xref: /openbmc/linux/net/core/dev.c (revision 3b23a32a63219f51a5298bc55a65ecee866e79d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 
152 #include "net-sysfs.h"
153 
154 #define MAX_GRO_SKBS 8
155 
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 static struct list_head offload_base __read_mostly;
164 
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 					 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 					   struct net_device *dev,
170 					   struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172 
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194 
195 static DEFINE_MUTEX(ifalias_mutex);
196 
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199 
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202 
203 static DECLARE_RWSEM(devnet_rename_sem);
204 
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 	while (++net->dev_base_seq == 0)
208 		;
209 }
210 
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214 
215 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222 
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 	spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229 
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 	spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236 
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 						       const char *name)
239 {
240 	struct netdev_name_node *name_node;
241 
242 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 	if (!name_node)
244 		return NULL;
245 	INIT_HLIST_NODE(&name_node->hlist);
246 	name_node->dev = dev;
247 	name_node->name = name;
248 	return name_node;
249 }
250 
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254 	struct netdev_name_node *name_node;
255 
256 	name_node = netdev_name_node_alloc(dev, dev->name);
257 	if (!name_node)
258 		return NULL;
259 	INIT_LIST_HEAD(&name_node->list);
260 	return name_node;
261 }
262 
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265 	kfree(name_node);
266 }
267 
268 static void netdev_name_node_add(struct net *net,
269 				 struct netdev_name_node *name_node)
270 {
271 	hlist_add_head_rcu(&name_node->hlist,
272 			   dev_name_hash(net, name_node->name));
273 }
274 
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277 	hlist_del_rcu(&name_node->hlist);
278 }
279 
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 							const char *name)
282 {
283 	struct hlist_head *head = dev_name_hash(net, name);
284 	struct netdev_name_node *name_node;
285 
286 	hlist_for_each_entry(name_node, head, hlist)
287 		if (!strcmp(name_node->name, name))
288 			return name_node;
289 	return NULL;
290 }
291 
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 							    const char *name)
294 {
295 	struct hlist_head *head = dev_name_hash(net, name);
296 	struct netdev_name_node *name_node;
297 
298 	hlist_for_each_entry_rcu(name_node, head, hlist)
299 		if (!strcmp(name_node->name, name))
300 			return name_node;
301 	return NULL;
302 }
303 
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306 	struct netdev_name_node *name_node;
307 	struct net *net = dev_net(dev);
308 
309 	name_node = netdev_name_node_lookup(net, name);
310 	if (name_node)
311 		return -EEXIST;
312 	name_node = netdev_name_node_alloc(dev, name);
313 	if (!name_node)
314 		return -ENOMEM;
315 	netdev_name_node_add(net, name_node);
316 	/* The node that holds dev->name acts as a head of per-device list. */
317 	list_add_tail(&name_node->list, &dev->name_node->list);
318 
319 	return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322 
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325 	list_del(&name_node->list);
326 	netdev_name_node_del(name_node);
327 	kfree(name_node->name);
328 	netdev_name_node_free(name_node);
329 }
330 
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333 	struct netdev_name_node *name_node;
334 	struct net *net = dev_net(dev);
335 
336 	name_node = netdev_name_node_lookup(net, name);
337 	if (!name_node)
338 		return -ENOENT;
339 	/* lookup might have found our primary name or a name belonging
340 	 * to another device.
341 	 */
342 	if (name_node == dev->name_node || name_node->dev != dev)
343 		return -EINVAL;
344 
345 	__netdev_name_node_alt_destroy(name_node);
346 
347 	return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350 
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353 	struct netdev_name_node *name_node, *tmp;
354 
355 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 		__netdev_name_node_alt_destroy(name_node);
357 }
358 
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362 	struct net *net = dev_net(dev);
363 
364 	ASSERT_RTNL();
365 
366 	write_lock_bh(&dev_base_lock);
367 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 	netdev_name_node_add(net, dev->name_node);
369 	hlist_add_head_rcu(&dev->index_hlist,
370 			   dev_index_hash(net, dev->ifindex));
371 	write_unlock_bh(&dev_base_lock);
372 
373 	dev_base_seq_inc(net);
374 }
375 
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381 	ASSERT_RTNL();
382 
383 	/* Unlink dev from the device chain */
384 	write_lock_bh(&dev_base_lock);
385 	list_del_rcu(&dev->dev_list);
386 	netdev_name_node_del(dev->name_node);
387 	hlist_del_rcu(&dev->index_hlist);
388 	write_unlock_bh(&dev_base_lock);
389 
390 	dev_base_seq_inc(dev_net(dev));
391 }
392 
393 /*
394  *	Our notifier list
395  */
396 
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398 
399 /*
400  *	Device drivers call our routines to queue packets here. We empty the
401  *	queue in the local softnet handler.
402  */
403 
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406 
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428 
429 static const char *const netdev_lock_name[] = {
430 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445 
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451 	int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 		if (netdev_lock_type[i] == dev_type)
455 			return i;
456 	/* the last key is used by default */
457 	return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459 
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 						 unsigned short dev_type)
462 {
463 	int i;
464 
465 	i = netdev_lock_pos(dev_type);
466 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 				   netdev_lock_name[i]);
468 }
469 
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472 	int i;
473 
474 	i = netdev_lock_pos(dev->type);
475 	lockdep_set_class_and_name(&dev->addr_list_lock,
476 				   &netdev_addr_lock_key[i],
477 				   netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 						 unsigned short dev_type)
482 {
483 }
484 
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489 
490 /*******************************************************************************
491  *
492  *		Protocol management and registration routines
493  *
494  *******************************************************************************/
495 
496 
497 /*
498  *	Add a protocol ID to the list. Now that the input handler is
499  *	smarter we can dispense with all the messy stuff that used to be
500  *	here.
501  *
502  *	BEWARE!!! Protocol handlers, mangling input packets,
503  *	MUST BE last in hash buckets and checking protocol handlers
504  *	MUST start from promiscuous ptype_all chain in net_bh.
505  *	It is true now, do not change it.
506  *	Explanation follows: if protocol handler, mangling packet, will
507  *	be the first on list, it is not able to sense, that packet
508  *	is cloned and should be copied-on-write, so that it will
509  *	change it and subsequent readers will get broken packet.
510  *							--ANK (980803)
511  */
512 
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515 	if (pt->type == htons(ETH_P_ALL))
516 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 	else
518 		return pt->dev ? &pt->dev->ptype_specific :
519 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521 
522 /**
523  *	dev_add_pack - add packet handler
524  *	@pt: packet type declaration
525  *
526  *	Add a protocol handler to the networking stack. The passed &packet_type
527  *	is linked into kernel lists and may not be freed until it has been
528  *	removed from the kernel lists.
529  *
530  *	This call does not sleep therefore it can not
531  *	guarantee all CPU's that are in middle of receiving packets
532  *	will see the new packet type (until the next received packet).
533  */
534 
535 void dev_add_pack(struct packet_type *pt)
536 {
537 	struct list_head *head = ptype_head(pt);
538 
539 	spin_lock(&ptype_lock);
540 	list_add_rcu(&pt->list, head);
541 	spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544 
545 /**
546  *	__dev_remove_pack	 - remove packet handler
547  *	@pt: packet type declaration
548  *
549  *	Remove a protocol handler that was previously added to the kernel
550  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *	from the kernel lists and can be freed or reused once this function
552  *	returns.
553  *
554  *      The packet type might still be in use by receivers
555  *	and must not be freed until after all the CPU's have gone
556  *	through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 	struct packet_type *pt1;
562 
563 	spin_lock(&ptype_lock);
564 
565 	list_for_each_entry(pt1, head, list) {
566 		if (pt == pt1) {
567 			list_del_rcu(&pt->list);
568 			goto out;
569 		}
570 	}
571 
572 	pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574 	spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577 
578 /**
579  *	dev_remove_pack	 - remove packet handler
580  *	@pt: packet type declaration
581  *
582  *	Remove a protocol handler that was previously added to the kernel
583  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *	from the kernel lists and can be freed or reused once this function
585  *	returns.
586  *
587  *	This call sleeps to guarantee that no CPU is looking at the packet
588  *	type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592 	__dev_remove_pack(pt);
593 
594 	synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597 
598 
599 /**
600  *	dev_add_offload - register offload handlers
601  *	@po: protocol offload declaration
602  *
603  *	Add protocol offload handlers to the networking stack. The passed
604  *	&proto_offload is linked into kernel lists and may not be freed until
605  *	it has been removed from the kernel lists.
606  *
607  *	This call does not sleep therefore it can not
608  *	guarantee all CPU's that are in middle of receiving packets
609  *	will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613 	struct packet_offload *elem;
614 
615 	spin_lock(&offload_lock);
616 	list_for_each_entry(elem, &offload_base, list) {
617 		if (po->priority < elem->priority)
618 			break;
619 	}
620 	list_add_rcu(&po->list, elem->list.prev);
621 	spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624 
625 /**
626  *	__dev_remove_offload	 - remove offload handler
627  *	@po: packet offload declaration
628  *
629  *	Remove a protocol offload handler that was previously added to the
630  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *	is removed from the kernel lists and can be freed or reused once this
632  *	function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *	and must not be freed until after all the CPU's have gone
636  *	through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640 	struct list_head *head = &offload_base;
641 	struct packet_offload *po1;
642 
643 	spin_lock(&offload_lock);
644 
645 	list_for_each_entry(po1, head, list) {
646 		if (po == po1) {
647 			list_del_rcu(&po->list);
648 			goto out;
649 		}
650 	}
651 
652 	pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654 	spin_unlock(&offload_lock);
655 }
656 
657 /**
658  *	dev_remove_offload	 - remove packet offload handler
659  *	@po: packet offload declaration
660  *
661  *	Remove a packet offload handler that was previously added to the kernel
662  *	offload handlers by dev_add_offload(). The passed &offload_type is
663  *	removed from the kernel lists and can be freed or reused once this
664  *	function returns.
665  *
666  *	This call sleeps to guarantee that no CPU is looking at the packet
667  *	type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671 	__dev_remove_offload(po);
672 
673 	synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676 
677 /******************************************************************************
678  *
679  *		      Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682 
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685 
686 /**
687  *	netdev_boot_setup_add	- add new setup entry
688  *	@name: name of the device
689  *	@map: configured settings for the device
690  *
691  *	Adds new setup entry to the dev_boot_setup list.  The function
692  *	returns 0 on error and 1 on success.  This is a generic routine to
693  *	all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697 	struct netdev_boot_setup *s;
698 	int i;
699 
700 	s = dev_boot_setup;
701 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 			memset(s[i].name, 0, sizeof(s[i].name));
704 			strlcpy(s[i].name, name, IFNAMSIZ);
705 			memcpy(&s[i].map, map, sizeof(s[i].map));
706 			break;
707 		}
708 	}
709 
710 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712 
713 /**
714  * netdev_boot_setup_check	- check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724 	struct netdev_boot_setup *s = dev_boot_setup;
725 	int i;
726 
727 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 		    !strcmp(dev->name, s[i].name)) {
730 			dev->irq = s[i].map.irq;
731 			dev->base_addr = s[i].map.base_addr;
732 			dev->mem_start = s[i].map.mem_start;
733 			dev->mem_end = s[i].map.mem_end;
734 			return 1;
735 		}
736 	}
737 	return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740 
741 
742 /**
743  * netdev_boot_base	- get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754 	const struct netdev_boot_setup *s = dev_boot_setup;
755 	char name[IFNAMSIZ];
756 	int i;
757 
758 	sprintf(name, "%s%d", prefix, unit);
759 
760 	/*
761 	 * If device already registered then return base of 1
762 	 * to indicate not to probe for this interface
763 	 */
764 	if (__dev_get_by_name(&init_net, name))
765 		return 1;
766 
767 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 		if (!strcmp(name, s[i].name))
769 			return s[i].map.base_addr;
770 	return 0;
771 }
772 
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778 	int ints[5];
779 	struct ifmap map;
780 
781 	str = get_options(str, ARRAY_SIZE(ints), ints);
782 	if (!str || !*str)
783 		return 0;
784 
785 	/* Save settings */
786 	memset(&map, 0, sizeof(map));
787 	if (ints[0] > 0)
788 		map.irq = ints[1];
789 	if (ints[0] > 1)
790 		map.base_addr = ints[2];
791 	if (ints[0] > 2)
792 		map.mem_start = ints[3];
793 	if (ints[0] > 3)
794 		map.mem_end = ints[4];
795 
796 	/* Add new entry to the list */
797 	return netdev_boot_setup_add(str, &map);
798 }
799 
800 __setup("netdev=", netdev_boot_setup);
801 
802 /*******************************************************************************
803  *
804  *			    Device Interface Subroutines
805  *
806  *******************************************************************************/
807 
808 /**
809  *	dev_get_iflink	- get 'iflink' value of a interface
810  *	@dev: targeted interface
811  *
812  *	Indicates the ifindex the interface is linked to.
813  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815 
816 int dev_get_iflink(const struct net_device *dev)
817 {
818 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 		return dev->netdev_ops->ndo_get_iflink(dev);
820 
821 	return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824 
825 /**
826  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *	@dev: targeted interface
828  *	@skb: The packet.
829  *
830  *	For better visibility of tunnel traffic OVS needs to retrieve
831  *	egress tunnel information for a packet. Following API allows
832  *	user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836 	struct ip_tunnel_info *info;
837 
838 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839 		return -EINVAL;
840 
841 	info = skb_tunnel_info_unclone(skb);
842 	if (!info)
843 		return -ENOMEM;
844 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 		return -EINVAL;
846 
847 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850 
851 /**
852  *	__dev_get_by_name	- find a device by its name
853  *	@net: the applicable net namespace
854  *	@name: name to find
855  *
856  *	Find an interface by name. Must be called under RTNL semaphore
857  *	or @dev_base_lock. If the name is found a pointer to the device
858  *	is returned. If the name is not found then %NULL is returned. The
859  *	reference counters are not incremented so the caller must be
860  *	careful with locks.
861  */
862 
863 struct net_device *__dev_get_by_name(struct net *net, const char *name)
864 {
865 	struct netdev_name_node *node_name;
866 
867 	node_name = netdev_name_node_lookup(net, name);
868 	return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(__dev_get_by_name);
871 
872 /**
873  * dev_get_by_name_rcu	- find a device by its name
874  * @net: the applicable net namespace
875  * @name: name to find
876  *
877  * Find an interface by name.
878  * If the name is found a pointer to the device is returned.
879  * If the name is not found then %NULL is returned.
880  * The reference counters are not incremented so the caller must be
881  * careful with locks. The caller must hold RCU lock.
882  */
883 
884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885 {
886 	struct netdev_name_node *node_name;
887 
888 	node_name = netdev_name_node_lookup_rcu(net, name);
889 	return node_name ? node_name->dev : NULL;
890 }
891 EXPORT_SYMBOL(dev_get_by_name_rcu);
892 
893 /**
894  *	dev_get_by_name		- find a device by its name
895  *	@net: the applicable net namespace
896  *	@name: name to find
897  *
898  *	Find an interface by name. This can be called from any
899  *	context and does its own locking. The returned handle has
900  *	the usage count incremented and the caller must use dev_put() to
901  *	release it when it is no longer needed. %NULL is returned if no
902  *	matching device is found.
903  */
904 
905 struct net_device *dev_get_by_name(struct net *net, const char *name)
906 {
907 	struct net_device *dev;
908 
909 	rcu_read_lock();
910 	dev = dev_get_by_name_rcu(net, name);
911 	if (dev)
912 		dev_hold(dev);
913 	rcu_read_unlock();
914 	return dev;
915 }
916 EXPORT_SYMBOL(dev_get_by_name);
917 
918 /**
919  *	__dev_get_by_index - find a device by its ifindex
920  *	@net: the applicable net namespace
921  *	@ifindex: index of device
922  *
923  *	Search for an interface by index. Returns %NULL if the device
924  *	is not found or a pointer to the device. The device has not
925  *	had its reference counter increased so the caller must be careful
926  *	about locking. The caller must hold either the RTNL semaphore
927  *	or @dev_base_lock.
928  */
929 
930 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931 {
932 	struct net_device *dev;
933 	struct hlist_head *head = dev_index_hash(net, ifindex);
934 
935 	hlist_for_each_entry(dev, head, index_hlist)
936 		if (dev->ifindex == ifindex)
937 			return dev;
938 
939 	return NULL;
940 }
941 EXPORT_SYMBOL(__dev_get_by_index);
942 
943 /**
944  *	dev_get_by_index_rcu - find a device by its ifindex
945  *	@net: the applicable net namespace
946  *	@ifindex: index of device
947  *
948  *	Search for an interface by index. Returns %NULL if the device
949  *	is not found or a pointer to the device. The device has not
950  *	had its reference counter increased so the caller must be careful
951  *	about locking. The caller must hold RCU lock.
952  */
953 
954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955 {
956 	struct net_device *dev;
957 	struct hlist_head *head = dev_index_hash(net, ifindex);
958 
959 	hlist_for_each_entry_rcu(dev, head, index_hlist)
960 		if (dev->ifindex == ifindex)
961 			return dev;
962 
963 	return NULL;
964 }
965 EXPORT_SYMBOL(dev_get_by_index_rcu);
966 
967 
968 /**
969  *	dev_get_by_index - find a device by its ifindex
970  *	@net: the applicable net namespace
971  *	@ifindex: index of device
972  *
973  *	Search for an interface by index. Returns NULL if the device
974  *	is not found or a pointer to the device. The device returned has
975  *	had a reference added and the pointer is safe until the user calls
976  *	dev_put to indicate they have finished with it.
977  */
978 
979 struct net_device *dev_get_by_index(struct net *net, int ifindex)
980 {
981 	struct net_device *dev;
982 
983 	rcu_read_lock();
984 	dev = dev_get_by_index_rcu(net, ifindex);
985 	if (dev)
986 		dev_hold(dev);
987 	rcu_read_unlock();
988 	return dev;
989 }
990 EXPORT_SYMBOL(dev_get_by_index);
991 
992 /**
993  *	dev_get_by_napi_id - find a device by napi_id
994  *	@napi_id: ID of the NAPI struct
995  *
996  *	Search for an interface by NAPI ID. Returns %NULL if the device
997  *	is not found or a pointer to the device. The device has not had
998  *	its reference counter increased so the caller must be careful
999  *	about locking. The caller must hold RCU lock.
1000  */
1001 
1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003 {
1004 	struct napi_struct *napi;
1005 
1006 	WARN_ON_ONCE(!rcu_read_lock_held());
1007 
1008 	if (napi_id < MIN_NAPI_ID)
1009 		return NULL;
1010 
1011 	napi = napi_by_id(napi_id);
1012 
1013 	return napi ? napi->dev : NULL;
1014 }
1015 EXPORT_SYMBOL(dev_get_by_napi_id);
1016 
1017 /**
1018  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1019  *	@net: network namespace
1020  *	@name: a pointer to the buffer where the name will be stored.
1021  *	@ifindex: the ifindex of the interface to get the name from.
1022  */
1023 int netdev_get_name(struct net *net, char *name, int ifindex)
1024 {
1025 	struct net_device *dev;
1026 	int ret;
1027 
1028 	down_read(&devnet_rename_sem);
1029 	rcu_read_lock();
1030 
1031 	dev = dev_get_by_index_rcu(net, ifindex);
1032 	if (!dev) {
1033 		ret = -ENODEV;
1034 		goto out;
1035 	}
1036 
1037 	strcpy(name, dev->name);
1038 
1039 	ret = 0;
1040 out:
1041 	rcu_read_unlock();
1042 	up_read(&devnet_rename_sem);
1043 	return ret;
1044 }
1045 
1046 /**
1047  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1048  *	@net: the applicable net namespace
1049  *	@type: media type of device
1050  *	@ha: hardware address
1051  *
1052  *	Search for an interface by MAC address. Returns NULL if the device
1053  *	is not found or a pointer to the device.
1054  *	The caller must hold RCU or RTNL.
1055  *	The returned device has not had its ref count increased
1056  *	and the caller must therefore be careful about locking
1057  *
1058  */
1059 
1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061 				       const char *ha)
1062 {
1063 	struct net_device *dev;
1064 
1065 	for_each_netdev_rcu(net, dev)
1066 		if (dev->type == type &&
1067 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1068 			return dev;
1069 
1070 	return NULL;
1071 }
1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073 
1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075 {
1076 	struct net_device *dev, *ret = NULL;
1077 
1078 	rcu_read_lock();
1079 	for_each_netdev_rcu(net, dev)
1080 		if (dev->type == type) {
1081 			dev_hold(dev);
1082 			ret = dev;
1083 			break;
1084 		}
1085 	rcu_read_unlock();
1086 	return ret;
1087 }
1088 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089 
1090 /**
1091  *	__dev_get_by_flags - find any device with given flags
1092  *	@net: the applicable net namespace
1093  *	@if_flags: IFF_* values
1094  *	@mask: bitmask of bits in if_flags to check
1095  *
1096  *	Search for any interface with the given flags. Returns NULL if a device
1097  *	is not found or a pointer to the device. Must be called inside
1098  *	rtnl_lock(), and result refcount is unchanged.
1099  */
1100 
1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102 				      unsigned short mask)
1103 {
1104 	struct net_device *dev, *ret;
1105 
1106 	ASSERT_RTNL();
1107 
1108 	ret = NULL;
1109 	for_each_netdev(net, dev) {
1110 		if (((dev->flags ^ if_flags) & mask) == 0) {
1111 			ret = dev;
1112 			break;
1113 		}
1114 	}
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL(__dev_get_by_flags);
1118 
1119 /**
1120  *	dev_valid_name - check if name is okay for network device
1121  *	@name: name string
1122  *
1123  *	Network device names need to be valid file names to
1124  *	allow sysfs to work.  We also disallow any kind of
1125  *	whitespace.
1126  */
1127 bool dev_valid_name(const char *name)
1128 {
1129 	if (*name == '\0')
1130 		return false;
1131 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132 		return false;
1133 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1134 		return false;
1135 
1136 	while (*name) {
1137 		if (*name == '/' || *name == ':' || isspace(*name))
1138 			return false;
1139 		name++;
1140 	}
1141 	return true;
1142 }
1143 EXPORT_SYMBOL(dev_valid_name);
1144 
1145 /**
1146  *	__dev_alloc_name - allocate a name for a device
1147  *	@net: network namespace to allocate the device name in
1148  *	@name: name format string
1149  *	@buf:  scratch buffer and result name string
1150  *
1151  *	Passed a format string - eg "lt%d" it will try and find a suitable
1152  *	id. It scans list of devices to build up a free map, then chooses
1153  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *	while allocating the name and adding the device in order to avoid
1155  *	duplicates.
1156  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *	Returns the number of the unit assigned or a negative errno code.
1158  */
1159 
1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161 {
1162 	int i = 0;
1163 	const char *p;
1164 	const int max_netdevices = 8*PAGE_SIZE;
1165 	unsigned long *inuse;
1166 	struct net_device *d;
1167 
1168 	if (!dev_valid_name(name))
1169 		return -EINVAL;
1170 
1171 	p = strchr(name, '%');
1172 	if (p) {
1173 		/*
1174 		 * Verify the string as this thing may have come from
1175 		 * the user.  There must be either one "%d" and no other "%"
1176 		 * characters.
1177 		 */
1178 		if (p[1] != 'd' || strchr(p + 2, '%'))
1179 			return -EINVAL;
1180 
1181 		/* Use one page as a bit array of possible slots */
1182 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183 		if (!inuse)
1184 			return -ENOMEM;
1185 
1186 		for_each_netdev(net, d) {
1187 			if (!sscanf(d->name, name, &i))
1188 				continue;
1189 			if (i < 0 || i >= max_netdevices)
1190 				continue;
1191 
1192 			/*  avoid cases where sscanf is not exact inverse of printf */
1193 			snprintf(buf, IFNAMSIZ, name, i);
1194 			if (!strncmp(buf, d->name, IFNAMSIZ))
1195 				set_bit(i, inuse);
1196 		}
1197 
1198 		i = find_first_zero_bit(inuse, max_netdevices);
1199 		free_page((unsigned long) inuse);
1200 	}
1201 
1202 	snprintf(buf, IFNAMSIZ, name, i);
1203 	if (!__dev_get_by_name(net, buf))
1204 		return i;
1205 
1206 	/* It is possible to run out of possible slots
1207 	 * when the name is long and there isn't enough space left
1208 	 * for the digits, or if all bits are used.
1209 	 */
1210 	return -ENFILE;
1211 }
1212 
1213 static int dev_alloc_name_ns(struct net *net,
1214 			     struct net_device *dev,
1215 			     const char *name)
1216 {
1217 	char buf[IFNAMSIZ];
1218 	int ret;
1219 
1220 	BUG_ON(!net);
1221 	ret = __dev_alloc_name(net, name, buf);
1222 	if (ret >= 0)
1223 		strlcpy(dev->name, buf, IFNAMSIZ);
1224 	return ret;
1225 }
1226 
1227 /**
1228  *	dev_alloc_name - allocate a name for a device
1229  *	@dev: device
1230  *	@name: name format string
1231  *
1232  *	Passed a format string - eg "lt%d" it will try and find a suitable
1233  *	id. It scans list of devices to build up a free map, then chooses
1234  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1235  *	while allocating the name and adding the device in order to avoid
1236  *	duplicates.
1237  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1238  *	Returns the number of the unit assigned or a negative errno code.
1239  */
1240 
1241 int dev_alloc_name(struct net_device *dev, const char *name)
1242 {
1243 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1244 }
1245 EXPORT_SYMBOL(dev_alloc_name);
1246 
1247 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1248 			      const char *name)
1249 {
1250 	BUG_ON(!net);
1251 
1252 	if (!dev_valid_name(name))
1253 		return -EINVAL;
1254 
1255 	if (strchr(name, '%'))
1256 		return dev_alloc_name_ns(net, dev, name);
1257 	else if (__dev_get_by_name(net, name))
1258 		return -EEXIST;
1259 	else if (dev->name != name)
1260 		strlcpy(dev->name, name, IFNAMSIZ);
1261 
1262 	return 0;
1263 }
1264 
1265 /**
1266  *	dev_change_name - change name of a device
1267  *	@dev: device
1268  *	@newname: name (or format string) must be at least IFNAMSIZ
1269  *
1270  *	Change name of a device, can pass format strings "eth%d".
1271  *	for wildcarding.
1272  */
1273 int dev_change_name(struct net_device *dev, const char *newname)
1274 {
1275 	unsigned char old_assign_type;
1276 	char oldname[IFNAMSIZ];
1277 	int err = 0;
1278 	int ret;
1279 	struct net *net;
1280 
1281 	ASSERT_RTNL();
1282 	BUG_ON(!dev_net(dev));
1283 
1284 	net = dev_net(dev);
1285 
1286 	/* Some auto-enslaved devices e.g. failover slaves are
1287 	 * special, as userspace might rename the device after
1288 	 * the interface had been brought up and running since
1289 	 * the point kernel initiated auto-enslavement. Allow
1290 	 * live name change even when these slave devices are
1291 	 * up and running.
1292 	 *
1293 	 * Typically, users of these auto-enslaving devices
1294 	 * don't actually care about slave name change, as
1295 	 * they are supposed to operate on master interface
1296 	 * directly.
1297 	 */
1298 	if (dev->flags & IFF_UP &&
1299 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1300 		return -EBUSY;
1301 
1302 	down_write(&devnet_rename_sem);
1303 
1304 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1305 		up_write(&devnet_rename_sem);
1306 		return 0;
1307 	}
1308 
1309 	memcpy(oldname, dev->name, IFNAMSIZ);
1310 
1311 	err = dev_get_valid_name(net, dev, newname);
1312 	if (err < 0) {
1313 		up_write(&devnet_rename_sem);
1314 		return err;
1315 	}
1316 
1317 	if (oldname[0] && !strchr(oldname, '%'))
1318 		netdev_info(dev, "renamed from %s\n", oldname);
1319 
1320 	old_assign_type = dev->name_assign_type;
1321 	dev->name_assign_type = NET_NAME_RENAMED;
1322 
1323 rollback:
1324 	ret = device_rename(&dev->dev, dev->name);
1325 	if (ret) {
1326 		memcpy(dev->name, oldname, IFNAMSIZ);
1327 		dev->name_assign_type = old_assign_type;
1328 		up_write(&devnet_rename_sem);
1329 		return ret;
1330 	}
1331 
1332 	up_write(&devnet_rename_sem);
1333 
1334 	netdev_adjacent_rename_links(dev, oldname);
1335 
1336 	write_lock_bh(&dev_base_lock);
1337 	netdev_name_node_del(dev->name_node);
1338 	write_unlock_bh(&dev_base_lock);
1339 
1340 	synchronize_rcu();
1341 
1342 	write_lock_bh(&dev_base_lock);
1343 	netdev_name_node_add(net, dev->name_node);
1344 	write_unlock_bh(&dev_base_lock);
1345 
1346 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1347 	ret = notifier_to_errno(ret);
1348 
1349 	if (ret) {
1350 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1351 		if (err >= 0) {
1352 			err = ret;
1353 			down_write(&devnet_rename_sem);
1354 			memcpy(dev->name, oldname, IFNAMSIZ);
1355 			memcpy(oldname, newname, IFNAMSIZ);
1356 			dev->name_assign_type = old_assign_type;
1357 			old_assign_type = NET_NAME_RENAMED;
1358 			goto rollback;
1359 		} else {
1360 			pr_err("%s: name change rollback failed: %d\n",
1361 			       dev->name, ret);
1362 		}
1363 	}
1364 
1365 	return err;
1366 }
1367 
1368 /**
1369  *	dev_set_alias - change ifalias of a device
1370  *	@dev: device
1371  *	@alias: name up to IFALIASZ
1372  *	@len: limit of bytes to copy from info
1373  *
1374  *	Set ifalias for a device,
1375  */
1376 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1377 {
1378 	struct dev_ifalias *new_alias = NULL;
1379 
1380 	if (len >= IFALIASZ)
1381 		return -EINVAL;
1382 
1383 	if (len) {
1384 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1385 		if (!new_alias)
1386 			return -ENOMEM;
1387 
1388 		memcpy(new_alias->ifalias, alias, len);
1389 		new_alias->ifalias[len] = 0;
1390 	}
1391 
1392 	mutex_lock(&ifalias_mutex);
1393 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1394 					mutex_is_locked(&ifalias_mutex));
1395 	mutex_unlock(&ifalias_mutex);
1396 
1397 	if (new_alias)
1398 		kfree_rcu(new_alias, rcuhead);
1399 
1400 	return len;
1401 }
1402 EXPORT_SYMBOL(dev_set_alias);
1403 
1404 /**
1405  *	dev_get_alias - get ifalias of a device
1406  *	@dev: device
1407  *	@name: buffer to store name of ifalias
1408  *	@len: size of buffer
1409  *
1410  *	get ifalias for a device.  Caller must make sure dev cannot go
1411  *	away,  e.g. rcu read lock or own a reference count to device.
1412  */
1413 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1414 {
1415 	const struct dev_ifalias *alias;
1416 	int ret = 0;
1417 
1418 	rcu_read_lock();
1419 	alias = rcu_dereference(dev->ifalias);
1420 	if (alias)
1421 		ret = snprintf(name, len, "%s", alias->ifalias);
1422 	rcu_read_unlock();
1423 
1424 	return ret;
1425 }
1426 
1427 /**
1428  *	netdev_features_change - device changes features
1429  *	@dev: device to cause notification
1430  *
1431  *	Called to indicate a device has changed features.
1432  */
1433 void netdev_features_change(struct net_device *dev)
1434 {
1435 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1436 }
1437 EXPORT_SYMBOL(netdev_features_change);
1438 
1439 /**
1440  *	netdev_state_change - device changes state
1441  *	@dev: device to cause notification
1442  *
1443  *	Called to indicate a device has changed state. This function calls
1444  *	the notifier chains for netdev_chain and sends a NEWLINK message
1445  *	to the routing socket.
1446  */
1447 void netdev_state_change(struct net_device *dev)
1448 {
1449 	if (dev->flags & IFF_UP) {
1450 		struct netdev_notifier_change_info change_info = {
1451 			.info.dev = dev,
1452 		};
1453 
1454 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1455 					      &change_info.info);
1456 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1457 	}
1458 }
1459 EXPORT_SYMBOL(netdev_state_change);
1460 
1461 /**
1462  * __netdev_notify_peers - notify network peers about existence of @dev,
1463  * to be called when rtnl lock is already held.
1464  * @dev: network device
1465  *
1466  * Generate traffic such that interested network peers are aware of
1467  * @dev, such as by generating a gratuitous ARP. This may be used when
1468  * a device wants to inform the rest of the network about some sort of
1469  * reconfiguration such as a failover event or virtual machine
1470  * migration.
1471  */
1472 void __netdev_notify_peers(struct net_device *dev)
1473 {
1474 	ASSERT_RTNL();
1475 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1476 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1477 }
1478 EXPORT_SYMBOL(__netdev_notify_peers);
1479 
1480 /**
1481  * netdev_notify_peers - notify network peers about existence of @dev
1482  * @dev: network device
1483  *
1484  * Generate traffic such that interested network peers are aware of
1485  * @dev, such as by generating a gratuitous ARP. This may be used when
1486  * a device wants to inform the rest of the network about some sort of
1487  * reconfiguration such as a failover event or virtual machine
1488  * migration.
1489  */
1490 void netdev_notify_peers(struct net_device *dev)
1491 {
1492 	rtnl_lock();
1493 	__netdev_notify_peers(dev);
1494 	rtnl_unlock();
1495 }
1496 EXPORT_SYMBOL(netdev_notify_peers);
1497 
1498 static int napi_threaded_poll(void *data);
1499 
1500 static int napi_kthread_create(struct napi_struct *n)
1501 {
1502 	int err = 0;
1503 
1504 	/* Create and wake up the kthread once to put it in
1505 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1506 	 * warning and work with loadavg.
1507 	 */
1508 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1509 				n->dev->name, n->napi_id);
1510 	if (IS_ERR(n->thread)) {
1511 		err = PTR_ERR(n->thread);
1512 		pr_err("kthread_run failed with err %d\n", err);
1513 		n->thread = NULL;
1514 	}
1515 
1516 	return err;
1517 }
1518 
1519 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521 	const struct net_device_ops *ops = dev->netdev_ops;
1522 	int ret;
1523 
1524 	ASSERT_RTNL();
1525 
1526 	if (!netif_device_present(dev)) {
1527 		/* may be detached because parent is runtime-suspended */
1528 		if (dev->dev.parent)
1529 			pm_runtime_resume(dev->dev.parent);
1530 		if (!netif_device_present(dev))
1531 			return -ENODEV;
1532 	}
1533 
1534 	/* Block netpoll from trying to do any rx path servicing.
1535 	 * If we don't do this there is a chance ndo_poll_controller
1536 	 * or ndo_poll may be running while we open the device
1537 	 */
1538 	netpoll_poll_disable(dev);
1539 
1540 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1541 	ret = notifier_to_errno(ret);
1542 	if (ret)
1543 		return ret;
1544 
1545 	set_bit(__LINK_STATE_START, &dev->state);
1546 
1547 	if (ops->ndo_validate_addr)
1548 		ret = ops->ndo_validate_addr(dev);
1549 
1550 	if (!ret && ops->ndo_open)
1551 		ret = ops->ndo_open(dev);
1552 
1553 	netpoll_poll_enable(dev);
1554 
1555 	if (ret)
1556 		clear_bit(__LINK_STATE_START, &dev->state);
1557 	else {
1558 		dev->flags |= IFF_UP;
1559 		dev_set_rx_mode(dev);
1560 		dev_activate(dev);
1561 		add_device_randomness(dev->dev_addr, dev->addr_len);
1562 	}
1563 
1564 	return ret;
1565 }
1566 
1567 /**
1568  *	dev_open	- prepare an interface for use.
1569  *	@dev: device to open
1570  *	@extack: netlink extended ack
1571  *
1572  *	Takes a device from down to up state. The device's private open
1573  *	function is invoked and then the multicast lists are loaded. Finally
1574  *	the device is moved into the up state and a %NETDEV_UP message is
1575  *	sent to the netdev notifier chain.
1576  *
1577  *	Calling this function on an active interface is a nop. On a failure
1578  *	a negative errno code is returned.
1579  */
1580 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1581 {
1582 	int ret;
1583 
1584 	if (dev->flags & IFF_UP)
1585 		return 0;
1586 
1587 	ret = __dev_open(dev, extack);
1588 	if (ret < 0)
1589 		return ret;
1590 
1591 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1592 	call_netdevice_notifiers(NETDEV_UP, dev);
1593 
1594 	return ret;
1595 }
1596 EXPORT_SYMBOL(dev_open);
1597 
1598 static void __dev_close_many(struct list_head *head)
1599 {
1600 	struct net_device *dev;
1601 
1602 	ASSERT_RTNL();
1603 	might_sleep();
1604 
1605 	list_for_each_entry(dev, head, close_list) {
1606 		/* Temporarily disable netpoll until the interface is down */
1607 		netpoll_poll_disable(dev);
1608 
1609 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1610 
1611 		clear_bit(__LINK_STATE_START, &dev->state);
1612 
1613 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1614 		 * can be even on different cpu. So just clear netif_running().
1615 		 *
1616 		 * dev->stop() will invoke napi_disable() on all of it's
1617 		 * napi_struct instances on this device.
1618 		 */
1619 		smp_mb__after_atomic(); /* Commit netif_running(). */
1620 	}
1621 
1622 	dev_deactivate_many(head);
1623 
1624 	list_for_each_entry(dev, head, close_list) {
1625 		const struct net_device_ops *ops = dev->netdev_ops;
1626 
1627 		/*
1628 		 *	Call the device specific close. This cannot fail.
1629 		 *	Only if device is UP
1630 		 *
1631 		 *	We allow it to be called even after a DETACH hot-plug
1632 		 *	event.
1633 		 */
1634 		if (ops->ndo_stop)
1635 			ops->ndo_stop(dev);
1636 
1637 		dev->flags &= ~IFF_UP;
1638 		netpoll_poll_enable(dev);
1639 	}
1640 }
1641 
1642 static void __dev_close(struct net_device *dev)
1643 {
1644 	LIST_HEAD(single);
1645 
1646 	list_add(&dev->close_list, &single);
1647 	__dev_close_many(&single);
1648 	list_del(&single);
1649 }
1650 
1651 void dev_close_many(struct list_head *head, bool unlink)
1652 {
1653 	struct net_device *dev, *tmp;
1654 
1655 	/* Remove the devices that don't need to be closed */
1656 	list_for_each_entry_safe(dev, tmp, head, close_list)
1657 		if (!(dev->flags & IFF_UP))
1658 			list_del_init(&dev->close_list);
1659 
1660 	__dev_close_many(head);
1661 
1662 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1663 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1664 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1665 		if (unlink)
1666 			list_del_init(&dev->close_list);
1667 	}
1668 }
1669 EXPORT_SYMBOL(dev_close_many);
1670 
1671 /**
1672  *	dev_close - shutdown an interface.
1673  *	@dev: device to shutdown
1674  *
1675  *	This function moves an active device into down state. A
1676  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1677  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1678  *	chain.
1679  */
1680 void dev_close(struct net_device *dev)
1681 {
1682 	if (dev->flags & IFF_UP) {
1683 		LIST_HEAD(single);
1684 
1685 		list_add(&dev->close_list, &single);
1686 		dev_close_many(&single, true);
1687 		list_del(&single);
1688 	}
1689 }
1690 EXPORT_SYMBOL(dev_close);
1691 
1692 
1693 /**
1694  *	dev_disable_lro - disable Large Receive Offload on a device
1695  *	@dev: device
1696  *
1697  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1698  *	called under RTNL.  This is needed if received packets may be
1699  *	forwarded to another interface.
1700  */
1701 void dev_disable_lro(struct net_device *dev)
1702 {
1703 	struct net_device *lower_dev;
1704 	struct list_head *iter;
1705 
1706 	dev->wanted_features &= ~NETIF_F_LRO;
1707 	netdev_update_features(dev);
1708 
1709 	if (unlikely(dev->features & NETIF_F_LRO))
1710 		netdev_WARN(dev, "failed to disable LRO!\n");
1711 
1712 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1713 		dev_disable_lro(lower_dev);
1714 }
1715 EXPORT_SYMBOL(dev_disable_lro);
1716 
1717 /**
1718  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1719  *	@dev: device
1720  *
1721  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1722  *	called under RTNL.  This is needed if Generic XDP is installed on
1723  *	the device.
1724  */
1725 static void dev_disable_gro_hw(struct net_device *dev)
1726 {
1727 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1728 	netdev_update_features(dev);
1729 
1730 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1731 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1732 }
1733 
1734 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1735 {
1736 #define N(val) 						\
1737 	case NETDEV_##val:				\
1738 		return "NETDEV_" __stringify(val);
1739 	switch (cmd) {
1740 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1741 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1742 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1743 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1744 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1745 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1746 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1747 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1748 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1749 	N(PRE_CHANGEADDR)
1750 	}
1751 #undef N
1752 	return "UNKNOWN_NETDEV_EVENT";
1753 }
1754 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1755 
1756 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1757 				   struct net_device *dev)
1758 {
1759 	struct netdev_notifier_info info = {
1760 		.dev = dev,
1761 	};
1762 
1763 	return nb->notifier_call(nb, val, &info);
1764 }
1765 
1766 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1767 					     struct net_device *dev)
1768 {
1769 	int err;
1770 
1771 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1772 	err = notifier_to_errno(err);
1773 	if (err)
1774 		return err;
1775 
1776 	if (!(dev->flags & IFF_UP))
1777 		return 0;
1778 
1779 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1780 	return 0;
1781 }
1782 
1783 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1784 						struct net_device *dev)
1785 {
1786 	if (dev->flags & IFF_UP) {
1787 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1788 					dev);
1789 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1790 	}
1791 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1792 }
1793 
1794 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1795 						 struct net *net)
1796 {
1797 	struct net_device *dev;
1798 	int err;
1799 
1800 	for_each_netdev(net, dev) {
1801 		err = call_netdevice_register_notifiers(nb, dev);
1802 		if (err)
1803 			goto rollback;
1804 	}
1805 	return 0;
1806 
1807 rollback:
1808 	for_each_netdev_continue_reverse(net, dev)
1809 		call_netdevice_unregister_notifiers(nb, dev);
1810 	return err;
1811 }
1812 
1813 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1814 						    struct net *net)
1815 {
1816 	struct net_device *dev;
1817 
1818 	for_each_netdev(net, dev)
1819 		call_netdevice_unregister_notifiers(nb, dev);
1820 }
1821 
1822 static int dev_boot_phase = 1;
1823 
1824 /**
1825  * register_netdevice_notifier - register a network notifier block
1826  * @nb: notifier
1827  *
1828  * Register a notifier to be called when network device events occur.
1829  * The notifier passed is linked into the kernel structures and must
1830  * not be reused until it has been unregistered. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * When registered all registration and up events are replayed
1834  * to the new notifier to allow device to have a race free
1835  * view of the network device list.
1836  */
1837 
1838 int register_netdevice_notifier(struct notifier_block *nb)
1839 {
1840 	struct net *net;
1841 	int err;
1842 
1843 	/* Close race with setup_net() and cleanup_net() */
1844 	down_write(&pernet_ops_rwsem);
1845 	rtnl_lock();
1846 	err = raw_notifier_chain_register(&netdev_chain, nb);
1847 	if (err)
1848 		goto unlock;
1849 	if (dev_boot_phase)
1850 		goto unlock;
1851 	for_each_net(net) {
1852 		err = call_netdevice_register_net_notifiers(nb, net);
1853 		if (err)
1854 			goto rollback;
1855 	}
1856 
1857 unlock:
1858 	rtnl_unlock();
1859 	up_write(&pernet_ops_rwsem);
1860 	return err;
1861 
1862 rollback:
1863 	for_each_net_continue_reverse(net)
1864 		call_netdevice_unregister_net_notifiers(nb, net);
1865 
1866 	raw_notifier_chain_unregister(&netdev_chain, nb);
1867 	goto unlock;
1868 }
1869 EXPORT_SYMBOL(register_netdevice_notifier);
1870 
1871 /**
1872  * unregister_netdevice_notifier - unregister a network notifier block
1873  * @nb: notifier
1874  *
1875  * Unregister a notifier previously registered by
1876  * register_netdevice_notifier(). The notifier is unlinked into the
1877  * kernel structures and may then be reused. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * After unregistering unregister and down device events are synthesized
1881  * for all devices on the device list to the removed notifier to remove
1882  * the need for special case cleanup code.
1883  */
1884 
1885 int unregister_netdevice_notifier(struct notifier_block *nb)
1886 {
1887 	struct net *net;
1888 	int err;
1889 
1890 	/* Close race with setup_net() and cleanup_net() */
1891 	down_write(&pernet_ops_rwsem);
1892 	rtnl_lock();
1893 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1894 	if (err)
1895 		goto unlock;
1896 
1897 	for_each_net(net)
1898 		call_netdevice_unregister_net_notifiers(nb, net);
1899 
1900 unlock:
1901 	rtnl_unlock();
1902 	up_write(&pernet_ops_rwsem);
1903 	return err;
1904 }
1905 EXPORT_SYMBOL(unregister_netdevice_notifier);
1906 
1907 static int __register_netdevice_notifier_net(struct net *net,
1908 					     struct notifier_block *nb,
1909 					     bool ignore_call_fail)
1910 {
1911 	int err;
1912 
1913 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1914 	if (err)
1915 		return err;
1916 	if (dev_boot_phase)
1917 		return 0;
1918 
1919 	err = call_netdevice_register_net_notifiers(nb, net);
1920 	if (err && !ignore_call_fail)
1921 		goto chain_unregister;
1922 
1923 	return 0;
1924 
1925 chain_unregister:
1926 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1927 	return err;
1928 }
1929 
1930 static int __unregister_netdevice_notifier_net(struct net *net,
1931 					       struct notifier_block *nb)
1932 {
1933 	int err;
1934 
1935 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1936 	if (err)
1937 		return err;
1938 
1939 	call_netdevice_unregister_net_notifiers(nb, net);
1940 	return 0;
1941 }
1942 
1943 /**
1944  * register_netdevice_notifier_net - register a per-netns network notifier block
1945  * @net: network namespace
1946  * @nb: notifier
1947  *
1948  * Register a notifier to be called when network device events occur.
1949  * The notifier passed is linked into the kernel structures and must
1950  * not be reused until it has been unregistered. A negative errno code
1951  * is returned on a failure.
1952  *
1953  * When registered all registration and up events are replayed
1954  * to the new notifier to allow device to have a race free
1955  * view of the network device list.
1956  */
1957 
1958 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1959 {
1960 	int err;
1961 
1962 	rtnl_lock();
1963 	err = __register_netdevice_notifier_net(net, nb, false);
1964 	rtnl_unlock();
1965 	return err;
1966 }
1967 EXPORT_SYMBOL(register_netdevice_notifier_net);
1968 
1969 /**
1970  * unregister_netdevice_notifier_net - unregister a per-netns
1971  *                                     network notifier block
1972  * @net: network namespace
1973  * @nb: notifier
1974  *
1975  * Unregister a notifier previously registered by
1976  * register_netdevice_notifier(). The notifier is unlinked into the
1977  * kernel structures and may then be reused. A negative errno code
1978  * is returned on a failure.
1979  *
1980  * After unregistering unregister and down device events are synthesized
1981  * for all devices on the device list to the removed notifier to remove
1982  * the need for special case cleanup code.
1983  */
1984 
1985 int unregister_netdevice_notifier_net(struct net *net,
1986 				      struct notifier_block *nb)
1987 {
1988 	int err;
1989 
1990 	rtnl_lock();
1991 	err = __unregister_netdevice_notifier_net(net, nb);
1992 	rtnl_unlock();
1993 	return err;
1994 }
1995 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1996 
1997 int register_netdevice_notifier_dev_net(struct net_device *dev,
1998 					struct notifier_block *nb,
1999 					struct netdev_net_notifier *nn)
2000 {
2001 	int err;
2002 
2003 	rtnl_lock();
2004 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2005 	if (!err) {
2006 		nn->nb = nb;
2007 		list_add(&nn->list, &dev->net_notifier_list);
2008 	}
2009 	rtnl_unlock();
2010 	return err;
2011 }
2012 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2013 
2014 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2015 					  struct notifier_block *nb,
2016 					  struct netdev_net_notifier *nn)
2017 {
2018 	int err;
2019 
2020 	rtnl_lock();
2021 	list_del(&nn->list);
2022 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2023 	rtnl_unlock();
2024 	return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2027 
2028 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2029 					     struct net *net)
2030 {
2031 	struct netdev_net_notifier *nn;
2032 
2033 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2034 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2035 		__register_netdevice_notifier_net(net, nn->nb, true);
2036 	}
2037 }
2038 
2039 /**
2040  *	call_netdevice_notifiers_info - call all network notifier blocks
2041  *	@val: value passed unmodified to notifier function
2042  *	@info: notifier information data
2043  *
2044  *	Call all network notifier blocks.  Parameters and return value
2045  *	are as for raw_notifier_call_chain().
2046  */
2047 
2048 static int call_netdevice_notifiers_info(unsigned long val,
2049 					 struct netdev_notifier_info *info)
2050 {
2051 	struct net *net = dev_net(info->dev);
2052 	int ret;
2053 
2054 	ASSERT_RTNL();
2055 
2056 	/* Run per-netns notifier block chain first, then run the global one.
2057 	 * Hopefully, one day, the global one is going to be removed after
2058 	 * all notifier block registrators get converted to be per-netns.
2059 	 */
2060 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2061 	if (ret & NOTIFY_STOP_MASK)
2062 		return ret;
2063 	return raw_notifier_call_chain(&netdev_chain, val, info);
2064 }
2065 
2066 static int call_netdevice_notifiers_extack(unsigned long val,
2067 					   struct net_device *dev,
2068 					   struct netlink_ext_ack *extack)
2069 {
2070 	struct netdev_notifier_info info = {
2071 		.dev = dev,
2072 		.extack = extack,
2073 	};
2074 
2075 	return call_netdevice_notifiers_info(val, &info);
2076 }
2077 
2078 /**
2079  *	call_netdevice_notifiers - call all network notifier blocks
2080  *      @val: value passed unmodified to notifier function
2081  *      @dev: net_device pointer passed unmodified to notifier function
2082  *
2083  *	Call all network notifier blocks.  Parameters and return value
2084  *	are as for raw_notifier_call_chain().
2085  */
2086 
2087 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2088 {
2089 	return call_netdevice_notifiers_extack(val, dev, NULL);
2090 }
2091 EXPORT_SYMBOL(call_netdevice_notifiers);
2092 
2093 /**
2094  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2095  *	@val: value passed unmodified to notifier function
2096  *	@dev: net_device pointer passed unmodified to notifier function
2097  *	@arg: additional u32 argument passed to the notifier function
2098  *
2099  *	Call all network notifier blocks.  Parameters and return value
2100  *	are as for raw_notifier_call_chain().
2101  */
2102 static int call_netdevice_notifiers_mtu(unsigned long val,
2103 					struct net_device *dev, u32 arg)
2104 {
2105 	struct netdev_notifier_info_ext info = {
2106 		.info.dev = dev,
2107 		.ext.mtu = arg,
2108 	};
2109 
2110 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2111 
2112 	return call_netdevice_notifiers_info(val, &info.info);
2113 }
2114 
2115 #ifdef CONFIG_NET_INGRESS
2116 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2117 
2118 void net_inc_ingress_queue(void)
2119 {
2120 	static_branch_inc(&ingress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2123 
2124 void net_dec_ingress_queue(void)
2125 {
2126 	static_branch_dec(&ingress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2129 #endif
2130 
2131 #ifdef CONFIG_NET_EGRESS
2132 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2133 
2134 void net_inc_egress_queue(void)
2135 {
2136 	static_branch_inc(&egress_needed_key);
2137 }
2138 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2139 
2140 void net_dec_egress_queue(void)
2141 {
2142 	static_branch_dec(&egress_needed_key);
2143 }
2144 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2145 #endif
2146 
2147 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2148 #ifdef CONFIG_JUMP_LABEL
2149 static atomic_t netstamp_needed_deferred;
2150 static atomic_t netstamp_wanted;
2151 static void netstamp_clear(struct work_struct *work)
2152 {
2153 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2154 	int wanted;
2155 
2156 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2157 	if (wanted > 0)
2158 		static_branch_enable(&netstamp_needed_key);
2159 	else
2160 		static_branch_disable(&netstamp_needed_key);
2161 }
2162 static DECLARE_WORK(netstamp_work, netstamp_clear);
2163 #endif
2164 
2165 void net_enable_timestamp(void)
2166 {
2167 #ifdef CONFIG_JUMP_LABEL
2168 	int wanted;
2169 
2170 	while (1) {
2171 		wanted = atomic_read(&netstamp_wanted);
2172 		if (wanted <= 0)
2173 			break;
2174 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2175 			return;
2176 	}
2177 	atomic_inc(&netstamp_needed_deferred);
2178 	schedule_work(&netstamp_work);
2179 #else
2180 	static_branch_inc(&netstamp_needed_key);
2181 #endif
2182 }
2183 EXPORT_SYMBOL(net_enable_timestamp);
2184 
2185 void net_disable_timestamp(void)
2186 {
2187 #ifdef CONFIG_JUMP_LABEL
2188 	int wanted;
2189 
2190 	while (1) {
2191 		wanted = atomic_read(&netstamp_wanted);
2192 		if (wanted <= 1)
2193 			break;
2194 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2195 			return;
2196 	}
2197 	atomic_dec(&netstamp_needed_deferred);
2198 	schedule_work(&netstamp_work);
2199 #else
2200 	static_branch_dec(&netstamp_needed_key);
2201 #endif
2202 }
2203 EXPORT_SYMBOL(net_disable_timestamp);
2204 
2205 static inline void net_timestamp_set(struct sk_buff *skb)
2206 {
2207 	skb->tstamp = 0;
2208 	if (static_branch_unlikely(&netstamp_needed_key))
2209 		__net_timestamp(skb);
2210 }
2211 
2212 #define net_timestamp_check(COND, SKB)				\
2213 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2214 		if ((COND) && !(SKB)->tstamp)			\
2215 			__net_timestamp(SKB);			\
2216 	}							\
2217 
2218 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2219 {
2220 	unsigned int len;
2221 
2222 	if (!(dev->flags & IFF_UP))
2223 		return false;
2224 
2225 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2226 	if (skb->len <= len)
2227 		return true;
2228 
2229 	/* if TSO is enabled, we don't care about the length as the packet
2230 	 * could be forwarded without being segmented before
2231 	 */
2232 	if (skb_is_gso(skb))
2233 		return true;
2234 
2235 	return false;
2236 }
2237 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2238 
2239 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2240 {
2241 	int ret = ____dev_forward_skb(dev, skb);
2242 
2243 	if (likely(!ret)) {
2244 		skb->protocol = eth_type_trans(skb, dev);
2245 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2246 	}
2247 
2248 	return ret;
2249 }
2250 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2251 
2252 /**
2253  * dev_forward_skb - loopback an skb to another netif
2254  *
2255  * @dev: destination network device
2256  * @skb: buffer to forward
2257  *
2258  * return values:
2259  *	NET_RX_SUCCESS	(no congestion)
2260  *	NET_RX_DROP     (packet was dropped, but freed)
2261  *
2262  * dev_forward_skb can be used for injecting an skb from the
2263  * start_xmit function of one device into the receive queue
2264  * of another device.
2265  *
2266  * The receiving device may be in another namespace, so
2267  * we have to clear all information in the skb that could
2268  * impact namespace isolation.
2269  */
2270 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2271 {
2272 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2273 }
2274 EXPORT_SYMBOL_GPL(dev_forward_skb);
2275 
2276 static inline int deliver_skb(struct sk_buff *skb,
2277 			      struct packet_type *pt_prev,
2278 			      struct net_device *orig_dev)
2279 {
2280 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2281 		return -ENOMEM;
2282 	refcount_inc(&skb->users);
2283 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2284 }
2285 
2286 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2287 					  struct packet_type **pt,
2288 					  struct net_device *orig_dev,
2289 					  __be16 type,
2290 					  struct list_head *ptype_list)
2291 {
2292 	struct packet_type *ptype, *pt_prev = *pt;
2293 
2294 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2295 		if (ptype->type != type)
2296 			continue;
2297 		if (pt_prev)
2298 			deliver_skb(skb, pt_prev, orig_dev);
2299 		pt_prev = ptype;
2300 	}
2301 	*pt = pt_prev;
2302 }
2303 
2304 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2305 {
2306 	if (!ptype->af_packet_priv || !skb->sk)
2307 		return false;
2308 
2309 	if (ptype->id_match)
2310 		return ptype->id_match(ptype, skb->sk);
2311 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2312 		return true;
2313 
2314 	return false;
2315 }
2316 
2317 /**
2318  * dev_nit_active - return true if any network interface taps are in use
2319  *
2320  * @dev: network device to check for the presence of taps
2321  */
2322 bool dev_nit_active(struct net_device *dev)
2323 {
2324 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2325 }
2326 EXPORT_SYMBOL_GPL(dev_nit_active);
2327 
2328 /*
2329  *	Support routine. Sends outgoing frames to any network
2330  *	taps currently in use.
2331  */
2332 
2333 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2334 {
2335 	struct packet_type *ptype;
2336 	struct sk_buff *skb2 = NULL;
2337 	struct packet_type *pt_prev = NULL;
2338 	struct list_head *ptype_list = &ptype_all;
2339 
2340 	rcu_read_lock();
2341 again:
2342 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2343 		if (ptype->ignore_outgoing)
2344 			continue;
2345 
2346 		/* Never send packets back to the socket
2347 		 * they originated from - MvS (miquels@drinkel.ow.org)
2348 		 */
2349 		if (skb_loop_sk(ptype, skb))
2350 			continue;
2351 
2352 		if (pt_prev) {
2353 			deliver_skb(skb2, pt_prev, skb->dev);
2354 			pt_prev = ptype;
2355 			continue;
2356 		}
2357 
2358 		/* need to clone skb, done only once */
2359 		skb2 = skb_clone(skb, GFP_ATOMIC);
2360 		if (!skb2)
2361 			goto out_unlock;
2362 
2363 		net_timestamp_set(skb2);
2364 
2365 		/* skb->nh should be correctly
2366 		 * set by sender, so that the second statement is
2367 		 * just protection against buggy protocols.
2368 		 */
2369 		skb_reset_mac_header(skb2);
2370 
2371 		if (skb_network_header(skb2) < skb2->data ||
2372 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2373 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2374 					     ntohs(skb2->protocol),
2375 					     dev->name);
2376 			skb_reset_network_header(skb2);
2377 		}
2378 
2379 		skb2->transport_header = skb2->network_header;
2380 		skb2->pkt_type = PACKET_OUTGOING;
2381 		pt_prev = ptype;
2382 	}
2383 
2384 	if (ptype_list == &ptype_all) {
2385 		ptype_list = &dev->ptype_all;
2386 		goto again;
2387 	}
2388 out_unlock:
2389 	if (pt_prev) {
2390 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2391 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2392 		else
2393 			kfree_skb(skb2);
2394 	}
2395 	rcu_read_unlock();
2396 }
2397 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2398 
2399 /**
2400  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2401  * @dev: Network device
2402  * @txq: number of queues available
2403  *
2404  * If real_num_tx_queues is changed the tc mappings may no longer be
2405  * valid. To resolve this verify the tc mapping remains valid and if
2406  * not NULL the mapping. With no priorities mapping to this
2407  * offset/count pair it will no longer be used. In the worst case TC0
2408  * is invalid nothing can be done so disable priority mappings. If is
2409  * expected that drivers will fix this mapping if they can before
2410  * calling netif_set_real_num_tx_queues.
2411  */
2412 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2413 {
2414 	int i;
2415 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2416 
2417 	/* If TC0 is invalidated disable TC mapping */
2418 	if (tc->offset + tc->count > txq) {
2419 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2420 		dev->num_tc = 0;
2421 		return;
2422 	}
2423 
2424 	/* Invalidated prio to tc mappings set to TC0 */
2425 	for (i = 1; i < TC_BITMASK + 1; i++) {
2426 		int q = netdev_get_prio_tc_map(dev, i);
2427 
2428 		tc = &dev->tc_to_txq[q];
2429 		if (tc->offset + tc->count > txq) {
2430 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2431 				i, q);
2432 			netdev_set_prio_tc_map(dev, i, 0);
2433 		}
2434 	}
2435 }
2436 
2437 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2438 {
2439 	if (dev->num_tc) {
2440 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2441 		int i;
2442 
2443 		/* walk through the TCs and see if it falls into any of them */
2444 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2445 			if ((txq - tc->offset) < tc->count)
2446 				return i;
2447 		}
2448 
2449 		/* didn't find it, just return -1 to indicate no match */
2450 		return -1;
2451 	}
2452 
2453 	return 0;
2454 }
2455 EXPORT_SYMBOL(netdev_txq_to_tc);
2456 
2457 #ifdef CONFIG_XPS
2458 struct static_key xps_needed __read_mostly;
2459 EXPORT_SYMBOL(xps_needed);
2460 struct static_key xps_rxqs_needed __read_mostly;
2461 EXPORT_SYMBOL(xps_rxqs_needed);
2462 static DEFINE_MUTEX(xps_map_mutex);
2463 #define xmap_dereference(P)		\
2464 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2465 
2466 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2467 			     int tci, u16 index)
2468 {
2469 	struct xps_map *map = NULL;
2470 	int pos;
2471 
2472 	if (dev_maps)
2473 		map = xmap_dereference(dev_maps->attr_map[tci]);
2474 	if (!map)
2475 		return false;
2476 
2477 	for (pos = map->len; pos--;) {
2478 		if (map->queues[pos] != index)
2479 			continue;
2480 
2481 		if (map->len > 1) {
2482 			map->queues[pos] = map->queues[--map->len];
2483 			break;
2484 		}
2485 
2486 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2487 		kfree_rcu(map, rcu);
2488 		return false;
2489 	}
2490 
2491 	return true;
2492 }
2493 
2494 static bool remove_xps_queue_cpu(struct net_device *dev,
2495 				 struct xps_dev_maps *dev_maps,
2496 				 int cpu, u16 offset, u16 count)
2497 {
2498 	int num_tc = dev->num_tc ? : 1;
2499 	bool active = false;
2500 	int tci;
2501 
2502 	for (tci = cpu * num_tc; num_tc--; tci++) {
2503 		int i, j;
2504 
2505 		for (i = count, j = offset; i--; j++) {
2506 			if (!remove_xps_queue(dev_maps, tci, j))
2507 				break;
2508 		}
2509 
2510 		active |= i < 0;
2511 	}
2512 
2513 	return active;
2514 }
2515 
2516 static void reset_xps_maps(struct net_device *dev,
2517 			   struct xps_dev_maps *dev_maps,
2518 			   bool is_rxqs_map)
2519 {
2520 	if (is_rxqs_map) {
2521 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2522 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2523 	} else {
2524 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2525 	}
2526 	static_key_slow_dec_cpuslocked(&xps_needed);
2527 	kfree_rcu(dev_maps, rcu);
2528 }
2529 
2530 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2531 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2532 			   u16 offset, u16 count, bool is_rxqs_map)
2533 {
2534 	bool active = false;
2535 	int i, j;
2536 
2537 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2538 	     j < nr_ids;)
2539 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2540 					       count);
2541 	if (!active)
2542 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2543 
2544 	if (!is_rxqs_map) {
2545 		for (i = offset + (count - 1); count--; i--) {
2546 			netdev_queue_numa_node_write(
2547 				netdev_get_tx_queue(dev, i),
2548 				NUMA_NO_NODE);
2549 		}
2550 	}
2551 }
2552 
2553 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2554 				   u16 count)
2555 {
2556 	const unsigned long *possible_mask = NULL;
2557 	struct xps_dev_maps *dev_maps;
2558 	unsigned int nr_ids;
2559 
2560 	if (!static_key_false(&xps_needed))
2561 		return;
2562 
2563 	cpus_read_lock();
2564 	mutex_lock(&xps_map_mutex);
2565 
2566 	if (static_key_false(&xps_rxqs_needed)) {
2567 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2568 		if (dev_maps) {
2569 			nr_ids = dev->num_rx_queues;
2570 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2571 				       offset, count, true);
2572 		}
2573 	}
2574 
2575 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2576 	if (!dev_maps)
2577 		goto out_no_maps;
2578 
2579 	if (num_possible_cpus() > 1)
2580 		possible_mask = cpumask_bits(cpu_possible_mask);
2581 	nr_ids = nr_cpu_ids;
2582 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2583 		       false);
2584 
2585 out_no_maps:
2586 	mutex_unlock(&xps_map_mutex);
2587 	cpus_read_unlock();
2588 }
2589 
2590 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2591 {
2592 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2593 }
2594 
2595 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2596 				      u16 index, bool is_rxqs_map)
2597 {
2598 	struct xps_map *new_map;
2599 	int alloc_len = XPS_MIN_MAP_ALLOC;
2600 	int i, pos;
2601 
2602 	for (pos = 0; map && pos < map->len; pos++) {
2603 		if (map->queues[pos] != index)
2604 			continue;
2605 		return map;
2606 	}
2607 
2608 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2609 	if (map) {
2610 		if (pos < map->alloc_len)
2611 			return map;
2612 
2613 		alloc_len = map->alloc_len * 2;
2614 	}
2615 
2616 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2617 	 *  map
2618 	 */
2619 	if (is_rxqs_map)
2620 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2621 	else
2622 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2623 				       cpu_to_node(attr_index));
2624 	if (!new_map)
2625 		return NULL;
2626 
2627 	for (i = 0; i < pos; i++)
2628 		new_map->queues[i] = map->queues[i];
2629 	new_map->alloc_len = alloc_len;
2630 	new_map->len = pos;
2631 
2632 	return new_map;
2633 }
2634 
2635 /* Must be called under cpus_read_lock */
2636 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2637 			  u16 index, bool is_rxqs_map)
2638 {
2639 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2640 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2641 	int i, j, tci, numa_node_id = -2;
2642 	int maps_sz, num_tc = 1, tc = 0;
2643 	struct xps_map *map, *new_map;
2644 	bool active = false;
2645 	unsigned int nr_ids;
2646 
2647 	if (dev->num_tc) {
2648 		/* Do not allow XPS on subordinate device directly */
2649 		num_tc = dev->num_tc;
2650 		if (num_tc < 0)
2651 			return -EINVAL;
2652 
2653 		/* If queue belongs to subordinate dev use its map */
2654 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2655 
2656 		tc = netdev_txq_to_tc(dev, index);
2657 		if (tc < 0)
2658 			return -EINVAL;
2659 	}
2660 
2661 	mutex_lock(&xps_map_mutex);
2662 	if (is_rxqs_map) {
2663 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2664 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2665 		nr_ids = dev->num_rx_queues;
2666 	} else {
2667 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2668 		if (num_possible_cpus() > 1) {
2669 			online_mask = cpumask_bits(cpu_online_mask);
2670 			possible_mask = cpumask_bits(cpu_possible_mask);
2671 		}
2672 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2673 		nr_ids = nr_cpu_ids;
2674 	}
2675 
2676 	if (maps_sz < L1_CACHE_BYTES)
2677 		maps_sz = L1_CACHE_BYTES;
2678 
2679 	/* allocate memory for queue storage */
2680 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2681 	     j < nr_ids;) {
2682 		if (!new_dev_maps)
2683 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2684 		if (!new_dev_maps) {
2685 			mutex_unlock(&xps_map_mutex);
2686 			return -ENOMEM;
2687 		}
2688 
2689 		tci = j * num_tc + tc;
2690 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2691 				 NULL;
2692 
2693 		map = expand_xps_map(map, j, index, is_rxqs_map);
2694 		if (!map)
2695 			goto error;
2696 
2697 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2698 	}
2699 
2700 	if (!new_dev_maps)
2701 		goto out_no_new_maps;
2702 
2703 	if (!dev_maps) {
2704 		/* Increment static keys at most once per type */
2705 		static_key_slow_inc_cpuslocked(&xps_needed);
2706 		if (is_rxqs_map)
2707 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2708 	}
2709 
2710 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2711 	     j < nr_ids;) {
2712 		/* copy maps belonging to foreign traffic classes */
2713 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2714 			/* fill in the new device map from the old device map */
2715 			map = xmap_dereference(dev_maps->attr_map[tci]);
2716 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717 		}
2718 
2719 		/* We need to explicitly update tci as prevous loop
2720 		 * could break out early if dev_maps is NULL.
2721 		 */
2722 		tci = j * num_tc + tc;
2723 
2724 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2725 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2726 			/* add tx-queue to CPU/rx-queue maps */
2727 			int pos = 0;
2728 
2729 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2730 			while ((pos < map->len) && (map->queues[pos] != index))
2731 				pos++;
2732 
2733 			if (pos == map->len)
2734 				map->queues[map->len++] = index;
2735 #ifdef CONFIG_NUMA
2736 			if (!is_rxqs_map) {
2737 				if (numa_node_id == -2)
2738 					numa_node_id = cpu_to_node(j);
2739 				else if (numa_node_id != cpu_to_node(j))
2740 					numa_node_id = -1;
2741 			}
2742 #endif
2743 		} else if (dev_maps) {
2744 			/* fill in the new device map from the old device map */
2745 			map = xmap_dereference(dev_maps->attr_map[tci]);
2746 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2747 		}
2748 
2749 		/* copy maps belonging to foreign traffic classes */
2750 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2751 			/* fill in the new device map from the old device map */
2752 			map = xmap_dereference(dev_maps->attr_map[tci]);
2753 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2754 		}
2755 	}
2756 
2757 	if (is_rxqs_map)
2758 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2759 	else
2760 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2761 
2762 	/* Cleanup old maps */
2763 	if (!dev_maps)
2764 		goto out_no_old_maps;
2765 
2766 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2767 	     j < nr_ids;) {
2768 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2769 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2770 			map = xmap_dereference(dev_maps->attr_map[tci]);
2771 			if (map && map != new_map)
2772 				kfree_rcu(map, rcu);
2773 		}
2774 	}
2775 
2776 	kfree_rcu(dev_maps, rcu);
2777 
2778 out_no_old_maps:
2779 	dev_maps = new_dev_maps;
2780 	active = true;
2781 
2782 out_no_new_maps:
2783 	if (!is_rxqs_map) {
2784 		/* update Tx queue numa node */
2785 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2786 					     (numa_node_id >= 0) ?
2787 					     numa_node_id : NUMA_NO_NODE);
2788 	}
2789 
2790 	if (!dev_maps)
2791 		goto out_no_maps;
2792 
2793 	/* removes tx-queue from unused CPUs/rx-queues */
2794 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2795 	     j < nr_ids;) {
2796 		for (i = tc, tci = j * num_tc; i--; tci++)
2797 			active |= remove_xps_queue(dev_maps, tci, index);
2798 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2799 		    !netif_attr_test_online(j, online_mask, nr_ids))
2800 			active |= remove_xps_queue(dev_maps, tci, index);
2801 		for (i = num_tc - tc, tci++; --i; tci++)
2802 			active |= remove_xps_queue(dev_maps, tci, index);
2803 	}
2804 
2805 	/* free map if not active */
2806 	if (!active)
2807 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2808 
2809 out_no_maps:
2810 	mutex_unlock(&xps_map_mutex);
2811 
2812 	return 0;
2813 error:
2814 	/* remove any maps that we added */
2815 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2816 	     j < nr_ids;) {
2817 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2818 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819 			map = dev_maps ?
2820 			      xmap_dereference(dev_maps->attr_map[tci]) :
2821 			      NULL;
2822 			if (new_map && new_map != map)
2823 				kfree(new_map);
2824 		}
2825 	}
2826 
2827 	mutex_unlock(&xps_map_mutex);
2828 
2829 	kfree(new_dev_maps);
2830 	return -ENOMEM;
2831 }
2832 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2833 
2834 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2835 			u16 index)
2836 {
2837 	int ret;
2838 
2839 	cpus_read_lock();
2840 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2841 	cpus_read_unlock();
2842 
2843 	return ret;
2844 }
2845 EXPORT_SYMBOL(netif_set_xps_queue);
2846 
2847 #endif
2848 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2849 {
2850 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2851 
2852 	/* Unbind any subordinate channels */
2853 	while (txq-- != &dev->_tx[0]) {
2854 		if (txq->sb_dev)
2855 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2856 	}
2857 }
2858 
2859 void netdev_reset_tc(struct net_device *dev)
2860 {
2861 #ifdef CONFIG_XPS
2862 	netif_reset_xps_queues_gt(dev, 0);
2863 #endif
2864 	netdev_unbind_all_sb_channels(dev);
2865 
2866 	/* Reset TC configuration of device */
2867 	dev->num_tc = 0;
2868 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2869 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2870 }
2871 EXPORT_SYMBOL(netdev_reset_tc);
2872 
2873 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2874 {
2875 	if (tc >= dev->num_tc)
2876 		return -EINVAL;
2877 
2878 #ifdef CONFIG_XPS
2879 	netif_reset_xps_queues(dev, offset, count);
2880 #endif
2881 	dev->tc_to_txq[tc].count = count;
2882 	dev->tc_to_txq[tc].offset = offset;
2883 	return 0;
2884 }
2885 EXPORT_SYMBOL(netdev_set_tc_queue);
2886 
2887 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2888 {
2889 	if (num_tc > TC_MAX_QUEUE)
2890 		return -EINVAL;
2891 
2892 #ifdef CONFIG_XPS
2893 	netif_reset_xps_queues_gt(dev, 0);
2894 #endif
2895 	netdev_unbind_all_sb_channels(dev);
2896 
2897 	dev->num_tc = num_tc;
2898 	return 0;
2899 }
2900 EXPORT_SYMBOL(netdev_set_num_tc);
2901 
2902 void netdev_unbind_sb_channel(struct net_device *dev,
2903 			      struct net_device *sb_dev)
2904 {
2905 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2906 
2907 #ifdef CONFIG_XPS
2908 	netif_reset_xps_queues_gt(sb_dev, 0);
2909 #endif
2910 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2911 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2912 
2913 	while (txq-- != &dev->_tx[0]) {
2914 		if (txq->sb_dev == sb_dev)
2915 			txq->sb_dev = NULL;
2916 	}
2917 }
2918 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2919 
2920 int netdev_bind_sb_channel_queue(struct net_device *dev,
2921 				 struct net_device *sb_dev,
2922 				 u8 tc, u16 count, u16 offset)
2923 {
2924 	/* Make certain the sb_dev and dev are already configured */
2925 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2926 		return -EINVAL;
2927 
2928 	/* We cannot hand out queues we don't have */
2929 	if ((offset + count) > dev->real_num_tx_queues)
2930 		return -EINVAL;
2931 
2932 	/* Record the mapping */
2933 	sb_dev->tc_to_txq[tc].count = count;
2934 	sb_dev->tc_to_txq[tc].offset = offset;
2935 
2936 	/* Provide a way for Tx queue to find the tc_to_txq map or
2937 	 * XPS map for itself.
2938 	 */
2939 	while (count--)
2940 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2941 
2942 	return 0;
2943 }
2944 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2945 
2946 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2947 {
2948 	/* Do not use a multiqueue device to represent a subordinate channel */
2949 	if (netif_is_multiqueue(dev))
2950 		return -ENODEV;
2951 
2952 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2953 	 * Channel 0 is meant to be "native" mode and used only to represent
2954 	 * the main root device. We allow writing 0 to reset the device back
2955 	 * to normal mode after being used as a subordinate channel.
2956 	 */
2957 	if (channel > S16_MAX)
2958 		return -EINVAL;
2959 
2960 	dev->num_tc = -channel;
2961 
2962 	return 0;
2963 }
2964 EXPORT_SYMBOL(netdev_set_sb_channel);
2965 
2966 /*
2967  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2968  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2969  */
2970 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2971 {
2972 	bool disabling;
2973 	int rc;
2974 
2975 	disabling = txq < dev->real_num_tx_queues;
2976 
2977 	if (txq < 1 || txq > dev->num_tx_queues)
2978 		return -EINVAL;
2979 
2980 	if (dev->reg_state == NETREG_REGISTERED ||
2981 	    dev->reg_state == NETREG_UNREGISTERING) {
2982 		ASSERT_RTNL();
2983 
2984 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2985 						  txq);
2986 		if (rc)
2987 			return rc;
2988 
2989 		if (dev->num_tc)
2990 			netif_setup_tc(dev, txq);
2991 
2992 		dev->real_num_tx_queues = txq;
2993 
2994 		if (disabling) {
2995 			synchronize_net();
2996 			qdisc_reset_all_tx_gt(dev, txq);
2997 #ifdef CONFIG_XPS
2998 			netif_reset_xps_queues_gt(dev, txq);
2999 #endif
3000 		}
3001 	} else {
3002 		dev->real_num_tx_queues = txq;
3003 	}
3004 
3005 	return 0;
3006 }
3007 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3008 
3009 #ifdef CONFIG_SYSFS
3010 /**
3011  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3012  *	@dev: Network device
3013  *	@rxq: Actual number of RX queues
3014  *
3015  *	This must be called either with the rtnl_lock held or before
3016  *	registration of the net device.  Returns 0 on success, or a
3017  *	negative error code.  If called before registration, it always
3018  *	succeeds.
3019  */
3020 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3021 {
3022 	int rc;
3023 
3024 	if (rxq < 1 || rxq > dev->num_rx_queues)
3025 		return -EINVAL;
3026 
3027 	if (dev->reg_state == NETREG_REGISTERED) {
3028 		ASSERT_RTNL();
3029 
3030 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3031 						  rxq);
3032 		if (rc)
3033 			return rc;
3034 	}
3035 
3036 	dev->real_num_rx_queues = rxq;
3037 	return 0;
3038 }
3039 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3040 #endif
3041 
3042 /**
3043  * netif_get_num_default_rss_queues - default number of RSS queues
3044  *
3045  * This routine should set an upper limit on the number of RSS queues
3046  * used by default by multiqueue devices.
3047  */
3048 int netif_get_num_default_rss_queues(void)
3049 {
3050 	return is_kdump_kernel() ?
3051 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3052 }
3053 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3054 
3055 static void __netif_reschedule(struct Qdisc *q)
3056 {
3057 	struct softnet_data *sd;
3058 	unsigned long flags;
3059 
3060 	local_irq_save(flags);
3061 	sd = this_cpu_ptr(&softnet_data);
3062 	q->next_sched = NULL;
3063 	*sd->output_queue_tailp = q;
3064 	sd->output_queue_tailp = &q->next_sched;
3065 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3066 	local_irq_restore(flags);
3067 }
3068 
3069 void __netif_schedule(struct Qdisc *q)
3070 {
3071 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3072 		__netif_reschedule(q);
3073 }
3074 EXPORT_SYMBOL(__netif_schedule);
3075 
3076 struct dev_kfree_skb_cb {
3077 	enum skb_free_reason reason;
3078 };
3079 
3080 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3081 {
3082 	return (struct dev_kfree_skb_cb *)skb->cb;
3083 }
3084 
3085 void netif_schedule_queue(struct netdev_queue *txq)
3086 {
3087 	rcu_read_lock();
3088 	if (!netif_xmit_stopped(txq)) {
3089 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3090 
3091 		__netif_schedule(q);
3092 	}
3093 	rcu_read_unlock();
3094 }
3095 EXPORT_SYMBOL(netif_schedule_queue);
3096 
3097 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3098 {
3099 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3100 		struct Qdisc *q;
3101 
3102 		rcu_read_lock();
3103 		q = rcu_dereference(dev_queue->qdisc);
3104 		__netif_schedule(q);
3105 		rcu_read_unlock();
3106 	}
3107 }
3108 EXPORT_SYMBOL(netif_tx_wake_queue);
3109 
3110 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3111 {
3112 	unsigned long flags;
3113 
3114 	if (unlikely(!skb))
3115 		return;
3116 
3117 	if (likely(refcount_read(&skb->users) == 1)) {
3118 		smp_rmb();
3119 		refcount_set(&skb->users, 0);
3120 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3121 		return;
3122 	}
3123 	get_kfree_skb_cb(skb)->reason = reason;
3124 	local_irq_save(flags);
3125 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3126 	__this_cpu_write(softnet_data.completion_queue, skb);
3127 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3128 	local_irq_restore(flags);
3129 }
3130 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3131 
3132 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3133 {
3134 	if (in_irq() || irqs_disabled())
3135 		__dev_kfree_skb_irq(skb, reason);
3136 	else
3137 		dev_kfree_skb(skb);
3138 }
3139 EXPORT_SYMBOL(__dev_kfree_skb_any);
3140 
3141 
3142 /**
3143  * netif_device_detach - mark device as removed
3144  * @dev: network device
3145  *
3146  * Mark device as removed from system and therefore no longer available.
3147  */
3148 void netif_device_detach(struct net_device *dev)
3149 {
3150 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3151 	    netif_running(dev)) {
3152 		netif_tx_stop_all_queues(dev);
3153 	}
3154 }
3155 EXPORT_SYMBOL(netif_device_detach);
3156 
3157 /**
3158  * netif_device_attach - mark device as attached
3159  * @dev: network device
3160  *
3161  * Mark device as attached from system and restart if needed.
3162  */
3163 void netif_device_attach(struct net_device *dev)
3164 {
3165 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166 	    netif_running(dev)) {
3167 		netif_tx_wake_all_queues(dev);
3168 		__netdev_watchdog_up(dev);
3169 	}
3170 }
3171 EXPORT_SYMBOL(netif_device_attach);
3172 
3173 /*
3174  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3175  * to be used as a distribution range.
3176  */
3177 static u16 skb_tx_hash(const struct net_device *dev,
3178 		       const struct net_device *sb_dev,
3179 		       struct sk_buff *skb)
3180 {
3181 	u32 hash;
3182 	u16 qoffset = 0;
3183 	u16 qcount = dev->real_num_tx_queues;
3184 
3185 	if (dev->num_tc) {
3186 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3187 
3188 		qoffset = sb_dev->tc_to_txq[tc].offset;
3189 		qcount = sb_dev->tc_to_txq[tc].count;
3190 	}
3191 
3192 	if (skb_rx_queue_recorded(skb)) {
3193 		hash = skb_get_rx_queue(skb);
3194 		if (hash >= qoffset)
3195 			hash -= qoffset;
3196 		while (unlikely(hash >= qcount))
3197 			hash -= qcount;
3198 		return hash + qoffset;
3199 	}
3200 
3201 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3202 }
3203 
3204 static void skb_warn_bad_offload(const struct sk_buff *skb)
3205 {
3206 	static const netdev_features_t null_features;
3207 	struct net_device *dev = skb->dev;
3208 	const char *name = "";
3209 
3210 	if (!net_ratelimit())
3211 		return;
3212 
3213 	if (dev) {
3214 		if (dev->dev.parent)
3215 			name = dev_driver_string(dev->dev.parent);
3216 		else
3217 			name = netdev_name(dev);
3218 	}
3219 	skb_dump(KERN_WARNING, skb, false);
3220 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3221 	     name, dev ? &dev->features : &null_features,
3222 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3223 }
3224 
3225 /*
3226  * Invalidate hardware checksum when packet is to be mangled, and
3227  * complete checksum manually on outgoing path.
3228  */
3229 int skb_checksum_help(struct sk_buff *skb)
3230 {
3231 	__wsum csum;
3232 	int ret = 0, offset;
3233 
3234 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3235 		goto out_set_summed;
3236 
3237 	if (unlikely(skb_is_gso(skb))) {
3238 		skb_warn_bad_offload(skb);
3239 		return -EINVAL;
3240 	}
3241 
3242 	/* Before computing a checksum, we should make sure no frag could
3243 	 * be modified by an external entity : checksum could be wrong.
3244 	 */
3245 	if (skb_has_shared_frag(skb)) {
3246 		ret = __skb_linearize(skb);
3247 		if (ret)
3248 			goto out;
3249 	}
3250 
3251 	offset = skb_checksum_start_offset(skb);
3252 	BUG_ON(offset >= skb_headlen(skb));
3253 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3254 
3255 	offset += skb->csum_offset;
3256 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3257 
3258 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3259 	if (ret)
3260 		goto out;
3261 
3262 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3263 out_set_summed:
3264 	skb->ip_summed = CHECKSUM_NONE;
3265 out:
3266 	return ret;
3267 }
3268 EXPORT_SYMBOL(skb_checksum_help);
3269 
3270 int skb_crc32c_csum_help(struct sk_buff *skb)
3271 {
3272 	__le32 crc32c_csum;
3273 	int ret = 0, offset, start;
3274 
3275 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3276 		goto out;
3277 
3278 	if (unlikely(skb_is_gso(skb)))
3279 		goto out;
3280 
3281 	/* Before computing a checksum, we should make sure no frag could
3282 	 * be modified by an external entity : checksum could be wrong.
3283 	 */
3284 	if (unlikely(skb_has_shared_frag(skb))) {
3285 		ret = __skb_linearize(skb);
3286 		if (ret)
3287 			goto out;
3288 	}
3289 	start = skb_checksum_start_offset(skb);
3290 	offset = start + offsetof(struct sctphdr, checksum);
3291 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3292 		ret = -EINVAL;
3293 		goto out;
3294 	}
3295 
3296 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3297 	if (ret)
3298 		goto out;
3299 
3300 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3301 						  skb->len - start, ~(__u32)0,
3302 						  crc32c_csum_stub));
3303 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3304 	skb->ip_summed = CHECKSUM_NONE;
3305 	skb->csum_not_inet = 0;
3306 out:
3307 	return ret;
3308 }
3309 
3310 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3311 {
3312 	__be16 type = skb->protocol;
3313 
3314 	/* Tunnel gso handlers can set protocol to ethernet. */
3315 	if (type == htons(ETH_P_TEB)) {
3316 		struct ethhdr *eth;
3317 
3318 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3319 			return 0;
3320 
3321 		eth = (struct ethhdr *)skb->data;
3322 		type = eth->h_proto;
3323 	}
3324 
3325 	return __vlan_get_protocol(skb, type, depth);
3326 }
3327 
3328 /**
3329  *	skb_mac_gso_segment - mac layer segmentation handler.
3330  *	@skb: buffer to segment
3331  *	@features: features for the output path (see dev->features)
3332  */
3333 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3334 				    netdev_features_t features)
3335 {
3336 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3337 	struct packet_offload *ptype;
3338 	int vlan_depth = skb->mac_len;
3339 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3340 
3341 	if (unlikely(!type))
3342 		return ERR_PTR(-EINVAL);
3343 
3344 	__skb_pull(skb, vlan_depth);
3345 
3346 	rcu_read_lock();
3347 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3348 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3349 			segs = ptype->callbacks.gso_segment(skb, features);
3350 			break;
3351 		}
3352 	}
3353 	rcu_read_unlock();
3354 
3355 	__skb_push(skb, skb->data - skb_mac_header(skb));
3356 
3357 	return segs;
3358 }
3359 EXPORT_SYMBOL(skb_mac_gso_segment);
3360 
3361 
3362 /* openvswitch calls this on rx path, so we need a different check.
3363  */
3364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3365 {
3366 	if (tx_path)
3367 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3368 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3369 
3370 	return skb->ip_summed == CHECKSUM_NONE;
3371 }
3372 
3373 /**
3374  *	__skb_gso_segment - Perform segmentation on skb.
3375  *	@skb: buffer to segment
3376  *	@features: features for the output path (see dev->features)
3377  *	@tx_path: whether it is called in TX path
3378  *
3379  *	This function segments the given skb and returns a list of segments.
3380  *
3381  *	It may return NULL if the skb requires no segmentation.  This is
3382  *	only possible when GSO is used for verifying header integrity.
3383  *
3384  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3385  */
3386 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3387 				  netdev_features_t features, bool tx_path)
3388 {
3389 	struct sk_buff *segs;
3390 
3391 	if (unlikely(skb_needs_check(skb, tx_path))) {
3392 		int err;
3393 
3394 		/* We're going to init ->check field in TCP or UDP header */
3395 		err = skb_cow_head(skb, 0);
3396 		if (err < 0)
3397 			return ERR_PTR(err);
3398 	}
3399 
3400 	/* Only report GSO partial support if it will enable us to
3401 	 * support segmentation on this frame without needing additional
3402 	 * work.
3403 	 */
3404 	if (features & NETIF_F_GSO_PARTIAL) {
3405 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3406 		struct net_device *dev = skb->dev;
3407 
3408 		partial_features |= dev->features & dev->gso_partial_features;
3409 		if (!skb_gso_ok(skb, features | partial_features))
3410 			features &= ~NETIF_F_GSO_PARTIAL;
3411 	}
3412 
3413 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3414 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3415 
3416 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3417 	SKB_GSO_CB(skb)->encap_level = 0;
3418 
3419 	skb_reset_mac_header(skb);
3420 	skb_reset_mac_len(skb);
3421 
3422 	segs = skb_mac_gso_segment(skb, features);
3423 
3424 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3425 		skb_warn_bad_offload(skb);
3426 
3427 	return segs;
3428 }
3429 EXPORT_SYMBOL(__skb_gso_segment);
3430 
3431 /* Take action when hardware reception checksum errors are detected. */
3432 #ifdef CONFIG_BUG
3433 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3434 {
3435 	if (net_ratelimit()) {
3436 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3437 		skb_dump(KERN_ERR, skb, true);
3438 		dump_stack();
3439 	}
3440 }
3441 EXPORT_SYMBOL(netdev_rx_csum_fault);
3442 #endif
3443 
3444 /* XXX: check that highmem exists at all on the given machine. */
3445 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3446 {
3447 #ifdef CONFIG_HIGHMEM
3448 	int i;
3449 
3450 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3451 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3452 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3453 
3454 			if (PageHighMem(skb_frag_page(frag)))
3455 				return 1;
3456 		}
3457 	}
3458 #endif
3459 	return 0;
3460 }
3461 
3462 /* If MPLS offload request, verify we are testing hardware MPLS features
3463  * instead of standard features for the netdev.
3464  */
3465 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3466 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3467 					   netdev_features_t features,
3468 					   __be16 type)
3469 {
3470 	if (eth_p_mpls(type))
3471 		features &= skb->dev->mpls_features;
3472 
3473 	return features;
3474 }
3475 #else
3476 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3477 					   netdev_features_t features,
3478 					   __be16 type)
3479 {
3480 	return features;
3481 }
3482 #endif
3483 
3484 static netdev_features_t harmonize_features(struct sk_buff *skb,
3485 	netdev_features_t features)
3486 {
3487 	__be16 type;
3488 
3489 	type = skb_network_protocol(skb, NULL);
3490 	features = net_mpls_features(skb, features, type);
3491 
3492 	if (skb->ip_summed != CHECKSUM_NONE &&
3493 	    !can_checksum_protocol(features, type)) {
3494 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3495 	}
3496 	if (illegal_highdma(skb->dev, skb))
3497 		features &= ~NETIF_F_SG;
3498 
3499 	return features;
3500 }
3501 
3502 netdev_features_t passthru_features_check(struct sk_buff *skb,
3503 					  struct net_device *dev,
3504 					  netdev_features_t features)
3505 {
3506 	return features;
3507 }
3508 EXPORT_SYMBOL(passthru_features_check);
3509 
3510 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3511 					     struct net_device *dev,
3512 					     netdev_features_t features)
3513 {
3514 	return vlan_features_check(skb, features);
3515 }
3516 
3517 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3518 					    struct net_device *dev,
3519 					    netdev_features_t features)
3520 {
3521 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3522 
3523 	if (gso_segs > dev->gso_max_segs)
3524 		return features & ~NETIF_F_GSO_MASK;
3525 
3526 	if (!skb_shinfo(skb)->gso_type) {
3527 		skb_warn_bad_offload(skb);
3528 		return features & ~NETIF_F_GSO_MASK;
3529 	}
3530 
3531 	/* Support for GSO partial features requires software
3532 	 * intervention before we can actually process the packets
3533 	 * so we need to strip support for any partial features now
3534 	 * and we can pull them back in after we have partially
3535 	 * segmented the frame.
3536 	 */
3537 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3538 		features &= ~dev->gso_partial_features;
3539 
3540 	/* Make sure to clear the IPv4 ID mangling feature if the
3541 	 * IPv4 header has the potential to be fragmented.
3542 	 */
3543 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3544 		struct iphdr *iph = skb->encapsulation ?
3545 				    inner_ip_hdr(skb) : ip_hdr(skb);
3546 
3547 		if (!(iph->frag_off & htons(IP_DF)))
3548 			features &= ~NETIF_F_TSO_MANGLEID;
3549 	}
3550 
3551 	return features;
3552 }
3553 
3554 netdev_features_t netif_skb_features(struct sk_buff *skb)
3555 {
3556 	struct net_device *dev = skb->dev;
3557 	netdev_features_t features = dev->features;
3558 
3559 	if (skb_is_gso(skb))
3560 		features = gso_features_check(skb, dev, features);
3561 
3562 	/* If encapsulation offload request, verify we are testing
3563 	 * hardware encapsulation features instead of standard
3564 	 * features for the netdev
3565 	 */
3566 	if (skb->encapsulation)
3567 		features &= dev->hw_enc_features;
3568 
3569 	if (skb_vlan_tagged(skb))
3570 		features = netdev_intersect_features(features,
3571 						     dev->vlan_features |
3572 						     NETIF_F_HW_VLAN_CTAG_TX |
3573 						     NETIF_F_HW_VLAN_STAG_TX);
3574 
3575 	if (dev->netdev_ops->ndo_features_check)
3576 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3577 								features);
3578 	else
3579 		features &= dflt_features_check(skb, dev, features);
3580 
3581 	return harmonize_features(skb, features);
3582 }
3583 EXPORT_SYMBOL(netif_skb_features);
3584 
3585 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3586 		    struct netdev_queue *txq, bool more)
3587 {
3588 	unsigned int len;
3589 	int rc;
3590 
3591 	if (dev_nit_active(dev))
3592 		dev_queue_xmit_nit(skb, dev);
3593 
3594 	len = skb->len;
3595 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3596 	trace_net_dev_start_xmit(skb, dev);
3597 	rc = netdev_start_xmit(skb, dev, txq, more);
3598 	trace_net_dev_xmit(skb, rc, dev, len);
3599 
3600 	return rc;
3601 }
3602 
3603 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3604 				    struct netdev_queue *txq, int *ret)
3605 {
3606 	struct sk_buff *skb = first;
3607 	int rc = NETDEV_TX_OK;
3608 
3609 	while (skb) {
3610 		struct sk_buff *next = skb->next;
3611 
3612 		skb_mark_not_on_list(skb);
3613 		rc = xmit_one(skb, dev, txq, next != NULL);
3614 		if (unlikely(!dev_xmit_complete(rc))) {
3615 			skb->next = next;
3616 			goto out;
3617 		}
3618 
3619 		skb = next;
3620 		if (netif_tx_queue_stopped(txq) && skb) {
3621 			rc = NETDEV_TX_BUSY;
3622 			break;
3623 		}
3624 	}
3625 
3626 out:
3627 	*ret = rc;
3628 	return skb;
3629 }
3630 
3631 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3632 					  netdev_features_t features)
3633 {
3634 	if (skb_vlan_tag_present(skb) &&
3635 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3636 		skb = __vlan_hwaccel_push_inside(skb);
3637 	return skb;
3638 }
3639 
3640 int skb_csum_hwoffload_help(struct sk_buff *skb,
3641 			    const netdev_features_t features)
3642 {
3643 	if (unlikely(skb_csum_is_sctp(skb)))
3644 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3645 			skb_crc32c_csum_help(skb);
3646 
3647 	if (features & NETIF_F_HW_CSUM)
3648 		return 0;
3649 
3650 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3651 		switch (skb->csum_offset) {
3652 		case offsetof(struct tcphdr, check):
3653 		case offsetof(struct udphdr, check):
3654 			return 0;
3655 		}
3656 	}
3657 
3658 	return skb_checksum_help(skb);
3659 }
3660 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3661 
3662 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3663 {
3664 	netdev_features_t features;
3665 
3666 	features = netif_skb_features(skb);
3667 	skb = validate_xmit_vlan(skb, features);
3668 	if (unlikely(!skb))
3669 		goto out_null;
3670 
3671 	skb = sk_validate_xmit_skb(skb, dev);
3672 	if (unlikely(!skb))
3673 		goto out_null;
3674 
3675 	if (netif_needs_gso(skb, features)) {
3676 		struct sk_buff *segs;
3677 
3678 		segs = skb_gso_segment(skb, features);
3679 		if (IS_ERR(segs)) {
3680 			goto out_kfree_skb;
3681 		} else if (segs) {
3682 			consume_skb(skb);
3683 			skb = segs;
3684 		}
3685 	} else {
3686 		if (skb_needs_linearize(skb, features) &&
3687 		    __skb_linearize(skb))
3688 			goto out_kfree_skb;
3689 
3690 		/* If packet is not checksummed and device does not
3691 		 * support checksumming for this protocol, complete
3692 		 * checksumming here.
3693 		 */
3694 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3695 			if (skb->encapsulation)
3696 				skb_set_inner_transport_header(skb,
3697 							       skb_checksum_start_offset(skb));
3698 			else
3699 				skb_set_transport_header(skb,
3700 							 skb_checksum_start_offset(skb));
3701 			if (skb_csum_hwoffload_help(skb, features))
3702 				goto out_kfree_skb;
3703 		}
3704 	}
3705 
3706 	skb = validate_xmit_xfrm(skb, features, again);
3707 
3708 	return skb;
3709 
3710 out_kfree_skb:
3711 	kfree_skb(skb);
3712 out_null:
3713 	atomic_long_inc(&dev->tx_dropped);
3714 	return NULL;
3715 }
3716 
3717 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3718 {
3719 	struct sk_buff *next, *head = NULL, *tail;
3720 
3721 	for (; skb != NULL; skb = next) {
3722 		next = skb->next;
3723 		skb_mark_not_on_list(skb);
3724 
3725 		/* in case skb wont be segmented, point to itself */
3726 		skb->prev = skb;
3727 
3728 		skb = validate_xmit_skb(skb, dev, again);
3729 		if (!skb)
3730 			continue;
3731 
3732 		if (!head)
3733 			head = skb;
3734 		else
3735 			tail->next = skb;
3736 		/* If skb was segmented, skb->prev points to
3737 		 * the last segment. If not, it still contains skb.
3738 		 */
3739 		tail = skb->prev;
3740 	}
3741 	return head;
3742 }
3743 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3744 
3745 static void qdisc_pkt_len_init(struct sk_buff *skb)
3746 {
3747 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3748 
3749 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3750 
3751 	/* To get more precise estimation of bytes sent on wire,
3752 	 * we add to pkt_len the headers size of all segments
3753 	 */
3754 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3755 		unsigned int hdr_len;
3756 		u16 gso_segs = shinfo->gso_segs;
3757 
3758 		/* mac layer + network layer */
3759 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3760 
3761 		/* + transport layer */
3762 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3763 			const struct tcphdr *th;
3764 			struct tcphdr _tcphdr;
3765 
3766 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3767 						sizeof(_tcphdr), &_tcphdr);
3768 			if (likely(th))
3769 				hdr_len += __tcp_hdrlen(th);
3770 		} else {
3771 			struct udphdr _udphdr;
3772 
3773 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3774 					       sizeof(_udphdr), &_udphdr))
3775 				hdr_len += sizeof(struct udphdr);
3776 		}
3777 
3778 		if (shinfo->gso_type & SKB_GSO_DODGY)
3779 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3780 						shinfo->gso_size);
3781 
3782 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3783 	}
3784 }
3785 
3786 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3787 				 struct net_device *dev,
3788 				 struct netdev_queue *txq)
3789 {
3790 	spinlock_t *root_lock = qdisc_lock(q);
3791 	struct sk_buff *to_free = NULL;
3792 	bool contended;
3793 	int rc;
3794 
3795 	qdisc_calculate_pkt_len(skb, q);
3796 
3797 	if (q->flags & TCQ_F_NOLOCK) {
3798 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3799 		qdisc_run(q);
3800 
3801 		if (unlikely(to_free))
3802 			kfree_skb_list(to_free);
3803 		return rc;
3804 	}
3805 
3806 	/*
3807 	 * Heuristic to force contended enqueues to serialize on a
3808 	 * separate lock before trying to get qdisc main lock.
3809 	 * This permits qdisc->running owner to get the lock more
3810 	 * often and dequeue packets faster.
3811 	 */
3812 	contended = qdisc_is_running(q);
3813 	if (unlikely(contended))
3814 		spin_lock(&q->busylock);
3815 
3816 	spin_lock(root_lock);
3817 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3818 		__qdisc_drop(skb, &to_free);
3819 		rc = NET_XMIT_DROP;
3820 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3821 		   qdisc_run_begin(q)) {
3822 		/*
3823 		 * This is a work-conserving queue; there are no old skbs
3824 		 * waiting to be sent out; and the qdisc is not running -
3825 		 * xmit the skb directly.
3826 		 */
3827 
3828 		qdisc_bstats_update(q, skb);
3829 
3830 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3831 			if (unlikely(contended)) {
3832 				spin_unlock(&q->busylock);
3833 				contended = false;
3834 			}
3835 			__qdisc_run(q);
3836 		}
3837 
3838 		qdisc_run_end(q);
3839 		rc = NET_XMIT_SUCCESS;
3840 	} else {
3841 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3842 		if (qdisc_run_begin(q)) {
3843 			if (unlikely(contended)) {
3844 				spin_unlock(&q->busylock);
3845 				contended = false;
3846 			}
3847 			__qdisc_run(q);
3848 			qdisc_run_end(q);
3849 		}
3850 	}
3851 	spin_unlock(root_lock);
3852 	if (unlikely(to_free))
3853 		kfree_skb_list(to_free);
3854 	if (unlikely(contended))
3855 		spin_unlock(&q->busylock);
3856 	return rc;
3857 }
3858 
3859 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3860 static void skb_update_prio(struct sk_buff *skb)
3861 {
3862 	const struct netprio_map *map;
3863 	const struct sock *sk;
3864 	unsigned int prioidx;
3865 
3866 	if (skb->priority)
3867 		return;
3868 	map = rcu_dereference_bh(skb->dev->priomap);
3869 	if (!map)
3870 		return;
3871 	sk = skb_to_full_sk(skb);
3872 	if (!sk)
3873 		return;
3874 
3875 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3876 
3877 	if (prioidx < map->priomap_len)
3878 		skb->priority = map->priomap[prioidx];
3879 }
3880 #else
3881 #define skb_update_prio(skb)
3882 #endif
3883 
3884 /**
3885  *	dev_loopback_xmit - loop back @skb
3886  *	@net: network namespace this loopback is happening in
3887  *	@sk:  sk needed to be a netfilter okfn
3888  *	@skb: buffer to transmit
3889  */
3890 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3891 {
3892 	skb_reset_mac_header(skb);
3893 	__skb_pull(skb, skb_network_offset(skb));
3894 	skb->pkt_type = PACKET_LOOPBACK;
3895 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3896 	WARN_ON(!skb_dst(skb));
3897 	skb_dst_force(skb);
3898 	netif_rx_ni(skb);
3899 	return 0;
3900 }
3901 EXPORT_SYMBOL(dev_loopback_xmit);
3902 
3903 #ifdef CONFIG_NET_EGRESS
3904 static struct sk_buff *
3905 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3906 {
3907 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3908 	struct tcf_result cl_res;
3909 
3910 	if (!miniq)
3911 		return skb;
3912 
3913 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3914 	qdisc_skb_cb(skb)->mru = 0;
3915 	qdisc_skb_cb(skb)->post_ct = false;
3916 	mini_qdisc_bstats_cpu_update(miniq, skb);
3917 
3918 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3919 	case TC_ACT_OK:
3920 	case TC_ACT_RECLASSIFY:
3921 		skb->tc_index = TC_H_MIN(cl_res.classid);
3922 		break;
3923 	case TC_ACT_SHOT:
3924 		mini_qdisc_qstats_cpu_drop(miniq);
3925 		*ret = NET_XMIT_DROP;
3926 		kfree_skb(skb);
3927 		return NULL;
3928 	case TC_ACT_STOLEN:
3929 	case TC_ACT_QUEUED:
3930 	case TC_ACT_TRAP:
3931 		*ret = NET_XMIT_SUCCESS;
3932 		consume_skb(skb);
3933 		return NULL;
3934 	case TC_ACT_REDIRECT:
3935 		/* No need to push/pop skb's mac_header here on egress! */
3936 		skb_do_redirect(skb);
3937 		*ret = NET_XMIT_SUCCESS;
3938 		return NULL;
3939 	default:
3940 		break;
3941 	}
3942 
3943 	return skb;
3944 }
3945 #endif /* CONFIG_NET_EGRESS */
3946 
3947 #ifdef CONFIG_XPS
3948 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3949 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3950 {
3951 	struct xps_map *map;
3952 	int queue_index = -1;
3953 
3954 	if (dev->num_tc) {
3955 		tci *= dev->num_tc;
3956 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3957 	}
3958 
3959 	map = rcu_dereference(dev_maps->attr_map[tci]);
3960 	if (map) {
3961 		if (map->len == 1)
3962 			queue_index = map->queues[0];
3963 		else
3964 			queue_index = map->queues[reciprocal_scale(
3965 						skb_get_hash(skb), map->len)];
3966 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3967 			queue_index = -1;
3968 	}
3969 	return queue_index;
3970 }
3971 #endif
3972 
3973 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3974 			 struct sk_buff *skb)
3975 {
3976 #ifdef CONFIG_XPS
3977 	struct xps_dev_maps *dev_maps;
3978 	struct sock *sk = skb->sk;
3979 	int queue_index = -1;
3980 
3981 	if (!static_key_false(&xps_needed))
3982 		return -1;
3983 
3984 	rcu_read_lock();
3985 	if (!static_key_false(&xps_rxqs_needed))
3986 		goto get_cpus_map;
3987 
3988 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3989 	if (dev_maps) {
3990 		int tci = sk_rx_queue_get(sk);
3991 
3992 		if (tci >= 0 && tci < dev->num_rx_queues)
3993 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3994 							  tci);
3995 	}
3996 
3997 get_cpus_map:
3998 	if (queue_index < 0) {
3999 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
4000 		if (dev_maps) {
4001 			unsigned int tci = skb->sender_cpu - 1;
4002 
4003 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4004 							  tci);
4005 		}
4006 	}
4007 	rcu_read_unlock();
4008 
4009 	return queue_index;
4010 #else
4011 	return -1;
4012 #endif
4013 }
4014 
4015 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4016 		     struct net_device *sb_dev)
4017 {
4018 	return 0;
4019 }
4020 EXPORT_SYMBOL(dev_pick_tx_zero);
4021 
4022 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4023 		       struct net_device *sb_dev)
4024 {
4025 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4026 }
4027 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4028 
4029 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4030 		     struct net_device *sb_dev)
4031 {
4032 	struct sock *sk = skb->sk;
4033 	int queue_index = sk_tx_queue_get(sk);
4034 
4035 	sb_dev = sb_dev ? : dev;
4036 
4037 	if (queue_index < 0 || skb->ooo_okay ||
4038 	    queue_index >= dev->real_num_tx_queues) {
4039 		int new_index = get_xps_queue(dev, sb_dev, skb);
4040 
4041 		if (new_index < 0)
4042 			new_index = skb_tx_hash(dev, sb_dev, skb);
4043 
4044 		if (queue_index != new_index && sk &&
4045 		    sk_fullsock(sk) &&
4046 		    rcu_access_pointer(sk->sk_dst_cache))
4047 			sk_tx_queue_set(sk, new_index);
4048 
4049 		queue_index = new_index;
4050 	}
4051 
4052 	return queue_index;
4053 }
4054 EXPORT_SYMBOL(netdev_pick_tx);
4055 
4056 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4057 					 struct sk_buff *skb,
4058 					 struct net_device *sb_dev)
4059 {
4060 	int queue_index = 0;
4061 
4062 #ifdef CONFIG_XPS
4063 	u32 sender_cpu = skb->sender_cpu - 1;
4064 
4065 	if (sender_cpu >= (u32)NR_CPUS)
4066 		skb->sender_cpu = raw_smp_processor_id() + 1;
4067 #endif
4068 
4069 	if (dev->real_num_tx_queues != 1) {
4070 		const struct net_device_ops *ops = dev->netdev_ops;
4071 
4072 		if (ops->ndo_select_queue)
4073 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4074 		else
4075 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4076 
4077 		queue_index = netdev_cap_txqueue(dev, queue_index);
4078 	}
4079 
4080 	skb_set_queue_mapping(skb, queue_index);
4081 	return netdev_get_tx_queue(dev, queue_index);
4082 }
4083 
4084 /**
4085  *	__dev_queue_xmit - transmit a buffer
4086  *	@skb: buffer to transmit
4087  *	@sb_dev: suboordinate device used for L2 forwarding offload
4088  *
4089  *	Queue a buffer for transmission to a network device. The caller must
4090  *	have set the device and priority and built the buffer before calling
4091  *	this function. The function can be called from an interrupt.
4092  *
4093  *	A negative errno code is returned on a failure. A success does not
4094  *	guarantee the frame will be transmitted as it may be dropped due
4095  *	to congestion or traffic shaping.
4096  *
4097  * -----------------------------------------------------------------------------------
4098  *      I notice this method can also return errors from the queue disciplines,
4099  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4100  *      be positive.
4101  *
4102  *      Regardless of the return value, the skb is consumed, so it is currently
4103  *      difficult to retry a send to this method.  (You can bump the ref count
4104  *      before sending to hold a reference for retry if you are careful.)
4105  *
4106  *      When calling this method, interrupts MUST be enabled.  This is because
4107  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4108  *          --BLG
4109  */
4110 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4111 {
4112 	struct net_device *dev = skb->dev;
4113 	struct netdev_queue *txq;
4114 	struct Qdisc *q;
4115 	int rc = -ENOMEM;
4116 	bool again = false;
4117 
4118 	skb_reset_mac_header(skb);
4119 
4120 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4121 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4122 
4123 	/* Disable soft irqs for various locks below. Also
4124 	 * stops preemption for RCU.
4125 	 */
4126 	rcu_read_lock_bh();
4127 
4128 	skb_update_prio(skb);
4129 
4130 	qdisc_pkt_len_init(skb);
4131 #ifdef CONFIG_NET_CLS_ACT
4132 	skb->tc_at_ingress = 0;
4133 # ifdef CONFIG_NET_EGRESS
4134 	if (static_branch_unlikely(&egress_needed_key)) {
4135 		skb = sch_handle_egress(skb, &rc, dev);
4136 		if (!skb)
4137 			goto out;
4138 	}
4139 # endif
4140 #endif
4141 	/* If device/qdisc don't need skb->dst, release it right now while
4142 	 * its hot in this cpu cache.
4143 	 */
4144 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4145 		skb_dst_drop(skb);
4146 	else
4147 		skb_dst_force(skb);
4148 
4149 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4150 	q = rcu_dereference_bh(txq->qdisc);
4151 
4152 	trace_net_dev_queue(skb);
4153 	if (q->enqueue) {
4154 		rc = __dev_xmit_skb(skb, q, dev, txq);
4155 		goto out;
4156 	}
4157 
4158 	/* The device has no queue. Common case for software devices:
4159 	 * loopback, all the sorts of tunnels...
4160 
4161 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4162 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4163 	 * counters.)
4164 	 * However, it is possible, that they rely on protection
4165 	 * made by us here.
4166 
4167 	 * Check this and shot the lock. It is not prone from deadlocks.
4168 	 *Either shot noqueue qdisc, it is even simpler 8)
4169 	 */
4170 	if (dev->flags & IFF_UP) {
4171 		int cpu = smp_processor_id(); /* ok because BHs are off */
4172 
4173 		if (txq->xmit_lock_owner != cpu) {
4174 			if (dev_xmit_recursion())
4175 				goto recursion_alert;
4176 
4177 			skb = validate_xmit_skb(skb, dev, &again);
4178 			if (!skb)
4179 				goto out;
4180 
4181 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4182 			HARD_TX_LOCK(dev, txq, cpu);
4183 
4184 			if (!netif_xmit_stopped(txq)) {
4185 				dev_xmit_recursion_inc();
4186 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4187 				dev_xmit_recursion_dec();
4188 				if (dev_xmit_complete(rc)) {
4189 					HARD_TX_UNLOCK(dev, txq);
4190 					goto out;
4191 				}
4192 			}
4193 			HARD_TX_UNLOCK(dev, txq);
4194 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4195 					     dev->name);
4196 		} else {
4197 			/* Recursion is detected! It is possible,
4198 			 * unfortunately
4199 			 */
4200 recursion_alert:
4201 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4202 					     dev->name);
4203 		}
4204 	}
4205 
4206 	rc = -ENETDOWN;
4207 	rcu_read_unlock_bh();
4208 
4209 	atomic_long_inc(&dev->tx_dropped);
4210 	kfree_skb_list(skb);
4211 	return rc;
4212 out:
4213 	rcu_read_unlock_bh();
4214 	return rc;
4215 }
4216 
4217 int dev_queue_xmit(struct sk_buff *skb)
4218 {
4219 	return __dev_queue_xmit(skb, NULL);
4220 }
4221 EXPORT_SYMBOL(dev_queue_xmit);
4222 
4223 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4224 {
4225 	return __dev_queue_xmit(skb, sb_dev);
4226 }
4227 EXPORT_SYMBOL(dev_queue_xmit_accel);
4228 
4229 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4230 {
4231 	struct net_device *dev = skb->dev;
4232 	struct sk_buff *orig_skb = skb;
4233 	struct netdev_queue *txq;
4234 	int ret = NETDEV_TX_BUSY;
4235 	bool again = false;
4236 
4237 	if (unlikely(!netif_running(dev) ||
4238 		     !netif_carrier_ok(dev)))
4239 		goto drop;
4240 
4241 	skb = validate_xmit_skb_list(skb, dev, &again);
4242 	if (skb != orig_skb)
4243 		goto drop;
4244 
4245 	skb_set_queue_mapping(skb, queue_id);
4246 	txq = skb_get_tx_queue(dev, skb);
4247 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4248 
4249 	local_bh_disable();
4250 
4251 	dev_xmit_recursion_inc();
4252 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4253 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4254 		ret = netdev_start_xmit(skb, dev, txq, false);
4255 	HARD_TX_UNLOCK(dev, txq);
4256 	dev_xmit_recursion_dec();
4257 
4258 	local_bh_enable();
4259 	return ret;
4260 drop:
4261 	atomic_long_inc(&dev->tx_dropped);
4262 	kfree_skb_list(skb);
4263 	return NET_XMIT_DROP;
4264 }
4265 EXPORT_SYMBOL(__dev_direct_xmit);
4266 
4267 /*************************************************************************
4268  *			Receiver routines
4269  *************************************************************************/
4270 
4271 int netdev_max_backlog __read_mostly = 1000;
4272 EXPORT_SYMBOL(netdev_max_backlog);
4273 
4274 int netdev_tstamp_prequeue __read_mostly = 1;
4275 int netdev_budget __read_mostly = 300;
4276 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4277 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4278 int weight_p __read_mostly = 64;           /* old backlog weight */
4279 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4280 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4281 int dev_rx_weight __read_mostly = 64;
4282 int dev_tx_weight __read_mostly = 64;
4283 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4284 int gro_normal_batch __read_mostly = 8;
4285 
4286 /* Called with irq disabled */
4287 static inline void ____napi_schedule(struct softnet_data *sd,
4288 				     struct napi_struct *napi)
4289 {
4290 	struct task_struct *thread;
4291 
4292 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4293 		/* Paired with smp_mb__before_atomic() in
4294 		 * napi_enable()/dev_set_threaded().
4295 		 * Use READ_ONCE() to guarantee a complete
4296 		 * read on napi->thread. Only call
4297 		 * wake_up_process() when it's not NULL.
4298 		 */
4299 		thread = READ_ONCE(napi->thread);
4300 		if (thread) {
4301 			wake_up_process(thread);
4302 			return;
4303 		}
4304 	}
4305 
4306 	list_add_tail(&napi->poll_list, &sd->poll_list);
4307 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4308 }
4309 
4310 #ifdef CONFIG_RPS
4311 
4312 /* One global table that all flow-based protocols share. */
4313 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4314 EXPORT_SYMBOL(rps_sock_flow_table);
4315 u32 rps_cpu_mask __read_mostly;
4316 EXPORT_SYMBOL(rps_cpu_mask);
4317 
4318 struct static_key_false rps_needed __read_mostly;
4319 EXPORT_SYMBOL(rps_needed);
4320 struct static_key_false rfs_needed __read_mostly;
4321 EXPORT_SYMBOL(rfs_needed);
4322 
4323 static struct rps_dev_flow *
4324 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4325 	    struct rps_dev_flow *rflow, u16 next_cpu)
4326 {
4327 	if (next_cpu < nr_cpu_ids) {
4328 #ifdef CONFIG_RFS_ACCEL
4329 		struct netdev_rx_queue *rxqueue;
4330 		struct rps_dev_flow_table *flow_table;
4331 		struct rps_dev_flow *old_rflow;
4332 		u32 flow_id;
4333 		u16 rxq_index;
4334 		int rc;
4335 
4336 		/* Should we steer this flow to a different hardware queue? */
4337 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4338 		    !(dev->features & NETIF_F_NTUPLE))
4339 			goto out;
4340 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4341 		if (rxq_index == skb_get_rx_queue(skb))
4342 			goto out;
4343 
4344 		rxqueue = dev->_rx + rxq_index;
4345 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4346 		if (!flow_table)
4347 			goto out;
4348 		flow_id = skb_get_hash(skb) & flow_table->mask;
4349 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4350 							rxq_index, flow_id);
4351 		if (rc < 0)
4352 			goto out;
4353 		old_rflow = rflow;
4354 		rflow = &flow_table->flows[flow_id];
4355 		rflow->filter = rc;
4356 		if (old_rflow->filter == rflow->filter)
4357 			old_rflow->filter = RPS_NO_FILTER;
4358 	out:
4359 #endif
4360 		rflow->last_qtail =
4361 			per_cpu(softnet_data, next_cpu).input_queue_head;
4362 	}
4363 
4364 	rflow->cpu = next_cpu;
4365 	return rflow;
4366 }
4367 
4368 /*
4369  * get_rps_cpu is called from netif_receive_skb and returns the target
4370  * CPU from the RPS map of the receiving queue for a given skb.
4371  * rcu_read_lock must be held on entry.
4372  */
4373 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4374 		       struct rps_dev_flow **rflowp)
4375 {
4376 	const struct rps_sock_flow_table *sock_flow_table;
4377 	struct netdev_rx_queue *rxqueue = dev->_rx;
4378 	struct rps_dev_flow_table *flow_table;
4379 	struct rps_map *map;
4380 	int cpu = -1;
4381 	u32 tcpu;
4382 	u32 hash;
4383 
4384 	if (skb_rx_queue_recorded(skb)) {
4385 		u16 index = skb_get_rx_queue(skb);
4386 
4387 		if (unlikely(index >= dev->real_num_rx_queues)) {
4388 			WARN_ONCE(dev->real_num_rx_queues > 1,
4389 				  "%s received packet on queue %u, but number "
4390 				  "of RX queues is %u\n",
4391 				  dev->name, index, dev->real_num_rx_queues);
4392 			goto done;
4393 		}
4394 		rxqueue += index;
4395 	}
4396 
4397 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4398 
4399 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4400 	map = rcu_dereference(rxqueue->rps_map);
4401 	if (!flow_table && !map)
4402 		goto done;
4403 
4404 	skb_reset_network_header(skb);
4405 	hash = skb_get_hash(skb);
4406 	if (!hash)
4407 		goto done;
4408 
4409 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4410 	if (flow_table && sock_flow_table) {
4411 		struct rps_dev_flow *rflow;
4412 		u32 next_cpu;
4413 		u32 ident;
4414 
4415 		/* First check into global flow table if there is a match */
4416 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4417 		if ((ident ^ hash) & ~rps_cpu_mask)
4418 			goto try_rps;
4419 
4420 		next_cpu = ident & rps_cpu_mask;
4421 
4422 		/* OK, now we know there is a match,
4423 		 * we can look at the local (per receive queue) flow table
4424 		 */
4425 		rflow = &flow_table->flows[hash & flow_table->mask];
4426 		tcpu = rflow->cpu;
4427 
4428 		/*
4429 		 * If the desired CPU (where last recvmsg was done) is
4430 		 * different from current CPU (one in the rx-queue flow
4431 		 * table entry), switch if one of the following holds:
4432 		 *   - Current CPU is unset (>= nr_cpu_ids).
4433 		 *   - Current CPU is offline.
4434 		 *   - The current CPU's queue tail has advanced beyond the
4435 		 *     last packet that was enqueued using this table entry.
4436 		 *     This guarantees that all previous packets for the flow
4437 		 *     have been dequeued, thus preserving in order delivery.
4438 		 */
4439 		if (unlikely(tcpu != next_cpu) &&
4440 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4441 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4442 		      rflow->last_qtail)) >= 0)) {
4443 			tcpu = next_cpu;
4444 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4445 		}
4446 
4447 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4448 			*rflowp = rflow;
4449 			cpu = tcpu;
4450 			goto done;
4451 		}
4452 	}
4453 
4454 try_rps:
4455 
4456 	if (map) {
4457 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4458 		if (cpu_online(tcpu)) {
4459 			cpu = tcpu;
4460 			goto done;
4461 		}
4462 	}
4463 
4464 done:
4465 	return cpu;
4466 }
4467 
4468 #ifdef CONFIG_RFS_ACCEL
4469 
4470 /**
4471  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4472  * @dev: Device on which the filter was set
4473  * @rxq_index: RX queue index
4474  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4475  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4476  *
4477  * Drivers that implement ndo_rx_flow_steer() should periodically call
4478  * this function for each installed filter and remove the filters for
4479  * which it returns %true.
4480  */
4481 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4482 			 u32 flow_id, u16 filter_id)
4483 {
4484 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4485 	struct rps_dev_flow_table *flow_table;
4486 	struct rps_dev_flow *rflow;
4487 	bool expire = true;
4488 	unsigned int cpu;
4489 
4490 	rcu_read_lock();
4491 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4492 	if (flow_table && flow_id <= flow_table->mask) {
4493 		rflow = &flow_table->flows[flow_id];
4494 		cpu = READ_ONCE(rflow->cpu);
4495 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4496 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4497 			   rflow->last_qtail) <
4498 		     (int)(10 * flow_table->mask)))
4499 			expire = false;
4500 	}
4501 	rcu_read_unlock();
4502 	return expire;
4503 }
4504 EXPORT_SYMBOL(rps_may_expire_flow);
4505 
4506 #endif /* CONFIG_RFS_ACCEL */
4507 
4508 /* Called from hardirq (IPI) context */
4509 static void rps_trigger_softirq(void *data)
4510 {
4511 	struct softnet_data *sd = data;
4512 
4513 	____napi_schedule(sd, &sd->backlog);
4514 	sd->received_rps++;
4515 }
4516 
4517 #endif /* CONFIG_RPS */
4518 
4519 /*
4520  * Check if this softnet_data structure is another cpu one
4521  * If yes, queue it to our IPI list and return 1
4522  * If no, return 0
4523  */
4524 static int rps_ipi_queued(struct softnet_data *sd)
4525 {
4526 #ifdef CONFIG_RPS
4527 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4528 
4529 	if (sd != mysd) {
4530 		sd->rps_ipi_next = mysd->rps_ipi_list;
4531 		mysd->rps_ipi_list = sd;
4532 
4533 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4534 		return 1;
4535 	}
4536 #endif /* CONFIG_RPS */
4537 	return 0;
4538 }
4539 
4540 #ifdef CONFIG_NET_FLOW_LIMIT
4541 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4542 #endif
4543 
4544 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4545 {
4546 #ifdef CONFIG_NET_FLOW_LIMIT
4547 	struct sd_flow_limit *fl;
4548 	struct softnet_data *sd;
4549 	unsigned int old_flow, new_flow;
4550 
4551 	if (qlen < (netdev_max_backlog >> 1))
4552 		return false;
4553 
4554 	sd = this_cpu_ptr(&softnet_data);
4555 
4556 	rcu_read_lock();
4557 	fl = rcu_dereference(sd->flow_limit);
4558 	if (fl) {
4559 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4560 		old_flow = fl->history[fl->history_head];
4561 		fl->history[fl->history_head] = new_flow;
4562 
4563 		fl->history_head++;
4564 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4565 
4566 		if (likely(fl->buckets[old_flow]))
4567 			fl->buckets[old_flow]--;
4568 
4569 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4570 			fl->count++;
4571 			rcu_read_unlock();
4572 			return true;
4573 		}
4574 	}
4575 	rcu_read_unlock();
4576 #endif
4577 	return false;
4578 }
4579 
4580 /*
4581  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4582  * queue (may be a remote CPU queue).
4583  */
4584 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4585 			      unsigned int *qtail)
4586 {
4587 	struct softnet_data *sd;
4588 	unsigned long flags;
4589 	unsigned int qlen;
4590 
4591 	sd = &per_cpu(softnet_data, cpu);
4592 
4593 	local_irq_save(flags);
4594 
4595 	rps_lock(sd);
4596 	if (!netif_running(skb->dev))
4597 		goto drop;
4598 	qlen = skb_queue_len(&sd->input_pkt_queue);
4599 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4600 		if (qlen) {
4601 enqueue:
4602 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4603 			input_queue_tail_incr_save(sd, qtail);
4604 			rps_unlock(sd);
4605 			local_irq_restore(flags);
4606 			return NET_RX_SUCCESS;
4607 		}
4608 
4609 		/* Schedule NAPI for backlog device
4610 		 * We can use non atomic operation since we own the queue lock
4611 		 */
4612 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4613 			if (!rps_ipi_queued(sd))
4614 				____napi_schedule(sd, &sd->backlog);
4615 		}
4616 		goto enqueue;
4617 	}
4618 
4619 drop:
4620 	sd->dropped++;
4621 	rps_unlock(sd);
4622 
4623 	local_irq_restore(flags);
4624 
4625 	atomic_long_inc(&skb->dev->rx_dropped);
4626 	kfree_skb(skb);
4627 	return NET_RX_DROP;
4628 }
4629 
4630 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4631 {
4632 	struct net_device *dev = skb->dev;
4633 	struct netdev_rx_queue *rxqueue;
4634 
4635 	rxqueue = dev->_rx;
4636 
4637 	if (skb_rx_queue_recorded(skb)) {
4638 		u16 index = skb_get_rx_queue(skb);
4639 
4640 		if (unlikely(index >= dev->real_num_rx_queues)) {
4641 			WARN_ONCE(dev->real_num_rx_queues > 1,
4642 				  "%s received packet on queue %u, but number "
4643 				  "of RX queues is %u\n",
4644 				  dev->name, index, dev->real_num_rx_queues);
4645 
4646 			return rxqueue; /* Return first rxqueue */
4647 		}
4648 		rxqueue += index;
4649 	}
4650 	return rxqueue;
4651 }
4652 
4653 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4654 				     struct xdp_buff *xdp,
4655 				     struct bpf_prog *xdp_prog)
4656 {
4657 	void *orig_data, *orig_data_end, *hard_start;
4658 	struct netdev_rx_queue *rxqueue;
4659 	u32 metalen, act = XDP_DROP;
4660 	u32 mac_len, frame_sz;
4661 	__be16 orig_eth_type;
4662 	struct ethhdr *eth;
4663 	bool orig_bcast;
4664 	int off;
4665 
4666 	/* Reinjected packets coming from act_mirred or similar should
4667 	 * not get XDP generic processing.
4668 	 */
4669 	if (skb_is_redirected(skb))
4670 		return XDP_PASS;
4671 
4672 	/* XDP packets must be linear and must have sufficient headroom
4673 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4674 	 * native XDP provides, thus we need to do it here as well.
4675 	 */
4676 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4677 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4678 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4679 		int troom = skb->tail + skb->data_len - skb->end;
4680 
4681 		/* In case we have to go down the path and also linearize,
4682 		 * then lets do the pskb_expand_head() work just once here.
4683 		 */
4684 		if (pskb_expand_head(skb,
4685 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4686 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4687 			goto do_drop;
4688 		if (skb_linearize(skb))
4689 			goto do_drop;
4690 	}
4691 
4692 	/* The XDP program wants to see the packet starting at the MAC
4693 	 * header.
4694 	 */
4695 	mac_len = skb->data - skb_mac_header(skb);
4696 	hard_start = skb->data - skb_headroom(skb);
4697 
4698 	/* SKB "head" area always have tailroom for skb_shared_info */
4699 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4700 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4701 
4702 	rxqueue = netif_get_rxqueue(skb);
4703 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4704 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4705 			 skb_headlen(skb) + mac_len, true);
4706 
4707 	orig_data_end = xdp->data_end;
4708 	orig_data = xdp->data;
4709 	eth = (struct ethhdr *)xdp->data;
4710 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4711 	orig_eth_type = eth->h_proto;
4712 
4713 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4714 
4715 	/* check if bpf_xdp_adjust_head was used */
4716 	off = xdp->data - orig_data;
4717 	if (off) {
4718 		if (off > 0)
4719 			__skb_pull(skb, off);
4720 		else if (off < 0)
4721 			__skb_push(skb, -off);
4722 
4723 		skb->mac_header += off;
4724 		skb_reset_network_header(skb);
4725 	}
4726 
4727 	/* check if bpf_xdp_adjust_tail was used */
4728 	off = xdp->data_end - orig_data_end;
4729 	if (off != 0) {
4730 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4731 		skb->len += off; /* positive on grow, negative on shrink */
4732 	}
4733 
4734 	/* check if XDP changed eth hdr such SKB needs update */
4735 	eth = (struct ethhdr *)xdp->data;
4736 	if ((orig_eth_type != eth->h_proto) ||
4737 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4738 		__skb_push(skb, ETH_HLEN);
4739 		skb->protocol = eth_type_trans(skb, skb->dev);
4740 	}
4741 
4742 	switch (act) {
4743 	case XDP_REDIRECT:
4744 	case XDP_TX:
4745 		__skb_push(skb, mac_len);
4746 		break;
4747 	case XDP_PASS:
4748 		metalen = xdp->data - xdp->data_meta;
4749 		if (metalen)
4750 			skb_metadata_set(skb, metalen);
4751 		break;
4752 	default:
4753 		bpf_warn_invalid_xdp_action(act);
4754 		fallthrough;
4755 	case XDP_ABORTED:
4756 		trace_xdp_exception(skb->dev, xdp_prog, act);
4757 		fallthrough;
4758 	case XDP_DROP:
4759 	do_drop:
4760 		kfree_skb(skb);
4761 		break;
4762 	}
4763 
4764 	return act;
4765 }
4766 
4767 /* When doing generic XDP we have to bypass the qdisc layer and the
4768  * network taps in order to match in-driver-XDP behavior.
4769  */
4770 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4771 {
4772 	struct net_device *dev = skb->dev;
4773 	struct netdev_queue *txq;
4774 	bool free_skb = true;
4775 	int cpu, rc;
4776 
4777 	txq = netdev_core_pick_tx(dev, skb, NULL);
4778 	cpu = smp_processor_id();
4779 	HARD_TX_LOCK(dev, txq, cpu);
4780 	if (!netif_xmit_stopped(txq)) {
4781 		rc = netdev_start_xmit(skb, dev, txq, 0);
4782 		if (dev_xmit_complete(rc))
4783 			free_skb = false;
4784 	}
4785 	HARD_TX_UNLOCK(dev, txq);
4786 	if (free_skb) {
4787 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4788 		kfree_skb(skb);
4789 	}
4790 }
4791 
4792 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4793 
4794 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4795 {
4796 	if (xdp_prog) {
4797 		struct xdp_buff xdp;
4798 		u32 act;
4799 		int err;
4800 
4801 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4802 		if (act != XDP_PASS) {
4803 			switch (act) {
4804 			case XDP_REDIRECT:
4805 				err = xdp_do_generic_redirect(skb->dev, skb,
4806 							      &xdp, xdp_prog);
4807 				if (err)
4808 					goto out_redir;
4809 				break;
4810 			case XDP_TX:
4811 				generic_xdp_tx(skb, xdp_prog);
4812 				break;
4813 			}
4814 			return XDP_DROP;
4815 		}
4816 	}
4817 	return XDP_PASS;
4818 out_redir:
4819 	kfree_skb(skb);
4820 	return XDP_DROP;
4821 }
4822 EXPORT_SYMBOL_GPL(do_xdp_generic);
4823 
4824 static int netif_rx_internal(struct sk_buff *skb)
4825 {
4826 	int ret;
4827 
4828 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4829 
4830 	trace_netif_rx(skb);
4831 
4832 #ifdef CONFIG_RPS
4833 	if (static_branch_unlikely(&rps_needed)) {
4834 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4835 		int cpu;
4836 
4837 		preempt_disable();
4838 		rcu_read_lock();
4839 
4840 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4841 		if (cpu < 0)
4842 			cpu = smp_processor_id();
4843 
4844 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4845 
4846 		rcu_read_unlock();
4847 		preempt_enable();
4848 	} else
4849 #endif
4850 	{
4851 		unsigned int qtail;
4852 
4853 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4854 		put_cpu();
4855 	}
4856 	return ret;
4857 }
4858 
4859 /**
4860  *	netif_rx	-	post buffer to the network code
4861  *	@skb: buffer to post
4862  *
4863  *	This function receives a packet from a device driver and queues it for
4864  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4865  *	may be dropped during processing for congestion control or by the
4866  *	protocol layers.
4867  *
4868  *	return values:
4869  *	NET_RX_SUCCESS	(no congestion)
4870  *	NET_RX_DROP     (packet was dropped)
4871  *
4872  */
4873 
4874 int netif_rx(struct sk_buff *skb)
4875 {
4876 	int ret;
4877 
4878 	trace_netif_rx_entry(skb);
4879 
4880 	ret = netif_rx_internal(skb);
4881 	trace_netif_rx_exit(ret);
4882 
4883 	return ret;
4884 }
4885 EXPORT_SYMBOL(netif_rx);
4886 
4887 int netif_rx_ni(struct sk_buff *skb)
4888 {
4889 	int err;
4890 
4891 	trace_netif_rx_ni_entry(skb);
4892 
4893 	preempt_disable();
4894 	err = netif_rx_internal(skb);
4895 	if (local_softirq_pending())
4896 		do_softirq();
4897 	preempt_enable();
4898 	trace_netif_rx_ni_exit(err);
4899 
4900 	return err;
4901 }
4902 EXPORT_SYMBOL(netif_rx_ni);
4903 
4904 int netif_rx_any_context(struct sk_buff *skb)
4905 {
4906 	/*
4907 	 * If invoked from contexts which do not invoke bottom half
4908 	 * processing either at return from interrupt or when softrqs are
4909 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4910 	 * directly.
4911 	 */
4912 	if (in_interrupt())
4913 		return netif_rx(skb);
4914 	else
4915 		return netif_rx_ni(skb);
4916 }
4917 EXPORT_SYMBOL(netif_rx_any_context);
4918 
4919 static __latent_entropy void net_tx_action(struct softirq_action *h)
4920 {
4921 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4922 
4923 	if (sd->completion_queue) {
4924 		struct sk_buff *clist;
4925 
4926 		local_irq_disable();
4927 		clist = sd->completion_queue;
4928 		sd->completion_queue = NULL;
4929 		local_irq_enable();
4930 
4931 		while (clist) {
4932 			struct sk_buff *skb = clist;
4933 
4934 			clist = clist->next;
4935 
4936 			WARN_ON(refcount_read(&skb->users));
4937 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4938 				trace_consume_skb(skb);
4939 			else
4940 				trace_kfree_skb(skb, net_tx_action);
4941 
4942 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4943 				__kfree_skb(skb);
4944 			else
4945 				__kfree_skb_defer(skb);
4946 		}
4947 
4948 		__kfree_skb_flush();
4949 	}
4950 
4951 	if (sd->output_queue) {
4952 		struct Qdisc *head;
4953 
4954 		local_irq_disable();
4955 		head = sd->output_queue;
4956 		sd->output_queue = NULL;
4957 		sd->output_queue_tailp = &sd->output_queue;
4958 		local_irq_enable();
4959 
4960 		while (head) {
4961 			struct Qdisc *q = head;
4962 			spinlock_t *root_lock = NULL;
4963 
4964 			head = head->next_sched;
4965 
4966 			if (!(q->flags & TCQ_F_NOLOCK)) {
4967 				root_lock = qdisc_lock(q);
4968 				spin_lock(root_lock);
4969 			}
4970 			/* We need to make sure head->next_sched is read
4971 			 * before clearing __QDISC_STATE_SCHED
4972 			 */
4973 			smp_mb__before_atomic();
4974 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4975 			qdisc_run(q);
4976 			if (root_lock)
4977 				spin_unlock(root_lock);
4978 		}
4979 	}
4980 
4981 	xfrm_dev_backlog(sd);
4982 }
4983 
4984 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4985 /* This hook is defined here for ATM LANE */
4986 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4987 			     unsigned char *addr) __read_mostly;
4988 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4989 #endif
4990 
4991 static inline struct sk_buff *
4992 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4993 		   struct net_device *orig_dev, bool *another)
4994 {
4995 #ifdef CONFIG_NET_CLS_ACT
4996 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4997 	struct tcf_result cl_res;
4998 
4999 	/* If there's at least one ingress present somewhere (so
5000 	 * we get here via enabled static key), remaining devices
5001 	 * that are not configured with an ingress qdisc will bail
5002 	 * out here.
5003 	 */
5004 	if (!miniq)
5005 		return skb;
5006 
5007 	if (*pt_prev) {
5008 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5009 		*pt_prev = NULL;
5010 	}
5011 
5012 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5013 	qdisc_skb_cb(skb)->mru = 0;
5014 	qdisc_skb_cb(skb)->post_ct = false;
5015 	skb->tc_at_ingress = 1;
5016 	mini_qdisc_bstats_cpu_update(miniq, skb);
5017 
5018 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5019 				     &cl_res, false)) {
5020 	case TC_ACT_OK:
5021 	case TC_ACT_RECLASSIFY:
5022 		skb->tc_index = TC_H_MIN(cl_res.classid);
5023 		break;
5024 	case TC_ACT_SHOT:
5025 		mini_qdisc_qstats_cpu_drop(miniq);
5026 		kfree_skb(skb);
5027 		return NULL;
5028 	case TC_ACT_STOLEN:
5029 	case TC_ACT_QUEUED:
5030 	case TC_ACT_TRAP:
5031 		consume_skb(skb);
5032 		return NULL;
5033 	case TC_ACT_REDIRECT:
5034 		/* skb_mac_header check was done by cls/act_bpf, so
5035 		 * we can safely push the L2 header back before
5036 		 * redirecting to another netdev
5037 		 */
5038 		__skb_push(skb, skb->mac_len);
5039 		if (skb_do_redirect(skb) == -EAGAIN) {
5040 			__skb_pull(skb, skb->mac_len);
5041 			*another = true;
5042 			break;
5043 		}
5044 		return NULL;
5045 	case TC_ACT_CONSUMED:
5046 		return NULL;
5047 	default:
5048 		break;
5049 	}
5050 #endif /* CONFIG_NET_CLS_ACT */
5051 	return skb;
5052 }
5053 
5054 /**
5055  *	netdev_is_rx_handler_busy - check if receive handler is registered
5056  *	@dev: device to check
5057  *
5058  *	Check if a receive handler is already registered for a given device.
5059  *	Return true if there one.
5060  *
5061  *	The caller must hold the rtnl_mutex.
5062  */
5063 bool netdev_is_rx_handler_busy(struct net_device *dev)
5064 {
5065 	ASSERT_RTNL();
5066 	return dev && rtnl_dereference(dev->rx_handler);
5067 }
5068 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5069 
5070 /**
5071  *	netdev_rx_handler_register - register receive handler
5072  *	@dev: device to register a handler for
5073  *	@rx_handler: receive handler to register
5074  *	@rx_handler_data: data pointer that is used by rx handler
5075  *
5076  *	Register a receive handler for a device. This handler will then be
5077  *	called from __netif_receive_skb. A negative errno code is returned
5078  *	on a failure.
5079  *
5080  *	The caller must hold the rtnl_mutex.
5081  *
5082  *	For a general description of rx_handler, see enum rx_handler_result.
5083  */
5084 int netdev_rx_handler_register(struct net_device *dev,
5085 			       rx_handler_func_t *rx_handler,
5086 			       void *rx_handler_data)
5087 {
5088 	if (netdev_is_rx_handler_busy(dev))
5089 		return -EBUSY;
5090 
5091 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5092 		return -EINVAL;
5093 
5094 	/* Note: rx_handler_data must be set before rx_handler */
5095 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5096 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5097 
5098 	return 0;
5099 }
5100 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5101 
5102 /**
5103  *	netdev_rx_handler_unregister - unregister receive handler
5104  *	@dev: device to unregister a handler from
5105  *
5106  *	Unregister a receive handler from a device.
5107  *
5108  *	The caller must hold the rtnl_mutex.
5109  */
5110 void netdev_rx_handler_unregister(struct net_device *dev)
5111 {
5112 
5113 	ASSERT_RTNL();
5114 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5115 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5116 	 * section has a guarantee to see a non NULL rx_handler_data
5117 	 * as well.
5118 	 */
5119 	synchronize_net();
5120 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5121 }
5122 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5123 
5124 /*
5125  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5126  * the special handling of PFMEMALLOC skbs.
5127  */
5128 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5129 {
5130 	switch (skb->protocol) {
5131 	case htons(ETH_P_ARP):
5132 	case htons(ETH_P_IP):
5133 	case htons(ETH_P_IPV6):
5134 	case htons(ETH_P_8021Q):
5135 	case htons(ETH_P_8021AD):
5136 		return true;
5137 	default:
5138 		return false;
5139 	}
5140 }
5141 
5142 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5143 			     int *ret, struct net_device *orig_dev)
5144 {
5145 	if (nf_hook_ingress_active(skb)) {
5146 		int ingress_retval;
5147 
5148 		if (*pt_prev) {
5149 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5150 			*pt_prev = NULL;
5151 		}
5152 
5153 		rcu_read_lock();
5154 		ingress_retval = nf_hook_ingress(skb);
5155 		rcu_read_unlock();
5156 		return ingress_retval;
5157 	}
5158 	return 0;
5159 }
5160 
5161 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5162 				    struct packet_type **ppt_prev)
5163 {
5164 	struct packet_type *ptype, *pt_prev;
5165 	rx_handler_func_t *rx_handler;
5166 	struct sk_buff *skb = *pskb;
5167 	struct net_device *orig_dev;
5168 	bool deliver_exact = false;
5169 	int ret = NET_RX_DROP;
5170 	__be16 type;
5171 
5172 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5173 
5174 	trace_netif_receive_skb(skb);
5175 
5176 	orig_dev = skb->dev;
5177 
5178 	skb_reset_network_header(skb);
5179 	if (!skb_transport_header_was_set(skb))
5180 		skb_reset_transport_header(skb);
5181 	skb_reset_mac_len(skb);
5182 
5183 	pt_prev = NULL;
5184 
5185 another_round:
5186 	skb->skb_iif = skb->dev->ifindex;
5187 
5188 	__this_cpu_inc(softnet_data.processed);
5189 
5190 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5191 		int ret2;
5192 
5193 		preempt_disable();
5194 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5195 		preempt_enable();
5196 
5197 		if (ret2 != XDP_PASS) {
5198 			ret = NET_RX_DROP;
5199 			goto out;
5200 		}
5201 		skb_reset_mac_len(skb);
5202 	}
5203 
5204 	if (eth_type_vlan(skb->protocol)) {
5205 		skb = skb_vlan_untag(skb);
5206 		if (unlikely(!skb))
5207 			goto out;
5208 	}
5209 
5210 	if (skb_skip_tc_classify(skb))
5211 		goto skip_classify;
5212 
5213 	if (pfmemalloc)
5214 		goto skip_taps;
5215 
5216 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5217 		if (pt_prev)
5218 			ret = deliver_skb(skb, pt_prev, orig_dev);
5219 		pt_prev = ptype;
5220 	}
5221 
5222 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5223 		if (pt_prev)
5224 			ret = deliver_skb(skb, pt_prev, orig_dev);
5225 		pt_prev = ptype;
5226 	}
5227 
5228 skip_taps:
5229 #ifdef CONFIG_NET_INGRESS
5230 	if (static_branch_unlikely(&ingress_needed_key)) {
5231 		bool another = false;
5232 
5233 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5234 					 &another);
5235 		if (another)
5236 			goto another_round;
5237 		if (!skb)
5238 			goto out;
5239 
5240 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5241 			goto out;
5242 	}
5243 #endif
5244 	skb_reset_redirect(skb);
5245 skip_classify:
5246 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5247 		goto drop;
5248 
5249 	if (skb_vlan_tag_present(skb)) {
5250 		if (pt_prev) {
5251 			ret = deliver_skb(skb, pt_prev, orig_dev);
5252 			pt_prev = NULL;
5253 		}
5254 		if (vlan_do_receive(&skb))
5255 			goto another_round;
5256 		else if (unlikely(!skb))
5257 			goto out;
5258 	}
5259 
5260 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5261 	if (rx_handler) {
5262 		if (pt_prev) {
5263 			ret = deliver_skb(skb, pt_prev, orig_dev);
5264 			pt_prev = NULL;
5265 		}
5266 		switch (rx_handler(&skb)) {
5267 		case RX_HANDLER_CONSUMED:
5268 			ret = NET_RX_SUCCESS;
5269 			goto out;
5270 		case RX_HANDLER_ANOTHER:
5271 			goto another_round;
5272 		case RX_HANDLER_EXACT:
5273 			deliver_exact = true;
5274 		case RX_HANDLER_PASS:
5275 			break;
5276 		default:
5277 			BUG();
5278 		}
5279 	}
5280 
5281 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5282 check_vlan_id:
5283 		if (skb_vlan_tag_get_id(skb)) {
5284 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5285 			 * find vlan device.
5286 			 */
5287 			skb->pkt_type = PACKET_OTHERHOST;
5288 		} else if (eth_type_vlan(skb->protocol)) {
5289 			/* Outer header is 802.1P with vlan 0, inner header is
5290 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5291 			 * not find vlan dev for vlan id 0.
5292 			 */
5293 			__vlan_hwaccel_clear_tag(skb);
5294 			skb = skb_vlan_untag(skb);
5295 			if (unlikely(!skb))
5296 				goto out;
5297 			if (vlan_do_receive(&skb))
5298 				/* After stripping off 802.1P header with vlan 0
5299 				 * vlan dev is found for inner header.
5300 				 */
5301 				goto another_round;
5302 			else if (unlikely(!skb))
5303 				goto out;
5304 			else
5305 				/* We have stripped outer 802.1P vlan 0 header.
5306 				 * But could not find vlan dev.
5307 				 * check again for vlan id to set OTHERHOST.
5308 				 */
5309 				goto check_vlan_id;
5310 		}
5311 		/* Note: we might in the future use prio bits
5312 		 * and set skb->priority like in vlan_do_receive()
5313 		 * For the time being, just ignore Priority Code Point
5314 		 */
5315 		__vlan_hwaccel_clear_tag(skb);
5316 	}
5317 
5318 	type = skb->protocol;
5319 
5320 	/* deliver only exact match when indicated */
5321 	if (likely(!deliver_exact)) {
5322 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5323 				       &ptype_base[ntohs(type) &
5324 						   PTYPE_HASH_MASK]);
5325 	}
5326 
5327 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5328 			       &orig_dev->ptype_specific);
5329 
5330 	if (unlikely(skb->dev != orig_dev)) {
5331 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5332 				       &skb->dev->ptype_specific);
5333 	}
5334 
5335 	if (pt_prev) {
5336 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5337 			goto drop;
5338 		*ppt_prev = pt_prev;
5339 	} else {
5340 drop:
5341 		if (!deliver_exact)
5342 			atomic_long_inc(&skb->dev->rx_dropped);
5343 		else
5344 			atomic_long_inc(&skb->dev->rx_nohandler);
5345 		kfree_skb(skb);
5346 		/* Jamal, now you will not able to escape explaining
5347 		 * me how you were going to use this. :-)
5348 		 */
5349 		ret = NET_RX_DROP;
5350 	}
5351 
5352 out:
5353 	/* The invariant here is that if *ppt_prev is not NULL
5354 	 * then skb should also be non-NULL.
5355 	 *
5356 	 * Apparently *ppt_prev assignment above holds this invariant due to
5357 	 * skb dereferencing near it.
5358 	 */
5359 	*pskb = skb;
5360 	return ret;
5361 }
5362 
5363 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5364 {
5365 	struct net_device *orig_dev = skb->dev;
5366 	struct packet_type *pt_prev = NULL;
5367 	int ret;
5368 
5369 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5370 	if (pt_prev)
5371 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5372 					 skb->dev, pt_prev, orig_dev);
5373 	return ret;
5374 }
5375 
5376 /**
5377  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5378  *	@skb: buffer to process
5379  *
5380  *	More direct receive version of netif_receive_skb().  It should
5381  *	only be used by callers that have a need to skip RPS and Generic XDP.
5382  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5383  *
5384  *	This function may only be called from softirq context and interrupts
5385  *	should be enabled.
5386  *
5387  *	Return values (usually ignored):
5388  *	NET_RX_SUCCESS: no congestion
5389  *	NET_RX_DROP: packet was dropped
5390  */
5391 int netif_receive_skb_core(struct sk_buff *skb)
5392 {
5393 	int ret;
5394 
5395 	rcu_read_lock();
5396 	ret = __netif_receive_skb_one_core(skb, false);
5397 	rcu_read_unlock();
5398 
5399 	return ret;
5400 }
5401 EXPORT_SYMBOL(netif_receive_skb_core);
5402 
5403 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5404 						  struct packet_type *pt_prev,
5405 						  struct net_device *orig_dev)
5406 {
5407 	struct sk_buff *skb, *next;
5408 
5409 	if (!pt_prev)
5410 		return;
5411 	if (list_empty(head))
5412 		return;
5413 	if (pt_prev->list_func != NULL)
5414 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5415 				   ip_list_rcv, head, pt_prev, orig_dev);
5416 	else
5417 		list_for_each_entry_safe(skb, next, head, list) {
5418 			skb_list_del_init(skb);
5419 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5420 		}
5421 }
5422 
5423 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5424 {
5425 	/* Fast-path assumptions:
5426 	 * - There is no RX handler.
5427 	 * - Only one packet_type matches.
5428 	 * If either of these fails, we will end up doing some per-packet
5429 	 * processing in-line, then handling the 'last ptype' for the whole
5430 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5431 	 * because the 'last ptype' must be constant across the sublist, and all
5432 	 * other ptypes are handled per-packet.
5433 	 */
5434 	/* Current (common) ptype of sublist */
5435 	struct packet_type *pt_curr = NULL;
5436 	/* Current (common) orig_dev of sublist */
5437 	struct net_device *od_curr = NULL;
5438 	struct list_head sublist;
5439 	struct sk_buff *skb, *next;
5440 
5441 	INIT_LIST_HEAD(&sublist);
5442 	list_for_each_entry_safe(skb, next, head, list) {
5443 		struct net_device *orig_dev = skb->dev;
5444 		struct packet_type *pt_prev = NULL;
5445 
5446 		skb_list_del_init(skb);
5447 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5448 		if (!pt_prev)
5449 			continue;
5450 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5451 			/* dispatch old sublist */
5452 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5453 			/* start new sublist */
5454 			INIT_LIST_HEAD(&sublist);
5455 			pt_curr = pt_prev;
5456 			od_curr = orig_dev;
5457 		}
5458 		list_add_tail(&skb->list, &sublist);
5459 	}
5460 
5461 	/* dispatch final sublist */
5462 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5463 }
5464 
5465 static int __netif_receive_skb(struct sk_buff *skb)
5466 {
5467 	int ret;
5468 
5469 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5470 		unsigned int noreclaim_flag;
5471 
5472 		/*
5473 		 * PFMEMALLOC skbs are special, they should
5474 		 * - be delivered to SOCK_MEMALLOC sockets only
5475 		 * - stay away from userspace
5476 		 * - have bounded memory usage
5477 		 *
5478 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5479 		 * context down to all allocation sites.
5480 		 */
5481 		noreclaim_flag = memalloc_noreclaim_save();
5482 		ret = __netif_receive_skb_one_core(skb, true);
5483 		memalloc_noreclaim_restore(noreclaim_flag);
5484 	} else
5485 		ret = __netif_receive_skb_one_core(skb, false);
5486 
5487 	return ret;
5488 }
5489 
5490 static void __netif_receive_skb_list(struct list_head *head)
5491 {
5492 	unsigned long noreclaim_flag = 0;
5493 	struct sk_buff *skb, *next;
5494 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5495 
5496 	list_for_each_entry_safe(skb, next, head, list) {
5497 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5498 			struct list_head sublist;
5499 
5500 			/* Handle the previous sublist */
5501 			list_cut_before(&sublist, head, &skb->list);
5502 			if (!list_empty(&sublist))
5503 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5504 			pfmemalloc = !pfmemalloc;
5505 			/* See comments in __netif_receive_skb */
5506 			if (pfmemalloc)
5507 				noreclaim_flag = memalloc_noreclaim_save();
5508 			else
5509 				memalloc_noreclaim_restore(noreclaim_flag);
5510 		}
5511 	}
5512 	/* Handle the remaining sublist */
5513 	if (!list_empty(head))
5514 		__netif_receive_skb_list_core(head, pfmemalloc);
5515 	/* Restore pflags */
5516 	if (pfmemalloc)
5517 		memalloc_noreclaim_restore(noreclaim_flag);
5518 }
5519 
5520 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5521 {
5522 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5523 	struct bpf_prog *new = xdp->prog;
5524 	int ret = 0;
5525 
5526 	if (new) {
5527 		u32 i;
5528 
5529 		mutex_lock(&new->aux->used_maps_mutex);
5530 
5531 		/* generic XDP does not work with DEVMAPs that can
5532 		 * have a bpf_prog installed on an entry
5533 		 */
5534 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5535 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5536 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5537 				mutex_unlock(&new->aux->used_maps_mutex);
5538 				return -EINVAL;
5539 			}
5540 		}
5541 
5542 		mutex_unlock(&new->aux->used_maps_mutex);
5543 	}
5544 
5545 	switch (xdp->command) {
5546 	case XDP_SETUP_PROG:
5547 		rcu_assign_pointer(dev->xdp_prog, new);
5548 		if (old)
5549 			bpf_prog_put(old);
5550 
5551 		if (old && !new) {
5552 			static_branch_dec(&generic_xdp_needed_key);
5553 		} else if (new && !old) {
5554 			static_branch_inc(&generic_xdp_needed_key);
5555 			dev_disable_lro(dev);
5556 			dev_disable_gro_hw(dev);
5557 		}
5558 		break;
5559 
5560 	default:
5561 		ret = -EINVAL;
5562 		break;
5563 	}
5564 
5565 	return ret;
5566 }
5567 
5568 static int netif_receive_skb_internal(struct sk_buff *skb)
5569 {
5570 	int ret;
5571 
5572 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5573 
5574 	if (skb_defer_rx_timestamp(skb))
5575 		return NET_RX_SUCCESS;
5576 
5577 	rcu_read_lock();
5578 #ifdef CONFIG_RPS
5579 	if (static_branch_unlikely(&rps_needed)) {
5580 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5581 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5582 
5583 		if (cpu >= 0) {
5584 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5585 			rcu_read_unlock();
5586 			return ret;
5587 		}
5588 	}
5589 #endif
5590 	ret = __netif_receive_skb(skb);
5591 	rcu_read_unlock();
5592 	return ret;
5593 }
5594 
5595 static void netif_receive_skb_list_internal(struct list_head *head)
5596 {
5597 	struct sk_buff *skb, *next;
5598 	struct list_head sublist;
5599 
5600 	INIT_LIST_HEAD(&sublist);
5601 	list_for_each_entry_safe(skb, next, head, list) {
5602 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5603 		skb_list_del_init(skb);
5604 		if (!skb_defer_rx_timestamp(skb))
5605 			list_add_tail(&skb->list, &sublist);
5606 	}
5607 	list_splice_init(&sublist, head);
5608 
5609 	rcu_read_lock();
5610 #ifdef CONFIG_RPS
5611 	if (static_branch_unlikely(&rps_needed)) {
5612 		list_for_each_entry_safe(skb, next, head, list) {
5613 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5614 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5615 
5616 			if (cpu >= 0) {
5617 				/* Will be handled, remove from list */
5618 				skb_list_del_init(skb);
5619 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5620 			}
5621 		}
5622 	}
5623 #endif
5624 	__netif_receive_skb_list(head);
5625 	rcu_read_unlock();
5626 }
5627 
5628 /**
5629  *	netif_receive_skb - process receive buffer from network
5630  *	@skb: buffer to process
5631  *
5632  *	netif_receive_skb() is the main receive data processing function.
5633  *	It always succeeds. The buffer may be dropped during processing
5634  *	for congestion control or by the protocol layers.
5635  *
5636  *	This function may only be called from softirq context and interrupts
5637  *	should be enabled.
5638  *
5639  *	Return values (usually ignored):
5640  *	NET_RX_SUCCESS: no congestion
5641  *	NET_RX_DROP: packet was dropped
5642  */
5643 int netif_receive_skb(struct sk_buff *skb)
5644 {
5645 	int ret;
5646 
5647 	trace_netif_receive_skb_entry(skb);
5648 
5649 	ret = netif_receive_skb_internal(skb);
5650 	trace_netif_receive_skb_exit(ret);
5651 
5652 	return ret;
5653 }
5654 EXPORT_SYMBOL(netif_receive_skb);
5655 
5656 /**
5657  *	netif_receive_skb_list - process many receive buffers from network
5658  *	@head: list of skbs to process.
5659  *
5660  *	Since return value of netif_receive_skb() is normally ignored, and
5661  *	wouldn't be meaningful for a list, this function returns void.
5662  *
5663  *	This function may only be called from softirq context and interrupts
5664  *	should be enabled.
5665  */
5666 void netif_receive_skb_list(struct list_head *head)
5667 {
5668 	struct sk_buff *skb;
5669 
5670 	if (list_empty(head))
5671 		return;
5672 	if (trace_netif_receive_skb_list_entry_enabled()) {
5673 		list_for_each_entry(skb, head, list)
5674 			trace_netif_receive_skb_list_entry(skb);
5675 	}
5676 	netif_receive_skb_list_internal(head);
5677 	trace_netif_receive_skb_list_exit(0);
5678 }
5679 EXPORT_SYMBOL(netif_receive_skb_list);
5680 
5681 static DEFINE_PER_CPU(struct work_struct, flush_works);
5682 
5683 /* Network device is going away, flush any packets still pending */
5684 static void flush_backlog(struct work_struct *work)
5685 {
5686 	struct sk_buff *skb, *tmp;
5687 	struct softnet_data *sd;
5688 
5689 	local_bh_disable();
5690 	sd = this_cpu_ptr(&softnet_data);
5691 
5692 	local_irq_disable();
5693 	rps_lock(sd);
5694 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5695 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5696 			__skb_unlink(skb, &sd->input_pkt_queue);
5697 			dev_kfree_skb_irq(skb);
5698 			input_queue_head_incr(sd);
5699 		}
5700 	}
5701 	rps_unlock(sd);
5702 	local_irq_enable();
5703 
5704 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5705 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5706 			__skb_unlink(skb, &sd->process_queue);
5707 			kfree_skb(skb);
5708 			input_queue_head_incr(sd);
5709 		}
5710 	}
5711 	local_bh_enable();
5712 }
5713 
5714 static bool flush_required(int cpu)
5715 {
5716 #if IS_ENABLED(CONFIG_RPS)
5717 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5718 	bool do_flush;
5719 
5720 	local_irq_disable();
5721 	rps_lock(sd);
5722 
5723 	/* as insertion into process_queue happens with the rps lock held,
5724 	 * process_queue access may race only with dequeue
5725 	 */
5726 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5727 		   !skb_queue_empty_lockless(&sd->process_queue);
5728 	rps_unlock(sd);
5729 	local_irq_enable();
5730 
5731 	return do_flush;
5732 #endif
5733 	/* without RPS we can't safely check input_pkt_queue: during a
5734 	 * concurrent remote skb_queue_splice() we can detect as empty both
5735 	 * input_pkt_queue and process_queue even if the latter could end-up
5736 	 * containing a lot of packets.
5737 	 */
5738 	return true;
5739 }
5740 
5741 static void flush_all_backlogs(void)
5742 {
5743 	static cpumask_t flush_cpus;
5744 	unsigned int cpu;
5745 
5746 	/* since we are under rtnl lock protection we can use static data
5747 	 * for the cpumask and avoid allocating on stack the possibly
5748 	 * large mask
5749 	 */
5750 	ASSERT_RTNL();
5751 
5752 	get_online_cpus();
5753 
5754 	cpumask_clear(&flush_cpus);
5755 	for_each_online_cpu(cpu) {
5756 		if (flush_required(cpu)) {
5757 			queue_work_on(cpu, system_highpri_wq,
5758 				      per_cpu_ptr(&flush_works, cpu));
5759 			cpumask_set_cpu(cpu, &flush_cpus);
5760 		}
5761 	}
5762 
5763 	/* we can have in flight packet[s] on the cpus we are not flushing,
5764 	 * synchronize_net() in unregister_netdevice_many() will take care of
5765 	 * them
5766 	 */
5767 	for_each_cpu(cpu, &flush_cpus)
5768 		flush_work(per_cpu_ptr(&flush_works, cpu));
5769 
5770 	put_online_cpus();
5771 }
5772 
5773 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5774 static void gro_normal_list(struct napi_struct *napi)
5775 {
5776 	if (!napi->rx_count)
5777 		return;
5778 	netif_receive_skb_list_internal(&napi->rx_list);
5779 	INIT_LIST_HEAD(&napi->rx_list);
5780 	napi->rx_count = 0;
5781 }
5782 
5783 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5784  * pass the whole batch up to the stack.
5785  */
5786 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5787 {
5788 	list_add_tail(&skb->list, &napi->rx_list);
5789 	napi->rx_count += segs;
5790 	if (napi->rx_count >= gro_normal_batch)
5791 		gro_normal_list(napi);
5792 }
5793 
5794 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5795 {
5796 	struct packet_offload *ptype;
5797 	__be16 type = skb->protocol;
5798 	struct list_head *head = &offload_base;
5799 	int err = -ENOENT;
5800 
5801 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5802 
5803 	if (NAPI_GRO_CB(skb)->count == 1) {
5804 		skb_shinfo(skb)->gso_size = 0;
5805 		goto out;
5806 	}
5807 
5808 	rcu_read_lock();
5809 	list_for_each_entry_rcu(ptype, head, list) {
5810 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5811 			continue;
5812 
5813 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5814 					 ipv6_gro_complete, inet_gro_complete,
5815 					 skb, 0);
5816 		break;
5817 	}
5818 	rcu_read_unlock();
5819 
5820 	if (err) {
5821 		WARN_ON(&ptype->list == head);
5822 		kfree_skb(skb);
5823 		return NET_RX_SUCCESS;
5824 	}
5825 
5826 out:
5827 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5828 	return NET_RX_SUCCESS;
5829 }
5830 
5831 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5832 				   bool flush_old)
5833 {
5834 	struct list_head *head = &napi->gro_hash[index].list;
5835 	struct sk_buff *skb, *p;
5836 
5837 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5838 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5839 			return;
5840 		skb_list_del_init(skb);
5841 		napi_gro_complete(napi, skb);
5842 		napi->gro_hash[index].count--;
5843 	}
5844 
5845 	if (!napi->gro_hash[index].count)
5846 		__clear_bit(index, &napi->gro_bitmask);
5847 }
5848 
5849 /* napi->gro_hash[].list contains packets ordered by age.
5850  * youngest packets at the head of it.
5851  * Complete skbs in reverse order to reduce latencies.
5852  */
5853 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5854 {
5855 	unsigned long bitmask = napi->gro_bitmask;
5856 	unsigned int i, base = ~0U;
5857 
5858 	while ((i = ffs(bitmask)) != 0) {
5859 		bitmask >>= i;
5860 		base += i;
5861 		__napi_gro_flush_chain(napi, base, flush_old);
5862 	}
5863 }
5864 EXPORT_SYMBOL(napi_gro_flush);
5865 
5866 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5867 					  struct sk_buff *skb)
5868 {
5869 	unsigned int maclen = skb->dev->hard_header_len;
5870 	u32 hash = skb_get_hash_raw(skb);
5871 	struct list_head *head;
5872 	struct sk_buff *p;
5873 
5874 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5875 	list_for_each_entry(p, head, list) {
5876 		unsigned long diffs;
5877 
5878 		NAPI_GRO_CB(p)->flush = 0;
5879 
5880 		if (hash != skb_get_hash_raw(p)) {
5881 			NAPI_GRO_CB(p)->same_flow = 0;
5882 			continue;
5883 		}
5884 
5885 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5886 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5887 		if (skb_vlan_tag_present(p))
5888 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5889 		diffs |= skb_metadata_dst_cmp(p, skb);
5890 		diffs |= skb_metadata_differs(p, skb);
5891 		if (maclen == ETH_HLEN)
5892 			diffs |= compare_ether_header(skb_mac_header(p),
5893 						      skb_mac_header(skb));
5894 		else if (!diffs)
5895 			diffs = memcmp(skb_mac_header(p),
5896 				       skb_mac_header(skb),
5897 				       maclen);
5898 		NAPI_GRO_CB(p)->same_flow = !diffs;
5899 	}
5900 
5901 	return head;
5902 }
5903 
5904 static void skb_gro_reset_offset(struct sk_buff *skb)
5905 {
5906 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5907 	const skb_frag_t *frag0 = &pinfo->frags[0];
5908 
5909 	NAPI_GRO_CB(skb)->data_offset = 0;
5910 	NAPI_GRO_CB(skb)->frag0 = NULL;
5911 	NAPI_GRO_CB(skb)->frag0_len = 0;
5912 
5913 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5914 	    !PageHighMem(skb_frag_page(frag0))) {
5915 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5916 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5917 						    skb_frag_size(frag0),
5918 						    skb->end - skb->tail);
5919 	}
5920 }
5921 
5922 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5923 {
5924 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5925 
5926 	BUG_ON(skb->end - skb->tail < grow);
5927 
5928 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5929 
5930 	skb->data_len -= grow;
5931 	skb->tail += grow;
5932 
5933 	skb_frag_off_add(&pinfo->frags[0], grow);
5934 	skb_frag_size_sub(&pinfo->frags[0], grow);
5935 
5936 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5937 		skb_frag_unref(skb, 0);
5938 		memmove(pinfo->frags, pinfo->frags + 1,
5939 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5940 	}
5941 }
5942 
5943 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5944 {
5945 	struct sk_buff *oldest;
5946 
5947 	oldest = list_last_entry(head, struct sk_buff, list);
5948 
5949 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5950 	 * impossible.
5951 	 */
5952 	if (WARN_ON_ONCE(!oldest))
5953 		return;
5954 
5955 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5956 	 * SKB to the chain.
5957 	 */
5958 	skb_list_del_init(oldest);
5959 	napi_gro_complete(napi, oldest);
5960 }
5961 
5962 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5963 {
5964 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5965 	struct list_head *head = &offload_base;
5966 	struct packet_offload *ptype;
5967 	__be16 type = skb->protocol;
5968 	struct list_head *gro_head;
5969 	struct sk_buff *pp = NULL;
5970 	enum gro_result ret;
5971 	int same_flow;
5972 	int grow;
5973 
5974 	if (netif_elide_gro(skb->dev))
5975 		goto normal;
5976 
5977 	gro_head = gro_list_prepare(napi, skb);
5978 
5979 	rcu_read_lock();
5980 	list_for_each_entry_rcu(ptype, head, list) {
5981 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5982 			continue;
5983 
5984 		skb_set_network_header(skb, skb_gro_offset(skb));
5985 		skb_reset_mac_len(skb);
5986 		NAPI_GRO_CB(skb)->same_flow = 0;
5987 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5988 		NAPI_GRO_CB(skb)->free = 0;
5989 		NAPI_GRO_CB(skb)->encap_mark = 0;
5990 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5991 		NAPI_GRO_CB(skb)->is_fou = 0;
5992 		NAPI_GRO_CB(skb)->is_atomic = 1;
5993 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5994 
5995 		/* Setup for GRO checksum validation */
5996 		switch (skb->ip_summed) {
5997 		case CHECKSUM_COMPLETE:
5998 			NAPI_GRO_CB(skb)->csum = skb->csum;
5999 			NAPI_GRO_CB(skb)->csum_valid = 1;
6000 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6001 			break;
6002 		case CHECKSUM_UNNECESSARY:
6003 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6004 			NAPI_GRO_CB(skb)->csum_valid = 0;
6005 			break;
6006 		default:
6007 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6008 			NAPI_GRO_CB(skb)->csum_valid = 0;
6009 		}
6010 
6011 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6012 					ipv6_gro_receive, inet_gro_receive,
6013 					gro_head, skb);
6014 		break;
6015 	}
6016 	rcu_read_unlock();
6017 
6018 	if (&ptype->list == head)
6019 		goto normal;
6020 
6021 	if (PTR_ERR(pp) == -EINPROGRESS) {
6022 		ret = GRO_CONSUMED;
6023 		goto ok;
6024 	}
6025 
6026 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6027 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6028 
6029 	if (pp) {
6030 		skb_list_del_init(pp);
6031 		napi_gro_complete(napi, pp);
6032 		napi->gro_hash[hash].count--;
6033 	}
6034 
6035 	if (same_flow)
6036 		goto ok;
6037 
6038 	if (NAPI_GRO_CB(skb)->flush)
6039 		goto normal;
6040 
6041 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6042 		gro_flush_oldest(napi, gro_head);
6043 	} else {
6044 		napi->gro_hash[hash].count++;
6045 	}
6046 	NAPI_GRO_CB(skb)->count = 1;
6047 	NAPI_GRO_CB(skb)->age = jiffies;
6048 	NAPI_GRO_CB(skb)->last = skb;
6049 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6050 	list_add(&skb->list, gro_head);
6051 	ret = GRO_HELD;
6052 
6053 pull:
6054 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6055 	if (grow > 0)
6056 		gro_pull_from_frag0(skb, grow);
6057 ok:
6058 	if (napi->gro_hash[hash].count) {
6059 		if (!test_bit(hash, &napi->gro_bitmask))
6060 			__set_bit(hash, &napi->gro_bitmask);
6061 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6062 		__clear_bit(hash, &napi->gro_bitmask);
6063 	}
6064 
6065 	return ret;
6066 
6067 normal:
6068 	ret = GRO_NORMAL;
6069 	goto pull;
6070 }
6071 
6072 struct packet_offload *gro_find_receive_by_type(__be16 type)
6073 {
6074 	struct list_head *offload_head = &offload_base;
6075 	struct packet_offload *ptype;
6076 
6077 	list_for_each_entry_rcu(ptype, offload_head, list) {
6078 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6079 			continue;
6080 		return ptype;
6081 	}
6082 	return NULL;
6083 }
6084 EXPORT_SYMBOL(gro_find_receive_by_type);
6085 
6086 struct packet_offload *gro_find_complete_by_type(__be16 type)
6087 {
6088 	struct list_head *offload_head = &offload_base;
6089 	struct packet_offload *ptype;
6090 
6091 	list_for_each_entry_rcu(ptype, offload_head, list) {
6092 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6093 			continue;
6094 		return ptype;
6095 	}
6096 	return NULL;
6097 }
6098 EXPORT_SYMBOL(gro_find_complete_by_type);
6099 
6100 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6101 {
6102 	skb_dst_drop(skb);
6103 	skb_ext_put(skb);
6104 	kmem_cache_free(skbuff_head_cache, skb);
6105 }
6106 
6107 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6108 				    struct sk_buff *skb,
6109 				    gro_result_t ret)
6110 {
6111 	switch (ret) {
6112 	case GRO_NORMAL:
6113 		gro_normal_one(napi, skb, 1);
6114 		break;
6115 
6116 	case GRO_MERGED_FREE:
6117 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6118 			napi_skb_free_stolen_head(skb);
6119 		else
6120 			__kfree_skb(skb);
6121 		break;
6122 
6123 	case GRO_HELD:
6124 	case GRO_MERGED:
6125 	case GRO_CONSUMED:
6126 		break;
6127 	}
6128 
6129 	return ret;
6130 }
6131 
6132 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6133 {
6134 	gro_result_t ret;
6135 
6136 	skb_mark_napi_id(skb, napi);
6137 	trace_napi_gro_receive_entry(skb);
6138 
6139 	skb_gro_reset_offset(skb);
6140 
6141 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6142 	trace_napi_gro_receive_exit(ret);
6143 
6144 	return ret;
6145 }
6146 EXPORT_SYMBOL(napi_gro_receive);
6147 
6148 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6149 {
6150 	if (unlikely(skb->pfmemalloc)) {
6151 		consume_skb(skb);
6152 		return;
6153 	}
6154 	__skb_pull(skb, skb_headlen(skb));
6155 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6156 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6157 	__vlan_hwaccel_clear_tag(skb);
6158 	skb->dev = napi->dev;
6159 	skb->skb_iif = 0;
6160 
6161 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6162 	skb->pkt_type = PACKET_HOST;
6163 
6164 	skb->encapsulation = 0;
6165 	skb_shinfo(skb)->gso_type = 0;
6166 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6167 	skb_ext_reset(skb);
6168 
6169 	napi->skb = skb;
6170 }
6171 
6172 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6173 {
6174 	struct sk_buff *skb = napi->skb;
6175 
6176 	if (!skb) {
6177 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6178 		if (skb) {
6179 			napi->skb = skb;
6180 			skb_mark_napi_id(skb, napi);
6181 		}
6182 	}
6183 	return skb;
6184 }
6185 EXPORT_SYMBOL(napi_get_frags);
6186 
6187 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6188 				      struct sk_buff *skb,
6189 				      gro_result_t ret)
6190 {
6191 	switch (ret) {
6192 	case GRO_NORMAL:
6193 	case GRO_HELD:
6194 		__skb_push(skb, ETH_HLEN);
6195 		skb->protocol = eth_type_trans(skb, skb->dev);
6196 		if (ret == GRO_NORMAL)
6197 			gro_normal_one(napi, skb, 1);
6198 		break;
6199 
6200 	case GRO_MERGED_FREE:
6201 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6202 			napi_skb_free_stolen_head(skb);
6203 		else
6204 			napi_reuse_skb(napi, skb);
6205 		break;
6206 
6207 	case GRO_MERGED:
6208 	case GRO_CONSUMED:
6209 		break;
6210 	}
6211 
6212 	return ret;
6213 }
6214 
6215 /* Upper GRO stack assumes network header starts at gro_offset=0
6216  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6217  * We copy ethernet header into skb->data to have a common layout.
6218  */
6219 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6220 {
6221 	struct sk_buff *skb = napi->skb;
6222 	const struct ethhdr *eth;
6223 	unsigned int hlen = sizeof(*eth);
6224 
6225 	napi->skb = NULL;
6226 
6227 	skb_reset_mac_header(skb);
6228 	skb_gro_reset_offset(skb);
6229 
6230 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6231 		eth = skb_gro_header_slow(skb, hlen, 0);
6232 		if (unlikely(!eth)) {
6233 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6234 					     __func__, napi->dev->name);
6235 			napi_reuse_skb(napi, skb);
6236 			return NULL;
6237 		}
6238 	} else {
6239 		eth = (const struct ethhdr *)skb->data;
6240 		gro_pull_from_frag0(skb, hlen);
6241 		NAPI_GRO_CB(skb)->frag0 += hlen;
6242 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6243 	}
6244 	__skb_pull(skb, hlen);
6245 
6246 	/*
6247 	 * This works because the only protocols we care about don't require
6248 	 * special handling.
6249 	 * We'll fix it up properly in napi_frags_finish()
6250 	 */
6251 	skb->protocol = eth->h_proto;
6252 
6253 	return skb;
6254 }
6255 
6256 gro_result_t napi_gro_frags(struct napi_struct *napi)
6257 {
6258 	gro_result_t ret;
6259 	struct sk_buff *skb = napi_frags_skb(napi);
6260 
6261 	trace_napi_gro_frags_entry(skb);
6262 
6263 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6264 	trace_napi_gro_frags_exit(ret);
6265 
6266 	return ret;
6267 }
6268 EXPORT_SYMBOL(napi_gro_frags);
6269 
6270 /* Compute the checksum from gro_offset and return the folded value
6271  * after adding in any pseudo checksum.
6272  */
6273 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6274 {
6275 	__wsum wsum;
6276 	__sum16 sum;
6277 
6278 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6279 
6280 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6281 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6282 	/* See comments in __skb_checksum_complete(). */
6283 	if (likely(!sum)) {
6284 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6285 		    !skb->csum_complete_sw)
6286 			netdev_rx_csum_fault(skb->dev, skb);
6287 	}
6288 
6289 	NAPI_GRO_CB(skb)->csum = wsum;
6290 	NAPI_GRO_CB(skb)->csum_valid = 1;
6291 
6292 	return sum;
6293 }
6294 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6295 
6296 static void net_rps_send_ipi(struct softnet_data *remsd)
6297 {
6298 #ifdef CONFIG_RPS
6299 	while (remsd) {
6300 		struct softnet_data *next = remsd->rps_ipi_next;
6301 
6302 		if (cpu_online(remsd->cpu))
6303 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6304 		remsd = next;
6305 	}
6306 #endif
6307 }
6308 
6309 /*
6310  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6311  * Note: called with local irq disabled, but exits with local irq enabled.
6312  */
6313 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6314 {
6315 #ifdef CONFIG_RPS
6316 	struct softnet_data *remsd = sd->rps_ipi_list;
6317 
6318 	if (remsd) {
6319 		sd->rps_ipi_list = NULL;
6320 
6321 		local_irq_enable();
6322 
6323 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6324 		net_rps_send_ipi(remsd);
6325 	} else
6326 #endif
6327 		local_irq_enable();
6328 }
6329 
6330 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6331 {
6332 #ifdef CONFIG_RPS
6333 	return sd->rps_ipi_list != NULL;
6334 #else
6335 	return false;
6336 #endif
6337 }
6338 
6339 static int process_backlog(struct napi_struct *napi, int quota)
6340 {
6341 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6342 	bool again = true;
6343 	int work = 0;
6344 
6345 	/* Check if we have pending ipi, its better to send them now,
6346 	 * not waiting net_rx_action() end.
6347 	 */
6348 	if (sd_has_rps_ipi_waiting(sd)) {
6349 		local_irq_disable();
6350 		net_rps_action_and_irq_enable(sd);
6351 	}
6352 
6353 	napi->weight = dev_rx_weight;
6354 	while (again) {
6355 		struct sk_buff *skb;
6356 
6357 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6358 			rcu_read_lock();
6359 			__netif_receive_skb(skb);
6360 			rcu_read_unlock();
6361 			input_queue_head_incr(sd);
6362 			if (++work >= quota)
6363 				return work;
6364 
6365 		}
6366 
6367 		local_irq_disable();
6368 		rps_lock(sd);
6369 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6370 			/*
6371 			 * Inline a custom version of __napi_complete().
6372 			 * only current cpu owns and manipulates this napi,
6373 			 * and NAPI_STATE_SCHED is the only possible flag set
6374 			 * on backlog.
6375 			 * We can use a plain write instead of clear_bit(),
6376 			 * and we dont need an smp_mb() memory barrier.
6377 			 */
6378 			napi->state = 0;
6379 			again = false;
6380 		} else {
6381 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6382 						   &sd->process_queue);
6383 		}
6384 		rps_unlock(sd);
6385 		local_irq_enable();
6386 	}
6387 
6388 	return work;
6389 }
6390 
6391 /**
6392  * __napi_schedule - schedule for receive
6393  * @n: entry to schedule
6394  *
6395  * The entry's receive function will be scheduled to run.
6396  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6397  */
6398 void __napi_schedule(struct napi_struct *n)
6399 {
6400 	unsigned long flags;
6401 
6402 	local_irq_save(flags);
6403 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6404 	local_irq_restore(flags);
6405 }
6406 EXPORT_SYMBOL(__napi_schedule);
6407 
6408 /**
6409  *	napi_schedule_prep - check if napi can be scheduled
6410  *	@n: napi context
6411  *
6412  * Test if NAPI routine is already running, and if not mark
6413  * it as running.  This is used as a condition variable to
6414  * insure only one NAPI poll instance runs.  We also make
6415  * sure there is no pending NAPI disable.
6416  */
6417 bool napi_schedule_prep(struct napi_struct *n)
6418 {
6419 	unsigned long val, new;
6420 
6421 	do {
6422 		val = READ_ONCE(n->state);
6423 		if (unlikely(val & NAPIF_STATE_DISABLE))
6424 			return false;
6425 		new = val | NAPIF_STATE_SCHED;
6426 
6427 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6428 		 * This was suggested by Alexander Duyck, as compiler
6429 		 * emits better code than :
6430 		 * if (val & NAPIF_STATE_SCHED)
6431 		 *     new |= NAPIF_STATE_MISSED;
6432 		 */
6433 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6434 						   NAPIF_STATE_MISSED;
6435 	} while (cmpxchg(&n->state, val, new) != val);
6436 
6437 	return !(val & NAPIF_STATE_SCHED);
6438 }
6439 EXPORT_SYMBOL(napi_schedule_prep);
6440 
6441 /**
6442  * __napi_schedule_irqoff - schedule for receive
6443  * @n: entry to schedule
6444  *
6445  * Variant of __napi_schedule() assuming hard irqs are masked
6446  */
6447 void __napi_schedule_irqoff(struct napi_struct *n)
6448 {
6449 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6450 }
6451 EXPORT_SYMBOL(__napi_schedule_irqoff);
6452 
6453 bool napi_complete_done(struct napi_struct *n, int work_done)
6454 {
6455 	unsigned long flags, val, new, timeout = 0;
6456 	bool ret = true;
6457 
6458 	/*
6459 	 * 1) Don't let napi dequeue from the cpu poll list
6460 	 *    just in case its running on a different cpu.
6461 	 * 2) If we are busy polling, do nothing here, we have
6462 	 *    the guarantee we will be called later.
6463 	 */
6464 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6465 				 NAPIF_STATE_IN_BUSY_POLL)))
6466 		return false;
6467 
6468 	if (work_done) {
6469 		if (n->gro_bitmask)
6470 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6471 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6472 	}
6473 	if (n->defer_hard_irqs_count > 0) {
6474 		n->defer_hard_irqs_count--;
6475 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6476 		if (timeout)
6477 			ret = false;
6478 	}
6479 	if (n->gro_bitmask) {
6480 		/* When the NAPI instance uses a timeout and keeps postponing
6481 		 * it, we need to bound somehow the time packets are kept in
6482 		 * the GRO layer
6483 		 */
6484 		napi_gro_flush(n, !!timeout);
6485 	}
6486 
6487 	gro_normal_list(n);
6488 
6489 	if (unlikely(!list_empty(&n->poll_list))) {
6490 		/* If n->poll_list is not empty, we need to mask irqs */
6491 		local_irq_save(flags);
6492 		list_del_init(&n->poll_list);
6493 		local_irq_restore(flags);
6494 	}
6495 
6496 	do {
6497 		val = READ_ONCE(n->state);
6498 
6499 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6500 
6501 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6502 			      NAPIF_STATE_PREFER_BUSY_POLL);
6503 
6504 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6505 		 * because we will call napi->poll() one more time.
6506 		 * This C code was suggested by Alexander Duyck to help gcc.
6507 		 */
6508 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6509 						    NAPIF_STATE_SCHED;
6510 	} while (cmpxchg(&n->state, val, new) != val);
6511 
6512 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6513 		__napi_schedule(n);
6514 		return false;
6515 	}
6516 
6517 	if (timeout)
6518 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6519 			      HRTIMER_MODE_REL_PINNED);
6520 	return ret;
6521 }
6522 EXPORT_SYMBOL(napi_complete_done);
6523 
6524 /* must be called under rcu_read_lock(), as we dont take a reference */
6525 static struct napi_struct *napi_by_id(unsigned int napi_id)
6526 {
6527 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6528 	struct napi_struct *napi;
6529 
6530 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6531 		if (napi->napi_id == napi_id)
6532 			return napi;
6533 
6534 	return NULL;
6535 }
6536 
6537 #if defined(CONFIG_NET_RX_BUSY_POLL)
6538 
6539 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6540 {
6541 	if (!skip_schedule) {
6542 		gro_normal_list(napi);
6543 		__napi_schedule(napi);
6544 		return;
6545 	}
6546 
6547 	if (napi->gro_bitmask) {
6548 		/* flush too old packets
6549 		 * If HZ < 1000, flush all packets.
6550 		 */
6551 		napi_gro_flush(napi, HZ >= 1000);
6552 	}
6553 
6554 	gro_normal_list(napi);
6555 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6556 }
6557 
6558 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6559 			   u16 budget)
6560 {
6561 	bool skip_schedule = false;
6562 	unsigned long timeout;
6563 	int rc;
6564 
6565 	/* Busy polling means there is a high chance device driver hard irq
6566 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6567 	 * set in napi_schedule_prep().
6568 	 * Since we are about to call napi->poll() once more, we can safely
6569 	 * clear NAPI_STATE_MISSED.
6570 	 *
6571 	 * Note: x86 could use a single "lock and ..." instruction
6572 	 * to perform these two clear_bit()
6573 	 */
6574 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6575 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6576 
6577 	local_bh_disable();
6578 
6579 	if (prefer_busy_poll) {
6580 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6581 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6582 		if (napi->defer_hard_irqs_count && timeout) {
6583 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6584 			skip_schedule = true;
6585 		}
6586 	}
6587 
6588 	/* All we really want here is to re-enable device interrupts.
6589 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6590 	 */
6591 	rc = napi->poll(napi, budget);
6592 	/* We can't gro_normal_list() here, because napi->poll() might have
6593 	 * rearmed the napi (napi_complete_done()) in which case it could
6594 	 * already be running on another CPU.
6595 	 */
6596 	trace_napi_poll(napi, rc, budget);
6597 	netpoll_poll_unlock(have_poll_lock);
6598 	if (rc == budget)
6599 		__busy_poll_stop(napi, skip_schedule);
6600 	local_bh_enable();
6601 }
6602 
6603 void napi_busy_loop(unsigned int napi_id,
6604 		    bool (*loop_end)(void *, unsigned long),
6605 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6606 {
6607 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6608 	int (*napi_poll)(struct napi_struct *napi, int budget);
6609 	void *have_poll_lock = NULL;
6610 	struct napi_struct *napi;
6611 
6612 restart:
6613 	napi_poll = NULL;
6614 
6615 	rcu_read_lock();
6616 
6617 	napi = napi_by_id(napi_id);
6618 	if (!napi)
6619 		goto out;
6620 
6621 	preempt_disable();
6622 	for (;;) {
6623 		int work = 0;
6624 
6625 		local_bh_disable();
6626 		if (!napi_poll) {
6627 			unsigned long val = READ_ONCE(napi->state);
6628 
6629 			/* If multiple threads are competing for this napi,
6630 			 * we avoid dirtying napi->state as much as we can.
6631 			 */
6632 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6633 				   NAPIF_STATE_IN_BUSY_POLL)) {
6634 				if (prefer_busy_poll)
6635 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6636 				goto count;
6637 			}
6638 			if (cmpxchg(&napi->state, val,
6639 				    val | NAPIF_STATE_IN_BUSY_POLL |
6640 					  NAPIF_STATE_SCHED) != val) {
6641 				if (prefer_busy_poll)
6642 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6643 				goto count;
6644 			}
6645 			have_poll_lock = netpoll_poll_lock(napi);
6646 			napi_poll = napi->poll;
6647 		}
6648 		work = napi_poll(napi, budget);
6649 		trace_napi_poll(napi, work, budget);
6650 		gro_normal_list(napi);
6651 count:
6652 		if (work > 0)
6653 			__NET_ADD_STATS(dev_net(napi->dev),
6654 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6655 		local_bh_enable();
6656 
6657 		if (!loop_end || loop_end(loop_end_arg, start_time))
6658 			break;
6659 
6660 		if (unlikely(need_resched())) {
6661 			if (napi_poll)
6662 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6663 			preempt_enable();
6664 			rcu_read_unlock();
6665 			cond_resched();
6666 			if (loop_end(loop_end_arg, start_time))
6667 				return;
6668 			goto restart;
6669 		}
6670 		cpu_relax();
6671 	}
6672 	if (napi_poll)
6673 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6674 	preempt_enable();
6675 out:
6676 	rcu_read_unlock();
6677 }
6678 EXPORT_SYMBOL(napi_busy_loop);
6679 
6680 #endif /* CONFIG_NET_RX_BUSY_POLL */
6681 
6682 static void napi_hash_add(struct napi_struct *napi)
6683 {
6684 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6685 		return;
6686 
6687 	spin_lock(&napi_hash_lock);
6688 
6689 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6690 	do {
6691 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6692 			napi_gen_id = MIN_NAPI_ID;
6693 	} while (napi_by_id(napi_gen_id));
6694 	napi->napi_id = napi_gen_id;
6695 
6696 	hlist_add_head_rcu(&napi->napi_hash_node,
6697 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6698 
6699 	spin_unlock(&napi_hash_lock);
6700 }
6701 
6702 /* Warning : caller is responsible to make sure rcu grace period
6703  * is respected before freeing memory containing @napi
6704  */
6705 static void napi_hash_del(struct napi_struct *napi)
6706 {
6707 	spin_lock(&napi_hash_lock);
6708 
6709 	hlist_del_init_rcu(&napi->napi_hash_node);
6710 
6711 	spin_unlock(&napi_hash_lock);
6712 }
6713 
6714 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6715 {
6716 	struct napi_struct *napi;
6717 
6718 	napi = container_of(timer, struct napi_struct, timer);
6719 
6720 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6721 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6722 	 */
6723 	if (!napi_disable_pending(napi) &&
6724 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6725 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6726 		__napi_schedule_irqoff(napi);
6727 	}
6728 
6729 	return HRTIMER_NORESTART;
6730 }
6731 
6732 static void init_gro_hash(struct napi_struct *napi)
6733 {
6734 	int i;
6735 
6736 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6737 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6738 		napi->gro_hash[i].count = 0;
6739 	}
6740 	napi->gro_bitmask = 0;
6741 }
6742 
6743 int dev_set_threaded(struct net_device *dev, bool threaded)
6744 {
6745 	struct napi_struct *napi;
6746 	int err = 0;
6747 
6748 	if (dev->threaded == threaded)
6749 		return 0;
6750 
6751 	if (threaded) {
6752 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6753 			if (!napi->thread) {
6754 				err = napi_kthread_create(napi);
6755 				if (err) {
6756 					threaded = false;
6757 					break;
6758 				}
6759 			}
6760 		}
6761 	}
6762 
6763 	dev->threaded = threaded;
6764 
6765 	/* Make sure kthread is created before THREADED bit
6766 	 * is set.
6767 	 */
6768 	smp_mb__before_atomic();
6769 
6770 	/* Setting/unsetting threaded mode on a napi might not immediately
6771 	 * take effect, if the current napi instance is actively being
6772 	 * polled. In this case, the switch between threaded mode and
6773 	 * softirq mode will happen in the next round of napi_schedule().
6774 	 * This should not cause hiccups/stalls to the live traffic.
6775 	 */
6776 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6777 		if (threaded)
6778 			set_bit(NAPI_STATE_THREADED, &napi->state);
6779 		else
6780 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6781 	}
6782 
6783 	return err;
6784 }
6785 
6786 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6787 		    int (*poll)(struct napi_struct *, int), int weight)
6788 {
6789 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6790 		return;
6791 
6792 	INIT_LIST_HEAD(&napi->poll_list);
6793 	INIT_HLIST_NODE(&napi->napi_hash_node);
6794 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6795 	napi->timer.function = napi_watchdog;
6796 	init_gro_hash(napi);
6797 	napi->skb = NULL;
6798 	INIT_LIST_HEAD(&napi->rx_list);
6799 	napi->rx_count = 0;
6800 	napi->poll = poll;
6801 	if (weight > NAPI_POLL_WEIGHT)
6802 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6803 				weight);
6804 	napi->weight = weight;
6805 	napi->dev = dev;
6806 #ifdef CONFIG_NETPOLL
6807 	napi->poll_owner = -1;
6808 #endif
6809 	set_bit(NAPI_STATE_SCHED, &napi->state);
6810 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6811 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6812 	napi_hash_add(napi);
6813 	/* Create kthread for this napi if dev->threaded is set.
6814 	 * Clear dev->threaded if kthread creation failed so that
6815 	 * threaded mode will not be enabled in napi_enable().
6816 	 */
6817 	if (dev->threaded && napi_kthread_create(napi))
6818 		dev->threaded = 0;
6819 }
6820 EXPORT_SYMBOL(netif_napi_add);
6821 
6822 void napi_disable(struct napi_struct *n)
6823 {
6824 	might_sleep();
6825 	set_bit(NAPI_STATE_DISABLE, &n->state);
6826 
6827 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6828 		msleep(1);
6829 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6830 		msleep(1);
6831 
6832 	hrtimer_cancel(&n->timer);
6833 
6834 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6835 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6836 	clear_bit(NAPI_STATE_THREADED, &n->state);
6837 }
6838 EXPORT_SYMBOL(napi_disable);
6839 
6840 /**
6841  *	napi_enable - enable NAPI scheduling
6842  *	@n: NAPI context
6843  *
6844  * Resume NAPI from being scheduled on this context.
6845  * Must be paired with napi_disable.
6846  */
6847 void napi_enable(struct napi_struct *n)
6848 {
6849 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6850 	smp_mb__before_atomic();
6851 	clear_bit(NAPI_STATE_SCHED, &n->state);
6852 	clear_bit(NAPI_STATE_NPSVC, &n->state);
6853 	if (n->dev->threaded && n->thread)
6854 		set_bit(NAPI_STATE_THREADED, &n->state);
6855 }
6856 EXPORT_SYMBOL(napi_enable);
6857 
6858 static void flush_gro_hash(struct napi_struct *napi)
6859 {
6860 	int i;
6861 
6862 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6863 		struct sk_buff *skb, *n;
6864 
6865 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6866 			kfree_skb(skb);
6867 		napi->gro_hash[i].count = 0;
6868 	}
6869 }
6870 
6871 /* Must be called in process context */
6872 void __netif_napi_del(struct napi_struct *napi)
6873 {
6874 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6875 		return;
6876 
6877 	napi_hash_del(napi);
6878 	list_del_rcu(&napi->dev_list);
6879 	napi_free_frags(napi);
6880 
6881 	flush_gro_hash(napi);
6882 	napi->gro_bitmask = 0;
6883 
6884 	if (napi->thread) {
6885 		kthread_stop(napi->thread);
6886 		napi->thread = NULL;
6887 	}
6888 }
6889 EXPORT_SYMBOL(__netif_napi_del);
6890 
6891 static int __napi_poll(struct napi_struct *n, bool *repoll)
6892 {
6893 	int work, weight;
6894 
6895 	weight = n->weight;
6896 
6897 	/* This NAPI_STATE_SCHED test is for avoiding a race
6898 	 * with netpoll's poll_napi().  Only the entity which
6899 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6900 	 * actually make the ->poll() call.  Therefore we avoid
6901 	 * accidentally calling ->poll() when NAPI is not scheduled.
6902 	 */
6903 	work = 0;
6904 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6905 		work = n->poll(n, weight);
6906 		trace_napi_poll(n, work, weight);
6907 	}
6908 
6909 	if (unlikely(work > weight))
6910 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6911 			    n->poll, work, weight);
6912 
6913 	if (likely(work < weight))
6914 		return work;
6915 
6916 	/* Drivers must not modify the NAPI state if they
6917 	 * consume the entire weight.  In such cases this code
6918 	 * still "owns" the NAPI instance and therefore can
6919 	 * move the instance around on the list at-will.
6920 	 */
6921 	if (unlikely(napi_disable_pending(n))) {
6922 		napi_complete(n);
6923 		return work;
6924 	}
6925 
6926 	/* The NAPI context has more processing work, but busy-polling
6927 	 * is preferred. Exit early.
6928 	 */
6929 	if (napi_prefer_busy_poll(n)) {
6930 		if (napi_complete_done(n, work)) {
6931 			/* If timeout is not set, we need to make sure
6932 			 * that the NAPI is re-scheduled.
6933 			 */
6934 			napi_schedule(n);
6935 		}
6936 		return work;
6937 	}
6938 
6939 	if (n->gro_bitmask) {
6940 		/* flush too old packets
6941 		 * If HZ < 1000, flush all packets.
6942 		 */
6943 		napi_gro_flush(n, HZ >= 1000);
6944 	}
6945 
6946 	gro_normal_list(n);
6947 
6948 	/* Some drivers may have called napi_schedule
6949 	 * prior to exhausting their budget.
6950 	 */
6951 	if (unlikely(!list_empty(&n->poll_list))) {
6952 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6953 			     n->dev ? n->dev->name : "backlog");
6954 		return work;
6955 	}
6956 
6957 	*repoll = true;
6958 
6959 	return work;
6960 }
6961 
6962 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6963 {
6964 	bool do_repoll = false;
6965 	void *have;
6966 	int work;
6967 
6968 	list_del_init(&n->poll_list);
6969 
6970 	have = netpoll_poll_lock(n);
6971 
6972 	work = __napi_poll(n, &do_repoll);
6973 
6974 	if (do_repoll)
6975 		list_add_tail(&n->poll_list, repoll);
6976 
6977 	netpoll_poll_unlock(have);
6978 
6979 	return work;
6980 }
6981 
6982 static int napi_thread_wait(struct napi_struct *napi)
6983 {
6984 	set_current_state(TASK_INTERRUPTIBLE);
6985 
6986 	while (!kthread_should_stop() && !napi_disable_pending(napi)) {
6987 		if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
6988 			WARN_ON(!list_empty(&napi->poll_list));
6989 			__set_current_state(TASK_RUNNING);
6990 			return 0;
6991 		}
6992 
6993 		schedule();
6994 		set_current_state(TASK_INTERRUPTIBLE);
6995 	}
6996 	__set_current_state(TASK_RUNNING);
6997 	return -1;
6998 }
6999 
7000 static int napi_threaded_poll(void *data)
7001 {
7002 	struct napi_struct *napi = data;
7003 	void *have;
7004 
7005 	while (!napi_thread_wait(napi)) {
7006 		for (;;) {
7007 			bool repoll = false;
7008 
7009 			local_bh_disable();
7010 
7011 			have = netpoll_poll_lock(napi);
7012 			__napi_poll(napi, &repoll);
7013 			netpoll_poll_unlock(have);
7014 
7015 			__kfree_skb_flush();
7016 			local_bh_enable();
7017 
7018 			if (!repoll)
7019 				break;
7020 
7021 			cond_resched();
7022 		}
7023 	}
7024 	return 0;
7025 }
7026 
7027 static __latent_entropy void net_rx_action(struct softirq_action *h)
7028 {
7029 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7030 	unsigned long time_limit = jiffies +
7031 		usecs_to_jiffies(netdev_budget_usecs);
7032 	int budget = netdev_budget;
7033 	LIST_HEAD(list);
7034 	LIST_HEAD(repoll);
7035 
7036 	local_irq_disable();
7037 	list_splice_init(&sd->poll_list, &list);
7038 	local_irq_enable();
7039 
7040 	for (;;) {
7041 		struct napi_struct *n;
7042 
7043 		if (list_empty(&list)) {
7044 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7045 				goto out;
7046 			break;
7047 		}
7048 
7049 		n = list_first_entry(&list, struct napi_struct, poll_list);
7050 		budget -= napi_poll(n, &repoll);
7051 
7052 		/* If softirq window is exhausted then punt.
7053 		 * Allow this to run for 2 jiffies since which will allow
7054 		 * an average latency of 1.5/HZ.
7055 		 */
7056 		if (unlikely(budget <= 0 ||
7057 			     time_after_eq(jiffies, time_limit))) {
7058 			sd->time_squeeze++;
7059 			break;
7060 		}
7061 	}
7062 
7063 	local_irq_disable();
7064 
7065 	list_splice_tail_init(&sd->poll_list, &list);
7066 	list_splice_tail(&repoll, &list);
7067 	list_splice(&list, &sd->poll_list);
7068 	if (!list_empty(&sd->poll_list))
7069 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7070 
7071 	net_rps_action_and_irq_enable(sd);
7072 out:
7073 	__kfree_skb_flush();
7074 }
7075 
7076 struct netdev_adjacent {
7077 	struct net_device *dev;
7078 
7079 	/* upper master flag, there can only be one master device per list */
7080 	bool master;
7081 
7082 	/* lookup ignore flag */
7083 	bool ignore;
7084 
7085 	/* counter for the number of times this device was added to us */
7086 	u16 ref_nr;
7087 
7088 	/* private field for the users */
7089 	void *private;
7090 
7091 	struct list_head list;
7092 	struct rcu_head rcu;
7093 };
7094 
7095 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7096 						 struct list_head *adj_list)
7097 {
7098 	struct netdev_adjacent *adj;
7099 
7100 	list_for_each_entry(adj, adj_list, list) {
7101 		if (adj->dev == adj_dev)
7102 			return adj;
7103 	}
7104 	return NULL;
7105 }
7106 
7107 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7108 				    struct netdev_nested_priv *priv)
7109 {
7110 	struct net_device *dev = (struct net_device *)priv->data;
7111 
7112 	return upper_dev == dev;
7113 }
7114 
7115 /**
7116  * netdev_has_upper_dev - Check if device is linked to an upper device
7117  * @dev: device
7118  * @upper_dev: upper device to check
7119  *
7120  * Find out if a device is linked to specified upper device and return true
7121  * in case it is. Note that this checks only immediate upper device,
7122  * not through a complete stack of devices. The caller must hold the RTNL lock.
7123  */
7124 bool netdev_has_upper_dev(struct net_device *dev,
7125 			  struct net_device *upper_dev)
7126 {
7127 	struct netdev_nested_priv priv = {
7128 		.data = (void *)upper_dev,
7129 	};
7130 
7131 	ASSERT_RTNL();
7132 
7133 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7134 					     &priv);
7135 }
7136 EXPORT_SYMBOL(netdev_has_upper_dev);
7137 
7138 /**
7139  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7140  * @dev: device
7141  * @upper_dev: upper device to check
7142  *
7143  * Find out if a device is linked to specified upper device and return true
7144  * in case it is. Note that this checks the entire upper device chain.
7145  * The caller must hold rcu lock.
7146  */
7147 
7148 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7149 				  struct net_device *upper_dev)
7150 {
7151 	struct netdev_nested_priv priv = {
7152 		.data = (void *)upper_dev,
7153 	};
7154 
7155 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7156 					       &priv);
7157 }
7158 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7159 
7160 /**
7161  * netdev_has_any_upper_dev - Check if device is linked to some device
7162  * @dev: device
7163  *
7164  * Find out if a device is linked to an upper device and return true in case
7165  * it is. The caller must hold the RTNL lock.
7166  */
7167 bool netdev_has_any_upper_dev(struct net_device *dev)
7168 {
7169 	ASSERT_RTNL();
7170 
7171 	return !list_empty(&dev->adj_list.upper);
7172 }
7173 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7174 
7175 /**
7176  * netdev_master_upper_dev_get - Get master upper device
7177  * @dev: device
7178  *
7179  * Find a master upper device and return pointer to it or NULL in case
7180  * it's not there. The caller must hold the RTNL lock.
7181  */
7182 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7183 {
7184 	struct netdev_adjacent *upper;
7185 
7186 	ASSERT_RTNL();
7187 
7188 	if (list_empty(&dev->adj_list.upper))
7189 		return NULL;
7190 
7191 	upper = list_first_entry(&dev->adj_list.upper,
7192 				 struct netdev_adjacent, list);
7193 	if (likely(upper->master))
7194 		return upper->dev;
7195 	return NULL;
7196 }
7197 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7198 
7199 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7200 {
7201 	struct netdev_adjacent *upper;
7202 
7203 	ASSERT_RTNL();
7204 
7205 	if (list_empty(&dev->adj_list.upper))
7206 		return NULL;
7207 
7208 	upper = list_first_entry(&dev->adj_list.upper,
7209 				 struct netdev_adjacent, list);
7210 	if (likely(upper->master) && !upper->ignore)
7211 		return upper->dev;
7212 	return NULL;
7213 }
7214 
7215 /**
7216  * netdev_has_any_lower_dev - Check if device is linked to some device
7217  * @dev: device
7218  *
7219  * Find out if a device is linked to a lower device and return true in case
7220  * it is. The caller must hold the RTNL lock.
7221  */
7222 static bool netdev_has_any_lower_dev(struct net_device *dev)
7223 {
7224 	ASSERT_RTNL();
7225 
7226 	return !list_empty(&dev->adj_list.lower);
7227 }
7228 
7229 void *netdev_adjacent_get_private(struct list_head *adj_list)
7230 {
7231 	struct netdev_adjacent *adj;
7232 
7233 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7234 
7235 	return adj->private;
7236 }
7237 EXPORT_SYMBOL(netdev_adjacent_get_private);
7238 
7239 /**
7240  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7241  * @dev: device
7242  * @iter: list_head ** of the current position
7243  *
7244  * Gets the next device from the dev's upper list, starting from iter
7245  * position. The caller must hold RCU read lock.
7246  */
7247 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7248 						 struct list_head **iter)
7249 {
7250 	struct netdev_adjacent *upper;
7251 
7252 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7253 
7254 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7255 
7256 	if (&upper->list == &dev->adj_list.upper)
7257 		return NULL;
7258 
7259 	*iter = &upper->list;
7260 
7261 	return upper->dev;
7262 }
7263 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7264 
7265 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7266 						  struct list_head **iter,
7267 						  bool *ignore)
7268 {
7269 	struct netdev_adjacent *upper;
7270 
7271 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7272 
7273 	if (&upper->list == &dev->adj_list.upper)
7274 		return NULL;
7275 
7276 	*iter = &upper->list;
7277 	*ignore = upper->ignore;
7278 
7279 	return upper->dev;
7280 }
7281 
7282 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7283 						    struct list_head **iter)
7284 {
7285 	struct netdev_adjacent *upper;
7286 
7287 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7288 
7289 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7290 
7291 	if (&upper->list == &dev->adj_list.upper)
7292 		return NULL;
7293 
7294 	*iter = &upper->list;
7295 
7296 	return upper->dev;
7297 }
7298 
7299 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7300 				       int (*fn)(struct net_device *dev,
7301 					 struct netdev_nested_priv *priv),
7302 				       struct netdev_nested_priv *priv)
7303 {
7304 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7305 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7306 	int ret, cur = 0;
7307 	bool ignore;
7308 
7309 	now = dev;
7310 	iter = &dev->adj_list.upper;
7311 
7312 	while (1) {
7313 		if (now != dev) {
7314 			ret = fn(now, priv);
7315 			if (ret)
7316 				return ret;
7317 		}
7318 
7319 		next = NULL;
7320 		while (1) {
7321 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7322 			if (!udev)
7323 				break;
7324 			if (ignore)
7325 				continue;
7326 
7327 			next = udev;
7328 			niter = &udev->adj_list.upper;
7329 			dev_stack[cur] = now;
7330 			iter_stack[cur++] = iter;
7331 			break;
7332 		}
7333 
7334 		if (!next) {
7335 			if (!cur)
7336 				return 0;
7337 			next = dev_stack[--cur];
7338 			niter = iter_stack[cur];
7339 		}
7340 
7341 		now = next;
7342 		iter = niter;
7343 	}
7344 
7345 	return 0;
7346 }
7347 
7348 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7349 				  int (*fn)(struct net_device *dev,
7350 					    struct netdev_nested_priv *priv),
7351 				  struct netdev_nested_priv *priv)
7352 {
7353 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7354 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7355 	int ret, cur = 0;
7356 
7357 	now = dev;
7358 	iter = &dev->adj_list.upper;
7359 
7360 	while (1) {
7361 		if (now != dev) {
7362 			ret = fn(now, priv);
7363 			if (ret)
7364 				return ret;
7365 		}
7366 
7367 		next = NULL;
7368 		while (1) {
7369 			udev = netdev_next_upper_dev_rcu(now, &iter);
7370 			if (!udev)
7371 				break;
7372 
7373 			next = udev;
7374 			niter = &udev->adj_list.upper;
7375 			dev_stack[cur] = now;
7376 			iter_stack[cur++] = iter;
7377 			break;
7378 		}
7379 
7380 		if (!next) {
7381 			if (!cur)
7382 				return 0;
7383 			next = dev_stack[--cur];
7384 			niter = iter_stack[cur];
7385 		}
7386 
7387 		now = next;
7388 		iter = niter;
7389 	}
7390 
7391 	return 0;
7392 }
7393 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7394 
7395 static bool __netdev_has_upper_dev(struct net_device *dev,
7396 				   struct net_device *upper_dev)
7397 {
7398 	struct netdev_nested_priv priv = {
7399 		.flags = 0,
7400 		.data = (void *)upper_dev,
7401 	};
7402 
7403 	ASSERT_RTNL();
7404 
7405 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7406 					   &priv);
7407 }
7408 
7409 /**
7410  * netdev_lower_get_next_private - Get the next ->private from the
7411  *				   lower neighbour list
7412  * @dev: device
7413  * @iter: list_head ** of the current position
7414  *
7415  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7416  * list, starting from iter position. The caller must hold either hold the
7417  * RTNL lock or its own locking that guarantees that the neighbour lower
7418  * list will remain unchanged.
7419  */
7420 void *netdev_lower_get_next_private(struct net_device *dev,
7421 				    struct list_head **iter)
7422 {
7423 	struct netdev_adjacent *lower;
7424 
7425 	lower = list_entry(*iter, struct netdev_adjacent, list);
7426 
7427 	if (&lower->list == &dev->adj_list.lower)
7428 		return NULL;
7429 
7430 	*iter = lower->list.next;
7431 
7432 	return lower->private;
7433 }
7434 EXPORT_SYMBOL(netdev_lower_get_next_private);
7435 
7436 /**
7437  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7438  *				       lower neighbour list, RCU
7439  *				       variant
7440  * @dev: device
7441  * @iter: list_head ** of the current position
7442  *
7443  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7444  * list, starting from iter position. The caller must hold RCU read lock.
7445  */
7446 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7447 					struct list_head **iter)
7448 {
7449 	struct netdev_adjacent *lower;
7450 
7451 	WARN_ON_ONCE(!rcu_read_lock_held());
7452 
7453 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7454 
7455 	if (&lower->list == &dev->adj_list.lower)
7456 		return NULL;
7457 
7458 	*iter = &lower->list;
7459 
7460 	return lower->private;
7461 }
7462 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7463 
7464 /**
7465  * netdev_lower_get_next - Get the next device from the lower neighbour
7466  *                         list
7467  * @dev: device
7468  * @iter: list_head ** of the current position
7469  *
7470  * Gets the next netdev_adjacent from the dev's lower neighbour
7471  * list, starting from iter position. The caller must hold RTNL lock or
7472  * its own locking that guarantees that the neighbour lower
7473  * list will remain unchanged.
7474  */
7475 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7476 {
7477 	struct netdev_adjacent *lower;
7478 
7479 	lower = list_entry(*iter, struct netdev_adjacent, list);
7480 
7481 	if (&lower->list == &dev->adj_list.lower)
7482 		return NULL;
7483 
7484 	*iter = lower->list.next;
7485 
7486 	return lower->dev;
7487 }
7488 EXPORT_SYMBOL(netdev_lower_get_next);
7489 
7490 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7491 						struct list_head **iter)
7492 {
7493 	struct netdev_adjacent *lower;
7494 
7495 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7496 
7497 	if (&lower->list == &dev->adj_list.lower)
7498 		return NULL;
7499 
7500 	*iter = &lower->list;
7501 
7502 	return lower->dev;
7503 }
7504 
7505 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7506 						  struct list_head **iter,
7507 						  bool *ignore)
7508 {
7509 	struct netdev_adjacent *lower;
7510 
7511 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7512 
7513 	if (&lower->list == &dev->adj_list.lower)
7514 		return NULL;
7515 
7516 	*iter = &lower->list;
7517 	*ignore = lower->ignore;
7518 
7519 	return lower->dev;
7520 }
7521 
7522 int netdev_walk_all_lower_dev(struct net_device *dev,
7523 			      int (*fn)(struct net_device *dev,
7524 					struct netdev_nested_priv *priv),
7525 			      struct netdev_nested_priv *priv)
7526 {
7527 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7528 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7529 	int ret, cur = 0;
7530 
7531 	now = dev;
7532 	iter = &dev->adj_list.lower;
7533 
7534 	while (1) {
7535 		if (now != dev) {
7536 			ret = fn(now, priv);
7537 			if (ret)
7538 				return ret;
7539 		}
7540 
7541 		next = NULL;
7542 		while (1) {
7543 			ldev = netdev_next_lower_dev(now, &iter);
7544 			if (!ldev)
7545 				break;
7546 
7547 			next = ldev;
7548 			niter = &ldev->adj_list.lower;
7549 			dev_stack[cur] = now;
7550 			iter_stack[cur++] = iter;
7551 			break;
7552 		}
7553 
7554 		if (!next) {
7555 			if (!cur)
7556 				return 0;
7557 			next = dev_stack[--cur];
7558 			niter = iter_stack[cur];
7559 		}
7560 
7561 		now = next;
7562 		iter = niter;
7563 	}
7564 
7565 	return 0;
7566 }
7567 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7568 
7569 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7570 				       int (*fn)(struct net_device *dev,
7571 					 struct netdev_nested_priv *priv),
7572 				       struct netdev_nested_priv *priv)
7573 {
7574 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7575 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7576 	int ret, cur = 0;
7577 	bool ignore;
7578 
7579 	now = dev;
7580 	iter = &dev->adj_list.lower;
7581 
7582 	while (1) {
7583 		if (now != dev) {
7584 			ret = fn(now, priv);
7585 			if (ret)
7586 				return ret;
7587 		}
7588 
7589 		next = NULL;
7590 		while (1) {
7591 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7592 			if (!ldev)
7593 				break;
7594 			if (ignore)
7595 				continue;
7596 
7597 			next = ldev;
7598 			niter = &ldev->adj_list.lower;
7599 			dev_stack[cur] = now;
7600 			iter_stack[cur++] = iter;
7601 			break;
7602 		}
7603 
7604 		if (!next) {
7605 			if (!cur)
7606 				return 0;
7607 			next = dev_stack[--cur];
7608 			niter = iter_stack[cur];
7609 		}
7610 
7611 		now = next;
7612 		iter = niter;
7613 	}
7614 
7615 	return 0;
7616 }
7617 
7618 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7619 					     struct list_head **iter)
7620 {
7621 	struct netdev_adjacent *lower;
7622 
7623 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7624 	if (&lower->list == &dev->adj_list.lower)
7625 		return NULL;
7626 
7627 	*iter = &lower->list;
7628 
7629 	return lower->dev;
7630 }
7631 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7632 
7633 static u8 __netdev_upper_depth(struct net_device *dev)
7634 {
7635 	struct net_device *udev;
7636 	struct list_head *iter;
7637 	u8 max_depth = 0;
7638 	bool ignore;
7639 
7640 	for (iter = &dev->adj_list.upper,
7641 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7642 	     udev;
7643 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7644 		if (ignore)
7645 			continue;
7646 		if (max_depth < udev->upper_level)
7647 			max_depth = udev->upper_level;
7648 	}
7649 
7650 	return max_depth;
7651 }
7652 
7653 static u8 __netdev_lower_depth(struct net_device *dev)
7654 {
7655 	struct net_device *ldev;
7656 	struct list_head *iter;
7657 	u8 max_depth = 0;
7658 	bool ignore;
7659 
7660 	for (iter = &dev->adj_list.lower,
7661 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7662 	     ldev;
7663 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7664 		if (ignore)
7665 			continue;
7666 		if (max_depth < ldev->lower_level)
7667 			max_depth = ldev->lower_level;
7668 	}
7669 
7670 	return max_depth;
7671 }
7672 
7673 static int __netdev_update_upper_level(struct net_device *dev,
7674 				       struct netdev_nested_priv *__unused)
7675 {
7676 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7677 	return 0;
7678 }
7679 
7680 static int __netdev_update_lower_level(struct net_device *dev,
7681 				       struct netdev_nested_priv *priv)
7682 {
7683 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7684 
7685 #ifdef CONFIG_LOCKDEP
7686 	if (!priv)
7687 		return 0;
7688 
7689 	if (priv->flags & NESTED_SYNC_IMM)
7690 		dev->nested_level = dev->lower_level - 1;
7691 	if (priv->flags & NESTED_SYNC_TODO)
7692 		net_unlink_todo(dev);
7693 #endif
7694 	return 0;
7695 }
7696 
7697 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7698 				  int (*fn)(struct net_device *dev,
7699 					    struct netdev_nested_priv *priv),
7700 				  struct netdev_nested_priv *priv)
7701 {
7702 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7703 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7704 	int ret, cur = 0;
7705 
7706 	now = dev;
7707 	iter = &dev->adj_list.lower;
7708 
7709 	while (1) {
7710 		if (now != dev) {
7711 			ret = fn(now, priv);
7712 			if (ret)
7713 				return ret;
7714 		}
7715 
7716 		next = NULL;
7717 		while (1) {
7718 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7719 			if (!ldev)
7720 				break;
7721 
7722 			next = ldev;
7723 			niter = &ldev->adj_list.lower;
7724 			dev_stack[cur] = now;
7725 			iter_stack[cur++] = iter;
7726 			break;
7727 		}
7728 
7729 		if (!next) {
7730 			if (!cur)
7731 				return 0;
7732 			next = dev_stack[--cur];
7733 			niter = iter_stack[cur];
7734 		}
7735 
7736 		now = next;
7737 		iter = niter;
7738 	}
7739 
7740 	return 0;
7741 }
7742 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7743 
7744 /**
7745  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7746  *				       lower neighbour list, RCU
7747  *				       variant
7748  * @dev: device
7749  *
7750  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7751  * list. The caller must hold RCU read lock.
7752  */
7753 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7754 {
7755 	struct netdev_adjacent *lower;
7756 
7757 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7758 			struct netdev_adjacent, list);
7759 	if (lower)
7760 		return lower->private;
7761 	return NULL;
7762 }
7763 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7764 
7765 /**
7766  * netdev_master_upper_dev_get_rcu - Get master upper device
7767  * @dev: device
7768  *
7769  * Find a master upper device and return pointer to it or NULL in case
7770  * it's not there. The caller must hold the RCU read lock.
7771  */
7772 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7773 {
7774 	struct netdev_adjacent *upper;
7775 
7776 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7777 				       struct netdev_adjacent, list);
7778 	if (upper && likely(upper->master))
7779 		return upper->dev;
7780 	return NULL;
7781 }
7782 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7783 
7784 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7785 			      struct net_device *adj_dev,
7786 			      struct list_head *dev_list)
7787 {
7788 	char linkname[IFNAMSIZ+7];
7789 
7790 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7791 		"upper_%s" : "lower_%s", adj_dev->name);
7792 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7793 				 linkname);
7794 }
7795 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7796 			       char *name,
7797 			       struct list_head *dev_list)
7798 {
7799 	char linkname[IFNAMSIZ+7];
7800 
7801 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7802 		"upper_%s" : "lower_%s", name);
7803 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7804 }
7805 
7806 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7807 						 struct net_device *adj_dev,
7808 						 struct list_head *dev_list)
7809 {
7810 	return (dev_list == &dev->adj_list.upper ||
7811 		dev_list == &dev->adj_list.lower) &&
7812 		net_eq(dev_net(dev), dev_net(adj_dev));
7813 }
7814 
7815 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7816 					struct net_device *adj_dev,
7817 					struct list_head *dev_list,
7818 					void *private, bool master)
7819 {
7820 	struct netdev_adjacent *adj;
7821 	int ret;
7822 
7823 	adj = __netdev_find_adj(adj_dev, dev_list);
7824 
7825 	if (adj) {
7826 		adj->ref_nr += 1;
7827 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7828 			 dev->name, adj_dev->name, adj->ref_nr);
7829 
7830 		return 0;
7831 	}
7832 
7833 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7834 	if (!adj)
7835 		return -ENOMEM;
7836 
7837 	adj->dev = adj_dev;
7838 	adj->master = master;
7839 	adj->ref_nr = 1;
7840 	adj->private = private;
7841 	adj->ignore = false;
7842 	dev_hold(adj_dev);
7843 
7844 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7845 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7846 
7847 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7848 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7849 		if (ret)
7850 			goto free_adj;
7851 	}
7852 
7853 	/* Ensure that master link is always the first item in list. */
7854 	if (master) {
7855 		ret = sysfs_create_link(&(dev->dev.kobj),
7856 					&(adj_dev->dev.kobj), "master");
7857 		if (ret)
7858 			goto remove_symlinks;
7859 
7860 		list_add_rcu(&adj->list, dev_list);
7861 	} else {
7862 		list_add_tail_rcu(&adj->list, dev_list);
7863 	}
7864 
7865 	return 0;
7866 
7867 remove_symlinks:
7868 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7869 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7870 free_adj:
7871 	kfree(adj);
7872 	dev_put(adj_dev);
7873 
7874 	return ret;
7875 }
7876 
7877 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7878 					 struct net_device *adj_dev,
7879 					 u16 ref_nr,
7880 					 struct list_head *dev_list)
7881 {
7882 	struct netdev_adjacent *adj;
7883 
7884 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7885 		 dev->name, adj_dev->name, ref_nr);
7886 
7887 	adj = __netdev_find_adj(adj_dev, dev_list);
7888 
7889 	if (!adj) {
7890 		pr_err("Adjacency does not exist for device %s from %s\n",
7891 		       dev->name, adj_dev->name);
7892 		WARN_ON(1);
7893 		return;
7894 	}
7895 
7896 	if (adj->ref_nr > ref_nr) {
7897 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7898 			 dev->name, adj_dev->name, ref_nr,
7899 			 adj->ref_nr - ref_nr);
7900 		adj->ref_nr -= ref_nr;
7901 		return;
7902 	}
7903 
7904 	if (adj->master)
7905 		sysfs_remove_link(&(dev->dev.kobj), "master");
7906 
7907 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7908 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7909 
7910 	list_del_rcu(&adj->list);
7911 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7912 		 adj_dev->name, dev->name, adj_dev->name);
7913 	dev_put(adj_dev);
7914 	kfree_rcu(adj, rcu);
7915 }
7916 
7917 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7918 					    struct net_device *upper_dev,
7919 					    struct list_head *up_list,
7920 					    struct list_head *down_list,
7921 					    void *private, bool master)
7922 {
7923 	int ret;
7924 
7925 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7926 					   private, master);
7927 	if (ret)
7928 		return ret;
7929 
7930 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7931 					   private, false);
7932 	if (ret) {
7933 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7934 		return ret;
7935 	}
7936 
7937 	return 0;
7938 }
7939 
7940 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7941 					       struct net_device *upper_dev,
7942 					       u16 ref_nr,
7943 					       struct list_head *up_list,
7944 					       struct list_head *down_list)
7945 {
7946 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7947 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7948 }
7949 
7950 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7951 						struct net_device *upper_dev,
7952 						void *private, bool master)
7953 {
7954 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7955 						&dev->adj_list.upper,
7956 						&upper_dev->adj_list.lower,
7957 						private, master);
7958 }
7959 
7960 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7961 						   struct net_device *upper_dev)
7962 {
7963 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7964 					   &dev->adj_list.upper,
7965 					   &upper_dev->adj_list.lower);
7966 }
7967 
7968 static int __netdev_upper_dev_link(struct net_device *dev,
7969 				   struct net_device *upper_dev, bool master,
7970 				   void *upper_priv, void *upper_info,
7971 				   struct netdev_nested_priv *priv,
7972 				   struct netlink_ext_ack *extack)
7973 {
7974 	struct netdev_notifier_changeupper_info changeupper_info = {
7975 		.info = {
7976 			.dev = dev,
7977 			.extack = extack,
7978 		},
7979 		.upper_dev = upper_dev,
7980 		.master = master,
7981 		.linking = true,
7982 		.upper_info = upper_info,
7983 	};
7984 	struct net_device *master_dev;
7985 	int ret = 0;
7986 
7987 	ASSERT_RTNL();
7988 
7989 	if (dev == upper_dev)
7990 		return -EBUSY;
7991 
7992 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7993 	if (__netdev_has_upper_dev(upper_dev, dev))
7994 		return -EBUSY;
7995 
7996 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7997 		return -EMLINK;
7998 
7999 	if (!master) {
8000 		if (__netdev_has_upper_dev(dev, upper_dev))
8001 			return -EEXIST;
8002 	} else {
8003 		master_dev = __netdev_master_upper_dev_get(dev);
8004 		if (master_dev)
8005 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8006 	}
8007 
8008 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8009 					    &changeupper_info.info);
8010 	ret = notifier_to_errno(ret);
8011 	if (ret)
8012 		return ret;
8013 
8014 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8015 						   master);
8016 	if (ret)
8017 		return ret;
8018 
8019 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8020 					    &changeupper_info.info);
8021 	ret = notifier_to_errno(ret);
8022 	if (ret)
8023 		goto rollback;
8024 
8025 	__netdev_update_upper_level(dev, NULL);
8026 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8027 
8028 	__netdev_update_lower_level(upper_dev, priv);
8029 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8030 				    priv);
8031 
8032 	return 0;
8033 
8034 rollback:
8035 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8036 
8037 	return ret;
8038 }
8039 
8040 /**
8041  * netdev_upper_dev_link - Add a link to the upper device
8042  * @dev: device
8043  * @upper_dev: new upper device
8044  * @extack: netlink extended ack
8045  *
8046  * Adds a link to device which is upper to this one. The caller must hold
8047  * the RTNL lock. On a failure a negative errno code is returned.
8048  * On success the reference counts are adjusted and the function
8049  * returns zero.
8050  */
8051 int netdev_upper_dev_link(struct net_device *dev,
8052 			  struct net_device *upper_dev,
8053 			  struct netlink_ext_ack *extack)
8054 {
8055 	struct netdev_nested_priv priv = {
8056 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8057 		.data = NULL,
8058 	};
8059 
8060 	return __netdev_upper_dev_link(dev, upper_dev, false,
8061 				       NULL, NULL, &priv, extack);
8062 }
8063 EXPORT_SYMBOL(netdev_upper_dev_link);
8064 
8065 /**
8066  * netdev_master_upper_dev_link - Add a master link to the upper device
8067  * @dev: device
8068  * @upper_dev: new upper device
8069  * @upper_priv: upper device private
8070  * @upper_info: upper info to be passed down via notifier
8071  * @extack: netlink extended ack
8072  *
8073  * Adds a link to device which is upper to this one. In this case, only
8074  * one master upper device can be linked, although other non-master devices
8075  * might be linked as well. The caller must hold the RTNL lock.
8076  * On a failure a negative errno code is returned. On success the reference
8077  * counts are adjusted and the function returns zero.
8078  */
8079 int netdev_master_upper_dev_link(struct net_device *dev,
8080 				 struct net_device *upper_dev,
8081 				 void *upper_priv, void *upper_info,
8082 				 struct netlink_ext_ack *extack)
8083 {
8084 	struct netdev_nested_priv priv = {
8085 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8086 		.data = NULL,
8087 	};
8088 
8089 	return __netdev_upper_dev_link(dev, upper_dev, true,
8090 				       upper_priv, upper_info, &priv, extack);
8091 }
8092 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8093 
8094 static void __netdev_upper_dev_unlink(struct net_device *dev,
8095 				      struct net_device *upper_dev,
8096 				      struct netdev_nested_priv *priv)
8097 {
8098 	struct netdev_notifier_changeupper_info changeupper_info = {
8099 		.info = {
8100 			.dev = dev,
8101 		},
8102 		.upper_dev = upper_dev,
8103 		.linking = false,
8104 	};
8105 
8106 	ASSERT_RTNL();
8107 
8108 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8109 
8110 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8111 				      &changeupper_info.info);
8112 
8113 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8114 
8115 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8116 				      &changeupper_info.info);
8117 
8118 	__netdev_update_upper_level(dev, NULL);
8119 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8120 
8121 	__netdev_update_lower_level(upper_dev, priv);
8122 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8123 				    priv);
8124 }
8125 
8126 /**
8127  * netdev_upper_dev_unlink - Removes a link to upper device
8128  * @dev: device
8129  * @upper_dev: new upper device
8130  *
8131  * Removes a link to device which is upper to this one. The caller must hold
8132  * the RTNL lock.
8133  */
8134 void netdev_upper_dev_unlink(struct net_device *dev,
8135 			     struct net_device *upper_dev)
8136 {
8137 	struct netdev_nested_priv priv = {
8138 		.flags = NESTED_SYNC_TODO,
8139 		.data = NULL,
8140 	};
8141 
8142 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8143 }
8144 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8145 
8146 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8147 				      struct net_device *lower_dev,
8148 				      bool val)
8149 {
8150 	struct netdev_adjacent *adj;
8151 
8152 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8153 	if (adj)
8154 		adj->ignore = val;
8155 
8156 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8157 	if (adj)
8158 		adj->ignore = val;
8159 }
8160 
8161 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8162 					struct net_device *lower_dev)
8163 {
8164 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8165 }
8166 
8167 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8168 				       struct net_device *lower_dev)
8169 {
8170 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8171 }
8172 
8173 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8174 				   struct net_device *new_dev,
8175 				   struct net_device *dev,
8176 				   struct netlink_ext_ack *extack)
8177 {
8178 	struct netdev_nested_priv priv = {
8179 		.flags = 0,
8180 		.data = NULL,
8181 	};
8182 	int err;
8183 
8184 	if (!new_dev)
8185 		return 0;
8186 
8187 	if (old_dev && new_dev != old_dev)
8188 		netdev_adjacent_dev_disable(dev, old_dev);
8189 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8190 				      extack);
8191 	if (err) {
8192 		if (old_dev && new_dev != old_dev)
8193 			netdev_adjacent_dev_enable(dev, old_dev);
8194 		return err;
8195 	}
8196 
8197 	return 0;
8198 }
8199 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8200 
8201 void netdev_adjacent_change_commit(struct net_device *old_dev,
8202 				   struct net_device *new_dev,
8203 				   struct net_device *dev)
8204 {
8205 	struct netdev_nested_priv priv = {
8206 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8207 		.data = NULL,
8208 	};
8209 
8210 	if (!new_dev || !old_dev)
8211 		return;
8212 
8213 	if (new_dev == old_dev)
8214 		return;
8215 
8216 	netdev_adjacent_dev_enable(dev, old_dev);
8217 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8218 }
8219 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8220 
8221 void netdev_adjacent_change_abort(struct net_device *old_dev,
8222 				  struct net_device *new_dev,
8223 				  struct net_device *dev)
8224 {
8225 	struct netdev_nested_priv priv = {
8226 		.flags = 0,
8227 		.data = NULL,
8228 	};
8229 
8230 	if (!new_dev)
8231 		return;
8232 
8233 	if (old_dev && new_dev != old_dev)
8234 		netdev_adjacent_dev_enable(dev, old_dev);
8235 
8236 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8237 }
8238 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8239 
8240 /**
8241  * netdev_bonding_info_change - Dispatch event about slave change
8242  * @dev: device
8243  * @bonding_info: info to dispatch
8244  *
8245  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8246  * The caller must hold the RTNL lock.
8247  */
8248 void netdev_bonding_info_change(struct net_device *dev,
8249 				struct netdev_bonding_info *bonding_info)
8250 {
8251 	struct netdev_notifier_bonding_info info = {
8252 		.info.dev = dev,
8253 	};
8254 
8255 	memcpy(&info.bonding_info, bonding_info,
8256 	       sizeof(struct netdev_bonding_info));
8257 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8258 				      &info.info);
8259 }
8260 EXPORT_SYMBOL(netdev_bonding_info_change);
8261 
8262 /**
8263  * netdev_get_xmit_slave - Get the xmit slave of master device
8264  * @dev: device
8265  * @skb: The packet
8266  * @all_slaves: assume all the slaves are active
8267  *
8268  * The reference counters are not incremented so the caller must be
8269  * careful with locks. The caller must hold RCU lock.
8270  * %NULL is returned if no slave is found.
8271  */
8272 
8273 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8274 					 struct sk_buff *skb,
8275 					 bool all_slaves)
8276 {
8277 	const struct net_device_ops *ops = dev->netdev_ops;
8278 
8279 	if (!ops->ndo_get_xmit_slave)
8280 		return NULL;
8281 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8282 }
8283 EXPORT_SYMBOL(netdev_get_xmit_slave);
8284 
8285 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8286 						  struct sock *sk)
8287 {
8288 	const struct net_device_ops *ops = dev->netdev_ops;
8289 
8290 	if (!ops->ndo_sk_get_lower_dev)
8291 		return NULL;
8292 	return ops->ndo_sk_get_lower_dev(dev, sk);
8293 }
8294 
8295 /**
8296  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8297  * @dev: device
8298  * @sk: the socket
8299  *
8300  * %NULL is returned if no lower device is found.
8301  */
8302 
8303 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8304 					    struct sock *sk)
8305 {
8306 	struct net_device *lower;
8307 
8308 	lower = netdev_sk_get_lower_dev(dev, sk);
8309 	while (lower) {
8310 		dev = lower;
8311 		lower = netdev_sk_get_lower_dev(dev, sk);
8312 	}
8313 
8314 	return dev;
8315 }
8316 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8317 
8318 static void netdev_adjacent_add_links(struct net_device *dev)
8319 {
8320 	struct netdev_adjacent *iter;
8321 
8322 	struct net *net = dev_net(dev);
8323 
8324 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8325 		if (!net_eq(net, dev_net(iter->dev)))
8326 			continue;
8327 		netdev_adjacent_sysfs_add(iter->dev, dev,
8328 					  &iter->dev->adj_list.lower);
8329 		netdev_adjacent_sysfs_add(dev, iter->dev,
8330 					  &dev->adj_list.upper);
8331 	}
8332 
8333 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8334 		if (!net_eq(net, dev_net(iter->dev)))
8335 			continue;
8336 		netdev_adjacent_sysfs_add(iter->dev, dev,
8337 					  &iter->dev->adj_list.upper);
8338 		netdev_adjacent_sysfs_add(dev, iter->dev,
8339 					  &dev->adj_list.lower);
8340 	}
8341 }
8342 
8343 static void netdev_adjacent_del_links(struct net_device *dev)
8344 {
8345 	struct netdev_adjacent *iter;
8346 
8347 	struct net *net = dev_net(dev);
8348 
8349 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8350 		if (!net_eq(net, dev_net(iter->dev)))
8351 			continue;
8352 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8353 					  &iter->dev->adj_list.lower);
8354 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8355 					  &dev->adj_list.upper);
8356 	}
8357 
8358 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8359 		if (!net_eq(net, dev_net(iter->dev)))
8360 			continue;
8361 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8362 					  &iter->dev->adj_list.upper);
8363 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8364 					  &dev->adj_list.lower);
8365 	}
8366 }
8367 
8368 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8369 {
8370 	struct netdev_adjacent *iter;
8371 
8372 	struct net *net = dev_net(dev);
8373 
8374 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8375 		if (!net_eq(net, dev_net(iter->dev)))
8376 			continue;
8377 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8378 					  &iter->dev->adj_list.lower);
8379 		netdev_adjacent_sysfs_add(iter->dev, dev,
8380 					  &iter->dev->adj_list.lower);
8381 	}
8382 
8383 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8384 		if (!net_eq(net, dev_net(iter->dev)))
8385 			continue;
8386 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8387 					  &iter->dev->adj_list.upper);
8388 		netdev_adjacent_sysfs_add(iter->dev, dev,
8389 					  &iter->dev->adj_list.upper);
8390 	}
8391 }
8392 
8393 void *netdev_lower_dev_get_private(struct net_device *dev,
8394 				   struct net_device *lower_dev)
8395 {
8396 	struct netdev_adjacent *lower;
8397 
8398 	if (!lower_dev)
8399 		return NULL;
8400 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8401 	if (!lower)
8402 		return NULL;
8403 
8404 	return lower->private;
8405 }
8406 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8407 
8408 
8409 /**
8410  * netdev_lower_state_changed - Dispatch event about lower device state change
8411  * @lower_dev: device
8412  * @lower_state_info: state to dispatch
8413  *
8414  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8415  * The caller must hold the RTNL lock.
8416  */
8417 void netdev_lower_state_changed(struct net_device *lower_dev,
8418 				void *lower_state_info)
8419 {
8420 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8421 		.info.dev = lower_dev,
8422 	};
8423 
8424 	ASSERT_RTNL();
8425 	changelowerstate_info.lower_state_info = lower_state_info;
8426 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8427 				      &changelowerstate_info.info);
8428 }
8429 EXPORT_SYMBOL(netdev_lower_state_changed);
8430 
8431 static void dev_change_rx_flags(struct net_device *dev, int flags)
8432 {
8433 	const struct net_device_ops *ops = dev->netdev_ops;
8434 
8435 	if (ops->ndo_change_rx_flags)
8436 		ops->ndo_change_rx_flags(dev, flags);
8437 }
8438 
8439 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8440 {
8441 	unsigned int old_flags = dev->flags;
8442 	kuid_t uid;
8443 	kgid_t gid;
8444 
8445 	ASSERT_RTNL();
8446 
8447 	dev->flags |= IFF_PROMISC;
8448 	dev->promiscuity += inc;
8449 	if (dev->promiscuity == 0) {
8450 		/*
8451 		 * Avoid overflow.
8452 		 * If inc causes overflow, untouch promisc and return error.
8453 		 */
8454 		if (inc < 0)
8455 			dev->flags &= ~IFF_PROMISC;
8456 		else {
8457 			dev->promiscuity -= inc;
8458 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8459 				dev->name);
8460 			return -EOVERFLOW;
8461 		}
8462 	}
8463 	if (dev->flags != old_flags) {
8464 		pr_info("device %s %s promiscuous mode\n",
8465 			dev->name,
8466 			dev->flags & IFF_PROMISC ? "entered" : "left");
8467 		if (audit_enabled) {
8468 			current_uid_gid(&uid, &gid);
8469 			audit_log(audit_context(), GFP_ATOMIC,
8470 				  AUDIT_ANOM_PROMISCUOUS,
8471 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8472 				  dev->name, (dev->flags & IFF_PROMISC),
8473 				  (old_flags & IFF_PROMISC),
8474 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8475 				  from_kuid(&init_user_ns, uid),
8476 				  from_kgid(&init_user_ns, gid),
8477 				  audit_get_sessionid(current));
8478 		}
8479 
8480 		dev_change_rx_flags(dev, IFF_PROMISC);
8481 	}
8482 	if (notify)
8483 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8484 	return 0;
8485 }
8486 
8487 /**
8488  *	dev_set_promiscuity	- update promiscuity count on a device
8489  *	@dev: device
8490  *	@inc: modifier
8491  *
8492  *	Add or remove promiscuity from a device. While the count in the device
8493  *	remains above zero the interface remains promiscuous. Once it hits zero
8494  *	the device reverts back to normal filtering operation. A negative inc
8495  *	value is used to drop promiscuity on the device.
8496  *	Return 0 if successful or a negative errno code on error.
8497  */
8498 int dev_set_promiscuity(struct net_device *dev, int inc)
8499 {
8500 	unsigned int old_flags = dev->flags;
8501 	int err;
8502 
8503 	err = __dev_set_promiscuity(dev, inc, true);
8504 	if (err < 0)
8505 		return err;
8506 	if (dev->flags != old_flags)
8507 		dev_set_rx_mode(dev);
8508 	return err;
8509 }
8510 EXPORT_SYMBOL(dev_set_promiscuity);
8511 
8512 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8513 {
8514 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8515 
8516 	ASSERT_RTNL();
8517 
8518 	dev->flags |= IFF_ALLMULTI;
8519 	dev->allmulti += inc;
8520 	if (dev->allmulti == 0) {
8521 		/*
8522 		 * Avoid overflow.
8523 		 * If inc causes overflow, untouch allmulti and return error.
8524 		 */
8525 		if (inc < 0)
8526 			dev->flags &= ~IFF_ALLMULTI;
8527 		else {
8528 			dev->allmulti -= inc;
8529 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8530 				dev->name);
8531 			return -EOVERFLOW;
8532 		}
8533 	}
8534 	if (dev->flags ^ old_flags) {
8535 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8536 		dev_set_rx_mode(dev);
8537 		if (notify)
8538 			__dev_notify_flags(dev, old_flags,
8539 					   dev->gflags ^ old_gflags);
8540 	}
8541 	return 0;
8542 }
8543 
8544 /**
8545  *	dev_set_allmulti	- update allmulti count on a device
8546  *	@dev: device
8547  *	@inc: modifier
8548  *
8549  *	Add or remove reception of all multicast frames to a device. While the
8550  *	count in the device remains above zero the interface remains listening
8551  *	to all interfaces. Once it hits zero the device reverts back to normal
8552  *	filtering operation. A negative @inc value is used to drop the counter
8553  *	when releasing a resource needing all multicasts.
8554  *	Return 0 if successful or a negative errno code on error.
8555  */
8556 
8557 int dev_set_allmulti(struct net_device *dev, int inc)
8558 {
8559 	return __dev_set_allmulti(dev, inc, true);
8560 }
8561 EXPORT_SYMBOL(dev_set_allmulti);
8562 
8563 /*
8564  *	Upload unicast and multicast address lists to device and
8565  *	configure RX filtering. When the device doesn't support unicast
8566  *	filtering it is put in promiscuous mode while unicast addresses
8567  *	are present.
8568  */
8569 void __dev_set_rx_mode(struct net_device *dev)
8570 {
8571 	const struct net_device_ops *ops = dev->netdev_ops;
8572 
8573 	/* dev_open will call this function so the list will stay sane. */
8574 	if (!(dev->flags&IFF_UP))
8575 		return;
8576 
8577 	if (!netif_device_present(dev))
8578 		return;
8579 
8580 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8581 		/* Unicast addresses changes may only happen under the rtnl,
8582 		 * therefore calling __dev_set_promiscuity here is safe.
8583 		 */
8584 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8585 			__dev_set_promiscuity(dev, 1, false);
8586 			dev->uc_promisc = true;
8587 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8588 			__dev_set_promiscuity(dev, -1, false);
8589 			dev->uc_promisc = false;
8590 		}
8591 	}
8592 
8593 	if (ops->ndo_set_rx_mode)
8594 		ops->ndo_set_rx_mode(dev);
8595 }
8596 
8597 void dev_set_rx_mode(struct net_device *dev)
8598 {
8599 	netif_addr_lock_bh(dev);
8600 	__dev_set_rx_mode(dev);
8601 	netif_addr_unlock_bh(dev);
8602 }
8603 
8604 /**
8605  *	dev_get_flags - get flags reported to userspace
8606  *	@dev: device
8607  *
8608  *	Get the combination of flag bits exported through APIs to userspace.
8609  */
8610 unsigned int dev_get_flags(const struct net_device *dev)
8611 {
8612 	unsigned int flags;
8613 
8614 	flags = (dev->flags & ~(IFF_PROMISC |
8615 				IFF_ALLMULTI |
8616 				IFF_RUNNING |
8617 				IFF_LOWER_UP |
8618 				IFF_DORMANT)) |
8619 		(dev->gflags & (IFF_PROMISC |
8620 				IFF_ALLMULTI));
8621 
8622 	if (netif_running(dev)) {
8623 		if (netif_oper_up(dev))
8624 			flags |= IFF_RUNNING;
8625 		if (netif_carrier_ok(dev))
8626 			flags |= IFF_LOWER_UP;
8627 		if (netif_dormant(dev))
8628 			flags |= IFF_DORMANT;
8629 	}
8630 
8631 	return flags;
8632 }
8633 EXPORT_SYMBOL(dev_get_flags);
8634 
8635 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8636 		       struct netlink_ext_ack *extack)
8637 {
8638 	unsigned int old_flags = dev->flags;
8639 	int ret;
8640 
8641 	ASSERT_RTNL();
8642 
8643 	/*
8644 	 *	Set the flags on our device.
8645 	 */
8646 
8647 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8648 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8649 			       IFF_AUTOMEDIA)) |
8650 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8651 				    IFF_ALLMULTI));
8652 
8653 	/*
8654 	 *	Load in the correct multicast list now the flags have changed.
8655 	 */
8656 
8657 	if ((old_flags ^ flags) & IFF_MULTICAST)
8658 		dev_change_rx_flags(dev, IFF_MULTICAST);
8659 
8660 	dev_set_rx_mode(dev);
8661 
8662 	/*
8663 	 *	Have we downed the interface. We handle IFF_UP ourselves
8664 	 *	according to user attempts to set it, rather than blindly
8665 	 *	setting it.
8666 	 */
8667 
8668 	ret = 0;
8669 	if ((old_flags ^ flags) & IFF_UP) {
8670 		if (old_flags & IFF_UP)
8671 			__dev_close(dev);
8672 		else
8673 			ret = __dev_open(dev, extack);
8674 	}
8675 
8676 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8677 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8678 		unsigned int old_flags = dev->flags;
8679 
8680 		dev->gflags ^= IFF_PROMISC;
8681 
8682 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8683 			if (dev->flags != old_flags)
8684 				dev_set_rx_mode(dev);
8685 	}
8686 
8687 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8688 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8689 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8690 	 */
8691 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8692 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8693 
8694 		dev->gflags ^= IFF_ALLMULTI;
8695 		__dev_set_allmulti(dev, inc, false);
8696 	}
8697 
8698 	return ret;
8699 }
8700 
8701 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8702 			unsigned int gchanges)
8703 {
8704 	unsigned int changes = dev->flags ^ old_flags;
8705 
8706 	if (gchanges)
8707 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8708 
8709 	if (changes & IFF_UP) {
8710 		if (dev->flags & IFF_UP)
8711 			call_netdevice_notifiers(NETDEV_UP, dev);
8712 		else
8713 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8714 	}
8715 
8716 	if (dev->flags & IFF_UP &&
8717 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8718 		struct netdev_notifier_change_info change_info = {
8719 			.info = {
8720 				.dev = dev,
8721 			},
8722 			.flags_changed = changes,
8723 		};
8724 
8725 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8726 	}
8727 }
8728 
8729 /**
8730  *	dev_change_flags - change device settings
8731  *	@dev: device
8732  *	@flags: device state flags
8733  *	@extack: netlink extended ack
8734  *
8735  *	Change settings on device based state flags. The flags are
8736  *	in the userspace exported format.
8737  */
8738 int dev_change_flags(struct net_device *dev, unsigned int flags,
8739 		     struct netlink_ext_ack *extack)
8740 {
8741 	int ret;
8742 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8743 
8744 	ret = __dev_change_flags(dev, flags, extack);
8745 	if (ret < 0)
8746 		return ret;
8747 
8748 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8749 	__dev_notify_flags(dev, old_flags, changes);
8750 	return ret;
8751 }
8752 EXPORT_SYMBOL(dev_change_flags);
8753 
8754 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8755 {
8756 	const struct net_device_ops *ops = dev->netdev_ops;
8757 
8758 	if (ops->ndo_change_mtu)
8759 		return ops->ndo_change_mtu(dev, new_mtu);
8760 
8761 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8762 	WRITE_ONCE(dev->mtu, new_mtu);
8763 	return 0;
8764 }
8765 EXPORT_SYMBOL(__dev_set_mtu);
8766 
8767 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8768 		     struct netlink_ext_ack *extack)
8769 {
8770 	/* MTU must be positive, and in range */
8771 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8772 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8773 		return -EINVAL;
8774 	}
8775 
8776 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8777 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8778 		return -EINVAL;
8779 	}
8780 	return 0;
8781 }
8782 
8783 /**
8784  *	dev_set_mtu_ext - Change maximum transfer unit
8785  *	@dev: device
8786  *	@new_mtu: new transfer unit
8787  *	@extack: netlink extended ack
8788  *
8789  *	Change the maximum transfer size of the network device.
8790  */
8791 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8792 		    struct netlink_ext_ack *extack)
8793 {
8794 	int err, orig_mtu;
8795 
8796 	if (new_mtu == dev->mtu)
8797 		return 0;
8798 
8799 	err = dev_validate_mtu(dev, new_mtu, extack);
8800 	if (err)
8801 		return err;
8802 
8803 	if (!netif_device_present(dev))
8804 		return -ENODEV;
8805 
8806 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8807 	err = notifier_to_errno(err);
8808 	if (err)
8809 		return err;
8810 
8811 	orig_mtu = dev->mtu;
8812 	err = __dev_set_mtu(dev, new_mtu);
8813 
8814 	if (!err) {
8815 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8816 						   orig_mtu);
8817 		err = notifier_to_errno(err);
8818 		if (err) {
8819 			/* setting mtu back and notifying everyone again,
8820 			 * so that they have a chance to revert changes.
8821 			 */
8822 			__dev_set_mtu(dev, orig_mtu);
8823 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8824 						     new_mtu);
8825 		}
8826 	}
8827 	return err;
8828 }
8829 
8830 int dev_set_mtu(struct net_device *dev, int new_mtu)
8831 {
8832 	struct netlink_ext_ack extack;
8833 	int err;
8834 
8835 	memset(&extack, 0, sizeof(extack));
8836 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8837 	if (err && extack._msg)
8838 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8839 	return err;
8840 }
8841 EXPORT_SYMBOL(dev_set_mtu);
8842 
8843 /**
8844  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8845  *	@dev: device
8846  *	@new_len: new tx queue length
8847  */
8848 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8849 {
8850 	unsigned int orig_len = dev->tx_queue_len;
8851 	int res;
8852 
8853 	if (new_len != (unsigned int)new_len)
8854 		return -ERANGE;
8855 
8856 	if (new_len != orig_len) {
8857 		dev->tx_queue_len = new_len;
8858 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8859 		res = notifier_to_errno(res);
8860 		if (res)
8861 			goto err_rollback;
8862 		res = dev_qdisc_change_tx_queue_len(dev);
8863 		if (res)
8864 			goto err_rollback;
8865 	}
8866 
8867 	return 0;
8868 
8869 err_rollback:
8870 	netdev_err(dev, "refused to change device tx_queue_len\n");
8871 	dev->tx_queue_len = orig_len;
8872 	return res;
8873 }
8874 
8875 /**
8876  *	dev_set_group - Change group this device belongs to
8877  *	@dev: device
8878  *	@new_group: group this device should belong to
8879  */
8880 void dev_set_group(struct net_device *dev, int new_group)
8881 {
8882 	dev->group = new_group;
8883 }
8884 EXPORT_SYMBOL(dev_set_group);
8885 
8886 /**
8887  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8888  *	@dev: device
8889  *	@addr: new address
8890  *	@extack: netlink extended ack
8891  */
8892 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8893 			      struct netlink_ext_ack *extack)
8894 {
8895 	struct netdev_notifier_pre_changeaddr_info info = {
8896 		.info.dev = dev,
8897 		.info.extack = extack,
8898 		.dev_addr = addr,
8899 	};
8900 	int rc;
8901 
8902 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8903 	return notifier_to_errno(rc);
8904 }
8905 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8906 
8907 /**
8908  *	dev_set_mac_address - Change Media Access Control Address
8909  *	@dev: device
8910  *	@sa: new address
8911  *	@extack: netlink extended ack
8912  *
8913  *	Change the hardware (MAC) address of the device
8914  */
8915 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8916 			struct netlink_ext_ack *extack)
8917 {
8918 	const struct net_device_ops *ops = dev->netdev_ops;
8919 	int err;
8920 
8921 	if (!ops->ndo_set_mac_address)
8922 		return -EOPNOTSUPP;
8923 	if (sa->sa_family != dev->type)
8924 		return -EINVAL;
8925 	if (!netif_device_present(dev))
8926 		return -ENODEV;
8927 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8928 	if (err)
8929 		return err;
8930 	err = ops->ndo_set_mac_address(dev, sa);
8931 	if (err)
8932 		return err;
8933 	dev->addr_assign_type = NET_ADDR_SET;
8934 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8935 	add_device_randomness(dev->dev_addr, dev->addr_len);
8936 	return 0;
8937 }
8938 EXPORT_SYMBOL(dev_set_mac_address);
8939 
8940 static DECLARE_RWSEM(dev_addr_sem);
8941 
8942 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8943 			     struct netlink_ext_ack *extack)
8944 {
8945 	int ret;
8946 
8947 	down_write(&dev_addr_sem);
8948 	ret = dev_set_mac_address(dev, sa, extack);
8949 	up_write(&dev_addr_sem);
8950 	return ret;
8951 }
8952 EXPORT_SYMBOL(dev_set_mac_address_user);
8953 
8954 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8955 {
8956 	size_t size = sizeof(sa->sa_data);
8957 	struct net_device *dev;
8958 	int ret = 0;
8959 
8960 	down_read(&dev_addr_sem);
8961 	rcu_read_lock();
8962 
8963 	dev = dev_get_by_name_rcu(net, dev_name);
8964 	if (!dev) {
8965 		ret = -ENODEV;
8966 		goto unlock;
8967 	}
8968 	if (!dev->addr_len)
8969 		memset(sa->sa_data, 0, size);
8970 	else
8971 		memcpy(sa->sa_data, dev->dev_addr,
8972 		       min_t(size_t, size, dev->addr_len));
8973 	sa->sa_family = dev->type;
8974 
8975 unlock:
8976 	rcu_read_unlock();
8977 	up_read(&dev_addr_sem);
8978 	return ret;
8979 }
8980 EXPORT_SYMBOL(dev_get_mac_address);
8981 
8982 /**
8983  *	dev_change_carrier - Change device carrier
8984  *	@dev: device
8985  *	@new_carrier: new value
8986  *
8987  *	Change device carrier
8988  */
8989 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8990 {
8991 	const struct net_device_ops *ops = dev->netdev_ops;
8992 
8993 	if (!ops->ndo_change_carrier)
8994 		return -EOPNOTSUPP;
8995 	if (!netif_device_present(dev))
8996 		return -ENODEV;
8997 	return ops->ndo_change_carrier(dev, new_carrier);
8998 }
8999 EXPORT_SYMBOL(dev_change_carrier);
9000 
9001 /**
9002  *	dev_get_phys_port_id - Get device physical port ID
9003  *	@dev: device
9004  *	@ppid: port ID
9005  *
9006  *	Get device physical port ID
9007  */
9008 int dev_get_phys_port_id(struct net_device *dev,
9009 			 struct netdev_phys_item_id *ppid)
9010 {
9011 	const struct net_device_ops *ops = dev->netdev_ops;
9012 
9013 	if (!ops->ndo_get_phys_port_id)
9014 		return -EOPNOTSUPP;
9015 	return ops->ndo_get_phys_port_id(dev, ppid);
9016 }
9017 EXPORT_SYMBOL(dev_get_phys_port_id);
9018 
9019 /**
9020  *	dev_get_phys_port_name - Get device physical port name
9021  *	@dev: device
9022  *	@name: port name
9023  *	@len: limit of bytes to copy to name
9024  *
9025  *	Get device physical port name
9026  */
9027 int dev_get_phys_port_name(struct net_device *dev,
9028 			   char *name, size_t len)
9029 {
9030 	const struct net_device_ops *ops = dev->netdev_ops;
9031 	int err;
9032 
9033 	if (ops->ndo_get_phys_port_name) {
9034 		err = ops->ndo_get_phys_port_name(dev, name, len);
9035 		if (err != -EOPNOTSUPP)
9036 			return err;
9037 	}
9038 	return devlink_compat_phys_port_name_get(dev, name, len);
9039 }
9040 EXPORT_SYMBOL(dev_get_phys_port_name);
9041 
9042 /**
9043  *	dev_get_port_parent_id - Get the device's port parent identifier
9044  *	@dev: network device
9045  *	@ppid: pointer to a storage for the port's parent identifier
9046  *	@recurse: allow/disallow recursion to lower devices
9047  *
9048  *	Get the devices's port parent identifier
9049  */
9050 int dev_get_port_parent_id(struct net_device *dev,
9051 			   struct netdev_phys_item_id *ppid,
9052 			   bool recurse)
9053 {
9054 	const struct net_device_ops *ops = dev->netdev_ops;
9055 	struct netdev_phys_item_id first = { };
9056 	struct net_device *lower_dev;
9057 	struct list_head *iter;
9058 	int err;
9059 
9060 	if (ops->ndo_get_port_parent_id) {
9061 		err = ops->ndo_get_port_parent_id(dev, ppid);
9062 		if (err != -EOPNOTSUPP)
9063 			return err;
9064 	}
9065 
9066 	err = devlink_compat_switch_id_get(dev, ppid);
9067 	if (!err || err != -EOPNOTSUPP)
9068 		return err;
9069 
9070 	if (!recurse)
9071 		return -EOPNOTSUPP;
9072 
9073 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9074 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9075 		if (err)
9076 			break;
9077 		if (!first.id_len)
9078 			first = *ppid;
9079 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9080 			return -EOPNOTSUPP;
9081 	}
9082 
9083 	return err;
9084 }
9085 EXPORT_SYMBOL(dev_get_port_parent_id);
9086 
9087 /**
9088  *	netdev_port_same_parent_id - Indicate if two network devices have
9089  *	the same port parent identifier
9090  *	@a: first network device
9091  *	@b: second network device
9092  */
9093 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9094 {
9095 	struct netdev_phys_item_id a_id = { };
9096 	struct netdev_phys_item_id b_id = { };
9097 
9098 	if (dev_get_port_parent_id(a, &a_id, true) ||
9099 	    dev_get_port_parent_id(b, &b_id, true))
9100 		return false;
9101 
9102 	return netdev_phys_item_id_same(&a_id, &b_id);
9103 }
9104 EXPORT_SYMBOL(netdev_port_same_parent_id);
9105 
9106 /**
9107  *	dev_change_proto_down - update protocol port state information
9108  *	@dev: device
9109  *	@proto_down: new value
9110  *
9111  *	This info can be used by switch drivers to set the phys state of the
9112  *	port.
9113  */
9114 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9115 {
9116 	const struct net_device_ops *ops = dev->netdev_ops;
9117 
9118 	if (!ops->ndo_change_proto_down)
9119 		return -EOPNOTSUPP;
9120 	if (!netif_device_present(dev))
9121 		return -ENODEV;
9122 	return ops->ndo_change_proto_down(dev, proto_down);
9123 }
9124 EXPORT_SYMBOL(dev_change_proto_down);
9125 
9126 /**
9127  *	dev_change_proto_down_generic - generic implementation for
9128  * 	ndo_change_proto_down that sets carrier according to
9129  * 	proto_down.
9130  *
9131  *	@dev: device
9132  *	@proto_down: new value
9133  */
9134 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9135 {
9136 	if (proto_down)
9137 		netif_carrier_off(dev);
9138 	else
9139 		netif_carrier_on(dev);
9140 	dev->proto_down = proto_down;
9141 	return 0;
9142 }
9143 EXPORT_SYMBOL(dev_change_proto_down_generic);
9144 
9145 /**
9146  *	dev_change_proto_down_reason - proto down reason
9147  *
9148  *	@dev: device
9149  *	@mask: proto down mask
9150  *	@value: proto down value
9151  */
9152 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9153 				  u32 value)
9154 {
9155 	int b;
9156 
9157 	if (!mask) {
9158 		dev->proto_down_reason = value;
9159 	} else {
9160 		for_each_set_bit(b, &mask, 32) {
9161 			if (value & (1 << b))
9162 				dev->proto_down_reason |= BIT(b);
9163 			else
9164 				dev->proto_down_reason &= ~BIT(b);
9165 		}
9166 	}
9167 }
9168 EXPORT_SYMBOL(dev_change_proto_down_reason);
9169 
9170 struct bpf_xdp_link {
9171 	struct bpf_link link;
9172 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9173 	int flags;
9174 };
9175 
9176 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9177 {
9178 	if (flags & XDP_FLAGS_HW_MODE)
9179 		return XDP_MODE_HW;
9180 	if (flags & XDP_FLAGS_DRV_MODE)
9181 		return XDP_MODE_DRV;
9182 	if (flags & XDP_FLAGS_SKB_MODE)
9183 		return XDP_MODE_SKB;
9184 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9185 }
9186 
9187 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9188 {
9189 	switch (mode) {
9190 	case XDP_MODE_SKB:
9191 		return generic_xdp_install;
9192 	case XDP_MODE_DRV:
9193 	case XDP_MODE_HW:
9194 		return dev->netdev_ops->ndo_bpf;
9195 	default:
9196 		return NULL;
9197 	}
9198 }
9199 
9200 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9201 					 enum bpf_xdp_mode mode)
9202 {
9203 	return dev->xdp_state[mode].link;
9204 }
9205 
9206 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9207 				     enum bpf_xdp_mode mode)
9208 {
9209 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9210 
9211 	if (link)
9212 		return link->link.prog;
9213 	return dev->xdp_state[mode].prog;
9214 }
9215 
9216 static u8 dev_xdp_prog_count(struct net_device *dev)
9217 {
9218 	u8 count = 0;
9219 	int i;
9220 
9221 	for (i = 0; i < __MAX_XDP_MODE; i++)
9222 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9223 			count++;
9224 	return count;
9225 }
9226 
9227 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9228 {
9229 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9230 
9231 	return prog ? prog->aux->id : 0;
9232 }
9233 
9234 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9235 			     struct bpf_xdp_link *link)
9236 {
9237 	dev->xdp_state[mode].link = link;
9238 	dev->xdp_state[mode].prog = NULL;
9239 }
9240 
9241 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9242 			     struct bpf_prog *prog)
9243 {
9244 	dev->xdp_state[mode].link = NULL;
9245 	dev->xdp_state[mode].prog = prog;
9246 }
9247 
9248 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9249 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9250 			   u32 flags, struct bpf_prog *prog)
9251 {
9252 	struct netdev_bpf xdp;
9253 	int err;
9254 
9255 	memset(&xdp, 0, sizeof(xdp));
9256 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9257 	xdp.extack = extack;
9258 	xdp.flags = flags;
9259 	xdp.prog = prog;
9260 
9261 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9262 	 * "moved" into driver), so they don't increment it on their own, but
9263 	 * they do decrement refcnt when program is detached or replaced.
9264 	 * Given net_device also owns link/prog, we need to bump refcnt here
9265 	 * to prevent drivers from underflowing it.
9266 	 */
9267 	if (prog)
9268 		bpf_prog_inc(prog);
9269 	err = bpf_op(dev, &xdp);
9270 	if (err) {
9271 		if (prog)
9272 			bpf_prog_put(prog);
9273 		return err;
9274 	}
9275 
9276 	if (mode != XDP_MODE_HW)
9277 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9278 
9279 	return 0;
9280 }
9281 
9282 static void dev_xdp_uninstall(struct net_device *dev)
9283 {
9284 	struct bpf_xdp_link *link;
9285 	struct bpf_prog *prog;
9286 	enum bpf_xdp_mode mode;
9287 	bpf_op_t bpf_op;
9288 
9289 	ASSERT_RTNL();
9290 
9291 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9292 		prog = dev_xdp_prog(dev, mode);
9293 		if (!prog)
9294 			continue;
9295 
9296 		bpf_op = dev_xdp_bpf_op(dev, mode);
9297 		if (!bpf_op)
9298 			continue;
9299 
9300 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9301 
9302 		/* auto-detach link from net device */
9303 		link = dev_xdp_link(dev, mode);
9304 		if (link)
9305 			link->dev = NULL;
9306 		else
9307 			bpf_prog_put(prog);
9308 
9309 		dev_xdp_set_link(dev, mode, NULL);
9310 	}
9311 }
9312 
9313 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9314 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9315 			  struct bpf_prog *old_prog, u32 flags)
9316 {
9317 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9318 	struct bpf_prog *cur_prog;
9319 	enum bpf_xdp_mode mode;
9320 	bpf_op_t bpf_op;
9321 	int err;
9322 
9323 	ASSERT_RTNL();
9324 
9325 	/* either link or prog attachment, never both */
9326 	if (link && (new_prog || old_prog))
9327 		return -EINVAL;
9328 	/* link supports only XDP mode flags */
9329 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9330 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9331 		return -EINVAL;
9332 	}
9333 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9334 	if (num_modes > 1) {
9335 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9336 		return -EINVAL;
9337 	}
9338 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9339 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9340 		NL_SET_ERR_MSG(extack,
9341 			       "More than one program loaded, unset mode is ambiguous");
9342 		return -EINVAL;
9343 	}
9344 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9345 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9346 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9347 		return -EINVAL;
9348 	}
9349 
9350 	mode = dev_xdp_mode(dev, flags);
9351 	/* can't replace attached link */
9352 	if (dev_xdp_link(dev, mode)) {
9353 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9354 		return -EBUSY;
9355 	}
9356 
9357 	cur_prog = dev_xdp_prog(dev, mode);
9358 	/* can't replace attached prog with link */
9359 	if (link && cur_prog) {
9360 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9361 		return -EBUSY;
9362 	}
9363 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9364 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9365 		return -EEXIST;
9366 	}
9367 
9368 	/* put effective new program into new_prog */
9369 	if (link)
9370 		new_prog = link->link.prog;
9371 
9372 	if (new_prog) {
9373 		bool offload = mode == XDP_MODE_HW;
9374 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9375 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9376 
9377 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9378 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9379 			return -EBUSY;
9380 		}
9381 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9382 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9383 			return -EEXIST;
9384 		}
9385 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9386 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9387 			return -EINVAL;
9388 		}
9389 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9390 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9391 			return -EINVAL;
9392 		}
9393 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9394 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9395 			return -EINVAL;
9396 		}
9397 	}
9398 
9399 	/* don't call drivers if the effective program didn't change */
9400 	if (new_prog != cur_prog) {
9401 		bpf_op = dev_xdp_bpf_op(dev, mode);
9402 		if (!bpf_op) {
9403 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9404 			return -EOPNOTSUPP;
9405 		}
9406 
9407 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9408 		if (err)
9409 			return err;
9410 	}
9411 
9412 	if (link)
9413 		dev_xdp_set_link(dev, mode, link);
9414 	else
9415 		dev_xdp_set_prog(dev, mode, new_prog);
9416 	if (cur_prog)
9417 		bpf_prog_put(cur_prog);
9418 
9419 	return 0;
9420 }
9421 
9422 static int dev_xdp_attach_link(struct net_device *dev,
9423 			       struct netlink_ext_ack *extack,
9424 			       struct bpf_xdp_link *link)
9425 {
9426 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9427 }
9428 
9429 static int dev_xdp_detach_link(struct net_device *dev,
9430 			       struct netlink_ext_ack *extack,
9431 			       struct bpf_xdp_link *link)
9432 {
9433 	enum bpf_xdp_mode mode;
9434 	bpf_op_t bpf_op;
9435 
9436 	ASSERT_RTNL();
9437 
9438 	mode = dev_xdp_mode(dev, link->flags);
9439 	if (dev_xdp_link(dev, mode) != link)
9440 		return -EINVAL;
9441 
9442 	bpf_op = dev_xdp_bpf_op(dev, mode);
9443 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9444 	dev_xdp_set_link(dev, mode, NULL);
9445 	return 0;
9446 }
9447 
9448 static void bpf_xdp_link_release(struct bpf_link *link)
9449 {
9450 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9451 
9452 	rtnl_lock();
9453 
9454 	/* if racing with net_device's tear down, xdp_link->dev might be
9455 	 * already NULL, in which case link was already auto-detached
9456 	 */
9457 	if (xdp_link->dev) {
9458 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9459 		xdp_link->dev = NULL;
9460 	}
9461 
9462 	rtnl_unlock();
9463 }
9464 
9465 static int bpf_xdp_link_detach(struct bpf_link *link)
9466 {
9467 	bpf_xdp_link_release(link);
9468 	return 0;
9469 }
9470 
9471 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9472 {
9473 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9474 
9475 	kfree(xdp_link);
9476 }
9477 
9478 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9479 				     struct seq_file *seq)
9480 {
9481 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9482 	u32 ifindex = 0;
9483 
9484 	rtnl_lock();
9485 	if (xdp_link->dev)
9486 		ifindex = xdp_link->dev->ifindex;
9487 	rtnl_unlock();
9488 
9489 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9490 }
9491 
9492 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9493 				       struct bpf_link_info *info)
9494 {
9495 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9496 	u32 ifindex = 0;
9497 
9498 	rtnl_lock();
9499 	if (xdp_link->dev)
9500 		ifindex = xdp_link->dev->ifindex;
9501 	rtnl_unlock();
9502 
9503 	info->xdp.ifindex = ifindex;
9504 	return 0;
9505 }
9506 
9507 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9508 			       struct bpf_prog *old_prog)
9509 {
9510 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9511 	enum bpf_xdp_mode mode;
9512 	bpf_op_t bpf_op;
9513 	int err = 0;
9514 
9515 	rtnl_lock();
9516 
9517 	/* link might have been auto-released already, so fail */
9518 	if (!xdp_link->dev) {
9519 		err = -ENOLINK;
9520 		goto out_unlock;
9521 	}
9522 
9523 	if (old_prog && link->prog != old_prog) {
9524 		err = -EPERM;
9525 		goto out_unlock;
9526 	}
9527 	old_prog = link->prog;
9528 	if (old_prog == new_prog) {
9529 		/* no-op, don't disturb drivers */
9530 		bpf_prog_put(new_prog);
9531 		goto out_unlock;
9532 	}
9533 
9534 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9535 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9536 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9537 			      xdp_link->flags, new_prog);
9538 	if (err)
9539 		goto out_unlock;
9540 
9541 	old_prog = xchg(&link->prog, new_prog);
9542 	bpf_prog_put(old_prog);
9543 
9544 out_unlock:
9545 	rtnl_unlock();
9546 	return err;
9547 }
9548 
9549 static const struct bpf_link_ops bpf_xdp_link_lops = {
9550 	.release = bpf_xdp_link_release,
9551 	.dealloc = bpf_xdp_link_dealloc,
9552 	.detach = bpf_xdp_link_detach,
9553 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9554 	.fill_link_info = bpf_xdp_link_fill_link_info,
9555 	.update_prog = bpf_xdp_link_update,
9556 };
9557 
9558 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9559 {
9560 	struct net *net = current->nsproxy->net_ns;
9561 	struct bpf_link_primer link_primer;
9562 	struct bpf_xdp_link *link;
9563 	struct net_device *dev;
9564 	int err, fd;
9565 
9566 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9567 	if (!dev)
9568 		return -EINVAL;
9569 
9570 	link = kzalloc(sizeof(*link), GFP_USER);
9571 	if (!link) {
9572 		err = -ENOMEM;
9573 		goto out_put_dev;
9574 	}
9575 
9576 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9577 	link->dev = dev;
9578 	link->flags = attr->link_create.flags;
9579 
9580 	err = bpf_link_prime(&link->link, &link_primer);
9581 	if (err) {
9582 		kfree(link);
9583 		goto out_put_dev;
9584 	}
9585 
9586 	rtnl_lock();
9587 	err = dev_xdp_attach_link(dev, NULL, link);
9588 	rtnl_unlock();
9589 
9590 	if (err) {
9591 		bpf_link_cleanup(&link_primer);
9592 		goto out_put_dev;
9593 	}
9594 
9595 	fd = bpf_link_settle(&link_primer);
9596 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9597 	dev_put(dev);
9598 	return fd;
9599 
9600 out_put_dev:
9601 	dev_put(dev);
9602 	return err;
9603 }
9604 
9605 /**
9606  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9607  *	@dev: device
9608  *	@extack: netlink extended ack
9609  *	@fd: new program fd or negative value to clear
9610  *	@expected_fd: old program fd that userspace expects to replace or clear
9611  *	@flags: xdp-related flags
9612  *
9613  *	Set or clear a bpf program for a device
9614  */
9615 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9616 		      int fd, int expected_fd, u32 flags)
9617 {
9618 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9619 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9620 	int err;
9621 
9622 	ASSERT_RTNL();
9623 
9624 	if (fd >= 0) {
9625 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9626 						 mode != XDP_MODE_SKB);
9627 		if (IS_ERR(new_prog))
9628 			return PTR_ERR(new_prog);
9629 	}
9630 
9631 	if (expected_fd >= 0) {
9632 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9633 						 mode != XDP_MODE_SKB);
9634 		if (IS_ERR(old_prog)) {
9635 			err = PTR_ERR(old_prog);
9636 			old_prog = NULL;
9637 			goto err_out;
9638 		}
9639 	}
9640 
9641 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9642 
9643 err_out:
9644 	if (err && new_prog)
9645 		bpf_prog_put(new_prog);
9646 	if (old_prog)
9647 		bpf_prog_put(old_prog);
9648 	return err;
9649 }
9650 
9651 /**
9652  *	dev_new_index	-	allocate an ifindex
9653  *	@net: the applicable net namespace
9654  *
9655  *	Returns a suitable unique value for a new device interface
9656  *	number.  The caller must hold the rtnl semaphore or the
9657  *	dev_base_lock to be sure it remains unique.
9658  */
9659 static int dev_new_index(struct net *net)
9660 {
9661 	int ifindex = net->ifindex;
9662 
9663 	for (;;) {
9664 		if (++ifindex <= 0)
9665 			ifindex = 1;
9666 		if (!__dev_get_by_index(net, ifindex))
9667 			return net->ifindex = ifindex;
9668 	}
9669 }
9670 
9671 /* Delayed registration/unregisteration */
9672 static LIST_HEAD(net_todo_list);
9673 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9674 
9675 static void net_set_todo(struct net_device *dev)
9676 {
9677 	list_add_tail(&dev->todo_list, &net_todo_list);
9678 	dev_net(dev)->dev_unreg_count++;
9679 }
9680 
9681 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9682 	struct net_device *upper, netdev_features_t features)
9683 {
9684 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9685 	netdev_features_t feature;
9686 	int feature_bit;
9687 
9688 	for_each_netdev_feature(upper_disables, feature_bit) {
9689 		feature = __NETIF_F_BIT(feature_bit);
9690 		if (!(upper->wanted_features & feature)
9691 		    && (features & feature)) {
9692 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9693 				   &feature, upper->name);
9694 			features &= ~feature;
9695 		}
9696 	}
9697 
9698 	return features;
9699 }
9700 
9701 static void netdev_sync_lower_features(struct net_device *upper,
9702 	struct net_device *lower, netdev_features_t features)
9703 {
9704 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9705 	netdev_features_t feature;
9706 	int feature_bit;
9707 
9708 	for_each_netdev_feature(upper_disables, feature_bit) {
9709 		feature = __NETIF_F_BIT(feature_bit);
9710 		if (!(features & feature) && (lower->features & feature)) {
9711 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9712 				   &feature, lower->name);
9713 			lower->wanted_features &= ~feature;
9714 			__netdev_update_features(lower);
9715 
9716 			if (unlikely(lower->features & feature))
9717 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9718 					    &feature, lower->name);
9719 			else
9720 				netdev_features_change(lower);
9721 		}
9722 	}
9723 }
9724 
9725 static netdev_features_t netdev_fix_features(struct net_device *dev,
9726 	netdev_features_t features)
9727 {
9728 	/* Fix illegal checksum combinations */
9729 	if ((features & NETIF_F_HW_CSUM) &&
9730 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9731 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9732 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9733 	}
9734 
9735 	/* TSO requires that SG is present as well. */
9736 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9737 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9738 		features &= ~NETIF_F_ALL_TSO;
9739 	}
9740 
9741 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9742 					!(features & NETIF_F_IP_CSUM)) {
9743 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9744 		features &= ~NETIF_F_TSO;
9745 		features &= ~NETIF_F_TSO_ECN;
9746 	}
9747 
9748 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9749 					 !(features & NETIF_F_IPV6_CSUM)) {
9750 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9751 		features &= ~NETIF_F_TSO6;
9752 	}
9753 
9754 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9755 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9756 		features &= ~NETIF_F_TSO_MANGLEID;
9757 
9758 	/* TSO ECN requires that TSO is present as well. */
9759 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9760 		features &= ~NETIF_F_TSO_ECN;
9761 
9762 	/* Software GSO depends on SG. */
9763 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9764 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9765 		features &= ~NETIF_F_GSO;
9766 	}
9767 
9768 	/* GSO partial features require GSO partial be set */
9769 	if ((features & dev->gso_partial_features) &&
9770 	    !(features & NETIF_F_GSO_PARTIAL)) {
9771 		netdev_dbg(dev,
9772 			   "Dropping partially supported GSO features since no GSO partial.\n");
9773 		features &= ~dev->gso_partial_features;
9774 	}
9775 
9776 	if (!(features & NETIF_F_RXCSUM)) {
9777 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9778 		 * successfully merged by hardware must also have the
9779 		 * checksum verified by hardware.  If the user does not
9780 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9781 		 */
9782 		if (features & NETIF_F_GRO_HW) {
9783 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9784 			features &= ~NETIF_F_GRO_HW;
9785 		}
9786 	}
9787 
9788 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9789 	if (features & NETIF_F_RXFCS) {
9790 		if (features & NETIF_F_LRO) {
9791 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9792 			features &= ~NETIF_F_LRO;
9793 		}
9794 
9795 		if (features & NETIF_F_GRO_HW) {
9796 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9797 			features &= ~NETIF_F_GRO_HW;
9798 		}
9799 	}
9800 
9801 	if (features & NETIF_F_HW_TLS_TX) {
9802 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9803 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9804 		bool hw_csum = features & NETIF_F_HW_CSUM;
9805 
9806 		if (!ip_csum && !hw_csum) {
9807 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9808 			features &= ~NETIF_F_HW_TLS_TX;
9809 		}
9810 	}
9811 
9812 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9813 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9814 		features &= ~NETIF_F_HW_TLS_RX;
9815 	}
9816 
9817 	return features;
9818 }
9819 
9820 int __netdev_update_features(struct net_device *dev)
9821 {
9822 	struct net_device *upper, *lower;
9823 	netdev_features_t features;
9824 	struct list_head *iter;
9825 	int err = -1;
9826 
9827 	ASSERT_RTNL();
9828 
9829 	features = netdev_get_wanted_features(dev);
9830 
9831 	if (dev->netdev_ops->ndo_fix_features)
9832 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9833 
9834 	/* driver might be less strict about feature dependencies */
9835 	features = netdev_fix_features(dev, features);
9836 
9837 	/* some features can't be enabled if they're off on an upper device */
9838 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9839 		features = netdev_sync_upper_features(dev, upper, features);
9840 
9841 	if (dev->features == features)
9842 		goto sync_lower;
9843 
9844 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9845 		&dev->features, &features);
9846 
9847 	if (dev->netdev_ops->ndo_set_features)
9848 		err = dev->netdev_ops->ndo_set_features(dev, features);
9849 	else
9850 		err = 0;
9851 
9852 	if (unlikely(err < 0)) {
9853 		netdev_err(dev,
9854 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9855 			err, &features, &dev->features);
9856 		/* return non-0 since some features might have changed and
9857 		 * it's better to fire a spurious notification than miss it
9858 		 */
9859 		return -1;
9860 	}
9861 
9862 sync_lower:
9863 	/* some features must be disabled on lower devices when disabled
9864 	 * on an upper device (think: bonding master or bridge)
9865 	 */
9866 	netdev_for_each_lower_dev(dev, lower, iter)
9867 		netdev_sync_lower_features(dev, lower, features);
9868 
9869 	if (!err) {
9870 		netdev_features_t diff = features ^ dev->features;
9871 
9872 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9873 			/* udp_tunnel_{get,drop}_rx_info both need
9874 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9875 			 * device, or they won't do anything.
9876 			 * Thus we need to update dev->features
9877 			 * *before* calling udp_tunnel_get_rx_info,
9878 			 * but *after* calling udp_tunnel_drop_rx_info.
9879 			 */
9880 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9881 				dev->features = features;
9882 				udp_tunnel_get_rx_info(dev);
9883 			} else {
9884 				udp_tunnel_drop_rx_info(dev);
9885 			}
9886 		}
9887 
9888 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9889 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9890 				dev->features = features;
9891 				err |= vlan_get_rx_ctag_filter_info(dev);
9892 			} else {
9893 				vlan_drop_rx_ctag_filter_info(dev);
9894 			}
9895 		}
9896 
9897 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9898 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9899 				dev->features = features;
9900 				err |= vlan_get_rx_stag_filter_info(dev);
9901 			} else {
9902 				vlan_drop_rx_stag_filter_info(dev);
9903 			}
9904 		}
9905 
9906 		dev->features = features;
9907 	}
9908 
9909 	return err < 0 ? 0 : 1;
9910 }
9911 
9912 /**
9913  *	netdev_update_features - recalculate device features
9914  *	@dev: the device to check
9915  *
9916  *	Recalculate dev->features set and send notifications if it
9917  *	has changed. Should be called after driver or hardware dependent
9918  *	conditions might have changed that influence the features.
9919  */
9920 void netdev_update_features(struct net_device *dev)
9921 {
9922 	if (__netdev_update_features(dev))
9923 		netdev_features_change(dev);
9924 }
9925 EXPORT_SYMBOL(netdev_update_features);
9926 
9927 /**
9928  *	netdev_change_features - recalculate device features
9929  *	@dev: the device to check
9930  *
9931  *	Recalculate dev->features set and send notifications even
9932  *	if they have not changed. Should be called instead of
9933  *	netdev_update_features() if also dev->vlan_features might
9934  *	have changed to allow the changes to be propagated to stacked
9935  *	VLAN devices.
9936  */
9937 void netdev_change_features(struct net_device *dev)
9938 {
9939 	__netdev_update_features(dev);
9940 	netdev_features_change(dev);
9941 }
9942 EXPORT_SYMBOL(netdev_change_features);
9943 
9944 /**
9945  *	netif_stacked_transfer_operstate -	transfer operstate
9946  *	@rootdev: the root or lower level device to transfer state from
9947  *	@dev: the device to transfer operstate to
9948  *
9949  *	Transfer operational state from root to device. This is normally
9950  *	called when a stacking relationship exists between the root
9951  *	device and the device(a leaf device).
9952  */
9953 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9954 					struct net_device *dev)
9955 {
9956 	if (rootdev->operstate == IF_OPER_DORMANT)
9957 		netif_dormant_on(dev);
9958 	else
9959 		netif_dormant_off(dev);
9960 
9961 	if (rootdev->operstate == IF_OPER_TESTING)
9962 		netif_testing_on(dev);
9963 	else
9964 		netif_testing_off(dev);
9965 
9966 	if (netif_carrier_ok(rootdev))
9967 		netif_carrier_on(dev);
9968 	else
9969 		netif_carrier_off(dev);
9970 }
9971 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9972 
9973 static int netif_alloc_rx_queues(struct net_device *dev)
9974 {
9975 	unsigned int i, count = dev->num_rx_queues;
9976 	struct netdev_rx_queue *rx;
9977 	size_t sz = count * sizeof(*rx);
9978 	int err = 0;
9979 
9980 	BUG_ON(count < 1);
9981 
9982 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9983 	if (!rx)
9984 		return -ENOMEM;
9985 
9986 	dev->_rx = rx;
9987 
9988 	for (i = 0; i < count; i++) {
9989 		rx[i].dev = dev;
9990 
9991 		/* XDP RX-queue setup */
9992 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9993 		if (err < 0)
9994 			goto err_rxq_info;
9995 	}
9996 	return 0;
9997 
9998 err_rxq_info:
9999 	/* Rollback successful reg's and free other resources */
10000 	while (i--)
10001 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10002 	kvfree(dev->_rx);
10003 	dev->_rx = NULL;
10004 	return err;
10005 }
10006 
10007 static void netif_free_rx_queues(struct net_device *dev)
10008 {
10009 	unsigned int i, count = dev->num_rx_queues;
10010 
10011 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10012 	if (!dev->_rx)
10013 		return;
10014 
10015 	for (i = 0; i < count; i++)
10016 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10017 
10018 	kvfree(dev->_rx);
10019 }
10020 
10021 static void netdev_init_one_queue(struct net_device *dev,
10022 				  struct netdev_queue *queue, void *_unused)
10023 {
10024 	/* Initialize queue lock */
10025 	spin_lock_init(&queue->_xmit_lock);
10026 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10027 	queue->xmit_lock_owner = -1;
10028 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10029 	queue->dev = dev;
10030 #ifdef CONFIG_BQL
10031 	dql_init(&queue->dql, HZ);
10032 #endif
10033 }
10034 
10035 static void netif_free_tx_queues(struct net_device *dev)
10036 {
10037 	kvfree(dev->_tx);
10038 }
10039 
10040 static int netif_alloc_netdev_queues(struct net_device *dev)
10041 {
10042 	unsigned int count = dev->num_tx_queues;
10043 	struct netdev_queue *tx;
10044 	size_t sz = count * sizeof(*tx);
10045 
10046 	if (count < 1 || count > 0xffff)
10047 		return -EINVAL;
10048 
10049 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10050 	if (!tx)
10051 		return -ENOMEM;
10052 
10053 	dev->_tx = tx;
10054 
10055 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10056 	spin_lock_init(&dev->tx_global_lock);
10057 
10058 	return 0;
10059 }
10060 
10061 void netif_tx_stop_all_queues(struct net_device *dev)
10062 {
10063 	unsigned int i;
10064 
10065 	for (i = 0; i < dev->num_tx_queues; i++) {
10066 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10067 
10068 		netif_tx_stop_queue(txq);
10069 	}
10070 }
10071 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10072 
10073 /**
10074  *	register_netdevice	- register a network device
10075  *	@dev: device to register
10076  *
10077  *	Take a completed network device structure and add it to the kernel
10078  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10079  *	chain. 0 is returned on success. A negative errno code is returned
10080  *	on a failure to set up the device, or if the name is a duplicate.
10081  *
10082  *	Callers must hold the rtnl semaphore. You may want
10083  *	register_netdev() instead of this.
10084  *
10085  *	BUGS:
10086  *	The locking appears insufficient to guarantee two parallel registers
10087  *	will not get the same name.
10088  */
10089 
10090 int register_netdevice(struct net_device *dev)
10091 {
10092 	int ret;
10093 	struct net *net = dev_net(dev);
10094 
10095 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10096 		     NETDEV_FEATURE_COUNT);
10097 	BUG_ON(dev_boot_phase);
10098 	ASSERT_RTNL();
10099 
10100 	might_sleep();
10101 
10102 	/* When net_device's are persistent, this will be fatal. */
10103 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10104 	BUG_ON(!net);
10105 
10106 	ret = ethtool_check_ops(dev->ethtool_ops);
10107 	if (ret)
10108 		return ret;
10109 
10110 	spin_lock_init(&dev->addr_list_lock);
10111 	netdev_set_addr_lockdep_class(dev);
10112 
10113 	ret = dev_get_valid_name(net, dev, dev->name);
10114 	if (ret < 0)
10115 		goto out;
10116 
10117 	ret = -ENOMEM;
10118 	dev->name_node = netdev_name_node_head_alloc(dev);
10119 	if (!dev->name_node)
10120 		goto out;
10121 
10122 	/* Init, if this function is available */
10123 	if (dev->netdev_ops->ndo_init) {
10124 		ret = dev->netdev_ops->ndo_init(dev);
10125 		if (ret) {
10126 			if (ret > 0)
10127 				ret = -EIO;
10128 			goto err_free_name;
10129 		}
10130 	}
10131 
10132 	if (((dev->hw_features | dev->features) &
10133 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10134 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10135 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10136 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10137 		ret = -EINVAL;
10138 		goto err_uninit;
10139 	}
10140 
10141 	ret = -EBUSY;
10142 	if (!dev->ifindex)
10143 		dev->ifindex = dev_new_index(net);
10144 	else if (__dev_get_by_index(net, dev->ifindex))
10145 		goto err_uninit;
10146 
10147 	/* Transfer changeable features to wanted_features and enable
10148 	 * software offloads (GSO and GRO).
10149 	 */
10150 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10151 	dev->features |= NETIF_F_SOFT_FEATURES;
10152 
10153 	if (dev->udp_tunnel_nic_info) {
10154 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10155 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10156 	}
10157 
10158 	dev->wanted_features = dev->features & dev->hw_features;
10159 
10160 	if (!(dev->flags & IFF_LOOPBACK))
10161 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10162 
10163 	/* If IPv4 TCP segmentation offload is supported we should also
10164 	 * allow the device to enable segmenting the frame with the option
10165 	 * of ignoring a static IP ID value.  This doesn't enable the
10166 	 * feature itself but allows the user to enable it later.
10167 	 */
10168 	if (dev->hw_features & NETIF_F_TSO)
10169 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10170 	if (dev->vlan_features & NETIF_F_TSO)
10171 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10172 	if (dev->mpls_features & NETIF_F_TSO)
10173 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10174 	if (dev->hw_enc_features & NETIF_F_TSO)
10175 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10176 
10177 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10178 	 */
10179 	dev->vlan_features |= NETIF_F_HIGHDMA;
10180 
10181 	/* Make NETIF_F_SG inheritable to tunnel devices.
10182 	 */
10183 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10184 
10185 	/* Make NETIF_F_SG inheritable to MPLS.
10186 	 */
10187 	dev->mpls_features |= NETIF_F_SG;
10188 
10189 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10190 	ret = notifier_to_errno(ret);
10191 	if (ret)
10192 		goto err_uninit;
10193 
10194 	ret = netdev_register_kobject(dev);
10195 	if (ret) {
10196 		dev->reg_state = NETREG_UNREGISTERED;
10197 		goto err_uninit;
10198 	}
10199 	dev->reg_state = NETREG_REGISTERED;
10200 
10201 	__netdev_update_features(dev);
10202 
10203 	/*
10204 	 *	Default initial state at registry is that the
10205 	 *	device is present.
10206 	 */
10207 
10208 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10209 
10210 	linkwatch_init_dev(dev);
10211 
10212 	dev_init_scheduler(dev);
10213 	dev_hold(dev);
10214 	list_netdevice(dev);
10215 	add_device_randomness(dev->dev_addr, dev->addr_len);
10216 
10217 	/* If the device has permanent device address, driver should
10218 	 * set dev_addr and also addr_assign_type should be set to
10219 	 * NET_ADDR_PERM (default value).
10220 	 */
10221 	if (dev->addr_assign_type == NET_ADDR_PERM)
10222 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10223 
10224 	/* Notify protocols, that a new device appeared. */
10225 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10226 	ret = notifier_to_errno(ret);
10227 	if (ret) {
10228 		/* Expect explicit free_netdev() on failure */
10229 		dev->needs_free_netdev = false;
10230 		unregister_netdevice_queue(dev, NULL);
10231 		goto out;
10232 	}
10233 	/*
10234 	 *	Prevent userspace races by waiting until the network
10235 	 *	device is fully setup before sending notifications.
10236 	 */
10237 	if (!dev->rtnl_link_ops ||
10238 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10239 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10240 
10241 out:
10242 	return ret;
10243 
10244 err_uninit:
10245 	if (dev->netdev_ops->ndo_uninit)
10246 		dev->netdev_ops->ndo_uninit(dev);
10247 	if (dev->priv_destructor)
10248 		dev->priv_destructor(dev);
10249 err_free_name:
10250 	netdev_name_node_free(dev->name_node);
10251 	goto out;
10252 }
10253 EXPORT_SYMBOL(register_netdevice);
10254 
10255 /**
10256  *	init_dummy_netdev	- init a dummy network device for NAPI
10257  *	@dev: device to init
10258  *
10259  *	This takes a network device structure and initialize the minimum
10260  *	amount of fields so it can be used to schedule NAPI polls without
10261  *	registering a full blown interface. This is to be used by drivers
10262  *	that need to tie several hardware interfaces to a single NAPI
10263  *	poll scheduler due to HW limitations.
10264  */
10265 int init_dummy_netdev(struct net_device *dev)
10266 {
10267 	/* Clear everything. Note we don't initialize spinlocks
10268 	 * are they aren't supposed to be taken by any of the
10269 	 * NAPI code and this dummy netdev is supposed to be
10270 	 * only ever used for NAPI polls
10271 	 */
10272 	memset(dev, 0, sizeof(struct net_device));
10273 
10274 	/* make sure we BUG if trying to hit standard
10275 	 * register/unregister code path
10276 	 */
10277 	dev->reg_state = NETREG_DUMMY;
10278 
10279 	/* NAPI wants this */
10280 	INIT_LIST_HEAD(&dev->napi_list);
10281 
10282 	/* a dummy interface is started by default */
10283 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10284 	set_bit(__LINK_STATE_START, &dev->state);
10285 
10286 	/* napi_busy_loop stats accounting wants this */
10287 	dev_net_set(dev, &init_net);
10288 
10289 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10290 	 * because users of this 'device' dont need to change
10291 	 * its refcount.
10292 	 */
10293 
10294 	return 0;
10295 }
10296 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10297 
10298 
10299 /**
10300  *	register_netdev	- register a network device
10301  *	@dev: device to register
10302  *
10303  *	Take a completed network device structure and add it to the kernel
10304  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10305  *	chain. 0 is returned on success. A negative errno code is returned
10306  *	on a failure to set up the device, or if the name is a duplicate.
10307  *
10308  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10309  *	and expands the device name if you passed a format string to
10310  *	alloc_netdev.
10311  */
10312 int register_netdev(struct net_device *dev)
10313 {
10314 	int err;
10315 
10316 	if (rtnl_lock_killable())
10317 		return -EINTR;
10318 	err = register_netdevice(dev);
10319 	rtnl_unlock();
10320 	return err;
10321 }
10322 EXPORT_SYMBOL(register_netdev);
10323 
10324 int netdev_refcnt_read(const struct net_device *dev)
10325 {
10326 	int i, refcnt = 0;
10327 
10328 	for_each_possible_cpu(i)
10329 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10330 	return refcnt;
10331 }
10332 EXPORT_SYMBOL(netdev_refcnt_read);
10333 
10334 #define WAIT_REFS_MIN_MSECS 1
10335 #define WAIT_REFS_MAX_MSECS 250
10336 /**
10337  * netdev_wait_allrefs - wait until all references are gone.
10338  * @dev: target net_device
10339  *
10340  * This is called when unregistering network devices.
10341  *
10342  * Any protocol or device that holds a reference should register
10343  * for netdevice notification, and cleanup and put back the
10344  * reference if they receive an UNREGISTER event.
10345  * We can get stuck here if buggy protocols don't correctly
10346  * call dev_put.
10347  */
10348 static void netdev_wait_allrefs(struct net_device *dev)
10349 {
10350 	unsigned long rebroadcast_time, warning_time;
10351 	int wait = 0, refcnt;
10352 
10353 	linkwatch_forget_dev(dev);
10354 
10355 	rebroadcast_time = warning_time = jiffies;
10356 	refcnt = netdev_refcnt_read(dev);
10357 
10358 	while (refcnt != 0) {
10359 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10360 			rtnl_lock();
10361 
10362 			/* Rebroadcast unregister notification */
10363 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10364 
10365 			__rtnl_unlock();
10366 			rcu_barrier();
10367 			rtnl_lock();
10368 
10369 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10370 				     &dev->state)) {
10371 				/* We must not have linkwatch events
10372 				 * pending on unregister. If this
10373 				 * happens, we simply run the queue
10374 				 * unscheduled, resulting in a noop
10375 				 * for this device.
10376 				 */
10377 				linkwatch_run_queue();
10378 			}
10379 
10380 			__rtnl_unlock();
10381 
10382 			rebroadcast_time = jiffies;
10383 		}
10384 
10385 		if (!wait) {
10386 			rcu_barrier();
10387 			wait = WAIT_REFS_MIN_MSECS;
10388 		} else {
10389 			msleep(wait);
10390 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10391 		}
10392 
10393 		refcnt = netdev_refcnt_read(dev);
10394 
10395 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10396 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10397 				 dev->name, refcnt);
10398 			warning_time = jiffies;
10399 		}
10400 	}
10401 }
10402 
10403 /* The sequence is:
10404  *
10405  *	rtnl_lock();
10406  *	...
10407  *	register_netdevice(x1);
10408  *	register_netdevice(x2);
10409  *	...
10410  *	unregister_netdevice(y1);
10411  *	unregister_netdevice(y2);
10412  *      ...
10413  *	rtnl_unlock();
10414  *	free_netdev(y1);
10415  *	free_netdev(y2);
10416  *
10417  * We are invoked by rtnl_unlock().
10418  * This allows us to deal with problems:
10419  * 1) We can delete sysfs objects which invoke hotplug
10420  *    without deadlocking with linkwatch via keventd.
10421  * 2) Since we run with the RTNL semaphore not held, we can sleep
10422  *    safely in order to wait for the netdev refcnt to drop to zero.
10423  *
10424  * We must not return until all unregister events added during
10425  * the interval the lock was held have been completed.
10426  */
10427 void netdev_run_todo(void)
10428 {
10429 	struct list_head list;
10430 #ifdef CONFIG_LOCKDEP
10431 	struct list_head unlink_list;
10432 
10433 	list_replace_init(&net_unlink_list, &unlink_list);
10434 
10435 	while (!list_empty(&unlink_list)) {
10436 		struct net_device *dev = list_first_entry(&unlink_list,
10437 							  struct net_device,
10438 							  unlink_list);
10439 		list_del_init(&dev->unlink_list);
10440 		dev->nested_level = dev->lower_level - 1;
10441 	}
10442 #endif
10443 
10444 	/* Snapshot list, allow later requests */
10445 	list_replace_init(&net_todo_list, &list);
10446 
10447 	__rtnl_unlock();
10448 
10449 
10450 	/* Wait for rcu callbacks to finish before next phase */
10451 	if (!list_empty(&list))
10452 		rcu_barrier();
10453 
10454 	while (!list_empty(&list)) {
10455 		struct net_device *dev
10456 			= list_first_entry(&list, struct net_device, todo_list);
10457 		list_del(&dev->todo_list);
10458 
10459 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10460 			pr_err("network todo '%s' but state %d\n",
10461 			       dev->name, dev->reg_state);
10462 			dump_stack();
10463 			continue;
10464 		}
10465 
10466 		dev->reg_state = NETREG_UNREGISTERED;
10467 
10468 		netdev_wait_allrefs(dev);
10469 
10470 		/* paranoia */
10471 		BUG_ON(netdev_refcnt_read(dev));
10472 		BUG_ON(!list_empty(&dev->ptype_all));
10473 		BUG_ON(!list_empty(&dev->ptype_specific));
10474 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10475 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10476 #if IS_ENABLED(CONFIG_DECNET)
10477 		WARN_ON(dev->dn_ptr);
10478 #endif
10479 		if (dev->priv_destructor)
10480 			dev->priv_destructor(dev);
10481 		if (dev->needs_free_netdev)
10482 			free_netdev(dev);
10483 
10484 		/* Report a network device has been unregistered */
10485 		rtnl_lock();
10486 		dev_net(dev)->dev_unreg_count--;
10487 		__rtnl_unlock();
10488 		wake_up(&netdev_unregistering_wq);
10489 
10490 		/* Free network device */
10491 		kobject_put(&dev->dev.kobj);
10492 	}
10493 }
10494 
10495 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10496  * all the same fields in the same order as net_device_stats, with only
10497  * the type differing, but rtnl_link_stats64 may have additional fields
10498  * at the end for newer counters.
10499  */
10500 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10501 			     const struct net_device_stats *netdev_stats)
10502 {
10503 #if BITS_PER_LONG == 64
10504 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10505 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10506 	/* zero out counters that only exist in rtnl_link_stats64 */
10507 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10508 	       sizeof(*stats64) - sizeof(*netdev_stats));
10509 #else
10510 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10511 	const unsigned long *src = (const unsigned long *)netdev_stats;
10512 	u64 *dst = (u64 *)stats64;
10513 
10514 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10515 	for (i = 0; i < n; i++)
10516 		dst[i] = src[i];
10517 	/* zero out counters that only exist in rtnl_link_stats64 */
10518 	memset((char *)stats64 + n * sizeof(u64), 0,
10519 	       sizeof(*stats64) - n * sizeof(u64));
10520 #endif
10521 }
10522 EXPORT_SYMBOL(netdev_stats_to_stats64);
10523 
10524 /**
10525  *	dev_get_stats	- get network device statistics
10526  *	@dev: device to get statistics from
10527  *	@storage: place to store stats
10528  *
10529  *	Get network statistics from device. Return @storage.
10530  *	The device driver may provide its own method by setting
10531  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10532  *	otherwise the internal statistics structure is used.
10533  */
10534 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10535 					struct rtnl_link_stats64 *storage)
10536 {
10537 	const struct net_device_ops *ops = dev->netdev_ops;
10538 
10539 	if (ops->ndo_get_stats64) {
10540 		memset(storage, 0, sizeof(*storage));
10541 		ops->ndo_get_stats64(dev, storage);
10542 	} else if (ops->ndo_get_stats) {
10543 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10544 	} else {
10545 		netdev_stats_to_stats64(storage, &dev->stats);
10546 	}
10547 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10548 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10549 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10550 	return storage;
10551 }
10552 EXPORT_SYMBOL(dev_get_stats);
10553 
10554 /**
10555  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10556  *	@s: place to store stats
10557  *	@netstats: per-cpu network stats to read from
10558  *
10559  *	Read per-cpu network statistics and populate the related fields in @s.
10560  */
10561 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10562 			   const struct pcpu_sw_netstats __percpu *netstats)
10563 {
10564 	int cpu;
10565 
10566 	for_each_possible_cpu(cpu) {
10567 		const struct pcpu_sw_netstats *stats;
10568 		struct pcpu_sw_netstats tmp;
10569 		unsigned int start;
10570 
10571 		stats = per_cpu_ptr(netstats, cpu);
10572 		do {
10573 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10574 			tmp.rx_packets = stats->rx_packets;
10575 			tmp.rx_bytes   = stats->rx_bytes;
10576 			tmp.tx_packets = stats->tx_packets;
10577 			tmp.tx_bytes   = stats->tx_bytes;
10578 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10579 
10580 		s->rx_packets += tmp.rx_packets;
10581 		s->rx_bytes   += tmp.rx_bytes;
10582 		s->tx_packets += tmp.tx_packets;
10583 		s->tx_bytes   += tmp.tx_bytes;
10584 	}
10585 }
10586 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10587 
10588 /**
10589  *	dev_get_tstats64 - ndo_get_stats64 implementation
10590  *	@dev: device to get statistics from
10591  *	@s: place to store stats
10592  *
10593  *	Populate @s from dev->stats and dev->tstats. Can be used as
10594  *	ndo_get_stats64() callback.
10595  */
10596 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10597 {
10598 	netdev_stats_to_stats64(s, &dev->stats);
10599 	dev_fetch_sw_netstats(s, dev->tstats);
10600 }
10601 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10602 
10603 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10604 {
10605 	struct netdev_queue *queue = dev_ingress_queue(dev);
10606 
10607 #ifdef CONFIG_NET_CLS_ACT
10608 	if (queue)
10609 		return queue;
10610 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10611 	if (!queue)
10612 		return NULL;
10613 	netdev_init_one_queue(dev, queue, NULL);
10614 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10615 	queue->qdisc_sleeping = &noop_qdisc;
10616 	rcu_assign_pointer(dev->ingress_queue, queue);
10617 #endif
10618 	return queue;
10619 }
10620 
10621 static const struct ethtool_ops default_ethtool_ops;
10622 
10623 void netdev_set_default_ethtool_ops(struct net_device *dev,
10624 				    const struct ethtool_ops *ops)
10625 {
10626 	if (dev->ethtool_ops == &default_ethtool_ops)
10627 		dev->ethtool_ops = ops;
10628 }
10629 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10630 
10631 void netdev_freemem(struct net_device *dev)
10632 {
10633 	char *addr = (char *)dev - dev->padded;
10634 
10635 	kvfree(addr);
10636 }
10637 
10638 /**
10639  * alloc_netdev_mqs - allocate network device
10640  * @sizeof_priv: size of private data to allocate space for
10641  * @name: device name format string
10642  * @name_assign_type: origin of device name
10643  * @setup: callback to initialize device
10644  * @txqs: the number of TX subqueues to allocate
10645  * @rxqs: the number of RX subqueues to allocate
10646  *
10647  * Allocates a struct net_device with private data area for driver use
10648  * and performs basic initialization.  Also allocates subqueue structs
10649  * for each queue on the device.
10650  */
10651 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10652 		unsigned char name_assign_type,
10653 		void (*setup)(struct net_device *),
10654 		unsigned int txqs, unsigned int rxqs)
10655 {
10656 	struct net_device *dev;
10657 	unsigned int alloc_size;
10658 	struct net_device *p;
10659 
10660 	BUG_ON(strlen(name) >= sizeof(dev->name));
10661 
10662 	if (txqs < 1) {
10663 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10664 		return NULL;
10665 	}
10666 
10667 	if (rxqs < 1) {
10668 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10669 		return NULL;
10670 	}
10671 
10672 	alloc_size = sizeof(struct net_device);
10673 	if (sizeof_priv) {
10674 		/* ensure 32-byte alignment of private area */
10675 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10676 		alloc_size += sizeof_priv;
10677 	}
10678 	/* ensure 32-byte alignment of whole construct */
10679 	alloc_size += NETDEV_ALIGN - 1;
10680 
10681 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10682 	if (!p)
10683 		return NULL;
10684 
10685 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10686 	dev->padded = (char *)dev - (char *)p;
10687 
10688 	dev->pcpu_refcnt = alloc_percpu(int);
10689 	if (!dev->pcpu_refcnt)
10690 		goto free_dev;
10691 
10692 	if (dev_addr_init(dev))
10693 		goto free_pcpu;
10694 
10695 	dev_mc_init(dev);
10696 	dev_uc_init(dev);
10697 
10698 	dev_net_set(dev, &init_net);
10699 
10700 	dev->gso_max_size = GSO_MAX_SIZE;
10701 	dev->gso_max_segs = GSO_MAX_SEGS;
10702 	dev->upper_level = 1;
10703 	dev->lower_level = 1;
10704 #ifdef CONFIG_LOCKDEP
10705 	dev->nested_level = 0;
10706 	INIT_LIST_HEAD(&dev->unlink_list);
10707 #endif
10708 
10709 	INIT_LIST_HEAD(&dev->napi_list);
10710 	INIT_LIST_HEAD(&dev->unreg_list);
10711 	INIT_LIST_HEAD(&dev->close_list);
10712 	INIT_LIST_HEAD(&dev->link_watch_list);
10713 	INIT_LIST_HEAD(&dev->adj_list.upper);
10714 	INIT_LIST_HEAD(&dev->adj_list.lower);
10715 	INIT_LIST_HEAD(&dev->ptype_all);
10716 	INIT_LIST_HEAD(&dev->ptype_specific);
10717 	INIT_LIST_HEAD(&dev->net_notifier_list);
10718 #ifdef CONFIG_NET_SCHED
10719 	hash_init(dev->qdisc_hash);
10720 #endif
10721 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10722 	setup(dev);
10723 
10724 	if (!dev->tx_queue_len) {
10725 		dev->priv_flags |= IFF_NO_QUEUE;
10726 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10727 	}
10728 
10729 	dev->num_tx_queues = txqs;
10730 	dev->real_num_tx_queues = txqs;
10731 	if (netif_alloc_netdev_queues(dev))
10732 		goto free_all;
10733 
10734 	dev->num_rx_queues = rxqs;
10735 	dev->real_num_rx_queues = rxqs;
10736 	if (netif_alloc_rx_queues(dev))
10737 		goto free_all;
10738 
10739 	strcpy(dev->name, name);
10740 	dev->name_assign_type = name_assign_type;
10741 	dev->group = INIT_NETDEV_GROUP;
10742 	if (!dev->ethtool_ops)
10743 		dev->ethtool_ops = &default_ethtool_ops;
10744 
10745 	nf_hook_ingress_init(dev);
10746 
10747 	return dev;
10748 
10749 free_all:
10750 	free_netdev(dev);
10751 	return NULL;
10752 
10753 free_pcpu:
10754 	free_percpu(dev->pcpu_refcnt);
10755 free_dev:
10756 	netdev_freemem(dev);
10757 	return NULL;
10758 }
10759 EXPORT_SYMBOL(alloc_netdev_mqs);
10760 
10761 /**
10762  * free_netdev - free network device
10763  * @dev: device
10764  *
10765  * This function does the last stage of destroying an allocated device
10766  * interface. The reference to the device object is released. If this
10767  * is the last reference then it will be freed.Must be called in process
10768  * context.
10769  */
10770 void free_netdev(struct net_device *dev)
10771 {
10772 	struct napi_struct *p, *n;
10773 
10774 	might_sleep();
10775 
10776 	/* When called immediately after register_netdevice() failed the unwind
10777 	 * handling may still be dismantling the device. Handle that case by
10778 	 * deferring the free.
10779 	 */
10780 	if (dev->reg_state == NETREG_UNREGISTERING) {
10781 		ASSERT_RTNL();
10782 		dev->needs_free_netdev = true;
10783 		return;
10784 	}
10785 
10786 	netif_free_tx_queues(dev);
10787 	netif_free_rx_queues(dev);
10788 
10789 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10790 
10791 	/* Flush device addresses */
10792 	dev_addr_flush(dev);
10793 
10794 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10795 		netif_napi_del(p);
10796 
10797 	free_percpu(dev->pcpu_refcnt);
10798 	dev->pcpu_refcnt = NULL;
10799 	free_percpu(dev->xdp_bulkq);
10800 	dev->xdp_bulkq = NULL;
10801 
10802 	/*  Compatibility with error handling in drivers */
10803 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10804 		netdev_freemem(dev);
10805 		return;
10806 	}
10807 
10808 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10809 	dev->reg_state = NETREG_RELEASED;
10810 
10811 	/* will free via device release */
10812 	put_device(&dev->dev);
10813 }
10814 EXPORT_SYMBOL(free_netdev);
10815 
10816 /**
10817  *	synchronize_net -  Synchronize with packet receive processing
10818  *
10819  *	Wait for packets currently being received to be done.
10820  *	Does not block later packets from starting.
10821  */
10822 void synchronize_net(void)
10823 {
10824 	might_sleep();
10825 	if (rtnl_is_locked())
10826 		synchronize_rcu_expedited();
10827 	else
10828 		synchronize_rcu();
10829 }
10830 EXPORT_SYMBOL(synchronize_net);
10831 
10832 /**
10833  *	unregister_netdevice_queue - remove device from the kernel
10834  *	@dev: device
10835  *	@head: list
10836  *
10837  *	This function shuts down a device interface and removes it
10838  *	from the kernel tables.
10839  *	If head not NULL, device is queued to be unregistered later.
10840  *
10841  *	Callers must hold the rtnl semaphore.  You may want
10842  *	unregister_netdev() instead of this.
10843  */
10844 
10845 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10846 {
10847 	ASSERT_RTNL();
10848 
10849 	if (head) {
10850 		list_move_tail(&dev->unreg_list, head);
10851 	} else {
10852 		LIST_HEAD(single);
10853 
10854 		list_add(&dev->unreg_list, &single);
10855 		unregister_netdevice_many(&single);
10856 	}
10857 }
10858 EXPORT_SYMBOL(unregister_netdevice_queue);
10859 
10860 /**
10861  *	unregister_netdevice_many - unregister many devices
10862  *	@head: list of devices
10863  *
10864  *  Note: As most callers use a stack allocated list_head,
10865  *  we force a list_del() to make sure stack wont be corrupted later.
10866  */
10867 void unregister_netdevice_many(struct list_head *head)
10868 {
10869 	struct net_device *dev, *tmp;
10870 	LIST_HEAD(close_head);
10871 
10872 	BUG_ON(dev_boot_phase);
10873 	ASSERT_RTNL();
10874 
10875 	if (list_empty(head))
10876 		return;
10877 
10878 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10879 		/* Some devices call without registering
10880 		 * for initialization unwind. Remove those
10881 		 * devices and proceed with the remaining.
10882 		 */
10883 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10884 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10885 				 dev->name, dev);
10886 
10887 			WARN_ON(1);
10888 			list_del(&dev->unreg_list);
10889 			continue;
10890 		}
10891 		dev->dismantle = true;
10892 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10893 	}
10894 
10895 	/* If device is running, close it first. */
10896 	list_for_each_entry(dev, head, unreg_list)
10897 		list_add_tail(&dev->close_list, &close_head);
10898 	dev_close_many(&close_head, true);
10899 
10900 	list_for_each_entry(dev, head, unreg_list) {
10901 		/* And unlink it from device chain. */
10902 		unlist_netdevice(dev);
10903 
10904 		dev->reg_state = NETREG_UNREGISTERING;
10905 	}
10906 	flush_all_backlogs();
10907 
10908 	synchronize_net();
10909 
10910 	list_for_each_entry(dev, head, unreg_list) {
10911 		struct sk_buff *skb = NULL;
10912 
10913 		/* Shutdown queueing discipline. */
10914 		dev_shutdown(dev);
10915 
10916 		dev_xdp_uninstall(dev);
10917 
10918 		/* Notify protocols, that we are about to destroy
10919 		 * this device. They should clean all the things.
10920 		 */
10921 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10922 
10923 		if (!dev->rtnl_link_ops ||
10924 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10925 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10926 						     GFP_KERNEL, NULL, 0);
10927 
10928 		/*
10929 		 *	Flush the unicast and multicast chains
10930 		 */
10931 		dev_uc_flush(dev);
10932 		dev_mc_flush(dev);
10933 
10934 		netdev_name_node_alt_flush(dev);
10935 		netdev_name_node_free(dev->name_node);
10936 
10937 		if (dev->netdev_ops->ndo_uninit)
10938 			dev->netdev_ops->ndo_uninit(dev);
10939 
10940 		if (skb)
10941 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10942 
10943 		/* Notifier chain MUST detach us all upper devices. */
10944 		WARN_ON(netdev_has_any_upper_dev(dev));
10945 		WARN_ON(netdev_has_any_lower_dev(dev));
10946 
10947 		/* Remove entries from kobject tree */
10948 		netdev_unregister_kobject(dev);
10949 #ifdef CONFIG_XPS
10950 		/* Remove XPS queueing entries */
10951 		netif_reset_xps_queues_gt(dev, 0);
10952 #endif
10953 	}
10954 
10955 	synchronize_net();
10956 
10957 	list_for_each_entry(dev, head, unreg_list) {
10958 		dev_put(dev);
10959 		net_set_todo(dev);
10960 	}
10961 
10962 	list_del(head);
10963 }
10964 EXPORT_SYMBOL(unregister_netdevice_many);
10965 
10966 /**
10967  *	unregister_netdev - remove device from the kernel
10968  *	@dev: device
10969  *
10970  *	This function shuts down a device interface and removes it
10971  *	from the kernel tables.
10972  *
10973  *	This is just a wrapper for unregister_netdevice that takes
10974  *	the rtnl semaphore.  In general you want to use this and not
10975  *	unregister_netdevice.
10976  */
10977 void unregister_netdev(struct net_device *dev)
10978 {
10979 	rtnl_lock();
10980 	unregister_netdevice(dev);
10981 	rtnl_unlock();
10982 }
10983 EXPORT_SYMBOL(unregister_netdev);
10984 
10985 /**
10986  *	dev_change_net_namespace - move device to different nethost namespace
10987  *	@dev: device
10988  *	@net: network namespace
10989  *	@pat: If not NULL name pattern to try if the current device name
10990  *	      is already taken in the destination network namespace.
10991  *
10992  *	This function shuts down a device interface and moves it
10993  *	to a new network namespace. On success 0 is returned, on
10994  *	a failure a netagive errno code is returned.
10995  *
10996  *	Callers must hold the rtnl semaphore.
10997  */
10998 
10999 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
11000 {
11001 	struct net *net_old = dev_net(dev);
11002 	int err, new_nsid, new_ifindex;
11003 
11004 	ASSERT_RTNL();
11005 
11006 	/* Don't allow namespace local devices to be moved. */
11007 	err = -EINVAL;
11008 	if (dev->features & NETIF_F_NETNS_LOCAL)
11009 		goto out;
11010 
11011 	/* Ensure the device has been registrered */
11012 	if (dev->reg_state != NETREG_REGISTERED)
11013 		goto out;
11014 
11015 	/* Get out if there is nothing todo */
11016 	err = 0;
11017 	if (net_eq(net_old, net))
11018 		goto out;
11019 
11020 	/* Pick the destination device name, and ensure
11021 	 * we can use it in the destination network namespace.
11022 	 */
11023 	err = -EEXIST;
11024 	if (__dev_get_by_name(net, dev->name)) {
11025 		/* We get here if we can't use the current device name */
11026 		if (!pat)
11027 			goto out;
11028 		err = dev_get_valid_name(net, dev, pat);
11029 		if (err < 0)
11030 			goto out;
11031 	}
11032 
11033 	/*
11034 	 * And now a mini version of register_netdevice unregister_netdevice.
11035 	 */
11036 
11037 	/* If device is running close it first. */
11038 	dev_close(dev);
11039 
11040 	/* And unlink it from device chain */
11041 	unlist_netdevice(dev);
11042 
11043 	synchronize_net();
11044 
11045 	/* Shutdown queueing discipline. */
11046 	dev_shutdown(dev);
11047 
11048 	/* Notify protocols, that we are about to destroy
11049 	 * this device. They should clean all the things.
11050 	 *
11051 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11052 	 * This is wanted because this way 8021q and macvlan know
11053 	 * the device is just moving and can keep their slaves up.
11054 	 */
11055 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11056 	rcu_barrier();
11057 
11058 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11059 	/* If there is an ifindex conflict assign a new one */
11060 	if (__dev_get_by_index(net, dev->ifindex))
11061 		new_ifindex = dev_new_index(net);
11062 	else
11063 		new_ifindex = dev->ifindex;
11064 
11065 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11066 			    new_ifindex);
11067 
11068 	/*
11069 	 *	Flush the unicast and multicast chains
11070 	 */
11071 	dev_uc_flush(dev);
11072 	dev_mc_flush(dev);
11073 
11074 	/* Send a netdev-removed uevent to the old namespace */
11075 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11076 	netdev_adjacent_del_links(dev);
11077 
11078 	/* Move per-net netdevice notifiers that are following the netdevice */
11079 	move_netdevice_notifiers_dev_net(dev, net);
11080 
11081 	/* Actually switch the network namespace */
11082 	dev_net_set(dev, net);
11083 	dev->ifindex = new_ifindex;
11084 
11085 	/* Send a netdev-add uevent to the new namespace */
11086 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11087 	netdev_adjacent_add_links(dev);
11088 
11089 	/* Fixup kobjects */
11090 	err = device_rename(&dev->dev, dev->name);
11091 	WARN_ON(err);
11092 
11093 	/* Adapt owner in case owning user namespace of target network
11094 	 * namespace is different from the original one.
11095 	 */
11096 	err = netdev_change_owner(dev, net_old, net);
11097 	WARN_ON(err);
11098 
11099 	/* Add the device back in the hashes */
11100 	list_netdevice(dev);
11101 
11102 	/* Notify protocols, that a new device appeared. */
11103 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11104 
11105 	/*
11106 	 *	Prevent userspace races by waiting until the network
11107 	 *	device is fully setup before sending notifications.
11108 	 */
11109 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11110 
11111 	synchronize_net();
11112 	err = 0;
11113 out:
11114 	return err;
11115 }
11116 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11117 
11118 static int dev_cpu_dead(unsigned int oldcpu)
11119 {
11120 	struct sk_buff **list_skb;
11121 	struct sk_buff *skb;
11122 	unsigned int cpu;
11123 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11124 
11125 	local_irq_disable();
11126 	cpu = smp_processor_id();
11127 	sd = &per_cpu(softnet_data, cpu);
11128 	oldsd = &per_cpu(softnet_data, oldcpu);
11129 
11130 	/* Find end of our completion_queue. */
11131 	list_skb = &sd->completion_queue;
11132 	while (*list_skb)
11133 		list_skb = &(*list_skb)->next;
11134 	/* Append completion queue from offline CPU. */
11135 	*list_skb = oldsd->completion_queue;
11136 	oldsd->completion_queue = NULL;
11137 
11138 	/* Append output queue from offline CPU. */
11139 	if (oldsd->output_queue) {
11140 		*sd->output_queue_tailp = oldsd->output_queue;
11141 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11142 		oldsd->output_queue = NULL;
11143 		oldsd->output_queue_tailp = &oldsd->output_queue;
11144 	}
11145 	/* Append NAPI poll list from offline CPU, with one exception :
11146 	 * process_backlog() must be called by cpu owning percpu backlog.
11147 	 * We properly handle process_queue & input_pkt_queue later.
11148 	 */
11149 	while (!list_empty(&oldsd->poll_list)) {
11150 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11151 							    struct napi_struct,
11152 							    poll_list);
11153 
11154 		list_del_init(&napi->poll_list);
11155 		if (napi->poll == process_backlog)
11156 			napi->state = 0;
11157 		else
11158 			____napi_schedule(sd, napi);
11159 	}
11160 
11161 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11162 	local_irq_enable();
11163 
11164 #ifdef CONFIG_RPS
11165 	remsd = oldsd->rps_ipi_list;
11166 	oldsd->rps_ipi_list = NULL;
11167 #endif
11168 	/* send out pending IPI's on offline CPU */
11169 	net_rps_send_ipi(remsd);
11170 
11171 	/* Process offline CPU's input_pkt_queue */
11172 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11173 		netif_rx_ni(skb);
11174 		input_queue_head_incr(oldsd);
11175 	}
11176 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11177 		netif_rx_ni(skb);
11178 		input_queue_head_incr(oldsd);
11179 	}
11180 
11181 	return 0;
11182 }
11183 
11184 /**
11185  *	netdev_increment_features - increment feature set by one
11186  *	@all: current feature set
11187  *	@one: new feature set
11188  *	@mask: mask feature set
11189  *
11190  *	Computes a new feature set after adding a device with feature set
11191  *	@one to the master device with current feature set @all.  Will not
11192  *	enable anything that is off in @mask. Returns the new feature set.
11193  */
11194 netdev_features_t netdev_increment_features(netdev_features_t all,
11195 	netdev_features_t one, netdev_features_t mask)
11196 {
11197 	if (mask & NETIF_F_HW_CSUM)
11198 		mask |= NETIF_F_CSUM_MASK;
11199 	mask |= NETIF_F_VLAN_CHALLENGED;
11200 
11201 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11202 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11203 
11204 	/* If one device supports hw checksumming, set for all. */
11205 	if (all & NETIF_F_HW_CSUM)
11206 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11207 
11208 	return all;
11209 }
11210 EXPORT_SYMBOL(netdev_increment_features);
11211 
11212 static struct hlist_head * __net_init netdev_create_hash(void)
11213 {
11214 	int i;
11215 	struct hlist_head *hash;
11216 
11217 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11218 	if (hash != NULL)
11219 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11220 			INIT_HLIST_HEAD(&hash[i]);
11221 
11222 	return hash;
11223 }
11224 
11225 /* Initialize per network namespace state */
11226 static int __net_init netdev_init(struct net *net)
11227 {
11228 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11229 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11230 
11231 	if (net != &init_net)
11232 		INIT_LIST_HEAD(&net->dev_base_head);
11233 
11234 	net->dev_name_head = netdev_create_hash();
11235 	if (net->dev_name_head == NULL)
11236 		goto err_name;
11237 
11238 	net->dev_index_head = netdev_create_hash();
11239 	if (net->dev_index_head == NULL)
11240 		goto err_idx;
11241 
11242 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11243 
11244 	return 0;
11245 
11246 err_idx:
11247 	kfree(net->dev_name_head);
11248 err_name:
11249 	return -ENOMEM;
11250 }
11251 
11252 /**
11253  *	netdev_drivername - network driver for the device
11254  *	@dev: network device
11255  *
11256  *	Determine network driver for device.
11257  */
11258 const char *netdev_drivername(const struct net_device *dev)
11259 {
11260 	const struct device_driver *driver;
11261 	const struct device *parent;
11262 	const char *empty = "";
11263 
11264 	parent = dev->dev.parent;
11265 	if (!parent)
11266 		return empty;
11267 
11268 	driver = parent->driver;
11269 	if (driver && driver->name)
11270 		return driver->name;
11271 	return empty;
11272 }
11273 
11274 static void __netdev_printk(const char *level, const struct net_device *dev,
11275 			    struct va_format *vaf)
11276 {
11277 	if (dev && dev->dev.parent) {
11278 		dev_printk_emit(level[1] - '0',
11279 				dev->dev.parent,
11280 				"%s %s %s%s: %pV",
11281 				dev_driver_string(dev->dev.parent),
11282 				dev_name(dev->dev.parent),
11283 				netdev_name(dev), netdev_reg_state(dev),
11284 				vaf);
11285 	} else if (dev) {
11286 		printk("%s%s%s: %pV",
11287 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11288 	} else {
11289 		printk("%s(NULL net_device): %pV", level, vaf);
11290 	}
11291 }
11292 
11293 void netdev_printk(const char *level, const struct net_device *dev,
11294 		   const char *format, ...)
11295 {
11296 	struct va_format vaf;
11297 	va_list args;
11298 
11299 	va_start(args, format);
11300 
11301 	vaf.fmt = format;
11302 	vaf.va = &args;
11303 
11304 	__netdev_printk(level, dev, &vaf);
11305 
11306 	va_end(args);
11307 }
11308 EXPORT_SYMBOL(netdev_printk);
11309 
11310 #define define_netdev_printk_level(func, level)			\
11311 void func(const struct net_device *dev, const char *fmt, ...)	\
11312 {								\
11313 	struct va_format vaf;					\
11314 	va_list args;						\
11315 								\
11316 	va_start(args, fmt);					\
11317 								\
11318 	vaf.fmt = fmt;						\
11319 	vaf.va = &args;						\
11320 								\
11321 	__netdev_printk(level, dev, &vaf);			\
11322 								\
11323 	va_end(args);						\
11324 }								\
11325 EXPORT_SYMBOL(func);
11326 
11327 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11328 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11329 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11330 define_netdev_printk_level(netdev_err, KERN_ERR);
11331 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11332 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11333 define_netdev_printk_level(netdev_info, KERN_INFO);
11334 
11335 static void __net_exit netdev_exit(struct net *net)
11336 {
11337 	kfree(net->dev_name_head);
11338 	kfree(net->dev_index_head);
11339 	if (net != &init_net)
11340 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11341 }
11342 
11343 static struct pernet_operations __net_initdata netdev_net_ops = {
11344 	.init = netdev_init,
11345 	.exit = netdev_exit,
11346 };
11347 
11348 static void __net_exit default_device_exit(struct net *net)
11349 {
11350 	struct net_device *dev, *aux;
11351 	/*
11352 	 * Push all migratable network devices back to the
11353 	 * initial network namespace
11354 	 */
11355 	rtnl_lock();
11356 	for_each_netdev_safe(net, dev, aux) {
11357 		int err;
11358 		char fb_name[IFNAMSIZ];
11359 
11360 		/* Ignore unmoveable devices (i.e. loopback) */
11361 		if (dev->features & NETIF_F_NETNS_LOCAL)
11362 			continue;
11363 
11364 		/* Leave virtual devices for the generic cleanup */
11365 		if (dev->rtnl_link_ops)
11366 			continue;
11367 
11368 		/* Push remaining network devices to init_net */
11369 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11370 		if (__dev_get_by_name(&init_net, fb_name))
11371 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11372 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11373 		if (err) {
11374 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11375 				 __func__, dev->name, err);
11376 			BUG();
11377 		}
11378 	}
11379 	rtnl_unlock();
11380 }
11381 
11382 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11383 {
11384 	/* Return with the rtnl_lock held when there are no network
11385 	 * devices unregistering in any network namespace in net_list.
11386 	 */
11387 	struct net *net;
11388 	bool unregistering;
11389 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11390 
11391 	add_wait_queue(&netdev_unregistering_wq, &wait);
11392 	for (;;) {
11393 		unregistering = false;
11394 		rtnl_lock();
11395 		list_for_each_entry(net, net_list, exit_list) {
11396 			if (net->dev_unreg_count > 0) {
11397 				unregistering = true;
11398 				break;
11399 			}
11400 		}
11401 		if (!unregistering)
11402 			break;
11403 		__rtnl_unlock();
11404 
11405 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11406 	}
11407 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11408 }
11409 
11410 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11411 {
11412 	/* At exit all network devices most be removed from a network
11413 	 * namespace.  Do this in the reverse order of registration.
11414 	 * Do this across as many network namespaces as possible to
11415 	 * improve batching efficiency.
11416 	 */
11417 	struct net_device *dev;
11418 	struct net *net;
11419 	LIST_HEAD(dev_kill_list);
11420 
11421 	/* To prevent network device cleanup code from dereferencing
11422 	 * loopback devices or network devices that have been freed
11423 	 * wait here for all pending unregistrations to complete,
11424 	 * before unregistring the loopback device and allowing the
11425 	 * network namespace be freed.
11426 	 *
11427 	 * The netdev todo list containing all network devices
11428 	 * unregistrations that happen in default_device_exit_batch
11429 	 * will run in the rtnl_unlock() at the end of
11430 	 * default_device_exit_batch.
11431 	 */
11432 	rtnl_lock_unregistering(net_list);
11433 	list_for_each_entry(net, net_list, exit_list) {
11434 		for_each_netdev_reverse(net, dev) {
11435 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11436 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11437 			else
11438 				unregister_netdevice_queue(dev, &dev_kill_list);
11439 		}
11440 	}
11441 	unregister_netdevice_many(&dev_kill_list);
11442 	rtnl_unlock();
11443 }
11444 
11445 static struct pernet_operations __net_initdata default_device_ops = {
11446 	.exit = default_device_exit,
11447 	.exit_batch = default_device_exit_batch,
11448 };
11449 
11450 /*
11451  *	Initialize the DEV module. At boot time this walks the device list and
11452  *	unhooks any devices that fail to initialise (normally hardware not
11453  *	present) and leaves us with a valid list of present and active devices.
11454  *
11455  */
11456 
11457 /*
11458  *       This is called single threaded during boot, so no need
11459  *       to take the rtnl semaphore.
11460  */
11461 static int __init net_dev_init(void)
11462 {
11463 	int i, rc = -ENOMEM;
11464 
11465 	BUG_ON(!dev_boot_phase);
11466 
11467 	if (dev_proc_init())
11468 		goto out;
11469 
11470 	if (netdev_kobject_init())
11471 		goto out;
11472 
11473 	INIT_LIST_HEAD(&ptype_all);
11474 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11475 		INIT_LIST_HEAD(&ptype_base[i]);
11476 
11477 	INIT_LIST_HEAD(&offload_base);
11478 
11479 	if (register_pernet_subsys(&netdev_net_ops))
11480 		goto out;
11481 
11482 	/*
11483 	 *	Initialise the packet receive queues.
11484 	 */
11485 
11486 	for_each_possible_cpu(i) {
11487 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11488 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11489 
11490 		INIT_WORK(flush, flush_backlog);
11491 
11492 		skb_queue_head_init(&sd->input_pkt_queue);
11493 		skb_queue_head_init(&sd->process_queue);
11494 #ifdef CONFIG_XFRM_OFFLOAD
11495 		skb_queue_head_init(&sd->xfrm_backlog);
11496 #endif
11497 		INIT_LIST_HEAD(&sd->poll_list);
11498 		sd->output_queue_tailp = &sd->output_queue;
11499 #ifdef CONFIG_RPS
11500 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11501 		sd->cpu = i;
11502 #endif
11503 
11504 		init_gro_hash(&sd->backlog);
11505 		sd->backlog.poll = process_backlog;
11506 		sd->backlog.weight = weight_p;
11507 	}
11508 
11509 	dev_boot_phase = 0;
11510 
11511 	/* The loopback device is special if any other network devices
11512 	 * is present in a network namespace the loopback device must
11513 	 * be present. Since we now dynamically allocate and free the
11514 	 * loopback device ensure this invariant is maintained by
11515 	 * keeping the loopback device as the first device on the
11516 	 * list of network devices.  Ensuring the loopback devices
11517 	 * is the first device that appears and the last network device
11518 	 * that disappears.
11519 	 */
11520 	if (register_pernet_device(&loopback_net_ops))
11521 		goto out;
11522 
11523 	if (register_pernet_device(&default_device_ops))
11524 		goto out;
11525 
11526 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11527 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11528 
11529 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11530 				       NULL, dev_cpu_dead);
11531 	WARN_ON(rc < 0);
11532 	rc = 0;
11533 out:
11534 	return rc;
11535 }
11536 
11537 subsys_initcall(net_dev_init);
11538