1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 148 #include "net-sysfs.h" 149 150 /* Instead of increasing this, you should create a hash table. */ 151 #define MAX_GRO_SKBS 8 152 153 /* This should be increased if a protocol with a bigger head is added. */ 154 #define GRO_MAX_HEAD (MAX_HEADER + 128) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static DEFINE_SPINLOCK(offload_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 static struct list_head offload_base __read_mostly; 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct net_device *dev, 165 struct netdev_notifier_info *info); 166 static struct napi_struct *napi_by_id(unsigned int napi_id); 167 168 /* 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 170 * semaphore. 171 * 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 173 * 174 * Writers must hold the rtnl semaphore while they loop through the 175 * dev_base_head list, and hold dev_base_lock for writing when they do the 176 * actual updates. This allows pure readers to access the list even 177 * while a writer is preparing to update it. 178 * 179 * To put it another way, dev_base_lock is held for writing only to 180 * protect against pure readers; the rtnl semaphore provides the 181 * protection against other writers. 182 * 183 * See, for example usages, register_netdevice() and 184 * unregister_netdevice(), which must be called with the rtnl 185 * semaphore held. 186 */ 187 DEFINE_RWLOCK(dev_base_lock); 188 EXPORT_SYMBOL(dev_base_lock); 189 190 /* protects napi_hash addition/deletion and napi_gen_id */ 191 static DEFINE_SPINLOCK(napi_hash_lock); 192 193 static unsigned int napi_gen_id = NR_CPUS; 194 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 195 196 static seqcount_t devnet_rename_seq; 197 198 static inline void dev_base_seq_inc(struct net *net) 199 { 200 while (++net->dev_base_seq == 0) 201 ; 202 } 203 204 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 205 { 206 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 207 208 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 209 } 210 211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 212 { 213 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 214 } 215 216 static inline void rps_lock(struct softnet_data *sd) 217 { 218 #ifdef CONFIG_RPS 219 spin_lock(&sd->input_pkt_queue.lock); 220 #endif 221 } 222 223 static inline void rps_unlock(struct softnet_data *sd) 224 { 225 #ifdef CONFIG_RPS 226 spin_unlock(&sd->input_pkt_queue.lock); 227 #endif 228 } 229 230 /* Device list insertion */ 231 static void list_netdevice(struct net_device *dev) 232 { 233 struct net *net = dev_net(dev); 234 235 ASSERT_RTNL(); 236 237 write_lock_bh(&dev_base_lock); 238 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 239 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 240 hlist_add_head_rcu(&dev->index_hlist, 241 dev_index_hash(net, dev->ifindex)); 242 write_unlock_bh(&dev_base_lock); 243 244 dev_base_seq_inc(net); 245 } 246 247 /* Device list removal 248 * caller must respect a RCU grace period before freeing/reusing dev 249 */ 250 static void unlist_netdevice(struct net_device *dev) 251 { 252 ASSERT_RTNL(); 253 254 /* Unlink dev from the device chain */ 255 write_lock_bh(&dev_base_lock); 256 list_del_rcu(&dev->dev_list); 257 hlist_del_rcu(&dev->name_hlist); 258 hlist_del_rcu(&dev->index_hlist); 259 write_unlock_bh(&dev_base_lock); 260 261 dev_base_seq_inc(dev_net(dev)); 262 } 263 264 /* 265 * Our notifier list 266 */ 267 268 static RAW_NOTIFIER_HEAD(netdev_chain); 269 270 /* 271 * Device drivers call our routines to queue packets here. We empty the 272 * queue in the local softnet handler. 273 */ 274 275 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 276 EXPORT_PER_CPU_SYMBOL(softnet_data); 277 278 #ifdef CONFIG_LOCKDEP 279 /* 280 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 281 * according to dev->type 282 */ 283 static const unsigned short netdev_lock_type[] = { 284 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 285 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 286 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 287 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 288 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 289 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 290 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 291 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 292 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 293 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 294 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 295 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 296 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 297 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 298 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 299 300 static const char *const netdev_lock_name[] = { 301 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 302 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 303 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 304 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 305 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 306 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 307 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 308 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 309 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 310 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 311 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 312 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 313 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 314 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 315 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 316 317 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 318 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 320 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 321 { 322 int i; 323 324 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 325 if (netdev_lock_type[i] == dev_type) 326 return i; 327 /* the last key is used by default */ 328 return ARRAY_SIZE(netdev_lock_type) - 1; 329 } 330 331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 332 unsigned short dev_type) 333 { 334 int i; 335 336 i = netdev_lock_pos(dev_type); 337 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 338 netdev_lock_name[i]); 339 } 340 341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 342 { 343 int i; 344 345 i = netdev_lock_pos(dev->type); 346 lockdep_set_class_and_name(&dev->addr_list_lock, 347 &netdev_addr_lock_key[i], 348 netdev_lock_name[i]); 349 } 350 #else 351 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 352 unsigned short dev_type) 353 { 354 } 355 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 356 { 357 } 358 #endif 359 360 /******************************************************************************* 361 * 362 * Protocol management and registration routines 363 * 364 *******************************************************************************/ 365 366 367 /* 368 * Add a protocol ID to the list. Now that the input handler is 369 * smarter we can dispense with all the messy stuff that used to be 370 * here. 371 * 372 * BEWARE!!! Protocol handlers, mangling input packets, 373 * MUST BE last in hash buckets and checking protocol handlers 374 * MUST start from promiscuous ptype_all chain in net_bh. 375 * It is true now, do not change it. 376 * Explanation follows: if protocol handler, mangling packet, will 377 * be the first on list, it is not able to sense, that packet 378 * is cloned and should be copied-on-write, so that it will 379 * change it and subsequent readers will get broken packet. 380 * --ANK (980803) 381 */ 382 383 static inline struct list_head *ptype_head(const struct packet_type *pt) 384 { 385 if (pt->type == htons(ETH_P_ALL)) 386 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 387 else 388 return pt->dev ? &pt->dev->ptype_specific : 389 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 390 } 391 392 /** 393 * dev_add_pack - add packet handler 394 * @pt: packet type declaration 395 * 396 * Add a protocol handler to the networking stack. The passed &packet_type 397 * is linked into kernel lists and may not be freed until it has been 398 * removed from the kernel lists. 399 * 400 * This call does not sleep therefore it can not 401 * guarantee all CPU's that are in middle of receiving packets 402 * will see the new packet type (until the next received packet). 403 */ 404 405 void dev_add_pack(struct packet_type *pt) 406 { 407 struct list_head *head = ptype_head(pt); 408 409 spin_lock(&ptype_lock); 410 list_add_rcu(&pt->list, head); 411 spin_unlock(&ptype_lock); 412 } 413 EXPORT_SYMBOL(dev_add_pack); 414 415 /** 416 * __dev_remove_pack - remove packet handler 417 * @pt: packet type declaration 418 * 419 * Remove a protocol handler that was previously added to the kernel 420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 421 * from the kernel lists and can be freed or reused once this function 422 * returns. 423 * 424 * The packet type might still be in use by receivers 425 * and must not be freed until after all the CPU's have gone 426 * through a quiescent state. 427 */ 428 void __dev_remove_pack(struct packet_type *pt) 429 { 430 struct list_head *head = ptype_head(pt); 431 struct packet_type *pt1; 432 433 spin_lock(&ptype_lock); 434 435 list_for_each_entry(pt1, head, list) { 436 if (pt == pt1) { 437 list_del_rcu(&pt->list); 438 goto out; 439 } 440 } 441 442 pr_warn("dev_remove_pack: %p not found\n", pt); 443 out: 444 spin_unlock(&ptype_lock); 445 } 446 EXPORT_SYMBOL(__dev_remove_pack); 447 448 /** 449 * dev_remove_pack - remove packet handler 450 * @pt: packet type declaration 451 * 452 * Remove a protocol handler that was previously added to the kernel 453 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 454 * from the kernel lists and can be freed or reused once this function 455 * returns. 456 * 457 * This call sleeps to guarantee that no CPU is looking at the packet 458 * type after return. 459 */ 460 void dev_remove_pack(struct packet_type *pt) 461 { 462 __dev_remove_pack(pt); 463 464 synchronize_net(); 465 } 466 EXPORT_SYMBOL(dev_remove_pack); 467 468 469 /** 470 * dev_add_offload - register offload handlers 471 * @po: protocol offload declaration 472 * 473 * Add protocol offload handlers to the networking stack. The passed 474 * &proto_offload is linked into kernel lists and may not be freed until 475 * it has been removed from the kernel lists. 476 * 477 * This call does not sleep therefore it can not 478 * guarantee all CPU's that are in middle of receiving packets 479 * will see the new offload handlers (until the next received packet). 480 */ 481 void dev_add_offload(struct packet_offload *po) 482 { 483 struct packet_offload *elem; 484 485 spin_lock(&offload_lock); 486 list_for_each_entry(elem, &offload_base, list) { 487 if (po->priority < elem->priority) 488 break; 489 } 490 list_add_rcu(&po->list, elem->list.prev); 491 spin_unlock(&offload_lock); 492 } 493 EXPORT_SYMBOL(dev_add_offload); 494 495 /** 496 * __dev_remove_offload - remove offload handler 497 * @po: packet offload declaration 498 * 499 * Remove a protocol offload handler that was previously added to the 500 * kernel offload handlers by dev_add_offload(). The passed &offload_type 501 * is removed from the kernel lists and can be freed or reused once this 502 * function returns. 503 * 504 * The packet type might still be in use by receivers 505 * and must not be freed until after all the CPU's have gone 506 * through a quiescent state. 507 */ 508 static void __dev_remove_offload(struct packet_offload *po) 509 { 510 struct list_head *head = &offload_base; 511 struct packet_offload *po1; 512 513 spin_lock(&offload_lock); 514 515 list_for_each_entry(po1, head, list) { 516 if (po == po1) { 517 list_del_rcu(&po->list); 518 goto out; 519 } 520 } 521 522 pr_warn("dev_remove_offload: %p not found\n", po); 523 out: 524 spin_unlock(&offload_lock); 525 } 526 527 /** 528 * dev_remove_offload - remove packet offload handler 529 * @po: packet offload declaration 530 * 531 * Remove a packet offload handler that was previously added to the kernel 532 * offload handlers by dev_add_offload(). The passed &offload_type is 533 * removed from the kernel lists and can be freed or reused once this 534 * function returns. 535 * 536 * This call sleeps to guarantee that no CPU is looking at the packet 537 * type after return. 538 */ 539 void dev_remove_offload(struct packet_offload *po) 540 { 541 __dev_remove_offload(po); 542 543 synchronize_net(); 544 } 545 EXPORT_SYMBOL(dev_remove_offload); 546 547 /****************************************************************************** 548 * 549 * Device Boot-time Settings Routines 550 * 551 ******************************************************************************/ 552 553 /* Boot time configuration table */ 554 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 555 556 /** 557 * netdev_boot_setup_add - add new setup entry 558 * @name: name of the device 559 * @map: configured settings for the device 560 * 561 * Adds new setup entry to the dev_boot_setup list. The function 562 * returns 0 on error and 1 on success. This is a generic routine to 563 * all netdevices. 564 */ 565 static int netdev_boot_setup_add(char *name, struct ifmap *map) 566 { 567 struct netdev_boot_setup *s; 568 int i; 569 570 s = dev_boot_setup; 571 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 572 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 573 memset(s[i].name, 0, sizeof(s[i].name)); 574 strlcpy(s[i].name, name, IFNAMSIZ); 575 memcpy(&s[i].map, map, sizeof(s[i].map)); 576 break; 577 } 578 } 579 580 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 581 } 582 583 /** 584 * netdev_boot_setup_check - check boot time settings 585 * @dev: the netdevice 586 * 587 * Check boot time settings for the device. 588 * The found settings are set for the device to be used 589 * later in the device probing. 590 * Returns 0 if no settings found, 1 if they are. 591 */ 592 int netdev_boot_setup_check(struct net_device *dev) 593 { 594 struct netdev_boot_setup *s = dev_boot_setup; 595 int i; 596 597 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 598 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 599 !strcmp(dev->name, s[i].name)) { 600 dev->irq = s[i].map.irq; 601 dev->base_addr = s[i].map.base_addr; 602 dev->mem_start = s[i].map.mem_start; 603 dev->mem_end = s[i].map.mem_end; 604 return 1; 605 } 606 } 607 return 0; 608 } 609 EXPORT_SYMBOL(netdev_boot_setup_check); 610 611 612 /** 613 * netdev_boot_base - get address from boot time settings 614 * @prefix: prefix for network device 615 * @unit: id for network device 616 * 617 * Check boot time settings for the base address of device. 618 * The found settings are set for the device to be used 619 * later in the device probing. 620 * Returns 0 if no settings found. 621 */ 622 unsigned long netdev_boot_base(const char *prefix, int unit) 623 { 624 const struct netdev_boot_setup *s = dev_boot_setup; 625 char name[IFNAMSIZ]; 626 int i; 627 628 sprintf(name, "%s%d", prefix, unit); 629 630 /* 631 * If device already registered then return base of 1 632 * to indicate not to probe for this interface 633 */ 634 if (__dev_get_by_name(&init_net, name)) 635 return 1; 636 637 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 638 if (!strcmp(name, s[i].name)) 639 return s[i].map.base_addr; 640 return 0; 641 } 642 643 /* 644 * Saves at boot time configured settings for any netdevice. 645 */ 646 int __init netdev_boot_setup(char *str) 647 { 648 int ints[5]; 649 struct ifmap map; 650 651 str = get_options(str, ARRAY_SIZE(ints), ints); 652 if (!str || !*str) 653 return 0; 654 655 /* Save settings */ 656 memset(&map, 0, sizeof(map)); 657 if (ints[0] > 0) 658 map.irq = ints[1]; 659 if (ints[0] > 1) 660 map.base_addr = ints[2]; 661 if (ints[0] > 2) 662 map.mem_start = ints[3]; 663 if (ints[0] > 3) 664 map.mem_end = ints[4]; 665 666 /* Add new entry to the list */ 667 return netdev_boot_setup_add(str, &map); 668 } 669 670 __setup("netdev=", netdev_boot_setup); 671 672 /******************************************************************************* 673 * 674 * Device Interface Subroutines 675 * 676 *******************************************************************************/ 677 678 /** 679 * dev_get_iflink - get 'iflink' value of a interface 680 * @dev: targeted interface 681 * 682 * Indicates the ifindex the interface is linked to. 683 * Physical interfaces have the same 'ifindex' and 'iflink' values. 684 */ 685 686 int dev_get_iflink(const struct net_device *dev) 687 { 688 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 689 return dev->netdev_ops->ndo_get_iflink(dev); 690 691 return dev->ifindex; 692 } 693 EXPORT_SYMBOL(dev_get_iflink); 694 695 /** 696 * dev_fill_metadata_dst - Retrieve tunnel egress information. 697 * @dev: targeted interface 698 * @skb: The packet. 699 * 700 * For better visibility of tunnel traffic OVS needs to retrieve 701 * egress tunnel information for a packet. Following API allows 702 * user to get this info. 703 */ 704 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 705 { 706 struct ip_tunnel_info *info; 707 708 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 709 return -EINVAL; 710 711 info = skb_tunnel_info_unclone(skb); 712 if (!info) 713 return -ENOMEM; 714 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 715 return -EINVAL; 716 717 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 718 } 719 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 720 721 /** 722 * __dev_get_by_name - find a device by its name 723 * @net: the applicable net namespace 724 * @name: name to find 725 * 726 * Find an interface by name. Must be called under RTNL semaphore 727 * or @dev_base_lock. If the name is found a pointer to the device 728 * is returned. If the name is not found then %NULL is returned. The 729 * reference counters are not incremented so the caller must be 730 * careful with locks. 731 */ 732 733 struct net_device *__dev_get_by_name(struct net *net, const char *name) 734 { 735 struct net_device *dev; 736 struct hlist_head *head = dev_name_hash(net, name); 737 738 hlist_for_each_entry(dev, head, name_hlist) 739 if (!strncmp(dev->name, name, IFNAMSIZ)) 740 return dev; 741 742 return NULL; 743 } 744 EXPORT_SYMBOL(__dev_get_by_name); 745 746 /** 747 * dev_get_by_name_rcu - find a device by its name 748 * @net: the applicable net namespace 749 * @name: name to find 750 * 751 * Find an interface by name. 752 * If the name is found a pointer to the device is returned. 753 * If the name is not found then %NULL is returned. 754 * The reference counters are not incremented so the caller must be 755 * careful with locks. The caller must hold RCU lock. 756 */ 757 758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 759 { 760 struct net_device *dev; 761 struct hlist_head *head = dev_name_hash(net, name); 762 763 hlist_for_each_entry_rcu(dev, head, name_hlist) 764 if (!strncmp(dev->name, name, IFNAMSIZ)) 765 return dev; 766 767 return NULL; 768 } 769 EXPORT_SYMBOL(dev_get_by_name_rcu); 770 771 /** 772 * dev_get_by_name - find a device by its name 773 * @net: the applicable net namespace 774 * @name: name to find 775 * 776 * Find an interface by name. This can be called from any 777 * context and does its own locking. The returned handle has 778 * the usage count incremented and the caller must use dev_put() to 779 * release it when it is no longer needed. %NULL is returned if no 780 * matching device is found. 781 */ 782 783 struct net_device *dev_get_by_name(struct net *net, const char *name) 784 { 785 struct net_device *dev; 786 787 rcu_read_lock(); 788 dev = dev_get_by_name_rcu(net, name); 789 if (dev) 790 dev_hold(dev); 791 rcu_read_unlock(); 792 return dev; 793 } 794 EXPORT_SYMBOL(dev_get_by_name); 795 796 /** 797 * __dev_get_by_index - find a device by its ifindex 798 * @net: the applicable net namespace 799 * @ifindex: index of device 800 * 801 * Search for an interface by index. Returns %NULL if the device 802 * is not found or a pointer to the device. The device has not 803 * had its reference counter increased so the caller must be careful 804 * about locking. The caller must hold either the RTNL semaphore 805 * or @dev_base_lock. 806 */ 807 808 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 809 { 810 struct net_device *dev; 811 struct hlist_head *head = dev_index_hash(net, ifindex); 812 813 hlist_for_each_entry(dev, head, index_hlist) 814 if (dev->ifindex == ifindex) 815 return dev; 816 817 return NULL; 818 } 819 EXPORT_SYMBOL(__dev_get_by_index); 820 821 /** 822 * dev_get_by_index_rcu - find a device by its ifindex 823 * @net: the applicable net namespace 824 * @ifindex: index of device 825 * 826 * Search for an interface by index. Returns %NULL if the device 827 * is not found or a pointer to the device. The device has not 828 * had its reference counter increased so the caller must be careful 829 * about locking. The caller must hold RCU lock. 830 */ 831 832 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 833 { 834 struct net_device *dev; 835 struct hlist_head *head = dev_index_hash(net, ifindex); 836 837 hlist_for_each_entry_rcu(dev, head, index_hlist) 838 if (dev->ifindex == ifindex) 839 return dev; 840 841 return NULL; 842 } 843 EXPORT_SYMBOL(dev_get_by_index_rcu); 844 845 846 /** 847 * dev_get_by_index - find a device by its ifindex 848 * @net: the applicable net namespace 849 * @ifindex: index of device 850 * 851 * Search for an interface by index. Returns NULL if the device 852 * is not found or a pointer to the device. The device returned has 853 * had a reference added and the pointer is safe until the user calls 854 * dev_put to indicate they have finished with it. 855 */ 856 857 struct net_device *dev_get_by_index(struct net *net, int ifindex) 858 { 859 struct net_device *dev; 860 861 rcu_read_lock(); 862 dev = dev_get_by_index_rcu(net, ifindex); 863 if (dev) 864 dev_hold(dev); 865 rcu_read_unlock(); 866 return dev; 867 } 868 EXPORT_SYMBOL(dev_get_by_index); 869 870 /** 871 * dev_get_by_napi_id - find a device by napi_id 872 * @napi_id: ID of the NAPI struct 873 * 874 * Search for an interface by NAPI ID. Returns %NULL if the device 875 * is not found or a pointer to the device. The device has not had 876 * its reference counter increased so the caller must be careful 877 * about locking. The caller must hold RCU lock. 878 */ 879 880 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 881 { 882 struct napi_struct *napi; 883 884 WARN_ON_ONCE(!rcu_read_lock_held()); 885 886 if (napi_id < MIN_NAPI_ID) 887 return NULL; 888 889 napi = napi_by_id(napi_id); 890 891 return napi ? napi->dev : NULL; 892 } 893 EXPORT_SYMBOL(dev_get_by_napi_id); 894 895 /** 896 * netdev_get_name - get a netdevice name, knowing its ifindex. 897 * @net: network namespace 898 * @name: a pointer to the buffer where the name will be stored. 899 * @ifindex: the ifindex of the interface to get the name from. 900 * 901 * The use of raw_seqcount_begin() and cond_resched() before 902 * retrying is required as we want to give the writers a chance 903 * to complete when CONFIG_PREEMPT is not set. 904 */ 905 int netdev_get_name(struct net *net, char *name, int ifindex) 906 { 907 struct net_device *dev; 908 unsigned int seq; 909 910 retry: 911 seq = raw_seqcount_begin(&devnet_rename_seq); 912 rcu_read_lock(); 913 dev = dev_get_by_index_rcu(net, ifindex); 914 if (!dev) { 915 rcu_read_unlock(); 916 return -ENODEV; 917 } 918 919 strcpy(name, dev->name); 920 rcu_read_unlock(); 921 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 922 cond_resched(); 923 goto retry; 924 } 925 926 return 0; 927 } 928 929 /** 930 * dev_getbyhwaddr_rcu - find a device by its hardware address 931 * @net: the applicable net namespace 932 * @type: media type of device 933 * @ha: hardware address 934 * 935 * Search for an interface by MAC address. Returns NULL if the device 936 * is not found or a pointer to the device. 937 * The caller must hold RCU or RTNL. 938 * The returned device has not had its ref count increased 939 * and the caller must therefore be careful about locking 940 * 941 */ 942 943 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 944 const char *ha) 945 { 946 struct net_device *dev; 947 948 for_each_netdev_rcu(net, dev) 949 if (dev->type == type && 950 !memcmp(dev->dev_addr, ha, dev->addr_len)) 951 return dev; 952 953 return NULL; 954 } 955 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 956 957 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 958 { 959 struct net_device *dev; 960 961 ASSERT_RTNL(); 962 for_each_netdev(net, dev) 963 if (dev->type == type) 964 return dev; 965 966 return NULL; 967 } 968 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 969 970 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 971 { 972 struct net_device *dev, *ret = NULL; 973 974 rcu_read_lock(); 975 for_each_netdev_rcu(net, dev) 976 if (dev->type == type) { 977 dev_hold(dev); 978 ret = dev; 979 break; 980 } 981 rcu_read_unlock(); 982 return ret; 983 } 984 EXPORT_SYMBOL(dev_getfirstbyhwtype); 985 986 /** 987 * __dev_get_by_flags - find any device with given flags 988 * @net: the applicable net namespace 989 * @if_flags: IFF_* values 990 * @mask: bitmask of bits in if_flags to check 991 * 992 * Search for any interface with the given flags. Returns NULL if a device 993 * is not found or a pointer to the device. Must be called inside 994 * rtnl_lock(), and result refcount is unchanged. 995 */ 996 997 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 998 unsigned short mask) 999 { 1000 struct net_device *dev, *ret; 1001 1002 ASSERT_RTNL(); 1003 1004 ret = NULL; 1005 for_each_netdev(net, dev) { 1006 if (((dev->flags ^ if_flags) & mask) == 0) { 1007 ret = dev; 1008 break; 1009 } 1010 } 1011 return ret; 1012 } 1013 EXPORT_SYMBOL(__dev_get_by_flags); 1014 1015 /** 1016 * dev_valid_name - check if name is okay for network device 1017 * @name: name string 1018 * 1019 * Network device names need to be valid file names to 1020 * to allow sysfs to work. We also disallow any kind of 1021 * whitespace. 1022 */ 1023 bool dev_valid_name(const char *name) 1024 { 1025 if (*name == '\0') 1026 return false; 1027 if (strlen(name) >= IFNAMSIZ) 1028 return false; 1029 if (!strcmp(name, ".") || !strcmp(name, "..")) 1030 return false; 1031 1032 while (*name) { 1033 if (*name == '/' || *name == ':' || isspace(*name)) 1034 return false; 1035 name++; 1036 } 1037 return true; 1038 } 1039 EXPORT_SYMBOL(dev_valid_name); 1040 1041 /** 1042 * __dev_alloc_name - allocate a name for a device 1043 * @net: network namespace to allocate the device name in 1044 * @name: name format string 1045 * @buf: scratch buffer and result name string 1046 * 1047 * Passed a format string - eg "lt%d" it will try and find a suitable 1048 * id. It scans list of devices to build up a free map, then chooses 1049 * the first empty slot. The caller must hold the dev_base or rtnl lock 1050 * while allocating the name and adding the device in order to avoid 1051 * duplicates. 1052 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1053 * Returns the number of the unit assigned or a negative errno code. 1054 */ 1055 1056 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1057 { 1058 int i = 0; 1059 const char *p; 1060 const int max_netdevices = 8*PAGE_SIZE; 1061 unsigned long *inuse; 1062 struct net_device *d; 1063 1064 p = strnchr(name, IFNAMSIZ-1, '%'); 1065 if (p) { 1066 /* 1067 * Verify the string as this thing may have come from 1068 * the user. There must be either one "%d" and no other "%" 1069 * characters. 1070 */ 1071 if (p[1] != 'd' || strchr(p + 2, '%')) 1072 return -EINVAL; 1073 1074 /* Use one page as a bit array of possible slots */ 1075 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1076 if (!inuse) 1077 return -ENOMEM; 1078 1079 for_each_netdev(net, d) { 1080 if (!sscanf(d->name, name, &i)) 1081 continue; 1082 if (i < 0 || i >= max_netdevices) 1083 continue; 1084 1085 /* avoid cases where sscanf is not exact inverse of printf */ 1086 snprintf(buf, IFNAMSIZ, name, i); 1087 if (!strncmp(buf, d->name, IFNAMSIZ)) 1088 set_bit(i, inuse); 1089 } 1090 1091 i = find_first_zero_bit(inuse, max_netdevices); 1092 free_page((unsigned long) inuse); 1093 } 1094 1095 if (buf != name) 1096 snprintf(buf, IFNAMSIZ, name, i); 1097 if (!__dev_get_by_name(net, buf)) 1098 return i; 1099 1100 /* It is possible to run out of possible slots 1101 * when the name is long and there isn't enough space left 1102 * for the digits, or if all bits are used. 1103 */ 1104 return -ENFILE; 1105 } 1106 1107 /** 1108 * dev_alloc_name - allocate a name for a device 1109 * @dev: device 1110 * @name: name format string 1111 * 1112 * Passed a format string - eg "lt%d" it will try and find a suitable 1113 * id. It scans list of devices to build up a free map, then chooses 1114 * the first empty slot. The caller must hold the dev_base or rtnl lock 1115 * while allocating the name and adding the device in order to avoid 1116 * duplicates. 1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1118 * Returns the number of the unit assigned or a negative errno code. 1119 */ 1120 1121 int dev_alloc_name(struct net_device *dev, const char *name) 1122 { 1123 char buf[IFNAMSIZ]; 1124 struct net *net; 1125 int ret; 1126 1127 BUG_ON(!dev_net(dev)); 1128 net = dev_net(dev); 1129 ret = __dev_alloc_name(net, name, buf); 1130 if (ret >= 0) 1131 strlcpy(dev->name, buf, IFNAMSIZ); 1132 return ret; 1133 } 1134 EXPORT_SYMBOL(dev_alloc_name); 1135 1136 static int dev_alloc_name_ns(struct net *net, 1137 struct net_device *dev, 1138 const char *name) 1139 { 1140 char buf[IFNAMSIZ]; 1141 int ret; 1142 1143 ret = __dev_alloc_name(net, name, buf); 1144 if (ret >= 0) 1145 strlcpy(dev->name, buf, IFNAMSIZ); 1146 return ret; 1147 } 1148 1149 static int dev_get_valid_name(struct net *net, 1150 struct net_device *dev, 1151 const char *name) 1152 { 1153 BUG_ON(!net); 1154 1155 if (!dev_valid_name(name)) 1156 return -EINVAL; 1157 1158 if (strchr(name, '%')) 1159 return dev_alloc_name_ns(net, dev, name); 1160 else if (__dev_get_by_name(net, name)) 1161 return -EEXIST; 1162 else if (dev->name != name) 1163 strlcpy(dev->name, name, IFNAMSIZ); 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * dev_change_name - change name of a device 1170 * @dev: device 1171 * @newname: name (or format string) must be at least IFNAMSIZ 1172 * 1173 * Change name of a device, can pass format strings "eth%d". 1174 * for wildcarding. 1175 */ 1176 int dev_change_name(struct net_device *dev, const char *newname) 1177 { 1178 unsigned char old_assign_type; 1179 char oldname[IFNAMSIZ]; 1180 int err = 0; 1181 int ret; 1182 struct net *net; 1183 1184 ASSERT_RTNL(); 1185 BUG_ON(!dev_net(dev)); 1186 1187 net = dev_net(dev); 1188 if (dev->flags & IFF_UP) 1189 return -EBUSY; 1190 1191 write_seqcount_begin(&devnet_rename_seq); 1192 1193 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1194 write_seqcount_end(&devnet_rename_seq); 1195 return 0; 1196 } 1197 1198 memcpy(oldname, dev->name, IFNAMSIZ); 1199 1200 err = dev_get_valid_name(net, dev, newname); 1201 if (err < 0) { 1202 write_seqcount_end(&devnet_rename_seq); 1203 return err; 1204 } 1205 1206 if (oldname[0] && !strchr(oldname, '%')) 1207 netdev_info(dev, "renamed from %s\n", oldname); 1208 1209 old_assign_type = dev->name_assign_type; 1210 dev->name_assign_type = NET_NAME_RENAMED; 1211 1212 rollback: 1213 ret = device_rename(&dev->dev, dev->name); 1214 if (ret) { 1215 memcpy(dev->name, oldname, IFNAMSIZ); 1216 dev->name_assign_type = old_assign_type; 1217 write_seqcount_end(&devnet_rename_seq); 1218 return ret; 1219 } 1220 1221 write_seqcount_end(&devnet_rename_seq); 1222 1223 netdev_adjacent_rename_links(dev, oldname); 1224 1225 write_lock_bh(&dev_base_lock); 1226 hlist_del_rcu(&dev->name_hlist); 1227 write_unlock_bh(&dev_base_lock); 1228 1229 synchronize_rcu(); 1230 1231 write_lock_bh(&dev_base_lock); 1232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1233 write_unlock_bh(&dev_base_lock); 1234 1235 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1236 ret = notifier_to_errno(ret); 1237 1238 if (ret) { 1239 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1240 if (err >= 0) { 1241 err = ret; 1242 write_seqcount_begin(&devnet_rename_seq); 1243 memcpy(dev->name, oldname, IFNAMSIZ); 1244 memcpy(oldname, newname, IFNAMSIZ); 1245 dev->name_assign_type = old_assign_type; 1246 old_assign_type = NET_NAME_RENAMED; 1247 goto rollback; 1248 } else { 1249 pr_err("%s: name change rollback failed: %d\n", 1250 dev->name, ret); 1251 } 1252 } 1253 1254 return err; 1255 } 1256 1257 /** 1258 * dev_set_alias - change ifalias of a device 1259 * @dev: device 1260 * @alias: name up to IFALIASZ 1261 * @len: limit of bytes to copy from info 1262 * 1263 * Set ifalias for a device, 1264 */ 1265 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1266 { 1267 char *new_ifalias; 1268 1269 ASSERT_RTNL(); 1270 1271 if (len >= IFALIASZ) 1272 return -EINVAL; 1273 1274 if (!len) { 1275 kfree(dev->ifalias); 1276 dev->ifalias = NULL; 1277 return 0; 1278 } 1279 1280 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1281 if (!new_ifalias) 1282 return -ENOMEM; 1283 dev->ifalias = new_ifalias; 1284 1285 strlcpy(dev->ifalias, alias, len+1); 1286 return len; 1287 } 1288 1289 1290 /** 1291 * netdev_features_change - device changes features 1292 * @dev: device to cause notification 1293 * 1294 * Called to indicate a device has changed features. 1295 */ 1296 void netdev_features_change(struct net_device *dev) 1297 { 1298 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1299 } 1300 EXPORT_SYMBOL(netdev_features_change); 1301 1302 /** 1303 * netdev_state_change - device changes state 1304 * @dev: device to cause notification 1305 * 1306 * Called to indicate a device has changed state. This function calls 1307 * the notifier chains for netdev_chain and sends a NEWLINK message 1308 * to the routing socket. 1309 */ 1310 void netdev_state_change(struct net_device *dev) 1311 { 1312 if (dev->flags & IFF_UP) { 1313 struct netdev_notifier_change_info change_info; 1314 1315 change_info.flags_changed = 0; 1316 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1317 &change_info.info); 1318 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1319 } 1320 } 1321 EXPORT_SYMBOL(netdev_state_change); 1322 1323 /** 1324 * netdev_notify_peers - notify network peers about existence of @dev 1325 * @dev: network device 1326 * 1327 * Generate traffic such that interested network peers are aware of 1328 * @dev, such as by generating a gratuitous ARP. This may be used when 1329 * a device wants to inform the rest of the network about some sort of 1330 * reconfiguration such as a failover event or virtual machine 1331 * migration. 1332 */ 1333 void netdev_notify_peers(struct net_device *dev) 1334 { 1335 rtnl_lock(); 1336 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1337 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1338 rtnl_unlock(); 1339 } 1340 EXPORT_SYMBOL(netdev_notify_peers); 1341 1342 static int __dev_open(struct net_device *dev) 1343 { 1344 const struct net_device_ops *ops = dev->netdev_ops; 1345 int ret; 1346 1347 ASSERT_RTNL(); 1348 1349 if (!netif_device_present(dev)) 1350 return -ENODEV; 1351 1352 /* Block netpoll from trying to do any rx path servicing. 1353 * If we don't do this there is a chance ndo_poll_controller 1354 * or ndo_poll may be running while we open the device 1355 */ 1356 netpoll_poll_disable(dev); 1357 1358 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1359 ret = notifier_to_errno(ret); 1360 if (ret) 1361 return ret; 1362 1363 set_bit(__LINK_STATE_START, &dev->state); 1364 1365 if (ops->ndo_validate_addr) 1366 ret = ops->ndo_validate_addr(dev); 1367 1368 if (!ret && ops->ndo_open) 1369 ret = ops->ndo_open(dev); 1370 1371 netpoll_poll_enable(dev); 1372 1373 if (ret) 1374 clear_bit(__LINK_STATE_START, &dev->state); 1375 else { 1376 dev->flags |= IFF_UP; 1377 dev_set_rx_mode(dev); 1378 dev_activate(dev); 1379 add_device_randomness(dev->dev_addr, dev->addr_len); 1380 } 1381 1382 return ret; 1383 } 1384 1385 /** 1386 * dev_open - prepare an interface for use. 1387 * @dev: device to open 1388 * 1389 * Takes a device from down to up state. The device's private open 1390 * function is invoked and then the multicast lists are loaded. Finally 1391 * the device is moved into the up state and a %NETDEV_UP message is 1392 * sent to the netdev notifier chain. 1393 * 1394 * Calling this function on an active interface is a nop. On a failure 1395 * a negative errno code is returned. 1396 */ 1397 int dev_open(struct net_device *dev) 1398 { 1399 int ret; 1400 1401 if (dev->flags & IFF_UP) 1402 return 0; 1403 1404 ret = __dev_open(dev); 1405 if (ret < 0) 1406 return ret; 1407 1408 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1409 call_netdevice_notifiers(NETDEV_UP, dev); 1410 1411 return ret; 1412 } 1413 EXPORT_SYMBOL(dev_open); 1414 1415 static int __dev_close_many(struct list_head *head) 1416 { 1417 struct net_device *dev; 1418 1419 ASSERT_RTNL(); 1420 might_sleep(); 1421 1422 list_for_each_entry(dev, head, close_list) { 1423 /* Temporarily disable netpoll until the interface is down */ 1424 netpoll_poll_disable(dev); 1425 1426 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1427 1428 clear_bit(__LINK_STATE_START, &dev->state); 1429 1430 /* Synchronize to scheduled poll. We cannot touch poll list, it 1431 * can be even on different cpu. So just clear netif_running(). 1432 * 1433 * dev->stop() will invoke napi_disable() on all of it's 1434 * napi_struct instances on this device. 1435 */ 1436 smp_mb__after_atomic(); /* Commit netif_running(). */ 1437 } 1438 1439 dev_deactivate_many(head); 1440 1441 list_for_each_entry(dev, head, close_list) { 1442 const struct net_device_ops *ops = dev->netdev_ops; 1443 1444 /* 1445 * Call the device specific close. This cannot fail. 1446 * Only if device is UP 1447 * 1448 * We allow it to be called even after a DETACH hot-plug 1449 * event. 1450 */ 1451 if (ops->ndo_stop) 1452 ops->ndo_stop(dev); 1453 1454 dev->flags &= ~IFF_UP; 1455 netpoll_poll_enable(dev); 1456 } 1457 1458 return 0; 1459 } 1460 1461 static int __dev_close(struct net_device *dev) 1462 { 1463 int retval; 1464 LIST_HEAD(single); 1465 1466 list_add(&dev->close_list, &single); 1467 retval = __dev_close_many(&single); 1468 list_del(&single); 1469 1470 return retval; 1471 } 1472 1473 int dev_close_many(struct list_head *head, bool unlink) 1474 { 1475 struct net_device *dev, *tmp; 1476 1477 /* Remove the devices that don't need to be closed */ 1478 list_for_each_entry_safe(dev, tmp, head, close_list) 1479 if (!(dev->flags & IFF_UP)) 1480 list_del_init(&dev->close_list); 1481 1482 __dev_close_many(head); 1483 1484 list_for_each_entry_safe(dev, tmp, head, close_list) { 1485 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1486 call_netdevice_notifiers(NETDEV_DOWN, dev); 1487 if (unlink) 1488 list_del_init(&dev->close_list); 1489 } 1490 1491 return 0; 1492 } 1493 EXPORT_SYMBOL(dev_close_many); 1494 1495 /** 1496 * dev_close - shutdown an interface. 1497 * @dev: device to shutdown 1498 * 1499 * This function moves an active device into down state. A 1500 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1501 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1502 * chain. 1503 */ 1504 int dev_close(struct net_device *dev) 1505 { 1506 if (dev->flags & IFF_UP) { 1507 LIST_HEAD(single); 1508 1509 list_add(&dev->close_list, &single); 1510 dev_close_many(&single, true); 1511 list_del(&single); 1512 } 1513 return 0; 1514 } 1515 EXPORT_SYMBOL(dev_close); 1516 1517 1518 /** 1519 * dev_disable_lro - disable Large Receive Offload on a device 1520 * @dev: device 1521 * 1522 * Disable Large Receive Offload (LRO) on a net device. Must be 1523 * called under RTNL. This is needed if received packets may be 1524 * forwarded to another interface. 1525 */ 1526 void dev_disable_lro(struct net_device *dev) 1527 { 1528 struct net_device *lower_dev; 1529 struct list_head *iter; 1530 1531 dev->wanted_features &= ~NETIF_F_LRO; 1532 netdev_update_features(dev); 1533 1534 if (unlikely(dev->features & NETIF_F_LRO)) 1535 netdev_WARN(dev, "failed to disable LRO!\n"); 1536 1537 netdev_for_each_lower_dev(dev, lower_dev, iter) 1538 dev_disable_lro(lower_dev); 1539 } 1540 EXPORT_SYMBOL(dev_disable_lro); 1541 1542 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1543 struct net_device *dev) 1544 { 1545 struct netdev_notifier_info info; 1546 1547 netdev_notifier_info_init(&info, dev); 1548 return nb->notifier_call(nb, val, &info); 1549 } 1550 1551 static int dev_boot_phase = 1; 1552 1553 /** 1554 * register_netdevice_notifier - register a network notifier block 1555 * @nb: notifier 1556 * 1557 * Register a notifier to be called when network device events occur. 1558 * The notifier passed is linked into the kernel structures and must 1559 * not be reused until it has been unregistered. A negative errno code 1560 * is returned on a failure. 1561 * 1562 * When registered all registration and up events are replayed 1563 * to the new notifier to allow device to have a race free 1564 * view of the network device list. 1565 */ 1566 1567 int register_netdevice_notifier(struct notifier_block *nb) 1568 { 1569 struct net_device *dev; 1570 struct net_device *last; 1571 struct net *net; 1572 int err; 1573 1574 rtnl_lock(); 1575 err = raw_notifier_chain_register(&netdev_chain, nb); 1576 if (err) 1577 goto unlock; 1578 if (dev_boot_phase) 1579 goto unlock; 1580 for_each_net(net) { 1581 for_each_netdev(net, dev) { 1582 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1583 err = notifier_to_errno(err); 1584 if (err) 1585 goto rollback; 1586 1587 if (!(dev->flags & IFF_UP)) 1588 continue; 1589 1590 call_netdevice_notifier(nb, NETDEV_UP, dev); 1591 } 1592 } 1593 1594 unlock: 1595 rtnl_unlock(); 1596 return err; 1597 1598 rollback: 1599 last = dev; 1600 for_each_net(net) { 1601 for_each_netdev(net, dev) { 1602 if (dev == last) 1603 goto outroll; 1604 1605 if (dev->flags & IFF_UP) { 1606 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1607 dev); 1608 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1609 } 1610 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1611 } 1612 } 1613 1614 outroll: 1615 raw_notifier_chain_unregister(&netdev_chain, nb); 1616 goto unlock; 1617 } 1618 EXPORT_SYMBOL(register_netdevice_notifier); 1619 1620 /** 1621 * unregister_netdevice_notifier - unregister a network notifier block 1622 * @nb: notifier 1623 * 1624 * Unregister a notifier previously registered by 1625 * register_netdevice_notifier(). The notifier is unlinked into the 1626 * kernel structures and may then be reused. A negative errno code 1627 * is returned on a failure. 1628 * 1629 * After unregistering unregister and down device events are synthesized 1630 * for all devices on the device list to the removed notifier to remove 1631 * the need for special case cleanup code. 1632 */ 1633 1634 int unregister_netdevice_notifier(struct notifier_block *nb) 1635 { 1636 struct net_device *dev; 1637 struct net *net; 1638 int err; 1639 1640 rtnl_lock(); 1641 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1642 if (err) 1643 goto unlock; 1644 1645 for_each_net(net) { 1646 for_each_netdev(net, dev) { 1647 if (dev->flags & IFF_UP) { 1648 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1649 dev); 1650 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1651 } 1652 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1653 } 1654 } 1655 unlock: 1656 rtnl_unlock(); 1657 return err; 1658 } 1659 EXPORT_SYMBOL(unregister_netdevice_notifier); 1660 1661 /** 1662 * call_netdevice_notifiers_info - call all network notifier blocks 1663 * @val: value passed unmodified to notifier function 1664 * @dev: net_device pointer passed unmodified to notifier function 1665 * @info: notifier information data 1666 * 1667 * Call all network notifier blocks. Parameters and return value 1668 * are as for raw_notifier_call_chain(). 1669 */ 1670 1671 static int call_netdevice_notifiers_info(unsigned long val, 1672 struct net_device *dev, 1673 struct netdev_notifier_info *info) 1674 { 1675 ASSERT_RTNL(); 1676 netdev_notifier_info_init(info, dev); 1677 return raw_notifier_call_chain(&netdev_chain, val, info); 1678 } 1679 1680 /** 1681 * call_netdevice_notifiers - call all network notifier blocks 1682 * @val: value passed unmodified to notifier function 1683 * @dev: net_device pointer passed unmodified to notifier function 1684 * 1685 * Call all network notifier blocks. Parameters and return value 1686 * are as for raw_notifier_call_chain(). 1687 */ 1688 1689 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1690 { 1691 struct netdev_notifier_info info; 1692 1693 return call_netdevice_notifiers_info(val, dev, &info); 1694 } 1695 EXPORT_SYMBOL(call_netdevice_notifiers); 1696 1697 #ifdef CONFIG_NET_INGRESS 1698 static struct static_key ingress_needed __read_mostly; 1699 1700 void net_inc_ingress_queue(void) 1701 { 1702 static_key_slow_inc(&ingress_needed); 1703 } 1704 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1705 1706 void net_dec_ingress_queue(void) 1707 { 1708 static_key_slow_dec(&ingress_needed); 1709 } 1710 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1711 #endif 1712 1713 #ifdef CONFIG_NET_EGRESS 1714 static struct static_key egress_needed __read_mostly; 1715 1716 void net_inc_egress_queue(void) 1717 { 1718 static_key_slow_inc(&egress_needed); 1719 } 1720 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1721 1722 void net_dec_egress_queue(void) 1723 { 1724 static_key_slow_dec(&egress_needed); 1725 } 1726 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1727 #endif 1728 1729 static struct static_key netstamp_needed __read_mostly; 1730 #ifdef HAVE_JUMP_LABEL 1731 static atomic_t netstamp_needed_deferred; 1732 static atomic_t netstamp_wanted; 1733 static void netstamp_clear(struct work_struct *work) 1734 { 1735 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1736 int wanted; 1737 1738 wanted = atomic_add_return(deferred, &netstamp_wanted); 1739 if (wanted > 0) 1740 static_key_enable(&netstamp_needed); 1741 else 1742 static_key_disable(&netstamp_needed); 1743 } 1744 static DECLARE_WORK(netstamp_work, netstamp_clear); 1745 #endif 1746 1747 void net_enable_timestamp(void) 1748 { 1749 #ifdef HAVE_JUMP_LABEL 1750 int wanted; 1751 1752 while (1) { 1753 wanted = atomic_read(&netstamp_wanted); 1754 if (wanted <= 0) 1755 break; 1756 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1757 return; 1758 } 1759 atomic_inc(&netstamp_needed_deferred); 1760 schedule_work(&netstamp_work); 1761 #else 1762 static_key_slow_inc(&netstamp_needed); 1763 #endif 1764 } 1765 EXPORT_SYMBOL(net_enable_timestamp); 1766 1767 void net_disable_timestamp(void) 1768 { 1769 #ifdef HAVE_JUMP_LABEL 1770 int wanted; 1771 1772 while (1) { 1773 wanted = atomic_read(&netstamp_wanted); 1774 if (wanted <= 1) 1775 break; 1776 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1777 return; 1778 } 1779 atomic_dec(&netstamp_needed_deferred); 1780 schedule_work(&netstamp_work); 1781 #else 1782 static_key_slow_dec(&netstamp_needed); 1783 #endif 1784 } 1785 EXPORT_SYMBOL(net_disable_timestamp); 1786 1787 static inline void net_timestamp_set(struct sk_buff *skb) 1788 { 1789 skb->tstamp = 0; 1790 if (static_key_false(&netstamp_needed)) 1791 __net_timestamp(skb); 1792 } 1793 1794 #define net_timestamp_check(COND, SKB) \ 1795 if (static_key_false(&netstamp_needed)) { \ 1796 if ((COND) && !(SKB)->tstamp) \ 1797 __net_timestamp(SKB); \ 1798 } \ 1799 1800 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1801 { 1802 unsigned int len; 1803 1804 if (!(dev->flags & IFF_UP)) 1805 return false; 1806 1807 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1808 if (skb->len <= len) 1809 return true; 1810 1811 /* if TSO is enabled, we don't care about the length as the packet 1812 * could be forwarded without being segmented before 1813 */ 1814 if (skb_is_gso(skb)) 1815 return true; 1816 1817 return false; 1818 } 1819 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1820 1821 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1822 { 1823 int ret = ____dev_forward_skb(dev, skb); 1824 1825 if (likely(!ret)) { 1826 skb->protocol = eth_type_trans(skb, dev); 1827 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1828 } 1829 1830 return ret; 1831 } 1832 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1833 1834 /** 1835 * dev_forward_skb - loopback an skb to another netif 1836 * 1837 * @dev: destination network device 1838 * @skb: buffer to forward 1839 * 1840 * return values: 1841 * NET_RX_SUCCESS (no congestion) 1842 * NET_RX_DROP (packet was dropped, but freed) 1843 * 1844 * dev_forward_skb can be used for injecting an skb from the 1845 * start_xmit function of one device into the receive queue 1846 * of another device. 1847 * 1848 * The receiving device may be in another namespace, so 1849 * we have to clear all information in the skb that could 1850 * impact namespace isolation. 1851 */ 1852 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1853 { 1854 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1855 } 1856 EXPORT_SYMBOL_GPL(dev_forward_skb); 1857 1858 static inline int deliver_skb(struct sk_buff *skb, 1859 struct packet_type *pt_prev, 1860 struct net_device *orig_dev) 1861 { 1862 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1863 return -ENOMEM; 1864 atomic_inc(&skb->users); 1865 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1866 } 1867 1868 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1869 struct packet_type **pt, 1870 struct net_device *orig_dev, 1871 __be16 type, 1872 struct list_head *ptype_list) 1873 { 1874 struct packet_type *ptype, *pt_prev = *pt; 1875 1876 list_for_each_entry_rcu(ptype, ptype_list, list) { 1877 if (ptype->type != type) 1878 continue; 1879 if (pt_prev) 1880 deliver_skb(skb, pt_prev, orig_dev); 1881 pt_prev = ptype; 1882 } 1883 *pt = pt_prev; 1884 } 1885 1886 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1887 { 1888 if (!ptype->af_packet_priv || !skb->sk) 1889 return false; 1890 1891 if (ptype->id_match) 1892 return ptype->id_match(ptype, skb->sk); 1893 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1894 return true; 1895 1896 return false; 1897 } 1898 1899 /* 1900 * Support routine. Sends outgoing frames to any network 1901 * taps currently in use. 1902 */ 1903 1904 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1905 { 1906 struct packet_type *ptype; 1907 struct sk_buff *skb2 = NULL; 1908 struct packet_type *pt_prev = NULL; 1909 struct list_head *ptype_list = &ptype_all; 1910 1911 rcu_read_lock(); 1912 again: 1913 list_for_each_entry_rcu(ptype, ptype_list, list) { 1914 /* Never send packets back to the socket 1915 * they originated from - MvS (miquels@drinkel.ow.org) 1916 */ 1917 if (skb_loop_sk(ptype, skb)) 1918 continue; 1919 1920 if (pt_prev) { 1921 deliver_skb(skb2, pt_prev, skb->dev); 1922 pt_prev = ptype; 1923 continue; 1924 } 1925 1926 /* need to clone skb, done only once */ 1927 skb2 = skb_clone(skb, GFP_ATOMIC); 1928 if (!skb2) 1929 goto out_unlock; 1930 1931 net_timestamp_set(skb2); 1932 1933 /* skb->nh should be correctly 1934 * set by sender, so that the second statement is 1935 * just protection against buggy protocols. 1936 */ 1937 skb_reset_mac_header(skb2); 1938 1939 if (skb_network_header(skb2) < skb2->data || 1940 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1941 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1942 ntohs(skb2->protocol), 1943 dev->name); 1944 skb_reset_network_header(skb2); 1945 } 1946 1947 skb2->transport_header = skb2->network_header; 1948 skb2->pkt_type = PACKET_OUTGOING; 1949 pt_prev = ptype; 1950 } 1951 1952 if (ptype_list == &ptype_all) { 1953 ptype_list = &dev->ptype_all; 1954 goto again; 1955 } 1956 out_unlock: 1957 if (pt_prev) 1958 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1959 rcu_read_unlock(); 1960 } 1961 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1962 1963 /** 1964 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1965 * @dev: Network device 1966 * @txq: number of queues available 1967 * 1968 * If real_num_tx_queues is changed the tc mappings may no longer be 1969 * valid. To resolve this verify the tc mapping remains valid and if 1970 * not NULL the mapping. With no priorities mapping to this 1971 * offset/count pair it will no longer be used. In the worst case TC0 1972 * is invalid nothing can be done so disable priority mappings. If is 1973 * expected that drivers will fix this mapping if they can before 1974 * calling netif_set_real_num_tx_queues. 1975 */ 1976 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1977 { 1978 int i; 1979 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1980 1981 /* If TC0 is invalidated disable TC mapping */ 1982 if (tc->offset + tc->count > txq) { 1983 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1984 dev->num_tc = 0; 1985 return; 1986 } 1987 1988 /* Invalidated prio to tc mappings set to TC0 */ 1989 for (i = 1; i < TC_BITMASK + 1; i++) { 1990 int q = netdev_get_prio_tc_map(dev, i); 1991 1992 tc = &dev->tc_to_txq[q]; 1993 if (tc->offset + tc->count > txq) { 1994 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1995 i, q); 1996 netdev_set_prio_tc_map(dev, i, 0); 1997 } 1998 } 1999 } 2000 2001 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2002 { 2003 if (dev->num_tc) { 2004 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2005 int i; 2006 2007 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2008 if ((txq - tc->offset) < tc->count) 2009 return i; 2010 } 2011 2012 return -1; 2013 } 2014 2015 return 0; 2016 } 2017 2018 #ifdef CONFIG_XPS 2019 static DEFINE_MUTEX(xps_map_mutex); 2020 #define xmap_dereference(P) \ 2021 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2022 2023 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2024 int tci, u16 index) 2025 { 2026 struct xps_map *map = NULL; 2027 int pos; 2028 2029 if (dev_maps) 2030 map = xmap_dereference(dev_maps->cpu_map[tci]); 2031 if (!map) 2032 return false; 2033 2034 for (pos = map->len; pos--;) { 2035 if (map->queues[pos] != index) 2036 continue; 2037 2038 if (map->len > 1) { 2039 map->queues[pos] = map->queues[--map->len]; 2040 break; 2041 } 2042 2043 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2044 kfree_rcu(map, rcu); 2045 return false; 2046 } 2047 2048 return true; 2049 } 2050 2051 static bool remove_xps_queue_cpu(struct net_device *dev, 2052 struct xps_dev_maps *dev_maps, 2053 int cpu, u16 offset, u16 count) 2054 { 2055 int num_tc = dev->num_tc ? : 1; 2056 bool active = false; 2057 int tci; 2058 2059 for (tci = cpu * num_tc; num_tc--; tci++) { 2060 int i, j; 2061 2062 for (i = count, j = offset; i--; j++) { 2063 if (!remove_xps_queue(dev_maps, cpu, j)) 2064 break; 2065 } 2066 2067 active |= i < 0; 2068 } 2069 2070 return active; 2071 } 2072 2073 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2074 u16 count) 2075 { 2076 struct xps_dev_maps *dev_maps; 2077 int cpu, i; 2078 bool active = false; 2079 2080 mutex_lock(&xps_map_mutex); 2081 dev_maps = xmap_dereference(dev->xps_maps); 2082 2083 if (!dev_maps) 2084 goto out_no_maps; 2085 2086 for_each_possible_cpu(cpu) 2087 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2088 offset, count); 2089 2090 if (!active) { 2091 RCU_INIT_POINTER(dev->xps_maps, NULL); 2092 kfree_rcu(dev_maps, rcu); 2093 } 2094 2095 for (i = offset + (count - 1); count--; i--) 2096 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2097 NUMA_NO_NODE); 2098 2099 out_no_maps: 2100 mutex_unlock(&xps_map_mutex); 2101 } 2102 2103 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2104 { 2105 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2106 } 2107 2108 static struct xps_map *expand_xps_map(struct xps_map *map, 2109 int cpu, u16 index) 2110 { 2111 struct xps_map *new_map; 2112 int alloc_len = XPS_MIN_MAP_ALLOC; 2113 int i, pos; 2114 2115 for (pos = 0; map && pos < map->len; pos++) { 2116 if (map->queues[pos] != index) 2117 continue; 2118 return map; 2119 } 2120 2121 /* Need to add queue to this CPU's existing map */ 2122 if (map) { 2123 if (pos < map->alloc_len) 2124 return map; 2125 2126 alloc_len = map->alloc_len * 2; 2127 } 2128 2129 /* Need to allocate new map to store queue on this CPU's map */ 2130 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2131 cpu_to_node(cpu)); 2132 if (!new_map) 2133 return NULL; 2134 2135 for (i = 0; i < pos; i++) 2136 new_map->queues[i] = map->queues[i]; 2137 new_map->alloc_len = alloc_len; 2138 new_map->len = pos; 2139 2140 return new_map; 2141 } 2142 2143 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2144 u16 index) 2145 { 2146 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2147 int i, cpu, tci, numa_node_id = -2; 2148 int maps_sz, num_tc = 1, tc = 0; 2149 struct xps_map *map, *new_map; 2150 bool active = false; 2151 2152 if (dev->num_tc) { 2153 num_tc = dev->num_tc; 2154 tc = netdev_txq_to_tc(dev, index); 2155 if (tc < 0) 2156 return -EINVAL; 2157 } 2158 2159 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2160 if (maps_sz < L1_CACHE_BYTES) 2161 maps_sz = L1_CACHE_BYTES; 2162 2163 mutex_lock(&xps_map_mutex); 2164 2165 dev_maps = xmap_dereference(dev->xps_maps); 2166 2167 /* allocate memory for queue storage */ 2168 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2169 if (!new_dev_maps) 2170 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2171 if (!new_dev_maps) { 2172 mutex_unlock(&xps_map_mutex); 2173 return -ENOMEM; 2174 } 2175 2176 tci = cpu * num_tc + tc; 2177 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2178 NULL; 2179 2180 map = expand_xps_map(map, cpu, index); 2181 if (!map) 2182 goto error; 2183 2184 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2185 } 2186 2187 if (!new_dev_maps) 2188 goto out_no_new_maps; 2189 2190 for_each_possible_cpu(cpu) { 2191 /* copy maps belonging to foreign traffic classes */ 2192 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2193 /* fill in the new device map from the old device map */ 2194 map = xmap_dereference(dev_maps->cpu_map[tci]); 2195 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2196 } 2197 2198 /* We need to explicitly update tci as prevous loop 2199 * could break out early if dev_maps is NULL. 2200 */ 2201 tci = cpu * num_tc + tc; 2202 2203 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2204 /* add queue to CPU maps */ 2205 int pos = 0; 2206 2207 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2208 while ((pos < map->len) && (map->queues[pos] != index)) 2209 pos++; 2210 2211 if (pos == map->len) 2212 map->queues[map->len++] = index; 2213 #ifdef CONFIG_NUMA 2214 if (numa_node_id == -2) 2215 numa_node_id = cpu_to_node(cpu); 2216 else if (numa_node_id != cpu_to_node(cpu)) 2217 numa_node_id = -1; 2218 #endif 2219 } else if (dev_maps) { 2220 /* fill in the new device map from the old device map */ 2221 map = xmap_dereference(dev_maps->cpu_map[tci]); 2222 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2223 } 2224 2225 /* copy maps belonging to foreign traffic classes */ 2226 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2227 /* fill in the new device map from the old device map */ 2228 map = xmap_dereference(dev_maps->cpu_map[tci]); 2229 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2230 } 2231 } 2232 2233 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2234 2235 /* Cleanup old maps */ 2236 if (!dev_maps) 2237 goto out_no_old_maps; 2238 2239 for_each_possible_cpu(cpu) { 2240 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2241 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2242 map = xmap_dereference(dev_maps->cpu_map[tci]); 2243 if (map && map != new_map) 2244 kfree_rcu(map, rcu); 2245 } 2246 } 2247 2248 kfree_rcu(dev_maps, rcu); 2249 2250 out_no_old_maps: 2251 dev_maps = new_dev_maps; 2252 active = true; 2253 2254 out_no_new_maps: 2255 /* update Tx queue numa node */ 2256 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2257 (numa_node_id >= 0) ? numa_node_id : 2258 NUMA_NO_NODE); 2259 2260 if (!dev_maps) 2261 goto out_no_maps; 2262 2263 /* removes queue from unused CPUs */ 2264 for_each_possible_cpu(cpu) { 2265 for (i = tc, tci = cpu * num_tc; i--; tci++) 2266 active |= remove_xps_queue(dev_maps, tci, index); 2267 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2268 active |= remove_xps_queue(dev_maps, tci, index); 2269 for (i = num_tc - tc, tci++; --i; tci++) 2270 active |= remove_xps_queue(dev_maps, tci, index); 2271 } 2272 2273 /* free map if not active */ 2274 if (!active) { 2275 RCU_INIT_POINTER(dev->xps_maps, NULL); 2276 kfree_rcu(dev_maps, rcu); 2277 } 2278 2279 out_no_maps: 2280 mutex_unlock(&xps_map_mutex); 2281 2282 return 0; 2283 error: 2284 /* remove any maps that we added */ 2285 for_each_possible_cpu(cpu) { 2286 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2287 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2288 map = dev_maps ? 2289 xmap_dereference(dev_maps->cpu_map[tci]) : 2290 NULL; 2291 if (new_map && new_map != map) 2292 kfree(new_map); 2293 } 2294 } 2295 2296 mutex_unlock(&xps_map_mutex); 2297 2298 kfree(new_dev_maps); 2299 return -ENOMEM; 2300 } 2301 EXPORT_SYMBOL(netif_set_xps_queue); 2302 2303 #endif 2304 void netdev_reset_tc(struct net_device *dev) 2305 { 2306 #ifdef CONFIG_XPS 2307 netif_reset_xps_queues_gt(dev, 0); 2308 #endif 2309 dev->num_tc = 0; 2310 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2311 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2312 } 2313 EXPORT_SYMBOL(netdev_reset_tc); 2314 2315 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2316 { 2317 if (tc >= dev->num_tc) 2318 return -EINVAL; 2319 2320 #ifdef CONFIG_XPS 2321 netif_reset_xps_queues(dev, offset, count); 2322 #endif 2323 dev->tc_to_txq[tc].count = count; 2324 dev->tc_to_txq[tc].offset = offset; 2325 return 0; 2326 } 2327 EXPORT_SYMBOL(netdev_set_tc_queue); 2328 2329 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2330 { 2331 if (num_tc > TC_MAX_QUEUE) 2332 return -EINVAL; 2333 2334 #ifdef CONFIG_XPS 2335 netif_reset_xps_queues_gt(dev, 0); 2336 #endif 2337 dev->num_tc = num_tc; 2338 return 0; 2339 } 2340 EXPORT_SYMBOL(netdev_set_num_tc); 2341 2342 /* 2343 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2344 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2345 */ 2346 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2347 { 2348 int rc; 2349 2350 if (txq < 1 || txq > dev->num_tx_queues) 2351 return -EINVAL; 2352 2353 if (dev->reg_state == NETREG_REGISTERED || 2354 dev->reg_state == NETREG_UNREGISTERING) { 2355 ASSERT_RTNL(); 2356 2357 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2358 txq); 2359 if (rc) 2360 return rc; 2361 2362 if (dev->num_tc) 2363 netif_setup_tc(dev, txq); 2364 2365 if (txq < dev->real_num_tx_queues) { 2366 qdisc_reset_all_tx_gt(dev, txq); 2367 #ifdef CONFIG_XPS 2368 netif_reset_xps_queues_gt(dev, txq); 2369 #endif 2370 } 2371 } 2372 2373 dev->real_num_tx_queues = txq; 2374 return 0; 2375 } 2376 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2377 2378 #ifdef CONFIG_SYSFS 2379 /** 2380 * netif_set_real_num_rx_queues - set actual number of RX queues used 2381 * @dev: Network device 2382 * @rxq: Actual number of RX queues 2383 * 2384 * This must be called either with the rtnl_lock held or before 2385 * registration of the net device. Returns 0 on success, or a 2386 * negative error code. If called before registration, it always 2387 * succeeds. 2388 */ 2389 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2390 { 2391 int rc; 2392 2393 if (rxq < 1 || rxq > dev->num_rx_queues) 2394 return -EINVAL; 2395 2396 if (dev->reg_state == NETREG_REGISTERED) { 2397 ASSERT_RTNL(); 2398 2399 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2400 rxq); 2401 if (rc) 2402 return rc; 2403 } 2404 2405 dev->real_num_rx_queues = rxq; 2406 return 0; 2407 } 2408 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2409 #endif 2410 2411 /** 2412 * netif_get_num_default_rss_queues - default number of RSS queues 2413 * 2414 * This routine should set an upper limit on the number of RSS queues 2415 * used by default by multiqueue devices. 2416 */ 2417 int netif_get_num_default_rss_queues(void) 2418 { 2419 return is_kdump_kernel() ? 2420 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2421 } 2422 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2423 2424 static void __netif_reschedule(struct Qdisc *q) 2425 { 2426 struct softnet_data *sd; 2427 unsigned long flags; 2428 2429 local_irq_save(flags); 2430 sd = this_cpu_ptr(&softnet_data); 2431 q->next_sched = NULL; 2432 *sd->output_queue_tailp = q; 2433 sd->output_queue_tailp = &q->next_sched; 2434 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2435 local_irq_restore(flags); 2436 } 2437 2438 void __netif_schedule(struct Qdisc *q) 2439 { 2440 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2441 __netif_reschedule(q); 2442 } 2443 EXPORT_SYMBOL(__netif_schedule); 2444 2445 struct dev_kfree_skb_cb { 2446 enum skb_free_reason reason; 2447 }; 2448 2449 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2450 { 2451 return (struct dev_kfree_skb_cb *)skb->cb; 2452 } 2453 2454 void netif_schedule_queue(struct netdev_queue *txq) 2455 { 2456 rcu_read_lock(); 2457 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2458 struct Qdisc *q = rcu_dereference(txq->qdisc); 2459 2460 __netif_schedule(q); 2461 } 2462 rcu_read_unlock(); 2463 } 2464 EXPORT_SYMBOL(netif_schedule_queue); 2465 2466 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2467 { 2468 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2469 struct Qdisc *q; 2470 2471 rcu_read_lock(); 2472 q = rcu_dereference(dev_queue->qdisc); 2473 __netif_schedule(q); 2474 rcu_read_unlock(); 2475 } 2476 } 2477 EXPORT_SYMBOL(netif_tx_wake_queue); 2478 2479 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2480 { 2481 unsigned long flags; 2482 2483 if (unlikely(!skb)) 2484 return; 2485 2486 if (likely(atomic_read(&skb->users) == 1)) { 2487 smp_rmb(); 2488 atomic_set(&skb->users, 0); 2489 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2490 return; 2491 } 2492 get_kfree_skb_cb(skb)->reason = reason; 2493 local_irq_save(flags); 2494 skb->next = __this_cpu_read(softnet_data.completion_queue); 2495 __this_cpu_write(softnet_data.completion_queue, skb); 2496 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2497 local_irq_restore(flags); 2498 } 2499 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2500 2501 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2502 { 2503 if (in_irq() || irqs_disabled()) 2504 __dev_kfree_skb_irq(skb, reason); 2505 else 2506 dev_kfree_skb(skb); 2507 } 2508 EXPORT_SYMBOL(__dev_kfree_skb_any); 2509 2510 2511 /** 2512 * netif_device_detach - mark device as removed 2513 * @dev: network device 2514 * 2515 * Mark device as removed from system and therefore no longer available. 2516 */ 2517 void netif_device_detach(struct net_device *dev) 2518 { 2519 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2520 netif_running(dev)) { 2521 netif_tx_stop_all_queues(dev); 2522 } 2523 } 2524 EXPORT_SYMBOL(netif_device_detach); 2525 2526 /** 2527 * netif_device_attach - mark device as attached 2528 * @dev: network device 2529 * 2530 * Mark device as attached from system and restart if needed. 2531 */ 2532 void netif_device_attach(struct net_device *dev) 2533 { 2534 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2535 netif_running(dev)) { 2536 netif_tx_wake_all_queues(dev); 2537 __netdev_watchdog_up(dev); 2538 } 2539 } 2540 EXPORT_SYMBOL(netif_device_attach); 2541 2542 /* 2543 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2544 * to be used as a distribution range. 2545 */ 2546 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2547 unsigned int num_tx_queues) 2548 { 2549 u32 hash; 2550 u16 qoffset = 0; 2551 u16 qcount = num_tx_queues; 2552 2553 if (skb_rx_queue_recorded(skb)) { 2554 hash = skb_get_rx_queue(skb); 2555 while (unlikely(hash >= num_tx_queues)) 2556 hash -= num_tx_queues; 2557 return hash; 2558 } 2559 2560 if (dev->num_tc) { 2561 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2562 2563 qoffset = dev->tc_to_txq[tc].offset; 2564 qcount = dev->tc_to_txq[tc].count; 2565 } 2566 2567 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2568 } 2569 EXPORT_SYMBOL(__skb_tx_hash); 2570 2571 static void skb_warn_bad_offload(const struct sk_buff *skb) 2572 { 2573 static const netdev_features_t null_features; 2574 struct net_device *dev = skb->dev; 2575 const char *name = ""; 2576 2577 if (!net_ratelimit()) 2578 return; 2579 2580 if (dev) { 2581 if (dev->dev.parent) 2582 name = dev_driver_string(dev->dev.parent); 2583 else 2584 name = netdev_name(dev); 2585 } 2586 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2587 "gso_type=%d ip_summed=%d\n", 2588 name, dev ? &dev->features : &null_features, 2589 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2590 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2591 skb_shinfo(skb)->gso_type, skb->ip_summed); 2592 } 2593 2594 /* 2595 * Invalidate hardware checksum when packet is to be mangled, and 2596 * complete checksum manually on outgoing path. 2597 */ 2598 int skb_checksum_help(struct sk_buff *skb) 2599 { 2600 __wsum csum; 2601 int ret = 0, offset; 2602 2603 if (skb->ip_summed == CHECKSUM_COMPLETE) 2604 goto out_set_summed; 2605 2606 if (unlikely(skb_shinfo(skb)->gso_size)) { 2607 skb_warn_bad_offload(skb); 2608 return -EINVAL; 2609 } 2610 2611 /* Before computing a checksum, we should make sure no frag could 2612 * be modified by an external entity : checksum could be wrong. 2613 */ 2614 if (skb_has_shared_frag(skb)) { 2615 ret = __skb_linearize(skb); 2616 if (ret) 2617 goto out; 2618 } 2619 2620 offset = skb_checksum_start_offset(skb); 2621 BUG_ON(offset >= skb_headlen(skb)); 2622 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2623 2624 offset += skb->csum_offset; 2625 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2626 2627 if (skb_cloned(skb) && 2628 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2629 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2630 if (ret) 2631 goto out; 2632 } 2633 2634 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2635 out_set_summed: 2636 skb->ip_summed = CHECKSUM_NONE; 2637 out: 2638 return ret; 2639 } 2640 EXPORT_SYMBOL(skb_checksum_help); 2641 2642 int skb_crc32c_csum_help(struct sk_buff *skb) 2643 { 2644 __le32 crc32c_csum; 2645 int ret = 0, offset, start; 2646 2647 if (skb->ip_summed != CHECKSUM_PARTIAL) 2648 goto out; 2649 2650 if (unlikely(skb_is_gso(skb))) 2651 goto out; 2652 2653 /* Before computing a checksum, we should make sure no frag could 2654 * be modified by an external entity : checksum could be wrong. 2655 */ 2656 if (unlikely(skb_has_shared_frag(skb))) { 2657 ret = __skb_linearize(skb); 2658 if (ret) 2659 goto out; 2660 } 2661 start = skb_checksum_start_offset(skb); 2662 offset = start + offsetof(struct sctphdr, checksum); 2663 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2664 ret = -EINVAL; 2665 goto out; 2666 } 2667 if (skb_cloned(skb) && 2668 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2669 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2670 if (ret) 2671 goto out; 2672 } 2673 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2674 skb->len - start, ~(__u32)0, 2675 crc32c_csum_stub)); 2676 *(__le32 *)(skb->data + offset) = crc32c_csum; 2677 skb->ip_summed = CHECKSUM_NONE; 2678 skb->csum_not_inet = 0; 2679 out: 2680 return ret; 2681 } 2682 2683 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2684 { 2685 __be16 type = skb->protocol; 2686 2687 /* Tunnel gso handlers can set protocol to ethernet. */ 2688 if (type == htons(ETH_P_TEB)) { 2689 struct ethhdr *eth; 2690 2691 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2692 return 0; 2693 2694 eth = (struct ethhdr *)skb_mac_header(skb); 2695 type = eth->h_proto; 2696 } 2697 2698 return __vlan_get_protocol(skb, type, depth); 2699 } 2700 2701 /** 2702 * skb_mac_gso_segment - mac layer segmentation handler. 2703 * @skb: buffer to segment 2704 * @features: features for the output path (see dev->features) 2705 */ 2706 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2707 netdev_features_t features) 2708 { 2709 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2710 struct packet_offload *ptype; 2711 int vlan_depth = skb->mac_len; 2712 __be16 type = skb_network_protocol(skb, &vlan_depth); 2713 2714 if (unlikely(!type)) 2715 return ERR_PTR(-EINVAL); 2716 2717 __skb_pull(skb, vlan_depth); 2718 2719 rcu_read_lock(); 2720 list_for_each_entry_rcu(ptype, &offload_base, list) { 2721 if (ptype->type == type && ptype->callbacks.gso_segment) { 2722 segs = ptype->callbacks.gso_segment(skb, features); 2723 break; 2724 } 2725 } 2726 rcu_read_unlock(); 2727 2728 __skb_push(skb, skb->data - skb_mac_header(skb)); 2729 2730 return segs; 2731 } 2732 EXPORT_SYMBOL(skb_mac_gso_segment); 2733 2734 2735 /* openvswitch calls this on rx path, so we need a different check. 2736 */ 2737 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2738 { 2739 if (tx_path) 2740 return skb->ip_summed != CHECKSUM_PARTIAL && 2741 skb->ip_summed != CHECKSUM_NONE; 2742 2743 return skb->ip_summed == CHECKSUM_NONE; 2744 } 2745 2746 /** 2747 * __skb_gso_segment - Perform segmentation on skb. 2748 * @skb: buffer to segment 2749 * @features: features for the output path (see dev->features) 2750 * @tx_path: whether it is called in TX path 2751 * 2752 * This function segments the given skb and returns a list of segments. 2753 * 2754 * It may return NULL if the skb requires no segmentation. This is 2755 * only possible when GSO is used for verifying header integrity. 2756 * 2757 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2758 */ 2759 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2760 netdev_features_t features, bool tx_path) 2761 { 2762 struct sk_buff *segs; 2763 2764 if (unlikely(skb_needs_check(skb, tx_path))) { 2765 int err; 2766 2767 /* We're going to init ->check field in TCP or UDP header */ 2768 err = skb_cow_head(skb, 0); 2769 if (err < 0) 2770 return ERR_PTR(err); 2771 } 2772 2773 /* Only report GSO partial support if it will enable us to 2774 * support segmentation on this frame without needing additional 2775 * work. 2776 */ 2777 if (features & NETIF_F_GSO_PARTIAL) { 2778 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2779 struct net_device *dev = skb->dev; 2780 2781 partial_features |= dev->features & dev->gso_partial_features; 2782 if (!skb_gso_ok(skb, features | partial_features)) 2783 features &= ~NETIF_F_GSO_PARTIAL; 2784 } 2785 2786 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2787 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2788 2789 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2790 SKB_GSO_CB(skb)->encap_level = 0; 2791 2792 skb_reset_mac_header(skb); 2793 skb_reset_mac_len(skb); 2794 2795 segs = skb_mac_gso_segment(skb, features); 2796 2797 if (unlikely(skb_needs_check(skb, tx_path))) 2798 skb_warn_bad_offload(skb); 2799 2800 return segs; 2801 } 2802 EXPORT_SYMBOL(__skb_gso_segment); 2803 2804 /* Take action when hardware reception checksum errors are detected. */ 2805 #ifdef CONFIG_BUG 2806 void netdev_rx_csum_fault(struct net_device *dev) 2807 { 2808 if (net_ratelimit()) { 2809 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2810 dump_stack(); 2811 } 2812 } 2813 EXPORT_SYMBOL(netdev_rx_csum_fault); 2814 #endif 2815 2816 /* Actually, we should eliminate this check as soon as we know, that: 2817 * 1. IOMMU is present and allows to map all the memory. 2818 * 2. No high memory really exists on this machine. 2819 */ 2820 2821 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2822 { 2823 #ifdef CONFIG_HIGHMEM 2824 int i; 2825 2826 if (!(dev->features & NETIF_F_HIGHDMA)) { 2827 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2828 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2829 2830 if (PageHighMem(skb_frag_page(frag))) 2831 return 1; 2832 } 2833 } 2834 2835 if (PCI_DMA_BUS_IS_PHYS) { 2836 struct device *pdev = dev->dev.parent; 2837 2838 if (!pdev) 2839 return 0; 2840 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2841 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2842 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2843 2844 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2845 return 1; 2846 } 2847 } 2848 #endif 2849 return 0; 2850 } 2851 2852 /* If MPLS offload request, verify we are testing hardware MPLS features 2853 * instead of standard features for the netdev. 2854 */ 2855 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2856 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2857 netdev_features_t features, 2858 __be16 type) 2859 { 2860 if (eth_p_mpls(type)) 2861 features &= skb->dev->mpls_features; 2862 2863 return features; 2864 } 2865 #else 2866 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2867 netdev_features_t features, 2868 __be16 type) 2869 { 2870 return features; 2871 } 2872 #endif 2873 2874 static netdev_features_t harmonize_features(struct sk_buff *skb, 2875 netdev_features_t features) 2876 { 2877 int tmp; 2878 __be16 type; 2879 2880 type = skb_network_protocol(skb, &tmp); 2881 features = net_mpls_features(skb, features, type); 2882 2883 if (skb->ip_summed != CHECKSUM_NONE && 2884 !can_checksum_protocol(features, type)) { 2885 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2886 } 2887 if (illegal_highdma(skb->dev, skb)) 2888 features &= ~NETIF_F_SG; 2889 2890 return features; 2891 } 2892 2893 netdev_features_t passthru_features_check(struct sk_buff *skb, 2894 struct net_device *dev, 2895 netdev_features_t features) 2896 { 2897 return features; 2898 } 2899 EXPORT_SYMBOL(passthru_features_check); 2900 2901 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2902 struct net_device *dev, 2903 netdev_features_t features) 2904 { 2905 return vlan_features_check(skb, features); 2906 } 2907 2908 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2909 struct net_device *dev, 2910 netdev_features_t features) 2911 { 2912 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2913 2914 if (gso_segs > dev->gso_max_segs) 2915 return features & ~NETIF_F_GSO_MASK; 2916 2917 /* Support for GSO partial features requires software 2918 * intervention before we can actually process the packets 2919 * so we need to strip support for any partial features now 2920 * and we can pull them back in after we have partially 2921 * segmented the frame. 2922 */ 2923 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2924 features &= ~dev->gso_partial_features; 2925 2926 /* Make sure to clear the IPv4 ID mangling feature if the 2927 * IPv4 header has the potential to be fragmented. 2928 */ 2929 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2930 struct iphdr *iph = skb->encapsulation ? 2931 inner_ip_hdr(skb) : ip_hdr(skb); 2932 2933 if (!(iph->frag_off & htons(IP_DF))) 2934 features &= ~NETIF_F_TSO_MANGLEID; 2935 } 2936 2937 return features; 2938 } 2939 2940 netdev_features_t netif_skb_features(struct sk_buff *skb) 2941 { 2942 struct net_device *dev = skb->dev; 2943 netdev_features_t features = dev->features; 2944 2945 if (skb_is_gso(skb)) 2946 features = gso_features_check(skb, dev, features); 2947 2948 /* If encapsulation offload request, verify we are testing 2949 * hardware encapsulation features instead of standard 2950 * features for the netdev 2951 */ 2952 if (skb->encapsulation) 2953 features &= dev->hw_enc_features; 2954 2955 if (skb_vlan_tagged(skb)) 2956 features = netdev_intersect_features(features, 2957 dev->vlan_features | 2958 NETIF_F_HW_VLAN_CTAG_TX | 2959 NETIF_F_HW_VLAN_STAG_TX); 2960 2961 if (dev->netdev_ops->ndo_features_check) 2962 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2963 features); 2964 else 2965 features &= dflt_features_check(skb, dev, features); 2966 2967 return harmonize_features(skb, features); 2968 } 2969 EXPORT_SYMBOL(netif_skb_features); 2970 2971 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2972 struct netdev_queue *txq, bool more) 2973 { 2974 unsigned int len; 2975 int rc; 2976 2977 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2978 dev_queue_xmit_nit(skb, dev); 2979 2980 len = skb->len; 2981 trace_net_dev_start_xmit(skb, dev); 2982 rc = netdev_start_xmit(skb, dev, txq, more); 2983 trace_net_dev_xmit(skb, rc, dev, len); 2984 2985 return rc; 2986 } 2987 2988 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2989 struct netdev_queue *txq, int *ret) 2990 { 2991 struct sk_buff *skb = first; 2992 int rc = NETDEV_TX_OK; 2993 2994 while (skb) { 2995 struct sk_buff *next = skb->next; 2996 2997 skb->next = NULL; 2998 rc = xmit_one(skb, dev, txq, next != NULL); 2999 if (unlikely(!dev_xmit_complete(rc))) { 3000 skb->next = next; 3001 goto out; 3002 } 3003 3004 skb = next; 3005 if (netif_xmit_stopped(txq) && skb) { 3006 rc = NETDEV_TX_BUSY; 3007 break; 3008 } 3009 } 3010 3011 out: 3012 *ret = rc; 3013 return skb; 3014 } 3015 3016 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3017 netdev_features_t features) 3018 { 3019 if (skb_vlan_tag_present(skb) && 3020 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3021 skb = __vlan_hwaccel_push_inside(skb); 3022 return skb; 3023 } 3024 3025 int skb_csum_hwoffload_help(struct sk_buff *skb, 3026 const netdev_features_t features) 3027 { 3028 if (unlikely(skb->csum_not_inet)) 3029 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3030 skb_crc32c_csum_help(skb); 3031 3032 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3033 } 3034 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3035 3036 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3037 { 3038 netdev_features_t features; 3039 3040 features = netif_skb_features(skb); 3041 skb = validate_xmit_vlan(skb, features); 3042 if (unlikely(!skb)) 3043 goto out_null; 3044 3045 if (netif_needs_gso(skb, features)) { 3046 struct sk_buff *segs; 3047 3048 segs = skb_gso_segment(skb, features); 3049 if (IS_ERR(segs)) { 3050 goto out_kfree_skb; 3051 } else if (segs) { 3052 consume_skb(skb); 3053 skb = segs; 3054 } 3055 } else { 3056 if (skb_needs_linearize(skb, features) && 3057 __skb_linearize(skb)) 3058 goto out_kfree_skb; 3059 3060 if (validate_xmit_xfrm(skb, features)) 3061 goto out_kfree_skb; 3062 3063 /* If packet is not checksummed and device does not 3064 * support checksumming for this protocol, complete 3065 * checksumming here. 3066 */ 3067 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3068 if (skb->encapsulation) 3069 skb_set_inner_transport_header(skb, 3070 skb_checksum_start_offset(skb)); 3071 else 3072 skb_set_transport_header(skb, 3073 skb_checksum_start_offset(skb)); 3074 if (skb_csum_hwoffload_help(skb, features)) 3075 goto out_kfree_skb; 3076 } 3077 } 3078 3079 return skb; 3080 3081 out_kfree_skb: 3082 kfree_skb(skb); 3083 out_null: 3084 atomic_long_inc(&dev->tx_dropped); 3085 return NULL; 3086 } 3087 3088 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3089 { 3090 struct sk_buff *next, *head = NULL, *tail; 3091 3092 for (; skb != NULL; skb = next) { 3093 next = skb->next; 3094 skb->next = NULL; 3095 3096 /* in case skb wont be segmented, point to itself */ 3097 skb->prev = skb; 3098 3099 skb = validate_xmit_skb(skb, dev); 3100 if (!skb) 3101 continue; 3102 3103 if (!head) 3104 head = skb; 3105 else 3106 tail->next = skb; 3107 /* If skb was segmented, skb->prev points to 3108 * the last segment. If not, it still contains skb. 3109 */ 3110 tail = skb->prev; 3111 } 3112 return head; 3113 } 3114 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3115 3116 static void qdisc_pkt_len_init(struct sk_buff *skb) 3117 { 3118 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3119 3120 qdisc_skb_cb(skb)->pkt_len = skb->len; 3121 3122 /* To get more precise estimation of bytes sent on wire, 3123 * we add to pkt_len the headers size of all segments 3124 */ 3125 if (shinfo->gso_size) { 3126 unsigned int hdr_len; 3127 u16 gso_segs = shinfo->gso_segs; 3128 3129 /* mac layer + network layer */ 3130 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3131 3132 /* + transport layer */ 3133 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3134 hdr_len += tcp_hdrlen(skb); 3135 else 3136 hdr_len += sizeof(struct udphdr); 3137 3138 if (shinfo->gso_type & SKB_GSO_DODGY) 3139 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3140 shinfo->gso_size); 3141 3142 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3143 } 3144 } 3145 3146 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3147 struct net_device *dev, 3148 struct netdev_queue *txq) 3149 { 3150 spinlock_t *root_lock = qdisc_lock(q); 3151 struct sk_buff *to_free = NULL; 3152 bool contended; 3153 int rc; 3154 3155 qdisc_calculate_pkt_len(skb, q); 3156 /* 3157 * Heuristic to force contended enqueues to serialize on a 3158 * separate lock before trying to get qdisc main lock. 3159 * This permits qdisc->running owner to get the lock more 3160 * often and dequeue packets faster. 3161 */ 3162 contended = qdisc_is_running(q); 3163 if (unlikely(contended)) 3164 spin_lock(&q->busylock); 3165 3166 spin_lock(root_lock); 3167 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3168 __qdisc_drop(skb, &to_free); 3169 rc = NET_XMIT_DROP; 3170 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3171 qdisc_run_begin(q)) { 3172 /* 3173 * This is a work-conserving queue; there are no old skbs 3174 * waiting to be sent out; and the qdisc is not running - 3175 * xmit the skb directly. 3176 */ 3177 3178 qdisc_bstats_update(q, skb); 3179 3180 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3181 if (unlikely(contended)) { 3182 spin_unlock(&q->busylock); 3183 contended = false; 3184 } 3185 __qdisc_run(q); 3186 } else 3187 qdisc_run_end(q); 3188 3189 rc = NET_XMIT_SUCCESS; 3190 } else { 3191 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3192 if (qdisc_run_begin(q)) { 3193 if (unlikely(contended)) { 3194 spin_unlock(&q->busylock); 3195 contended = false; 3196 } 3197 __qdisc_run(q); 3198 } 3199 } 3200 spin_unlock(root_lock); 3201 if (unlikely(to_free)) 3202 kfree_skb_list(to_free); 3203 if (unlikely(contended)) 3204 spin_unlock(&q->busylock); 3205 return rc; 3206 } 3207 3208 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3209 static void skb_update_prio(struct sk_buff *skb) 3210 { 3211 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3212 3213 if (!skb->priority && skb->sk && map) { 3214 unsigned int prioidx = 3215 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3216 3217 if (prioidx < map->priomap_len) 3218 skb->priority = map->priomap[prioidx]; 3219 } 3220 } 3221 #else 3222 #define skb_update_prio(skb) 3223 #endif 3224 3225 DEFINE_PER_CPU(int, xmit_recursion); 3226 EXPORT_SYMBOL(xmit_recursion); 3227 3228 /** 3229 * dev_loopback_xmit - loop back @skb 3230 * @net: network namespace this loopback is happening in 3231 * @sk: sk needed to be a netfilter okfn 3232 * @skb: buffer to transmit 3233 */ 3234 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3235 { 3236 skb_reset_mac_header(skb); 3237 __skb_pull(skb, skb_network_offset(skb)); 3238 skb->pkt_type = PACKET_LOOPBACK; 3239 skb->ip_summed = CHECKSUM_UNNECESSARY; 3240 WARN_ON(!skb_dst(skb)); 3241 skb_dst_force(skb); 3242 netif_rx_ni(skb); 3243 return 0; 3244 } 3245 EXPORT_SYMBOL(dev_loopback_xmit); 3246 3247 #ifdef CONFIG_NET_EGRESS 3248 static struct sk_buff * 3249 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3250 { 3251 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3252 struct tcf_result cl_res; 3253 3254 if (!cl) 3255 return skb; 3256 3257 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3258 qdisc_bstats_cpu_update(cl->q, skb); 3259 3260 switch (tcf_classify(skb, cl, &cl_res, false)) { 3261 case TC_ACT_OK: 3262 case TC_ACT_RECLASSIFY: 3263 skb->tc_index = TC_H_MIN(cl_res.classid); 3264 break; 3265 case TC_ACT_SHOT: 3266 qdisc_qstats_cpu_drop(cl->q); 3267 *ret = NET_XMIT_DROP; 3268 kfree_skb(skb); 3269 return NULL; 3270 case TC_ACT_STOLEN: 3271 case TC_ACT_QUEUED: 3272 *ret = NET_XMIT_SUCCESS; 3273 consume_skb(skb); 3274 return NULL; 3275 case TC_ACT_REDIRECT: 3276 /* No need to push/pop skb's mac_header here on egress! */ 3277 skb_do_redirect(skb); 3278 *ret = NET_XMIT_SUCCESS; 3279 return NULL; 3280 default: 3281 break; 3282 } 3283 3284 return skb; 3285 } 3286 #endif /* CONFIG_NET_EGRESS */ 3287 3288 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3289 { 3290 #ifdef CONFIG_XPS 3291 struct xps_dev_maps *dev_maps; 3292 struct xps_map *map; 3293 int queue_index = -1; 3294 3295 rcu_read_lock(); 3296 dev_maps = rcu_dereference(dev->xps_maps); 3297 if (dev_maps) { 3298 unsigned int tci = skb->sender_cpu - 1; 3299 3300 if (dev->num_tc) { 3301 tci *= dev->num_tc; 3302 tci += netdev_get_prio_tc_map(dev, skb->priority); 3303 } 3304 3305 map = rcu_dereference(dev_maps->cpu_map[tci]); 3306 if (map) { 3307 if (map->len == 1) 3308 queue_index = map->queues[0]; 3309 else 3310 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3311 map->len)]; 3312 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3313 queue_index = -1; 3314 } 3315 } 3316 rcu_read_unlock(); 3317 3318 return queue_index; 3319 #else 3320 return -1; 3321 #endif 3322 } 3323 3324 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3325 { 3326 struct sock *sk = skb->sk; 3327 int queue_index = sk_tx_queue_get(sk); 3328 3329 if (queue_index < 0 || skb->ooo_okay || 3330 queue_index >= dev->real_num_tx_queues) { 3331 int new_index = get_xps_queue(dev, skb); 3332 3333 if (new_index < 0) 3334 new_index = skb_tx_hash(dev, skb); 3335 3336 if (queue_index != new_index && sk && 3337 sk_fullsock(sk) && 3338 rcu_access_pointer(sk->sk_dst_cache)) 3339 sk_tx_queue_set(sk, new_index); 3340 3341 queue_index = new_index; 3342 } 3343 3344 return queue_index; 3345 } 3346 3347 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3348 struct sk_buff *skb, 3349 void *accel_priv) 3350 { 3351 int queue_index = 0; 3352 3353 #ifdef CONFIG_XPS 3354 u32 sender_cpu = skb->sender_cpu - 1; 3355 3356 if (sender_cpu >= (u32)NR_CPUS) 3357 skb->sender_cpu = raw_smp_processor_id() + 1; 3358 #endif 3359 3360 if (dev->real_num_tx_queues != 1) { 3361 const struct net_device_ops *ops = dev->netdev_ops; 3362 3363 if (ops->ndo_select_queue) 3364 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3365 __netdev_pick_tx); 3366 else 3367 queue_index = __netdev_pick_tx(dev, skb); 3368 3369 if (!accel_priv) 3370 queue_index = netdev_cap_txqueue(dev, queue_index); 3371 } 3372 3373 skb_set_queue_mapping(skb, queue_index); 3374 return netdev_get_tx_queue(dev, queue_index); 3375 } 3376 3377 /** 3378 * __dev_queue_xmit - transmit a buffer 3379 * @skb: buffer to transmit 3380 * @accel_priv: private data used for L2 forwarding offload 3381 * 3382 * Queue a buffer for transmission to a network device. The caller must 3383 * have set the device and priority and built the buffer before calling 3384 * this function. The function can be called from an interrupt. 3385 * 3386 * A negative errno code is returned on a failure. A success does not 3387 * guarantee the frame will be transmitted as it may be dropped due 3388 * to congestion or traffic shaping. 3389 * 3390 * ----------------------------------------------------------------------------------- 3391 * I notice this method can also return errors from the queue disciplines, 3392 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3393 * be positive. 3394 * 3395 * Regardless of the return value, the skb is consumed, so it is currently 3396 * difficult to retry a send to this method. (You can bump the ref count 3397 * before sending to hold a reference for retry if you are careful.) 3398 * 3399 * When calling this method, interrupts MUST be enabled. This is because 3400 * the BH enable code must have IRQs enabled so that it will not deadlock. 3401 * --BLG 3402 */ 3403 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3404 { 3405 struct net_device *dev = skb->dev; 3406 struct netdev_queue *txq; 3407 struct Qdisc *q; 3408 int rc = -ENOMEM; 3409 3410 skb_reset_mac_header(skb); 3411 3412 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3413 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3414 3415 /* Disable soft irqs for various locks below. Also 3416 * stops preemption for RCU. 3417 */ 3418 rcu_read_lock_bh(); 3419 3420 skb_update_prio(skb); 3421 3422 qdisc_pkt_len_init(skb); 3423 #ifdef CONFIG_NET_CLS_ACT 3424 skb->tc_at_ingress = 0; 3425 # ifdef CONFIG_NET_EGRESS 3426 if (static_key_false(&egress_needed)) { 3427 skb = sch_handle_egress(skb, &rc, dev); 3428 if (!skb) 3429 goto out; 3430 } 3431 # endif 3432 #endif 3433 /* If device/qdisc don't need skb->dst, release it right now while 3434 * its hot in this cpu cache. 3435 */ 3436 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3437 skb_dst_drop(skb); 3438 else 3439 skb_dst_force(skb); 3440 3441 txq = netdev_pick_tx(dev, skb, accel_priv); 3442 q = rcu_dereference_bh(txq->qdisc); 3443 3444 trace_net_dev_queue(skb); 3445 if (q->enqueue) { 3446 rc = __dev_xmit_skb(skb, q, dev, txq); 3447 goto out; 3448 } 3449 3450 /* The device has no queue. Common case for software devices: 3451 * loopback, all the sorts of tunnels... 3452 3453 * Really, it is unlikely that netif_tx_lock protection is necessary 3454 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3455 * counters.) 3456 * However, it is possible, that they rely on protection 3457 * made by us here. 3458 3459 * Check this and shot the lock. It is not prone from deadlocks. 3460 *Either shot noqueue qdisc, it is even simpler 8) 3461 */ 3462 if (dev->flags & IFF_UP) { 3463 int cpu = smp_processor_id(); /* ok because BHs are off */ 3464 3465 if (txq->xmit_lock_owner != cpu) { 3466 if (unlikely(__this_cpu_read(xmit_recursion) > 3467 XMIT_RECURSION_LIMIT)) 3468 goto recursion_alert; 3469 3470 skb = validate_xmit_skb(skb, dev); 3471 if (!skb) 3472 goto out; 3473 3474 HARD_TX_LOCK(dev, txq, cpu); 3475 3476 if (!netif_xmit_stopped(txq)) { 3477 __this_cpu_inc(xmit_recursion); 3478 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3479 __this_cpu_dec(xmit_recursion); 3480 if (dev_xmit_complete(rc)) { 3481 HARD_TX_UNLOCK(dev, txq); 3482 goto out; 3483 } 3484 } 3485 HARD_TX_UNLOCK(dev, txq); 3486 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3487 dev->name); 3488 } else { 3489 /* Recursion is detected! It is possible, 3490 * unfortunately 3491 */ 3492 recursion_alert: 3493 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3494 dev->name); 3495 } 3496 } 3497 3498 rc = -ENETDOWN; 3499 rcu_read_unlock_bh(); 3500 3501 atomic_long_inc(&dev->tx_dropped); 3502 kfree_skb_list(skb); 3503 return rc; 3504 out: 3505 rcu_read_unlock_bh(); 3506 return rc; 3507 } 3508 3509 int dev_queue_xmit(struct sk_buff *skb) 3510 { 3511 return __dev_queue_xmit(skb, NULL); 3512 } 3513 EXPORT_SYMBOL(dev_queue_xmit); 3514 3515 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3516 { 3517 return __dev_queue_xmit(skb, accel_priv); 3518 } 3519 EXPORT_SYMBOL(dev_queue_xmit_accel); 3520 3521 3522 /************************************************************************* 3523 * Receiver routines 3524 *************************************************************************/ 3525 3526 int netdev_max_backlog __read_mostly = 1000; 3527 EXPORT_SYMBOL(netdev_max_backlog); 3528 3529 int netdev_tstamp_prequeue __read_mostly = 1; 3530 int netdev_budget __read_mostly = 300; 3531 unsigned int __read_mostly netdev_budget_usecs = 2000; 3532 int weight_p __read_mostly = 64; /* old backlog weight */ 3533 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3534 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3535 int dev_rx_weight __read_mostly = 64; 3536 int dev_tx_weight __read_mostly = 64; 3537 3538 /* Called with irq disabled */ 3539 static inline void ____napi_schedule(struct softnet_data *sd, 3540 struct napi_struct *napi) 3541 { 3542 list_add_tail(&napi->poll_list, &sd->poll_list); 3543 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3544 } 3545 3546 #ifdef CONFIG_RPS 3547 3548 /* One global table that all flow-based protocols share. */ 3549 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3550 EXPORT_SYMBOL(rps_sock_flow_table); 3551 u32 rps_cpu_mask __read_mostly; 3552 EXPORT_SYMBOL(rps_cpu_mask); 3553 3554 struct static_key rps_needed __read_mostly; 3555 EXPORT_SYMBOL(rps_needed); 3556 struct static_key rfs_needed __read_mostly; 3557 EXPORT_SYMBOL(rfs_needed); 3558 3559 static struct rps_dev_flow * 3560 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3561 struct rps_dev_flow *rflow, u16 next_cpu) 3562 { 3563 if (next_cpu < nr_cpu_ids) { 3564 #ifdef CONFIG_RFS_ACCEL 3565 struct netdev_rx_queue *rxqueue; 3566 struct rps_dev_flow_table *flow_table; 3567 struct rps_dev_flow *old_rflow; 3568 u32 flow_id; 3569 u16 rxq_index; 3570 int rc; 3571 3572 /* Should we steer this flow to a different hardware queue? */ 3573 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3574 !(dev->features & NETIF_F_NTUPLE)) 3575 goto out; 3576 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3577 if (rxq_index == skb_get_rx_queue(skb)) 3578 goto out; 3579 3580 rxqueue = dev->_rx + rxq_index; 3581 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3582 if (!flow_table) 3583 goto out; 3584 flow_id = skb_get_hash(skb) & flow_table->mask; 3585 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3586 rxq_index, flow_id); 3587 if (rc < 0) 3588 goto out; 3589 old_rflow = rflow; 3590 rflow = &flow_table->flows[flow_id]; 3591 rflow->filter = rc; 3592 if (old_rflow->filter == rflow->filter) 3593 old_rflow->filter = RPS_NO_FILTER; 3594 out: 3595 #endif 3596 rflow->last_qtail = 3597 per_cpu(softnet_data, next_cpu).input_queue_head; 3598 } 3599 3600 rflow->cpu = next_cpu; 3601 return rflow; 3602 } 3603 3604 /* 3605 * get_rps_cpu is called from netif_receive_skb and returns the target 3606 * CPU from the RPS map of the receiving queue for a given skb. 3607 * rcu_read_lock must be held on entry. 3608 */ 3609 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3610 struct rps_dev_flow **rflowp) 3611 { 3612 const struct rps_sock_flow_table *sock_flow_table; 3613 struct netdev_rx_queue *rxqueue = dev->_rx; 3614 struct rps_dev_flow_table *flow_table; 3615 struct rps_map *map; 3616 int cpu = -1; 3617 u32 tcpu; 3618 u32 hash; 3619 3620 if (skb_rx_queue_recorded(skb)) { 3621 u16 index = skb_get_rx_queue(skb); 3622 3623 if (unlikely(index >= dev->real_num_rx_queues)) { 3624 WARN_ONCE(dev->real_num_rx_queues > 1, 3625 "%s received packet on queue %u, but number " 3626 "of RX queues is %u\n", 3627 dev->name, index, dev->real_num_rx_queues); 3628 goto done; 3629 } 3630 rxqueue += index; 3631 } 3632 3633 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3634 3635 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3636 map = rcu_dereference(rxqueue->rps_map); 3637 if (!flow_table && !map) 3638 goto done; 3639 3640 skb_reset_network_header(skb); 3641 hash = skb_get_hash(skb); 3642 if (!hash) 3643 goto done; 3644 3645 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3646 if (flow_table && sock_flow_table) { 3647 struct rps_dev_flow *rflow; 3648 u32 next_cpu; 3649 u32 ident; 3650 3651 /* First check into global flow table if there is a match */ 3652 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3653 if ((ident ^ hash) & ~rps_cpu_mask) 3654 goto try_rps; 3655 3656 next_cpu = ident & rps_cpu_mask; 3657 3658 /* OK, now we know there is a match, 3659 * we can look at the local (per receive queue) flow table 3660 */ 3661 rflow = &flow_table->flows[hash & flow_table->mask]; 3662 tcpu = rflow->cpu; 3663 3664 /* 3665 * If the desired CPU (where last recvmsg was done) is 3666 * different from current CPU (one in the rx-queue flow 3667 * table entry), switch if one of the following holds: 3668 * - Current CPU is unset (>= nr_cpu_ids). 3669 * - Current CPU is offline. 3670 * - The current CPU's queue tail has advanced beyond the 3671 * last packet that was enqueued using this table entry. 3672 * This guarantees that all previous packets for the flow 3673 * have been dequeued, thus preserving in order delivery. 3674 */ 3675 if (unlikely(tcpu != next_cpu) && 3676 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3677 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3678 rflow->last_qtail)) >= 0)) { 3679 tcpu = next_cpu; 3680 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3681 } 3682 3683 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3684 *rflowp = rflow; 3685 cpu = tcpu; 3686 goto done; 3687 } 3688 } 3689 3690 try_rps: 3691 3692 if (map) { 3693 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3694 if (cpu_online(tcpu)) { 3695 cpu = tcpu; 3696 goto done; 3697 } 3698 } 3699 3700 done: 3701 return cpu; 3702 } 3703 3704 #ifdef CONFIG_RFS_ACCEL 3705 3706 /** 3707 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3708 * @dev: Device on which the filter was set 3709 * @rxq_index: RX queue index 3710 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3711 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3712 * 3713 * Drivers that implement ndo_rx_flow_steer() should periodically call 3714 * this function for each installed filter and remove the filters for 3715 * which it returns %true. 3716 */ 3717 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3718 u32 flow_id, u16 filter_id) 3719 { 3720 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3721 struct rps_dev_flow_table *flow_table; 3722 struct rps_dev_flow *rflow; 3723 bool expire = true; 3724 unsigned int cpu; 3725 3726 rcu_read_lock(); 3727 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3728 if (flow_table && flow_id <= flow_table->mask) { 3729 rflow = &flow_table->flows[flow_id]; 3730 cpu = ACCESS_ONCE(rflow->cpu); 3731 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3732 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3733 rflow->last_qtail) < 3734 (int)(10 * flow_table->mask))) 3735 expire = false; 3736 } 3737 rcu_read_unlock(); 3738 return expire; 3739 } 3740 EXPORT_SYMBOL(rps_may_expire_flow); 3741 3742 #endif /* CONFIG_RFS_ACCEL */ 3743 3744 /* Called from hardirq (IPI) context */ 3745 static void rps_trigger_softirq(void *data) 3746 { 3747 struct softnet_data *sd = data; 3748 3749 ____napi_schedule(sd, &sd->backlog); 3750 sd->received_rps++; 3751 } 3752 3753 #endif /* CONFIG_RPS */ 3754 3755 /* 3756 * Check if this softnet_data structure is another cpu one 3757 * If yes, queue it to our IPI list and return 1 3758 * If no, return 0 3759 */ 3760 static int rps_ipi_queued(struct softnet_data *sd) 3761 { 3762 #ifdef CONFIG_RPS 3763 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3764 3765 if (sd != mysd) { 3766 sd->rps_ipi_next = mysd->rps_ipi_list; 3767 mysd->rps_ipi_list = sd; 3768 3769 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3770 return 1; 3771 } 3772 #endif /* CONFIG_RPS */ 3773 return 0; 3774 } 3775 3776 #ifdef CONFIG_NET_FLOW_LIMIT 3777 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3778 #endif 3779 3780 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3781 { 3782 #ifdef CONFIG_NET_FLOW_LIMIT 3783 struct sd_flow_limit *fl; 3784 struct softnet_data *sd; 3785 unsigned int old_flow, new_flow; 3786 3787 if (qlen < (netdev_max_backlog >> 1)) 3788 return false; 3789 3790 sd = this_cpu_ptr(&softnet_data); 3791 3792 rcu_read_lock(); 3793 fl = rcu_dereference(sd->flow_limit); 3794 if (fl) { 3795 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3796 old_flow = fl->history[fl->history_head]; 3797 fl->history[fl->history_head] = new_flow; 3798 3799 fl->history_head++; 3800 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3801 3802 if (likely(fl->buckets[old_flow])) 3803 fl->buckets[old_flow]--; 3804 3805 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3806 fl->count++; 3807 rcu_read_unlock(); 3808 return true; 3809 } 3810 } 3811 rcu_read_unlock(); 3812 #endif 3813 return false; 3814 } 3815 3816 /* 3817 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3818 * queue (may be a remote CPU queue). 3819 */ 3820 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3821 unsigned int *qtail) 3822 { 3823 struct softnet_data *sd; 3824 unsigned long flags; 3825 unsigned int qlen; 3826 3827 sd = &per_cpu(softnet_data, cpu); 3828 3829 local_irq_save(flags); 3830 3831 rps_lock(sd); 3832 if (!netif_running(skb->dev)) 3833 goto drop; 3834 qlen = skb_queue_len(&sd->input_pkt_queue); 3835 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3836 if (qlen) { 3837 enqueue: 3838 __skb_queue_tail(&sd->input_pkt_queue, skb); 3839 input_queue_tail_incr_save(sd, qtail); 3840 rps_unlock(sd); 3841 local_irq_restore(flags); 3842 return NET_RX_SUCCESS; 3843 } 3844 3845 /* Schedule NAPI for backlog device 3846 * We can use non atomic operation since we own the queue lock 3847 */ 3848 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3849 if (!rps_ipi_queued(sd)) 3850 ____napi_schedule(sd, &sd->backlog); 3851 } 3852 goto enqueue; 3853 } 3854 3855 drop: 3856 sd->dropped++; 3857 rps_unlock(sd); 3858 3859 local_irq_restore(flags); 3860 3861 atomic_long_inc(&skb->dev->rx_dropped); 3862 kfree_skb(skb); 3863 return NET_RX_DROP; 3864 } 3865 3866 static int netif_rx_internal(struct sk_buff *skb) 3867 { 3868 int ret; 3869 3870 net_timestamp_check(netdev_tstamp_prequeue, skb); 3871 3872 trace_netif_rx(skb); 3873 #ifdef CONFIG_RPS 3874 if (static_key_false(&rps_needed)) { 3875 struct rps_dev_flow voidflow, *rflow = &voidflow; 3876 int cpu; 3877 3878 preempt_disable(); 3879 rcu_read_lock(); 3880 3881 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3882 if (cpu < 0) 3883 cpu = smp_processor_id(); 3884 3885 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3886 3887 rcu_read_unlock(); 3888 preempt_enable(); 3889 } else 3890 #endif 3891 { 3892 unsigned int qtail; 3893 3894 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3895 put_cpu(); 3896 } 3897 return ret; 3898 } 3899 3900 /** 3901 * netif_rx - post buffer to the network code 3902 * @skb: buffer to post 3903 * 3904 * This function receives a packet from a device driver and queues it for 3905 * the upper (protocol) levels to process. It always succeeds. The buffer 3906 * may be dropped during processing for congestion control or by the 3907 * protocol layers. 3908 * 3909 * return values: 3910 * NET_RX_SUCCESS (no congestion) 3911 * NET_RX_DROP (packet was dropped) 3912 * 3913 */ 3914 3915 int netif_rx(struct sk_buff *skb) 3916 { 3917 trace_netif_rx_entry(skb); 3918 3919 return netif_rx_internal(skb); 3920 } 3921 EXPORT_SYMBOL(netif_rx); 3922 3923 int netif_rx_ni(struct sk_buff *skb) 3924 { 3925 int err; 3926 3927 trace_netif_rx_ni_entry(skb); 3928 3929 preempt_disable(); 3930 err = netif_rx_internal(skb); 3931 if (local_softirq_pending()) 3932 do_softirq(); 3933 preempt_enable(); 3934 3935 return err; 3936 } 3937 EXPORT_SYMBOL(netif_rx_ni); 3938 3939 static __latent_entropy void net_tx_action(struct softirq_action *h) 3940 { 3941 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3942 3943 if (sd->completion_queue) { 3944 struct sk_buff *clist; 3945 3946 local_irq_disable(); 3947 clist = sd->completion_queue; 3948 sd->completion_queue = NULL; 3949 local_irq_enable(); 3950 3951 while (clist) { 3952 struct sk_buff *skb = clist; 3953 3954 clist = clist->next; 3955 3956 WARN_ON(atomic_read(&skb->users)); 3957 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3958 trace_consume_skb(skb); 3959 else 3960 trace_kfree_skb(skb, net_tx_action); 3961 3962 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3963 __kfree_skb(skb); 3964 else 3965 __kfree_skb_defer(skb); 3966 } 3967 3968 __kfree_skb_flush(); 3969 } 3970 3971 if (sd->output_queue) { 3972 struct Qdisc *head; 3973 3974 local_irq_disable(); 3975 head = sd->output_queue; 3976 sd->output_queue = NULL; 3977 sd->output_queue_tailp = &sd->output_queue; 3978 local_irq_enable(); 3979 3980 while (head) { 3981 struct Qdisc *q = head; 3982 spinlock_t *root_lock; 3983 3984 head = head->next_sched; 3985 3986 root_lock = qdisc_lock(q); 3987 spin_lock(root_lock); 3988 /* We need to make sure head->next_sched is read 3989 * before clearing __QDISC_STATE_SCHED 3990 */ 3991 smp_mb__before_atomic(); 3992 clear_bit(__QDISC_STATE_SCHED, &q->state); 3993 qdisc_run(q); 3994 spin_unlock(root_lock); 3995 } 3996 } 3997 } 3998 3999 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4000 /* This hook is defined here for ATM LANE */ 4001 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4002 unsigned char *addr) __read_mostly; 4003 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4004 #endif 4005 4006 static inline struct sk_buff * 4007 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4008 struct net_device *orig_dev) 4009 { 4010 #ifdef CONFIG_NET_CLS_ACT 4011 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 4012 struct tcf_result cl_res; 4013 4014 /* If there's at least one ingress present somewhere (so 4015 * we get here via enabled static key), remaining devices 4016 * that are not configured with an ingress qdisc will bail 4017 * out here. 4018 */ 4019 if (!cl) 4020 return skb; 4021 if (*pt_prev) { 4022 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4023 *pt_prev = NULL; 4024 } 4025 4026 qdisc_skb_cb(skb)->pkt_len = skb->len; 4027 skb->tc_at_ingress = 1; 4028 qdisc_bstats_cpu_update(cl->q, skb); 4029 4030 switch (tcf_classify(skb, cl, &cl_res, false)) { 4031 case TC_ACT_OK: 4032 case TC_ACT_RECLASSIFY: 4033 skb->tc_index = TC_H_MIN(cl_res.classid); 4034 break; 4035 case TC_ACT_SHOT: 4036 qdisc_qstats_cpu_drop(cl->q); 4037 kfree_skb(skb); 4038 return NULL; 4039 case TC_ACT_STOLEN: 4040 case TC_ACT_QUEUED: 4041 consume_skb(skb); 4042 return NULL; 4043 case TC_ACT_REDIRECT: 4044 /* skb_mac_header check was done by cls/act_bpf, so 4045 * we can safely push the L2 header back before 4046 * redirecting to another netdev 4047 */ 4048 __skb_push(skb, skb->mac_len); 4049 skb_do_redirect(skb); 4050 return NULL; 4051 default: 4052 break; 4053 } 4054 #endif /* CONFIG_NET_CLS_ACT */ 4055 return skb; 4056 } 4057 4058 /** 4059 * netdev_is_rx_handler_busy - check if receive handler is registered 4060 * @dev: device to check 4061 * 4062 * Check if a receive handler is already registered for a given device. 4063 * Return true if there one. 4064 * 4065 * The caller must hold the rtnl_mutex. 4066 */ 4067 bool netdev_is_rx_handler_busy(struct net_device *dev) 4068 { 4069 ASSERT_RTNL(); 4070 return dev && rtnl_dereference(dev->rx_handler); 4071 } 4072 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4073 4074 /** 4075 * netdev_rx_handler_register - register receive handler 4076 * @dev: device to register a handler for 4077 * @rx_handler: receive handler to register 4078 * @rx_handler_data: data pointer that is used by rx handler 4079 * 4080 * Register a receive handler for a device. This handler will then be 4081 * called from __netif_receive_skb. A negative errno code is returned 4082 * on a failure. 4083 * 4084 * The caller must hold the rtnl_mutex. 4085 * 4086 * For a general description of rx_handler, see enum rx_handler_result. 4087 */ 4088 int netdev_rx_handler_register(struct net_device *dev, 4089 rx_handler_func_t *rx_handler, 4090 void *rx_handler_data) 4091 { 4092 if (netdev_is_rx_handler_busy(dev)) 4093 return -EBUSY; 4094 4095 /* Note: rx_handler_data must be set before rx_handler */ 4096 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4097 rcu_assign_pointer(dev->rx_handler, rx_handler); 4098 4099 return 0; 4100 } 4101 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4102 4103 /** 4104 * netdev_rx_handler_unregister - unregister receive handler 4105 * @dev: device to unregister a handler from 4106 * 4107 * Unregister a receive handler from a device. 4108 * 4109 * The caller must hold the rtnl_mutex. 4110 */ 4111 void netdev_rx_handler_unregister(struct net_device *dev) 4112 { 4113 4114 ASSERT_RTNL(); 4115 RCU_INIT_POINTER(dev->rx_handler, NULL); 4116 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4117 * section has a guarantee to see a non NULL rx_handler_data 4118 * as well. 4119 */ 4120 synchronize_net(); 4121 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4122 } 4123 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4124 4125 /* 4126 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4127 * the special handling of PFMEMALLOC skbs. 4128 */ 4129 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4130 { 4131 switch (skb->protocol) { 4132 case htons(ETH_P_ARP): 4133 case htons(ETH_P_IP): 4134 case htons(ETH_P_IPV6): 4135 case htons(ETH_P_8021Q): 4136 case htons(ETH_P_8021AD): 4137 return true; 4138 default: 4139 return false; 4140 } 4141 } 4142 4143 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4144 int *ret, struct net_device *orig_dev) 4145 { 4146 #ifdef CONFIG_NETFILTER_INGRESS 4147 if (nf_hook_ingress_active(skb)) { 4148 int ingress_retval; 4149 4150 if (*pt_prev) { 4151 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4152 *pt_prev = NULL; 4153 } 4154 4155 rcu_read_lock(); 4156 ingress_retval = nf_hook_ingress(skb); 4157 rcu_read_unlock(); 4158 return ingress_retval; 4159 } 4160 #endif /* CONFIG_NETFILTER_INGRESS */ 4161 return 0; 4162 } 4163 4164 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4165 { 4166 struct packet_type *ptype, *pt_prev; 4167 rx_handler_func_t *rx_handler; 4168 struct net_device *orig_dev; 4169 bool deliver_exact = false; 4170 int ret = NET_RX_DROP; 4171 __be16 type; 4172 4173 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4174 4175 trace_netif_receive_skb(skb); 4176 4177 orig_dev = skb->dev; 4178 4179 skb_reset_network_header(skb); 4180 if (!skb_transport_header_was_set(skb)) 4181 skb_reset_transport_header(skb); 4182 skb_reset_mac_len(skb); 4183 4184 pt_prev = NULL; 4185 4186 another_round: 4187 skb->skb_iif = skb->dev->ifindex; 4188 4189 __this_cpu_inc(softnet_data.processed); 4190 4191 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4192 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4193 skb = skb_vlan_untag(skb); 4194 if (unlikely(!skb)) 4195 goto out; 4196 } 4197 4198 if (skb_skip_tc_classify(skb)) 4199 goto skip_classify; 4200 4201 if (pfmemalloc) 4202 goto skip_taps; 4203 4204 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4205 if (pt_prev) 4206 ret = deliver_skb(skb, pt_prev, orig_dev); 4207 pt_prev = ptype; 4208 } 4209 4210 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4211 if (pt_prev) 4212 ret = deliver_skb(skb, pt_prev, orig_dev); 4213 pt_prev = ptype; 4214 } 4215 4216 skip_taps: 4217 #ifdef CONFIG_NET_INGRESS 4218 if (static_key_false(&ingress_needed)) { 4219 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4220 if (!skb) 4221 goto out; 4222 4223 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4224 goto out; 4225 } 4226 #endif 4227 skb_reset_tc(skb); 4228 skip_classify: 4229 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4230 goto drop; 4231 4232 if (skb_vlan_tag_present(skb)) { 4233 if (pt_prev) { 4234 ret = deliver_skb(skb, pt_prev, orig_dev); 4235 pt_prev = NULL; 4236 } 4237 if (vlan_do_receive(&skb)) 4238 goto another_round; 4239 else if (unlikely(!skb)) 4240 goto out; 4241 } 4242 4243 rx_handler = rcu_dereference(skb->dev->rx_handler); 4244 if (rx_handler) { 4245 if (pt_prev) { 4246 ret = deliver_skb(skb, pt_prev, orig_dev); 4247 pt_prev = NULL; 4248 } 4249 switch (rx_handler(&skb)) { 4250 case RX_HANDLER_CONSUMED: 4251 ret = NET_RX_SUCCESS; 4252 goto out; 4253 case RX_HANDLER_ANOTHER: 4254 goto another_round; 4255 case RX_HANDLER_EXACT: 4256 deliver_exact = true; 4257 case RX_HANDLER_PASS: 4258 break; 4259 default: 4260 BUG(); 4261 } 4262 } 4263 4264 if (unlikely(skb_vlan_tag_present(skb))) { 4265 if (skb_vlan_tag_get_id(skb)) 4266 skb->pkt_type = PACKET_OTHERHOST; 4267 /* Note: we might in the future use prio bits 4268 * and set skb->priority like in vlan_do_receive() 4269 * For the time being, just ignore Priority Code Point 4270 */ 4271 skb->vlan_tci = 0; 4272 } 4273 4274 type = skb->protocol; 4275 4276 /* deliver only exact match when indicated */ 4277 if (likely(!deliver_exact)) { 4278 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4279 &ptype_base[ntohs(type) & 4280 PTYPE_HASH_MASK]); 4281 } 4282 4283 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4284 &orig_dev->ptype_specific); 4285 4286 if (unlikely(skb->dev != orig_dev)) { 4287 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4288 &skb->dev->ptype_specific); 4289 } 4290 4291 if (pt_prev) { 4292 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4293 goto drop; 4294 else 4295 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4296 } else { 4297 drop: 4298 if (!deliver_exact) 4299 atomic_long_inc(&skb->dev->rx_dropped); 4300 else 4301 atomic_long_inc(&skb->dev->rx_nohandler); 4302 kfree_skb(skb); 4303 /* Jamal, now you will not able to escape explaining 4304 * me how you were going to use this. :-) 4305 */ 4306 ret = NET_RX_DROP; 4307 } 4308 4309 out: 4310 return ret; 4311 } 4312 4313 static int __netif_receive_skb(struct sk_buff *skb) 4314 { 4315 int ret; 4316 4317 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4318 unsigned int noreclaim_flag; 4319 4320 /* 4321 * PFMEMALLOC skbs are special, they should 4322 * - be delivered to SOCK_MEMALLOC sockets only 4323 * - stay away from userspace 4324 * - have bounded memory usage 4325 * 4326 * Use PF_MEMALLOC as this saves us from propagating the allocation 4327 * context down to all allocation sites. 4328 */ 4329 noreclaim_flag = memalloc_noreclaim_save(); 4330 ret = __netif_receive_skb_core(skb, true); 4331 memalloc_noreclaim_restore(noreclaim_flag); 4332 } else 4333 ret = __netif_receive_skb_core(skb, false); 4334 4335 return ret; 4336 } 4337 4338 static struct static_key generic_xdp_needed __read_mostly; 4339 4340 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp) 4341 { 4342 struct bpf_prog *new = xdp->prog; 4343 int ret = 0; 4344 4345 switch (xdp->command) { 4346 case XDP_SETUP_PROG: { 4347 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4348 4349 rcu_assign_pointer(dev->xdp_prog, new); 4350 if (old) 4351 bpf_prog_put(old); 4352 4353 if (old && !new) { 4354 static_key_slow_dec(&generic_xdp_needed); 4355 } else if (new && !old) { 4356 static_key_slow_inc(&generic_xdp_needed); 4357 dev_disable_lro(dev); 4358 } 4359 break; 4360 } 4361 4362 case XDP_QUERY_PROG: 4363 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog); 4364 break; 4365 4366 default: 4367 ret = -EINVAL; 4368 break; 4369 } 4370 4371 return ret; 4372 } 4373 4374 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4375 struct bpf_prog *xdp_prog) 4376 { 4377 struct xdp_buff xdp; 4378 u32 act = XDP_DROP; 4379 void *orig_data; 4380 int hlen, off; 4381 u32 mac_len; 4382 4383 /* Reinjected packets coming from act_mirred or similar should 4384 * not get XDP generic processing. 4385 */ 4386 if (skb_cloned(skb)) 4387 return XDP_PASS; 4388 4389 if (skb_linearize(skb)) 4390 goto do_drop; 4391 4392 /* The XDP program wants to see the packet starting at the MAC 4393 * header. 4394 */ 4395 mac_len = skb->data - skb_mac_header(skb); 4396 hlen = skb_headlen(skb) + mac_len; 4397 xdp.data = skb->data - mac_len; 4398 xdp.data_end = xdp.data + hlen; 4399 xdp.data_hard_start = skb->data - skb_headroom(skb); 4400 orig_data = xdp.data; 4401 4402 act = bpf_prog_run_xdp(xdp_prog, &xdp); 4403 4404 off = xdp.data - orig_data; 4405 if (off > 0) 4406 __skb_pull(skb, off); 4407 else if (off < 0) 4408 __skb_push(skb, -off); 4409 4410 switch (act) { 4411 case XDP_TX: 4412 __skb_push(skb, mac_len); 4413 /* fall through */ 4414 case XDP_PASS: 4415 break; 4416 4417 default: 4418 bpf_warn_invalid_xdp_action(act); 4419 /* fall through */ 4420 case XDP_ABORTED: 4421 trace_xdp_exception(skb->dev, xdp_prog, act); 4422 /* fall through */ 4423 case XDP_DROP: 4424 do_drop: 4425 kfree_skb(skb); 4426 break; 4427 } 4428 4429 return act; 4430 } 4431 4432 /* When doing generic XDP we have to bypass the qdisc layer and the 4433 * network taps in order to match in-driver-XDP behavior. 4434 */ 4435 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4436 { 4437 struct net_device *dev = skb->dev; 4438 struct netdev_queue *txq; 4439 bool free_skb = true; 4440 int cpu, rc; 4441 4442 txq = netdev_pick_tx(dev, skb, NULL); 4443 cpu = smp_processor_id(); 4444 HARD_TX_LOCK(dev, txq, cpu); 4445 if (!netif_xmit_stopped(txq)) { 4446 rc = netdev_start_xmit(skb, dev, txq, 0); 4447 if (dev_xmit_complete(rc)) 4448 free_skb = false; 4449 } 4450 HARD_TX_UNLOCK(dev, txq); 4451 if (free_skb) { 4452 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4453 kfree_skb(skb); 4454 } 4455 } 4456 4457 static int netif_receive_skb_internal(struct sk_buff *skb) 4458 { 4459 int ret; 4460 4461 net_timestamp_check(netdev_tstamp_prequeue, skb); 4462 4463 if (skb_defer_rx_timestamp(skb)) 4464 return NET_RX_SUCCESS; 4465 4466 rcu_read_lock(); 4467 4468 if (static_key_false(&generic_xdp_needed)) { 4469 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog); 4470 4471 if (xdp_prog) { 4472 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4473 4474 if (act != XDP_PASS) { 4475 rcu_read_unlock(); 4476 if (act == XDP_TX) 4477 generic_xdp_tx(skb, xdp_prog); 4478 return NET_RX_DROP; 4479 } 4480 } 4481 } 4482 4483 #ifdef CONFIG_RPS 4484 if (static_key_false(&rps_needed)) { 4485 struct rps_dev_flow voidflow, *rflow = &voidflow; 4486 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4487 4488 if (cpu >= 0) { 4489 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4490 rcu_read_unlock(); 4491 return ret; 4492 } 4493 } 4494 #endif 4495 ret = __netif_receive_skb(skb); 4496 rcu_read_unlock(); 4497 return ret; 4498 } 4499 4500 /** 4501 * netif_receive_skb - process receive buffer from network 4502 * @skb: buffer to process 4503 * 4504 * netif_receive_skb() is the main receive data processing function. 4505 * It always succeeds. The buffer may be dropped during processing 4506 * for congestion control or by the protocol layers. 4507 * 4508 * This function may only be called from softirq context and interrupts 4509 * should be enabled. 4510 * 4511 * Return values (usually ignored): 4512 * NET_RX_SUCCESS: no congestion 4513 * NET_RX_DROP: packet was dropped 4514 */ 4515 int netif_receive_skb(struct sk_buff *skb) 4516 { 4517 trace_netif_receive_skb_entry(skb); 4518 4519 return netif_receive_skb_internal(skb); 4520 } 4521 EXPORT_SYMBOL(netif_receive_skb); 4522 4523 DEFINE_PER_CPU(struct work_struct, flush_works); 4524 4525 /* Network device is going away, flush any packets still pending */ 4526 static void flush_backlog(struct work_struct *work) 4527 { 4528 struct sk_buff *skb, *tmp; 4529 struct softnet_data *sd; 4530 4531 local_bh_disable(); 4532 sd = this_cpu_ptr(&softnet_data); 4533 4534 local_irq_disable(); 4535 rps_lock(sd); 4536 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4537 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4538 __skb_unlink(skb, &sd->input_pkt_queue); 4539 kfree_skb(skb); 4540 input_queue_head_incr(sd); 4541 } 4542 } 4543 rps_unlock(sd); 4544 local_irq_enable(); 4545 4546 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4547 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4548 __skb_unlink(skb, &sd->process_queue); 4549 kfree_skb(skb); 4550 input_queue_head_incr(sd); 4551 } 4552 } 4553 local_bh_enable(); 4554 } 4555 4556 static void flush_all_backlogs(void) 4557 { 4558 unsigned int cpu; 4559 4560 get_online_cpus(); 4561 4562 for_each_online_cpu(cpu) 4563 queue_work_on(cpu, system_highpri_wq, 4564 per_cpu_ptr(&flush_works, cpu)); 4565 4566 for_each_online_cpu(cpu) 4567 flush_work(per_cpu_ptr(&flush_works, cpu)); 4568 4569 put_online_cpus(); 4570 } 4571 4572 static int napi_gro_complete(struct sk_buff *skb) 4573 { 4574 struct packet_offload *ptype; 4575 __be16 type = skb->protocol; 4576 struct list_head *head = &offload_base; 4577 int err = -ENOENT; 4578 4579 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4580 4581 if (NAPI_GRO_CB(skb)->count == 1) { 4582 skb_shinfo(skb)->gso_size = 0; 4583 goto out; 4584 } 4585 4586 rcu_read_lock(); 4587 list_for_each_entry_rcu(ptype, head, list) { 4588 if (ptype->type != type || !ptype->callbacks.gro_complete) 4589 continue; 4590 4591 err = ptype->callbacks.gro_complete(skb, 0); 4592 break; 4593 } 4594 rcu_read_unlock(); 4595 4596 if (err) { 4597 WARN_ON(&ptype->list == head); 4598 kfree_skb(skb); 4599 return NET_RX_SUCCESS; 4600 } 4601 4602 out: 4603 return netif_receive_skb_internal(skb); 4604 } 4605 4606 /* napi->gro_list contains packets ordered by age. 4607 * youngest packets at the head of it. 4608 * Complete skbs in reverse order to reduce latencies. 4609 */ 4610 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4611 { 4612 struct sk_buff *skb, *prev = NULL; 4613 4614 /* scan list and build reverse chain */ 4615 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4616 skb->prev = prev; 4617 prev = skb; 4618 } 4619 4620 for (skb = prev; skb; skb = prev) { 4621 skb->next = NULL; 4622 4623 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4624 return; 4625 4626 prev = skb->prev; 4627 napi_gro_complete(skb); 4628 napi->gro_count--; 4629 } 4630 4631 napi->gro_list = NULL; 4632 } 4633 EXPORT_SYMBOL(napi_gro_flush); 4634 4635 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4636 { 4637 struct sk_buff *p; 4638 unsigned int maclen = skb->dev->hard_header_len; 4639 u32 hash = skb_get_hash_raw(skb); 4640 4641 for (p = napi->gro_list; p; p = p->next) { 4642 unsigned long diffs; 4643 4644 NAPI_GRO_CB(p)->flush = 0; 4645 4646 if (hash != skb_get_hash_raw(p)) { 4647 NAPI_GRO_CB(p)->same_flow = 0; 4648 continue; 4649 } 4650 4651 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4652 diffs |= p->vlan_tci ^ skb->vlan_tci; 4653 diffs |= skb_metadata_dst_cmp(p, skb); 4654 if (maclen == ETH_HLEN) 4655 diffs |= compare_ether_header(skb_mac_header(p), 4656 skb_mac_header(skb)); 4657 else if (!diffs) 4658 diffs = memcmp(skb_mac_header(p), 4659 skb_mac_header(skb), 4660 maclen); 4661 NAPI_GRO_CB(p)->same_flow = !diffs; 4662 } 4663 } 4664 4665 static void skb_gro_reset_offset(struct sk_buff *skb) 4666 { 4667 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4668 const skb_frag_t *frag0 = &pinfo->frags[0]; 4669 4670 NAPI_GRO_CB(skb)->data_offset = 0; 4671 NAPI_GRO_CB(skb)->frag0 = NULL; 4672 NAPI_GRO_CB(skb)->frag0_len = 0; 4673 4674 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4675 pinfo->nr_frags && 4676 !PageHighMem(skb_frag_page(frag0))) { 4677 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4678 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4679 skb_frag_size(frag0), 4680 skb->end - skb->tail); 4681 } 4682 } 4683 4684 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4685 { 4686 struct skb_shared_info *pinfo = skb_shinfo(skb); 4687 4688 BUG_ON(skb->end - skb->tail < grow); 4689 4690 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4691 4692 skb->data_len -= grow; 4693 skb->tail += grow; 4694 4695 pinfo->frags[0].page_offset += grow; 4696 skb_frag_size_sub(&pinfo->frags[0], grow); 4697 4698 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4699 skb_frag_unref(skb, 0); 4700 memmove(pinfo->frags, pinfo->frags + 1, 4701 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4702 } 4703 } 4704 4705 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4706 { 4707 struct sk_buff **pp = NULL; 4708 struct packet_offload *ptype; 4709 __be16 type = skb->protocol; 4710 struct list_head *head = &offload_base; 4711 int same_flow; 4712 enum gro_result ret; 4713 int grow; 4714 4715 if (netif_elide_gro(skb->dev)) 4716 goto normal; 4717 4718 gro_list_prepare(napi, skb); 4719 4720 rcu_read_lock(); 4721 list_for_each_entry_rcu(ptype, head, list) { 4722 if (ptype->type != type || !ptype->callbacks.gro_receive) 4723 continue; 4724 4725 skb_set_network_header(skb, skb_gro_offset(skb)); 4726 skb_reset_mac_len(skb); 4727 NAPI_GRO_CB(skb)->same_flow = 0; 4728 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4729 NAPI_GRO_CB(skb)->free = 0; 4730 NAPI_GRO_CB(skb)->encap_mark = 0; 4731 NAPI_GRO_CB(skb)->recursion_counter = 0; 4732 NAPI_GRO_CB(skb)->is_fou = 0; 4733 NAPI_GRO_CB(skb)->is_atomic = 1; 4734 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4735 4736 /* Setup for GRO checksum validation */ 4737 switch (skb->ip_summed) { 4738 case CHECKSUM_COMPLETE: 4739 NAPI_GRO_CB(skb)->csum = skb->csum; 4740 NAPI_GRO_CB(skb)->csum_valid = 1; 4741 NAPI_GRO_CB(skb)->csum_cnt = 0; 4742 break; 4743 case CHECKSUM_UNNECESSARY: 4744 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4745 NAPI_GRO_CB(skb)->csum_valid = 0; 4746 break; 4747 default: 4748 NAPI_GRO_CB(skb)->csum_cnt = 0; 4749 NAPI_GRO_CB(skb)->csum_valid = 0; 4750 } 4751 4752 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4753 break; 4754 } 4755 rcu_read_unlock(); 4756 4757 if (&ptype->list == head) 4758 goto normal; 4759 4760 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4761 ret = GRO_CONSUMED; 4762 goto ok; 4763 } 4764 4765 same_flow = NAPI_GRO_CB(skb)->same_flow; 4766 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4767 4768 if (pp) { 4769 struct sk_buff *nskb = *pp; 4770 4771 *pp = nskb->next; 4772 nskb->next = NULL; 4773 napi_gro_complete(nskb); 4774 napi->gro_count--; 4775 } 4776 4777 if (same_flow) 4778 goto ok; 4779 4780 if (NAPI_GRO_CB(skb)->flush) 4781 goto normal; 4782 4783 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4784 struct sk_buff *nskb = napi->gro_list; 4785 4786 /* locate the end of the list to select the 'oldest' flow */ 4787 while (nskb->next) { 4788 pp = &nskb->next; 4789 nskb = *pp; 4790 } 4791 *pp = NULL; 4792 nskb->next = NULL; 4793 napi_gro_complete(nskb); 4794 } else { 4795 napi->gro_count++; 4796 } 4797 NAPI_GRO_CB(skb)->count = 1; 4798 NAPI_GRO_CB(skb)->age = jiffies; 4799 NAPI_GRO_CB(skb)->last = skb; 4800 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4801 skb->next = napi->gro_list; 4802 napi->gro_list = skb; 4803 ret = GRO_HELD; 4804 4805 pull: 4806 grow = skb_gro_offset(skb) - skb_headlen(skb); 4807 if (grow > 0) 4808 gro_pull_from_frag0(skb, grow); 4809 ok: 4810 return ret; 4811 4812 normal: 4813 ret = GRO_NORMAL; 4814 goto pull; 4815 } 4816 4817 struct packet_offload *gro_find_receive_by_type(__be16 type) 4818 { 4819 struct list_head *offload_head = &offload_base; 4820 struct packet_offload *ptype; 4821 4822 list_for_each_entry_rcu(ptype, offload_head, list) { 4823 if (ptype->type != type || !ptype->callbacks.gro_receive) 4824 continue; 4825 return ptype; 4826 } 4827 return NULL; 4828 } 4829 EXPORT_SYMBOL(gro_find_receive_by_type); 4830 4831 struct packet_offload *gro_find_complete_by_type(__be16 type) 4832 { 4833 struct list_head *offload_head = &offload_base; 4834 struct packet_offload *ptype; 4835 4836 list_for_each_entry_rcu(ptype, offload_head, list) { 4837 if (ptype->type != type || !ptype->callbacks.gro_complete) 4838 continue; 4839 return ptype; 4840 } 4841 return NULL; 4842 } 4843 EXPORT_SYMBOL(gro_find_complete_by_type); 4844 4845 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4846 { 4847 switch (ret) { 4848 case GRO_NORMAL: 4849 if (netif_receive_skb_internal(skb)) 4850 ret = GRO_DROP; 4851 break; 4852 4853 case GRO_DROP: 4854 kfree_skb(skb); 4855 break; 4856 4857 case GRO_MERGED_FREE: 4858 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4859 skb_dst_drop(skb); 4860 secpath_reset(skb); 4861 kmem_cache_free(skbuff_head_cache, skb); 4862 } else { 4863 __kfree_skb(skb); 4864 } 4865 break; 4866 4867 case GRO_HELD: 4868 case GRO_MERGED: 4869 case GRO_CONSUMED: 4870 break; 4871 } 4872 4873 return ret; 4874 } 4875 4876 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4877 { 4878 skb_mark_napi_id(skb, napi); 4879 trace_napi_gro_receive_entry(skb); 4880 4881 skb_gro_reset_offset(skb); 4882 4883 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4884 } 4885 EXPORT_SYMBOL(napi_gro_receive); 4886 4887 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4888 { 4889 if (unlikely(skb->pfmemalloc)) { 4890 consume_skb(skb); 4891 return; 4892 } 4893 __skb_pull(skb, skb_headlen(skb)); 4894 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4895 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4896 skb->vlan_tci = 0; 4897 skb->dev = napi->dev; 4898 skb->skb_iif = 0; 4899 skb->encapsulation = 0; 4900 skb_shinfo(skb)->gso_type = 0; 4901 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4902 secpath_reset(skb); 4903 4904 napi->skb = skb; 4905 } 4906 4907 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4908 { 4909 struct sk_buff *skb = napi->skb; 4910 4911 if (!skb) { 4912 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4913 if (skb) { 4914 napi->skb = skb; 4915 skb_mark_napi_id(skb, napi); 4916 } 4917 } 4918 return skb; 4919 } 4920 EXPORT_SYMBOL(napi_get_frags); 4921 4922 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4923 struct sk_buff *skb, 4924 gro_result_t ret) 4925 { 4926 switch (ret) { 4927 case GRO_NORMAL: 4928 case GRO_HELD: 4929 __skb_push(skb, ETH_HLEN); 4930 skb->protocol = eth_type_trans(skb, skb->dev); 4931 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4932 ret = GRO_DROP; 4933 break; 4934 4935 case GRO_DROP: 4936 case GRO_MERGED_FREE: 4937 napi_reuse_skb(napi, skb); 4938 break; 4939 4940 case GRO_MERGED: 4941 case GRO_CONSUMED: 4942 break; 4943 } 4944 4945 return ret; 4946 } 4947 4948 /* Upper GRO stack assumes network header starts at gro_offset=0 4949 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4950 * We copy ethernet header into skb->data to have a common layout. 4951 */ 4952 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4953 { 4954 struct sk_buff *skb = napi->skb; 4955 const struct ethhdr *eth; 4956 unsigned int hlen = sizeof(*eth); 4957 4958 napi->skb = NULL; 4959 4960 skb_reset_mac_header(skb); 4961 skb_gro_reset_offset(skb); 4962 4963 eth = skb_gro_header_fast(skb, 0); 4964 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4965 eth = skb_gro_header_slow(skb, hlen, 0); 4966 if (unlikely(!eth)) { 4967 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4968 __func__, napi->dev->name); 4969 napi_reuse_skb(napi, skb); 4970 return NULL; 4971 } 4972 } else { 4973 gro_pull_from_frag0(skb, hlen); 4974 NAPI_GRO_CB(skb)->frag0 += hlen; 4975 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4976 } 4977 __skb_pull(skb, hlen); 4978 4979 /* 4980 * This works because the only protocols we care about don't require 4981 * special handling. 4982 * We'll fix it up properly in napi_frags_finish() 4983 */ 4984 skb->protocol = eth->h_proto; 4985 4986 return skb; 4987 } 4988 4989 gro_result_t napi_gro_frags(struct napi_struct *napi) 4990 { 4991 struct sk_buff *skb = napi_frags_skb(napi); 4992 4993 if (!skb) 4994 return GRO_DROP; 4995 4996 trace_napi_gro_frags_entry(skb); 4997 4998 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4999 } 5000 EXPORT_SYMBOL(napi_gro_frags); 5001 5002 /* Compute the checksum from gro_offset and return the folded value 5003 * after adding in any pseudo checksum. 5004 */ 5005 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5006 { 5007 __wsum wsum; 5008 __sum16 sum; 5009 5010 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5011 5012 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5013 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5014 if (likely(!sum)) { 5015 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5016 !skb->csum_complete_sw) 5017 netdev_rx_csum_fault(skb->dev); 5018 } 5019 5020 NAPI_GRO_CB(skb)->csum = wsum; 5021 NAPI_GRO_CB(skb)->csum_valid = 1; 5022 5023 return sum; 5024 } 5025 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5026 5027 /* 5028 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5029 * Note: called with local irq disabled, but exits with local irq enabled. 5030 */ 5031 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5032 { 5033 #ifdef CONFIG_RPS 5034 struct softnet_data *remsd = sd->rps_ipi_list; 5035 5036 if (remsd) { 5037 sd->rps_ipi_list = NULL; 5038 5039 local_irq_enable(); 5040 5041 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5042 while (remsd) { 5043 struct softnet_data *next = remsd->rps_ipi_next; 5044 5045 if (cpu_online(remsd->cpu)) 5046 smp_call_function_single_async(remsd->cpu, 5047 &remsd->csd); 5048 remsd = next; 5049 } 5050 } else 5051 #endif 5052 local_irq_enable(); 5053 } 5054 5055 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5056 { 5057 #ifdef CONFIG_RPS 5058 return sd->rps_ipi_list != NULL; 5059 #else 5060 return false; 5061 #endif 5062 } 5063 5064 static int process_backlog(struct napi_struct *napi, int quota) 5065 { 5066 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5067 bool again = true; 5068 int work = 0; 5069 5070 /* Check if we have pending ipi, its better to send them now, 5071 * not waiting net_rx_action() end. 5072 */ 5073 if (sd_has_rps_ipi_waiting(sd)) { 5074 local_irq_disable(); 5075 net_rps_action_and_irq_enable(sd); 5076 } 5077 5078 napi->weight = dev_rx_weight; 5079 while (again) { 5080 struct sk_buff *skb; 5081 5082 while ((skb = __skb_dequeue(&sd->process_queue))) { 5083 rcu_read_lock(); 5084 __netif_receive_skb(skb); 5085 rcu_read_unlock(); 5086 input_queue_head_incr(sd); 5087 if (++work >= quota) 5088 return work; 5089 5090 } 5091 5092 local_irq_disable(); 5093 rps_lock(sd); 5094 if (skb_queue_empty(&sd->input_pkt_queue)) { 5095 /* 5096 * Inline a custom version of __napi_complete(). 5097 * only current cpu owns and manipulates this napi, 5098 * and NAPI_STATE_SCHED is the only possible flag set 5099 * on backlog. 5100 * We can use a plain write instead of clear_bit(), 5101 * and we dont need an smp_mb() memory barrier. 5102 */ 5103 napi->state = 0; 5104 again = false; 5105 } else { 5106 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5107 &sd->process_queue); 5108 } 5109 rps_unlock(sd); 5110 local_irq_enable(); 5111 } 5112 5113 return work; 5114 } 5115 5116 /** 5117 * __napi_schedule - schedule for receive 5118 * @n: entry to schedule 5119 * 5120 * The entry's receive function will be scheduled to run. 5121 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5122 */ 5123 void __napi_schedule(struct napi_struct *n) 5124 { 5125 unsigned long flags; 5126 5127 local_irq_save(flags); 5128 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5129 local_irq_restore(flags); 5130 } 5131 EXPORT_SYMBOL(__napi_schedule); 5132 5133 /** 5134 * napi_schedule_prep - check if napi can be scheduled 5135 * @n: napi context 5136 * 5137 * Test if NAPI routine is already running, and if not mark 5138 * it as running. This is used as a condition variable 5139 * insure only one NAPI poll instance runs. We also make 5140 * sure there is no pending NAPI disable. 5141 */ 5142 bool napi_schedule_prep(struct napi_struct *n) 5143 { 5144 unsigned long val, new; 5145 5146 do { 5147 val = READ_ONCE(n->state); 5148 if (unlikely(val & NAPIF_STATE_DISABLE)) 5149 return false; 5150 new = val | NAPIF_STATE_SCHED; 5151 5152 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5153 * This was suggested by Alexander Duyck, as compiler 5154 * emits better code than : 5155 * if (val & NAPIF_STATE_SCHED) 5156 * new |= NAPIF_STATE_MISSED; 5157 */ 5158 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5159 NAPIF_STATE_MISSED; 5160 } while (cmpxchg(&n->state, val, new) != val); 5161 5162 return !(val & NAPIF_STATE_SCHED); 5163 } 5164 EXPORT_SYMBOL(napi_schedule_prep); 5165 5166 /** 5167 * __napi_schedule_irqoff - schedule for receive 5168 * @n: entry to schedule 5169 * 5170 * Variant of __napi_schedule() assuming hard irqs are masked 5171 */ 5172 void __napi_schedule_irqoff(struct napi_struct *n) 5173 { 5174 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5175 } 5176 EXPORT_SYMBOL(__napi_schedule_irqoff); 5177 5178 bool napi_complete_done(struct napi_struct *n, int work_done) 5179 { 5180 unsigned long flags, val, new; 5181 5182 /* 5183 * 1) Don't let napi dequeue from the cpu poll list 5184 * just in case its running on a different cpu. 5185 * 2) If we are busy polling, do nothing here, we have 5186 * the guarantee we will be called later. 5187 */ 5188 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5189 NAPIF_STATE_IN_BUSY_POLL))) 5190 return false; 5191 5192 if (n->gro_list) { 5193 unsigned long timeout = 0; 5194 5195 if (work_done) 5196 timeout = n->dev->gro_flush_timeout; 5197 5198 if (timeout) 5199 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5200 HRTIMER_MODE_REL_PINNED); 5201 else 5202 napi_gro_flush(n, false); 5203 } 5204 if (unlikely(!list_empty(&n->poll_list))) { 5205 /* If n->poll_list is not empty, we need to mask irqs */ 5206 local_irq_save(flags); 5207 list_del_init(&n->poll_list); 5208 local_irq_restore(flags); 5209 } 5210 5211 do { 5212 val = READ_ONCE(n->state); 5213 5214 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5215 5216 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5217 5218 /* If STATE_MISSED was set, leave STATE_SCHED set, 5219 * because we will call napi->poll() one more time. 5220 * This C code was suggested by Alexander Duyck to help gcc. 5221 */ 5222 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5223 NAPIF_STATE_SCHED; 5224 } while (cmpxchg(&n->state, val, new) != val); 5225 5226 if (unlikely(val & NAPIF_STATE_MISSED)) { 5227 __napi_schedule(n); 5228 return false; 5229 } 5230 5231 return true; 5232 } 5233 EXPORT_SYMBOL(napi_complete_done); 5234 5235 /* must be called under rcu_read_lock(), as we dont take a reference */ 5236 static struct napi_struct *napi_by_id(unsigned int napi_id) 5237 { 5238 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5239 struct napi_struct *napi; 5240 5241 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5242 if (napi->napi_id == napi_id) 5243 return napi; 5244 5245 return NULL; 5246 } 5247 5248 #if defined(CONFIG_NET_RX_BUSY_POLL) 5249 5250 #define BUSY_POLL_BUDGET 8 5251 5252 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5253 { 5254 int rc; 5255 5256 /* Busy polling means there is a high chance device driver hard irq 5257 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5258 * set in napi_schedule_prep(). 5259 * Since we are about to call napi->poll() once more, we can safely 5260 * clear NAPI_STATE_MISSED. 5261 * 5262 * Note: x86 could use a single "lock and ..." instruction 5263 * to perform these two clear_bit() 5264 */ 5265 clear_bit(NAPI_STATE_MISSED, &napi->state); 5266 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5267 5268 local_bh_disable(); 5269 5270 /* All we really want here is to re-enable device interrupts. 5271 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5272 */ 5273 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5274 netpoll_poll_unlock(have_poll_lock); 5275 if (rc == BUSY_POLL_BUDGET) 5276 __napi_schedule(napi); 5277 local_bh_enable(); 5278 if (local_softirq_pending()) 5279 do_softirq(); 5280 } 5281 5282 void napi_busy_loop(unsigned int napi_id, 5283 bool (*loop_end)(void *, unsigned long), 5284 void *loop_end_arg) 5285 { 5286 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5287 int (*napi_poll)(struct napi_struct *napi, int budget); 5288 void *have_poll_lock = NULL; 5289 struct napi_struct *napi; 5290 5291 restart: 5292 napi_poll = NULL; 5293 5294 rcu_read_lock(); 5295 5296 napi = napi_by_id(napi_id); 5297 if (!napi) 5298 goto out; 5299 5300 preempt_disable(); 5301 for (;;) { 5302 int work = 0; 5303 5304 local_bh_disable(); 5305 if (!napi_poll) { 5306 unsigned long val = READ_ONCE(napi->state); 5307 5308 /* If multiple threads are competing for this napi, 5309 * we avoid dirtying napi->state as much as we can. 5310 */ 5311 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5312 NAPIF_STATE_IN_BUSY_POLL)) 5313 goto count; 5314 if (cmpxchg(&napi->state, val, 5315 val | NAPIF_STATE_IN_BUSY_POLL | 5316 NAPIF_STATE_SCHED) != val) 5317 goto count; 5318 have_poll_lock = netpoll_poll_lock(napi); 5319 napi_poll = napi->poll; 5320 } 5321 work = napi_poll(napi, BUSY_POLL_BUDGET); 5322 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5323 count: 5324 if (work > 0) 5325 __NET_ADD_STATS(dev_net(napi->dev), 5326 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5327 local_bh_enable(); 5328 5329 if (!loop_end || loop_end(loop_end_arg, start_time)) 5330 break; 5331 5332 if (unlikely(need_resched())) { 5333 if (napi_poll) 5334 busy_poll_stop(napi, have_poll_lock); 5335 preempt_enable(); 5336 rcu_read_unlock(); 5337 cond_resched(); 5338 if (loop_end(loop_end_arg, start_time)) 5339 return; 5340 goto restart; 5341 } 5342 cpu_relax(); 5343 } 5344 if (napi_poll) 5345 busy_poll_stop(napi, have_poll_lock); 5346 preempt_enable(); 5347 out: 5348 rcu_read_unlock(); 5349 } 5350 EXPORT_SYMBOL(napi_busy_loop); 5351 5352 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5353 5354 static void napi_hash_add(struct napi_struct *napi) 5355 { 5356 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5357 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5358 return; 5359 5360 spin_lock(&napi_hash_lock); 5361 5362 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5363 do { 5364 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5365 napi_gen_id = MIN_NAPI_ID; 5366 } while (napi_by_id(napi_gen_id)); 5367 napi->napi_id = napi_gen_id; 5368 5369 hlist_add_head_rcu(&napi->napi_hash_node, 5370 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5371 5372 spin_unlock(&napi_hash_lock); 5373 } 5374 5375 /* Warning : caller is responsible to make sure rcu grace period 5376 * is respected before freeing memory containing @napi 5377 */ 5378 bool napi_hash_del(struct napi_struct *napi) 5379 { 5380 bool rcu_sync_needed = false; 5381 5382 spin_lock(&napi_hash_lock); 5383 5384 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5385 rcu_sync_needed = true; 5386 hlist_del_rcu(&napi->napi_hash_node); 5387 } 5388 spin_unlock(&napi_hash_lock); 5389 return rcu_sync_needed; 5390 } 5391 EXPORT_SYMBOL_GPL(napi_hash_del); 5392 5393 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5394 { 5395 struct napi_struct *napi; 5396 5397 napi = container_of(timer, struct napi_struct, timer); 5398 5399 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5400 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5401 */ 5402 if (napi->gro_list && !napi_disable_pending(napi) && 5403 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5404 __napi_schedule_irqoff(napi); 5405 5406 return HRTIMER_NORESTART; 5407 } 5408 5409 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5410 int (*poll)(struct napi_struct *, int), int weight) 5411 { 5412 INIT_LIST_HEAD(&napi->poll_list); 5413 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5414 napi->timer.function = napi_watchdog; 5415 napi->gro_count = 0; 5416 napi->gro_list = NULL; 5417 napi->skb = NULL; 5418 napi->poll = poll; 5419 if (weight > NAPI_POLL_WEIGHT) 5420 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5421 weight, dev->name); 5422 napi->weight = weight; 5423 list_add(&napi->dev_list, &dev->napi_list); 5424 napi->dev = dev; 5425 #ifdef CONFIG_NETPOLL 5426 napi->poll_owner = -1; 5427 #endif 5428 set_bit(NAPI_STATE_SCHED, &napi->state); 5429 napi_hash_add(napi); 5430 } 5431 EXPORT_SYMBOL(netif_napi_add); 5432 5433 void napi_disable(struct napi_struct *n) 5434 { 5435 might_sleep(); 5436 set_bit(NAPI_STATE_DISABLE, &n->state); 5437 5438 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5439 msleep(1); 5440 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5441 msleep(1); 5442 5443 hrtimer_cancel(&n->timer); 5444 5445 clear_bit(NAPI_STATE_DISABLE, &n->state); 5446 } 5447 EXPORT_SYMBOL(napi_disable); 5448 5449 /* Must be called in process context */ 5450 void netif_napi_del(struct napi_struct *napi) 5451 { 5452 might_sleep(); 5453 if (napi_hash_del(napi)) 5454 synchronize_net(); 5455 list_del_init(&napi->dev_list); 5456 napi_free_frags(napi); 5457 5458 kfree_skb_list(napi->gro_list); 5459 napi->gro_list = NULL; 5460 napi->gro_count = 0; 5461 } 5462 EXPORT_SYMBOL(netif_napi_del); 5463 5464 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5465 { 5466 void *have; 5467 int work, weight; 5468 5469 list_del_init(&n->poll_list); 5470 5471 have = netpoll_poll_lock(n); 5472 5473 weight = n->weight; 5474 5475 /* This NAPI_STATE_SCHED test is for avoiding a race 5476 * with netpoll's poll_napi(). Only the entity which 5477 * obtains the lock and sees NAPI_STATE_SCHED set will 5478 * actually make the ->poll() call. Therefore we avoid 5479 * accidentally calling ->poll() when NAPI is not scheduled. 5480 */ 5481 work = 0; 5482 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5483 work = n->poll(n, weight); 5484 trace_napi_poll(n, work, weight); 5485 } 5486 5487 WARN_ON_ONCE(work > weight); 5488 5489 if (likely(work < weight)) 5490 goto out_unlock; 5491 5492 /* Drivers must not modify the NAPI state if they 5493 * consume the entire weight. In such cases this code 5494 * still "owns" the NAPI instance and therefore can 5495 * move the instance around on the list at-will. 5496 */ 5497 if (unlikely(napi_disable_pending(n))) { 5498 napi_complete(n); 5499 goto out_unlock; 5500 } 5501 5502 if (n->gro_list) { 5503 /* flush too old packets 5504 * If HZ < 1000, flush all packets. 5505 */ 5506 napi_gro_flush(n, HZ >= 1000); 5507 } 5508 5509 /* Some drivers may have called napi_schedule 5510 * prior to exhausting their budget. 5511 */ 5512 if (unlikely(!list_empty(&n->poll_list))) { 5513 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5514 n->dev ? n->dev->name : "backlog"); 5515 goto out_unlock; 5516 } 5517 5518 list_add_tail(&n->poll_list, repoll); 5519 5520 out_unlock: 5521 netpoll_poll_unlock(have); 5522 5523 return work; 5524 } 5525 5526 static __latent_entropy void net_rx_action(struct softirq_action *h) 5527 { 5528 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5529 unsigned long time_limit = jiffies + 5530 usecs_to_jiffies(netdev_budget_usecs); 5531 int budget = netdev_budget; 5532 LIST_HEAD(list); 5533 LIST_HEAD(repoll); 5534 5535 local_irq_disable(); 5536 list_splice_init(&sd->poll_list, &list); 5537 local_irq_enable(); 5538 5539 for (;;) { 5540 struct napi_struct *n; 5541 5542 if (list_empty(&list)) { 5543 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5544 goto out; 5545 break; 5546 } 5547 5548 n = list_first_entry(&list, struct napi_struct, poll_list); 5549 budget -= napi_poll(n, &repoll); 5550 5551 /* If softirq window is exhausted then punt. 5552 * Allow this to run for 2 jiffies since which will allow 5553 * an average latency of 1.5/HZ. 5554 */ 5555 if (unlikely(budget <= 0 || 5556 time_after_eq(jiffies, time_limit))) { 5557 sd->time_squeeze++; 5558 break; 5559 } 5560 } 5561 5562 local_irq_disable(); 5563 5564 list_splice_tail_init(&sd->poll_list, &list); 5565 list_splice_tail(&repoll, &list); 5566 list_splice(&list, &sd->poll_list); 5567 if (!list_empty(&sd->poll_list)) 5568 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5569 5570 net_rps_action_and_irq_enable(sd); 5571 out: 5572 __kfree_skb_flush(); 5573 } 5574 5575 struct netdev_adjacent { 5576 struct net_device *dev; 5577 5578 /* upper master flag, there can only be one master device per list */ 5579 bool master; 5580 5581 /* counter for the number of times this device was added to us */ 5582 u16 ref_nr; 5583 5584 /* private field for the users */ 5585 void *private; 5586 5587 struct list_head list; 5588 struct rcu_head rcu; 5589 }; 5590 5591 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5592 struct list_head *adj_list) 5593 { 5594 struct netdev_adjacent *adj; 5595 5596 list_for_each_entry(adj, adj_list, list) { 5597 if (adj->dev == adj_dev) 5598 return adj; 5599 } 5600 return NULL; 5601 } 5602 5603 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5604 { 5605 struct net_device *dev = data; 5606 5607 return upper_dev == dev; 5608 } 5609 5610 /** 5611 * netdev_has_upper_dev - Check if device is linked to an upper device 5612 * @dev: device 5613 * @upper_dev: upper device to check 5614 * 5615 * Find out if a device is linked to specified upper device and return true 5616 * in case it is. Note that this checks only immediate upper device, 5617 * not through a complete stack of devices. The caller must hold the RTNL lock. 5618 */ 5619 bool netdev_has_upper_dev(struct net_device *dev, 5620 struct net_device *upper_dev) 5621 { 5622 ASSERT_RTNL(); 5623 5624 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5625 upper_dev); 5626 } 5627 EXPORT_SYMBOL(netdev_has_upper_dev); 5628 5629 /** 5630 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5631 * @dev: device 5632 * @upper_dev: upper device to check 5633 * 5634 * Find out if a device is linked to specified upper device and return true 5635 * in case it is. Note that this checks the entire upper device chain. 5636 * The caller must hold rcu lock. 5637 */ 5638 5639 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5640 struct net_device *upper_dev) 5641 { 5642 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5643 upper_dev); 5644 } 5645 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5646 5647 /** 5648 * netdev_has_any_upper_dev - Check if device is linked to some device 5649 * @dev: device 5650 * 5651 * Find out if a device is linked to an upper device and return true in case 5652 * it is. The caller must hold the RTNL lock. 5653 */ 5654 static bool netdev_has_any_upper_dev(struct net_device *dev) 5655 { 5656 ASSERT_RTNL(); 5657 5658 return !list_empty(&dev->adj_list.upper); 5659 } 5660 5661 /** 5662 * netdev_master_upper_dev_get - Get master upper device 5663 * @dev: device 5664 * 5665 * Find a master upper device and return pointer to it or NULL in case 5666 * it's not there. The caller must hold the RTNL lock. 5667 */ 5668 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5669 { 5670 struct netdev_adjacent *upper; 5671 5672 ASSERT_RTNL(); 5673 5674 if (list_empty(&dev->adj_list.upper)) 5675 return NULL; 5676 5677 upper = list_first_entry(&dev->adj_list.upper, 5678 struct netdev_adjacent, list); 5679 if (likely(upper->master)) 5680 return upper->dev; 5681 return NULL; 5682 } 5683 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5684 5685 /** 5686 * netdev_has_any_lower_dev - Check if device is linked to some device 5687 * @dev: device 5688 * 5689 * Find out if a device is linked to a lower device and return true in case 5690 * it is. The caller must hold the RTNL lock. 5691 */ 5692 static bool netdev_has_any_lower_dev(struct net_device *dev) 5693 { 5694 ASSERT_RTNL(); 5695 5696 return !list_empty(&dev->adj_list.lower); 5697 } 5698 5699 void *netdev_adjacent_get_private(struct list_head *adj_list) 5700 { 5701 struct netdev_adjacent *adj; 5702 5703 adj = list_entry(adj_list, struct netdev_adjacent, list); 5704 5705 return adj->private; 5706 } 5707 EXPORT_SYMBOL(netdev_adjacent_get_private); 5708 5709 /** 5710 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5711 * @dev: device 5712 * @iter: list_head ** of the current position 5713 * 5714 * Gets the next device from the dev's upper list, starting from iter 5715 * position. The caller must hold RCU read lock. 5716 */ 5717 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5718 struct list_head **iter) 5719 { 5720 struct netdev_adjacent *upper; 5721 5722 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5723 5724 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5725 5726 if (&upper->list == &dev->adj_list.upper) 5727 return NULL; 5728 5729 *iter = &upper->list; 5730 5731 return upper->dev; 5732 } 5733 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5734 5735 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5736 struct list_head **iter) 5737 { 5738 struct netdev_adjacent *upper; 5739 5740 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5741 5742 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5743 5744 if (&upper->list == &dev->adj_list.upper) 5745 return NULL; 5746 5747 *iter = &upper->list; 5748 5749 return upper->dev; 5750 } 5751 5752 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5753 int (*fn)(struct net_device *dev, 5754 void *data), 5755 void *data) 5756 { 5757 struct net_device *udev; 5758 struct list_head *iter; 5759 int ret; 5760 5761 for (iter = &dev->adj_list.upper, 5762 udev = netdev_next_upper_dev_rcu(dev, &iter); 5763 udev; 5764 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5765 /* first is the upper device itself */ 5766 ret = fn(udev, data); 5767 if (ret) 5768 return ret; 5769 5770 /* then look at all of its upper devices */ 5771 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5772 if (ret) 5773 return ret; 5774 } 5775 5776 return 0; 5777 } 5778 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5779 5780 /** 5781 * netdev_lower_get_next_private - Get the next ->private from the 5782 * lower neighbour list 5783 * @dev: device 5784 * @iter: list_head ** of the current position 5785 * 5786 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5787 * list, starting from iter position. The caller must hold either hold the 5788 * RTNL lock or its own locking that guarantees that the neighbour lower 5789 * list will remain unchanged. 5790 */ 5791 void *netdev_lower_get_next_private(struct net_device *dev, 5792 struct list_head **iter) 5793 { 5794 struct netdev_adjacent *lower; 5795 5796 lower = list_entry(*iter, struct netdev_adjacent, list); 5797 5798 if (&lower->list == &dev->adj_list.lower) 5799 return NULL; 5800 5801 *iter = lower->list.next; 5802 5803 return lower->private; 5804 } 5805 EXPORT_SYMBOL(netdev_lower_get_next_private); 5806 5807 /** 5808 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5809 * lower neighbour list, RCU 5810 * variant 5811 * @dev: device 5812 * @iter: list_head ** of the current position 5813 * 5814 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5815 * list, starting from iter position. The caller must hold RCU read lock. 5816 */ 5817 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5818 struct list_head **iter) 5819 { 5820 struct netdev_adjacent *lower; 5821 5822 WARN_ON_ONCE(!rcu_read_lock_held()); 5823 5824 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5825 5826 if (&lower->list == &dev->adj_list.lower) 5827 return NULL; 5828 5829 *iter = &lower->list; 5830 5831 return lower->private; 5832 } 5833 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5834 5835 /** 5836 * netdev_lower_get_next - Get the next device from the lower neighbour 5837 * list 5838 * @dev: device 5839 * @iter: list_head ** of the current position 5840 * 5841 * Gets the next netdev_adjacent from the dev's lower neighbour 5842 * list, starting from iter position. The caller must hold RTNL lock or 5843 * its own locking that guarantees that the neighbour lower 5844 * list will remain unchanged. 5845 */ 5846 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5847 { 5848 struct netdev_adjacent *lower; 5849 5850 lower = list_entry(*iter, struct netdev_adjacent, list); 5851 5852 if (&lower->list == &dev->adj_list.lower) 5853 return NULL; 5854 5855 *iter = lower->list.next; 5856 5857 return lower->dev; 5858 } 5859 EXPORT_SYMBOL(netdev_lower_get_next); 5860 5861 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5862 struct list_head **iter) 5863 { 5864 struct netdev_adjacent *lower; 5865 5866 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5867 5868 if (&lower->list == &dev->adj_list.lower) 5869 return NULL; 5870 5871 *iter = &lower->list; 5872 5873 return lower->dev; 5874 } 5875 5876 int netdev_walk_all_lower_dev(struct net_device *dev, 5877 int (*fn)(struct net_device *dev, 5878 void *data), 5879 void *data) 5880 { 5881 struct net_device *ldev; 5882 struct list_head *iter; 5883 int ret; 5884 5885 for (iter = &dev->adj_list.lower, 5886 ldev = netdev_next_lower_dev(dev, &iter); 5887 ldev; 5888 ldev = netdev_next_lower_dev(dev, &iter)) { 5889 /* first is the lower device itself */ 5890 ret = fn(ldev, data); 5891 if (ret) 5892 return ret; 5893 5894 /* then look at all of its lower devices */ 5895 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5896 if (ret) 5897 return ret; 5898 } 5899 5900 return 0; 5901 } 5902 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5903 5904 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5905 struct list_head **iter) 5906 { 5907 struct netdev_adjacent *lower; 5908 5909 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5910 if (&lower->list == &dev->adj_list.lower) 5911 return NULL; 5912 5913 *iter = &lower->list; 5914 5915 return lower->dev; 5916 } 5917 5918 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5919 int (*fn)(struct net_device *dev, 5920 void *data), 5921 void *data) 5922 { 5923 struct net_device *ldev; 5924 struct list_head *iter; 5925 int ret; 5926 5927 for (iter = &dev->adj_list.lower, 5928 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5929 ldev; 5930 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5931 /* first is the lower device itself */ 5932 ret = fn(ldev, data); 5933 if (ret) 5934 return ret; 5935 5936 /* then look at all of its lower devices */ 5937 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5938 if (ret) 5939 return ret; 5940 } 5941 5942 return 0; 5943 } 5944 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5945 5946 /** 5947 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5948 * lower neighbour list, RCU 5949 * variant 5950 * @dev: device 5951 * 5952 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5953 * list. The caller must hold RCU read lock. 5954 */ 5955 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5956 { 5957 struct netdev_adjacent *lower; 5958 5959 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5960 struct netdev_adjacent, list); 5961 if (lower) 5962 return lower->private; 5963 return NULL; 5964 } 5965 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5966 5967 /** 5968 * netdev_master_upper_dev_get_rcu - Get master upper device 5969 * @dev: device 5970 * 5971 * Find a master upper device and return pointer to it or NULL in case 5972 * it's not there. The caller must hold the RCU read lock. 5973 */ 5974 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5975 { 5976 struct netdev_adjacent *upper; 5977 5978 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5979 struct netdev_adjacent, list); 5980 if (upper && likely(upper->master)) 5981 return upper->dev; 5982 return NULL; 5983 } 5984 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5985 5986 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5987 struct net_device *adj_dev, 5988 struct list_head *dev_list) 5989 { 5990 char linkname[IFNAMSIZ+7]; 5991 5992 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5993 "upper_%s" : "lower_%s", adj_dev->name); 5994 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5995 linkname); 5996 } 5997 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5998 char *name, 5999 struct list_head *dev_list) 6000 { 6001 char linkname[IFNAMSIZ+7]; 6002 6003 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6004 "upper_%s" : "lower_%s", name); 6005 sysfs_remove_link(&(dev->dev.kobj), linkname); 6006 } 6007 6008 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6009 struct net_device *adj_dev, 6010 struct list_head *dev_list) 6011 { 6012 return (dev_list == &dev->adj_list.upper || 6013 dev_list == &dev->adj_list.lower) && 6014 net_eq(dev_net(dev), dev_net(adj_dev)); 6015 } 6016 6017 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6018 struct net_device *adj_dev, 6019 struct list_head *dev_list, 6020 void *private, bool master) 6021 { 6022 struct netdev_adjacent *adj; 6023 int ret; 6024 6025 adj = __netdev_find_adj(adj_dev, dev_list); 6026 6027 if (adj) { 6028 adj->ref_nr += 1; 6029 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6030 dev->name, adj_dev->name, adj->ref_nr); 6031 6032 return 0; 6033 } 6034 6035 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6036 if (!adj) 6037 return -ENOMEM; 6038 6039 adj->dev = adj_dev; 6040 adj->master = master; 6041 adj->ref_nr = 1; 6042 adj->private = private; 6043 dev_hold(adj_dev); 6044 6045 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6046 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6047 6048 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6049 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6050 if (ret) 6051 goto free_adj; 6052 } 6053 6054 /* Ensure that master link is always the first item in list. */ 6055 if (master) { 6056 ret = sysfs_create_link(&(dev->dev.kobj), 6057 &(adj_dev->dev.kobj), "master"); 6058 if (ret) 6059 goto remove_symlinks; 6060 6061 list_add_rcu(&adj->list, dev_list); 6062 } else { 6063 list_add_tail_rcu(&adj->list, dev_list); 6064 } 6065 6066 return 0; 6067 6068 remove_symlinks: 6069 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6070 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6071 free_adj: 6072 kfree(adj); 6073 dev_put(adj_dev); 6074 6075 return ret; 6076 } 6077 6078 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6079 struct net_device *adj_dev, 6080 u16 ref_nr, 6081 struct list_head *dev_list) 6082 { 6083 struct netdev_adjacent *adj; 6084 6085 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6086 dev->name, adj_dev->name, ref_nr); 6087 6088 adj = __netdev_find_adj(adj_dev, dev_list); 6089 6090 if (!adj) { 6091 pr_err("Adjacency does not exist for device %s from %s\n", 6092 dev->name, adj_dev->name); 6093 WARN_ON(1); 6094 return; 6095 } 6096 6097 if (adj->ref_nr > ref_nr) { 6098 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6099 dev->name, adj_dev->name, ref_nr, 6100 adj->ref_nr - ref_nr); 6101 adj->ref_nr -= ref_nr; 6102 return; 6103 } 6104 6105 if (adj->master) 6106 sysfs_remove_link(&(dev->dev.kobj), "master"); 6107 6108 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6109 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6110 6111 list_del_rcu(&adj->list); 6112 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6113 adj_dev->name, dev->name, adj_dev->name); 6114 dev_put(adj_dev); 6115 kfree_rcu(adj, rcu); 6116 } 6117 6118 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6119 struct net_device *upper_dev, 6120 struct list_head *up_list, 6121 struct list_head *down_list, 6122 void *private, bool master) 6123 { 6124 int ret; 6125 6126 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6127 private, master); 6128 if (ret) 6129 return ret; 6130 6131 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6132 private, false); 6133 if (ret) { 6134 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6135 return ret; 6136 } 6137 6138 return 0; 6139 } 6140 6141 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6142 struct net_device *upper_dev, 6143 u16 ref_nr, 6144 struct list_head *up_list, 6145 struct list_head *down_list) 6146 { 6147 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6148 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6149 } 6150 6151 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6152 struct net_device *upper_dev, 6153 void *private, bool master) 6154 { 6155 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6156 &dev->adj_list.upper, 6157 &upper_dev->adj_list.lower, 6158 private, master); 6159 } 6160 6161 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6162 struct net_device *upper_dev) 6163 { 6164 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6165 &dev->adj_list.upper, 6166 &upper_dev->adj_list.lower); 6167 } 6168 6169 static int __netdev_upper_dev_link(struct net_device *dev, 6170 struct net_device *upper_dev, bool master, 6171 void *upper_priv, void *upper_info) 6172 { 6173 struct netdev_notifier_changeupper_info changeupper_info; 6174 int ret = 0; 6175 6176 ASSERT_RTNL(); 6177 6178 if (dev == upper_dev) 6179 return -EBUSY; 6180 6181 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6182 if (netdev_has_upper_dev(upper_dev, dev)) 6183 return -EBUSY; 6184 6185 if (netdev_has_upper_dev(dev, upper_dev)) 6186 return -EEXIST; 6187 6188 if (master && netdev_master_upper_dev_get(dev)) 6189 return -EBUSY; 6190 6191 changeupper_info.upper_dev = upper_dev; 6192 changeupper_info.master = master; 6193 changeupper_info.linking = true; 6194 changeupper_info.upper_info = upper_info; 6195 6196 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6197 &changeupper_info.info); 6198 ret = notifier_to_errno(ret); 6199 if (ret) 6200 return ret; 6201 6202 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6203 master); 6204 if (ret) 6205 return ret; 6206 6207 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6208 &changeupper_info.info); 6209 ret = notifier_to_errno(ret); 6210 if (ret) 6211 goto rollback; 6212 6213 return 0; 6214 6215 rollback: 6216 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6217 6218 return ret; 6219 } 6220 6221 /** 6222 * netdev_upper_dev_link - Add a link to the upper device 6223 * @dev: device 6224 * @upper_dev: new upper device 6225 * 6226 * Adds a link to device which is upper to this one. The caller must hold 6227 * the RTNL lock. On a failure a negative errno code is returned. 6228 * On success the reference counts are adjusted and the function 6229 * returns zero. 6230 */ 6231 int netdev_upper_dev_link(struct net_device *dev, 6232 struct net_device *upper_dev) 6233 { 6234 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6235 } 6236 EXPORT_SYMBOL(netdev_upper_dev_link); 6237 6238 /** 6239 * netdev_master_upper_dev_link - Add a master link to the upper device 6240 * @dev: device 6241 * @upper_dev: new upper device 6242 * @upper_priv: upper device private 6243 * @upper_info: upper info to be passed down via notifier 6244 * 6245 * Adds a link to device which is upper to this one. In this case, only 6246 * one master upper device can be linked, although other non-master devices 6247 * might be linked as well. The caller must hold the RTNL lock. 6248 * On a failure a negative errno code is returned. On success the reference 6249 * counts are adjusted and the function returns zero. 6250 */ 6251 int netdev_master_upper_dev_link(struct net_device *dev, 6252 struct net_device *upper_dev, 6253 void *upper_priv, void *upper_info) 6254 { 6255 return __netdev_upper_dev_link(dev, upper_dev, true, 6256 upper_priv, upper_info); 6257 } 6258 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6259 6260 /** 6261 * netdev_upper_dev_unlink - Removes a link to upper device 6262 * @dev: device 6263 * @upper_dev: new upper device 6264 * 6265 * Removes a link to device which is upper to this one. The caller must hold 6266 * the RTNL lock. 6267 */ 6268 void netdev_upper_dev_unlink(struct net_device *dev, 6269 struct net_device *upper_dev) 6270 { 6271 struct netdev_notifier_changeupper_info changeupper_info; 6272 6273 ASSERT_RTNL(); 6274 6275 changeupper_info.upper_dev = upper_dev; 6276 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6277 changeupper_info.linking = false; 6278 6279 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6280 &changeupper_info.info); 6281 6282 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6283 6284 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6285 &changeupper_info.info); 6286 } 6287 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6288 6289 /** 6290 * netdev_bonding_info_change - Dispatch event about slave change 6291 * @dev: device 6292 * @bonding_info: info to dispatch 6293 * 6294 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6295 * The caller must hold the RTNL lock. 6296 */ 6297 void netdev_bonding_info_change(struct net_device *dev, 6298 struct netdev_bonding_info *bonding_info) 6299 { 6300 struct netdev_notifier_bonding_info info; 6301 6302 memcpy(&info.bonding_info, bonding_info, 6303 sizeof(struct netdev_bonding_info)); 6304 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6305 &info.info); 6306 } 6307 EXPORT_SYMBOL(netdev_bonding_info_change); 6308 6309 static void netdev_adjacent_add_links(struct net_device *dev) 6310 { 6311 struct netdev_adjacent *iter; 6312 6313 struct net *net = dev_net(dev); 6314 6315 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6316 if (!net_eq(net, dev_net(iter->dev))) 6317 continue; 6318 netdev_adjacent_sysfs_add(iter->dev, dev, 6319 &iter->dev->adj_list.lower); 6320 netdev_adjacent_sysfs_add(dev, iter->dev, 6321 &dev->adj_list.upper); 6322 } 6323 6324 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6325 if (!net_eq(net, dev_net(iter->dev))) 6326 continue; 6327 netdev_adjacent_sysfs_add(iter->dev, dev, 6328 &iter->dev->adj_list.upper); 6329 netdev_adjacent_sysfs_add(dev, iter->dev, 6330 &dev->adj_list.lower); 6331 } 6332 } 6333 6334 static void netdev_adjacent_del_links(struct net_device *dev) 6335 { 6336 struct netdev_adjacent *iter; 6337 6338 struct net *net = dev_net(dev); 6339 6340 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6341 if (!net_eq(net, dev_net(iter->dev))) 6342 continue; 6343 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6344 &iter->dev->adj_list.lower); 6345 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6346 &dev->adj_list.upper); 6347 } 6348 6349 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6350 if (!net_eq(net, dev_net(iter->dev))) 6351 continue; 6352 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6353 &iter->dev->adj_list.upper); 6354 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6355 &dev->adj_list.lower); 6356 } 6357 } 6358 6359 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6360 { 6361 struct netdev_adjacent *iter; 6362 6363 struct net *net = dev_net(dev); 6364 6365 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6366 if (!net_eq(net, dev_net(iter->dev))) 6367 continue; 6368 netdev_adjacent_sysfs_del(iter->dev, oldname, 6369 &iter->dev->adj_list.lower); 6370 netdev_adjacent_sysfs_add(iter->dev, dev, 6371 &iter->dev->adj_list.lower); 6372 } 6373 6374 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6375 if (!net_eq(net, dev_net(iter->dev))) 6376 continue; 6377 netdev_adjacent_sysfs_del(iter->dev, oldname, 6378 &iter->dev->adj_list.upper); 6379 netdev_adjacent_sysfs_add(iter->dev, dev, 6380 &iter->dev->adj_list.upper); 6381 } 6382 } 6383 6384 void *netdev_lower_dev_get_private(struct net_device *dev, 6385 struct net_device *lower_dev) 6386 { 6387 struct netdev_adjacent *lower; 6388 6389 if (!lower_dev) 6390 return NULL; 6391 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6392 if (!lower) 6393 return NULL; 6394 6395 return lower->private; 6396 } 6397 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6398 6399 6400 int dev_get_nest_level(struct net_device *dev) 6401 { 6402 struct net_device *lower = NULL; 6403 struct list_head *iter; 6404 int max_nest = -1; 6405 int nest; 6406 6407 ASSERT_RTNL(); 6408 6409 netdev_for_each_lower_dev(dev, lower, iter) { 6410 nest = dev_get_nest_level(lower); 6411 if (max_nest < nest) 6412 max_nest = nest; 6413 } 6414 6415 return max_nest + 1; 6416 } 6417 EXPORT_SYMBOL(dev_get_nest_level); 6418 6419 /** 6420 * netdev_lower_change - Dispatch event about lower device state change 6421 * @lower_dev: device 6422 * @lower_state_info: state to dispatch 6423 * 6424 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6425 * The caller must hold the RTNL lock. 6426 */ 6427 void netdev_lower_state_changed(struct net_device *lower_dev, 6428 void *lower_state_info) 6429 { 6430 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6431 6432 ASSERT_RTNL(); 6433 changelowerstate_info.lower_state_info = lower_state_info; 6434 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6435 &changelowerstate_info.info); 6436 } 6437 EXPORT_SYMBOL(netdev_lower_state_changed); 6438 6439 static void dev_change_rx_flags(struct net_device *dev, int flags) 6440 { 6441 const struct net_device_ops *ops = dev->netdev_ops; 6442 6443 if (ops->ndo_change_rx_flags) 6444 ops->ndo_change_rx_flags(dev, flags); 6445 } 6446 6447 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6448 { 6449 unsigned int old_flags = dev->flags; 6450 kuid_t uid; 6451 kgid_t gid; 6452 6453 ASSERT_RTNL(); 6454 6455 dev->flags |= IFF_PROMISC; 6456 dev->promiscuity += inc; 6457 if (dev->promiscuity == 0) { 6458 /* 6459 * Avoid overflow. 6460 * If inc causes overflow, untouch promisc and return error. 6461 */ 6462 if (inc < 0) 6463 dev->flags &= ~IFF_PROMISC; 6464 else { 6465 dev->promiscuity -= inc; 6466 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6467 dev->name); 6468 return -EOVERFLOW; 6469 } 6470 } 6471 if (dev->flags != old_flags) { 6472 pr_info("device %s %s promiscuous mode\n", 6473 dev->name, 6474 dev->flags & IFF_PROMISC ? "entered" : "left"); 6475 if (audit_enabled) { 6476 current_uid_gid(&uid, &gid); 6477 audit_log(current->audit_context, GFP_ATOMIC, 6478 AUDIT_ANOM_PROMISCUOUS, 6479 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6480 dev->name, (dev->flags & IFF_PROMISC), 6481 (old_flags & IFF_PROMISC), 6482 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6483 from_kuid(&init_user_ns, uid), 6484 from_kgid(&init_user_ns, gid), 6485 audit_get_sessionid(current)); 6486 } 6487 6488 dev_change_rx_flags(dev, IFF_PROMISC); 6489 } 6490 if (notify) 6491 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6492 return 0; 6493 } 6494 6495 /** 6496 * dev_set_promiscuity - update promiscuity count on a device 6497 * @dev: device 6498 * @inc: modifier 6499 * 6500 * Add or remove promiscuity from a device. While the count in the device 6501 * remains above zero the interface remains promiscuous. Once it hits zero 6502 * the device reverts back to normal filtering operation. A negative inc 6503 * value is used to drop promiscuity on the device. 6504 * Return 0 if successful or a negative errno code on error. 6505 */ 6506 int dev_set_promiscuity(struct net_device *dev, int inc) 6507 { 6508 unsigned int old_flags = dev->flags; 6509 int err; 6510 6511 err = __dev_set_promiscuity(dev, inc, true); 6512 if (err < 0) 6513 return err; 6514 if (dev->flags != old_flags) 6515 dev_set_rx_mode(dev); 6516 return err; 6517 } 6518 EXPORT_SYMBOL(dev_set_promiscuity); 6519 6520 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6521 { 6522 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6523 6524 ASSERT_RTNL(); 6525 6526 dev->flags |= IFF_ALLMULTI; 6527 dev->allmulti += inc; 6528 if (dev->allmulti == 0) { 6529 /* 6530 * Avoid overflow. 6531 * If inc causes overflow, untouch allmulti and return error. 6532 */ 6533 if (inc < 0) 6534 dev->flags &= ~IFF_ALLMULTI; 6535 else { 6536 dev->allmulti -= inc; 6537 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6538 dev->name); 6539 return -EOVERFLOW; 6540 } 6541 } 6542 if (dev->flags ^ old_flags) { 6543 dev_change_rx_flags(dev, IFF_ALLMULTI); 6544 dev_set_rx_mode(dev); 6545 if (notify) 6546 __dev_notify_flags(dev, old_flags, 6547 dev->gflags ^ old_gflags); 6548 } 6549 return 0; 6550 } 6551 6552 /** 6553 * dev_set_allmulti - update allmulti count on a device 6554 * @dev: device 6555 * @inc: modifier 6556 * 6557 * Add or remove reception of all multicast frames to a device. While the 6558 * count in the device remains above zero the interface remains listening 6559 * to all interfaces. Once it hits zero the device reverts back to normal 6560 * filtering operation. A negative @inc value is used to drop the counter 6561 * when releasing a resource needing all multicasts. 6562 * Return 0 if successful or a negative errno code on error. 6563 */ 6564 6565 int dev_set_allmulti(struct net_device *dev, int inc) 6566 { 6567 return __dev_set_allmulti(dev, inc, true); 6568 } 6569 EXPORT_SYMBOL(dev_set_allmulti); 6570 6571 /* 6572 * Upload unicast and multicast address lists to device and 6573 * configure RX filtering. When the device doesn't support unicast 6574 * filtering it is put in promiscuous mode while unicast addresses 6575 * are present. 6576 */ 6577 void __dev_set_rx_mode(struct net_device *dev) 6578 { 6579 const struct net_device_ops *ops = dev->netdev_ops; 6580 6581 /* dev_open will call this function so the list will stay sane. */ 6582 if (!(dev->flags&IFF_UP)) 6583 return; 6584 6585 if (!netif_device_present(dev)) 6586 return; 6587 6588 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6589 /* Unicast addresses changes may only happen under the rtnl, 6590 * therefore calling __dev_set_promiscuity here is safe. 6591 */ 6592 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6593 __dev_set_promiscuity(dev, 1, false); 6594 dev->uc_promisc = true; 6595 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6596 __dev_set_promiscuity(dev, -1, false); 6597 dev->uc_promisc = false; 6598 } 6599 } 6600 6601 if (ops->ndo_set_rx_mode) 6602 ops->ndo_set_rx_mode(dev); 6603 } 6604 6605 void dev_set_rx_mode(struct net_device *dev) 6606 { 6607 netif_addr_lock_bh(dev); 6608 __dev_set_rx_mode(dev); 6609 netif_addr_unlock_bh(dev); 6610 } 6611 6612 /** 6613 * dev_get_flags - get flags reported to userspace 6614 * @dev: device 6615 * 6616 * Get the combination of flag bits exported through APIs to userspace. 6617 */ 6618 unsigned int dev_get_flags(const struct net_device *dev) 6619 { 6620 unsigned int flags; 6621 6622 flags = (dev->flags & ~(IFF_PROMISC | 6623 IFF_ALLMULTI | 6624 IFF_RUNNING | 6625 IFF_LOWER_UP | 6626 IFF_DORMANT)) | 6627 (dev->gflags & (IFF_PROMISC | 6628 IFF_ALLMULTI)); 6629 6630 if (netif_running(dev)) { 6631 if (netif_oper_up(dev)) 6632 flags |= IFF_RUNNING; 6633 if (netif_carrier_ok(dev)) 6634 flags |= IFF_LOWER_UP; 6635 if (netif_dormant(dev)) 6636 flags |= IFF_DORMANT; 6637 } 6638 6639 return flags; 6640 } 6641 EXPORT_SYMBOL(dev_get_flags); 6642 6643 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6644 { 6645 unsigned int old_flags = dev->flags; 6646 int ret; 6647 6648 ASSERT_RTNL(); 6649 6650 /* 6651 * Set the flags on our device. 6652 */ 6653 6654 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6655 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6656 IFF_AUTOMEDIA)) | 6657 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6658 IFF_ALLMULTI)); 6659 6660 /* 6661 * Load in the correct multicast list now the flags have changed. 6662 */ 6663 6664 if ((old_flags ^ flags) & IFF_MULTICAST) 6665 dev_change_rx_flags(dev, IFF_MULTICAST); 6666 6667 dev_set_rx_mode(dev); 6668 6669 /* 6670 * Have we downed the interface. We handle IFF_UP ourselves 6671 * according to user attempts to set it, rather than blindly 6672 * setting it. 6673 */ 6674 6675 ret = 0; 6676 if ((old_flags ^ flags) & IFF_UP) 6677 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6678 6679 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6680 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6681 unsigned int old_flags = dev->flags; 6682 6683 dev->gflags ^= IFF_PROMISC; 6684 6685 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6686 if (dev->flags != old_flags) 6687 dev_set_rx_mode(dev); 6688 } 6689 6690 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6691 * is important. Some (broken) drivers set IFF_PROMISC, when 6692 * IFF_ALLMULTI is requested not asking us and not reporting. 6693 */ 6694 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6695 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6696 6697 dev->gflags ^= IFF_ALLMULTI; 6698 __dev_set_allmulti(dev, inc, false); 6699 } 6700 6701 return ret; 6702 } 6703 6704 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6705 unsigned int gchanges) 6706 { 6707 unsigned int changes = dev->flags ^ old_flags; 6708 6709 if (gchanges) 6710 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6711 6712 if (changes & IFF_UP) { 6713 if (dev->flags & IFF_UP) 6714 call_netdevice_notifiers(NETDEV_UP, dev); 6715 else 6716 call_netdevice_notifiers(NETDEV_DOWN, dev); 6717 } 6718 6719 if (dev->flags & IFF_UP && 6720 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6721 struct netdev_notifier_change_info change_info; 6722 6723 change_info.flags_changed = changes; 6724 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6725 &change_info.info); 6726 } 6727 } 6728 6729 /** 6730 * dev_change_flags - change device settings 6731 * @dev: device 6732 * @flags: device state flags 6733 * 6734 * Change settings on device based state flags. The flags are 6735 * in the userspace exported format. 6736 */ 6737 int dev_change_flags(struct net_device *dev, unsigned int flags) 6738 { 6739 int ret; 6740 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6741 6742 ret = __dev_change_flags(dev, flags); 6743 if (ret < 0) 6744 return ret; 6745 6746 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6747 __dev_notify_flags(dev, old_flags, changes); 6748 return ret; 6749 } 6750 EXPORT_SYMBOL(dev_change_flags); 6751 6752 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6753 { 6754 const struct net_device_ops *ops = dev->netdev_ops; 6755 6756 if (ops->ndo_change_mtu) 6757 return ops->ndo_change_mtu(dev, new_mtu); 6758 6759 dev->mtu = new_mtu; 6760 return 0; 6761 } 6762 6763 /** 6764 * dev_set_mtu - Change maximum transfer unit 6765 * @dev: device 6766 * @new_mtu: new transfer unit 6767 * 6768 * Change the maximum transfer size of the network device. 6769 */ 6770 int dev_set_mtu(struct net_device *dev, int new_mtu) 6771 { 6772 int err, orig_mtu; 6773 6774 if (new_mtu == dev->mtu) 6775 return 0; 6776 6777 /* MTU must be positive, and in range */ 6778 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6779 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6780 dev->name, new_mtu, dev->min_mtu); 6781 return -EINVAL; 6782 } 6783 6784 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6785 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6786 dev->name, new_mtu, dev->max_mtu); 6787 return -EINVAL; 6788 } 6789 6790 if (!netif_device_present(dev)) 6791 return -ENODEV; 6792 6793 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6794 err = notifier_to_errno(err); 6795 if (err) 6796 return err; 6797 6798 orig_mtu = dev->mtu; 6799 err = __dev_set_mtu(dev, new_mtu); 6800 6801 if (!err) { 6802 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6803 err = notifier_to_errno(err); 6804 if (err) { 6805 /* setting mtu back and notifying everyone again, 6806 * so that they have a chance to revert changes. 6807 */ 6808 __dev_set_mtu(dev, orig_mtu); 6809 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6810 } 6811 } 6812 return err; 6813 } 6814 EXPORT_SYMBOL(dev_set_mtu); 6815 6816 /** 6817 * dev_set_group - Change group this device belongs to 6818 * @dev: device 6819 * @new_group: group this device should belong to 6820 */ 6821 void dev_set_group(struct net_device *dev, int new_group) 6822 { 6823 dev->group = new_group; 6824 } 6825 EXPORT_SYMBOL(dev_set_group); 6826 6827 /** 6828 * dev_set_mac_address - Change Media Access Control Address 6829 * @dev: device 6830 * @sa: new address 6831 * 6832 * Change the hardware (MAC) address of the device 6833 */ 6834 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6835 { 6836 const struct net_device_ops *ops = dev->netdev_ops; 6837 int err; 6838 6839 if (!ops->ndo_set_mac_address) 6840 return -EOPNOTSUPP; 6841 if (sa->sa_family != dev->type) 6842 return -EINVAL; 6843 if (!netif_device_present(dev)) 6844 return -ENODEV; 6845 err = ops->ndo_set_mac_address(dev, sa); 6846 if (err) 6847 return err; 6848 dev->addr_assign_type = NET_ADDR_SET; 6849 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6850 add_device_randomness(dev->dev_addr, dev->addr_len); 6851 return 0; 6852 } 6853 EXPORT_SYMBOL(dev_set_mac_address); 6854 6855 /** 6856 * dev_change_carrier - Change device carrier 6857 * @dev: device 6858 * @new_carrier: new value 6859 * 6860 * Change device carrier 6861 */ 6862 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6863 { 6864 const struct net_device_ops *ops = dev->netdev_ops; 6865 6866 if (!ops->ndo_change_carrier) 6867 return -EOPNOTSUPP; 6868 if (!netif_device_present(dev)) 6869 return -ENODEV; 6870 return ops->ndo_change_carrier(dev, new_carrier); 6871 } 6872 EXPORT_SYMBOL(dev_change_carrier); 6873 6874 /** 6875 * dev_get_phys_port_id - Get device physical port ID 6876 * @dev: device 6877 * @ppid: port ID 6878 * 6879 * Get device physical port ID 6880 */ 6881 int dev_get_phys_port_id(struct net_device *dev, 6882 struct netdev_phys_item_id *ppid) 6883 { 6884 const struct net_device_ops *ops = dev->netdev_ops; 6885 6886 if (!ops->ndo_get_phys_port_id) 6887 return -EOPNOTSUPP; 6888 return ops->ndo_get_phys_port_id(dev, ppid); 6889 } 6890 EXPORT_SYMBOL(dev_get_phys_port_id); 6891 6892 /** 6893 * dev_get_phys_port_name - Get device physical port name 6894 * @dev: device 6895 * @name: port name 6896 * @len: limit of bytes to copy to name 6897 * 6898 * Get device physical port name 6899 */ 6900 int dev_get_phys_port_name(struct net_device *dev, 6901 char *name, size_t len) 6902 { 6903 const struct net_device_ops *ops = dev->netdev_ops; 6904 6905 if (!ops->ndo_get_phys_port_name) 6906 return -EOPNOTSUPP; 6907 return ops->ndo_get_phys_port_name(dev, name, len); 6908 } 6909 EXPORT_SYMBOL(dev_get_phys_port_name); 6910 6911 /** 6912 * dev_change_proto_down - update protocol port state information 6913 * @dev: device 6914 * @proto_down: new value 6915 * 6916 * This info can be used by switch drivers to set the phys state of the 6917 * port. 6918 */ 6919 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6920 { 6921 const struct net_device_ops *ops = dev->netdev_ops; 6922 6923 if (!ops->ndo_change_proto_down) 6924 return -EOPNOTSUPP; 6925 if (!netif_device_present(dev)) 6926 return -ENODEV; 6927 return ops->ndo_change_proto_down(dev, proto_down); 6928 } 6929 EXPORT_SYMBOL(dev_change_proto_down); 6930 6931 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op) 6932 { 6933 struct netdev_xdp xdp; 6934 6935 memset(&xdp, 0, sizeof(xdp)); 6936 xdp.command = XDP_QUERY_PROG; 6937 6938 /* Query must always succeed. */ 6939 WARN_ON(xdp_op(dev, &xdp) < 0); 6940 return xdp.prog_attached; 6941 } 6942 6943 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op, 6944 struct netlink_ext_ack *extack, 6945 struct bpf_prog *prog) 6946 { 6947 struct netdev_xdp xdp; 6948 6949 memset(&xdp, 0, sizeof(xdp)); 6950 xdp.command = XDP_SETUP_PROG; 6951 xdp.extack = extack; 6952 xdp.prog = prog; 6953 6954 return xdp_op(dev, &xdp); 6955 } 6956 6957 /** 6958 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6959 * @dev: device 6960 * @extack: netlink extended ack 6961 * @fd: new program fd or negative value to clear 6962 * @flags: xdp-related flags 6963 * 6964 * Set or clear a bpf program for a device 6965 */ 6966 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 6967 int fd, u32 flags) 6968 { 6969 const struct net_device_ops *ops = dev->netdev_ops; 6970 struct bpf_prog *prog = NULL; 6971 xdp_op_t xdp_op, xdp_chk; 6972 int err; 6973 6974 ASSERT_RTNL(); 6975 6976 xdp_op = xdp_chk = ops->ndo_xdp; 6977 if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE)) 6978 return -EOPNOTSUPP; 6979 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE)) 6980 xdp_op = generic_xdp_install; 6981 if (xdp_op == xdp_chk) 6982 xdp_chk = generic_xdp_install; 6983 6984 if (fd >= 0) { 6985 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk)) 6986 return -EEXIST; 6987 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 6988 __dev_xdp_attached(dev, xdp_op)) 6989 return -EBUSY; 6990 6991 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6992 if (IS_ERR(prog)) 6993 return PTR_ERR(prog); 6994 } 6995 6996 err = dev_xdp_install(dev, xdp_op, extack, prog); 6997 if (err < 0 && prog) 6998 bpf_prog_put(prog); 6999 7000 return err; 7001 } 7002 7003 /** 7004 * dev_new_index - allocate an ifindex 7005 * @net: the applicable net namespace 7006 * 7007 * Returns a suitable unique value for a new device interface 7008 * number. The caller must hold the rtnl semaphore or the 7009 * dev_base_lock to be sure it remains unique. 7010 */ 7011 static int dev_new_index(struct net *net) 7012 { 7013 int ifindex = net->ifindex; 7014 7015 for (;;) { 7016 if (++ifindex <= 0) 7017 ifindex = 1; 7018 if (!__dev_get_by_index(net, ifindex)) 7019 return net->ifindex = ifindex; 7020 } 7021 } 7022 7023 /* Delayed registration/unregisteration */ 7024 static LIST_HEAD(net_todo_list); 7025 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7026 7027 static void net_set_todo(struct net_device *dev) 7028 { 7029 list_add_tail(&dev->todo_list, &net_todo_list); 7030 dev_net(dev)->dev_unreg_count++; 7031 } 7032 7033 static void rollback_registered_many(struct list_head *head) 7034 { 7035 struct net_device *dev, *tmp; 7036 LIST_HEAD(close_head); 7037 7038 BUG_ON(dev_boot_phase); 7039 ASSERT_RTNL(); 7040 7041 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7042 /* Some devices call without registering 7043 * for initialization unwind. Remove those 7044 * devices and proceed with the remaining. 7045 */ 7046 if (dev->reg_state == NETREG_UNINITIALIZED) { 7047 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7048 dev->name, dev); 7049 7050 WARN_ON(1); 7051 list_del(&dev->unreg_list); 7052 continue; 7053 } 7054 dev->dismantle = true; 7055 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7056 } 7057 7058 /* If device is running, close it first. */ 7059 list_for_each_entry(dev, head, unreg_list) 7060 list_add_tail(&dev->close_list, &close_head); 7061 dev_close_many(&close_head, true); 7062 7063 list_for_each_entry(dev, head, unreg_list) { 7064 /* And unlink it from device chain. */ 7065 unlist_netdevice(dev); 7066 7067 dev->reg_state = NETREG_UNREGISTERING; 7068 } 7069 flush_all_backlogs(); 7070 7071 synchronize_net(); 7072 7073 list_for_each_entry(dev, head, unreg_list) { 7074 struct sk_buff *skb = NULL; 7075 7076 /* Shutdown queueing discipline. */ 7077 dev_shutdown(dev); 7078 7079 7080 /* Notify protocols, that we are about to destroy 7081 * this device. They should clean all the things. 7082 */ 7083 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7084 7085 if (!dev->rtnl_link_ops || 7086 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7087 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7088 GFP_KERNEL); 7089 7090 /* 7091 * Flush the unicast and multicast chains 7092 */ 7093 dev_uc_flush(dev); 7094 dev_mc_flush(dev); 7095 7096 if (dev->netdev_ops->ndo_uninit) 7097 dev->netdev_ops->ndo_uninit(dev); 7098 7099 if (skb) 7100 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7101 7102 /* Notifier chain MUST detach us all upper devices. */ 7103 WARN_ON(netdev_has_any_upper_dev(dev)); 7104 WARN_ON(netdev_has_any_lower_dev(dev)); 7105 7106 /* Remove entries from kobject tree */ 7107 netdev_unregister_kobject(dev); 7108 #ifdef CONFIG_XPS 7109 /* Remove XPS queueing entries */ 7110 netif_reset_xps_queues_gt(dev, 0); 7111 #endif 7112 } 7113 7114 synchronize_net(); 7115 7116 list_for_each_entry(dev, head, unreg_list) 7117 dev_put(dev); 7118 } 7119 7120 static void rollback_registered(struct net_device *dev) 7121 { 7122 LIST_HEAD(single); 7123 7124 list_add(&dev->unreg_list, &single); 7125 rollback_registered_many(&single); 7126 list_del(&single); 7127 } 7128 7129 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7130 struct net_device *upper, netdev_features_t features) 7131 { 7132 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7133 netdev_features_t feature; 7134 int feature_bit; 7135 7136 for_each_netdev_feature(&upper_disables, feature_bit) { 7137 feature = __NETIF_F_BIT(feature_bit); 7138 if (!(upper->wanted_features & feature) 7139 && (features & feature)) { 7140 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7141 &feature, upper->name); 7142 features &= ~feature; 7143 } 7144 } 7145 7146 return features; 7147 } 7148 7149 static void netdev_sync_lower_features(struct net_device *upper, 7150 struct net_device *lower, netdev_features_t features) 7151 { 7152 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7153 netdev_features_t feature; 7154 int feature_bit; 7155 7156 for_each_netdev_feature(&upper_disables, feature_bit) { 7157 feature = __NETIF_F_BIT(feature_bit); 7158 if (!(features & feature) && (lower->features & feature)) { 7159 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7160 &feature, lower->name); 7161 lower->wanted_features &= ~feature; 7162 netdev_update_features(lower); 7163 7164 if (unlikely(lower->features & feature)) 7165 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7166 &feature, lower->name); 7167 } 7168 } 7169 } 7170 7171 static netdev_features_t netdev_fix_features(struct net_device *dev, 7172 netdev_features_t features) 7173 { 7174 /* Fix illegal checksum combinations */ 7175 if ((features & NETIF_F_HW_CSUM) && 7176 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7177 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7178 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7179 } 7180 7181 /* TSO requires that SG is present as well. */ 7182 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7183 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7184 features &= ~NETIF_F_ALL_TSO; 7185 } 7186 7187 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7188 !(features & NETIF_F_IP_CSUM)) { 7189 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7190 features &= ~NETIF_F_TSO; 7191 features &= ~NETIF_F_TSO_ECN; 7192 } 7193 7194 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7195 !(features & NETIF_F_IPV6_CSUM)) { 7196 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7197 features &= ~NETIF_F_TSO6; 7198 } 7199 7200 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7201 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7202 features &= ~NETIF_F_TSO_MANGLEID; 7203 7204 /* TSO ECN requires that TSO is present as well. */ 7205 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7206 features &= ~NETIF_F_TSO_ECN; 7207 7208 /* Software GSO depends on SG. */ 7209 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7210 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7211 features &= ~NETIF_F_GSO; 7212 } 7213 7214 /* UFO needs SG and checksumming */ 7215 if (features & NETIF_F_UFO) { 7216 /* maybe split UFO into V4 and V6? */ 7217 if (!(features & NETIF_F_HW_CSUM) && 7218 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 7219 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 7220 netdev_dbg(dev, 7221 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 7222 features &= ~NETIF_F_UFO; 7223 } 7224 7225 if (!(features & NETIF_F_SG)) { 7226 netdev_dbg(dev, 7227 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 7228 features &= ~NETIF_F_UFO; 7229 } 7230 } 7231 7232 /* GSO partial features require GSO partial be set */ 7233 if ((features & dev->gso_partial_features) && 7234 !(features & NETIF_F_GSO_PARTIAL)) { 7235 netdev_dbg(dev, 7236 "Dropping partially supported GSO features since no GSO partial.\n"); 7237 features &= ~dev->gso_partial_features; 7238 } 7239 7240 return features; 7241 } 7242 7243 int __netdev_update_features(struct net_device *dev) 7244 { 7245 struct net_device *upper, *lower; 7246 netdev_features_t features; 7247 struct list_head *iter; 7248 int err = -1; 7249 7250 ASSERT_RTNL(); 7251 7252 features = netdev_get_wanted_features(dev); 7253 7254 if (dev->netdev_ops->ndo_fix_features) 7255 features = dev->netdev_ops->ndo_fix_features(dev, features); 7256 7257 /* driver might be less strict about feature dependencies */ 7258 features = netdev_fix_features(dev, features); 7259 7260 /* some features can't be enabled if they're off an an upper device */ 7261 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7262 features = netdev_sync_upper_features(dev, upper, features); 7263 7264 if (dev->features == features) 7265 goto sync_lower; 7266 7267 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7268 &dev->features, &features); 7269 7270 if (dev->netdev_ops->ndo_set_features) 7271 err = dev->netdev_ops->ndo_set_features(dev, features); 7272 else 7273 err = 0; 7274 7275 if (unlikely(err < 0)) { 7276 netdev_err(dev, 7277 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7278 err, &features, &dev->features); 7279 /* return non-0 since some features might have changed and 7280 * it's better to fire a spurious notification than miss it 7281 */ 7282 return -1; 7283 } 7284 7285 sync_lower: 7286 /* some features must be disabled on lower devices when disabled 7287 * on an upper device (think: bonding master or bridge) 7288 */ 7289 netdev_for_each_lower_dev(dev, lower, iter) 7290 netdev_sync_lower_features(dev, lower, features); 7291 7292 if (!err) 7293 dev->features = features; 7294 7295 return err < 0 ? 0 : 1; 7296 } 7297 7298 /** 7299 * netdev_update_features - recalculate device features 7300 * @dev: the device to check 7301 * 7302 * Recalculate dev->features set and send notifications if it 7303 * has changed. Should be called after driver or hardware dependent 7304 * conditions might have changed that influence the features. 7305 */ 7306 void netdev_update_features(struct net_device *dev) 7307 { 7308 if (__netdev_update_features(dev)) 7309 netdev_features_change(dev); 7310 } 7311 EXPORT_SYMBOL(netdev_update_features); 7312 7313 /** 7314 * netdev_change_features - recalculate device features 7315 * @dev: the device to check 7316 * 7317 * Recalculate dev->features set and send notifications even 7318 * if they have not changed. Should be called instead of 7319 * netdev_update_features() if also dev->vlan_features might 7320 * have changed to allow the changes to be propagated to stacked 7321 * VLAN devices. 7322 */ 7323 void netdev_change_features(struct net_device *dev) 7324 { 7325 __netdev_update_features(dev); 7326 netdev_features_change(dev); 7327 } 7328 EXPORT_SYMBOL(netdev_change_features); 7329 7330 /** 7331 * netif_stacked_transfer_operstate - transfer operstate 7332 * @rootdev: the root or lower level device to transfer state from 7333 * @dev: the device to transfer operstate to 7334 * 7335 * Transfer operational state from root to device. This is normally 7336 * called when a stacking relationship exists between the root 7337 * device and the device(a leaf device). 7338 */ 7339 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7340 struct net_device *dev) 7341 { 7342 if (rootdev->operstate == IF_OPER_DORMANT) 7343 netif_dormant_on(dev); 7344 else 7345 netif_dormant_off(dev); 7346 7347 if (netif_carrier_ok(rootdev)) 7348 netif_carrier_on(dev); 7349 else 7350 netif_carrier_off(dev); 7351 } 7352 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7353 7354 #ifdef CONFIG_SYSFS 7355 static int netif_alloc_rx_queues(struct net_device *dev) 7356 { 7357 unsigned int i, count = dev->num_rx_queues; 7358 struct netdev_rx_queue *rx; 7359 size_t sz = count * sizeof(*rx); 7360 7361 BUG_ON(count < 1); 7362 7363 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT); 7364 if (!rx) 7365 return -ENOMEM; 7366 7367 dev->_rx = rx; 7368 7369 for (i = 0; i < count; i++) 7370 rx[i].dev = dev; 7371 return 0; 7372 } 7373 #endif 7374 7375 static void netdev_init_one_queue(struct net_device *dev, 7376 struct netdev_queue *queue, void *_unused) 7377 { 7378 /* Initialize queue lock */ 7379 spin_lock_init(&queue->_xmit_lock); 7380 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7381 queue->xmit_lock_owner = -1; 7382 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7383 queue->dev = dev; 7384 #ifdef CONFIG_BQL 7385 dql_init(&queue->dql, HZ); 7386 #endif 7387 } 7388 7389 static void netif_free_tx_queues(struct net_device *dev) 7390 { 7391 kvfree(dev->_tx); 7392 } 7393 7394 static int netif_alloc_netdev_queues(struct net_device *dev) 7395 { 7396 unsigned int count = dev->num_tx_queues; 7397 struct netdev_queue *tx; 7398 size_t sz = count * sizeof(*tx); 7399 7400 if (count < 1 || count > 0xffff) 7401 return -EINVAL; 7402 7403 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT); 7404 if (!tx) 7405 return -ENOMEM; 7406 7407 dev->_tx = tx; 7408 7409 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7410 spin_lock_init(&dev->tx_global_lock); 7411 7412 return 0; 7413 } 7414 7415 void netif_tx_stop_all_queues(struct net_device *dev) 7416 { 7417 unsigned int i; 7418 7419 for (i = 0; i < dev->num_tx_queues; i++) { 7420 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7421 7422 netif_tx_stop_queue(txq); 7423 } 7424 } 7425 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7426 7427 /** 7428 * register_netdevice - register a network device 7429 * @dev: device to register 7430 * 7431 * Take a completed network device structure and add it to the kernel 7432 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7433 * chain. 0 is returned on success. A negative errno code is returned 7434 * on a failure to set up the device, or if the name is a duplicate. 7435 * 7436 * Callers must hold the rtnl semaphore. You may want 7437 * register_netdev() instead of this. 7438 * 7439 * BUGS: 7440 * The locking appears insufficient to guarantee two parallel registers 7441 * will not get the same name. 7442 */ 7443 7444 int register_netdevice(struct net_device *dev) 7445 { 7446 int ret; 7447 struct net *net = dev_net(dev); 7448 7449 BUG_ON(dev_boot_phase); 7450 ASSERT_RTNL(); 7451 7452 might_sleep(); 7453 7454 /* When net_device's are persistent, this will be fatal. */ 7455 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7456 BUG_ON(!net); 7457 7458 spin_lock_init(&dev->addr_list_lock); 7459 netdev_set_addr_lockdep_class(dev); 7460 7461 ret = dev_get_valid_name(net, dev, dev->name); 7462 if (ret < 0) 7463 goto out; 7464 7465 /* Init, if this function is available */ 7466 if (dev->netdev_ops->ndo_init) { 7467 ret = dev->netdev_ops->ndo_init(dev); 7468 if (ret) { 7469 if (ret > 0) 7470 ret = -EIO; 7471 goto out; 7472 } 7473 } 7474 7475 if (((dev->hw_features | dev->features) & 7476 NETIF_F_HW_VLAN_CTAG_FILTER) && 7477 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7478 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7479 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7480 ret = -EINVAL; 7481 goto err_uninit; 7482 } 7483 7484 ret = -EBUSY; 7485 if (!dev->ifindex) 7486 dev->ifindex = dev_new_index(net); 7487 else if (__dev_get_by_index(net, dev->ifindex)) 7488 goto err_uninit; 7489 7490 /* Transfer changeable features to wanted_features and enable 7491 * software offloads (GSO and GRO). 7492 */ 7493 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7494 dev->features |= NETIF_F_SOFT_FEATURES; 7495 dev->wanted_features = dev->features & dev->hw_features; 7496 7497 if (!(dev->flags & IFF_LOOPBACK)) 7498 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7499 7500 /* If IPv4 TCP segmentation offload is supported we should also 7501 * allow the device to enable segmenting the frame with the option 7502 * of ignoring a static IP ID value. This doesn't enable the 7503 * feature itself but allows the user to enable it later. 7504 */ 7505 if (dev->hw_features & NETIF_F_TSO) 7506 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7507 if (dev->vlan_features & NETIF_F_TSO) 7508 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7509 if (dev->mpls_features & NETIF_F_TSO) 7510 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7511 if (dev->hw_enc_features & NETIF_F_TSO) 7512 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7513 7514 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7515 */ 7516 dev->vlan_features |= NETIF_F_HIGHDMA; 7517 7518 /* Make NETIF_F_SG inheritable to tunnel devices. 7519 */ 7520 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7521 7522 /* Make NETIF_F_SG inheritable to MPLS. 7523 */ 7524 dev->mpls_features |= NETIF_F_SG; 7525 7526 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7527 ret = notifier_to_errno(ret); 7528 if (ret) 7529 goto err_uninit; 7530 7531 ret = netdev_register_kobject(dev); 7532 if (ret) 7533 goto err_uninit; 7534 dev->reg_state = NETREG_REGISTERED; 7535 7536 __netdev_update_features(dev); 7537 7538 /* 7539 * Default initial state at registry is that the 7540 * device is present. 7541 */ 7542 7543 set_bit(__LINK_STATE_PRESENT, &dev->state); 7544 7545 linkwatch_init_dev(dev); 7546 7547 dev_init_scheduler(dev); 7548 dev_hold(dev); 7549 list_netdevice(dev); 7550 add_device_randomness(dev->dev_addr, dev->addr_len); 7551 7552 /* If the device has permanent device address, driver should 7553 * set dev_addr and also addr_assign_type should be set to 7554 * NET_ADDR_PERM (default value). 7555 */ 7556 if (dev->addr_assign_type == NET_ADDR_PERM) 7557 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7558 7559 /* Notify protocols, that a new device appeared. */ 7560 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7561 ret = notifier_to_errno(ret); 7562 if (ret) { 7563 rollback_registered(dev); 7564 dev->reg_state = NETREG_UNREGISTERED; 7565 } 7566 /* 7567 * Prevent userspace races by waiting until the network 7568 * device is fully setup before sending notifications. 7569 */ 7570 if (!dev->rtnl_link_ops || 7571 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7572 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7573 7574 out: 7575 return ret; 7576 7577 err_uninit: 7578 if (dev->netdev_ops->ndo_uninit) 7579 dev->netdev_ops->ndo_uninit(dev); 7580 goto out; 7581 } 7582 EXPORT_SYMBOL(register_netdevice); 7583 7584 /** 7585 * init_dummy_netdev - init a dummy network device for NAPI 7586 * @dev: device to init 7587 * 7588 * This takes a network device structure and initialize the minimum 7589 * amount of fields so it can be used to schedule NAPI polls without 7590 * registering a full blown interface. This is to be used by drivers 7591 * that need to tie several hardware interfaces to a single NAPI 7592 * poll scheduler due to HW limitations. 7593 */ 7594 int init_dummy_netdev(struct net_device *dev) 7595 { 7596 /* Clear everything. Note we don't initialize spinlocks 7597 * are they aren't supposed to be taken by any of the 7598 * NAPI code and this dummy netdev is supposed to be 7599 * only ever used for NAPI polls 7600 */ 7601 memset(dev, 0, sizeof(struct net_device)); 7602 7603 /* make sure we BUG if trying to hit standard 7604 * register/unregister code path 7605 */ 7606 dev->reg_state = NETREG_DUMMY; 7607 7608 /* NAPI wants this */ 7609 INIT_LIST_HEAD(&dev->napi_list); 7610 7611 /* a dummy interface is started by default */ 7612 set_bit(__LINK_STATE_PRESENT, &dev->state); 7613 set_bit(__LINK_STATE_START, &dev->state); 7614 7615 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7616 * because users of this 'device' dont need to change 7617 * its refcount. 7618 */ 7619 7620 return 0; 7621 } 7622 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7623 7624 7625 /** 7626 * register_netdev - register a network device 7627 * @dev: device to register 7628 * 7629 * Take a completed network device structure and add it to the kernel 7630 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7631 * chain. 0 is returned on success. A negative errno code is returned 7632 * on a failure to set up the device, or if the name is a duplicate. 7633 * 7634 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7635 * and expands the device name if you passed a format string to 7636 * alloc_netdev. 7637 */ 7638 int register_netdev(struct net_device *dev) 7639 { 7640 int err; 7641 7642 rtnl_lock(); 7643 err = register_netdevice(dev); 7644 rtnl_unlock(); 7645 return err; 7646 } 7647 EXPORT_SYMBOL(register_netdev); 7648 7649 int netdev_refcnt_read(const struct net_device *dev) 7650 { 7651 int i, refcnt = 0; 7652 7653 for_each_possible_cpu(i) 7654 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7655 return refcnt; 7656 } 7657 EXPORT_SYMBOL(netdev_refcnt_read); 7658 7659 /** 7660 * netdev_wait_allrefs - wait until all references are gone. 7661 * @dev: target net_device 7662 * 7663 * This is called when unregistering network devices. 7664 * 7665 * Any protocol or device that holds a reference should register 7666 * for netdevice notification, and cleanup and put back the 7667 * reference if they receive an UNREGISTER event. 7668 * We can get stuck here if buggy protocols don't correctly 7669 * call dev_put. 7670 */ 7671 static void netdev_wait_allrefs(struct net_device *dev) 7672 { 7673 unsigned long rebroadcast_time, warning_time; 7674 int refcnt; 7675 7676 linkwatch_forget_dev(dev); 7677 7678 rebroadcast_time = warning_time = jiffies; 7679 refcnt = netdev_refcnt_read(dev); 7680 7681 while (refcnt != 0) { 7682 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7683 rtnl_lock(); 7684 7685 /* Rebroadcast unregister notification */ 7686 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7687 7688 __rtnl_unlock(); 7689 rcu_barrier(); 7690 rtnl_lock(); 7691 7692 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7693 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7694 &dev->state)) { 7695 /* We must not have linkwatch events 7696 * pending on unregister. If this 7697 * happens, we simply run the queue 7698 * unscheduled, resulting in a noop 7699 * for this device. 7700 */ 7701 linkwatch_run_queue(); 7702 } 7703 7704 __rtnl_unlock(); 7705 7706 rebroadcast_time = jiffies; 7707 } 7708 7709 msleep(250); 7710 7711 refcnt = netdev_refcnt_read(dev); 7712 7713 if (time_after(jiffies, warning_time + 10 * HZ)) { 7714 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7715 dev->name, refcnt); 7716 warning_time = jiffies; 7717 } 7718 } 7719 } 7720 7721 /* The sequence is: 7722 * 7723 * rtnl_lock(); 7724 * ... 7725 * register_netdevice(x1); 7726 * register_netdevice(x2); 7727 * ... 7728 * unregister_netdevice(y1); 7729 * unregister_netdevice(y2); 7730 * ... 7731 * rtnl_unlock(); 7732 * free_netdev(y1); 7733 * free_netdev(y2); 7734 * 7735 * We are invoked by rtnl_unlock(). 7736 * This allows us to deal with problems: 7737 * 1) We can delete sysfs objects which invoke hotplug 7738 * without deadlocking with linkwatch via keventd. 7739 * 2) Since we run with the RTNL semaphore not held, we can sleep 7740 * safely in order to wait for the netdev refcnt to drop to zero. 7741 * 7742 * We must not return until all unregister events added during 7743 * the interval the lock was held have been completed. 7744 */ 7745 void netdev_run_todo(void) 7746 { 7747 struct list_head list; 7748 7749 /* Snapshot list, allow later requests */ 7750 list_replace_init(&net_todo_list, &list); 7751 7752 __rtnl_unlock(); 7753 7754 7755 /* Wait for rcu callbacks to finish before next phase */ 7756 if (!list_empty(&list)) 7757 rcu_barrier(); 7758 7759 while (!list_empty(&list)) { 7760 struct net_device *dev 7761 = list_first_entry(&list, struct net_device, todo_list); 7762 list_del(&dev->todo_list); 7763 7764 rtnl_lock(); 7765 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7766 __rtnl_unlock(); 7767 7768 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7769 pr_err("network todo '%s' but state %d\n", 7770 dev->name, dev->reg_state); 7771 dump_stack(); 7772 continue; 7773 } 7774 7775 dev->reg_state = NETREG_UNREGISTERED; 7776 7777 netdev_wait_allrefs(dev); 7778 7779 /* paranoia */ 7780 BUG_ON(netdev_refcnt_read(dev)); 7781 BUG_ON(!list_empty(&dev->ptype_all)); 7782 BUG_ON(!list_empty(&dev->ptype_specific)); 7783 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7784 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7785 WARN_ON(dev->dn_ptr); 7786 7787 if (dev->destructor) 7788 dev->destructor(dev); 7789 7790 /* Report a network device has been unregistered */ 7791 rtnl_lock(); 7792 dev_net(dev)->dev_unreg_count--; 7793 __rtnl_unlock(); 7794 wake_up(&netdev_unregistering_wq); 7795 7796 /* Free network device */ 7797 kobject_put(&dev->dev.kobj); 7798 } 7799 } 7800 7801 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7802 * all the same fields in the same order as net_device_stats, with only 7803 * the type differing, but rtnl_link_stats64 may have additional fields 7804 * at the end for newer counters. 7805 */ 7806 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7807 const struct net_device_stats *netdev_stats) 7808 { 7809 #if BITS_PER_LONG == 64 7810 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7811 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7812 /* zero out counters that only exist in rtnl_link_stats64 */ 7813 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7814 sizeof(*stats64) - sizeof(*netdev_stats)); 7815 #else 7816 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7817 const unsigned long *src = (const unsigned long *)netdev_stats; 7818 u64 *dst = (u64 *)stats64; 7819 7820 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7821 for (i = 0; i < n; i++) 7822 dst[i] = src[i]; 7823 /* zero out counters that only exist in rtnl_link_stats64 */ 7824 memset((char *)stats64 + n * sizeof(u64), 0, 7825 sizeof(*stats64) - n * sizeof(u64)); 7826 #endif 7827 } 7828 EXPORT_SYMBOL(netdev_stats_to_stats64); 7829 7830 /** 7831 * dev_get_stats - get network device statistics 7832 * @dev: device to get statistics from 7833 * @storage: place to store stats 7834 * 7835 * Get network statistics from device. Return @storage. 7836 * The device driver may provide its own method by setting 7837 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7838 * otherwise the internal statistics structure is used. 7839 */ 7840 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7841 struct rtnl_link_stats64 *storage) 7842 { 7843 const struct net_device_ops *ops = dev->netdev_ops; 7844 7845 if (ops->ndo_get_stats64) { 7846 memset(storage, 0, sizeof(*storage)); 7847 ops->ndo_get_stats64(dev, storage); 7848 } else if (ops->ndo_get_stats) { 7849 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7850 } else { 7851 netdev_stats_to_stats64(storage, &dev->stats); 7852 } 7853 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7854 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7855 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7856 return storage; 7857 } 7858 EXPORT_SYMBOL(dev_get_stats); 7859 7860 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7861 { 7862 struct netdev_queue *queue = dev_ingress_queue(dev); 7863 7864 #ifdef CONFIG_NET_CLS_ACT 7865 if (queue) 7866 return queue; 7867 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7868 if (!queue) 7869 return NULL; 7870 netdev_init_one_queue(dev, queue, NULL); 7871 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7872 queue->qdisc_sleeping = &noop_qdisc; 7873 rcu_assign_pointer(dev->ingress_queue, queue); 7874 #endif 7875 return queue; 7876 } 7877 7878 static const struct ethtool_ops default_ethtool_ops; 7879 7880 void netdev_set_default_ethtool_ops(struct net_device *dev, 7881 const struct ethtool_ops *ops) 7882 { 7883 if (dev->ethtool_ops == &default_ethtool_ops) 7884 dev->ethtool_ops = ops; 7885 } 7886 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7887 7888 void netdev_freemem(struct net_device *dev) 7889 { 7890 char *addr = (char *)dev - dev->padded; 7891 7892 kvfree(addr); 7893 } 7894 7895 /** 7896 * alloc_netdev_mqs - allocate network device 7897 * @sizeof_priv: size of private data to allocate space for 7898 * @name: device name format string 7899 * @name_assign_type: origin of device name 7900 * @setup: callback to initialize device 7901 * @txqs: the number of TX subqueues to allocate 7902 * @rxqs: the number of RX subqueues to allocate 7903 * 7904 * Allocates a struct net_device with private data area for driver use 7905 * and performs basic initialization. Also allocates subqueue structs 7906 * for each queue on the device. 7907 */ 7908 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7909 unsigned char name_assign_type, 7910 void (*setup)(struct net_device *), 7911 unsigned int txqs, unsigned int rxqs) 7912 { 7913 struct net_device *dev; 7914 size_t alloc_size; 7915 struct net_device *p; 7916 7917 BUG_ON(strlen(name) >= sizeof(dev->name)); 7918 7919 if (txqs < 1) { 7920 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7921 return NULL; 7922 } 7923 7924 #ifdef CONFIG_SYSFS 7925 if (rxqs < 1) { 7926 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7927 return NULL; 7928 } 7929 #endif 7930 7931 alloc_size = sizeof(struct net_device); 7932 if (sizeof_priv) { 7933 /* ensure 32-byte alignment of private area */ 7934 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7935 alloc_size += sizeof_priv; 7936 } 7937 /* ensure 32-byte alignment of whole construct */ 7938 alloc_size += NETDEV_ALIGN - 1; 7939 7940 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT); 7941 if (!p) 7942 return NULL; 7943 7944 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7945 dev->padded = (char *)dev - (char *)p; 7946 7947 dev->pcpu_refcnt = alloc_percpu(int); 7948 if (!dev->pcpu_refcnt) 7949 goto free_dev; 7950 7951 if (dev_addr_init(dev)) 7952 goto free_pcpu; 7953 7954 dev_mc_init(dev); 7955 dev_uc_init(dev); 7956 7957 dev_net_set(dev, &init_net); 7958 7959 dev->gso_max_size = GSO_MAX_SIZE; 7960 dev->gso_max_segs = GSO_MAX_SEGS; 7961 7962 INIT_LIST_HEAD(&dev->napi_list); 7963 INIT_LIST_HEAD(&dev->unreg_list); 7964 INIT_LIST_HEAD(&dev->close_list); 7965 INIT_LIST_HEAD(&dev->link_watch_list); 7966 INIT_LIST_HEAD(&dev->adj_list.upper); 7967 INIT_LIST_HEAD(&dev->adj_list.lower); 7968 INIT_LIST_HEAD(&dev->ptype_all); 7969 INIT_LIST_HEAD(&dev->ptype_specific); 7970 #ifdef CONFIG_NET_SCHED 7971 hash_init(dev->qdisc_hash); 7972 #endif 7973 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7974 setup(dev); 7975 7976 if (!dev->tx_queue_len) { 7977 dev->priv_flags |= IFF_NO_QUEUE; 7978 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7979 } 7980 7981 dev->num_tx_queues = txqs; 7982 dev->real_num_tx_queues = txqs; 7983 if (netif_alloc_netdev_queues(dev)) 7984 goto free_all; 7985 7986 #ifdef CONFIG_SYSFS 7987 dev->num_rx_queues = rxqs; 7988 dev->real_num_rx_queues = rxqs; 7989 if (netif_alloc_rx_queues(dev)) 7990 goto free_all; 7991 #endif 7992 7993 strcpy(dev->name, name); 7994 dev->name_assign_type = name_assign_type; 7995 dev->group = INIT_NETDEV_GROUP; 7996 if (!dev->ethtool_ops) 7997 dev->ethtool_ops = &default_ethtool_ops; 7998 7999 nf_hook_ingress_init(dev); 8000 8001 return dev; 8002 8003 free_all: 8004 free_netdev(dev); 8005 return NULL; 8006 8007 free_pcpu: 8008 free_percpu(dev->pcpu_refcnt); 8009 free_dev: 8010 netdev_freemem(dev); 8011 return NULL; 8012 } 8013 EXPORT_SYMBOL(alloc_netdev_mqs); 8014 8015 /** 8016 * free_netdev - free network device 8017 * @dev: device 8018 * 8019 * This function does the last stage of destroying an allocated device 8020 * interface. The reference to the device object is released. If this 8021 * is the last reference then it will be freed.Must be called in process 8022 * context. 8023 */ 8024 void free_netdev(struct net_device *dev) 8025 { 8026 struct napi_struct *p, *n; 8027 struct bpf_prog *prog; 8028 8029 might_sleep(); 8030 netif_free_tx_queues(dev); 8031 #ifdef CONFIG_SYSFS 8032 kvfree(dev->_rx); 8033 #endif 8034 8035 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8036 8037 /* Flush device addresses */ 8038 dev_addr_flush(dev); 8039 8040 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8041 netif_napi_del(p); 8042 8043 free_percpu(dev->pcpu_refcnt); 8044 dev->pcpu_refcnt = NULL; 8045 8046 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8047 if (prog) { 8048 bpf_prog_put(prog); 8049 static_key_slow_dec(&generic_xdp_needed); 8050 } 8051 8052 /* Compatibility with error handling in drivers */ 8053 if (dev->reg_state == NETREG_UNINITIALIZED) { 8054 netdev_freemem(dev); 8055 return; 8056 } 8057 8058 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8059 dev->reg_state = NETREG_RELEASED; 8060 8061 /* will free via device release */ 8062 put_device(&dev->dev); 8063 } 8064 EXPORT_SYMBOL(free_netdev); 8065 8066 /** 8067 * synchronize_net - Synchronize with packet receive processing 8068 * 8069 * Wait for packets currently being received to be done. 8070 * Does not block later packets from starting. 8071 */ 8072 void synchronize_net(void) 8073 { 8074 might_sleep(); 8075 if (rtnl_is_locked()) 8076 synchronize_rcu_expedited(); 8077 else 8078 synchronize_rcu(); 8079 } 8080 EXPORT_SYMBOL(synchronize_net); 8081 8082 /** 8083 * unregister_netdevice_queue - remove device from the kernel 8084 * @dev: device 8085 * @head: list 8086 * 8087 * This function shuts down a device interface and removes it 8088 * from the kernel tables. 8089 * If head not NULL, device is queued to be unregistered later. 8090 * 8091 * Callers must hold the rtnl semaphore. You may want 8092 * unregister_netdev() instead of this. 8093 */ 8094 8095 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8096 { 8097 ASSERT_RTNL(); 8098 8099 if (head) { 8100 list_move_tail(&dev->unreg_list, head); 8101 } else { 8102 rollback_registered(dev); 8103 /* Finish processing unregister after unlock */ 8104 net_set_todo(dev); 8105 } 8106 } 8107 EXPORT_SYMBOL(unregister_netdevice_queue); 8108 8109 /** 8110 * unregister_netdevice_many - unregister many devices 8111 * @head: list of devices 8112 * 8113 * Note: As most callers use a stack allocated list_head, 8114 * we force a list_del() to make sure stack wont be corrupted later. 8115 */ 8116 void unregister_netdevice_many(struct list_head *head) 8117 { 8118 struct net_device *dev; 8119 8120 if (!list_empty(head)) { 8121 rollback_registered_many(head); 8122 list_for_each_entry(dev, head, unreg_list) 8123 net_set_todo(dev); 8124 list_del(head); 8125 } 8126 } 8127 EXPORT_SYMBOL(unregister_netdevice_many); 8128 8129 /** 8130 * unregister_netdev - remove device from the kernel 8131 * @dev: device 8132 * 8133 * This function shuts down a device interface and removes it 8134 * from the kernel tables. 8135 * 8136 * This is just a wrapper for unregister_netdevice that takes 8137 * the rtnl semaphore. In general you want to use this and not 8138 * unregister_netdevice. 8139 */ 8140 void unregister_netdev(struct net_device *dev) 8141 { 8142 rtnl_lock(); 8143 unregister_netdevice(dev); 8144 rtnl_unlock(); 8145 } 8146 EXPORT_SYMBOL(unregister_netdev); 8147 8148 /** 8149 * dev_change_net_namespace - move device to different nethost namespace 8150 * @dev: device 8151 * @net: network namespace 8152 * @pat: If not NULL name pattern to try if the current device name 8153 * is already taken in the destination network namespace. 8154 * 8155 * This function shuts down a device interface and moves it 8156 * to a new network namespace. On success 0 is returned, on 8157 * a failure a netagive errno code is returned. 8158 * 8159 * Callers must hold the rtnl semaphore. 8160 */ 8161 8162 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8163 { 8164 int err; 8165 8166 ASSERT_RTNL(); 8167 8168 /* Don't allow namespace local devices to be moved. */ 8169 err = -EINVAL; 8170 if (dev->features & NETIF_F_NETNS_LOCAL) 8171 goto out; 8172 8173 /* Ensure the device has been registrered */ 8174 if (dev->reg_state != NETREG_REGISTERED) 8175 goto out; 8176 8177 /* Get out if there is nothing todo */ 8178 err = 0; 8179 if (net_eq(dev_net(dev), net)) 8180 goto out; 8181 8182 /* Pick the destination device name, and ensure 8183 * we can use it in the destination network namespace. 8184 */ 8185 err = -EEXIST; 8186 if (__dev_get_by_name(net, dev->name)) { 8187 /* We get here if we can't use the current device name */ 8188 if (!pat) 8189 goto out; 8190 if (dev_get_valid_name(net, dev, pat) < 0) 8191 goto out; 8192 } 8193 8194 /* 8195 * And now a mini version of register_netdevice unregister_netdevice. 8196 */ 8197 8198 /* If device is running close it first. */ 8199 dev_close(dev); 8200 8201 /* And unlink it from device chain */ 8202 err = -ENODEV; 8203 unlist_netdevice(dev); 8204 8205 synchronize_net(); 8206 8207 /* Shutdown queueing discipline. */ 8208 dev_shutdown(dev); 8209 8210 /* Notify protocols, that we are about to destroy 8211 * this device. They should clean all the things. 8212 * 8213 * Note that dev->reg_state stays at NETREG_REGISTERED. 8214 * This is wanted because this way 8021q and macvlan know 8215 * the device is just moving and can keep their slaves up. 8216 */ 8217 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8218 rcu_barrier(); 8219 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8220 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 8221 8222 /* 8223 * Flush the unicast and multicast chains 8224 */ 8225 dev_uc_flush(dev); 8226 dev_mc_flush(dev); 8227 8228 /* Send a netdev-removed uevent to the old namespace */ 8229 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8230 netdev_adjacent_del_links(dev); 8231 8232 /* Actually switch the network namespace */ 8233 dev_net_set(dev, net); 8234 8235 /* If there is an ifindex conflict assign a new one */ 8236 if (__dev_get_by_index(net, dev->ifindex)) 8237 dev->ifindex = dev_new_index(net); 8238 8239 /* Send a netdev-add uevent to the new namespace */ 8240 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8241 netdev_adjacent_add_links(dev); 8242 8243 /* Fixup kobjects */ 8244 err = device_rename(&dev->dev, dev->name); 8245 WARN_ON(err); 8246 8247 /* Add the device back in the hashes */ 8248 list_netdevice(dev); 8249 8250 /* Notify protocols, that a new device appeared. */ 8251 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8252 8253 /* 8254 * Prevent userspace races by waiting until the network 8255 * device is fully setup before sending notifications. 8256 */ 8257 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8258 8259 synchronize_net(); 8260 err = 0; 8261 out: 8262 return err; 8263 } 8264 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8265 8266 static int dev_cpu_dead(unsigned int oldcpu) 8267 { 8268 struct sk_buff **list_skb; 8269 struct sk_buff *skb; 8270 unsigned int cpu; 8271 struct softnet_data *sd, *oldsd; 8272 8273 local_irq_disable(); 8274 cpu = smp_processor_id(); 8275 sd = &per_cpu(softnet_data, cpu); 8276 oldsd = &per_cpu(softnet_data, oldcpu); 8277 8278 /* Find end of our completion_queue. */ 8279 list_skb = &sd->completion_queue; 8280 while (*list_skb) 8281 list_skb = &(*list_skb)->next; 8282 /* Append completion queue from offline CPU. */ 8283 *list_skb = oldsd->completion_queue; 8284 oldsd->completion_queue = NULL; 8285 8286 /* Append output queue from offline CPU. */ 8287 if (oldsd->output_queue) { 8288 *sd->output_queue_tailp = oldsd->output_queue; 8289 sd->output_queue_tailp = oldsd->output_queue_tailp; 8290 oldsd->output_queue = NULL; 8291 oldsd->output_queue_tailp = &oldsd->output_queue; 8292 } 8293 /* Append NAPI poll list from offline CPU, with one exception : 8294 * process_backlog() must be called by cpu owning percpu backlog. 8295 * We properly handle process_queue & input_pkt_queue later. 8296 */ 8297 while (!list_empty(&oldsd->poll_list)) { 8298 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8299 struct napi_struct, 8300 poll_list); 8301 8302 list_del_init(&napi->poll_list); 8303 if (napi->poll == process_backlog) 8304 napi->state = 0; 8305 else 8306 ____napi_schedule(sd, napi); 8307 } 8308 8309 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8310 local_irq_enable(); 8311 8312 /* Process offline CPU's input_pkt_queue */ 8313 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8314 netif_rx_ni(skb); 8315 input_queue_head_incr(oldsd); 8316 } 8317 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8318 netif_rx_ni(skb); 8319 input_queue_head_incr(oldsd); 8320 } 8321 8322 return 0; 8323 } 8324 8325 /** 8326 * netdev_increment_features - increment feature set by one 8327 * @all: current feature set 8328 * @one: new feature set 8329 * @mask: mask feature set 8330 * 8331 * Computes a new feature set after adding a device with feature set 8332 * @one to the master device with current feature set @all. Will not 8333 * enable anything that is off in @mask. Returns the new feature set. 8334 */ 8335 netdev_features_t netdev_increment_features(netdev_features_t all, 8336 netdev_features_t one, netdev_features_t mask) 8337 { 8338 if (mask & NETIF_F_HW_CSUM) 8339 mask |= NETIF_F_CSUM_MASK; 8340 mask |= NETIF_F_VLAN_CHALLENGED; 8341 8342 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8343 all &= one | ~NETIF_F_ALL_FOR_ALL; 8344 8345 /* If one device supports hw checksumming, set for all. */ 8346 if (all & NETIF_F_HW_CSUM) 8347 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8348 8349 return all; 8350 } 8351 EXPORT_SYMBOL(netdev_increment_features); 8352 8353 static struct hlist_head * __net_init netdev_create_hash(void) 8354 { 8355 int i; 8356 struct hlist_head *hash; 8357 8358 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8359 if (hash != NULL) 8360 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8361 INIT_HLIST_HEAD(&hash[i]); 8362 8363 return hash; 8364 } 8365 8366 /* Initialize per network namespace state */ 8367 static int __net_init netdev_init(struct net *net) 8368 { 8369 if (net != &init_net) 8370 INIT_LIST_HEAD(&net->dev_base_head); 8371 8372 net->dev_name_head = netdev_create_hash(); 8373 if (net->dev_name_head == NULL) 8374 goto err_name; 8375 8376 net->dev_index_head = netdev_create_hash(); 8377 if (net->dev_index_head == NULL) 8378 goto err_idx; 8379 8380 return 0; 8381 8382 err_idx: 8383 kfree(net->dev_name_head); 8384 err_name: 8385 return -ENOMEM; 8386 } 8387 8388 /** 8389 * netdev_drivername - network driver for the device 8390 * @dev: network device 8391 * 8392 * Determine network driver for device. 8393 */ 8394 const char *netdev_drivername(const struct net_device *dev) 8395 { 8396 const struct device_driver *driver; 8397 const struct device *parent; 8398 const char *empty = ""; 8399 8400 parent = dev->dev.parent; 8401 if (!parent) 8402 return empty; 8403 8404 driver = parent->driver; 8405 if (driver && driver->name) 8406 return driver->name; 8407 return empty; 8408 } 8409 8410 static void __netdev_printk(const char *level, const struct net_device *dev, 8411 struct va_format *vaf) 8412 { 8413 if (dev && dev->dev.parent) { 8414 dev_printk_emit(level[1] - '0', 8415 dev->dev.parent, 8416 "%s %s %s%s: %pV", 8417 dev_driver_string(dev->dev.parent), 8418 dev_name(dev->dev.parent), 8419 netdev_name(dev), netdev_reg_state(dev), 8420 vaf); 8421 } else if (dev) { 8422 printk("%s%s%s: %pV", 8423 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8424 } else { 8425 printk("%s(NULL net_device): %pV", level, vaf); 8426 } 8427 } 8428 8429 void netdev_printk(const char *level, const struct net_device *dev, 8430 const char *format, ...) 8431 { 8432 struct va_format vaf; 8433 va_list args; 8434 8435 va_start(args, format); 8436 8437 vaf.fmt = format; 8438 vaf.va = &args; 8439 8440 __netdev_printk(level, dev, &vaf); 8441 8442 va_end(args); 8443 } 8444 EXPORT_SYMBOL(netdev_printk); 8445 8446 #define define_netdev_printk_level(func, level) \ 8447 void func(const struct net_device *dev, const char *fmt, ...) \ 8448 { \ 8449 struct va_format vaf; \ 8450 va_list args; \ 8451 \ 8452 va_start(args, fmt); \ 8453 \ 8454 vaf.fmt = fmt; \ 8455 vaf.va = &args; \ 8456 \ 8457 __netdev_printk(level, dev, &vaf); \ 8458 \ 8459 va_end(args); \ 8460 } \ 8461 EXPORT_SYMBOL(func); 8462 8463 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8464 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8465 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8466 define_netdev_printk_level(netdev_err, KERN_ERR); 8467 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8468 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8469 define_netdev_printk_level(netdev_info, KERN_INFO); 8470 8471 static void __net_exit netdev_exit(struct net *net) 8472 { 8473 kfree(net->dev_name_head); 8474 kfree(net->dev_index_head); 8475 } 8476 8477 static struct pernet_operations __net_initdata netdev_net_ops = { 8478 .init = netdev_init, 8479 .exit = netdev_exit, 8480 }; 8481 8482 static void __net_exit default_device_exit(struct net *net) 8483 { 8484 struct net_device *dev, *aux; 8485 /* 8486 * Push all migratable network devices back to the 8487 * initial network namespace 8488 */ 8489 rtnl_lock(); 8490 for_each_netdev_safe(net, dev, aux) { 8491 int err; 8492 char fb_name[IFNAMSIZ]; 8493 8494 /* Ignore unmoveable devices (i.e. loopback) */ 8495 if (dev->features & NETIF_F_NETNS_LOCAL) 8496 continue; 8497 8498 /* Leave virtual devices for the generic cleanup */ 8499 if (dev->rtnl_link_ops) 8500 continue; 8501 8502 /* Push remaining network devices to init_net */ 8503 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8504 err = dev_change_net_namespace(dev, &init_net, fb_name); 8505 if (err) { 8506 pr_emerg("%s: failed to move %s to init_net: %d\n", 8507 __func__, dev->name, err); 8508 BUG(); 8509 } 8510 } 8511 rtnl_unlock(); 8512 } 8513 8514 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8515 { 8516 /* Return with the rtnl_lock held when there are no network 8517 * devices unregistering in any network namespace in net_list. 8518 */ 8519 struct net *net; 8520 bool unregistering; 8521 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8522 8523 add_wait_queue(&netdev_unregistering_wq, &wait); 8524 for (;;) { 8525 unregistering = false; 8526 rtnl_lock(); 8527 list_for_each_entry(net, net_list, exit_list) { 8528 if (net->dev_unreg_count > 0) { 8529 unregistering = true; 8530 break; 8531 } 8532 } 8533 if (!unregistering) 8534 break; 8535 __rtnl_unlock(); 8536 8537 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8538 } 8539 remove_wait_queue(&netdev_unregistering_wq, &wait); 8540 } 8541 8542 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8543 { 8544 /* At exit all network devices most be removed from a network 8545 * namespace. Do this in the reverse order of registration. 8546 * Do this across as many network namespaces as possible to 8547 * improve batching efficiency. 8548 */ 8549 struct net_device *dev; 8550 struct net *net; 8551 LIST_HEAD(dev_kill_list); 8552 8553 /* To prevent network device cleanup code from dereferencing 8554 * loopback devices or network devices that have been freed 8555 * wait here for all pending unregistrations to complete, 8556 * before unregistring the loopback device and allowing the 8557 * network namespace be freed. 8558 * 8559 * The netdev todo list containing all network devices 8560 * unregistrations that happen in default_device_exit_batch 8561 * will run in the rtnl_unlock() at the end of 8562 * default_device_exit_batch. 8563 */ 8564 rtnl_lock_unregistering(net_list); 8565 list_for_each_entry(net, net_list, exit_list) { 8566 for_each_netdev_reverse(net, dev) { 8567 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8568 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8569 else 8570 unregister_netdevice_queue(dev, &dev_kill_list); 8571 } 8572 } 8573 unregister_netdevice_many(&dev_kill_list); 8574 rtnl_unlock(); 8575 } 8576 8577 static struct pernet_operations __net_initdata default_device_ops = { 8578 .exit = default_device_exit, 8579 .exit_batch = default_device_exit_batch, 8580 }; 8581 8582 /* 8583 * Initialize the DEV module. At boot time this walks the device list and 8584 * unhooks any devices that fail to initialise (normally hardware not 8585 * present) and leaves us with a valid list of present and active devices. 8586 * 8587 */ 8588 8589 /* 8590 * This is called single threaded during boot, so no need 8591 * to take the rtnl semaphore. 8592 */ 8593 static int __init net_dev_init(void) 8594 { 8595 int i, rc = -ENOMEM; 8596 8597 BUG_ON(!dev_boot_phase); 8598 8599 if (dev_proc_init()) 8600 goto out; 8601 8602 if (netdev_kobject_init()) 8603 goto out; 8604 8605 INIT_LIST_HEAD(&ptype_all); 8606 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8607 INIT_LIST_HEAD(&ptype_base[i]); 8608 8609 INIT_LIST_HEAD(&offload_base); 8610 8611 if (register_pernet_subsys(&netdev_net_ops)) 8612 goto out; 8613 8614 /* 8615 * Initialise the packet receive queues. 8616 */ 8617 8618 for_each_possible_cpu(i) { 8619 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8620 struct softnet_data *sd = &per_cpu(softnet_data, i); 8621 8622 INIT_WORK(flush, flush_backlog); 8623 8624 skb_queue_head_init(&sd->input_pkt_queue); 8625 skb_queue_head_init(&sd->process_queue); 8626 INIT_LIST_HEAD(&sd->poll_list); 8627 sd->output_queue_tailp = &sd->output_queue; 8628 #ifdef CONFIG_RPS 8629 sd->csd.func = rps_trigger_softirq; 8630 sd->csd.info = sd; 8631 sd->cpu = i; 8632 #endif 8633 8634 sd->backlog.poll = process_backlog; 8635 sd->backlog.weight = weight_p; 8636 } 8637 8638 dev_boot_phase = 0; 8639 8640 /* The loopback device is special if any other network devices 8641 * is present in a network namespace the loopback device must 8642 * be present. Since we now dynamically allocate and free the 8643 * loopback device ensure this invariant is maintained by 8644 * keeping the loopback device as the first device on the 8645 * list of network devices. Ensuring the loopback devices 8646 * is the first device that appears and the last network device 8647 * that disappears. 8648 */ 8649 if (register_pernet_device(&loopback_net_ops)) 8650 goto out; 8651 8652 if (register_pernet_device(&default_device_ops)) 8653 goto out; 8654 8655 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8656 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8657 8658 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8659 NULL, dev_cpu_dead); 8660 WARN_ON(rc < 0); 8661 dst_subsys_init(); 8662 rc = 0; 8663 out: 8664 return rc; 8665 } 8666 8667 subsys_initcall(net_dev_init); 8668