1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 #define MAX_NEST_DEV 8 150 151 /* This should be increased if a protocol with a bigger head is added. */ 152 #define GRO_MAX_HEAD (MAX_HEADER + 128) 153 154 static DEFINE_SPINLOCK(ptype_lock); 155 static DEFINE_SPINLOCK(offload_lock); 156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 157 struct list_head ptype_all __read_mostly; /* Taps */ 158 static struct list_head offload_base __read_mostly; 159 160 static int netif_rx_internal(struct sk_buff *skb); 161 static int call_netdevice_notifiers_info(unsigned long val, 162 struct netdev_notifier_info *info); 163 static int call_netdevice_notifiers_extack(unsigned long val, 164 struct net_device *dev, 165 struct netlink_ext_ack *extack); 166 static struct napi_struct *napi_by_id(unsigned int napi_id); 167 168 /* 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 170 * semaphore. 171 * 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 173 * 174 * Writers must hold the rtnl semaphore while they loop through the 175 * dev_base_head list, and hold dev_base_lock for writing when they do the 176 * actual updates. This allows pure readers to access the list even 177 * while a writer is preparing to update it. 178 * 179 * To put it another way, dev_base_lock is held for writing only to 180 * protect against pure readers; the rtnl semaphore provides the 181 * protection against other writers. 182 * 183 * See, for example usages, register_netdevice() and 184 * unregister_netdevice(), which must be called with the rtnl 185 * semaphore held. 186 */ 187 DEFINE_RWLOCK(dev_base_lock); 188 EXPORT_SYMBOL(dev_base_lock); 189 190 static DEFINE_MUTEX(ifalias_mutex); 191 192 /* protects napi_hash addition/deletion and napi_gen_id */ 193 static DEFINE_SPINLOCK(napi_hash_lock); 194 195 static unsigned int napi_gen_id = NR_CPUS; 196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 197 198 static seqcount_t devnet_rename_seq; 199 200 static inline void dev_base_seq_inc(struct net *net) 201 { 202 while (++net->dev_base_seq == 0) 203 ; 204 } 205 206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 207 { 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 209 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 211 } 212 213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 214 { 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 216 } 217 218 static inline void rps_lock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_lock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 static inline void rps_unlock(struct softnet_data *sd) 226 { 227 #ifdef CONFIG_RPS 228 spin_unlock(&sd->input_pkt_queue.lock); 229 #endif 230 } 231 232 /* Device list insertion */ 233 static void list_netdevice(struct net_device *dev) 234 { 235 struct net *net = dev_net(dev); 236 237 ASSERT_RTNL(); 238 239 write_lock_bh(&dev_base_lock); 240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 242 hlist_add_head_rcu(&dev->index_hlist, 243 dev_index_hash(net, dev->ifindex)); 244 write_unlock_bh(&dev_base_lock); 245 246 dev_base_seq_inc(net); 247 } 248 249 /* Device list removal 250 * caller must respect a RCU grace period before freeing/reusing dev 251 */ 252 static void unlist_netdevice(struct net_device *dev) 253 { 254 ASSERT_RTNL(); 255 256 /* Unlink dev from the device chain */ 257 write_lock_bh(&dev_base_lock); 258 list_del_rcu(&dev->dev_list); 259 hlist_del_rcu(&dev->name_hlist); 260 hlist_del_rcu(&dev->index_hlist); 261 write_unlock_bh(&dev_base_lock); 262 263 dev_base_seq_inc(dev_net(dev)); 264 } 265 266 /* 267 * Our notifier list 268 */ 269 270 static RAW_NOTIFIER_HEAD(netdev_chain); 271 272 /* 273 * Device drivers call our routines to queue packets here. We empty the 274 * queue in the local softnet handler. 275 */ 276 277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 278 EXPORT_PER_CPU_SYMBOL(softnet_data); 279 280 #ifdef CONFIG_LOCKDEP 281 /* 282 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 283 * according to dev->type 284 */ 285 static const unsigned short netdev_lock_type[] = { 286 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 287 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 288 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 289 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 290 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 291 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 292 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 293 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 294 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 295 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 296 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 297 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 298 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 299 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 300 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 301 302 static const char *const netdev_lock_name[] = { 303 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 304 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 305 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 306 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 307 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 308 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 309 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 310 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 311 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 312 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 313 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 314 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 315 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 316 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 317 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 318 319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 322 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 323 { 324 int i; 325 326 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 327 if (netdev_lock_type[i] == dev_type) 328 return i; 329 /* the last key is used by default */ 330 return ARRAY_SIZE(netdev_lock_type) - 1; 331 } 332 333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 334 unsigned short dev_type) 335 { 336 int i; 337 338 i = netdev_lock_pos(dev_type); 339 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 340 netdev_lock_name[i]); 341 } 342 343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 344 { 345 int i; 346 347 i = netdev_lock_pos(dev->type); 348 lockdep_set_class_and_name(&dev->addr_list_lock, 349 &netdev_addr_lock_key[i], 350 netdev_lock_name[i]); 351 } 352 #else 353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 354 unsigned short dev_type) 355 { 356 } 357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 358 { 359 } 360 #endif 361 362 /******************************************************************************* 363 * 364 * Protocol management and registration routines 365 * 366 *******************************************************************************/ 367 368 369 /* 370 * Add a protocol ID to the list. Now that the input handler is 371 * smarter we can dispense with all the messy stuff that used to be 372 * here. 373 * 374 * BEWARE!!! Protocol handlers, mangling input packets, 375 * MUST BE last in hash buckets and checking protocol handlers 376 * MUST start from promiscuous ptype_all chain in net_bh. 377 * It is true now, do not change it. 378 * Explanation follows: if protocol handler, mangling packet, will 379 * be the first on list, it is not able to sense, that packet 380 * is cloned and should be copied-on-write, so that it will 381 * change it and subsequent readers will get broken packet. 382 * --ANK (980803) 383 */ 384 385 static inline struct list_head *ptype_head(const struct packet_type *pt) 386 { 387 if (pt->type == htons(ETH_P_ALL)) 388 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 389 else 390 return pt->dev ? &pt->dev->ptype_specific : 391 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 392 } 393 394 /** 395 * dev_add_pack - add packet handler 396 * @pt: packet type declaration 397 * 398 * Add a protocol handler to the networking stack. The passed &packet_type 399 * is linked into kernel lists and may not be freed until it has been 400 * removed from the kernel lists. 401 * 402 * This call does not sleep therefore it can not 403 * guarantee all CPU's that are in middle of receiving packets 404 * will see the new packet type (until the next received packet). 405 */ 406 407 void dev_add_pack(struct packet_type *pt) 408 { 409 struct list_head *head = ptype_head(pt); 410 411 spin_lock(&ptype_lock); 412 list_add_rcu(&pt->list, head); 413 spin_unlock(&ptype_lock); 414 } 415 EXPORT_SYMBOL(dev_add_pack); 416 417 /** 418 * __dev_remove_pack - remove packet handler 419 * @pt: packet type declaration 420 * 421 * Remove a protocol handler that was previously added to the kernel 422 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 423 * from the kernel lists and can be freed or reused once this function 424 * returns. 425 * 426 * The packet type might still be in use by receivers 427 * and must not be freed until after all the CPU's have gone 428 * through a quiescent state. 429 */ 430 void __dev_remove_pack(struct packet_type *pt) 431 { 432 struct list_head *head = ptype_head(pt); 433 struct packet_type *pt1; 434 435 spin_lock(&ptype_lock); 436 437 list_for_each_entry(pt1, head, list) { 438 if (pt == pt1) { 439 list_del_rcu(&pt->list); 440 goto out; 441 } 442 } 443 444 pr_warn("dev_remove_pack: %p not found\n", pt); 445 out: 446 spin_unlock(&ptype_lock); 447 } 448 EXPORT_SYMBOL(__dev_remove_pack); 449 450 /** 451 * dev_remove_pack - remove packet handler 452 * @pt: packet type declaration 453 * 454 * Remove a protocol handler that was previously added to the kernel 455 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 456 * from the kernel lists and can be freed or reused once this function 457 * returns. 458 * 459 * This call sleeps to guarantee that no CPU is looking at the packet 460 * type after return. 461 */ 462 void dev_remove_pack(struct packet_type *pt) 463 { 464 __dev_remove_pack(pt); 465 466 synchronize_net(); 467 } 468 EXPORT_SYMBOL(dev_remove_pack); 469 470 471 /** 472 * dev_add_offload - register offload handlers 473 * @po: protocol offload declaration 474 * 475 * Add protocol offload handlers to the networking stack. The passed 476 * &proto_offload is linked into kernel lists and may not be freed until 477 * it has been removed from the kernel lists. 478 * 479 * This call does not sleep therefore it can not 480 * guarantee all CPU's that are in middle of receiving packets 481 * will see the new offload handlers (until the next received packet). 482 */ 483 void dev_add_offload(struct packet_offload *po) 484 { 485 struct packet_offload *elem; 486 487 spin_lock(&offload_lock); 488 list_for_each_entry(elem, &offload_base, list) { 489 if (po->priority < elem->priority) 490 break; 491 } 492 list_add_rcu(&po->list, elem->list.prev); 493 spin_unlock(&offload_lock); 494 } 495 EXPORT_SYMBOL(dev_add_offload); 496 497 /** 498 * __dev_remove_offload - remove offload handler 499 * @po: packet offload declaration 500 * 501 * Remove a protocol offload handler that was previously added to the 502 * kernel offload handlers by dev_add_offload(). The passed &offload_type 503 * is removed from the kernel lists and can be freed or reused once this 504 * function returns. 505 * 506 * The packet type might still be in use by receivers 507 * and must not be freed until after all the CPU's have gone 508 * through a quiescent state. 509 */ 510 static void __dev_remove_offload(struct packet_offload *po) 511 { 512 struct list_head *head = &offload_base; 513 struct packet_offload *po1; 514 515 spin_lock(&offload_lock); 516 517 list_for_each_entry(po1, head, list) { 518 if (po == po1) { 519 list_del_rcu(&po->list); 520 goto out; 521 } 522 } 523 524 pr_warn("dev_remove_offload: %p not found\n", po); 525 out: 526 spin_unlock(&offload_lock); 527 } 528 529 /** 530 * dev_remove_offload - remove packet offload handler 531 * @po: packet offload declaration 532 * 533 * Remove a packet offload handler that was previously added to the kernel 534 * offload handlers by dev_add_offload(). The passed &offload_type is 535 * removed from the kernel lists and can be freed or reused once this 536 * function returns. 537 * 538 * This call sleeps to guarantee that no CPU is looking at the packet 539 * type after return. 540 */ 541 void dev_remove_offload(struct packet_offload *po) 542 { 543 __dev_remove_offload(po); 544 545 synchronize_net(); 546 } 547 EXPORT_SYMBOL(dev_remove_offload); 548 549 /****************************************************************************** 550 * 551 * Device Boot-time Settings Routines 552 * 553 ******************************************************************************/ 554 555 /* Boot time configuration table */ 556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 557 558 /** 559 * netdev_boot_setup_add - add new setup entry 560 * @name: name of the device 561 * @map: configured settings for the device 562 * 563 * Adds new setup entry to the dev_boot_setup list. The function 564 * returns 0 on error and 1 on success. This is a generic routine to 565 * all netdevices. 566 */ 567 static int netdev_boot_setup_add(char *name, struct ifmap *map) 568 { 569 struct netdev_boot_setup *s; 570 int i; 571 572 s = dev_boot_setup; 573 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 574 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 575 memset(s[i].name, 0, sizeof(s[i].name)); 576 strlcpy(s[i].name, name, IFNAMSIZ); 577 memcpy(&s[i].map, map, sizeof(s[i].map)); 578 break; 579 } 580 } 581 582 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 583 } 584 585 /** 586 * netdev_boot_setup_check - check boot time settings 587 * @dev: the netdevice 588 * 589 * Check boot time settings for the device. 590 * The found settings are set for the device to be used 591 * later in the device probing. 592 * Returns 0 if no settings found, 1 if they are. 593 */ 594 int netdev_boot_setup_check(struct net_device *dev) 595 { 596 struct netdev_boot_setup *s = dev_boot_setup; 597 int i; 598 599 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 600 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 601 !strcmp(dev->name, s[i].name)) { 602 dev->irq = s[i].map.irq; 603 dev->base_addr = s[i].map.base_addr; 604 dev->mem_start = s[i].map.mem_start; 605 dev->mem_end = s[i].map.mem_end; 606 return 1; 607 } 608 } 609 return 0; 610 } 611 EXPORT_SYMBOL(netdev_boot_setup_check); 612 613 614 /** 615 * netdev_boot_base - get address from boot time settings 616 * @prefix: prefix for network device 617 * @unit: id for network device 618 * 619 * Check boot time settings for the base address of device. 620 * The found settings are set for the device to be used 621 * later in the device probing. 622 * Returns 0 if no settings found. 623 */ 624 unsigned long netdev_boot_base(const char *prefix, int unit) 625 { 626 const struct netdev_boot_setup *s = dev_boot_setup; 627 char name[IFNAMSIZ]; 628 int i; 629 630 sprintf(name, "%s%d", prefix, unit); 631 632 /* 633 * If device already registered then return base of 1 634 * to indicate not to probe for this interface 635 */ 636 if (__dev_get_by_name(&init_net, name)) 637 return 1; 638 639 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 640 if (!strcmp(name, s[i].name)) 641 return s[i].map.base_addr; 642 return 0; 643 } 644 645 /* 646 * Saves at boot time configured settings for any netdevice. 647 */ 648 int __init netdev_boot_setup(char *str) 649 { 650 int ints[5]; 651 struct ifmap map; 652 653 str = get_options(str, ARRAY_SIZE(ints), ints); 654 if (!str || !*str) 655 return 0; 656 657 /* Save settings */ 658 memset(&map, 0, sizeof(map)); 659 if (ints[0] > 0) 660 map.irq = ints[1]; 661 if (ints[0] > 1) 662 map.base_addr = ints[2]; 663 if (ints[0] > 2) 664 map.mem_start = ints[3]; 665 if (ints[0] > 3) 666 map.mem_end = ints[4]; 667 668 /* Add new entry to the list */ 669 return netdev_boot_setup_add(str, &map); 670 } 671 672 __setup("netdev=", netdev_boot_setup); 673 674 /******************************************************************************* 675 * 676 * Device Interface Subroutines 677 * 678 *******************************************************************************/ 679 680 /** 681 * dev_get_iflink - get 'iflink' value of a interface 682 * @dev: targeted interface 683 * 684 * Indicates the ifindex the interface is linked to. 685 * Physical interfaces have the same 'ifindex' and 'iflink' values. 686 */ 687 688 int dev_get_iflink(const struct net_device *dev) 689 { 690 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 691 return dev->netdev_ops->ndo_get_iflink(dev); 692 693 return dev->ifindex; 694 } 695 EXPORT_SYMBOL(dev_get_iflink); 696 697 /** 698 * dev_fill_metadata_dst - Retrieve tunnel egress information. 699 * @dev: targeted interface 700 * @skb: The packet. 701 * 702 * For better visibility of tunnel traffic OVS needs to retrieve 703 * egress tunnel information for a packet. Following API allows 704 * user to get this info. 705 */ 706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 707 { 708 struct ip_tunnel_info *info; 709 710 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 711 return -EINVAL; 712 713 info = skb_tunnel_info_unclone(skb); 714 if (!info) 715 return -ENOMEM; 716 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 717 return -EINVAL; 718 719 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 720 } 721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 722 723 /** 724 * __dev_get_by_name - find a device by its name 725 * @net: the applicable net namespace 726 * @name: name to find 727 * 728 * Find an interface by name. Must be called under RTNL semaphore 729 * or @dev_base_lock. If the name is found a pointer to the device 730 * is returned. If the name is not found then %NULL is returned. The 731 * reference counters are not incremented so the caller must be 732 * careful with locks. 733 */ 734 735 struct net_device *__dev_get_by_name(struct net *net, const char *name) 736 { 737 struct net_device *dev; 738 struct hlist_head *head = dev_name_hash(net, name); 739 740 hlist_for_each_entry(dev, head, name_hlist) 741 if (!strncmp(dev->name, name, IFNAMSIZ)) 742 return dev; 743 744 return NULL; 745 } 746 EXPORT_SYMBOL(__dev_get_by_name); 747 748 /** 749 * dev_get_by_name_rcu - find a device by its name 750 * @net: the applicable net namespace 751 * @name: name to find 752 * 753 * Find an interface by name. 754 * If the name is found a pointer to the device is returned. 755 * If the name is not found then %NULL is returned. 756 * The reference counters are not incremented so the caller must be 757 * careful with locks. The caller must hold RCU lock. 758 */ 759 760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 761 { 762 struct net_device *dev; 763 struct hlist_head *head = dev_name_hash(net, name); 764 765 hlist_for_each_entry_rcu(dev, head, name_hlist) 766 if (!strncmp(dev->name, name, IFNAMSIZ)) 767 return dev; 768 769 return NULL; 770 } 771 EXPORT_SYMBOL(dev_get_by_name_rcu); 772 773 /** 774 * dev_get_by_name - find a device by its name 775 * @net: the applicable net namespace 776 * @name: name to find 777 * 778 * Find an interface by name. This can be called from any 779 * context and does its own locking. The returned handle has 780 * the usage count incremented and the caller must use dev_put() to 781 * release it when it is no longer needed. %NULL is returned if no 782 * matching device is found. 783 */ 784 785 struct net_device *dev_get_by_name(struct net *net, const char *name) 786 { 787 struct net_device *dev; 788 789 rcu_read_lock(); 790 dev = dev_get_by_name_rcu(net, name); 791 if (dev) 792 dev_hold(dev); 793 rcu_read_unlock(); 794 return dev; 795 } 796 EXPORT_SYMBOL(dev_get_by_name); 797 798 /** 799 * __dev_get_by_index - find a device by its ifindex 800 * @net: the applicable net namespace 801 * @ifindex: index of device 802 * 803 * Search for an interface by index. Returns %NULL if the device 804 * is not found or a pointer to the device. The device has not 805 * had its reference counter increased so the caller must be careful 806 * about locking. The caller must hold either the RTNL semaphore 807 * or @dev_base_lock. 808 */ 809 810 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 811 { 812 struct net_device *dev; 813 struct hlist_head *head = dev_index_hash(net, ifindex); 814 815 hlist_for_each_entry(dev, head, index_hlist) 816 if (dev->ifindex == ifindex) 817 return dev; 818 819 return NULL; 820 } 821 EXPORT_SYMBOL(__dev_get_by_index); 822 823 /** 824 * dev_get_by_index_rcu - find a device by its ifindex 825 * @net: the applicable net namespace 826 * @ifindex: index of device 827 * 828 * Search for an interface by index. Returns %NULL if the device 829 * is not found or a pointer to the device. The device has not 830 * had its reference counter increased so the caller must be careful 831 * about locking. The caller must hold RCU lock. 832 */ 833 834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 835 { 836 struct net_device *dev; 837 struct hlist_head *head = dev_index_hash(net, ifindex); 838 839 hlist_for_each_entry_rcu(dev, head, index_hlist) 840 if (dev->ifindex == ifindex) 841 return dev; 842 843 return NULL; 844 } 845 EXPORT_SYMBOL(dev_get_by_index_rcu); 846 847 848 /** 849 * dev_get_by_index - find a device by its ifindex 850 * @net: the applicable net namespace 851 * @ifindex: index of device 852 * 853 * Search for an interface by index. Returns NULL if the device 854 * is not found or a pointer to the device. The device returned has 855 * had a reference added and the pointer is safe until the user calls 856 * dev_put to indicate they have finished with it. 857 */ 858 859 struct net_device *dev_get_by_index(struct net *net, int ifindex) 860 { 861 struct net_device *dev; 862 863 rcu_read_lock(); 864 dev = dev_get_by_index_rcu(net, ifindex); 865 if (dev) 866 dev_hold(dev); 867 rcu_read_unlock(); 868 return dev; 869 } 870 EXPORT_SYMBOL(dev_get_by_index); 871 872 /** 873 * dev_get_by_napi_id - find a device by napi_id 874 * @napi_id: ID of the NAPI struct 875 * 876 * Search for an interface by NAPI ID. Returns %NULL if the device 877 * is not found or a pointer to the device. The device has not had 878 * its reference counter increased so the caller must be careful 879 * about locking. The caller must hold RCU lock. 880 */ 881 882 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 883 { 884 struct napi_struct *napi; 885 886 WARN_ON_ONCE(!rcu_read_lock_held()); 887 888 if (napi_id < MIN_NAPI_ID) 889 return NULL; 890 891 napi = napi_by_id(napi_id); 892 893 return napi ? napi->dev : NULL; 894 } 895 EXPORT_SYMBOL(dev_get_by_napi_id); 896 897 /** 898 * netdev_get_name - get a netdevice name, knowing its ifindex. 899 * @net: network namespace 900 * @name: a pointer to the buffer where the name will be stored. 901 * @ifindex: the ifindex of the interface to get the name from. 902 * 903 * The use of raw_seqcount_begin() and cond_resched() before 904 * retrying is required as we want to give the writers a chance 905 * to complete when CONFIG_PREEMPT is not set. 906 */ 907 int netdev_get_name(struct net *net, char *name, int ifindex) 908 { 909 struct net_device *dev; 910 unsigned int seq; 911 912 retry: 913 seq = raw_seqcount_begin(&devnet_rename_seq); 914 rcu_read_lock(); 915 dev = dev_get_by_index_rcu(net, ifindex); 916 if (!dev) { 917 rcu_read_unlock(); 918 return -ENODEV; 919 } 920 921 strcpy(name, dev->name); 922 rcu_read_unlock(); 923 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 924 cond_resched(); 925 goto retry; 926 } 927 928 return 0; 929 } 930 931 /** 932 * dev_getbyhwaddr_rcu - find a device by its hardware address 933 * @net: the applicable net namespace 934 * @type: media type of device 935 * @ha: hardware address 936 * 937 * Search for an interface by MAC address. Returns NULL if the device 938 * is not found or a pointer to the device. 939 * The caller must hold RCU or RTNL. 940 * The returned device has not had its ref count increased 941 * and the caller must therefore be careful about locking 942 * 943 */ 944 945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 946 const char *ha) 947 { 948 struct net_device *dev; 949 950 for_each_netdev_rcu(net, dev) 951 if (dev->type == type && 952 !memcmp(dev->dev_addr, ha, dev->addr_len)) 953 return dev; 954 955 return NULL; 956 } 957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 958 959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 960 { 961 struct net_device *dev; 962 963 ASSERT_RTNL(); 964 for_each_netdev(net, dev) 965 if (dev->type == type) 966 return dev; 967 968 return NULL; 969 } 970 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 971 972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 973 { 974 struct net_device *dev, *ret = NULL; 975 976 rcu_read_lock(); 977 for_each_netdev_rcu(net, dev) 978 if (dev->type == type) { 979 dev_hold(dev); 980 ret = dev; 981 break; 982 } 983 rcu_read_unlock(); 984 return ret; 985 } 986 EXPORT_SYMBOL(dev_getfirstbyhwtype); 987 988 /** 989 * __dev_get_by_flags - find any device with given flags 990 * @net: the applicable net namespace 991 * @if_flags: IFF_* values 992 * @mask: bitmask of bits in if_flags to check 993 * 994 * Search for any interface with the given flags. Returns NULL if a device 995 * is not found or a pointer to the device. Must be called inside 996 * rtnl_lock(), and result refcount is unchanged. 997 */ 998 999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1000 unsigned short mask) 1001 { 1002 struct net_device *dev, *ret; 1003 1004 ASSERT_RTNL(); 1005 1006 ret = NULL; 1007 for_each_netdev(net, dev) { 1008 if (((dev->flags ^ if_flags) & mask) == 0) { 1009 ret = dev; 1010 break; 1011 } 1012 } 1013 return ret; 1014 } 1015 EXPORT_SYMBOL(__dev_get_by_flags); 1016 1017 /** 1018 * dev_valid_name - check if name is okay for network device 1019 * @name: name string 1020 * 1021 * Network device names need to be valid file names to 1022 * to allow sysfs to work. We also disallow any kind of 1023 * whitespace. 1024 */ 1025 bool dev_valid_name(const char *name) 1026 { 1027 if (*name == '\0') 1028 return false; 1029 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1030 return false; 1031 if (!strcmp(name, ".") || !strcmp(name, "..")) 1032 return false; 1033 1034 while (*name) { 1035 if (*name == '/' || *name == ':' || isspace(*name)) 1036 return false; 1037 name++; 1038 } 1039 return true; 1040 } 1041 EXPORT_SYMBOL(dev_valid_name); 1042 1043 /** 1044 * __dev_alloc_name - allocate a name for a device 1045 * @net: network namespace to allocate the device name in 1046 * @name: name format string 1047 * @buf: scratch buffer and result name string 1048 * 1049 * Passed a format string - eg "lt%d" it will try and find a suitable 1050 * id. It scans list of devices to build up a free map, then chooses 1051 * the first empty slot. The caller must hold the dev_base or rtnl lock 1052 * while allocating the name and adding the device in order to avoid 1053 * duplicates. 1054 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1055 * Returns the number of the unit assigned or a negative errno code. 1056 */ 1057 1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1059 { 1060 int i = 0; 1061 const char *p; 1062 const int max_netdevices = 8*PAGE_SIZE; 1063 unsigned long *inuse; 1064 struct net_device *d; 1065 1066 if (!dev_valid_name(name)) 1067 return -EINVAL; 1068 1069 p = strchr(name, '%'); 1070 if (p) { 1071 /* 1072 * Verify the string as this thing may have come from 1073 * the user. There must be either one "%d" and no other "%" 1074 * characters. 1075 */ 1076 if (p[1] != 'd' || strchr(p + 2, '%')) 1077 return -EINVAL; 1078 1079 /* Use one page as a bit array of possible slots */ 1080 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1081 if (!inuse) 1082 return -ENOMEM; 1083 1084 for_each_netdev(net, d) { 1085 if (!sscanf(d->name, name, &i)) 1086 continue; 1087 if (i < 0 || i >= max_netdevices) 1088 continue; 1089 1090 /* avoid cases where sscanf is not exact inverse of printf */ 1091 snprintf(buf, IFNAMSIZ, name, i); 1092 if (!strncmp(buf, d->name, IFNAMSIZ)) 1093 set_bit(i, inuse); 1094 } 1095 1096 i = find_first_zero_bit(inuse, max_netdevices); 1097 free_page((unsigned long) inuse); 1098 } 1099 1100 snprintf(buf, IFNAMSIZ, name, i); 1101 if (!__dev_get_by_name(net, buf)) 1102 return i; 1103 1104 /* It is possible to run out of possible slots 1105 * when the name is long and there isn't enough space left 1106 * for the digits, or if all bits are used. 1107 */ 1108 return -ENFILE; 1109 } 1110 1111 static int dev_alloc_name_ns(struct net *net, 1112 struct net_device *dev, 1113 const char *name) 1114 { 1115 char buf[IFNAMSIZ]; 1116 int ret; 1117 1118 BUG_ON(!net); 1119 ret = __dev_alloc_name(net, name, buf); 1120 if (ret >= 0) 1121 strlcpy(dev->name, buf, IFNAMSIZ); 1122 return ret; 1123 } 1124 1125 /** 1126 * dev_alloc_name - allocate a name for a device 1127 * @dev: device 1128 * @name: name format string 1129 * 1130 * Passed a format string - eg "lt%d" it will try and find a suitable 1131 * id. It scans list of devices to build up a free map, then chooses 1132 * the first empty slot. The caller must hold the dev_base or rtnl lock 1133 * while allocating the name and adding the device in order to avoid 1134 * duplicates. 1135 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1136 * Returns the number of the unit assigned or a negative errno code. 1137 */ 1138 1139 int dev_alloc_name(struct net_device *dev, const char *name) 1140 { 1141 return dev_alloc_name_ns(dev_net(dev), dev, name); 1142 } 1143 EXPORT_SYMBOL(dev_alloc_name); 1144 1145 int dev_get_valid_name(struct net *net, struct net_device *dev, 1146 const char *name) 1147 { 1148 BUG_ON(!net); 1149 1150 if (!dev_valid_name(name)) 1151 return -EINVAL; 1152 1153 if (strchr(name, '%')) 1154 return dev_alloc_name_ns(net, dev, name); 1155 else if (__dev_get_by_name(net, name)) 1156 return -EEXIST; 1157 else if (dev->name != name) 1158 strlcpy(dev->name, name, IFNAMSIZ); 1159 1160 return 0; 1161 } 1162 EXPORT_SYMBOL(dev_get_valid_name); 1163 1164 /** 1165 * dev_change_name - change name of a device 1166 * @dev: device 1167 * @newname: name (or format string) must be at least IFNAMSIZ 1168 * 1169 * Change name of a device, can pass format strings "eth%d". 1170 * for wildcarding. 1171 */ 1172 int dev_change_name(struct net_device *dev, const char *newname) 1173 { 1174 unsigned char old_assign_type; 1175 char oldname[IFNAMSIZ]; 1176 int err = 0; 1177 int ret; 1178 struct net *net; 1179 1180 ASSERT_RTNL(); 1181 BUG_ON(!dev_net(dev)); 1182 1183 net = dev_net(dev); 1184 1185 /* Some auto-enslaved devices e.g. failover slaves are 1186 * special, as userspace might rename the device after 1187 * the interface had been brought up and running since 1188 * the point kernel initiated auto-enslavement. Allow 1189 * live name change even when these slave devices are 1190 * up and running. 1191 * 1192 * Typically, users of these auto-enslaving devices 1193 * don't actually care about slave name change, as 1194 * they are supposed to operate on master interface 1195 * directly. 1196 */ 1197 if (dev->flags & IFF_UP && 1198 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1199 return -EBUSY; 1200 1201 write_seqcount_begin(&devnet_rename_seq); 1202 1203 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1204 write_seqcount_end(&devnet_rename_seq); 1205 return 0; 1206 } 1207 1208 memcpy(oldname, dev->name, IFNAMSIZ); 1209 1210 err = dev_get_valid_name(net, dev, newname); 1211 if (err < 0) { 1212 write_seqcount_end(&devnet_rename_seq); 1213 return err; 1214 } 1215 1216 if (oldname[0] && !strchr(oldname, '%')) 1217 netdev_info(dev, "renamed from %s\n", oldname); 1218 1219 old_assign_type = dev->name_assign_type; 1220 dev->name_assign_type = NET_NAME_RENAMED; 1221 1222 rollback: 1223 ret = device_rename(&dev->dev, dev->name); 1224 if (ret) { 1225 memcpy(dev->name, oldname, IFNAMSIZ); 1226 dev->name_assign_type = old_assign_type; 1227 write_seqcount_end(&devnet_rename_seq); 1228 return ret; 1229 } 1230 1231 write_seqcount_end(&devnet_rename_seq); 1232 1233 netdev_adjacent_rename_links(dev, oldname); 1234 1235 write_lock_bh(&dev_base_lock); 1236 hlist_del_rcu(&dev->name_hlist); 1237 write_unlock_bh(&dev_base_lock); 1238 1239 synchronize_rcu(); 1240 1241 write_lock_bh(&dev_base_lock); 1242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1243 write_unlock_bh(&dev_base_lock); 1244 1245 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1246 ret = notifier_to_errno(ret); 1247 1248 if (ret) { 1249 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1250 if (err >= 0) { 1251 err = ret; 1252 write_seqcount_begin(&devnet_rename_seq); 1253 memcpy(dev->name, oldname, IFNAMSIZ); 1254 memcpy(oldname, newname, IFNAMSIZ); 1255 dev->name_assign_type = old_assign_type; 1256 old_assign_type = NET_NAME_RENAMED; 1257 goto rollback; 1258 } else { 1259 pr_err("%s: name change rollback failed: %d\n", 1260 dev->name, ret); 1261 } 1262 } 1263 1264 return err; 1265 } 1266 1267 /** 1268 * dev_set_alias - change ifalias of a device 1269 * @dev: device 1270 * @alias: name up to IFALIASZ 1271 * @len: limit of bytes to copy from info 1272 * 1273 * Set ifalias for a device, 1274 */ 1275 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1276 { 1277 struct dev_ifalias *new_alias = NULL; 1278 1279 if (len >= IFALIASZ) 1280 return -EINVAL; 1281 1282 if (len) { 1283 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1284 if (!new_alias) 1285 return -ENOMEM; 1286 1287 memcpy(new_alias->ifalias, alias, len); 1288 new_alias->ifalias[len] = 0; 1289 } 1290 1291 mutex_lock(&ifalias_mutex); 1292 rcu_swap_protected(dev->ifalias, new_alias, 1293 mutex_is_locked(&ifalias_mutex)); 1294 mutex_unlock(&ifalias_mutex); 1295 1296 if (new_alias) 1297 kfree_rcu(new_alias, rcuhead); 1298 1299 return len; 1300 } 1301 EXPORT_SYMBOL(dev_set_alias); 1302 1303 /** 1304 * dev_get_alias - get ifalias of a device 1305 * @dev: device 1306 * @name: buffer to store name of ifalias 1307 * @len: size of buffer 1308 * 1309 * get ifalias for a device. Caller must make sure dev cannot go 1310 * away, e.g. rcu read lock or own a reference count to device. 1311 */ 1312 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1313 { 1314 const struct dev_ifalias *alias; 1315 int ret = 0; 1316 1317 rcu_read_lock(); 1318 alias = rcu_dereference(dev->ifalias); 1319 if (alias) 1320 ret = snprintf(name, len, "%s", alias->ifalias); 1321 rcu_read_unlock(); 1322 1323 return ret; 1324 } 1325 1326 /** 1327 * netdev_features_change - device changes features 1328 * @dev: device to cause notification 1329 * 1330 * Called to indicate a device has changed features. 1331 */ 1332 void netdev_features_change(struct net_device *dev) 1333 { 1334 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1335 } 1336 EXPORT_SYMBOL(netdev_features_change); 1337 1338 /** 1339 * netdev_state_change - device changes state 1340 * @dev: device to cause notification 1341 * 1342 * Called to indicate a device has changed state. This function calls 1343 * the notifier chains for netdev_chain and sends a NEWLINK message 1344 * to the routing socket. 1345 */ 1346 void netdev_state_change(struct net_device *dev) 1347 { 1348 if (dev->flags & IFF_UP) { 1349 struct netdev_notifier_change_info change_info = { 1350 .info.dev = dev, 1351 }; 1352 1353 call_netdevice_notifiers_info(NETDEV_CHANGE, 1354 &change_info.info); 1355 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1356 } 1357 } 1358 EXPORT_SYMBOL(netdev_state_change); 1359 1360 /** 1361 * netdev_notify_peers - notify network peers about existence of @dev 1362 * @dev: network device 1363 * 1364 * Generate traffic such that interested network peers are aware of 1365 * @dev, such as by generating a gratuitous ARP. This may be used when 1366 * a device wants to inform the rest of the network about some sort of 1367 * reconfiguration such as a failover event or virtual machine 1368 * migration. 1369 */ 1370 void netdev_notify_peers(struct net_device *dev) 1371 { 1372 rtnl_lock(); 1373 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1374 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1375 rtnl_unlock(); 1376 } 1377 EXPORT_SYMBOL(netdev_notify_peers); 1378 1379 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1380 { 1381 const struct net_device_ops *ops = dev->netdev_ops; 1382 int ret; 1383 1384 ASSERT_RTNL(); 1385 1386 if (!netif_device_present(dev)) 1387 return -ENODEV; 1388 1389 /* Block netpoll from trying to do any rx path servicing. 1390 * If we don't do this there is a chance ndo_poll_controller 1391 * or ndo_poll may be running while we open the device 1392 */ 1393 netpoll_poll_disable(dev); 1394 1395 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1396 ret = notifier_to_errno(ret); 1397 if (ret) 1398 return ret; 1399 1400 set_bit(__LINK_STATE_START, &dev->state); 1401 1402 if (ops->ndo_validate_addr) 1403 ret = ops->ndo_validate_addr(dev); 1404 1405 if (!ret && ops->ndo_open) 1406 ret = ops->ndo_open(dev); 1407 1408 netpoll_poll_enable(dev); 1409 1410 if (ret) 1411 clear_bit(__LINK_STATE_START, &dev->state); 1412 else { 1413 dev->flags |= IFF_UP; 1414 dev_set_rx_mode(dev); 1415 dev_activate(dev); 1416 add_device_randomness(dev->dev_addr, dev->addr_len); 1417 } 1418 1419 return ret; 1420 } 1421 1422 /** 1423 * dev_open - prepare an interface for use. 1424 * @dev: device to open 1425 * @extack: netlink extended ack 1426 * 1427 * Takes a device from down to up state. The device's private open 1428 * function is invoked and then the multicast lists are loaded. Finally 1429 * the device is moved into the up state and a %NETDEV_UP message is 1430 * sent to the netdev notifier chain. 1431 * 1432 * Calling this function on an active interface is a nop. On a failure 1433 * a negative errno code is returned. 1434 */ 1435 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1436 { 1437 int ret; 1438 1439 if (dev->flags & IFF_UP) 1440 return 0; 1441 1442 ret = __dev_open(dev, extack); 1443 if (ret < 0) 1444 return ret; 1445 1446 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1447 call_netdevice_notifiers(NETDEV_UP, dev); 1448 1449 return ret; 1450 } 1451 EXPORT_SYMBOL(dev_open); 1452 1453 static void __dev_close_many(struct list_head *head) 1454 { 1455 struct net_device *dev; 1456 1457 ASSERT_RTNL(); 1458 might_sleep(); 1459 1460 list_for_each_entry(dev, head, close_list) { 1461 /* Temporarily disable netpoll until the interface is down */ 1462 netpoll_poll_disable(dev); 1463 1464 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1465 1466 clear_bit(__LINK_STATE_START, &dev->state); 1467 1468 /* Synchronize to scheduled poll. We cannot touch poll list, it 1469 * can be even on different cpu. So just clear netif_running(). 1470 * 1471 * dev->stop() will invoke napi_disable() on all of it's 1472 * napi_struct instances on this device. 1473 */ 1474 smp_mb__after_atomic(); /* Commit netif_running(). */ 1475 } 1476 1477 dev_deactivate_many(head); 1478 1479 list_for_each_entry(dev, head, close_list) { 1480 const struct net_device_ops *ops = dev->netdev_ops; 1481 1482 /* 1483 * Call the device specific close. This cannot fail. 1484 * Only if device is UP 1485 * 1486 * We allow it to be called even after a DETACH hot-plug 1487 * event. 1488 */ 1489 if (ops->ndo_stop) 1490 ops->ndo_stop(dev); 1491 1492 dev->flags &= ~IFF_UP; 1493 netpoll_poll_enable(dev); 1494 } 1495 } 1496 1497 static void __dev_close(struct net_device *dev) 1498 { 1499 LIST_HEAD(single); 1500 1501 list_add(&dev->close_list, &single); 1502 __dev_close_many(&single); 1503 list_del(&single); 1504 } 1505 1506 void dev_close_many(struct list_head *head, bool unlink) 1507 { 1508 struct net_device *dev, *tmp; 1509 1510 /* Remove the devices that don't need to be closed */ 1511 list_for_each_entry_safe(dev, tmp, head, close_list) 1512 if (!(dev->flags & IFF_UP)) 1513 list_del_init(&dev->close_list); 1514 1515 __dev_close_many(head); 1516 1517 list_for_each_entry_safe(dev, tmp, head, close_list) { 1518 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1519 call_netdevice_notifiers(NETDEV_DOWN, dev); 1520 if (unlink) 1521 list_del_init(&dev->close_list); 1522 } 1523 } 1524 EXPORT_SYMBOL(dev_close_many); 1525 1526 /** 1527 * dev_close - shutdown an interface. 1528 * @dev: device to shutdown 1529 * 1530 * This function moves an active device into down state. A 1531 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1532 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1533 * chain. 1534 */ 1535 void dev_close(struct net_device *dev) 1536 { 1537 if (dev->flags & IFF_UP) { 1538 LIST_HEAD(single); 1539 1540 list_add(&dev->close_list, &single); 1541 dev_close_many(&single, true); 1542 list_del(&single); 1543 } 1544 } 1545 EXPORT_SYMBOL(dev_close); 1546 1547 1548 /** 1549 * dev_disable_lro - disable Large Receive Offload on a device 1550 * @dev: device 1551 * 1552 * Disable Large Receive Offload (LRO) on a net device. Must be 1553 * called under RTNL. This is needed if received packets may be 1554 * forwarded to another interface. 1555 */ 1556 void dev_disable_lro(struct net_device *dev) 1557 { 1558 struct net_device *lower_dev; 1559 struct list_head *iter; 1560 1561 dev->wanted_features &= ~NETIF_F_LRO; 1562 netdev_update_features(dev); 1563 1564 if (unlikely(dev->features & NETIF_F_LRO)) 1565 netdev_WARN(dev, "failed to disable LRO!\n"); 1566 1567 netdev_for_each_lower_dev(dev, lower_dev, iter) 1568 dev_disable_lro(lower_dev); 1569 } 1570 EXPORT_SYMBOL(dev_disable_lro); 1571 1572 /** 1573 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1574 * @dev: device 1575 * 1576 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1577 * called under RTNL. This is needed if Generic XDP is installed on 1578 * the device. 1579 */ 1580 static void dev_disable_gro_hw(struct net_device *dev) 1581 { 1582 dev->wanted_features &= ~NETIF_F_GRO_HW; 1583 netdev_update_features(dev); 1584 1585 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1586 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1587 } 1588 1589 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1590 { 1591 #define N(val) \ 1592 case NETDEV_##val: \ 1593 return "NETDEV_" __stringify(val); 1594 switch (cmd) { 1595 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1596 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1597 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1598 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1599 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1600 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1601 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1602 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1603 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1604 N(PRE_CHANGEADDR) 1605 } 1606 #undef N 1607 return "UNKNOWN_NETDEV_EVENT"; 1608 } 1609 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1610 1611 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1612 struct net_device *dev) 1613 { 1614 struct netdev_notifier_info info = { 1615 .dev = dev, 1616 }; 1617 1618 return nb->notifier_call(nb, val, &info); 1619 } 1620 1621 static int dev_boot_phase = 1; 1622 1623 /** 1624 * register_netdevice_notifier - register a network notifier block 1625 * @nb: notifier 1626 * 1627 * Register a notifier to be called when network device events occur. 1628 * The notifier passed is linked into the kernel structures and must 1629 * not be reused until it has been unregistered. A negative errno code 1630 * is returned on a failure. 1631 * 1632 * When registered all registration and up events are replayed 1633 * to the new notifier to allow device to have a race free 1634 * view of the network device list. 1635 */ 1636 1637 int register_netdevice_notifier(struct notifier_block *nb) 1638 { 1639 struct net_device *dev; 1640 struct net_device *last; 1641 struct net *net; 1642 int err; 1643 1644 /* Close race with setup_net() and cleanup_net() */ 1645 down_write(&pernet_ops_rwsem); 1646 rtnl_lock(); 1647 err = raw_notifier_chain_register(&netdev_chain, nb); 1648 if (err) 1649 goto unlock; 1650 if (dev_boot_phase) 1651 goto unlock; 1652 for_each_net(net) { 1653 for_each_netdev(net, dev) { 1654 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1655 err = notifier_to_errno(err); 1656 if (err) 1657 goto rollback; 1658 1659 if (!(dev->flags & IFF_UP)) 1660 continue; 1661 1662 call_netdevice_notifier(nb, NETDEV_UP, dev); 1663 } 1664 } 1665 1666 unlock: 1667 rtnl_unlock(); 1668 up_write(&pernet_ops_rwsem); 1669 return err; 1670 1671 rollback: 1672 last = dev; 1673 for_each_net(net) { 1674 for_each_netdev(net, dev) { 1675 if (dev == last) 1676 goto outroll; 1677 1678 if (dev->flags & IFF_UP) { 1679 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1680 dev); 1681 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1682 } 1683 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1684 } 1685 } 1686 1687 outroll: 1688 raw_notifier_chain_unregister(&netdev_chain, nb); 1689 goto unlock; 1690 } 1691 EXPORT_SYMBOL(register_netdevice_notifier); 1692 1693 /** 1694 * unregister_netdevice_notifier - unregister a network notifier block 1695 * @nb: notifier 1696 * 1697 * Unregister a notifier previously registered by 1698 * register_netdevice_notifier(). The notifier is unlinked into the 1699 * kernel structures and may then be reused. A negative errno code 1700 * is returned on a failure. 1701 * 1702 * After unregistering unregister and down device events are synthesized 1703 * for all devices on the device list to the removed notifier to remove 1704 * the need for special case cleanup code. 1705 */ 1706 1707 int unregister_netdevice_notifier(struct notifier_block *nb) 1708 { 1709 struct net_device *dev; 1710 struct net *net; 1711 int err; 1712 1713 /* Close race with setup_net() and cleanup_net() */ 1714 down_write(&pernet_ops_rwsem); 1715 rtnl_lock(); 1716 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1717 if (err) 1718 goto unlock; 1719 1720 for_each_net(net) { 1721 for_each_netdev(net, dev) { 1722 if (dev->flags & IFF_UP) { 1723 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1724 dev); 1725 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1726 } 1727 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1728 } 1729 } 1730 unlock: 1731 rtnl_unlock(); 1732 up_write(&pernet_ops_rwsem); 1733 return err; 1734 } 1735 EXPORT_SYMBOL(unregister_netdevice_notifier); 1736 1737 /** 1738 * call_netdevice_notifiers_info - call all network notifier blocks 1739 * @val: value passed unmodified to notifier function 1740 * @info: notifier information data 1741 * 1742 * Call all network notifier blocks. Parameters and return value 1743 * are as for raw_notifier_call_chain(). 1744 */ 1745 1746 static int call_netdevice_notifiers_info(unsigned long val, 1747 struct netdev_notifier_info *info) 1748 { 1749 ASSERT_RTNL(); 1750 return raw_notifier_call_chain(&netdev_chain, val, info); 1751 } 1752 1753 static int call_netdevice_notifiers_extack(unsigned long val, 1754 struct net_device *dev, 1755 struct netlink_ext_ack *extack) 1756 { 1757 struct netdev_notifier_info info = { 1758 .dev = dev, 1759 .extack = extack, 1760 }; 1761 1762 return call_netdevice_notifiers_info(val, &info); 1763 } 1764 1765 /** 1766 * call_netdevice_notifiers - call all network notifier blocks 1767 * @val: value passed unmodified to notifier function 1768 * @dev: net_device pointer passed unmodified to notifier function 1769 * 1770 * Call all network notifier blocks. Parameters and return value 1771 * are as for raw_notifier_call_chain(). 1772 */ 1773 1774 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1775 { 1776 return call_netdevice_notifiers_extack(val, dev, NULL); 1777 } 1778 EXPORT_SYMBOL(call_netdevice_notifiers); 1779 1780 /** 1781 * call_netdevice_notifiers_mtu - call all network notifier blocks 1782 * @val: value passed unmodified to notifier function 1783 * @dev: net_device pointer passed unmodified to notifier function 1784 * @arg: additional u32 argument passed to the notifier function 1785 * 1786 * Call all network notifier blocks. Parameters and return value 1787 * are as for raw_notifier_call_chain(). 1788 */ 1789 static int call_netdevice_notifiers_mtu(unsigned long val, 1790 struct net_device *dev, u32 arg) 1791 { 1792 struct netdev_notifier_info_ext info = { 1793 .info.dev = dev, 1794 .ext.mtu = arg, 1795 }; 1796 1797 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1798 1799 return call_netdevice_notifiers_info(val, &info.info); 1800 } 1801 1802 #ifdef CONFIG_NET_INGRESS 1803 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1804 1805 void net_inc_ingress_queue(void) 1806 { 1807 static_branch_inc(&ingress_needed_key); 1808 } 1809 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1810 1811 void net_dec_ingress_queue(void) 1812 { 1813 static_branch_dec(&ingress_needed_key); 1814 } 1815 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1816 #endif 1817 1818 #ifdef CONFIG_NET_EGRESS 1819 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1820 1821 void net_inc_egress_queue(void) 1822 { 1823 static_branch_inc(&egress_needed_key); 1824 } 1825 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1826 1827 void net_dec_egress_queue(void) 1828 { 1829 static_branch_dec(&egress_needed_key); 1830 } 1831 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1832 #endif 1833 1834 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1835 #ifdef CONFIG_JUMP_LABEL 1836 static atomic_t netstamp_needed_deferred; 1837 static atomic_t netstamp_wanted; 1838 static void netstamp_clear(struct work_struct *work) 1839 { 1840 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1841 int wanted; 1842 1843 wanted = atomic_add_return(deferred, &netstamp_wanted); 1844 if (wanted > 0) 1845 static_branch_enable(&netstamp_needed_key); 1846 else 1847 static_branch_disable(&netstamp_needed_key); 1848 } 1849 static DECLARE_WORK(netstamp_work, netstamp_clear); 1850 #endif 1851 1852 void net_enable_timestamp(void) 1853 { 1854 #ifdef CONFIG_JUMP_LABEL 1855 int wanted; 1856 1857 while (1) { 1858 wanted = atomic_read(&netstamp_wanted); 1859 if (wanted <= 0) 1860 break; 1861 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1862 return; 1863 } 1864 atomic_inc(&netstamp_needed_deferred); 1865 schedule_work(&netstamp_work); 1866 #else 1867 static_branch_inc(&netstamp_needed_key); 1868 #endif 1869 } 1870 EXPORT_SYMBOL(net_enable_timestamp); 1871 1872 void net_disable_timestamp(void) 1873 { 1874 #ifdef CONFIG_JUMP_LABEL 1875 int wanted; 1876 1877 while (1) { 1878 wanted = atomic_read(&netstamp_wanted); 1879 if (wanted <= 1) 1880 break; 1881 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1882 return; 1883 } 1884 atomic_dec(&netstamp_needed_deferred); 1885 schedule_work(&netstamp_work); 1886 #else 1887 static_branch_dec(&netstamp_needed_key); 1888 #endif 1889 } 1890 EXPORT_SYMBOL(net_disable_timestamp); 1891 1892 static inline void net_timestamp_set(struct sk_buff *skb) 1893 { 1894 skb->tstamp = 0; 1895 if (static_branch_unlikely(&netstamp_needed_key)) 1896 __net_timestamp(skb); 1897 } 1898 1899 #define net_timestamp_check(COND, SKB) \ 1900 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1901 if ((COND) && !(SKB)->tstamp) \ 1902 __net_timestamp(SKB); \ 1903 } \ 1904 1905 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1906 { 1907 unsigned int len; 1908 1909 if (!(dev->flags & IFF_UP)) 1910 return false; 1911 1912 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1913 if (skb->len <= len) 1914 return true; 1915 1916 /* if TSO is enabled, we don't care about the length as the packet 1917 * could be forwarded without being segmented before 1918 */ 1919 if (skb_is_gso(skb)) 1920 return true; 1921 1922 return false; 1923 } 1924 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1925 1926 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1927 { 1928 int ret = ____dev_forward_skb(dev, skb); 1929 1930 if (likely(!ret)) { 1931 skb->protocol = eth_type_trans(skb, dev); 1932 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1933 } 1934 1935 return ret; 1936 } 1937 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1938 1939 /** 1940 * dev_forward_skb - loopback an skb to another netif 1941 * 1942 * @dev: destination network device 1943 * @skb: buffer to forward 1944 * 1945 * return values: 1946 * NET_RX_SUCCESS (no congestion) 1947 * NET_RX_DROP (packet was dropped, but freed) 1948 * 1949 * dev_forward_skb can be used for injecting an skb from the 1950 * start_xmit function of one device into the receive queue 1951 * of another device. 1952 * 1953 * The receiving device may be in another namespace, so 1954 * we have to clear all information in the skb that could 1955 * impact namespace isolation. 1956 */ 1957 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1958 { 1959 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1960 } 1961 EXPORT_SYMBOL_GPL(dev_forward_skb); 1962 1963 static inline int deliver_skb(struct sk_buff *skb, 1964 struct packet_type *pt_prev, 1965 struct net_device *orig_dev) 1966 { 1967 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1968 return -ENOMEM; 1969 refcount_inc(&skb->users); 1970 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1971 } 1972 1973 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1974 struct packet_type **pt, 1975 struct net_device *orig_dev, 1976 __be16 type, 1977 struct list_head *ptype_list) 1978 { 1979 struct packet_type *ptype, *pt_prev = *pt; 1980 1981 list_for_each_entry_rcu(ptype, ptype_list, list) { 1982 if (ptype->type != type) 1983 continue; 1984 if (pt_prev) 1985 deliver_skb(skb, pt_prev, orig_dev); 1986 pt_prev = ptype; 1987 } 1988 *pt = pt_prev; 1989 } 1990 1991 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1992 { 1993 if (!ptype->af_packet_priv || !skb->sk) 1994 return false; 1995 1996 if (ptype->id_match) 1997 return ptype->id_match(ptype, skb->sk); 1998 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1999 return true; 2000 2001 return false; 2002 } 2003 2004 /** 2005 * dev_nit_active - return true if any network interface taps are in use 2006 * 2007 * @dev: network device to check for the presence of taps 2008 */ 2009 bool dev_nit_active(struct net_device *dev) 2010 { 2011 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2012 } 2013 EXPORT_SYMBOL_GPL(dev_nit_active); 2014 2015 /* 2016 * Support routine. Sends outgoing frames to any network 2017 * taps currently in use. 2018 */ 2019 2020 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2021 { 2022 struct packet_type *ptype; 2023 struct sk_buff *skb2 = NULL; 2024 struct packet_type *pt_prev = NULL; 2025 struct list_head *ptype_list = &ptype_all; 2026 2027 rcu_read_lock(); 2028 again: 2029 list_for_each_entry_rcu(ptype, ptype_list, list) { 2030 if (ptype->ignore_outgoing) 2031 continue; 2032 2033 /* Never send packets back to the socket 2034 * they originated from - MvS (miquels@drinkel.ow.org) 2035 */ 2036 if (skb_loop_sk(ptype, skb)) 2037 continue; 2038 2039 if (pt_prev) { 2040 deliver_skb(skb2, pt_prev, skb->dev); 2041 pt_prev = ptype; 2042 continue; 2043 } 2044 2045 /* need to clone skb, done only once */ 2046 skb2 = skb_clone(skb, GFP_ATOMIC); 2047 if (!skb2) 2048 goto out_unlock; 2049 2050 net_timestamp_set(skb2); 2051 2052 /* skb->nh should be correctly 2053 * set by sender, so that the second statement is 2054 * just protection against buggy protocols. 2055 */ 2056 skb_reset_mac_header(skb2); 2057 2058 if (skb_network_header(skb2) < skb2->data || 2059 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2060 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2061 ntohs(skb2->protocol), 2062 dev->name); 2063 skb_reset_network_header(skb2); 2064 } 2065 2066 skb2->transport_header = skb2->network_header; 2067 skb2->pkt_type = PACKET_OUTGOING; 2068 pt_prev = ptype; 2069 } 2070 2071 if (ptype_list == &ptype_all) { 2072 ptype_list = &dev->ptype_all; 2073 goto again; 2074 } 2075 out_unlock: 2076 if (pt_prev) { 2077 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2078 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2079 else 2080 kfree_skb(skb2); 2081 } 2082 rcu_read_unlock(); 2083 } 2084 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2085 2086 /** 2087 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2088 * @dev: Network device 2089 * @txq: number of queues available 2090 * 2091 * If real_num_tx_queues is changed the tc mappings may no longer be 2092 * valid. To resolve this verify the tc mapping remains valid and if 2093 * not NULL the mapping. With no priorities mapping to this 2094 * offset/count pair it will no longer be used. In the worst case TC0 2095 * is invalid nothing can be done so disable priority mappings. If is 2096 * expected that drivers will fix this mapping if they can before 2097 * calling netif_set_real_num_tx_queues. 2098 */ 2099 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2100 { 2101 int i; 2102 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2103 2104 /* If TC0 is invalidated disable TC mapping */ 2105 if (tc->offset + tc->count > txq) { 2106 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2107 dev->num_tc = 0; 2108 return; 2109 } 2110 2111 /* Invalidated prio to tc mappings set to TC0 */ 2112 for (i = 1; i < TC_BITMASK + 1; i++) { 2113 int q = netdev_get_prio_tc_map(dev, i); 2114 2115 tc = &dev->tc_to_txq[q]; 2116 if (tc->offset + tc->count > txq) { 2117 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2118 i, q); 2119 netdev_set_prio_tc_map(dev, i, 0); 2120 } 2121 } 2122 } 2123 2124 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2125 { 2126 if (dev->num_tc) { 2127 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2128 int i; 2129 2130 /* walk through the TCs and see if it falls into any of them */ 2131 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2132 if ((txq - tc->offset) < tc->count) 2133 return i; 2134 } 2135 2136 /* didn't find it, just return -1 to indicate no match */ 2137 return -1; 2138 } 2139 2140 return 0; 2141 } 2142 EXPORT_SYMBOL(netdev_txq_to_tc); 2143 2144 #ifdef CONFIG_XPS 2145 struct static_key xps_needed __read_mostly; 2146 EXPORT_SYMBOL(xps_needed); 2147 struct static_key xps_rxqs_needed __read_mostly; 2148 EXPORT_SYMBOL(xps_rxqs_needed); 2149 static DEFINE_MUTEX(xps_map_mutex); 2150 #define xmap_dereference(P) \ 2151 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2152 2153 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2154 int tci, u16 index) 2155 { 2156 struct xps_map *map = NULL; 2157 int pos; 2158 2159 if (dev_maps) 2160 map = xmap_dereference(dev_maps->attr_map[tci]); 2161 if (!map) 2162 return false; 2163 2164 for (pos = map->len; pos--;) { 2165 if (map->queues[pos] != index) 2166 continue; 2167 2168 if (map->len > 1) { 2169 map->queues[pos] = map->queues[--map->len]; 2170 break; 2171 } 2172 2173 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2174 kfree_rcu(map, rcu); 2175 return false; 2176 } 2177 2178 return true; 2179 } 2180 2181 static bool remove_xps_queue_cpu(struct net_device *dev, 2182 struct xps_dev_maps *dev_maps, 2183 int cpu, u16 offset, u16 count) 2184 { 2185 int num_tc = dev->num_tc ? : 1; 2186 bool active = false; 2187 int tci; 2188 2189 for (tci = cpu * num_tc; num_tc--; tci++) { 2190 int i, j; 2191 2192 for (i = count, j = offset; i--; j++) { 2193 if (!remove_xps_queue(dev_maps, tci, j)) 2194 break; 2195 } 2196 2197 active |= i < 0; 2198 } 2199 2200 return active; 2201 } 2202 2203 static void reset_xps_maps(struct net_device *dev, 2204 struct xps_dev_maps *dev_maps, 2205 bool is_rxqs_map) 2206 { 2207 if (is_rxqs_map) { 2208 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2209 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2210 } else { 2211 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2212 } 2213 static_key_slow_dec_cpuslocked(&xps_needed); 2214 kfree_rcu(dev_maps, rcu); 2215 } 2216 2217 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2218 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2219 u16 offset, u16 count, bool is_rxqs_map) 2220 { 2221 bool active = false; 2222 int i, j; 2223 2224 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2225 j < nr_ids;) 2226 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2227 count); 2228 if (!active) 2229 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2230 2231 if (!is_rxqs_map) { 2232 for (i = offset + (count - 1); count--; i--) { 2233 netdev_queue_numa_node_write( 2234 netdev_get_tx_queue(dev, i), 2235 NUMA_NO_NODE); 2236 } 2237 } 2238 } 2239 2240 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2241 u16 count) 2242 { 2243 const unsigned long *possible_mask = NULL; 2244 struct xps_dev_maps *dev_maps; 2245 unsigned int nr_ids; 2246 2247 if (!static_key_false(&xps_needed)) 2248 return; 2249 2250 cpus_read_lock(); 2251 mutex_lock(&xps_map_mutex); 2252 2253 if (static_key_false(&xps_rxqs_needed)) { 2254 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2255 if (dev_maps) { 2256 nr_ids = dev->num_rx_queues; 2257 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2258 offset, count, true); 2259 } 2260 } 2261 2262 dev_maps = xmap_dereference(dev->xps_cpus_map); 2263 if (!dev_maps) 2264 goto out_no_maps; 2265 2266 if (num_possible_cpus() > 1) 2267 possible_mask = cpumask_bits(cpu_possible_mask); 2268 nr_ids = nr_cpu_ids; 2269 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2270 false); 2271 2272 out_no_maps: 2273 mutex_unlock(&xps_map_mutex); 2274 cpus_read_unlock(); 2275 } 2276 2277 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2278 { 2279 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2280 } 2281 2282 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2283 u16 index, bool is_rxqs_map) 2284 { 2285 struct xps_map *new_map; 2286 int alloc_len = XPS_MIN_MAP_ALLOC; 2287 int i, pos; 2288 2289 for (pos = 0; map && pos < map->len; pos++) { 2290 if (map->queues[pos] != index) 2291 continue; 2292 return map; 2293 } 2294 2295 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2296 if (map) { 2297 if (pos < map->alloc_len) 2298 return map; 2299 2300 alloc_len = map->alloc_len * 2; 2301 } 2302 2303 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2304 * map 2305 */ 2306 if (is_rxqs_map) 2307 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2308 else 2309 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2310 cpu_to_node(attr_index)); 2311 if (!new_map) 2312 return NULL; 2313 2314 for (i = 0; i < pos; i++) 2315 new_map->queues[i] = map->queues[i]; 2316 new_map->alloc_len = alloc_len; 2317 new_map->len = pos; 2318 2319 return new_map; 2320 } 2321 2322 /* Must be called under cpus_read_lock */ 2323 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2324 u16 index, bool is_rxqs_map) 2325 { 2326 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2327 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2328 int i, j, tci, numa_node_id = -2; 2329 int maps_sz, num_tc = 1, tc = 0; 2330 struct xps_map *map, *new_map; 2331 bool active = false; 2332 unsigned int nr_ids; 2333 2334 if (dev->num_tc) { 2335 /* Do not allow XPS on subordinate device directly */ 2336 num_tc = dev->num_tc; 2337 if (num_tc < 0) 2338 return -EINVAL; 2339 2340 /* If queue belongs to subordinate dev use its map */ 2341 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2342 2343 tc = netdev_txq_to_tc(dev, index); 2344 if (tc < 0) 2345 return -EINVAL; 2346 } 2347 2348 mutex_lock(&xps_map_mutex); 2349 if (is_rxqs_map) { 2350 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2351 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2352 nr_ids = dev->num_rx_queues; 2353 } else { 2354 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2355 if (num_possible_cpus() > 1) { 2356 online_mask = cpumask_bits(cpu_online_mask); 2357 possible_mask = cpumask_bits(cpu_possible_mask); 2358 } 2359 dev_maps = xmap_dereference(dev->xps_cpus_map); 2360 nr_ids = nr_cpu_ids; 2361 } 2362 2363 if (maps_sz < L1_CACHE_BYTES) 2364 maps_sz = L1_CACHE_BYTES; 2365 2366 /* allocate memory for queue storage */ 2367 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2368 j < nr_ids;) { 2369 if (!new_dev_maps) 2370 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2371 if (!new_dev_maps) { 2372 mutex_unlock(&xps_map_mutex); 2373 return -ENOMEM; 2374 } 2375 2376 tci = j * num_tc + tc; 2377 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2378 NULL; 2379 2380 map = expand_xps_map(map, j, index, is_rxqs_map); 2381 if (!map) 2382 goto error; 2383 2384 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2385 } 2386 2387 if (!new_dev_maps) 2388 goto out_no_new_maps; 2389 2390 if (!dev_maps) { 2391 /* Increment static keys at most once per type */ 2392 static_key_slow_inc_cpuslocked(&xps_needed); 2393 if (is_rxqs_map) 2394 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2395 } 2396 2397 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2398 j < nr_ids;) { 2399 /* copy maps belonging to foreign traffic classes */ 2400 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2401 /* fill in the new device map from the old device map */ 2402 map = xmap_dereference(dev_maps->attr_map[tci]); 2403 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2404 } 2405 2406 /* We need to explicitly update tci as prevous loop 2407 * could break out early if dev_maps is NULL. 2408 */ 2409 tci = j * num_tc + tc; 2410 2411 if (netif_attr_test_mask(j, mask, nr_ids) && 2412 netif_attr_test_online(j, online_mask, nr_ids)) { 2413 /* add tx-queue to CPU/rx-queue maps */ 2414 int pos = 0; 2415 2416 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2417 while ((pos < map->len) && (map->queues[pos] != index)) 2418 pos++; 2419 2420 if (pos == map->len) 2421 map->queues[map->len++] = index; 2422 #ifdef CONFIG_NUMA 2423 if (!is_rxqs_map) { 2424 if (numa_node_id == -2) 2425 numa_node_id = cpu_to_node(j); 2426 else if (numa_node_id != cpu_to_node(j)) 2427 numa_node_id = -1; 2428 } 2429 #endif 2430 } else if (dev_maps) { 2431 /* fill in the new device map from the old device map */ 2432 map = xmap_dereference(dev_maps->attr_map[tci]); 2433 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2434 } 2435 2436 /* copy maps belonging to foreign traffic classes */ 2437 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2438 /* fill in the new device map from the old device map */ 2439 map = xmap_dereference(dev_maps->attr_map[tci]); 2440 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2441 } 2442 } 2443 2444 if (is_rxqs_map) 2445 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2446 else 2447 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2448 2449 /* Cleanup old maps */ 2450 if (!dev_maps) 2451 goto out_no_old_maps; 2452 2453 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2454 j < nr_ids;) { 2455 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2456 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2457 map = xmap_dereference(dev_maps->attr_map[tci]); 2458 if (map && map != new_map) 2459 kfree_rcu(map, rcu); 2460 } 2461 } 2462 2463 kfree_rcu(dev_maps, rcu); 2464 2465 out_no_old_maps: 2466 dev_maps = new_dev_maps; 2467 active = true; 2468 2469 out_no_new_maps: 2470 if (!is_rxqs_map) { 2471 /* update Tx queue numa node */ 2472 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2473 (numa_node_id >= 0) ? 2474 numa_node_id : NUMA_NO_NODE); 2475 } 2476 2477 if (!dev_maps) 2478 goto out_no_maps; 2479 2480 /* removes tx-queue from unused CPUs/rx-queues */ 2481 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2482 j < nr_ids;) { 2483 for (i = tc, tci = j * num_tc; i--; tci++) 2484 active |= remove_xps_queue(dev_maps, tci, index); 2485 if (!netif_attr_test_mask(j, mask, nr_ids) || 2486 !netif_attr_test_online(j, online_mask, nr_ids)) 2487 active |= remove_xps_queue(dev_maps, tci, index); 2488 for (i = num_tc - tc, tci++; --i; tci++) 2489 active |= remove_xps_queue(dev_maps, tci, index); 2490 } 2491 2492 /* free map if not active */ 2493 if (!active) 2494 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2495 2496 out_no_maps: 2497 mutex_unlock(&xps_map_mutex); 2498 2499 return 0; 2500 error: 2501 /* remove any maps that we added */ 2502 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2503 j < nr_ids;) { 2504 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2505 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2506 map = dev_maps ? 2507 xmap_dereference(dev_maps->attr_map[tci]) : 2508 NULL; 2509 if (new_map && new_map != map) 2510 kfree(new_map); 2511 } 2512 } 2513 2514 mutex_unlock(&xps_map_mutex); 2515 2516 kfree(new_dev_maps); 2517 return -ENOMEM; 2518 } 2519 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2520 2521 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2522 u16 index) 2523 { 2524 int ret; 2525 2526 cpus_read_lock(); 2527 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2528 cpus_read_unlock(); 2529 2530 return ret; 2531 } 2532 EXPORT_SYMBOL(netif_set_xps_queue); 2533 2534 #endif 2535 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2536 { 2537 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2538 2539 /* Unbind any subordinate channels */ 2540 while (txq-- != &dev->_tx[0]) { 2541 if (txq->sb_dev) 2542 netdev_unbind_sb_channel(dev, txq->sb_dev); 2543 } 2544 } 2545 2546 void netdev_reset_tc(struct net_device *dev) 2547 { 2548 #ifdef CONFIG_XPS 2549 netif_reset_xps_queues_gt(dev, 0); 2550 #endif 2551 netdev_unbind_all_sb_channels(dev); 2552 2553 /* Reset TC configuration of device */ 2554 dev->num_tc = 0; 2555 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2556 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2557 } 2558 EXPORT_SYMBOL(netdev_reset_tc); 2559 2560 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2561 { 2562 if (tc >= dev->num_tc) 2563 return -EINVAL; 2564 2565 #ifdef CONFIG_XPS 2566 netif_reset_xps_queues(dev, offset, count); 2567 #endif 2568 dev->tc_to_txq[tc].count = count; 2569 dev->tc_to_txq[tc].offset = offset; 2570 return 0; 2571 } 2572 EXPORT_SYMBOL(netdev_set_tc_queue); 2573 2574 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2575 { 2576 if (num_tc > TC_MAX_QUEUE) 2577 return -EINVAL; 2578 2579 #ifdef CONFIG_XPS 2580 netif_reset_xps_queues_gt(dev, 0); 2581 #endif 2582 netdev_unbind_all_sb_channels(dev); 2583 2584 dev->num_tc = num_tc; 2585 return 0; 2586 } 2587 EXPORT_SYMBOL(netdev_set_num_tc); 2588 2589 void netdev_unbind_sb_channel(struct net_device *dev, 2590 struct net_device *sb_dev) 2591 { 2592 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2593 2594 #ifdef CONFIG_XPS 2595 netif_reset_xps_queues_gt(sb_dev, 0); 2596 #endif 2597 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2598 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2599 2600 while (txq-- != &dev->_tx[0]) { 2601 if (txq->sb_dev == sb_dev) 2602 txq->sb_dev = NULL; 2603 } 2604 } 2605 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2606 2607 int netdev_bind_sb_channel_queue(struct net_device *dev, 2608 struct net_device *sb_dev, 2609 u8 tc, u16 count, u16 offset) 2610 { 2611 /* Make certain the sb_dev and dev are already configured */ 2612 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2613 return -EINVAL; 2614 2615 /* We cannot hand out queues we don't have */ 2616 if ((offset + count) > dev->real_num_tx_queues) 2617 return -EINVAL; 2618 2619 /* Record the mapping */ 2620 sb_dev->tc_to_txq[tc].count = count; 2621 sb_dev->tc_to_txq[tc].offset = offset; 2622 2623 /* Provide a way for Tx queue to find the tc_to_txq map or 2624 * XPS map for itself. 2625 */ 2626 while (count--) 2627 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2628 2629 return 0; 2630 } 2631 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2632 2633 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2634 { 2635 /* Do not use a multiqueue device to represent a subordinate channel */ 2636 if (netif_is_multiqueue(dev)) 2637 return -ENODEV; 2638 2639 /* We allow channels 1 - 32767 to be used for subordinate channels. 2640 * Channel 0 is meant to be "native" mode and used only to represent 2641 * the main root device. We allow writing 0 to reset the device back 2642 * to normal mode after being used as a subordinate channel. 2643 */ 2644 if (channel > S16_MAX) 2645 return -EINVAL; 2646 2647 dev->num_tc = -channel; 2648 2649 return 0; 2650 } 2651 EXPORT_SYMBOL(netdev_set_sb_channel); 2652 2653 /* 2654 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2655 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2656 */ 2657 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2658 { 2659 bool disabling; 2660 int rc; 2661 2662 disabling = txq < dev->real_num_tx_queues; 2663 2664 if (txq < 1 || txq > dev->num_tx_queues) 2665 return -EINVAL; 2666 2667 if (dev->reg_state == NETREG_REGISTERED || 2668 dev->reg_state == NETREG_UNREGISTERING) { 2669 ASSERT_RTNL(); 2670 2671 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2672 txq); 2673 if (rc) 2674 return rc; 2675 2676 if (dev->num_tc) 2677 netif_setup_tc(dev, txq); 2678 2679 dev->real_num_tx_queues = txq; 2680 2681 if (disabling) { 2682 synchronize_net(); 2683 qdisc_reset_all_tx_gt(dev, txq); 2684 #ifdef CONFIG_XPS 2685 netif_reset_xps_queues_gt(dev, txq); 2686 #endif 2687 } 2688 } else { 2689 dev->real_num_tx_queues = txq; 2690 } 2691 2692 return 0; 2693 } 2694 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2695 2696 #ifdef CONFIG_SYSFS 2697 /** 2698 * netif_set_real_num_rx_queues - set actual number of RX queues used 2699 * @dev: Network device 2700 * @rxq: Actual number of RX queues 2701 * 2702 * This must be called either with the rtnl_lock held or before 2703 * registration of the net device. Returns 0 on success, or a 2704 * negative error code. If called before registration, it always 2705 * succeeds. 2706 */ 2707 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2708 { 2709 int rc; 2710 2711 if (rxq < 1 || rxq > dev->num_rx_queues) 2712 return -EINVAL; 2713 2714 if (dev->reg_state == NETREG_REGISTERED) { 2715 ASSERT_RTNL(); 2716 2717 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2718 rxq); 2719 if (rc) 2720 return rc; 2721 } 2722 2723 dev->real_num_rx_queues = rxq; 2724 return 0; 2725 } 2726 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2727 #endif 2728 2729 /** 2730 * netif_get_num_default_rss_queues - default number of RSS queues 2731 * 2732 * This routine should set an upper limit on the number of RSS queues 2733 * used by default by multiqueue devices. 2734 */ 2735 int netif_get_num_default_rss_queues(void) 2736 { 2737 return is_kdump_kernel() ? 2738 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2739 } 2740 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2741 2742 static void __netif_reschedule(struct Qdisc *q) 2743 { 2744 struct softnet_data *sd; 2745 unsigned long flags; 2746 2747 local_irq_save(flags); 2748 sd = this_cpu_ptr(&softnet_data); 2749 q->next_sched = NULL; 2750 *sd->output_queue_tailp = q; 2751 sd->output_queue_tailp = &q->next_sched; 2752 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2753 local_irq_restore(flags); 2754 } 2755 2756 void __netif_schedule(struct Qdisc *q) 2757 { 2758 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2759 __netif_reschedule(q); 2760 } 2761 EXPORT_SYMBOL(__netif_schedule); 2762 2763 struct dev_kfree_skb_cb { 2764 enum skb_free_reason reason; 2765 }; 2766 2767 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2768 { 2769 return (struct dev_kfree_skb_cb *)skb->cb; 2770 } 2771 2772 void netif_schedule_queue(struct netdev_queue *txq) 2773 { 2774 rcu_read_lock(); 2775 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2776 struct Qdisc *q = rcu_dereference(txq->qdisc); 2777 2778 __netif_schedule(q); 2779 } 2780 rcu_read_unlock(); 2781 } 2782 EXPORT_SYMBOL(netif_schedule_queue); 2783 2784 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2785 { 2786 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2787 struct Qdisc *q; 2788 2789 rcu_read_lock(); 2790 q = rcu_dereference(dev_queue->qdisc); 2791 __netif_schedule(q); 2792 rcu_read_unlock(); 2793 } 2794 } 2795 EXPORT_SYMBOL(netif_tx_wake_queue); 2796 2797 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2798 { 2799 unsigned long flags; 2800 2801 if (unlikely(!skb)) 2802 return; 2803 2804 if (likely(refcount_read(&skb->users) == 1)) { 2805 smp_rmb(); 2806 refcount_set(&skb->users, 0); 2807 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2808 return; 2809 } 2810 get_kfree_skb_cb(skb)->reason = reason; 2811 local_irq_save(flags); 2812 skb->next = __this_cpu_read(softnet_data.completion_queue); 2813 __this_cpu_write(softnet_data.completion_queue, skb); 2814 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2815 local_irq_restore(flags); 2816 } 2817 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2818 2819 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2820 { 2821 if (in_irq() || irqs_disabled()) 2822 __dev_kfree_skb_irq(skb, reason); 2823 else 2824 dev_kfree_skb(skb); 2825 } 2826 EXPORT_SYMBOL(__dev_kfree_skb_any); 2827 2828 2829 /** 2830 * netif_device_detach - mark device as removed 2831 * @dev: network device 2832 * 2833 * Mark device as removed from system and therefore no longer available. 2834 */ 2835 void netif_device_detach(struct net_device *dev) 2836 { 2837 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2838 netif_running(dev)) { 2839 netif_tx_stop_all_queues(dev); 2840 } 2841 } 2842 EXPORT_SYMBOL(netif_device_detach); 2843 2844 /** 2845 * netif_device_attach - mark device as attached 2846 * @dev: network device 2847 * 2848 * Mark device as attached from system and restart if needed. 2849 */ 2850 void netif_device_attach(struct net_device *dev) 2851 { 2852 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2853 netif_running(dev)) { 2854 netif_tx_wake_all_queues(dev); 2855 __netdev_watchdog_up(dev); 2856 } 2857 } 2858 EXPORT_SYMBOL(netif_device_attach); 2859 2860 /* 2861 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2862 * to be used as a distribution range. 2863 */ 2864 static u16 skb_tx_hash(const struct net_device *dev, 2865 const struct net_device *sb_dev, 2866 struct sk_buff *skb) 2867 { 2868 u32 hash; 2869 u16 qoffset = 0; 2870 u16 qcount = dev->real_num_tx_queues; 2871 2872 if (dev->num_tc) { 2873 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2874 2875 qoffset = sb_dev->tc_to_txq[tc].offset; 2876 qcount = sb_dev->tc_to_txq[tc].count; 2877 } 2878 2879 if (skb_rx_queue_recorded(skb)) { 2880 hash = skb_get_rx_queue(skb); 2881 while (unlikely(hash >= qcount)) 2882 hash -= qcount; 2883 return hash + qoffset; 2884 } 2885 2886 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2887 } 2888 2889 static void skb_warn_bad_offload(const struct sk_buff *skb) 2890 { 2891 static const netdev_features_t null_features; 2892 struct net_device *dev = skb->dev; 2893 const char *name = ""; 2894 2895 if (!net_ratelimit()) 2896 return; 2897 2898 if (dev) { 2899 if (dev->dev.parent) 2900 name = dev_driver_string(dev->dev.parent); 2901 else 2902 name = netdev_name(dev); 2903 } 2904 skb_dump(KERN_WARNING, skb, false); 2905 WARN(1, "%s: caps=(%pNF, %pNF)\n", 2906 name, dev ? &dev->features : &null_features, 2907 skb->sk ? &skb->sk->sk_route_caps : &null_features); 2908 } 2909 2910 /* 2911 * Invalidate hardware checksum when packet is to be mangled, and 2912 * complete checksum manually on outgoing path. 2913 */ 2914 int skb_checksum_help(struct sk_buff *skb) 2915 { 2916 __wsum csum; 2917 int ret = 0, offset; 2918 2919 if (skb->ip_summed == CHECKSUM_COMPLETE) 2920 goto out_set_summed; 2921 2922 if (unlikely(skb_shinfo(skb)->gso_size)) { 2923 skb_warn_bad_offload(skb); 2924 return -EINVAL; 2925 } 2926 2927 /* Before computing a checksum, we should make sure no frag could 2928 * be modified by an external entity : checksum could be wrong. 2929 */ 2930 if (skb_has_shared_frag(skb)) { 2931 ret = __skb_linearize(skb); 2932 if (ret) 2933 goto out; 2934 } 2935 2936 offset = skb_checksum_start_offset(skb); 2937 BUG_ON(offset >= skb_headlen(skb)); 2938 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2939 2940 offset += skb->csum_offset; 2941 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2942 2943 if (skb_cloned(skb) && 2944 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2945 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2946 if (ret) 2947 goto out; 2948 } 2949 2950 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2951 out_set_summed: 2952 skb->ip_summed = CHECKSUM_NONE; 2953 out: 2954 return ret; 2955 } 2956 EXPORT_SYMBOL(skb_checksum_help); 2957 2958 int skb_crc32c_csum_help(struct sk_buff *skb) 2959 { 2960 __le32 crc32c_csum; 2961 int ret = 0, offset, start; 2962 2963 if (skb->ip_summed != CHECKSUM_PARTIAL) 2964 goto out; 2965 2966 if (unlikely(skb_is_gso(skb))) 2967 goto out; 2968 2969 /* Before computing a checksum, we should make sure no frag could 2970 * be modified by an external entity : checksum could be wrong. 2971 */ 2972 if (unlikely(skb_has_shared_frag(skb))) { 2973 ret = __skb_linearize(skb); 2974 if (ret) 2975 goto out; 2976 } 2977 start = skb_checksum_start_offset(skb); 2978 offset = start + offsetof(struct sctphdr, checksum); 2979 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2980 ret = -EINVAL; 2981 goto out; 2982 } 2983 if (skb_cloned(skb) && 2984 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2985 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2986 if (ret) 2987 goto out; 2988 } 2989 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2990 skb->len - start, ~(__u32)0, 2991 crc32c_csum_stub)); 2992 *(__le32 *)(skb->data + offset) = crc32c_csum; 2993 skb->ip_summed = CHECKSUM_NONE; 2994 skb->csum_not_inet = 0; 2995 out: 2996 return ret; 2997 } 2998 2999 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3000 { 3001 __be16 type = skb->protocol; 3002 3003 /* Tunnel gso handlers can set protocol to ethernet. */ 3004 if (type == htons(ETH_P_TEB)) { 3005 struct ethhdr *eth; 3006 3007 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3008 return 0; 3009 3010 eth = (struct ethhdr *)skb->data; 3011 type = eth->h_proto; 3012 } 3013 3014 return __vlan_get_protocol(skb, type, depth); 3015 } 3016 3017 /** 3018 * skb_mac_gso_segment - mac layer segmentation handler. 3019 * @skb: buffer to segment 3020 * @features: features for the output path (see dev->features) 3021 */ 3022 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3023 netdev_features_t features) 3024 { 3025 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3026 struct packet_offload *ptype; 3027 int vlan_depth = skb->mac_len; 3028 __be16 type = skb_network_protocol(skb, &vlan_depth); 3029 3030 if (unlikely(!type)) 3031 return ERR_PTR(-EINVAL); 3032 3033 __skb_pull(skb, vlan_depth); 3034 3035 rcu_read_lock(); 3036 list_for_each_entry_rcu(ptype, &offload_base, list) { 3037 if (ptype->type == type && ptype->callbacks.gso_segment) { 3038 segs = ptype->callbacks.gso_segment(skb, features); 3039 break; 3040 } 3041 } 3042 rcu_read_unlock(); 3043 3044 __skb_push(skb, skb->data - skb_mac_header(skb)); 3045 3046 return segs; 3047 } 3048 EXPORT_SYMBOL(skb_mac_gso_segment); 3049 3050 3051 /* openvswitch calls this on rx path, so we need a different check. 3052 */ 3053 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3054 { 3055 if (tx_path) 3056 return skb->ip_summed != CHECKSUM_PARTIAL && 3057 skb->ip_summed != CHECKSUM_UNNECESSARY; 3058 3059 return skb->ip_summed == CHECKSUM_NONE; 3060 } 3061 3062 /** 3063 * __skb_gso_segment - Perform segmentation on skb. 3064 * @skb: buffer to segment 3065 * @features: features for the output path (see dev->features) 3066 * @tx_path: whether it is called in TX path 3067 * 3068 * This function segments the given skb and returns a list of segments. 3069 * 3070 * It may return NULL if the skb requires no segmentation. This is 3071 * only possible when GSO is used for verifying header integrity. 3072 * 3073 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3074 */ 3075 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3076 netdev_features_t features, bool tx_path) 3077 { 3078 struct sk_buff *segs; 3079 3080 if (unlikely(skb_needs_check(skb, tx_path))) { 3081 int err; 3082 3083 /* We're going to init ->check field in TCP or UDP header */ 3084 err = skb_cow_head(skb, 0); 3085 if (err < 0) 3086 return ERR_PTR(err); 3087 } 3088 3089 /* Only report GSO partial support if it will enable us to 3090 * support segmentation on this frame without needing additional 3091 * work. 3092 */ 3093 if (features & NETIF_F_GSO_PARTIAL) { 3094 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3095 struct net_device *dev = skb->dev; 3096 3097 partial_features |= dev->features & dev->gso_partial_features; 3098 if (!skb_gso_ok(skb, features | partial_features)) 3099 features &= ~NETIF_F_GSO_PARTIAL; 3100 } 3101 3102 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3103 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3104 3105 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3106 SKB_GSO_CB(skb)->encap_level = 0; 3107 3108 skb_reset_mac_header(skb); 3109 skb_reset_mac_len(skb); 3110 3111 segs = skb_mac_gso_segment(skb, features); 3112 3113 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3114 skb_warn_bad_offload(skb); 3115 3116 return segs; 3117 } 3118 EXPORT_SYMBOL(__skb_gso_segment); 3119 3120 /* Take action when hardware reception checksum errors are detected. */ 3121 #ifdef CONFIG_BUG 3122 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3123 { 3124 if (net_ratelimit()) { 3125 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3126 skb_dump(KERN_ERR, skb, true); 3127 dump_stack(); 3128 } 3129 } 3130 EXPORT_SYMBOL(netdev_rx_csum_fault); 3131 #endif 3132 3133 /* XXX: check that highmem exists at all on the given machine. */ 3134 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3135 { 3136 #ifdef CONFIG_HIGHMEM 3137 int i; 3138 3139 if (!(dev->features & NETIF_F_HIGHDMA)) { 3140 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3141 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3142 3143 if (PageHighMem(skb_frag_page(frag))) 3144 return 1; 3145 } 3146 } 3147 #endif 3148 return 0; 3149 } 3150 3151 /* If MPLS offload request, verify we are testing hardware MPLS features 3152 * instead of standard features for the netdev. 3153 */ 3154 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3155 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3156 netdev_features_t features, 3157 __be16 type) 3158 { 3159 if (eth_p_mpls(type)) 3160 features &= skb->dev->mpls_features; 3161 3162 return features; 3163 } 3164 #else 3165 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3166 netdev_features_t features, 3167 __be16 type) 3168 { 3169 return features; 3170 } 3171 #endif 3172 3173 static netdev_features_t harmonize_features(struct sk_buff *skb, 3174 netdev_features_t features) 3175 { 3176 int tmp; 3177 __be16 type; 3178 3179 type = skb_network_protocol(skb, &tmp); 3180 features = net_mpls_features(skb, features, type); 3181 3182 if (skb->ip_summed != CHECKSUM_NONE && 3183 !can_checksum_protocol(features, type)) { 3184 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3185 } 3186 if (illegal_highdma(skb->dev, skb)) 3187 features &= ~NETIF_F_SG; 3188 3189 return features; 3190 } 3191 3192 netdev_features_t passthru_features_check(struct sk_buff *skb, 3193 struct net_device *dev, 3194 netdev_features_t features) 3195 { 3196 return features; 3197 } 3198 EXPORT_SYMBOL(passthru_features_check); 3199 3200 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3201 struct net_device *dev, 3202 netdev_features_t features) 3203 { 3204 return vlan_features_check(skb, features); 3205 } 3206 3207 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3208 struct net_device *dev, 3209 netdev_features_t features) 3210 { 3211 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3212 3213 if (gso_segs > dev->gso_max_segs) 3214 return features & ~NETIF_F_GSO_MASK; 3215 3216 /* Support for GSO partial features requires software 3217 * intervention before we can actually process the packets 3218 * so we need to strip support for any partial features now 3219 * and we can pull them back in after we have partially 3220 * segmented the frame. 3221 */ 3222 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3223 features &= ~dev->gso_partial_features; 3224 3225 /* Make sure to clear the IPv4 ID mangling feature if the 3226 * IPv4 header has the potential to be fragmented. 3227 */ 3228 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3229 struct iphdr *iph = skb->encapsulation ? 3230 inner_ip_hdr(skb) : ip_hdr(skb); 3231 3232 if (!(iph->frag_off & htons(IP_DF))) 3233 features &= ~NETIF_F_TSO_MANGLEID; 3234 } 3235 3236 return features; 3237 } 3238 3239 netdev_features_t netif_skb_features(struct sk_buff *skb) 3240 { 3241 struct net_device *dev = skb->dev; 3242 netdev_features_t features = dev->features; 3243 3244 if (skb_is_gso(skb)) 3245 features = gso_features_check(skb, dev, features); 3246 3247 /* If encapsulation offload request, verify we are testing 3248 * hardware encapsulation features instead of standard 3249 * features for the netdev 3250 */ 3251 if (skb->encapsulation) 3252 features &= dev->hw_enc_features; 3253 3254 if (skb_vlan_tagged(skb)) 3255 features = netdev_intersect_features(features, 3256 dev->vlan_features | 3257 NETIF_F_HW_VLAN_CTAG_TX | 3258 NETIF_F_HW_VLAN_STAG_TX); 3259 3260 if (dev->netdev_ops->ndo_features_check) 3261 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3262 features); 3263 else 3264 features &= dflt_features_check(skb, dev, features); 3265 3266 return harmonize_features(skb, features); 3267 } 3268 EXPORT_SYMBOL(netif_skb_features); 3269 3270 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3271 struct netdev_queue *txq, bool more) 3272 { 3273 unsigned int len; 3274 int rc; 3275 3276 if (dev_nit_active(dev)) 3277 dev_queue_xmit_nit(skb, dev); 3278 3279 len = skb->len; 3280 trace_net_dev_start_xmit(skb, dev); 3281 rc = netdev_start_xmit(skb, dev, txq, more); 3282 trace_net_dev_xmit(skb, rc, dev, len); 3283 3284 return rc; 3285 } 3286 3287 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3288 struct netdev_queue *txq, int *ret) 3289 { 3290 struct sk_buff *skb = first; 3291 int rc = NETDEV_TX_OK; 3292 3293 while (skb) { 3294 struct sk_buff *next = skb->next; 3295 3296 skb_mark_not_on_list(skb); 3297 rc = xmit_one(skb, dev, txq, next != NULL); 3298 if (unlikely(!dev_xmit_complete(rc))) { 3299 skb->next = next; 3300 goto out; 3301 } 3302 3303 skb = next; 3304 if (netif_tx_queue_stopped(txq) && skb) { 3305 rc = NETDEV_TX_BUSY; 3306 break; 3307 } 3308 } 3309 3310 out: 3311 *ret = rc; 3312 return skb; 3313 } 3314 3315 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3316 netdev_features_t features) 3317 { 3318 if (skb_vlan_tag_present(skb) && 3319 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3320 skb = __vlan_hwaccel_push_inside(skb); 3321 return skb; 3322 } 3323 3324 int skb_csum_hwoffload_help(struct sk_buff *skb, 3325 const netdev_features_t features) 3326 { 3327 if (unlikely(skb->csum_not_inet)) 3328 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3329 skb_crc32c_csum_help(skb); 3330 3331 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3332 } 3333 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3334 3335 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3336 { 3337 netdev_features_t features; 3338 3339 features = netif_skb_features(skb); 3340 skb = validate_xmit_vlan(skb, features); 3341 if (unlikely(!skb)) 3342 goto out_null; 3343 3344 skb = sk_validate_xmit_skb(skb, dev); 3345 if (unlikely(!skb)) 3346 goto out_null; 3347 3348 if (netif_needs_gso(skb, features)) { 3349 struct sk_buff *segs; 3350 3351 segs = skb_gso_segment(skb, features); 3352 if (IS_ERR(segs)) { 3353 goto out_kfree_skb; 3354 } else if (segs) { 3355 consume_skb(skb); 3356 skb = segs; 3357 } 3358 } else { 3359 if (skb_needs_linearize(skb, features) && 3360 __skb_linearize(skb)) 3361 goto out_kfree_skb; 3362 3363 /* If packet is not checksummed and device does not 3364 * support checksumming for this protocol, complete 3365 * checksumming here. 3366 */ 3367 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3368 if (skb->encapsulation) 3369 skb_set_inner_transport_header(skb, 3370 skb_checksum_start_offset(skb)); 3371 else 3372 skb_set_transport_header(skb, 3373 skb_checksum_start_offset(skb)); 3374 if (skb_csum_hwoffload_help(skb, features)) 3375 goto out_kfree_skb; 3376 } 3377 } 3378 3379 skb = validate_xmit_xfrm(skb, features, again); 3380 3381 return skb; 3382 3383 out_kfree_skb: 3384 kfree_skb(skb); 3385 out_null: 3386 atomic_long_inc(&dev->tx_dropped); 3387 return NULL; 3388 } 3389 3390 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3391 { 3392 struct sk_buff *next, *head = NULL, *tail; 3393 3394 for (; skb != NULL; skb = next) { 3395 next = skb->next; 3396 skb_mark_not_on_list(skb); 3397 3398 /* in case skb wont be segmented, point to itself */ 3399 skb->prev = skb; 3400 3401 skb = validate_xmit_skb(skb, dev, again); 3402 if (!skb) 3403 continue; 3404 3405 if (!head) 3406 head = skb; 3407 else 3408 tail->next = skb; 3409 /* If skb was segmented, skb->prev points to 3410 * the last segment. If not, it still contains skb. 3411 */ 3412 tail = skb->prev; 3413 } 3414 return head; 3415 } 3416 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3417 3418 static void qdisc_pkt_len_init(struct sk_buff *skb) 3419 { 3420 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3421 3422 qdisc_skb_cb(skb)->pkt_len = skb->len; 3423 3424 /* To get more precise estimation of bytes sent on wire, 3425 * we add to pkt_len the headers size of all segments 3426 */ 3427 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3428 unsigned int hdr_len; 3429 u16 gso_segs = shinfo->gso_segs; 3430 3431 /* mac layer + network layer */ 3432 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3433 3434 /* + transport layer */ 3435 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3436 const struct tcphdr *th; 3437 struct tcphdr _tcphdr; 3438 3439 th = skb_header_pointer(skb, skb_transport_offset(skb), 3440 sizeof(_tcphdr), &_tcphdr); 3441 if (likely(th)) 3442 hdr_len += __tcp_hdrlen(th); 3443 } else { 3444 struct udphdr _udphdr; 3445 3446 if (skb_header_pointer(skb, skb_transport_offset(skb), 3447 sizeof(_udphdr), &_udphdr)) 3448 hdr_len += sizeof(struct udphdr); 3449 } 3450 3451 if (shinfo->gso_type & SKB_GSO_DODGY) 3452 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3453 shinfo->gso_size); 3454 3455 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3456 } 3457 } 3458 3459 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3460 struct net_device *dev, 3461 struct netdev_queue *txq) 3462 { 3463 spinlock_t *root_lock = qdisc_lock(q); 3464 struct sk_buff *to_free = NULL; 3465 bool contended; 3466 int rc; 3467 3468 qdisc_calculate_pkt_len(skb, q); 3469 3470 if (q->flags & TCQ_F_NOLOCK) { 3471 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty && 3472 qdisc_run_begin(q)) { 3473 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 3474 &q->state))) { 3475 __qdisc_drop(skb, &to_free); 3476 rc = NET_XMIT_DROP; 3477 goto end_run; 3478 } 3479 qdisc_bstats_cpu_update(q, skb); 3480 3481 rc = NET_XMIT_SUCCESS; 3482 if (sch_direct_xmit(skb, q, dev, txq, NULL, true)) 3483 __qdisc_run(q); 3484 3485 end_run: 3486 qdisc_run_end(q); 3487 } else { 3488 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3489 qdisc_run(q); 3490 } 3491 3492 if (unlikely(to_free)) 3493 kfree_skb_list(to_free); 3494 return rc; 3495 } 3496 3497 /* 3498 * Heuristic to force contended enqueues to serialize on a 3499 * separate lock before trying to get qdisc main lock. 3500 * This permits qdisc->running owner to get the lock more 3501 * often and dequeue packets faster. 3502 */ 3503 contended = qdisc_is_running(q); 3504 if (unlikely(contended)) 3505 spin_lock(&q->busylock); 3506 3507 spin_lock(root_lock); 3508 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3509 __qdisc_drop(skb, &to_free); 3510 rc = NET_XMIT_DROP; 3511 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3512 qdisc_run_begin(q)) { 3513 /* 3514 * This is a work-conserving queue; there are no old skbs 3515 * waiting to be sent out; and the qdisc is not running - 3516 * xmit the skb directly. 3517 */ 3518 3519 qdisc_bstats_update(q, skb); 3520 3521 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3522 if (unlikely(contended)) { 3523 spin_unlock(&q->busylock); 3524 contended = false; 3525 } 3526 __qdisc_run(q); 3527 } 3528 3529 qdisc_run_end(q); 3530 rc = NET_XMIT_SUCCESS; 3531 } else { 3532 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3533 if (qdisc_run_begin(q)) { 3534 if (unlikely(contended)) { 3535 spin_unlock(&q->busylock); 3536 contended = false; 3537 } 3538 __qdisc_run(q); 3539 qdisc_run_end(q); 3540 } 3541 } 3542 spin_unlock(root_lock); 3543 if (unlikely(to_free)) 3544 kfree_skb_list(to_free); 3545 if (unlikely(contended)) 3546 spin_unlock(&q->busylock); 3547 return rc; 3548 } 3549 3550 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3551 static void skb_update_prio(struct sk_buff *skb) 3552 { 3553 const struct netprio_map *map; 3554 const struct sock *sk; 3555 unsigned int prioidx; 3556 3557 if (skb->priority) 3558 return; 3559 map = rcu_dereference_bh(skb->dev->priomap); 3560 if (!map) 3561 return; 3562 sk = skb_to_full_sk(skb); 3563 if (!sk) 3564 return; 3565 3566 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3567 3568 if (prioidx < map->priomap_len) 3569 skb->priority = map->priomap[prioidx]; 3570 } 3571 #else 3572 #define skb_update_prio(skb) 3573 #endif 3574 3575 /** 3576 * dev_loopback_xmit - loop back @skb 3577 * @net: network namespace this loopback is happening in 3578 * @sk: sk needed to be a netfilter okfn 3579 * @skb: buffer to transmit 3580 */ 3581 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3582 { 3583 skb_reset_mac_header(skb); 3584 __skb_pull(skb, skb_network_offset(skb)); 3585 skb->pkt_type = PACKET_LOOPBACK; 3586 skb->ip_summed = CHECKSUM_UNNECESSARY; 3587 WARN_ON(!skb_dst(skb)); 3588 skb_dst_force(skb); 3589 netif_rx_ni(skb); 3590 return 0; 3591 } 3592 EXPORT_SYMBOL(dev_loopback_xmit); 3593 3594 #ifdef CONFIG_NET_EGRESS 3595 static struct sk_buff * 3596 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3597 { 3598 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3599 struct tcf_result cl_res; 3600 3601 if (!miniq) 3602 return skb; 3603 3604 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3605 mini_qdisc_bstats_cpu_update(miniq, skb); 3606 3607 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3608 case TC_ACT_OK: 3609 case TC_ACT_RECLASSIFY: 3610 skb->tc_index = TC_H_MIN(cl_res.classid); 3611 break; 3612 case TC_ACT_SHOT: 3613 mini_qdisc_qstats_cpu_drop(miniq); 3614 *ret = NET_XMIT_DROP; 3615 kfree_skb(skb); 3616 return NULL; 3617 case TC_ACT_STOLEN: 3618 case TC_ACT_QUEUED: 3619 case TC_ACT_TRAP: 3620 *ret = NET_XMIT_SUCCESS; 3621 consume_skb(skb); 3622 return NULL; 3623 case TC_ACT_REDIRECT: 3624 /* No need to push/pop skb's mac_header here on egress! */ 3625 skb_do_redirect(skb); 3626 *ret = NET_XMIT_SUCCESS; 3627 return NULL; 3628 default: 3629 break; 3630 } 3631 3632 return skb; 3633 } 3634 #endif /* CONFIG_NET_EGRESS */ 3635 3636 #ifdef CONFIG_XPS 3637 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3638 struct xps_dev_maps *dev_maps, unsigned int tci) 3639 { 3640 struct xps_map *map; 3641 int queue_index = -1; 3642 3643 if (dev->num_tc) { 3644 tci *= dev->num_tc; 3645 tci += netdev_get_prio_tc_map(dev, skb->priority); 3646 } 3647 3648 map = rcu_dereference(dev_maps->attr_map[tci]); 3649 if (map) { 3650 if (map->len == 1) 3651 queue_index = map->queues[0]; 3652 else 3653 queue_index = map->queues[reciprocal_scale( 3654 skb_get_hash(skb), map->len)]; 3655 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3656 queue_index = -1; 3657 } 3658 return queue_index; 3659 } 3660 #endif 3661 3662 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3663 struct sk_buff *skb) 3664 { 3665 #ifdef CONFIG_XPS 3666 struct xps_dev_maps *dev_maps; 3667 struct sock *sk = skb->sk; 3668 int queue_index = -1; 3669 3670 if (!static_key_false(&xps_needed)) 3671 return -1; 3672 3673 rcu_read_lock(); 3674 if (!static_key_false(&xps_rxqs_needed)) 3675 goto get_cpus_map; 3676 3677 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3678 if (dev_maps) { 3679 int tci = sk_rx_queue_get(sk); 3680 3681 if (tci >= 0 && tci < dev->num_rx_queues) 3682 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3683 tci); 3684 } 3685 3686 get_cpus_map: 3687 if (queue_index < 0) { 3688 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3689 if (dev_maps) { 3690 unsigned int tci = skb->sender_cpu - 1; 3691 3692 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3693 tci); 3694 } 3695 } 3696 rcu_read_unlock(); 3697 3698 return queue_index; 3699 #else 3700 return -1; 3701 #endif 3702 } 3703 3704 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3705 struct net_device *sb_dev) 3706 { 3707 return 0; 3708 } 3709 EXPORT_SYMBOL(dev_pick_tx_zero); 3710 3711 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3712 struct net_device *sb_dev) 3713 { 3714 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3715 } 3716 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3717 3718 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3719 struct net_device *sb_dev) 3720 { 3721 struct sock *sk = skb->sk; 3722 int queue_index = sk_tx_queue_get(sk); 3723 3724 sb_dev = sb_dev ? : dev; 3725 3726 if (queue_index < 0 || skb->ooo_okay || 3727 queue_index >= dev->real_num_tx_queues) { 3728 int new_index = get_xps_queue(dev, sb_dev, skb); 3729 3730 if (new_index < 0) 3731 new_index = skb_tx_hash(dev, sb_dev, skb); 3732 3733 if (queue_index != new_index && sk && 3734 sk_fullsock(sk) && 3735 rcu_access_pointer(sk->sk_dst_cache)) 3736 sk_tx_queue_set(sk, new_index); 3737 3738 queue_index = new_index; 3739 } 3740 3741 return queue_index; 3742 } 3743 EXPORT_SYMBOL(netdev_pick_tx); 3744 3745 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3746 struct sk_buff *skb, 3747 struct net_device *sb_dev) 3748 { 3749 int queue_index = 0; 3750 3751 #ifdef CONFIG_XPS 3752 u32 sender_cpu = skb->sender_cpu - 1; 3753 3754 if (sender_cpu >= (u32)NR_CPUS) 3755 skb->sender_cpu = raw_smp_processor_id() + 1; 3756 #endif 3757 3758 if (dev->real_num_tx_queues != 1) { 3759 const struct net_device_ops *ops = dev->netdev_ops; 3760 3761 if (ops->ndo_select_queue) 3762 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3763 else 3764 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3765 3766 queue_index = netdev_cap_txqueue(dev, queue_index); 3767 } 3768 3769 skb_set_queue_mapping(skb, queue_index); 3770 return netdev_get_tx_queue(dev, queue_index); 3771 } 3772 3773 /** 3774 * __dev_queue_xmit - transmit a buffer 3775 * @skb: buffer to transmit 3776 * @sb_dev: suboordinate device used for L2 forwarding offload 3777 * 3778 * Queue a buffer for transmission to a network device. The caller must 3779 * have set the device and priority and built the buffer before calling 3780 * this function. The function can be called from an interrupt. 3781 * 3782 * A negative errno code is returned on a failure. A success does not 3783 * guarantee the frame will be transmitted as it may be dropped due 3784 * to congestion or traffic shaping. 3785 * 3786 * ----------------------------------------------------------------------------------- 3787 * I notice this method can also return errors from the queue disciplines, 3788 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3789 * be positive. 3790 * 3791 * Regardless of the return value, the skb is consumed, so it is currently 3792 * difficult to retry a send to this method. (You can bump the ref count 3793 * before sending to hold a reference for retry if you are careful.) 3794 * 3795 * When calling this method, interrupts MUST be enabled. This is because 3796 * the BH enable code must have IRQs enabled so that it will not deadlock. 3797 * --BLG 3798 */ 3799 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3800 { 3801 struct net_device *dev = skb->dev; 3802 struct netdev_queue *txq; 3803 struct Qdisc *q; 3804 int rc = -ENOMEM; 3805 bool again = false; 3806 3807 skb_reset_mac_header(skb); 3808 3809 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3810 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3811 3812 /* Disable soft irqs for various locks below. Also 3813 * stops preemption for RCU. 3814 */ 3815 rcu_read_lock_bh(); 3816 3817 skb_update_prio(skb); 3818 3819 qdisc_pkt_len_init(skb); 3820 #ifdef CONFIG_NET_CLS_ACT 3821 skb->tc_at_ingress = 0; 3822 # ifdef CONFIG_NET_EGRESS 3823 if (static_branch_unlikely(&egress_needed_key)) { 3824 skb = sch_handle_egress(skb, &rc, dev); 3825 if (!skb) 3826 goto out; 3827 } 3828 # endif 3829 #endif 3830 /* If device/qdisc don't need skb->dst, release it right now while 3831 * its hot in this cpu cache. 3832 */ 3833 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3834 skb_dst_drop(skb); 3835 else 3836 skb_dst_force(skb); 3837 3838 txq = netdev_core_pick_tx(dev, skb, sb_dev); 3839 q = rcu_dereference_bh(txq->qdisc); 3840 3841 trace_net_dev_queue(skb); 3842 if (q->enqueue) { 3843 rc = __dev_xmit_skb(skb, q, dev, txq); 3844 goto out; 3845 } 3846 3847 /* The device has no queue. Common case for software devices: 3848 * loopback, all the sorts of tunnels... 3849 3850 * Really, it is unlikely that netif_tx_lock protection is necessary 3851 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3852 * counters.) 3853 * However, it is possible, that they rely on protection 3854 * made by us here. 3855 3856 * Check this and shot the lock. It is not prone from deadlocks. 3857 *Either shot noqueue qdisc, it is even simpler 8) 3858 */ 3859 if (dev->flags & IFF_UP) { 3860 int cpu = smp_processor_id(); /* ok because BHs are off */ 3861 3862 if (txq->xmit_lock_owner != cpu) { 3863 if (dev_xmit_recursion()) 3864 goto recursion_alert; 3865 3866 skb = validate_xmit_skb(skb, dev, &again); 3867 if (!skb) 3868 goto out; 3869 3870 HARD_TX_LOCK(dev, txq, cpu); 3871 3872 if (!netif_xmit_stopped(txq)) { 3873 dev_xmit_recursion_inc(); 3874 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3875 dev_xmit_recursion_dec(); 3876 if (dev_xmit_complete(rc)) { 3877 HARD_TX_UNLOCK(dev, txq); 3878 goto out; 3879 } 3880 } 3881 HARD_TX_UNLOCK(dev, txq); 3882 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3883 dev->name); 3884 } else { 3885 /* Recursion is detected! It is possible, 3886 * unfortunately 3887 */ 3888 recursion_alert: 3889 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3890 dev->name); 3891 } 3892 } 3893 3894 rc = -ENETDOWN; 3895 rcu_read_unlock_bh(); 3896 3897 atomic_long_inc(&dev->tx_dropped); 3898 kfree_skb_list(skb); 3899 return rc; 3900 out: 3901 rcu_read_unlock_bh(); 3902 return rc; 3903 } 3904 3905 int dev_queue_xmit(struct sk_buff *skb) 3906 { 3907 return __dev_queue_xmit(skb, NULL); 3908 } 3909 EXPORT_SYMBOL(dev_queue_xmit); 3910 3911 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3912 { 3913 return __dev_queue_xmit(skb, sb_dev); 3914 } 3915 EXPORT_SYMBOL(dev_queue_xmit_accel); 3916 3917 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3918 { 3919 struct net_device *dev = skb->dev; 3920 struct sk_buff *orig_skb = skb; 3921 struct netdev_queue *txq; 3922 int ret = NETDEV_TX_BUSY; 3923 bool again = false; 3924 3925 if (unlikely(!netif_running(dev) || 3926 !netif_carrier_ok(dev))) 3927 goto drop; 3928 3929 skb = validate_xmit_skb_list(skb, dev, &again); 3930 if (skb != orig_skb) 3931 goto drop; 3932 3933 skb_set_queue_mapping(skb, queue_id); 3934 txq = skb_get_tx_queue(dev, skb); 3935 3936 local_bh_disable(); 3937 3938 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3939 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3940 ret = netdev_start_xmit(skb, dev, txq, false); 3941 HARD_TX_UNLOCK(dev, txq); 3942 3943 local_bh_enable(); 3944 3945 if (!dev_xmit_complete(ret)) 3946 kfree_skb(skb); 3947 3948 return ret; 3949 drop: 3950 atomic_long_inc(&dev->tx_dropped); 3951 kfree_skb_list(skb); 3952 return NET_XMIT_DROP; 3953 } 3954 EXPORT_SYMBOL(dev_direct_xmit); 3955 3956 /************************************************************************* 3957 * Receiver routines 3958 *************************************************************************/ 3959 3960 int netdev_max_backlog __read_mostly = 1000; 3961 EXPORT_SYMBOL(netdev_max_backlog); 3962 3963 int netdev_tstamp_prequeue __read_mostly = 1; 3964 int netdev_budget __read_mostly = 300; 3965 unsigned int __read_mostly netdev_budget_usecs = 2000; 3966 int weight_p __read_mostly = 64; /* old backlog weight */ 3967 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3968 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3969 int dev_rx_weight __read_mostly = 64; 3970 int dev_tx_weight __read_mostly = 64; 3971 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 3972 int gro_normal_batch __read_mostly = 8; 3973 3974 /* Called with irq disabled */ 3975 static inline void ____napi_schedule(struct softnet_data *sd, 3976 struct napi_struct *napi) 3977 { 3978 list_add_tail(&napi->poll_list, &sd->poll_list); 3979 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3980 } 3981 3982 #ifdef CONFIG_RPS 3983 3984 /* One global table that all flow-based protocols share. */ 3985 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3986 EXPORT_SYMBOL(rps_sock_flow_table); 3987 u32 rps_cpu_mask __read_mostly; 3988 EXPORT_SYMBOL(rps_cpu_mask); 3989 3990 struct static_key_false rps_needed __read_mostly; 3991 EXPORT_SYMBOL(rps_needed); 3992 struct static_key_false rfs_needed __read_mostly; 3993 EXPORT_SYMBOL(rfs_needed); 3994 3995 static struct rps_dev_flow * 3996 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3997 struct rps_dev_flow *rflow, u16 next_cpu) 3998 { 3999 if (next_cpu < nr_cpu_ids) { 4000 #ifdef CONFIG_RFS_ACCEL 4001 struct netdev_rx_queue *rxqueue; 4002 struct rps_dev_flow_table *flow_table; 4003 struct rps_dev_flow *old_rflow; 4004 u32 flow_id; 4005 u16 rxq_index; 4006 int rc; 4007 4008 /* Should we steer this flow to a different hardware queue? */ 4009 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4010 !(dev->features & NETIF_F_NTUPLE)) 4011 goto out; 4012 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4013 if (rxq_index == skb_get_rx_queue(skb)) 4014 goto out; 4015 4016 rxqueue = dev->_rx + rxq_index; 4017 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4018 if (!flow_table) 4019 goto out; 4020 flow_id = skb_get_hash(skb) & flow_table->mask; 4021 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4022 rxq_index, flow_id); 4023 if (rc < 0) 4024 goto out; 4025 old_rflow = rflow; 4026 rflow = &flow_table->flows[flow_id]; 4027 rflow->filter = rc; 4028 if (old_rflow->filter == rflow->filter) 4029 old_rflow->filter = RPS_NO_FILTER; 4030 out: 4031 #endif 4032 rflow->last_qtail = 4033 per_cpu(softnet_data, next_cpu).input_queue_head; 4034 } 4035 4036 rflow->cpu = next_cpu; 4037 return rflow; 4038 } 4039 4040 /* 4041 * get_rps_cpu is called from netif_receive_skb and returns the target 4042 * CPU from the RPS map of the receiving queue for a given skb. 4043 * rcu_read_lock must be held on entry. 4044 */ 4045 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4046 struct rps_dev_flow **rflowp) 4047 { 4048 const struct rps_sock_flow_table *sock_flow_table; 4049 struct netdev_rx_queue *rxqueue = dev->_rx; 4050 struct rps_dev_flow_table *flow_table; 4051 struct rps_map *map; 4052 int cpu = -1; 4053 u32 tcpu; 4054 u32 hash; 4055 4056 if (skb_rx_queue_recorded(skb)) { 4057 u16 index = skb_get_rx_queue(skb); 4058 4059 if (unlikely(index >= dev->real_num_rx_queues)) { 4060 WARN_ONCE(dev->real_num_rx_queues > 1, 4061 "%s received packet on queue %u, but number " 4062 "of RX queues is %u\n", 4063 dev->name, index, dev->real_num_rx_queues); 4064 goto done; 4065 } 4066 rxqueue += index; 4067 } 4068 4069 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4070 4071 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4072 map = rcu_dereference(rxqueue->rps_map); 4073 if (!flow_table && !map) 4074 goto done; 4075 4076 skb_reset_network_header(skb); 4077 hash = skb_get_hash(skb); 4078 if (!hash) 4079 goto done; 4080 4081 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4082 if (flow_table && sock_flow_table) { 4083 struct rps_dev_flow *rflow; 4084 u32 next_cpu; 4085 u32 ident; 4086 4087 /* First check into global flow table if there is a match */ 4088 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4089 if ((ident ^ hash) & ~rps_cpu_mask) 4090 goto try_rps; 4091 4092 next_cpu = ident & rps_cpu_mask; 4093 4094 /* OK, now we know there is a match, 4095 * we can look at the local (per receive queue) flow table 4096 */ 4097 rflow = &flow_table->flows[hash & flow_table->mask]; 4098 tcpu = rflow->cpu; 4099 4100 /* 4101 * If the desired CPU (where last recvmsg was done) is 4102 * different from current CPU (one in the rx-queue flow 4103 * table entry), switch if one of the following holds: 4104 * - Current CPU is unset (>= nr_cpu_ids). 4105 * - Current CPU is offline. 4106 * - The current CPU's queue tail has advanced beyond the 4107 * last packet that was enqueued using this table entry. 4108 * This guarantees that all previous packets for the flow 4109 * have been dequeued, thus preserving in order delivery. 4110 */ 4111 if (unlikely(tcpu != next_cpu) && 4112 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4113 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4114 rflow->last_qtail)) >= 0)) { 4115 tcpu = next_cpu; 4116 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4117 } 4118 4119 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4120 *rflowp = rflow; 4121 cpu = tcpu; 4122 goto done; 4123 } 4124 } 4125 4126 try_rps: 4127 4128 if (map) { 4129 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4130 if (cpu_online(tcpu)) { 4131 cpu = tcpu; 4132 goto done; 4133 } 4134 } 4135 4136 done: 4137 return cpu; 4138 } 4139 4140 #ifdef CONFIG_RFS_ACCEL 4141 4142 /** 4143 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4144 * @dev: Device on which the filter was set 4145 * @rxq_index: RX queue index 4146 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4147 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4148 * 4149 * Drivers that implement ndo_rx_flow_steer() should periodically call 4150 * this function for each installed filter and remove the filters for 4151 * which it returns %true. 4152 */ 4153 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4154 u32 flow_id, u16 filter_id) 4155 { 4156 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4157 struct rps_dev_flow_table *flow_table; 4158 struct rps_dev_flow *rflow; 4159 bool expire = true; 4160 unsigned int cpu; 4161 4162 rcu_read_lock(); 4163 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4164 if (flow_table && flow_id <= flow_table->mask) { 4165 rflow = &flow_table->flows[flow_id]; 4166 cpu = READ_ONCE(rflow->cpu); 4167 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4168 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4169 rflow->last_qtail) < 4170 (int)(10 * flow_table->mask))) 4171 expire = false; 4172 } 4173 rcu_read_unlock(); 4174 return expire; 4175 } 4176 EXPORT_SYMBOL(rps_may_expire_flow); 4177 4178 #endif /* CONFIG_RFS_ACCEL */ 4179 4180 /* Called from hardirq (IPI) context */ 4181 static void rps_trigger_softirq(void *data) 4182 { 4183 struct softnet_data *sd = data; 4184 4185 ____napi_schedule(sd, &sd->backlog); 4186 sd->received_rps++; 4187 } 4188 4189 #endif /* CONFIG_RPS */ 4190 4191 /* 4192 * Check if this softnet_data structure is another cpu one 4193 * If yes, queue it to our IPI list and return 1 4194 * If no, return 0 4195 */ 4196 static int rps_ipi_queued(struct softnet_data *sd) 4197 { 4198 #ifdef CONFIG_RPS 4199 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4200 4201 if (sd != mysd) { 4202 sd->rps_ipi_next = mysd->rps_ipi_list; 4203 mysd->rps_ipi_list = sd; 4204 4205 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4206 return 1; 4207 } 4208 #endif /* CONFIG_RPS */ 4209 return 0; 4210 } 4211 4212 #ifdef CONFIG_NET_FLOW_LIMIT 4213 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4214 #endif 4215 4216 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4217 { 4218 #ifdef CONFIG_NET_FLOW_LIMIT 4219 struct sd_flow_limit *fl; 4220 struct softnet_data *sd; 4221 unsigned int old_flow, new_flow; 4222 4223 if (qlen < (netdev_max_backlog >> 1)) 4224 return false; 4225 4226 sd = this_cpu_ptr(&softnet_data); 4227 4228 rcu_read_lock(); 4229 fl = rcu_dereference(sd->flow_limit); 4230 if (fl) { 4231 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4232 old_flow = fl->history[fl->history_head]; 4233 fl->history[fl->history_head] = new_flow; 4234 4235 fl->history_head++; 4236 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4237 4238 if (likely(fl->buckets[old_flow])) 4239 fl->buckets[old_flow]--; 4240 4241 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4242 fl->count++; 4243 rcu_read_unlock(); 4244 return true; 4245 } 4246 } 4247 rcu_read_unlock(); 4248 #endif 4249 return false; 4250 } 4251 4252 /* 4253 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4254 * queue (may be a remote CPU queue). 4255 */ 4256 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4257 unsigned int *qtail) 4258 { 4259 struct softnet_data *sd; 4260 unsigned long flags; 4261 unsigned int qlen; 4262 4263 sd = &per_cpu(softnet_data, cpu); 4264 4265 local_irq_save(flags); 4266 4267 rps_lock(sd); 4268 if (!netif_running(skb->dev)) 4269 goto drop; 4270 qlen = skb_queue_len(&sd->input_pkt_queue); 4271 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4272 if (qlen) { 4273 enqueue: 4274 __skb_queue_tail(&sd->input_pkt_queue, skb); 4275 input_queue_tail_incr_save(sd, qtail); 4276 rps_unlock(sd); 4277 local_irq_restore(flags); 4278 return NET_RX_SUCCESS; 4279 } 4280 4281 /* Schedule NAPI for backlog device 4282 * We can use non atomic operation since we own the queue lock 4283 */ 4284 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4285 if (!rps_ipi_queued(sd)) 4286 ____napi_schedule(sd, &sd->backlog); 4287 } 4288 goto enqueue; 4289 } 4290 4291 drop: 4292 sd->dropped++; 4293 rps_unlock(sd); 4294 4295 local_irq_restore(flags); 4296 4297 atomic_long_inc(&skb->dev->rx_dropped); 4298 kfree_skb(skb); 4299 return NET_RX_DROP; 4300 } 4301 4302 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4303 { 4304 struct net_device *dev = skb->dev; 4305 struct netdev_rx_queue *rxqueue; 4306 4307 rxqueue = dev->_rx; 4308 4309 if (skb_rx_queue_recorded(skb)) { 4310 u16 index = skb_get_rx_queue(skb); 4311 4312 if (unlikely(index >= dev->real_num_rx_queues)) { 4313 WARN_ONCE(dev->real_num_rx_queues > 1, 4314 "%s received packet on queue %u, but number " 4315 "of RX queues is %u\n", 4316 dev->name, index, dev->real_num_rx_queues); 4317 4318 return rxqueue; /* Return first rxqueue */ 4319 } 4320 rxqueue += index; 4321 } 4322 return rxqueue; 4323 } 4324 4325 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4326 struct xdp_buff *xdp, 4327 struct bpf_prog *xdp_prog) 4328 { 4329 struct netdev_rx_queue *rxqueue; 4330 void *orig_data, *orig_data_end; 4331 u32 metalen, act = XDP_DROP; 4332 __be16 orig_eth_type; 4333 struct ethhdr *eth; 4334 bool orig_bcast; 4335 int hlen, off; 4336 u32 mac_len; 4337 4338 /* Reinjected packets coming from act_mirred or similar should 4339 * not get XDP generic processing. 4340 */ 4341 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4342 return XDP_PASS; 4343 4344 /* XDP packets must be linear and must have sufficient headroom 4345 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4346 * native XDP provides, thus we need to do it here as well. 4347 */ 4348 if (skb_is_nonlinear(skb) || 4349 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4350 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4351 int troom = skb->tail + skb->data_len - skb->end; 4352 4353 /* In case we have to go down the path and also linearize, 4354 * then lets do the pskb_expand_head() work just once here. 4355 */ 4356 if (pskb_expand_head(skb, 4357 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4358 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4359 goto do_drop; 4360 if (skb_linearize(skb)) 4361 goto do_drop; 4362 } 4363 4364 /* The XDP program wants to see the packet starting at the MAC 4365 * header. 4366 */ 4367 mac_len = skb->data - skb_mac_header(skb); 4368 hlen = skb_headlen(skb) + mac_len; 4369 xdp->data = skb->data - mac_len; 4370 xdp->data_meta = xdp->data; 4371 xdp->data_end = xdp->data + hlen; 4372 xdp->data_hard_start = skb->data - skb_headroom(skb); 4373 orig_data_end = xdp->data_end; 4374 orig_data = xdp->data; 4375 eth = (struct ethhdr *)xdp->data; 4376 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4377 orig_eth_type = eth->h_proto; 4378 4379 rxqueue = netif_get_rxqueue(skb); 4380 xdp->rxq = &rxqueue->xdp_rxq; 4381 4382 act = bpf_prog_run_xdp(xdp_prog, xdp); 4383 4384 /* check if bpf_xdp_adjust_head was used */ 4385 off = xdp->data - orig_data; 4386 if (off) { 4387 if (off > 0) 4388 __skb_pull(skb, off); 4389 else if (off < 0) 4390 __skb_push(skb, -off); 4391 4392 skb->mac_header += off; 4393 skb_reset_network_header(skb); 4394 } 4395 4396 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4397 * pckt. 4398 */ 4399 off = orig_data_end - xdp->data_end; 4400 if (off != 0) { 4401 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4402 skb->len -= off; 4403 4404 } 4405 4406 /* check if XDP changed eth hdr such SKB needs update */ 4407 eth = (struct ethhdr *)xdp->data; 4408 if ((orig_eth_type != eth->h_proto) || 4409 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4410 __skb_push(skb, ETH_HLEN); 4411 skb->protocol = eth_type_trans(skb, skb->dev); 4412 } 4413 4414 switch (act) { 4415 case XDP_REDIRECT: 4416 case XDP_TX: 4417 __skb_push(skb, mac_len); 4418 break; 4419 case XDP_PASS: 4420 metalen = xdp->data - xdp->data_meta; 4421 if (metalen) 4422 skb_metadata_set(skb, metalen); 4423 break; 4424 default: 4425 bpf_warn_invalid_xdp_action(act); 4426 /* fall through */ 4427 case XDP_ABORTED: 4428 trace_xdp_exception(skb->dev, xdp_prog, act); 4429 /* fall through */ 4430 case XDP_DROP: 4431 do_drop: 4432 kfree_skb(skb); 4433 break; 4434 } 4435 4436 return act; 4437 } 4438 4439 /* When doing generic XDP we have to bypass the qdisc layer and the 4440 * network taps in order to match in-driver-XDP behavior. 4441 */ 4442 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4443 { 4444 struct net_device *dev = skb->dev; 4445 struct netdev_queue *txq; 4446 bool free_skb = true; 4447 int cpu, rc; 4448 4449 txq = netdev_core_pick_tx(dev, skb, NULL); 4450 cpu = smp_processor_id(); 4451 HARD_TX_LOCK(dev, txq, cpu); 4452 if (!netif_xmit_stopped(txq)) { 4453 rc = netdev_start_xmit(skb, dev, txq, 0); 4454 if (dev_xmit_complete(rc)) 4455 free_skb = false; 4456 } 4457 HARD_TX_UNLOCK(dev, txq); 4458 if (free_skb) { 4459 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4460 kfree_skb(skb); 4461 } 4462 } 4463 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4464 4465 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4466 4467 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4468 { 4469 if (xdp_prog) { 4470 struct xdp_buff xdp; 4471 u32 act; 4472 int err; 4473 4474 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4475 if (act != XDP_PASS) { 4476 switch (act) { 4477 case XDP_REDIRECT: 4478 err = xdp_do_generic_redirect(skb->dev, skb, 4479 &xdp, xdp_prog); 4480 if (err) 4481 goto out_redir; 4482 break; 4483 case XDP_TX: 4484 generic_xdp_tx(skb, xdp_prog); 4485 break; 4486 } 4487 return XDP_DROP; 4488 } 4489 } 4490 return XDP_PASS; 4491 out_redir: 4492 kfree_skb(skb); 4493 return XDP_DROP; 4494 } 4495 EXPORT_SYMBOL_GPL(do_xdp_generic); 4496 4497 static int netif_rx_internal(struct sk_buff *skb) 4498 { 4499 int ret; 4500 4501 net_timestamp_check(netdev_tstamp_prequeue, skb); 4502 4503 trace_netif_rx(skb); 4504 4505 #ifdef CONFIG_RPS 4506 if (static_branch_unlikely(&rps_needed)) { 4507 struct rps_dev_flow voidflow, *rflow = &voidflow; 4508 int cpu; 4509 4510 preempt_disable(); 4511 rcu_read_lock(); 4512 4513 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4514 if (cpu < 0) 4515 cpu = smp_processor_id(); 4516 4517 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4518 4519 rcu_read_unlock(); 4520 preempt_enable(); 4521 } else 4522 #endif 4523 { 4524 unsigned int qtail; 4525 4526 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4527 put_cpu(); 4528 } 4529 return ret; 4530 } 4531 4532 /** 4533 * netif_rx - post buffer to the network code 4534 * @skb: buffer to post 4535 * 4536 * This function receives a packet from a device driver and queues it for 4537 * the upper (protocol) levels to process. It always succeeds. The buffer 4538 * may be dropped during processing for congestion control or by the 4539 * protocol layers. 4540 * 4541 * return values: 4542 * NET_RX_SUCCESS (no congestion) 4543 * NET_RX_DROP (packet was dropped) 4544 * 4545 */ 4546 4547 int netif_rx(struct sk_buff *skb) 4548 { 4549 int ret; 4550 4551 trace_netif_rx_entry(skb); 4552 4553 ret = netif_rx_internal(skb); 4554 trace_netif_rx_exit(ret); 4555 4556 return ret; 4557 } 4558 EXPORT_SYMBOL(netif_rx); 4559 4560 int netif_rx_ni(struct sk_buff *skb) 4561 { 4562 int err; 4563 4564 trace_netif_rx_ni_entry(skb); 4565 4566 preempt_disable(); 4567 err = netif_rx_internal(skb); 4568 if (local_softirq_pending()) 4569 do_softirq(); 4570 preempt_enable(); 4571 trace_netif_rx_ni_exit(err); 4572 4573 return err; 4574 } 4575 EXPORT_SYMBOL(netif_rx_ni); 4576 4577 static __latent_entropy void net_tx_action(struct softirq_action *h) 4578 { 4579 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4580 4581 if (sd->completion_queue) { 4582 struct sk_buff *clist; 4583 4584 local_irq_disable(); 4585 clist = sd->completion_queue; 4586 sd->completion_queue = NULL; 4587 local_irq_enable(); 4588 4589 while (clist) { 4590 struct sk_buff *skb = clist; 4591 4592 clist = clist->next; 4593 4594 WARN_ON(refcount_read(&skb->users)); 4595 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4596 trace_consume_skb(skb); 4597 else 4598 trace_kfree_skb(skb, net_tx_action); 4599 4600 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4601 __kfree_skb(skb); 4602 else 4603 __kfree_skb_defer(skb); 4604 } 4605 4606 __kfree_skb_flush(); 4607 } 4608 4609 if (sd->output_queue) { 4610 struct Qdisc *head; 4611 4612 local_irq_disable(); 4613 head = sd->output_queue; 4614 sd->output_queue = NULL; 4615 sd->output_queue_tailp = &sd->output_queue; 4616 local_irq_enable(); 4617 4618 while (head) { 4619 struct Qdisc *q = head; 4620 spinlock_t *root_lock = NULL; 4621 4622 head = head->next_sched; 4623 4624 if (!(q->flags & TCQ_F_NOLOCK)) { 4625 root_lock = qdisc_lock(q); 4626 spin_lock(root_lock); 4627 } 4628 /* We need to make sure head->next_sched is read 4629 * before clearing __QDISC_STATE_SCHED 4630 */ 4631 smp_mb__before_atomic(); 4632 clear_bit(__QDISC_STATE_SCHED, &q->state); 4633 qdisc_run(q); 4634 if (root_lock) 4635 spin_unlock(root_lock); 4636 } 4637 } 4638 4639 xfrm_dev_backlog(sd); 4640 } 4641 4642 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4643 /* This hook is defined here for ATM LANE */ 4644 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4645 unsigned char *addr) __read_mostly; 4646 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4647 #endif 4648 4649 static inline struct sk_buff * 4650 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4651 struct net_device *orig_dev) 4652 { 4653 #ifdef CONFIG_NET_CLS_ACT 4654 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4655 struct tcf_result cl_res; 4656 4657 /* If there's at least one ingress present somewhere (so 4658 * we get here via enabled static key), remaining devices 4659 * that are not configured with an ingress qdisc will bail 4660 * out here. 4661 */ 4662 if (!miniq) 4663 return skb; 4664 4665 if (*pt_prev) { 4666 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4667 *pt_prev = NULL; 4668 } 4669 4670 qdisc_skb_cb(skb)->pkt_len = skb->len; 4671 skb->tc_at_ingress = 1; 4672 mini_qdisc_bstats_cpu_update(miniq, skb); 4673 4674 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4675 case TC_ACT_OK: 4676 case TC_ACT_RECLASSIFY: 4677 skb->tc_index = TC_H_MIN(cl_res.classid); 4678 break; 4679 case TC_ACT_SHOT: 4680 mini_qdisc_qstats_cpu_drop(miniq); 4681 kfree_skb(skb); 4682 return NULL; 4683 case TC_ACT_STOLEN: 4684 case TC_ACT_QUEUED: 4685 case TC_ACT_TRAP: 4686 consume_skb(skb); 4687 return NULL; 4688 case TC_ACT_REDIRECT: 4689 /* skb_mac_header check was done by cls/act_bpf, so 4690 * we can safely push the L2 header back before 4691 * redirecting to another netdev 4692 */ 4693 __skb_push(skb, skb->mac_len); 4694 skb_do_redirect(skb); 4695 return NULL; 4696 case TC_ACT_CONSUMED: 4697 return NULL; 4698 default: 4699 break; 4700 } 4701 #endif /* CONFIG_NET_CLS_ACT */ 4702 return skb; 4703 } 4704 4705 /** 4706 * netdev_is_rx_handler_busy - check if receive handler is registered 4707 * @dev: device to check 4708 * 4709 * Check if a receive handler is already registered for a given device. 4710 * Return true if there one. 4711 * 4712 * The caller must hold the rtnl_mutex. 4713 */ 4714 bool netdev_is_rx_handler_busy(struct net_device *dev) 4715 { 4716 ASSERT_RTNL(); 4717 return dev && rtnl_dereference(dev->rx_handler); 4718 } 4719 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4720 4721 /** 4722 * netdev_rx_handler_register - register receive handler 4723 * @dev: device to register a handler for 4724 * @rx_handler: receive handler to register 4725 * @rx_handler_data: data pointer that is used by rx handler 4726 * 4727 * Register a receive handler for a device. This handler will then be 4728 * called from __netif_receive_skb. A negative errno code is returned 4729 * on a failure. 4730 * 4731 * The caller must hold the rtnl_mutex. 4732 * 4733 * For a general description of rx_handler, see enum rx_handler_result. 4734 */ 4735 int netdev_rx_handler_register(struct net_device *dev, 4736 rx_handler_func_t *rx_handler, 4737 void *rx_handler_data) 4738 { 4739 if (netdev_is_rx_handler_busy(dev)) 4740 return -EBUSY; 4741 4742 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4743 return -EINVAL; 4744 4745 /* Note: rx_handler_data must be set before rx_handler */ 4746 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4747 rcu_assign_pointer(dev->rx_handler, rx_handler); 4748 4749 return 0; 4750 } 4751 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4752 4753 /** 4754 * netdev_rx_handler_unregister - unregister receive handler 4755 * @dev: device to unregister a handler from 4756 * 4757 * Unregister a receive handler from a device. 4758 * 4759 * The caller must hold the rtnl_mutex. 4760 */ 4761 void netdev_rx_handler_unregister(struct net_device *dev) 4762 { 4763 4764 ASSERT_RTNL(); 4765 RCU_INIT_POINTER(dev->rx_handler, NULL); 4766 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4767 * section has a guarantee to see a non NULL rx_handler_data 4768 * as well. 4769 */ 4770 synchronize_net(); 4771 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4772 } 4773 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4774 4775 /* 4776 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4777 * the special handling of PFMEMALLOC skbs. 4778 */ 4779 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4780 { 4781 switch (skb->protocol) { 4782 case htons(ETH_P_ARP): 4783 case htons(ETH_P_IP): 4784 case htons(ETH_P_IPV6): 4785 case htons(ETH_P_8021Q): 4786 case htons(ETH_P_8021AD): 4787 return true; 4788 default: 4789 return false; 4790 } 4791 } 4792 4793 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4794 int *ret, struct net_device *orig_dev) 4795 { 4796 #ifdef CONFIG_NETFILTER_INGRESS 4797 if (nf_hook_ingress_active(skb)) { 4798 int ingress_retval; 4799 4800 if (*pt_prev) { 4801 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4802 *pt_prev = NULL; 4803 } 4804 4805 rcu_read_lock(); 4806 ingress_retval = nf_hook_ingress(skb); 4807 rcu_read_unlock(); 4808 return ingress_retval; 4809 } 4810 #endif /* CONFIG_NETFILTER_INGRESS */ 4811 return 0; 4812 } 4813 4814 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4815 struct packet_type **ppt_prev) 4816 { 4817 struct packet_type *ptype, *pt_prev; 4818 rx_handler_func_t *rx_handler; 4819 struct net_device *orig_dev; 4820 bool deliver_exact = false; 4821 int ret = NET_RX_DROP; 4822 __be16 type; 4823 4824 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4825 4826 trace_netif_receive_skb(skb); 4827 4828 orig_dev = skb->dev; 4829 4830 skb_reset_network_header(skb); 4831 if (!skb_transport_header_was_set(skb)) 4832 skb_reset_transport_header(skb); 4833 skb_reset_mac_len(skb); 4834 4835 pt_prev = NULL; 4836 4837 another_round: 4838 skb->skb_iif = skb->dev->ifindex; 4839 4840 __this_cpu_inc(softnet_data.processed); 4841 4842 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4843 int ret2; 4844 4845 preempt_disable(); 4846 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4847 preempt_enable(); 4848 4849 if (ret2 != XDP_PASS) 4850 return NET_RX_DROP; 4851 skb_reset_mac_len(skb); 4852 } 4853 4854 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4855 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4856 skb = skb_vlan_untag(skb); 4857 if (unlikely(!skb)) 4858 goto out; 4859 } 4860 4861 if (skb_skip_tc_classify(skb)) 4862 goto skip_classify; 4863 4864 if (pfmemalloc) 4865 goto skip_taps; 4866 4867 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4868 if (pt_prev) 4869 ret = deliver_skb(skb, pt_prev, orig_dev); 4870 pt_prev = ptype; 4871 } 4872 4873 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4874 if (pt_prev) 4875 ret = deliver_skb(skb, pt_prev, orig_dev); 4876 pt_prev = ptype; 4877 } 4878 4879 skip_taps: 4880 #ifdef CONFIG_NET_INGRESS 4881 if (static_branch_unlikely(&ingress_needed_key)) { 4882 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4883 if (!skb) 4884 goto out; 4885 4886 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4887 goto out; 4888 } 4889 #endif 4890 skb_reset_tc(skb); 4891 skip_classify: 4892 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4893 goto drop; 4894 4895 if (skb_vlan_tag_present(skb)) { 4896 if (pt_prev) { 4897 ret = deliver_skb(skb, pt_prev, orig_dev); 4898 pt_prev = NULL; 4899 } 4900 if (vlan_do_receive(&skb)) 4901 goto another_round; 4902 else if (unlikely(!skb)) 4903 goto out; 4904 } 4905 4906 rx_handler = rcu_dereference(skb->dev->rx_handler); 4907 if (rx_handler) { 4908 if (pt_prev) { 4909 ret = deliver_skb(skb, pt_prev, orig_dev); 4910 pt_prev = NULL; 4911 } 4912 switch (rx_handler(&skb)) { 4913 case RX_HANDLER_CONSUMED: 4914 ret = NET_RX_SUCCESS; 4915 goto out; 4916 case RX_HANDLER_ANOTHER: 4917 goto another_round; 4918 case RX_HANDLER_EXACT: 4919 deliver_exact = true; 4920 case RX_HANDLER_PASS: 4921 break; 4922 default: 4923 BUG(); 4924 } 4925 } 4926 4927 if (unlikely(skb_vlan_tag_present(skb))) { 4928 check_vlan_id: 4929 if (skb_vlan_tag_get_id(skb)) { 4930 /* Vlan id is non 0 and vlan_do_receive() above couldn't 4931 * find vlan device. 4932 */ 4933 skb->pkt_type = PACKET_OTHERHOST; 4934 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4935 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4936 /* Outer header is 802.1P with vlan 0, inner header is 4937 * 802.1Q or 802.1AD and vlan_do_receive() above could 4938 * not find vlan dev for vlan id 0. 4939 */ 4940 __vlan_hwaccel_clear_tag(skb); 4941 skb = skb_vlan_untag(skb); 4942 if (unlikely(!skb)) 4943 goto out; 4944 if (vlan_do_receive(&skb)) 4945 /* After stripping off 802.1P header with vlan 0 4946 * vlan dev is found for inner header. 4947 */ 4948 goto another_round; 4949 else if (unlikely(!skb)) 4950 goto out; 4951 else 4952 /* We have stripped outer 802.1P vlan 0 header. 4953 * But could not find vlan dev. 4954 * check again for vlan id to set OTHERHOST. 4955 */ 4956 goto check_vlan_id; 4957 } 4958 /* Note: we might in the future use prio bits 4959 * and set skb->priority like in vlan_do_receive() 4960 * For the time being, just ignore Priority Code Point 4961 */ 4962 __vlan_hwaccel_clear_tag(skb); 4963 } 4964 4965 type = skb->protocol; 4966 4967 /* deliver only exact match when indicated */ 4968 if (likely(!deliver_exact)) { 4969 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4970 &ptype_base[ntohs(type) & 4971 PTYPE_HASH_MASK]); 4972 } 4973 4974 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4975 &orig_dev->ptype_specific); 4976 4977 if (unlikely(skb->dev != orig_dev)) { 4978 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4979 &skb->dev->ptype_specific); 4980 } 4981 4982 if (pt_prev) { 4983 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4984 goto drop; 4985 *ppt_prev = pt_prev; 4986 } else { 4987 drop: 4988 if (!deliver_exact) 4989 atomic_long_inc(&skb->dev->rx_dropped); 4990 else 4991 atomic_long_inc(&skb->dev->rx_nohandler); 4992 kfree_skb(skb); 4993 /* Jamal, now you will not able to escape explaining 4994 * me how you were going to use this. :-) 4995 */ 4996 ret = NET_RX_DROP; 4997 } 4998 4999 out: 5000 return ret; 5001 } 5002 5003 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5004 { 5005 struct net_device *orig_dev = skb->dev; 5006 struct packet_type *pt_prev = NULL; 5007 int ret; 5008 5009 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5010 if (pt_prev) 5011 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5012 skb->dev, pt_prev, orig_dev); 5013 return ret; 5014 } 5015 5016 /** 5017 * netif_receive_skb_core - special purpose version of netif_receive_skb 5018 * @skb: buffer to process 5019 * 5020 * More direct receive version of netif_receive_skb(). It should 5021 * only be used by callers that have a need to skip RPS and Generic XDP. 5022 * Caller must also take care of handling if (page_is_)pfmemalloc. 5023 * 5024 * This function may only be called from softirq context and interrupts 5025 * should be enabled. 5026 * 5027 * Return values (usually ignored): 5028 * NET_RX_SUCCESS: no congestion 5029 * NET_RX_DROP: packet was dropped 5030 */ 5031 int netif_receive_skb_core(struct sk_buff *skb) 5032 { 5033 int ret; 5034 5035 rcu_read_lock(); 5036 ret = __netif_receive_skb_one_core(skb, false); 5037 rcu_read_unlock(); 5038 5039 return ret; 5040 } 5041 EXPORT_SYMBOL(netif_receive_skb_core); 5042 5043 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5044 struct packet_type *pt_prev, 5045 struct net_device *orig_dev) 5046 { 5047 struct sk_buff *skb, *next; 5048 5049 if (!pt_prev) 5050 return; 5051 if (list_empty(head)) 5052 return; 5053 if (pt_prev->list_func != NULL) 5054 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5055 ip_list_rcv, head, pt_prev, orig_dev); 5056 else 5057 list_for_each_entry_safe(skb, next, head, list) { 5058 skb_list_del_init(skb); 5059 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5060 } 5061 } 5062 5063 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5064 { 5065 /* Fast-path assumptions: 5066 * - There is no RX handler. 5067 * - Only one packet_type matches. 5068 * If either of these fails, we will end up doing some per-packet 5069 * processing in-line, then handling the 'last ptype' for the whole 5070 * sublist. This can't cause out-of-order delivery to any single ptype, 5071 * because the 'last ptype' must be constant across the sublist, and all 5072 * other ptypes are handled per-packet. 5073 */ 5074 /* Current (common) ptype of sublist */ 5075 struct packet_type *pt_curr = NULL; 5076 /* Current (common) orig_dev of sublist */ 5077 struct net_device *od_curr = NULL; 5078 struct list_head sublist; 5079 struct sk_buff *skb, *next; 5080 5081 INIT_LIST_HEAD(&sublist); 5082 list_for_each_entry_safe(skb, next, head, list) { 5083 struct net_device *orig_dev = skb->dev; 5084 struct packet_type *pt_prev = NULL; 5085 5086 skb_list_del_init(skb); 5087 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5088 if (!pt_prev) 5089 continue; 5090 if (pt_curr != pt_prev || od_curr != orig_dev) { 5091 /* dispatch old sublist */ 5092 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5093 /* start new sublist */ 5094 INIT_LIST_HEAD(&sublist); 5095 pt_curr = pt_prev; 5096 od_curr = orig_dev; 5097 } 5098 list_add_tail(&skb->list, &sublist); 5099 } 5100 5101 /* dispatch final sublist */ 5102 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5103 } 5104 5105 static int __netif_receive_skb(struct sk_buff *skb) 5106 { 5107 int ret; 5108 5109 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5110 unsigned int noreclaim_flag; 5111 5112 /* 5113 * PFMEMALLOC skbs are special, they should 5114 * - be delivered to SOCK_MEMALLOC sockets only 5115 * - stay away from userspace 5116 * - have bounded memory usage 5117 * 5118 * Use PF_MEMALLOC as this saves us from propagating the allocation 5119 * context down to all allocation sites. 5120 */ 5121 noreclaim_flag = memalloc_noreclaim_save(); 5122 ret = __netif_receive_skb_one_core(skb, true); 5123 memalloc_noreclaim_restore(noreclaim_flag); 5124 } else 5125 ret = __netif_receive_skb_one_core(skb, false); 5126 5127 return ret; 5128 } 5129 5130 static void __netif_receive_skb_list(struct list_head *head) 5131 { 5132 unsigned long noreclaim_flag = 0; 5133 struct sk_buff *skb, *next; 5134 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5135 5136 list_for_each_entry_safe(skb, next, head, list) { 5137 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5138 struct list_head sublist; 5139 5140 /* Handle the previous sublist */ 5141 list_cut_before(&sublist, head, &skb->list); 5142 if (!list_empty(&sublist)) 5143 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5144 pfmemalloc = !pfmemalloc; 5145 /* See comments in __netif_receive_skb */ 5146 if (pfmemalloc) 5147 noreclaim_flag = memalloc_noreclaim_save(); 5148 else 5149 memalloc_noreclaim_restore(noreclaim_flag); 5150 } 5151 } 5152 /* Handle the remaining sublist */ 5153 if (!list_empty(head)) 5154 __netif_receive_skb_list_core(head, pfmemalloc); 5155 /* Restore pflags */ 5156 if (pfmemalloc) 5157 memalloc_noreclaim_restore(noreclaim_flag); 5158 } 5159 5160 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5161 { 5162 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5163 struct bpf_prog *new = xdp->prog; 5164 int ret = 0; 5165 5166 switch (xdp->command) { 5167 case XDP_SETUP_PROG: 5168 rcu_assign_pointer(dev->xdp_prog, new); 5169 if (old) 5170 bpf_prog_put(old); 5171 5172 if (old && !new) { 5173 static_branch_dec(&generic_xdp_needed_key); 5174 } else if (new && !old) { 5175 static_branch_inc(&generic_xdp_needed_key); 5176 dev_disable_lro(dev); 5177 dev_disable_gro_hw(dev); 5178 } 5179 break; 5180 5181 case XDP_QUERY_PROG: 5182 xdp->prog_id = old ? old->aux->id : 0; 5183 break; 5184 5185 default: 5186 ret = -EINVAL; 5187 break; 5188 } 5189 5190 return ret; 5191 } 5192 5193 static int netif_receive_skb_internal(struct sk_buff *skb) 5194 { 5195 int ret; 5196 5197 net_timestamp_check(netdev_tstamp_prequeue, skb); 5198 5199 if (skb_defer_rx_timestamp(skb)) 5200 return NET_RX_SUCCESS; 5201 5202 rcu_read_lock(); 5203 #ifdef CONFIG_RPS 5204 if (static_branch_unlikely(&rps_needed)) { 5205 struct rps_dev_flow voidflow, *rflow = &voidflow; 5206 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5207 5208 if (cpu >= 0) { 5209 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5210 rcu_read_unlock(); 5211 return ret; 5212 } 5213 } 5214 #endif 5215 ret = __netif_receive_skb(skb); 5216 rcu_read_unlock(); 5217 return ret; 5218 } 5219 5220 static void netif_receive_skb_list_internal(struct list_head *head) 5221 { 5222 struct sk_buff *skb, *next; 5223 struct list_head sublist; 5224 5225 INIT_LIST_HEAD(&sublist); 5226 list_for_each_entry_safe(skb, next, head, list) { 5227 net_timestamp_check(netdev_tstamp_prequeue, skb); 5228 skb_list_del_init(skb); 5229 if (!skb_defer_rx_timestamp(skb)) 5230 list_add_tail(&skb->list, &sublist); 5231 } 5232 list_splice_init(&sublist, head); 5233 5234 rcu_read_lock(); 5235 #ifdef CONFIG_RPS 5236 if (static_branch_unlikely(&rps_needed)) { 5237 list_for_each_entry_safe(skb, next, head, list) { 5238 struct rps_dev_flow voidflow, *rflow = &voidflow; 5239 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5240 5241 if (cpu >= 0) { 5242 /* Will be handled, remove from list */ 5243 skb_list_del_init(skb); 5244 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5245 } 5246 } 5247 } 5248 #endif 5249 __netif_receive_skb_list(head); 5250 rcu_read_unlock(); 5251 } 5252 5253 /** 5254 * netif_receive_skb - process receive buffer from network 5255 * @skb: buffer to process 5256 * 5257 * netif_receive_skb() is the main receive data processing function. 5258 * It always succeeds. The buffer may be dropped during processing 5259 * for congestion control or by the protocol layers. 5260 * 5261 * This function may only be called from softirq context and interrupts 5262 * should be enabled. 5263 * 5264 * Return values (usually ignored): 5265 * NET_RX_SUCCESS: no congestion 5266 * NET_RX_DROP: packet was dropped 5267 */ 5268 int netif_receive_skb(struct sk_buff *skb) 5269 { 5270 int ret; 5271 5272 trace_netif_receive_skb_entry(skb); 5273 5274 ret = netif_receive_skb_internal(skb); 5275 trace_netif_receive_skb_exit(ret); 5276 5277 return ret; 5278 } 5279 EXPORT_SYMBOL(netif_receive_skb); 5280 5281 /** 5282 * netif_receive_skb_list - process many receive buffers from network 5283 * @head: list of skbs to process. 5284 * 5285 * Since return value of netif_receive_skb() is normally ignored, and 5286 * wouldn't be meaningful for a list, this function returns void. 5287 * 5288 * This function may only be called from softirq context and interrupts 5289 * should be enabled. 5290 */ 5291 void netif_receive_skb_list(struct list_head *head) 5292 { 5293 struct sk_buff *skb; 5294 5295 if (list_empty(head)) 5296 return; 5297 if (trace_netif_receive_skb_list_entry_enabled()) { 5298 list_for_each_entry(skb, head, list) 5299 trace_netif_receive_skb_list_entry(skb); 5300 } 5301 netif_receive_skb_list_internal(head); 5302 trace_netif_receive_skb_list_exit(0); 5303 } 5304 EXPORT_SYMBOL(netif_receive_skb_list); 5305 5306 DEFINE_PER_CPU(struct work_struct, flush_works); 5307 5308 /* Network device is going away, flush any packets still pending */ 5309 static void flush_backlog(struct work_struct *work) 5310 { 5311 struct sk_buff *skb, *tmp; 5312 struct softnet_data *sd; 5313 5314 local_bh_disable(); 5315 sd = this_cpu_ptr(&softnet_data); 5316 5317 local_irq_disable(); 5318 rps_lock(sd); 5319 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5320 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5321 __skb_unlink(skb, &sd->input_pkt_queue); 5322 kfree_skb(skb); 5323 input_queue_head_incr(sd); 5324 } 5325 } 5326 rps_unlock(sd); 5327 local_irq_enable(); 5328 5329 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5330 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5331 __skb_unlink(skb, &sd->process_queue); 5332 kfree_skb(skb); 5333 input_queue_head_incr(sd); 5334 } 5335 } 5336 local_bh_enable(); 5337 } 5338 5339 static void flush_all_backlogs(void) 5340 { 5341 unsigned int cpu; 5342 5343 get_online_cpus(); 5344 5345 for_each_online_cpu(cpu) 5346 queue_work_on(cpu, system_highpri_wq, 5347 per_cpu_ptr(&flush_works, cpu)); 5348 5349 for_each_online_cpu(cpu) 5350 flush_work(per_cpu_ptr(&flush_works, cpu)); 5351 5352 put_online_cpus(); 5353 } 5354 5355 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5356 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5357 static int napi_gro_complete(struct sk_buff *skb) 5358 { 5359 struct packet_offload *ptype; 5360 __be16 type = skb->protocol; 5361 struct list_head *head = &offload_base; 5362 int err = -ENOENT; 5363 5364 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5365 5366 if (NAPI_GRO_CB(skb)->count == 1) { 5367 skb_shinfo(skb)->gso_size = 0; 5368 goto out; 5369 } 5370 5371 rcu_read_lock(); 5372 list_for_each_entry_rcu(ptype, head, list) { 5373 if (ptype->type != type || !ptype->callbacks.gro_complete) 5374 continue; 5375 5376 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5377 ipv6_gro_complete, inet_gro_complete, 5378 skb, 0); 5379 break; 5380 } 5381 rcu_read_unlock(); 5382 5383 if (err) { 5384 WARN_ON(&ptype->list == head); 5385 kfree_skb(skb); 5386 return NET_RX_SUCCESS; 5387 } 5388 5389 out: 5390 return netif_receive_skb_internal(skb); 5391 } 5392 5393 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5394 bool flush_old) 5395 { 5396 struct list_head *head = &napi->gro_hash[index].list; 5397 struct sk_buff *skb, *p; 5398 5399 list_for_each_entry_safe_reverse(skb, p, head, list) { 5400 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5401 return; 5402 skb_list_del_init(skb); 5403 napi_gro_complete(skb); 5404 napi->gro_hash[index].count--; 5405 } 5406 5407 if (!napi->gro_hash[index].count) 5408 __clear_bit(index, &napi->gro_bitmask); 5409 } 5410 5411 /* napi->gro_hash[].list contains packets ordered by age. 5412 * youngest packets at the head of it. 5413 * Complete skbs in reverse order to reduce latencies. 5414 */ 5415 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5416 { 5417 unsigned long bitmask = napi->gro_bitmask; 5418 unsigned int i, base = ~0U; 5419 5420 while ((i = ffs(bitmask)) != 0) { 5421 bitmask >>= i; 5422 base += i; 5423 __napi_gro_flush_chain(napi, base, flush_old); 5424 } 5425 } 5426 EXPORT_SYMBOL(napi_gro_flush); 5427 5428 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5429 struct sk_buff *skb) 5430 { 5431 unsigned int maclen = skb->dev->hard_header_len; 5432 u32 hash = skb_get_hash_raw(skb); 5433 struct list_head *head; 5434 struct sk_buff *p; 5435 5436 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5437 list_for_each_entry(p, head, list) { 5438 unsigned long diffs; 5439 5440 NAPI_GRO_CB(p)->flush = 0; 5441 5442 if (hash != skb_get_hash_raw(p)) { 5443 NAPI_GRO_CB(p)->same_flow = 0; 5444 continue; 5445 } 5446 5447 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5448 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5449 if (skb_vlan_tag_present(p)) 5450 diffs |= p->vlan_tci ^ skb->vlan_tci; 5451 diffs |= skb_metadata_dst_cmp(p, skb); 5452 diffs |= skb_metadata_differs(p, skb); 5453 if (maclen == ETH_HLEN) 5454 diffs |= compare_ether_header(skb_mac_header(p), 5455 skb_mac_header(skb)); 5456 else if (!diffs) 5457 diffs = memcmp(skb_mac_header(p), 5458 skb_mac_header(skb), 5459 maclen); 5460 NAPI_GRO_CB(p)->same_flow = !diffs; 5461 } 5462 5463 return head; 5464 } 5465 5466 static void skb_gro_reset_offset(struct sk_buff *skb) 5467 { 5468 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5469 const skb_frag_t *frag0 = &pinfo->frags[0]; 5470 5471 NAPI_GRO_CB(skb)->data_offset = 0; 5472 NAPI_GRO_CB(skb)->frag0 = NULL; 5473 NAPI_GRO_CB(skb)->frag0_len = 0; 5474 5475 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5476 pinfo->nr_frags && 5477 !PageHighMem(skb_frag_page(frag0))) { 5478 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5479 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5480 skb_frag_size(frag0), 5481 skb->end - skb->tail); 5482 } 5483 } 5484 5485 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5486 { 5487 struct skb_shared_info *pinfo = skb_shinfo(skb); 5488 5489 BUG_ON(skb->end - skb->tail < grow); 5490 5491 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5492 5493 skb->data_len -= grow; 5494 skb->tail += grow; 5495 5496 skb_frag_off_add(&pinfo->frags[0], grow); 5497 skb_frag_size_sub(&pinfo->frags[0], grow); 5498 5499 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5500 skb_frag_unref(skb, 0); 5501 memmove(pinfo->frags, pinfo->frags + 1, 5502 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5503 } 5504 } 5505 5506 static void gro_flush_oldest(struct list_head *head) 5507 { 5508 struct sk_buff *oldest; 5509 5510 oldest = list_last_entry(head, struct sk_buff, list); 5511 5512 /* We are called with head length >= MAX_GRO_SKBS, so this is 5513 * impossible. 5514 */ 5515 if (WARN_ON_ONCE(!oldest)) 5516 return; 5517 5518 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5519 * SKB to the chain. 5520 */ 5521 skb_list_del_init(oldest); 5522 napi_gro_complete(oldest); 5523 } 5524 5525 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5526 struct sk_buff *)); 5527 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5528 struct sk_buff *)); 5529 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5530 { 5531 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5532 struct list_head *head = &offload_base; 5533 struct packet_offload *ptype; 5534 __be16 type = skb->protocol; 5535 struct list_head *gro_head; 5536 struct sk_buff *pp = NULL; 5537 enum gro_result ret; 5538 int same_flow; 5539 int grow; 5540 5541 if (netif_elide_gro(skb->dev)) 5542 goto normal; 5543 5544 gro_head = gro_list_prepare(napi, skb); 5545 5546 rcu_read_lock(); 5547 list_for_each_entry_rcu(ptype, head, list) { 5548 if (ptype->type != type || !ptype->callbacks.gro_receive) 5549 continue; 5550 5551 skb_set_network_header(skb, skb_gro_offset(skb)); 5552 skb_reset_mac_len(skb); 5553 NAPI_GRO_CB(skb)->same_flow = 0; 5554 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5555 NAPI_GRO_CB(skb)->free = 0; 5556 NAPI_GRO_CB(skb)->encap_mark = 0; 5557 NAPI_GRO_CB(skb)->recursion_counter = 0; 5558 NAPI_GRO_CB(skb)->is_fou = 0; 5559 NAPI_GRO_CB(skb)->is_atomic = 1; 5560 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5561 5562 /* Setup for GRO checksum validation */ 5563 switch (skb->ip_summed) { 5564 case CHECKSUM_COMPLETE: 5565 NAPI_GRO_CB(skb)->csum = skb->csum; 5566 NAPI_GRO_CB(skb)->csum_valid = 1; 5567 NAPI_GRO_CB(skb)->csum_cnt = 0; 5568 break; 5569 case CHECKSUM_UNNECESSARY: 5570 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5571 NAPI_GRO_CB(skb)->csum_valid = 0; 5572 break; 5573 default: 5574 NAPI_GRO_CB(skb)->csum_cnt = 0; 5575 NAPI_GRO_CB(skb)->csum_valid = 0; 5576 } 5577 5578 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5579 ipv6_gro_receive, inet_gro_receive, 5580 gro_head, skb); 5581 break; 5582 } 5583 rcu_read_unlock(); 5584 5585 if (&ptype->list == head) 5586 goto normal; 5587 5588 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5589 ret = GRO_CONSUMED; 5590 goto ok; 5591 } 5592 5593 same_flow = NAPI_GRO_CB(skb)->same_flow; 5594 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5595 5596 if (pp) { 5597 skb_list_del_init(pp); 5598 napi_gro_complete(pp); 5599 napi->gro_hash[hash].count--; 5600 } 5601 5602 if (same_flow) 5603 goto ok; 5604 5605 if (NAPI_GRO_CB(skb)->flush) 5606 goto normal; 5607 5608 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5609 gro_flush_oldest(gro_head); 5610 } else { 5611 napi->gro_hash[hash].count++; 5612 } 5613 NAPI_GRO_CB(skb)->count = 1; 5614 NAPI_GRO_CB(skb)->age = jiffies; 5615 NAPI_GRO_CB(skb)->last = skb; 5616 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5617 list_add(&skb->list, gro_head); 5618 ret = GRO_HELD; 5619 5620 pull: 5621 grow = skb_gro_offset(skb) - skb_headlen(skb); 5622 if (grow > 0) 5623 gro_pull_from_frag0(skb, grow); 5624 ok: 5625 if (napi->gro_hash[hash].count) { 5626 if (!test_bit(hash, &napi->gro_bitmask)) 5627 __set_bit(hash, &napi->gro_bitmask); 5628 } else if (test_bit(hash, &napi->gro_bitmask)) { 5629 __clear_bit(hash, &napi->gro_bitmask); 5630 } 5631 5632 return ret; 5633 5634 normal: 5635 ret = GRO_NORMAL; 5636 goto pull; 5637 } 5638 5639 struct packet_offload *gro_find_receive_by_type(__be16 type) 5640 { 5641 struct list_head *offload_head = &offload_base; 5642 struct packet_offload *ptype; 5643 5644 list_for_each_entry_rcu(ptype, offload_head, list) { 5645 if (ptype->type != type || !ptype->callbacks.gro_receive) 5646 continue; 5647 return ptype; 5648 } 5649 return NULL; 5650 } 5651 EXPORT_SYMBOL(gro_find_receive_by_type); 5652 5653 struct packet_offload *gro_find_complete_by_type(__be16 type) 5654 { 5655 struct list_head *offload_head = &offload_base; 5656 struct packet_offload *ptype; 5657 5658 list_for_each_entry_rcu(ptype, offload_head, list) { 5659 if (ptype->type != type || !ptype->callbacks.gro_complete) 5660 continue; 5661 return ptype; 5662 } 5663 return NULL; 5664 } 5665 EXPORT_SYMBOL(gro_find_complete_by_type); 5666 5667 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5668 { 5669 skb_dst_drop(skb); 5670 skb_ext_put(skb); 5671 kmem_cache_free(skbuff_head_cache, skb); 5672 } 5673 5674 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5675 { 5676 switch (ret) { 5677 case GRO_NORMAL: 5678 if (netif_receive_skb_internal(skb)) 5679 ret = GRO_DROP; 5680 break; 5681 5682 case GRO_DROP: 5683 kfree_skb(skb); 5684 break; 5685 5686 case GRO_MERGED_FREE: 5687 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5688 napi_skb_free_stolen_head(skb); 5689 else 5690 __kfree_skb(skb); 5691 break; 5692 5693 case GRO_HELD: 5694 case GRO_MERGED: 5695 case GRO_CONSUMED: 5696 break; 5697 } 5698 5699 return ret; 5700 } 5701 5702 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5703 { 5704 gro_result_t ret; 5705 5706 skb_mark_napi_id(skb, napi); 5707 trace_napi_gro_receive_entry(skb); 5708 5709 skb_gro_reset_offset(skb); 5710 5711 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb); 5712 trace_napi_gro_receive_exit(ret); 5713 5714 return ret; 5715 } 5716 EXPORT_SYMBOL(napi_gro_receive); 5717 5718 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5719 { 5720 if (unlikely(skb->pfmemalloc)) { 5721 consume_skb(skb); 5722 return; 5723 } 5724 __skb_pull(skb, skb_headlen(skb)); 5725 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5726 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5727 __vlan_hwaccel_clear_tag(skb); 5728 skb->dev = napi->dev; 5729 skb->skb_iif = 0; 5730 5731 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5732 skb->pkt_type = PACKET_HOST; 5733 5734 skb->encapsulation = 0; 5735 skb_shinfo(skb)->gso_type = 0; 5736 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5737 skb_ext_reset(skb); 5738 5739 napi->skb = skb; 5740 } 5741 5742 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5743 { 5744 struct sk_buff *skb = napi->skb; 5745 5746 if (!skb) { 5747 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5748 if (skb) { 5749 napi->skb = skb; 5750 skb_mark_napi_id(skb, napi); 5751 } 5752 } 5753 return skb; 5754 } 5755 EXPORT_SYMBOL(napi_get_frags); 5756 5757 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5758 static void gro_normal_list(struct napi_struct *napi) 5759 { 5760 if (!napi->rx_count) 5761 return; 5762 netif_receive_skb_list_internal(&napi->rx_list); 5763 INIT_LIST_HEAD(&napi->rx_list); 5764 napi->rx_count = 0; 5765 } 5766 5767 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5768 * pass the whole batch up to the stack. 5769 */ 5770 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5771 { 5772 list_add_tail(&skb->list, &napi->rx_list); 5773 if (++napi->rx_count >= gro_normal_batch) 5774 gro_normal_list(napi); 5775 } 5776 5777 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5778 struct sk_buff *skb, 5779 gro_result_t ret) 5780 { 5781 switch (ret) { 5782 case GRO_NORMAL: 5783 case GRO_HELD: 5784 __skb_push(skb, ETH_HLEN); 5785 skb->protocol = eth_type_trans(skb, skb->dev); 5786 if (ret == GRO_NORMAL) 5787 gro_normal_one(napi, skb); 5788 break; 5789 5790 case GRO_DROP: 5791 napi_reuse_skb(napi, skb); 5792 break; 5793 5794 case GRO_MERGED_FREE: 5795 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5796 napi_skb_free_stolen_head(skb); 5797 else 5798 napi_reuse_skb(napi, skb); 5799 break; 5800 5801 case GRO_MERGED: 5802 case GRO_CONSUMED: 5803 break; 5804 } 5805 5806 return ret; 5807 } 5808 5809 /* Upper GRO stack assumes network header starts at gro_offset=0 5810 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5811 * We copy ethernet header into skb->data to have a common layout. 5812 */ 5813 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5814 { 5815 struct sk_buff *skb = napi->skb; 5816 const struct ethhdr *eth; 5817 unsigned int hlen = sizeof(*eth); 5818 5819 napi->skb = NULL; 5820 5821 skb_reset_mac_header(skb); 5822 skb_gro_reset_offset(skb); 5823 5824 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5825 eth = skb_gro_header_slow(skb, hlen, 0); 5826 if (unlikely(!eth)) { 5827 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5828 __func__, napi->dev->name); 5829 napi_reuse_skb(napi, skb); 5830 return NULL; 5831 } 5832 } else { 5833 eth = (const struct ethhdr *)skb->data; 5834 gro_pull_from_frag0(skb, hlen); 5835 NAPI_GRO_CB(skb)->frag0 += hlen; 5836 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5837 } 5838 __skb_pull(skb, hlen); 5839 5840 /* 5841 * This works because the only protocols we care about don't require 5842 * special handling. 5843 * We'll fix it up properly in napi_frags_finish() 5844 */ 5845 skb->protocol = eth->h_proto; 5846 5847 return skb; 5848 } 5849 5850 gro_result_t napi_gro_frags(struct napi_struct *napi) 5851 { 5852 gro_result_t ret; 5853 struct sk_buff *skb = napi_frags_skb(napi); 5854 5855 if (!skb) 5856 return GRO_DROP; 5857 5858 trace_napi_gro_frags_entry(skb); 5859 5860 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5861 trace_napi_gro_frags_exit(ret); 5862 5863 return ret; 5864 } 5865 EXPORT_SYMBOL(napi_gro_frags); 5866 5867 /* Compute the checksum from gro_offset and return the folded value 5868 * after adding in any pseudo checksum. 5869 */ 5870 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5871 { 5872 __wsum wsum; 5873 __sum16 sum; 5874 5875 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5876 5877 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5878 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5879 /* See comments in __skb_checksum_complete(). */ 5880 if (likely(!sum)) { 5881 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5882 !skb->csum_complete_sw) 5883 netdev_rx_csum_fault(skb->dev, skb); 5884 } 5885 5886 NAPI_GRO_CB(skb)->csum = wsum; 5887 NAPI_GRO_CB(skb)->csum_valid = 1; 5888 5889 return sum; 5890 } 5891 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5892 5893 static void net_rps_send_ipi(struct softnet_data *remsd) 5894 { 5895 #ifdef CONFIG_RPS 5896 while (remsd) { 5897 struct softnet_data *next = remsd->rps_ipi_next; 5898 5899 if (cpu_online(remsd->cpu)) 5900 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5901 remsd = next; 5902 } 5903 #endif 5904 } 5905 5906 /* 5907 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5908 * Note: called with local irq disabled, but exits with local irq enabled. 5909 */ 5910 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5911 { 5912 #ifdef CONFIG_RPS 5913 struct softnet_data *remsd = sd->rps_ipi_list; 5914 5915 if (remsd) { 5916 sd->rps_ipi_list = NULL; 5917 5918 local_irq_enable(); 5919 5920 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5921 net_rps_send_ipi(remsd); 5922 } else 5923 #endif 5924 local_irq_enable(); 5925 } 5926 5927 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5928 { 5929 #ifdef CONFIG_RPS 5930 return sd->rps_ipi_list != NULL; 5931 #else 5932 return false; 5933 #endif 5934 } 5935 5936 static int process_backlog(struct napi_struct *napi, int quota) 5937 { 5938 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5939 bool again = true; 5940 int work = 0; 5941 5942 /* Check if we have pending ipi, its better to send them now, 5943 * not waiting net_rx_action() end. 5944 */ 5945 if (sd_has_rps_ipi_waiting(sd)) { 5946 local_irq_disable(); 5947 net_rps_action_and_irq_enable(sd); 5948 } 5949 5950 napi->weight = dev_rx_weight; 5951 while (again) { 5952 struct sk_buff *skb; 5953 5954 while ((skb = __skb_dequeue(&sd->process_queue))) { 5955 rcu_read_lock(); 5956 __netif_receive_skb(skb); 5957 rcu_read_unlock(); 5958 input_queue_head_incr(sd); 5959 if (++work >= quota) 5960 return work; 5961 5962 } 5963 5964 local_irq_disable(); 5965 rps_lock(sd); 5966 if (skb_queue_empty(&sd->input_pkt_queue)) { 5967 /* 5968 * Inline a custom version of __napi_complete(). 5969 * only current cpu owns and manipulates this napi, 5970 * and NAPI_STATE_SCHED is the only possible flag set 5971 * on backlog. 5972 * We can use a plain write instead of clear_bit(), 5973 * and we dont need an smp_mb() memory barrier. 5974 */ 5975 napi->state = 0; 5976 again = false; 5977 } else { 5978 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5979 &sd->process_queue); 5980 } 5981 rps_unlock(sd); 5982 local_irq_enable(); 5983 } 5984 5985 return work; 5986 } 5987 5988 /** 5989 * __napi_schedule - schedule for receive 5990 * @n: entry to schedule 5991 * 5992 * The entry's receive function will be scheduled to run. 5993 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5994 */ 5995 void __napi_schedule(struct napi_struct *n) 5996 { 5997 unsigned long flags; 5998 5999 local_irq_save(flags); 6000 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6001 local_irq_restore(flags); 6002 } 6003 EXPORT_SYMBOL(__napi_schedule); 6004 6005 /** 6006 * napi_schedule_prep - check if napi can be scheduled 6007 * @n: napi context 6008 * 6009 * Test if NAPI routine is already running, and if not mark 6010 * it as running. This is used as a condition variable 6011 * insure only one NAPI poll instance runs. We also make 6012 * sure there is no pending NAPI disable. 6013 */ 6014 bool napi_schedule_prep(struct napi_struct *n) 6015 { 6016 unsigned long val, new; 6017 6018 do { 6019 val = READ_ONCE(n->state); 6020 if (unlikely(val & NAPIF_STATE_DISABLE)) 6021 return false; 6022 new = val | NAPIF_STATE_SCHED; 6023 6024 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6025 * This was suggested by Alexander Duyck, as compiler 6026 * emits better code than : 6027 * if (val & NAPIF_STATE_SCHED) 6028 * new |= NAPIF_STATE_MISSED; 6029 */ 6030 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6031 NAPIF_STATE_MISSED; 6032 } while (cmpxchg(&n->state, val, new) != val); 6033 6034 return !(val & NAPIF_STATE_SCHED); 6035 } 6036 EXPORT_SYMBOL(napi_schedule_prep); 6037 6038 /** 6039 * __napi_schedule_irqoff - schedule for receive 6040 * @n: entry to schedule 6041 * 6042 * Variant of __napi_schedule() assuming hard irqs are masked 6043 */ 6044 void __napi_schedule_irqoff(struct napi_struct *n) 6045 { 6046 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6047 } 6048 EXPORT_SYMBOL(__napi_schedule_irqoff); 6049 6050 bool napi_complete_done(struct napi_struct *n, int work_done) 6051 { 6052 unsigned long flags, val, new; 6053 6054 /* 6055 * 1) Don't let napi dequeue from the cpu poll list 6056 * just in case its running on a different cpu. 6057 * 2) If we are busy polling, do nothing here, we have 6058 * the guarantee we will be called later. 6059 */ 6060 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6061 NAPIF_STATE_IN_BUSY_POLL))) 6062 return false; 6063 6064 gro_normal_list(n); 6065 6066 if (n->gro_bitmask) { 6067 unsigned long timeout = 0; 6068 6069 if (work_done) 6070 timeout = n->dev->gro_flush_timeout; 6071 6072 /* When the NAPI instance uses a timeout and keeps postponing 6073 * it, we need to bound somehow the time packets are kept in 6074 * the GRO layer 6075 */ 6076 napi_gro_flush(n, !!timeout); 6077 if (timeout) 6078 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6079 HRTIMER_MODE_REL_PINNED); 6080 } 6081 if (unlikely(!list_empty(&n->poll_list))) { 6082 /* If n->poll_list is not empty, we need to mask irqs */ 6083 local_irq_save(flags); 6084 list_del_init(&n->poll_list); 6085 local_irq_restore(flags); 6086 } 6087 6088 do { 6089 val = READ_ONCE(n->state); 6090 6091 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6092 6093 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6094 6095 /* If STATE_MISSED was set, leave STATE_SCHED set, 6096 * because we will call napi->poll() one more time. 6097 * This C code was suggested by Alexander Duyck to help gcc. 6098 */ 6099 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6100 NAPIF_STATE_SCHED; 6101 } while (cmpxchg(&n->state, val, new) != val); 6102 6103 if (unlikely(val & NAPIF_STATE_MISSED)) { 6104 __napi_schedule(n); 6105 return false; 6106 } 6107 6108 return true; 6109 } 6110 EXPORT_SYMBOL(napi_complete_done); 6111 6112 /* must be called under rcu_read_lock(), as we dont take a reference */ 6113 static struct napi_struct *napi_by_id(unsigned int napi_id) 6114 { 6115 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6116 struct napi_struct *napi; 6117 6118 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6119 if (napi->napi_id == napi_id) 6120 return napi; 6121 6122 return NULL; 6123 } 6124 6125 #if defined(CONFIG_NET_RX_BUSY_POLL) 6126 6127 #define BUSY_POLL_BUDGET 8 6128 6129 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6130 { 6131 int rc; 6132 6133 /* Busy polling means there is a high chance device driver hard irq 6134 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6135 * set in napi_schedule_prep(). 6136 * Since we are about to call napi->poll() once more, we can safely 6137 * clear NAPI_STATE_MISSED. 6138 * 6139 * Note: x86 could use a single "lock and ..." instruction 6140 * to perform these two clear_bit() 6141 */ 6142 clear_bit(NAPI_STATE_MISSED, &napi->state); 6143 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6144 6145 local_bh_disable(); 6146 6147 /* All we really want here is to re-enable device interrupts. 6148 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6149 */ 6150 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6151 /* We can't gro_normal_list() here, because napi->poll() might have 6152 * rearmed the napi (napi_complete_done()) in which case it could 6153 * already be running on another CPU. 6154 */ 6155 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6156 netpoll_poll_unlock(have_poll_lock); 6157 if (rc == BUSY_POLL_BUDGET) { 6158 /* As the whole budget was spent, we still own the napi so can 6159 * safely handle the rx_list. 6160 */ 6161 gro_normal_list(napi); 6162 __napi_schedule(napi); 6163 } 6164 local_bh_enable(); 6165 } 6166 6167 void napi_busy_loop(unsigned int napi_id, 6168 bool (*loop_end)(void *, unsigned long), 6169 void *loop_end_arg) 6170 { 6171 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6172 int (*napi_poll)(struct napi_struct *napi, int budget); 6173 void *have_poll_lock = NULL; 6174 struct napi_struct *napi; 6175 6176 restart: 6177 napi_poll = NULL; 6178 6179 rcu_read_lock(); 6180 6181 napi = napi_by_id(napi_id); 6182 if (!napi) 6183 goto out; 6184 6185 preempt_disable(); 6186 for (;;) { 6187 int work = 0; 6188 6189 local_bh_disable(); 6190 if (!napi_poll) { 6191 unsigned long val = READ_ONCE(napi->state); 6192 6193 /* If multiple threads are competing for this napi, 6194 * we avoid dirtying napi->state as much as we can. 6195 */ 6196 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6197 NAPIF_STATE_IN_BUSY_POLL)) 6198 goto count; 6199 if (cmpxchg(&napi->state, val, 6200 val | NAPIF_STATE_IN_BUSY_POLL | 6201 NAPIF_STATE_SCHED) != val) 6202 goto count; 6203 have_poll_lock = netpoll_poll_lock(napi); 6204 napi_poll = napi->poll; 6205 } 6206 work = napi_poll(napi, BUSY_POLL_BUDGET); 6207 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6208 gro_normal_list(napi); 6209 count: 6210 if (work > 0) 6211 __NET_ADD_STATS(dev_net(napi->dev), 6212 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6213 local_bh_enable(); 6214 6215 if (!loop_end || loop_end(loop_end_arg, start_time)) 6216 break; 6217 6218 if (unlikely(need_resched())) { 6219 if (napi_poll) 6220 busy_poll_stop(napi, have_poll_lock); 6221 preempt_enable(); 6222 rcu_read_unlock(); 6223 cond_resched(); 6224 if (loop_end(loop_end_arg, start_time)) 6225 return; 6226 goto restart; 6227 } 6228 cpu_relax(); 6229 } 6230 if (napi_poll) 6231 busy_poll_stop(napi, have_poll_lock); 6232 preempt_enable(); 6233 out: 6234 rcu_read_unlock(); 6235 } 6236 EXPORT_SYMBOL(napi_busy_loop); 6237 6238 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6239 6240 static void napi_hash_add(struct napi_struct *napi) 6241 { 6242 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6243 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6244 return; 6245 6246 spin_lock(&napi_hash_lock); 6247 6248 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6249 do { 6250 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6251 napi_gen_id = MIN_NAPI_ID; 6252 } while (napi_by_id(napi_gen_id)); 6253 napi->napi_id = napi_gen_id; 6254 6255 hlist_add_head_rcu(&napi->napi_hash_node, 6256 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6257 6258 spin_unlock(&napi_hash_lock); 6259 } 6260 6261 /* Warning : caller is responsible to make sure rcu grace period 6262 * is respected before freeing memory containing @napi 6263 */ 6264 bool napi_hash_del(struct napi_struct *napi) 6265 { 6266 bool rcu_sync_needed = false; 6267 6268 spin_lock(&napi_hash_lock); 6269 6270 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6271 rcu_sync_needed = true; 6272 hlist_del_rcu(&napi->napi_hash_node); 6273 } 6274 spin_unlock(&napi_hash_lock); 6275 return rcu_sync_needed; 6276 } 6277 EXPORT_SYMBOL_GPL(napi_hash_del); 6278 6279 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6280 { 6281 struct napi_struct *napi; 6282 6283 napi = container_of(timer, struct napi_struct, timer); 6284 6285 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6286 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6287 */ 6288 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6289 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6290 __napi_schedule_irqoff(napi); 6291 6292 return HRTIMER_NORESTART; 6293 } 6294 6295 static void init_gro_hash(struct napi_struct *napi) 6296 { 6297 int i; 6298 6299 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6300 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6301 napi->gro_hash[i].count = 0; 6302 } 6303 napi->gro_bitmask = 0; 6304 } 6305 6306 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6307 int (*poll)(struct napi_struct *, int), int weight) 6308 { 6309 INIT_LIST_HEAD(&napi->poll_list); 6310 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6311 napi->timer.function = napi_watchdog; 6312 init_gro_hash(napi); 6313 napi->skb = NULL; 6314 INIT_LIST_HEAD(&napi->rx_list); 6315 napi->rx_count = 0; 6316 napi->poll = poll; 6317 if (weight > NAPI_POLL_WEIGHT) 6318 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6319 weight); 6320 napi->weight = weight; 6321 list_add(&napi->dev_list, &dev->napi_list); 6322 napi->dev = dev; 6323 #ifdef CONFIG_NETPOLL 6324 napi->poll_owner = -1; 6325 #endif 6326 set_bit(NAPI_STATE_SCHED, &napi->state); 6327 napi_hash_add(napi); 6328 } 6329 EXPORT_SYMBOL(netif_napi_add); 6330 6331 void napi_disable(struct napi_struct *n) 6332 { 6333 might_sleep(); 6334 set_bit(NAPI_STATE_DISABLE, &n->state); 6335 6336 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6337 msleep(1); 6338 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6339 msleep(1); 6340 6341 hrtimer_cancel(&n->timer); 6342 6343 clear_bit(NAPI_STATE_DISABLE, &n->state); 6344 } 6345 EXPORT_SYMBOL(napi_disable); 6346 6347 static void flush_gro_hash(struct napi_struct *napi) 6348 { 6349 int i; 6350 6351 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6352 struct sk_buff *skb, *n; 6353 6354 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6355 kfree_skb(skb); 6356 napi->gro_hash[i].count = 0; 6357 } 6358 } 6359 6360 /* Must be called in process context */ 6361 void netif_napi_del(struct napi_struct *napi) 6362 { 6363 might_sleep(); 6364 if (napi_hash_del(napi)) 6365 synchronize_net(); 6366 list_del_init(&napi->dev_list); 6367 napi_free_frags(napi); 6368 6369 flush_gro_hash(napi); 6370 napi->gro_bitmask = 0; 6371 } 6372 EXPORT_SYMBOL(netif_napi_del); 6373 6374 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6375 { 6376 void *have; 6377 int work, weight; 6378 6379 list_del_init(&n->poll_list); 6380 6381 have = netpoll_poll_lock(n); 6382 6383 weight = n->weight; 6384 6385 /* This NAPI_STATE_SCHED test is for avoiding a race 6386 * with netpoll's poll_napi(). Only the entity which 6387 * obtains the lock and sees NAPI_STATE_SCHED set will 6388 * actually make the ->poll() call. Therefore we avoid 6389 * accidentally calling ->poll() when NAPI is not scheduled. 6390 */ 6391 work = 0; 6392 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6393 work = n->poll(n, weight); 6394 trace_napi_poll(n, work, weight); 6395 } 6396 6397 WARN_ON_ONCE(work > weight); 6398 6399 if (likely(work < weight)) 6400 goto out_unlock; 6401 6402 /* Drivers must not modify the NAPI state if they 6403 * consume the entire weight. In such cases this code 6404 * still "owns" the NAPI instance and therefore can 6405 * move the instance around on the list at-will. 6406 */ 6407 if (unlikely(napi_disable_pending(n))) { 6408 napi_complete(n); 6409 goto out_unlock; 6410 } 6411 6412 gro_normal_list(n); 6413 6414 if (n->gro_bitmask) { 6415 /* flush too old packets 6416 * If HZ < 1000, flush all packets. 6417 */ 6418 napi_gro_flush(n, HZ >= 1000); 6419 } 6420 6421 /* Some drivers may have called napi_schedule 6422 * prior to exhausting their budget. 6423 */ 6424 if (unlikely(!list_empty(&n->poll_list))) { 6425 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6426 n->dev ? n->dev->name : "backlog"); 6427 goto out_unlock; 6428 } 6429 6430 list_add_tail(&n->poll_list, repoll); 6431 6432 out_unlock: 6433 netpoll_poll_unlock(have); 6434 6435 return work; 6436 } 6437 6438 static __latent_entropy void net_rx_action(struct softirq_action *h) 6439 { 6440 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6441 unsigned long time_limit = jiffies + 6442 usecs_to_jiffies(netdev_budget_usecs); 6443 int budget = netdev_budget; 6444 LIST_HEAD(list); 6445 LIST_HEAD(repoll); 6446 6447 local_irq_disable(); 6448 list_splice_init(&sd->poll_list, &list); 6449 local_irq_enable(); 6450 6451 for (;;) { 6452 struct napi_struct *n; 6453 6454 if (list_empty(&list)) { 6455 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6456 goto out; 6457 break; 6458 } 6459 6460 n = list_first_entry(&list, struct napi_struct, poll_list); 6461 budget -= napi_poll(n, &repoll); 6462 6463 /* If softirq window is exhausted then punt. 6464 * Allow this to run for 2 jiffies since which will allow 6465 * an average latency of 1.5/HZ. 6466 */ 6467 if (unlikely(budget <= 0 || 6468 time_after_eq(jiffies, time_limit))) { 6469 sd->time_squeeze++; 6470 break; 6471 } 6472 } 6473 6474 local_irq_disable(); 6475 6476 list_splice_tail_init(&sd->poll_list, &list); 6477 list_splice_tail(&repoll, &list); 6478 list_splice(&list, &sd->poll_list); 6479 if (!list_empty(&sd->poll_list)) 6480 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6481 6482 net_rps_action_and_irq_enable(sd); 6483 out: 6484 __kfree_skb_flush(); 6485 } 6486 6487 struct netdev_adjacent { 6488 struct net_device *dev; 6489 6490 /* upper master flag, there can only be one master device per list */ 6491 bool master; 6492 6493 /* counter for the number of times this device was added to us */ 6494 u16 ref_nr; 6495 6496 /* private field for the users */ 6497 void *private; 6498 6499 struct list_head list; 6500 struct rcu_head rcu; 6501 }; 6502 6503 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6504 struct list_head *adj_list) 6505 { 6506 struct netdev_adjacent *adj; 6507 6508 list_for_each_entry(adj, adj_list, list) { 6509 if (adj->dev == adj_dev) 6510 return adj; 6511 } 6512 return NULL; 6513 } 6514 6515 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6516 { 6517 struct net_device *dev = data; 6518 6519 return upper_dev == dev; 6520 } 6521 6522 /** 6523 * netdev_has_upper_dev - Check if device is linked to an upper device 6524 * @dev: device 6525 * @upper_dev: upper device to check 6526 * 6527 * Find out if a device is linked to specified upper device and return true 6528 * in case it is. Note that this checks only immediate upper device, 6529 * not through a complete stack of devices. The caller must hold the RTNL lock. 6530 */ 6531 bool netdev_has_upper_dev(struct net_device *dev, 6532 struct net_device *upper_dev) 6533 { 6534 ASSERT_RTNL(); 6535 6536 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6537 upper_dev); 6538 } 6539 EXPORT_SYMBOL(netdev_has_upper_dev); 6540 6541 /** 6542 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6543 * @dev: device 6544 * @upper_dev: upper device to check 6545 * 6546 * Find out if a device is linked to specified upper device and return true 6547 * in case it is. Note that this checks the entire upper device chain. 6548 * The caller must hold rcu lock. 6549 */ 6550 6551 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6552 struct net_device *upper_dev) 6553 { 6554 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6555 upper_dev); 6556 } 6557 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6558 6559 /** 6560 * netdev_has_any_upper_dev - Check if device is linked to some device 6561 * @dev: device 6562 * 6563 * Find out if a device is linked to an upper device and return true in case 6564 * it is. The caller must hold the RTNL lock. 6565 */ 6566 bool netdev_has_any_upper_dev(struct net_device *dev) 6567 { 6568 ASSERT_RTNL(); 6569 6570 return !list_empty(&dev->adj_list.upper); 6571 } 6572 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6573 6574 /** 6575 * netdev_master_upper_dev_get - Get master upper device 6576 * @dev: device 6577 * 6578 * Find a master upper device and return pointer to it or NULL in case 6579 * it's not there. The caller must hold the RTNL lock. 6580 */ 6581 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6582 { 6583 struct netdev_adjacent *upper; 6584 6585 ASSERT_RTNL(); 6586 6587 if (list_empty(&dev->adj_list.upper)) 6588 return NULL; 6589 6590 upper = list_first_entry(&dev->adj_list.upper, 6591 struct netdev_adjacent, list); 6592 if (likely(upper->master)) 6593 return upper->dev; 6594 return NULL; 6595 } 6596 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6597 6598 /** 6599 * netdev_has_any_lower_dev - Check if device is linked to some device 6600 * @dev: device 6601 * 6602 * Find out if a device is linked to a lower device and return true in case 6603 * it is. The caller must hold the RTNL lock. 6604 */ 6605 static bool netdev_has_any_lower_dev(struct net_device *dev) 6606 { 6607 ASSERT_RTNL(); 6608 6609 return !list_empty(&dev->adj_list.lower); 6610 } 6611 6612 void *netdev_adjacent_get_private(struct list_head *adj_list) 6613 { 6614 struct netdev_adjacent *adj; 6615 6616 adj = list_entry(adj_list, struct netdev_adjacent, list); 6617 6618 return adj->private; 6619 } 6620 EXPORT_SYMBOL(netdev_adjacent_get_private); 6621 6622 /** 6623 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6624 * @dev: device 6625 * @iter: list_head ** of the current position 6626 * 6627 * Gets the next device from the dev's upper list, starting from iter 6628 * position. The caller must hold RCU read lock. 6629 */ 6630 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6631 struct list_head **iter) 6632 { 6633 struct netdev_adjacent *upper; 6634 6635 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6636 6637 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6638 6639 if (&upper->list == &dev->adj_list.upper) 6640 return NULL; 6641 6642 *iter = &upper->list; 6643 6644 return upper->dev; 6645 } 6646 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6647 6648 static struct net_device *netdev_next_upper_dev(struct net_device *dev, 6649 struct list_head **iter) 6650 { 6651 struct netdev_adjacent *upper; 6652 6653 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6654 6655 if (&upper->list == &dev->adj_list.upper) 6656 return NULL; 6657 6658 *iter = &upper->list; 6659 6660 return upper->dev; 6661 } 6662 6663 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6664 struct list_head **iter) 6665 { 6666 struct netdev_adjacent *upper; 6667 6668 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6669 6670 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6671 6672 if (&upper->list == &dev->adj_list.upper) 6673 return NULL; 6674 6675 *iter = &upper->list; 6676 6677 return upper->dev; 6678 } 6679 6680 static int netdev_walk_all_upper_dev(struct net_device *dev, 6681 int (*fn)(struct net_device *dev, 6682 void *data), 6683 void *data) 6684 { 6685 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6686 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6687 int ret, cur = 0; 6688 6689 now = dev; 6690 iter = &dev->adj_list.upper; 6691 6692 while (1) { 6693 if (now != dev) { 6694 ret = fn(now, data); 6695 if (ret) 6696 return ret; 6697 } 6698 6699 next = NULL; 6700 while (1) { 6701 udev = netdev_next_upper_dev(now, &iter); 6702 if (!udev) 6703 break; 6704 6705 next = udev; 6706 niter = &udev->adj_list.upper; 6707 dev_stack[cur] = now; 6708 iter_stack[cur++] = iter; 6709 break; 6710 } 6711 6712 if (!next) { 6713 if (!cur) 6714 return 0; 6715 next = dev_stack[--cur]; 6716 niter = iter_stack[cur]; 6717 } 6718 6719 now = next; 6720 iter = niter; 6721 } 6722 6723 return 0; 6724 } 6725 6726 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6727 int (*fn)(struct net_device *dev, 6728 void *data), 6729 void *data) 6730 { 6731 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6732 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6733 int ret, cur = 0; 6734 6735 now = dev; 6736 iter = &dev->adj_list.upper; 6737 6738 while (1) { 6739 if (now != dev) { 6740 ret = fn(now, data); 6741 if (ret) 6742 return ret; 6743 } 6744 6745 next = NULL; 6746 while (1) { 6747 udev = netdev_next_upper_dev_rcu(now, &iter); 6748 if (!udev) 6749 break; 6750 6751 next = udev; 6752 niter = &udev->adj_list.upper; 6753 dev_stack[cur] = now; 6754 iter_stack[cur++] = iter; 6755 break; 6756 } 6757 6758 if (!next) { 6759 if (!cur) 6760 return 0; 6761 next = dev_stack[--cur]; 6762 niter = iter_stack[cur]; 6763 } 6764 6765 now = next; 6766 iter = niter; 6767 } 6768 6769 return 0; 6770 } 6771 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6772 6773 /** 6774 * netdev_lower_get_next_private - Get the next ->private from the 6775 * lower neighbour list 6776 * @dev: device 6777 * @iter: list_head ** of the current position 6778 * 6779 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6780 * list, starting from iter position. The caller must hold either hold the 6781 * RTNL lock or its own locking that guarantees that the neighbour lower 6782 * list will remain unchanged. 6783 */ 6784 void *netdev_lower_get_next_private(struct net_device *dev, 6785 struct list_head **iter) 6786 { 6787 struct netdev_adjacent *lower; 6788 6789 lower = list_entry(*iter, struct netdev_adjacent, list); 6790 6791 if (&lower->list == &dev->adj_list.lower) 6792 return NULL; 6793 6794 *iter = lower->list.next; 6795 6796 return lower->private; 6797 } 6798 EXPORT_SYMBOL(netdev_lower_get_next_private); 6799 6800 /** 6801 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6802 * lower neighbour list, RCU 6803 * variant 6804 * @dev: device 6805 * @iter: list_head ** of the current position 6806 * 6807 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6808 * list, starting from iter position. The caller must hold RCU read lock. 6809 */ 6810 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6811 struct list_head **iter) 6812 { 6813 struct netdev_adjacent *lower; 6814 6815 WARN_ON_ONCE(!rcu_read_lock_held()); 6816 6817 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6818 6819 if (&lower->list == &dev->adj_list.lower) 6820 return NULL; 6821 6822 *iter = &lower->list; 6823 6824 return lower->private; 6825 } 6826 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6827 6828 /** 6829 * netdev_lower_get_next - Get the next device from the lower neighbour 6830 * list 6831 * @dev: device 6832 * @iter: list_head ** of the current position 6833 * 6834 * Gets the next netdev_adjacent from the dev's lower neighbour 6835 * list, starting from iter position. The caller must hold RTNL lock or 6836 * its own locking that guarantees that the neighbour lower 6837 * list will remain unchanged. 6838 */ 6839 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6840 { 6841 struct netdev_adjacent *lower; 6842 6843 lower = list_entry(*iter, struct netdev_adjacent, list); 6844 6845 if (&lower->list == &dev->adj_list.lower) 6846 return NULL; 6847 6848 *iter = lower->list.next; 6849 6850 return lower->dev; 6851 } 6852 EXPORT_SYMBOL(netdev_lower_get_next); 6853 6854 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6855 struct list_head **iter) 6856 { 6857 struct netdev_adjacent *lower; 6858 6859 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6860 6861 if (&lower->list == &dev->adj_list.lower) 6862 return NULL; 6863 6864 *iter = &lower->list; 6865 6866 return lower->dev; 6867 } 6868 6869 int netdev_walk_all_lower_dev(struct net_device *dev, 6870 int (*fn)(struct net_device *dev, 6871 void *data), 6872 void *data) 6873 { 6874 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6875 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6876 int ret, cur = 0; 6877 6878 now = dev; 6879 iter = &dev->adj_list.lower; 6880 6881 while (1) { 6882 if (now != dev) { 6883 ret = fn(now, data); 6884 if (ret) 6885 return ret; 6886 } 6887 6888 next = NULL; 6889 while (1) { 6890 ldev = netdev_next_lower_dev(now, &iter); 6891 if (!ldev) 6892 break; 6893 6894 next = ldev; 6895 niter = &ldev->adj_list.lower; 6896 dev_stack[cur] = now; 6897 iter_stack[cur++] = iter; 6898 break; 6899 } 6900 6901 if (!next) { 6902 if (!cur) 6903 return 0; 6904 next = dev_stack[--cur]; 6905 niter = iter_stack[cur]; 6906 } 6907 6908 now = next; 6909 iter = niter; 6910 } 6911 6912 return 0; 6913 } 6914 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6915 6916 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6917 struct list_head **iter) 6918 { 6919 struct netdev_adjacent *lower; 6920 6921 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6922 if (&lower->list == &dev->adj_list.lower) 6923 return NULL; 6924 6925 *iter = &lower->list; 6926 6927 return lower->dev; 6928 } 6929 6930 static u8 __netdev_upper_depth(struct net_device *dev) 6931 { 6932 struct net_device *udev; 6933 struct list_head *iter; 6934 u8 max_depth = 0; 6935 6936 for (iter = &dev->adj_list.upper, 6937 udev = netdev_next_upper_dev(dev, &iter); 6938 udev; 6939 udev = netdev_next_upper_dev(dev, &iter)) { 6940 if (max_depth < udev->upper_level) 6941 max_depth = udev->upper_level; 6942 } 6943 6944 return max_depth; 6945 } 6946 6947 static u8 __netdev_lower_depth(struct net_device *dev) 6948 { 6949 struct net_device *ldev; 6950 struct list_head *iter; 6951 u8 max_depth = 0; 6952 6953 for (iter = &dev->adj_list.lower, 6954 ldev = netdev_next_lower_dev(dev, &iter); 6955 ldev; 6956 ldev = netdev_next_lower_dev(dev, &iter)) { 6957 if (max_depth < ldev->lower_level) 6958 max_depth = ldev->lower_level; 6959 } 6960 6961 return max_depth; 6962 } 6963 6964 static int __netdev_update_upper_level(struct net_device *dev, void *data) 6965 { 6966 dev->upper_level = __netdev_upper_depth(dev) + 1; 6967 return 0; 6968 } 6969 6970 static int __netdev_update_lower_level(struct net_device *dev, void *data) 6971 { 6972 dev->lower_level = __netdev_lower_depth(dev) + 1; 6973 return 0; 6974 } 6975 6976 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6977 int (*fn)(struct net_device *dev, 6978 void *data), 6979 void *data) 6980 { 6981 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6982 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6983 int ret, cur = 0; 6984 6985 now = dev; 6986 iter = &dev->adj_list.lower; 6987 6988 while (1) { 6989 if (now != dev) { 6990 ret = fn(now, data); 6991 if (ret) 6992 return ret; 6993 } 6994 6995 next = NULL; 6996 while (1) { 6997 ldev = netdev_next_lower_dev_rcu(now, &iter); 6998 if (!ldev) 6999 break; 7000 7001 next = ldev; 7002 niter = &ldev->adj_list.lower; 7003 dev_stack[cur] = now; 7004 iter_stack[cur++] = iter; 7005 break; 7006 } 7007 7008 if (!next) { 7009 if (!cur) 7010 return 0; 7011 next = dev_stack[--cur]; 7012 niter = iter_stack[cur]; 7013 } 7014 7015 now = next; 7016 iter = niter; 7017 } 7018 7019 return 0; 7020 } 7021 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7022 7023 /** 7024 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7025 * lower neighbour list, RCU 7026 * variant 7027 * @dev: device 7028 * 7029 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7030 * list. The caller must hold RCU read lock. 7031 */ 7032 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7033 { 7034 struct netdev_adjacent *lower; 7035 7036 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7037 struct netdev_adjacent, list); 7038 if (lower) 7039 return lower->private; 7040 return NULL; 7041 } 7042 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7043 7044 /** 7045 * netdev_master_upper_dev_get_rcu - Get master upper device 7046 * @dev: device 7047 * 7048 * Find a master upper device and return pointer to it or NULL in case 7049 * it's not there. The caller must hold the RCU read lock. 7050 */ 7051 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7052 { 7053 struct netdev_adjacent *upper; 7054 7055 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7056 struct netdev_adjacent, list); 7057 if (upper && likely(upper->master)) 7058 return upper->dev; 7059 return NULL; 7060 } 7061 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7062 7063 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7064 struct net_device *adj_dev, 7065 struct list_head *dev_list) 7066 { 7067 char linkname[IFNAMSIZ+7]; 7068 7069 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7070 "upper_%s" : "lower_%s", adj_dev->name); 7071 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7072 linkname); 7073 } 7074 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7075 char *name, 7076 struct list_head *dev_list) 7077 { 7078 char linkname[IFNAMSIZ+7]; 7079 7080 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7081 "upper_%s" : "lower_%s", name); 7082 sysfs_remove_link(&(dev->dev.kobj), linkname); 7083 } 7084 7085 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7086 struct net_device *adj_dev, 7087 struct list_head *dev_list) 7088 { 7089 return (dev_list == &dev->adj_list.upper || 7090 dev_list == &dev->adj_list.lower) && 7091 net_eq(dev_net(dev), dev_net(adj_dev)); 7092 } 7093 7094 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7095 struct net_device *adj_dev, 7096 struct list_head *dev_list, 7097 void *private, bool master) 7098 { 7099 struct netdev_adjacent *adj; 7100 int ret; 7101 7102 adj = __netdev_find_adj(adj_dev, dev_list); 7103 7104 if (adj) { 7105 adj->ref_nr += 1; 7106 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7107 dev->name, adj_dev->name, adj->ref_nr); 7108 7109 return 0; 7110 } 7111 7112 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7113 if (!adj) 7114 return -ENOMEM; 7115 7116 adj->dev = adj_dev; 7117 adj->master = master; 7118 adj->ref_nr = 1; 7119 adj->private = private; 7120 dev_hold(adj_dev); 7121 7122 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7123 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7124 7125 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7126 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7127 if (ret) 7128 goto free_adj; 7129 } 7130 7131 /* Ensure that master link is always the first item in list. */ 7132 if (master) { 7133 ret = sysfs_create_link(&(dev->dev.kobj), 7134 &(adj_dev->dev.kobj), "master"); 7135 if (ret) 7136 goto remove_symlinks; 7137 7138 list_add_rcu(&adj->list, dev_list); 7139 } else { 7140 list_add_tail_rcu(&adj->list, dev_list); 7141 } 7142 7143 return 0; 7144 7145 remove_symlinks: 7146 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7147 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7148 free_adj: 7149 kfree(adj); 7150 dev_put(adj_dev); 7151 7152 return ret; 7153 } 7154 7155 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7156 struct net_device *adj_dev, 7157 u16 ref_nr, 7158 struct list_head *dev_list) 7159 { 7160 struct netdev_adjacent *adj; 7161 7162 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7163 dev->name, adj_dev->name, ref_nr); 7164 7165 adj = __netdev_find_adj(adj_dev, dev_list); 7166 7167 if (!adj) { 7168 pr_err("Adjacency does not exist for device %s from %s\n", 7169 dev->name, adj_dev->name); 7170 WARN_ON(1); 7171 return; 7172 } 7173 7174 if (adj->ref_nr > ref_nr) { 7175 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7176 dev->name, adj_dev->name, ref_nr, 7177 adj->ref_nr - ref_nr); 7178 adj->ref_nr -= ref_nr; 7179 return; 7180 } 7181 7182 if (adj->master) 7183 sysfs_remove_link(&(dev->dev.kobj), "master"); 7184 7185 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7186 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7187 7188 list_del_rcu(&adj->list); 7189 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7190 adj_dev->name, dev->name, adj_dev->name); 7191 dev_put(adj_dev); 7192 kfree_rcu(adj, rcu); 7193 } 7194 7195 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7196 struct net_device *upper_dev, 7197 struct list_head *up_list, 7198 struct list_head *down_list, 7199 void *private, bool master) 7200 { 7201 int ret; 7202 7203 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7204 private, master); 7205 if (ret) 7206 return ret; 7207 7208 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7209 private, false); 7210 if (ret) { 7211 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7212 return ret; 7213 } 7214 7215 return 0; 7216 } 7217 7218 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7219 struct net_device *upper_dev, 7220 u16 ref_nr, 7221 struct list_head *up_list, 7222 struct list_head *down_list) 7223 { 7224 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7225 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7226 } 7227 7228 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7229 struct net_device *upper_dev, 7230 void *private, bool master) 7231 { 7232 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7233 &dev->adj_list.upper, 7234 &upper_dev->adj_list.lower, 7235 private, master); 7236 } 7237 7238 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7239 struct net_device *upper_dev) 7240 { 7241 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7242 &dev->adj_list.upper, 7243 &upper_dev->adj_list.lower); 7244 } 7245 7246 static int __netdev_upper_dev_link(struct net_device *dev, 7247 struct net_device *upper_dev, bool master, 7248 void *upper_priv, void *upper_info, 7249 struct netlink_ext_ack *extack) 7250 { 7251 struct netdev_notifier_changeupper_info changeupper_info = { 7252 .info = { 7253 .dev = dev, 7254 .extack = extack, 7255 }, 7256 .upper_dev = upper_dev, 7257 .master = master, 7258 .linking = true, 7259 .upper_info = upper_info, 7260 }; 7261 struct net_device *master_dev; 7262 int ret = 0; 7263 7264 ASSERT_RTNL(); 7265 7266 if (dev == upper_dev) 7267 return -EBUSY; 7268 7269 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7270 if (netdev_has_upper_dev(upper_dev, dev)) 7271 return -EBUSY; 7272 7273 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7274 return -EMLINK; 7275 7276 if (!master) { 7277 if (netdev_has_upper_dev(dev, upper_dev)) 7278 return -EEXIST; 7279 } else { 7280 master_dev = netdev_master_upper_dev_get(dev); 7281 if (master_dev) 7282 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7283 } 7284 7285 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7286 &changeupper_info.info); 7287 ret = notifier_to_errno(ret); 7288 if (ret) 7289 return ret; 7290 7291 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7292 master); 7293 if (ret) 7294 return ret; 7295 7296 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7297 &changeupper_info.info); 7298 ret = notifier_to_errno(ret); 7299 if (ret) 7300 goto rollback; 7301 7302 __netdev_update_upper_level(dev, NULL); 7303 netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7304 7305 __netdev_update_lower_level(upper_dev, NULL); 7306 netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL); 7307 7308 return 0; 7309 7310 rollback: 7311 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7312 7313 return ret; 7314 } 7315 7316 /** 7317 * netdev_upper_dev_link - Add a link to the upper device 7318 * @dev: device 7319 * @upper_dev: new upper device 7320 * @extack: netlink extended ack 7321 * 7322 * Adds a link to device which is upper to this one. The caller must hold 7323 * the RTNL lock. On a failure a negative errno code is returned. 7324 * On success the reference counts are adjusted and the function 7325 * returns zero. 7326 */ 7327 int netdev_upper_dev_link(struct net_device *dev, 7328 struct net_device *upper_dev, 7329 struct netlink_ext_ack *extack) 7330 { 7331 return __netdev_upper_dev_link(dev, upper_dev, false, 7332 NULL, NULL, extack); 7333 } 7334 EXPORT_SYMBOL(netdev_upper_dev_link); 7335 7336 /** 7337 * netdev_master_upper_dev_link - Add a master link to the upper device 7338 * @dev: device 7339 * @upper_dev: new upper device 7340 * @upper_priv: upper device private 7341 * @upper_info: upper info to be passed down via notifier 7342 * @extack: netlink extended ack 7343 * 7344 * Adds a link to device which is upper to this one. In this case, only 7345 * one master upper device can be linked, although other non-master devices 7346 * might be linked as well. The caller must hold the RTNL lock. 7347 * On a failure a negative errno code is returned. On success the reference 7348 * counts are adjusted and the function returns zero. 7349 */ 7350 int netdev_master_upper_dev_link(struct net_device *dev, 7351 struct net_device *upper_dev, 7352 void *upper_priv, void *upper_info, 7353 struct netlink_ext_ack *extack) 7354 { 7355 return __netdev_upper_dev_link(dev, upper_dev, true, 7356 upper_priv, upper_info, extack); 7357 } 7358 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7359 7360 /** 7361 * netdev_upper_dev_unlink - Removes a link to upper device 7362 * @dev: device 7363 * @upper_dev: new upper device 7364 * 7365 * Removes a link to device which is upper to this one. The caller must hold 7366 * the RTNL lock. 7367 */ 7368 void netdev_upper_dev_unlink(struct net_device *dev, 7369 struct net_device *upper_dev) 7370 { 7371 struct netdev_notifier_changeupper_info changeupper_info = { 7372 .info = { 7373 .dev = dev, 7374 }, 7375 .upper_dev = upper_dev, 7376 .linking = false, 7377 }; 7378 7379 ASSERT_RTNL(); 7380 7381 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7382 7383 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7384 &changeupper_info.info); 7385 7386 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7387 7388 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7389 &changeupper_info.info); 7390 7391 __netdev_update_upper_level(dev, NULL); 7392 netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7393 7394 __netdev_update_lower_level(upper_dev, NULL); 7395 netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, NULL); 7396 } 7397 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7398 7399 /** 7400 * netdev_bonding_info_change - Dispatch event about slave change 7401 * @dev: device 7402 * @bonding_info: info to dispatch 7403 * 7404 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7405 * The caller must hold the RTNL lock. 7406 */ 7407 void netdev_bonding_info_change(struct net_device *dev, 7408 struct netdev_bonding_info *bonding_info) 7409 { 7410 struct netdev_notifier_bonding_info info = { 7411 .info.dev = dev, 7412 }; 7413 7414 memcpy(&info.bonding_info, bonding_info, 7415 sizeof(struct netdev_bonding_info)); 7416 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7417 &info.info); 7418 } 7419 EXPORT_SYMBOL(netdev_bonding_info_change); 7420 7421 static void netdev_adjacent_add_links(struct net_device *dev) 7422 { 7423 struct netdev_adjacent *iter; 7424 7425 struct net *net = dev_net(dev); 7426 7427 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7428 if (!net_eq(net, dev_net(iter->dev))) 7429 continue; 7430 netdev_adjacent_sysfs_add(iter->dev, dev, 7431 &iter->dev->adj_list.lower); 7432 netdev_adjacent_sysfs_add(dev, iter->dev, 7433 &dev->adj_list.upper); 7434 } 7435 7436 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7437 if (!net_eq(net, dev_net(iter->dev))) 7438 continue; 7439 netdev_adjacent_sysfs_add(iter->dev, dev, 7440 &iter->dev->adj_list.upper); 7441 netdev_adjacent_sysfs_add(dev, iter->dev, 7442 &dev->adj_list.lower); 7443 } 7444 } 7445 7446 static void netdev_adjacent_del_links(struct net_device *dev) 7447 { 7448 struct netdev_adjacent *iter; 7449 7450 struct net *net = dev_net(dev); 7451 7452 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7453 if (!net_eq(net, dev_net(iter->dev))) 7454 continue; 7455 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7456 &iter->dev->adj_list.lower); 7457 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7458 &dev->adj_list.upper); 7459 } 7460 7461 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7462 if (!net_eq(net, dev_net(iter->dev))) 7463 continue; 7464 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7465 &iter->dev->adj_list.upper); 7466 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7467 &dev->adj_list.lower); 7468 } 7469 } 7470 7471 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7472 { 7473 struct netdev_adjacent *iter; 7474 7475 struct net *net = dev_net(dev); 7476 7477 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7478 if (!net_eq(net, dev_net(iter->dev))) 7479 continue; 7480 netdev_adjacent_sysfs_del(iter->dev, oldname, 7481 &iter->dev->adj_list.lower); 7482 netdev_adjacent_sysfs_add(iter->dev, dev, 7483 &iter->dev->adj_list.lower); 7484 } 7485 7486 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7487 if (!net_eq(net, dev_net(iter->dev))) 7488 continue; 7489 netdev_adjacent_sysfs_del(iter->dev, oldname, 7490 &iter->dev->adj_list.upper); 7491 netdev_adjacent_sysfs_add(iter->dev, dev, 7492 &iter->dev->adj_list.upper); 7493 } 7494 } 7495 7496 void *netdev_lower_dev_get_private(struct net_device *dev, 7497 struct net_device *lower_dev) 7498 { 7499 struct netdev_adjacent *lower; 7500 7501 if (!lower_dev) 7502 return NULL; 7503 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7504 if (!lower) 7505 return NULL; 7506 7507 return lower->private; 7508 } 7509 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7510 7511 7512 int dev_get_nest_level(struct net_device *dev) 7513 { 7514 struct net_device *lower = NULL; 7515 struct list_head *iter; 7516 int max_nest = -1; 7517 int nest; 7518 7519 ASSERT_RTNL(); 7520 7521 netdev_for_each_lower_dev(dev, lower, iter) { 7522 nest = dev_get_nest_level(lower); 7523 if (max_nest < nest) 7524 max_nest = nest; 7525 } 7526 7527 return max_nest + 1; 7528 } 7529 EXPORT_SYMBOL(dev_get_nest_level); 7530 7531 /** 7532 * netdev_lower_change - Dispatch event about lower device state change 7533 * @lower_dev: device 7534 * @lower_state_info: state to dispatch 7535 * 7536 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7537 * The caller must hold the RTNL lock. 7538 */ 7539 void netdev_lower_state_changed(struct net_device *lower_dev, 7540 void *lower_state_info) 7541 { 7542 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7543 .info.dev = lower_dev, 7544 }; 7545 7546 ASSERT_RTNL(); 7547 changelowerstate_info.lower_state_info = lower_state_info; 7548 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7549 &changelowerstate_info.info); 7550 } 7551 EXPORT_SYMBOL(netdev_lower_state_changed); 7552 7553 static void dev_change_rx_flags(struct net_device *dev, int flags) 7554 { 7555 const struct net_device_ops *ops = dev->netdev_ops; 7556 7557 if (ops->ndo_change_rx_flags) 7558 ops->ndo_change_rx_flags(dev, flags); 7559 } 7560 7561 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7562 { 7563 unsigned int old_flags = dev->flags; 7564 kuid_t uid; 7565 kgid_t gid; 7566 7567 ASSERT_RTNL(); 7568 7569 dev->flags |= IFF_PROMISC; 7570 dev->promiscuity += inc; 7571 if (dev->promiscuity == 0) { 7572 /* 7573 * Avoid overflow. 7574 * If inc causes overflow, untouch promisc and return error. 7575 */ 7576 if (inc < 0) 7577 dev->flags &= ~IFF_PROMISC; 7578 else { 7579 dev->promiscuity -= inc; 7580 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7581 dev->name); 7582 return -EOVERFLOW; 7583 } 7584 } 7585 if (dev->flags != old_flags) { 7586 pr_info("device %s %s promiscuous mode\n", 7587 dev->name, 7588 dev->flags & IFF_PROMISC ? "entered" : "left"); 7589 if (audit_enabled) { 7590 current_uid_gid(&uid, &gid); 7591 audit_log(audit_context(), GFP_ATOMIC, 7592 AUDIT_ANOM_PROMISCUOUS, 7593 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7594 dev->name, (dev->flags & IFF_PROMISC), 7595 (old_flags & IFF_PROMISC), 7596 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7597 from_kuid(&init_user_ns, uid), 7598 from_kgid(&init_user_ns, gid), 7599 audit_get_sessionid(current)); 7600 } 7601 7602 dev_change_rx_flags(dev, IFF_PROMISC); 7603 } 7604 if (notify) 7605 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7606 return 0; 7607 } 7608 7609 /** 7610 * dev_set_promiscuity - update promiscuity count on a device 7611 * @dev: device 7612 * @inc: modifier 7613 * 7614 * Add or remove promiscuity from a device. While the count in the device 7615 * remains above zero the interface remains promiscuous. Once it hits zero 7616 * the device reverts back to normal filtering operation. A negative inc 7617 * value is used to drop promiscuity on the device. 7618 * Return 0 if successful or a negative errno code on error. 7619 */ 7620 int dev_set_promiscuity(struct net_device *dev, int inc) 7621 { 7622 unsigned int old_flags = dev->flags; 7623 int err; 7624 7625 err = __dev_set_promiscuity(dev, inc, true); 7626 if (err < 0) 7627 return err; 7628 if (dev->flags != old_flags) 7629 dev_set_rx_mode(dev); 7630 return err; 7631 } 7632 EXPORT_SYMBOL(dev_set_promiscuity); 7633 7634 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7635 { 7636 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7637 7638 ASSERT_RTNL(); 7639 7640 dev->flags |= IFF_ALLMULTI; 7641 dev->allmulti += inc; 7642 if (dev->allmulti == 0) { 7643 /* 7644 * Avoid overflow. 7645 * If inc causes overflow, untouch allmulti and return error. 7646 */ 7647 if (inc < 0) 7648 dev->flags &= ~IFF_ALLMULTI; 7649 else { 7650 dev->allmulti -= inc; 7651 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7652 dev->name); 7653 return -EOVERFLOW; 7654 } 7655 } 7656 if (dev->flags ^ old_flags) { 7657 dev_change_rx_flags(dev, IFF_ALLMULTI); 7658 dev_set_rx_mode(dev); 7659 if (notify) 7660 __dev_notify_flags(dev, old_flags, 7661 dev->gflags ^ old_gflags); 7662 } 7663 return 0; 7664 } 7665 7666 /** 7667 * dev_set_allmulti - update allmulti count on a device 7668 * @dev: device 7669 * @inc: modifier 7670 * 7671 * Add or remove reception of all multicast frames to a device. While the 7672 * count in the device remains above zero the interface remains listening 7673 * to all interfaces. Once it hits zero the device reverts back to normal 7674 * filtering operation. A negative @inc value is used to drop the counter 7675 * when releasing a resource needing all multicasts. 7676 * Return 0 if successful or a negative errno code on error. 7677 */ 7678 7679 int dev_set_allmulti(struct net_device *dev, int inc) 7680 { 7681 return __dev_set_allmulti(dev, inc, true); 7682 } 7683 EXPORT_SYMBOL(dev_set_allmulti); 7684 7685 /* 7686 * Upload unicast and multicast address lists to device and 7687 * configure RX filtering. When the device doesn't support unicast 7688 * filtering it is put in promiscuous mode while unicast addresses 7689 * are present. 7690 */ 7691 void __dev_set_rx_mode(struct net_device *dev) 7692 { 7693 const struct net_device_ops *ops = dev->netdev_ops; 7694 7695 /* dev_open will call this function so the list will stay sane. */ 7696 if (!(dev->flags&IFF_UP)) 7697 return; 7698 7699 if (!netif_device_present(dev)) 7700 return; 7701 7702 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7703 /* Unicast addresses changes may only happen under the rtnl, 7704 * therefore calling __dev_set_promiscuity here is safe. 7705 */ 7706 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7707 __dev_set_promiscuity(dev, 1, false); 7708 dev->uc_promisc = true; 7709 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7710 __dev_set_promiscuity(dev, -1, false); 7711 dev->uc_promisc = false; 7712 } 7713 } 7714 7715 if (ops->ndo_set_rx_mode) 7716 ops->ndo_set_rx_mode(dev); 7717 } 7718 7719 void dev_set_rx_mode(struct net_device *dev) 7720 { 7721 netif_addr_lock_bh(dev); 7722 __dev_set_rx_mode(dev); 7723 netif_addr_unlock_bh(dev); 7724 } 7725 7726 /** 7727 * dev_get_flags - get flags reported to userspace 7728 * @dev: device 7729 * 7730 * Get the combination of flag bits exported through APIs to userspace. 7731 */ 7732 unsigned int dev_get_flags(const struct net_device *dev) 7733 { 7734 unsigned int flags; 7735 7736 flags = (dev->flags & ~(IFF_PROMISC | 7737 IFF_ALLMULTI | 7738 IFF_RUNNING | 7739 IFF_LOWER_UP | 7740 IFF_DORMANT)) | 7741 (dev->gflags & (IFF_PROMISC | 7742 IFF_ALLMULTI)); 7743 7744 if (netif_running(dev)) { 7745 if (netif_oper_up(dev)) 7746 flags |= IFF_RUNNING; 7747 if (netif_carrier_ok(dev)) 7748 flags |= IFF_LOWER_UP; 7749 if (netif_dormant(dev)) 7750 flags |= IFF_DORMANT; 7751 } 7752 7753 return flags; 7754 } 7755 EXPORT_SYMBOL(dev_get_flags); 7756 7757 int __dev_change_flags(struct net_device *dev, unsigned int flags, 7758 struct netlink_ext_ack *extack) 7759 { 7760 unsigned int old_flags = dev->flags; 7761 int ret; 7762 7763 ASSERT_RTNL(); 7764 7765 /* 7766 * Set the flags on our device. 7767 */ 7768 7769 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7770 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7771 IFF_AUTOMEDIA)) | 7772 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7773 IFF_ALLMULTI)); 7774 7775 /* 7776 * Load in the correct multicast list now the flags have changed. 7777 */ 7778 7779 if ((old_flags ^ flags) & IFF_MULTICAST) 7780 dev_change_rx_flags(dev, IFF_MULTICAST); 7781 7782 dev_set_rx_mode(dev); 7783 7784 /* 7785 * Have we downed the interface. We handle IFF_UP ourselves 7786 * according to user attempts to set it, rather than blindly 7787 * setting it. 7788 */ 7789 7790 ret = 0; 7791 if ((old_flags ^ flags) & IFF_UP) { 7792 if (old_flags & IFF_UP) 7793 __dev_close(dev); 7794 else 7795 ret = __dev_open(dev, extack); 7796 } 7797 7798 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7799 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7800 unsigned int old_flags = dev->flags; 7801 7802 dev->gflags ^= IFF_PROMISC; 7803 7804 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7805 if (dev->flags != old_flags) 7806 dev_set_rx_mode(dev); 7807 } 7808 7809 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7810 * is important. Some (broken) drivers set IFF_PROMISC, when 7811 * IFF_ALLMULTI is requested not asking us and not reporting. 7812 */ 7813 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7814 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7815 7816 dev->gflags ^= IFF_ALLMULTI; 7817 __dev_set_allmulti(dev, inc, false); 7818 } 7819 7820 return ret; 7821 } 7822 7823 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7824 unsigned int gchanges) 7825 { 7826 unsigned int changes = dev->flags ^ old_flags; 7827 7828 if (gchanges) 7829 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7830 7831 if (changes & IFF_UP) { 7832 if (dev->flags & IFF_UP) 7833 call_netdevice_notifiers(NETDEV_UP, dev); 7834 else 7835 call_netdevice_notifiers(NETDEV_DOWN, dev); 7836 } 7837 7838 if (dev->flags & IFF_UP && 7839 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7840 struct netdev_notifier_change_info change_info = { 7841 .info = { 7842 .dev = dev, 7843 }, 7844 .flags_changed = changes, 7845 }; 7846 7847 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7848 } 7849 } 7850 7851 /** 7852 * dev_change_flags - change device settings 7853 * @dev: device 7854 * @flags: device state flags 7855 * @extack: netlink extended ack 7856 * 7857 * Change settings on device based state flags. The flags are 7858 * in the userspace exported format. 7859 */ 7860 int dev_change_flags(struct net_device *dev, unsigned int flags, 7861 struct netlink_ext_ack *extack) 7862 { 7863 int ret; 7864 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7865 7866 ret = __dev_change_flags(dev, flags, extack); 7867 if (ret < 0) 7868 return ret; 7869 7870 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7871 __dev_notify_flags(dev, old_flags, changes); 7872 return ret; 7873 } 7874 EXPORT_SYMBOL(dev_change_flags); 7875 7876 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7877 { 7878 const struct net_device_ops *ops = dev->netdev_ops; 7879 7880 if (ops->ndo_change_mtu) 7881 return ops->ndo_change_mtu(dev, new_mtu); 7882 7883 dev->mtu = new_mtu; 7884 return 0; 7885 } 7886 EXPORT_SYMBOL(__dev_set_mtu); 7887 7888 /** 7889 * dev_set_mtu_ext - Change maximum transfer unit 7890 * @dev: device 7891 * @new_mtu: new transfer unit 7892 * @extack: netlink extended ack 7893 * 7894 * Change the maximum transfer size of the network device. 7895 */ 7896 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7897 struct netlink_ext_ack *extack) 7898 { 7899 int err, orig_mtu; 7900 7901 if (new_mtu == dev->mtu) 7902 return 0; 7903 7904 /* MTU must be positive, and in range */ 7905 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7906 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7907 return -EINVAL; 7908 } 7909 7910 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7911 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7912 return -EINVAL; 7913 } 7914 7915 if (!netif_device_present(dev)) 7916 return -ENODEV; 7917 7918 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7919 err = notifier_to_errno(err); 7920 if (err) 7921 return err; 7922 7923 orig_mtu = dev->mtu; 7924 err = __dev_set_mtu(dev, new_mtu); 7925 7926 if (!err) { 7927 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7928 orig_mtu); 7929 err = notifier_to_errno(err); 7930 if (err) { 7931 /* setting mtu back and notifying everyone again, 7932 * so that they have a chance to revert changes. 7933 */ 7934 __dev_set_mtu(dev, orig_mtu); 7935 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7936 new_mtu); 7937 } 7938 } 7939 return err; 7940 } 7941 7942 int dev_set_mtu(struct net_device *dev, int new_mtu) 7943 { 7944 struct netlink_ext_ack extack; 7945 int err; 7946 7947 memset(&extack, 0, sizeof(extack)); 7948 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7949 if (err && extack._msg) 7950 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7951 return err; 7952 } 7953 EXPORT_SYMBOL(dev_set_mtu); 7954 7955 /** 7956 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7957 * @dev: device 7958 * @new_len: new tx queue length 7959 */ 7960 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7961 { 7962 unsigned int orig_len = dev->tx_queue_len; 7963 int res; 7964 7965 if (new_len != (unsigned int)new_len) 7966 return -ERANGE; 7967 7968 if (new_len != orig_len) { 7969 dev->tx_queue_len = new_len; 7970 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7971 res = notifier_to_errno(res); 7972 if (res) 7973 goto err_rollback; 7974 res = dev_qdisc_change_tx_queue_len(dev); 7975 if (res) 7976 goto err_rollback; 7977 } 7978 7979 return 0; 7980 7981 err_rollback: 7982 netdev_err(dev, "refused to change device tx_queue_len\n"); 7983 dev->tx_queue_len = orig_len; 7984 return res; 7985 } 7986 7987 /** 7988 * dev_set_group - Change group this device belongs to 7989 * @dev: device 7990 * @new_group: group this device should belong to 7991 */ 7992 void dev_set_group(struct net_device *dev, int new_group) 7993 { 7994 dev->group = new_group; 7995 } 7996 EXPORT_SYMBOL(dev_set_group); 7997 7998 /** 7999 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8000 * @dev: device 8001 * @addr: new address 8002 * @extack: netlink extended ack 8003 */ 8004 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8005 struct netlink_ext_ack *extack) 8006 { 8007 struct netdev_notifier_pre_changeaddr_info info = { 8008 .info.dev = dev, 8009 .info.extack = extack, 8010 .dev_addr = addr, 8011 }; 8012 int rc; 8013 8014 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8015 return notifier_to_errno(rc); 8016 } 8017 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8018 8019 /** 8020 * dev_set_mac_address - Change Media Access Control Address 8021 * @dev: device 8022 * @sa: new address 8023 * @extack: netlink extended ack 8024 * 8025 * Change the hardware (MAC) address of the device 8026 */ 8027 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8028 struct netlink_ext_ack *extack) 8029 { 8030 const struct net_device_ops *ops = dev->netdev_ops; 8031 int err; 8032 8033 if (!ops->ndo_set_mac_address) 8034 return -EOPNOTSUPP; 8035 if (sa->sa_family != dev->type) 8036 return -EINVAL; 8037 if (!netif_device_present(dev)) 8038 return -ENODEV; 8039 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8040 if (err) 8041 return err; 8042 err = ops->ndo_set_mac_address(dev, sa); 8043 if (err) 8044 return err; 8045 dev->addr_assign_type = NET_ADDR_SET; 8046 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8047 add_device_randomness(dev->dev_addr, dev->addr_len); 8048 return 0; 8049 } 8050 EXPORT_SYMBOL(dev_set_mac_address); 8051 8052 /** 8053 * dev_change_carrier - Change device carrier 8054 * @dev: device 8055 * @new_carrier: new value 8056 * 8057 * Change device carrier 8058 */ 8059 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8060 { 8061 const struct net_device_ops *ops = dev->netdev_ops; 8062 8063 if (!ops->ndo_change_carrier) 8064 return -EOPNOTSUPP; 8065 if (!netif_device_present(dev)) 8066 return -ENODEV; 8067 return ops->ndo_change_carrier(dev, new_carrier); 8068 } 8069 EXPORT_SYMBOL(dev_change_carrier); 8070 8071 /** 8072 * dev_get_phys_port_id - Get device physical port ID 8073 * @dev: device 8074 * @ppid: port ID 8075 * 8076 * Get device physical port ID 8077 */ 8078 int dev_get_phys_port_id(struct net_device *dev, 8079 struct netdev_phys_item_id *ppid) 8080 { 8081 const struct net_device_ops *ops = dev->netdev_ops; 8082 8083 if (!ops->ndo_get_phys_port_id) 8084 return -EOPNOTSUPP; 8085 return ops->ndo_get_phys_port_id(dev, ppid); 8086 } 8087 EXPORT_SYMBOL(dev_get_phys_port_id); 8088 8089 /** 8090 * dev_get_phys_port_name - Get device physical port name 8091 * @dev: device 8092 * @name: port name 8093 * @len: limit of bytes to copy to name 8094 * 8095 * Get device physical port name 8096 */ 8097 int dev_get_phys_port_name(struct net_device *dev, 8098 char *name, size_t len) 8099 { 8100 const struct net_device_ops *ops = dev->netdev_ops; 8101 int err; 8102 8103 if (ops->ndo_get_phys_port_name) { 8104 err = ops->ndo_get_phys_port_name(dev, name, len); 8105 if (err != -EOPNOTSUPP) 8106 return err; 8107 } 8108 return devlink_compat_phys_port_name_get(dev, name, len); 8109 } 8110 EXPORT_SYMBOL(dev_get_phys_port_name); 8111 8112 /** 8113 * dev_get_port_parent_id - Get the device's port parent identifier 8114 * @dev: network device 8115 * @ppid: pointer to a storage for the port's parent identifier 8116 * @recurse: allow/disallow recursion to lower devices 8117 * 8118 * Get the devices's port parent identifier 8119 */ 8120 int dev_get_port_parent_id(struct net_device *dev, 8121 struct netdev_phys_item_id *ppid, 8122 bool recurse) 8123 { 8124 const struct net_device_ops *ops = dev->netdev_ops; 8125 struct netdev_phys_item_id first = { }; 8126 struct net_device *lower_dev; 8127 struct list_head *iter; 8128 int err; 8129 8130 if (ops->ndo_get_port_parent_id) { 8131 err = ops->ndo_get_port_parent_id(dev, ppid); 8132 if (err != -EOPNOTSUPP) 8133 return err; 8134 } 8135 8136 err = devlink_compat_switch_id_get(dev, ppid); 8137 if (!err || err != -EOPNOTSUPP) 8138 return err; 8139 8140 if (!recurse) 8141 return -EOPNOTSUPP; 8142 8143 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8144 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8145 if (err) 8146 break; 8147 if (!first.id_len) 8148 first = *ppid; 8149 else if (memcmp(&first, ppid, sizeof(*ppid))) 8150 return -ENODATA; 8151 } 8152 8153 return err; 8154 } 8155 EXPORT_SYMBOL(dev_get_port_parent_id); 8156 8157 /** 8158 * netdev_port_same_parent_id - Indicate if two network devices have 8159 * the same port parent identifier 8160 * @a: first network device 8161 * @b: second network device 8162 */ 8163 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8164 { 8165 struct netdev_phys_item_id a_id = { }; 8166 struct netdev_phys_item_id b_id = { }; 8167 8168 if (dev_get_port_parent_id(a, &a_id, true) || 8169 dev_get_port_parent_id(b, &b_id, true)) 8170 return false; 8171 8172 return netdev_phys_item_id_same(&a_id, &b_id); 8173 } 8174 EXPORT_SYMBOL(netdev_port_same_parent_id); 8175 8176 /** 8177 * dev_change_proto_down - update protocol port state information 8178 * @dev: device 8179 * @proto_down: new value 8180 * 8181 * This info can be used by switch drivers to set the phys state of the 8182 * port. 8183 */ 8184 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8185 { 8186 const struct net_device_ops *ops = dev->netdev_ops; 8187 8188 if (!ops->ndo_change_proto_down) 8189 return -EOPNOTSUPP; 8190 if (!netif_device_present(dev)) 8191 return -ENODEV; 8192 return ops->ndo_change_proto_down(dev, proto_down); 8193 } 8194 EXPORT_SYMBOL(dev_change_proto_down); 8195 8196 /** 8197 * dev_change_proto_down_generic - generic implementation for 8198 * ndo_change_proto_down that sets carrier according to 8199 * proto_down. 8200 * 8201 * @dev: device 8202 * @proto_down: new value 8203 */ 8204 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8205 { 8206 if (proto_down) 8207 netif_carrier_off(dev); 8208 else 8209 netif_carrier_on(dev); 8210 dev->proto_down = proto_down; 8211 return 0; 8212 } 8213 EXPORT_SYMBOL(dev_change_proto_down_generic); 8214 8215 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8216 enum bpf_netdev_command cmd) 8217 { 8218 struct netdev_bpf xdp; 8219 8220 if (!bpf_op) 8221 return 0; 8222 8223 memset(&xdp, 0, sizeof(xdp)); 8224 xdp.command = cmd; 8225 8226 /* Query must always succeed. */ 8227 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8228 8229 return xdp.prog_id; 8230 } 8231 8232 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8233 struct netlink_ext_ack *extack, u32 flags, 8234 struct bpf_prog *prog) 8235 { 8236 struct netdev_bpf xdp; 8237 8238 memset(&xdp, 0, sizeof(xdp)); 8239 if (flags & XDP_FLAGS_HW_MODE) 8240 xdp.command = XDP_SETUP_PROG_HW; 8241 else 8242 xdp.command = XDP_SETUP_PROG; 8243 xdp.extack = extack; 8244 xdp.flags = flags; 8245 xdp.prog = prog; 8246 8247 return bpf_op(dev, &xdp); 8248 } 8249 8250 static void dev_xdp_uninstall(struct net_device *dev) 8251 { 8252 struct netdev_bpf xdp; 8253 bpf_op_t ndo_bpf; 8254 8255 /* Remove generic XDP */ 8256 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8257 8258 /* Remove from the driver */ 8259 ndo_bpf = dev->netdev_ops->ndo_bpf; 8260 if (!ndo_bpf) 8261 return; 8262 8263 memset(&xdp, 0, sizeof(xdp)); 8264 xdp.command = XDP_QUERY_PROG; 8265 WARN_ON(ndo_bpf(dev, &xdp)); 8266 if (xdp.prog_id) 8267 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8268 NULL)); 8269 8270 /* Remove HW offload */ 8271 memset(&xdp, 0, sizeof(xdp)); 8272 xdp.command = XDP_QUERY_PROG_HW; 8273 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8274 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8275 NULL)); 8276 } 8277 8278 /** 8279 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8280 * @dev: device 8281 * @extack: netlink extended ack 8282 * @fd: new program fd or negative value to clear 8283 * @flags: xdp-related flags 8284 * 8285 * Set or clear a bpf program for a device 8286 */ 8287 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8288 int fd, u32 flags) 8289 { 8290 const struct net_device_ops *ops = dev->netdev_ops; 8291 enum bpf_netdev_command query; 8292 struct bpf_prog *prog = NULL; 8293 bpf_op_t bpf_op, bpf_chk; 8294 bool offload; 8295 int err; 8296 8297 ASSERT_RTNL(); 8298 8299 offload = flags & XDP_FLAGS_HW_MODE; 8300 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8301 8302 bpf_op = bpf_chk = ops->ndo_bpf; 8303 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8304 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8305 return -EOPNOTSUPP; 8306 } 8307 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8308 bpf_op = generic_xdp_install; 8309 if (bpf_op == bpf_chk) 8310 bpf_chk = generic_xdp_install; 8311 8312 if (fd >= 0) { 8313 u32 prog_id; 8314 8315 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8316 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8317 return -EEXIST; 8318 } 8319 8320 prog_id = __dev_xdp_query(dev, bpf_op, query); 8321 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8322 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8323 return -EBUSY; 8324 } 8325 8326 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8327 bpf_op == ops->ndo_bpf); 8328 if (IS_ERR(prog)) 8329 return PTR_ERR(prog); 8330 8331 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8332 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8333 bpf_prog_put(prog); 8334 return -EINVAL; 8335 } 8336 8337 if (prog->aux->id == prog_id) { 8338 bpf_prog_put(prog); 8339 return 0; 8340 } 8341 } else { 8342 if (!__dev_xdp_query(dev, bpf_op, query)) 8343 return 0; 8344 } 8345 8346 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8347 if (err < 0 && prog) 8348 bpf_prog_put(prog); 8349 8350 return err; 8351 } 8352 8353 /** 8354 * dev_new_index - allocate an ifindex 8355 * @net: the applicable net namespace 8356 * 8357 * Returns a suitable unique value for a new device interface 8358 * number. The caller must hold the rtnl semaphore or the 8359 * dev_base_lock to be sure it remains unique. 8360 */ 8361 static int dev_new_index(struct net *net) 8362 { 8363 int ifindex = net->ifindex; 8364 8365 for (;;) { 8366 if (++ifindex <= 0) 8367 ifindex = 1; 8368 if (!__dev_get_by_index(net, ifindex)) 8369 return net->ifindex = ifindex; 8370 } 8371 } 8372 8373 /* Delayed registration/unregisteration */ 8374 static LIST_HEAD(net_todo_list); 8375 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8376 8377 static void net_set_todo(struct net_device *dev) 8378 { 8379 list_add_tail(&dev->todo_list, &net_todo_list); 8380 dev_net(dev)->dev_unreg_count++; 8381 } 8382 8383 static void rollback_registered_many(struct list_head *head) 8384 { 8385 struct net_device *dev, *tmp; 8386 LIST_HEAD(close_head); 8387 8388 BUG_ON(dev_boot_phase); 8389 ASSERT_RTNL(); 8390 8391 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8392 /* Some devices call without registering 8393 * for initialization unwind. Remove those 8394 * devices and proceed with the remaining. 8395 */ 8396 if (dev->reg_state == NETREG_UNINITIALIZED) { 8397 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8398 dev->name, dev); 8399 8400 WARN_ON(1); 8401 list_del(&dev->unreg_list); 8402 continue; 8403 } 8404 dev->dismantle = true; 8405 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8406 } 8407 8408 /* If device is running, close it first. */ 8409 list_for_each_entry(dev, head, unreg_list) 8410 list_add_tail(&dev->close_list, &close_head); 8411 dev_close_many(&close_head, true); 8412 8413 list_for_each_entry(dev, head, unreg_list) { 8414 /* And unlink it from device chain. */ 8415 unlist_netdevice(dev); 8416 8417 dev->reg_state = NETREG_UNREGISTERING; 8418 } 8419 flush_all_backlogs(); 8420 8421 synchronize_net(); 8422 8423 list_for_each_entry(dev, head, unreg_list) { 8424 struct sk_buff *skb = NULL; 8425 8426 /* Shutdown queueing discipline. */ 8427 dev_shutdown(dev); 8428 8429 dev_xdp_uninstall(dev); 8430 8431 /* Notify protocols, that we are about to destroy 8432 * this device. They should clean all the things. 8433 */ 8434 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8435 8436 if (!dev->rtnl_link_ops || 8437 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8438 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8439 GFP_KERNEL, NULL, 0); 8440 8441 /* 8442 * Flush the unicast and multicast chains 8443 */ 8444 dev_uc_flush(dev); 8445 dev_mc_flush(dev); 8446 8447 if (dev->netdev_ops->ndo_uninit) 8448 dev->netdev_ops->ndo_uninit(dev); 8449 8450 if (skb) 8451 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8452 8453 /* Notifier chain MUST detach us all upper devices. */ 8454 WARN_ON(netdev_has_any_upper_dev(dev)); 8455 WARN_ON(netdev_has_any_lower_dev(dev)); 8456 8457 /* Remove entries from kobject tree */ 8458 netdev_unregister_kobject(dev); 8459 #ifdef CONFIG_XPS 8460 /* Remove XPS queueing entries */ 8461 netif_reset_xps_queues_gt(dev, 0); 8462 #endif 8463 } 8464 8465 synchronize_net(); 8466 8467 list_for_each_entry(dev, head, unreg_list) 8468 dev_put(dev); 8469 } 8470 8471 static void rollback_registered(struct net_device *dev) 8472 { 8473 LIST_HEAD(single); 8474 8475 list_add(&dev->unreg_list, &single); 8476 rollback_registered_many(&single); 8477 list_del(&single); 8478 } 8479 8480 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8481 struct net_device *upper, netdev_features_t features) 8482 { 8483 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8484 netdev_features_t feature; 8485 int feature_bit; 8486 8487 for_each_netdev_feature(upper_disables, feature_bit) { 8488 feature = __NETIF_F_BIT(feature_bit); 8489 if (!(upper->wanted_features & feature) 8490 && (features & feature)) { 8491 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8492 &feature, upper->name); 8493 features &= ~feature; 8494 } 8495 } 8496 8497 return features; 8498 } 8499 8500 static void netdev_sync_lower_features(struct net_device *upper, 8501 struct net_device *lower, netdev_features_t features) 8502 { 8503 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8504 netdev_features_t feature; 8505 int feature_bit; 8506 8507 for_each_netdev_feature(upper_disables, feature_bit) { 8508 feature = __NETIF_F_BIT(feature_bit); 8509 if (!(features & feature) && (lower->features & feature)) { 8510 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8511 &feature, lower->name); 8512 lower->wanted_features &= ~feature; 8513 netdev_update_features(lower); 8514 8515 if (unlikely(lower->features & feature)) 8516 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8517 &feature, lower->name); 8518 } 8519 } 8520 } 8521 8522 static netdev_features_t netdev_fix_features(struct net_device *dev, 8523 netdev_features_t features) 8524 { 8525 /* Fix illegal checksum combinations */ 8526 if ((features & NETIF_F_HW_CSUM) && 8527 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8528 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8529 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8530 } 8531 8532 /* TSO requires that SG is present as well. */ 8533 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8534 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8535 features &= ~NETIF_F_ALL_TSO; 8536 } 8537 8538 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8539 !(features & NETIF_F_IP_CSUM)) { 8540 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8541 features &= ~NETIF_F_TSO; 8542 features &= ~NETIF_F_TSO_ECN; 8543 } 8544 8545 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8546 !(features & NETIF_F_IPV6_CSUM)) { 8547 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8548 features &= ~NETIF_F_TSO6; 8549 } 8550 8551 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8552 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8553 features &= ~NETIF_F_TSO_MANGLEID; 8554 8555 /* TSO ECN requires that TSO is present as well. */ 8556 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8557 features &= ~NETIF_F_TSO_ECN; 8558 8559 /* Software GSO depends on SG. */ 8560 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8561 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8562 features &= ~NETIF_F_GSO; 8563 } 8564 8565 /* GSO partial features require GSO partial be set */ 8566 if ((features & dev->gso_partial_features) && 8567 !(features & NETIF_F_GSO_PARTIAL)) { 8568 netdev_dbg(dev, 8569 "Dropping partially supported GSO features since no GSO partial.\n"); 8570 features &= ~dev->gso_partial_features; 8571 } 8572 8573 if (!(features & NETIF_F_RXCSUM)) { 8574 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8575 * successfully merged by hardware must also have the 8576 * checksum verified by hardware. If the user does not 8577 * want to enable RXCSUM, logically, we should disable GRO_HW. 8578 */ 8579 if (features & NETIF_F_GRO_HW) { 8580 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8581 features &= ~NETIF_F_GRO_HW; 8582 } 8583 } 8584 8585 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8586 if (features & NETIF_F_RXFCS) { 8587 if (features & NETIF_F_LRO) { 8588 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8589 features &= ~NETIF_F_LRO; 8590 } 8591 8592 if (features & NETIF_F_GRO_HW) { 8593 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8594 features &= ~NETIF_F_GRO_HW; 8595 } 8596 } 8597 8598 return features; 8599 } 8600 8601 int __netdev_update_features(struct net_device *dev) 8602 { 8603 struct net_device *upper, *lower; 8604 netdev_features_t features; 8605 struct list_head *iter; 8606 int err = -1; 8607 8608 ASSERT_RTNL(); 8609 8610 features = netdev_get_wanted_features(dev); 8611 8612 if (dev->netdev_ops->ndo_fix_features) 8613 features = dev->netdev_ops->ndo_fix_features(dev, features); 8614 8615 /* driver might be less strict about feature dependencies */ 8616 features = netdev_fix_features(dev, features); 8617 8618 /* some features can't be enabled if they're off an an upper device */ 8619 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8620 features = netdev_sync_upper_features(dev, upper, features); 8621 8622 if (dev->features == features) 8623 goto sync_lower; 8624 8625 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8626 &dev->features, &features); 8627 8628 if (dev->netdev_ops->ndo_set_features) 8629 err = dev->netdev_ops->ndo_set_features(dev, features); 8630 else 8631 err = 0; 8632 8633 if (unlikely(err < 0)) { 8634 netdev_err(dev, 8635 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8636 err, &features, &dev->features); 8637 /* return non-0 since some features might have changed and 8638 * it's better to fire a spurious notification than miss it 8639 */ 8640 return -1; 8641 } 8642 8643 sync_lower: 8644 /* some features must be disabled on lower devices when disabled 8645 * on an upper device (think: bonding master or bridge) 8646 */ 8647 netdev_for_each_lower_dev(dev, lower, iter) 8648 netdev_sync_lower_features(dev, lower, features); 8649 8650 if (!err) { 8651 netdev_features_t diff = features ^ dev->features; 8652 8653 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8654 /* udp_tunnel_{get,drop}_rx_info both need 8655 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8656 * device, or they won't do anything. 8657 * Thus we need to update dev->features 8658 * *before* calling udp_tunnel_get_rx_info, 8659 * but *after* calling udp_tunnel_drop_rx_info. 8660 */ 8661 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8662 dev->features = features; 8663 udp_tunnel_get_rx_info(dev); 8664 } else { 8665 udp_tunnel_drop_rx_info(dev); 8666 } 8667 } 8668 8669 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8670 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8671 dev->features = features; 8672 err |= vlan_get_rx_ctag_filter_info(dev); 8673 } else { 8674 vlan_drop_rx_ctag_filter_info(dev); 8675 } 8676 } 8677 8678 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8679 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8680 dev->features = features; 8681 err |= vlan_get_rx_stag_filter_info(dev); 8682 } else { 8683 vlan_drop_rx_stag_filter_info(dev); 8684 } 8685 } 8686 8687 dev->features = features; 8688 } 8689 8690 return err < 0 ? 0 : 1; 8691 } 8692 8693 /** 8694 * netdev_update_features - recalculate device features 8695 * @dev: the device to check 8696 * 8697 * Recalculate dev->features set and send notifications if it 8698 * has changed. Should be called after driver or hardware dependent 8699 * conditions might have changed that influence the features. 8700 */ 8701 void netdev_update_features(struct net_device *dev) 8702 { 8703 if (__netdev_update_features(dev)) 8704 netdev_features_change(dev); 8705 } 8706 EXPORT_SYMBOL(netdev_update_features); 8707 8708 /** 8709 * netdev_change_features - recalculate device features 8710 * @dev: the device to check 8711 * 8712 * Recalculate dev->features set and send notifications even 8713 * if they have not changed. Should be called instead of 8714 * netdev_update_features() if also dev->vlan_features might 8715 * have changed to allow the changes to be propagated to stacked 8716 * VLAN devices. 8717 */ 8718 void netdev_change_features(struct net_device *dev) 8719 { 8720 __netdev_update_features(dev); 8721 netdev_features_change(dev); 8722 } 8723 EXPORT_SYMBOL(netdev_change_features); 8724 8725 /** 8726 * netif_stacked_transfer_operstate - transfer operstate 8727 * @rootdev: the root or lower level device to transfer state from 8728 * @dev: the device to transfer operstate to 8729 * 8730 * Transfer operational state from root to device. This is normally 8731 * called when a stacking relationship exists between the root 8732 * device and the device(a leaf device). 8733 */ 8734 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8735 struct net_device *dev) 8736 { 8737 if (rootdev->operstate == IF_OPER_DORMANT) 8738 netif_dormant_on(dev); 8739 else 8740 netif_dormant_off(dev); 8741 8742 if (netif_carrier_ok(rootdev)) 8743 netif_carrier_on(dev); 8744 else 8745 netif_carrier_off(dev); 8746 } 8747 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8748 8749 static int netif_alloc_rx_queues(struct net_device *dev) 8750 { 8751 unsigned int i, count = dev->num_rx_queues; 8752 struct netdev_rx_queue *rx; 8753 size_t sz = count * sizeof(*rx); 8754 int err = 0; 8755 8756 BUG_ON(count < 1); 8757 8758 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8759 if (!rx) 8760 return -ENOMEM; 8761 8762 dev->_rx = rx; 8763 8764 for (i = 0; i < count; i++) { 8765 rx[i].dev = dev; 8766 8767 /* XDP RX-queue setup */ 8768 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8769 if (err < 0) 8770 goto err_rxq_info; 8771 } 8772 return 0; 8773 8774 err_rxq_info: 8775 /* Rollback successful reg's and free other resources */ 8776 while (i--) 8777 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8778 kvfree(dev->_rx); 8779 dev->_rx = NULL; 8780 return err; 8781 } 8782 8783 static void netif_free_rx_queues(struct net_device *dev) 8784 { 8785 unsigned int i, count = dev->num_rx_queues; 8786 8787 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8788 if (!dev->_rx) 8789 return; 8790 8791 for (i = 0; i < count; i++) 8792 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8793 8794 kvfree(dev->_rx); 8795 } 8796 8797 static void netdev_init_one_queue(struct net_device *dev, 8798 struct netdev_queue *queue, void *_unused) 8799 { 8800 /* Initialize queue lock */ 8801 spin_lock_init(&queue->_xmit_lock); 8802 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8803 queue->xmit_lock_owner = -1; 8804 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8805 queue->dev = dev; 8806 #ifdef CONFIG_BQL 8807 dql_init(&queue->dql, HZ); 8808 #endif 8809 } 8810 8811 static void netif_free_tx_queues(struct net_device *dev) 8812 { 8813 kvfree(dev->_tx); 8814 } 8815 8816 static int netif_alloc_netdev_queues(struct net_device *dev) 8817 { 8818 unsigned int count = dev->num_tx_queues; 8819 struct netdev_queue *tx; 8820 size_t sz = count * sizeof(*tx); 8821 8822 if (count < 1 || count > 0xffff) 8823 return -EINVAL; 8824 8825 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8826 if (!tx) 8827 return -ENOMEM; 8828 8829 dev->_tx = tx; 8830 8831 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8832 spin_lock_init(&dev->tx_global_lock); 8833 8834 return 0; 8835 } 8836 8837 void netif_tx_stop_all_queues(struct net_device *dev) 8838 { 8839 unsigned int i; 8840 8841 for (i = 0; i < dev->num_tx_queues; i++) { 8842 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8843 8844 netif_tx_stop_queue(txq); 8845 } 8846 } 8847 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8848 8849 /** 8850 * register_netdevice - register a network device 8851 * @dev: device to register 8852 * 8853 * Take a completed network device structure and add it to the kernel 8854 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8855 * chain. 0 is returned on success. A negative errno code is returned 8856 * on a failure to set up the device, or if the name is a duplicate. 8857 * 8858 * Callers must hold the rtnl semaphore. You may want 8859 * register_netdev() instead of this. 8860 * 8861 * BUGS: 8862 * The locking appears insufficient to guarantee two parallel registers 8863 * will not get the same name. 8864 */ 8865 8866 int register_netdevice(struct net_device *dev) 8867 { 8868 int ret; 8869 struct net *net = dev_net(dev); 8870 8871 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8872 NETDEV_FEATURE_COUNT); 8873 BUG_ON(dev_boot_phase); 8874 ASSERT_RTNL(); 8875 8876 might_sleep(); 8877 8878 /* When net_device's are persistent, this will be fatal. */ 8879 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8880 BUG_ON(!net); 8881 8882 spin_lock_init(&dev->addr_list_lock); 8883 netdev_set_addr_lockdep_class(dev); 8884 8885 ret = dev_get_valid_name(net, dev, dev->name); 8886 if (ret < 0) 8887 goto out; 8888 8889 /* Init, if this function is available */ 8890 if (dev->netdev_ops->ndo_init) { 8891 ret = dev->netdev_ops->ndo_init(dev); 8892 if (ret) { 8893 if (ret > 0) 8894 ret = -EIO; 8895 goto out; 8896 } 8897 } 8898 8899 if (((dev->hw_features | dev->features) & 8900 NETIF_F_HW_VLAN_CTAG_FILTER) && 8901 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8902 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8903 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8904 ret = -EINVAL; 8905 goto err_uninit; 8906 } 8907 8908 ret = -EBUSY; 8909 if (!dev->ifindex) 8910 dev->ifindex = dev_new_index(net); 8911 else if (__dev_get_by_index(net, dev->ifindex)) 8912 goto err_uninit; 8913 8914 /* Transfer changeable features to wanted_features and enable 8915 * software offloads (GSO and GRO). 8916 */ 8917 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8918 dev->features |= NETIF_F_SOFT_FEATURES; 8919 8920 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8921 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8922 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8923 } 8924 8925 dev->wanted_features = dev->features & dev->hw_features; 8926 8927 if (!(dev->flags & IFF_LOOPBACK)) 8928 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8929 8930 /* If IPv4 TCP segmentation offload is supported we should also 8931 * allow the device to enable segmenting the frame with the option 8932 * of ignoring a static IP ID value. This doesn't enable the 8933 * feature itself but allows the user to enable it later. 8934 */ 8935 if (dev->hw_features & NETIF_F_TSO) 8936 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8937 if (dev->vlan_features & NETIF_F_TSO) 8938 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8939 if (dev->mpls_features & NETIF_F_TSO) 8940 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8941 if (dev->hw_enc_features & NETIF_F_TSO) 8942 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8943 8944 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8945 */ 8946 dev->vlan_features |= NETIF_F_HIGHDMA; 8947 8948 /* Make NETIF_F_SG inheritable to tunnel devices. 8949 */ 8950 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8951 8952 /* Make NETIF_F_SG inheritable to MPLS. 8953 */ 8954 dev->mpls_features |= NETIF_F_SG; 8955 8956 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8957 ret = notifier_to_errno(ret); 8958 if (ret) 8959 goto err_uninit; 8960 8961 ret = netdev_register_kobject(dev); 8962 if (ret) 8963 goto err_uninit; 8964 dev->reg_state = NETREG_REGISTERED; 8965 8966 __netdev_update_features(dev); 8967 8968 /* 8969 * Default initial state at registry is that the 8970 * device is present. 8971 */ 8972 8973 set_bit(__LINK_STATE_PRESENT, &dev->state); 8974 8975 linkwatch_init_dev(dev); 8976 8977 dev_init_scheduler(dev); 8978 dev_hold(dev); 8979 list_netdevice(dev); 8980 add_device_randomness(dev->dev_addr, dev->addr_len); 8981 8982 /* If the device has permanent device address, driver should 8983 * set dev_addr and also addr_assign_type should be set to 8984 * NET_ADDR_PERM (default value). 8985 */ 8986 if (dev->addr_assign_type == NET_ADDR_PERM) 8987 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8988 8989 /* Notify protocols, that a new device appeared. */ 8990 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8991 ret = notifier_to_errno(ret); 8992 if (ret) { 8993 rollback_registered(dev); 8994 rcu_barrier(); 8995 8996 dev->reg_state = NETREG_UNREGISTERED; 8997 } 8998 /* 8999 * Prevent userspace races by waiting until the network 9000 * device is fully setup before sending notifications. 9001 */ 9002 if (!dev->rtnl_link_ops || 9003 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9004 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9005 9006 out: 9007 return ret; 9008 9009 err_uninit: 9010 if (dev->netdev_ops->ndo_uninit) 9011 dev->netdev_ops->ndo_uninit(dev); 9012 if (dev->priv_destructor) 9013 dev->priv_destructor(dev); 9014 goto out; 9015 } 9016 EXPORT_SYMBOL(register_netdevice); 9017 9018 /** 9019 * init_dummy_netdev - init a dummy network device for NAPI 9020 * @dev: device to init 9021 * 9022 * This takes a network device structure and initialize the minimum 9023 * amount of fields so it can be used to schedule NAPI polls without 9024 * registering a full blown interface. This is to be used by drivers 9025 * that need to tie several hardware interfaces to a single NAPI 9026 * poll scheduler due to HW limitations. 9027 */ 9028 int init_dummy_netdev(struct net_device *dev) 9029 { 9030 /* Clear everything. Note we don't initialize spinlocks 9031 * are they aren't supposed to be taken by any of the 9032 * NAPI code and this dummy netdev is supposed to be 9033 * only ever used for NAPI polls 9034 */ 9035 memset(dev, 0, sizeof(struct net_device)); 9036 9037 /* make sure we BUG if trying to hit standard 9038 * register/unregister code path 9039 */ 9040 dev->reg_state = NETREG_DUMMY; 9041 9042 /* NAPI wants this */ 9043 INIT_LIST_HEAD(&dev->napi_list); 9044 9045 /* a dummy interface is started by default */ 9046 set_bit(__LINK_STATE_PRESENT, &dev->state); 9047 set_bit(__LINK_STATE_START, &dev->state); 9048 9049 /* napi_busy_loop stats accounting wants this */ 9050 dev_net_set(dev, &init_net); 9051 9052 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9053 * because users of this 'device' dont need to change 9054 * its refcount. 9055 */ 9056 9057 return 0; 9058 } 9059 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9060 9061 9062 /** 9063 * register_netdev - register a network device 9064 * @dev: device to register 9065 * 9066 * Take a completed network device structure and add it to the kernel 9067 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9068 * chain. 0 is returned on success. A negative errno code is returned 9069 * on a failure to set up the device, or if the name is a duplicate. 9070 * 9071 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9072 * and expands the device name if you passed a format string to 9073 * alloc_netdev. 9074 */ 9075 int register_netdev(struct net_device *dev) 9076 { 9077 int err; 9078 9079 if (rtnl_lock_killable()) 9080 return -EINTR; 9081 err = register_netdevice(dev); 9082 rtnl_unlock(); 9083 return err; 9084 } 9085 EXPORT_SYMBOL(register_netdev); 9086 9087 int netdev_refcnt_read(const struct net_device *dev) 9088 { 9089 int i, refcnt = 0; 9090 9091 for_each_possible_cpu(i) 9092 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9093 return refcnt; 9094 } 9095 EXPORT_SYMBOL(netdev_refcnt_read); 9096 9097 /** 9098 * netdev_wait_allrefs - wait until all references are gone. 9099 * @dev: target net_device 9100 * 9101 * This is called when unregistering network devices. 9102 * 9103 * Any protocol or device that holds a reference should register 9104 * for netdevice notification, and cleanup and put back the 9105 * reference if they receive an UNREGISTER event. 9106 * We can get stuck here if buggy protocols don't correctly 9107 * call dev_put. 9108 */ 9109 static void netdev_wait_allrefs(struct net_device *dev) 9110 { 9111 unsigned long rebroadcast_time, warning_time; 9112 int refcnt; 9113 9114 linkwatch_forget_dev(dev); 9115 9116 rebroadcast_time = warning_time = jiffies; 9117 refcnt = netdev_refcnt_read(dev); 9118 9119 while (refcnt != 0) { 9120 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9121 rtnl_lock(); 9122 9123 /* Rebroadcast unregister notification */ 9124 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9125 9126 __rtnl_unlock(); 9127 rcu_barrier(); 9128 rtnl_lock(); 9129 9130 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9131 &dev->state)) { 9132 /* We must not have linkwatch events 9133 * pending on unregister. If this 9134 * happens, we simply run the queue 9135 * unscheduled, resulting in a noop 9136 * for this device. 9137 */ 9138 linkwatch_run_queue(); 9139 } 9140 9141 __rtnl_unlock(); 9142 9143 rebroadcast_time = jiffies; 9144 } 9145 9146 msleep(250); 9147 9148 refcnt = netdev_refcnt_read(dev); 9149 9150 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9151 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9152 dev->name, refcnt); 9153 warning_time = jiffies; 9154 } 9155 } 9156 } 9157 9158 /* The sequence is: 9159 * 9160 * rtnl_lock(); 9161 * ... 9162 * register_netdevice(x1); 9163 * register_netdevice(x2); 9164 * ... 9165 * unregister_netdevice(y1); 9166 * unregister_netdevice(y2); 9167 * ... 9168 * rtnl_unlock(); 9169 * free_netdev(y1); 9170 * free_netdev(y2); 9171 * 9172 * We are invoked by rtnl_unlock(). 9173 * This allows us to deal with problems: 9174 * 1) We can delete sysfs objects which invoke hotplug 9175 * without deadlocking with linkwatch via keventd. 9176 * 2) Since we run with the RTNL semaphore not held, we can sleep 9177 * safely in order to wait for the netdev refcnt to drop to zero. 9178 * 9179 * We must not return until all unregister events added during 9180 * the interval the lock was held have been completed. 9181 */ 9182 void netdev_run_todo(void) 9183 { 9184 struct list_head list; 9185 9186 /* Snapshot list, allow later requests */ 9187 list_replace_init(&net_todo_list, &list); 9188 9189 __rtnl_unlock(); 9190 9191 9192 /* Wait for rcu callbacks to finish before next phase */ 9193 if (!list_empty(&list)) 9194 rcu_barrier(); 9195 9196 while (!list_empty(&list)) { 9197 struct net_device *dev 9198 = list_first_entry(&list, struct net_device, todo_list); 9199 list_del(&dev->todo_list); 9200 9201 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9202 pr_err("network todo '%s' but state %d\n", 9203 dev->name, dev->reg_state); 9204 dump_stack(); 9205 continue; 9206 } 9207 9208 dev->reg_state = NETREG_UNREGISTERED; 9209 9210 netdev_wait_allrefs(dev); 9211 9212 /* paranoia */ 9213 BUG_ON(netdev_refcnt_read(dev)); 9214 BUG_ON(!list_empty(&dev->ptype_all)); 9215 BUG_ON(!list_empty(&dev->ptype_specific)); 9216 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9217 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9218 #if IS_ENABLED(CONFIG_DECNET) 9219 WARN_ON(dev->dn_ptr); 9220 #endif 9221 if (dev->priv_destructor) 9222 dev->priv_destructor(dev); 9223 if (dev->needs_free_netdev) 9224 free_netdev(dev); 9225 9226 /* Report a network device has been unregistered */ 9227 rtnl_lock(); 9228 dev_net(dev)->dev_unreg_count--; 9229 __rtnl_unlock(); 9230 wake_up(&netdev_unregistering_wq); 9231 9232 /* Free network device */ 9233 kobject_put(&dev->dev.kobj); 9234 } 9235 } 9236 9237 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9238 * all the same fields in the same order as net_device_stats, with only 9239 * the type differing, but rtnl_link_stats64 may have additional fields 9240 * at the end for newer counters. 9241 */ 9242 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9243 const struct net_device_stats *netdev_stats) 9244 { 9245 #if BITS_PER_LONG == 64 9246 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9247 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9248 /* zero out counters that only exist in rtnl_link_stats64 */ 9249 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9250 sizeof(*stats64) - sizeof(*netdev_stats)); 9251 #else 9252 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9253 const unsigned long *src = (const unsigned long *)netdev_stats; 9254 u64 *dst = (u64 *)stats64; 9255 9256 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9257 for (i = 0; i < n; i++) 9258 dst[i] = src[i]; 9259 /* zero out counters that only exist in rtnl_link_stats64 */ 9260 memset((char *)stats64 + n * sizeof(u64), 0, 9261 sizeof(*stats64) - n * sizeof(u64)); 9262 #endif 9263 } 9264 EXPORT_SYMBOL(netdev_stats_to_stats64); 9265 9266 /** 9267 * dev_get_stats - get network device statistics 9268 * @dev: device to get statistics from 9269 * @storage: place to store stats 9270 * 9271 * Get network statistics from device. Return @storage. 9272 * The device driver may provide its own method by setting 9273 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9274 * otherwise the internal statistics structure is used. 9275 */ 9276 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9277 struct rtnl_link_stats64 *storage) 9278 { 9279 const struct net_device_ops *ops = dev->netdev_ops; 9280 9281 if (ops->ndo_get_stats64) { 9282 memset(storage, 0, sizeof(*storage)); 9283 ops->ndo_get_stats64(dev, storage); 9284 } else if (ops->ndo_get_stats) { 9285 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9286 } else { 9287 netdev_stats_to_stats64(storage, &dev->stats); 9288 } 9289 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9290 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9291 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9292 return storage; 9293 } 9294 EXPORT_SYMBOL(dev_get_stats); 9295 9296 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9297 { 9298 struct netdev_queue *queue = dev_ingress_queue(dev); 9299 9300 #ifdef CONFIG_NET_CLS_ACT 9301 if (queue) 9302 return queue; 9303 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9304 if (!queue) 9305 return NULL; 9306 netdev_init_one_queue(dev, queue, NULL); 9307 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9308 queue->qdisc_sleeping = &noop_qdisc; 9309 rcu_assign_pointer(dev->ingress_queue, queue); 9310 #endif 9311 return queue; 9312 } 9313 9314 static const struct ethtool_ops default_ethtool_ops; 9315 9316 void netdev_set_default_ethtool_ops(struct net_device *dev, 9317 const struct ethtool_ops *ops) 9318 { 9319 if (dev->ethtool_ops == &default_ethtool_ops) 9320 dev->ethtool_ops = ops; 9321 } 9322 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9323 9324 void netdev_freemem(struct net_device *dev) 9325 { 9326 char *addr = (char *)dev - dev->padded; 9327 9328 kvfree(addr); 9329 } 9330 9331 /** 9332 * alloc_netdev_mqs - allocate network device 9333 * @sizeof_priv: size of private data to allocate space for 9334 * @name: device name format string 9335 * @name_assign_type: origin of device name 9336 * @setup: callback to initialize device 9337 * @txqs: the number of TX subqueues to allocate 9338 * @rxqs: the number of RX subqueues to allocate 9339 * 9340 * Allocates a struct net_device with private data area for driver use 9341 * and performs basic initialization. Also allocates subqueue structs 9342 * for each queue on the device. 9343 */ 9344 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9345 unsigned char name_assign_type, 9346 void (*setup)(struct net_device *), 9347 unsigned int txqs, unsigned int rxqs) 9348 { 9349 struct net_device *dev; 9350 unsigned int alloc_size; 9351 struct net_device *p; 9352 9353 BUG_ON(strlen(name) >= sizeof(dev->name)); 9354 9355 if (txqs < 1) { 9356 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9357 return NULL; 9358 } 9359 9360 if (rxqs < 1) { 9361 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9362 return NULL; 9363 } 9364 9365 alloc_size = sizeof(struct net_device); 9366 if (sizeof_priv) { 9367 /* ensure 32-byte alignment of private area */ 9368 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9369 alloc_size += sizeof_priv; 9370 } 9371 /* ensure 32-byte alignment of whole construct */ 9372 alloc_size += NETDEV_ALIGN - 1; 9373 9374 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9375 if (!p) 9376 return NULL; 9377 9378 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9379 dev->padded = (char *)dev - (char *)p; 9380 9381 dev->pcpu_refcnt = alloc_percpu(int); 9382 if (!dev->pcpu_refcnt) 9383 goto free_dev; 9384 9385 if (dev_addr_init(dev)) 9386 goto free_pcpu; 9387 9388 dev_mc_init(dev); 9389 dev_uc_init(dev); 9390 9391 dev_net_set(dev, &init_net); 9392 9393 dev->gso_max_size = GSO_MAX_SIZE; 9394 dev->gso_max_segs = GSO_MAX_SEGS; 9395 dev->upper_level = 1; 9396 dev->lower_level = 1; 9397 9398 INIT_LIST_HEAD(&dev->napi_list); 9399 INIT_LIST_HEAD(&dev->unreg_list); 9400 INIT_LIST_HEAD(&dev->close_list); 9401 INIT_LIST_HEAD(&dev->link_watch_list); 9402 INIT_LIST_HEAD(&dev->adj_list.upper); 9403 INIT_LIST_HEAD(&dev->adj_list.lower); 9404 INIT_LIST_HEAD(&dev->ptype_all); 9405 INIT_LIST_HEAD(&dev->ptype_specific); 9406 #ifdef CONFIG_NET_SCHED 9407 hash_init(dev->qdisc_hash); 9408 #endif 9409 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9410 setup(dev); 9411 9412 if (!dev->tx_queue_len) { 9413 dev->priv_flags |= IFF_NO_QUEUE; 9414 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9415 } 9416 9417 dev->num_tx_queues = txqs; 9418 dev->real_num_tx_queues = txqs; 9419 if (netif_alloc_netdev_queues(dev)) 9420 goto free_all; 9421 9422 dev->num_rx_queues = rxqs; 9423 dev->real_num_rx_queues = rxqs; 9424 if (netif_alloc_rx_queues(dev)) 9425 goto free_all; 9426 9427 strcpy(dev->name, name); 9428 dev->name_assign_type = name_assign_type; 9429 dev->group = INIT_NETDEV_GROUP; 9430 if (!dev->ethtool_ops) 9431 dev->ethtool_ops = &default_ethtool_ops; 9432 9433 nf_hook_ingress_init(dev); 9434 9435 return dev; 9436 9437 free_all: 9438 free_netdev(dev); 9439 return NULL; 9440 9441 free_pcpu: 9442 free_percpu(dev->pcpu_refcnt); 9443 free_dev: 9444 netdev_freemem(dev); 9445 return NULL; 9446 } 9447 EXPORT_SYMBOL(alloc_netdev_mqs); 9448 9449 /** 9450 * free_netdev - free network device 9451 * @dev: device 9452 * 9453 * This function does the last stage of destroying an allocated device 9454 * interface. The reference to the device object is released. If this 9455 * is the last reference then it will be freed.Must be called in process 9456 * context. 9457 */ 9458 void free_netdev(struct net_device *dev) 9459 { 9460 struct napi_struct *p, *n; 9461 9462 might_sleep(); 9463 netif_free_tx_queues(dev); 9464 netif_free_rx_queues(dev); 9465 9466 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9467 9468 /* Flush device addresses */ 9469 dev_addr_flush(dev); 9470 9471 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9472 netif_napi_del(p); 9473 9474 free_percpu(dev->pcpu_refcnt); 9475 dev->pcpu_refcnt = NULL; 9476 9477 /* Compatibility with error handling in drivers */ 9478 if (dev->reg_state == NETREG_UNINITIALIZED) { 9479 netdev_freemem(dev); 9480 return; 9481 } 9482 9483 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9484 dev->reg_state = NETREG_RELEASED; 9485 9486 /* will free via device release */ 9487 put_device(&dev->dev); 9488 } 9489 EXPORT_SYMBOL(free_netdev); 9490 9491 /** 9492 * synchronize_net - Synchronize with packet receive processing 9493 * 9494 * Wait for packets currently being received to be done. 9495 * Does not block later packets from starting. 9496 */ 9497 void synchronize_net(void) 9498 { 9499 might_sleep(); 9500 if (rtnl_is_locked()) 9501 synchronize_rcu_expedited(); 9502 else 9503 synchronize_rcu(); 9504 } 9505 EXPORT_SYMBOL(synchronize_net); 9506 9507 /** 9508 * unregister_netdevice_queue - remove device from the kernel 9509 * @dev: device 9510 * @head: list 9511 * 9512 * This function shuts down a device interface and removes it 9513 * from the kernel tables. 9514 * If head not NULL, device is queued to be unregistered later. 9515 * 9516 * Callers must hold the rtnl semaphore. You may want 9517 * unregister_netdev() instead of this. 9518 */ 9519 9520 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9521 { 9522 ASSERT_RTNL(); 9523 9524 if (head) { 9525 list_move_tail(&dev->unreg_list, head); 9526 } else { 9527 rollback_registered(dev); 9528 /* Finish processing unregister after unlock */ 9529 net_set_todo(dev); 9530 } 9531 } 9532 EXPORT_SYMBOL(unregister_netdevice_queue); 9533 9534 /** 9535 * unregister_netdevice_many - unregister many devices 9536 * @head: list of devices 9537 * 9538 * Note: As most callers use a stack allocated list_head, 9539 * we force a list_del() to make sure stack wont be corrupted later. 9540 */ 9541 void unregister_netdevice_many(struct list_head *head) 9542 { 9543 struct net_device *dev; 9544 9545 if (!list_empty(head)) { 9546 rollback_registered_many(head); 9547 list_for_each_entry(dev, head, unreg_list) 9548 net_set_todo(dev); 9549 list_del(head); 9550 } 9551 } 9552 EXPORT_SYMBOL(unregister_netdevice_many); 9553 9554 /** 9555 * unregister_netdev - remove device from the kernel 9556 * @dev: device 9557 * 9558 * This function shuts down a device interface and removes it 9559 * from the kernel tables. 9560 * 9561 * This is just a wrapper for unregister_netdevice that takes 9562 * the rtnl semaphore. In general you want to use this and not 9563 * unregister_netdevice. 9564 */ 9565 void unregister_netdev(struct net_device *dev) 9566 { 9567 rtnl_lock(); 9568 unregister_netdevice(dev); 9569 rtnl_unlock(); 9570 } 9571 EXPORT_SYMBOL(unregister_netdev); 9572 9573 /** 9574 * dev_change_net_namespace - move device to different nethost namespace 9575 * @dev: device 9576 * @net: network namespace 9577 * @pat: If not NULL name pattern to try if the current device name 9578 * is already taken in the destination network namespace. 9579 * 9580 * This function shuts down a device interface and moves it 9581 * to a new network namespace. On success 0 is returned, on 9582 * a failure a netagive errno code is returned. 9583 * 9584 * Callers must hold the rtnl semaphore. 9585 */ 9586 9587 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9588 { 9589 int err, new_nsid, new_ifindex; 9590 9591 ASSERT_RTNL(); 9592 9593 /* Don't allow namespace local devices to be moved. */ 9594 err = -EINVAL; 9595 if (dev->features & NETIF_F_NETNS_LOCAL) 9596 goto out; 9597 9598 /* Ensure the device has been registrered */ 9599 if (dev->reg_state != NETREG_REGISTERED) 9600 goto out; 9601 9602 /* Get out if there is nothing todo */ 9603 err = 0; 9604 if (net_eq(dev_net(dev), net)) 9605 goto out; 9606 9607 /* Pick the destination device name, and ensure 9608 * we can use it in the destination network namespace. 9609 */ 9610 err = -EEXIST; 9611 if (__dev_get_by_name(net, dev->name)) { 9612 /* We get here if we can't use the current device name */ 9613 if (!pat) 9614 goto out; 9615 err = dev_get_valid_name(net, dev, pat); 9616 if (err < 0) 9617 goto out; 9618 } 9619 9620 /* 9621 * And now a mini version of register_netdevice unregister_netdevice. 9622 */ 9623 9624 /* If device is running close it first. */ 9625 dev_close(dev); 9626 9627 /* And unlink it from device chain */ 9628 unlist_netdevice(dev); 9629 9630 synchronize_net(); 9631 9632 /* Shutdown queueing discipline. */ 9633 dev_shutdown(dev); 9634 9635 /* Notify protocols, that we are about to destroy 9636 * this device. They should clean all the things. 9637 * 9638 * Note that dev->reg_state stays at NETREG_REGISTERED. 9639 * This is wanted because this way 8021q and macvlan know 9640 * the device is just moving and can keep their slaves up. 9641 */ 9642 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9643 rcu_barrier(); 9644 9645 new_nsid = peernet2id_alloc(dev_net(dev), net); 9646 /* If there is an ifindex conflict assign a new one */ 9647 if (__dev_get_by_index(net, dev->ifindex)) 9648 new_ifindex = dev_new_index(net); 9649 else 9650 new_ifindex = dev->ifindex; 9651 9652 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9653 new_ifindex); 9654 9655 /* 9656 * Flush the unicast and multicast chains 9657 */ 9658 dev_uc_flush(dev); 9659 dev_mc_flush(dev); 9660 9661 /* Send a netdev-removed uevent to the old namespace */ 9662 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9663 netdev_adjacent_del_links(dev); 9664 9665 /* Actually switch the network namespace */ 9666 dev_net_set(dev, net); 9667 dev->ifindex = new_ifindex; 9668 9669 /* Send a netdev-add uevent to the new namespace */ 9670 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9671 netdev_adjacent_add_links(dev); 9672 9673 /* Fixup kobjects */ 9674 err = device_rename(&dev->dev, dev->name); 9675 WARN_ON(err); 9676 9677 /* Add the device back in the hashes */ 9678 list_netdevice(dev); 9679 9680 /* Notify protocols, that a new device appeared. */ 9681 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9682 9683 /* 9684 * Prevent userspace races by waiting until the network 9685 * device is fully setup before sending notifications. 9686 */ 9687 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9688 9689 synchronize_net(); 9690 err = 0; 9691 out: 9692 return err; 9693 } 9694 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9695 9696 static int dev_cpu_dead(unsigned int oldcpu) 9697 { 9698 struct sk_buff **list_skb; 9699 struct sk_buff *skb; 9700 unsigned int cpu; 9701 struct softnet_data *sd, *oldsd, *remsd = NULL; 9702 9703 local_irq_disable(); 9704 cpu = smp_processor_id(); 9705 sd = &per_cpu(softnet_data, cpu); 9706 oldsd = &per_cpu(softnet_data, oldcpu); 9707 9708 /* Find end of our completion_queue. */ 9709 list_skb = &sd->completion_queue; 9710 while (*list_skb) 9711 list_skb = &(*list_skb)->next; 9712 /* Append completion queue from offline CPU. */ 9713 *list_skb = oldsd->completion_queue; 9714 oldsd->completion_queue = NULL; 9715 9716 /* Append output queue from offline CPU. */ 9717 if (oldsd->output_queue) { 9718 *sd->output_queue_tailp = oldsd->output_queue; 9719 sd->output_queue_tailp = oldsd->output_queue_tailp; 9720 oldsd->output_queue = NULL; 9721 oldsd->output_queue_tailp = &oldsd->output_queue; 9722 } 9723 /* Append NAPI poll list from offline CPU, with one exception : 9724 * process_backlog() must be called by cpu owning percpu backlog. 9725 * We properly handle process_queue & input_pkt_queue later. 9726 */ 9727 while (!list_empty(&oldsd->poll_list)) { 9728 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9729 struct napi_struct, 9730 poll_list); 9731 9732 list_del_init(&napi->poll_list); 9733 if (napi->poll == process_backlog) 9734 napi->state = 0; 9735 else 9736 ____napi_schedule(sd, napi); 9737 } 9738 9739 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9740 local_irq_enable(); 9741 9742 #ifdef CONFIG_RPS 9743 remsd = oldsd->rps_ipi_list; 9744 oldsd->rps_ipi_list = NULL; 9745 #endif 9746 /* send out pending IPI's on offline CPU */ 9747 net_rps_send_ipi(remsd); 9748 9749 /* Process offline CPU's input_pkt_queue */ 9750 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9751 netif_rx_ni(skb); 9752 input_queue_head_incr(oldsd); 9753 } 9754 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9755 netif_rx_ni(skb); 9756 input_queue_head_incr(oldsd); 9757 } 9758 9759 return 0; 9760 } 9761 9762 /** 9763 * netdev_increment_features - increment feature set by one 9764 * @all: current feature set 9765 * @one: new feature set 9766 * @mask: mask feature set 9767 * 9768 * Computes a new feature set after adding a device with feature set 9769 * @one to the master device with current feature set @all. Will not 9770 * enable anything that is off in @mask. Returns the new feature set. 9771 */ 9772 netdev_features_t netdev_increment_features(netdev_features_t all, 9773 netdev_features_t one, netdev_features_t mask) 9774 { 9775 if (mask & NETIF_F_HW_CSUM) 9776 mask |= NETIF_F_CSUM_MASK; 9777 mask |= NETIF_F_VLAN_CHALLENGED; 9778 9779 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9780 all &= one | ~NETIF_F_ALL_FOR_ALL; 9781 9782 /* If one device supports hw checksumming, set for all. */ 9783 if (all & NETIF_F_HW_CSUM) 9784 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9785 9786 return all; 9787 } 9788 EXPORT_SYMBOL(netdev_increment_features); 9789 9790 static struct hlist_head * __net_init netdev_create_hash(void) 9791 { 9792 int i; 9793 struct hlist_head *hash; 9794 9795 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9796 if (hash != NULL) 9797 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9798 INIT_HLIST_HEAD(&hash[i]); 9799 9800 return hash; 9801 } 9802 9803 /* Initialize per network namespace state */ 9804 static int __net_init netdev_init(struct net *net) 9805 { 9806 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9807 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9808 9809 if (net != &init_net) 9810 INIT_LIST_HEAD(&net->dev_base_head); 9811 9812 net->dev_name_head = netdev_create_hash(); 9813 if (net->dev_name_head == NULL) 9814 goto err_name; 9815 9816 net->dev_index_head = netdev_create_hash(); 9817 if (net->dev_index_head == NULL) 9818 goto err_idx; 9819 9820 return 0; 9821 9822 err_idx: 9823 kfree(net->dev_name_head); 9824 err_name: 9825 return -ENOMEM; 9826 } 9827 9828 /** 9829 * netdev_drivername - network driver for the device 9830 * @dev: network device 9831 * 9832 * Determine network driver for device. 9833 */ 9834 const char *netdev_drivername(const struct net_device *dev) 9835 { 9836 const struct device_driver *driver; 9837 const struct device *parent; 9838 const char *empty = ""; 9839 9840 parent = dev->dev.parent; 9841 if (!parent) 9842 return empty; 9843 9844 driver = parent->driver; 9845 if (driver && driver->name) 9846 return driver->name; 9847 return empty; 9848 } 9849 9850 static void __netdev_printk(const char *level, const struct net_device *dev, 9851 struct va_format *vaf) 9852 { 9853 if (dev && dev->dev.parent) { 9854 dev_printk_emit(level[1] - '0', 9855 dev->dev.parent, 9856 "%s %s %s%s: %pV", 9857 dev_driver_string(dev->dev.parent), 9858 dev_name(dev->dev.parent), 9859 netdev_name(dev), netdev_reg_state(dev), 9860 vaf); 9861 } else if (dev) { 9862 printk("%s%s%s: %pV", 9863 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9864 } else { 9865 printk("%s(NULL net_device): %pV", level, vaf); 9866 } 9867 } 9868 9869 void netdev_printk(const char *level, const struct net_device *dev, 9870 const char *format, ...) 9871 { 9872 struct va_format vaf; 9873 va_list args; 9874 9875 va_start(args, format); 9876 9877 vaf.fmt = format; 9878 vaf.va = &args; 9879 9880 __netdev_printk(level, dev, &vaf); 9881 9882 va_end(args); 9883 } 9884 EXPORT_SYMBOL(netdev_printk); 9885 9886 #define define_netdev_printk_level(func, level) \ 9887 void func(const struct net_device *dev, const char *fmt, ...) \ 9888 { \ 9889 struct va_format vaf; \ 9890 va_list args; \ 9891 \ 9892 va_start(args, fmt); \ 9893 \ 9894 vaf.fmt = fmt; \ 9895 vaf.va = &args; \ 9896 \ 9897 __netdev_printk(level, dev, &vaf); \ 9898 \ 9899 va_end(args); \ 9900 } \ 9901 EXPORT_SYMBOL(func); 9902 9903 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9904 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9905 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9906 define_netdev_printk_level(netdev_err, KERN_ERR); 9907 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9908 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9909 define_netdev_printk_level(netdev_info, KERN_INFO); 9910 9911 static void __net_exit netdev_exit(struct net *net) 9912 { 9913 kfree(net->dev_name_head); 9914 kfree(net->dev_index_head); 9915 if (net != &init_net) 9916 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9917 } 9918 9919 static struct pernet_operations __net_initdata netdev_net_ops = { 9920 .init = netdev_init, 9921 .exit = netdev_exit, 9922 }; 9923 9924 static void __net_exit default_device_exit(struct net *net) 9925 { 9926 struct net_device *dev, *aux; 9927 /* 9928 * Push all migratable network devices back to the 9929 * initial network namespace 9930 */ 9931 rtnl_lock(); 9932 for_each_netdev_safe(net, dev, aux) { 9933 int err; 9934 char fb_name[IFNAMSIZ]; 9935 9936 /* Ignore unmoveable devices (i.e. loopback) */ 9937 if (dev->features & NETIF_F_NETNS_LOCAL) 9938 continue; 9939 9940 /* Leave virtual devices for the generic cleanup */ 9941 if (dev->rtnl_link_ops) 9942 continue; 9943 9944 /* Push remaining network devices to init_net */ 9945 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9946 if (__dev_get_by_name(&init_net, fb_name)) 9947 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 9948 err = dev_change_net_namespace(dev, &init_net, fb_name); 9949 if (err) { 9950 pr_emerg("%s: failed to move %s to init_net: %d\n", 9951 __func__, dev->name, err); 9952 BUG(); 9953 } 9954 } 9955 rtnl_unlock(); 9956 } 9957 9958 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9959 { 9960 /* Return with the rtnl_lock held when there are no network 9961 * devices unregistering in any network namespace in net_list. 9962 */ 9963 struct net *net; 9964 bool unregistering; 9965 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9966 9967 add_wait_queue(&netdev_unregistering_wq, &wait); 9968 for (;;) { 9969 unregistering = false; 9970 rtnl_lock(); 9971 list_for_each_entry(net, net_list, exit_list) { 9972 if (net->dev_unreg_count > 0) { 9973 unregistering = true; 9974 break; 9975 } 9976 } 9977 if (!unregistering) 9978 break; 9979 __rtnl_unlock(); 9980 9981 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9982 } 9983 remove_wait_queue(&netdev_unregistering_wq, &wait); 9984 } 9985 9986 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9987 { 9988 /* At exit all network devices most be removed from a network 9989 * namespace. Do this in the reverse order of registration. 9990 * Do this across as many network namespaces as possible to 9991 * improve batching efficiency. 9992 */ 9993 struct net_device *dev; 9994 struct net *net; 9995 LIST_HEAD(dev_kill_list); 9996 9997 /* To prevent network device cleanup code from dereferencing 9998 * loopback devices or network devices that have been freed 9999 * wait here for all pending unregistrations to complete, 10000 * before unregistring the loopback device and allowing the 10001 * network namespace be freed. 10002 * 10003 * The netdev todo list containing all network devices 10004 * unregistrations that happen in default_device_exit_batch 10005 * will run in the rtnl_unlock() at the end of 10006 * default_device_exit_batch. 10007 */ 10008 rtnl_lock_unregistering(net_list); 10009 list_for_each_entry(net, net_list, exit_list) { 10010 for_each_netdev_reverse(net, dev) { 10011 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 10012 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 10013 else 10014 unregister_netdevice_queue(dev, &dev_kill_list); 10015 } 10016 } 10017 unregister_netdevice_many(&dev_kill_list); 10018 rtnl_unlock(); 10019 } 10020 10021 static struct pernet_operations __net_initdata default_device_ops = { 10022 .exit = default_device_exit, 10023 .exit_batch = default_device_exit_batch, 10024 }; 10025 10026 /* 10027 * Initialize the DEV module. At boot time this walks the device list and 10028 * unhooks any devices that fail to initialise (normally hardware not 10029 * present) and leaves us with a valid list of present and active devices. 10030 * 10031 */ 10032 10033 /* 10034 * This is called single threaded during boot, so no need 10035 * to take the rtnl semaphore. 10036 */ 10037 static int __init net_dev_init(void) 10038 { 10039 int i, rc = -ENOMEM; 10040 10041 BUG_ON(!dev_boot_phase); 10042 10043 if (dev_proc_init()) 10044 goto out; 10045 10046 if (netdev_kobject_init()) 10047 goto out; 10048 10049 INIT_LIST_HEAD(&ptype_all); 10050 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10051 INIT_LIST_HEAD(&ptype_base[i]); 10052 10053 INIT_LIST_HEAD(&offload_base); 10054 10055 if (register_pernet_subsys(&netdev_net_ops)) 10056 goto out; 10057 10058 /* 10059 * Initialise the packet receive queues. 10060 */ 10061 10062 for_each_possible_cpu(i) { 10063 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10064 struct softnet_data *sd = &per_cpu(softnet_data, i); 10065 10066 INIT_WORK(flush, flush_backlog); 10067 10068 skb_queue_head_init(&sd->input_pkt_queue); 10069 skb_queue_head_init(&sd->process_queue); 10070 #ifdef CONFIG_XFRM_OFFLOAD 10071 skb_queue_head_init(&sd->xfrm_backlog); 10072 #endif 10073 INIT_LIST_HEAD(&sd->poll_list); 10074 sd->output_queue_tailp = &sd->output_queue; 10075 #ifdef CONFIG_RPS 10076 sd->csd.func = rps_trigger_softirq; 10077 sd->csd.info = sd; 10078 sd->cpu = i; 10079 #endif 10080 10081 init_gro_hash(&sd->backlog); 10082 sd->backlog.poll = process_backlog; 10083 sd->backlog.weight = weight_p; 10084 } 10085 10086 dev_boot_phase = 0; 10087 10088 /* The loopback device is special if any other network devices 10089 * is present in a network namespace the loopback device must 10090 * be present. Since we now dynamically allocate and free the 10091 * loopback device ensure this invariant is maintained by 10092 * keeping the loopback device as the first device on the 10093 * list of network devices. Ensuring the loopback devices 10094 * is the first device that appears and the last network device 10095 * that disappears. 10096 */ 10097 if (register_pernet_device(&loopback_net_ops)) 10098 goto out; 10099 10100 if (register_pernet_device(&default_device_ops)) 10101 goto out; 10102 10103 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10104 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10105 10106 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10107 NULL, dev_cpu_dead); 10108 WARN_ON(rc < 0); 10109 rc = 0; 10110 out: 10111 return rc; 10112 } 10113 10114 subsys_initcall(net_dev_init); 10115