device which is upper to this one. In this case, only
7661  * one master upper device can be linked, although other non-master devices
7662  * might be linked as well. The caller must hold the RTNL lock.
7663  * On a failure a negative errno code is returned. On success the reference
7664  * counts are adjusted and the function returns zero.
7665  */
7666 int netdev_master_upper_dev_link(struct net_device *dev,
7667 				 struct net_device *upper_dev,
7668 				 void *upper_priv, void *upper_info,
7669 				 struct netlink_ext_ack *extack)
7670 {
7671 	struct netdev_nested_priv priv = {
7672 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7673 		.data = NULL,
7674 	};
7675 
7676 	return __netdev_upper_dev_link(dev, upper_dev, true,
7677 				       upper_priv, upper_info, &priv, extack);
7678 }
7679 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7680 
7681 static void __netdev_upper_dev_unlink(struct net_device *dev,
7682 				      struct net_device *upper_dev,
7683 				      struct netdev_nested_priv *priv)
7684 {
7685 	struct netdev_notifier_changeupper_info changeupper_info = {
7686 		.info = {
7687 			.dev = dev,
7688 		},
7689 		.upper_dev = upper_dev,
7690 		.linking = false,
7691 	};
7692 
7693 	ASSERT_RTNL();
7694 
7695 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7696 
7697 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7698 				      &changeupper_info.info);
7699 
7700 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7701 
7702 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7703 				      &changeupper_info.info);
7704 
7705 	__netdev_update_upper_level(dev, NULL);
7706 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7707 
7708 	__netdev_update_lower_level(upper_dev, priv);
7709 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7710 				    priv);
7711 }
7712 
7713 /**
7714  * netdev_upper_dev_unlink - Removes a link to upper device
7715  * @dev: device
7716  * @upper_dev: new upper device
7717  *
7718  * Removes a link to device which is upper to this one. The caller must hold
7719  * the RTNL lock.
7720  */
7721 void netdev_upper_dev_unlink(struct net_device *dev,
7722 			     struct net_device *upper_dev)
7723 {
7724 	struct netdev_nested_priv priv = {
7725 		.flags = NESTED_SYNC_TODO,
7726 		.data = NULL,
7727 	};
7728 
7729 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7730 }
7731 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7732 
7733 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7734 				      struct net_device *lower_dev,
7735 				      bool val)
7736 {
7737 	struct netdev_adjacent *adj;
7738 
7739 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7740 	if (adj)
7741 		adj->ignore = val;
7742 
7743 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7744 	if (adj)
7745 		adj->ignore = val;
7746 }
7747 
7748 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7749 					struct net_device *lower_dev)
7750 {
7751 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7752 }
7753 
7754 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7755 				       struct net_device *lower_dev)
7756 {
7757 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7758 }
7759 
7760 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7761 				   struct net_device *new_dev,
7762 				   struct net_device *dev,
7763 				   struct netlink_ext_ack *extack)
7764 {
7765 	struct netdev_nested_priv priv = {
7766 		.flags = 0,
7767 		.data = NULL,
7768 	};
7769 	int err;
7770 
7771 	if (!new_dev)
7772 		return 0;
7773 
7774 	if (old_dev && new_dev != old_dev)
7775 		netdev_adjacent_dev_disable(dev, old_dev);
7776 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7777 				      extack);
7778 	if (err) {
7779 		if (old_dev && new_dev != old_dev)
7780 			netdev_adjacent_dev_enable(dev, old_dev);
7781 		return err;
7782 	}
7783 
7784 	return 0;
7785 }
7786 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7787 
7788 void netdev_adjacent_change_commit(struct net_device *old_dev,
7789 				   struct net_device *new_dev,
7790 				   struct net_device *dev)
7791 {
7792 	struct netdev_nested_priv priv = {
7793 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7794 		.data = NULL,
7795 	};
7796 
7797 	if (!new_dev || !old_dev)
7798 		return;
7799 
7800 	if (new_dev == old_dev)
7801 		return;
7802 
7803 	netdev_adjacent_dev_enable(dev, old_dev);
7804 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7805 }
7806 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7807 
7808 void netdev_adjacent_change_abort(struct net_device *old_dev,
7809 				  struct net_device *new_dev,
7810 				  struct net_device *dev)
7811 {
7812 	struct netdev_nested_priv priv = {
7813 		.flags = 0,
7814 		.data = NULL,
7815 	};
7816 
7817 	if (!new_dev)
7818 		return;
7819 
7820 	if (old_dev && new_dev != old_dev)
7821 		netdev_adjacent_dev_enable(dev, old_dev);
7822 
7823 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7824 }
7825 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7826 
7827 /**
7828  * netdev_bonding_info_change - Dispatch event about slave change
7829  * @dev: device
7830  * @bonding_info: info to dispatch
7831  *
7832  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7833  * The caller must hold the RTNL lock.
7834  */
7835 void netdev_bonding_info_change(struct net_device *dev,
7836 				struct netdev_bonding_info *bonding_info)
7837 {
7838 	struct netdev_notifier_bonding_info info = {
7839 		.info.dev = dev,
7840 	};
7841 
7842 	memcpy(&info.bonding_info, bonding_info,
7843 	       sizeof(struct netdev_bonding_info));
7844 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7845 				      &info.info);
7846 }
7847 EXPORT_SYMBOL(netdev_bonding_info_change);
7848 
7849 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7850 					   struct netlink_ext_ack *extack)
7851 {
7852 	struct netdev_notifier_offload_xstats_info info = {
7853 		.info.dev = dev,
7854 		.info.extack = extack,
7855 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7856 	};
7857 	int err;
7858 	int rc;
7859 
7860 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7861 					 GFP_KERNEL);
7862 	if (!dev->offload_xstats_l3)
7863 		return -ENOMEM;
7864 
7865 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7866 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7867 						  &info.info);
7868 	err = notifier_to_errno(rc);
7869 	if (err)
7870 		goto free_stats;
7871 
7872 	return 0;
7873 
7874 free_stats:
7875 	kfree(dev->offload_xstats_l3);
7876 	dev->offload_xstats_l3 = NULL;
7877 	return err;
7878 }
7879 
7880 int netdev_offload_xstats_enable(struct net_device *dev,
7881 				 enum netdev_offload_xstats_type type,
7882 				 struct netlink_ext_ack *extack)
7883 {
7884 	ASSERT_RTNL();
7885 
7886 	if (netdev_offload_xstats_enabled(dev, type))
7887 		return -EALREADY;
7888 
7889 	switch (type) {
7890 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7891 		return netdev_offload_xstats_enable_l3(dev, extack);
7892 	}
7893 
7894 	WARN_ON(1);
7895 	return -EINVAL;
7896 }
7897 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7898 
7899 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7900 {
7901 	struct netdev_notifier_offload_xstats_info info = {
7902 		.info.dev = dev,
7903 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7904 	};
7905 
7906 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7907 				      &info.info);
7908 	kfree(dev->offload_xstats_l3);
7909 	dev->offload_xstats_l3 = NULL;
7910 }
7911 
7912 int netdev_offload_xstats_disable(struct net_device *dev,
7913 				  enum netdev_offload_xstats_type type)
7914 {
7915 	ASSERT_RTNL();
7916 
7917 	if (!netdev_offload_xstats_enabled(dev, type))
7918 		return -EALREADY;
7919 
7920 	switch (type) {
7921 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7922 		netdev_offload_xstats_disable_l3(dev);
7923 		return 0;
7924 	}
7925 
7926 	WARN_ON(1);
7927 	return -EINVAL;
7928 }
7929 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7930 
7931 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7932 {
7933 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7934 }
7935 
7936 static struct rtnl_hw_stats64 *
7937 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7938 			      enum netdev_offload_xstats_type type)
7939 {
7940 	switch (type) {
7941 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7942 		return dev->offload_xstats_l3;
7943 	}
7944 
7945 	WARN_ON(1);
7946 	return NULL;
7947 }
7948 
7949 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7950 				   enum netdev_offload_xstats_type type)
7951 {
7952 	ASSERT_RTNL();
7953 
7954 	return netdev_offload_xstats_get_ptr(dev, type);
7955 }
7956 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7957 
7958 struct netdev_notifier_offload_xstats_ru {
7959 	bool used;
7960 };
7961 
7962 struct netdev_notifier_offload_xstats_rd {
7963 	struct rtnl_hw_stats64 stats;
7964 	bool used;
7965 };
7966 
7967 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7968 				  const struct rtnl_hw_stats64 *src)
7969 {
7970 	dest->rx_packets	  += src->rx_packets;
7971 	dest->tx_packets	  += src->tx_packets;
7972 	dest->rx_bytes		  += src->rx_bytes;
7973 	dest->tx_bytes		  += src->tx_bytes;
7974 	dest->rx_errors		  += src->rx_errors;
7975 	dest->tx_errors		  += src->tx_errors;
7976 	dest->rx_dropped	  += src->rx_dropped;
7977 	dest->tx_dropped	  += src->tx_dropped;
7978 	dest->multicast		  += src->multicast;
7979 }
7980 
7981 static int netdev_offload_xstats_get_used(struct net_device *dev,
7982 					  enum netdev_offload_xstats_type type,
7983 					  bool *p_used,
7984 					  struct netlink_ext_ack *extack)
7985 {
7986 	struct netdev_notifier_offload_xstats_ru report_used = {};
7987 	struct netdev_notifier_offload_xstats_info info = {
7988 		.info.dev = dev,
7989 		.info.extack = extack,
7990 		.type = type,
7991 		.report_used = &report_used,
7992 	};
7993 	int rc;
7994 
7995 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
7996 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
7997 					   &info.info);
7998 	*p_used = report_used.used;
7999 	return notifier_to_errno(rc);
8000 }
8001 
8002 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8003 					   enum netdev_offload_xstats_type type,
8004 					   struct rtnl_hw_stats64 *p_stats,
8005 					   bool *p_used,
8006 					   struct netlink_ext_ack *extack)
8007 {
8008 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8009 	struct netdev_notifier_offload_xstats_info info = {
8010 		.info.dev = dev,
8011 		.info.extack = extack,
8012 		.type = type,
8013 		.report_delta = &report_delta,
8014 	};
8015 	struct rtnl_hw_stats64 *stats;
8016 	int rc;
8017 
8018 	stats = netdev_offload_xstats_get_ptr(dev, type);
8019 	if (WARN_ON(!stats))
8020 		return -EINVAL;
8021 
8022 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8023 					   &info.info);
8024 
8025 	/* Cache whatever we got, even if there was an error, otherwise the
8026 	 * successful stats retrievals would get lost.
8027 	 */
8028 	netdev_hw_stats64_add(stats, &report_delta.stats);
8029 
8030 	if (p_stats)
8031 		*p_stats = *stats;
8032 	*p_used = report_delta.used;
8033 
8034 	return notifier_to_errno(rc);
8035 }
8036 
8037 int netdev_offload_xstats_get(struct net_device *dev,
8038 			      enum netdev_offload_xstats_type type,
8039 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8040 			      struct netlink_ext_ack *extack)
8041 {
8042 	ASSERT_RTNL();
8043 
8044 	if (p_stats)
8045 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8046 						       p_used, extack);
8047 	else
8048 		return netdev_offload_xstats_get_used(dev, type, p_used,
8049 						      extack);
8050 }
8051 EXPORT_SYMBOL(netdev_offload_xstats_get);
8052 
8053 void
8054 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8055 				   const struct rtnl_hw_stats64 *stats)
8056 {
8057 	report_delta->used = true;
8058 	netdev_hw_stats64_add(&report_delta->stats, stats);
8059 }
8060 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8061 
8062 void
8063 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8064 {
8065 	report_used->used = true;
8066 }
8067 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8068 
8069 void netdev_offload_xstats_push_delta(struct net_device *dev,
8070 				      enum netdev_offload_xstats_type type,
8071 				      const struct rtnl_hw_stats64 *p_stats)
8072 {
8073 	struct rtnl_hw_stats64 *stats;
8074 
8075 	ASSERT_RTNL();
8076 
8077 	stats = netdev_offload_xstats_get_ptr(dev, type);
8078 	if (WARN_ON(!stats))
8079 		return;
8080 
8081 	netdev_hw_stats64_add(stats, p_stats);
8082 }
8083 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8084 
8085 /**
8086  * netdev_get_xmit_slave - Get the xmit slave of master device
8087  * @dev: device
8088  * @skb: The packet
8089  * @all_slaves: assume all the slaves are active
8090  *
8091  * The reference counters are not incremented so the caller must be
8092  * careful with locks. The caller must hold RCU lock.
8093  * %NULL is returned if no slave is found.
8094  */
8095 
8096 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8097 					 struct sk_buff *skb,
8098 					 bool all_slaves)
8099 {
8100 	const struct net_device_ops *ops = dev->netdev_ops;
8101 
8102 	if (!ops->ndo_get_xmit_slave)
8103 		return NULL;
8104 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8105 }
8106 EXPORT_SYMBOL(netdev_get_xmit_slave);
8107 
8108 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8109 						  struct sock *sk)
8110 {
8111 	const struct net_device_ops *ops = dev->netdev_ops;
8112 
8113 	if (!ops->ndo_sk_get_lower_dev)
8114 		return NULL;
8115 	return ops->ndo_sk_get_lower_dev(dev, sk);
8116 }
8117 
8118 /**
8119  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8120  * @dev: device
8121  * @sk: the socket
8122  *
8123  * %NULL is returned if no lower device is found.
8124  */
8125 
8126 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8127 					    struct sock *sk)
8128 {
8129 	struct net_device *lower;
8130 
8131 	lower = netdev_sk_get_lower_dev(dev, sk);
8132 	while (lower) {
8133 		dev = lower;
8134 		lower = netdev_sk_get_lower_dev(dev, sk);
8135 	}
8136 
8137 	return dev;
8138 }
8139 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8140 
8141 static void netdev_adjacent_add_links(struct net_device *dev)
8142 {
8143 	struct netdev_adjacent *iter;
8144 
8145 	struct net *net = dev_net(dev);
8146 
8147 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8148 		if (!net_eq(net, dev_net(iter->dev)))
8149 			continue;
8150 		netdev_adjacent_sysfs_add(iter->dev, dev,
8151 					  &iter->dev->adj_list.lower);
8152 		netdev_adjacent_sysfs_add(dev, iter->dev,
8153 					  &dev->adj_list.upper);
8154 	}
8155 
8156 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8157 		if (!net_eq(net, dev_net(iter->dev)))
8158 			continue;
8159 		netdev_adjacent_sysfs_add(iter->dev, dev,
8160 					  &iter->dev->adj_list.upper);
8161 		netdev_adjacent_sysfs_add(dev, iter->dev,
8162 					  &dev->adj_list.lower);
8163 	}
8164 }
8165 
8166 static void netdev_adjacent_del_links(struct net_device *dev)
8167 {
8168 	struct netdev_adjacent *iter;
8169 
8170 	struct net *net = dev_net(dev);
8171 
8172 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8173 		if (!net_eq(net, dev_net(iter->dev)))
8174 			continue;
8175 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8176 					  &iter->dev->adj_list.lower);
8177 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8178 					  &dev->adj_list.upper);
8179 	}
8180 
8181 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8182 		if (!net_eq(net, dev_net(iter->dev)))
8183 			continue;
8184 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8185 					  &iter->dev->adj_list.upper);
8186 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8187 					  &dev->adj_list.lower);
8188 	}
8189 }
8190 
8191 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8192 {
8193 	struct netdev_adjacent *iter;
8194 
8195 	struct net *net = dev_net(dev);
8196 
8197 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8198 		if (!net_eq(net, dev_net(iter->dev)))
8199 			continue;
8200 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8201 					  &iter->dev->adj_list.lower);
8202 		netdev_adjacent_sysfs_add(iter->dev, dev,
8203 					  &iter->dev->adj_list.lower);
8204 	}
8205 
8206 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8207 		if (!net_eq(net, dev_net(iter->dev)))
8208 			continue;
8209 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8210 					  &iter->dev->adj_list.upper);
8211 		netdev_adjacent_sysfs_add(iter->dev, dev,
8212 					  &iter->dev->adj_list.upper);
8213 	}
8214 }
8215 
8216 void *netdev_lower_dev_get_private(struct net_device *dev,
8217 				   struct net_device *lower_dev)
8218 {
8219 	struct netdev_adjacent *lower;
8220 
8221 	if (!lower_dev)
8222 		return NULL;
8223 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8224 	if (!lower)
8225 		return NULL;
8226 
8227 	return lower->private;
8228 }
8229 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8230 
8231 
8232 /**
8233  * netdev_lower_state_changed - Dispatch event about lower device state change
8234  * @lower_dev: device
8235  * @lower_state_info: state to dispatch
8236  *
8237  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8238  * The caller must hold the RTNL lock.
8239  */
8240 void netdev_lower_state_changed(struct net_device *lower_dev,
8241 				void *lower_state_info)
8242 {
8243 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8244 		.info.dev = lower_dev,
8245 	};
8246 
8247 	ASSERT_RTNL();
8248 	changelowerstate_info.lower_state_info = lower_state_info;
8249 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8250 				      &changelowerstate_info.info);
8251 }
8252 EXPORT_SYMBOL(netdev_lower_state_changed);
8253 
8254 static void dev_change_rx_flags(struct net_device *dev, int flags)
8255 {
8256 	const struct net_device_ops *ops = dev->netdev_ops;
8257 
8258 	if (ops->ndo_change_rx_flags)
8259 		ops->ndo_change_rx_flags(dev, flags);
8260 }
8261 
8262 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8263 {
8264 	unsigned int old_flags = dev->flags;
8265 	kuid_t uid;
8266 	kgid_t gid;
8267 
8268 	ASSERT_RTNL();
8269 
8270 	dev->flags |= IFF_PROMISC;
8271 	dev->promiscuity += inc;
8272 	if (dev->promiscuity == 0) {
8273 		/*
8274 		 * Avoid overflow.
8275 		 * If inc causes overflow, untouch promisc and return error.
8276 		 */
8277 		if (inc < 0)
8278 			dev->flags &= ~IFF_PROMISC;
8279 		else {
8280 			dev->promiscuity -= inc;
8281 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8282 			return -EOVERFLOW;
8283 		}
8284 	}
8285 	if (dev->flags != old_flags) {
8286 		pr_info("device %s %s promiscuous mode\n",
8287 			dev->name,
8288 			dev->flags & IFF_PROMISC ? "entered" : "left");
8289 		if (audit_enabled) {
8290 			current_uid_gid(&uid, &gid);
8291 			audit_log(audit_context(), GFP_ATOMIC,
8292 				  AUDIT_ANOM_PROMISCUOUS,
8293 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8294 				  dev->name, (dev->flags & IFF_PROMISC),
8295 				  (old_flags & IFF_PROMISC),
8296 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8297 				  from_kuid(&init_user_ns, uid),
8298 				  from_kgid(&init_user_ns, gid),
8299 				  audit_get_sessionid(current));
8300 		}
8301 
8302 		dev_change_rx_flags(dev, IFF_PROMISC);
8303 	}
8304 	if (notify)
8305 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8306 	return 0;
8307 }
8308 
8309 /**
8310  *	dev_set_promiscuity	- update promiscuity count on a device
8311  *	@dev: device
8312  *	@inc: modifier
8313  *
8314  *	Add or remove promiscuity from a device. While the count in the device
8315  *	remains above zero the interface remains promiscuous. Once it hits zero
8316  *	the device reverts back to normal filtering operation. A negative inc
8317  *	value is used to drop promiscuity on the device.
8318  *	Return 0 if successful or a negative errno code on error.
8319  */
8320 int dev_set_promiscuity(struct net_device *dev, int inc)
8321 {
8322 	unsigned int old_flags = dev->flags;
8323 	int err;
8324 
8325 	err = __dev_set_promiscuity(dev, inc, true);
8326 	if (err < 0)
8327 		return err;
8328 	if (dev->flags != old_flags)
8329 		dev_set_rx_mode(dev);
8330 	return err;
8331 }
8332 EXPORT_SYMBOL(dev_set_promiscuity);
8333 
8334 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8335 {
8336 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8337 
8338 	ASSERT_RTNL();
8339 
8340 	dev->flags |= IFF_ALLMULTI;
8341 	dev->allmulti += inc;
8342 	if (dev->allmulti == 0) {
8343 		/*
8344 		 * Avoid overflow.
8345 		 * If inc causes overflow, untouch allmulti and return error.
8346 		 */
8347 		if (inc < 0)
8348 			dev->flags &= ~IFF_ALLMULTI;
8349 		else {
8350 			dev->allmulti -= inc;
8351 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8352 			return -EOVERFLOW;
8353 		}
8354 	}
8355 	if (dev->flags ^ old_flags) {
8356 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8357 		dev_set_rx_mode(dev);
8358 		if (notify)
8359 			__dev_notify_flags(dev, old_flags,
8360 					   dev->gflags ^ old_gflags);
8361 	}
8362 	return 0;
8363 }
8364 
8365 /**
8366  *	dev_set_allmulti	- update allmulti count on a device
8367  *	@dev: device
8368  *	@inc: modifier
8369  *
8370  *	Add or remove reception of all multicast frames to a device. While the
8371  *	count in the device remains above zero the interface remains listening
8372  *	to all interfaces. Once it hits zero the device reverts back to normal
8373  *	filtering operation. A negative @inc value is used to drop the counter
8374  *	when releasing a resource needing all multicasts.
8375  *	Return 0 if successful or a negative errno code on error.
8376  */
8377 
8378 int dev_set_allmulti(struct net_device *dev, int inc)
8379 {
8380 	return __dev_set_allmulti(dev, inc, true);
8381 }
8382 EXPORT_SYMBOL(dev_set_allmulti);
8383 
8384 /*
8385  *	Upload unicast and multicast address lists to device and
8386  *	configure RX filtering. When the device doesn't support unicast
8387  *	filtering it is put in promiscuous mode while unicast addresses
8388  *	are present.
8389  */
8390 void __dev_set_rx_mode(struct net_device *dev)
8391 {
8392 	const struct net_device_ops *ops = dev->netdev_ops;
8393 
8394 	/* dev_open will call this function so the list will stay sane. */
8395 	if (!(dev->flags&IFF_UP))
8396 		return;
8397 
8398 	if (!netif_device_present(dev))
8399 		return;
8400 
8401 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8402 		/* Unicast addresses changes may only happen under the rtnl,
8403 		 * therefore calling __dev_set_promiscuity here is safe.
8404 		 */
8405 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8406 			__dev_set_promiscuity(dev, 1, false);
8407 			dev->uc_promisc = true;
8408 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8409 			__dev_set_promiscuity(dev, -1, false);
8410 			dev->uc_promisc = false;
8411 		}
8412 	}
8413 
8414 	if (ops->ndo_set_rx_mode)
8415 		ops->ndo_set_rx_mode(dev);
8416 }
8417 
8418 void dev_set_rx_mode(struct net_device *dev)
8419 {
8420 	netif_addr_lock_bh(dev);
8421 	__dev_set_rx_mode(dev);
8422 	netif_addr_unlock_bh(dev);
8423 }
8424 
8425 /**
8426  *	dev_get_flags - get flags reported to userspace
8427  *	@dev: device
8428  *
8429  *	Get the combination of flag bits exported through APIs to userspace.
8430  */
8431 unsigned int dev_get_flags(const struct net_device *dev)
8432 {
8433 	unsigned int flags;
8434 
8435 	flags = (dev->flags & ~(IFF_PROMISC |
8436 				IFF_ALLMULTI |
8437 				IFF_RUNNING |
8438 				IFF_LOWER_UP |
8439 				IFF_DORMANT)) |
8440 		(dev->gflags & (IFF_PROMISC |
8441 				IFF_ALLMULTI));
8442 
8443 	if (netif_running(dev)) {
8444 		if (netif_oper_up(dev))
8445 			flags |= IFF_RUNNING;
8446 		if (netif_carrier_ok(dev))
8447 			flags |= IFF_LOWER_UP;
8448 		if (netif_dormant(dev))
8449 			flags |= IFF_DORMANT;
8450 	}
8451 
8452 	return flags;
8453 }
8454 EXPORT_SYMBOL(dev_get_flags);
8455 
8456 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8457 		       struct netlink_ext_ack *extack)
8458 {
8459 	unsigned int old_flags = dev->flags;
8460 	int ret;
8461 
8462 	ASSERT_RTNL();
8463 
8464 	/*
8465 	 *	Set the flags on our device.
8466 	 */
8467 
8468 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8469 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8470 			       IFF_AUTOMEDIA)) |
8471 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8472 				    IFF_ALLMULTI));
8473 
8474 	/*
8475 	 *	Load in the correct multicast list now the flags have changed.
8476 	 */
8477 
8478 	if ((old_flags ^ flags) & IFF_MULTICAST)
8479 		dev_change_rx_flags(dev, IFF_MULTICAST);
8480 
8481 	dev_set_rx_mode(dev);
8482 
8483 	/*
8484 	 *	Have we downed the interface. We handle IFF_UP ourselves
8485 	 *	according to user attempts to set it, rather than blindly
8486 	 *	setting it.
8487 	 */
8488 
8489 	ret = 0;
8490 	if ((old_flags ^ flags) & IFF_UP) {
8491 		if (old_flags & IFF_UP)
8492 			__dev_close(dev);
8493 		else
8494 			ret = __dev_open(dev, extack);
8495 	}
8496 
8497 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8498 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8499 		unsigned int old_flags = dev->flags;
8500 
8501 		dev->gflags ^= IFF_PROMISC;
8502 
8503 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8504 			if (dev->flags != old_flags)
8505 				dev_set_rx_mode(dev);
8506 	}
8507 
8508 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8509 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8510 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8511 	 */
8512 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8513 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8514 
8515 		dev->gflags ^= IFF_ALLMULTI;
8516 		__dev_set_allmulti(dev, inc, false);
8517 	}
8518 
8519 	return ret;
8520 }
8521 
8522 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8523 			unsigned int gchanges)
8524 {
8525 	unsigned int changes = dev->flags ^ old_flags;
8526 
8527 	if (gchanges)
8528 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8529 
8530 	if (changes & IFF_UP) {
8531 		if (dev->flags & IFF_UP)
8532 			call_netdevice_notifiers(NETDEV_UP, dev);
8533 		else
8534 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8535 	}
8536 
8537 	if (dev->flags & IFF_UP &&
8538 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8539 		struct netdev_notifier_change_info change_info = {
8540 			.info = {
8541 				.dev = dev,
8542 			},
8543 			.flags_changed = changes,
8544 		};
8545 
8546 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8547 	}
8548 }
8549 
8550 /**
8551  *	dev_change_flags - change device settings
8552  *	@dev: device
8553  *	@flags: device state flags
8554  *	@extack: netlink extended ack
8555  *
8556  *	Change settings on device based state flags. The flags are
8557  *	in the userspace exported format.
8558  */
8559 int dev_change_flags(struct net_device *dev, unsigned int flags,
8560 		     struct netlink_ext_ack *extack)
8561 {
8562 	int ret;
8563 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8564 
8565 	ret = __dev_change_flags(dev, flags, extack);
8566 	if (ret < 0)
8567 		return ret;
8568 
8569 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8570 	__dev_notify_flags(dev, old_flags, changes);
8571 	return ret;
8572 }
8573 EXPORT_SYMBOL(dev_change_flags);
8574 
8575 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8576 {
8577 	const struct net_device_ops *ops = dev->netdev_ops;
8578 
8579 	if (ops->ndo_change_mtu)
8580 		return ops->ndo_change_mtu(dev, new_mtu);
8581 
8582 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8583 	WRITE_ONCE(dev->mtu, new_mtu);
8584 	return 0;
8585 }
8586 EXPORT_SYMBOL(__dev_set_mtu);
8587 
8588 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8589 		     struct netlink_ext_ack *extack)
8590 {
8591 	/* MTU must be positive, and in range */
8592 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8593 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8594 		return -EINVAL;
8595 	}
8596 
8597 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8598 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8599 		return -EINVAL;
8600 	}
8601 	return 0;
8602 }
8603 
8604 /**
8605  *	dev_set_mtu_ext - Change maximum transfer unit
8606  *	@dev: device
8607  *	@new_mtu: new transfer unit
8608  *	@extack: netlink extended ack
8609  *
8610  *	Change the maximum transfer size of the network device.
8611  */
8612 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8613 		    struct netlink_ext_ack *extack)
8614 {
8615 	int err, orig_mtu;
8616 
8617 	if (new_mtu == dev->mtu)
8618 		return 0;
8619 
8620 	err = dev_validate_mtu(dev, new_mtu, extack);
8621 	if (err)
8622 		return err;
8623 
8624 	if (!netif_device_present(dev))
8625 		return -ENODEV;
8626 
8627 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8628 	err = notifier_to_errno(err);
8629 	if (err)
8630 		return err;
8631 
8632 	orig_mtu = dev->mtu;
8633 	err = __dev_set_mtu(dev, new_mtu);
8634 
8635 	if (!err) {
8636 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8637 						   orig_mtu);
8638 		err = notifier_to_errno(err);
8639 		if (err) {
8640 			/* setting mtu back and notifying everyone again,
8641 			 * so that they have a chance to revert changes.
8642 			 */
8643 			__dev_set_mtu(dev, orig_mtu);
8644 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8645 						     new_mtu);
8646 		}
8647 	}
8648 	return err;
8649 }
8650 
8651 int dev_set_mtu(struct net_device *dev, int new_mtu)
8652 {
8653 	struct netlink_ext_ack extack;
8654 	int err;
8655 
8656 	memset(&extack, 0, sizeof(extack));
8657 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8658 	if (err && extack._msg)
8659 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8660 	return err;
8661 }
8662 EXPORT_SYMBOL(dev_set_mtu);
8663 
8664 /**
8665  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8666  *	@dev: device
8667  *	@new_len: new tx queue length
8668  */
8669 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8670 {
8671 	unsigned int orig_len = dev->tx_queue_len;
8672 	int res;
8673 
8674 	if (new_len != (unsigned int)new_len)
8675 		return -ERANGE;
8676 
8677 	if (new_len != orig_len) {
8678 		dev->tx_queue_len = new_len;
8679 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8680 		res = notifier_to_errno(res);
8681 		if (res)
8682 			goto err_rollback;
8683 		res = dev_qdisc_change_tx_queue_len(dev);
8684 		if (res)
8685 			goto err_rollback;
8686 	}
8687 
8688 	return 0;
8689 
8690 err_rollback:
8691 	netdev_err(dev, "refused to change device tx_queue_len\n");
8692 	dev->tx_queue_len = orig_len;
8693 	return res;
8694 }
8695 
8696 /**
8697  *	dev_set_group - Change group this device belongs to
8698  *	@dev: device
8699  *	@new_group: group this device should belong to
8700  */
8701 void dev_set_group(struct net_device *dev, int new_group)
8702 {
8703 	dev->group = new_group;
8704 }
8705 
8706 /**
8707  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8708  *	@dev: device
8709  *	@addr: new address
8710  *	@extack: netlink extended ack
8711  */
8712 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8713 			      struct netlink_ext_ack *extack)
8714 {
8715 	struct netdev_notifier_pre_changeaddr_info info = {
8716 		.info.dev = dev,
8717 		.info.extack = extack,
8718 		.dev_addr = addr,
8719 	};
8720 	int rc;
8721 
8722 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8723 	return notifier_to_errno(rc);
8724 }
8725 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8726 
8727 /**
8728  *	dev_set_mac_address - Change Media Access Control Address
8729  *	@dev: device
8730  *	@sa: new address
8731  *	@extack: netlink extended ack
8732  *
8733  *	Change the hardware (MAC) address of the device
8734  */
8735 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8736 			struct netlink_ext_ack *extack)
8737 {
8738 	const struct net_device_ops *ops = dev->netdev_ops;
8739 	int err;
8740 
8741 	if (!ops->ndo_set_mac_address)
8742 		return -EOPNOTSUPP;
8743 	if (sa->sa_family != dev->type)
8744 		return -EINVAL;
8745 	if (!netif_device_present(dev))
8746 		return -ENODEV;
8747 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8748 	if (err)
8749 		return err;
8750 	err = ops->ndo_set_mac_address(dev, sa);
8751 	if (err)
8752 		return err;
8753 	dev->addr_assign_type = NET_ADDR_SET;
8754 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8755 	add_device_randomness(dev->dev_addr, dev->addr_len);
8756 	return 0;
8757 }
8758 EXPORT_SYMBOL(dev_set_mac_address);
8759 
8760 static DECLARE_RWSEM(dev_addr_sem);
8761 
8762 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8763 			     struct netlink_ext_ack *extack)
8764 {
8765 	int ret;
8766 
8767 	down_write(&dev_addr_sem);
8768 	ret = dev_set_mac_address(dev, sa, extack);
8769 	up_write(&dev_addr_sem);
8770 	return ret;
8771 }
8772 EXPORT_SYMBOL(dev_set_mac_address_user);
8773 
8774 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8775 {
8776 	size_t size = sizeof(sa->sa_data);
8777 	struct net_device *dev;
8778 	int ret = 0;
8779 
8780 	down_read(&dev_addr_sem);
8781 	rcu_read_lock();
8782 
8783 	dev = dev_get_by_name_rcu(net, dev_name);
8784 	if (!dev) {
8785 		ret = -ENODEV;
8786 		goto unlock;
8787 	}
8788 	if (!dev->addr_len)
8789 		memset(sa->sa_data, 0, size);
8790 	else
8791 		memcpy(sa->sa_data, dev->dev_addr,
8792 		       min_t(size_t, size, dev->addr_len));
8793 	sa->sa_family = dev->type;
8794 
8795 unlock:
8796 	rcu_read_unlock();
8797 	up_read(&dev_addr_sem);
8798 	return ret;
8799 }
8800 EXPORT_SYMBOL(dev_get_mac_address);
8801 
8802 /**
8803  *	dev_change_carrier - Change device carrier
8804  *	@dev: device
8805  *	@new_carrier: new value
8806  *
8807  *	Change device carrier
8808  */
8809 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8810 {
8811 	const struct net_device_ops *ops = dev->netdev_ops;
8812 
8813 	if (!ops->ndo_change_carrier)
8814 		return -EOPNOTSUPP;
8815 	if (!netif_device_present(dev))
8816 		return -ENODEV;
8817 	return ops->ndo_change_carrier(dev, new_carrier);
8818 }
8819 
8820 /**
8821  *	dev_get_phys_port_id - Get device physical port ID
8822  *	@dev: device
8823  *	@ppid: port ID
8824  *
8825  *	Get device physical port ID
8826  */
8827 int dev_get_phys_port_id(struct net_device *dev,
8828 			 struct netdev_phys_item_id *ppid)
8829 {
8830 	const struct net_device_ops *ops = dev->netdev_ops;
8831 
8832 	if (!ops->ndo_get_phys_port_id)
8833 		return -EOPNOTSUPP;
8834 	return ops->ndo_get_phys_port_id(dev, ppid);
8835 }
8836 
8837 /**
8838  *	dev_get_phys_port_name - Get device physical port name
8839  *	@dev: device
8840  *	@name: port name
8841  *	@len: limit of bytes to copy to name
8842  *
8843  *	Get device physical port name
8844  */
8845 int dev_get_phys_port_name(struct net_device *dev,
8846 			   char *name, size_t len)
8847 {
8848 	const struct net_device_ops *ops = dev->netdev_ops;
8849 	int err;
8850 
8851 	if (ops->ndo_get_phys_port_name) {
8852 		err = ops->ndo_get_phys_port_name(dev, name, len);
8853 		if (err != -EOPNOTSUPP)
8854 			return err;
8855 	}
8856 	return devlink_compat_phys_port_name_get(dev, name, len);
8857 }
8858 
8859 /**
8860  *	dev_get_port_parent_id - Get the device's port parent identifier
8861  *	@dev: network device
8862  *	@ppid: pointer to a storage for the port's parent identifier
8863  *	@recurse: allow/disallow recursion to lower devices
8864  *
8865  *	Get the devices's port parent identifier
8866  */
8867 int dev_get_port_parent_id(struct net_device *dev,
8868 			   struct netdev_phys_item_id *ppid,
8869 			   bool recurse)
8870 {
8871 	const struct net_device_ops *ops = dev->netdev_ops;
8872 	struct netdev_phys_item_id first = { };
8873 	struct net_device *lower_dev;
8874 	struct list_head *iter;
8875 	int err;
8876 
8877 	if (ops->ndo_get_port_parent_id) {
8878 		err = ops->ndo_get_port_parent_id(dev, ppid);
8879 		if (err != -EOPNOTSUPP)
8880 			return err;
8881 	}
8882 
8883 	err = devlink_compat_switch_id_get(dev, ppid);
8884 	if (!recurse || err != -EOPNOTSUPP)
8885 		return err;
8886 
8887 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8888 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8889 		if (err)
8890 			break;
8891 		if (!first.id_len)
8892 			first = *ppid;
8893 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8894 			return -EOPNOTSUPP;
8895 	}
8896 
8897 	return err;
8898 }
8899 EXPORT_SYMBOL(dev_get_port_parent_id);
8900 
8901 /**
8902  *	netdev_port_same_parent_id - Indicate if two network devices have
8903  *	the same port parent identifier
8904  *	@a: first network device
8905  *	@b: second network device
8906  */
8907 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8908 {
8909 	struct netdev_phys_item_id a_id = { };
8910 	struct netdev_phys_item_id b_id = { };
8911 
8912 	if (dev_get_port_parent_id(a, &a_id, true) ||
8913 	    dev_get_port_parent_id(b, &b_id, true))
8914 		return false;
8915 
8916 	return netdev_phys_item_id_same(&a_id, &b_id);
8917 }
8918 EXPORT_SYMBOL(netdev_port_same_parent_id);
8919 
8920 /**
8921  *	dev_change_proto_down - set carrier according to proto_down.
8922  *
8923  *	@dev: device
8924  *	@proto_down: new value
8925  */
8926 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8927 {
8928 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8929 		return -EOPNOTSUPP;
8930 	if (!netif_device_present(dev))
8931 		return -ENODEV;
8932 	if (proto_down)
8933 		netif_carrier_off(dev);
8934 	else
8935 		netif_carrier_on(dev);
8936 	dev->proto_down = proto_down;
8937 	return 0;
8938 }
8939 
8940 /**
8941  *	dev_change_proto_down_reason - proto down reason
8942  *
8943  *	@dev: device
8944  *	@mask: proto down mask
8945  *	@value: proto down value
8946  */
8947 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8948 				  u32 value)
8949 {
8950 	int b;
8951 
8952 	if (!mask) {
8953 		dev->proto_down_reason = value;
8954 	} else {
8955 		for_each_set_bit(b, &mask, 32) {
8956 			if (value & (1 << b))
8957 				dev->proto_down_reason |= BIT(b);
8958 			else
8959 				dev->proto_down_reason &= ~BIT(b);
8960 		}
8961 	}
8962 }
8963 
8964 struct bpf_xdp_link {
8965 	struct bpf_link link;
8966 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8967 	int flags;
8968 };
8969 
8970 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8971 {
8972 	if (flags & XDP_FLAGS_HW_MODE)
8973 		return XDP_MODE_HW;
8974 	if (flags & XDP_FLAGS_DRV_MODE)
8975 		return XDP_MODE_DRV;
8976 	if (flags & XDP_FLAGS_SKB_MODE)
8977 		return XDP_MODE_SKB;
8978 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8979 }
8980 
8981 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8982 {
8983 	switch (mode) {
8984 	case XDP_MODE_SKB:
8985 		return generic_xdp_install;
8986 	case XDP_MODE_DRV:
8987 	case XDP_MODE_HW:
8988 		return dev->netdev_ops->ndo_bpf;
8989 	default:
8990 		return NULL;
8991 	}
8992 }
8993 
8994 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8995 					 enum bpf_xdp_mode mode)
8996 {
8997 	return dev->xdp_state[mode].link;
8998 }
8999 
9000 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9001 				     enum bpf_xdp_mode mode)
9002 {
9003 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9004 
9005 	if (link)
9006 		return link->link.prog;
9007 	return dev->xdp_state[mode].prog;
9008 }
9009 
9010 u8 dev_xdp_prog_count(struct net_device *dev)
9011 {
9012 	u8 count = 0;
9013 	int i;
9014 
9015 	for (i = 0; i < __MAX_XDP_MODE; i++)
9016 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9017 			count++;
9018 	return count;
9019 }
9020 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9021 
9022 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9023 {
9024 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9025 
9026 	return prog ? prog->aux->id : 0;
9027 }
9028 
9029 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9030 			     struct bpf_xdp_link *link)
9031 {
9032 	dev->xdp_state[mode].link = link;
9033 	dev->xdp_state[mode].prog = NULL;
9034 }
9035 
9036 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9037 			     struct bpf_prog *prog)
9038 {
9039 	dev->xdp_state[mode].link = NULL;
9040 	dev->xdp_state[mode].prog = prog;
9041 }
9042 
9043 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9044 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9045 			   u32 flags, struct bpf_prog *prog)
9046 {
9047 	struct netdev_bpf xdp;
9048 	int err;
9049 
9050 	memset(&xdp, 0, sizeof(xdp));
9051 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9052 	xdp.extack = extack;
9053 	xdp.flags = flags;
9054 	xdp.prog = prog;
9055 
9056 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9057 	 * "moved" into driver), so they don't increment it on their own, but
9058 	 * they do decrement refcnt when program is detached or replaced.
9059 	 * Given net_device also owns link/prog, we need to bump refcnt here
9060 	 * to prevent drivers from underflowing it.
9061 	 */
9062 	if (prog)
9063 		bpf_prog_inc(prog);
9064 	err = bpf_op(dev, &xdp);
9065 	if (err) {
9066 		if (prog)
9067 			bpf_prog_put(prog);
9068 		return err;
9069 	}
9070 
9071 	if (mode != XDP_MODE_HW)
9072 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9073 
9074 	return 0;
9075 }
9076 
9077 static void dev_xdp_uninstall(struct net_device *dev)
9078 {
9079 	struct bpf_xdp_link *link;
9080 	struct bpf_prog *prog;
9081 	enum bpf_xdp_mode mode;
9082 	bpf_op_t bpf_op;
9083 
9084 	ASSERT_RTNL();
9085 
9086 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9087 		prog = dev_xdp_prog(dev, mode);
9088 		if (!prog)
9089 			continue;
9090 
9091 		bpf_op = dev_xdp_bpf_op(dev, mode);
9092 		if (!bpf_op)
9093 			continue;
9094 
9095 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9096 
9097 		/* auto-detach link from net device */
9098 		link = dev_xdp_link(dev, mode);
9099 		if (link)
9100 			link->dev = NULL;
9101 		else
9102 			bpf_prog_put(prog);
9103 
9104 		dev_xdp_set_link(dev, mode, NULL);
9105 	}
9106 }
9107 
9108 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9109 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9110 			  struct bpf_prog *old_prog, u32 flags)
9111 {
9112 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9113 	struct bpf_prog *cur_prog;
9114 	struct net_device *upper;
9115 	struct list_head *iter;
9116 	enum bpf_xdp_mode mode;
9117 	bpf_op_t bpf_op;
9118 	int err;
9119 
9120 	ASSERT_RTNL();
9121 
9122 	/* either link or prog attachment, never both */
9123 	if (link && (new_prog || old_prog))
9124 		return -EINVAL;
9125 	/* link supports only XDP mode flags */
9126 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9127 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9128 		return -EINVAL;
9129 	}
9130 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9131 	if (num_modes > 1) {
9132 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9133 		return -EINVAL;
9134 	}
9135 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9136 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9137 		NL_SET_ERR_MSG(extack,
9138 			       "More than one program loaded, unset mode is ambiguous");
9139 		return -EINVAL;
9140 	}
9141 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9142 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9143 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9144 		return -EINVAL;
9145 	}
9146 
9147 	mode = dev_xdp_mode(dev, flags);
9148 	/* can't replace attached link */
9149 	if (dev_xdp_link(dev, mode)) {
9150 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9151 		return -EBUSY;
9152 	}
9153 
9154 	/* don't allow if an upper device already has a program */
9155 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9156 		if (dev_xdp_prog_count(upper) > 0) {
9157 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9158 			return -EEXIST;
9159 		}
9160 	}
9161 
9162 	cur_prog = dev_xdp_prog(dev, mode);
9163 	/* can't replace attached prog with link */
9164 	if (link && cur_prog) {
9165 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9166 		return -EBUSY;
9167 	}
9168 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9169 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9170 		return -EEXIST;
9171 	}
9172 
9173 	/* put effective new program into new_prog */
9174 	if (link)
9175 		new_prog = link->link.prog;
9176 
9177 	if (new_prog) {
9178 		bool offload = mode == XDP_MODE_HW;
9179 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9180 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9181 
9182 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9183 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9184 			return -EBUSY;
9185 		}
9186 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9187 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9188 			return -EEXIST;
9189 		}
9190 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9191 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9192 			return -EINVAL;
9193 		}
9194 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9195 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9196 			return -EINVAL;
9197 		}
9198 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9199 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9200 			return -EINVAL;
9201 		}
9202 	}
9203 
9204 	/* don't call drivers if the effective program didn't change */
9205 	if (new_prog != cur_prog) {
9206 		bpf_op = dev_xdp_bpf_op(dev, mode);
9207 		if (!bpf_op) {
9208 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9209 			return -EOPNOTSUPP;
9210 		}
9211 
9212 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9213 		if (err)
9214 			return err;
9215 	}
9216 
9217 	if (link)
9218 		dev_xdp_set_link(dev, mode, link);
9219 	else
9220 		dev_xdp_set_prog(dev, mode, new_prog);
9221 	if (cur_prog)
9222 		bpf_prog_put(cur_prog);
9223 
9224 	return 0;
9225 }
9226 
9227 static int dev_xdp_attach_link(struct net_device *dev,
9228 			       struct netlink_ext_ack *extack,
9229 			       struct bpf_xdp_link *link)
9230 {
9231 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9232 }
9233 
9234 static int dev_xdp_detach_link(struct net_device *dev,
9235 			       struct netlink_ext_ack *extack,
9236 			       struct bpf_xdp_link *link)
9237 {
9238 	enum bpf_xdp_mode mode;
9239 	bpf_op_t bpf_op;
9240 
9241 	ASSERT_RTNL();
9242 
9243 	mode = dev_xdp_mode(dev, link->flags);
9244 	if (dev_xdp_link(dev, mode) != link)
9245 		return -EINVAL;
9246 
9247 	bpf_op = dev_xdp_bpf_op(dev, mode);
9248 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9249 	dev_xdp_set_link(dev, mode, NULL);
9250 	return 0;
9251 }
9252 
9253 static void bpf_xdp_link_release(struct bpf_link *link)
9254 {
9255 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9256 
9257 	rtnl_lock();
9258 
9259 	/* if racing with net_device's tear down, xdp_link->dev might be
9260 	 * already NULL, in which case link was already auto-detached
9261 	 */
9262 	if (xdp_link->dev) {
9263 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9264 		xdp_link->dev = NULL;
9265 	}
9266 
9267 	rtnl_unlock();
9268 }
9269 
9270 static int bpf_xdp_link_detach(struct bpf_link *link)
9271 {
9272 	bpf_xdp_link_release(link);
9273 	return 0;
9274 }
9275 
9276 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9277 {
9278 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9279 
9280 	kfree(xdp_link);
9281 }
9282 
9283 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9284 				     struct seq_file *seq)
9285 {
9286 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9287 	u32 ifindex = 0;
9288 
9289 	rtnl_lock();
9290 	if (xdp_link->dev)
9291 		ifindex = xdp_link->dev->ifindex;
9292 	rtnl_unlock();
9293 
9294 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9295 }
9296 
9297 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9298 				       struct bpf_link_info *info)
9299 {
9300 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9301 	u32 ifindex = 0;
9302 
9303 	rtnl_lock();
9304 	if (xdp_link->dev)
9305 		ifindex = xdp_link->dev->ifindex;
9306 	rtnl_unlock();
9307 
9308 	info->xdp.ifindex = ifindex;
9309 	return 0;
9310 }
9311 
9312 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9313 			       struct bpf_prog *old_prog)
9314 {
9315 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9316 	enum bpf_xdp_mode mode;
9317 	bpf_op_t bpf_op;
9318 	int err = 0;
9319 
9320 	rtnl_lock();
9321 
9322 	/* link might have been auto-released already, so fail */
9323 	if (!xdp_link->dev) {
9324 		err = -ENOLINK;
9325 		goto out_unlock;
9326 	}
9327 
9328 	if (old_prog && link->prog != old_prog) {
9329 		err = -EPERM;
9330 		goto out_unlock;
9331 	}
9332 	old_prog = link->prog;
9333 	if (old_prog->type != new_prog->type ||
9334 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9335 		err = -EINVAL;
9336 		goto out_unlock;
9337 	}
9338 
9339 	if (old_prog == new_prog) {
9340 		/* no-op, don't disturb drivers */
9341 		bpf_prog_put(new_prog);
9342 		goto out_unlock;
9343 	}
9344 
9345 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9346 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9347 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9348 			      xdp_link->flags, new_prog);
9349 	if (err)
9350 		goto out_unlock;
9351 
9352 	old_prog = xchg(&link->prog, new_prog);
9353 	bpf_prog_put(old_prog);
9354 
9355 out_unlock:
9356 	rtnl_unlock();
9357 	return err;
9358 }
9359 
9360 static const struct bpf_link_ops bpf_xdp_link_lops = {
9361 	.release = bpf_xdp_link_release,
9362 	.dealloc = bpf_xdp_link_dealloc,
9363 	.detach = bpf_xdp_link_detach,
9364 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9365 	.fill_link_info = bpf_xdp_link_fill_link_info,
9366 	.update_prog = bpf_xdp_link_update,
9367 };
9368 
9369 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9370 {
9371 	struct net *net = current->nsproxy->net_ns;
9372 	struct bpf_link_primer link_primer;
9373 	struct bpf_xdp_link *link;
9374 	struct net_device *dev;
9375 	int err, fd;
9376 
9377 	rtnl_lock();
9378 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9379 	if (!dev) {
9380 		rtnl_unlock();
9381 		return -EINVAL;
9382 	}
9383 
9384 	link = kzalloc(sizeof(*link), GFP_USER);
9385 	if (!link) {
9386 		err = -ENOMEM;
9387 		goto unlock;
9388 	}
9389 
9390 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9391 	link->dev = dev;
9392 	link->flags = attr->link_create.flags;
9393 
9394 	err = bpf_link_prime(&link->link, &link_primer);
9395 	if (err) {
9396 		kfree(link);
9397 		goto unlock;
9398 	}
9399 
9400 	err = dev_xdp_attach_link(dev, NULL, link);
9401 	rtnl_unlock();
9402 
9403 	if (err) {
9404 		link->dev = NULL;
9405 		bpf_link_cleanup(&link_primer);
9406 		goto out_put_dev;
9407 	}
9408 
9409 	fd = bpf_link_settle(&link_primer);
9410 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9411 	dev_put(dev);
9412 	return fd;
9413 
9414 unlock:
9415 	rtnl_unlock();
9416 
9417 out_put_dev:
9418 	dev_put(dev);
9419 	return err;
9420 }
9421 
9422 /**
9423  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9424  *	@dev: device
9425  *	@extack: netlink extended ack
9426  *	@fd: new program fd or negative value to clear
9427  *	@expected_fd: old program fd that userspace expects to replace or clear
9428  *	@flags: xdp-related flags
9429  *
9430  *	Set or clear a bpf program for a device
9431  */
9432 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9433 		      int fd, int expected_fd, u32 flags)
9434 {
9435 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9436 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9437 	int err;
9438 
9439 	ASSERT_RTNL();
9440 
9441 	if (fd >= 0) {
9442 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9443 						 mode != XDP_MODE_SKB);
9444 		if (IS_ERR(new_prog))
9445 			return PTR_ERR(new_prog);
9446 	}
9447 
9448 	if (expected_fd >= 0) {
9449 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9450 						 mode != XDP_MODE_SKB);
9451 		if (IS_ERR(old_prog)) {
9452 			err = PTR_ERR(old_prog);
9453 			old_prog = NULL;
9454 			goto err_out;
9455 		}
9456 	}
9457 
9458 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9459 
9460 err_out:
9461 	if (err && new_prog)
9462 		bpf_prog_put(new_prog);
9463 	if (old_prog)
9464 		bpf_prog_put(old_prog);
9465 	return err;
9466 }
9467 
9468 /**
9469  *	dev_new_index	-	allocate an ifindex
9470  *	@net: the applicable net namespace
9471  *
9472  *	Returns a suitable unique value for a new device interface
9473  *	number.  The caller must hold the rtnl semaphore or the
9474  *	dev_base_lock to be sure it remains unique.
9475  */
9476 static int dev_new_index(struct net *net)
9477 {
9478 	int ifindex = net->ifindex;
9479 
9480 	for (;;) {
9481 		if (++ifindex <= 0)
9482 			ifindex = 1;
9483 		if (!__dev_get_by_index(net, ifindex))
9484 			return net->ifindex = ifindex;
9485 	}
9486 }
9487 
9488 /* Delayed registration/unregisteration */
9489 LIST_HEAD(net_todo_list);
9490 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9491 
9492 static void net_set_todo(struct net_device *dev)
9493 {
9494 	list_add_tail(&dev->todo_list, &net_todo_list);
9495 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9496 }
9497 
9498 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9499 	struct net_device *upper, netdev_features_t features)
9500 {
9501 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9502 	netdev_features_t feature;
9503 	int feature_bit;
9504 
9505 	for_each_netdev_feature(upper_disables, feature_bit) {
9506 		feature = __NETIF_F_BIT(feature_bit);
9507 		if (!(upper->wanted_features & feature)
9508 		    && (features & feature)) {
9509 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9510 				   &feature, upper->name);
9511 			features &= ~feature;
9512 		}
9513 	}
9514 
9515 	return features;
9516 }
9517 
9518 static void netdev_sync_lower_features(struct net_device *upper,
9519 	struct net_device *lower, netdev_features_t features)
9520 {
9521 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9522 	netdev_features_t feature;
9523 	int feature_bit;
9524 
9525 	for_each_netdev_feature(upper_disables, feature_bit) {
9526 		feature = __NETIF_F_BIT(feature_bit);
9527 		if (!(features & feature) && (lower->features & feature)) {
9528 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9529 				   &feature, lower->name);
9530 			lower->wanted_features &= ~feature;
9531 			__netdev_update_features(lower);
9532 
9533 			if (unlikely(lower->features & feature))
9534 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9535 					    &feature, lower->name);
9536 			else
9537 				netdev_features_change(lower);
9538 		}
9539 	}
9540 }
9541 
9542 static netdev_features_t netdev_fix_features(struct net_device *dev,
9543 	netdev_features_t features)
9544 {
9545 	/* Fix illegal checksum combinations */
9546 	if ((features & NETIF_F_HW_CSUM) &&
9547 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9548 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9549 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9550 	}
9551 
9552 	/* TSO requires that SG is present as well. */
9553 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9554 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9555 		features &= ~NETIF_F_ALL_TSO;
9556 	}
9557 
9558 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9559 					!(features & NETIF_F_IP_CSUM)) {
9560 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9561 		features &= ~NETIF_F_TSO;
9562 		features &= ~NETIF_F_TSO_ECN;
9563 	}
9564 
9565 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9566 					 !(features & NETIF_F_IPV6_CSUM)) {
9567 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9568 		features &= ~NETIF_F_TSO6;
9569 	}
9570 
9571 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9572 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9573 		features &= ~NETIF_F_TSO_MANGLEID;
9574 
9575 	/* TSO ECN requires that TSO is present as well. */
9576 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9577 		features &= ~NETIF_F_TSO_ECN;
9578 
9579 	/* Software GSO depends on SG. */
9580 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9581 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9582 		features &= ~NETIF_F_GSO;
9583 	}
9584 
9585 	/* GSO partial features require GSO partial be set */
9586 	if ((features & dev->gso_partial_features) &&
9587 	    !(features & NETIF_F_GSO_PARTIAL)) {
9588 		netdev_dbg(dev,
9589 			   "Dropping partially supported GSO features since no GSO partial.\n");
9590 		features &= ~dev->gso_partial_features;
9591 	}
9592 
9593 	if (!(features & NETIF_F_RXCSUM)) {
9594 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9595 		 * successfully merged by hardware must also have the
9596 		 * checksum verified by hardware.  If the user does not
9597 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9598 		 */
9599 		if (features & NETIF_F_GRO_HW) {
9600 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9601 			features &= ~NETIF_F_GRO_HW;
9602 		}
9603 	}
9604 
9605 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9606 	if (features & NETIF_F_RXFCS) {
9607 		if (features & NETIF_F_LRO) {
9608 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9609 			features &= ~NETIF_F_LRO;
9610 		}
9611 
9612 		if (features & NETIF_F_GRO_HW) {
9613 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9614 			features &= ~NETIF_F_GRO_HW;
9615 		}
9616 	}
9617 
9618 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9619 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9620 		features &= ~NETIF_F_LRO;
9621 	}
9622 
9623 	if (features & NETIF_F_HW_TLS_TX) {
9624 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9625 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9626 		bool hw_csum = features & NETIF_F_HW_CSUM;
9627 
9628 		if (!ip_csum && !hw_csum) {
9629 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9630 			features &= ~NETIF_F_HW_TLS_TX;
9631 		}
9632 	}
9633 
9634 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9635 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9636 		features &= ~NETIF_F_HW_TLS_RX;
9637 	}
9638 
9639 	return features;
9640 }
9641 
9642 int __netdev_update_features(struct net_device *dev)
9643 {
9644 	struct net_device *upper, *lower;
9645 	netdev_features_t features;
9646 	struct list_head *iter;
9647 	int err = -1;
9648 
9649 	ASSERT_RTNL();
9650 
9651 	features = netdev_get_wanted_features(dev);
9652 
9653 	if (dev->netdev_ops->ndo_fix_features)
9654 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9655 
9656 	/* driver might be less strict about feature dependencies */
9657 	features = netdev_fix_features(dev, features);
9658 
9659 	/* some features can't be enabled if they're off on an upper device */
9660 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9661 		features = netdev_sync_upper_features(dev, upper, features);
9662 
9663 	if (dev->features == features)
9664 		goto sync_lower;
9665 
9666 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9667 		&dev->features, &features);
9668 
9669 	if (dev->netdev_ops->ndo_set_features)
9670 		err = dev->netdev_ops->ndo_set_features(dev, features);
9671 	else
9672 		err = 0;
9673 
9674 	if (unlikely(err < 0)) {
9675 		netdev_err(dev,
9676 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9677 			err, &features, &dev->features);
9678 		/* return non-0 since some features might have changed and
9679 		 * it's better to fire a spurious notification than miss it
9680 		 */
9681 		return -1;
9682 	}
9683 
9684 sync_lower:
9685 	/* some features must be disabled on lower devices when disabled
9686 	 * on an upper device (think: bonding master or bridge)
9687 	 */
9688 	netdev_for_each_lower_dev(dev, lower, iter)
9689 		netdev_sync_lower_features(dev, lower, features);
9690 
9691 	if (!err) {
9692 		netdev_features_t diff = features ^ dev->features;
9693 
9694 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9695 			/* udp_tunnel_{get,drop}_rx_info both need
9696 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9697 			 * device, or they won't do anything.
9698 			 * Thus we need to update dev->features
9699 			 * *before* calling udp_tunnel_get_rx_info,
9700 			 * but *after* calling udp_tunnel_drop_rx_info.
9701 			 */
9702 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9703 				dev->features = features;
9704 				udp_tunnel_get_rx_info(dev);
9705 			} else {
9706 				udp_tunnel_drop_rx_info(dev);
9707 			}
9708 		}
9709 
9710 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9711 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9712 				dev->features = features;
9713 				err |= vlan_get_rx_ctag_filter_info(dev);
9714 			} else {
9715 				vlan_drop_rx_ctag_filter_info(dev);
9716 			}
9717 		}
9718 
9719 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9720 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9721 				dev->features = features;
9722 				err |= vlan_get_rx_stag_filter_info(dev);
9723 			} else {
9724 				vlan_drop_rx_stag_filter_info(dev);
9725 			}
9726 		}
9727 
9728 		dev->features = features;
9729 	}
9730 
9731 	return err < 0 ? 0 : 1;
9732 }
9733 
9734 /**
9735  *	netdev_update_features - recalculate device features
9736  *	@dev: the device to check
9737  *
9738  *	Recalculate dev->features set and send notifications if it
9739  *	has changed. Should be called after driver or hardware dependent
9740  *	conditions might have changed that influence the features.
9741  */
9742 void netdev_update_features(struct net_device *dev)
9743 {
9744 	if (__netdev_update_features(dev))
9745 		netdev_features_change(dev);
9746 }
9747 EXPORT_SYMBOL(netdev_update_features);
9748 
9749 /**
9750  *	netdev_change_features - recalculate device features
9751  *	@dev: the device to check
9752  *
9753  *	Recalculate dev->features set and send notifications even
9754  *	if they have not changed. Should be called instead of
9755  *	netdev_update_features() if also dev->vlan_features might
9756  *	have changed to allow the changes to be propagated to stacked
9757  *	VLAN devices.
9758  */
9759 void netdev_change_features(struct net_device *dev)
9760 {
9761 	__netdev_update_features(dev);
9762 	netdev_features_change(dev);
9763 }
9764 EXPORT_SYMBOL(netdev_change_features);
9765 
9766 /**
9767  *	netif_stacked_transfer_operstate -	transfer operstate
9768  *	@rootdev: the root or lower level device to transfer state from
9769  *	@dev: the device to transfer operstate to
9770  *
9771  *	Transfer operational state from root to device. This is normally
9772  *	called when a stacking relationship exists between the root
9773  *	device and the device(a leaf device).
9774  */
9775 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9776 					struct net_device *dev)
9777 {
9778 	if (rootdev->operstate == IF_OPER_DORMANT)
9779 		netif_dormant_on(dev);
9780 	else
9781 		netif_dormant_off(dev);
9782 
9783 	if (rootdev->operstate == IF_OPER_TESTING)
9784 		netif_testing_on(dev);
9785 	else
9786 		netif_testing_off(dev);
9787 
9788 	if (netif_carrier_ok(rootdev))
9789 		netif_carrier_on(dev);
9790 	else
9791 		netif_carrier_off(dev);
9792 }
9793 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9794 
9795 static int netif_alloc_rx_queues(struct net_device *dev)
9796 {
9797 	unsigned int i, count = dev->num_rx_queues;
9798 	struct netdev_rx_queue *rx;
9799 	size_t sz = count * sizeof(*rx);
9800 	int err = 0;
9801 
9802 	BUG_ON(count < 1);
9803 
9804 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9805 	if (!rx)
9806 		return -ENOMEM;
9807 
9808 	dev->_rx = rx;
9809 
9810 	for (i = 0; i < count; i++) {
9811 		rx[i].dev = dev;
9812 
9813 		/* XDP RX-queue setup */
9814 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9815 		if (err < 0)
9816 			goto err_rxq_info;
9817 	}
9818 	return 0;
9819 
9820 err_rxq_info:
9821 	/* Rollback successful reg's and free other resources */
9822 	while (i--)
9823 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9824 	kvfree(dev->_rx);
9825 	dev->_rx = NULL;
9826 	return err;
9827 }
9828 
9829 static void netif_free_rx_queues(struct net_device *dev)
9830 {
9831 	unsigned int i, count = dev->num_rx_queues;
9832 
9833 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9834 	if (!dev->_rx)
9835 		return;
9836 
9837 	for (i = 0; i < count; i++)
9838 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9839 
9840 	kvfree(dev->_rx);
9841 }
9842 
9843 static void netdev_init_one_queue(struct net_device *dev,
9844 				  struct netdev_queue *queue, void *_unused)
9845 {
9846 	/* Initialize queue lock */
9847 	spin_lock_init(&queue->_xmit_lock);
9848 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9849 	queue->xmit_lock_owner = -1;
9850 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9851 	queue->dev = dev;
9852 #ifdef CONFIG_BQL
9853 	dql_init(&queue->dql, HZ);
9854 #endif
9855 }
9856 
9857 static void netif_free_tx_queues(struct net_device *dev)
9858 {
9859 	kvfree(dev->_tx);
9860 }
9861 
9862 static int netif_alloc_netdev_queues(struct net_device *dev)
9863 {
9864 	unsigned int count = dev->num_tx_queues;
9865 	struct netdev_queue *tx;
9866 	size_t sz = count * sizeof(*tx);
9867 
9868 	if (count < 1 || count > 0xffff)
9869 		return -EINVAL;
9870 
9871 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9872 	if (!tx)
9873 		return -ENOMEM;
9874 
9875 	dev->_tx = tx;
9876 
9877 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9878 	spin_lock_init(&dev->tx_global_lock);
9879 
9880 	return 0;
9881 }
9882 
9883 void netif_tx_stop_all_queues(struct net_device *dev)
9884 {
9885 	unsigned int i;
9886 
9887 	for (i = 0; i < dev->num_tx_queues; i++) {
9888 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9889 
9890 		netif_tx_stop_queue(txq);
9891 	}
9892 }
9893 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9894 
9895 /**
9896  *	register_netdevice	- register a network device
9897  *	@dev: device to register
9898  *
9899  *	Take a completed network device structure and add it to the kernel
9900  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9901  *	chain. 0 is returned on success. A negative errno code is returned
9902  *	on a failure to set up the device, or if the name is a duplicate.
9903  *
9904  *	Callers must hold the rtnl semaphore. You may want
9905  *	register_netdev() instead of this.
9906  *
9907  *	BUGS:
9908  *	The locking appears insufficient to guarantee two parallel registers
9909  *	will not get the same name.
9910  */
9911 
9912 int register_netdevice(struct net_device *dev)
9913 {
9914 	int ret;
9915 	struct net *net = dev_net(dev);
9916 
9917 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9918 		     NETDEV_FEATURE_COUNT);
9919 	BUG_ON(dev_boot_phase);
9920 	ASSERT_RTNL();
9921 
9922 	might_sleep();
9923 
9924 	/* When net_device's are persistent, this will be fatal. */
9925 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9926 	BUG_ON(!net);
9927 
9928 	ret = ethtool_check_ops(dev->ethtool_ops);
9929 	if (ret)
9930 		return ret;
9931 
9932 	spin_lock_init(&dev->addr_list_lock);
9933 	netdev_set_addr_lockdep_class(dev);
9934 
9935 	ret = dev_get_valid_name(net, dev, dev->name);
9936 	if (ret < 0)
9937 		goto out;
9938 
9939 	ret = -ENOMEM;
9940 	dev->name_node = netdev_name_node_head_alloc(dev);
9941 	if (!dev->name_node)
9942 		goto out;
9943 
9944 	/* Init, if this function is available */
9945 	if (dev->netdev_ops->ndo_init) {
9946 		ret = dev->netdev_ops->ndo_init(dev);
9947 		if (ret) {
9948 			if (ret > 0)
9949 				ret = -EIO;
9950 			goto err_free_name;
9951 		}
9952 	}
9953 
9954 	if (((dev->hw_features | dev->features) &
9955 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9956 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9957 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9958 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9959 		ret = -EINVAL;
9960 		goto err_uninit;
9961 	}
9962 
9963 	ret = -EBUSY;
9964 	if (!dev->ifindex)
9965 		dev->ifindex = dev_new_index(net);
9966 	else if (__dev_get_by_index(net, dev->ifindex))
9967 		goto err_uninit;
9968 
9969 	/* Transfer changeable features to wanted_features and enable
9970 	 * software offloads (GSO and GRO).
9971 	 */
9972 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9973 	dev->features |= NETIF_F_SOFT_FEATURES;
9974 
9975 	if (dev->udp_tunnel_nic_info) {
9976 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9977 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9978 	}
9979 
9980 	dev->wanted_features = dev->features & dev->hw_features;
9981 
9982 	if (!(dev->flags & IFF_LOOPBACK))
9983 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9984 
9985 	/* If IPv4 TCP segmentation offload is supported we should also
9986 	 * allow the device to enable segmenting the frame with the option
9987 	 * of ignoring a static IP ID value.  This doesn't enable the
9988 	 * feature itself but allows the user to enable it later.
9989 	 */
9990 	if (dev->hw_features & NETIF_F_TSO)
9991 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9992 	if (dev->vlan_features & NETIF_F_TSO)
9993 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9994 	if (dev->mpls_features & NETIF_F_TSO)
9995 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9996 	if (dev->hw_enc_features & NETIF_F_TSO)
9997 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9998 
9999 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10000 	 */
10001 	dev->vlan_features |= NETIF_F_HIGHDMA;
10002 
10003 	/* Make NETIF_F_SG inheritable to tunnel devices.
10004 	 */
10005 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10006 
10007 	/* Make NETIF_F_SG inheritable to MPLS.
10008 	 */
10009 	dev->mpls_features |= NETIF_F_SG;
10010 
10011 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10012 	ret = notifier_to_errno(ret);
10013 	if (ret)
10014 		goto err_uninit;
10015 
10016 	ret = netdev_register_kobject(dev);
10017 	if (ret) {
10018 		dev->reg_state = NETREG_UNREGISTERED;
10019 		goto err_uninit;
10020 	}
10021 	dev->reg_state = NETREG_REGISTERED;
10022 
10023 	__netdev_update_features(dev);
10024 
10025 	/*
10026 	 *	Default initial state at registry is that the
10027 	 *	device is present.
10028 	 */
10029 
10030 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10031 
10032 	linkwatch_init_dev(dev);
10033 
10034 	dev_init_scheduler(dev);
10035 
10036 	dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10037 	list_netdevice(dev);
10038 
10039 	add_device_randomness(dev->dev_addr, dev->addr_len);
10040 
10041 	/* If the device has permanent device address, driver should
10042 	 * set dev_addr and also addr_assign_type should be set to
10043 	 * NET_ADDR_PERM (default value).
10044 	 */
10045 	if (dev->addr_assign_type == NET_ADDR_PERM)
10046 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10047 
10048 	/* Notify protocols, that a new device appeared. */
10049 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10050 	ret = notifier_to_errno(ret);
10051 	if (ret) {
10052 		/* Expect explicit free_netdev() on failure */
10053 		dev->needs_free_netdev = false;
10054 		unregister_netdevice_queue(dev, NULL);
10055 		goto out;
10056 	}
10057 	/*
10058 	 *	Prevent userspace races by waiting until the network
10059 	 *	device is fully setup before sending notifications.
10060 	 */
10061 	if (!dev->rtnl_link_ops ||
10062 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10063 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10064 
10065 out:
10066 	return ret;
10067 
10068 err_uninit:
10069 	if (dev->netdev_ops->ndo_uninit)
10070 		dev->netdev_ops->ndo_uninit(dev);
10071 	if (dev->priv_destructor)
10072 		dev->priv_destructor(dev);
10073 err_free_name:
10074 	netdev_name_node_free(dev->name_node);
10075 	goto out;
10076 }
10077 EXPORT_SYMBOL(register_netdevice);
10078 
10079 /**
10080  *	init_dummy_netdev	- init a dummy network device for NAPI
10081  *	@dev: device to init
10082  *
10083  *	This takes a network device structure and initialize the minimum
10084  *	amount of fields so it can be used to schedule NAPI polls without
10085  *	registering a full blown interface. This is to be used by drivers
10086  *	that need to tie several hardware interfaces to a single NAPI
10087  *	poll scheduler due to HW limitations.
10088  */
10089 int init_dummy_netdev(struct net_device *dev)
10090 {
10091 	/* Clear everything. Note we don't initialize spinlocks
10092 	 * are they aren't supposed to be taken by any of the
10093 	 * NAPI code and this dummy netdev is supposed to be
10094 	 * only ever used for NAPI polls
10095 	 */
10096 	memset(dev, 0, sizeof(struct net_device));
10097 
10098 	/* make sure we BUG if trying to hit standard
10099 	 * register/unregister code path
10100 	 */
10101 	dev->reg_state = NETREG_DUMMY;
10102 
10103 	/* NAPI wants this */
10104 	INIT_LIST_HEAD(&dev->napi_list);
10105 
10106 	/* a dummy interface is started by default */
10107 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10108 	set_bit(__LINK_STATE_START, &dev->state);
10109 
10110 	/* napi_busy_loop stats accounting wants this */
10111 	dev_net_set(dev, &init_net);
10112 
10113 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10114 	 * because users of this 'device' dont need to change
10115 	 * its refcount.
10116 	 */
10117 
10118 	return 0;
10119 }
10120 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10121 
10122 
10123 /**
10124  *	register_netdev	- register a network device
10125  *	@dev: device to register
10126  *
10127  *	Take a completed network device structure and add it to the kernel
10128  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10129  *	chain. 0 is returned on success. A negative errno code is returned
10130  *	on a failure to set up the device, or if the name is a duplicate.
10131  *
10132  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10133  *	and expands the device name if you passed a format string to
10134  *	alloc_netdev.
10135  */
10136 int register_netdev(struct net_device *dev)
10137 {
10138 	int err;
10139 
10140 	if (rtnl_lock_killable())
10141 		return -EINTR;
10142 	err = register_netdevice(dev);
10143 	rtnl_unlock();
10144 	return err;
10145 }
10146 EXPORT_SYMBOL(register_netdev);
10147 
10148 int netdev_refcnt_read(const struct net_device *dev)
10149 {
10150 #ifdef CONFIG_PCPU_DEV_REFCNT
10151 	int i, refcnt = 0;
10152 
10153 	for_each_possible_cpu(i)
10154 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10155 	return refcnt;
10156 #else
10157 	return refcount_read(&dev->dev_refcnt);
10158 #endif
10159 }
10160 EXPORT_SYMBOL(netdev_refcnt_read);
10161 
10162 int netdev_unregister_timeout_secs __read_mostly = 10;
10163 
10164 #define WAIT_REFS_MIN_MSECS 1
10165 #define WAIT_REFS_MAX_MSECS 250
10166 /**
10167  * netdev_wait_allrefs_any - wait until all references are gone.
10168  * @list: list of net_devices to wait on
10169  *
10170  * This is called when unregistering network devices.
10171  *
10172  * Any protocol or device that holds a reference should register
10173  * for netdevice notification, and cleanup and put back the
10174  * reference if they receive an UNREGISTER event.
10175  * We can get stuck here if buggy protocols don't correctly
10176  * call dev_put.
10177  */
10178 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10179 {
10180 	unsigned long rebroadcast_time, warning_time;
10181 	struct net_device *dev;
10182 	int wait = 0;
10183 
10184 	rebroadcast_time = warning_time = jiffies;
10185 
10186 	list_for_each_entry(dev, list, todo_list)
10187 		if (netdev_refcnt_read(dev) == 1)
10188 			return dev;
10189 
10190 	while (true) {
10191 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10192 			rtnl_lock();
10193 
10194 			/* Rebroadcast unregister notification */
10195 			list_for_each_entry(dev, list, todo_list)
10196 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10197 
10198 			__rtnl_unlock();
10199 			rcu_barrier();
10200 			rtnl_lock();
10201 
10202 			list_for_each_entry(dev, list, todo_list)
10203 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10204 					     &dev->state)) {
10205 					/* We must not have linkwatch events
10206 					 * pending on unregister. If this
10207 					 * happens, we simply run the queue
10208 					 * unscheduled, resulting in a noop
10209 					 * for this device.
10210 					 */
10211 					linkwatch_run_queue();
10212 					break;
10213 				}
10214 
10215 			__rtnl_unlock();
10216 
10217 			rebroadcast_time = jiffies;
10218 		}
10219 
10220 		if (!wait) {
10221 			rcu_barrier();
10222 			wait = WAIT_REFS_MIN_MSECS;
10223 		} else {
10224 			msleep(wait);
10225 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10226 		}
10227 
10228 		list_for_each_entry(dev, list, todo_list)
10229 			if (netdev_refcnt_read(dev) == 1)
10230 				return dev;
10231 
10232 		if (time_after(jiffies, warning_time +
10233 			       netdev_unregister_timeout_secs * HZ)) {
10234 			list_for_each_entry(dev, list, todo_list) {
10235 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10236 					 dev->name, netdev_refcnt_read(dev));
10237 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10238 			}
10239 
10240 			warning_time = jiffies;
10241 		}
10242 	}
10243 }
10244 
10245 /* The sequence is:
10246  *
10247  *	rtnl_lock();
10248  *	...
10249  *	register_netdevice(x1);
10250  *	register_netdevice(x2);
10251  *	...
10252  *	unregister_netdevice(y1);
10253  *	unregister_netdevice(y2);
10254  *      ...
10255  *	rtnl_unlock();
10256  *	free_netdev(y1);
10257  *	free_netdev(y2);
10258  *
10259  * We are invoked by rtnl_unlock().
10260  * This allows us to deal with problems:
10261  * 1) We can delete sysfs objects which invoke hotplug
10262  *    without deadlocking with linkwatch via keventd.
10263  * 2) Since we run with the RTNL semaphore not held, we can sleep
10264  *    safely in order to wait for the netdev refcnt to drop to zero.
10265  *
10266  * We must not return until all unregister events added during
10267  * the interval the lock was held have been completed.
10268  */
10269 void netdev_run_todo(void)
10270 {
10271 	struct net_device *dev, *tmp;
10272 	struct list_head list;
10273 #ifdef CONFIG_LOCKDEP
10274 	struct list_head unlink_list;
10275 
10276 	list_replace_init(&net_unlink_list, &unlink_list);
10277 
10278 	while (!list_empty(&unlink_list)) {
10279 		struct net_device *dev = list_first_entry(&unlink_list,
10280 							  struct net_device,
10281 							  unlink_list);
10282 		list_del_init(&dev->unlink_list);
10283 		dev->nested_level = dev->lower_level - 1;
10284 	}
10285 #endif
10286 
10287 	/* Snapshot list, allow later requests */
10288 	list_replace_init(&net_todo_list, &list);
10289 
10290 	__rtnl_unlock();
10291 
10292 	/* Wait for rcu callbacks to finish before next phase */
10293 	if (!list_empty(&list))
10294 		rcu_barrier();
10295 
10296 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10297 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10298 			netdev_WARN(dev, "run_todo but not unregistering\n");
10299 			list_del(&dev->todo_list);
10300 			continue;
10301 		}
10302 
10303 		dev->reg_state = NETREG_UNREGISTERED;
10304 		linkwatch_forget_dev(dev);
10305 	}
10306 
10307 	while (!list_empty(&list)) {
10308 		dev = netdev_wait_allrefs_any(&list);
10309 		list_del(&dev->todo_list);
10310 
10311 		/* paranoia */
10312 		BUG_ON(netdev_refcnt_read(dev) != 1);
10313 		BUG_ON(!list_empty(&dev->ptype_all));
10314 		BUG_ON(!list_empty(&dev->ptype_specific));
10315 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10316 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10317 #if IS_ENABLED(CONFIG_DECNET)
10318 		WARN_ON(dev->dn_ptr);
10319 #endif
10320 		if (dev->priv_destructor)
10321 			dev->priv_destructor(dev);
10322 		if (dev->needs_free_netdev)
10323 			free_netdev(dev);
10324 
10325 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10326 			wake_up(&netdev_unregistering_wq);
10327 
10328 		/* Free network device */
10329 		kobject_put(&dev->dev.kobj);
10330 	}
10331 }
10332 
10333 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10334  * all the same fields in the same order as net_device_stats, with only
10335  * the type differing, but rtnl_link_stats64 may have additional fields
10336  * at the end for newer counters.
10337  */
10338 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10339 			     const struct net_device_stats *netdev_stats)
10340 {
10341 #if BITS_PER_LONG == 64
10342 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10343 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10344 	/* zero out counters that only exist in rtnl_link_stats64 */
10345 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10346 	       sizeof(*stats64) - sizeof(*netdev_stats));
10347 #else
10348 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10349 	const unsigned long *src = (const unsigned long *)netdev_stats;
10350 	u64 *dst = (u64 *)stats64;
10351 
10352 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10353 	for (i = 0; i < n; i++)
10354 		dst[i] = src[i];
10355 	/* zero out counters that only exist in rtnl_link_stats64 */
10356 	memset((char *)stats64 + n * sizeof(u64), 0,
10357 	       sizeof(*stats64) - n * sizeof(u64));
10358 #endif
10359 }
10360 EXPORT_SYMBOL(netdev_stats_to_stats64);
10361 
10362 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10363 {
10364 	struct net_device_core_stats __percpu *p;
10365 
10366 	p = alloc_percpu_gfp(struct net_device_core_stats,
10367 			     GFP_ATOMIC | __GFP_NOWARN);
10368 
10369 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10370 		free_percpu(p);
10371 
10372 	/* This READ_ONCE() pairs with the cmpxchg() above */
10373 	return READ_ONCE(dev->core_stats);
10374 }
10375 EXPORT_SYMBOL(netdev_core_stats_alloc);
10376 
10377 /**
10378  *	dev_get_stats	- get network device statistics
10379  *	@dev: device to get statistics from
10380  *	@storage: place to store stats
10381  *
10382  *	Get network statistics from device. Return @storage.
10383  *	The device driver may provide its own method by setting
10384  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10385  *	otherwise the internal statistics structure is used.
10386  */
10387 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10388 					struct rtnl_link_stats64 *storage)
10389 {
10390 	const struct net_device_ops *ops = dev->netdev_ops;
10391 	const struct net_device_core_stats __percpu *p;
10392 
10393 	if (ops->ndo_get_stats64) {
10394 		memset(storage, 0, sizeof(*storage));
10395 		ops->ndo_get_stats64(dev, storage);
10396 	} else if (ops->ndo_get_stats) {
10397 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10398 	} else {
10399 		netdev_stats_to_stats64(storage, &dev->stats);
10400 	}
10401 
10402 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10403 	p = READ_ONCE(dev->core_stats);
10404 	if (p) {
10405 		const struct net_device_core_stats *core_stats;
10406 		int i;
10407 
10408 		for_each_possible_cpu(i) {
10409 			core_stats = per_cpu_ptr(p, i);
10410 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10411 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10412 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10413 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10414 		}
10415 	}
10416 	return storage;
10417 }
10418 EXPORT_SYMBOL(dev_get_stats);
10419 
10420 /**
10421  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10422  *	@s: place to store stats
10423  *	@netstats: per-cpu network stats to read from
10424  *
10425  *	Read per-cpu network statistics and populate the related fields in @s.
10426  */
10427 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10428 			   const struct pcpu_sw_netstats __percpu *netstats)
10429 {
10430 	int cpu;
10431 
10432 	for_each_possible_cpu(cpu) {
10433 		const struct pcpu_sw_netstats *stats;
10434 		struct pcpu_sw_netstats tmp;
10435 		unsigned int start;
10436 
10437 		stats = per_cpu_ptr(netstats, cpu);
10438 		do {
10439 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10440 			tmp.rx_packets = stats->rx_packets;
10441 			tmp.rx_bytes   = stats->rx_bytes;
10442 			tmp.tx_packets = stats->tx_packets;
10443 			tmp.tx_bytes   = stats->tx_bytes;
10444 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10445 
10446 		s->rx_packets += tmp.rx_packets;
10447 		s->rx_bytes   += tmp.rx_bytes;
10448 		s->tx_packets += tmp.tx_packets;
10449 		s->tx_bytes   += tmp.tx_bytes;
10450 	}
10451 }
10452 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10453 
10454 /**
10455  *	dev_get_tstats64 - ndo_get_stats64 implementation
10456  *	@dev: device to get statistics from
10457  *	@s: place to store stats
10458  *
10459  *	Populate @s from dev->stats and dev->tstats. Can be used as
10460  *	ndo_get_stats64() callback.
10461  */
10462 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10463 {
10464 	netdev_stats_to_stats64(s, &dev->stats);
10465 	dev_fetch_sw_netstats(s, dev->tstats);
10466 }
10467 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10468 
10469 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10470 {
10471 	struct netdev_queue *queue = dev_ingress_queue(dev);
10472 
10473 #ifdef CONFIG_NET_CLS_ACT
10474 	if (queue)
10475 		return queue;
10476 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10477 	if (!queue)
10478 		return NULL;
10479 	netdev_init_one_queue(dev, queue, NULL);
10480 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10481 	queue->qdisc_sleeping = &noop_qdisc;
10482 	rcu_assign_pointer(dev->ingress_queue, queue);
10483 #endif
10484 	return queue;
10485 }
10486 
10487 static const struct ethtool_ops default_ethtool_ops;
10488 
10489 void netdev_set_default_ethtool_ops(struct net_device *dev,
10490 				    const struct ethtool_ops *ops)
10491 {
10492 	if (dev->ethtool_ops == &default_ethtool_ops)
10493 		dev->ethtool_ops = ops;
10494 }
10495 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10496 
10497 void netdev_freemem(struct net_device *dev)
10498 {
10499 	char *addr = (char *)dev - dev->padded;
10500 
10501 	kvfree(addr);
10502 }
10503 
10504 /**
10505  * alloc_netdev_mqs - allocate network device
10506  * @sizeof_priv: size of private data to allocate space for
10507  * @name: device name format string
10508  * @name_assign_type: origin of device name
10509  * @setup: callback to initialize device
10510  * @txqs: the number of TX subqueues to allocate
10511  * @rxqs: the number of RX subqueues to allocate
10512  *
10513  * Allocates a struct net_device with private data area for driver use
10514  * and performs basic initialization.  Also allocates subqueue structs
10515  * for each queue on the device.
10516  */
10517 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10518 		unsigned char name_assign_type,
10519 		void (*setup)(struct net_device *),
10520 		unsigned int txqs, unsigned int rxqs)
10521 {
10522 	struct net_device *dev;
10523 	unsigned int alloc_size;
10524 	struct net_device *p;
10525 
10526 	BUG_ON(strlen(name) >= sizeof(dev->name));
10527 
10528 	if (txqs < 1) {
10529 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10530 		return NULL;
10531 	}
10532 
10533 	if (rxqs < 1) {
10534 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10535 		return NULL;
10536 	}
10537 
10538 	alloc_size = sizeof(struct net_device);
10539 	if (sizeof_priv) {
10540 		/* ensure 32-byte alignment of private area */
10541 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10542 		alloc_size += sizeof_priv;
10543 	}
10544 	/* ensure 32-byte alignment of whole construct */
10545 	alloc_size += NETDEV_ALIGN - 1;
10546 
10547 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10548 	if (!p)
10549 		return NULL;
10550 
10551 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10552 	dev->padded = (char *)dev - (char *)p;
10553 
10554 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10555 #ifdef CONFIG_PCPU_DEV_REFCNT
10556 	dev->pcpu_refcnt = alloc_percpu(int);
10557 	if (!dev->pcpu_refcnt)
10558 		goto free_dev;
10559 	__dev_hold(dev);
10560 #else
10561 	refcount_set(&dev->dev_refcnt, 1);
10562 #endif
10563 
10564 	if (dev_addr_init(dev))
10565 		goto free_pcpu;
10566 
10567 	dev_mc_init(dev);
10568 	dev_uc_init(dev);
10569 
10570 	dev_net_set(dev, &init_net);
10571 
10572 	dev->gso_max_size = GSO_MAX_SIZE;
10573 	dev->gso_max_segs = GSO_MAX_SEGS;
10574 	dev->gro_max_size = GRO_MAX_SIZE;
10575 	dev->upper_level = 1;
10576 	dev->lower_level = 1;
10577 #ifdef CONFIG_LOCKDEP
10578 	dev->nested_level = 0;
10579 	INIT_LIST_HEAD(&dev->unlink_list);
10580 #endif
10581 
10582 	INIT_LIST_HEAD(&dev->napi_list);
10583 	INIT_LIST_HEAD(&dev->unreg_list);
10584 	INIT_LIST_HEAD(&dev->close_list);
10585 	INIT_LIST_HEAD(&dev->link_watch_list);
10586 	INIT_LIST_HEAD(&dev->adj_list.upper);
10587 	INIT_LIST_HEAD(&dev->adj_list.lower);
10588 	INIT_LIST_HEAD(&dev->ptype_all);
10589 	INIT_LIST_HEAD(&dev->ptype_specific);
10590 	INIT_LIST_HEAD(&dev->net_notifier_list);
10591 #ifdef CONFIG_NET_SCHED
10592 	hash_init(dev->qdisc_hash);
10593 #endif
10594 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10595 	setup(dev);
10596 
10597 	if (!dev->tx_queue_len) {
10598 		dev->priv_flags |= IFF_NO_QUEUE;
10599 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10600 	}
10601 
10602 	dev->num_tx_queues = txqs;
10603 	dev->real_num_tx_queues = txqs;
10604 	if (netif_alloc_netdev_queues(dev))
10605 		goto free_all;
10606 
10607 	dev->num_rx_queues = rxqs;
10608 	dev->real_num_rx_queues = rxqs;
10609 	if (netif_alloc_rx_queues(dev))
10610 		goto free_all;
10611 
10612 	strcpy(dev->name, name);
10613 	dev->name_assign_type = name_assign_type;
10614 	dev->group = INIT_NETDEV_GROUP;
10615 	if (!dev->ethtool_ops)
10616 		dev->ethtool_ops = &default_ethtool_ops;
10617 
10618 	nf_hook_netdev_init(dev);
10619 
10620 	return dev;
10621 
10622 free_all:
10623 	free_netdev(dev);
10624 	return NULL;
10625 
10626 free_pcpu:
10627 #ifdef CONFIG_PCPU_DEV_REFCNT
10628 	free_percpu(dev->pcpu_refcnt);
10629 free_dev:
10630 #endif
10631 	netdev_freemem(dev);
10632 	return NULL;
10633 }
10634 EXPORT_SYMBOL(alloc_netdev_mqs);
10635 
10636 /**
10637  * free_netdev - free network device
10638  * @dev: device
10639  *
10640  * This function does the last stage of destroying an allocated device
10641  * interface. The reference to the device object is released. If this
10642  * is the last reference then it will be freed.Must be called in process
10643  * context.
10644  */
10645 void free_netdev(struct net_device *dev)
10646 {
10647 	struct napi_struct *p, *n;
10648 
10649 	might_sleep();
10650 
10651 	/* When called immediately after register_netdevice() failed the unwind
10652 	 * handling may still be dismantling the device. Handle that case by
10653 	 * deferring the free.
10654 	 */
10655 	if (dev->reg_state == NETREG_UNREGISTERING) {
10656 		ASSERT_RTNL();
10657 		dev->needs_free_netdev = true;
10658 		return;
10659 	}
10660 
10661 	netif_free_tx_queues(dev);
10662 	netif_free_rx_queues(dev);
10663 
10664 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10665 
10666 	/* Flush device addresses */
10667 	dev_addr_flush(dev);
10668 
10669 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10670 		netif_napi_del(p);
10671 
10672 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10673 #ifdef CONFIG_PCPU_DEV_REFCNT
10674 	free_percpu(dev->pcpu_refcnt);
10675 	dev->pcpu_refcnt = NULL;
10676 #endif
10677 	free_percpu(dev->core_stats);
10678 	dev->core_stats = NULL;
10679 	free_percpu(dev->xdp_bulkq);
10680 	dev->xdp_bulkq = NULL;
10681 
10682 	/*  Compatibility with error handling in drivers */
10683 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10684 		netdev_freemem(dev);
10685 		return;
10686 	}
10687 
10688 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10689 	dev->reg_state = NETREG_RELEASED;
10690 
10691 	/* will free via device release */
10692 	put_device(&dev->dev);
10693 }
10694 EXPORT_SYMBOL(free_netdev);
10695 
10696 /**
10697  *	synchronize_net -  Synchronize with packet receive processing
10698  *
10699  *	Wait for packets currently being received to be done.
10700  *	Does not block later packets from starting.
10701  */
10702 void synchronize_net(void)
10703 {
10704 	might_sleep();
10705 	if (rtnl_is_locked())
10706 		synchronize_rcu_expedited();
10707 	else
10708 		synchronize_rcu();
10709 }
10710 EXPORT_SYMBOL(synchronize_net);
10711 
10712 /**
10713  *	unregister_netdevice_queue - remove device from the kernel
10714  *	@dev: device
10715  *	@head: list
10716  *
10717  *	This function shuts down a device interface and removes it
10718  *	from the kernel tables.
10719  *	If head not NULL, device is queued to be unregistered later.
10720  *
10721  *	Callers must hold the rtnl semaphore.  You may want
10722  *	unregister_netdev() instead of this.
10723  */
10724 
10725 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10726 {
10727 	ASSERT_RTNL();
10728 
10729 	if (head) {
10730 		list_move_tail(&dev->unreg_list, head);
10731 	} else {
10732 		LIST_HEAD(single);
10733 
10734 		list_add(&dev->unreg_list, &single);
10735 		unregister_netdevice_many(&single);
10736 	}
10737 }
10738 EXPORT_SYMBOL(unregister_netdevice_queue);
10739 
10740 /**
10741  *	unregister_netdevice_many - unregister many devices
10742  *	@head: list of devices
10743  *
10744  *  Note: As most callers use a stack allocated list_head,
10745  *  we force a list_del() to make sure stack wont be corrupted later.
10746  */
10747 void unregister_netdevice_many(struct list_head *head)
10748 {
10749 	struct net_device *dev, *tmp;
10750 	LIST_HEAD(close_head);
10751 
10752 	BUG_ON(dev_boot_phase);
10753 	ASSERT_RTNL();
10754 
10755 	if (list_empty(head))
10756 		return;
10757 
10758 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10759 		/* Some devices call without registering
10760 		 * for initialization unwind. Remove those
10761 		 * devices and proceed with the remaining.
10762 		 */
10763 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10764 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10765 				 dev->name, dev);
10766 
10767 			WARN_ON(1);
10768 			list_del(&dev->unreg_list);
10769 			continue;
10770 		}
10771 		dev->dismantle = true;
10772 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10773 	}
10774 
10775 	/* If device is running, close it first. */
10776 	list_for_each_entry(dev, head, unreg_list)
10777 		list_add_tail(&dev->close_list, &close_head);
10778 	dev_close_many(&close_head, true);
10779 
10780 	list_for_each_entry(dev, head, unreg_list) {
10781 		/* And unlink it from device chain. */
10782 		unlist_netdevice(dev);
10783 
10784 		dev->reg_state = NETREG_UNREGISTERING;
10785 	}
10786 	flush_all_backlogs();
10787 
10788 	synchronize_net();
10789 
10790 	list_for_each_entry(dev, head, unreg_list) {
10791 		struct sk_buff *skb = NULL;
10792 
10793 		/* Shutdown queueing discipline. */
10794 		dev_shutdown(dev);
10795 
10796 		dev_xdp_uninstall(dev);
10797 
10798 		netdev_offload_xstats_disable_all(dev);
10799 
10800 		/* Notify protocols, that we are about to destroy
10801 		 * this device. They should clean all the things.
10802 		 */
10803 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10804 
10805 		if (!dev->rtnl_link_ops ||
10806 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10807 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10808 						     GFP_KERNEL, NULL, 0);
10809 
10810 		/*
10811 		 *	Flush the unicast and multicast chains
10812 		 */
10813 		dev_uc_flush(dev);
10814 		dev_mc_flush(dev);
10815 
10816 		netdev_name_node_alt_flush(dev);
10817 		netdev_name_node_free(dev->name_node);
10818 
10819 		if (dev->netdev_ops->ndo_uninit)
10820 			dev->netdev_ops->ndo_uninit(dev);
10821 
10822 		if (skb)
10823 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10824 
10825 		/* Notifier chain MUST detach us all upper devices. */
10826 		WARN_ON(netdev_has_any_upper_dev(dev));
10827 		WARN_ON(netdev_has_any_lower_dev(dev));
10828 
10829 		/* Remove entries from kobject tree */
10830 		netdev_unregister_kobject(dev);
10831 #ifdef CONFIG_XPS
10832 		/* Remove XPS queueing entries */
10833 		netif_reset_xps_queues_gt(dev, 0);
10834 #endif
10835 	}
10836 
10837 	synchronize_net();
10838 
10839 	list_for_each_entry(dev, head, unreg_list) {
10840 		dev_put_track(dev, &dev->dev_registered_tracker);
10841 		net_set_todo(dev);
10842 	}
10843 
10844 	list_del(head);
10845 }
10846 EXPORT_SYMBOL(unregister_netdevice_many);
10847 
10848 /**
10849  *	unregister_netdev - remove device from the kernel
10850  *	@dev: device
10851  *
10852  *	This function shuts down a device interface and removes it
10853  *	from the kernel tables.
10854  *
10855  *	This is just a wrapper for unregister_netdevice that takes
10856  *	the rtnl semaphore.  In general you want to use this and not
10857  *	unregister_netdevice.
10858  */
10859 void unregister_netdev(struct net_device *dev)
10860 {
10861 	rtnl_lock();
10862 	unregister_netdevice(dev);
10863 	rtnl_unlock();
10864 }
10865 EXPORT_SYMBOL(unregister_netdev);
10866 
10867 /**
10868  *	__dev_change_net_namespace - move device to different nethost namespace
10869  *	@dev: device
10870  *	@net: network namespace
10871  *	@pat: If not NULL name pattern to try if the current device name
10872  *	      is already taken in the destination network namespace.
10873  *	@new_ifindex: If not zero, specifies device index in the target
10874  *	              namespace.
10875  *
10876  *	This function shuts down a device interface and moves it
10877  *	to a new network namespace. On success 0 is returned, on
10878  *	a failure a netagive errno code is returned.
10879  *
10880  *	Callers must hold the rtnl semaphore.
10881  */
10882 
10883 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10884 			       const char *pat, int new_ifindex)
10885 {
10886 	struct net *net_old = dev_net(dev);
10887 	int err, new_nsid;
10888 
10889 	ASSERT_RTNL();
10890 
10891 	/* Don't allow namespace local devices to be moved. */
10892 	err = -EINVAL;
10893 	if (dev->features & NETIF_F_NETNS_LOCAL)
10894 		goto out;
10895 
10896 	/* Ensure the device has been registrered */
10897 	if (dev->reg_state != NETREG_REGISTERED)
10898 		goto out;
10899 
10900 	/* Get out if there is nothing todo */
10901 	err = 0;
10902 	if (net_eq(net_old, net))
10903 		goto out;
10904 
10905 	/* Pick the destination device name, and ensure
10906 	 * we can use it in the destination network namespace.
10907 	 */
10908 	err = -EEXIST;
10909 	if (netdev_name_in_use(net, dev->name)) {
10910 		/* We get here if we can't use the current device name */
10911 		if (!pat)
10912 			goto out;
10913 		err = dev_get_valid_name(net, dev, pat);
10914 		if (err < 0)
10915 			goto out;
10916 	}
10917 
10918 	/* Check that new_ifindex isn't used yet. */
10919 	err = -EBUSY;
10920 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10921 		goto out;
10922 
10923 	/*
10924 	 * And now a mini version of register_netdevice unregister_netdevice.
10925 	 */
10926 
10927 	/* If device is running close it first. */
10928 	dev_close(dev);
10929 
10930 	/* And unlink it from device chain */
10931 	unlist_netdevice(dev);
10932 
10933 	synchronize_net();
10934 
10935 	/* Shutdown queueing discipline. */
10936 	dev_shutdown(dev);
10937 
10938 	/* Notify protocols, that we are about to destroy
10939 	 * this device. They should clean all the things.
10940 	 *
10941 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10942 	 * This is wanted because this way 8021q and macvlan know
10943 	 * the device is just moving and can keep their slaves up.
10944 	 */
10945 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10946 	rcu_barrier();
10947 
10948 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10949 	/* If there is an ifindex conflict assign a new one */
10950 	if (!new_ifindex) {
10951 		if (__dev_get_by_index(net, dev->ifindex))
10952 			new_ifindex = dev_new_index(net);
10953 		else
10954 			new_ifindex = dev->ifindex;
10955 	}
10956 
10957 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10958 			    new_ifindex);
10959 
10960 	/*
10961 	 *	Flush the unicast and multicast chains
10962 	 */
10963 	dev_uc_flush(dev);
10964 	dev_mc_flush(dev);
10965 
10966 	/* Send a netdev-removed uevent to the old namespace */
10967 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10968 	netdev_adjacent_del_links(dev);
10969 
10970 	/* Move per-net netdevice notifiers that are following the netdevice */
10971 	move_netdevice_notifiers_dev_net(dev, net);
10972 
10973 	/* Actually switch the network namespace */
10974 	dev_net_set(dev, net);
10975 	dev->ifindex = new_ifindex;
10976 
10977 	/* Send a netdev-add uevent to the new namespace */
10978 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10979 	netdev_adjacent_add_links(dev);
10980 
10981 	/* Fixup kobjects */
10982 	err = device_rename(&dev->dev, dev->name);
10983 	WARN_ON(err);
10984 
10985 	/* Adapt owner in case owning user namespace of target network
10986 	 * namespace is different from the original one.
10987 	 */
10988 	err = netdev_change_owner(dev, net_old, net);
10989 	WARN_ON(err);
10990 
10991 	/* Add the device back in the hashes */
10992 	list_netdevice(dev);
10993 
10994 	/* Notify protocols, that a new device appeared. */
10995 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10996 
10997 	/*
10998 	 *	Prevent userspace races by waiting until the network
10999 	 *	device is fully setup before sending notifications.
11000 	 */
11001 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11002 
11003 	synchronize_net();
11004 	err = 0;
11005 out:
11006 	return err;
11007 }
11008 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11009 
11010 static int dev_cpu_dead(unsigned int oldcpu)
11011 {
11012 	struct sk_buff **list_skb;
11013 	struct sk_buff *skb;
11014 	unsigned int cpu;
11015 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11016 
11017 	local_irq_disable();
11018 	cpu = smp_processor_id();
11019 	sd = &per_cpu(softnet_data, cpu);
11020 	oldsd = &per_cpu(softnet_data, oldcpu);
11021 
11022 	/* Find end of our completion_queue. */
11023 	list_skb = &sd->completion_queue;
11024 	while (*list_skb)
11025 		list_skb = &(*list_skb)->next;
11026 	/* Append completion queue from offline CPU. */
11027 	*list_skb = oldsd->completion_queue;
11028 	oldsd->completion_queue = NULL;
11029 
11030 	/* Append output queue from offline CPU. */
11031 	if (oldsd->output_queue) {
11032 		*sd->output_queue_tailp = oldsd->output_queue;
11033 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11034 		oldsd->output_queue = NULL;
11035 		oldsd->output_queue_tailp = &oldsd->output_queue;
11036 	}
11037 	/* Append NAPI poll list from offline CPU, with one exception :
11038 	 * process_backlog() must be called by cpu owning percpu backlog.
11039 	 * We properly handle process_queue & input_pkt_queue later.
11040 	 */
11041 	while (!list_empty(&oldsd->poll_list)) {
11042 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11043 							    struct napi_struct,
11044 							    poll_list);
11045 
11046 		list_del_init(&napi->poll_list);
11047 		if (napi->poll == process_backlog)
11048 			napi->state = 0;
11049 		else
11050 			____napi_schedule(sd, napi);
11051 	}
11052 
11053 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11054 	local_irq_enable();
11055 
11056 #ifdef CONFIG_RPS
11057 	remsd = oldsd->rps_ipi_list;
11058 	oldsd->rps_ipi_list = NULL;
11059 #endif
11060 	/* send out pending IPI's on offline CPU */
11061 	net_rps_send_ipi(remsd);
11062 
11063 	/* Process offline CPU's input_pkt_queue */
11064 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11065 		netif_rx(skb);
11066 		input_queue_head_incr(oldsd);
11067 	}
11068 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11069 		netif_rx(skb);
11070 		input_queue_head_incr(oldsd);
11071 	}
11072 
11073 	return 0;
11074 }
11075 
11076 /**
11077  *	netdev_increment_features - increment feature set by one
11078  *	@all: current feature set
11079  *	@one: new feature set
11080  *	@mask: mask feature set
11081  *
11082  *	Computes a new feature set after adding a device with feature set
11083  *	@one to the master device with current feature set @all.  Will not
11084  *	enable anything that is off in @mask. Returns the new feature set.
11085  */
11086 netdev_features_t netdev_increment_features(netdev_features_t all,
11087 	netdev_features_t one, netdev_features_t mask)
11088 {
11089 	if (mask & NETIF_F_HW_CSUM)
11090 		mask |= NETIF_F_CSUM_MASK;
11091 	mask |= NETIF_F_VLAN_CHALLENGED;
11092 
11093 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11094 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11095 
11096 	/* If one device supports hw checksumming, set for all. */
11097 	if (all & NETIF_F_HW_CSUM)
11098 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11099 
11100 	return all;
11101 }
11102 EXPORT_SYMBOL(netdev_increment_features);
11103 
11104 static struct hlist_head * __net_init netdev_create_hash(void)
11105 {
11106 	int i;
11107 	struct hlist_head *hash;
11108 
11109 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11110 	if (hash != NULL)
11111 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11112 			INIT_HLIST_HEAD(&hash[i]);
11113 
11114 	return hash;
11115 }
11116 
11117 /* Initialize per network namespace state */
11118 static int __net_init netdev_init(struct net *net)
11119 {
11120 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11121 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11122 
11123 	INIT_LIST_HEAD(&net->dev_base_head);
11124 
11125 	net->dev_name_head = netdev_create_hash();
11126 	if (net->dev_name_head == NULL)
11127 		goto err_name;
11128 
11129 	net->dev_index_head = netdev_create_hash();
11130 	if (net->dev_index_head == NULL)
11131 		goto err_idx;
11132 
11133 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11134 
11135 	return 0;
11136 
11137 err_idx:
11138 	kfree(net->dev_name_head);
11139 err_name:
11140 	return -ENOMEM;
11141 }
11142 
11143 /**
11144  *	netdev_drivername - network driver for the device
11145  *	@dev: network device
11146  *
11147  *	Determine network driver for device.
11148  */
11149 const char *netdev_drivername(const struct net_device *dev)
11150 {
11151 	const struct device_driver *driver;
11152 	const struct device *parent;
11153 	const char *empty = "";
11154 
11155 	parent = dev->dev.parent;
11156 	if (!parent)
11157 		return empty;
11158 
11159 	driver = parent->driver;
11160 	if (driver && driver->name)
11161 		return driver->name;
11162 	return empty;
11163 }
11164 
11165 static void __netdev_printk(const char *level, const struct net_device *dev,
11166 			    struct va_format *vaf)
11167 {
11168 	if (dev && dev->dev.parent) {
11169 		dev_printk_emit(level[1] - '0',
11170 				dev->dev.parent,
11171 				"%s %s %s%s: %pV",
11172 				dev_driver_string(dev->dev.parent),
11173 				dev_name(dev->dev.parent),
11174 				netdev_name(dev), netdev_reg_state(dev),
11175 				vaf);
11176 	} else if (dev) {
11177 		printk("%s%s%s: %pV",
11178 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11179 	} else {
11180 		printk("%s(NULL net_device): %pV", level, vaf);
11181 	}
11182 }
11183 
11184 void netdev_printk(const char *level, const struct net_device *dev,
11185 		   const char *format, ...)
11186 {
11187 	struct va_format vaf;
11188 	va_list args;
11189 
11190 	va_start(args, format);
11191 
11192 	vaf.fmt = format;
11193 	vaf.va = &args;
11194 
11195 	__netdev_printk(level, dev, &vaf);
11196 
11197 	va_end(args);
11198 }
11199 EXPORT_SYMBOL(netdev_printk);
11200 
11201 #define define_netdev_printk_level(func, level)			\
11202 void func(const struct net_device *dev, const char *fmt, ...)	\
11203 {								\
11204 	struct va_format vaf;					\
11205 	va_list args;						\
11206 								\
11207 	va_start(args, fmt);					\
11208 								\
11209 	vaf.fmt = fmt;						\
11210 	vaf.va = &args;						\
11211 								\
11212 	__netdev_printk(level, dev, &vaf);			\
11213 								\
11214 	va_end(args);						\
11215 }								\
11216 EXPORT_SYMBOL(func);
11217 
11218 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11219 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11220 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11221 define_netdev_printk_level(netdev_err, KERN_ERR);
11222 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11223 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11224 define_netdev_printk_level(netdev_info, KERN_INFO);
11225 
11226 static void __net_exit netdev_exit(struct net *net)
11227 {
11228 	kfree(net->dev_name_head);
11229 	kfree(net->dev_index_head);
11230 	if (net != &init_net)
11231 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11232 }
11233 
11234 static struct pernet_operations __net_initdata netdev_net_ops = {
11235 	.init = netdev_init,
11236 	.exit = netdev_exit,
11237 };
11238 
11239 static void __net_exit default_device_exit_net(struct net *net)
11240 {
11241 	struct net_device *dev, *aux;
11242 	/*
11243 	 * Push all migratable network devices back to the
11244 	 * initial network namespace
11245 	 */
11246 	ASSERT_RTNL();
11247 	for_each_netdev_safe(net, dev, aux) {
11248 		int err;
11249 		char fb_name[IFNAMSIZ];
11250 
11251 		/* Ignore unmoveable devices (i.e. loopback) */
11252 		if (dev->features & NETIF_F_NETNS_LOCAL)
11253 			continue;
11254 
11255 		/* Leave virtual devices for the generic cleanup */
11256 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11257 			continue;
11258 
11259 		/* Push remaining network devices to init_net */
11260 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11261 		if (netdev_name_in_use(&init_net, fb_name))
11262 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11263 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11264 		if (err) {
11265 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11266 				 __func__, dev->name, err);
11267 			BUG();
11268 		}
11269 	}
11270 }
11271 
11272 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11273 {
11274 	/* At exit all network devices most be removed from a network
11275 	 * namespace.  Do this in the reverse order of registration.
11276 	 * Do this across as many network namespaces as possible to
11277 	 * improve batching efficiency.
11278 	 */
11279 	struct net_device *dev;
11280 	struct net *net;
11281 	LIST_HEAD(dev_kill_list);
11282 
11283 	rtnl_lock();
11284 	list_for_each_entry(net, net_list, exit_list) {
11285 		default_device_exit_net(net);
11286 		cond_resched();
11287 	}
11288 
11289 	list_for_each_entry(net, net_list, exit_list) {
11290 		for_each_netdev_reverse(net, dev) {
11291 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11292 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11293 			else
11294 				unregister_netdevice_queue(dev, &dev_kill_list);
11295 		}
11296 	}
11297 	unregister_netdevice_many(&dev_kill_list);
11298 	rtnl_unlock();
11299 }
11300 
11301 static struct pernet_operations __net_initdata default_device_ops = {
11302 	.exit_batch = default_device_exit_batch,
11303 };
11304 
11305 /*
11306  *	Initialize the DEV module. At boot time this walks the device list and
11307  *	unhooks any devices that fail to initialise (normally hardware not
11308  *	present) and leaves us with a valid list of present and active devices.
11309  *
11310  */
11311 
11312 /*
11313  *       This is called single threaded during boot, so no need
11314  *       to take the rtnl semaphore.
11315  */
11316 static int __init net_dev_init(void)
11317 {
11318 	int i, rc = -ENOMEM;
11319 
11320 	BUG_ON(!dev_boot_phase);
11321 
11322 	if (dev_proc_init())
11323 		goto out;
11324 
11325 	if (netdev_kobject_init())
11326 		goto out;
11327 
11328 	INIT_LIST_HEAD(&ptype_all);
11329 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11330 		INIT_LIST_HEAD(&ptype_base[i]);
11331 
11332 	if (register_pernet_subsys(&netdev_net_ops))
11333 		goto out;
11334 
11335 	/*
11336 	 *	Initialise the packet receive queues.
11337 	 */
11338 
11339 	for_each_possible_cpu(i) {
11340 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11341 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11342 
11343 		INIT_WORK(flush, flush_backlog);
11344 
11345 		skb_queue_head_init(&sd->input_pkt_queue);
11346 		skb_queue_head_init(&sd->process_queue);
11347 #ifdef CONFIG_XFRM_OFFLOAD
11348 		skb_queue_head_init(&sd->xfrm_backlog);
11349 #endif
11350 		INIT_LIST_HEAD(&sd->poll_list);
11351 		sd->output_queue_tailp = &sd->output_queue;
11352 #ifdef CONFIG_RPS
11353 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11354 		sd->cpu = i;
11355 #endif
11356 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, NULL);
11357 		spin_lock_init(&sd->defer_lock);
11358 
11359 		init_gro_hash(&sd->backlog);
11360 		sd->backlog.poll = process_backlog;
11361 		sd->backlog.weight = weight_p;
11362 	}
11363 
11364 	dev_boot_phase = 0;
11365 
11366 	/* The loopback device is special if any other network devices
11367 	 * is present in a network namespace the loopback device must
11368 	 * be present. Since we now dynamically allocate and free the
11369 	 * loopback device ensure this invariant is maintained by
11370 	 * keeping the loopback device as the first device on the
11371 	 * list of network devices.  Ensuring the loopback devices
11372 	 * is the first device that appears and the last network device
11373 	 * that disappears.
11374 	 */
11375 	if (register_pernet_device(&loopback_net_ops))
11376 		goto out;
11377 
11378 	if (register_pernet_device(&default_device_ops))
11379 		goto out;
11380 
11381 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11382 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11383 
11384 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11385 				       NULL, dev_cpu_dead);
11386 	WARN_ON(rc < 0);
11387 	rc = 0;
11388 out:
11389 	return rc;
11390 }
11391 
11392 subsys_initcall(net_dev_init);
11393