xref: /openbmc/linux/net/core/dev.c (revision 3d3ea5af5c0b382bc9d9aed378fd814fb5d4a011)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 
148 #include "net-sysfs.h"
149 
150 /* Instead of increasing this, you should create a hash table. */
151 #define MAX_GRO_SKBS 8
152 
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 static struct list_head offload_base __read_mostly;
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct net_device *dev,
165 					 struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 /* protects napi_hash addition/deletion and napi_gen_id */
191 static DEFINE_SPINLOCK(napi_hash_lock);
192 
193 static unsigned int napi_gen_id = NR_CPUS;
194 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
195 
196 static seqcount_t devnet_rename_seq;
197 
198 static inline void dev_base_seq_inc(struct net *net)
199 {
200 	while (++net->dev_base_seq == 0)
201 		;
202 }
203 
204 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
205 {
206 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
207 
208 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
209 }
210 
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
212 {
213 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
214 }
215 
216 static inline void rps_lock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 	spin_lock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222 
223 static inline void rps_unlock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 	spin_unlock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229 
230 /* Device list insertion */
231 static void list_netdevice(struct net_device *dev)
232 {
233 	struct net *net = dev_net(dev);
234 
235 	ASSERT_RTNL();
236 
237 	write_lock_bh(&dev_base_lock);
238 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
239 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
240 	hlist_add_head_rcu(&dev->index_hlist,
241 			   dev_index_hash(net, dev->ifindex));
242 	write_unlock_bh(&dev_base_lock);
243 
244 	dev_base_seq_inc(net);
245 }
246 
247 /* Device list removal
248  * caller must respect a RCU grace period before freeing/reusing dev
249  */
250 static void unlist_netdevice(struct net_device *dev)
251 {
252 	ASSERT_RTNL();
253 
254 	/* Unlink dev from the device chain */
255 	write_lock_bh(&dev_base_lock);
256 	list_del_rcu(&dev->dev_list);
257 	hlist_del_rcu(&dev->name_hlist);
258 	hlist_del_rcu(&dev->index_hlist);
259 	write_unlock_bh(&dev_base_lock);
260 
261 	dev_base_seq_inc(dev_net(dev));
262 }
263 
264 /*
265  *	Our notifier list
266  */
267 
268 static RAW_NOTIFIER_HEAD(netdev_chain);
269 
270 /*
271  *	Device drivers call our routines to queue packets here. We empty the
272  *	queue in the local softnet handler.
273  */
274 
275 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
276 EXPORT_PER_CPU_SYMBOL(softnet_data);
277 
278 #ifdef CONFIG_LOCKDEP
279 /*
280  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
281  * according to dev->type
282  */
283 static const unsigned short netdev_lock_type[] = {
284 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
285 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
286 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
287 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
288 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
289 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
290 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
291 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
292 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
293 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
294 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
295 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
296 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
297 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
298 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
299 
300 static const char *const netdev_lock_name[] = {
301 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
302 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
303 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
304 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
305 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
306 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
307 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
308 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
309 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
310 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
311 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
312 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
313 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
314 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
315 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
316 
317 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
318 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 
320 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
321 {
322 	int i;
323 
324 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
325 		if (netdev_lock_type[i] == dev_type)
326 			return i;
327 	/* the last key is used by default */
328 	return ARRAY_SIZE(netdev_lock_type) - 1;
329 }
330 
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 						 unsigned short dev_type)
333 {
334 	int i;
335 
336 	i = netdev_lock_pos(dev_type);
337 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
338 				   netdev_lock_name[i]);
339 }
340 
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 	int i;
344 
345 	i = netdev_lock_pos(dev->type);
346 	lockdep_set_class_and_name(&dev->addr_list_lock,
347 				   &netdev_addr_lock_key[i],
348 				   netdev_lock_name[i]);
349 }
350 #else
351 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
352 						 unsigned short dev_type)
353 {
354 }
355 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
356 {
357 }
358 #endif
359 
360 /*******************************************************************************
361  *
362  *		Protocol management and registration routines
363  *
364  *******************************************************************************/
365 
366 
367 /*
368  *	Add a protocol ID to the list. Now that the input handler is
369  *	smarter we can dispense with all the messy stuff that used to be
370  *	here.
371  *
372  *	BEWARE!!! Protocol handlers, mangling input packets,
373  *	MUST BE last in hash buckets and checking protocol handlers
374  *	MUST start from promiscuous ptype_all chain in net_bh.
375  *	It is true now, do not change it.
376  *	Explanation follows: if protocol handler, mangling packet, will
377  *	be the first on list, it is not able to sense, that packet
378  *	is cloned and should be copied-on-write, so that it will
379  *	change it and subsequent readers will get broken packet.
380  *							--ANK (980803)
381  */
382 
383 static inline struct list_head *ptype_head(const struct packet_type *pt)
384 {
385 	if (pt->type == htons(ETH_P_ALL))
386 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
387 	else
388 		return pt->dev ? &pt->dev->ptype_specific :
389 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
390 }
391 
392 /**
393  *	dev_add_pack - add packet handler
394  *	@pt: packet type declaration
395  *
396  *	Add a protocol handler to the networking stack. The passed &packet_type
397  *	is linked into kernel lists and may not be freed until it has been
398  *	removed from the kernel lists.
399  *
400  *	This call does not sleep therefore it can not
401  *	guarantee all CPU's that are in middle of receiving packets
402  *	will see the new packet type (until the next received packet).
403  */
404 
405 void dev_add_pack(struct packet_type *pt)
406 {
407 	struct list_head *head = ptype_head(pt);
408 
409 	spin_lock(&ptype_lock);
410 	list_add_rcu(&pt->list, head);
411 	spin_unlock(&ptype_lock);
412 }
413 EXPORT_SYMBOL(dev_add_pack);
414 
415 /**
416  *	__dev_remove_pack	 - remove packet handler
417  *	@pt: packet type declaration
418  *
419  *	Remove a protocol handler that was previously added to the kernel
420  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
421  *	from the kernel lists and can be freed or reused once this function
422  *	returns.
423  *
424  *      The packet type might still be in use by receivers
425  *	and must not be freed until after all the CPU's have gone
426  *	through a quiescent state.
427  */
428 void __dev_remove_pack(struct packet_type *pt)
429 {
430 	struct list_head *head = ptype_head(pt);
431 	struct packet_type *pt1;
432 
433 	spin_lock(&ptype_lock);
434 
435 	list_for_each_entry(pt1, head, list) {
436 		if (pt == pt1) {
437 			list_del_rcu(&pt->list);
438 			goto out;
439 		}
440 	}
441 
442 	pr_warn("dev_remove_pack: %p not found\n", pt);
443 out:
444 	spin_unlock(&ptype_lock);
445 }
446 EXPORT_SYMBOL(__dev_remove_pack);
447 
448 /**
449  *	dev_remove_pack	 - remove packet handler
450  *	@pt: packet type declaration
451  *
452  *	Remove a protocol handler that was previously added to the kernel
453  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
454  *	from the kernel lists and can be freed or reused once this function
455  *	returns.
456  *
457  *	This call sleeps to guarantee that no CPU is looking at the packet
458  *	type after return.
459  */
460 void dev_remove_pack(struct packet_type *pt)
461 {
462 	__dev_remove_pack(pt);
463 
464 	synchronize_net();
465 }
466 EXPORT_SYMBOL(dev_remove_pack);
467 
468 
469 /**
470  *	dev_add_offload - register offload handlers
471  *	@po: protocol offload declaration
472  *
473  *	Add protocol offload handlers to the networking stack. The passed
474  *	&proto_offload is linked into kernel lists and may not be freed until
475  *	it has been removed from the kernel lists.
476  *
477  *	This call does not sleep therefore it can not
478  *	guarantee all CPU's that are in middle of receiving packets
479  *	will see the new offload handlers (until the next received packet).
480  */
481 void dev_add_offload(struct packet_offload *po)
482 {
483 	struct packet_offload *elem;
484 
485 	spin_lock(&offload_lock);
486 	list_for_each_entry(elem, &offload_base, list) {
487 		if (po->priority < elem->priority)
488 			break;
489 	}
490 	list_add_rcu(&po->list, elem->list.prev);
491 	spin_unlock(&offload_lock);
492 }
493 EXPORT_SYMBOL(dev_add_offload);
494 
495 /**
496  *	__dev_remove_offload	 - remove offload handler
497  *	@po: packet offload declaration
498  *
499  *	Remove a protocol offload handler that was previously added to the
500  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
501  *	is removed from the kernel lists and can be freed or reused once this
502  *	function returns.
503  *
504  *      The packet type might still be in use by receivers
505  *	and must not be freed until after all the CPU's have gone
506  *	through a quiescent state.
507  */
508 static void __dev_remove_offload(struct packet_offload *po)
509 {
510 	struct list_head *head = &offload_base;
511 	struct packet_offload *po1;
512 
513 	spin_lock(&offload_lock);
514 
515 	list_for_each_entry(po1, head, list) {
516 		if (po == po1) {
517 			list_del_rcu(&po->list);
518 			goto out;
519 		}
520 	}
521 
522 	pr_warn("dev_remove_offload: %p not found\n", po);
523 out:
524 	spin_unlock(&offload_lock);
525 }
526 
527 /**
528  *	dev_remove_offload	 - remove packet offload handler
529  *	@po: packet offload declaration
530  *
531  *	Remove a packet offload handler that was previously added to the kernel
532  *	offload handlers by dev_add_offload(). The passed &offload_type is
533  *	removed from the kernel lists and can be freed or reused once this
534  *	function returns.
535  *
536  *	This call sleeps to guarantee that no CPU is looking at the packet
537  *	type after return.
538  */
539 void dev_remove_offload(struct packet_offload *po)
540 {
541 	__dev_remove_offload(po);
542 
543 	synchronize_net();
544 }
545 EXPORT_SYMBOL(dev_remove_offload);
546 
547 /******************************************************************************
548  *
549  *		      Device Boot-time Settings Routines
550  *
551  ******************************************************************************/
552 
553 /* Boot time configuration table */
554 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
555 
556 /**
557  *	netdev_boot_setup_add	- add new setup entry
558  *	@name: name of the device
559  *	@map: configured settings for the device
560  *
561  *	Adds new setup entry to the dev_boot_setup list.  The function
562  *	returns 0 on error and 1 on success.  This is a generic routine to
563  *	all netdevices.
564  */
565 static int netdev_boot_setup_add(char *name, struct ifmap *map)
566 {
567 	struct netdev_boot_setup *s;
568 	int i;
569 
570 	s = dev_boot_setup;
571 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
572 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
573 			memset(s[i].name, 0, sizeof(s[i].name));
574 			strlcpy(s[i].name, name, IFNAMSIZ);
575 			memcpy(&s[i].map, map, sizeof(s[i].map));
576 			break;
577 		}
578 	}
579 
580 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
581 }
582 
583 /**
584  * netdev_boot_setup_check	- check boot time settings
585  * @dev: the netdevice
586  *
587  * Check boot time settings for the device.
588  * The found settings are set for the device to be used
589  * later in the device probing.
590  * Returns 0 if no settings found, 1 if they are.
591  */
592 int netdev_boot_setup_check(struct net_device *dev)
593 {
594 	struct netdev_boot_setup *s = dev_boot_setup;
595 	int i;
596 
597 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
598 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
599 		    !strcmp(dev->name, s[i].name)) {
600 			dev->irq = s[i].map.irq;
601 			dev->base_addr = s[i].map.base_addr;
602 			dev->mem_start = s[i].map.mem_start;
603 			dev->mem_end = s[i].map.mem_end;
604 			return 1;
605 		}
606 	}
607 	return 0;
608 }
609 EXPORT_SYMBOL(netdev_boot_setup_check);
610 
611 
612 /**
613  * netdev_boot_base	- get address from boot time settings
614  * @prefix: prefix for network device
615  * @unit: id for network device
616  *
617  * Check boot time settings for the base address of device.
618  * The found settings are set for the device to be used
619  * later in the device probing.
620  * Returns 0 if no settings found.
621  */
622 unsigned long netdev_boot_base(const char *prefix, int unit)
623 {
624 	const struct netdev_boot_setup *s = dev_boot_setup;
625 	char name[IFNAMSIZ];
626 	int i;
627 
628 	sprintf(name, "%s%d", prefix, unit);
629 
630 	/*
631 	 * If device already registered then return base of 1
632 	 * to indicate not to probe for this interface
633 	 */
634 	if (__dev_get_by_name(&init_net, name))
635 		return 1;
636 
637 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
638 		if (!strcmp(name, s[i].name))
639 			return s[i].map.base_addr;
640 	return 0;
641 }
642 
643 /*
644  * Saves at boot time configured settings for any netdevice.
645  */
646 int __init netdev_boot_setup(char *str)
647 {
648 	int ints[5];
649 	struct ifmap map;
650 
651 	str = get_options(str, ARRAY_SIZE(ints), ints);
652 	if (!str || !*str)
653 		return 0;
654 
655 	/* Save settings */
656 	memset(&map, 0, sizeof(map));
657 	if (ints[0] > 0)
658 		map.irq = ints[1];
659 	if (ints[0] > 1)
660 		map.base_addr = ints[2];
661 	if (ints[0] > 2)
662 		map.mem_start = ints[3];
663 	if (ints[0] > 3)
664 		map.mem_end = ints[4];
665 
666 	/* Add new entry to the list */
667 	return netdev_boot_setup_add(str, &map);
668 }
669 
670 __setup("netdev=", netdev_boot_setup);
671 
672 /*******************************************************************************
673  *
674  *			    Device Interface Subroutines
675  *
676  *******************************************************************************/
677 
678 /**
679  *	dev_get_iflink	- get 'iflink' value of a interface
680  *	@dev: targeted interface
681  *
682  *	Indicates the ifindex the interface is linked to.
683  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
684  */
685 
686 int dev_get_iflink(const struct net_device *dev)
687 {
688 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
689 		return dev->netdev_ops->ndo_get_iflink(dev);
690 
691 	return dev->ifindex;
692 }
693 EXPORT_SYMBOL(dev_get_iflink);
694 
695 /**
696  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
697  *	@dev: targeted interface
698  *	@skb: The packet.
699  *
700  *	For better visibility of tunnel traffic OVS needs to retrieve
701  *	egress tunnel information for a packet. Following API allows
702  *	user to get this info.
703  */
704 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
705 {
706 	struct ip_tunnel_info *info;
707 
708 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
709 		return -EINVAL;
710 
711 	info = skb_tunnel_info_unclone(skb);
712 	if (!info)
713 		return -ENOMEM;
714 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
715 		return -EINVAL;
716 
717 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
720 
721 /**
722  *	__dev_get_by_name	- find a device by its name
723  *	@net: the applicable net namespace
724  *	@name: name to find
725  *
726  *	Find an interface by name. Must be called under RTNL semaphore
727  *	or @dev_base_lock. If the name is found a pointer to the device
728  *	is returned. If the name is not found then %NULL is returned. The
729  *	reference counters are not incremented so the caller must be
730  *	careful with locks.
731  */
732 
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735 	struct net_device *dev;
736 	struct hlist_head *head = dev_name_hash(net, name);
737 
738 	hlist_for_each_entry(dev, head, name_hlist)
739 		if (!strncmp(dev->name, name, IFNAMSIZ))
740 			return dev;
741 
742 	return NULL;
743 }
744 EXPORT_SYMBOL(__dev_get_by_name);
745 
746 /**
747  * dev_get_by_name_rcu	- find a device by its name
748  * @net: the applicable net namespace
749  * @name: name to find
750  *
751  * Find an interface by name.
752  * If the name is found a pointer to the device is returned.
753  * If the name is not found then %NULL is returned.
754  * The reference counters are not incremented so the caller must be
755  * careful with locks. The caller must hold RCU lock.
756  */
757 
758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759 {
760 	struct net_device *dev;
761 	struct hlist_head *head = dev_name_hash(net, name);
762 
763 	hlist_for_each_entry_rcu(dev, head, name_hlist)
764 		if (!strncmp(dev->name, name, IFNAMSIZ))
765 			return dev;
766 
767 	return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_name_rcu);
770 
771 /**
772  *	dev_get_by_name		- find a device by its name
773  *	@net: the applicable net namespace
774  *	@name: name to find
775  *
776  *	Find an interface by name. This can be called from any
777  *	context and does its own locking. The returned handle has
778  *	the usage count incremented and the caller must use dev_put() to
779  *	release it when it is no longer needed. %NULL is returned if no
780  *	matching device is found.
781  */
782 
783 struct net_device *dev_get_by_name(struct net *net, const char *name)
784 {
785 	struct net_device *dev;
786 
787 	rcu_read_lock();
788 	dev = dev_get_by_name_rcu(net, name);
789 	if (dev)
790 		dev_hold(dev);
791 	rcu_read_unlock();
792 	return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_name);
795 
796 /**
797  *	__dev_get_by_index - find a device by its ifindex
798  *	@net: the applicable net namespace
799  *	@ifindex: index of device
800  *
801  *	Search for an interface by index. Returns %NULL if the device
802  *	is not found or a pointer to the device. The device has not
803  *	had its reference counter increased so the caller must be careful
804  *	about locking. The caller must hold either the RTNL semaphore
805  *	or @dev_base_lock.
806  */
807 
808 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
809 {
810 	struct net_device *dev;
811 	struct hlist_head *head = dev_index_hash(net, ifindex);
812 
813 	hlist_for_each_entry(dev, head, index_hlist)
814 		if (dev->ifindex == ifindex)
815 			return dev;
816 
817 	return NULL;
818 }
819 EXPORT_SYMBOL(__dev_get_by_index);
820 
821 /**
822  *	dev_get_by_index_rcu - find a device by its ifindex
823  *	@net: the applicable net namespace
824  *	@ifindex: index of device
825  *
826  *	Search for an interface by index. Returns %NULL if the device
827  *	is not found or a pointer to the device. The device has not
828  *	had its reference counter increased so the caller must be careful
829  *	about locking. The caller must hold RCU lock.
830  */
831 
832 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
833 {
834 	struct net_device *dev;
835 	struct hlist_head *head = dev_index_hash(net, ifindex);
836 
837 	hlist_for_each_entry_rcu(dev, head, index_hlist)
838 		if (dev->ifindex == ifindex)
839 			return dev;
840 
841 	return NULL;
842 }
843 EXPORT_SYMBOL(dev_get_by_index_rcu);
844 
845 
846 /**
847  *	dev_get_by_index - find a device by its ifindex
848  *	@net: the applicable net namespace
849  *	@ifindex: index of device
850  *
851  *	Search for an interface by index. Returns NULL if the device
852  *	is not found or a pointer to the device. The device returned has
853  *	had a reference added and the pointer is safe until the user calls
854  *	dev_put to indicate they have finished with it.
855  */
856 
857 struct net_device *dev_get_by_index(struct net *net, int ifindex)
858 {
859 	struct net_device *dev;
860 
861 	rcu_read_lock();
862 	dev = dev_get_by_index_rcu(net, ifindex);
863 	if (dev)
864 		dev_hold(dev);
865 	rcu_read_unlock();
866 	return dev;
867 }
868 EXPORT_SYMBOL(dev_get_by_index);
869 
870 /**
871  *	dev_get_by_napi_id - find a device by napi_id
872  *	@napi_id: ID of the NAPI struct
873  *
874  *	Search for an interface by NAPI ID. Returns %NULL if the device
875  *	is not found or a pointer to the device. The device has not had
876  *	its reference counter increased so the caller must be careful
877  *	about locking. The caller must hold RCU lock.
878  */
879 
880 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
881 {
882 	struct napi_struct *napi;
883 
884 	WARN_ON_ONCE(!rcu_read_lock_held());
885 
886 	if (napi_id < MIN_NAPI_ID)
887 		return NULL;
888 
889 	napi = napi_by_id(napi_id);
890 
891 	return napi ? napi->dev : NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_napi_id);
894 
895 /**
896  *	netdev_get_name - get a netdevice name, knowing its ifindex.
897  *	@net: network namespace
898  *	@name: a pointer to the buffer where the name will be stored.
899  *	@ifindex: the ifindex of the interface to get the name from.
900  *
901  *	The use of raw_seqcount_begin() and cond_resched() before
902  *	retrying is required as we want to give the writers a chance
903  *	to complete when CONFIG_PREEMPT is not set.
904  */
905 int netdev_get_name(struct net *net, char *name, int ifindex)
906 {
907 	struct net_device *dev;
908 	unsigned int seq;
909 
910 retry:
911 	seq = raw_seqcount_begin(&devnet_rename_seq);
912 	rcu_read_lock();
913 	dev = dev_get_by_index_rcu(net, ifindex);
914 	if (!dev) {
915 		rcu_read_unlock();
916 		return -ENODEV;
917 	}
918 
919 	strcpy(name, dev->name);
920 	rcu_read_unlock();
921 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
922 		cond_resched();
923 		goto retry;
924 	}
925 
926 	return 0;
927 }
928 
929 /**
930  *	dev_getbyhwaddr_rcu - find a device by its hardware address
931  *	@net: the applicable net namespace
932  *	@type: media type of device
933  *	@ha: hardware address
934  *
935  *	Search for an interface by MAC address. Returns NULL if the device
936  *	is not found or a pointer to the device.
937  *	The caller must hold RCU or RTNL.
938  *	The returned device has not had its ref count increased
939  *	and the caller must therefore be careful about locking
940  *
941  */
942 
943 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
944 				       const char *ha)
945 {
946 	struct net_device *dev;
947 
948 	for_each_netdev_rcu(net, dev)
949 		if (dev->type == type &&
950 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
951 			return dev;
952 
953 	return NULL;
954 }
955 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
956 
957 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
958 {
959 	struct net_device *dev;
960 
961 	ASSERT_RTNL();
962 	for_each_netdev(net, dev)
963 		if (dev->type == type)
964 			return dev;
965 
966 	return NULL;
967 }
968 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
969 
970 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
971 {
972 	struct net_device *dev, *ret = NULL;
973 
974 	rcu_read_lock();
975 	for_each_netdev_rcu(net, dev)
976 		if (dev->type == type) {
977 			dev_hold(dev);
978 			ret = dev;
979 			break;
980 		}
981 	rcu_read_unlock();
982 	return ret;
983 }
984 EXPORT_SYMBOL(dev_getfirstbyhwtype);
985 
986 /**
987  *	__dev_get_by_flags - find any device with given flags
988  *	@net: the applicable net namespace
989  *	@if_flags: IFF_* values
990  *	@mask: bitmask of bits in if_flags to check
991  *
992  *	Search for any interface with the given flags. Returns NULL if a device
993  *	is not found or a pointer to the device. Must be called inside
994  *	rtnl_lock(), and result refcount is unchanged.
995  */
996 
997 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
998 				      unsigned short mask)
999 {
1000 	struct net_device *dev, *ret;
1001 
1002 	ASSERT_RTNL();
1003 
1004 	ret = NULL;
1005 	for_each_netdev(net, dev) {
1006 		if (((dev->flags ^ if_flags) & mask) == 0) {
1007 			ret = dev;
1008 			break;
1009 		}
1010 	}
1011 	return ret;
1012 }
1013 EXPORT_SYMBOL(__dev_get_by_flags);
1014 
1015 /**
1016  *	dev_valid_name - check if name is okay for network device
1017  *	@name: name string
1018  *
1019  *	Network device names need to be valid file names to
1020  *	to allow sysfs to work.  We also disallow any kind of
1021  *	whitespace.
1022  */
1023 bool dev_valid_name(const char *name)
1024 {
1025 	if (*name == '\0')
1026 		return false;
1027 	if (strlen(name) >= IFNAMSIZ)
1028 		return false;
1029 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1030 		return false;
1031 
1032 	while (*name) {
1033 		if (*name == '/' || *name == ':' || isspace(*name))
1034 			return false;
1035 		name++;
1036 	}
1037 	return true;
1038 }
1039 EXPORT_SYMBOL(dev_valid_name);
1040 
1041 /**
1042  *	__dev_alloc_name - allocate a name for a device
1043  *	@net: network namespace to allocate the device name in
1044  *	@name: name format string
1045  *	@buf:  scratch buffer and result name string
1046  *
1047  *	Passed a format string - eg "lt%d" it will try and find a suitable
1048  *	id. It scans list of devices to build up a free map, then chooses
1049  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1050  *	while allocating the name and adding the device in order to avoid
1051  *	duplicates.
1052  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1053  *	Returns the number of the unit assigned or a negative errno code.
1054  */
1055 
1056 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1057 {
1058 	int i = 0;
1059 	const char *p;
1060 	const int max_netdevices = 8*PAGE_SIZE;
1061 	unsigned long *inuse;
1062 	struct net_device *d;
1063 
1064 	p = strnchr(name, IFNAMSIZ-1, '%');
1065 	if (p) {
1066 		/*
1067 		 * Verify the string as this thing may have come from
1068 		 * the user.  There must be either one "%d" and no other "%"
1069 		 * characters.
1070 		 */
1071 		if (p[1] != 'd' || strchr(p + 2, '%'))
1072 			return -EINVAL;
1073 
1074 		/* Use one page as a bit array of possible slots */
1075 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1076 		if (!inuse)
1077 			return -ENOMEM;
1078 
1079 		for_each_netdev(net, d) {
1080 			if (!sscanf(d->name, name, &i))
1081 				continue;
1082 			if (i < 0 || i >= max_netdevices)
1083 				continue;
1084 
1085 			/*  avoid cases where sscanf is not exact inverse of printf */
1086 			snprintf(buf, IFNAMSIZ, name, i);
1087 			if (!strncmp(buf, d->name, IFNAMSIZ))
1088 				set_bit(i, inuse);
1089 		}
1090 
1091 		i = find_first_zero_bit(inuse, max_netdevices);
1092 		free_page((unsigned long) inuse);
1093 	}
1094 
1095 	if (buf != name)
1096 		snprintf(buf, IFNAMSIZ, name, i);
1097 	if (!__dev_get_by_name(net, buf))
1098 		return i;
1099 
1100 	/* It is possible to run out of possible slots
1101 	 * when the name is long and there isn't enough space left
1102 	 * for the digits, or if all bits are used.
1103 	 */
1104 	return -ENFILE;
1105 }
1106 
1107 /**
1108  *	dev_alloc_name - allocate a name for a device
1109  *	@dev: device
1110  *	@name: name format string
1111  *
1112  *	Passed a format string - eg "lt%d" it will try and find a suitable
1113  *	id. It scans list of devices to build up a free map, then chooses
1114  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *	while allocating the name and adding the device in order to avoid
1116  *	duplicates.
1117  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *	Returns the number of the unit assigned or a negative errno code.
1119  */
1120 
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123 	char buf[IFNAMSIZ];
1124 	struct net *net;
1125 	int ret;
1126 
1127 	BUG_ON(!dev_net(dev));
1128 	net = dev_net(dev);
1129 	ret = __dev_alloc_name(net, name, buf);
1130 	if (ret >= 0)
1131 		strlcpy(dev->name, buf, IFNAMSIZ);
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL(dev_alloc_name);
1135 
1136 static int dev_alloc_name_ns(struct net *net,
1137 			     struct net_device *dev,
1138 			     const char *name)
1139 {
1140 	char buf[IFNAMSIZ];
1141 	int ret;
1142 
1143 	ret = __dev_alloc_name(net, name, buf);
1144 	if (ret >= 0)
1145 		strlcpy(dev->name, buf, IFNAMSIZ);
1146 	return ret;
1147 }
1148 
1149 static int dev_get_valid_name(struct net *net,
1150 			      struct net_device *dev,
1151 			      const char *name)
1152 {
1153 	BUG_ON(!net);
1154 
1155 	if (!dev_valid_name(name))
1156 		return -EINVAL;
1157 
1158 	if (strchr(name, '%'))
1159 		return dev_alloc_name_ns(net, dev, name);
1160 	else if (__dev_get_by_name(net, name))
1161 		return -EEXIST;
1162 	else if (dev->name != name)
1163 		strlcpy(dev->name, name, IFNAMSIZ);
1164 
1165 	return 0;
1166 }
1167 
1168 /**
1169  *	dev_change_name - change name of a device
1170  *	@dev: device
1171  *	@newname: name (or format string) must be at least IFNAMSIZ
1172  *
1173  *	Change name of a device, can pass format strings "eth%d".
1174  *	for wildcarding.
1175  */
1176 int dev_change_name(struct net_device *dev, const char *newname)
1177 {
1178 	unsigned char old_assign_type;
1179 	char oldname[IFNAMSIZ];
1180 	int err = 0;
1181 	int ret;
1182 	struct net *net;
1183 
1184 	ASSERT_RTNL();
1185 	BUG_ON(!dev_net(dev));
1186 
1187 	net = dev_net(dev);
1188 	if (dev->flags & IFF_UP)
1189 		return -EBUSY;
1190 
1191 	write_seqcount_begin(&devnet_rename_seq);
1192 
1193 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1194 		write_seqcount_end(&devnet_rename_seq);
1195 		return 0;
1196 	}
1197 
1198 	memcpy(oldname, dev->name, IFNAMSIZ);
1199 
1200 	err = dev_get_valid_name(net, dev, newname);
1201 	if (err < 0) {
1202 		write_seqcount_end(&devnet_rename_seq);
1203 		return err;
1204 	}
1205 
1206 	if (oldname[0] && !strchr(oldname, '%'))
1207 		netdev_info(dev, "renamed from %s\n", oldname);
1208 
1209 	old_assign_type = dev->name_assign_type;
1210 	dev->name_assign_type = NET_NAME_RENAMED;
1211 
1212 rollback:
1213 	ret = device_rename(&dev->dev, dev->name);
1214 	if (ret) {
1215 		memcpy(dev->name, oldname, IFNAMSIZ);
1216 		dev->name_assign_type = old_assign_type;
1217 		write_seqcount_end(&devnet_rename_seq);
1218 		return ret;
1219 	}
1220 
1221 	write_seqcount_end(&devnet_rename_seq);
1222 
1223 	netdev_adjacent_rename_links(dev, oldname);
1224 
1225 	write_lock_bh(&dev_base_lock);
1226 	hlist_del_rcu(&dev->name_hlist);
1227 	write_unlock_bh(&dev_base_lock);
1228 
1229 	synchronize_rcu();
1230 
1231 	write_lock_bh(&dev_base_lock);
1232 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1233 	write_unlock_bh(&dev_base_lock);
1234 
1235 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1236 	ret = notifier_to_errno(ret);
1237 
1238 	if (ret) {
1239 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1240 		if (err >= 0) {
1241 			err = ret;
1242 			write_seqcount_begin(&devnet_rename_seq);
1243 			memcpy(dev->name, oldname, IFNAMSIZ);
1244 			memcpy(oldname, newname, IFNAMSIZ);
1245 			dev->name_assign_type = old_assign_type;
1246 			old_assign_type = NET_NAME_RENAMED;
1247 			goto rollback;
1248 		} else {
1249 			pr_err("%s: name change rollback failed: %d\n",
1250 			       dev->name, ret);
1251 		}
1252 	}
1253 
1254 	return err;
1255 }
1256 
1257 /**
1258  *	dev_set_alias - change ifalias of a device
1259  *	@dev: device
1260  *	@alias: name up to IFALIASZ
1261  *	@len: limit of bytes to copy from info
1262  *
1263  *	Set ifalias for a device,
1264  */
1265 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1266 {
1267 	char *new_ifalias;
1268 
1269 	ASSERT_RTNL();
1270 
1271 	if (len >= IFALIASZ)
1272 		return -EINVAL;
1273 
1274 	if (!len) {
1275 		kfree(dev->ifalias);
1276 		dev->ifalias = NULL;
1277 		return 0;
1278 	}
1279 
1280 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1281 	if (!new_ifalias)
1282 		return -ENOMEM;
1283 	dev->ifalias = new_ifalias;
1284 
1285 	strlcpy(dev->ifalias, alias, len+1);
1286 	return len;
1287 }
1288 
1289 
1290 /**
1291  *	netdev_features_change - device changes features
1292  *	@dev: device to cause notification
1293  *
1294  *	Called to indicate a device has changed features.
1295  */
1296 void netdev_features_change(struct net_device *dev)
1297 {
1298 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1299 }
1300 EXPORT_SYMBOL(netdev_features_change);
1301 
1302 /**
1303  *	netdev_state_change - device changes state
1304  *	@dev: device to cause notification
1305  *
1306  *	Called to indicate a device has changed state. This function calls
1307  *	the notifier chains for netdev_chain and sends a NEWLINK message
1308  *	to the routing socket.
1309  */
1310 void netdev_state_change(struct net_device *dev)
1311 {
1312 	if (dev->flags & IFF_UP) {
1313 		struct netdev_notifier_change_info change_info;
1314 
1315 		change_info.flags_changed = 0;
1316 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1317 					      &change_info.info);
1318 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1319 	}
1320 }
1321 EXPORT_SYMBOL(netdev_state_change);
1322 
1323 /**
1324  * netdev_notify_peers - notify network peers about existence of @dev
1325  * @dev: network device
1326  *
1327  * Generate traffic such that interested network peers are aware of
1328  * @dev, such as by generating a gratuitous ARP. This may be used when
1329  * a device wants to inform the rest of the network about some sort of
1330  * reconfiguration such as a failover event or virtual machine
1331  * migration.
1332  */
1333 void netdev_notify_peers(struct net_device *dev)
1334 {
1335 	rtnl_lock();
1336 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1337 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1338 	rtnl_unlock();
1339 }
1340 EXPORT_SYMBOL(netdev_notify_peers);
1341 
1342 static int __dev_open(struct net_device *dev)
1343 {
1344 	const struct net_device_ops *ops = dev->netdev_ops;
1345 	int ret;
1346 
1347 	ASSERT_RTNL();
1348 
1349 	if (!netif_device_present(dev))
1350 		return -ENODEV;
1351 
1352 	/* Block netpoll from trying to do any rx path servicing.
1353 	 * If we don't do this there is a chance ndo_poll_controller
1354 	 * or ndo_poll may be running while we open the device
1355 	 */
1356 	netpoll_poll_disable(dev);
1357 
1358 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1359 	ret = notifier_to_errno(ret);
1360 	if (ret)
1361 		return ret;
1362 
1363 	set_bit(__LINK_STATE_START, &dev->state);
1364 
1365 	if (ops->ndo_validate_addr)
1366 		ret = ops->ndo_validate_addr(dev);
1367 
1368 	if (!ret && ops->ndo_open)
1369 		ret = ops->ndo_open(dev);
1370 
1371 	netpoll_poll_enable(dev);
1372 
1373 	if (ret)
1374 		clear_bit(__LINK_STATE_START, &dev->state);
1375 	else {
1376 		dev->flags |= IFF_UP;
1377 		dev_set_rx_mode(dev);
1378 		dev_activate(dev);
1379 		add_device_randomness(dev->dev_addr, dev->addr_len);
1380 	}
1381 
1382 	return ret;
1383 }
1384 
1385 /**
1386  *	dev_open	- prepare an interface for use.
1387  *	@dev:	device to open
1388  *
1389  *	Takes a device from down to up state. The device's private open
1390  *	function is invoked and then the multicast lists are loaded. Finally
1391  *	the device is moved into the up state and a %NETDEV_UP message is
1392  *	sent to the netdev notifier chain.
1393  *
1394  *	Calling this function on an active interface is a nop. On a failure
1395  *	a negative errno code is returned.
1396  */
1397 int dev_open(struct net_device *dev)
1398 {
1399 	int ret;
1400 
1401 	if (dev->flags & IFF_UP)
1402 		return 0;
1403 
1404 	ret = __dev_open(dev);
1405 	if (ret < 0)
1406 		return ret;
1407 
1408 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1409 	call_netdevice_notifiers(NETDEV_UP, dev);
1410 
1411 	return ret;
1412 }
1413 EXPORT_SYMBOL(dev_open);
1414 
1415 static int __dev_close_many(struct list_head *head)
1416 {
1417 	struct net_device *dev;
1418 
1419 	ASSERT_RTNL();
1420 	might_sleep();
1421 
1422 	list_for_each_entry(dev, head, close_list) {
1423 		/* Temporarily disable netpoll until the interface is down */
1424 		netpoll_poll_disable(dev);
1425 
1426 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1427 
1428 		clear_bit(__LINK_STATE_START, &dev->state);
1429 
1430 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1431 		 * can be even on different cpu. So just clear netif_running().
1432 		 *
1433 		 * dev->stop() will invoke napi_disable() on all of it's
1434 		 * napi_struct instances on this device.
1435 		 */
1436 		smp_mb__after_atomic(); /* Commit netif_running(). */
1437 	}
1438 
1439 	dev_deactivate_many(head);
1440 
1441 	list_for_each_entry(dev, head, close_list) {
1442 		const struct net_device_ops *ops = dev->netdev_ops;
1443 
1444 		/*
1445 		 *	Call the device specific close. This cannot fail.
1446 		 *	Only if device is UP
1447 		 *
1448 		 *	We allow it to be called even after a DETACH hot-plug
1449 		 *	event.
1450 		 */
1451 		if (ops->ndo_stop)
1452 			ops->ndo_stop(dev);
1453 
1454 		dev->flags &= ~IFF_UP;
1455 		netpoll_poll_enable(dev);
1456 	}
1457 
1458 	return 0;
1459 }
1460 
1461 static int __dev_close(struct net_device *dev)
1462 {
1463 	int retval;
1464 	LIST_HEAD(single);
1465 
1466 	list_add(&dev->close_list, &single);
1467 	retval = __dev_close_many(&single);
1468 	list_del(&single);
1469 
1470 	return retval;
1471 }
1472 
1473 int dev_close_many(struct list_head *head, bool unlink)
1474 {
1475 	struct net_device *dev, *tmp;
1476 
1477 	/* Remove the devices that don't need to be closed */
1478 	list_for_each_entry_safe(dev, tmp, head, close_list)
1479 		if (!(dev->flags & IFF_UP))
1480 			list_del_init(&dev->close_list);
1481 
1482 	__dev_close_many(head);
1483 
1484 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1485 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1486 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1487 		if (unlink)
1488 			list_del_init(&dev->close_list);
1489 	}
1490 
1491 	return 0;
1492 }
1493 EXPORT_SYMBOL(dev_close_many);
1494 
1495 /**
1496  *	dev_close - shutdown an interface.
1497  *	@dev: device to shutdown
1498  *
1499  *	This function moves an active device into down state. A
1500  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1501  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1502  *	chain.
1503  */
1504 int dev_close(struct net_device *dev)
1505 {
1506 	if (dev->flags & IFF_UP) {
1507 		LIST_HEAD(single);
1508 
1509 		list_add(&dev->close_list, &single);
1510 		dev_close_many(&single, true);
1511 		list_del(&single);
1512 	}
1513 	return 0;
1514 }
1515 EXPORT_SYMBOL(dev_close);
1516 
1517 
1518 /**
1519  *	dev_disable_lro - disable Large Receive Offload on a device
1520  *	@dev: device
1521  *
1522  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1523  *	called under RTNL.  This is needed if received packets may be
1524  *	forwarded to another interface.
1525  */
1526 void dev_disable_lro(struct net_device *dev)
1527 {
1528 	struct net_device *lower_dev;
1529 	struct list_head *iter;
1530 
1531 	dev->wanted_features &= ~NETIF_F_LRO;
1532 	netdev_update_features(dev);
1533 
1534 	if (unlikely(dev->features & NETIF_F_LRO))
1535 		netdev_WARN(dev, "failed to disable LRO!\n");
1536 
1537 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1538 		dev_disable_lro(lower_dev);
1539 }
1540 EXPORT_SYMBOL(dev_disable_lro);
1541 
1542 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1543 				   struct net_device *dev)
1544 {
1545 	struct netdev_notifier_info info;
1546 
1547 	netdev_notifier_info_init(&info, dev);
1548 	return nb->notifier_call(nb, val, &info);
1549 }
1550 
1551 static int dev_boot_phase = 1;
1552 
1553 /**
1554  * register_netdevice_notifier - register a network notifier block
1555  * @nb: notifier
1556  *
1557  * Register a notifier to be called when network device events occur.
1558  * The notifier passed is linked into the kernel structures and must
1559  * not be reused until it has been unregistered. A negative errno code
1560  * is returned on a failure.
1561  *
1562  * When registered all registration and up events are replayed
1563  * to the new notifier to allow device to have a race free
1564  * view of the network device list.
1565  */
1566 
1567 int register_netdevice_notifier(struct notifier_block *nb)
1568 {
1569 	struct net_device *dev;
1570 	struct net_device *last;
1571 	struct net *net;
1572 	int err;
1573 
1574 	rtnl_lock();
1575 	err = raw_notifier_chain_register(&netdev_chain, nb);
1576 	if (err)
1577 		goto unlock;
1578 	if (dev_boot_phase)
1579 		goto unlock;
1580 	for_each_net(net) {
1581 		for_each_netdev(net, dev) {
1582 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1583 			err = notifier_to_errno(err);
1584 			if (err)
1585 				goto rollback;
1586 
1587 			if (!(dev->flags & IFF_UP))
1588 				continue;
1589 
1590 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1591 		}
1592 	}
1593 
1594 unlock:
1595 	rtnl_unlock();
1596 	return err;
1597 
1598 rollback:
1599 	last = dev;
1600 	for_each_net(net) {
1601 		for_each_netdev(net, dev) {
1602 			if (dev == last)
1603 				goto outroll;
1604 
1605 			if (dev->flags & IFF_UP) {
1606 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1607 							dev);
1608 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1609 			}
1610 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1611 		}
1612 	}
1613 
1614 outroll:
1615 	raw_notifier_chain_unregister(&netdev_chain, nb);
1616 	goto unlock;
1617 }
1618 EXPORT_SYMBOL(register_netdevice_notifier);
1619 
1620 /**
1621  * unregister_netdevice_notifier - unregister a network notifier block
1622  * @nb: notifier
1623  *
1624  * Unregister a notifier previously registered by
1625  * register_netdevice_notifier(). The notifier is unlinked into the
1626  * kernel structures and may then be reused. A negative errno code
1627  * is returned on a failure.
1628  *
1629  * After unregistering unregister and down device events are synthesized
1630  * for all devices on the device list to the removed notifier to remove
1631  * the need for special case cleanup code.
1632  */
1633 
1634 int unregister_netdevice_notifier(struct notifier_block *nb)
1635 {
1636 	struct net_device *dev;
1637 	struct net *net;
1638 	int err;
1639 
1640 	rtnl_lock();
1641 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1642 	if (err)
1643 		goto unlock;
1644 
1645 	for_each_net(net) {
1646 		for_each_netdev(net, dev) {
1647 			if (dev->flags & IFF_UP) {
1648 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1649 							dev);
1650 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1651 			}
1652 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1653 		}
1654 	}
1655 unlock:
1656 	rtnl_unlock();
1657 	return err;
1658 }
1659 EXPORT_SYMBOL(unregister_netdevice_notifier);
1660 
1661 /**
1662  *	call_netdevice_notifiers_info - call all network notifier blocks
1663  *	@val: value passed unmodified to notifier function
1664  *	@dev: net_device pointer passed unmodified to notifier function
1665  *	@info: notifier information data
1666  *
1667  *	Call all network notifier blocks.  Parameters and return value
1668  *	are as for raw_notifier_call_chain().
1669  */
1670 
1671 static int call_netdevice_notifiers_info(unsigned long val,
1672 					 struct net_device *dev,
1673 					 struct netdev_notifier_info *info)
1674 {
1675 	ASSERT_RTNL();
1676 	netdev_notifier_info_init(info, dev);
1677 	return raw_notifier_call_chain(&netdev_chain, val, info);
1678 }
1679 
1680 /**
1681  *	call_netdevice_notifiers - call all network notifier blocks
1682  *      @val: value passed unmodified to notifier function
1683  *      @dev: net_device pointer passed unmodified to notifier function
1684  *
1685  *	Call all network notifier blocks.  Parameters and return value
1686  *	are as for raw_notifier_call_chain().
1687  */
1688 
1689 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1690 {
1691 	struct netdev_notifier_info info;
1692 
1693 	return call_netdevice_notifiers_info(val, dev, &info);
1694 }
1695 EXPORT_SYMBOL(call_netdevice_notifiers);
1696 
1697 #ifdef CONFIG_NET_INGRESS
1698 static struct static_key ingress_needed __read_mostly;
1699 
1700 void net_inc_ingress_queue(void)
1701 {
1702 	static_key_slow_inc(&ingress_needed);
1703 }
1704 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1705 
1706 void net_dec_ingress_queue(void)
1707 {
1708 	static_key_slow_dec(&ingress_needed);
1709 }
1710 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1711 #endif
1712 
1713 #ifdef CONFIG_NET_EGRESS
1714 static struct static_key egress_needed __read_mostly;
1715 
1716 void net_inc_egress_queue(void)
1717 {
1718 	static_key_slow_inc(&egress_needed);
1719 }
1720 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1721 
1722 void net_dec_egress_queue(void)
1723 {
1724 	static_key_slow_dec(&egress_needed);
1725 }
1726 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1727 #endif
1728 
1729 static struct static_key netstamp_needed __read_mostly;
1730 #ifdef HAVE_JUMP_LABEL
1731 static atomic_t netstamp_needed_deferred;
1732 static atomic_t netstamp_wanted;
1733 static void netstamp_clear(struct work_struct *work)
1734 {
1735 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1736 	int wanted;
1737 
1738 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1739 	if (wanted > 0)
1740 		static_key_enable(&netstamp_needed);
1741 	else
1742 		static_key_disable(&netstamp_needed);
1743 }
1744 static DECLARE_WORK(netstamp_work, netstamp_clear);
1745 #endif
1746 
1747 void net_enable_timestamp(void)
1748 {
1749 #ifdef HAVE_JUMP_LABEL
1750 	int wanted;
1751 
1752 	while (1) {
1753 		wanted = atomic_read(&netstamp_wanted);
1754 		if (wanted <= 0)
1755 			break;
1756 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1757 			return;
1758 	}
1759 	atomic_inc(&netstamp_needed_deferred);
1760 	schedule_work(&netstamp_work);
1761 #else
1762 	static_key_slow_inc(&netstamp_needed);
1763 #endif
1764 }
1765 EXPORT_SYMBOL(net_enable_timestamp);
1766 
1767 void net_disable_timestamp(void)
1768 {
1769 #ifdef HAVE_JUMP_LABEL
1770 	int wanted;
1771 
1772 	while (1) {
1773 		wanted = atomic_read(&netstamp_wanted);
1774 		if (wanted <= 1)
1775 			break;
1776 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1777 			return;
1778 	}
1779 	atomic_dec(&netstamp_needed_deferred);
1780 	schedule_work(&netstamp_work);
1781 #else
1782 	static_key_slow_dec(&netstamp_needed);
1783 #endif
1784 }
1785 EXPORT_SYMBOL(net_disable_timestamp);
1786 
1787 static inline void net_timestamp_set(struct sk_buff *skb)
1788 {
1789 	skb->tstamp = 0;
1790 	if (static_key_false(&netstamp_needed))
1791 		__net_timestamp(skb);
1792 }
1793 
1794 #define net_timestamp_check(COND, SKB)			\
1795 	if (static_key_false(&netstamp_needed)) {		\
1796 		if ((COND) && !(SKB)->tstamp)	\
1797 			__net_timestamp(SKB);		\
1798 	}						\
1799 
1800 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1801 {
1802 	unsigned int len;
1803 
1804 	if (!(dev->flags & IFF_UP))
1805 		return false;
1806 
1807 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1808 	if (skb->len <= len)
1809 		return true;
1810 
1811 	/* if TSO is enabled, we don't care about the length as the packet
1812 	 * could be forwarded without being segmented before
1813 	 */
1814 	if (skb_is_gso(skb))
1815 		return true;
1816 
1817 	return false;
1818 }
1819 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1820 
1821 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1822 {
1823 	int ret = ____dev_forward_skb(dev, skb);
1824 
1825 	if (likely(!ret)) {
1826 		skb->protocol = eth_type_trans(skb, dev);
1827 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1828 	}
1829 
1830 	return ret;
1831 }
1832 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1833 
1834 /**
1835  * dev_forward_skb - loopback an skb to another netif
1836  *
1837  * @dev: destination network device
1838  * @skb: buffer to forward
1839  *
1840  * return values:
1841  *	NET_RX_SUCCESS	(no congestion)
1842  *	NET_RX_DROP     (packet was dropped, but freed)
1843  *
1844  * dev_forward_skb can be used for injecting an skb from the
1845  * start_xmit function of one device into the receive queue
1846  * of another device.
1847  *
1848  * The receiving device may be in another namespace, so
1849  * we have to clear all information in the skb that could
1850  * impact namespace isolation.
1851  */
1852 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1853 {
1854 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1855 }
1856 EXPORT_SYMBOL_GPL(dev_forward_skb);
1857 
1858 static inline int deliver_skb(struct sk_buff *skb,
1859 			      struct packet_type *pt_prev,
1860 			      struct net_device *orig_dev)
1861 {
1862 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1863 		return -ENOMEM;
1864 	atomic_inc(&skb->users);
1865 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1866 }
1867 
1868 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1869 					  struct packet_type **pt,
1870 					  struct net_device *orig_dev,
1871 					  __be16 type,
1872 					  struct list_head *ptype_list)
1873 {
1874 	struct packet_type *ptype, *pt_prev = *pt;
1875 
1876 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1877 		if (ptype->type != type)
1878 			continue;
1879 		if (pt_prev)
1880 			deliver_skb(skb, pt_prev, orig_dev);
1881 		pt_prev = ptype;
1882 	}
1883 	*pt = pt_prev;
1884 }
1885 
1886 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1887 {
1888 	if (!ptype->af_packet_priv || !skb->sk)
1889 		return false;
1890 
1891 	if (ptype->id_match)
1892 		return ptype->id_match(ptype, skb->sk);
1893 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1894 		return true;
1895 
1896 	return false;
1897 }
1898 
1899 /*
1900  *	Support routine. Sends outgoing frames to any network
1901  *	taps currently in use.
1902  */
1903 
1904 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1905 {
1906 	struct packet_type *ptype;
1907 	struct sk_buff *skb2 = NULL;
1908 	struct packet_type *pt_prev = NULL;
1909 	struct list_head *ptype_list = &ptype_all;
1910 
1911 	rcu_read_lock();
1912 again:
1913 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1914 		/* Never send packets back to the socket
1915 		 * they originated from - MvS (miquels@drinkel.ow.org)
1916 		 */
1917 		if (skb_loop_sk(ptype, skb))
1918 			continue;
1919 
1920 		if (pt_prev) {
1921 			deliver_skb(skb2, pt_prev, skb->dev);
1922 			pt_prev = ptype;
1923 			continue;
1924 		}
1925 
1926 		/* need to clone skb, done only once */
1927 		skb2 = skb_clone(skb, GFP_ATOMIC);
1928 		if (!skb2)
1929 			goto out_unlock;
1930 
1931 		net_timestamp_set(skb2);
1932 
1933 		/* skb->nh should be correctly
1934 		 * set by sender, so that the second statement is
1935 		 * just protection against buggy protocols.
1936 		 */
1937 		skb_reset_mac_header(skb2);
1938 
1939 		if (skb_network_header(skb2) < skb2->data ||
1940 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1941 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1942 					     ntohs(skb2->protocol),
1943 					     dev->name);
1944 			skb_reset_network_header(skb2);
1945 		}
1946 
1947 		skb2->transport_header = skb2->network_header;
1948 		skb2->pkt_type = PACKET_OUTGOING;
1949 		pt_prev = ptype;
1950 	}
1951 
1952 	if (ptype_list == &ptype_all) {
1953 		ptype_list = &dev->ptype_all;
1954 		goto again;
1955 	}
1956 out_unlock:
1957 	if (pt_prev)
1958 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1959 	rcu_read_unlock();
1960 }
1961 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1962 
1963 /**
1964  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1965  * @dev: Network device
1966  * @txq: number of queues available
1967  *
1968  * If real_num_tx_queues is changed the tc mappings may no longer be
1969  * valid. To resolve this verify the tc mapping remains valid and if
1970  * not NULL the mapping. With no priorities mapping to this
1971  * offset/count pair it will no longer be used. In the worst case TC0
1972  * is invalid nothing can be done so disable priority mappings. If is
1973  * expected that drivers will fix this mapping if they can before
1974  * calling netif_set_real_num_tx_queues.
1975  */
1976 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1977 {
1978 	int i;
1979 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1980 
1981 	/* If TC0 is invalidated disable TC mapping */
1982 	if (tc->offset + tc->count > txq) {
1983 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1984 		dev->num_tc = 0;
1985 		return;
1986 	}
1987 
1988 	/* Invalidated prio to tc mappings set to TC0 */
1989 	for (i = 1; i < TC_BITMASK + 1; i++) {
1990 		int q = netdev_get_prio_tc_map(dev, i);
1991 
1992 		tc = &dev->tc_to_txq[q];
1993 		if (tc->offset + tc->count > txq) {
1994 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1995 				i, q);
1996 			netdev_set_prio_tc_map(dev, i, 0);
1997 		}
1998 	}
1999 }
2000 
2001 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2002 {
2003 	if (dev->num_tc) {
2004 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2005 		int i;
2006 
2007 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2008 			if ((txq - tc->offset) < tc->count)
2009 				return i;
2010 		}
2011 
2012 		return -1;
2013 	}
2014 
2015 	return 0;
2016 }
2017 
2018 #ifdef CONFIG_XPS
2019 static DEFINE_MUTEX(xps_map_mutex);
2020 #define xmap_dereference(P)		\
2021 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2022 
2023 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2024 			     int tci, u16 index)
2025 {
2026 	struct xps_map *map = NULL;
2027 	int pos;
2028 
2029 	if (dev_maps)
2030 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2031 	if (!map)
2032 		return false;
2033 
2034 	for (pos = map->len; pos--;) {
2035 		if (map->queues[pos] != index)
2036 			continue;
2037 
2038 		if (map->len > 1) {
2039 			map->queues[pos] = map->queues[--map->len];
2040 			break;
2041 		}
2042 
2043 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2044 		kfree_rcu(map, rcu);
2045 		return false;
2046 	}
2047 
2048 	return true;
2049 }
2050 
2051 static bool remove_xps_queue_cpu(struct net_device *dev,
2052 				 struct xps_dev_maps *dev_maps,
2053 				 int cpu, u16 offset, u16 count)
2054 {
2055 	int num_tc = dev->num_tc ? : 1;
2056 	bool active = false;
2057 	int tci;
2058 
2059 	for (tci = cpu * num_tc; num_tc--; tci++) {
2060 		int i, j;
2061 
2062 		for (i = count, j = offset; i--; j++) {
2063 			if (!remove_xps_queue(dev_maps, cpu, j))
2064 				break;
2065 		}
2066 
2067 		active |= i < 0;
2068 	}
2069 
2070 	return active;
2071 }
2072 
2073 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2074 				   u16 count)
2075 {
2076 	struct xps_dev_maps *dev_maps;
2077 	int cpu, i;
2078 	bool active = false;
2079 
2080 	mutex_lock(&xps_map_mutex);
2081 	dev_maps = xmap_dereference(dev->xps_maps);
2082 
2083 	if (!dev_maps)
2084 		goto out_no_maps;
2085 
2086 	for_each_possible_cpu(cpu)
2087 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2088 					       offset, count);
2089 
2090 	if (!active) {
2091 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2092 		kfree_rcu(dev_maps, rcu);
2093 	}
2094 
2095 	for (i = offset + (count - 1); count--; i--)
2096 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2097 					     NUMA_NO_NODE);
2098 
2099 out_no_maps:
2100 	mutex_unlock(&xps_map_mutex);
2101 }
2102 
2103 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2104 {
2105 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2106 }
2107 
2108 static struct xps_map *expand_xps_map(struct xps_map *map,
2109 				      int cpu, u16 index)
2110 {
2111 	struct xps_map *new_map;
2112 	int alloc_len = XPS_MIN_MAP_ALLOC;
2113 	int i, pos;
2114 
2115 	for (pos = 0; map && pos < map->len; pos++) {
2116 		if (map->queues[pos] != index)
2117 			continue;
2118 		return map;
2119 	}
2120 
2121 	/* Need to add queue to this CPU's existing map */
2122 	if (map) {
2123 		if (pos < map->alloc_len)
2124 			return map;
2125 
2126 		alloc_len = map->alloc_len * 2;
2127 	}
2128 
2129 	/* Need to allocate new map to store queue on this CPU's map */
2130 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2131 			       cpu_to_node(cpu));
2132 	if (!new_map)
2133 		return NULL;
2134 
2135 	for (i = 0; i < pos; i++)
2136 		new_map->queues[i] = map->queues[i];
2137 	new_map->alloc_len = alloc_len;
2138 	new_map->len = pos;
2139 
2140 	return new_map;
2141 }
2142 
2143 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2144 			u16 index)
2145 {
2146 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2147 	int i, cpu, tci, numa_node_id = -2;
2148 	int maps_sz, num_tc = 1, tc = 0;
2149 	struct xps_map *map, *new_map;
2150 	bool active = false;
2151 
2152 	if (dev->num_tc) {
2153 		num_tc = dev->num_tc;
2154 		tc = netdev_txq_to_tc(dev, index);
2155 		if (tc < 0)
2156 			return -EINVAL;
2157 	}
2158 
2159 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2160 	if (maps_sz < L1_CACHE_BYTES)
2161 		maps_sz = L1_CACHE_BYTES;
2162 
2163 	mutex_lock(&xps_map_mutex);
2164 
2165 	dev_maps = xmap_dereference(dev->xps_maps);
2166 
2167 	/* allocate memory for queue storage */
2168 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2169 		if (!new_dev_maps)
2170 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2171 		if (!new_dev_maps) {
2172 			mutex_unlock(&xps_map_mutex);
2173 			return -ENOMEM;
2174 		}
2175 
2176 		tci = cpu * num_tc + tc;
2177 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2178 				 NULL;
2179 
2180 		map = expand_xps_map(map, cpu, index);
2181 		if (!map)
2182 			goto error;
2183 
2184 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2185 	}
2186 
2187 	if (!new_dev_maps)
2188 		goto out_no_new_maps;
2189 
2190 	for_each_possible_cpu(cpu) {
2191 		/* copy maps belonging to foreign traffic classes */
2192 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2193 			/* fill in the new device map from the old device map */
2194 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2195 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2196 		}
2197 
2198 		/* We need to explicitly update tci as prevous loop
2199 		 * could break out early if dev_maps is NULL.
2200 		 */
2201 		tci = cpu * num_tc + tc;
2202 
2203 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2204 			/* add queue to CPU maps */
2205 			int pos = 0;
2206 
2207 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2208 			while ((pos < map->len) && (map->queues[pos] != index))
2209 				pos++;
2210 
2211 			if (pos == map->len)
2212 				map->queues[map->len++] = index;
2213 #ifdef CONFIG_NUMA
2214 			if (numa_node_id == -2)
2215 				numa_node_id = cpu_to_node(cpu);
2216 			else if (numa_node_id != cpu_to_node(cpu))
2217 				numa_node_id = -1;
2218 #endif
2219 		} else if (dev_maps) {
2220 			/* fill in the new device map from the old device map */
2221 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2222 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2223 		}
2224 
2225 		/* copy maps belonging to foreign traffic classes */
2226 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2227 			/* fill in the new device map from the old device map */
2228 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2229 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2230 		}
2231 	}
2232 
2233 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2234 
2235 	/* Cleanup old maps */
2236 	if (!dev_maps)
2237 		goto out_no_old_maps;
2238 
2239 	for_each_possible_cpu(cpu) {
2240 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2241 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2242 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2243 			if (map && map != new_map)
2244 				kfree_rcu(map, rcu);
2245 		}
2246 	}
2247 
2248 	kfree_rcu(dev_maps, rcu);
2249 
2250 out_no_old_maps:
2251 	dev_maps = new_dev_maps;
2252 	active = true;
2253 
2254 out_no_new_maps:
2255 	/* update Tx queue numa node */
2256 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2257 				     (numa_node_id >= 0) ? numa_node_id :
2258 				     NUMA_NO_NODE);
2259 
2260 	if (!dev_maps)
2261 		goto out_no_maps;
2262 
2263 	/* removes queue from unused CPUs */
2264 	for_each_possible_cpu(cpu) {
2265 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2266 			active |= remove_xps_queue(dev_maps, tci, index);
2267 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2268 			active |= remove_xps_queue(dev_maps, tci, index);
2269 		for (i = num_tc - tc, tci++; --i; tci++)
2270 			active |= remove_xps_queue(dev_maps, tci, index);
2271 	}
2272 
2273 	/* free map if not active */
2274 	if (!active) {
2275 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2276 		kfree_rcu(dev_maps, rcu);
2277 	}
2278 
2279 out_no_maps:
2280 	mutex_unlock(&xps_map_mutex);
2281 
2282 	return 0;
2283 error:
2284 	/* remove any maps that we added */
2285 	for_each_possible_cpu(cpu) {
2286 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2287 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2288 			map = dev_maps ?
2289 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2290 			      NULL;
2291 			if (new_map && new_map != map)
2292 				kfree(new_map);
2293 		}
2294 	}
2295 
2296 	mutex_unlock(&xps_map_mutex);
2297 
2298 	kfree(new_dev_maps);
2299 	return -ENOMEM;
2300 }
2301 EXPORT_SYMBOL(netif_set_xps_queue);
2302 
2303 #endif
2304 void netdev_reset_tc(struct net_device *dev)
2305 {
2306 #ifdef CONFIG_XPS
2307 	netif_reset_xps_queues_gt(dev, 0);
2308 #endif
2309 	dev->num_tc = 0;
2310 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2311 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2312 }
2313 EXPORT_SYMBOL(netdev_reset_tc);
2314 
2315 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2316 {
2317 	if (tc >= dev->num_tc)
2318 		return -EINVAL;
2319 
2320 #ifdef CONFIG_XPS
2321 	netif_reset_xps_queues(dev, offset, count);
2322 #endif
2323 	dev->tc_to_txq[tc].count = count;
2324 	dev->tc_to_txq[tc].offset = offset;
2325 	return 0;
2326 }
2327 EXPORT_SYMBOL(netdev_set_tc_queue);
2328 
2329 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2330 {
2331 	if (num_tc > TC_MAX_QUEUE)
2332 		return -EINVAL;
2333 
2334 #ifdef CONFIG_XPS
2335 	netif_reset_xps_queues_gt(dev, 0);
2336 #endif
2337 	dev->num_tc = num_tc;
2338 	return 0;
2339 }
2340 EXPORT_SYMBOL(netdev_set_num_tc);
2341 
2342 /*
2343  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2344  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2345  */
2346 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2347 {
2348 	int rc;
2349 
2350 	if (txq < 1 || txq > dev->num_tx_queues)
2351 		return -EINVAL;
2352 
2353 	if (dev->reg_state == NETREG_REGISTERED ||
2354 	    dev->reg_state == NETREG_UNREGISTERING) {
2355 		ASSERT_RTNL();
2356 
2357 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2358 						  txq);
2359 		if (rc)
2360 			return rc;
2361 
2362 		if (dev->num_tc)
2363 			netif_setup_tc(dev, txq);
2364 
2365 		if (txq < dev->real_num_tx_queues) {
2366 			qdisc_reset_all_tx_gt(dev, txq);
2367 #ifdef CONFIG_XPS
2368 			netif_reset_xps_queues_gt(dev, txq);
2369 #endif
2370 		}
2371 	}
2372 
2373 	dev->real_num_tx_queues = txq;
2374 	return 0;
2375 }
2376 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2377 
2378 #ifdef CONFIG_SYSFS
2379 /**
2380  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2381  *	@dev: Network device
2382  *	@rxq: Actual number of RX queues
2383  *
2384  *	This must be called either with the rtnl_lock held or before
2385  *	registration of the net device.  Returns 0 on success, or a
2386  *	negative error code.  If called before registration, it always
2387  *	succeeds.
2388  */
2389 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2390 {
2391 	int rc;
2392 
2393 	if (rxq < 1 || rxq > dev->num_rx_queues)
2394 		return -EINVAL;
2395 
2396 	if (dev->reg_state == NETREG_REGISTERED) {
2397 		ASSERT_RTNL();
2398 
2399 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2400 						  rxq);
2401 		if (rc)
2402 			return rc;
2403 	}
2404 
2405 	dev->real_num_rx_queues = rxq;
2406 	return 0;
2407 }
2408 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2409 #endif
2410 
2411 /**
2412  * netif_get_num_default_rss_queues - default number of RSS queues
2413  *
2414  * This routine should set an upper limit on the number of RSS queues
2415  * used by default by multiqueue devices.
2416  */
2417 int netif_get_num_default_rss_queues(void)
2418 {
2419 	return is_kdump_kernel() ?
2420 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2421 }
2422 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2423 
2424 static void __netif_reschedule(struct Qdisc *q)
2425 {
2426 	struct softnet_data *sd;
2427 	unsigned long flags;
2428 
2429 	local_irq_save(flags);
2430 	sd = this_cpu_ptr(&softnet_data);
2431 	q->next_sched = NULL;
2432 	*sd->output_queue_tailp = q;
2433 	sd->output_queue_tailp = &q->next_sched;
2434 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2435 	local_irq_restore(flags);
2436 }
2437 
2438 void __netif_schedule(struct Qdisc *q)
2439 {
2440 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2441 		__netif_reschedule(q);
2442 }
2443 EXPORT_SYMBOL(__netif_schedule);
2444 
2445 struct dev_kfree_skb_cb {
2446 	enum skb_free_reason reason;
2447 };
2448 
2449 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2450 {
2451 	return (struct dev_kfree_skb_cb *)skb->cb;
2452 }
2453 
2454 void netif_schedule_queue(struct netdev_queue *txq)
2455 {
2456 	rcu_read_lock();
2457 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2458 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2459 
2460 		__netif_schedule(q);
2461 	}
2462 	rcu_read_unlock();
2463 }
2464 EXPORT_SYMBOL(netif_schedule_queue);
2465 
2466 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2467 {
2468 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2469 		struct Qdisc *q;
2470 
2471 		rcu_read_lock();
2472 		q = rcu_dereference(dev_queue->qdisc);
2473 		__netif_schedule(q);
2474 		rcu_read_unlock();
2475 	}
2476 }
2477 EXPORT_SYMBOL(netif_tx_wake_queue);
2478 
2479 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2480 {
2481 	unsigned long flags;
2482 
2483 	if (unlikely(!skb))
2484 		return;
2485 
2486 	if (likely(atomic_read(&skb->users) == 1)) {
2487 		smp_rmb();
2488 		atomic_set(&skb->users, 0);
2489 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2490 		return;
2491 	}
2492 	get_kfree_skb_cb(skb)->reason = reason;
2493 	local_irq_save(flags);
2494 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2495 	__this_cpu_write(softnet_data.completion_queue, skb);
2496 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2497 	local_irq_restore(flags);
2498 }
2499 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2500 
2501 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2502 {
2503 	if (in_irq() || irqs_disabled())
2504 		__dev_kfree_skb_irq(skb, reason);
2505 	else
2506 		dev_kfree_skb(skb);
2507 }
2508 EXPORT_SYMBOL(__dev_kfree_skb_any);
2509 
2510 
2511 /**
2512  * netif_device_detach - mark device as removed
2513  * @dev: network device
2514  *
2515  * Mark device as removed from system and therefore no longer available.
2516  */
2517 void netif_device_detach(struct net_device *dev)
2518 {
2519 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2520 	    netif_running(dev)) {
2521 		netif_tx_stop_all_queues(dev);
2522 	}
2523 }
2524 EXPORT_SYMBOL(netif_device_detach);
2525 
2526 /**
2527  * netif_device_attach - mark device as attached
2528  * @dev: network device
2529  *
2530  * Mark device as attached from system and restart if needed.
2531  */
2532 void netif_device_attach(struct net_device *dev)
2533 {
2534 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2535 	    netif_running(dev)) {
2536 		netif_tx_wake_all_queues(dev);
2537 		__netdev_watchdog_up(dev);
2538 	}
2539 }
2540 EXPORT_SYMBOL(netif_device_attach);
2541 
2542 /*
2543  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2544  * to be used as a distribution range.
2545  */
2546 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2547 		  unsigned int num_tx_queues)
2548 {
2549 	u32 hash;
2550 	u16 qoffset = 0;
2551 	u16 qcount = num_tx_queues;
2552 
2553 	if (skb_rx_queue_recorded(skb)) {
2554 		hash = skb_get_rx_queue(skb);
2555 		while (unlikely(hash >= num_tx_queues))
2556 			hash -= num_tx_queues;
2557 		return hash;
2558 	}
2559 
2560 	if (dev->num_tc) {
2561 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2562 
2563 		qoffset = dev->tc_to_txq[tc].offset;
2564 		qcount = dev->tc_to_txq[tc].count;
2565 	}
2566 
2567 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2568 }
2569 EXPORT_SYMBOL(__skb_tx_hash);
2570 
2571 static void skb_warn_bad_offload(const struct sk_buff *skb)
2572 {
2573 	static const netdev_features_t null_features;
2574 	struct net_device *dev = skb->dev;
2575 	const char *name = "";
2576 
2577 	if (!net_ratelimit())
2578 		return;
2579 
2580 	if (dev) {
2581 		if (dev->dev.parent)
2582 			name = dev_driver_string(dev->dev.parent);
2583 		else
2584 			name = netdev_name(dev);
2585 	}
2586 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2587 	     "gso_type=%d ip_summed=%d\n",
2588 	     name, dev ? &dev->features : &null_features,
2589 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2590 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2591 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2592 }
2593 
2594 /*
2595  * Invalidate hardware checksum when packet is to be mangled, and
2596  * complete checksum manually on outgoing path.
2597  */
2598 int skb_checksum_help(struct sk_buff *skb)
2599 {
2600 	__wsum csum;
2601 	int ret = 0, offset;
2602 
2603 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2604 		goto out_set_summed;
2605 
2606 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2607 		skb_warn_bad_offload(skb);
2608 		return -EINVAL;
2609 	}
2610 
2611 	/* Before computing a checksum, we should make sure no frag could
2612 	 * be modified by an external entity : checksum could be wrong.
2613 	 */
2614 	if (skb_has_shared_frag(skb)) {
2615 		ret = __skb_linearize(skb);
2616 		if (ret)
2617 			goto out;
2618 	}
2619 
2620 	offset = skb_checksum_start_offset(skb);
2621 	BUG_ON(offset >= skb_headlen(skb));
2622 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2623 
2624 	offset += skb->csum_offset;
2625 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2626 
2627 	if (skb_cloned(skb) &&
2628 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2629 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2630 		if (ret)
2631 			goto out;
2632 	}
2633 
2634 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2635 out_set_summed:
2636 	skb->ip_summed = CHECKSUM_NONE;
2637 out:
2638 	return ret;
2639 }
2640 EXPORT_SYMBOL(skb_checksum_help);
2641 
2642 int skb_crc32c_csum_help(struct sk_buff *skb)
2643 {
2644 	__le32 crc32c_csum;
2645 	int ret = 0, offset, start;
2646 
2647 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2648 		goto out;
2649 
2650 	if (unlikely(skb_is_gso(skb)))
2651 		goto out;
2652 
2653 	/* Before computing a checksum, we should make sure no frag could
2654 	 * be modified by an external entity : checksum could be wrong.
2655 	 */
2656 	if (unlikely(skb_has_shared_frag(skb))) {
2657 		ret = __skb_linearize(skb);
2658 		if (ret)
2659 			goto out;
2660 	}
2661 	start = skb_checksum_start_offset(skb);
2662 	offset = start + offsetof(struct sctphdr, checksum);
2663 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2664 		ret = -EINVAL;
2665 		goto out;
2666 	}
2667 	if (skb_cloned(skb) &&
2668 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2669 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2670 		if (ret)
2671 			goto out;
2672 	}
2673 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2674 						  skb->len - start, ~(__u32)0,
2675 						  crc32c_csum_stub));
2676 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2677 	skb->ip_summed = CHECKSUM_NONE;
2678 	skb->csum_not_inet = 0;
2679 out:
2680 	return ret;
2681 }
2682 
2683 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2684 {
2685 	__be16 type = skb->protocol;
2686 
2687 	/* Tunnel gso handlers can set protocol to ethernet. */
2688 	if (type == htons(ETH_P_TEB)) {
2689 		struct ethhdr *eth;
2690 
2691 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2692 			return 0;
2693 
2694 		eth = (struct ethhdr *)skb_mac_header(skb);
2695 		type = eth->h_proto;
2696 	}
2697 
2698 	return __vlan_get_protocol(skb, type, depth);
2699 }
2700 
2701 /**
2702  *	skb_mac_gso_segment - mac layer segmentation handler.
2703  *	@skb: buffer to segment
2704  *	@features: features for the output path (see dev->features)
2705  */
2706 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2707 				    netdev_features_t features)
2708 {
2709 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2710 	struct packet_offload *ptype;
2711 	int vlan_depth = skb->mac_len;
2712 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2713 
2714 	if (unlikely(!type))
2715 		return ERR_PTR(-EINVAL);
2716 
2717 	__skb_pull(skb, vlan_depth);
2718 
2719 	rcu_read_lock();
2720 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2721 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2722 			segs = ptype->callbacks.gso_segment(skb, features);
2723 			break;
2724 		}
2725 	}
2726 	rcu_read_unlock();
2727 
2728 	__skb_push(skb, skb->data - skb_mac_header(skb));
2729 
2730 	return segs;
2731 }
2732 EXPORT_SYMBOL(skb_mac_gso_segment);
2733 
2734 
2735 /* openvswitch calls this on rx path, so we need a different check.
2736  */
2737 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2738 {
2739 	if (tx_path)
2740 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2741 		       skb->ip_summed != CHECKSUM_NONE;
2742 
2743 	return skb->ip_summed == CHECKSUM_NONE;
2744 }
2745 
2746 /**
2747  *	__skb_gso_segment - Perform segmentation on skb.
2748  *	@skb: buffer to segment
2749  *	@features: features for the output path (see dev->features)
2750  *	@tx_path: whether it is called in TX path
2751  *
2752  *	This function segments the given skb and returns a list of segments.
2753  *
2754  *	It may return NULL if the skb requires no segmentation.  This is
2755  *	only possible when GSO is used for verifying header integrity.
2756  *
2757  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2758  */
2759 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2760 				  netdev_features_t features, bool tx_path)
2761 {
2762 	struct sk_buff *segs;
2763 
2764 	if (unlikely(skb_needs_check(skb, tx_path))) {
2765 		int err;
2766 
2767 		/* We're going to init ->check field in TCP or UDP header */
2768 		err = skb_cow_head(skb, 0);
2769 		if (err < 0)
2770 			return ERR_PTR(err);
2771 	}
2772 
2773 	/* Only report GSO partial support if it will enable us to
2774 	 * support segmentation on this frame without needing additional
2775 	 * work.
2776 	 */
2777 	if (features & NETIF_F_GSO_PARTIAL) {
2778 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2779 		struct net_device *dev = skb->dev;
2780 
2781 		partial_features |= dev->features & dev->gso_partial_features;
2782 		if (!skb_gso_ok(skb, features | partial_features))
2783 			features &= ~NETIF_F_GSO_PARTIAL;
2784 	}
2785 
2786 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2787 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2788 
2789 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2790 	SKB_GSO_CB(skb)->encap_level = 0;
2791 
2792 	skb_reset_mac_header(skb);
2793 	skb_reset_mac_len(skb);
2794 
2795 	segs = skb_mac_gso_segment(skb, features);
2796 
2797 	if (unlikely(skb_needs_check(skb, tx_path)))
2798 		skb_warn_bad_offload(skb);
2799 
2800 	return segs;
2801 }
2802 EXPORT_SYMBOL(__skb_gso_segment);
2803 
2804 /* Take action when hardware reception checksum errors are detected. */
2805 #ifdef CONFIG_BUG
2806 void netdev_rx_csum_fault(struct net_device *dev)
2807 {
2808 	if (net_ratelimit()) {
2809 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2810 		dump_stack();
2811 	}
2812 }
2813 EXPORT_SYMBOL(netdev_rx_csum_fault);
2814 #endif
2815 
2816 /* Actually, we should eliminate this check as soon as we know, that:
2817  * 1. IOMMU is present and allows to map all the memory.
2818  * 2. No high memory really exists on this machine.
2819  */
2820 
2821 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2822 {
2823 #ifdef CONFIG_HIGHMEM
2824 	int i;
2825 
2826 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2827 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2828 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2829 
2830 			if (PageHighMem(skb_frag_page(frag)))
2831 				return 1;
2832 		}
2833 	}
2834 
2835 	if (PCI_DMA_BUS_IS_PHYS) {
2836 		struct device *pdev = dev->dev.parent;
2837 
2838 		if (!pdev)
2839 			return 0;
2840 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2841 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2842 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2843 
2844 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2845 				return 1;
2846 		}
2847 	}
2848 #endif
2849 	return 0;
2850 }
2851 
2852 /* If MPLS offload request, verify we are testing hardware MPLS features
2853  * instead of standard features for the netdev.
2854  */
2855 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2856 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2857 					   netdev_features_t features,
2858 					   __be16 type)
2859 {
2860 	if (eth_p_mpls(type))
2861 		features &= skb->dev->mpls_features;
2862 
2863 	return features;
2864 }
2865 #else
2866 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2867 					   netdev_features_t features,
2868 					   __be16 type)
2869 {
2870 	return features;
2871 }
2872 #endif
2873 
2874 static netdev_features_t harmonize_features(struct sk_buff *skb,
2875 	netdev_features_t features)
2876 {
2877 	int tmp;
2878 	__be16 type;
2879 
2880 	type = skb_network_protocol(skb, &tmp);
2881 	features = net_mpls_features(skb, features, type);
2882 
2883 	if (skb->ip_summed != CHECKSUM_NONE &&
2884 	    !can_checksum_protocol(features, type)) {
2885 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2886 	}
2887 	if (illegal_highdma(skb->dev, skb))
2888 		features &= ~NETIF_F_SG;
2889 
2890 	return features;
2891 }
2892 
2893 netdev_features_t passthru_features_check(struct sk_buff *skb,
2894 					  struct net_device *dev,
2895 					  netdev_features_t features)
2896 {
2897 	return features;
2898 }
2899 EXPORT_SYMBOL(passthru_features_check);
2900 
2901 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2902 					     struct net_device *dev,
2903 					     netdev_features_t features)
2904 {
2905 	return vlan_features_check(skb, features);
2906 }
2907 
2908 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2909 					    struct net_device *dev,
2910 					    netdev_features_t features)
2911 {
2912 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2913 
2914 	if (gso_segs > dev->gso_max_segs)
2915 		return features & ~NETIF_F_GSO_MASK;
2916 
2917 	/* Support for GSO partial features requires software
2918 	 * intervention before we can actually process the packets
2919 	 * so we need to strip support for any partial features now
2920 	 * and we can pull them back in after we have partially
2921 	 * segmented the frame.
2922 	 */
2923 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2924 		features &= ~dev->gso_partial_features;
2925 
2926 	/* Make sure to clear the IPv4 ID mangling feature if the
2927 	 * IPv4 header has the potential to be fragmented.
2928 	 */
2929 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2930 		struct iphdr *iph = skb->encapsulation ?
2931 				    inner_ip_hdr(skb) : ip_hdr(skb);
2932 
2933 		if (!(iph->frag_off & htons(IP_DF)))
2934 			features &= ~NETIF_F_TSO_MANGLEID;
2935 	}
2936 
2937 	return features;
2938 }
2939 
2940 netdev_features_t netif_skb_features(struct sk_buff *skb)
2941 {
2942 	struct net_device *dev = skb->dev;
2943 	netdev_features_t features = dev->features;
2944 
2945 	if (skb_is_gso(skb))
2946 		features = gso_features_check(skb, dev, features);
2947 
2948 	/* If encapsulation offload request, verify we are testing
2949 	 * hardware encapsulation features instead of standard
2950 	 * features for the netdev
2951 	 */
2952 	if (skb->encapsulation)
2953 		features &= dev->hw_enc_features;
2954 
2955 	if (skb_vlan_tagged(skb))
2956 		features = netdev_intersect_features(features,
2957 						     dev->vlan_features |
2958 						     NETIF_F_HW_VLAN_CTAG_TX |
2959 						     NETIF_F_HW_VLAN_STAG_TX);
2960 
2961 	if (dev->netdev_ops->ndo_features_check)
2962 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2963 								features);
2964 	else
2965 		features &= dflt_features_check(skb, dev, features);
2966 
2967 	return harmonize_features(skb, features);
2968 }
2969 EXPORT_SYMBOL(netif_skb_features);
2970 
2971 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2972 		    struct netdev_queue *txq, bool more)
2973 {
2974 	unsigned int len;
2975 	int rc;
2976 
2977 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2978 		dev_queue_xmit_nit(skb, dev);
2979 
2980 	len = skb->len;
2981 	trace_net_dev_start_xmit(skb, dev);
2982 	rc = netdev_start_xmit(skb, dev, txq, more);
2983 	trace_net_dev_xmit(skb, rc, dev, len);
2984 
2985 	return rc;
2986 }
2987 
2988 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2989 				    struct netdev_queue *txq, int *ret)
2990 {
2991 	struct sk_buff *skb = first;
2992 	int rc = NETDEV_TX_OK;
2993 
2994 	while (skb) {
2995 		struct sk_buff *next = skb->next;
2996 
2997 		skb->next = NULL;
2998 		rc = xmit_one(skb, dev, txq, next != NULL);
2999 		if (unlikely(!dev_xmit_complete(rc))) {
3000 			skb->next = next;
3001 			goto out;
3002 		}
3003 
3004 		skb = next;
3005 		if (netif_xmit_stopped(txq) && skb) {
3006 			rc = NETDEV_TX_BUSY;
3007 			break;
3008 		}
3009 	}
3010 
3011 out:
3012 	*ret = rc;
3013 	return skb;
3014 }
3015 
3016 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3017 					  netdev_features_t features)
3018 {
3019 	if (skb_vlan_tag_present(skb) &&
3020 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3021 		skb = __vlan_hwaccel_push_inside(skb);
3022 	return skb;
3023 }
3024 
3025 int skb_csum_hwoffload_help(struct sk_buff *skb,
3026 			    const netdev_features_t features)
3027 {
3028 	if (unlikely(skb->csum_not_inet))
3029 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3030 			skb_crc32c_csum_help(skb);
3031 
3032 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3033 }
3034 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3035 
3036 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3037 {
3038 	netdev_features_t features;
3039 
3040 	features = netif_skb_features(skb);
3041 	skb = validate_xmit_vlan(skb, features);
3042 	if (unlikely(!skb))
3043 		goto out_null;
3044 
3045 	if (netif_needs_gso(skb, features)) {
3046 		struct sk_buff *segs;
3047 
3048 		segs = skb_gso_segment(skb, features);
3049 		if (IS_ERR(segs)) {
3050 			goto out_kfree_skb;
3051 		} else if (segs) {
3052 			consume_skb(skb);
3053 			skb = segs;
3054 		}
3055 	} else {
3056 		if (skb_needs_linearize(skb, features) &&
3057 		    __skb_linearize(skb))
3058 			goto out_kfree_skb;
3059 
3060 		if (validate_xmit_xfrm(skb, features))
3061 			goto out_kfree_skb;
3062 
3063 		/* If packet is not checksummed and device does not
3064 		 * support checksumming for this protocol, complete
3065 		 * checksumming here.
3066 		 */
3067 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3068 			if (skb->encapsulation)
3069 				skb_set_inner_transport_header(skb,
3070 							       skb_checksum_start_offset(skb));
3071 			else
3072 				skb_set_transport_header(skb,
3073 							 skb_checksum_start_offset(skb));
3074 			if (skb_csum_hwoffload_help(skb, features))
3075 				goto out_kfree_skb;
3076 		}
3077 	}
3078 
3079 	return skb;
3080 
3081 out_kfree_skb:
3082 	kfree_skb(skb);
3083 out_null:
3084 	atomic_long_inc(&dev->tx_dropped);
3085 	return NULL;
3086 }
3087 
3088 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3089 {
3090 	struct sk_buff *next, *head = NULL, *tail;
3091 
3092 	for (; skb != NULL; skb = next) {
3093 		next = skb->next;
3094 		skb->next = NULL;
3095 
3096 		/* in case skb wont be segmented, point to itself */
3097 		skb->prev = skb;
3098 
3099 		skb = validate_xmit_skb(skb, dev);
3100 		if (!skb)
3101 			continue;
3102 
3103 		if (!head)
3104 			head = skb;
3105 		else
3106 			tail->next = skb;
3107 		/* If skb was segmented, skb->prev points to
3108 		 * the last segment. If not, it still contains skb.
3109 		 */
3110 		tail = skb->prev;
3111 	}
3112 	return head;
3113 }
3114 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3115 
3116 static void qdisc_pkt_len_init(struct sk_buff *skb)
3117 {
3118 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3119 
3120 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3121 
3122 	/* To get more precise estimation of bytes sent on wire,
3123 	 * we add to pkt_len the headers size of all segments
3124 	 */
3125 	if (shinfo->gso_size)  {
3126 		unsigned int hdr_len;
3127 		u16 gso_segs = shinfo->gso_segs;
3128 
3129 		/* mac layer + network layer */
3130 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3131 
3132 		/* + transport layer */
3133 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3134 			hdr_len += tcp_hdrlen(skb);
3135 		else
3136 			hdr_len += sizeof(struct udphdr);
3137 
3138 		if (shinfo->gso_type & SKB_GSO_DODGY)
3139 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3140 						shinfo->gso_size);
3141 
3142 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3143 	}
3144 }
3145 
3146 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3147 				 struct net_device *dev,
3148 				 struct netdev_queue *txq)
3149 {
3150 	spinlock_t *root_lock = qdisc_lock(q);
3151 	struct sk_buff *to_free = NULL;
3152 	bool contended;
3153 	int rc;
3154 
3155 	qdisc_calculate_pkt_len(skb, q);
3156 	/*
3157 	 * Heuristic to force contended enqueues to serialize on a
3158 	 * separate lock before trying to get qdisc main lock.
3159 	 * This permits qdisc->running owner to get the lock more
3160 	 * often and dequeue packets faster.
3161 	 */
3162 	contended = qdisc_is_running(q);
3163 	if (unlikely(contended))
3164 		spin_lock(&q->busylock);
3165 
3166 	spin_lock(root_lock);
3167 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3168 		__qdisc_drop(skb, &to_free);
3169 		rc = NET_XMIT_DROP;
3170 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3171 		   qdisc_run_begin(q)) {
3172 		/*
3173 		 * This is a work-conserving queue; there are no old skbs
3174 		 * waiting to be sent out; and the qdisc is not running -
3175 		 * xmit the skb directly.
3176 		 */
3177 
3178 		qdisc_bstats_update(q, skb);
3179 
3180 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3181 			if (unlikely(contended)) {
3182 				spin_unlock(&q->busylock);
3183 				contended = false;
3184 			}
3185 			__qdisc_run(q);
3186 		} else
3187 			qdisc_run_end(q);
3188 
3189 		rc = NET_XMIT_SUCCESS;
3190 	} else {
3191 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3192 		if (qdisc_run_begin(q)) {
3193 			if (unlikely(contended)) {
3194 				spin_unlock(&q->busylock);
3195 				contended = false;
3196 			}
3197 			__qdisc_run(q);
3198 		}
3199 	}
3200 	spin_unlock(root_lock);
3201 	if (unlikely(to_free))
3202 		kfree_skb_list(to_free);
3203 	if (unlikely(contended))
3204 		spin_unlock(&q->busylock);
3205 	return rc;
3206 }
3207 
3208 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3209 static void skb_update_prio(struct sk_buff *skb)
3210 {
3211 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3212 
3213 	if (!skb->priority && skb->sk && map) {
3214 		unsigned int prioidx =
3215 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3216 
3217 		if (prioidx < map->priomap_len)
3218 			skb->priority = map->priomap[prioidx];
3219 	}
3220 }
3221 #else
3222 #define skb_update_prio(skb)
3223 #endif
3224 
3225 DEFINE_PER_CPU(int, xmit_recursion);
3226 EXPORT_SYMBOL(xmit_recursion);
3227 
3228 /**
3229  *	dev_loopback_xmit - loop back @skb
3230  *	@net: network namespace this loopback is happening in
3231  *	@sk:  sk needed to be a netfilter okfn
3232  *	@skb: buffer to transmit
3233  */
3234 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3235 {
3236 	skb_reset_mac_header(skb);
3237 	__skb_pull(skb, skb_network_offset(skb));
3238 	skb->pkt_type = PACKET_LOOPBACK;
3239 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3240 	WARN_ON(!skb_dst(skb));
3241 	skb_dst_force(skb);
3242 	netif_rx_ni(skb);
3243 	return 0;
3244 }
3245 EXPORT_SYMBOL(dev_loopback_xmit);
3246 
3247 #ifdef CONFIG_NET_EGRESS
3248 static struct sk_buff *
3249 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3250 {
3251 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3252 	struct tcf_result cl_res;
3253 
3254 	if (!cl)
3255 		return skb;
3256 
3257 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3258 	qdisc_bstats_cpu_update(cl->q, skb);
3259 
3260 	switch (tcf_classify(skb, cl, &cl_res, false)) {
3261 	case TC_ACT_OK:
3262 	case TC_ACT_RECLASSIFY:
3263 		skb->tc_index = TC_H_MIN(cl_res.classid);
3264 		break;
3265 	case TC_ACT_SHOT:
3266 		qdisc_qstats_cpu_drop(cl->q);
3267 		*ret = NET_XMIT_DROP;
3268 		kfree_skb(skb);
3269 		return NULL;
3270 	case TC_ACT_STOLEN:
3271 	case TC_ACT_QUEUED:
3272 		*ret = NET_XMIT_SUCCESS;
3273 		consume_skb(skb);
3274 		return NULL;
3275 	case TC_ACT_REDIRECT:
3276 		/* No need to push/pop skb's mac_header here on egress! */
3277 		skb_do_redirect(skb);
3278 		*ret = NET_XMIT_SUCCESS;
3279 		return NULL;
3280 	default:
3281 		break;
3282 	}
3283 
3284 	return skb;
3285 }
3286 #endif /* CONFIG_NET_EGRESS */
3287 
3288 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3289 {
3290 #ifdef CONFIG_XPS
3291 	struct xps_dev_maps *dev_maps;
3292 	struct xps_map *map;
3293 	int queue_index = -1;
3294 
3295 	rcu_read_lock();
3296 	dev_maps = rcu_dereference(dev->xps_maps);
3297 	if (dev_maps) {
3298 		unsigned int tci = skb->sender_cpu - 1;
3299 
3300 		if (dev->num_tc) {
3301 			tci *= dev->num_tc;
3302 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3303 		}
3304 
3305 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3306 		if (map) {
3307 			if (map->len == 1)
3308 				queue_index = map->queues[0];
3309 			else
3310 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3311 									   map->len)];
3312 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3313 				queue_index = -1;
3314 		}
3315 	}
3316 	rcu_read_unlock();
3317 
3318 	return queue_index;
3319 #else
3320 	return -1;
3321 #endif
3322 }
3323 
3324 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3325 {
3326 	struct sock *sk = skb->sk;
3327 	int queue_index = sk_tx_queue_get(sk);
3328 
3329 	if (queue_index < 0 || skb->ooo_okay ||
3330 	    queue_index >= dev->real_num_tx_queues) {
3331 		int new_index = get_xps_queue(dev, skb);
3332 
3333 		if (new_index < 0)
3334 			new_index = skb_tx_hash(dev, skb);
3335 
3336 		if (queue_index != new_index && sk &&
3337 		    sk_fullsock(sk) &&
3338 		    rcu_access_pointer(sk->sk_dst_cache))
3339 			sk_tx_queue_set(sk, new_index);
3340 
3341 		queue_index = new_index;
3342 	}
3343 
3344 	return queue_index;
3345 }
3346 
3347 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3348 				    struct sk_buff *skb,
3349 				    void *accel_priv)
3350 {
3351 	int queue_index = 0;
3352 
3353 #ifdef CONFIG_XPS
3354 	u32 sender_cpu = skb->sender_cpu - 1;
3355 
3356 	if (sender_cpu >= (u32)NR_CPUS)
3357 		skb->sender_cpu = raw_smp_processor_id() + 1;
3358 #endif
3359 
3360 	if (dev->real_num_tx_queues != 1) {
3361 		const struct net_device_ops *ops = dev->netdev_ops;
3362 
3363 		if (ops->ndo_select_queue)
3364 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3365 							    __netdev_pick_tx);
3366 		else
3367 			queue_index = __netdev_pick_tx(dev, skb);
3368 
3369 		if (!accel_priv)
3370 			queue_index = netdev_cap_txqueue(dev, queue_index);
3371 	}
3372 
3373 	skb_set_queue_mapping(skb, queue_index);
3374 	return netdev_get_tx_queue(dev, queue_index);
3375 }
3376 
3377 /**
3378  *	__dev_queue_xmit - transmit a buffer
3379  *	@skb: buffer to transmit
3380  *	@accel_priv: private data used for L2 forwarding offload
3381  *
3382  *	Queue a buffer for transmission to a network device. The caller must
3383  *	have set the device and priority and built the buffer before calling
3384  *	this function. The function can be called from an interrupt.
3385  *
3386  *	A negative errno code is returned on a failure. A success does not
3387  *	guarantee the frame will be transmitted as it may be dropped due
3388  *	to congestion or traffic shaping.
3389  *
3390  * -----------------------------------------------------------------------------------
3391  *      I notice this method can also return errors from the queue disciplines,
3392  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3393  *      be positive.
3394  *
3395  *      Regardless of the return value, the skb is consumed, so it is currently
3396  *      difficult to retry a send to this method.  (You can bump the ref count
3397  *      before sending to hold a reference for retry if you are careful.)
3398  *
3399  *      When calling this method, interrupts MUST be enabled.  This is because
3400  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3401  *          --BLG
3402  */
3403 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3404 {
3405 	struct net_device *dev = skb->dev;
3406 	struct netdev_queue *txq;
3407 	struct Qdisc *q;
3408 	int rc = -ENOMEM;
3409 
3410 	skb_reset_mac_header(skb);
3411 
3412 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3413 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3414 
3415 	/* Disable soft irqs for various locks below. Also
3416 	 * stops preemption for RCU.
3417 	 */
3418 	rcu_read_lock_bh();
3419 
3420 	skb_update_prio(skb);
3421 
3422 	qdisc_pkt_len_init(skb);
3423 #ifdef CONFIG_NET_CLS_ACT
3424 	skb->tc_at_ingress = 0;
3425 # ifdef CONFIG_NET_EGRESS
3426 	if (static_key_false(&egress_needed)) {
3427 		skb = sch_handle_egress(skb, &rc, dev);
3428 		if (!skb)
3429 			goto out;
3430 	}
3431 # endif
3432 #endif
3433 	/* If device/qdisc don't need skb->dst, release it right now while
3434 	 * its hot in this cpu cache.
3435 	 */
3436 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3437 		skb_dst_drop(skb);
3438 	else
3439 		skb_dst_force(skb);
3440 
3441 	txq = netdev_pick_tx(dev, skb, accel_priv);
3442 	q = rcu_dereference_bh(txq->qdisc);
3443 
3444 	trace_net_dev_queue(skb);
3445 	if (q->enqueue) {
3446 		rc = __dev_xmit_skb(skb, q, dev, txq);
3447 		goto out;
3448 	}
3449 
3450 	/* The device has no queue. Common case for software devices:
3451 	 * loopback, all the sorts of tunnels...
3452 
3453 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3454 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3455 	 * counters.)
3456 	 * However, it is possible, that they rely on protection
3457 	 * made by us here.
3458 
3459 	 * Check this and shot the lock. It is not prone from deadlocks.
3460 	 *Either shot noqueue qdisc, it is even simpler 8)
3461 	 */
3462 	if (dev->flags & IFF_UP) {
3463 		int cpu = smp_processor_id(); /* ok because BHs are off */
3464 
3465 		if (txq->xmit_lock_owner != cpu) {
3466 			if (unlikely(__this_cpu_read(xmit_recursion) >
3467 				     XMIT_RECURSION_LIMIT))
3468 				goto recursion_alert;
3469 
3470 			skb = validate_xmit_skb(skb, dev);
3471 			if (!skb)
3472 				goto out;
3473 
3474 			HARD_TX_LOCK(dev, txq, cpu);
3475 
3476 			if (!netif_xmit_stopped(txq)) {
3477 				__this_cpu_inc(xmit_recursion);
3478 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3479 				__this_cpu_dec(xmit_recursion);
3480 				if (dev_xmit_complete(rc)) {
3481 					HARD_TX_UNLOCK(dev, txq);
3482 					goto out;
3483 				}
3484 			}
3485 			HARD_TX_UNLOCK(dev, txq);
3486 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3487 					     dev->name);
3488 		} else {
3489 			/* Recursion is detected! It is possible,
3490 			 * unfortunately
3491 			 */
3492 recursion_alert:
3493 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3494 					     dev->name);
3495 		}
3496 	}
3497 
3498 	rc = -ENETDOWN;
3499 	rcu_read_unlock_bh();
3500 
3501 	atomic_long_inc(&dev->tx_dropped);
3502 	kfree_skb_list(skb);
3503 	return rc;
3504 out:
3505 	rcu_read_unlock_bh();
3506 	return rc;
3507 }
3508 
3509 int dev_queue_xmit(struct sk_buff *skb)
3510 {
3511 	return __dev_queue_xmit(skb, NULL);
3512 }
3513 EXPORT_SYMBOL(dev_queue_xmit);
3514 
3515 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3516 {
3517 	return __dev_queue_xmit(skb, accel_priv);
3518 }
3519 EXPORT_SYMBOL(dev_queue_xmit_accel);
3520 
3521 
3522 /*************************************************************************
3523  *			Receiver routines
3524  *************************************************************************/
3525 
3526 int netdev_max_backlog __read_mostly = 1000;
3527 EXPORT_SYMBOL(netdev_max_backlog);
3528 
3529 int netdev_tstamp_prequeue __read_mostly = 1;
3530 int netdev_budget __read_mostly = 300;
3531 unsigned int __read_mostly netdev_budget_usecs = 2000;
3532 int weight_p __read_mostly = 64;           /* old backlog weight */
3533 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3534 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3535 int dev_rx_weight __read_mostly = 64;
3536 int dev_tx_weight __read_mostly = 64;
3537 
3538 /* Called with irq disabled */
3539 static inline void ____napi_schedule(struct softnet_data *sd,
3540 				     struct napi_struct *napi)
3541 {
3542 	list_add_tail(&napi->poll_list, &sd->poll_list);
3543 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3544 }
3545 
3546 #ifdef CONFIG_RPS
3547 
3548 /* One global table that all flow-based protocols share. */
3549 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3550 EXPORT_SYMBOL(rps_sock_flow_table);
3551 u32 rps_cpu_mask __read_mostly;
3552 EXPORT_SYMBOL(rps_cpu_mask);
3553 
3554 struct static_key rps_needed __read_mostly;
3555 EXPORT_SYMBOL(rps_needed);
3556 struct static_key rfs_needed __read_mostly;
3557 EXPORT_SYMBOL(rfs_needed);
3558 
3559 static struct rps_dev_flow *
3560 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3561 	    struct rps_dev_flow *rflow, u16 next_cpu)
3562 {
3563 	if (next_cpu < nr_cpu_ids) {
3564 #ifdef CONFIG_RFS_ACCEL
3565 		struct netdev_rx_queue *rxqueue;
3566 		struct rps_dev_flow_table *flow_table;
3567 		struct rps_dev_flow *old_rflow;
3568 		u32 flow_id;
3569 		u16 rxq_index;
3570 		int rc;
3571 
3572 		/* Should we steer this flow to a different hardware queue? */
3573 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3574 		    !(dev->features & NETIF_F_NTUPLE))
3575 			goto out;
3576 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3577 		if (rxq_index == skb_get_rx_queue(skb))
3578 			goto out;
3579 
3580 		rxqueue = dev->_rx + rxq_index;
3581 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3582 		if (!flow_table)
3583 			goto out;
3584 		flow_id = skb_get_hash(skb) & flow_table->mask;
3585 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3586 							rxq_index, flow_id);
3587 		if (rc < 0)
3588 			goto out;
3589 		old_rflow = rflow;
3590 		rflow = &flow_table->flows[flow_id];
3591 		rflow->filter = rc;
3592 		if (old_rflow->filter == rflow->filter)
3593 			old_rflow->filter = RPS_NO_FILTER;
3594 	out:
3595 #endif
3596 		rflow->last_qtail =
3597 			per_cpu(softnet_data, next_cpu).input_queue_head;
3598 	}
3599 
3600 	rflow->cpu = next_cpu;
3601 	return rflow;
3602 }
3603 
3604 /*
3605  * get_rps_cpu is called from netif_receive_skb and returns the target
3606  * CPU from the RPS map of the receiving queue for a given skb.
3607  * rcu_read_lock must be held on entry.
3608  */
3609 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3610 		       struct rps_dev_flow **rflowp)
3611 {
3612 	const struct rps_sock_flow_table *sock_flow_table;
3613 	struct netdev_rx_queue *rxqueue = dev->_rx;
3614 	struct rps_dev_flow_table *flow_table;
3615 	struct rps_map *map;
3616 	int cpu = -1;
3617 	u32 tcpu;
3618 	u32 hash;
3619 
3620 	if (skb_rx_queue_recorded(skb)) {
3621 		u16 index = skb_get_rx_queue(skb);
3622 
3623 		if (unlikely(index >= dev->real_num_rx_queues)) {
3624 			WARN_ONCE(dev->real_num_rx_queues > 1,
3625 				  "%s received packet on queue %u, but number "
3626 				  "of RX queues is %u\n",
3627 				  dev->name, index, dev->real_num_rx_queues);
3628 			goto done;
3629 		}
3630 		rxqueue += index;
3631 	}
3632 
3633 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3634 
3635 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3636 	map = rcu_dereference(rxqueue->rps_map);
3637 	if (!flow_table && !map)
3638 		goto done;
3639 
3640 	skb_reset_network_header(skb);
3641 	hash = skb_get_hash(skb);
3642 	if (!hash)
3643 		goto done;
3644 
3645 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3646 	if (flow_table && sock_flow_table) {
3647 		struct rps_dev_flow *rflow;
3648 		u32 next_cpu;
3649 		u32 ident;
3650 
3651 		/* First check into global flow table if there is a match */
3652 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3653 		if ((ident ^ hash) & ~rps_cpu_mask)
3654 			goto try_rps;
3655 
3656 		next_cpu = ident & rps_cpu_mask;
3657 
3658 		/* OK, now we know there is a match,
3659 		 * we can look at the local (per receive queue) flow table
3660 		 */
3661 		rflow = &flow_table->flows[hash & flow_table->mask];
3662 		tcpu = rflow->cpu;
3663 
3664 		/*
3665 		 * If the desired CPU (where last recvmsg was done) is
3666 		 * different from current CPU (one in the rx-queue flow
3667 		 * table entry), switch if one of the following holds:
3668 		 *   - Current CPU is unset (>= nr_cpu_ids).
3669 		 *   - Current CPU is offline.
3670 		 *   - The current CPU's queue tail has advanced beyond the
3671 		 *     last packet that was enqueued using this table entry.
3672 		 *     This guarantees that all previous packets for the flow
3673 		 *     have been dequeued, thus preserving in order delivery.
3674 		 */
3675 		if (unlikely(tcpu != next_cpu) &&
3676 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3677 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3678 		      rflow->last_qtail)) >= 0)) {
3679 			tcpu = next_cpu;
3680 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3681 		}
3682 
3683 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3684 			*rflowp = rflow;
3685 			cpu = tcpu;
3686 			goto done;
3687 		}
3688 	}
3689 
3690 try_rps:
3691 
3692 	if (map) {
3693 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3694 		if (cpu_online(tcpu)) {
3695 			cpu = tcpu;
3696 			goto done;
3697 		}
3698 	}
3699 
3700 done:
3701 	return cpu;
3702 }
3703 
3704 #ifdef CONFIG_RFS_ACCEL
3705 
3706 /**
3707  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3708  * @dev: Device on which the filter was set
3709  * @rxq_index: RX queue index
3710  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3711  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3712  *
3713  * Drivers that implement ndo_rx_flow_steer() should periodically call
3714  * this function for each installed filter and remove the filters for
3715  * which it returns %true.
3716  */
3717 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3718 			 u32 flow_id, u16 filter_id)
3719 {
3720 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3721 	struct rps_dev_flow_table *flow_table;
3722 	struct rps_dev_flow *rflow;
3723 	bool expire = true;
3724 	unsigned int cpu;
3725 
3726 	rcu_read_lock();
3727 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3728 	if (flow_table && flow_id <= flow_table->mask) {
3729 		rflow = &flow_table->flows[flow_id];
3730 		cpu = ACCESS_ONCE(rflow->cpu);
3731 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3732 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3733 			   rflow->last_qtail) <
3734 		     (int)(10 * flow_table->mask)))
3735 			expire = false;
3736 	}
3737 	rcu_read_unlock();
3738 	return expire;
3739 }
3740 EXPORT_SYMBOL(rps_may_expire_flow);
3741 
3742 #endif /* CONFIG_RFS_ACCEL */
3743 
3744 /* Called from hardirq (IPI) context */
3745 static void rps_trigger_softirq(void *data)
3746 {
3747 	struct softnet_data *sd = data;
3748 
3749 	____napi_schedule(sd, &sd->backlog);
3750 	sd->received_rps++;
3751 }
3752 
3753 #endif /* CONFIG_RPS */
3754 
3755 /*
3756  * Check if this softnet_data structure is another cpu one
3757  * If yes, queue it to our IPI list and return 1
3758  * If no, return 0
3759  */
3760 static int rps_ipi_queued(struct softnet_data *sd)
3761 {
3762 #ifdef CONFIG_RPS
3763 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3764 
3765 	if (sd != mysd) {
3766 		sd->rps_ipi_next = mysd->rps_ipi_list;
3767 		mysd->rps_ipi_list = sd;
3768 
3769 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3770 		return 1;
3771 	}
3772 #endif /* CONFIG_RPS */
3773 	return 0;
3774 }
3775 
3776 #ifdef CONFIG_NET_FLOW_LIMIT
3777 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3778 #endif
3779 
3780 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3781 {
3782 #ifdef CONFIG_NET_FLOW_LIMIT
3783 	struct sd_flow_limit *fl;
3784 	struct softnet_data *sd;
3785 	unsigned int old_flow, new_flow;
3786 
3787 	if (qlen < (netdev_max_backlog >> 1))
3788 		return false;
3789 
3790 	sd = this_cpu_ptr(&softnet_data);
3791 
3792 	rcu_read_lock();
3793 	fl = rcu_dereference(sd->flow_limit);
3794 	if (fl) {
3795 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3796 		old_flow = fl->history[fl->history_head];
3797 		fl->history[fl->history_head] = new_flow;
3798 
3799 		fl->history_head++;
3800 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3801 
3802 		if (likely(fl->buckets[old_flow]))
3803 			fl->buckets[old_flow]--;
3804 
3805 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3806 			fl->count++;
3807 			rcu_read_unlock();
3808 			return true;
3809 		}
3810 	}
3811 	rcu_read_unlock();
3812 #endif
3813 	return false;
3814 }
3815 
3816 /*
3817  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3818  * queue (may be a remote CPU queue).
3819  */
3820 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3821 			      unsigned int *qtail)
3822 {
3823 	struct softnet_data *sd;
3824 	unsigned long flags;
3825 	unsigned int qlen;
3826 
3827 	sd = &per_cpu(softnet_data, cpu);
3828 
3829 	local_irq_save(flags);
3830 
3831 	rps_lock(sd);
3832 	if (!netif_running(skb->dev))
3833 		goto drop;
3834 	qlen = skb_queue_len(&sd->input_pkt_queue);
3835 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3836 		if (qlen) {
3837 enqueue:
3838 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3839 			input_queue_tail_incr_save(sd, qtail);
3840 			rps_unlock(sd);
3841 			local_irq_restore(flags);
3842 			return NET_RX_SUCCESS;
3843 		}
3844 
3845 		/* Schedule NAPI for backlog device
3846 		 * We can use non atomic operation since we own the queue lock
3847 		 */
3848 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3849 			if (!rps_ipi_queued(sd))
3850 				____napi_schedule(sd, &sd->backlog);
3851 		}
3852 		goto enqueue;
3853 	}
3854 
3855 drop:
3856 	sd->dropped++;
3857 	rps_unlock(sd);
3858 
3859 	local_irq_restore(flags);
3860 
3861 	atomic_long_inc(&skb->dev->rx_dropped);
3862 	kfree_skb(skb);
3863 	return NET_RX_DROP;
3864 }
3865 
3866 static int netif_rx_internal(struct sk_buff *skb)
3867 {
3868 	int ret;
3869 
3870 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3871 
3872 	trace_netif_rx(skb);
3873 #ifdef CONFIG_RPS
3874 	if (static_key_false(&rps_needed)) {
3875 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3876 		int cpu;
3877 
3878 		preempt_disable();
3879 		rcu_read_lock();
3880 
3881 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3882 		if (cpu < 0)
3883 			cpu = smp_processor_id();
3884 
3885 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3886 
3887 		rcu_read_unlock();
3888 		preempt_enable();
3889 	} else
3890 #endif
3891 	{
3892 		unsigned int qtail;
3893 
3894 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3895 		put_cpu();
3896 	}
3897 	return ret;
3898 }
3899 
3900 /**
3901  *	netif_rx	-	post buffer to the network code
3902  *	@skb: buffer to post
3903  *
3904  *	This function receives a packet from a device driver and queues it for
3905  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3906  *	may be dropped during processing for congestion control or by the
3907  *	protocol layers.
3908  *
3909  *	return values:
3910  *	NET_RX_SUCCESS	(no congestion)
3911  *	NET_RX_DROP     (packet was dropped)
3912  *
3913  */
3914 
3915 int netif_rx(struct sk_buff *skb)
3916 {
3917 	trace_netif_rx_entry(skb);
3918 
3919 	return netif_rx_internal(skb);
3920 }
3921 EXPORT_SYMBOL(netif_rx);
3922 
3923 int netif_rx_ni(struct sk_buff *skb)
3924 {
3925 	int err;
3926 
3927 	trace_netif_rx_ni_entry(skb);
3928 
3929 	preempt_disable();
3930 	err = netif_rx_internal(skb);
3931 	if (local_softirq_pending())
3932 		do_softirq();
3933 	preempt_enable();
3934 
3935 	return err;
3936 }
3937 EXPORT_SYMBOL(netif_rx_ni);
3938 
3939 static __latent_entropy void net_tx_action(struct softirq_action *h)
3940 {
3941 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3942 
3943 	if (sd->completion_queue) {
3944 		struct sk_buff *clist;
3945 
3946 		local_irq_disable();
3947 		clist = sd->completion_queue;
3948 		sd->completion_queue = NULL;
3949 		local_irq_enable();
3950 
3951 		while (clist) {
3952 			struct sk_buff *skb = clist;
3953 
3954 			clist = clist->next;
3955 
3956 			WARN_ON(atomic_read(&skb->users));
3957 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3958 				trace_consume_skb(skb);
3959 			else
3960 				trace_kfree_skb(skb, net_tx_action);
3961 
3962 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3963 				__kfree_skb(skb);
3964 			else
3965 				__kfree_skb_defer(skb);
3966 		}
3967 
3968 		__kfree_skb_flush();
3969 	}
3970 
3971 	if (sd->output_queue) {
3972 		struct Qdisc *head;
3973 
3974 		local_irq_disable();
3975 		head = sd->output_queue;
3976 		sd->output_queue = NULL;
3977 		sd->output_queue_tailp = &sd->output_queue;
3978 		local_irq_enable();
3979 
3980 		while (head) {
3981 			struct Qdisc *q = head;
3982 			spinlock_t *root_lock;
3983 
3984 			head = head->next_sched;
3985 
3986 			root_lock = qdisc_lock(q);
3987 			spin_lock(root_lock);
3988 			/* We need to make sure head->next_sched is read
3989 			 * before clearing __QDISC_STATE_SCHED
3990 			 */
3991 			smp_mb__before_atomic();
3992 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3993 			qdisc_run(q);
3994 			spin_unlock(root_lock);
3995 		}
3996 	}
3997 }
3998 
3999 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4000 /* This hook is defined here for ATM LANE */
4001 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4002 			     unsigned char *addr) __read_mostly;
4003 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4004 #endif
4005 
4006 static inline struct sk_buff *
4007 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4008 		   struct net_device *orig_dev)
4009 {
4010 #ifdef CONFIG_NET_CLS_ACT
4011 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4012 	struct tcf_result cl_res;
4013 
4014 	/* If there's at least one ingress present somewhere (so
4015 	 * we get here via enabled static key), remaining devices
4016 	 * that are not configured with an ingress qdisc will bail
4017 	 * out here.
4018 	 */
4019 	if (!cl)
4020 		return skb;
4021 	if (*pt_prev) {
4022 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4023 		*pt_prev = NULL;
4024 	}
4025 
4026 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4027 	skb->tc_at_ingress = 1;
4028 	qdisc_bstats_cpu_update(cl->q, skb);
4029 
4030 	switch (tcf_classify(skb, cl, &cl_res, false)) {
4031 	case TC_ACT_OK:
4032 	case TC_ACT_RECLASSIFY:
4033 		skb->tc_index = TC_H_MIN(cl_res.classid);
4034 		break;
4035 	case TC_ACT_SHOT:
4036 		qdisc_qstats_cpu_drop(cl->q);
4037 		kfree_skb(skb);
4038 		return NULL;
4039 	case TC_ACT_STOLEN:
4040 	case TC_ACT_QUEUED:
4041 		consume_skb(skb);
4042 		return NULL;
4043 	case TC_ACT_REDIRECT:
4044 		/* skb_mac_header check was done by cls/act_bpf, so
4045 		 * we can safely push the L2 header back before
4046 		 * redirecting to another netdev
4047 		 */
4048 		__skb_push(skb, skb->mac_len);
4049 		skb_do_redirect(skb);
4050 		return NULL;
4051 	default:
4052 		break;
4053 	}
4054 #endif /* CONFIG_NET_CLS_ACT */
4055 	return skb;
4056 }
4057 
4058 /**
4059  *	netdev_is_rx_handler_busy - check if receive handler is registered
4060  *	@dev: device to check
4061  *
4062  *	Check if a receive handler is already registered for a given device.
4063  *	Return true if there one.
4064  *
4065  *	The caller must hold the rtnl_mutex.
4066  */
4067 bool netdev_is_rx_handler_busy(struct net_device *dev)
4068 {
4069 	ASSERT_RTNL();
4070 	return dev && rtnl_dereference(dev->rx_handler);
4071 }
4072 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4073 
4074 /**
4075  *	netdev_rx_handler_register - register receive handler
4076  *	@dev: device to register a handler for
4077  *	@rx_handler: receive handler to register
4078  *	@rx_handler_data: data pointer that is used by rx handler
4079  *
4080  *	Register a receive handler for a device. This handler will then be
4081  *	called from __netif_receive_skb. A negative errno code is returned
4082  *	on a failure.
4083  *
4084  *	The caller must hold the rtnl_mutex.
4085  *
4086  *	For a general description of rx_handler, see enum rx_handler_result.
4087  */
4088 int netdev_rx_handler_register(struct net_device *dev,
4089 			       rx_handler_func_t *rx_handler,
4090 			       void *rx_handler_data)
4091 {
4092 	if (netdev_is_rx_handler_busy(dev))
4093 		return -EBUSY;
4094 
4095 	/* Note: rx_handler_data must be set before rx_handler */
4096 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4097 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4098 
4099 	return 0;
4100 }
4101 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4102 
4103 /**
4104  *	netdev_rx_handler_unregister - unregister receive handler
4105  *	@dev: device to unregister a handler from
4106  *
4107  *	Unregister a receive handler from a device.
4108  *
4109  *	The caller must hold the rtnl_mutex.
4110  */
4111 void netdev_rx_handler_unregister(struct net_device *dev)
4112 {
4113 
4114 	ASSERT_RTNL();
4115 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4116 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4117 	 * section has a guarantee to see a non NULL rx_handler_data
4118 	 * as well.
4119 	 */
4120 	synchronize_net();
4121 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4122 }
4123 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4124 
4125 /*
4126  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4127  * the special handling of PFMEMALLOC skbs.
4128  */
4129 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4130 {
4131 	switch (skb->protocol) {
4132 	case htons(ETH_P_ARP):
4133 	case htons(ETH_P_IP):
4134 	case htons(ETH_P_IPV6):
4135 	case htons(ETH_P_8021Q):
4136 	case htons(ETH_P_8021AD):
4137 		return true;
4138 	default:
4139 		return false;
4140 	}
4141 }
4142 
4143 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4144 			     int *ret, struct net_device *orig_dev)
4145 {
4146 #ifdef CONFIG_NETFILTER_INGRESS
4147 	if (nf_hook_ingress_active(skb)) {
4148 		int ingress_retval;
4149 
4150 		if (*pt_prev) {
4151 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4152 			*pt_prev = NULL;
4153 		}
4154 
4155 		rcu_read_lock();
4156 		ingress_retval = nf_hook_ingress(skb);
4157 		rcu_read_unlock();
4158 		return ingress_retval;
4159 	}
4160 #endif /* CONFIG_NETFILTER_INGRESS */
4161 	return 0;
4162 }
4163 
4164 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4165 {
4166 	struct packet_type *ptype, *pt_prev;
4167 	rx_handler_func_t *rx_handler;
4168 	struct net_device *orig_dev;
4169 	bool deliver_exact = false;
4170 	int ret = NET_RX_DROP;
4171 	__be16 type;
4172 
4173 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4174 
4175 	trace_netif_receive_skb(skb);
4176 
4177 	orig_dev = skb->dev;
4178 
4179 	skb_reset_network_header(skb);
4180 	if (!skb_transport_header_was_set(skb))
4181 		skb_reset_transport_header(skb);
4182 	skb_reset_mac_len(skb);
4183 
4184 	pt_prev = NULL;
4185 
4186 another_round:
4187 	skb->skb_iif = skb->dev->ifindex;
4188 
4189 	__this_cpu_inc(softnet_data.processed);
4190 
4191 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4192 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4193 		skb = skb_vlan_untag(skb);
4194 		if (unlikely(!skb))
4195 			goto out;
4196 	}
4197 
4198 	if (skb_skip_tc_classify(skb))
4199 		goto skip_classify;
4200 
4201 	if (pfmemalloc)
4202 		goto skip_taps;
4203 
4204 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4205 		if (pt_prev)
4206 			ret = deliver_skb(skb, pt_prev, orig_dev);
4207 		pt_prev = ptype;
4208 	}
4209 
4210 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4211 		if (pt_prev)
4212 			ret = deliver_skb(skb, pt_prev, orig_dev);
4213 		pt_prev = ptype;
4214 	}
4215 
4216 skip_taps:
4217 #ifdef CONFIG_NET_INGRESS
4218 	if (static_key_false(&ingress_needed)) {
4219 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4220 		if (!skb)
4221 			goto out;
4222 
4223 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4224 			goto out;
4225 	}
4226 #endif
4227 	skb_reset_tc(skb);
4228 skip_classify:
4229 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4230 		goto drop;
4231 
4232 	if (skb_vlan_tag_present(skb)) {
4233 		if (pt_prev) {
4234 			ret = deliver_skb(skb, pt_prev, orig_dev);
4235 			pt_prev = NULL;
4236 		}
4237 		if (vlan_do_receive(&skb))
4238 			goto another_round;
4239 		else if (unlikely(!skb))
4240 			goto out;
4241 	}
4242 
4243 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4244 	if (rx_handler) {
4245 		if (pt_prev) {
4246 			ret = deliver_skb(skb, pt_prev, orig_dev);
4247 			pt_prev = NULL;
4248 		}
4249 		switch (rx_handler(&skb)) {
4250 		case RX_HANDLER_CONSUMED:
4251 			ret = NET_RX_SUCCESS;
4252 			goto out;
4253 		case RX_HANDLER_ANOTHER:
4254 			goto another_round;
4255 		case RX_HANDLER_EXACT:
4256 			deliver_exact = true;
4257 		case RX_HANDLER_PASS:
4258 			break;
4259 		default:
4260 			BUG();
4261 		}
4262 	}
4263 
4264 	if (unlikely(skb_vlan_tag_present(skb))) {
4265 		if (skb_vlan_tag_get_id(skb))
4266 			skb->pkt_type = PACKET_OTHERHOST;
4267 		/* Note: we might in the future use prio bits
4268 		 * and set skb->priority like in vlan_do_receive()
4269 		 * For the time being, just ignore Priority Code Point
4270 		 */
4271 		skb->vlan_tci = 0;
4272 	}
4273 
4274 	type = skb->protocol;
4275 
4276 	/* deliver only exact match when indicated */
4277 	if (likely(!deliver_exact)) {
4278 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4279 				       &ptype_base[ntohs(type) &
4280 						   PTYPE_HASH_MASK]);
4281 	}
4282 
4283 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4284 			       &orig_dev->ptype_specific);
4285 
4286 	if (unlikely(skb->dev != orig_dev)) {
4287 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4288 				       &skb->dev->ptype_specific);
4289 	}
4290 
4291 	if (pt_prev) {
4292 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4293 			goto drop;
4294 		else
4295 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4296 	} else {
4297 drop:
4298 		if (!deliver_exact)
4299 			atomic_long_inc(&skb->dev->rx_dropped);
4300 		else
4301 			atomic_long_inc(&skb->dev->rx_nohandler);
4302 		kfree_skb(skb);
4303 		/* Jamal, now you will not able to escape explaining
4304 		 * me how you were going to use this. :-)
4305 		 */
4306 		ret = NET_RX_DROP;
4307 	}
4308 
4309 out:
4310 	return ret;
4311 }
4312 
4313 static int __netif_receive_skb(struct sk_buff *skb)
4314 {
4315 	int ret;
4316 
4317 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4318 		unsigned int noreclaim_flag;
4319 
4320 		/*
4321 		 * PFMEMALLOC skbs are special, they should
4322 		 * - be delivered to SOCK_MEMALLOC sockets only
4323 		 * - stay away from userspace
4324 		 * - have bounded memory usage
4325 		 *
4326 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4327 		 * context down to all allocation sites.
4328 		 */
4329 		noreclaim_flag = memalloc_noreclaim_save();
4330 		ret = __netif_receive_skb_core(skb, true);
4331 		memalloc_noreclaim_restore(noreclaim_flag);
4332 	} else
4333 		ret = __netif_receive_skb_core(skb, false);
4334 
4335 	return ret;
4336 }
4337 
4338 static struct static_key generic_xdp_needed __read_mostly;
4339 
4340 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4341 {
4342 	struct bpf_prog *new = xdp->prog;
4343 	int ret = 0;
4344 
4345 	switch (xdp->command) {
4346 	case XDP_SETUP_PROG: {
4347 		struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4348 
4349 		rcu_assign_pointer(dev->xdp_prog, new);
4350 		if (old)
4351 			bpf_prog_put(old);
4352 
4353 		if (old && !new) {
4354 			static_key_slow_dec(&generic_xdp_needed);
4355 		} else if (new && !old) {
4356 			static_key_slow_inc(&generic_xdp_needed);
4357 			dev_disable_lro(dev);
4358 		}
4359 		break;
4360 	}
4361 
4362 	case XDP_QUERY_PROG:
4363 		xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4364 		break;
4365 
4366 	default:
4367 		ret = -EINVAL;
4368 		break;
4369 	}
4370 
4371 	return ret;
4372 }
4373 
4374 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4375 				     struct bpf_prog *xdp_prog)
4376 {
4377 	struct xdp_buff xdp;
4378 	u32 act = XDP_DROP;
4379 	void *orig_data;
4380 	int hlen, off;
4381 	u32 mac_len;
4382 
4383 	/* Reinjected packets coming from act_mirred or similar should
4384 	 * not get XDP generic processing.
4385 	 */
4386 	if (skb_cloned(skb))
4387 		return XDP_PASS;
4388 
4389 	if (skb_linearize(skb))
4390 		goto do_drop;
4391 
4392 	/* The XDP program wants to see the packet starting at the MAC
4393 	 * header.
4394 	 */
4395 	mac_len = skb->data - skb_mac_header(skb);
4396 	hlen = skb_headlen(skb) + mac_len;
4397 	xdp.data = skb->data - mac_len;
4398 	xdp.data_end = xdp.data + hlen;
4399 	xdp.data_hard_start = skb->data - skb_headroom(skb);
4400 	orig_data = xdp.data;
4401 
4402 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
4403 
4404 	off = xdp.data - orig_data;
4405 	if (off > 0)
4406 		__skb_pull(skb, off);
4407 	else if (off < 0)
4408 		__skb_push(skb, -off);
4409 
4410 	switch (act) {
4411 	case XDP_TX:
4412 		__skb_push(skb, mac_len);
4413 		/* fall through */
4414 	case XDP_PASS:
4415 		break;
4416 
4417 	default:
4418 		bpf_warn_invalid_xdp_action(act);
4419 		/* fall through */
4420 	case XDP_ABORTED:
4421 		trace_xdp_exception(skb->dev, xdp_prog, act);
4422 		/* fall through */
4423 	case XDP_DROP:
4424 	do_drop:
4425 		kfree_skb(skb);
4426 		break;
4427 	}
4428 
4429 	return act;
4430 }
4431 
4432 /* When doing generic XDP we have to bypass the qdisc layer and the
4433  * network taps in order to match in-driver-XDP behavior.
4434  */
4435 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4436 {
4437 	struct net_device *dev = skb->dev;
4438 	struct netdev_queue *txq;
4439 	bool free_skb = true;
4440 	int cpu, rc;
4441 
4442 	txq = netdev_pick_tx(dev, skb, NULL);
4443 	cpu = smp_processor_id();
4444 	HARD_TX_LOCK(dev, txq, cpu);
4445 	if (!netif_xmit_stopped(txq)) {
4446 		rc = netdev_start_xmit(skb, dev, txq, 0);
4447 		if (dev_xmit_complete(rc))
4448 			free_skb = false;
4449 	}
4450 	HARD_TX_UNLOCK(dev, txq);
4451 	if (free_skb) {
4452 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4453 		kfree_skb(skb);
4454 	}
4455 }
4456 
4457 static int netif_receive_skb_internal(struct sk_buff *skb)
4458 {
4459 	int ret;
4460 
4461 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4462 
4463 	if (skb_defer_rx_timestamp(skb))
4464 		return NET_RX_SUCCESS;
4465 
4466 	rcu_read_lock();
4467 
4468 	if (static_key_false(&generic_xdp_needed)) {
4469 		struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4470 
4471 		if (xdp_prog) {
4472 			u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4473 
4474 			if (act != XDP_PASS) {
4475 				rcu_read_unlock();
4476 				if (act == XDP_TX)
4477 					generic_xdp_tx(skb, xdp_prog);
4478 				return NET_RX_DROP;
4479 			}
4480 		}
4481 	}
4482 
4483 #ifdef CONFIG_RPS
4484 	if (static_key_false(&rps_needed)) {
4485 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4486 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4487 
4488 		if (cpu >= 0) {
4489 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4490 			rcu_read_unlock();
4491 			return ret;
4492 		}
4493 	}
4494 #endif
4495 	ret = __netif_receive_skb(skb);
4496 	rcu_read_unlock();
4497 	return ret;
4498 }
4499 
4500 /**
4501  *	netif_receive_skb - process receive buffer from network
4502  *	@skb: buffer to process
4503  *
4504  *	netif_receive_skb() is the main receive data processing function.
4505  *	It always succeeds. The buffer may be dropped during processing
4506  *	for congestion control or by the protocol layers.
4507  *
4508  *	This function may only be called from softirq context and interrupts
4509  *	should be enabled.
4510  *
4511  *	Return values (usually ignored):
4512  *	NET_RX_SUCCESS: no congestion
4513  *	NET_RX_DROP: packet was dropped
4514  */
4515 int netif_receive_skb(struct sk_buff *skb)
4516 {
4517 	trace_netif_receive_skb_entry(skb);
4518 
4519 	return netif_receive_skb_internal(skb);
4520 }
4521 EXPORT_SYMBOL(netif_receive_skb);
4522 
4523 DEFINE_PER_CPU(struct work_struct, flush_works);
4524 
4525 /* Network device is going away, flush any packets still pending */
4526 static void flush_backlog(struct work_struct *work)
4527 {
4528 	struct sk_buff *skb, *tmp;
4529 	struct softnet_data *sd;
4530 
4531 	local_bh_disable();
4532 	sd = this_cpu_ptr(&softnet_data);
4533 
4534 	local_irq_disable();
4535 	rps_lock(sd);
4536 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4537 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4538 			__skb_unlink(skb, &sd->input_pkt_queue);
4539 			kfree_skb(skb);
4540 			input_queue_head_incr(sd);
4541 		}
4542 	}
4543 	rps_unlock(sd);
4544 	local_irq_enable();
4545 
4546 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4547 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4548 			__skb_unlink(skb, &sd->process_queue);
4549 			kfree_skb(skb);
4550 			input_queue_head_incr(sd);
4551 		}
4552 	}
4553 	local_bh_enable();
4554 }
4555 
4556 static void flush_all_backlogs(void)
4557 {
4558 	unsigned int cpu;
4559 
4560 	get_online_cpus();
4561 
4562 	for_each_online_cpu(cpu)
4563 		queue_work_on(cpu, system_highpri_wq,
4564 			      per_cpu_ptr(&flush_works, cpu));
4565 
4566 	for_each_online_cpu(cpu)
4567 		flush_work(per_cpu_ptr(&flush_works, cpu));
4568 
4569 	put_online_cpus();
4570 }
4571 
4572 static int napi_gro_complete(struct sk_buff *skb)
4573 {
4574 	struct packet_offload *ptype;
4575 	__be16 type = skb->protocol;
4576 	struct list_head *head = &offload_base;
4577 	int err = -ENOENT;
4578 
4579 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4580 
4581 	if (NAPI_GRO_CB(skb)->count == 1) {
4582 		skb_shinfo(skb)->gso_size = 0;
4583 		goto out;
4584 	}
4585 
4586 	rcu_read_lock();
4587 	list_for_each_entry_rcu(ptype, head, list) {
4588 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4589 			continue;
4590 
4591 		err = ptype->callbacks.gro_complete(skb, 0);
4592 		break;
4593 	}
4594 	rcu_read_unlock();
4595 
4596 	if (err) {
4597 		WARN_ON(&ptype->list == head);
4598 		kfree_skb(skb);
4599 		return NET_RX_SUCCESS;
4600 	}
4601 
4602 out:
4603 	return netif_receive_skb_internal(skb);
4604 }
4605 
4606 /* napi->gro_list contains packets ordered by age.
4607  * youngest packets at the head of it.
4608  * Complete skbs in reverse order to reduce latencies.
4609  */
4610 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4611 {
4612 	struct sk_buff *skb, *prev = NULL;
4613 
4614 	/* scan list and build reverse chain */
4615 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4616 		skb->prev = prev;
4617 		prev = skb;
4618 	}
4619 
4620 	for (skb = prev; skb; skb = prev) {
4621 		skb->next = NULL;
4622 
4623 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4624 			return;
4625 
4626 		prev = skb->prev;
4627 		napi_gro_complete(skb);
4628 		napi->gro_count--;
4629 	}
4630 
4631 	napi->gro_list = NULL;
4632 }
4633 EXPORT_SYMBOL(napi_gro_flush);
4634 
4635 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4636 {
4637 	struct sk_buff *p;
4638 	unsigned int maclen = skb->dev->hard_header_len;
4639 	u32 hash = skb_get_hash_raw(skb);
4640 
4641 	for (p = napi->gro_list; p; p = p->next) {
4642 		unsigned long diffs;
4643 
4644 		NAPI_GRO_CB(p)->flush = 0;
4645 
4646 		if (hash != skb_get_hash_raw(p)) {
4647 			NAPI_GRO_CB(p)->same_flow = 0;
4648 			continue;
4649 		}
4650 
4651 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4652 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4653 		diffs |= skb_metadata_dst_cmp(p, skb);
4654 		if (maclen == ETH_HLEN)
4655 			diffs |= compare_ether_header(skb_mac_header(p),
4656 						      skb_mac_header(skb));
4657 		else if (!diffs)
4658 			diffs = memcmp(skb_mac_header(p),
4659 				       skb_mac_header(skb),
4660 				       maclen);
4661 		NAPI_GRO_CB(p)->same_flow = !diffs;
4662 	}
4663 }
4664 
4665 static void skb_gro_reset_offset(struct sk_buff *skb)
4666 {
4667 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4668 	const skb_frag_t *frag0 = &pinfo->frags[0];
4669 
4670 	NAPI_GRO_CB(skb)->data_offset = 0;
4671 	NAPI_GRO_CB(skb)->frag0 = NULL;
4672 	NAPI_GRO_CB(skb)->frag0_len = 0;
4673 
4674 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4675 	    pinfo->nr_frags &&
4676 	    !PageHighMem(skb_frag_page(frag0))) {
4677 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4678 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4679 						    skb_frag_size(frag0),
4680 						    skb->end - skb->tail);
4681 	}
4682 }
4683 
4684 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4685 {
4686 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4687 
4688 	BUG_ON(skb->end - skb->tail < grow);
4689 
4690 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4691 
4692 	skb->data_len -= grow;
4693 	skb->tail += grow;
4694 
4695 	pinfo->frags[0].page_offset += grow;
4696 	skb_frag_size_sub(&pinfo->frags[0], grow);
4697 
4698 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4699 		skb_frag_unref(skb, 0);
4700 		memmove(pinfo->frags, pinfo->frags + 1,
4701 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4702 	}
4703 }
4704 
4705 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4706 {
4707 	struct sk_buff **pp = NULL;
4708 	struct packet_offload *ptype;
4709 	__be16 type = skb->protocol;
4710 	struct list_head *head = &offload_base;
4711 	int same_flow;
4712 	enum gro_result ret;
4713 	int grow;
4714 
4715 	if (netif_elide_gro(skb->dev))
4716 		goto normal;
4717 
4718 	gro_list_prepare(napi, skb);
4719 
4720 	rcu_read_lock();
4721 	list_for_each_entry_rcu(ptype, head, list) {
4722 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4723 			continue;
4724 
4725 		skb_set_network_header(skb, skb_gro_offset(skb));
4726 		skb_reset_mac_len(skb);
4727 		NAPI_GRO_CB(skb)->same_flow = 0;
4728 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4729 		NAPI_GRO_CB(skb)->free = 0;
4730 		NAPI_GRO_CB(skb)->encap_mark = 0;
4731 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4732 		NAPI_GRO_CB(skb)->is_fou = 0;
4733 		NAPI_GRO_CB(skb)->is_atomic = 1;
4734 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4735 
4736 		/* Setup for GRO checksum validation */
4737 		switch (skb->ip_summed) {
4738 		case CHECKSUM_COMPLETE:
4739 			NAPI_GRO_CB(skb)->csum = skb->csum;
4740 			NAPI_GRO_CB(skb)->csum_valid = 1;
4741 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4742 			break;
4743 		case CHECKSUM_UNNECESSARY:
4744 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4745 			NAPI_GRO_CB(skb)->csum_valid = 0;
4746 			break;
4747 		default:
4748 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4749 			NAPI_GRO_CB(skb)->csum_valid = 0;
4750 		}
4751 
4752 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4753 		break;
4754 	}
4755 	rcu_read_unlock();
4756 
4757 	if (&ptype->list == head)
4758 		goto normal;
4759 
4760 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4761 		ret = GRO_CONSUMED;
4762 		goto ok;
4763 	}
4764 
4765 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4766 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4767 
4768 	if (pp) {
4769 		struct sk_buff *nskb = *pp;
4770 
4771 		*pp = nskb->next;
4772 		nskb->next = NULL;
4773 		napi_gro_complete(nskb);
4774 		napi->gro_count--;
4775 	}
4776 
4777 	if (same_flow)
4778 		goto ok;
4779 
4780 	if (NAPI_GRO_CB(skb)->flush)
4781 		goto normal;
4782 
4783 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4784 		struct sk_buff *nskb = napi->gro_list;
4785 
4786 		/* locate the end of the list to select the 'oldest' flow */
4787 		while (nskb->next) {
4788 			pp = &nskb->next;
4789 			nskb = *pp;
4790 		}
4791 		*pp = NULL;
4792 		nskb->next = NULL;
4793 		napi_gro_complete(nskb);
4794 	} else {
4795 		napi->gro_count++;
4796 	}
4797 	NAPI_GRO_CB(skb)->count = 1;
4798 	NAPI_GRO_CB(skb)->age = jiffies;
4799 	NAPI_GRO_CB(skb)->last = skb;
4800 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4801 	skb->next = napi->gro_list;
4802 	napi->gro_list = skb;
4803 	ret = GRO_HELD;
4804 
4805 pull:
4806 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4807 	if (grow > 0)
4808 		gro_pull_from_frag0(skb, grow);
4809 ok:
4810 	return ret;
4811 
4812 normal:
4813 	ret = GRO_NORMAL;
4814 	goto pull;
4815 }
4816 
4817 struct packet_offload *gro_find_receive_by_type(__be16 type)
4818 {
4819 	struct list_head *offload_head = &offload_base;
4820 	struct packet_offload *ptype;
4821 
4822 	list_for_each_entry_rcu(ptype, offload_head, list) {
4823 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4824 			continue;
4825 		return ptype;
4826 	}
4827 	return NULL;
4828 }
4829 EXPORT_SYMBOL(gro_find_receive_by_type);
4830 
4831 struct packet_offload *gro_find_complete_by_type(__be16 type)
4832 {
4833 	struct list_head *offload_head = &offload_base;
4834 	struct packet_offload *ptype;
4835 
4836 	list_for_each_entry_rcu(ptype, offload_head, list) {
4837 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4838 			continue;
4839 		return ptype;
4840 	}
4841 	return NULL;
4842 }
4843 EXPORT_SYMBOL(gro_find_complete_by_type);
4844 
4845 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4846 {
4847 	switch (ret) {
4848 	case GRO_NORMAL:
4849 		if (netif_receive_skb_internal(skb))
4850 			ret = GRO_DROP;
4851 		break;
4852 
4853 	case GRO_DROP:
4854 		kfree_skb(skb);
4855 		break;
4856 
4857 	case GRO_MERGED_FREE:
4858 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4859 			skb_dst_drop(skb);
4860 			secpath_reset(skb);
4861 			kmem_cache_free(skbuff_head_cache, skb);
4862 		} else {
4863 			__kfree_skb(skb);
4864 		}
4865 		break;
4866 
4867 	case GRO_HELD:
4868 	case GRO_MERGED:
4869 	case GRO_CONSUMED:
4870 		break;
4871 	}
4872 
4873 	return ret;
4874 }
4875 
4876 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4877 {
4878 	skb_mark_napi_id(skb, napi);
4879 	trace_napi_gro_receive_entry(skb);
4880 
4881 	skb_gro_reset_offset(skb);
4882 
4883 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4884 }
4885 EXPORT_SYMBOL(napi_gro_receive);
4886 
4887 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4888 {
4889 	if (unlikely(skb->pfmemalloc)) {
4890 		consume_skb(skb);
4891 		return;
4892 	}
4893 	__skb_pull(skb, skb_headlen(skb));
4894 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4895 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4896 	skb->vlan_tci = 0;
4897 	skb->dev = napi->dev;
4898 	skb->skb_iif = 0;
4899 	skb->encapsulation = 0;
4900 	skb_shinfo(skb)->gso_type = 0;
4901 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4902 	secpath_reset(skb);
4903 
4904 	napi->skb = skb;
4905 }
4906 
4907 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4908 {
4909 	struct sk_buff *skb = napi->skb;
4910 
4911 	if (!skb) {
4912 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4913 		if (skb) {
4914 			napi->skb = skb;
4915 			skb_mark_napi_id(skb, napi);
4916 		}
4917 	}
4918 	return skb;
4919 }
4920 EXPORT_SYMBOL(napi_get_frags);
4921 
4922 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4923 				      struct sk_buff *skb,
4924 				      gro_result_t ret)
4925 {
4926 	switch (ret) {
4927 	case GRO_NORMAL:
4928 	case GRO_HELD:
4929 		__skb_push(skb, ETH_HLEN);
4930 		skb->protocol = eth_type_trans(skb, skb->dev);
4931 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4932 			ret = GRO_DROP;
4933 		break;
4934 
4935 	case GRO_DROP:
4936 	case GRO_MERGED_FREE:
4937 		napi_reuse_skb(napi, skb);
4938 		break;
4939 
4940 	case GRO_MERGED:
4941 	case GRO_CONSUMED:
4942 		break;
4943 	}
4944 
4945 	return ret;
4946 }
4947 
4948 /* Upper GRO stack assumes network header starts at gro_offset=0
4949  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4950  * We copy ethernet header into skb->data to have a common layout.
4951  */
4952 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4953 {
4954 	struct sk_buff *skb = napi->skb;
4955 	const struct ethhdr *eth;
4956 	unsigned int hlen = sizeof(*eth);
4957 
4958 	napi->skb = NULL;
4959 
4960 	skb_reset_mac_header(skb);
4961 	skb_gro_reset_offset(skb);
4962 
4963 	eth = skb_gro_header_fast(skb, 0);
4964 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4965 		eth = skb_gro_header_slow(skb, hlen, 0);
4966 		if (unlikely(!eth)) {
4967 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4968 					     __func__, napi->dev->name);
4969 			napi_reuse_skb(napi, skb);
4970 			return NULL;
4971 		}
4972 	} else {
4973 		gro_pull_from_frag0(skb, hlen);
4974 		NAPI_GRO_CB(skb)->frag0 += hlen;
4975 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4976 	}
4977 	__skb_pull(skb, hlen);
4978 
4979 	/*
4980 	 * This works because the only protocols we care about don't require
4981 	 * special handling.
4982 	 * We'll fix it up properly in napi_frags_finish()
4983 	 */
4984 	skb->protocol = eth->h_proto;
4985 
4986 	return skb;
4987 }
4988 
4989 gro_result_t napi_gro_frags(struct napi_struct *napi)
4990 {
4991 	struct sk_buff *skb = napi_frags_skb(napi);
4992 
4993 	if (!skb)
4994 		return GRO_DROP;
4995 
4996 	trace_napi_gro_frags_entry(skb);
4997 
4998 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4999 }
5000 EXPORT_SYMBOL(napi_gro_frags);
5001 
5002 /* Compute the checksum from gro_offset and return the folded value
5003  * after adding in any pseudo checksum.
5004  */
5005 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5006 {
5007 	__wsum wsum;
5008 	__sum16 sum;
5009 
5010 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5011 
5012 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5013 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5014 	if (likely(!sum)) {
5015 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5016 		    !skb->csum_complete_sw)
5017 			netdev_rx_csum_fault(skb->dev);
5018 	}
5019 
5020 	NAPI_GRO_CB(skb)->csum = wsum;
5021 	NAPI_GRO_CB(skb)->csum_valid = 1;
5022 
5023 	return sum;
5024 }
5025 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5026 
5027 /*
5028  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5029  * Note: called with local irq disabled, but exits with local irq enabled.
5030  */
5031 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5032 {
5033 #ifdef CONFIG_RPS
5034 	struct softnet_data *remsd = sd->rps_ipi_list;
5035 
5036 	if (remsd) {
5037 		sd->rps_ipi_list = NULL;
5038 
5039 		local_irq_enable();
5040 
5041 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5042 		while (remsd) {
5043 			struct softnet_data *next = remsd->rps_ipi_next;
5044 
5045 			if (cpu_online(remsd->cpu))
5046 				smp_call_function_single_async(remsd->cpu,
5047 							   &remsd->csd);
5048 			remsd = next;
5049 		}
5050 	} else
5051 #endif
5052 		local_irq_enable();
5053 }
5054 
5055 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5056 {
5057 #ifdef CONFIG_RPS
5058 	return sd->rps_ipi_list != NULL;
5059 #else
5060 	return false;
5061 #endif
5062 }
5063 
5064 static int process_backlog(struct napi_struct *napi, int quota)
5065 {
5066 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5067 	bool again = true;
5068 	int work = 0;
5069 
5070 	/* Check if we have pending ipi, its better to send them now,
5071 	 * not waiting net_rx_action() end.
5072 	 */
5073 	if (sd_has_rps_ipi_waiting(sd)) {
5074 		local_irq_disable();
5075 		net_rps_action_and_irq_enable(sd);
5076 	}
5077 
5078 	napi->weight = dev_rx_weight;
5079 	while (again) {
5080 		struct sk_buff *skb;
5081 
5082 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5083 			rcu_read_lock();
5084 			__netif_receive_skb(skb);
5085 			rcu_read_unlock();
5086 			input_queue_head_incr(sd);
5087 			if (++work >= quota)
5088 				return work;
5089 
5090 		}
5091 
5092 		local_irq_disable();
5093 		rps_lock(sd);
5094 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5095 			/*
5096 			 * Inline a custom version of __napi_complete().
5097 			 * only current cpu owns and manipulates this napi,
5098 			 * and NAPI_STATE_SCHED is the only possible flag set
5099 			 * on backlog.
5100 			 * We can use a plain write instead of clear_bit(),
5101 			 * and we dont need an smp_mb() memory barrier.
5102 			 */
5103 			napi->state = 0;
5104 			again = false;
5105 		} else {
5106 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5107 						   &sd->process_queue);
5108 		}
5109 		rps_unlock(sd);
5110 		local_irq_enable();
5111 	}
5112 
5113 	return work;
5114 }
5115 
5116 /**
5117  * __napi_schedule - schedule for receive
5118  * @n: entry to schedule
5119  *
5120  * The entry's receive function will be scheduled to run.
5121  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5122  */
5123 void __napi_schedule(struct napi_struct *n)
5124 {
5125 	unsigned long flags;
5126 
5127 	local_irq_save(flags);
5128 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5129 	local_irq_restore(flags);
5130 }
5131 EXPORT_SYMBOL(__napi_schedule);
5132 
5133 /**
5134  *	napi_schedule_prep - check if napi can be scheduled
5135  *	@n: napi context
5136  *
5137  * Test if NAPI routine is already running, and if not mark
5138  * it as running.  This is used as a condition variable
5139  * insure only one NAPI poll instance runs.  We also make
5140  * sure there is no pending NAPI disable.
5141  */
5142 bool napi_schedule_prep(struct napi_struct *n)
5143 {
5144 	unsigned long val, new;
5145 
5146 	do {
5147 		val = READ_ONCE(n->state);
5148 		if (unlikely(val & NAPIF_STATE_DISABLE))
5149 			return false;
5150 		new = val | NAPIF_STATE_SCHED;
5151 
5152 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5153 		 * This was suggested by Alexander Duyck, as compiler
5154 		 * emits better code than :
5155 		 * if (val & NAPIF_STATE_SCHED)
5156 		 *     new |= NAPIF_STATE_MISSED;
5157 		 */
5158 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5159 						   NAPIF_STATE_MISSED;
5160 	} while (cmpxchg(&n->state, val, new) != val);
5161 
5162 	return !(val & NAPIF_STATE_SCHED);
5163 }
5164 EXPORT_SYMBOL(napi_schedule_prep);
5165 
5166 /**
5167  * __napi_schedule_irqoff - schedule for receive
5168  * @n: entry to schedule
5169  *
5170  * Variant of __napi_schedule() assuming hard irqs are masked
5171  */
5172 void __napi_schedule_irqoff(struct napi_struct *n)
5173 {
5174 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5175 }
5176 EXPORT_SYMBOL(__napi_schedule_irqoff);
5177 
5178 bool napi_complete_done(struct napi_struct *n, int work_done)
5179 {
5180 	unsigned long flags, val, new;
5181 
5182 	/*
5183 	 * 1) Don't let napi dequeue from the cpu poll list
5184 	 *    just in case its running on a different cpu.
5185 	 * 2) If we are busy polling, do nothing here, we have
5186 	 *    the guarantee we will be called later.
5187 	 */
5188 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5189 				 NAPIF_STATE_IN_BUSY_POLL)))
5190 		return false;
5191 
5192 	if (n->gro_list) {
5193 		unsigned long timeout = 0;
5194 
5195 		if (work_done)
5196 			timeout = n->dev->gro_flush_timeout;
5197 
5198 		if (timeout)
5199 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5200 				      HRTIMER_MODE_REL_PINNED);
5201 		else
5202 			napi_gro_flush(n, false);
5203 	}
5204 	if (unlikely(!list_empty(&n->poll_list))) {
5205 		/* If n->poll_list is not empty, we need to mask irqs */
5206 		local_irq_save(flags);
5207 		list_del_init(&n->poll_list);
5208 		local_irq_restore(flags);
5209 	}
5210 
5211 	do {
5212 		val = READ_ONCE(n->state);
5213 
5214 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5215 
5216 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5217 
5218 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5219 		 * because we will call napi->poll() one more time.
5220 		 * This C code was suggested by Alexander Duyck to help gcc.
5221 		 */
5222 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5223 						    NAPIF_STATE_SCHED;
5224 	} while (cmpxchg(&n->state, val, new) != val);
5225 
5226 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5227 		__napi_schedule(n);
5228 		return false;
5229 	}
5230 
5231 	return true;
5232 }
5233 EXPORT_SYMBOL(napi_complete_done);
5234 
5235 /* must be called under rcu_read_lock(), as we dont take a reference */
5236 static struct napi_struct *napi_by_id(unsigned int napi_id)
5237 {
5238 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5239 	struct napi_struct *napi;
5240 
5241 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5242 		if (napi->napi_id == napi_id)
5243 			return napi;
5244 
5245 	return NULL;
5246 }
5247 
5248 #if defined(CONFIG_NET_RX_BUSY_POLL)
5249 
5250 #define BUSY_POLL_BUDGET 8
5251 
5252 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5253 {
5254 	int rc;
5255 
5256 	/* Busy polling means there is a high chance device driver hard irq
5257 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5258 	 * set in napi_schedule_prep().
5259 	 * Since we are about to call napi->poll() once more, we can safely
5260 	 * clear NAPI_STATE_MISSED.
5261 	 *
5262 	 * Note: x86 could use a single "lock and ..." instruction
5263 	 * to perform these two clear_bit()
5264 	 */
5265 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5266 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5267 
5268 	local_bh_disable();
5269 
5270 	/* All we really want here is to re-enable device interrupts.
5271 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5272 	 */
5273 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5274 	netpoll_poll_unlock(have_poll_lock);
5275 	if (rc == BUSY_POLL_BUDGET)
5276 		__napi_schedule(napi);
5277 	local_bh_enable();
5278 	if (local_softirq_pending())
5279 		do_softirq();
5280 }
5281 
5282 void napi_busy_loop(unsigned int napi_id,
5283 		    bool (*loop_end)(void *, unsigned long),
5284 		    void *loop_end_arg)
5285 {
5286 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5287 	int (*napi_poll)(struct napi_struct *napi, int budget);
5288 	void *have_poll_lock = NULL;
5289 	struct napi_struct *napi;
5290 
5291 restart:
5292 	napi_poll = NULL;
5293 
5294 	rcu_read_lock();
5295 
5296 	napi = napi_by_id(napi_id);
5297 	if (!napi)
5298 		goto out;
5299 
5300 	preempt_disable();
5301 	for (;;) {
5302 		int work = 0;
5303 
5304 		local_bh_disable();
5305 		if (!napi_poll) {
5306 			unsigned long val = READ_ONCE(napi->state);
5307 
5308 			/* If multiple threads are competing for this napi,
5309 			 * we avoid dirtying napi->state as much as we can.
5310 			 */
5311 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5312 				   NAPIF_STATE_IN_BUSY_POLL))
5313 				goto count;
5314 			if (cmpxchg(&napi->state, val,
5315 				    val | NAPIF_STATE_IN_BUSY_POLL |
5316 					  NAPIF_STATE_SCHED) != val)
5317 				goto count;
5318 			have_poll_lock = netpoll_poll_lock(napi);
5319 			napi_poll = napi->poll;
5320 		}
5321 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5322 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5323 count:
5324 		if (work > 0)
5325 			__NET_ADD_STATS(dev_net(napi->dev),
5326 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5327 		local_bh_enable();
5328 
5329 		if (!loop_end || loop_end(loop_end_arg, start_time))
5330 			break;
5331 
5332 		if (unlikely(need_resched())) {
5333 			if (napi_poll)
5334 				busy_poll_stop(napi, have_poll_lock);
5335 			preempt_enable();
5336 			rcu_read_unlock();
5337 			cond_resched();
5338 			if (loop_end(loop_end_arg, start_time))
5339 				return;
5340 			goto restart;
5341 		}
5342 		cpu_relax();
5343 	}
5344 	if (napi_poll)
5345 		busy_poll_stop(napi, have_poll_lock);
5346 	preempt_enable();
5347 out:
5348 	rcu_read_unlock();
5349 }
5350 EXPORT_SYMBOL(napi_busy_loop);
5351 
5352 #endif /* CONFIG_NET_RX_BUSY_POLL */
5353 
5354 static void napi_hash_add(struct napi_struct *napi)
5355 {
5356 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5357 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5358 		return;
5359 
5360 	spin_lock(&napi_hash_lock);
5361 
5362 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5363 	do {
5364 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5365 			napi_gen_id = MIN_NAPI_ID;
5366 	} while (napi_by_id(napi_gen_id));
5367 	napi->napi_id = napi_gen_id;
5368 
5369 	hlist_add_head_rcu(&napi->napi_hash_node,
5370 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5371 
5372 	spin_unlock(&napi_hash_lock);
5373 }
5374 
5375 /* Warning : caller is responsible to make sure rcu grace period
5376  * is respected before freeing memory containing @napi
5377  */
5378 bool napi_hash_del(struct napi_struct *napi)
5379 {
5380 	bool rcu_sync_needed = false;
5381 
5382 	spin_lock(&napi_hash_lock);
5383 
5384 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5385 		rcu_sync_needed = true;
5386 		hlist_del_rcu(&napi->napi_hash_node);
5387 	}
5388 	spin_unlock(&napi_hash_lock);
5389 	return rcu_sync_needed;
5390 }
5391 EXPORT_SYMBOL_GPL(napi_hash_del);
5392 
5393 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5394 {
5395 	struct napi_struct *napi;
5396 
5397 	napi = container_of(timer, struct napi_struct, timer);
5398 
5399 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5400 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5401 	 */
5402 	if (napi->gro_list && !napi_disable_pending(napi) &&
5403 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5404 		__napi_schedule_irqoff(napi);
5405 
5406 	return HRTIMER_NORESTART;
5407 }
5408 
5409 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5410 		    int (*poll)(struct napi_struct *, int), int weight)
5411 {
5412 	INIT_LIST_HEAD(&napi->poll_list);
5413 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5414 	napi->timer.function = napi_watchdog;
5415 	napi->gro_count = 0;
5416 	napi->gro_list = NULL;
5417 	napi->skb = NULL;
5418 	napi->poll = poll;
5419 	if (weight > NAPI_POLL_WEIGHT)
5420 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5421 			    weight, dev->name);
5422 	napi->weight = weight;
5423 	list_add(&napi->dev_list, &dev->napi_list);
5424 	napi->dev = dev;
5425 #ifdef CONFIG_NETPOLL
5426 	napi->poll_owner = -1;
5427 #endif
5428 	set_bit(NAPI_STATE_SCHED, &napi->state);
5429 	napi_hash_add(napi);
5430 }
5431 EXPORT_SYMBOL(netif_napi_add);
5432 
5433 void napi_disable(struct napi_struct *n)
5434 {
5435 	might_sleep();
5436 	set_bit(NAPI_STATE_DISABLE, &n->state);
5437 
5438 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5439 		msleep(1);
5440 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5441 		msleep(1);
5442 
5443 	hrtimer_cancel(&n->timer);
5444 
5445 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5446 }
5447 EXPORT_SYMBOL(napi_disable);
5448 
5449 /* Must be called in process context */
5450 void netif_napi_del(struct napi_struct *napi)
5451 {
5452 	might_sleep();
5453 	if (napi_hash_del(napi))
5454 		synchronize_net();
5455 	list_del_init(&napi->dev_list);
5456 	napi_free_frags(napi);
5457 
5458 	kfree_skb_list(napi->gro_list);
5459 	napi->gro_list = NULL;
5460 	napi->gro_count = 0;
5461 }
5462 EXPORT_SYMBOL(netif_napi_del);
5463 
5464 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5465 {
5466 	void *have;
5467 	int work, weight;
5468 
5469 	list_del_init(&n->poll_list);
5470 
5471 	have = netpoll_poll_lock(n);
5472 
5473 	weight = n->weight;
5474 
5475 	/* This NAPI_STATE_SCHED test is for avoiding a race
5476 	 * with netpoll's poll_napi().  Only the entity which
5477 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5478 	 * actually make the ->poll() call.  Therefore we avoid
5479 	 * accidentally calling ->poll() when NAPI is not scheduled.
5480 	 */
5481 	work = 0;
5482 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5483 		work = n->poll(n, weight);
5484 		trace_napi_poll(n, work, weight);
5485 	}
5486 
5487 	WARN_ON_ONCE(work > weight);
5488 
5489 	if (likely(work < weight))
5490 		goto out_unlock;
5491 
5492 	/* Drivers must not modify the NAPI state if they
5493 	 * consume the entire weight.  In such cases this code
5494 	 * still "owns" the NAPI instance and therefore can
5495 	 * move the instance around on the list at-will.
5496 	 */
5497 	if (unlikely(napi_disable_pending(n))) {
5498 		napi_complete(n);
5499 		goto out_unlock;
5500 	}
5501 
5502 	if (n->gro_list) {
5503 		/* flush too old packets
5504 		 * If HZ < 1000, flush all packets.
5505 		 */
5506 		napi_gro_flush(n, HZ >= 1000);
5507 	}
5508 
5509 	/* Some drivers may have called napi_schedule
5510 	 * prior to exhausting their budget.
5511 	 */
5512 	if (unlikely(!list_empty(&n->poll_list))) {
5513 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5514 			     n->dev ? n->dev->name : "backlog");
5515 		goto out_unlock;
5516 	}
5517 
5518 	list_add_tail(&n->poll_list, repoll);
5519 
5520 out_unlock:
5521 	netpoll_poll_unlock(have);
5522 
5523 	return work;
5524 }
5525 
5526 static __latent_entropy void net_rx_action(struct softirq_action *h)
5527 {
5528 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5529 	unsigned long time_limit = jiffies +
5530 		usecs_to_jiffies(netdev_budget_usecs);
5531 	int budget = netdev_budget;
5532 	LIST_HEAD(list);
5533 	LIST_HEAD(repoll);
5534 
5535 	local_irq_disable();
5536 	list_splice_init(&sd->poll_list, &list);
5537 	local_irq_enable();
5538 
5539 	for (;;) {
5540 		struct napi_struct *n;
5541 
5542 		if (list_empty(&list)) {
5543 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5544 				goto out;
5545 			break;
5546 		}
5547 
5548 		n = list_first_entry(&list, struct napi_struct, poll_list);
5549 		budget -= napi_poll(n, &repoll);
5550 
5551 		/* If softirq window is exhausted then punt.
5552 		 * Allow this to run for 2 jiffies since which will allow
5553 		 * an average latency of 1.5/HZ.
5554 		 */
5555 		if (unlikely(budget <= 0 ||
5556 			     time_after_eq(jiffies, time_limit))) {
5557 			sd->time_squeeze++;
5558 			break;
5559 		}
5560 	}
5561 
5562 	local_irq_disable();
5563 
5564 	list_splice_tail_init(&sd->poll_list, &list);
5565 	list_splice_tail(&repoll, &list);
5566 	list_splice(&list, &sd->poll_list);
5567 	if (!list_empty(&sd->poll_list))
5568 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5569 
5570 	net_rps_action_and_irq_enable(sd);
5571 out:
5572 	__kfree_skb_flush();
5573 }
5574 
5575 struct netdev_adjacent {
5576 	struct net_device *dev;
5577 
5578 	/* upper master flag, there can only be one master device per list */
5579 	bool master;
5580 
5581 	/* counter for the number of times this device was added to us */
5582 	u16 ref_nr;
5583 
5584 	/* private field for the users */
5585 	void *private;
5586 
5587 	struct list_head list;
5588 	struct rcu_head rcu;
5589 };
5590 
5591 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5592 						 struct list_head *adj_list)
5593 {
5594 	struct netdev_adjacent *adj;
5595 
5596 	list_for_each_entry(adj, adj_list, list) {
5597 		if (adj->dev == adj_dev)
5598 			return adj;
5599 	}
5600 	return NULL;
5601 }
5602 
5603 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5604 {
5605 	struct net_device *dev = data;
5606 
5607 	return upper_dev == dev;
5608 }
5609 
5610 /**
5611  * netdev_has_upper_dev - Check if device is linked to an upper device
5612  * @dev: device
5613  * @upper_dev: upper device to check
5614  *
5615  * Find out if a device is linked to specified upper device and return true
5616  * in case it is. Note that this checks only immediate upper device,
5617  * not through a complete stack of devices. The caller must hold the RTNL lock.
5618  */
5619 bool netdev_has_upper_dev(struct net_device *dev,
5620 			  struct net_device *upper_dev)
5621 {
5622 	ASSERT_RTNL();
5623 
5624 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5625 					     upper_dev);
5626 }
5627 EXPORT_SYMBOL(netdev_has_upper_dev);
5628 
5629 /**
5630  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5631  * @dev: device
5632  * @upper_dev: upper device to check
5633  *
5634  * Find out if a device is linked to specified upper device and return true
5635  * in case it is. Note that this checks the entire upper device chain.
5636  * The caller must hold rcu lock.
5637  */
5638 
5639 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5640 				  struct net_device *upper_dev)
5641 {
5642 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5643 					       upper_dev);
5644 }
5645 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5646 
5647 /**
5648  * netdev_has_any_upper_dev - Check if device is linked to some device
5649  * @dev: device
5650  *
5651  * Find out if a device is linked to an upper device and return true in case
5652  * it is. The caller must hold the RTNL lock.
5653  */
5654 static bool netdev_has_any_upper_dev(struct net_device *dev)
5655 {
5656 	ASSERT_RTNL();
5657 
5658 	return !list_empty(&dev->adj_list.upper);
5659 }
5660 
5661 /**
5662  * netdev_master_upper_dev_get - Get master upper device
5663  * @dev: device
5664  *
5665  * Find a master upper device and return pointer to it or NULL in case
5666  * it's not there. The caller must hold the RTNL lock.
5667  */
5668 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5669 {
5670 	struct netdev_adjacent *upper;
5671 
5672 	ASSERT_RTNL();
5673 
5674 	if (list_empty(&dev->adj_list.upper))
5675 		return NULL;
5676 
5677 	upper = list_first_entry(&dev->adj_list.upper,
5678 				 struct netdev_adjacent, list);
5679 	if (likely(upper->master))
5680 		return upper->dev;
5681 	return NULL;
5682 }
5683 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5684 
5685 /**
5686  * netdev_has_any_lower_dev - Check if device is linked to some device
5687  * @dev: device
5688  *
5689  * Find out if a device is linked to a lower device and return true in case
5690  * it is. The caller must hold the RTNL lock.
5691  */
5692 static bool netdev_has_any_lower_dev(struct net_device *dev)
5693 {
5694 	ASSERT_RTNL();
5695 
5696 	return !list_empty(&dev->adj_list.lower);
5697 }
5698 
5699 void *netdev_adjacent_get_private(struct list_head *adj_list)
5700 {
5701 	struct netdev_adjacent *adj;
5702 
5703 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5704 
5705 	return adj->private;
5706 }
5707 EXPORT_SYMBOL(netdev_adjacent_get_private);
5708 
5709 /**
5710  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5711  * @dev: device
5712  * @iter: list_head ** of the current position
5713  *
5714  * Gets the next device from the dev's upper list, starting from iter
5715  * position. The caller must hold RCU read lock.
5716  */
5717 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5718 						 struct list_head **iter)
5719 {
5720 	struct netdev_adjacent *upper;
5721 
5722 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5723 
5724 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5725 
5726 	if (&upper->list == &dev->adj_list.upper)
5727 		return NULL;
5728 
5729 	*iter = &upper->list;
5730 
5731 	return upper->dev;
5732 }
5733 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5734 
5735 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5736 						    struct list_head **iter)
5737 {
5738 	struct netdev_adjacent *upper;
5739 
5740 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5741 
5742 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5743 
5744 	if (&upper->list == &dev->adj_list.upper)
5745 		return NULL;
5746 
5747 	*iter = &upper->list;
5748 
5749 	return upper->dev;
5750 }
5751 
5752 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5753 				  int (*fn)(struct net_device *dev,
5754 					    void *data),
5755 				  void *data)
5756 {
5757 	struct net_device *udev;
5758 	struct list_head *iter;
5759 	int ret;
5760 
5761 	for (iter = &dev->adj_list.upper,
5762 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5763 	     udev;
5764 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5765 		/* first is the upper device itself */
5766 		ret = fn(udev, data);
5767 		if (ret)
5768 			return ret;
5769 
5770 		/* then look at all of its upper devices */
5771 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5772 		if (ret)
5773 			return ret;
5774 	}
5775 
5776 	return 0;
5777 }
5778 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5779 
5780 /**
5781  * netdev_lower_get_next_private - Get the next ->private from the
5782  *				   lower neighbour list
5783  * @dev: device
5784  * @iter: list_head ** of the current position
5785  *
5786  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5787  * list, starting from iter position. The caller must hold either hold the
5788  * RTNL lock or its own locking that guarantees that the neighbour lower
5789  * list will remain unchanged.
5790  */
5791 void *netdev_lower_get_next_private(struct net_device *dev,
5792 				    struct list_head **iter)
5793 {
5794 	struct netdev_adjacent *lower;
5795 
5796 	lower = list_entry(*iter, struct netdev_adjacent, list);
5797 
5798 	if (&lower->list == &dev->adj_list.lower)
5799 		return NULL;
5800 
5801 	*iter = lower->list.next;
5802 
5803 	return lower->private;
5804 }
5805 EXPORT_SYMBOL(netdev_lower_get_next_private);
5806 
5807 /**
5808  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5809  *				       lower neighbour list, RCU
5810  *				       variant
5811  * @dev: device
5812  * @iter: list_head ** of the current position
5813  *
5814  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5815  * list, starting from iter position. The caller must hold RCU read lock.
5816  */
5817 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5818 					struct list_head **iter)
5819 {
5820 	struct netdev_adjacent *lower;
5821 
5822 	WARN_ON_ONCE(!rcu_read_lock_held());
5823 
5824 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5825 
5826 	if (&lower->list == &dev->adj_list.lower)
5827 		return NULL;
5828 
5829 	*iter = &lower->list;
5830 
5831 	return lower->private;
5832 }
5833 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5834 
5835 /**
5836  * netdev_lower_get_next - Get the next device from the lower neighbour
5837  *                         list
5838  * @dev: device
5839  * @iter: list_head ** of the current position
5840  *
5841  * Gets the next netdev_adjacent from the dev's lower neighbour
5842  * list, starting from iter position. The caller must hold RTNL lock or
5843  * its own locking that guarantees that the neighbour lower
5844  * list will remain unchanged.
5845  */
5846 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5847 {
5848 	struct netdev_adjacent *lower;
5849 
5850 	lower = list_entry(*iter, struct netdev_adjacent, list);
5851 
5852 	if (&lower->list == &dev->adj_list.lower)
5853 		return NULL;
5854 
5855 	*iter = lower->list.next;
5856 
5857 	return lower->dev;
5858 }
5859 EXPORT_SYMBOL(netdev_lower_get_next);
5860 
5861 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5862 						struct list_head **iter)
5863 {
5864 	struct netdev_adjacent *lower;
5865 
5866 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5867 
5868 	if (&lower->list == &dev->adj_list.lower)
5869 		return NULL;
5870 
5871 	*iter = &lower->list;
5872 
5873 	return lower->dev;
5874 }
5875 
5876 int netdev_walk_all_lower_dev(struct net_device *dev,
5877 			      int (*fn)(struct net_device *dev,
5878 					void *data),
5879 			      void *data)
5880 {
5881 	struct net_device *ldev;
5882 	struct list_head *iter;
5883 	int ret;
5884 
5885 	for (iter = &dev->adj_list.lower,
5886 	     ldev = netdev_next_lower_dev(dev, &iter);
5887 	     ldev;
5888 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5889 		/* first is the lower device itself */
5890 		ret = fn(ldev, data);
5891 		if (ret)
5892 			return ret;
5893 
5894 		/* then look at all of its lower devices */
5895 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5896 		if (ret)
5897 			return ret;
5898 	}
5899 
5900 	return 0;
5901 }
5902 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5903 
5904 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5905 						    struct list_head **iter)
5906 {
5907 	struct netdev_adjacent *lower;
5908 
5909 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5910 	if (&lower->list == &dev->adj_list.lower)
5911 		return NULL;
5912 
5913 	*iter = &lower->list;
5914 
5915 	return lower->dev;
5916 }
5917 
5918 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5919 				  int (*fn)(struct net_device *dev,
5920 					    void *data),
5921 				  void *data)
5922 {
5923 	struct net_device *ldev;
5924 	struct list_head *iter;
5925 	int ret;
5926 
5927 	for (iter = &dev->adj_list.lower,
5928 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5929 	     ldev;
5930 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5931 		/* first is the lower device itself */
5932 		ret = fn(ldev, data);
5933 		if (ret)
5934 			return ret;
5935 
5936 		/* then look at all of its lower devices */
5937 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5938 		if (ret)
5939 			return ret;
5940 	}
5941 
5942 	return 0;
5943 }
5944 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5945 
5946 /**
5947  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5948  *				       lower neighbour list, RCU
5949  *				       variant
5950  * @dev: device
5951  *
5952  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5953  * list. The caller must hold RCU read lock.
5954  */
5955 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5956 {
5957 	struct netdev_adjacent *lower;
5958 
5959 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5960 			struct netdev_adjacent, list);
5961 	if (lower)
5962 		return lower->private;
5963 	return NULL;
5964 }
5965 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5966 
5967 /**
5968  * netdev_master_upper_dev_get_rcu - Get master upper device
5969  * @dev: device
5970  *
5971  * Find a master upper device and return pointer to it or NULL in case
5972  * it's not there. The caller must hold the RCU read lock.
5973  */
5974 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5975 {
5976 	struct netdev_adjacent *upper;
5977 
5978 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5979 				       struct netdev_adjacent, list);
5980 	if (upper && likely(upper->master))
5981 		return upper->dev;
5982 	return NULL;
5983 }
5984 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5985 
5986 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5987 			      struct net_device *adj_dev,
5988 			      struct list_head *dev_list)
5989 {
5990 	char linkname[IFNAMSIZ+7];
5991 
5992 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5993 		"upper_%s" : "lower_%s", adj_dev->name);
5994 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5995 				 linkname);
5996 }
5997 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5998 			       char *name,
5999 			       struct list_head *dev_list)
6000 {
6001 	char linkname[IFNAMSIZ+7];
6002 
6003 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6004 		"upper_%s" : "lower_%s", name);
6005 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6006 }
6007 
6008 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6009 						 struct net_device *adj_dev,
6010 						 struct list_head *dev_list)
6011 {
6012 	return (dev_list == &dev->adj_list.upper ||
6013 		dev_list == &dev->adj_list.lower) &&
6014 		net_eq(dev_net(dev), dev_net(adj_dev));
6015 }
6016 
6017 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6018 					struct net_device *adj_dev,
6019 					struct list_head *dev_list,
6020 					void *private, bool master)
6021 {
6022 	struct netdev_adjacent *adj;
6023 	int ret;
6024 
6025 	adj = __netdev_find_adj(adj_dev, dev_list);
6026 
6027 	if (adj) {
6028 		adj->ref_nr += 1;
6029 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6030 			 dev->name, adj_dev->name, adj->ref_nr);
6031 
6032 		return 0;
6033 	}
6034 
6035 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6036 	if (!adj)
6037 		return -ENOMEM;
6038 
6039 	adj->dev = adj_dev;
6040 	adj->master = master;
6041 	adj->ref_nr = 1;
6042 	adj->private = private;
6043 	dev_hold(adj_dev);
6044 
6045 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6046 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6047 
6048 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6049 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6050 		if (ret)
6051 			goto free_adj;
6052 	}
6053 
6054 	/* Ensure that master link is always the first item in list. */
6055 	if (master) {
6056 		ret = sysfs_create_link(&(dev->dev.kobj),
6057 					&(adj_dev->dev.kobj), "master");
6058 		if (ret)
6059 			goto remove_symlinks;
6060 
6061 		list_add_rcu(&adj->list, dev_list);
6062 	} else {
6063 		list_add_tail_rcu(&adj->list, dev_list);
6064 	}
6065 
6066 	return 0;
6067 
6068 remove_symlinks:
6069 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6070 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6071 free_adj:
6072 	kfree(adj);
6073 	dev_put(adj_dev);
6074 
6075 	return ret;
6076 }
6077 
6078 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6079 					 struct net_device *adj_dev,
6080 					 u16 ref_nr,
6081 					 struct list_head *dev_list)
6082 {
6083 	struct netdev_adjacent *adj;
6084 
6085 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6086 		 dev->name, adj_dev->name, ref_nr);
6087 
6088 	adj = __netdev_find_adj(adj_dev, dev_list);
6089 
6090 	if (!adj) {
6091 		pr_err("Adjacency does not exist for device %s from %s\n",
6092 		       dev->name, adj_dev->name);
6093 		WARN_ON(1);
6094 		return;
6095 	}
6096 
6097 	if (adj->ref_nr > ref_nr) {
6098 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6099 			 dev->name, adj_dev->name, ref_nr,
6100 			 adj->ref_nr - ref_nr);
6101 		adj->ref_nr -= ref_nr;
6102 		return;
6103 	}
6104 
6105 	if (adj->master)
6106 		sysfs_remove_link(&(dev->dev.kobj), "master");
6107 
6108 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6109 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6110 
6111 	list_del_rcu(&adj->list);
6112 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6113 		 adj_dev->name, dev->name, adj_dev->name);
6114 	dev_put(adj_dev);
6115 	kfree_rcu(adj, rcu);
6116 }
6117 
6118 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6119 					    struct net_device *upper_dev,
6120 					    struct list_head *up_list,
6121 					    struct list_head *down_list,
6122 					    void *private, bool master)
6123 {
6124 	int ret;
6125 
6126 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6127 					   private, master);
6128 	if (ret)
6129 		return ret;
6130 
6131 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6132 					   private, false);
6133 	if (ret) {
6134 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6135 		return ret;
6136 	}
6137 
6138 	return 0;
6139 }
6140 
6141 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6142 					       struct net_device *upper_dev,
6143 					       u16 ref_nr,
6144 					       struct list_head *up_list,
6145 					       struct list_head *down_list)
6146 {
6147 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6148 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6149 }
6150 
6151 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6152 						struct net_device *upper_dev,
6153 						void *private, bool master)
6154 {
6155 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6156 						&dev->adj_list.upper,
6157 						&upper_dev->adj_list.lower,
6158 						private, master);
6159 }
6160 
6161 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6162 						   struct net_device *upper_dev)
6163 {
6164 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6165 					   &dev->adj_list.upper,
6166 					   &upper_dev->adj_list.lower);
6167 }
6168 
6169 static int __netdev_upper_dev_link(struct net_device *dev,
6170 				   struct net_device *upper_dev, bool master,
6171 				   void *upper_priv, void *upper_info)
6172 {
6173 	struct netdev_notifier_changeupper_info changeupper_info;
6174 	int ret = 0;
6175 
6176 	ASSERT_RTNL();
6177 
6178 	if (dev == upper_dev)
6179 		return -EBUSY;
6180 
6181 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6182 	if (netdev_has_upper_dev(upper_dev, dev))
6183 		return -EBUSY;
6184 
6185 	if (netdev_has_upper_dev(dev, upper_dev))
6186 		return -EEXIST;
6187 
6188 	if (master && netdev_master_upper_dev_get(dev))
6189 		return -EBUSY;
6190 
6191 	changeupper_info.upper_dev = upper_dev;
6192 	changeupper_info.master = master;
6193 	changeupper_info.linking = true;
6194 	changeupper_info.upper_info = upper_info;
6195 
6196 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6197 					    &changeupper_info.info);
6198 	ret = notifier_to_errno(ret);
6199 	if (ret)
6200 		return ret;
6201 
6202 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6203 						   master);
6204 	if (ret)
6205 		return ret;
6206 
6207 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6208 					    &changeupper_info.info);
6209 	ret = notifier_to_errno(ret);
6210 	if (ret)
6211 		goto rollback;
6212 
6213 	return 0;
6214 
6215 rollback:
6216 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6217 
6218 	return ret;
6219 }
6220 
6221 /**
6222  * netdev_upper_dev_link - Add a link to the upper device
6223  * @dev: device
6224  * @upper_dev: new upper device
6225  *
6226  * Adds a link to device which is upper to this one. The caller must hold
6227  * the RTNL lock. On a failure a negative errno code is returned.
6228  * On success the reference counts are adjusted and the function
6229  * returns zero.
6230  */
6231 int netdev_upper_dev_link(struct net_device *dev,
6232 			  struct net_device *upper_dev)
6233 {
6234 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6235 }
6236 EXPORT_SYMBOL(netdev_upper_dev_link);
6237 
6238 /**
6239  * netdev_master_upper_dev_link - Add a master link to the upper device
6240  * @dev: device
6241  * @upper_dev: new upper device
6242  * @upper_priv: upper device private
6243  * @upper_info: upper info to be passed down via notifier
6244  *
6245  * Adds a link to device which is upper to this one. In this case, only
6246  * one master upper device can be linked, although other non-master devices
6247  * might be linked as well. The caller must hold the RTNL lock.
6248  * On a failure a negative errno code is returned. On success the reference
6249  * counts are adjusted and the function returns zero.
6250  */
6251 int netdev_master_upper_dev_link(struct net_device *dev,
6252 				 struct net_device *upper_dev,
6253 				 void *upper_priv, void *upper_info)
6254 {
6255 	return __netdev_upper_dev_link(dev, upper_dev, true,
6256 				       upper_priv, upper_info);
6257 }
6258 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6259 
6260 /**
6261  * netdev_upper_dev_unlink - Removes a link to upper device
6262  * @dev: device
6263  * @upper_dev: new upper device
6264  *
6265  * Removes a link to device which is upper to this one. The caller must hold
6266  * the RTNL lock.
6267  */
6268 void netdev_upper_dev_unlink(struct net_device *dev,
6269 			     struct net_device *upper_dev)
6270 {
6271 	struct netdev_notifier_changeupper_info changeupper_info;
6272 
6273 	ASSERT_RTNL();
6274 
6275 	changeupper_info.upper_dev = upper_dev;
6276 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6277 	changeupper_info.linking = false;
6278 
6279 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6280 				      &changeupper_info.info);
6281 
6282 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6283 
6284 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6285 				      &changeupper_info.info);
6286 }
6287 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6288 
6289 /**
6290  * netdev_bonding_info_change - Dispatch event about slave change
6291  * @dev: device
6292  * @bonding_info: info to dispatch
6293  *
6294  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6295  * The caller must hold the RTNL lock.
6296  */
6297 void netdev_bonding_info_change(struct net_device *dev,
6298 				struct netdev_bonding_info *bonding_info)
6299 {
6300 	struct netdev_notifier_bonding_info	info;
6301 
6302 	memcpy(&info.bonding_info, bonding_info,
6303 	       sizeof(struct netdev_bonding_info));
6304 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6305 				      &info.info);
6306 }
6307 EXPORT_SYMBOL(netdev_bonding_info_change);
6308 
6309 static void netdev_adjacent_add_links(struct net_device *dev)
6310 {
6311 	struct netdev_adjacent *iter;
6312 
6313 	struct net *net = dev_net(dev);
6314 
6315 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6316 		if (!net_eq(net, dev_net(iter->dev)))
6317 			continue;
6318 		netdev_adjacent_sysfs_add(iter->dev, dev,
6319 					  &iter->dev->adj_list.lower);
6320 		netdev_adjacent_sysfs_add(dev, iter->dev,
6321 					  &dev->adj_list.upper);
6322 	}
6323 
6324 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6325 		if (!net_eq(net, dev_net(iter->dev)))
6326 			continue;
6327 		netdev_adjacent_sysfs_add(iter->dev, dev,
6328 					  &iter->dev->adj_list.upper);
6329 		netdev_adjacent_sysfs_add(dev, iter->dev,
6330 					  &dev->adj_list.lower);
6331 	}
6332 }
6333 
6334 static void netdev_adjacent_del_links(struct net_device *dev)
6335 {
6336 	struct netdev_adjacent *iter;
6337 
6338 	struct net *net = dev_net(dev);
6339 
6340 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6341 		if (!net_eq(net, dev_net(iter->dev)))
6342 			continue;
6343 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6344 					  &iter->dev->adj_list.lower);
6345 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6346 					  &dev->adj_list.upper);
6347 	}
6348 
6349 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6350 		if (!net_eq(net, dev_net(iter->dev)))
6351 			continue;
6352 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6353 					  &iter->dev->adj_list.upper);
6354 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6355 					  &dev->adj_list.lower);
6356 	}
6357 }
6358 
6359 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6360 {
6361 	struct netdev_adjacent *iter;
6362 
6363 	struct net *net = dev_net(dev);
6364 
6365 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6366 		if (!net_eq(net, dev_net(iter->dev)))
6367 			continue;
6368 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6369 					  &iter->dev->adj_list.lower);
6370 		netdev_adjacent_sysfs_add(iter->dev, dev,
6371 					  &iter->dev->adj_list.lower);
6372 	}
6373 
6374 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6375 		if (!net_eq(net, dev_net(iter->dev)))
6376 			continue;
6377 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6378 					  &iter->dev->adj_list.upper);
6379 		netdev_adjacent_sysfs_add(iter->dev, dev,
6380 					  &iter->dev->adj_list.upper);
6381 	}
6382 }
6383 
6384 void *netdev_lower_dev_get_private(struct net_device *dev,
6385 				   struct net_device *lower_dev)
6386 {
6387 	struct netdev_adjacent *lower;
6388 
6389 	if (!lower_dev)
6390 		return NULL;
6391 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6392 	if (!lower)
6393 		return NULL;
6394 
6395 	return lower->private;
6396 }
6397 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6398 
6399 
6400 int dev_get_nest_level(struct net_device *dev)
6401 {
6402 	struct net_device *lower = NULL;
6403 	struct list_head *iter;
6404 	int max_nest = -1;
6405 	int nest;
6406 
6407 	ASSERT_RTNL();
6408 
6409 	netdev_for_each_lower_dev(dev, lower, iter) {
6410 		nest = dev_get_nest_level(lower);
6411 		if (max_nest < nest)
6412 			max_nest = nest;
6413 	}
6414 
6415 	return max_nest + 1;
6416 }
6417 EXPORT_SYMBOL(dev_get_nest_level);
6418 
6419 /**
6420  * netdev_lower_change - Dispatch event about lower device state change
6421  * @lower_dev: device
6422  * @lower_state_info: state to dispatch
6423  *
6424  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6425  * The caller must hold the RTNL lock.
6426  */
6427 void netdev_lower_state_changed(struct net_device *lower_dev,
6428 				void *lower_state_info)
6429 {
6430 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6431 
6432 	ASSERT_RTNL();
6433 	changelowerstate_info.lower_state_info = lower_state_info;
6434 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6435 				      &changelowerstate_info.info);
6436 }
6437 EXPORT_SYMBOL(netdev_lower_state_changed);
6438 
6439 static void dev_change_rx_flags(struct net_device *dev, int flags)
6440 {
6441 	const struct net_device_ops *ops = dev->netdev_ops;
6442 
6443 	if (ops->ndo_change_rx_flags)
6444 		ops->ndo_change_rx_flags(dev, flags);
6445 }
6446 
6447 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6448 {
6449 	unsigned int old_flags = dev->flags;
6450 	kuid_t uid;
6451 	kgid_t gid;
6452 
6453 	ASSERT_RTNL();
6454 
6455 	dev->flags |= IFF_PROMISC;
6456 	dev->promiscuity += inc;
6457 	if (dev->promiscuity == 0) {
6458 		/*
6459 		 * Avoid overflow.
6460 		 * If inc causes overflow, untouch promisc and return error.
6461 		 */
6462 		if (inc < 0)
6463 			dev->flags &= ~IFF_PROMISC;
6464 		else {
6465 			dev->promiscuity -= inc;
6466 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6467 				dev->name);
6468 			return -EOVERFLOW;
6469 		}
6470 	}
6471 	if (dev->flags != old_flags) {
6472 		pr_info("device %s %s promiscuous mode\n",
6473 			dev->name,
6474 			dev->flags & IFF_PROMISC ? "entered" : "left");
6475 		if (audit_enabled) {
6476 			current_uid_gid(&uid, &gid);
6477 			audit_log(current->audit_context, GFP_ATOMIC,
6478 				AUDIT_ANOM_PROMISCUOUS,
6479 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6480 				dev->name, (dev->flags & IFF_PROMISC),
6481 				(old_flags & IFF_PROMISC),
6482 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6483 				from_kuid(&init_user_ns, uid),
6484 				from_kgid(&init_user_ns, gid),
6485 				audit_get_sessionid(current));
6486 		}
6487 
6488 		dev_change_rx_flags(dev, IFF_PROMISC);
6489 	}
6490 	if (notify)
6491 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6492 	return 0;
6493 }
6494 
6495 /**
6496  *	dev_set_promiscuity	- update promiscuity count on a device
6497  *	@dev: device
6498  *	@inc: modifier
6499  *
6500  *	Add or remove promiscuity from a device. While the count in the device
6501  *	remains above zero the interface remains promiscuous. Once it hits zero
6502  *	the device reverts back to normal filtering operation. A negative inc
6503  *	value is used to drop promiscuity on the device.
6504  *	Return 0 if successful or a negative errno code on error.
6505  */
6506 int dev_set_promiscuity(struct net_device *dev, int inc)
6507 {
6508 	unsigned int old_flags = dev->flags;
6509 	int err;
6510 
6511 	err = __dev_set_promiscuity(dev, inc, true);
6512 	if (err < 0)
6513 		return err;
6514 	if (dev->flags != old_flags)
6515 		dev_set_rx_mode(dev);
6516 	return err;
6517 }
6518 EXPORT_SYMBOL(dev_set_promiscuity);
6519 
6520 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6521 {
6522 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6523 
6524 	ASSERT_RTNL();
6525 
6526 	dev->flags |= IFF_ALLMULTI;
6527 	dev->allmulti += inc;
6528 	if (dev->allmulti == 0) {
6529 		/*
6530 		 * Avoid overflow.
6531 		 * If inc causes overflow, untouch allmulti and return error.
6532 		 */
6533 		if (inc < 0)
6534 			dev->flags &= ~IFF_ALLMULTI;
6535 		else {
6536 			dev->allmulti -= inc;
6537 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6538 				dev->name);
6539 			return -EOVERFLOW;
6540 		}
6541 	}
6542 	if (dev->flags ^ old_flags) {
6543 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6544 		dev_set_rx_mode(dev);
6545 		if (notify)
6546 			__dev_notify_flags(dev, old_flags,
6547 					   dev->gflags ^ old_gflags);
6548 	}
6549 	return 0;
6550 }
6551 
6552 /**
6553  *	dev_set_allmulti	- update allmulti count on a device
6554  *	@dev: device
6555  *	@inc: modifier
6556  *
6557  *	Add or remove reception of all multicast frames to a device. While the
6558  *	count in the device remains above zero the interface remains listening
6559  *	to all interfaces. Once it hits zero the device reverts back to normal
6560  *	filtering operation. A negative @inc value is used to drop the counter
6561  *	when releasing a resource needing all multicasts.
6562  *	Return 0 if successful or a negative errno code on error.
6563  */
6564 
6565 int dev_set_allmulti(struct net_device *dev, int inc)
6566 {
6567 	return __dev_set_allmulti(dev, inc, true);
6568 }
6569 EXPORT_SYMBOL(dev_set_allmulti);
6570 
6571 /*
6572  *	Upload unicast and multicast address lists to device and
6573  *	configure RX filtering. When the device doesn't support unicast
6574  *	filtering it is put in promiscuous mode while unicast addresses
6575  *	are present.
6576  */
6577 void __dev_set_rx_mode(struct net_device *dev)
6578 {
6579 	const struct net_device_ops *ops = dev->netdev_ops;
6580 
6581 	/* dev_open will call this function so the list will stay sane. */
6582 	if (!(dev->flags&IFF_UP))
6583 		return;
6584 
6585 	if (!netif_device_present(dev))
6586 		return;
6587 
6588 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6589 		/* Unicast addresses changes may only happen under the rtnl,
6590 		 * therefore calling __dev_set_promiscuity here is safe.
6591 		 */
6592 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6593 			__dev_set_promiscuity(dev, 1, false);
6594 			dev->uc_promisc = true;
6595 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6596 			__dev_set_promiscuity(dev, -1, false);
6597 			dev->uc_promisc = false;
6598 		}
6599 	}
6600 
6601 	if (ops->ndo_set_rx_mode)
6602 		ops->ndo_set_rx_mode(dev);
6603 }
6604 
6605 void dev_set_rx_mode(struct net_device *dev)
6606 {
6607 	netif_addr_lock_bh(dev);
6608 	__dev_set_rx_mode(dev);
6609 	netif_addr_unlock_bh(dev);
6610 }
6611 
6612 /**
6613  *	dev_get_flags - get flags reported to userspace
6614  *	@dev: device
6615  *
6616  *	Get the combination of flag bits exported through APIs to userspace.
6617  */
6618 unsigned int dev_get_flags(const struct net_device *dev)
6619 {
6620 	unsigned int flags;
6621 
6622 	flags = (dev->flags & ~(IFF_PROMISC |
6623 				IFF_ALLMULTI |
6624 				IFF_RUNNING |
6625 				IFF_LOWER_UP |
6626 				IFF_DORMANT)) |
6627 		(dev->gflags & (IFF_PROMISC |
6628 				IFF_ALLMULTI));
6629 
6630 	if (netif_running(dev)) {
6631 		if (netif_oper_up(dev))
6632 			flags |= IFF_RUNNING;
6633 		if (netif_carrier_ok(dev))
6634 			flags |= IFF_LOWER_UP;
6635 		if (netif_dormant(dev))
6636 			flags |= IFF_DORMANT;
6637 	}
6638 
6639 	return flags;
6640 }
6641 EXPORT_SYMBOL(dev_get_flags);
6642 
6643 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6644 {
6645 	unsigned int old_flags = dev->flags;
6646 	int ret;
6647 
6648 	ASSERT_RTNL();
6649 
6650 	/*
6651 	 *	Set the flags on our device.
6652 	 */
6653 
6654 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6655 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6656 			       IFF_AUTOMEDIA)) |
6657 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6658 				    IFF_ALLMULTI));
6659 
6660 	/*
6661 	 *	Load in the correct multicast list now the flags have changed.
6662 	 */
6663 
6664 	if ((old_flags ^ flags) & IFF_MULTICAST)
6665 		dev_change_rx_flags(dev, IFF_MULTICAST);
6666 
6667 	dev_set_rx_mode(dev);
6668 
6669 	/*
6670 	 *	Have we downed the interface. We handle IFF_UP ourselves
6671 	 *	according to user attempts to set it, rather than blindly
6672 	 *	setting it.
6673 	 */
6674 
6675 	ret = 0;
6676 	if ((old_flags ^ flags) & IFF_UP)
6677 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6678 
6679 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6680 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6681 		unsigned int old_flags = dev->flags;
6682 
6683 		dev->gflags ^= IFF_PROMISC;
6684 
6685 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6686 			if (dev->flags != old_flags)
6687 				dev_set_rx_mode(dev);
6688 	}
6689 
6690 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6691 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6692 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6693 	 */
6694 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6695 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6696 
6697 		dev->gflags ^= IFF_ALLMULTI;
6698 		__dev_set_allmulti(dev, inc, false);
6699 	}
6700 
6701 	return ret;
6702 }
6703 
6704 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6705 			unsigned int gchanges)
6706 {
6707 	unsigned int changes = dev->flags ^ old_flags;
6708 
6709 	if (gchanges)
6710 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6711 
6712 	if (changes & IFF_UP) {
6713 		if (dev->flags & IFF_UP)
6714 			call_netdevice_notifiers(NETDEV_UP, dev);
6715 		else
6716 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6717 	}
6718 
6719 	if (dev->flags & IFF_UP &&
6720 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6721 		struct netdev_notifier_change_info change_info;
6722 
6723 		change_info.flags_changed = changes;
6724 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6725 					      &change_info.info);
6726 	}
6727 }
6728 
6729 /**
6730  *	dev_change_flags - change device settings
6731  *	@dev: device
6732  *	@flags: device state flags
6733  *
6734  *	Change settings on device based state flags. The flags are
6735  *	in the userspace exported format.
6736  */
6737 int dev_change_flags(struct net_device *dev, unsigned int flags)
6738 {
6739 	int ret;
6740 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6741 
6742 	ret = __dev_change_flags(dev, flags);
6743 	if (ret < 0)
6744 		return ret;
6745 
6746 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6747 	__dev_notify_flags(dev, old_flags, changes);
6748 	return ret;
6749 }
6750 EXPORT_SYMBOL(dev_change_flags);
6751 
6752 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6753 {
6754 	const struct net_device_ops *ops = dev->netdev_ops;
6755 
6756 	if (ops->ndo_change_mtu)
6757 		return ops->ndo_change_mtu(dev, new_mtu);
6758 
6759 	dev->mtu = new_mtu;
6760 	return 0;
6761 }
6762 
6763 /**
6764  *	dev_set_mtu - Change maximum transfer unit
6765  *	@dev: device
6766  *	@new_mtu: new transfer unit
6767  *
6768  *	Change the maximum transfer size of the network device.
6769  */
6770 int dev_set_mtu(struct net_device *dev, int new_mtu)
6771 {
6772 	int err, orig_mtu;
6773 
6774 	if (new_mtu == dev->mtu)
6775 		return 0;
6776 
6777 	/* MTU must be positive, and in range */
6778 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6779 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6780 				    dev->name, new_mtu, dev->min_mtu);
6781 		return -EINVAL;
6782 	}
6783 
6784 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6785 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6786 				    dev->name, new_mtu, dev->max_mtu);
6787 		return -EINVAL;
6788 	}
6789 
6790 	if (!netif_device_present(dev))
6791 		return -ENODEV;
6792 
6793 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6794 	err = notifier_to_errno(err);
6795 	if (err)
6796 		return err;
6797 
6798 	orig_mtu = dev->mtu;
6799 	err = __dev_set_mtu(dev, new_mtu);
6800 
6801 	if (!err) {
6802 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6803 		err = notifier_to_errno(err);
6804 		if (err) {
6805 			/* setting mtu back and notifying everyone again,
6806 			 * so that they have a chance to revert changes.
6807 			 */
6808 			__dev_set_mtu(dev, orig_mtu);
6809 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6810 		}
6811 	}
6812 	return err;
6813 }
6814 EXPORT_SYMBOL(dev_set_mtu);
6815 
6816 /**
6817  *	dev_set_group - Change group this device belongs to
6818  *	@dev: device
6819  *	@new_group: group this device should belong to
6820  */
6821 void dev_set_group(struct net_device *dev, int new_group)
6822 {
6823 	dev->group = new_group;
6824 }
6825 EXPORT_SYMBOL(dev_set_group);
6826 
6827 /**
6828  *	dev_set_mac_address - Change Media Access Control Address
6829  *	@dev: device
6830  *	@sa: new address
6831  *
6832  *	Change the hardware (MAC) address of the device
6833  */
6834 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6835 {
6836 	const struct net_device_ops *ops = dev->netdev_ops;
6837 	int err;
6838 
6839 	if (!ops->ndo_set_mac_address)
6840 		return -EOPNOTSUPP;
6841 	if (sa->sa_family != dev->type)
6842 		return -EINVAL;
6843 	if (!netif_device_present(dev))
6844 		return -ENODEV;
6845 	err = ops->ndo_set_mac_address(dev, sa);
6846 	if (err)
6847 		return err;
6848 	dev->addr_assign_type = NET_ADDR_SET;
6849 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6850 	add_device_randomness(dev->dev_addr, dev->addr_len);
6851 	return 0;
6852 }
6853 EXPORT_SYMBOL(dev_set_mac_address);
6854 
6855 /**
6856  *	dev_change_carrier - Change device carrier
6857  *	@dev: device
6858  *	@new_carrier: new value
6859  *
6860  *	Change device carrier
6861  */
6862 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6863 {
6864 	const struct net_device_ops *ops = dev->netdev_ops;
6865 
6866 	if (!ops->ndo_change_carrier)
6867 		return -EOPNOTSUPP;
6868 	if (!netif_device_present(dev))
6869 		return -ENODEV;
6870 	return ops->ndo_change_carrier(dev, new_carrier);
6871 }
6872 EXPORT_SYMBOL(dev_change_carrier);
6873 
6874 /**
6875  *	dev_get_phys_port_id - Get device physical port ID
6876  *	@dev: device
6877  *	@ppid: port ID
6878  *
6879  *	Get device physical port ID
6880  */
6881 int dev_get_phys_port_id(struct net_device *dev,
6882 			 struct netdev_phys_item_id *ppid)
6883 {
6884 	const struct net_device_ops *ops = dev->netdev_ops;
6885 
6886 	if (!ops->ndo_get_phys_port_id)
6887 		return -EOPNOTSUPP;
6888 	return ops->ndo_get_phys_port_id(dev, ppid);
6889 }
6890 EXPORT_SYMBOL(dev_get_phys_port_id);
6891 
6892 /**
6893  *	dev_get_phys_port_name - Get device physical port name
6894  *	@dev: device
6895  *	@name: port name
6896  *	@len: limit of bytes to copy to name
6897  *
6898  *	Get device physical port name
6899  */
6900 int dev_get_phys_port_name(struct net_device *dev,
6901 			   char *name, size_t len)
6902 {
6903 	const struct net_device_ops *ops = dev->netdev_ops;
6904 
6905 	if (!ops->ndo_get_phys_port_name)
6906 		return -EOPNOTSUPP;
6907 	return ops->ndo_get_phys_port_name(dev, name, len);
6908 }
6909 EXPORT_SYMBOL(dev_get_phys_port_name);
6910 
6911 /**
6912  *	dev_change_proto_down - update protocol port state information
6913  *	@dev: device
6914  *	@proto_down: new value
6915  *
6916  *	This info can be used by switch drivers to set the phys state of the
6917  *	port.
6918  */
6919 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6920 {
6921 	const struct net_device_ops *ops = dev->netdev_ops;
6922 
6923 	if (!ops->ndo_change_proto_down)
6924 		return -EOPNOTSUPP;
6925 	if (!netif_device_present(dev))
6926 		return -ENODEV;
6927 	return ops->ndo_change_proto_down(dev, proto_down);
6928 }
6929 EXPORT_SYMBOL(dev_change_proto_down);
6930 
6931 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6932 {
6933 	struct netdev_xdp xdp;
6934 
6935 	memset(&xdp, 0, sizeof(xdp));
6936 	xdp.command = XDP_QUERY_PROG;
6937 
6938 	/* Query must always succeed. */
6939 	WARN_ON(xdp_op(dev, &xdp) < 0);
6940 	return xdp.prog_attached;
6941 }
6942 
6943 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6944 			   struct netlink_ext_ack *extack,
6945 			   struct bpf_prog *prog)
6946 {
6947 	struct netdev_xdp xdp;
6948 
6949 	memset(&xdp, 0, sizeof(xdp));
6950 	xdp.command = XDP_SETUP_PROG;
6951 	xdp.extack = extack;
6952 	xdp.prog = prog;
6953 
6954 	return xdp_op(dev, &xdp);
6955 }
6956 
6957 /**
6958  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6959  *	@dev: device
6960  *	@extack: netlink extended ack
6961  *	@fd: new program fd or negative value to clear
6962  *	@flags: xdp-related flags
6963  *
6964  *	Set or clear a bpf program for a device
6965  */
6966 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6967 		      int fd, u32 flags)
6968 {
6969 	const struct net_device_ops *ops = dev->netdev_ops;
6970 	struct bpf_prog *prog = NULL;
6971 	xdp_op_t xdp_op, xdp_chk;
6972 	int err;
6973 
6974 	ASSERT_RTNL();
6975 
6976 	xdp_op = xdp_chk = ops->ndo_xdp;
6977 	if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6978 		return -EOPNOTSUPP;
6979 	if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6980 		xdp_op = generic_xdp_install;
6981 	if (xdp_op == xdp_chk)
6982 		xdp_chk = generic_xdp_install;
6983 
6984 	if (fd >= 0) {
6985 		if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6986 			return -EEXIST;
6987 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6988 		    __dev_xdp_attached(dev, xdp_op))
6989 			return -EBUSY;
6990 
6991 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6992 		if (IS_ERR(prog))
6993 			return PTR_ERR(prog);
6994 	}
6995 
6996 	err = dev_xdp_install(dev, xdp_op, extack, prog);
6997 	if (err < 0 && prog)
6998 		bpf_prog_put(prog);
6999 
7000 	return err;
7001 }
7002 
7003 /**
7004  *	dev_new_index	-	allocate an ifindex
7005  *	@net: the applicable net namespace
7006  *
7007  *	Returns a suitable unique value for a new device interface
7008  *	number.  The caller must hold the rtnl semaphore or the
7009  *	dev_base_lock to be sure it remains unique.
7010  */
7011 static int dev_new_index(struct net *net)
7012 {
7013 	int ifindex = net->ifindex;
7014 
7015 	for (;;) {
7016 		if (++ifindex <= 0)
7017 			ifindex = 1;
7018 		if (!__dev_get_by_index(net, ifindex))
7019 			return net->ifindex = ifindex;
7020 	}
7021 }
7022 
7023 /* Delayed registration/unregisteration */
7024 static LIST_HEAD(net_todo_list);
7025 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7026 
7027 static void net_set_todo(struct net_device *dev)
7028 {
7029 	list_add_tail(&dev->todo_list, &net_todo_list);
7030 	dev_net(dev)->dev_unreg_count++;
7031 }
7032 
7033 static void rollback_registered_many(struct list_head *head)
7034 {
7035 	struct net_device *dev, *tmp;
7036 	LIST_HEAD(close_head);
7037 
7038 	BUG_ON(dev_boot_phase);
7039 	ASSERT_RTNL();
7040 
7041 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7042 		/* Some devices call without registering
7043 		 * for initialization unwind. Remove those
7044 		 * devices and proceed with the remaining.
7045 		 */
7046 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7047 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7048 				 dev->name, dev);
7049 
7050 			WARN_ON(1);
7051 			list_del(&dev->unreg_list);
7052 			continue;
7053 		}
7054 		dev->dismantle = true;
7055 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7056 	}
7057 
7058 	/* If device is running, close it first. */
7059 	list_for_each_entry(dev, head, unreg_list)
7060 		list_add_tail(&dev->close_list, &close_head);
7061 	dev_close_many(&close_head, true);
7062 
7063 	list_for_each_entry(dev, head, unreg_list) {
7064 		/* And unlink it from device chain. */
7065 		unlist_netdevice(dev);
7066 
7067 		dev->reg_state = NETREG_UNREGISTERING;
7068 	}
7069 	flush_all_backlogs();
7070 
7071 	synchronize_net();
7072 
7073 	list_for_each_entry(dev, head, unreg_list) {
7074 		struct sk_buff *skb = NULL;
7075 
7076 		/* Shutdown queueing discipline. */
7077 		dev_shutdown(dev);
7078 
7079 
7080 		/* Notify protocols, that we are about to destroy
7081 		 * this device. They should clean all the things.
7082 		 */
7083 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7084 
7085 		if (!dev->rtnl_link_ops ||
7086 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7087 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7088 						     GFP_KERNEL);
7089 
7090 		/*
7091 		 *	Flush the unicast and multicast chains
7092 		 */
7093 		dev_uc_flush(dev);
7094 		dev_mc_flush(dev);
7095 
7096 		if (dev->netdev_ops->ndo_uninit)
7097 			dev->netdev_ops->ndo_uninit(dev);
7098 
7099 		if (skb)
7100 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7101 
7102 		/* Notifier chain MUST detach us all upper devices. */
7103 		WARN_ON(netdev_has_any_upper_dev(dev));
7104 		WARN_ON(netdev_has_any_lower_dev(dev));
7105 
7106 		/* Remove entries from kobject tree */
7107 		netdev_unregister_kobject(dev);
7108 #ifdef CONFIG_XPS
7109 		/* Remove XPS queueing entries */
7110 		netif_reset_xps_queues_gt(dev, 0);
7111 #endif
7112 	}
7113 
7114 	synchronize_net();
7115 
7116 	list_for_each_entry(dev, head, unreg_list)
7117 		dev_put(dev);
7118 }
7119 
7120 static void rollback_registered(struct net_device *dev)
7121 {
7122 	LIST_HEAD(single);
7123 
7124 	list_add(&dev->unreg_list, &single);
7125 	rollback_registered_many(&single);
7126 	list_del(&single);
7127 }
7128 
7129 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7130 	struct net_device *upper, netdev_features_t features)
7131 {
7132 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7133 	netdev_features_t feature;
7134 	int feature_bit;
7135 
7136 	for_each_netdev_feature(&upper_disables, feature_bit) {
7137 		feature = __NETIF_F_BIT(feature_bit);
7138 		if (!(upper->wanted_features & feature)
7139 		    && (features & feature)) {
7140 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7141 				   &feature, upper->name);
7142 			features &= ~feature;
7143 		}
7144 	}
7145 
7146 	return features;
7147 }
7148 
7149 static void netdev_sync_lower_features(struct net_device *upper,
7150 	struct net_device *lower, netdev_features_t features)
7151 {
7152 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7153 	netdev_features_t feature;
7154 	int feature_bit;
7155 
7156 	for_each_netdev_feature(&upper_disables, feature_bit) {
7157 		feature = __NETIF_F_BIT(feature_bit);
7158 		if (!(features & feature) && (lower->features & feature)) {
7159 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7160 				   &feature, lower->name);
7161 			lower->wanted_features &= ~feature;
7162 			netdev_update_features(lower);
7163 
7164 			if (unlikely(lower->features & feature))
7165 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7166 					    &feature, lower->name);
7167 		}
7168 	}
7169 }
7170 
7171 static netdev_features_t netdev_fix_features(struct net_device *dev,
7172 	netdev_features_t features)
7173 {
7174 	/* Fix illegal checksum combinations */
7175 	if ((features & NETIF_F_HW_CSUM) &&
7176 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7177 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7178 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7179 	}
7180 
7181 	/* TSO requires that SG is present as well. */
7182 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7183 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7184 		features &= ~NETIF_F_ALL_TSO;
7185 	}
7186 
7187 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7188 					!(features & NETIF_F_IP_CSUM)) {
7189 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7190 		features &= ~NETIF_F_TSO;
7191 		features &= ~NETIF_F_TSO_ECN;
7192 	}
7193 
7194 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7195 					 !(features & NETIF_F_IPV6_CSUM)) {
7196 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7197 		features &= ~NETIF_F_TSO6;
7198 	}
7199 
7200 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7201 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7202 		features &= ~NETIF_F_TSO_MANGLEID;
7203 
7204 	/* TSO ECN requires that TSO is present as well. */
7205 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7206 		features &= ~NETIF_F_TSO_ECN;
7207 
7208 	/* Software GSO depends on SG. */
7209 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7210 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7211 		features &= ~NETIF_F_GSO;
7212 	}
7213 
7214 	/* UFO needs SG and checksumming */
7215 	if (features & NETIF_F_UFO) {
7216 		/* maybe split UFO into V4 and V6? */
7217 		if (!(features & NETIF_F_HW_CSUM) &&
7218 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7219 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7220 			netdev_dbg(dev,
7221 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
7222 			features &= ~NETIF_F_UFO;
7223 		}
7224 
7225 		if (!(features & NETIF_F_SG)) {
7226 			netdev_dbg(dev,
7227 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7228 			features &= ~NETIF_F_UFO;
7229 		}
7230 	}
7231 
7232 	/* GSO partial features require GSO partial be set */
7233 	if ((features & dev->gso_partial_features) &&
7234 	    !(features & NETIF_F_GSO_PARTIAL)) {
7235 		netdev_dbg(dev,
7236 			   "Dropping partially supported GSO features since no GSO partial.\n");
7237 		features &= ~dev->gso_partial_features;
7238 	}
7239 
7240 	return features;
7241 }
7242 
7243 int __netdev_update_features(struct net_device *dev)
7244 {
7245 	struct net_device *upper, *lower;
7246 	netdev_features_t features;
7247 	struct list_head *iter;
7248 	int err = -1;
7249 
7250 	ASSERT_RTNL();
7251 
7252 	features = netdev_get_wanted_features(dev);
7253 
7254 	if (dev->netdev_ops->ndo_fix_features)
7255 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7256 
7257 	/* driver might be less strict about feature dependencies */
7258 	features = netdev_fix_features(dev, features);
7259 
7260 	/* some features can't be enabled if they're off an an upper device */
7261 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7262 		features = netdev_sync_upper_features(dev, upper, features);
7263 
7264 	if (dev->features == features)
7265 		goto sync_lower;
7266 
7267 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7268 		&dev->features, &features);
7269 
7270 	if (dev->netdev_ops->ndo_set_features)
7271 		err = dev->netdev_ops->ndo_set_features(dev, features);
7272 	else
7273 		err = 0;
7274 
7275 	if (unlikely(err < 0)) {
7276 		netdev_err(dev,
7277 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7278 			err, &features, &dev->features);
7279 		/* return non-0 since some features might have changed and
7280 		 * it's better to fire a spurious notification than miss it
7281 		 */
7282 		return -1;
7283 	}
7284 
7285 sync_lower:
7286 	/* some features must be disabled on lower devices when disabled
7287 	 * on an upper device (think: bonding master or bridge)
7288 	 */
7289 	netdev_for_each_lower_dev(dev, lower, iter)
7290 		netdev_sync_lower_features(dev, lower, features);
7291 
7292 	if (!err)
7293 		dev->features = features;
7294 
7295 	return err < 0 ? 0 : 1;
7296 }
7297 
7298 /**
7299  *	netdev_update_features - recalculate device features
7300  *	@dev: the device to check
7301  *
7302  *	Recalculate dev->features set and send notifications if it
7303  *	has changed. Should be called after driver or hardware dependent
7304  *	conditions might have changed that influence the features.
7305  */
7306 void netdev_update_features(struct net_device *dev)
7307 {
7308 	if (__netdev_update_features(dev))
7309 		netdev_features_change(dev);
7310 }
7311 EXPORT_SYMBOL(netdev_update_features);
7312 
7313 /**
7314  *	netdev_change_features - recalculate device features
7315  *	@dev: the device to check
7316  *
7317  *	Recalculate dev->features set and send notifications even
7318  *	if they have not changed. Should be called instead of
7319  *	netdev_update_features() if also dev->vlan_features might
7320  *	have changed to allow the changes to be propagated to stacked
7321  *	VLAN devices.
7322  */
7323 void netdev_change_features(struct net_device *dev)
7324 {
7325 	__netdev_update_features(dev);
7326 	netdev_features_change(dev);
7327 }
7328 EXPORT_SYMBOL(netdev_change_features);
7329 
7330 /**
7331  *	netif_stacked_transfer_operstate -	transfer operstate
7332  *	@rootdev: the root or lower level device to transfer state from
7333  *	@dev: the device to transfer operstate to
7334  *
7335  *	Transfer operational state from root to device. This is normally
7336  *	called when a stacking relationship exists between the root
7337  *	device and the device(a leaf device).
7338  */
7339 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7340 					struct net_device *dev)
7341 {
7342 	if (rootdev->operstate == IF_OPER_DORMANT)
7343 		netif_dormant_on(dev);
7344 	else
7345 		netif_dormant_off(dev);
7346 
7347 	if (netif_carrier_ok(rootdev))
7348 		netif_carrier_on(dev);
7349 	else
7350 		netif_carrier_off(dev);
7351 }
7352 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7353 
7354 #ifdef CONFIG_SYSFS
7355 static int netif_alloc_rx_queues(struct net_device *dev)
7356 {
7357 	unsigned int i, count = dev->num_rx_queues;
7358 	struct netdev_rx_queue *rx;
7359 	size_t sz = count * sizeof(*rx);
7360 
7361 	BUG_ON(count < 1);
7362 
7363 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7364 	if (!rx)
7365 		return -ENOMEM;
7366 
7367 	dev->_rx = rx;
7368 
7369 	for (i = 0; i < count; i++)
7370 		rx[i].dev = dev;
7371 	return 0;
7372 }
7373 #endif
7374 
7375 static void netdev_init_one_queue(struct net_device *dev,
7376 				  struct netdev_queue *queue, void *_unused)
7377 {
7378 	/* Initialize queue lock */
7379 	spin_lock_init(&queue->_xmit_lock);
7380 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7381 	queue->xmit_lock_owner = -1;
7382 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7383 	queue->dev = dev;
7384 #ifdef CONFIG_BQL
7385 	dql_init(&queue->dql, HZ);
7386 #endif
7387 }
7388 
7389 static void netif_free_tx_queues(struct net_device *dev)
7390 {
7391 	kvfree(dev->_tx);
7392 }
7393 
7394 static int netif_alloc_netdev_queues(struct net_device *dev)
7395 {
7396 	unsigned int count = dev->num_tx_queues;
7397 	struct netdev_queue *tx;
7398 	size_t sz = count * sizeof(*tx);
7399 
7400 	if (count < 1 || count > 0xffff)
7401 		return -EINVAL;
7402 
7403 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7404 	if (!tx)
7405 		return -ENOMEM;
7406 
7407 	dev->_tx = tx;
7408 
7409 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7410 	spin_lock_init(&dev->tx_global_lock);
7411 
7412 	return 0;
7413 }
7414 
7415 void netif_tx_stop_all_queues(struct net_device *dev)
7416 {
7417 	unsigned int i;
7418 
7419 	for (i = 0; i < dev->num_tx_queues; i++) {
7420 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7421 
7422 		netif_tx_stop_queue(txq);
7423 	}
7424 }
7425 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7426 
7427 /**
7428  *	register_netdevice	- register a network device
7429  *	@dev: device to register
7430  *
7431  *	Take a completed network device structure and add it to the kernel
7432  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7433  *	chain. 0 is returned on success. A negative errno code is returned
7434  *	on a failure to set up the device, or if the name is a duplicate.
7435  *
7436  *	Callers must hold the rtnl semaphore. You may want
7437  *	register_netdev() instead of this.
7438  *
7439  *	BUGS:
7440  *	The locking appears insufficient to guarantee two parallel registers
7441  *	will not get the same name.
7442  */
7443 
7444 int register_netdevice(struct net_device *dev)
7445 {
7446 	int ret;
7447 	struct net *net = dev_net(dev);
7448 
7449 	BUG_ON(dev_boot_phase);
7450 	ASSERT_RTNL();
7451 
7452 	might_sleep();
7453 
7454 	/* When net_device's are persistent, this will be fatal. */
7455 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7456 	BUG_ON(!net);
7457 
7458 	spin_lock_init(&dev->addr_list_lock);
7459 	netdev_set_addr_lockdep_class(dev);
7460 
7461 	ret = dev_get_valid_name(net, dev, dev->name);
7462 	if (ret < 0)
7463 		goto out;
7464 
7465 	/* Init, if this function is available */
7466 	if (dev->netdev_ops->ndo_init) {
7467 		ret = dev->netdev_ops->ndo_init(dev);
7468 		if (ret) {
7469 			if (ret > 0)
7470 				ret = -EIO;
7471 			goto out;
7472 		}
7473 	}
7474 
7475 	if (((dev->hw_features | dev->features) &
7476 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7477 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7478 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7479 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7480 		ret = -EINVAL;
7481 		goto err_uninit;
7482 	}
7483 
7484 	ret = -EBUSY;
7485 	if (!dev->ifindex)
7486 		dev->ifindex = dev_new_index(net);
7487 	else if (__dev_get_by_index(net, dev->ifindex))
7488 		goto err_uninit;
7489 
7490 	/* Transfer changeable features to wanted_features and enable
7491 	 * software offloads (GSO and GRO).
7492 	 */
7493 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7494 	dev->features |= NETIF_F_SOFT_FEATURES;
7495 	dev->wanted_features = dev->features & dev->hw_features;
7496 
7497 	if (!(dev->flags & IFF_LOOPBACK))
7498 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7499 
7500 	/* If IPv4 TCP segmentation offload is supported we should also
7501 	 * allow the device to enable segmenting the frame with the option
7502 	 * of ignoring a static IP ID value.  This doesn't enable the
7503 	 * feature itself but allows the user to enable it later.
7504 	 */
7505 	if (dev->hw_features & NETIF_F_TSO)
7506 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7507 	if (dev->vlan_features & NETIF_F_TSO)
7508 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7509 	if (dev->mpls_features & NETIF_F_TSO)
7510 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7511 	if (dev->hw_enc_features & NETIF_F_TSO)
7512 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7513 
7514 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7515 	 */
7516 	dev->vlan_features |= NETIF_F_HIGHDMA;
7517 
7518 	/* Make NETIF_F_SG inheritable to tunnel devices.
7519 	 */
7520 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7521 
7522 	/* Make NETIF_F_SG inheritable to MPLS.
7523 	 */
7524 	dev->mpls_features |= NETIF_F_SG;
7525 
7526 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7527 	ret = notifier_to_errno(ret);
7528 	if (ret)
7529 		goto err_uninit;
7530 
7531 	ret = netdev_register_kobject(dev);
7532 	if (ret)
7533 		goto err_uninit;
7534 	dev->reg_state = NETREG_REGISTERED;
7535 
7536 	__netdev_update_features(dev);
7537 
7538 	/*
7539 	 *	Default initial state at registry is that the
7540 	 *	device is present.
7541 	 */
7542 
7543 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7544 
7545 	linkwatch_init_dev(dev);
7546 
7547 	dev_init_scheduler(dev);
7548 	dev_hold(dev);
7549 	list_netdevice(dev);
7550 	add_device_randomness(dev->dev_addr, dev->addr_len);
7551 
7552 	/* If the device has permanent device address, driver should
7553 	 * set dev_addr and also addr_assign_type should be set to
7554 	 * NET_ADDR_PERM (default value).
7555 	 */
7556 	if (dev->addr_assign_type == NET_ADDR_PERM)
7557 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7558 
7559 	/* Notify protocols, that a new device appeared. */
7560 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7561 	ret = notifier_to_errno(ret);
7562 	if (ret) {
7563 		rollback_registered(dev);
7564 		dev->reg_state = NETREG_UNREGISTERED;
7565 	}
7566 	/*
7567 	 *	Prevent userspace races by waiting until the network
7568 	 *	device is fully setup before sending notifications.
7569 	 */
7570 	if (!dev->rtnl_link_ops ||
7571 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7572 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7573 
7574 out:
7575 	return ret;
7576 
7577 err_uninit:
7578 	if (dev->netdev_ops->ndo_uninit)
7579 		dev->netdev_ops->ndo_uninit(dev);
7580 	goto out;
7581 }
7582 EXPORT_SYMBOL(register_netdevice);
7583 
7584 /**
7585  *	init_dummy_netdev	- init a dummy network device for NAPI
7586  *	@dev: device to init
7587  *
7588  *	This takes a network device structure and initialize the minimum
7589  *	amount of fields so it can be used to schedule NAPI polls without
7590  *	registering a full blown interface. This is to be used by drivers
7591  *	that need to tie several hardware interfaces to a single NAPI
7592  *	poll scheduler due to HW limitations.
7593  */
7594 int init_dummy_netdev(struct net_device *dev)
7595 {
7596 	/* Clear everything. Note we don't initialize spinlocks
7597 	 * are they aren't supposed to be taken by any of the
7598 	 * NAPI code and this dummy netdev is supposed to be
7599 	 * only ever used for NAPI polls
7600 	 */
7601 	memset(dev, 0, sizeof(struct net_device));
7602 
7603 	/* make sure we BUG if trying to hit standard
7604 	 * register/unregister code path
7605 	 */
7606 	dev->reg_state = NETREG_DUMMY;
7607 
7608 	/* NAPI wants this */
7609 	INIT_LIST_HEAD(&dev->napi_list);
7610 
7611 	/* a dummy interface is started by default */
7612 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7613 	set_bit(__LINK_STATE_START, &dev->state);
7614 
7615 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7616 	 * because users of this 'device' dont need to change
7617 	 * its refcount.
7618 	 */
7619 
7620 	return 0;
7621 }
7622 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7623 
7624 
7625 /**
7626  *	register_netdev	- register a network device
7627  *	@dev: device to register
7628  *
7629  *	Take a completed network device structure and add it to the kernel
7630  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7631  *	chain. 0 is returned on success. A negative errno code is returned
7632  *	on a failure to set up the device, or if the name is a duplicate.
7633  *
7634  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7635  *	and expands the device name if you passed a format string to
7636  *	alloc_netdev.
7637  */
7638 int register_netdev(struct net_device *dev)
7639 {
7640 	int err;
7641 
7642 	rtnl_lock();
7643 	err = register_netdevice(dev);
7644 	rtnl_unlock();
7645 	return err;
7646 }
7647 EXPORT_SYMBOL(register_netdev);
7648 
7649 int netdev_refcnt_read(const struct net_device *dev)
7650 {
7651 	int i, refcnt = 0;
7652 
7653 	for_each_possible_cpu(i)
7654 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7655 	return refcnt;
7656 }
7657 EXPORT_SYMBOL(netdev_refcnt_read);
7658 
7659 /**
7660  * netdev_wait_allrefs - wait until all references are gone.
7661  * @dev: target net_device
7662  *
7663  * This is called when unregistering network devices.
7664  *
7665  * Any protocol or device that holds a reference should register
7666  * for netdevice notification, and cleanup and put back the
7667  * reference if they receive an UNREGISTER event.
7668  * We can get stuck here if buggy protocols don't correctly
7669  * call dev_put.
7670  */
7671 static void netdev_wait_allrefs(struct net_device *dev)
7672 {
7673 	unsigned long rebroadcast_time, warning_time;
7674 	int refcnt;
7675 
7676 	linkwatch_forget_dev(dev);
7677 
7678 	rebroadcast_time = warning_time = jiffies;
7679 	refcnt = netdev_refcnt_read(dev);
7680 
7681 	while (refcnt != 0) {
7682 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7683 			rtnl_lock();
7684 
7685 			/* Rebroadcast unregister notification */
7686 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7687 
7688 			__rtnl_unlock();
7689 			rcu_barrier();
7690 			rtnl_lock();
7691 
7692 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7693 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7694 				     &dev->state)) {
7695 				/* We must not have linkwatch events
7696 				 * pending on unregister. If this
7697 				 * happens, we simply run the queue
7698 				 * unscheduled, resulting in a noop
7699 				 * for this device.
7700 				 */
7701 				linkwatch_run_queue();
7702 			}
7703 
7704 			__rtnl_unlock();
7705 
7706 			rebroadcast_time = jiffies;
7707 		}
7708 
7709 		msleep(250);
7710 
7711 		refcnt = netdev_refcnt_read(dev);
7712 
7713 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7714 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7715 				 dev->name, refcnt);
7716 			warning_time = jiffies;
7717 		}
7718 	}
7719 }
7720 
7721 /* The sequence is:
7722  *
7723  *	rtnl_lock();
7724  *	...
7725  *	register_netdevice(x1);
7726  *	register_netdevice(x2);
7727  *	...
7728  *	unregister_netdevice(y1);
7729  *	unregister_netdevice(y2);
7730  *      ...
7731  *	rtnl_unlock();
7732  *	free_netdev(y1);
7733  *	free_netdev(y2);
7734  *
7735  * We are invoked by rtnl_unlock().
7736  * This allows us to deal with problems:
7737  * 1) We can delete sysfs objects which invoke hotplug
7738  *    without deadlocking with linkwatch via keventd.
7739  * 2) Since we run with the RTNL semaphore not held, we can sleep
7740  *    safely in order to wait for the netdev refcnt to drop to zero.
7741  *
7742  * We must not return until all unregister events added during
7743  * the interval the lock was held have been completed.
7744  */
7745 void netdev_run_todo(void)
7746 {
7747 	struct list_head list;
7748 
7749 	/* Snapshot list, allow later requests */
7750 	list_replace_init(&net_todo_list, &list);
7751 
7752 	__rtnl_unlock();
7753 
7754 
7755 	/* Wait for rcu callbacks to finish before next phase */
7756 	if (!list_empty(&list))
7757 		rcu_barrier();
7758 
7759 	while (!list_empty(&list)) {
7760 		struct net_device *dev
7761 			= list_first_entry(&list, struct net_device, todo_list);
7762 		list_del(&dev->todo_list);
7763 
7764 		rtnl_lock();
7765 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7766 		__rtnl_unlock();
7767 
7768 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7769 			pr_err("network todo '%s' but state %d\n",
7770 			       dev->name, dev->reg_state);
7771 			dump_stack();
7772 			continue;
7773 		}
7774 
7775 		dev->reg_state = NETREG_UNREGISTERED;
7776 
7777 		netdev_wait_allrefs(dev);
7778 
7779 		/* paranoia */
7780 		BUG_ON(netdev_refcnt_read(dev));
7781 		BUG_ON(!list_empty(&dev->ptype_all));
7782 		BUG_ON(!list_empty(&dev->ptype_specific));
7783 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7784 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7785 		WARN_ON(dev->dn_ptr);
7786 
7787 		if (dev->destructor)
7788 			dev->destructor(dev);
7789 
7790 		/* Report a network device has been unregistered */
7791 		rtnl_lock();
7792 		dev_net(dev)->dev_unreg_count--;
7793 		__rtnl_unlock();
7794 		wake_up(&netdev_unregistering_wq);
7795 
7796 		/* Free network device */
7797 		kobject_put(&dev->dev.kobj);
7798 	}
7799 }
7800 
7801 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7802  * all the same fields in the same order as net_device_stats, with only
7803  * the type differing, but rtnl_link_stats64 may have additional fields
7804  * at the end for newer counters.
7805  */
7806 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7807 			     const struct net_device_stats *netdev_stats)
7808 {
7809 #if BITS_PER_LONG == 64
7810 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7811 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7812 	/* zero out counters that only exist in rtnl_link_stats64 */
7813 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7814 	       sizeof(*stats64) - sizeof(*netdev_stats));
7815 #else
7816 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7817 	const unsigned long *src = (const unsigned long *)netdev_stats;
7818 	u64 *dst = (u64 *)stats64;
7819 
7820 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7821 	for (i = 0; i < n; i++)
7822 		dst[i] = src[i];
7823 	/* zero out counters that only exist in rtnl_link_stats64 */
7824 	memset((char *)stats64 + n * sizeof(u64), 0,
7825 	       sizeof(*stats64) - n * sizeof(u64));
7826 #endif
7827 }
7828 EXPORT_SYMBOL(netdev_stats_to_stats64);
7829 
7830 /**
7831  *	dev_get_stats	- get network device statistics
7832  *	@dev: device to get statistics from
7833  *	@storage: place to store stats
7834  *
7835  *	Get network statistics from device. Return @storage.
7836  *	The device driver may provide its own method by setting
7837  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7838  *	otherwise the internal statistics structure is used.
7839  */
7840 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7841 					struct rtnl_link_stats64 *storage)
7842 {
7843 	const struct net_device_ops *ops = dev->netdev_ops;
7844 
7845 	if (ops->ndo_get_stats64) {
7846 		memset(storage, 0, sizeof(*storage));
7847 		ops->ndo_get_stats64(dev, storage);
7848 	} else if (ops->ndo_get_stats) {
7849 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7850 	} else {
7851 		netdev_stats_to_stats64(storage, &dev->stats);
7852 	}
7853 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7854 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7855 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7856 	return storage;
7857 }
7858 EXPORT_SYMBOL(dev_get_stats);
7859 
7860 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7861 {
7862 	struct netdev_queue *queue = dev_ingress_queue(dev);
7863 
7864 #ifdef CONFIG_NET_CLS_ACT
7865 	if (queue)
7866 		return queue;
7867 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7868 	if (!queue)
7869 		return NULL;
7870 	netdev_init_one_queue(dev, queue, NULL);
7871 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7872 	queue->qdisc_sleeping = &noop_qdisc;
7873 	rcu_assign_pointer(dev->ingress_queue, queue);
7874 #endif
7875 	return queue;
7876 }
7877 
7878 static const struct ethtool_ops default_ethtool_ops;
7879 
7880 void netdev_set_default_ethtool_ops(struct net_device *dev,
7881 				    const struct ethtool_ops *ops)
7882 {
7883 	if (dev->ethtool_ops == &default_ethtool_ops)
7884 		dev->ethtool_ops = ops;
7885 }
7886 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7887 
7888 void netdev_freemem(struct net_device *dev)
7889 {
7890 	char *addr = (char *)dev - dev->padded;
7891 
7892 	kvfree(addr);
7893 }
7894 
7895 /**
7896  * alloc_netdev_mqs - allocate network device
7897  * @sizeof_priv: size of private data to allocate space for
7898  * @name: device name format string
7899  * @name_assign_type: origin of device name
7900  * @setup: callback to initialize device
7901  * @txqs: the number of TX subqueues to allocate
7902  * @rxqs: the number of RX subqueues to allocate
7903  *
7904  * Allocates a struct net_device with private data area for driver use
7905  * and performs basic initialization.  Also allocates subqueue structs
7906  * for each queue on the device.
7907  */
7908 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7909 		unsigned char name_assign_type,
7910 		void (*setup)(struct net_device *),
7911 		unsigned int txqs, unsigned int rxqs)
7912 {
7913 	struct net_device *dev;
7914 	size_t alloc_size;
7915 	struct net_device *p;
7916 
7917 	BUG_ON(strlen(name) >= sizeof(dev->name));
7918 
7919 	if (txqs < 1) {
7920 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7921 		return NULL;
7922 	}
7923 
7924 #ifdef CONFIG_SYSFS
7925 	if (rxqs < 1) {
7926 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7927 		return NULL;
7928 	}
7929 #endif
7930 
7931 	alloc_size = sizeof(struct net_device);
7932 	if (sizeof_priv) {
7933 		/* ensure 32-byte alignment of private area */
7934 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7935 		alloc_size += sizeof_priv;
7936 	}
7937 	/* ensure 32-byte alignment of whole construct */
7938 	alloc_size += NETDEV_ALIGN - 1;
7939 
7940 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7941 	if (!p)
7942 		return NULL;
7943 
7944 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7945 	dev->padded = (char *)dev - (char *)p;
7946 
7947 	dev->pcpu_refcnt = alloc_percpu(int);
7948 	if (!dev->pcpu_refcnt)
7949 		goto free_dev;
7950 
7951 	if (dev_addr_init(dev))
7952 		goto free_pcpu;
7953 
7954 	dev_mc_init(dev);
7955 	dev_uc_init(dev);
7956 
7957 	dev_net_set(dev, &init_net);
7958 
7959 	dev->gso_max_size = GSO_MAX_SIZE;
7960 	dev->gso_max_segs = GSO_MAX_SEGS;
7961 
7962 	INIT_LIST_HEAD(&dev->napi_list);
7963 	INIT_LIST_HEAD(&dev->unreg_list);
7964 	INIT_LIST_HEAD(&dev->close_list);
7965 	INIT_LIST_HEAD(&dev->link_watch_list);
7966 	INIT_LIST_HEAD(&dev->adj_list.upper);
7967 	INIT_LIST_HEAD(&dev->adj_list.lower);
7968 	INIT_LIST_HEAD(&dev->ptype_all);
7969 	INIT_LIST_HEAD(&dev->ptype_specific);
7970 #ifdef CONFIG_NET_SCHED
7971 	hash_init(dev->qdisc_hash);
7972 #endif
7973 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7974 	setup(dev);
7975 
7976 	if (!dev->tx_queue_len) {
7977 		dev->priv_flags |= IFF_NO_QUEUE;
7978 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7979 	}
7980 
7981 	dev->num_tx_queues = txqs;
7982 	dev->real_num_tx_queues = txqs;
7983 	if (netif_alloc_netdev_queues(dev))
7984 		goto free_all;
7985 
7986 #ifdef CONFIG_SYSFS
7987 	dev->num_rx_queues = rxqs;
7988 	dev->real_num_rx_queues = rxqs;
7989 	if (netif_alloc_rx_queues(dev))
7990 		goto free_all;
7991 #endif
7992 
7993 	strcpy(dev->name, name);
7994 	dev->name_assign_type = name_assign_type;
7995 	dev->group = INIT_NETDEV_GROUP;
7996 	if (!dev->ethtool_ops)
7997 		dev->ethtool_ops = &default_ethtool_ops;
7998 
7999 	nf_hook_ingress_init(dev);
8000 
8001 	return dev;
8002 
8003 free_all:
8004 	free_netdev(dev);
8005 	return NULL;
8006 
8007 free_pcpu:
8008 	free_percpu(dev->pcpu_refcnt);
8009 free_dev:
8010 	netdev_freemem(dev);
8011 	return NULL;
8012 }
8013 EXPORT_SYMBOL(alloc_netdev_mqs);
8014 
8015 /**
8016  * free_netdev - free network device
8017  * @dev: device
8018  *
8019  * This function does the last stage of destroying an allocated device
8020  * interface. The reference to the device object is released. If this
8021  * is the last reference then it will be freed.Must be called in process
8022  * context.
8023  */
8024 void free_netdev(struct net_device *dev)
8025 {
8026 	struct napi_struct *p, *n;
8027 	struct bpf_prog *prog;
8028 
8029 	might_sleep();
8030 	netif_free_tx_queues(dev);
8031 #ifdef CONFIG_SYSFS
8032 	kvfree(dev->_rx);
8033 #endif
8034 
8035 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8036 
8037 	/* Flush device addresses */
8038 	dev_addr_flush(dev);
8039 
8040 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8041 		netif_napi_del(p);
8042 
8043 	free_percpu(dev->pcpu_refcnt);
8044 	dev->pcpu_refcnt = NULL;
8045 
8046 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8047 	if (prog) {
8048 		bpf_prog_put(prog);
8049 		static_key_slow_dec(&generic_xdp_needed);
8050 	}
8051 
8052 	/*  Compatibility with error handling in drivers */
8053 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8054 		netdev_freemem(dev);
8055 		return;
8056 	}
8057 
8058 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8059 	dev->reg_state = NETREG_RELEASED;
8060 
8061 	/* will free via device release */
8062 	put_device(&dev->dev);
8063 }
8064 EXPORT_SYMBOL(free_netdev);
8065 
8066 /**
8067  *	synchronize_net -  Synchronize with packet receive processing
8068  *
8069  *	Wait for packets currently being received to be done.
8070  *	Does not block later packets from starting.
8071  */
8072 void synchronize_net(void)
8073 {
8074 	might_sleep();
8075 	if (rtnl_is_locked())
8076 		synchronize_rcu_expedited();
8077 	else
8078 		synchronize_rcu();
8079 }
8080 EXPORT_SYMBOL(synchronize_net);
8081 
8082 /**
8083  *	unregister_netdevice_queue - remove device from the kernel
8084  *	@dev: device
8085  *	@head: list
8086  *
8087  *	This function shuts down a device interface and removes it
8088  *	from the kernel tables.
8089  *	If head not NULL, device is queued to be unregistered later.
8090  *
8091  *	Callers must hold the rtnl semaphore.  You may want
8092  *	unregister_netdev() instead of this.
8093  */
8094 
8095 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8096 {
8097 	ASSERT_RTNL();
8098 
8099 	if (head) {
8100 		list_move_tail(&dev->unreg_list, head);
8101 	} else {
8102 		rollback_registered(dev);
8103 		/* Finish processing unregister after unlock */
8104 		net_set_todo(dev);
8105 	}
8106 }
8107 EXPORT_SYMBOL(unregister_netdevice_queue);
8108 
8109 /**
8110  *	unregister_netdevice_many - unregister many devices
8111  *	@head: list of devices
8112  *
8113  *  Note: As most callers use a stack allocated list_head,
8114  *  we force a list_del() to make sure stack wont be corrupted later.
8115  */
8116 void unregister_netdevice_many(struct list_head *head)
8117 {
8118 	struct net_device *dev;
8119 
8120 	if (!list_empty(head)) {
8121 		rollback_registered_many(head);
8122 		list_for_each_entry(dev, head, unreg_list)
8123 			net_set_todo(dev);
8124 		list_del(head);
8125 	}
8126 }
8127 EXPORT_SYMBOL(unregister_netdevice_many);
8128 
8129 /**
8130  *	unregister_netdev - remove device from the kernel
8131  *	@dev: device
8132  *
8133  *	This function shuts down a device interface and removes it
8134  *	from the kernel tables.
8135  *
8136  *	This is just a wrapper for unregister_netdevice that takes
8137  *	the rtnl semaphore.  In general you want to use this and not
8138  *	unregister_netdevice.
8139  */
8140 void unregister_netdev(struct net_device *dev)
8141 {
8142 	rtnl_lock();
8143 	unregister_netdevice(dev);
8144 	rtnl_unlock();
8145 }
8146 EXPORT_SYMBOL(unregister_netdev);
8147 
8148 /**
8149  *	dev_change_net_namespace - move device to different nethost namespace
8150  *	@dev: device
8151  *	@net: network namespace
8152  *	@pat: If not NULL name pattern to try if the current device name
8153  *	      is already taken in the destination network namespace.
8154  *
8155  *	This function shuts down a device interface and moves it
8156  *	to a new network namespace. On success 0 is returned, on
8157  *	a failure a netagive errno code is returned.
8158  *
8159  *	Callers must hold the rtnl semaphore.
8160  */
8161 
8162 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8163 {
8164 	int err;
8165 
8166 	ASSERT_RTNL();
8167 
8168 	/* Don't allow namespace local devices to be moved. */
8169 	err = -EINVAL;
8170 	if (dev->features & NETIF_F_NETNS_LOCAL)
8171 		goto out;
8172 
8173 	/* Ensure the device has been registrered */
8174 	if (dev->reg_state != NETREG_REGISTERED)
8175 		goto out;
8176 
8177 	/* Get out if there is nothing todo */
8178 	err = 0;
8179 	if (net_eq(dev_net(dev), net))
8180 		goto out;
8181 
8182 	/* Pick the destination device name, and ensure
8183 	 * we can use it in the destination network namespace.
8184 	 */
8185 	err = -EEXIST;
8186 	if (__dev_get_by_name(net, dev->name)) {
8187 		/* We get here if we can't use the current device name */
8188 		if (!pat)
8189 			goto out;
8190 		if (dev_get_valid_name(net, dev, pat) < 0)
8191 			goto out;
8192 	}
8193 
8194 	/*
8195 	 * And now a mini version of register_netdevice unregister_netdevice.
8196 	 */
8197 
8198 	/* If device is running close it first. */
8199 	dev_close(dev);
8200 
8201 	/* And unlink it from device chain */
8202 	err = -ENODEV;
8203 	unlist_netdevice(dev);
8204 
8205 	synchronize_net();
8206 
8207 	/* Shutdown queueing discipline. */
8208 	dev_shutdown(dev);
8209 
8210 	/* Notify protocols, that we are about to destroy
8211 	 * this device. They should clean all the things.
8212 	 *
8213 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8214 	 * This is wanted because this way 8021q and macvlan know
8215 	 * the device is just moving and can keep their slaves up.
8216 	 */
8217 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8218 	rcu_barrier();
8219 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8220 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8221 
8222 	/*
8223 	 *	Flush the unicast and multicast chains
8224 	 */
8225 	dev_uc_flush(dev);
8226 	dev_mc_flush(dev);
8227 
8228 	/* Send a netdev-removed uevent to the old namespace */
8229 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8230 	netdev_adjacent_del_links(dev);
8231 
8232 	/* Actually switch the network namespace */
8233 	dev_net_set(dev, net);
8234 
8235 	/* If there is an ifindex conflict assign a new one */
8236 	if (__dev_get_by_index(net, dev->ifindex))
8237 		dev->ifindex = dev_new_index(net);
8238 
8239 	/* Send a netdev-add uevent to the new namespace */
8240 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8241 	netdev_adjacent_add_links(dev);
8242 
8243 	/* Fixup kobjects */
8244 	err = device_rename(&dev->dev, dev->name);
8245 	WARN_ON(err);
8246 
8247 	/* Add the device back in the hashes */
8248 	list_netdevice(dev);
8249 
8250 	/* Notify protocols, that a new device appeared. */
8251 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8252 
8253 	/*
8254 	 *	Prevent userspace races by waiting until the network
8255 	 *	device is fully setup before sending notifications.
8256 	 */
8257 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8258 
8259 	synchronize_net();
8260 	err = 0;
8261 out:
8262 	return err;
8263 }
8264 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8265 
8266 static int dev_cpu_dead(unsigned int oldcpu)
8267 {
8268 	struct sk_buff **list_skb;
8269 	struct sk_buff *skb;
8270 	unsigned int cpu;
8271 	struct softnet_data *sd, *oldsd;
8272 
8273 	local_irq_disable();
8274 	cpu = smp_processor_id();
8275 	sd = &per_cpu(softnet_data, cpu);
8276 	oldsd = &per_cpu(softnet_data, oldcpu);
8277 
8278 	/* Find end of our completion_queue. */
8279 	list_skb = &sd->completion_queue;
8280 	while (*list_skb)
8281 		list_skb = &(*list_skb)->next;
8282 	/* Append completion queue from offline CPU. */
8283 	*list_skb = oldsd->completion_queue;
8284 	oldsd->completion_queue = NULL;
8285 
8286 	/* Append output queue from offline CPU. */
8287 	if (oldsd->output_queue) {
8288 		*sd->output_queue_tailp = oldsd->output_queue;
8289 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8290 		oldsd->output_queue = NULL;
8291 		oldsd->output_queue_tailp = &oldsd->output_queue;
8292 	}
8293 	/* Append NAPI poll list from offline CPU, with one exception :
8294 	 * process_backlog() must be called by cpu owning percpu backlog.
8295 	 * We properly handle process_queue & input_pkt_queue later.
8296 	 */
8297 	while (!list_empty(&oldsd->poll_list)) {
8298 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8299 							    struct napi_struct,
8300 							    poll_list);
8301 
8302 		list_del_init(&napi->poll_list);
8303 		if (napi->poll == process_backlog)
8304 			napi->state = 0;
8305 		else
8306 			____napi_schedule(sd, napi);
8307 	}
8308 
8309 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8310 	local_irq_enable();
8311 
8312 	/* Process offline CPU's input_pkt_queue */
8313 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8314 		netif_rx_ni(skb);
8315 		input_queue_head_incr(oldsd);
8316 	}
8317 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8318 		netif_rx_ni(skb);
8319 		input_queue_head_incr(oldsd);
8320 	}
8321 
8322 	return 0;
8323 }
8324 
8325 /**
8326  *	netdev_increment_features - increment feature set by one
8327  *	@all: current feature set
8328  *	@one: new feature set
8329  *	@mask: mask feature set
8330  *
8331  *	Computes a new feature set after adding a device with feature set
8332  *	@one to the master device with current feature set @all.  Will not
8333  *	enable anything that is off in @mask. Returns the new feature set.
8334  */
8335 netdev_features_t netdev_increment_features(netdev_features_t all,
8336 	netdev_features_t one, netdev_features_t mask)
8337 {
8338 	if (mask & NETIF_F_HW_CSUM)
8339 		mask |= NETIF_F_CSUM_MASK;
8340 	mask |= NETIF_F_VLAN_CHALLENGED;
8341 
8342 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8343 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8344 
8345 	/* If one device supports hw checksumming, set for all. */
8346 	if (all & NETIF_F_HW_CSUM)
8347 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8348 
8349 	return all;
8350 }
8351 EXPORT_SYMBOL(netdev_increment_features);
8352 
8353 static struct hlist_head * __net_init netdev_create_hash(void)
8354 {
8355 	int i;
8356 	struct hlist_head *hash;
8357 
8358 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8359 	if (hash != NULL)
8360 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8361 			INIT_HLIST_HEAD(&hash[i]);
8362 
8363 	return hash;
8364 }
8365 
8366 /* Initialize per network namespace state */
8367 static int __net_init netdev_init(struct net *net)
8368 {
8369 	if (net != &init_net)
8370 		INIT_LIST_HEAD(&net->dev_base_head);
8371 
8372 	net->dev_name_head = netdev_create_hash();
8373 	if (net->dev_name_head == NULL)
8374 		goto err_name;
8375 
8376 	net->dev_index_head = netdev_create_hash();
8377 	if (net->dev_index_head == NULL)
8378 		goto err_idx;
8379 
8380 	return 0;
8381 
8382 err_idx:
8383 	kfree(net->dev_name_head);
8384 err_name:
8385 	return -ENOMEM;
8386 }
8387 
8388 /**
8389  *	netdev_drivername - network driver for the device
8390  *	@dev: network device
8391  *
8392  *	Determine network driver for device.
8393  */
8394 const char *netdev_drivername(const struct net_device *dev)
8395 {
8396 	const struct device_driver *driver;
8397 	const struct device *parent;
8398 	const char *empty = "";
8399 
8400 	parent = dev->dev.parent;
8401 	if (!parent)
8402 		return empty;
8403 
8404 	driver = parent->driver;
8405 	if (driver && driver->name)
8406 		return driver->name;
8407 	return empty;
8408 }
8409 
8410 static void __netdev_printk(const char *level, const struct net_device *dev,
8411 			    struct va_format *vaf)
8412 {
8413 	if (dev && dev->dev.parent) {
8414 		dev_printk_emit(level[1] - '0',
8415 				dev->dev.parent,
8416 				"%s %s %s%s: %pV",
8417 				dev_driver_string(dev->dev.parent),
8418 				dev_name(dev->dev.parent),
8419 				netdev_name(dev), netdev_reg_state(dev),
8420 				vaf);
8421 	} else if (dev) {
8422 		printk("%s%s%s: %pV",
8423 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8424 	} else {
8425 		printk("%s(NULL net_device): %pV", level, vaf);
8426 	}
8427 }
8428 
8429 void netdev_printk(const char *level, const struct net_device *dev,
8430 		   const char *format, ...)
8431 {
8432 	struct va_format vaf;
8433 	va_list args;
8434 
8435 	va_start(args, format);
8436 
8437 	vaf.fmt = format;
8438 	vaf.va = &args;
8439 
8440 	__netdev_printk(level, dev, &vaf);
8441 
8442 	va_end(args);
8443 }
8444 EXPORT_SYMBOL(netdev_printk);
8445 
8446 #define define_netdev_printk_level(func, level)			\
8447 void func(const struct net_device *dev, const char *fmt, ...)	\
8448 {								\
8449 	struct va_format vaf;					\
8450 	va_list args;						\
8451 								\
8452 	va_start(args, fmt);					\
8453 								\
8454 	vaf.fmt = fmt;						\
8455 	vaf.va = &args;						\
8456 								\
8457 	__netdev_printk(level, dev, &vaf);			\
8458 								\
8459 	va_end(args);						\
8460 }								\
8461 EXPORT_SYMBOL(func);
8462 
8463 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8464 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8465 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8466 define_netdev_printk_level(netdev_err, KERN_ERR);
8467 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8468 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8469 define_netdev_printk_level(netdev_info, KERN_INFO);
8470 
8471 static void __net_exit netdev_exit(struct net *net)
8472 {
8473 	kfree(net->dev_name_head);
8474 	kfree(net->dev_index_head);
8475 }
8476 
8477 static struct pernet_operations __net_initdata netdev_net_ops = {
8478 	.init = netdev_init,
8479 	.exit = netdev_exit,
8480 };
8481 
8482 static void __net_exit default_device_exit(struct net *net)
8483 {
8484 	struct net_device *dev, *aux;
8485 	/*
8486 	 * Push all migratable network devices back to the
8487 	 * initial network namespace
8488 	 */
8489 	rtnl_lock();
8490 	for_each_netdev_safe(net, dev, aux) {
8491 		int err;
8492 		char fb_name[IFNAMSIZ];
8493 
8494 		/* Ignore unmoveable devices (i.e. loopback) */
8495 		if (dev->features & NETIF_F_NETNS_LOCAL)
8496 			continue;
8497 
8498 		/* Leave virtual devices for the generic cleanup */
8499 		if (dev->rtnl_link_ops)
8500 			continue;
8501 
8502 		/* Push remaining network devices to init_net */
8503 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8504 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8505 		if (err) {
8506 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8507 				 __func__, dev->name, err);
8508 			BUG();
8509 		}
8510 	}
8511 	rtnl_unlock();
8512 }
8513 
8514 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8515 {
8516 	/* Return with the rtnl_lock held when there are no network
8517 	 * devices unregistering in any network namespace in net_list.
8518 	 */
8519 	struct net *net;
8520 	bool unregistering;
8521 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8522 
8523 	add_wait_queue(&netdev_unregistering_wq, &wait);
8524 	for (;;) {
8525 		unregistering = false;
8526 		rtnl_lock();
8527 		list_for_each_entry(net, net_list, exit_list) {
8528 			if (net->dev_unreg_count > 0) {
8529 				unregistering = true;
8530 				break;
8531 			}
8532 		}
8533 		if (!unregistering)
8534 			break;
8535 		__rtnl_unlock();
8536 
8537 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8538 	}
8539 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8540 }
8541 
8542 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8543 {
8544 	/* At exit all network devices most be removed from a network
8545 	 * namespace.  Do this in the reverse order of registration.
8546 	 * Do this across as many network namespaces as possible to
8547 	 * improve batching efficiency.
8548 	 */
8549 	struct net_device *dev;
8550 	struct net *net;
8551 	LIST_HEAD(dev_kill_list);
8552 
8553 	/* To prevent network device cleanup code from dereferencing
8554 	 * loopback devices or network devices that have been freed
8555 	 * wait here for all pending unregistrations to complete,
8556 	 * before unregistring the loopback device and allowing the
8557 	 * network namespace be freed.
8558 	 *
8559 	 * The netdev todo list containing all network devices
8560 	 * unregistrations that happen in default_device_exit_batch
8561 	 * will run in the rtnl_unlock() at the end of
8562 	 * default_device_exit_batch.
8563 	 */
8564 	rtnl_lock_unregistering(net_list);
8565 	list_for_each_entry(net, net_list, exit_list) {
8566 		for_each_netdev_reverse(net, dev) {
8567 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8568 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8569 			else
8570 				unregister_netdevice_queue(dev, &dev_kill_list);
8571 		}
8572 	}
8573 	unregister_netdevice_many(&dev_kill_list);
8574 	rtnl_unlock();
8575 }
8576 
8577 static struct pernet_operations __net_initdata default_device_ops = {
8578 	.exit = default_device_exit,
8579 	.exit_batch = default_device_exit_batch,
8580 };
8581 
8582 /*
8583  *	Initialize the DEV module. At boot time this walks the device list and
8584  *	unhooks any devices that fail to initialise (normally hardware not
8585  *	present) and leaves us with a valid list of present and active devices.
8586  *
8587  */
8588 
8589 /*
8590  *       This is called single threaded during boot, so no need
8591  *       to take the rtnl semaphore.
8592  */
8593 static int __init net_dev_init(void)
8594 {
8595 	int i, rc = -ENOMEM;
8596 
8597 	BUG_ON(!dev_boot_phase);
8598 
8599 	if (dev_proc_init())
8600 		goto out;
8601 
8602 	if (netdev_kobject_init())
8603 		goto out;
8604 
8605 	INIT_LIST_HEAD(&ptype_all);
8606 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8607 		INIT_LIST_HEAD(&ptype_base[i]);
8608 
8609 	INIT_LIST_HEAD(&offload_base);
8610 
8611 	if (register_pernet_subsys(&netdev_net_ops))
8612 		goto out;
8613 
8614 	/*
8615 	 *	Initialise the packet receive queues.
8616 	 */
8617 
8618 	for_each_possible_cpu(i) {
8619 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8620 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8621 
8622 		INIT_WORK(flush, flush_backlog);
8623 
8624 		skb_queue_head_init(&sd->input_pkt_queue);
8625 		skb_queue_head_init(&sd->process_queue);
8626 		INIT_LIST_HEAD(&sd->poll_list);
8627 		sd->output_queue_tailp = &sd->output_queue;
8628 #ifdef CONFIG_RPS
8629 		sd->csd.func = rps_trigger_softirq;
8630 		sd->csd.info = sd;
8631 		sd->cpu = i;
8632 #endif
8633 
8634 		sd->backlog.poll = process_backlog;
8635 		sd->backlog.weight = weight_p;
8636 	}
8637 
8638 	dev_boot_phase = 0;
8639 
8640 	/* The loopback device is special if any other network devices
8641 	 * is present in a network namespace the loopback device must
8642 	 * be present. Since we now dynamically allocate and free the
8643 	 * loopback device ensure this invariant is maintained by
8644 	 * keeping the loopback device as the first device on the
8645 	 * list of network devices.  Ensuring the loopback devices
8646 	 * is the first device that appears and the last network device
8647 	 * that disappears.
8648 	 */
8649 	if (register_pernet_device(&loopback_net_ops))
8650 		goto out;
8651 
8652 	if (register_pernet_device(&default_device_ops))
8653 		goto out;
8654 
8655 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8656 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8657 
8658 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8659 				       NULL, dev_cpu_dead);
8660 	WARN_ON(rc < 0);
8661 	dst_subsys_init();
8662 	rc = 0;
8663 out:
8664 	return rc;
8665 }
8666 
8667 subsys_initcall(net_dev_init);
8668