1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strlen(name) >= IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110 } 1111 1112 static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115 { 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124 } 1125 1126 /** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140 int dev_alloc_name(struct net_device *dev, const char *name) 1141 { 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143 } 1144 EXPORT_SYMBOL(dev_alloc_name); 1145 1146 int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148 { 1149 BUG_ON(!net); 1150 1151 if (!dev_valid_name(name)) 1152 return -EINVAL; 1153 1154 if (strchr(name, '%')) 1155 return dev_alloc_name_ns(net, dev, name); 1156 else if (__dev_get_by_name(net, name)) 1157 return -EEXIST; 1158 else if (dev->name != name) 1159 strlcpy(dev->name, name, IFNAMSIZ); 1160 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(dev_get_valid_name); 1164 1165 /** 1166 * dev_change_name - change name of a device 1167 * @dev: device 1168 * @newname: name (or format string) must be at least IFNAMSIZ 1169 * 1170 * Change name of a device, can pass format strings "eth%d". 1171 * for wildcarding. 1172 */ 1173 int dev_change_name(struct net_device *dev, const char *newname) 1174 { 1175 unsigned char old_assign_type; 1176 char oldname[IFNAMSIZ]; 1177 int err = 0; 1178 int ret; 1179 struct net *net; 1180 1181 ASSERT_RTNL(); 1182 BUG_ON(!dev_net(dev)); 1183 1184 net = dev_net(dev); 1185 if (dev->flags & IFF_UP) 1186 return -EBUSY; 1187 1188 write_seqcount_begin(&devnet_rename_seq); 1189 1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1191 write_seqcount_end(&devnet_rename_seq); 1192 return 0; 1193 } 1194 1195 memcpy(oldname, dev->name, IFNAMSIZ); 1196 1197 err = dev_get_valid_name(net, dev, newname); 1198 if (err < 0) { 1199 write_seqcount_end(&devnet_rename_seq); 1200 return err; 1201 } 1202 1203 if (oldname[0] && !strchr(oldname, '%')) 1204 netdev_info(dev, "renamed from %s\n", oldname); 1205 1206 old_assign_type = dev->name_assign_type; 1207 dev->name_assign_type = NET_NAME_RENAMED; 1208 1209 rollback: 1210 ret = device_rename(&dev->dev, dev->name); 1211 if (ret) { 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 write_seqcount_end(&devnet_rename_seq); 1215 return ret; 1216 } 1217 1218 write_seqcount_end(&devnet_rename_seq); 1219 1220 netdev_adjacent_rename_links(dev, oldname); 1221 1222 write_lock_bh(&dev_base_lock); 1223 hlist_del_rcu(&dev->name_hlist); 1224 write_unlock_bh(&dev_base_lock); 1225 1226 synchronize_rcu(); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1233 ret = notifier_to_errno(ret); 1234 1235 if (ret) { 1236 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1237 if (err >= 0) { 1238 err = ret; 1239 write_seqcount_begin(&devnet_rename_seq); 1240 memcpy(dev->name, oldname, IFNAMSIZ); 1241 memcpy(oldname, newname, IFNAMSIZ); 1242 dev->name_assign_type = old_assign_type; 1243 old_assign_type = NET_NAME_RENAMED; 1244 goto rollback; 1245 } else { 1246 pr_err("%s: name change rollback failed: %d\n", 1247 dev->name, ret); 1248 } 1249 } 1250 1251 return err; 1252 } 1253 1254 /** 1255 * dev_set_alias - change ifalias of a device 1256 * @dev: device 1257 * @alias: name up to IFALIASZ 1258 * @len: limit of bytes to copy from info 1259 * 1260 * Set ifalias for a device, 1261 */ 1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1263 { 1264 struct dev_ifalias *new_alias = NULL; 1265 1266 if (len >= IFALIASZ) 1267 return -EINVAL; 1268 1269 if (len) { 1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1271 if (!new_alias) 1272 return -ENOMEM; 1273 1274 memcpy(new_alias->ifalias, alias, len); 1275 new_alias->ifalias[len] = 0; 1276 } 1277 1278 mutex_lock(&ifalias_mutex); 1279 rcu_swap_protected(dev->ifalias, new_alias, 1280 mutex_is_locked(&ifalias_mutex)); 1281 mutex_unlock(&ifalias_mutex); 1282 1283 if (new_alias) 1284 kfree_rcu(new_alias, rcuhead); 1285 1286 return len; 1287 } 1288 1289 /** 1290 * dev_get_alias - get ifalias of a device 1291 * @dev: device 1292 * @name: buffer to store name of ifalias 1293 * @len: size of buffer 1294 * 1295 * get ifalias for a device. Caller must make sure dev cannot go 1296 * away, e.g. rcu read lock or own a reference count to device. 1297 */ 1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1299 { 1300 const struct dev_ifalias *alias; 1301 int ret = 0; 1302 1303 rcu_read_lock(); 1304 alias = rcu_dereference(dev->ifalias); 1305 if (alias) 1306 ret = snprintf(name, len, "%s", alias->ifalias); 1307 rcu_read_unlock(); 1308 1309 return ret; 1310 } 1311 1312 /** 1313 * netdev_features_change - device changes features 1314 * @dev: device to cause notification 1315 * 1316 * Called to indicate a device has changed features. 1317 */ 1318 void netdev_features_change(struct net_device *dev) 1319 { 1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1321 } 1322 EXPORT_SYMBOL(netdev_features_change); 1323 1324 /** 1325 * netdev_state_change - device changes state 1326 * @dev: device to cause notification 1327 * 1328 * Called to indicate a device has changed state. This function calls 1329 * the notifier chains for netdev_chain and sends a NEWLINK message 1330 * to the routing socket. 1331 */ 1332 void netdev_state_change(struct net_device *dev) 1333 { 1334 if (dev->flags & IFF_UP) { 1335 struct netdev_notifier_change_info change_info = { 1336 .info.dev = dev, 1337 }; 1338 1339 call_netdevice_notifiers_info(NETDEV_CHANGE, 1340 &change_info.info); 1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1342 } 1343 } 1344 EXPORT_SYMBOL(netdev_state_change); 1345 1346 /** 1347 * netdev_notify_peers - notify network peers about existence of @dev 1348 * @dev: network device 1349 * 1350 * Generate traffic such that interested network peers are aware of 1351 * @dev, such as by generating a gratuitous ARP. This may be used when 1352 * a device wants to inform the rest of the network about some sort of 1353 * reconfiguration such as a failover event or virtual machine 1354 * migration. 1355 */ 1356 void netdev_notify_peers(struct net_device *dev) 1357 { 1358 rtnl_lock(); 1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1361 rtnl_unlock(); 1362 } 1363 EXPORT_SYMBOL(netdev_notify_peers); 1364 1365 static int __dev_open(struct net_device *dev) 1366 { 1367 const struct net_device_ops *ops = dev->netdev_ops; 1368 int ret; 1369 1370 ASSERT_RTNL(); 1371 1372 if (!netif_device_present(dev)) 1373 return -ENODEV; 1374 1375 /* Block netpoll from trying to do any rx path servicing. 1376 * If we don't do this there is a chance ndo_poll_controller 1377 * or ndo_poll may be running while we open the device 1378 */ 1379 netpoll_poll_disable(dev); 1380 1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1382 ret = notifier_to_errno(ret); 1383 if (ret) 1384 return ret; 1385 1386 set_bit(__LINK_STATE_START, &dev->state); 1387 1388 if (ops->ndo_validate_addr) 1389 ret = ops->ndo_validate_addr(dev); 1390 1391 if (!ret && ops->ndo_open) 1392 ret = ops->ndo_open(dev); 1393 1394 netpoll_poll_enable(dev); 1395 1396 if (ret) 1397 clear_bit(__LINK_STATE_START, &dev->state); 1398 else { 1399 dev->flags |= IFF_UP; 1400 dev_set_rx_mode(dev); 1401 dev_activate(dev); 1402 add_device_randomness(dev->dev_addr, dev->addr_len); 1403 } 1404 1405 return ret; 1406 } 1407 1408 /** 1409 * dev_open - prepare an interface for use. 1410 * @dev: device to open 1411 * 1412 * Takes a device from down to up state. The device's private open 1413 * function is invoked and then the multicast lists are loaded. Finally 1414 * the device is moved into the up state and a %NETDEV_UP message is 1415 * sent to the netdev notifier chain. 1416 * 1417 * Calling this function on an active interface is a nop. On a failure 1418 * a negative errno code is returned. 1419 */ 1420 int dev_open(struct net_device *dev) 1421 { 1422 int ret; 1423 1424 if (dev->flags & IFF_UP) 1425 return 0; 1426 1427 ret = __dev_open(dev); 1428 if (ret < 0) 1429 return ret; 1430 1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1432 call_netdevice_notifiers(NETDEV_UP, dev); 1433 1434 return ret; 1435 } 1436 EXPORT_SYMBOL(dev_open); 1437 1438 static void __dev_close_many(struct list_head *head) 1439 { 1440 struct net_device *dev; 1441 1442 ASSERT_RTNL(); 1443 might_sleep(); 1444 1445 list_for_each_entry(dev, head, close_list) { 1446 /* Temporarily disable netpoll until the interface is down */ 1447 netpoll_poll_disable(dev); 1448 1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1450 1451 clear_bit(__LINK_STATE_START, &dev->state); 1452 1453 /* Synchronize to scheduled poll. We cannot touch poll list, it 1454 * can be even on different cpu. So just clear netif_running(). 1455 * 1456 * dev->stop() will invoke napi_disable() on all of it's 1457 * napi_struct instances on this device. 1458 */ 1459 smp_mb__after_atomic(); /* Commit netif_running(). */ 1460 } 1461 1462 dev_deactivate_many(head); 1463 1464 list_for_each_entry(dev, head, close_list) { 1465 const struct net_device_ops *ops = dev->netdev_ops; 1466 1467 /* 1468 * Call the device specific close. This cannot fail. 1469 * Only if device is UP 1470 * 1471 * We allow it to be called even after a DETACH hot-plug 1472 * event. 1473 */ 1474 if (ops->ndo_stop) 1475 ops->ndo_stop(dev); 1476 1477 dev->flags &= ~IFF_UP; 1478 netpoll_poll_enable(dev); 1479 } 1480 } 1481 1482 static void __dev_close(struct net_device *dev) 1483 { 1484 LIST_HEAD(single); 1485 1486 list_add(&dev->close_list, &single); 1487 __dev_close_many(&single); 1488 list_del(&single); 1489 } 1490 1491 void dev_close_many(struct list_head *head, bool unlink) 1492 { 1493 struct net_device *dev, *tmp; 1494 1495 /* Remove the devices that don't need to be closed */ 1496 list_for_each_entry_safe(dev, tmp, head, close_list) 1497 if (!(dev->flags & IFF_UP)) 1498 list_del_init(&dev->close_list); 1499 1500 __dev_close_many(head); 1501 1502 list_for_each_entry_safe(dev, tmp, head, close_list) { 1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1504 call_netdevice_notifiers(NETDEV_DOWN, dev); 1505 if (unlink) 1506 list_del_init(&dev->close_list); 1507 } 1508 } 1509 EXPORT_SYMBOL(dev_close_many); 1510 1511 /** 1512 * dev_close - shutdown an interface. 1513 * @dev: device to shutdown 1514 * 1515 * This function moves an active device into down state. A 1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1518 * chain. 1519 */ 1520 void dev_close(struct net_device *dev) 1521 { 1522 if (dev->flags & IFF_UP) { 1523 LIST_HEAD(single); 1524 1525 list_add(&dev->close_list, &single); 1526 dev_close_many(&single, true); 1527 list_del(&single); 1528 } 1529 } 1530 EXPORT_SYMBOL(dev_close); 1531 1532 1533 /** 1534 * dev_disable_lro - disable Large Receive Offload on a device 1535 * @dev: device 1536 * 1537 * Disable Large Receive Offload (LRO) on a net device. Must be 1538 * called under RTNL. This is needed if received packets may be 1539 * forwarded to another interface. 1540 */ 1541 void dev_disable_lro(struct net_device *dev) 1542 { 1543 struct net_device *lower_dev; 1544 struct list_head *iter; 1545 1546 dev->wanted_features &= ~NETIF_F_LRO; 1547 netdev_update_features(dev); 1548 1549 if (unlikely(dev->features & NETIF_F_LRO)) 1550 netdev_WARN(dev, "failed to disable LRO!\n"); 1551 1552 netdev_for_each_lower_dev(dev, lower_dev, iter) 1553 dev_disable_lro(lower_dev); 1554 } 1555 EXPORT_SYMBOL(dev_disable_lro); 1556 1557 /** 1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1559 * @dev: device 1560 * 1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1562 * called under RTNL. This is needed if Generic XDP is installed on 1563 * the device. 1564 */ 1565 static void dev_disable_gro_hw(struct net_device *dev) 1566 { 1567 dev->wanted_features &= ~NETIF_F_GRO_HW; 1568 netdev_update_features(dev); 1569 1570 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1571 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1572 } 1573 1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1575 { 1576 #define N(val) \ 1577 case NETDEV_##val: \ 1578 return "NETDEV_" __stringify(val); 1579 switch (cmd) { 1580 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1581 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1582 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1583 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1584 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1585 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1586 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1587 }; 1588 #undef N 1589 return "UNKNOWN_NETDEV_EVENT"; 1590 } 1591 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1592 1593 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1594 struct net_device *dev) 1595 { 1596 struct netdev_notifier_info info = { 1597 .dev = dev, 1598 }; 1599 1600 return nb->notifier_call(nb, val, &info); 1601 } 1602 1603 static int dev_boot_phase = 1; 1604 1605 /** 1606 * register_netdevice_notifier - register a network notifier block 1607 * @nb: notifier 1608 * 1609 * Register a notifier to be called when network device events occur. 1610 * The notifier passed is linked into the kernel structures and must 1611 * not be reused until it has been unregistered. A negative errno code 1612 * is returned on a failure. 1613 * 1614 * When registered all registration and up events are replayed 1615 * to the new notifier to allow device to have a race free 1616 * view of the network device list. 1617 */ 1618 1619 int register_netdevice_notifier(struct notifier_block *nb) 1620 { 1621 struct net_device *dev; 1622 struct net_device *last; 1623 struct net *net; 1624 int err; 1625 1626 rtnl_lock(); 1627 err = raw_notifier_chain_register(&netdev_chain, nb); 1628 if (err) 1629 goto unlock; 1630 if (dev_boot_phase) 1631 goto unlock; 1632 down_read(&net_rwsem); 1633 for_each_net(net) { 1634 for_each_netdev(net, dev) { 1635 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1636 err = notifier_to_errno(err); 1637 if (err) 1638 goto rollback; 1639 1640 if (!(dev->flags & IFF_UP)) 1641 continue; 1642 1643 call_netdevice_notifier(nb, NETDEV_UP, dev); 1644 } 1645 } 1646 up_read(&net_rwsem); 1647 1648 unlock: 1649 rtnl_unlock(); 1650 return err; 1651 1652 rollback: 1653 last = dev; 1654 for_each_net(net) { 1655 for_each_netdev(net, dev) { 1656 if (dev == last) 1657 goto outroll; 1658 1659 if (dev->flags & IFF_UP) { 1660 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1661 dev); 1662 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1663 } 1664 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1665 } 1666 } 1667 1668 outroll: 1669 up_read(&net_rwsem); 1670 raw_notifier_chain_unregister(&netdev_chain, nb); 1671 goto unlock; 1672 } 1673 EXPORT_SYMBOL(register_netdevice_notifier); 1674 1675 /** 1676 * unregister_netdevice_notifier - unregister a network notifier block 1677 * @nb: notifier 1678 * 1679 * Unregister a notifier previously registered by 1680 * register_netdevice_notifier(). The notifier is unlinked into the 1681 * kernel structures and may then be reused. A negative errno code 1682 * is returned on a failure. 1683 * 1684 * After unregistering unregister and down device events are synthesized 1685 * for all devices on the device list to the removed notifier to remove 1686 * the need for special case cleanup code. 1687 */ 1688 1689 int unregister_netdevice_notifier(struct notifier_block *nb) 1690 { 1691 struct net_device *dev; 1692 struct net *net; 1693 int err; 1694 1695 rtnl_lock(); 1696 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1697 if (err) 1698 goto unlock; 1699 1700 down_read(&net_rwsem); 1701 for_each_net(net) { 1702 for_each_netdev(net, dev) { 1703 if (dev->flags & IFF_UP) { 1704 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1705 dev); 1706 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1707 } 1708 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1709 } 1710 } 1711 up_read(&net_rwsem); 1712 unlock: 1713 rtnl_unlock(); 1714 return err; 1715 } 1716 EXPORT_SYMBOL(unregister_netdevice_notifier); 1717 1718 /** 1719 * call_netdevice_notifiers_info - call all network notifier blocks 1720 * @val: value passed unmodified to notifier function 1721 * @info: notifier information data 1722 * 1723 * Call all network notifier blocks. Parameters and return value 1724 * are as for raw_notifier_call_chain(). 1725 */ 1726 1727 static int call_netdevice_notifiers_info(unsigned long val, 1728 struct netdev_notifier_info *info) 1729 { 1730 ASSERT_RTNL(); 1731 return raw_notifier_call_chain(&netdev_chain, val, info); 1732 } 1733 1734 /** 1735 * call_netdevice_notifiers - call all network notifier blocks 1736 * @val: value passed unmodified to notifier function 1737 * @dev: net_device pointer passed unmodified to notifier function 1738 * 1739 * Call all network notifier blocks. Parameters and return value 1740 * are as for raw_notifier_call_chain(). 1741 */ 1742 1743 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1744 { 1745 struct netdev_notifier_info info = { 1746 .dev = dev, 1747 }; 1748 1749 return call_netdevice_notifiers_info(val, &info); 1750 } 1751 EXPORT_SYMBOL(call_netdevice_notifiers); 1752 1753 #ifdef CONFIG_NET_INGRESS 1754 static struct static_key ingress_needed __read_mostly; 1755 1756 void net_inc_ingress_queue(void) 1757 { 1758 static_key_slow_inc(&ingress_needed); 1759 } 1760 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1761 1762 void net_dec_ingress_queue(void) 1763 { 1764 static_key_slow_dec(&ingress_needed); 1765 } 1766 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1767 #endif 1768 1769 #ifdef CONFIG_NET_EGRESS 1770 static struct static_key egress_needed __read_mostly; 1771 1772 void net_inc_egress_queue(void) 1773 { 1774 static_key_slow_inc(&egress_needed); 1775 } 1776 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1777 1778 void net_dec_egress_queue(void) 1779 { 1780 static_key_slow_dec(&egress_needed); 1781 } 1782 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1783 #endif 1784 1785 static struct static_key netstamp_needed __read_mostly; 1786 #ifdef HAVE_JUMP_LABEL 1787 static atomic_t netstamp_needed_deferred; 1788 static atomic_t netstamp_wanted; 1789 static void netstamp_clear(struct work_struct *work) 1790 { 1791 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1792 int wanted; 1793 1794 wanted = atomic_add_return(deferred, &netstamp_wanted); 1795 if (wanted > 0) 1796 static_key_enable(&netstamp_needed); 1797 else 1798 static_key_disable(&netstamp_needed); 1799 } 1800 static DECLARE_WORK(netstamp_work, netstamp_clear); 1801 #endif 1802 1803 void net_enable_timestamp(void) 1804 { 1805 #ifdef HAVE_JUMP_LABEL 1806 int wanted; 1807 1808 while (1) { 1809 wanted = atomic_read(&netstamp_wanted); 1810 if (wanted <= 0) 1811 break; 1812 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1813 return; 1814 } 1815 atomic_inc(&netstamp_needed_deferred); 1816 schedule_work(&netstamp_work); 1817 #else 1818 static_key_slow_inc(&netstamp_needed); 1819 #endif 1820 } 1821 EXPORT_SYMBOL(net_enable_timestamp); 1822 1823 void net_disable_timestamp(void) 1824 { 1825 #ifdef HAVE_JUMP_LABEL 1826 int wanted; 1827 1828 while (1) { 1829 wanted = atomic_read(&netstamp_wanted); 1830 if (wanted <= 1) 1831 break; 1832 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1833 return; 1834 } 1835 atomic_dec(&netstamp_needed_deferred); 1836 schedule_work(&netstamp_work); 1837 #else 1838 static_key_slow_dec(&netstamp_needed); 1839 #endif 1840 } 1841 EXPORT_SYMBOL(net_disable_timestamp); 1842 1843 static inline void net_timestamp_set(struct sk_buff *skb) 1844 { 1845 skb->tstamp = 0; 1846 if (static_key_false(&netstamp_needed)) 1847 __net_timestamp(skb); 1848 } 1849 1850 #define net_timestamp_check(COND, SKB) \ 1851 if (static_key_false(&netstamp_needed)) { \ 1852 if ((COND) && !(SKB)->tstamp) \ 1853 __net_timestamp(SKB); \ 1854 } \ 1855 1856 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1857 { 1858 unsigned int len; 1859 1860 if (!(dev->flags & IFF_UP)) 1861 return false; 1862 1863 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1864 if (skb->len <= len) 1865 return true; 1866 1867 /* if TSO is enabled, we don't care about the length as the packet 1868 * could be forwarded without being segmented before 1869 */ 1870 if (skb_is_gso(skb)) 1871 return true; 1872 1873 return false; 1874 } 1875 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1876 1877 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1878 { 1879 int ret = ____dev_forward_skb(dev, skb); 1880 1881 if (likely(!ret)) { 1882 skb->protocol = eth_type_trans(skb, dev); 1883 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1884 } 1885 1886 return ret; 1887 } 1888 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1889 1890 /** 1891 * dev_forward_skb - loopback an skb to another netif 1892 * 1893 * @dev: destination network device 1894 * @skb: buffer to forward 1895 * 1896 * return values: 1897 * NET_RX_SUCCESS (no congestion) 1898 * NET_RX_DROP (packet was dropped, but freed) 1899 * 1900 * dev_forward_skb can be used for injecting an skb from the 1901 * start_xmit function of one device into the receive queue 1902 * of another device. 1903 * 1904 * The receiving device may be in another namespace, so 1905 * we have to clear all information in the skb that could 1906 * impact namespace isolation. 1907 */ 1908 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1909 { 1910 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1911 } 1912 EXPORT_SYMBOL_GPL(dev_forward_skb); 1913 1914 static inline int deliver_skb(struct sk_buff *skb, 1915 struct packet_type *pt_prev, 1916 struct net_device *orig_dev) 1917 { 1918 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1919 return -ENOMEM; 1920 refcount_inc(&skb->users); 1921 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1922 } 1923 1924 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1925 struct packet_type **pt, 1926 struct net_device *orig_dev, 1927 __be16 type, 1928 struct list_head *ptype_list) 1929 { 1930 struct packet_type *ptype, *pt_prev = *pt; 1931 1932 list_for_each_entry_rcu(ptype, ptype_list, list) { 1933 if (ptype->type != type) 1934 continue; 1935 if (pt_prev) 1936 deliver_skb(skb, pt_prev, orig_dev); 1937 pt_prev = ptype; 1938 } 1939 *pt = pt_prev; 1940 } 1941 1942 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1943 { 1944 if (!ptype->af_packet_priv || !skb->sk) 1945 return false; 1946 1947 if (ptype->id_match) 1948 return ptype->id_match(ptype, skb->sk); 1949 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1950 return true; 1951 1952 return false; 1953 } 1954 1955 /* 1956 * Support routine. Sends outgoing frames to any network 1957 * taps currently in use. 1958 */ 1959 1960 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1961 { 1962 struct packet_type *ptype; 1963 struct sk_buff *skb2 = NULL; 1964 struct packet_type *pt_prev = NULL; 1965 struct list_head *ptype_list = &ptype_all; 1966 1967 rcu_read_lock(); 1968 again: 1969 list_for_each_entry_rcu(ptype, ptype_list, list) { 1970 /* Never send packets back to the socket 1971 * they originated from - MvS (miquels@drinkel.ow.org) 1972 */ 1973 if (skb_loop_sk(ptype, skb)) 1974 continue; 1975 1976 if (pt_prev) { 1977 deliver_skb(skb2, pt_prev, skb->dev); 1978 pt_prev = ptype; 1979 continue; 1980 } 1981 1982 /* need to clone skb, done only once */ 1983 skb2 = skb_clone(skb, GFP_ATOMIC); 1984 if (!skb2) 1985 goto out_unlock; 1986 1987 net_timestamp_set(skb2); 1988 1989 /* skb->nh should be correctly 1990 * set by sender, so that the second statement is 1991 * just protection against buggy protocols. 1992 */ 1993 skb_reset_mac_header(skb2); 1994 1995 if (skb_network_header(skb2) < skb2->data || 1996 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1997 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1998 ntohs(skb2->protocol), 1999 dev->name); 2000 skb_reset_network_header(skb2); 2001 } 2002 2003 skb2->transport_header = skb2->network_header; 2004 skb2->pkt_type = PACKET_OUTGOING; 2005 pt_prev = ptype; 2006 } 2007 2008 if (ptype_list == &ptype_all) { 2009 ptype_list = &dev->ptype_all; 2010 goto again; 2011 } 2012 out_unlock: 2013 if (pt_prev) { 2014 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2015 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2016 else 2017 kfree_skb(skb2); 2018 } 2019 rcu_read_unlock(); 2020 } 2021 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2022 2023 /** 2024 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2025 * @dev: Network device 2026 * @txq: number of queues available 2027 * 2028 * If real_num_tx_queues is changed the tc mappings may no longer be 2029 * valid. To resolve this verify the tc mapping remains valid and if 2030 * not NULL the mapping. With no priorities mapping to this 2031 * offset/count pair it will no longer be used. In the worst case TC0 2032 * is invalid nothing can be done so disable priority mappings. If is 2033 * expected that drivers will fix this mapping if they can before 2034 * calling netif_set_real_num_tx_queues. 2035 */ 2036 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2037 { 2038 int i; 2039 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2040 2041 /* If TC0 is invalidated disable TC mapping */ 2042 if (tc->offset + tc->count > txq) { 2043 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2044 dev->num_tc = 0; 2045 return; 2046 } 2047 2048 /* Invalidated prio to tc mappings set to TC0 */ 2049 for (i = 1; i < TC_BITMASK + 1; i++) { 2050 int q = netdev_get_prio_tc_map(dev, i); 2051 2052 tc = &dev->tc_to_txq[q]; 2053 if (tc->offset + tc->count > txq) { 2054 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2055 i, q); 2056 netdev_set_prio_tc_map(dev, i, 0); 2057 } 2058 } 2059 } 2060 2061 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2062 { 2063 if (dev->num_tc) { 2064 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2065 int i; 2066 2067 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2068 if ((txq - tc->offset) < tc->count) 2069 return i; 2070 } 2071 2072 return -1; 2073 } 2074 2075 return 0; 2076 } 2077 EXPORT_SYMBOL(netdev_txq_to_tc); 2078 2079 #ifdef CONFIG_XPS 2080 static DEFINE_MUTEX(xps_map_mutex); 2081 #define xmap_dereference(P) \ 2082 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2083 2084 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2085 int tci, u16 index) 2086 { 2087 struct xps_map *map = NULL; 2088 int pos; 2089 2090 if (dev_maps) 2091 map = xmap_dereference(dev_maps->cpu_map[tci]); 2092 if (!map) 2093 return false; 2094 2095 for (pos = map->len; pos--;) { 2096 if (map->queues[pos] != index) 2097 continue; 2098 2099 if (map->len > 1) { 2100 map->queues[pos] = map->queues[--map->len]; 2101 break; 2102 } 2103 2104 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2105 kfree_rcu(map, rcu); 2106 return false; 2107 } 2108 2109 return true; 2110 } 2111 2112 static bool remove_xps_queue_cpu(struct net_device *dev, 2113 struct xps_dev_maps *dev_maps, 2114 int cpu, u16 offset, u16 count) 2115 { 2116 int num_tc = dev->num_tc ? : 1; 2117 bool active = false; 2118 int tci; 2119 2120 for (tci = cpu * num_tc; num_tc--; tci++) { 2121 int i, j; 2122 2123 for (i = count, j = offset; i--; j++) { 2124 if (!remove_xps_queue(dev_maps, cpu, j)) 2125 break; 2126 } 2127 2128 active |= i < 0; 2129 } 2130 2131 return active; 2132 } 2133 2134 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2135 u16 count) 2136 { 2137 struct xps_dev_maps *dev_maps; 2138 int cpu, i; 2139 bool active = false; 2140 2141 mutex_lock(&xps_map_mutex); 2142 dev_maps = xmap_dereference(dev->xps_maps); 2143 2144 if (!dev_maps) 2145 goto out_no_maps; 2146 2147 for_each_possible_cpu(cpu) 2148 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2149 offset, count); 2150 2151 if (!active) { 2152 RCU_INIT_POINTER(dev->xps_maps, NULL); 2153 kfree_rcu(dev_maps, rcu); 2154 } 2155 2156 for (i = offset + (count - 1); count--; i--) 2157 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2158 NUMA_NO_NODE); 2159 2160 out_no_maps: 2161 mutex_unlock(&xps_map_mutex); 2162 } 2163 2164 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2165 { 2166 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2167 } 2168 2169 static struct xps_map *expand_xps_map(struct xps_map *map, 2170 int cpu, u16 index) 2171 { 2172 struct xps_map *new_map; 2173 int alloc_len = XPS_MIN_MAP_ALLOC; 2174 int i, pos; 2175 2176 for (pos = 0; map && pos < map->len; pos++) { 2177 if (map->queues[pos] != index) 2178 continue; 2179 return map; 2180 } 2181 2182 /* Need to add queue to this CPU's existing map */ 2183 if (map) { 2184 if (pos < map->alloc_len) 2185 return map; 2186 2187 alloc_len = map->alloc_len * 2; 2188 } 2189 2190 /* Need to allocate new map to store queue on this CPU's map */ 2191 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2192 cpu_to_node(cpu)); 2193 if (!new_map) 2194 return NULL; 2195 2196 for (i = 0; i < pos; i++) 2197 new_map->queues[i] = map->queues[i]; 2198 new_map->alloc_len = alloc_len; 2199 new_map->len = pos; 2200 2201 return new_map; 2202 } 2203 2204 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2205 u16 index) 2206 { 2207 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2208 int i, cpu, tci, numa_node_id = -2; 2209 int maps_sz, num_tc = 1, tc = 0; 2210 struct xps_map *map, *new_map; 2211 bool active = false; 2212 2213 if (dev->num_tc) { 2214 num_tc = dev->num_tc; 2215 tc = netdev_txq_to_tc(dev, index); 2216 if (tc < 0) 2217 return -EINVAL; 2218 } 2219 2220 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2221 if (maps_sz < L1_CACHE_BYTES) 2222 maps_sz = L1_CACHE_BYTES; 2223 2224 mutex_lock(&xps_map_mutex); 2225 2226 dev_maps = xmap_dereference(dev->xps_maps); 2227 2228 /* allocate memory for queue storage */ 2229 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2230 if (!new_dev_maps) 2231 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2232 if (!new_dev_maps) { 2233 mutex_unlock(&xps_map_mutex); 2234 return -ENOMEM; 2235 } 2236 2237 tci = cpu * num_tc + tc; 2238 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2239 NULL; 2240 2241 map = expand_xps_map(map, cpu, index); 2242 if (!map) 2243 goto error; 2244 2245 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2246 } 2247 2248 if (!new_dev_maps) 2249 goto out_no_new_maps; 2250 2251 for_each_possible_cpu(cpu) { 2252 /* copy maps belonging to foreign traffic classes */ 2253 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2254 /* fill in the new device map from the old device map */ 2255 map = xmap_dereference(dev_maps->cpu_map[tci]); 2256 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2257 } 2258 2259 /* We need to explicitly update tci as prevous loop 2260 * could break out early if dev_maps is NULL. 2261 */ 2262 tci = cpu * num_tc + tc; 2263 2264 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2265 /* add queue to CPU maps */ 2266 int pos = 0; 2267 2268 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2269 while ((pos < map->len) && (map->queues[pos] != index)) 2270 pos++; 2271 2272 if (pos == map->len) 2273 map->queues[map->len++] = index; 2274 #ifdef CONFIG_NUMA 2275 if (numa_node_id == -2) 2276 numa_node_id = cpu_to_node(cpu); 2277 else if (numa_node_id != cpu_to_node(cpu)) 2278 numa_node_id = -1; 2279 #endif 2280 } else if (dev_maps) { 2281 /* fill in the new device map from the old device map */ 2282 map = xmap_dereference(dev_maps->cpu_map[tci]); 2283 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2284 } 2285 2286 /* copy maps belonging to foreign traffic classes */ 2287 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2288 /* fill in the new device map from the old device map */ 2289 map = xmap_dereference(dev_maps->cpu_map[tci]); 2290 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2291 } 2292 } 2293 2294 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2295 2296 /* Cleanup old maps */ 2297 if (!dev_maps) 2298 goto out_no_old_maps; 2299 2300 for_each_possible_cpu(cpu) { 2301 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2302 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2303 map = xmap_dereference(dev_maps->cpu_map[tci]); 2304 if (map && map != new_map) 2305 kfree_rcu(map, rcu); 2306 } 2307 } 2308 2309 kfree_rcu(dev_maps, rcu); 2310 2311 out_no_old_maps: 2312 dev_maps = new_dev_maps; 2313 active = true; 2314 2315 out_no_new_maps: 2316 /* update Tx queue numa node */ 2317 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2318 (numa_node_id >= 0) ? numa_node_id : 2319 NUMA_NO_NODE); 2320 2321 if (!dev_maps) 2322 goto out_no_maps; 2323 2324 /* removes queue from unused CPUs */ 2325 for_each_possible_cpu(cpu) { 2326 for (i = tc, tci = cpu * num_tc; i--; tci++) 2327 active |= remove_xps_queue(dev_maps, tci, index); 2328 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2329 active |= remove_xps_queue(dev_maps, tci, index); 2330 for (i = num_tc - tc, tci++; --i; tci++) 2331 active |= remove_xps_queue(dev_maps, tci, index); 2332 } 2333 2334 /* free map if not active */ 2335 if (!active) { 2336 RCU_INIT_POINTER(dev->xps_maps, NULL); 2337 kfree_rcu(dev_maps, rcu); 2338 } 2339 2340 out_no_maps: 2341 mutex_unlock(&xps_map_mutex); 2342 2343 return 0; 2344 error: 2345 /* remove any maps that we added */ 2346 for_each_possible_cpu(cpu) { 2347 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2348 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2349 map = dev_maps ? 2350 xmap_dereference(dev_maps->cpu_map[tci]) : 2351 NULL; 2352 if (new_map && new_map != map) 2353 kfree(new_map); 2354 } 2355 } 2356 2357 mutex_unlock(&xps_map_mutex); 2358 2359 kfree(new_dev_maps); 2360 return -ENOMEM; 2361 } 2362 EXPORT_SYMBOL(netif_set_xps_queue); 2363 2364 #endif 2365 void netdev_reset_tc(struct net_device *dev) 2366 { 2367 #ifdef CONFIG_XPS 2368 netif_reset_xps_queues_gt(dev, 0); 2369 #endif 2370 dev->num_tc = 0; 2371 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2372 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2373 } 2374 EXPORT_SYMBOL(netdev_reset_tc); 2375 2376 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2377 { 2378 if (tc >= dev->num_tc) 2379 return -EINVAL; 2380 2381 #ifdef CONFIG_XPS 2382 netif_reset_xps_queues(dev, offset, count); 2383 #endif 2384 dev->tc_to_txq[tc].count = count; 2385 dev->tc_to_txq[tc].offset = offset; 2386 return 0; 2387 } 2388 EXPORT_SYMBOL(netdev_set_tc_queue); 2389 2390 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2391 { 2392 if (num_tc > TC_MAX_QUEUE) 2393 return -EINVAL; 2394 2395 #ifdef CONFIG_XPS 2396 netif_reset_xps_queues_gt(dev, 0); 2397 #endif 2398 dev->num_tc = num_tc; 2399 return 0; 2400 } 2401 EXPORT_SYMBOL(netdev_set_num_tc); 2402 2403 /* 2404 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2405 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2406 */ 2407 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2408 { 2409 bool disabling; 2410 int rc; 2411 2412 disabling = txq < dev->real_num_tx_queues; 2413 2414 if (txq < 1 || txq > dev->num_tx_queues) 2415 return -EINVAL; 2416 2417 if (dev->reg_state == NETREG_REGISTERED || 2418 dev->reg_state == NETREG_UNREGISTERING) { 2419 ASSERT_RTNL(); 2420 2421 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2422 txq); 2423 if (rc) 2424 return rc; 2425 2426 if (dev->num_tc) 2427 netif_setup_tc(dev, txq); 2428 2429 dev->real_num_tx_queues = txq; 2430 2431 if (disabling) { 2432 synchronize_net(); 2433 qdisc_reset_all_tx_gt(dev, txq); 2434 #ifdef CONFIG_XPS 2435 netif_reset_xps_queues_gt(dev, txq); 2436 #endif 2437 } 2438 } else { 2439 dev->real_num_tx_queues = txq; 2440 } 2441 2442 return 0; 2443 } 2444 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2445 2446 #ifdef CONFIG_SYSFS 2447 /** 2448 * netif_set_real_num_rx_queues - set actual number of RX queues used 2449 * @dev: Network device 2450 * @rxq: Actual number of RX queues 2451 * 2452 * This must be called either with the rtnl_lock held or before 2453 * registration of the net device. Returns 0 on success, or a 2454 * negative error code. If called before registration, it always 2455 * succeeds. 2456 */ 2457 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2458 { 2459 int rc; 2460 2461 if (rxq < 1 || rxq > dev->num_rx_queues) 2462 return -EINVAL; 2463 2464 if (dev->reg_state == NETREG_REGISTERED) { 2465 ASSERT_RTNL(); 2466 2467 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2468 rxq); 2469 if (rc) 2470 return rc; 2471 } 2472 2473 dev->real_num_rx_queues = rxq; 2474 return 0; 2475 } 2476 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2477 #endif 2478 2479 /** 2480 * netif_get_num_default_rss_queues - default number of RSS queues 2481 * 2482 * This routine should set an upper limit on the number of RSS queues 2483 * used by default by multiqueue devices. 2484 */ 2485 int netif_get_num_default_rss_queues(void) 2486 { 2487 return is_kdump_kernel() ? 2488 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2489 } 2490 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2491 2492 static void __netif_reschedule(struct Qdisc *q) 2493 { 2494 struct softnet_data *sd; 2495 unsigned long flags; 2496 2497 local_irq_save(flags); 2498 sd = this_cpu_ptr(&softnet_data); 2499 q->next_sched = NULL; 2500 *sd->output_queue_tailp = q; 2501 sd->output_queue_tailp = &q->next_sched; 2502 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2503 local_irq_restore(flags); 2504 } 2505 2506 void __netif_schedule(struct Qdisc *q) 2507 { 2508 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2509 __netif_reschedule(q); 2510 } 2511 EXPORT_SYMBOL(__netif_schedule); 2512 2513 struct dev_kfree_skb_cb { 2514 enum skb_free_reason reason; 2515 }; 2516 2517 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2518 { 2519 return (struct dev_kfree_skb_cb *)skb->cb; 2520 } 2521 2522 void netif_schedule_queue(struct netdev_queue *txq) 2523 { 2524 rcu_read_lock(); 2525 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2526 struct Qdisc *q = rcu_dereference(txq->qdisc); 2527 2528 __netif_schedule(q); 2529 } 2530 rcu_read_unlock(); 2531 } 2532 EXPORT_SYMBOL(netif_schedule_queue); 2533 2534 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2535 { 2536 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2537 struct Qdisc *q; 2538 2539 rcu_read_lock(); 2540 q = rcu_dereference(dev_queue->qdisc); 2541 __netif_schedule(q); 2542 rcu_read_unlock(); 2543 } 2544 } 2545 EXPORT_SYMBOL(netif_tx_wake_queue); 2546 2547 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2548 { 2549 unsigned long flags; 2550 2551 if (unlikely(!skb)) 2552 return; 2553 2554 if (likely(refcount_read(&skb->users) == 1)) { 2555 smp_rmb(); 2556 refcount_set(&skb->users, 0); 2557 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2558 return; 2559 } 2560 get_kfree_skb_cb(skb)->reason = reason; 2561 local_irq_save(flags); 2562 skb->next = __this_cpu_read(softnet_data.completion_queue); 2563 __this_cpu_write(softnet_data.completion_queue, skb); 2564 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2565 local_irq_restore(flags); 2566 } 2567 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2568 2569 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2570 { 2571 if (in_irq() || irqs_disabled()) 2572 __dev_kfree_skb_irq(skb, reason); 2573 else 2574 dev_kfree_skb(skb); 2575 } 2576 EXPORT_SYMBOL(__dev_kfree_skb_any); 2577 2578 2579 /** 2580 * netif_device_detach - mark device as removed 2581 * @dev: network device 2582 * 2583 * Mark device as removed from system and therefore no longer available. 2584 */ 2585 void netif_device_detach(struct net_device *dev) 2586 { 2587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2588 netif_running(dev)) { 2589 netif_tx_stop_all_queues(dev); 2590 } 2591 } 2592 EXPORT_SYMBOL(netif_device_detach); 2593 2594 /** 2595 * netif_device_attach - mark device as attached 2596 * @dev: network device 2597 * 2598 * Mark device as attached from system and restart if needed. 2599 */ 2600 void netif_device_attach(struct net_device *dev) 2601 { 2602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2603 netif_running(dev)) { 2604 netif_tx_wake_all_queues(dev); 2605 __netdev_watchdog_up(dev); 2606 } 2607 } 2608 EXPORT_SYMBOL(netif_device_attach); 2609 2610 /* 2611 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2612 * to be used as a distribution range. 2613 */ 2614 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2615 unsigned int num_tx_queues) 2616 { 2617 u32 hash; 2618 u16 qoffset = 0; 2619 u16 qcount = num_tx_queues; 2620 2621 if (skb_rx_queue_recorded(skb)) { 2622 hash = skb_get_rx_queue(skb); 2623 while (unlikely(hash >= num_tx_queues)) 2624 hash -= num_tx_queues; 2625 return hash; 2626 } 2627 2628 if (dev->num_tc) { 2629 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2630 2631 qoffset = dev->tc_to_txq[tc].offset; 2632 qcount = dev->tc_to_txq[tc].count; 2633 } 2634 2635 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2636 } 2637 EXPORT_SYMBOL(__skb_tx_hash); 2638 2639 static void skb_warn_bad_offload(const struct sk_buff *skb) 2640 { 2641 static const netdev_features_t null_features; 2642 struct net_device *dev = skb->dev; 2643 const char *name = ""; 2644 2645 if (!net_ratelimit()) 2646 return; 2647 2648 if (dev) { 2649 if (dev->dev.parent) 2650 name = dev_driver_string(dev->dev.parent); 2651 else 2652 name = netdev_name(dev); 2653 } 2654 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2655 "gso_type=%d ip_summed=%d\n", 2656 name, dev ? &dev->features : &null_features, 2657 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2658 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2659 skb_shinfo(skb)->gso_type, skb->ip_summed); 2660 } 2661 2662 /* 2663 * Invalidate hardware checksum when packet is to be mangled, and 2664 * complete checksum manually on outgoing path. 2665 */ 2666 int skb_checksum_help(struct sk_buff *skb) 2667 { 2668 __wsum csum; 2669 int ret = 0, offset; 2670 2671 if (skb->ip_summed == CHECKSUM_COMPLETE) 2672 goto out_set_summed; 2673 2674 if (unlikely(skb_shinfo(skb)->gso_size)) { 2675 skb_warn_bad_offload(skb); 2676 return -EINVAL; 2677 } 2678 2679 /* Before computing a checksum, we should make sure no frag could 2680 * be modified by an external entity : checksum could be wrong. 2681 */ 2682 if (skb_has_shared_frag(skb)) { 2683 ret = __skb_linearize(skb); 2684 if (ret) 2685 goto out; 2686 } 2687 2688 offset = skb_checksum_start_offset(skb); 2689 BUG_ON(offset >= skb_headlen(skb)); 2690 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2691 2692 offset += skb->csum_offset; 2693 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2694 2695 if (skb_cloned(skb) && 2696 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2697 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2698 if (ret) 2699 goto out; 2700 } 2701 2702 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2703 out_set_summed: 2704 skb->ip_summed = CHECKSUM_NONE; 2705 out: 2706 return ret; 2707 } 2708 EXPORT_SYMBOL(skb_checksum_help); 2709 2710 int skb_crc32c_csum_help(struct sk_buff *skb) 2711 { 2712 __le32 crc32c_csum; 2713 int ret = 0, offset, start; 2714 2715 if (skb->ip_summed != CHECKSUM_PARTIAL) 2716 goto out; 2717 2718 if (unlikely(skb_is_gso(skb))) 2719 goto out; 2720 2721 /* Before computing a checksum, we should make sure no frag could 2722 * be modified by an external entity : checksum could be wrong. 2723 */ 2724 if (unlikely(skb_has_shared_frag(skb))) { 2725 ret = __skb_linearize(skb); 2726 if (ret) 2727 goto out; 2728 } 2729 start = skb_checksum_start_offset(skb); 2730 offset = start + offsetof(struct sctphdr, checksum); 2731 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2732 ret = -EINVAL; 2733 goto out; 2734 } 2735 if (skb_cloned(skb) && 2736 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2737 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2738 if (ret) 2739 goto out; 2740 } 2741 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2742 skb->len - start, ~(__u32)0, 2743 crc32c_csum_stub)); 2744 *(__le32 *)(skb->data + offset) = crc32c_csum; 2745 skb->ip_summed = CHECKSUM_NONE; 2746 skb->csum_not_inet = 0; 2747 out: 2748 return ret; 2749 } 2750 2751 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2752 { 2753 __be16 type = skb->protocol; 2754 2755 /* Tunnel gso handlers can set protocol to ethernet. */ 2756 if (type == htons(ETH_P_TEB)) { 2757 struct ethhdr *eth; 2758 2759 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2760 return 0; 2761 2762 eth = (struct ethhdr *)skb_mac_header(skb); 2763 type = eth->h_proto; 2764 } 2765 2766 return __vlan_get_protocol(skb, type, depth); 2767 } 2768 2769 /** 2770 * skb_mac_gso_segment - mac layer segmentation handler. 2771 * @skb: buffer to segment 2772 * @features: features for the output path (see dev->features) 2773 */ 2774 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2775 netdev_features_t features) 2776 { 2777 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2778 struct packet_offload *ptype; 2779 int vlan_depth = skb->mac_len; 2780 __be16 type = skb_network_protocol(skb, &vlan_depth); 2781 2782 if (unlikely(!type)) 2783 return ERR_PTR(-EINVAL); 2784 2785 __skb_pull(skb, vlan_depth); 2786 2787 rcu_read_lock(); 2788 list_for_each_entry_rcu(ptype, &offload_base, list) { 2789 if (ptype->type == type && ptype->callbacks.gso_segment) { 2790 segs = ptype->callbacks.gso_segment(skb, features); 2791 break; 2792 } 2793 } 2794 rcu_read_unlock(); 2795 2796 __skb_push(skb, skb->data - skb_mac_header(skb)); 2797 2798 return segs; 2799 } 2800 EXPORT_SYMBOL(skb_mac_gso_segment); 2801 2802 2803 /* openvswitch calls this on rx path, so we need a different check. 2804 */ 2805 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2806 { 2807 if (tx_path) 2808 return skb->ip_summed != CHECKSUM_PARTIAL && 2809 skb->ip_summed != CHECKSUM_UNNECESSARY; 2810 2811 return skb->ip_summed == CHECKSUM_NONE; 2812 } 2813 2814 /** 2815 * __skb_gso_segment - Perform segmentation on skb. 2816 * @skb: buffer to segment 2817 * @features: features for the output path (see dev->features) 2818 * @tx_path: whether it is called in TX path 2819 * 2820 * This function segments the given skb and returns a list of segments. 2821 * 2822 * It may return NULL if the skb requires no segmentation. This is 2823 * only possible when GSO is used for verifying header integrity. 2824 * 2825 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2826 */ 2827 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2828 netdev_features_t features, bool tx_path) 2829 { 2830 struct sk_buff *segs; 2831 2832 if (unlikely(skb_needs_check(skb, tx_path))) { 2833 int err; 2834 2835 /* We're going to init ->check field in TCP or UDP header */ 2836 err = skb_cow_head(skb, 0); 2837 if (err < 0) 2838 return ERR_PTR(err); 2839 } 2840 2841 /* Only report GSO partial support if it will enable us to 2842 * support segmentation on this frame without needing additional 2843 * work. 2844 */ 2845 if (features & NETIF_F_GSO_PARTIAL) { 2846 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2847 struct net_device *dev = skb->dev; 2848 2849 partial_features |= dev->features & dev->gso_partial_features; 2850 if (!skb_gso_ok(skb, features | partial_features)) 2851 features &= ~NETIF_F_GSO_PARTIAL; 2852 } 2853 2854 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2855 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2856 2857 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2858 SKB_GSO_CB(skb)->encap_level = 0; 2859 2860 skb_reset_mac_header(skb); 2861 skb_reset_mac_len(skb); 2862 2863 segs = skb_mac_gso_segment(skb, features); 2864 2865 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2866 skb_warn_bad_offload(skb); 2867 2868 return segs; 2869 } 2870 EXPORT_SYMBOL(__skb_gso_segment); 2871 2872 /* Take action when hardware reception checksum errors are detected. */ 2873 #ifdef CONFIG_BUG 2874 void netdev_rx_csum_fault(struct net_device *dev) 2875 { 2876 if (net_ratelimit()) { 2877 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2878 dump_stack(); 2879 } 2880 } 2881 EXPORT_SYMBOL(netdev_rx_csum_fault); 2882 #endif 2883 2884 /* Actually, we should eliminate this check as soon as we know, that: 2885 * 1. IOMMU is present and allows to map all the memory. 2886 * 2. No high memory really exists on this machine. 2887 */ 2888 2889 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2890 { 2891 #ifdef CONFIG_HIGHMEM 2892 int i; 2893 2894 if (!(dev->features & NETIF_F_HIGHDMA)) { 2895 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2896 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2897 2898 if (PageHighMem(skb_frag_page(frag))) 2899 return 1; 2900 } 2901 } 2902 2903 if (PCI_DMA_BUS_IS_PHYS) { 2904 struct device *pdev = dev->dev.parent; 2905 2906 if (!pdev) 2907 return 0; 2908 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2909 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2910 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2911 2912 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2913 return 1; 2914 } 2915 } 2916 #endif 2917 return 0; 2918 } 2919 2920 /* If MPLS offload request, verify we are testing hardware MPLS features 2921 * instead of standard features for the netdev. 2922 */ 2923 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2924 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2925 netdev_features_t features, 2926 __be16 type) 2927 { 2928 if (eth_p_mpls(type)) 2929 features &= skb->dev->mpls_features; 2930 2931 return features; 2932 } 2933 #else 2934 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2935 netdev_features_t features, 2936 __be16 type) 2937 { 2938 return features; 2939 } 2940 #endif 2941 2942 static netdev_features_t harmonize_features(struct sk_buff *skb, 2943 netdev_features_t features) 2944 { 2945 int tmp; 2946 __be16 type; 2947 2948 type = skb_network_protocol(skb, &tmp); 2949 features = net_mpls_features(skb, features, type); 2950 2951 if (skb->ip_summed != CHECKSUM_NONE && 2952 !can_checksum_protocol(features, type)) { 2953 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2954 } 2955 if (illegal_highdma(skb->dev, skb)) 2956 features &= ~NETIF_F_SG; 2957 2958 return features; 2959 } 2960 2961 netdev_features_t passthru_features_check(struct sk_buff *skb, 2962 struct net_device *dev, 2963 netdev_features_t features) 2964 { 2965 return features; 2966 } 2967 EXPORT_SYMBOL(passthru_features_check); 2968 2969 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2970 struct net_device *dev, 2971 netdev_features_t features) 2972 { 2973 return vlan_features_check(skb, features); 2974 } 2975 2976 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2977 struct net_device *dev, 2978 netdev_features_t features) 2979 { 2980 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2981 2982 if (gso_segs > dev->gso_max_segs) 2983 return features & ~NETIF_F_GSO_MASK; 2984 2985 /* Support for GSO partial features requires software 2986 * intervention before we can actually process the packets 2987 * so we need to strip support for any partial features now 2988 * and we can pull them back in after we have partially 2989 * segmented the frame. 2990 */ 2991 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2992 features &= ~dev->gso_partial_features; 2993 2994 /* Make sure to clear the IPv4 ID mangling feature if the 2995 * IPv4 header has the potential to be fragmented. 2996 */ 2997 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2998 struct iphdr *iph = skb->encapsulation ? 2999 inner_ip_hdr(skb) : ip_hdr(skb); 3000 3001 if (!(iph->frag_off & htons(IP_DF))) 3002 features &= ~NETIF_F_TSO_MANGLEID; 3003 } 3004 3005 return features; 3006 } 3007 3008 netdev_features_t netif_skb_features(struct sk_buff *skb) 3009 { 3010 struct net_device *dev = skb->dev; 3011 netdev_features_t features = dev->features; 3012 3013 if (skb_is_gso(skb)) 3014 features = gso_features_check(skb, dev, features); 3015 3016 /* If encapsulation offload request, verify we are testing 3017 * hardware encapsulation features instead of standard 3018 * features for the netdev 3019 */ 3020 if (skb->encapsulation) 3021 features &= dev->hw_enc_features; 3022 3023 if (skb_vlan_tagged(skb)) 3024 features = netdev_intersect_features(features, 3025 dev->vlan_features | 3026 NETIF_F_HW_VLAN_CTAG_TX | 3027 NETIF_F_HW_VLAN_STAG_TX); 3028 3029 if (dev->netdev_ops->ndo_features_check) 3030 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3031 features); 3032 else 3033 features &= dflt_features_check(skb, dev, features); 3034 3035 return harmonize_features(skb, features); 3036 } 3037 EXPORT_SYMBOL(netif_skb_features); 3038 3039 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3040 struct netdev_queue *txq, bool more) 3041 { 3042 unsigned int len; 3043 int rc; 3044 3045 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3046 dev_queue_xmit_nit(skb, dev); 3047 3048 len = skb->len; 3049 trace_net_dev_start_xmit(skb, dev); 3050 rc = netdev_start_xmit(skb, dev, txq, more); 3051 trace_net_dev_xmit(skb, rc, dev, len); 3052 3053 return rc; 3054 } 3055 3056 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3057 struct netdev_queue *txq, int *ret) 3058 { 3059 struct sk_buff *skb = first; 3060 int rc = NETDEV_TX_OK; 3061 3062 while (skb) { 3063 struct sk_buff *next = skb->next; 3064 3065 skb->next = NULL; 3066 rc = xmit_one(skb, dev, txq, next != NULL); 3067 if (unlikely(!dev_xmit_complete(rc))) { 3068 skb->next = next; 3069 goto out; 3070 } 3071 3072 skb = next; 3073 if (netif_xmit_stopped(txq) && skb) { 3074 rc = NETDEV_TX_BUSY; 3075 break; 3076 } 3077 } 3078 3079 out: 3080 *ret = rc; 3081 return skb; 3082 } 3083 3084 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3085 netdev_features_t features) 3086 { 3087 if (skb_vlan_tag_present(skb) && 3088 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3089 skb = __vlan_hwaccel_push_inside(skb); 3090 return skb; 3091 } 3092 3093 int skb_csum_hwoffload_help(struct sk_buff *skb, 3094 const netdev_features_t features) 3095 { 3096 if (unlikely(skb->csum_not_inet)) 3097 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3098 skb_crc32c_csum_help(skb); 3099 3100 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3101 } 3102 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3103 3104 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3105 { 3106 netdev_features_t features; 3107 3108 features = netif_skb_features(skb); 3109 skb = validate_xmit_vlan(skb, features); 3110 if (unlikely(!skb)) 3111 goto out_null; 3112 3113 if (netif_needs_gso(skb, features)) { 3114 struct sk_buff *segs; 3115 3116 segs = skb_gso_segment(skb, features); 3117 if (IS_ERR(segs)) { 3118 goto out_kfree_skb; 3119 } else if (segs) { 3120 consume_skb(skb); 3121 skb = segs; 3122 } 3123 } else { 3124 if (skb_needs_linearize(skb, features) && 3125 __skb_linearize(skb)) 3126 goto out_kfree_skb; 3127 3128 /* If packet is not checksummed and device does not 3129 * support checksumming for this protocol, complete 3130 * checksumming here. 3131 */ 3132 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3133 if (skb->encapsulation) 3134 skb_set_inner_transport_header(skb, 3135 skb_checksum_start_offset(skb)); 3136 else 3137 skb_set_transport_header(skb, 3138 skb_checksum_start_offset(skb)); 3139 if (skb_csum_hwoffload_help(skb, features)) 3140 goto out_kfree_skb; 3141 } 3142 } 3143 3144 skb = validate_xmit_xfrm(skb, features, again); 3145 3146 return skb; 3147 3148 out_kfree_skb: 3149 kfree_skb(skb); 3150 out_null: 3151 atomic_long_inc(&dev->tx_dropped); 3152 return NULL; 3153 } 3154 3155 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3156 { 3157 struct sk_buff *next, *head = NULL, *tail; 3158 3159 for (; skb != NULL; skb = next) { 3160 next = skb->next; 3161 skb->next = NULL; 3162 3163 /* in case skb wont be segmented, point to itself */ 3164 skb->prev = skb; 3165 3166 skb = validate_xmit_skb(skb, dev, again); 3167 if (!skb) 3168 continue; 3169 3170 if (!head) 3171 head = skb; 3172 else 3173 tail->next = skb; 3174 /* If skb was segmented, skb->prev points to 3175 * the last segment. If not, it still contains skb. 3176 */ 3177 tail = skb->prev; 3178 } 3179 return head; 3180 } 3181 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3182 3183 static void qdisc_pkt_len_init(struct sk_buff *skb) 3184 { 3185 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3186 3187 qdisc_skb_cb(skb)->pkt_len = skb->len; 3188 3189 /* To get more precise estimation of bytes sent on wire, 3190 * we add to pkt_len the headers size of all segments 3191 */ 3192 if (shinfo->gso_size) { 3193 unsigned int hdr_len; 3194 u16 gso_segs = shinfo->gso_segs; 3195 3196 /* mac layer + network layer */ 3197 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3198 3199 /* + transport layer */ 3200 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3201 const struct tcphdr *th; 3202 struct tcphdr _tcphdr; 3203 3204 th = skb_header_pointer(skb, skb_transport_offset(skb), 3205 sizeof(_tcphdr), &_tcphdr); 3206 if (likely(th)) 3207 hdr_len += __tcp_hdrlen(th); 3208 } else { 3209 struct udphdr _udphdr; 3210 3211 if (skb_header_pointer(skb, skb_transport_offset(skb), 3212 sizeof(_udphdr), &_udphdr)) 3213 hdr_len += sizeof(struct udphdr); 3214 } 3215 3216 if (shinfo->gso_type & SKB_GSO_DODGY) 3217 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3218 shinfo->gso_size); 3219 3220 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3221 } 3222 } 3223 3224 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3225 struct net_device *dev, 3226 struct netdev_queue *txq) 3227 { 3228 spinlock_t *root_lock = qdisc_lock(q); 3229 struct sk_buff *to_free = NULL; 3230 bool contended; 3231 int rc; 3232 3233 qdisc_calculate_pkt_len(skb, q); 3234 3235 if (q->flags & TCQ_F_NOLOCK) { 3236 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3237 __qdisc_drop(skb, &to_free); 3238 rc = NET_XMIT_DROP; 3239 } else { 3240 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3241 __qdisc_run(q); 3242 } 3243 3244 if (unlikely(to_free)) 3245 kfree_skb_list(to_free); 3246 return rc; 3247 } 3248 3249 /* 3250 * Heuristic to force contended enqueues to serialize on a 3251 * separate lock before trying to get qdisc main lock. 3252 * This permits qdisc->running owner to get the lock more 3253 * often and dequeue packets faster. 3254 */ 3255 contended = qdisc_is_running(q); 3256 if (unlikely(contended)) 3257 spin_lock(&q->busylock); 3258 3259 spin_lock(root_lock); 3260 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3261 __qdisc_drop(skb, &to_free); 3262 rc = NET_XMIT_DROP; 3263 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3264 qdisc_run_begin(q)) { 3265 /* 3266 * This is a work-conserving queue; there are no old skbs 3267 * waiting to be sent out; and the qdisc is not running - 3268 * xmit the skb directly. 3269 */ 3270 3271 qdisc_bstats_update(q, skb); 3272 3273 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3274 if (unlikely(contended)) { 3275 spin_unlock(&q->busylock); 3276 contended = false; 3277 } 3278 __qdisc_run(q); 3279 } 3280 3281 qdisc_run_end(q); 3282 rc = NET_XMIT_SUCCESS; 3283 } else { 3284 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3285 if (qdisc_run_begin(q)) { 3286 if (unlikely(contended)) { 3287 spin_unlock(&q->busylock); 3288 contended = false; 3289 } 3290 __qdisc_run(q); 3291 qdisc_run_end(q); 3292 } 3293 } 3294 spin_unlock(root_lock); 3295 if (unlikely(to_free)) 3296 kfree_skb_list(to_free); 3297 if (unlikely(contended)) 3298 spin_unlock(&q->busylock); 3299 return rc; 3300 } 3301 3302 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3303 static void skb_update_prio(struct sk_buff *skb) 3304 { 3305 const struct netprio_map *map; 3306 const struct sock *sk; 3307 unsigned int prioidx; 3308 3309 if (skb->priority) 3310 return; 3311 map = rcu_dereference_bh(skb->dev->priomap); 3312 if (!map) 3313 return; 3314 sk = skb_to_full_sk(skb); 3315 if (!sk) 3316 return; 3317 3318 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3319 3320 if (prioidx < map->priomap_len) 3321 skb->priority = map->priomap[prioidx]; 3322 } 3323 #else 3324 #define skb_update_prio(skb) 3325 #endif 3326 3327 DEFINE_PER_CPU(int, xmit_recursion); 3328 EXPORT_SYMBOL(xmit_recursion); 3329 3330 /** 3331 * dev_loopback_xmit - loop back @skb 3332 * @net: network namespace this loopback is happening in 3333 * @sk: sk needed to be a netfilter okfn 3334 * @skb: buffer to transmit 3335 */ 3336 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3337 { 3338 skb_reset_mac_header(skb); 3339 __skb_pull(skb, skb_network_offset(skb)); 3340 skb->pkt_type = PACKET_LOOPBACK; 3341 skb->ip_summed = CHECKSUM_UNNECESSARY; 3342 WARN_ON(!skb_dst(skb)); 3343 skb_dst_force(skb); 3344 netif_rx_ni(skb); 3345 return 0; 3346 } 3347 EXPORT_SYMBOL(dev_loopback_xmit); 3348 3349 #ifdef CONFIG_NET_EGRESS 3350 static struct sk_buff * 3351 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3352 { 3353 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3354 struct tcf_result cl_res; 3355 3356 if (!miniq) 3357 return skb; 3358 3359 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3360 mini_qdisc_bstats_cpu_update(miniq, skb); 3361 3362 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3363 case TC_ACT_OK: 3364 case TC_ACT_RECLASSIFY: 3365 skb->tc_index = TC_H_MIN(cl_res.classid); 3366 break; 3367 case TC_ACT_SHOT: 3368 mini_qdisc_qstats_cpu_drop(miniq); 3369 *ret = NET_XMIT_DROP; 3370 kfree_skb(skb); 3371 return NULL; 3372 case TC_ACT_STOLEN: 3373 case TC_ACT_QUEUED: 3374 case TC_ACT_TRAP: 3375 *ret = NET_XMIT_SUCCESS; 3376 consume_skb(skb); 3377 return NULL; 3378 case TC_ACT_REDIRECT: 3379 /* No need to push/pop skb's mac_header here on egress! */ 3380 skb_do_redirect(skb); 3381 *ret = NET_XMIT_SUCCESS; 3382 return NULL; 3383 default: 3384 break; 3385 } 3386 3387 return skb; 3388 } 3389 #endif /* CONFIG_NET_EGRESS */ 3390 3391 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3392 { 3393 #ifdef CONFIG_XPS 3394 struct xps_dev_maps *dev_maps; 3395 struct xps_map *map; 3396 int queue_index = -1; 3397 3398 rcu_read_lock(); 3399 dev_maps = rcu_dereference(dev->xps_maps); 3400 if (dev_maps) { 3401 unsigned int tci = skb->sender_cpu - 1; 3402 3403 if (dev->num_tc) { 3404 tci *= dev->num_tc; 3405 tci += netdev_get_prio_tc_map(dev, skb->priority); 3406 } 3407 3408 map = rcu_dereference(dev_maps->cpu_map[tci]); 3409 if (map) { 3410 if (map->len == 1) 3411 queue_index = map->queues[0]; 3412 else 3413 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3414 map->len)]; 3415 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3416 queue_index = -1; 3417 } 3418 } 3419 rcu_read_unlock(); 3420 3421 return queue_index; 3422 #else 3423 return -1; 3424 #endif 3425 } 3426 3427 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3428 { 3429 struct sock *sk = skb->sk; 3430 int queue_index = sk_tx_queue_get(sk); 3431 3432 if (queue_index < 0 || skb->ooo_okay || 3433 queue_index >= dev->real_num_tx_queues) { 3434 int new_index = get_xps_queue(dev, skb); 3435 3436 if (new_index < 0) 3437 new_index = skb_tx_hash(dev, skb); 3438 3439 if (queue_index != new_index && sk && 3440 sk_fullsock(sk) && 3441 rcu_access_pointer(sk->sk_dst_cache)) 3442 sk_tx_queue_set(sk, new_index); 3443 3444 queue_index = new_index; 3445 } 3446 3447 return queue_index; 3448 } 3449 3450 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3451 struct sk_buff *skb, 3452 void *accel_priv) 3453 { 3454 int queue_index = 0; 3455 3456 #ifdef CONFIG_XPS 3457 u32 sender_cpu = skb->sender_cpu - 1; 3458 3459 if (sender_cpu >= (u32)NR_CPUS) 3460 skb->sender_cpu = raw_smp_processor_id() + 1; 3461 #endif 3462 3463 if (dev->real_num_tx_queues != 1) { 3464 const struct net_device_ops *ops = dev->netdev_ops; 3465 3466 if (ops->ndo_select_queue) 3467 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3468 __netdev_pick_tx); 3469 else 3470 queue_index = __netdev_pick_tx(dev, skb); 3471 3472 queue_index = netdev_cap_txqueue(dev, queue_index); 3473 } 3474 3475 skb_set_queue_mapping(skb, queue_index); 3476 return netdev_get_tx_queue(dev, queue_index); 3477 } 3478 3479 /** 3480 * __dev_queue_xmit - transmit a buffer 3481 * @skb: buffer to transmit 3482 * @accel_priv: private data used for L2 forwarding offload 3483 * 3484 * Queue a buffer for transmission to a network device. The caller must 3485 * have set the device and priority and built the buffer before calling 3486 * this function. The function can be called from an interrupt. 3487 * 3488 * A negative errno code is returned on a failure. A success does not 3489 * guarantee the frame will be transmitted as it may be dropped due 3490 * to congestion or traffic shaping. 3491 * 3492 * ----------------------------------------------------------------------------------- 3493 * I notice this method can also return errors from the queue disciplines, 3494 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3495 * be positive. 3496 * 3497 * Regardless of the return value, the skb is consumed, so it is currently 3498 * difficult to retry a send to this method. (You can bump the ref count 3499 * before sending to hold a reference for retry if you are careful.) 3500 * 3501 * When calling this method, interrupts MUST be enabled. This is because 3502 * the BH enable code must have IRQs enabled so that it will not deadlock. 3503 * --BLG 3504 */ 3505 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3506 { 3507 struct net_device *dev = skb->dev; 3508 struct netdev_queue *txq; 3509 struct Qdisc *q; 3510 int rc = -ENOMEM; 3511 bool again = false; 3512 3513 skb_reset_mac_header(skb); 3514 3515 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3516 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3517 3518 /* Disable soft irqs for various locks below. Also 3519 * stops preemption for RCU. 3520 */ 3521 rcu_read_lock_bh(); 3522 3523 skb_update_prio(skb); 3524 3525 qdisc_pkt_len_init(skb); 3526 #ifdef CONFIG_NET_CLS_ACT 3527 skb->tc_at_ingress = 0; 3528 # ifdef CONFIG_NET_EGRESS 3529 if (static_key_false(&egress_needed)) { 3530 skb = sch_handle_egress(skb, &rc, dev); 3531 if (!skb) 3532 goto out; 3533 } 3534 # endif 3535 #endif 3536 /* If device/qdisc don't need skb->dst, release it right now while 3537 * its hot in this cpu cache. 3538 */ 3539 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3540 skb_dst_drop(skb); 3541 else 3542 skb_dst_force(skb); 3543 3544 txq = netdev_pick_tx(dev, skb, accel_priv); 3545 q = rcu_dereference_bh(txq->qdisc); 3546 3547 trace_net_dev_queue(skb); 3548 if (q->enqueue) { 3549 rc = __dev_xmit_skb(skb, q, dev, txq); 3550 goto out; 3551 } 3552 3553 /* The device has no queue. Common case for software devices: 3554 * loopback, all the sorts of tunnels... 3555 3556 * Really, it is unlikely that netif_tx_lock protection is necessary 3557 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3558 * counters.) 3559 * However, it is possible, that they rely on protection 3560 * made by us here. 3561 3562 * Check this and shot the lock. It is not prone from deadlocks. 3563 *Either shot noqueue qdisc, it is even simpler 8) 3564 */ 3565 if (dev->flags & IFF_UP) { 3566 int cpu = smp_processor_id(); /* ok because BHs are off */ 3567 3568 if (txq->xmit_lock_owner != cpu) { 3569 if (unlikely(__this_cpu_read(xmit_recursion) > 3570 XMIT_RECURSION_LIMIT)) 3571 goto recursion_alert; 3572 3573 skb = validate_xmit_skb(skb, dev, &again); 3574 if (!skb) 3575 goto out; 3576 3577 HARD_TX_LOCK(dev, txq, cpu); 3578 3579 if (!netif_xmit_stopped(txq)) { 3580 __this_cpu_inc(xmit_recursion); 3581 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3582 __this_cpu_dec(xmit_recursion); 3583 if (dev_xmit_complete(rc)) { 3584 HARD_TX_UNLOCK(dev, txq); 3585 goto out; 3586 } 3587 } 3588 HARD_TX_UNLOCK(dev, txq); 3589 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3590 dev->name); 3591 } else { 3592 /* Recursion is detected! It is possible, 3593 * unfortunately 3594 */ 3595 recursion_alert: 3596 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3597 dev->name); 3598 } 3599 } 3600 3601 rc = -ENETDOWN; 3602 rcu_read_unlock_bh(); 3603 3604 atomic_long_inc(&dev->tx_dropped); 3605 kfree_skb_list(skb); 3606 return rc; 3607 out: 3608 rcu_read_unlock_bh(); 3609 return rc; 3610 } 3611 3612 int dev_queue_xmit(struct sk_buff *skb) 3613 { 3614 return __dev_queue_xmit(skb, NULL); 3615 } 3616 EXPORT_SYMBOL(dev_queue_xmit); 3617 3618 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3619 { 3620 return __dev_queue_xmit(skb, accel_priv); 3621 } 3622 EXPORT_SYMBOL(dev_queue_xmit_accel); 3623 3624 3625 /************************************************************************* 3626 * Receiver routines 3627 *************************************************************************/ 3628 3629 int netdev_max_backlog __read_mostly = 1000; 3630 EXPORT_SYMBOL(netdev_max_backlog); 3631 3632 int netdev_tstamp_prequeue __read_mostly = 1; 3633 int netdev_budget __read_mostly = 300; 3634 unsigned int __read_mostly netdev_budget_usecs = 2000; 3635 int weight_p __read_mostly = 64; /* old backlog weight */ 3636 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3637 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3638 int dev_rx_weight __read_mostly = 64; 3639 int dev_tx_weight __read_mostly = 64; 3640 3641 /* Called with irq disabled */ 3642 static inline void ____napi_schedule(struct softnet_data *sd, 3643 struct napi_struct *napi) 3644 { 3645 list_add_tail(&napi->poll_list, &sd->poll_list); 3646 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3647 } 3648 3649 #ifdef CONFIG_RPS 3650 3651 /* One global table that all flow-based protocols share. */ 3652 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3653 EXPORT_SYMBOL(rps_sock_flow_table); 3654 u32 rps_cpu_mask __read_mostly; 3655 EXPORT_SYMBOL(rps_cpu_mask); 3656 3657 struct static_key rps_needed __read_mostly; 3658 EXPORT_SYMBOL(rps_needed); 3659 struct static_key rfs_needed __read_mostly; 3660 EXPORT_SYMBOL(rfs_needed); 3661 3662 static struct rps_dev_flow * 3663 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3664 struct rps_dev_flow *rflow, u16 next_cpu) 3665 { 3666 if (next_cpu < nr_cpu_ids) { 3667 #ifdef CONFIG_RFS_ACCEL 3668 struct netdev_rx_queue *rxqueue; 3669 struct rps_dev_flow_table *flow_table; 3670 struct rps_dev_flow *old_rflow; 3671 u32 flow_id; 3672 u16 rxq_index; 3673 int rc; 3674 3675 /* Should we steer this flow to a different hardware queue? */ 3676 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3677 !(dev->features & NETIF_F_NTUPLE)) 3678 goto out; 3679 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3680 if (rxq_index == skb_get_rx_queue(skb)) 3681 goto out; 3682 3683 rxqueue = dev->_rx + rxq_index; 3684 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3685 if (!flow_table) 3686 goto out; 3687 flow_id = skb_get_hash(skb) & flow_table->mask; 3688 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3689 rxq_index, flow_id); 3690 if (rc < 0) 3691 goto out; 3692 old_rflow = rflow; 3693 rflow = &flow_table->flows[flow_id]; 3694 rflow->filter = rc; 3695 if (old_rflow->filter == rflow->filter) 3696 old_rflow->filter = RPS_NO_FILTER; 3697 out: 3698 #endif 3699 rflow->last_qtail = 3700 per_cpu(softnet_data, next_cpu).input_queue_head; 3701 } 3702 3703 rflow->cpu = next_cpu; 3704 return rflow; 3705 } 3706 3707 /* 3708 * get_rps_cpu is called from netif_receive_skb and returns the target 3709 * CPU from the RPS map of the receiving queue for a given skb. 3710 * rcu_read_lock must be held on entry. 3711 */ 3712 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3713 struct rps_dev_flow **rflowp) 3714 { 3715 const struct rps_sock_flow_table *sock_flow_table; 3716 struct netdev_rx_queue *rxqueue = dev->_rx; 3717 struct rps_dev_flow_table *flow_table; 3718 struct rps_map *map; 3719 int cpu = -1; 3720 u32 tcpu; 3721 u32 hash; 3722 3723 if (skb_rx_queue_recorded(skb)) { 3724 u16 index = skb_get_rx_queue(skb); 3725 3726 if (unlikely(index >= dev->real_num_rx_queues)) { 3727 WARN_ONCE(dev->real_num_rx_queues > 1, 3728 "%s received packet on queue %u, but number " 3729 "of RX queues is %u\n", 3730 dev->name, index, dev->real_num_rx_queues); 3731 goto done; 3732 } 3733 rxqueue += index; 3734 } 3735 3736 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3737 3738 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3739 map = rcu_dereference(rxqueue->rps_map); 3740 if (!flow_table && !map) 3741 goto done; 3742 3743 skb_reset_network_header(skb); 3744 hash = skb_get_hash(skb); 3745 if (!hash) 3746 goto done; 3747 3748 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3749 if (flow_table && sock_flow_table) { 3750 struct rps_dev_flow *rflow; 3751 u32 next_cpu; 3752 u32 ident; 3753 3754 /* First check into global flow table if there is a match */ 3755 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3756 if ((ident ^ hash) & ~rps_cpu_mask) 3757 goto try_rps; 3758 3759 next_cpu = ident & rps_cpu_mask; 3760 3761 /* OK, now we know there is a match, 3762 * we can look at the local (per receive queue) flow table 3763 */ 3764 rflow = &flow_table->flows[hash & flow_table->mask]; 3765 tcpu = rflow->cpu; 3766 3767 /* 3768 * If the desired CPU (where last recvmsg was done) is 3769 * different from current CPU (one in the rx-queue flow 3770 * table entry), switch if one of the following holds: 3771 * - Current CPU is unset (>= nr_cpu_ids). 3772 * - Current CPU is offline. 3773 * - The current CPU's queue tail has advanced beyond the 3774 * last packet that was enqueued using this table entry. 3775 * This guarantees that all previous packets for the flow 3776 * have been dequeued, thus preserving in order delivery. 3777 */ 3778 if (unlikely(tcpu != next_cpu) && 3779 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3780 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3781 rflow->last_qtail)) >= 0)) { 3782 tcpu = next_cpu; 3783 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3784 } 3785 3786 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3787 *rflowp = rflow; 3788 cpu = tcpu; 3789 goto done; 3790 } 3791 } 3792 3793 try_rps: 3794 3795 if (map) { 3796 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3797 if (cpu_online(tcpu)) { 3798 cpu = tcpu; 3799 goto done; 3800 } 3801 } 3802 3803 done: 3804 return cpu; 3805 } 3806 3807 #ifdef CONFIG_RFS_ACCEL 3808 3809 /** 3810 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3811 * @dev: Device on which the filter was set 3812 * @rxq_index: RX queue index 3813 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3814 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3815 * 3816 * Drivers that implement ndo_rx_flow_steer() should periodically call 3817 * this function for each installed filter and remove the filters for 3818 * which it returns %true. 3819 */ 3820 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3821 u32 flow_id, u16 filter_id) 3822 { 3823 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3824 struct rps_dev_flow_table *flow_table; 3825 struct rps_dev_flow *rflow; 3826 bool expire = true; 3827 unsigned int cpu; 3828 3829 rcu_read_lock(); 3830 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3831 if (flow_table && flow_id <= flow_table->mask) { 3832 rflow = &flow_table->flows[flow_id]; 3833 cpu = READ_ONCE(rflow->cpu); 3834 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3835 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3836 rflow->last_qtail) < 3837 (int)(10 * flow_table->mask))) 3838 expire = false; 3839 } 3840 rcu_read_unlock(); 3841 return expire; 3842 } 3843 EXPORT_SYMBOL(rps_may_expire_flow); 3844 3845 #endif /* CONFIG_RFS_ACCEL */ 3846 3847 /* Called from hardirq (IPI) context */ 3848 static void rps_trigger_softirq(void *data) 3849 { 3850 struct softnet_data *sd = data; 3851 3852 ____napi_schedule(sd, &sd->backlog); 3853 sd->received_rps++; 3854 } 3855 3856 #endif /* CONFIG_RPS */ 3857 3858 /* 3859 * Check if this softnet_data structure is another cpu one 3860 * If yes, queue it to our IPI list and return 1 3861 * If no, return 0 3862 */ 3863 static int rps_ipi_queued(struct softnet_data *sd) 3864 { 3865 #ifdef CONFIG_RPS 3866 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3867 3868 if (sd != mysd) { 3869 sd->rps_ipi_next = mysd->rps_ipi_list; 3870 mysd->rps_ipi_list = sd; 3871 3872 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3873 return 1; 3874 } 3875 #endif /* CONFIG_RPS */ 3876 return 0; 3877 } 3878 3879 #ifdef CONFIG_NET_FLOW_LIMIT 3880 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3881 #endif 3882 3883 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3884 { 3885 #ifdef CONFIG_NET_FLOW_LIMIT 3886 struct sd_flow_limit *fl; 3887 struct softnet_data *sd; 3888 unsigned int old_flow, new_flow; 3889 3890 if (qlen < (netdev_max_backlog >> 1)) 3891 return false; 3892 3893 sd = this_cpu_ptr(&softnet_data); 3894 3895 rcu_read_lock(); 3896 fl = rcu_dereference(sd->flow_limit); 3897 if (fl) { 3898 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3899 old_flow = fl->history[fl->history_head]; 3900 fl->history[fl->history_head] = new_flow; 3901 3902 fl->history_head++; 3903 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3904 3905 if (likely(fl->buckets[old_flow])) 3906 fl->buckets[old_flow]--; 3907 3908 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3909 fl->count++; 3910 rcu_read_unlock(); 3911 return true; 3912 } 3913 } 3914 rcu_read_unlock(); 3915 #endif 3916 return false; 3917 } 3918 3919 /* 3920 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3921 * queue (may be a remote CPU queue). 3922 */ 3923 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3924 unsigned int *qtail) 3925 { 3926 struct softnet_data *sd; 3927 unsigned long flags; 3928 unsigned int qlen; 3929 3930 sd = &per_cpu(softnet_data, cpu); 3931 3932 local_irq_save(flags); 3933 3934 rps_lock(sd); 3935 if (!netif_running(skb->dev)) 3936 goto drop; 3937 qlen = skb_queue_len(&sd->input_pkt_queue); 3938 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3939 if (qlen) { 3940 enqueue: 3941 __skb_queue_tail(&sd->input_pkt_queue, skb); 3942 input_queue_tail_incr_save(sd, qtail); 3943 rps_unlock(sd); 3944 local_irq_restore(flags); 3945 return NET_RX_SUCCESS; 3946 } 3947 3948 /* Schedule NAPI for backlog device 3949 * We can use non atomic operation since we own the queue lock 3950 */ 3951 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3952 if (!rps_ipi_queued(sd)) 3953 ____napi_schedule(sd, &sd->backlog); 3954 } 3955 goto enqueue; 3956 } 3957 3958 drop: 3959 sd->dropped++; 3960 rps_unlock(sd); 3961 3962 local_irq_restore(flags); 3963 3964 atomic_long_inc(&skb->dev->rx_dropped); 3965 kfree_skb(skb); 3966 return NET_RX_DROP; 3967 } 3968 3969 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 3970 { 3971 struct net_device *dev = skb->dev; 3972 struct netdev_rx_queue *rxqueue; 3973 3974 rxqueue = dev->_rx; 3975 3976 if (skb_rx_queue_recorded(skb)) { 3977 u16 index = skb_get_rx_queue(skb); 3978 3979 if (unlikely(index >= dev->real_num_rx_queues)) { 3980 WARN_ONCE(dev->real_num_rx_queues > 1, 3981 "%s received packet on queue %u, but number " 3982 "of RX queues is %u\n", 3983 dev->name, index, dev->real_num_rx_queues); 3984 3985 return rxqueue; /* Return first rxqueue */ 3986 } 3987 rxqueue += index; 3988 } 3989 return rxqueue; 3990 } 3991 3992 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3993 struct bpf_prog *xdp_prog) 3994 { 3995 struct netdev_rx_queue *rxqueue; 3996 u32 metalen, act = XDP_DROP; 3997 struct xdp_buff xdp; 3998 void *orig_data; 3999 int hlen, off; 4000 u32 mac_len; 4001 4002 /* Reinjected packets coming from act_mirred or similar should 4003 * not get XDP generic processing. 4004 */ 4005 if (skb_cloned(skb)) 4006 return XDP_PASS; 4007 4008 /* XDP packets must be linear and must have sufficient headroom 4009 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4010 * native XDP provides, thus we need to do it here as well. 4011 */ 4012 if (skb_is_nonlinear(skb) || 4013 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4014 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4015 int troom = skb->tail + skb->data_len - skb->end; 4016 4017 /* In case we have to go down the path and also linearize, 4018 * then lets do the pskb_expand_head() work just once here. 4019 */ 4020 if (pskb_expand_head(skb, 4021 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4022 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4023 goto do_drop; 4024 if (skb_linearize(skb)) 4025 goto do_drop; 4026 } 4027 4028 /* The XDP program wants to see the packet starting at the MAC 4029 * header. 4030 */ 4031 mac_len = skb->data - skb_mac_header(skb); 4032 hlen = skb_headlen(skb) + mac_len; 4033 xdp.data = skb->data - mac_len; 4034 xdp.data_meta = xdp.data; 4035 xdp.data_end = xdp.data + hlen; 4036 xdp.data_hard_start = skb->data - skb_headroom(skb); 4037 orig_data = xdp.data; 4038 4039 rxqueue = netif_get_rxqueue(skb); 4040 xdp.rxq = &rxqueue->xdp_rxq; 4041 4042 act = bpf_prog_run_xdp(xdp_prog, &xdp); 4043 4044 off = xdp.data - orig_data; 4045 if (off > 0) 4046 __skb_pull(skb, off); 4047 else if (off < 0) 4048 __skb_push(skb, -off); 4049 skb->mac_header += off; 4050 4051 switch (act) { 4052 case XDP_REDIRECT: 4053 case XDP_TX: 4054 __skb_push(skb, mac_len); 4055 break; 4056 case XDP_PASS: 4057 metalen = xdp.data - xdp.data_meta; 4058 if (metalen) 4059 skb_metadata_set(skb, metalen); 4060 break; 4061 default: 4062 bpf_warn_invalid_xdp_action(act); 4063 /* fall through */ 4064 case XDP_ABORTED: 4065 trace_xdp_exception(skb->dev, xdp_prog, act); 4066 /* fall through */ 4067 case XDP_DROP: 4068 do_drop: 4069 kfree_skb(skb); 4070 break; 4071 } 4072 4073 return act; 4074 } 4075 4076 /* When doing generic XDP we have to bypass the qdisc layer and the 4077 * network taps in order to match in-driver-XDP behavior. 4078 */ 4079 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4080 { 4081 struct net_device *dev = skb->dev; 4082 struct netdev_queue *txq; 4083 bool free_skb = true; 4084 int cpu, rc; 4085 4086 txq = netdev_pick_tx(dev, skb, NULL); 4087 cpu = smp_processor_id(); 4088 HARD_TX_LOCK(dev, txq, cpu); 4089 if (!netif_xmit_stopped(txq)) { 4090 rc = netdev_start_xmit(skb, dev, txq, 0); 4091 if (dev_xmit_complete(rc)) 4092 free_skb = false; 4093 } 4094 HARD_TX_UNLOCK(dev, txq); 4095 if (free_skb) { 4096 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4097 kfree_skb(skb); 4098 } 4099 } 4100 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4101 4102 static struct static_key generic_xdp_needed __read_mostly; 4103 4104 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4105 { 4106 if (xdp_prog) { 4107 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4108 int err; 4109 4110 if (act != XDP_PASS) { 4111 switch (act) { 4112 case XDP_REDIRECT: 4113 err = xdp_do_generic_redirect(skb->dev, skb, 4114 xdp_prog); 4115 if (err) 4116 goto out_redir; 4117 /* fallthru to submit skb */ 4118 case XDP_TX: 4119 generic_xdp_tx(skb, xdp_prog); 4120 break; 4121 } 4122 return XDP_DROP; 4123 } 4124 } 4125 return XDP_PASS; 4126 out_redir: 4127 kfree_skb(skb); 4128 return XDP_DROP; 4129 } 4130 EXPORT_SYMBOL_GPL(do_xdp_generic); 4131 4132 static int netif_rx_internal(struct sk_buff *skb) 4133 { 4134 int ret; 4135 4136 net_timestamp_check(netdev_tstamp_prequeue, skb); 4137 4138 trace_netif_rx(skb); 4139 4140 if (static_key_false(&generic_xdp_needed)) { 4141 int ret; 4142 4143 preempt_disable(); 4144 rcu_read_lock(); 4145 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4146 rcu_read_unlock(); 4147 preempt_enable(); 4148 4149 /* Consider XDP consuming the packet a success from 4150 * the netdev point of view we do not want to count 4151 * this as an error. 4152 */ 4153 if (ret != XDP_PASS) 4154 return NET_RX_SUCCESS; 4155 } 4156 4157 #ifdef CONFIG_RPS 4158 if (static_key_false(&rps_needed)) { 4159 struct rps_dev_flow voidflow, *rflow = &voidflow; 4160 int cpu; 4161 4162 preempt_disable(); 4163 rcu_read_lock(); 4164 4165 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4166 if (cpu < 0) 4167 cpu = smp_processor_id(); 4168 4169 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4170 4171 rcu_read_unlock(); 4172 preempt_enable(); 4173 } else 4174 #endif 4175 { 4176 unsigned int qtail; 4177 4178 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4179 put_cpu(); 4180 } 4181 return ret; 4182 } 4183 4184 /** 4185 * netif_rx - post buffer to the network code 4186 * @skb: buffer to post 4187 * 4188 * This function receives a packet from a device driver and queues it for 4189 * the upper (protocol) levels to process. It always succeeds. The buffer 4190 * may be dropped during processing for congestion control or by the 4191 * protocol layers. 4192 * 4193 * return values: 4194 * NET_RX_SUCCESS (no congestion) 4195 * NET_RX_DROP (packet was dropped) 4196 * 4197 */ 4198 4199 int netif_rx(struct sk_buff *skb) 4200 { 4201 trace_netif_rx_entry(skb); 4202 4203 return netif_rx_internal(skb); 4204 } 4205 EXPORT_SYMBOL(netif_rx); 4206 4207 int netif_rx_ni(struct sk_buff *skb) 4208 { 4209 int err; 4210 4211 trace_netif_rx_ni_entry(skb); 4212 4213 preempt_disable(); 4214 err = netif_rx_internal(skb); 4215 if (local_softirq_pending()) 4216 do_softirq(); 4217 preempt_enable(); 4218 4219 return err; 4220 } 4221 EXPORT_SYMBOL(netif_rx_ni); 4222 4223 static __latent_entropy void net_tx_action(struct softirq_action *h) 4224 { 4225 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4226 4227 if (sd->completion_queue) { 4228 struct sk_buff *clist; 4229 4230 local_irq_disable(); 4231 clist = sd->completion_queue; 4232 sd->completion_queue = NULL; 4233 local_irq_enable(); 4234 4235 while (clist) { 4236 struct sk_buff *skb = clist; 4237 4238 clist = clist->next; 4239 4240 WARN_ON(refcount_read(&skb->users)); 4241 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4242 trace_consume_skb(skb); 4243 else 4244 trace_kfree_skb(skb, net_tx_action); 4245 4246 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4247 __kfree_skb(skb); 4248 else 4249 __kfree_skb_defer(skb); 4250 } 4251 4252 __kfree_skb_flush(); 4253 } 4254 4255 if (sd->output_queue) { 4256 struct Qdisc *head; 4257 4258 local_irq_disable(); 4259 head = sd->output_queue; 4260 sd->output_queue = NULL; 4261 sd->output_queue_tailp = &sd->output_queue; 4262 local_irq_enable(); 4263 4264 while (head) { 4265 struct Qdisc *q = head; 4266 spinlock_t *root_lock = NULL; 4267 4268 head = head->next_sched; 4269 4270 if (!(q->flags & TCQ_F_NOLOCK)) { 4271 root_lock = qdisc_lock(q); 4272 spin_lock(root_lock); 4273 } 4274 /* We need to make sure head->next_sched is read 4275 * before clearing __QDISC_STATE_SCHED 4276 */ 4277 smp_mb__before_atomic(); 4278 clear_bit(__QDISC_STATE_SCHED, &q->state); 4279 qdisc_run(q); 4280 if (root_lock) 4281 spin_unlock(root_lock); 4282 } 4283 } 4284 4285 xfrm_dev_backlog(sd); 4286 } 4287 4288 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4289 /* This hook is defined here for ATM LANE */ 4290 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4291 unsigned char *addr) __read_mostly; 4292 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4293 #endif 4294 4295 static inline struct sk_buff * 4296 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4297 struct net_device *orig_dev) 4298 { 4299 #ifdef CONFIG_NET_CLS_ACT 4300 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4301 struct tcf_result cl_res; 4302 4303 /* If there's at least one ingress present somewhere (so 4304 * we get here via enabled static key), remaining devices 4305 * that are not configured with an ingress qdisc will bail 4306 * out here. 4307 */ 4308 if (!miniq) 4309 return skb; 4310 4311 if (*pt_prev) { 4312 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4313 *pt_prev = NULL; 4314 } 4315 4316 qdisc_skb_cb(skb)->pkt_len = skb->len; 4317 skb->tc_at_ingress = 1; 4318 mini_qdisc_bstats_cpu_update(miniq, skb); 4319 4320 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4321 case TC_ACT_OK: 4322 case TC_ACT_RECLASSIFY: 4323 skb->tc_index = TC_H_MIN(cl_res.classid); 4324 break; 4325 case TC_ACT_SHOT: 4326 mini_qdisc_qstats_cpu_drop(miniq); 4327 kfree_skb(skb); 4328 return NULL; 4329 case TC_ACT_STOLEN: 4330 case TC_ACT_QUEUED: 4331 case TC_ACT_TRAP: 4332 consume_skb(skb); 4333 return NULL; 4334 case TC_ACT_REDIRECT: 4335 /* skb_mac_header check was done by cls/act_bpf, so 4336 * we can safely push the L2 header back before 4337 * redirecting to another netdev 4338 */ 4339 __skb_push(skb, skb->mac_len); 4340 skb_do_redirect(skb); 4341 return NULL; 4342 default: 4343 break; 4344 } 4345 #endif /* CONFIG_NET_CLS_ACT */ 4346 return skb; 4347 } 4348 4349 /** 4350 * netdev_is_rx_handler_busy - check if receive handler is registered 4351 * @dev: device to check 4352 * 4353 * Check if a receive handler is already registered for a given device. 4354 * Return true if there one. 4355 * 4356 * The caller must hold the rtnl_mutex. 4357 */ 4358 bool netdev_is_rx_handler_busy(struct net_device *dev) 4359 { 4360 ASSERT_RTNL(); 4361 return dev && rtnl_dereference(dev->rx_handler); 4362 } 4363 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4364 4365 /** 4366 * netdev_rx_handler_register - register receive handler 4367 * @dev: device to register a handler for 4368 * @rx_handler: receive handler to register 4369 * @rx_handler_data: data pointer that is used by rx handler 4370 * 4371 * Register a receive handler for a device. This handler will then be 4372 * called from __netif_receive_skb. A negative errno code is returned 4373 * on a failure. 4374 * 4375 * The caller must hold the rtnl_mutex. 4376 * 4377 * For a general description of rx_handler, see enum rx_handler_result. 4378 */ 4379 int netdev_rx_handler_register(struct net_device *dev, 4380 rx_handler_func_t *rx_handler, 4381 void *rx_handler_data) 4382 { 4383 if (netdev_is_rx_handler_busy(dev)) 4384 return -EBUSY; 4385 4386 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4387 return -EINVAL; 4388 4389 /* Note: rx_handler_data must be set before rx_handler */ 4390 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4391 rcu_assign_pointer(dev->rx_handler, rx_handler); 4392 4393 return 0; 4394 } 4395 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4396 4397 /** 4398 * netdev_rx_handler_unregister - unregister receive handler 4399 * @dev: device to unregister a handler from 4400 * 4401 * Unregister a receive handler from a device. 4402 * 4403 * The caller must hold the rtnl_mutex. 4404 */ 4405 void netdev_rx_handler_unregister(struct net_device *dev) 4406 { 4407 4408 ASSERT_RTNL(); 4409 RCU_INIT_POINTER(dev->rx_handler, NULL); 4410 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4411 * section has a guarantee to see a non NULL rx_handler_data 4412 * as well. 4413 */ 4414 synchronize_net(); 4415 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4416 } 4417 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4418 4419 /* 4420 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4421 * the special handling of PFMEMALLOC skbs. 4422 */ 4423 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4424 { 4425 switch (skb->protocol) { 4426 case htons(ETH_P_ARP): 4427 case htons(ETH_P_IP): 4428 case htons(ETH_P_IPV6): 4429 case htons(ETH_P_8021Q): 4430 case htons(ETH_P_8021AD): 4431 return true; 4432 default: 4433 return false; 4434 } 4435 } 4436 4437 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4438 int *ret, struct net_device *orig_dev) 4439 { 4440 #ifdef CONFIG_NETFILTER_INGRESS 4441 if (nf_hook_ingress_active(skb)) { 4442 int ingress_retval; 4443 4444 if (*pt_prev) { 4445 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4446 *pt_prev = NULL; 4447 } 4448 4449 rcu_read_lock(); 4450 ingress_retval = nf_hook_ingress(skb); 4451 rcu_read_unlock(); 4452 return ingress_retval; 4453 } 4454 #endif /* CONFIG_NETFILTER_INGRESS */ 4455 return 0; 4456 } 4457 4458 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4459 { 4460 struct packet_type *ptype, *pt_prev; 4461 rx_handler_func_t *rx_handler; 4462 struct net_device *orig_dev; 4463 bool deliver_exact = false; 4464 int ret = NET_RX_DROP; 4465 __be16 type; 4466 4467 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4468 4469 trace_netif_receive_skb(skb); 4470 4471 orig_dev = skb->dev; 4472 4473 skb_reset_network_header(skb); 4474 if (!skb_transport_header_was_set(skb)) 4475 skb_reset_transport_header(skb); 4476 skb_reset_mac_len(skb); 4477 4478 pt_prev = NULL; 4479 4480 another_round: 4481 skb->skb_iif = skb->dev->ifindex; 4482 4483 __this_cpu_inc(softnet_data.processed); 4484 4485 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4486 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4487 skb = skb_vlan_untag(skb); 4488 if (unlikely(!skb)) 4489 goto out; 4490 } 4491 4492 if (skb_skip_tc_classify(skb)) 4493 goto skip_classify; 4494 4495 if (pfmemalloc) 4496 goto skip_taps; 4497 4498 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4499 if (pt_prev) 4500 ret = deliver_skb(skb, pt_prev, orig_dev); 4501 pt_prev = ptype; 4502 } 4503 4504 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4505 if (pt_prev) 4506 ret = deliver_skb(skb, pt_prev, orig_dev); 4507 pt_prev = ptype; 4508 } 4509 4510 skip_taps: 4511 #ifdef CONFIG_NET_INGRESS 4512 if (static_key_false(&ingress_needed)) { 4513 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4514 if (!skb) 4515 goto out; 4516 4517 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4518 goto out; 4519 } 4520 #endif 4521 skb_reset_tc(skb); 4522 skip_classify: 4523 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4524 goto drop; 4525 4526 if (skb_vlan_tag_present(skb)) { 4527 if (pt_prev) { 4528 ret = deliver_skb(skb, pt_prev, orig_dev); 4529 pt_prev = NULL; 4530 } 4531 if (vlan_do_receive(&skb)) 4532 goto another_round; 4533 else if (unlikely(!skb)) 4534 goto out; 4535 } 4536 4537 rx_handler = rcu_dereference(skb->dev->rx_handler); 4538 if (rx_handler) { 4539 if (pt_prev) { 4540 ret = deliver_skb(skb, pt_prev, orig_dev); 4541 pt_prev = NULL; 4542 } 4543 switch (rx_handler(&skb)) { 4544 case RX_HANDLER_CONSUMED: 4545 ret = NET_RX_SUCCESS; 4546 goto out; 4547 case RX_HANDLER_ANOTHER: 4548 goto another_round; 4549 case RX_HANDLER_EXACT: 4550 deliver_exact = true; 4551 case RX_HANDLER_PASS: 4552 break; 4553 default: 4554 BUG(); 4555 } 4556 } 4557 4558 if (unlikely(skb_vlan_tag_present(skb))) { 4559 if (skb_vlan_tag_get_id(skb)) 4560 skb->pkt_type = PACKET_OTHERHOST; 4561 /* Note: we might in the future use prio bits 4562 * and set skb->priority like in vlan_do_receive() 4563 * For the time being, just ignore Priority Code Point 4564 */ 4565 skb->vlan_tci = 0; 4566 } 4567 4568 type = skb->protocol; 4569 4570 /* deliver only exact match when indicated */ 4571 if (likely(!deliver_exact)) { 4572 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4573 &ptype_base[ntohs(type) & 4574 PTYPE_HASH_MASK]); 4575 } 4576 4577 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4578 &orig_dev->ptype_specific); 4579 4580 if (unlikely(skb->dev != orig_dev)) { 4581 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4582 &skb->dev->ptype_specific); 4583 } 4584 4585 if (pt_prev) { 4586 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4587 goto drop; 4588 else 4589 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4590 } else { 4591 drop: 4592 if (!deliver_exact) 4593 atomic_long_inc(&skb->dev->rx_dropped); 4594 else 4595 atomic_long_inc(&skb->dev->rx_nohandler); 4596 kfree_skb(skb); 4597 /* Jamal, now you will not able to escape explaining 4598 * me how you were going to use this. :-) 4599 */ 4600 ret = NET_RX_DROP; 4601 } 4602 4603 out: 4604 return ret; 4605 } 4606 4607 /** 4608 * netif_receive_skb_core - special purpose version of netif_receive_skb 4609 * @skb: buffer to process 4610 * 4611 * More direct receive version of netif_receive_skb(). It should 4612 * only be used by callers that have a need to skip RPS and Generic XDP. 4613 * Caller must also take care of handling if (page_is_)pfmemalloc. 4614 * 4615 * This function may only be called from softirq context and interrupts 4616 * should be enabled. 4617 * 4618 * Return values (usually ignored): 4619 * NET_RX_SUCCESS: no congestion 4620 * NET_RX_DROP: packet was dropped 4621 */ 4622 int netif_receive_skb_core(struct sk_buff *skb) 4623 { 4624 int ret; 4625 4626 rcu_read_lock(); 4627 ret = __netif_receive_skb_core(skb, false); 4628 rcu_read_unlock(); 4629 4630 return ret; 4631 } 4632 EXPORT_SYMBOL(netif_receive_skb_core); 4633 4634 static int __netif_receive_skb(struct sk_buff *skb) 4635 { 4636 int ret; 4637 4638 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4639 unsigned int noreclaim_flag; 4640 4641 /* 4642 * PFMEMALLOC skbs are special, they should 4643 * - be delivered to SOCK_MEMALLOC sockets only 4644 * - stay away from userspace 4645 * - have bounded memory usage 4646 * 4647 * Use PF_MEMALLOC as this saves us from propagating the allocation 4648 * context down to all allocation sites. 4649 */ 4650 noreclaim_flag = memalloc_noreclaim_save(); 4651 ret = __netif_receive_skb_core(skb, true); 4652 memalloc_noreclaim_restore(noreclaim_flag); 4653 } else 4654 ret = __netif_receive_skb_core(skb, false); 4655 4656 return ret; 4657 } 4658 4659 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4660 { 4661 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4662 struct bpf_prog *new = xdp->prog; 4663 int ret = 0; 4664 4665 switch (xdp->command) { 4666 case XDP_SETUP_PROG: 4667 rcu_assign_pointer(dev->xdp_prog, new); 4668 if (old) 4669 bpf_prog_put(old); 4670 4671 if (old && !new) { 4672 static_key_slow_dec(&generic_xdp_needed); 4673 } else if (new && !old) { 4674 static_key_slow_inc(&generic_xdp_needed); 4675 dev_disable_lro(dev); 4676 dev_disable_gro_hw(dev); 4677 } 4678 break; 4679 4680 case XDP_QUERY_PROG: 4681 xdp->prog_attached = !!old; 4682 xdp->prog_id = old ? old->aux->id : 0; 4683 break; 4684 4685 default: 4686 ret = -EINVAL; 4687 break; 4688 } 4689 4690 return ret; 4691 } 4692 4693 static int netif_receive_skb_internal(struct sk_buff *skb) 4694 { 4695 int ret; 4696 4697 net_timestamp_check(netdev_tstamp_prequeue, skb); 4698 4699 if (skb_defer_rx_timestamp(skb)) 4700 return NET_RX_SUCCESS; 4701 4702 if (static_key_false(&generic_xdp_needed)) { 4703 int ret; 4704 4705 preempt_disable(); 4706 rcu_read_lock(); 4707 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4708 rcu_read_unlock(); 4709 preempt_enable(); 4710 4711 if (ret != XDP_PASS) 4712 return NET_RX_DROP; 4713 } 4714 4715 rcu_read_lock(); 4716 #ifdef CONFIG_RPS 4717 if (static_key_false(&rps_needed)) { 4718 struct rps_dev_flow voidflow, *rflow = &voidflow; 4719 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4720 4721 if (cpu >= 0) { 4722 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4723 rcu_read_unlock(); 4724 return ret; 4725 } 4726 } 4727 #endif 4728 ret = __netif_receive_skb(skb); 4729 rcu_read_unlock(); 4730 return ret; 4731 } 4732 4733 /** 4734 * netif_receive_skb - process receive buffer from network 4735 * @skb: buffer to process 4736 * 4737 * netif_receive_skb() is the main receive data processing function. 4738 * It always succeeds. The buffer may be dropped during processing 4739 * for congestion control or by the protocol layers. 4740 * 4741 * This function may only be called from softirq context and interrupts 4742 * should be enabled. 4743 * 4744 * Return values (usually ignored): 4745 * NET_RX_SUCCESS: no congestion 4746 * NET_RX_DROP: packet was dropped 4747 */ 4748 int netif_receive_skb(struct sk_buff *skb) 4749 { 4750 trace_netif_receive_skb_entry(skb); 4751 4752 return netif_receive_skb_internal(skb); 4753 } 4754 EXPORT_SYMBOL(netif_receive_skb); 4755 4756 DEFINE_PER_CPU(struct work_struct, flush_works); 4757 4758 /* Network device is going away, flush any packets still pending */ 4759 static void flush_backlog(struct work_struct *work) 4760 { 4761 struct sk_buff *skb, *tmp; 4762 struct softnet_data *sd; 4763 4764 local_bh_disable(); 4765 sd = this_cpu_ptr(&softnet_data); 4766 4767 local_irq_disable(); 4768 rps_lock(sd); 4769 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4770 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4771 __skb_unlink(skb, &sd->input_pkt_queue); 4772 kfree_skb(skb); 4773 input_queue_head_incr(sd); 4774 } 4775 } 4776 rps_unlock(sd); 4777 local_irq_enable(); 4778 4779 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4780 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4781 __skb_unlink(skb, &sd->process_queue); 4782 kfree_skb(skb); 4783 input_queue_head_incr(sd); 4784 } 4785 } 4786 local_bh_enable(); 4787 } 4788 4789 static void flush_all_backlogs(void) 4790 { 4791 unsigned int cpu; 4792 4793 get_online_cpus(); 4794 4795 for_each_online_cpu(cpu) 4796 queue_work_on(cpu, system_highpri_wq, 4797 per_cpu_ptr(&flush_works, cpu)); 4798 4799 for_each_online_cpu(cpu) 4800 flush_work(per_cpu_ptr(&flush_works, cpu)); 4801 4802 put_online_cpus(); 4803 } 4804 4805 static int napi_gro_complete(struct sk_buff *skb) 4806 { 4807 struct packet_offload *ptype; 4808 __be16 type = skb->protocol; 4809 struct list_head *head = &offload_base; 4810 int err = -ENOENT; 4811 4812 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4813 4814 if (NAPI_GRO_CB(skb)->count == 1) { 4815 skb_shinfo(skb)->gso_size = 0; 4816 goto out; 4817 } 4818 4819 rcu_read_lock(); 4820 list_for_each_entry_rcu(ptype, head, list) { 4821 if (ptype->type != type || !ptype->callbacks.gro_complete) 4822 continue; 4823 4824 err = ptype->callbacks.gro_complete(skb, 0); 4825 break; 4826 } 4827 rcu_read_unlock(); 4828 4829 if (err) { 4830 WARN_ON(&ptype->list == head); 4831 kfree_skb(skb); 4832 return NET_RX_SUCCESS; 4833 } 4834 4835 out: 4836 return netif_receive_skb_internal(skb); 4837 } 4838 4839 /* napi->gro_list contains packets ordered by age. 4840 * youngest packets at the head of it. 4841 * Complete skbs in reverse order to reduce latencies. 4842 */ 4843 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4844 { 4845 struct sk_buff *skb, *prev = NULL; 4846 4847 /* scan list and build reverse chain */ 4848 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4849 skb->prev = prev; 4850 prev = skb; 4851 } 4852 4853 for (skb = prev; skb; skb = prev) { 4854 skb->next = NULL; 4855 4856 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4857 return; 4858 4859 prev = skb->prev; 4860 napi_gro_complete(skb); 4861 napi->gro_count--; 4862 } 4863 4864 napi->gro_list = NULL; 4865 } 4866 EXPORT_SYMBOL(napi_gro_flush); 4867 4868 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4869 { 4870 struct sk_buff *p; 4871 unsigned int maclen = skb->dev->hard_header_len; 4872 u32 hash = skb_get_hash_raw(skb); 4873 4874 for (p = napi->gro_list; p; p = p->next) { 4875 unsigned long diffs; 4876 4877 NAPI_GRO_CB(p)->flush = 0; 4878 4879 if (hash != skb_get_hash_raw(p)) { 4880 NAPI_GRO_CB(p)->same_flow = 0; 4881 continue; 4882 } 4883 4884 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4885 diffs |= p->vlan_tci ^ skb->vlan_tci; 4886 diffs |= skb_metadata_dst_cmp(p, skb); 4887 diffs |= skb_metadata_differs(p, skb); 4888 if (maclen == ETH_HLEN) 4889 diffs |= compare_ether_header(skb_mac_header(p), 4890 skb_mac_header(skb)); 4891 else if (!diffs) 4892 diffs = memcmp(skb_mac_header(p), 4893 skb_mac_header(skb), 4894 maclen); 4895 NAPI_GRO_CB(p)->same_flow = !diffs; 4896 } 4897 } 4898 4899 static void skb_gro_reset_offset(struct sk_buff *skb) 4900 { 4901 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4902 const skb_frag_t *frag0 = &pinfo->frags[0]; 4903 4904 NAPI_GRO_CB(skb)->data_offset = 0; 4905 NAPI_GRO_CB(skb)->frag0 = NULL; 4906 NAPI_GRO_CB(skb)->frag0_len = 0; 4907 4908 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4909 pinfo->nr_frags && 4910 !PageHighMem(skb_frag_page(frag0))) { 4911 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4912 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4913 skb_frag_size(frag0), 4914 skb->end - skb->tail); 4915 } 4916 } 4917 4918 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4919 { 4920 struct skb_shared_info *pinfo = skb_shinfo(skb); 4921 4922 BUG_ON(skb->end - skb->tail < grow); 4923 4924 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4925 4926 skb->data_len -= grow; 4927 skb->tail += grow; 4928 4929 pinfo->frags[0].page_offset += grow; 4930 skb_frag_size_sub(&pinfo->frags[0], grow); 4931 4932 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4933 skb_frag_unref(skb, 0); 4934 memmove(pinfo->frags, pinfo->frags + 1, 4935 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4936 } 4937 } 4938 4939 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4940 { 4941 struct sk_buff **pp = NULL; 4942 struct packet_offload *ptype; 4943 __be16 type = skb->protocol; 4944 struct list_head *head = &offload_base; 4945 int same_flow; 4946 enum gro_result ret; 4947 int grow; 4948 4949 if (netif_elide_gro(skb->dev)) 4950 goto normal; 4951 4952 gro_list_prepare(napi, skb); 4953 4954 rcu_read_lock(); 4955 list_for_each_entry_rcu(ptype, head, list) { 4956 if (ptype->type != type || !ptype->callbacks.gro_receive) 4957 continue; 4958 4959 skb_set_network_header(skb, skb_gro_offset(skb)); 4960 skb_reset_mac_len(skb); 4961 NAPI_GRO_CB(skb)->same_flow = 0; 4962 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4963 NAPI_GRO_CB(skb)->free = 0; 4964 NAPI_GRO_CB(skb)->encap_mark = 0; 4965 NAPI_GRO_CB(skb)->recursion_counter = 0; 4966 NAPI_GRO_CB(skb)->is_fou = 0; 4967 NAPI_GRO_CB(skb)->is_atomic = 1; 4968 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4969 4970 /* Setup for GRO checksum validation */ 4971 switch (skb->ip_summed) { 4972 case CHECKSUM_COMPLETE: 4973 NAPI_GRO_CB(skb)->csum = skb->csum; 4974 NAPI_GRO_CB(skb)->csum_valid = 1; 4975 NAPI_GRO_CB(skb)->csum_cnt = 0; 4976 break; 4977 case CHECKSUM_UNNECESSARY: 4978 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4979 NAPI_GRO_CB(skb)->csum_valid = 0; 4980 break; 4981 default: 4982 NAPI_GRO_CB(skb)->csum_cnt = 0; 4983 NAPI_GRO_CB(skb)->csum_valid = 0; 4984 } 4985 4986 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4987 break; 4988 } 4989 rcu_read_unlock(); 4990 4991 if (&ptype->list == head) 4992 goto normal; 4993 4994 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4995 ret = GRO_CONSUMED; 4996 goto ok; 4997 } 4998 4999 same_flow = NAPI_GRO_CB(skb)->same_flow; 5000 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5001 5002 if (pp) { 5003 struct sk_buff *nskb = *pp; 5004 5005 *pp = nskb->next; 5006 nskb->next = NULL; 5007 napi_gro_complete(nskb); 5008 napi->gro_count--; 5009 } 5010 5011 if (same_flow) 5012 goto ok; 5013 5014 if (NAPI_GRO_CB(skb)->flush) 5015 goto normal; 5016 5017 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 5018 struct sk_buff *nskb = napi->gro_list; 5019 5020 /* locate the end of the list to select the 'oldest' flow */ 5021 while (nskb->next) { 5022 pp = &nskb->next; 5023 nskb = *pp; 5024 } 5025 *pp = NULL; 5026 nskb->next = NULL; 5027 napi_gro_complete(nskb); 5028 } else { 5029 napi->gro_count++; 5030 } 5031 NAPI_GRO_CB(skb)->count = 1; 5032 NAPI_GRO_CB(skb)->age = jiffies; 5033 NAPI_GRO_CB(skb)->last = skb; 5034 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5035 skb->next = napi->gro_list; 5036 napi->gro_list = skb; 5037 ret = GRO_HELD; 5038 5039 pull: 5040 grow = skb_gro_offset(skb) - skb_headlen(skb); 5041 if (grow > 0) 5042 gro_pull_from_frag0(skb, grow); 5043 ok: 5044 return ret; 5045 5046 normal: 5047 ret = GRO_NORMAL; 5048 goto pull; 5049 } 5050 5051 struct packet_offload *gro_find_receive_by_type(__be16 type) 5052 { 5053 struct list_head *offload_head = &offload_base; 5054 struct packet_offload *ptype; 5055 5056 list_for_each_entry_rcu(ptype, offload_head, list) { 5057 if (ptype->type != type || !ptype->callbacks.gro_receive) 5058 continue; 5059 return ptype; 5060 } 5061 return NULL; 5062 } 5063 EXPORT_SYMBOL(gro_find_receive_by_type); 5064 5065 struct packet_offload *gro_find_complete_by_type(__be16 type) 5066 { 5067 struct list_head *offload_head = &offload_base; 5068 struct packet_offload *ptype; 5069 5070 list_for_each_entry_rcu(ptype, offload_head, list) { 5071 if (ptype->type != type || !ptype->callbacks.gro_complete) 5072 continue; 5073 return ptype; 5074 } 5075 return NULL; 5076 } 5077 EXPORT_SYMBOL(gro_find_complete_by_type); 5078 5079 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5080 { 5081 skb_dst_drop(skb); 5082 secpath_reset(skb); 5083 kmem_cache_free(skbuff_head_cache, skb); 5084 } 5085 5086 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5087 { 5088 switch (ret) { 5089 case GRO_NORMAL: 5090 if (netif_receive_skb_internal(skb)) 5091 ret = GRO_DROP; 5092 break; 5093 5094 case GRO_DROP: 5095 kfree_skb(skb); 5096 break; 5097 5098 case GRO_MERGED_FREE: 5099 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5100 napi_skb_free_stolen_head(skb); 5101 else 5102 __kfree_skb(skb); 5103 break; 5104 5105 case GRO_HELD: 5106 case GRO_MERGED: 5107 case GRO_CONSUMED: 5108 break; 5109 } 5110 5111 return ret; 5112 } 5113 5114 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5115 { 5116 skb_mark_napi_id(skb, napi); 5117 trace_napi_gro_receive_entry(skb); 5118 5119 skb_gro_reset_offset(skb); 5120 5121 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5122 } 5123 EXPORT_SYMBOL(napi_gro_receive); 5124 5125 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5126 { 5127 if (unlikely(skb->pfmemalloc)) { 5128 consume_skb(skb); 5129 return; 5130 } 5131 __skb_pull(skb, skb_headlen(skb)); 5132 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5133 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5134 skb->vlan_tci = 0; 5135 skb->dev = napi->dev; 5136 skb->skb_iif = 0; 5137 skb->encapsulation = 0; 5138 skb_shinfo(skb)->gso_type = 0; 5139 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5140 secpath_reset(skb); 5141 5142 napi->skb = skb; 5143 } 5144 5145 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5146 { 5147 struct sk_buff *skb = napi->skb; 5148 5149 if (!skb) { 5150 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5151 if (skb) { 5152 napi->skb = skb; 5153 skb_mark_napi_id(skb, napi); 5154 } 5155 } 5156 return skb; 5157 } 5158 EXPORT_SYMBOL(napi_get_frags); 5159 5160 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5161 struct sk_buff *skb, 5162 gro_result_t ret) 5163 { 5164 switch (ret) { 5165 case GRO_NORMAL: 5166 case GRO_HELD: 5167 __skb_push(skb, ETH_HLEN); 5168 skb->protocol = eth_type_trans(skb, skb->dev); 5169 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5170 ret = GRO_DROP; 5171 break; 5172 5173 case GRO_DROP: 5174 napi_reuse_skb(napi, skb); 5175 break; 5176 5177 case GRO_MERGED_FREE: 5178 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5179 napi_skb_free_stolen_head(skb); 5180 else 5181 napi_reuse_skb(napi, skb); 5182 break; 5183 5184 case GRO_MERGED: 5185 case GRO_CONSUMED: 5186 break; 5187 } 5188 5189 return ret; 5190 } 5191 5192 /* Upper GRO stack assumes network header starts at gro_offset=0 5193 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5194 * We copy ethernet header into skb->data to have a common layout. 5195 */ 5196 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5197 { 5198 struct sk_buff *skb = napi->skb; 5199 const struct ethhdr *eth; 5200 unsigned int hlen = sizeof(*eth); 5201 5202 napi->skb = NULL; 5203 5204 skb_reset_mac_header(skb); 5205 skb_gro_reset_offset(skb); 5206 5207 eth = skb_gro_header_fast(skb, 0); 5208 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5209 eth = skb_gro_header_slow(skb, hlen, 0); 5210 if (unlikely(!eth)) { 5211 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5212 __func__, napi->dev->name); 5213 napi_reuse_skb(napi, skb); 5214 return NULL; 5215 } 5216 } else { 5217 gro_pull_from_frag0(skb, hlen); 5218 NAPI_GRO_CB(skb)->frag0 += hlen; 5219 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5220 } 5221 __skb_pull(skb, hlen); 5222 5223 /* 5224 * This works because the only protocols we care about don't require 5225 * special handling. 5226 * We'll fix it up properly in napi_frags_finish() 5227 */ 5228 skb->protocol = eth->h_proto; 5229 5230 return skb; 5231 } 5232 5233 gro_result_t napi_gro_frags(struct napi_struct *napi) 5234 { 5235 struct sk_buff *skb = napi_frags_skb(napi); 5236 5237 if (!skb) 5238 return GRO_DROP; 5239 5240 trace_napi_gro_frags_entry(skb); 5241 5242 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5243 } 5244 EXPORT_SYMBOL(napi_gro_frags); 5245 5246 /* Compute the checksum from gro_offset and return the folded value 5247 * after adding in any pseudo checksum. 5248 */ 5249 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5250 { 5251 __wsum wsum; 5252 __sum16 sum; 5253 5254 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5255 5256 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5257 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5258 if (likely(!sum)) { 5259 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5260 !skb->csum_complete_sw) 5261 netdev_rx_csum_fault(skb->dev); 5262 } 5263 5264 NAPI_GRO_CB(skb)->csum = wsum; 5265 NAPI_GRO_CB(skb)->csum_valid = 1; 5266 5267 return sum; 5268 } 5269 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5270 5271 static void net_rps_send_ipi(struct softnet_data *remsd) 5272 { 5273 #ifdef CONFIG_RPS 5274 while (remsd) { 5275 struct softnet_data *next = remsd->rps_ipi_next; 5276 5277 if (cpu_online(remsd->cpu)) 5278 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5279 remsd = next; 5280 } 5281 #endif 5282 } 5283 5284 /* 5285 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5286 * Note: called with local irq disabled, but exits with local irq enabled. 5287 */ 5288 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5289 { 5290 #ifdef CONFIG_RPS 5291 struct softnet_data *remsd = sd->rps_ipi_list; 5292 5293 if (remsd) { 5294 sd->rps_ipi_list = NULL; 5295 5296 local_irq_enable(); 5297 5298 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5299 net_rps_send_ipi(remsd); 5300 } else 5301 #endif 5302 local_irq_enable(); 5303 } 5304 5305 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5306 { 5307 #ifdef CONFIG_RPS 5308 return sd->rps_ipi_list != NULL; 5309 #else 5310 return false; 5311 #endif 5312 } 5313 5314 static int process_backlog(struct napi_struct *napi, int quota) 5315 { 5316 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5317 bool again = true; 5318 int work = 0; 5319 5320 /* Check if we have pending ipi, its better to send them now, 5321 * not waiting net_rx_action() end. 5322 */ 5323 if (sd_has_rps_ipi_waiting(sd)) { 5324 local_irq_disable(); 5325 net_rps_action_and_irq_enable(sd); 5326 } 5327 5328 napi->weight = dev_rx_weight; 5329 while (again) { 5330 struct sk_buff *skb; 5331 5332 while ((skb = __skb_dequeue(&sd->process_queue))) { 5333 rcu_read_lock(); 5334 __netif_receive_skb(skb); 5335 rcu_read_unlock(); 5336 input_queue_head_incr(sd); 5337 if (++work >= quota) 5338 return work; 5339 5340 } 5341 5342 local_irq_disable(); 5343 rps_lock(sd); 5344 if (skb_queue_empty(&sd->input_pkt_queue)) { 5345 /* 5346 * Inline a custom version of __napi_complete(). 5347 * only current cpu owns and manipulates this napi, 5348 * and NAPI_STATE_SCHED is the only possible flag set 5349 * on backlog. 5350 * We can use a plain write instead of clear_bit(), 5351 * and we dont need an smp_mb() memory barrier. 5352 */ 5353 napi->state = 0; 5354 again = false; 5355 } else { 5356 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5357 &sd->process_queue); 5358 } 5359 rps_unlock(sd); 5360 local_irq_enable(); 5361 } 5362 5363 return work; 5364 } 5365 5366 /** 5367 * __napi_schedule - schedule for receive 5368 * @n: entry to schedule 5369 * 5370 * The entry's receive function will be scheduled to run. 5371 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5372 */ 5373 void __napi_schedule(struct napi_struct *n) 5374 { 5375 unsigned long flags; 5376 5377 local_irq_save(flags); 5378 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5379 local_irq_restore(flags); 5380 } 5381 EXPORT_SYMBOL(__napi_schedule); 5382 5383 /** 5384 * napi_schedule_prep - check if napi can be scheduled 5385 * @n: napi context 5386 * 5387 * Test if NAPI routine is already running, and if not mark 5388 * it as running. This is used as a condition variable 5389 * insure only one NAPI poll instance runs. We also make 5390 * sure there is no pending NAPI disable. 5391 */ 5392 bool napi_schedule_prep(struct napi_struct *n) 5393 { 5394 unsigned long val, new; 5395 5396 do { 5397 val = READ_ONCE(n->state); 5398 if (unlikely(val & NAPIF_STATE_DISABLE)) 5399 return false; 5400 new = val | NAPIF_STATE_SCHED; 5401 5402 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5403 * This was suggested by Alexander Duyck, as compiler 5404 * emits better code than : 5405 * if (val & NAPIF_STATE_SCHED) 5406 * new |= NAPIF_STATE_MISSED; 5407 */ 5408 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5409 NAPIF_STATE_MISSED; 5410 } while (cmpxchg(&n->state, val, new) != val); 5411 5412 return !(val & NAPIF_STATE_SCHED); 5413 } 5414 EXPORT_SYMBOL(napi_schedule_prep); 5415 5416 /** 5417 * __napi_schedule_irqoff - schedule for receive 5418 * @n: entry to schedule 5419 * 5420 * Variant of __napi_schedule() assuming hard irqs are masked 5421 */ 5422 void __napi_schedule_irqoff(struct napi_struct *n) 5423 { 5424 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5425 } 5426 EXPORT_SYMBOL(__napi_schedule_irqoff); 5427 5428 bool napi_complete_done(struct napi_struct *n, int work_done) 5429 { 5430 unsigned long flags, val, new; 5431 5432 /* 5433 * 1) Don't let napi dequeue from the cpu poll list 5434 * just in case its running on a different cpu. 5435 * 2) If we are busy polling, do nothing here, we have 5436 * the guarantee we will be called later. 5437 */ 5438 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5439 NAPIF_STATE_IN_BUSY_POLL))) 5440 return false; 5441 5442 if (n->gro_list) { 5443 unsigned long timeout = 0; 5444 5445 if (work_done) 5446 timeout = n->dev->gro_flush_timeout; 5447 5448 if (timeout) 5449 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5450 HRTIMER_MODE_REL_PINNED); 5451 else 5452 napi_gro_flush(n, false); 5453 } 5454 if (unlikely(!list_empty(&n->poll_list))) { 5455 /* If n->poll_list is not empty, we need to mask irqs */ 5456 local_irq_save(flags); 5457 list_del_init(&n->poll_list); 5458 local_irq_restore(flags); 5459 } 5460 5461 do { 5462 val = READ_ONCE(n->state); 5463 5464 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5465 5466 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5467 5468 /* If STATE_MISSED was set, leave STATE_SCHED set, 5469 * because we will call napi->poll() one more time. 5470 * This C code was suggested by Alexander Duyck to help gcc. 5471 */ 5472 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5473 NAPIF_STATE_SCHED; 5474 } while (cmpxchg(&n->state, val, new) != val); 5475 5476 if (unlikely(val & NAPIF_STATE_MISSED)) { 5477 __napi_schedule(n); 5478 return false; 5479 } 5480 5481 return true; 5482 } 5483 EXPORT_SYMBOL(napi_complete_done); 5484 5485 /* must be called under rcu_read_lock(), as we dont take a reference */ 5486 static struct napi_struct *napi_by_id(unsigned int napi_id) 5487 { 5488 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5489 struct napi_struct *napi; 5490 5491 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5492 if (napi->napi_id == napi_id) 5493 return napi; 5494 5495 return NULL; 5496 } 5497 5498 #if defined(CONFIG_NET_RX_BUSY_POLL) 5499 5500 #define BUSY_POLL_BUDGET 8 5501 5502 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5503 { 5504 int rc; 5505 5506 /* Busy polling means there is a high chance device driver hard irq 5507 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5508 * set in napi_schedule_prep(). 5509 * Since we are about to call napi->poll() once more, we can safely 5510 * clear NAPI_STATE_MISSED. 5511 * 5512 * Note: x86 could use a single "lock and ..." instruction 5513 * to perform these two clear_bit() 5514 */ 5515 clear_bit(NAPI_STATE_MISSED, &napi->state); 5516 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5517 5518 local_bh_disable(); 5519 5520 /* All we really want here is to re-enable device interrupts. 5521 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5522 */ 5523 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5524 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5525 netpoll_poll_unlock(have_poll_lock); 5526 if (rc == BUSY_POLL_BUDGET) 5527 __napi_schedule(napi); 5528 local_bh_enable(); 5529 } 5530 5531 void napi_busy_loop(unsigned int napi_id, 5532 bool (*loop_end)(void *, unsigned long), 5533 void *loop_end_arg) 5534 { 5535 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5536 int (*napi_poll)(struct napi_struct *napi, int budget); 5537 void *have_poll_lock = NULL; 5538 struct napi_struct *napi; 5539 5540 restart: 5541 napi_poll = NULL; 5542 5543 rcu_read_lock(); 5544 5545 napi = napi_by_id(napi_id); 5546 if (!napi) 5547 goto out; 5548 5549 preempt_disable(); 5550 for (;;) { 5551 int work = 0; 5552 5553 local_bh_disable(); 5554 if (!napi_poll) { 5555 unsigned long val = READ_ONCE(napi->state); 5556 5557 /* If multiple threads are competing for this napi, 5558 * we avoid dirtying napi->state as much as we can. 5559 */ 5560 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5561 NAPIF_STATE_IN_BUSY_POLL)) 5562 goto count; 5563 if (cmpxchg(&napi->state, val, 5564 val | NAPIF_STATE_IN_BUSY_POLL | 5565 NAPIF_STATE_SCHED) != val) 5566 goto count; 5567 have_poll_lock = netpoll_poll_lock(napi); 5568 napi_poll = napi->poll; 5569 } 5570 work = napi_poll(napi, BUSY_POLL_BUDGET); 5571 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5572 count: 5573 if (work > 0) 5574 __NET_ADD_STATS(dev_net(napi->dev), 5575 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5576 local_bh_enable(); 5577 5578 if (!loop_end || loop_end(loop_end_arg, start_time)) 5579 break; 5580 5581 if (unlikely(need_resched())) { 5582 if (napi_poll) 5583 busy_poll_stop(napi, have_poll_lock); 5584 preempt_enable(); 5585 rcu_read_unlock(); 5586 cond_resched(); 5587 if (loop_end(loop_end_arg, start_time)) 5588 return; 5589 goto restart; 5590 } 5591 cpu_relax(); 5592 } 5593 if (napi_poll) 5594 busy_poll_stop(napi, have_poll_lock); 5595 preempt_enable(); 5596 out: 5597 rcu_read_unlock(); 5598 } 5599 EXPORT_SYMBOL(napi_busy_loop); 5600 5601 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5602 5603 static void napi_hash_add(struct napi_struct *napi) 5604 { 5605 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5606 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5607 return; 5608 5609 spin_lock(&napi_hash_lock); 5610 5611 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5612 do { 5613 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5614 napi_gen_id = MIN_NAPI_ID; 5615 } while (napi_by_id(napi_gen_id)); 5616 napi->napi_id = napi_gen_id; 5617 5618 hlist_add_head_rcu(&napi->napi_hash_node, 5619 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5620 5621 spin_unlock(&napi_hash_lock); 5622 } 5623 5624 /* Warning : caller is responsible to make sure rcu grace period 5625 * is respected before freeing memory containing @napi 5626 */ 5627 bool napi_hash_del(struct napi_struct *napi) 5628 { 5629 bool rcu_sync_needed = false; 5630 5631 spin_lock(&napi_hash_lock); 5632 5633 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5634 rcu_sync_needed = true; 5635 hlist_del_rcu(&napi->napi_hash_node); 5636 } 5637 spin_unlock(&napi_hash_lock); 5638 return rcu_sync_needed; 5639 } 5640 EXPORT_SYMBOL_GPL(napi_hash_del); 5641 5642 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5643 { 5644 struct napi_struct *napi; 5645 5646 napi = container_of(timer, struct napi_struct, timer); 5647 5648 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5649 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5650 */ 5651 if (napi->gro_list && !napi_disable_pending(napi) && 5652 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5653 __napi_schedule_irqoff(napi); 5654 5655 return HRTIMER_NORESTART; 5656 } 5657 5658 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5659 int (*poll)(struct napi_struct *, int), int weight) 5660 { 5661 INIT_LIST_HEAD(&napi->poll_list); 5662 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5663 napi->timer.function = napi_watchdog; 5664 napi->gro_count = 0; 5665 napi->gro_list = NULL; 5666 napi->skb = NULL; 5667 napi->poll = poll; 5668 if (weight > NAPI_POLL_WEIGHT) 5669 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5670 weight, dev->name); 5671 napi->weight = weight; 5672 list_add(&napi->dev_list, &dev->napi_list); 5673 napi->dev = dev; 5674 #ifdef CONFIG_NETPOLL 5675 napi->poll_owner = -1; 5676 #endif 5677 set_bit(NAPI_STATE_SCHED, &napi->state); 5678 napi_hash_add(napi); 5679 } 5680 EXPORT_SYMBOL(netif_napi_add); 5681 5682 void napi_disable(struct napi_struct *n) 5683 { 5684 might_sleep(); 5685 set_bit(NAPI_STATE_DISABLE, &n->state); 5686 5687 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5688 msleep(1); 5689 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5690 msleep(1); 5691 5692 hrtimer_cancel(&n->timer); 5693 5694 clear_bit(NAPI_STATE_DISABLE, &n->state); 5695 } 5696 EXPORT_SYMBOL(napi_disable); 5697 5698 /* Must be called in process context */ 5699 void netif_napi_del(struct napi_struct *napi) 5700 { 5701 might_sleep(); 5702 if (napi_hash_del(napi)) 5703 synchronize_net(); 5704 list_del_init(&napi->dev_list); 5705 napi_free_frags(napi); 5706 5707 kfree_skb_list(napi->gro_list); 5708 napi->gro_list = NULL; 5709 napi->gro_count = 0; 5710 } 5711 EXPORT_SYMBOL(netif_napi_del); 5712 5713 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5714 { 5715 void *have; 5716 int work, weight; 5717 5718 list_del_init(&n->poll_list); 5719 5720 have = netpoll_poll_lock(n); 5721 5722 weight = n->weight; 5723 5724 /* This NAPI_STATE_SCHED test is for avoiding a race 5725 * with netpoll's poll_napi(). Only the entity which 5726 * obtains the lock and sees NAPI_STATE_SCHED set will 5727 * actually make the ->poll() call. Therefore we avoid 5728 * accidentally calling ->poll() when NAPI is not scheduled. 5729 */ 5730 work = 0; 5731 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5732 work = n->poll(n, weight); 5733 trace_napi_poll(n, work, weight); 5734 } 5735 5736 WARN_ON_ONCE(work > weight); 5737 5738 if (likely(work < weight)) 5739 goto out_unlock; 5740 5741 /* Drivers must not modify the NAPI state if they 5742 * consume the entire weight. In such cases this code 5743 * still "owns" the NAPI instance and therefore can 5744 * move the instance around on the list at-will. 5745 */ 5746 if (unlikely(napi_disable_pending(n))) { 5747 napi_complete(n); 5748 goto out_unlock; 5749 } 5750 5751 if (n->gro_list) { 5752 /* flush too old packets 5753 * If HZ < 1000, flush all packets. 5754 */ 5755 napi_gro_flush(n, HZ >= 1000); 5756 } 5757 5758 /* Some drivers may have called napi_schedule 5759 * prior to exhausting their budget. 5760 */ 5761 if (unlikely(!list_empty(&n->poll_list))) { 5762 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5763 n->dev ? n->dev->name : "backlog"); 5764 goto out_unlock; 5765 } 5766 5767 list_add_tail(&n->poll_list, repoll); 5768 5769 out_unlock: 5770 netpoll_poll_unlock(have); 5771 5772 return work; 5773 } 5774 5775 static __latent_entropy void net_rx_action(struct softirq_action *h) 5776 { 5777 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5778 unsigned long time_limit = jiffies + 5779 usecs_to_jiffies(netdev_budget_usecs); 5780 int budget = netdev_budget; 5781 LIST_HEAD(list); 5782 LIST_HEAD(repoll); 5783 5784 local_irq_disable(); 5785 list_splice_init(&sd->poll_list, &list); 5786 local_irq_enable(); 5787 5788 for (;;) { 5789 struct napi_struct *n; 5790 5791 if (list_empty(&list)) { 5792 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5793 goto out; 5794 break; 5795 } 5796 5797 n = list_first_entry(&list, struct napi_struct, poll_list); 5798 budget -= napi_poll(n, &repoll); 5799 5800 /* If softirq window is exhausted then punt. 5801 * Allow this to run for 2 jiffies since which will allow 5802 * an average latency of 1.5/HZ. 5803 */ 5804 if (unlikely(budget <= 0 || 5805 time_after_eq(jiffies, time_limit))) { 5806 sd->time_squeeze++; 5807 break; 5808 } 5809 } 5810 5811 local_irq_disable(); 5812 5813 list_splice_tail_init(&sd->poll_list, &list); 5814 list_splice_tail(&repoll, &list); 5815 list_splice(&list, &sd->poll_list); 5816 if (!list_empty(&sd->poll_list)) 5817 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5818 5819 net_rps_action_and_irq_enable(sd); 5820 out: 5821 __kfree_skb_flush(); 5822 } 5823 5824 struct netdev_adjacent { 5825 struct net_device *dev; 5826 5827 /* upper master flag, there can only be one master device per list */ 5828 bool master; 5829 5830 /* counter for the number of times this device was added to us */ 5831 u16 ref_nr; 5832 5833 /* private field for the users */ 5834 void *private; 5835 5836 struct list_head list; 5837 struct rcu_head rcu; 5838 }; 5839 5840 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5841 struct list_head *adj_list) 5842 { 5843 struct netdev_adjacent *adj; 5844 5845 list_for_each_entry(adj, adj_list, list) { 5846 if (adj->dev == adj_dev) 5847 return adj; 5848 } 5849 return NULL; 5850 } 5851 5852 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5853 { 5854 struct net_device *dev = data; 5855 5856 return upper_dev == dev; 5857 } 5858 5859 /** 5860 * netdev_has_upper_dev - Check if device is linked to an upper device 5861 * @dev: device 5862 * @upper_dev: upper device to check 5863 * 5864 * Find out if a device is linked to specified upper device and return true 5865 * in case it is. Note that this checks only immediate upper device, 5866 * not through a complete stack of devices. The caller must hold the RTNL lock. 5867 */ 5868 bool netdev_has_upper_dev(struct net_device *dev, 5869 struct net_device *upper_dev) 5870 { 5871 ASSERT_RTNL(); 5872 5873 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5874 upper_dev); 5875 } 5876 EXPORT_SYMBOL(netdev_has_upper_dev); 5877 5878 /** 5879 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5880 * @dev: device 5881 * @upper_dev: upper device to check 5882 * 5883 * Find out if a device is linked to specified upper device and return true 5884 * in case it is. Note that this checks the entire upper device chain. 5885 * The caller must hold rcu lock. 5886 */ 5887 5888 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5889 struct net_device *upper_dev) 5890 { 5891 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5892 upper_dev); 5893 } 5894 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5895 5896 /** 5897 * netdev_has_any_upper_dev - Check if device is linked to some device 5898 * @dev: device 5899 * 5900 * Find out if a device is linked to an upper device and return true in case 5901 * it is. The caller must hold the RTNL lock. 5902 */ 5903 bool netdev_has_any_upper_dev(struct net_device *dev) 5904 { 5905 ASSERT_RTNL(); 5906 5907 return !list_empty(&dev->adj_list.upper); 5908 } 5909 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5910 5911 /** 5912 * netdev_master_upper_dev_get - Get master upper device 5913 * @dev: device 5914 * 5915 * Find a master upper device and return pointer to it or NULL in case 5916 * it's not there. The caller must hold the RTNL lock. 5917 */ 5918 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5919 { 5920 struct netdev_adjacent *upper; 5921 5922 ASSERT_RTNL(); 5923 5924 if (list_empty(&dev->adj_list.upper)) 5925 return NULL; 5926 5927 upper = list_first_entry(&dev->adj_list.upper, 5928 struct netdev_adjacent, list); 5929 if (likely(upper->master)) 5930 return upper->dev; 5931 return NULL; 5932 } 5933 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5934 5935 /** 5936 * netdev_has_any_lower_dev - Check if device is linked to some device 5937 * @dev: device 5938 * 5939 * Find out if a device is linked to a lower device and return true in case 5940 * it is. The caller must hold the RTNL lock. 5941 */ 5942 static bool netdev_has_any_lower_dev(struct net_device *dev) 5943 { 5944 ASSERT_RTNL(); 5945 5946 return !list_empty(&dev->adj_list.lower); 5947 } 5948 5949 void *netdev_adjacent_get_private(struct list_head *adj_list) 5950 { 5951 struct netdev_adjacent *adj; 5952 5953 adj = list_entry(adj_list, struct netdev_adjacent, list); 5954 5955 return adj->private; 5956 } 5957 EXPORT_SYMBOL(netdev_adjacent_get_private); 5958 5959 /** 5960 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5961 * @dev: device 5962 * @iter: list_head ** of the current position 5963 * 5964 * Gets the next device from the dev's upper list, starting from iter 5965 * position. The caller must hold RCU read lock. 5966 */ 5967 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5968 struct list_head **iter) 5969 { 5970 struct netdev_adjacent *upper; 5971 5972 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5973 5974 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5975 5976 if (&upper->list == &dev->adj_list.upper) 5977 return NULL; 5978 5979 *iter = &upper->list; 5980 5981 return upper->dev; 5982 } 5983 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5984 5985 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5986 struct list_head **iter) 5987 { 5988 struct netdev_adjacent *upper; 5989 5990 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5991 5992 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5993 5994 if (&upper->list == &dev->adj_list.upper) 5995 return NULL; 5996 5997 *iter = &upper->list; 5998 5999 return upper->dev; 6000 } 6001 6002 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6003 int (*fn)(struct net_device *dev, 6004 void *data), 6005 void *data) 6006 { 6007 struct net_device *udev; 6008 struct list_head *iter; 6009 int ret; 6010 6011 for (iter = &dev->adj_list.upper, 6012 udev = netdev_next_upper_dev_rcu(dev, &iter); 6013 udev; 6014 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6015 /* first is the upper device itself */ 6016 ret = fn(udev, data); 6017 if (ret) 6018 return ret; 6019 6020 /* then look at all of its upper devices */ 6021 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6022 if (ret) 6023 return ret; 6024 } 6025 6026 return 0; 6027 } 6028 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6029 6030 /** 6031 * netdev_lower_get_next_private - Get the next ->private from the 6032 * lower neighbour list 6033 * @dev: device 6034 * @iter: list_head ** of the current position 6035 * 6036 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6037 * list, starting from iter position. The caller must hold either hold the 6038 * RTNL lock or its own locking that guarantees that the neighbour lower 6039 * list will remain unchanged. 6040 */ 6041 void *netdev_lower_get_next_private(struct net_device *dev, 6042 struct list_head **iter) 6043 { 6044 struct netdev_adjacent *lower; 6045 6046 lower = list_entry(*iter, struct netdev_adjacent, list); 6047 6048 if (&lower->list == &dev->adj_list.lower) 6049 return NULL; 6050 6051 *iter = lower->list.next; 6052 6053 return lower->private; 6054 } 6055 EXPORT_SYMBOL(netdev_lower_get_next_private); 6056 6057 /** 6058 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6059 * lower neighbour list, RCU 6060 * variant 6061 * @dev: device 6062 * @iter: list_head ** of the current position 6063 * 6064 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6065 * list, starting from iter position. The caller must hold RCU read lock. 6066 */ 6067 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6068 struct list_head **iter) 6069 { 6070 struct netdev_adjacent *lower; 6071 6072 WARN_ON_ONCE(!rcu_read_lock_held()); 6073 6074 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6075 6076 if (&lower->list == &dev->adj_list.lower) 6077 return NULL; 6078 6079 *iter = &lower->list; 6080 6081 return lower->private; 6082 } 6083 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6084 6085 /** 6086 * netdev_lower_get_next - Get the next device from the lower neighbour 6087 * list 6088 * @dev: device 6089 * @iter: list_head ** of the current position 6090 * 6091 * Gets the next netdev_adjacent from the dev's lower neighbour 6092 * list, starting from iter position. The caller must hold RTNL lock or 6093 * its own locking that guarantees that the neighbour lower 6094 * list will remain unchanged. 6095 */ 6096 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6097 { 6098 struct netdev_adjacent *lower; 6099 6100 lower = list_entry(*iter, struct netdev_adjacent, list); 6101 6102 if (&lower->list == &dev->adj_list.lower) 6103 return NULL; 6104 6105 *iter = lower->list.next; 6106 6107 return lower->dev; 6108 } 6109 EXPORT_SYMBOL(netdev_lower_get_next); 6110 6111 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6112 struct list_head **iter) 6113 { 6114 struct netdev_adjacent *lower; 6115 6116 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6117 6118 if (&lower->list == &dev->adj_list.lower) 6119 return NULL; 6120 6121 *iter = &lower->list; 6122 6123 return lower->dev; 6124 } 6125 6126 int netdev_walk_all_lower_dev(struct net_device *dev, 6127 int (*fn)(struct net_device *dev, 6128 void *data), 6129 void *data) 6130 { 6131 struct net_device *ldev; 6132 struct list_head *iter; 6133 int ret; 6134 6135 for (iter = &dev->adj_list.lower, 6136 ldev = netdev_next_lower_dev(dev, &iter); 6137 ldev; 6138 ldev = netdev_next_lower_dev(dev, &iter)) { 6139 /* first is the lower device itself */ 6140 ret = fn(ldev, data); 6141 if (ret) 6142 return ret; 6143 6144 /* then look at all of its lower devices */ 6145 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6146 if (ret) 6147 return ret; 6148 } 6149 6150 return 0; 6151 } 6152 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6153 6154 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6155 struct list_head **iter) 6156 { 6157 struct netdev_adjacent *lower; 6158 6159 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6160 if (&lower->list == &dev->adj_list.lower) 6161 return NULL; 6162 6163 *iter = &lower->list; 6164 6165 return lower->dev; 6166 } 6167 6168 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6169 int (*fn)(struct net_device *dev, 6170 void *data), 6171 void *data) 6172 { 6173 struct net_device *ldev; 6174 struct list_head *iter; 6175 int ret; 6176 6177 for (iter = &dev->adj_list.lower, 6178 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6179 ldev; 6180 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6181 /* first is the lower device itself */ 6182 ret = fn(ldev, data); 6183 if (ret) 6184 return ret; 6185 6186 /* then look at all of its lower devices */ 6187 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6188 if (ret) 6189 return ret; 6190 } 6191 6192 return 0; 6193 } 6194 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6195 6196 /** 6197 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6198 * lower neighbour list, RCU 6199 * variant 6200 * @dev: device 6201 * 6202 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6203 * list. The caller must hold RCU read lock. 6204 */ 6205 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6206 { 6207 struct netdev_adjacent *lower; 6208 6209 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6210 struct netdev_adjacent, list); 6211 if (lower) 6212 return lower->private; 6213 return NULL; 6214 } 6215 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6216 6217 /** 6218 * netdev_master_upper_dev_get_rcu - Get master upper device 6219 * @dev: device 6220 * 6221 * Find a master upper device and return pointer to it or NULL in case 6222 * it's not there. The caller must hold the RCU read lock. 6223 */ 6224 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6225 { 6226 struct netdev_adjacent *upper; 6227 6228 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6229 struct netdev_adjacent, list); 6230 if (upper && likely(upper->master)) 6231 return upper->dev; 6232 return NULL; 6233 } 6234 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6235 6236 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6237 struct net_device *adj_dev, 6238 struct list_head *dev_list) 6239 { 6240 char linkname[IFNAMSIZ+7]; 6241 6242 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6243 "upper_%s" : "lower_%s", adj_dev->name); 6244 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6245 linkname); 6246 } 6247 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6248 char *name, 6249 struct list_head *dev_list) 6250 { 6251 char linkname[IFNAMSIZ+7]; 6252 6253 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6254 "upper_%s" : "lower_%s", name); 6255 sysfs_remove_link(&(dev->dev.kobj), linkname); 6256 } 6257 6258 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6259 struct net_device *adj_dev, 6260 struct list_head *dev_list) 6261 { 6262 return (dev_list == &dev->adj_list.upper || 6263 dev_list == &dev->adj_list.lower) && 6264 net_eq(dev_net(dev), dev_net(adj_dev)); 6265 } 6266 6267 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6268 struct net_device *adj_dev, 6269 struct list_head *dev_list, 6270 void *private, bool master) 6271 { 6272 struct netdev_adjacent *adj; 6273 int ret; 6274 6275 adj = __netdev_find_adj(adj_dev, dev_list); 6276 6277 if (adj) { 6278 adj->ref_nr += 1; 6279 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6280 dev->name, adj_dev->name, adj->ref_nr); 6281 6282 return 0; 6283 } 6284 6285 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6286 if (!adj) 6287 return -ENOMEM; 6288 6289 adj->dev = adj_dev; 6290 adj->master = master; 6291 adj->ref_nr = 1; 6292 adj->private = private; 6293 dev_hold(adj_dev); 6294 6295 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6296 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6297 6298 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6299 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6300 if (ret) 6301 goto free_adj; 6302 } 6303 6304 /* Ensure that master link is always the first item in list. */ 6305 if (master) { 6306 ret = sysfs_create_link(&(dev->dev.kobj), 6307 &(adj_dev->dev.kobj), "master"); 6308 if (ret) 6309 goto remove_symlinks; 6310 6311 list_add_rcu(&adj->list, dev_list); 6312 } else { 6313 list_add_tail_rcu(&adj->list, dev_list); 6314 } 6315 6316 return 0; 6317 6318 remove_symlinks: 6319 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6320 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6321 free_adj: 6322 kfree(adj); 6323 dev_put(adj_dev); 6324 6325 return ret; 6326 } 6327 6328 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6329 struct net_device *adj_dev, 6330 u16 ref_nr, 6331 struct list_head *dev_list) 6332 { 6333 struct netdev_adjacent *adj; 6334 6335 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6336 dev->name, adj_dev->name, ref_nr); 6337 6338 adj = __netdev_find_adj(adj_dev, dev_list); 6339 6340 if (!adj) { 6341 pr_err("Adjacency does not exist for device %s from %s\n", 6342 dev->name, adj_dev->name); 6343 WARN_ON(1); 6344 return; 6345 } 6346 6347 if (adj->ref_nr > ref_nr) { 6348 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6349 dev->name, adj_dev->name, ref_nr, 6350 adj->ref_nr - ref_nr); 6351 adj->ref_nr -= ref_nr; 6352 return; 6353 } 6354 6355 if (adj->master) 6356 sysfs_remove_link(&(dev->dev.kobj), "master"); 6357 6358 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6359 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6360 6361 list_del_rcu(&adj->list); 6362 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6363 adj_dev->name, dev->name, adj_dev->name); 6364 dev_put(adj_dev); 6365 kfree_rcu(adj, rcu); 6366 } 6367 6368 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6369 struct net_device *upper_dev, 6370 struct list_head *up_list, 6371 struct list_head *down_list, 6372 void *private, bool master) 6373 { 6374 int ret; 6375 6376 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6377 private, master); 6378 if (ret) 6379 return ret; 6380 6381 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6382 private, false); 6383 if (ret) { 6384 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6385 return ret; 6386 } 6387 6388 return 0; 6389 } 6390 6391 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6392 struct net_device *upper_dev, 6393 u16 ref_nr, 6394 struct list_head *up_list, 6395 struct list_head *down_list) 6396 { 6397 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6398 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6399 } 6400 6401 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6402 struct net_device *upper_dev, 6403 void *private, bool master) 6404 { 6405 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6406 &dev->adj_list.upper, 6407 &upper_dev->adj_list.lower, 6408 private, master); 6409 } 6410 6411 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6412 struct net_device *upper_dev) 6413 { 6414 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6415 &dev->adj_list.upper, 6416 &upper_dev->adj_list.lower); 6417 } 6418 6419 static int __netdev_upper_dev_link(struct net_device *dev, 6420 struct net_device *upper_dev, bool master, 6421 void *upper_priv, void *upper_info, 6422 struct netlink_ext_ack *extack) 6423 { 6424 struct netdev_notifier_changeupper_info changeupper_info = { 6425 .info = { 6426 .dev = dev, 6427 .extack = extack, 6428 }, 6429 .upper_dev = upper_dev, 6430 .master = master, 6431 .linking = true, 6432 .upper_info = upper_info, 6433 }; 6434 struct net_device *master_dev; 6435 int ret = 0; 6436 6437 ASSERT_RTNL(); 6438 6439 if (dev == upper_dev) 6440 return -EBUSY; 6441 6442 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6443 if (netdev_has_upper_dev(upper_dev, dev)) 6444 return -EBUSY; 6445 6446 if (!master) { 6447 if (netdev_has_upper_dev(dev, upper_dev)) 6448 return -EEXIST; 6449 } else { 6450 master_dev = netdev_master_upper_dev_get(dev); 6451 if (master_dev) 6452 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6453 } 6454 6455 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6456 &changeupper_info.info); 6457 ret = notifier_to_errno(ret); 6458 if (ret) 6459 return ret; 6460 6461 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6462 master); 6463 if (ret) 6464 return ret; 6465 6466 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6467 &changeupper_info.info); 6468 ret = notifier_to_errno(ret); 6469 if (ret) 6470 goto rollback; 6471 6472 return 0; 6473 6474 rollback: 6475 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6476 6477 return ret; 6478 } 6479 6480 /** 6481 * netdev_upper_dev_link - Add a link to the upper device 6482 * @dev: device 6483 * @upper_dev: new upper device 6484 * @extack: netlink extended ack 6485 * 6486 * Adds a link to device which is upper to this one. The caller must hold 6487 * the RTNL lock. On a failure a negative errno code is returned. 6488 * On success the reference counts are adjusted and the function 6489 * returns zero. 6490 */ 6491 int netdev_upper_dev_link(struct net_device *dev, 6492 struct net_device *upper_dev, 6493 struct netlink_ext_ack *extack) 6494 { 6495 return __netdev_upper_dev_link(dev, upper_dev, false, 6496 NULL, NULL, extack); 6497 } 6498 EXPORT_SYMBOL(netdev_upper_dev_link); 6499 6500 /** 6501 * netdev_master_upper_dev_link - Add a master link to the upper device 6502 * @dev: device 6503 * @upper_dev: new upper device 6504 * @upper_priv: upper device private 6505 * @upper_info: upper info to be passed down via notifier 6506 * @extack: netlink extended ack 6507 * 6508 * Adds a link to device which is upper to this one. In this case, only 6509 * one master upper device can be linked, although other non-master devices 6510 * might be linked as well. The caller must hold the RTNL lock. 6511 * On a failure a negative errno code is returned. On success the reference 6512 * counts are adjusted and the function returns zero. 6513 */ 6514 int netdev_master_upper_dev_link(struct net_device *dev, 6515 struct net_device *upper_dev, 6516 void *upper_priv, void *upper_info, 6517 struct netlink_ext_ack *extack) 6518 { 6519 return __netdev_upper_dev_link(dev, upper_dev, true, 6520 upper_priv, upper_info, extack); 6521 } 6522 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6523 6524 /** 6525 * netdev_upper_dev_unlink - Removes a link to upper device 6526 * @dev: device 6527 * @upper_dev: new upper device 6528 * 6529 * Removes a link to device which is upper to this one. The caller must hold 6530 * the RTNL lock. 6531 */ 6532 void netdev_upper_dev_unlink(struct net_device *dev, 6533 struct net_device *upper_dev) 6534 { 6535 struct netdev_notifier_changeupper_info changeupper_info = { 6536 .info = { 6537 .dev = dev, 6538 }, 6539 .upper_dev = upper_dev, 6540 .linking = false, 6541 }; 6542 6543 ASSERT_RTNL(); 6544 6545 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6546 6547 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6548 &changeupper_info.info); 6549 6550 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6551 6552 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6553 &changeupper_info.info); 6554 } 6555 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6556 6557 /** 6558 * netdev_bonding_info_change - Dispatch event about slave change 6559 * @dev: device 6560 * @bonding_info: info to dispatch 6561 * 6562 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6563 * The caller must hold the RTNL lock. 6564 */ 6565 void netdev_bonding_info_change(struct net_device *dev, 6566 struct netdev_bonding_info *bonding_info) 6567 { 6568 struct netdev_notifier_bonding_info info = { 6569 .info.dev = dev, 6570 }; 6571 6572 memcpy(&info.bonding_info, bonding_info, 6573 sizeof(struct netdev_bonding_info)); 6574 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6575 &info.info); 6576 } 6577 EXPORT_SYMBOL(netdev_bonding_info_change); 6578 6579 static void netdev_adjacent_add_links(struct net_device *dev) 6580 { 6581 struct netdev_adjacent *iter; 6582 6583 struct net *net = dev_net(dev); 6584 6585 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6586 if (!net_eq(net, dev_net(iter->dev))) 6587 continue; 6588 netdev_adjacent_sysfs_add(iter->dev, dev, 6589 &iter->dev->adj_list.lower); 6590 netdev_adjacent_sysfs_add(dev, iter->dev, 6591 &dev->adj_list.upper); 6592 } 6593 6594 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6595 if (!net_eq(net, dev_net(iter->dev))) 6596 continue; 6597 netdev_adjacent_sysfs_add(iter->dev, dev, 6598 &iter->dev->adj_list.upper); 6599 netdev_adjacent_sysfs_add(dev, iter->dev, 6600 &dev->adj_list.lower); 6601 } 6602 } 6603 6604 static void netdev_adjacent_del_links(struct net_device *dev) 6605 { 6606 struct netdev_adjacent *iter; 6607 6608 struct net *net = dev_net(dev); 6609 6610 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6611 if (!net_eq(net, dev_net(iter->dev))) 6612 continue; 6613 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6614 &iter->dev->adj_list.lower); 6615 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6616 &dev->adj_list.upper); 6617 } 6618 6619 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6620 if (!net_eq(net, dev_net(iter->dev))) 6621 continue; 6622 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6623 &iter->dev->adj_list.upper); 6624 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6625 &dev->adj_list.lower); 6626 } 6627 } 6628 6629 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6630 { 6631 struct netdev_adjacent *iter; 6632 6633 struct net *net = dev_net(dev); 6634 6635 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6636 if (!net_eq(net, dev_net(iter->dev))) 6637 continue; 6638 netdev_adjacent_sysfs_del(iter->dev, oldname, 6639 &iter->dev->adj_list.lower); 6640 netdev_adjacent_sysfs_add(iter->dev, dev, 6641 &iter->dev->adj_list.lower); 6642 } 6643 6644 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6645 if (!net_eq(net, dev_net(iter->dev))) 6646 continue; 6647 netdev_adjacent_sysfs_del(iter->dev, oldname, 6648 &iter->dev->adj_list.upper); 6649 netdev_adjacent_sysfs_add(iter->dev, dev, 6650 &iter->dev->adj_list.upper); 6651 } 6652 } 6653 6654 void *netdev_lower_dev_get_private(struct net_device *dev, 6655 struct net_device *lower_dev) 6656 { 6657 struct netdev_adjacent *lower; 6658 6659 if (!lower_dev) 6660 return NULL; 6661 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6662 if (!lower) 6663 return NULL; 6664 6665 return lower->private; 6666 } 6667 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6668 6669 6670 int dev_get_nest_level(struct net_device *dev) 6671 { 6672 struct net_device *lower = NULL; 6673 struct list_head *iter; 6674 int max_nest = -1; 6675 int nest; 6676 6677 ASSERT_RTNL(); 6678 6679 netdev_for_each_lower_dev(dev, lower, iter) { 6680 nest = dev_get_nest_level(lower); 6681 if (max_nest < nest) 6682 max_nest = nest; 6683 } 6684 6685 return max_nest + 1; 6686 } 6687 EXPORT_SYMBOL(dev_get_nest_level); 6688 6689 /** 6690 * netdev_lower_change - Dispatch event about lower device state change 6691 * @lower_dev: device 6692 * @lower_state_info: state to dispatch 6693 * 6694 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6695 * The caller must hold the RTNL lock. 6696 */ 6697 void netdev_lower_state_changed(struct net_device *lower_dev, 6698 void *lower_state_info) 6699 { 6700 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6701 .info.dev = lower_dev, 6702 }; 6703 6704 ASSERT_RTNL(); 6705 changelowerstate_info.lower_state_info = lower_state_info; 6706 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6707 &changelowerstate_info.info); 6708 } 6709 EXPORT_SYMBOL(netdev_lower_state_changed); 6710 6711 static void dev_change_rx_flags(struct net_device *dev, int flags) 6712 { 6713 const struct net_device_ops *ops = dev->netdev_ops; 6714 6715 if (ops->ndo_change_rx_flags) 6716 ops->ndo_change_rx_flags(dev, flags); 6717 } 6718 6719 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6720 { 6721 unsigned int old_flags = dev->flags; 6722 kuid_t uid; 6723 kgid_t gid; 6724 6725 ASSERT_RTNL(); 6726 6727 dev->flags |= IFF_PROMISC; 6728 dev->promiscuity += inc; 6729 if (dev->promiscuity == 0) { 6730 /* 6731 * Avoid overflow. 6732 * If inc causes overflow, untouch promisc and return error. 6733 */ 6734 if (inc < 0) 6735 dev->flags &= ~IFF_PROMISC; 6736 else { 6737 dev->promiscuity -= inc; 6738 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6739 dev->name); 6740 return -EOVERFLOW; 6741 } 6742 } 6743 if (dev->flags != old_flags) { 6744 pr_info("device %s %s promiscuous mode\n", 6745 dev->name, 6746 dev->flags & IFF_PROMISC ? "entered" : "left"); 6747 if (audit_enabled) { 6748 current_uid_gid(&uid, &gid); 6749 audit_log(current->audit_context, GFP_ATOMIC, 6750 AUDIT_ANOM_PROMISCUOUS, 6751 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6752 dev->name, (dev->flags & IFF_PROMISC), 6753 (old_flags & IFF_PROMISC), 6754 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6755 from_kuid(&init_user_ns, uid), 6756 from_kgid(&init_user_ns, gid), 6757 audit_get_sessionid(current)); 6758 } 6759 6760 dev_change_rx_flags(dev, IFF_PROMISC); 6761 } 6762 if (notify) 6763 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6764 return 0; 6765 } 6766 6767 /** 6768 * dev_set_promiscuity - update promiscuity count on a device 6769 * @dev: device 6770 * @inc: modifier 6771 * 6772 * Add or remove promiscuity from a device. While the count in the device 6773 * remains above zero the interface remains promiscuous. Once it hits zero 6774 * the device reverts back to normal filtering operation. A negative inc 6775 * value is used to drop promiscuity on the device. 6776 * Return 0 if successful or a negative errno code on error. 6777 */ 6778 int dev_set_promiscuity(struct net_device *dev, int inc) 6779 { 6780 unsigned int old_flags = dev->flags; 6781 int err; 6782 6783 err = __dev_set_promiscuity(dev, inc, true); 6784 if (err < 0) 6785 return err; 6786 if (dev->flags != old_flags) 6787 dev_set_rx_mode(dev); 6788 return err; 6789 } 6790 EXPORT_SYMBOL(dev_set_promiscuity); 6791 6792 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6793 { 6794 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6795 6796 ASSERT_RTNL(); 6797 6798 dev->flags |= IFF_ALLMULTI; 6799 dev->allmulti += inc; 6800 if (dev->allmulti == 0) { 6801 /* 6802 * Avoid overflow. 6803 * If inc causes overflow, untouch allmulti and return error. 6804 */ 6805 if (inc < 0) 6806 dev->flags &= ~IFF_ALLMULTI; 6807 else { 6808 dev->allmulti -= inc; 6809 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6810 dev->name); 6811 return -EOVERFLOW; 6812 } 6813 } 6814 if (dev->flags ^ old_flags) { 6815 dev_change_rx_flags(dev, IFF_ALLMULTI); 6816 dev_set_rx_mode(dev); 6817 if (notify) 6818 __dev_notify_flags(dev, old_flags, 6819 dev->gflags ^ old_gflags); 6820 } 6821 return 0; 6822 } 6823 6824 /** 6825 * dev_set_allmulti - update allmulti count on a device 6826 * @dev: device 6827 * @inc: modifier 6828 * 6829 * Add or remove reception of all multicast frames to a device. While the 6830 * count in the device remains above zero the interface remains listening 6831 * to all interfaces. Once it hits zero the device reverts back to normal 6832 * filtering operation. A negative @inc value is used to drop the counter 6833 * when releasing a resource needing all multicasts. 6834 * Return 0 if successful or a negative errno code on error. 6835 */ 6836 6837 int dev_set_allmulti(struct net_device *dev, int inc) 6838 { 6839 return __dev_set_allmulti(dev, inc, true); 6840 } 6841 EXPORT_SYMBOL(dev_set_allmulti); 6842 6843 /* 6844 * Upload unicast and multicast address lists to device and 6845 * configure RX filtering. When the device doesn't support unicast 6846 * filtering it is put in promiscuous mode while unicast addresses 6847 * are present. 6848 */ 6849 void __dev_set_rx_mode(struct net_device *dev) 6850 { 6851 const struct net_device_ops *ops = dev->netdev_ops; 6852 6853 /* dev_open will call this function so the list will stay sane. */ 6854 if (!(dev->flags&IFF_UP)) 6855 return; 6856 6857 if (!netif_device_present(dev)) 6858 return; 6859 6860 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6861 /* Unicast addresses changes may only happen under the rtnl, 6862 * therefore calling __dev_set_promiscuity here is safe. 6863 */ 6864 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6865 __dev_set_promiscuity(dev, 1, false); 6866 dev->uc_promisc = true; 6867 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6868 __dev_set_promiscuity(dev, -1, false); 6869 dev->uc_promisc = false; 6870 } 6871 } 6872 6873 if (ops->ndo_set_rx_mode) 6874 ops->ndo_set_rx_mode(dev); 6875 } 6876 6877 void dev_set_rx_mode(struct net_device *dev) 6878 { 6879 netif_addr_lock_bh(dev); 6880 __dev_set_rx_mode(dev); 6881 netif_addr_unlock_bh(dev); 6882 } 6883 6884 /** 6885 * dev_get_flags - get flags reported to userspace 6886 * @dev: device 6887 * 6888 * Get the combination of flag bits exported through APIs to userspace. 6889 */ 6890 unsigned int dev_get_flags(const struct net_device *dev) 6891 { 6892 unsigned int flags; 6893 6894 flags = (dev->flags & ~(IFF_PROMISC | 6895 IFF_ALLMULTI | 6896 IFF_RUNNING | 6897 IFF_LOWER_UP | 6898 IFF_DORMANT)) | 6899 (dev->gflags & (IFF_PROMISC | 6900 IFF_ALLMULTI)); 6901 6902 if (netif_running(dev)) { 6903 if (netif_oper_up(dev)) 6904 flags |= IFF_RUNNING; 6905 if (netif_carrier_ok(dev)) 6906 flags |= IFF_LOWER_UP; 6907 if (netif_dormant(dev)) 6908 flags |= IFF_DORMANT; 6909 } 6910 6911 return flags; 6912 } 6913 EXPORT_SYMBOL(dev_get_flags); 6914 6915 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6916 { 6917 unsigned int old_flags = dev->flags; 6918 int ret; 6919 6920 ASSERT_RTNL(); 6921 6922 /* 6923 * Set the flags on our device. 6924 */ 6925 6926 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6927 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6928 IFF_AUTOMEDIA)) | 6929 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6930 IFF_ALLMULTI)); 6931 6932 /* 6933 * Load in the correct multicast list now the flags have changed. 6934 */ 6935 6936 if ((old_flags ^ flags) & IFF_MULTICAST) 6937 dev_change_rx_flags(dev, IFF_MULTICAST); 6938 6939 dev_set_rx_mode(dev); 6940 6941 /* 6942 * Have we downed the interface. We handle IFF_UP ourselves 6943 * according to user attempts to set it, rather than blindly 6944 * setting it. 6945 */ 6946 6947 ret = 0; 6948 if ((old_flags ^ flags) & IFF_UP) { 6949 if (old_flags & IFF_UP) 6950 __dev_close(dev); 6951 else 6952 ret = __dev_open(dev); 6953 } 6954 6955 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6956 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6957 unsigned int old_flags = dev->flags; 6958 6959 dev->gflags ^= IFF_PROMISC; 6960 6961 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6962 if (dev->flags != old_flags) 6963 dev_set_rx_mode(dev); 6964 } 6965 6966 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6967 * is important. Some (broken) drivers set IFF_PROMISC, when 6968 * IFF_ALLMULTI is requested not asking us and not reporting. 6969 */ 6970 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6971 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6972 6973 dev->gflags ^= IFF_ALLMULTI; 6974 __dev_set_allmulti(dev, inc, false); 6975 } 6976 6977 return ret; 6978 } 6979 6980 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6981 unsigned int gchanges) 6982 { 6983 unsigned int changes = dev->flags ^ old_flags; 6984 6985 if (gchanges) 6986 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6987 6988 if (changes & IFF_UP) { 6989 if (dev->flags & IFF_UP) 6990 call_netdevice_notifiers(NETDEV_UP, dev); 6991 else 6992 call_netdevice_notifiers(NETDEV_DOWN, dev); 6993 } 6994 6995 if (dev->flags & IFF_UP && 6996 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6997 struct netdev_notifier_change_info change_info = { 6998 .info = { 6999 .dev = dev, 7000 }, 7001 .flags_changed = changes, 7002 }; 7003 7004 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7005 } 7006 } 7007 7008 /** 7009 * dev_change_flags - change device settings 7010 * @dev: device 7011 * @flags: device state flags 7012 * 7013 * Change settings on device based state flags. The flags are 7014 * in the userspace exported format. 7015 */ 7016 int dev_change_flags(struct net_device *dev, unsigned int flags) 7017 { 7018 int ret; 7019 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7020 7021 ret = __dev_change_flags(dev, flags); 7022 if (ret < 0) 7023 return ret; 7024 7025 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7026 __dev_notify_flags(dev, old_flags, changes); 7027 return ret; 7028 } 7029 EXPORT_SYMBOL(dev_change_flags); 7030 7031 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7032 { 7033 const struct net_device_ops *ops = dev->netdev_ops; 7034 7035 if (ops->ndo_change_mtu) 7036 return ops->ndo_change_mtu(dev, new_mtu); 7037 7038 dev->mtu = new_mtu; 7039 return 0; 7040 } 7041 EXPORT_SYMBOL(__dev_set_mtu); 7042 7043 /** 7044 * dev_set_mtu - Change maximum transfer unit 7045 * @dev: device 7046 * @new_mtu: new transfer unit 7047 * 7048 * Change the maximum transfer size of the network device. 7049 */ 7050 int dev_set_mtu(struct net_device *dev, int new_mtu) 7051 { 7052 int err, orig_mtu; 7053 7054 if (new_mtu == dev->mtu) 7055 return 0; 7056 7057 /* MTU must be positive, and in range */ 7058 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7059 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 7060 dev->name, new_mtu, dev->min_mtu); 7061 return -EINVAL; 7062 } 7063 7064 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7065 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 7066 dev->name, new_mtu, dev->max_mtu); 7067 return -EINVAL; 7068 } 7069 7070 if (!netif_device_present(dev)) 7071 return -ENODEV; 7072 7073 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7074 err = notifier_to_errno(err); 7075 if (err) 7076 return err; 7077 7078 orig_mtu = dev->mtu; 7079 err = __dev_set_mtu(dev, new_mtu); 7080 7081 if (!err) { 7082 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7083 err = notifier_to_errno(err); 7084 if (err) { 7085 /* setting mtu back and notifying everyone again, 7086 * so that they have a chance to revert changes. 7087 */ 7088 __dev_set_mtu(dev, orig_mtu); 7089 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7090 } 7091 } 7092 return err; 7093 } 7094 EXPORT_SYMBOL(dev_set_mtu); 7095 7096 /** 7097 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7098 * @dev: device 7099 * @new_len: new tx queue length 7100 */ 7101 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7102 { 7103 unsigned int orig_len = dev->tx_queue_len; 7104 int res; 7105 7106 if (new_len != (unsigned int)new_len) 7107 return -ERANGE; 7108 7109 if (new_len != orig_len) { 7110 dev->tx_queue_len = new_len; 7111 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7112 res = notifier_to_errno(res); 7113 if (res) { 7114 netdev_err(dev, 7115 "refused to change device tx_queue_len\n"); 7116 dev->tx_queue_len = orig_len; 7117 return res; 7118 } 7119 return dev_qdisc_change_tx_queue_len(dev); 7120 } 7121 7122 return 0; 7123 } 7124 7125 /** 7126 * dev_set_group - Change group this device belongs to 7127 * @dev: device 7128 * @new_group: group this device should belong to 7129 */ 7130 void dev_set_group(struct net_device *dev, int new_group) 7131 { 7132 dev->group = new_group; 7133 } 7134 EXPORT_SYMBOL(dev_set_group); 7135 7136 /** 7137 * dev_set_mac_address - Change Media Access Control Address 7138 * @dev: device 7139 * @sa: new address 7140 * 7141 * Change the hardware (MAC) address of the device 7142 */ 7143 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7144 { 7145 const struct net_device_ops *ops = dev->netdev_ops; 7146 int err; 7147 7148 if (!ops->ndo_set_mac_address) 7149 return -EOPNOTSUPP; 7150 if (sa->sa_family != dev->type) 7151 return -EINVAL; 7152 if (!netif_device_present(dev)) 7153 return -ENODEV; 7154 err = ops->ndo_set_mac_address(dev, sa); 7155 if (err) 7156 return err; 7157 dev->addr_assign_type = NET_ADDR_SET; 7158 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7159 add_device_randomness(dev->dev_addr, dev->addr_len); 7160 return 0; 7161 } 7162 EXPORT_SYMBOL(dev_set_mac_address); 7163 7164 /** 7165 * dev_change_carrier - Change device carrier 7166 * @dev: device 7167 * @new_carrier: new value 7168 * 7169 * Change device carrier 7170 */ 7171 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7172 { 7173 const struct net_device_ops *ops = dev->netdev_ops; 7174 7175 if (!ops->ndo_change_carrier) 7176 return -EOPNOTSUPP; 7177 if (!netif_device_present(dev)) 7178 return -ENODEV; 7179 return ops->ndo_change_carrier(dev, new_carrier); 7180 } 7181 EXPORT_SYMBOL(dev_change_carrier); 7182 7183 /** 7184 * dev_get_phys_port_id - Get device physical port ID 7185 * @dev: device 7186 * @ppid: port ID 7187 * 7188 * Get device physical port ID 7189 */ 7190 int dev_get_phys_port_id(struct net_device *dev, 7191 struct netdev_phys_item_id *ppid) 7192 { 7193 const struct net_device_ops *ops = dev->netdev_ops; 7194 7195 if (!ops->ndo_get_phys_port_id) 7196 return -EOPNOTSUPP; 7197 return ops->ndo_get_phys_port_id(dev, ppid); 7198 } 7199 EXPORT_SYMBOL(dev_get_phys_port_id); 7200 7201 /** 7202 * dev_get_phys_port_name - Get device physical port name 7203 * @dev: device 7204 * @name: port name 7205 * @len: limit of bytes to copy to name 7206 * 7207 * Get device physical port name 7208 */ 7209 int dev_get_phys_port_name(struct net_device *dev, 7210 char *name, size_t len) 7211 { 7212 const struct net_device_ops *ops = dev->netdev_ops; 7213 7214 if (!ops->ndo_get_phys_port_name) 7215 return -EOPNOTSUPP; 7216 return ops->ndo_get_phys_port_name(dev, name, len); 7217 } 7218 EXPORT_SYMBOL(dev_get_phys_port_name); 7219 7220 /** 7221 * dev_change_proto_down - update protocol port state information 7222 * @dev: device 7223 * @proto_down: new value 7224 * 7225 * This info can be used by switch drivers to set the phys state of the 7226 * port. 7227 */ 7228 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7229 { 7230 const struct net_device_ops *ops = dev->netdev_ops; 7231 7232 if (!ops->ndo_change_proto_down) 7233 return -EOPNOTSUPP; 7234 if (!netif_device_present(dev)) 7235 return -ENODEV; 7236 return ops->ndo_change_proto_down(dev, proto_down); 7237 } 7238 EXPORT_SYMBOL(dev_change_proto_down); 7239 7240 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7241 struct netdev_bpf *xdp) 7242 { 7243 memset(xdp, 0, sizeof(*xdp)); 7244 xdp->command = XDP_QUERY_PROG; 7245 7246 /* Query must always succeed. */ 7247 WARN_ON(bpf_op(dev, xdp) < 0); 7248 } 7249 7250 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op) 7251 { 7252 struct netdev_bpf xdp; 7253 7254 __dev_xdp_query(dev, bpf_op, &xdp); 7255 7256 return xdp.prog_attached; 7257 } 7258 7259 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7260 struct netlink_ext_ack *extack, u32 flags, 7261 struct bpf_prog *prog) 7262 { 7263 struct netdev_bpf xdp; 7264 7265 memset(&xdp, 0, sizeof(xdp)); 7266 if (flags & XDP_FLAGS_HW_MODE) 7267 xdp.command = XDP_SETUP_PROG_HW; 7268 else 7269 xdp.command = XDP_SETUP_PROG; 7270 xdp.extack = extack; 7271 xdp.flags = flags; 7272 xdp.prog = prog; 7273 7274 return bpf_op(dev, &xdp); 7275 } 7276 7277 static void dev_xdp_uninstall(struct net_device *dev) 7278 { 7279 struct netdev_bpf xdp; 7280 bpf_op_t ndo_bpf; 7281 7282 /* Remove generic XDP */ 7283 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7284 7285 /* Remove from the driver */ 7286 ndo_bpf = dev->netdev_ops->ndo_bpf; 7287 if (!ndo_bpf) 7288 return; 7289 7290 __dev_xdp_query(dev, ndo_bpf, &xdp); 7291 if (xdp.prog_attached == XDP_ATTACHED_NONE) 7292 return; 7293 7294 /* Program removal should always succeed */ 7295 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL)); 7296 } 7297 7298 /** 7299 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7300 * @dev: device 7301 * @extack: netlink extended ack 7302 * @fd: new program fd or negative value to clear 7303 * @flags: xdp-related flags 7304 * 7305 * Set or clear a bpf program for a device 7306 */ 7307 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7308 int fd, u32 flags) 7309 { 7310 const struct net_device_ops *ops = dev->netdev_ops; 7311 struct bpf_prog *prog = NULL; 7312 bpf_op_t bpf_op, bpf_chk; 7313 int err; 7314 7315 ASSERT_RTNL(); 7316 7317 bpf_op = bpf_chk = ops->ndo_bpf; 7318 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7319 return -EOPNOTSUPP; 7320 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7321 bpf_op = generic_xdp_install; 7322 if (bpf_op == bpf_chk) 7323 bpf_chk = generic_xdp_install; 7324 7325 if (fd >= 0) { 7326 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk)) 7327 return -EEXIST; 7328 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7329 __dev_xdp_attached(dev, bpf_op)) 7330 return -EBUSY; 7331 7332 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7333 bpf_op == ops->ndo_bpf); 7334 if (IS_ERR(prog)) 7335 return PTR_ERR(prog); 7336 7337 if (!(flags & XDP_FLAGS_HW_MODE) && 7338 bpf_prog_is_dev_bound(prog->aux)) { 7339 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7340 bpf_prog_put(prog); 7341 return -EINVAL; 7342 } 7343 } 7344 7345 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7346 if (err < 0 && prog) 7347 bpf_prog_put(prog); 7348 7349 return err; 7350 } 7351 7352 /** 7353 * dev_new_index - allocate an ifindex 7354 * @net: the applicable net namespace 7355 * 7356 * Returns a suitable unique value for a new device interface 7357 * number. The caller must hold the rtnl semaphore or the 7358 * dev_base_lock to be sure it remains unique. 7359 */ 7360 static int dev_new_index(struct net *net) 7361 { 7362 int ifindex = net->ifindex; 7363 7364 for (;;) { 7365 if (++ifindex <= 0) 7366 ifindex = 1; 7367 if (!__dev_get_by_index(net, ifindex)) 7368 return net->ifindex = ifindex; 7369 } 7370 } 7371 7372 /* Delayed registration/unregisteration */ 7373 static LIST_HEAD(net_todo_list); 7374 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7375 7376 static void net_set_todo(struct net_device *dev) 7377 { 7378 list_add_tail(&dev->todo_list, &net_todo_list); 7379 dev_net(dev)->dev_unreg_count++; 7380 } 7381 7382 static void rollback_registered_many(struct list_head *head) 7383 { 7384 struct net_device *dev, *tmp; 7385 LIST_HEAD(close_head); 7386 7387 BUG_ON(dev_boot_phase); 7388 ASSERT_RTNL(); 7389 7390 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7391 /* Some devices call without registering 7392 * for initialization unwind. Remove those 7393 * devices and proceed with the remaining. 7394 */ 7395 if (dev->reg_state == NETREG_UNINITIALIZED) { 7396 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7397 dev->name, dev); 7398 7399 WARN_ON(1); 7400 list_del(&dev->unreg_list); 7401 continue; 7402 } 7403 dev->dismantle = true; 7404 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7405 } 7406 7407 /* If device is running, close it first. */ 7408 list_for_each_entry(dev, head, unreg_list) 7409 list_add_tail(&dev->close_list, &close_head); 7410 dev_close_many(&close_head, true); 7411 7412 list_for_each_entry(dev, head, unreg_list) { 7413 /* And unlink it from device chain. */ 7414 unlist_netdevice(dev); 7415 7416 dev->reg_state = NETREG_UNREGISTERING; 7417 } 7418 flush_all_backlogs(); 7419 7420 synchronize_net(); 7421 7422 list_for_each_entry(dev, head, unreg_list) { 7423 struct sk_buff *skb = NULL; 7424 7425 /* Shutdown queueing discipline. */ 7426 dev_shutdown(dev); 7427 7428 dev_xdp_uninstall(dev); 7429 7430 /* Notify protocols, that we are about to destroy 7431 * this device. They should clean all the things. 7432 */ 7433 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7434 7435 if (!dev->rtnl_link_ops || 7436 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7437 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7438 GFP_KERNEL, NULL, 0); 7439 7440 /* 7441 * Flush the unicast and multicast chains 7442 */ 7443 dev_uc_flush(dev); 7444 dev_mc_flush(dev); 7445 7446 if (dev->netdev_ops->ndo_uninit) 7447 dev->netdev_ops->ndo_uninit(dev); 7448 7449 if (skb) 7450 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7451 7452 /* Notifier chain MUST detach us all upper devices. */ 7453 WARN_ON(netdev_has_any_upper_dev(dev)); 7454 WARN_ON(netdev_has_any_lower_dev(dev)); 7455 7456 /* Remove entries from kobject tree */ 7457 netdev_unregister_kobject(dev); 7458 #ifdef CONFIG_XPS 7459 /* Remove XPS queueing entries */ 7460 netif_reset_xps_queues_gt(dev, 0); 7461 #endif 7462 } 7463 7464 synchronize_net(); 7465 7466 list_for_each_entry(dev, head, unreg_list) 7467 dev_put(dev); 7468 } 7469 7470 static void rollback_registered(struct net_device *dev) 7471 { 7472 LIST_HEAD(single); 7473 7474 list_add(&dev->unreg_list, &single); 7475 rollback_registered_many(&single); 7476 list_del(&single); 7477 } 7478 7479 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7480 struct net_device *upper, netdev_features_t features) 7481 { 7482 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7483 netdev_features_t feature; 7484 int feature_bit; 7485 7486 for_each_netdev_feature(&upper_disables, feature_bit) { 7487 feature = __NETIF_F_BIT(feature_bit); 7488 if (!(upper->wanted_features & feature) 7489 && (features & feature)) { 7490 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7491 &feature, upper->name); 7492 features &= ~feature; 7493 } 7494 } 7495 7496 return features; 7497 } 7498 7499 static void netdev_sync_lower_features(struct net_device *upper, 7500 struct net_device *lower, netdev_features_t features) 7501 { 7502 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7503 netdev_features_t feature; 7504 int feature_bit; 7505 7506 for_each_netdev_feature(&upper_disables, feature_bit) { 7507 feature = __NETIF_F_BIT(feature_bit); 7508 if (!(features & feature) && (lower->features & feature)) { 7509 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7510 &feature, lower->name); 7511 lower->wanted_features &= ~feature; 7512 netdev_update_features(lower); 7513 7514 if (unlikely(lower->features & feature)) 7515 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7516 &feature, lower->name); 7517 } 7518 } 7519 } 7520 7521 static netdev_features_t netdev_fix_features(struct net_device *dev, 7522 netdev_features_t features) 7523 { 7524 /* Fix illegal checksum combinations */ 7525 if ((features & NETIF_F_HW_CSUM) && 7526 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7527 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7528 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7529 } 7530 7531 /* TSO requires that SG is present as well. */ 7532 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7533 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7534 features &= ~NETIF_F_ALL_TSO; 7535 } 7536 7537 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7538 !(features & NETIF_F_IP_CSUM)) { 7539 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7540 features &= ~NETIF_F_TSO; 7541 features &= ~NETIF_F_TSO_ECN; 7542 } 7543 7544 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7545 !(features & NETIF_F_IPV6_CSUM)) { 7546 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7547 features &= ~NETIF_F_TSO6; 7548 } 7549 7550 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7551 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7552 features &= ~NETIF_F_TSO_MANGLEID; 7553 7554 /* TSO ECN requires that TSO is present as well. */ 7555 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7556 features &= ~NETIF_F_TSO_ECN; 7557 7558 /* Software GSO depends on SG. */ 7559 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7560 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7561 features &= ~NETIF_F_GSO; 7562 } 7563 7564 /* GSO partial features require GSO partial be set */ 7565 if ((features & dev->gso_partial_features) && 7566 !(features & NETIF_F_GSO_PARTIAL)) { 7567 netdev_dbg(dev, 7568 "Dropping partially supported GSO features since no GSO partial.\n"); 7569 features &= ~dev->gso_partial_features; 7570 } 7571 7572 if (!(features & NETIF_F_RXCSUM)) { 7573 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 7574 * successfully merged by hardware must also have the 7575 * checksum verified by hardware. If the user does not 7576 * want to enable RXCSUM, logically, we should disable GRO_HW. 7577 */ 7578 if (features & NETIF_F_GRO_HW) { 7579 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 7580 features &= ~NETIF_F_GRO_HW; 7581 } 7582 } 7583 7584 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 7585 if (features & NETIF_F_RXFCS) { 7586 if (features & NETIF_F_LRO) { 7587 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 7588 features &= ~NETIF_F_LRO; 7589 } 7590 7591 if (features & NETIF_F_GRO_HW) { 7592 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 7593 features &= ~NETIF_F_GRO_HW; 7594 } 7595 } 7596 7597 return features; 7598 } 7599 7600 int __netdev_update_features(struct net_device *dev) 7601 { 7602 struct net_device *upper, *lower; 7603 netdev_features_t features; 7604 struct list_head *iter; 7605 int err = -1; 7606 7607 ASSERT_RTNL(); 7608 7609 features = netdev_get_wanted_features(dev); 7610 7611 if (dev->netdev_ops->ndo_fix_features) 7612 features = dev->netdev_ops->ndo_fix_features(dev, features); 7613 7614 /* driver might be less strict about feature dependencies */ 7615 features = netdev_fix_features(dev, features); 7616 7617 /* some features can't be enabled if they're off an an upper device */ 7618 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7619 features = netdev_sync_upper_features(dev, upper, features); 7620 7621 if (dev->features == features) 7622 goto sync_lower; 7623 7624 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7625 &dev->features, &features); 7626 7627 if (dev->netdev_ops->ndo_set_features) 7628 err = dev->netdev_ops->ndo_set_features(dev, features); 7629 else 7630 err = 0; 7631 7632 if (unlikely(err < 0)) { 7633 netdev_err(dev, 7634 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7635 err, &features, &dev->features); 7636 /* return non-0 since some features might have changed and 7637 * it's better to fire a spurious notification than miss it 7638 */ 7639 return -1; 7640 } 7641 7642 sync_lower: 7643 /* some features must be disabled on lower devices when disabled 7644 * on an upper device (think: bonding master or bridge) 7645 */ 7646 netdev_for_each_lower_dev(dev, lower, iter) 7647 netdev_sync_lower_features(dev, lower, features); 7648 7649 if (!err) { 7650 netdev_features_t diff = features ^ dev->features; 7651 7652 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7653 /* udp_tunnel_{get,drop}_rx_info both need 7654 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7655 * device, or they won't do anything. 7656 * Thus we need to update dev->features 7657 * *before* calling udp_tunnel_get_rx_info, 7658 * but *after* calling udp_tunnel_drop_rx_info. 7659 */ 7660 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7661 dev->features = features; 7662 udp_tunnel_get_rx_info(dev); 7663 } else { 7664 udp_tunnel_drop_rx_info(dev); 7665 } 7666 } 7667 7668 dev->features = features; 7669 } 7670 7671 return err < 0 ? 0 : 1; 7672 } 7673 7674 /** 7675 * netdev_update_features - recalculate device features 7676 * @dev: the device to check 7677 * 7678 * Recalculate dev->features set and send notifications if it 7679 * has changed. Should be called after driver or hardware dependent 7680 * conditions might have changed that influence the features. 7681 */ 7682 void netdev_update_features(struct net_device *dev) 7683 { 7684 if (__netdev_update_features(dev)) 7685 netdev_features_change(dev); 7686 } 7687 EXPORT_SYMBOL(netdev_update_features); 7688 7689 /** 7690 * netdev_change_features - recalculate device features 7691 * @dev: the device to check 7692 * 7693 * Recalculate dev->features set and send notifications even 7694 * if they have not changed. Should be called instead of 7695 * netdev_update_features() if also dev->vlan_features might 7696 * have changed to allow the changes to be propagated to stacked 7697 * VLAN devices. 7698 */ 7699 void netdev_change_features(struct net_device *dev) 7700 { 7701 __netdev_update_features(dev); 7702 netdev_features_change(dev); 7703 } 7704 EXPORT_SYMBOL(netdev_change_features); 7705 7706 /** 7707 * netif_stacked_transfer_operstate - transfer operstate 7708 * @rootdev: the root or lower level device to transfer state from 7709 * @dev: the device to transfer operstate to 7710 * 7711 * Transfer operational state from root to device. This is normally 7712 * called when a stacking relationship exists between the root 7713 * device and the device(a leaf device). 7714 */ 7715 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7716 struct net_device *dev) 7717 { 7718 if (rootdev->operstate == IF_OPER_DORMANT) 7719 netif_dormant_on(dev); 7720 else 7721 netif_dormant_off(dev); 7722 7723 if (netif_carrier_ok(rootdev)) 7724 netif_carrier_on(dev); 7725 else 7726 netif_carrier_off(dev); 7727 } 7728 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7729 7730 static int netif_alloc_rx_queues(struct net_device *dev) 7731 { 7732 unsigned int i, count = dev->num_rx_queues; 7733 struct netdev_rx_queue *rx; 7734 size_t sz = count * sizeof(*rx); 7735 int err = 0; 7736 7737 BUG_ON(count < 1); 7738 7739 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7740 if (!rx) 7741 return -ENOMEM; 7742 7743 dev->_rx = rx; 7744 7745 for (i = 0; i < count; i++) { 7746 rx[i].dev = dev; 7747 7748 /* XDP RX-queue setup */ 7749 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 7750 if (err < 0) 7751 goto err_rxq_info; 7752 } 7753 return 0; 7754 7755 err_rxq_info: 7756 /* Rollback successful reg's and free other resources */ 7757 while (i--) 7758 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 7759 kvfree(dev->_rx); 7760 dev->_rx = NULL; 7761 return err; 7762 } 7763 7764 static void netif_free_rx_queues(struct net_device *dev) 7765 { 7766 unsigned int i, count = dev->num_rx_queues; 7767 7768 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 7769 if (!dev->_rx) 7770 return; 7771 7772 for (i = 0; i < count; i++) 7773 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 7774 7775 kvfree(dev->_rx); 7776 } 7777 7778 static void netdev_init_one_queue(struct net_device *dev, 7779 struct netdev_queue *queue, void *_unused) 7780 { 7781 /* Initialize queue lock */ 7782 spin_lock_init(&queue->_xmit_lock); 7783 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7784 queue->xmit_lock_owner = -1; 7785 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7786 queue->dev = dev; 7787 #ifdef CONFIG_BQL 7788 dql_init(&queue->dql, HZ); 7789 #endif 7790 } 7791 7792 static void netif_free_tx_queues(struct net_device *dev) 7793 { 7794 kvfree(dev->_tx); 7795 } 7796 7797 static int netif_alloc_netdev_queues(struct net_device *dev) 7798 { 7799 unsigned int count = dev->num_tx_queues; 7800 struct netdev_queue *tx; 7801 size_t sz = count * sizeof(*tx); 7802 7803 if (count < 1 || count > 0xffff) 7804 return -EINVAL; 7805 7806 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7807 if (!tx) 7808 return -ENOMEM; 7809 7810 dev->_tx = tx; 7811 7812 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7813 spin_lock_init(&dev->tx_global_lock); 7814 7815 return 0; 7816 } 7817 7818 void netif_tx_stop_all_queues(struct net_device *dev) 7819 { 7820 unsigned int i; 7821 7822 for (i = 0; i < dev->num_tx_queues; i++) { 7823 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7824 7825 netif_tx_stop_queue(txq); 7826 } 7827 } 7828 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7829 7830 /** 7831 * register_netdevice - register a network device 7832 * @dev: device to register 7833 * 7834 * Take a completed network device structure and add it to the kernel 7835 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7836 * chain. 0 is returned on success. A negative errno code is returned 7837 * on a failure to set up the device, or if the name is a duplicate. 7838 * 7839 * Callers must hold the rtnl semaphore. You may want 7840 * register_netdev() instead of this. 7841 * 7842 * BUGS: 7843 * The locking appears insufficient to guarantee two parallel registers 7844 * will not get the same name. 7845 */ 7846 7847 int register_netdevice(struct net_device *dev) 7848 { 7849 int ret; 7850 struct net *net = dev_net(dev); 7851 7852 BUG_ON(dev_boot_phase); 7853 ASSERT_RTNL(); 7854 7855 might_sleep(); 7856 7857 /* When net_device's are persistent, this will be fatal. */ 7858 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7859 BUG_ON(!net); 7860 7861 spin_lock_init(&dev->addr_list_lock); 7862 netdev_set_addr_lockdep_class(dev); 7863 7864 ret = dev_get_valid_name(net, dev, dev->name); 7865 if (ret < 0) 7866 goto out; 7867 7868 /* Init, if this function is available */ 7869 if (dev->netdev_ops->ndo_init) { 7870 ret = dev->netdev_ops->ndo_init(dev); 7871 if (ret) { 7872 if (ret > 0) 7873 ret = -EIO; 7874 goto out; 7875 } 7876 } 7877 7878 if (((dev->hw_features | dev->features) & 7879 NETIF_F_HW_VLAN_CTAG_FILTER) && 7880 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7881 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7882 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7883 ret = -EINVAL; 7884 goto err_uninit; 7885 } 7886 7887 ret = -EBUSY; 7888 if (!dev->ifindex) 7889 dev->ifindex = dev_new_index(net); 7890 else if (__dev_get_by_index(net, dev->ifindex)) 7891 goto err_uninit; 7892 7893 /* Transfer changeable features to wanted_features and enable 7894 * software offloads (GSO and GRO). 7895 */ 7896 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7897 dev->features |= NETIF_F_SOFT_FEATURES; 7898 7899 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7900 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7901 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7902 } 7903 7904 dev->wanted_features = dev->features & dev->hw_features; 7905 7906 if (!(dev->flags & IFF_LOOPBACK)) 7907 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7908 7909 /* If IPv4 TCP segmentation offload is supported we should also 7910 * allow the device to enable segmenting the frame with the option 7911 * of ignoring a static IP ID value. This doesn't enable the 7912 * feature itself but allows the user to enable it later. 7913 */ 7914 if (dev->hw_features & NETIF_F_TSO) 7915 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7916 if (dev->vlan_features & NETIF_F_TSO) 7917 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7918 if (dev->mpls_features & NETIF_F_TSO) 7919 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7920 if (dev->hw_enc_features & NETIF_F_TSO) 7921 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7922 7923 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7924 */ 7925 dev->vlan_features |= NETIF_F_HIGHDMA; 7926 7927 /* Make NETIF_F_SG inheritable to tunnel devices. 7928 */ 7929 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7930 7931 /* Make NETIF_F_SG inheritable to MPLS. 7932 */ 7933 dev->mpls_features |= NETIF_F_SG; 7934 7935 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7936 ret = notifier_to_errno(ret); 7937 if (ret) 7938 goto err_uninit; 7939 7940 ret = netdev_register_kobject(dev); 7941 if (ret) 7942 goto err_uninit; 7943 dev->reg_state = NETREG_REGISTERED; 7944 7945 __netdev_update_features(dev); 7946 7947 /* 7948 * Default initial state at registry is that the 7949 * device is present. 7950 */ 7951 7952 set_bit(__LINK_STATE_PRESENT, &dev->state); 7953 7954 linkwatch_init_dev(dev); 7955 7956 dev_init_scheduler(dev); 7957 dev_hold(dev); 7958 list_netdevice(dev); 7959 add_device_randomness(dev->dev_addr, dev->addr_len); 7960 7961 /* If the device has permanent device address, driver should 7962 * set dev_addr and also addr_assign_type should be set to 7963 * NET_ADDR_PERM (default value). 7964 */ 7965 if (dev->addr_assign_type == NET_ADDR_PERM) 7966 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7967 7968 /* Notify protocols, that a new device appeared. */ 7969 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7970 ret = notifier_to_errno(ret); 7971 if (ret) { 7972 rollback_registered(dev); 7973 dev->reg_state = NETREG_UNREGISTERED; 7974 } 7975 /* 7976 * Prevent userspace races by waiting until the network 7977 * device is fully setup before sending notifications. 7978 */ 7979 if (!dev->rtnl_link_ops || 7980 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7981 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7982 7983 out: 7984 return ret; 7985 7986 err_uninit: 7987 if (dev->netdev_ops->ndo_uninit) 7988 dev->netdev_ops->ndo_uninit(dev); 7989 if (dev->priv_destructor) 7990 dev->priv_destructor(dev); 7991 goto out; 7992 } 7993 EXPORT_SYMBOL(register_netdevice); 7994 7995 /** 7996 * init_dummy_netdev - init a dummy network device for NAPI 7997 * @dev: device to init 7998 * 7999 * This takes a network device structure and initialize the minimum 8000 * amount of fields so it can be used to schedule NAPI polls without 8001 * registering a full blown interface. This is to be used by drivers 8002 * that need to tie several hardware interfaces to a single NAPI 8003 * poll scheduler due to HW limitations. 8004 */ 8005 int init_dummy_netdev(struct net_device *dev) 8006 { 8007 /* Clear everything. Note we don't initialize spinlocks 8008 * are they aren't supposed to be taken by any of the 8009 * NAPI code and this dummy netdev is supposed to be 8010 * only ever used for NAPI polls 8011 */ 8012 memset(dev, 0, sizeof(struct net_device)); 8013 8014 /* make sure we BUG if trying to hit standard 8015 * register/unregister code path 8016 */ 8017 dev->reg_state = NETREG_DUMMY; 8018 8019 /* NAPI wants this */ 8020 INIT_LIST_HEAD(&dev->napi_list); 8021 8022 /* a dummy interface is started by default */ 8023 set_bit(__LINK_STATE_PRESENT, &dev->state); 8024 set_bit(__LINK_STATE_START, &dev->state); 8025 8026 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8027 * because users of this 'device' dont need to change 8028 * its refcount. 8029 */ 8030 8031 return 0; 8032 } 8033 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8034 8035 8036 /** 8037 * register_netdev - register a network device 8038 * @dev: device to register 8039 * 8040 * Take a completed network device structure and add it to the kernel 8041 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8042 * chain. 0 is returned on success. A negative errno code is returned 8043 * on a failure to set up the device, or if the name is a duplicate. 8044 * 8045 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8046 * and expands the device name if you passed a format string to 8047 * alloc_netdev. 8048 */ 8049 int register_netdev(struct net_device *dev) 8050 { 8051 int err; 8052 8053 if (rtnl_lock_killable()) 8054 return -EINTR; 8055 err = register_netdevice(dev); 8056 rtnl_unlock(); 8057 return err; 8058 } 8059 EXPORT_SYMBOL(register_netdev); 8060 8061 int netdev_refcnt_read(const struct net_device *dev) 8062 { 8063 int i, refcnt = 0; 8064 8065 for_each_possible_cpu(i) 8066 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8067 return refcnt; 8068 } 8069 EXPORT_SYMBOL(netdev_refcnt_read); 8070 8071 /** 8072 * netdev_wait_allrefs - wait until all references are gone. 8073 * @dev: target net_device 8074 * 8075 * This is called when unregistering network devices. 8076 * 8077 * Any protocol or device that holds a reference should register 8078 * for netdevice notification, and cleanup and put back the 8079 * reference if they receive an UNREGISTER event. 8080 * We can get stuck here if buggy protocols don't correctly 8081 * call dev_put. 8082 */ 8083 static void netdev_wait_allrefs(struct net_device *dev) 8084 { 8085 unsigned long rebroadcast_time, warning_time; 8086 int refcnt; 8087 8088 linkwatch_forget_dev(dev); 8089 8090 rebroadcast_time = warning_time = jiffies; 8091 refcnt = netdev_refcnt_read(dev); 8092 8093 while (refcnt != 0) { 8094 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8095 rtnl_lock(); 8096 8097 /* Rebroadcast unregister notification */ 8098 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8099 8100 __rtnl_unlock(); 8101 rcu_barrier(); 8102 rtnl_lock(); 8103 8104 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8105 &dev->state)) { 8106 /* We must not have linkwatch events 8107 * pending on unregister. If this 8108 * happens, we simply run the queue 8109 * unscheduled, resulting in a noop 8110 * for this device. 8111 */ 8112 linkwatch_run_queue(); 8113 } 8114 8115 __rtnl_unlock(); 8116 8117 rebroadcast_time = jiffies; 8118 } 8119 8120 msleep(250); 8121 8122 refcnt = netdev_refcnt_read(dev); 8123 8124 if (time_after(jiffies, warning_time + 10 * HZ)) { 8125 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8126 dev->name, refcnt); 8127 warning_time = jiffies; 8128 } 8129 } 8130 } 8131 8132 /* The sequence is: 8133 * 8134 * rtnl_lock(); 8135 * ... 8136 * register_netdevice(x1); 8137 * register_netdevice(x2); 8138 * ... 8139 * unregister_netdevice(y1); 8140 * unregister_netdevice(y2); 8141 * ... 8142 * rtnl_unlock(); 8143 * free_netdev(y1); 8144 * free_netdev(y2); 8145 * 8146 * We are invoked by rtnl_unlock(). 8147 * This allows us to deal with problems: 8148 * 1) We can delete sysfs objects which invoke hotplug 8149 * without deadlocking with linkwatch via keventd. 8150 * 2) Since we run with the RTNL semaphore not held, we can sleep 8151 * safely in order to wait for the netdev refcnt to drop to zero. 8152 * 8153 * We must not return until all unregister events added during 8154 * the interval the lock was held have been completed. 8155 */ 8156 void netdev_run_todo(void) 8157 { 8158 struct list_head list; 8159 8160 /* Snapshot list, allow later requests */ 8161 list_replace_init(&net_todo_list, &list); 8162 8163 __rtnl_unlock(); 8164 8165 8166 /* Wait for rcu callbacks to finish before next phase */ 8167 if (!list_empty(&list)) 8168 rcu_barrier(); 8169 8170 while (!list_empty(&list)) { 8171 struct net_device *dev 8172 = list_first_entry(&list, struct net_device, todo_list); 8173 list_del(&dev->todo_list); 8174 8175 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8176 pr_err("network todo '%s' but state %d\n", 8177 dev->name, dev->reg_state); 8178 dump_stack(); 8179 continue; 8180 } 8181 8182 dev->reg_state = NETREG_UNREGISTERED; 8183 8184 netdev_wait_allrefs(dev); 8185 8186 /* paranoia */ 8187 BUG_ON(netdev_refcnt_read(dev)); 8188 BUG_ON(!list_empty(&dev->ptype_all)); 8189 BUG_ON(!list_empty(&dev->ptype_specific)); 8190 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8191 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8192 #if IS_ENABLED(CONFIG_DECNET) 8193 WARN_ON(dev->dn_ptr); 8194 #endif 8195 if (dev->priv_destructor) 8196 dev->priv_destructor(dev); 8197 if (dev->needs_free_netdev) 8198 free_netdev(dev); 8199 8200 /* Report a network device has been unregistered */ 8201 rtnl_lock(); 8202 dev_net(dev)->dev_unreg_count--; 8203 __rtnl_unlock(); 8204 wake_up(&netdev_unregistering_wq); 8205 8206 /* Free network device */ 8207 kobject_put(&dev->dev.kobj); 8208 } 8209 } 8210 8211 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8212 * all the same fields in the same order as net_device_stats, with only 8213 * the type differing, but rtnl_link_stats64 may have additional fields 8214 * at the end for newer counters. 8215 */ 8216 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8217 const struct net_device_stats *netdev_stats) 8218 { 8219 #if BITS_PER_LONG == 64 8220 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8221 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8222 /* zero out counters that only exist in rtnl_link_stats64 */ 8223 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8224 sizeof(*stats64) - sizeof(*netdev_stats)); 8225 #else 8226 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8227 const unsigned long *src = (const unsigned long *)netdev_stats; 8228 u64 *dst = (u64 *)stats64; 8229 8230 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8231 for (i = 0; i < n; i++) 8232 dst[i] = src[i]; 8233 /* zero out counters that only exist in rtnl_link_stats64 */ 8234 memset((char *)stats64 + n * sizeof(u64), 0, 8235 sizeof(*stats64) - n * sizeof(u64)); 8236 #endif 8237 } 8238 EXPORT_SYMBOL(netdev_stats_to_stats64); 8239 8240 /** 8241 * dev_get_stats - get network device statistics 8242 * @dev: device to get statistics from 8243 * @storage: place to store stats 8244 * 8245 * Get network statistics from device. Return @storage. 8246 * The device driver may provide its own method by setting 8247 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8248 * otherwise the internal statistics structure is used. 8249 */ 8250 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8251 struct rtnl_link_stats64 *storage) 8252 { 8253 const struct net_device_ops *ops = dev->netdev_ops; 8254 8255 if (ops->ndo_get_stats64) { 8256 memset(storage, 0, sizeof(*storage)); 8257 ops->ndo_get_stats64(dev, storage); 8258 } else if (ops->ndo_get_stats) { 8259 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8260 } else { 8261 netdev_stats_to_stats64(storage, &dev->stats); 8262 } 8263 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8264 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8265 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8266 return storage; 8267 } 8268 EXPORT_SYMBOL(dev_get_stats); 8269 8270 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8271 { 8272 struct netdev_queue *queue = dev_ingress_queue(dev); 8273 8274 #ifdef CONFIG_NET_CLS_ACT 8275 if (queue) 8276 return queue; 8277 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8278 if (!queue) 8279 return NULL; 8280 netdev_init_one_queue(dev, queue, NULL); 8281 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8282 queue->qdisc_sleeping = &noop_qdisc; 8283 rcu_assign_pointer(dev->ingress_queue, queue); 8284 #endif 8285 return queue; 8286 } 8287 8288 static const struct ethtool_ops default_ethtool_ops; 8289 8290 void netdev_set_default_ethtool_ops(struct net_device *dev, 8291 const struct ethtool_ops *ops) 8292 { 8293 if (dev->ethtool_ops == &default_ethtool_ops) 8294 dev->ethtool_ops = ops; 8295 } 8296 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8297 8298 void netdev_freemem(struct net_device *dev) 8299 { 8300 char *addr = (char *)dev - dev->padded; 8301 8302 kvfree(addr); 8303 } 8304 8305 /** 8306 * alloc_netdev_mqs - allocate network device 8307 * @sizeof_priv: size of private data to allocate space for 8308 * @name: device name format string 8309 * @name_assign_type: origin of device name 8310 * @setup: callback to initialize device 8311 * @txqs: the number of TX subqueues to allocate 8312 * @rxqs: the number of RX subqueues to allocate 8313 * 8314 * Allocates a struct net_device with private data area for driver use 8315 * and performs basic initialization. Also allocates subqueue structs 8316 * for each queue on the device. 8317 */ 8318 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8319 unsigned char name_assign_type, 8320 void (*setup)(struct net_device *), 8321 unsigned int txqs, unsigned int rxqs) 8322 { 8323 struct net_device *dev; 8324 unsigned int alloc_size; 8325 struct net_device *p; 8326 8327 BUG_ON(strlen(name) >= sizeof(dev->name)); 8328 8329 if (txqs < 1) { 8330 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8331 return NULL; 8332 } 8333 8334 if (rxqs < 1) { 8335 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8336 return NULL; 8337 } 8338 8339 alloc_size = sizeof(struct net_device); 8340 if (sizeof_priv) { 8341 /* ensure 32-byte alignment of private area */ 8342 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8343 alloc_size += sizeof_priv; 8344 } 8345 /* ensure 32-byte alignment of whole construct */ 8346 alloc_size += NETDEV_ALIGN - 1; 8347 8348 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8349 if (!p) 8350 return NULL; 8351 8352 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8353 dev->padded = (char *)dev - (char *)p; 8354 8355 dev->pcpu_refcnt = alloc_percpu(int); 8356 if (!dev->pcpu_refcnt) 8357 goto free_dev; 8358 8359 if (dev_addr_init(dev)) 8360 goto free_pcpu; 8361 8362 dev_mc_init(dev); 8363 dev_uc_init(dev); 8364 8365 dev_net_set(dev, &init_net); 8366 8367 dev->gso_max_size = GSO_MAX_SIZE; 8368 dev->gso_max_segs = GSO_MAX_SEGS; 8369 8370 INIT_LIST_HEAD(&dev->napi_list); 8371 INIT_LIST_HEAD(&dev->unreg_list); 8372 INIT_LIST_HEAD(&dev->close_list); 8373 INIT_LIST_HEAD(&dev->link_watch_list); 8374 INIT_LIST_HEAD(&dev->adj_list.upper); 8375 INIT_LIST_HEAD(&dev->adj_list.lower); 8376 INIT_LIST_HEAD(&dev->ptype_all); 8377 INIT_LIST_HEAD(&dev->ptype_specific); 8378 #ifdef CONFIG_NET_SCHED 8379 hash_init(dev->qdisc_hash); 8380 #endif 8381 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8382 setup(dev); 8383 8384 if (!dev->tx_queue_len) { 8385 dev->priv_flags |= IFF_NO_QUEUE; 8386 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8387 } 8388 8389 dev->num_tx_queues = txqs; 8390 dev->real_num_tx_queues = txqs; 8391 if (netif_alloc_netdev_queues(dev)) 8392 goto free_all; 8393 8394 dev->num_rx_queues = rxqs; 8395 dev->real_num_rx_queues = rxqs; 8396 if (netif_alloc_rx_queues(dev)) 8397 goto free_all; 8398 8399 strcpy(dev->name, name); 8400 dev->name_assign_type = name_assign_type; 8401 dev->group = INIT_NETDEV_GROUP; 8402 if (!dev->ethtool_ops) 8403 dev->ethtool_ops = &default_ethtool_ops; 8404 8405 nf_hook_ingress_init(dev); 8406 8407 return dev; 8408 8409 free_all: 8410 free_netdev(dev); 8411 return NULL; 8412 8413 free_pcpu: 8414 free_percpu(dev->pcpu_refcnt); 8415 free_dev: 8416 netdev_freemem(dev); 8417 return NULL; 8418 } 8419 EXPORT_SYMBOL(alloc_netdev_mqs); 8420 8421 /** 8422 * free_netdev - free network device 8423 * @dev: device 8424 * 8425 * This function does the last stage of destroying an allocated device 8426 * interface. The reference to the device object is released. If this 8427 * is the last reference then it will be freed.Must be called in process 8428 * context. 8429 */ 8430 void free_netdev(struct net_device *dev) 8431 { 8432 struct napi_struct *p, *n; 8433 8434 might_sleep(); 8435 netif_free_tx_queues(dev); 8436 netif_free_rx_queues(dev); 8437 8438 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8439 8440 /* Flush device addresses */ 8441 dev_addr_flush(dev); 8442 8443 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8444 netif_napi_del(p); 8445 8446 free_percpu(dev->pcpu_refcnt); 8447 dev->pcpu_refcnt = NULL; 8448 8449 /* Compatibility with error handling in drivers */ 8450 if (dev->reg_state == NETREG_UNINITIALIZED) { 8451 netdev_freemem(dev); 8452 return; 8453 } 8454 8455 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8456 dev->reg_state = NETREG_RELEASED; 8457 8458 /* will free via device release */ 8459 put_device(&dev->dev); 8460 } 8461 EXPORT_SYMBOL(free_netdev); 8462 8463 /** 8464 * synchronize_net - Synchronize with packet receive processing 8465 * 8466 * Wait for packets currently being received to be done. 8467 * Does not block later packets from starting. 8468 */ 8469 void synchronize_net(void) 8470 { 8471 might_sleep(); 8472 if (rtnl_is_locked()) 8473 synchronize_rcu_expedited(); 8474 else 8475 synchronize_rcu(); 8476 } 8477 EXPORT_SYMBOL(synchronize_net); 8478 8479 /** 8480 * unregister_netdevice_queue - remove device from the kernel 8481 * @dev: device 8482 * @head: list 8483 * 8484 * This function shuts down a device interface and removes it 8485 * from the kernel tables. 8486 * If head not NULL, device is queued to be unregistered later. 8487 * 8488 * Callers must hold the rtnl semaphore. You may want 8489 * unregister_netdev() instead of this. 8490 */ 8491 8492 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8493 { 8494 ASSERT_RTNL(); 8495 8496 if (head) { 8497 list_move_tail(&dev->unreg_list, head); 8498 } else { 8499 rollback_registered(dev); 8500 /* Finish processing unregister after unlock */ 8501 net_set_todo(dev); 8502 } 8503 } 8504 EXPORT_SYMBOL(unregister_netdevice_queue); 8505 8506 /** 8507 * unregister_netdevice_many - unregister many devices 8508 * @head: list of devices 8509 * 8510 * Note: As most callers use a stack allocated list_head, 8511 * we force a list_del() to make sure stack wont be corrupted later. 8512 */ 8513 void unregister_netdevice_many(struct list_head *head) 8514 { 8515 struct net_device *dev; 8516 8517 if (!list_empty(head)) { 8518 rollback_registered_many(head); 8519 list_for_each_entry(dev, head, unreg_list) 8520 net_set_todo(dev); 8521 list_del(head); 8522 } 8523 } 8524 EXPORT_SYMBOL(unregister_netdevice_many); 8525 8526 /** 8527 * unregister_netdev - remove device from the kernel 8528 * @dev: device 8529 * 8530 * This function shuts down a device interface and removes it 8531 * from the kernel tables. 8532 * 8533 * This is just a wrapper for unregister_netdevice that takes 8534 * the rtnl semaphore. In general you want to use this and not 8535 * unregister_netdevice. 8536 */ 8537 void unregister_netdev(struct net_device *dev) 8538 { 8539 rtnl_lock(); 8540 unregister_netdevice(dev); 8541 rtnl_unlock(); 8542 } 8543 EXPORT_SYMBOL(unregister_netdev); 8544 8545 /** 8546 * dev_change_net_namespace - move device to different nethost namespace 8547 * @dev: device 8548 * @net: network namespace 8549 * @pat: If not NULL name pattern to try if the current device name 8550 * is already taken in the destination network namespace. 8551 * 8552 * This function shuts down a device interface and moves it 8553 * to a new network namespace. On success 0 is returned, on 8554 * a failure a netagive errno code is returned. 8555 * 8556 * Callers must hold the rtnl semaphore. 8557 */ 8558 8559 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8560 { 8561 int err, new_nsid, new_ifindex; 8562 8563 ASSERT_RTNL(); 8564 8565 /* Don't allow namespace local devices to be moved. */ 8566 err = -EINVAL; 8567 if (dev->features & NETIF_F_NETNS_LOCAL) 8568 goto out; 8569 8570 /* Ensure the device has been registrered */ 8571 if (dev->reg_state != NETREG_REGISTERED) 8572 goto out; 8573 8574 /* Get out if there is nothing todo */ 8575 err = 0; 8576 if (net_eq(dev_net(dev), net)) 8577 goto out; 8578 8579 /* Pick the destination device name, and ensure 8580 * we can use it in the destination network namespace. 8581 */ 8582 err = -EEXIST; 8583 if (__dev_get_by_name(net, dev->name)) { 8584 /* We get here if we can't use the current device name */ 8585 if (!pat) 8586 goto out; 8587 if (dev_get_valid_name(net, dev, pat) < 0) 8588 goto out; 8589 } 8590 8591 /* 8592 * And now a mini version of register_netdevice unregister_netdevice. 8593 */ 8594 8595 /* If device is running close it first. */ 8596 dev_close(dev); 8597 8598 /* And unlink it from device chain */ 8599 err = -ENODEV; 8600 unlist_netdevice(dev); 8601 8602 synchronize_net(); 8603 8604 /* Shutdown queueing discipline. */ 8605 dev_shutdown(dev); 8606 8607 /* Notify protocols, that we are about to destroy 8608 * this device. They should clean all the things. 8609 * 8610 * Note that dev->reg_state stays at NETREG_REGISTERED. 8611 * This is wanted because this way 8021q and macvlan know 8612 * the device is just moving and can keep their slaves up. 8613 */ 8614 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8615 rcu_barrier(); 8616 8617 new_nsid = peernet2id_alloc(dev_net(dev), net); 8618 /* If there is an ifindex conflict assign a new one */ 8619 if (__dev_get_by_index(net, dev->ifindex)) 8620 new_ifindex = dev_new_index(net); 8621 else 8622 new_ifindex = dev->ifindex; 8623 8624 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 8625 new_ifindex); 8626 8627 /* 8628 * Flush the unicast and multicast chains 8629 */ 8630 dev_uc_flush(dev); 8631 dev_mc_flush(dev); 8632 8633 /* Send a netdev-removed uevent to the old namespace */ 8634 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8635 netdev_adjacent_del_links(dev); 8636 8637 /* Actually switch the network namespace */ 8638 dev_net_set(dev, net); 8639 dev->ifindex = new_ifindex; 8640 8641 /* Send a netdev-add uevent to the new namespace */ 8642 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8643 netdev_adjacent_add_links(dev); 8644 8645 /* Fixup kobjects */ 8646 err = device_rename(&dev->dev, dev->name); 8647 WARN_ON(err); 8648 8649 /* Add the device back in the hashes */ 8650 list_netdevice(dev); 8651 8652 /* Notify protocols, that a new device appeared. */ 8653 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8654 8655 /* 8656 * Prevent userspace races by waiting until the network 8657 * device is fully setup before sending notifications. 8658 */ 8659 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8660 8661 synchronize_net(); 8662 err = 0; 8663 out: 8664 return err; 8665 } 8666 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8667 8668 static int dev_cpu_dead(unsigned int oldcpu) 8669 { 8670 struct sk_buff **list_skb; 8671 struct sk_buff *skb; 8672 unsigned int cpu; 8673 struct softnet_data *sd, *oldsd, *remsd = NULL; 8674 8675 local_irq_disable(); 8676 cpu = smp_processor_id(); 8677 sd = &per_cpu(softnet_data, cpu); 8678 oldsd = &per_cpu(softnet_data, oldcpu); 8679 8680 /* Find end of our completion_queue. */ 8681 list_skb = &sd->completion_queue; 8682 while (*list_skb) 8683 list_skb = &(*list_skb)->next; 8684 /* Append completion queue from offline CPU. */ 8685 *list_skb = oldsd->completion_queue; 8686 oldsd->completion_queue = NULL; 8687 8688 /* Append output queue from offline CPU. */ 8689 if (oldsd->output_queue) { 8690 *sd->output_queue_tailp = oldsd->output_queue; 8691 sd->output_queue_tailp = oldsd->output_queue_tailp; 8692 oldsd->output_queue = NULL; 8693 oldsd->output_queue_tailp = &oldsd->output_queue; 8694 } 8695 /* Append NAPI poll list from offline CPU, with one exception : 8696 * process_backlog() must be called by cpu owning percpu backlog. 8697 * We properly handle process_queue & input_pkt_queue later. 8698 */ 8699 while (!list_empty(&oldsd->poll_list)) { 8700 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8701 struct napi_struct, 8702 poll_list); 8703 8704 list_del_init(&napi->poll_list); 8705 if (napi->poll == process_backlog) 8706 napi->state = 0; 8707 else 8708 ____napi_schedule(sd, napi); 8709 } 8710 8711 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8712 local_irq_enable(); 8713 8714 #ifdef CONFIG_RPS 8715 remsd = oldsd->rps_ipi_list; 8716 oldsd->rps_ipi_list = NULL; 8717 #endif 8718 /* send out pending IPI's on offline CPU */ 8719 net_rps_send_ipi(remsd); 8720 8721 /* Process offline CPU's input_pkt_queue */ 8722 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8723 netif_rx_ni(skb); 8724 input_queue_head_incr(oldsd); 8725 } 8726 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8727 netif_rx_ni(skb); 8728 input_queue_head_incr(oldsd); 8729 } 8730 8731 return 0; 8732 } 8733 8734 /** 8735 * netdev_increment_features - increment feature set by one 8736 * @all: current feature set 8737 * @one: new feature set 8738 * @mask: mask feature set 8739 * 8740 * Computes a new feature set after adding a device with feature set 8741 * @one to the master device with current feature set @all. Will not 8742 * enable anything that is off in @mask. Returns the new feature set. 8743 */ 8744 netdev_features_t netdev_increment_features(netdev_features_t all, 8745 netdev_features_t one, netdev_features_t mask) 8746 { 8747 if (mask & NETIF_F_HW_CSUM) 8748 mask |= NETIF_F_CSUM_MASK; 8749 mask |= NETIF_F_VLAN_CHALLENGED; 8750 8751 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8752 all &= one | ~NETIF_F_ALL_FOR_ALL; 8753 8754 /* If one device supports hw checksumming, set for all. */ 8755 if (all & NETIF_F_HW_CSUM) 8756 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8757 8758 return all; 8759 } 8760 EXPORT_SYMBOL(netdev_increment_features); 8761 8762 static struct hlist_head * __net_init netdev_create_hash(void) 8763 { 8764 int i; 8765 struct hlist_head *hash; 8766 8767 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8768 if (hash != NULL) 8769 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8770 INIT_HLIST_HEAD(&hash[i]); 8771 8772 return hash; 8773 } 8774 8775 /* Initialize per network namespace state */ 8776 static int __net_init netdev_init(struct net *net) 8777 { 8778 if (net != &init_net) 8779 INIT_LIST_HEAD(&net->dev_base_head); 8780 8781 net->dev_name_head = netdev_create_hash(); 8782 if (net->dev_name_head == NULL) 8783 goto err_name; 8784 8785 net->dev_index_head = netdev_create_hash(); 8786 if (net->dev_index_head == NULL) 8787 goto err_idx; 8788 8789 return 0; 8790 8791 err_idx: 8792 kfree(net->dev_name_head); 8793 err_name: 8794 return -ENOMEM; 8795 } 8796 8797 /** 8798 * netdev_drivername - network driver for the device 8799 * @dev: network device 8800 * 8801 * Determine network driver for device. 8802 */ 8803 const char *netdev_drivername(const struct net_device *dev) 8804 { 8805 const struct device_driver *driver; 8806 const struct device *parent; 8807 const char *empty = ""; 8808 8809 parent = dev->dev.parent; 8810 if (!parent) 8811 return empty; 8812 8813 driver = parent->driver; 8814 if (driver && driver->name) 8815 return driver->name; 8816 return empty; 8817 } 8818 8819 static void __netdev_printk(const char *level, const struct net_device *dev, 8820 struct va_format *vaf) 8821 { 8822 if (dev && dev->dev.parent) { 8823 dev_printk_emit(level[1] - '0', 8824 dev->dev.parent, 8825 "%s %s %s%s: %pV", 8826 dev_driver_string(dev->dev.parent), 8827 dev_name(dev->dev.parent), 8828 netdev_name(dev), netdev_reg_state(dev), 8829 vaf); 8830 } else if (dev) { 8831 printk("%s%s%s: %pV", 8832 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8833 } else { 8834 printk("%s(NULL net_device): %pV", level, vaf); 8835 } 8836 } 8837 8838 void netdev_printk(const char *level, const struct net_device *dev, 8839 const char *format, ...) 8840 { 8841 struct va_format vaf; 8842 va_list args; 8843 8844 va_start(args, format); 8845 8846 vaf.fmt = format; 8847 vaf.va = &args; 8848 8849 __netdev_printk(level, dev, &vaf); 8850 8851 va_end(args); 8852 } 8853 EXPORT_SYMBOL(netdev_printk); 8854 8855 #define define_netdev_printk_level(func, level) \ 8856 void func(const struct net_device *dev, const char *fmt, ...) \ 8857 { \ 8858 struct va_format vaf; \ 8859 va_list args; \ 8860 \ 8861 va_start(args, fmt); \ 8862 \ 8863 vaf.fmt = fmt; \ 8864 vaf.va = &args; \ 8865 \ 8866 __netdev_printk(level, dev, &vaf); \ 8867 \ 8868 va_end(args); \ 8869 } \ 8870 EXPORT_SYMBOL(func); 8871 8872 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8873 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8874 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8875 define_netdev_printk_level(netdev_err, KERN_ERR); 8876 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8877 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8878 define_netdev_printk_level(netdev_info, KERN_INFO); 8879 8880 static void __net_exit netdev_exit(struct net *net) 8881 { 8882 kfree(net->dev_name_head); 8883 kfree(net->dev_index_head); 8884 if (net != &init_net) 8885 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8886 } 8887 8888 static struct pernet_operations __net_initdata netdev_net_ops = { 8889 .init = netdev_init, 8890 .exit = netdev_exit, 8891 }; 8892 8893 static void __net_exit default_device_exit(struct net *net) 8894 { 8895 struct net_device *dev, *aux; 8896 /* 8897 * Push all migratable network devices back to the 8898 * initial network namespace 8899 */ 8900 rtnl_lock(); 8901 for_each_netdev_safe(net, dev, aux) { 8902 int err; 8903 char fb_name[IFNAMSIZ]; 8904 8905 /* Ignore unmoveable devices (i.e. loopback) */ 8906 if (dev->features & NETIF_F_NETNS_LOCAL) 8907 continue; 8908 8909 /* Leave virtual devices for the generic cleanup */ 8910 if (dev->rtnl_link_ops) 8911 continue; 8912 8913 /* Push remaining network devices to init_net */ 8914 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8915 err = dev_change_net_namespace(dev, &init_net, fb_name); 8916 if (err) { 8917 pr_emerg("%s: failed to move %s to init_net: %d\n", 8918 __func__, dev->name, err); 8919 BUG(); 8920 } 8921 } 8922 rtnl_unlock(); 8923 } 8924 8925 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8926 { 8927 /* Return with the rtnl_lock held when there are no network 8928 * devices unregistering in any network namespace in net_list. 8929 */ 8930 struct net *net; 8931 bool unregistering; 8932 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8933 8934 add_wait_queue(&netdev_unregistering_wq, &wait); 8935 for (;;) { 8936 unregistering = false; 8937 rtnl_lock(); 8938 list_for_each_entry(net, net_list, exit_list) { 8939 if (net->dev_unreg_count > 0) { 8940 unregistering = true; 8941 break; 8942 } 8943 } 8944 if (!unregistering) 8945 break; 8946 __rtnl_unlock(); 8947 8948 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8949 } 8950 remove_wait_queue(&netdev_unregistering_wq, &wait); 8951 } 8952 8953 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8954 { 8955 /* At exit all network devices most be removed from a network 8956 * namespace. Do this in the reverse order of registration. 8957 * Do this across as many network namespaces as possible to 8958 * improve batching efficiency. 8959 */ 8960 struct net_device *dev; 8961 struct net *net; 8962 LIST_HEAD(dev_kill_list); 8963 8964 /* To prevent network device cleanup code from dereferencing 8965 * loopback devices or network devices that have been freed 8966 * wait here for all pending unregistrations to complete, 8967 * before unregistring the loopback device and allowing the 8968 * network namespace be freed. 8969 * 8970 * The netdev todo list containing all network devices 8971 * unregistrations that happen in default_device_exit_batch 8972 * will run in the rtnl_unlock() at the end of 8973 * default_device_exit_batch. 8974 */ 8975 rtnl_lock_unregistering(net_list); 8976 list_for_each_entry(net, net_list, exit_list) { 8977 for_each_netdev_reverse(net, dev) { 8978 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8979 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8980 else 8981 unregister_netdevice_queue(dev, &dev_kill_list); 8982 } 8983 } 8984 unregister_netdevice_many(&dev_kill_list); 8985 rtnl_unlock(); 8986 } 8987 8988 static struct pernet_operations __net_initdata default_device_ops = { 8989 .exit = default_device_exit, 8990 .exit_batch = default_device_exit_batch, 8991 }; 8992 8993 /* 8994 * Initialize the DEV module. At boot time this walks the device list and 8995 * unhooks any devices that fail to initialise (normally hardware not 8996 * present) and leaves us with a valid list of present and active devices. 8997 * 8998 */ 8999 9000 /* 9001 * This is called single threaded during boot, so no need 9002 * to take the rtnl semaphore. 9003 */ 9004 static int __init net_dev_init(void) 9005 { 9006 int i, rc = -ENOMEM; 9007 9008 BUG_ON(!dev_boot_phase); 9009 9010 if (dev_proc_init()) 9011 goto out; 9012 9013 if (netdev_kobject_init()) 9014 goto out; 9015 9016 INIT_LIST_HEAD(&ptype_all); 9017 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9018 INIT_LIST_HEAD(&ptype_base[i]); 9019 9020 INIT_LIST_HEAD(&offload_base); 9021 9022 if (register_pernet_subsys(&netdev_net_ops)) 9023 goto out; 9024 9025 /* 9026 * Initialise the packet receive queues. 9027 */ 9028 9029 for_each_possible_cpu(i) { 9030 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9031 struct softnet_data *sd = &per_cpu(softnet_data, i); 9032 9033 INIT_WORK(flush, flush_backlog); 9034 9035 skb_queue_head_init(&sd->input_pkt_queue); 9036 skb_queue_head_init(&sd->process_queue); 9037 #ifdef CONFIG_XFRM_OFFLOAD 9038 skb_queue_head_init(&sd->xfrm_backlog); 9039 #endif 9040 INIT_LIST_HEAD(&sd->poll_list); 9041 sd->output_queue_tailp = &sd->output_queue; 9042 #ifdef CONFIG_RPS 9043 sd->csd.func = rps_trigger_softirq; 9044 sd->csd.info = sd; 9045 sd->cpu = i; 9046 #endif 9047 9048 sd->backlog.poll = process_backlog; 9049 sd->backlog.weight = weight_p; 9050 } 9051 9052 dev_boot_phase = 0; 9053 9054 /* The loopback device is special if any other network devices 9055 * is present in a network namespace the loopback device must 9056 * be present. Since we now dynamically allocate and free the 9057 * loopback device ensure this invariant is maintained by 9058 * keeping the loopback device as the first device on the 9059 * list of network devices. Ensuring the loopback devices 9060 * is the first device that appears and the last network device 9061 * that disappears. 9062 */ 9063 if (register_pernet_device(&loopback_net_ops)) 9064 goto out; 9065 9066 if (register_pernet_device(&default_device_ops)) 9067 goto out; 9068 9069 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9070 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9071 9072 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9073 NULL, dev_cpu_dead); 9074 WARN_ON(rc < 0); 9075 rc = 0; 9076 out: 9077 return rc; 9078 } 9079 9080 subsys_initcall(net_dev_init); 9081