xref: /openbmc/linux/net/core/dev.c (revision 038d49baab571800e3077b9d322a004f95c8aa8f)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	BUG_ON(!net);
1150 
1151 	if (!dev_valid_name(name))
1152 		return -EINVAL;
1153 
1154 	if (strchr(name, '%'))
1155 		return dev_alloc_name_ns(net, dev, name);
1156 	else if (__dev_get_by_name(net, name))
1157 		return -EEXIST;
1158 	else if (dev->name != name)
1159 		strlcpy(dev->name, name, IFNAMSIZ);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164 
1165 /**
1166  *	dev_change_name - change name of a device
1167  *	@dev: device
1168  *	@newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *	Change name of a device, can pass format strings "eth%d".
1171  *	for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 	unsigned char old_assign_type;
1176 	char oldname[IFNAMSIZ];
1177 	int err = 0;
1178 	int ret;
1179 	struct net *net;
1180 
1181 	ASSERT_RTNL();
1182 	BUG_ON(!dev_net(dev));
1183 
1184 	net = dev_net(dev);
1185 	if (dev->flags & IFF_UP)
1186 		return -EBUSY;
1187 
1188 	write_seqcount_begin(&devnet_rename_seq);
1189 
1190 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 		write_seqcount_end(&devnet_rename_seq);
1192 		return 0;
1193 	}
1194 
1195 	memcpy(oldname, dev->name, IFNAMSIZ);
1196 
1197 	err = dev_get_valid_name(net, dev, newname);
1198 	if (err < 0) {
1199 		write_seqcount_end(&devnet_rename_seq);
1200 		return err;
1201 	}
1202 
1203 	if (oldname[0] && !strchr(oldname, '%'))
1204 		netdev_info(dev, "renamed from %s\n", oldname);
1205 
1206 	old_assign_type = dev->name_assign_type;
1207 	dev->name_assign_type = NET_NAME_RENAMED;
1208 
1209 rollback:
1210 	ret = device_rename(&dev->dev, dev->name);
1211 	if (ret) {
1212 		memcpy(dev->name, oldname, IFNAMSIZ);
1213 		dev->name_assign_type = old_assign_type;
1214 		write_seqcount_end(&devnet_rename_seq);
1215 		return ret;
1216 	}
1217 
1218 	write_seqcount_end(&devnet_rename_seq);
1219 
1220 	netdev_adjacent_rename_links(dev, oldname);
1221 
1222 	write_lock_bh(&dev_base_lock);
1223 	hlist_del_rcu(&dev->name_hlist);
1224 	write_unlock_bh(&dev_base_lock);
1225 
1226 	synchronize_rcu();
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 	ret = notifier_to_errno(ret);
1234 
1235 	if (ret) {
1236 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237 		if (err >= 0) {
1238 			err = ret;
1239 			write_seqcount_begin(&devnet_rename_seq);
1240 			memcpy(dev->name, oldname, IFNAMSIZ);
1241 			memcpy(oldname, newname, IFNAMSIZ);
1242 			dev->name_assign_type = old_assign_type;
1243 			old_assign_type = NET_NAME_RENAMED;
1244 			goto rollback;
1245 		} else {
1246 			pr_err("%s: name change rollback failed: %d\n",
1247 			       dev->name, ret);
1248 		}
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /**
1255  *	dev_set_alias - change ifalias of a device
1256  *	@dev: device
1257  *	@alias: name up to IFALIASZ
1258  *	@len: limit of bytes to copy from info
1259  *
1260  *	Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 	struct dev_ifalias *new_alias = NULL;
1265 
1266 	if (len >= IFALIASZ)
1267 		return -EINVAL;
1268 
1269 	if (len) {
1270 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 		if (!new_alias)
1272 			return -ENOMEM;
1273 
1274 		memcpy(new_alias->ifalias, alias, len);
1275 		new_alias->ifalias[len] = 0;
1276 	}
1277 
1278 	mutex_lock(&ifalias_mutex);
1279 	rcu_swap_protected(dev->ifalias, new_alias,
1280 			   mutex_is_locked(&ifalias_mutex));
1281 	mutex_unlock(&ifalias_mutex);
1282 
1283 	if (new_alias)
1284 		kfree_rcu(new_alias, rcuhead);
1285 
1286 	return len;
1287 }
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 /**
1558  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *	@dev: device
1560  *
1561  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *	called under RTNL.  This is needed if Generic XDP is installed on
1563  *	the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 	netdev_update_features(dev);
1569 
1570 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573 
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val) 						\
1577 	case NETDEV_##val:				\
1578 		return "NETDEV_" __stringify(val);
1579 	switch (cmd) {
1580 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587 	};
1588 #undef N
1589 	return "UNKNOWN_NETDEV_EVENT";
1590 }
1591 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1592 
1593 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1594 				   struct net_device *dev)
1595 {
1596 	struct netdev_notifier_info info = {
1597 		.dev = dev,
1598 	};
1599 
1600 	return nb->notifier_call(nb, val, &info);
1601 }
1602 
1603 static int dev_boot_phase = 1;
1604 
1605 /**
1606  * register_netdevice_notifier - register a network notifier block
1607  * @nb: notifier
1608  *
1609  * Register a notifier to be called when network device events occur.
1610  * The notifier passed is linked into the kernel structures and must
1611  * not be reused until it has been unregistered. A negative errno code
1612  * is returned on a failure.
1613  *
1614  * When registered all registration and up events are replayed
1615  * to the new notifier to allow device to have a race free
1616  * view of the network device list.
1617  */
1618 
1619 int register_netdevice_notifier(struct notifier_block *nb)
1620 {
1621 	struct net_device *dev;
1622 	struct net_device *last;
1623 	struct net *net;
1624 	int err;
1625 
1626 	rtnl_lock();
1627 	err = raw_notifier_chain_register(&netdev_chain, nb);
1628 	if (err)
1629 		goto unlock;
1630 	if (dev_boot_phase)
1631 		goto unlock;
1632 	down_read(&net_rwsem);
1633 	for_each_net(net) {
1634 		for_each_netdev(net, dev) {
1635 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1636 			err = notifier_to_errno(err);
1637 			if (err)
1638 				goto rollback;
1639 
1640 			if (!(dev->flags & IFF_UP))
1641 				continue;
1642 
1643 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1644 		}
1645 	}
1646 	up_read(&net_rwsem);
1647 
1648 unlock:
1649 	rtnl_unlock();
1650 	return err;
1651 
1652 rollback:
1653 	last = dev;
1654 	for_each_net(net) {
1655 		for_each_netdev(net, dev) {
1656 			if (dev == last)
1657 				goto outroll;
1658 
1659 			if (dev->flags & IFF_UP) {
1660 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1661 							dev);
1662 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1663 			}
1664 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1665 		}
1666 	}
1667 
1668 outroll:
1669 	up_read(&net_rwsem);
1670 	raw_notifier_chain_unregister(&netdev_chain, nb);
1671 	goto unlock;
1672 }
1673 EXPORT_SYMBOL(register_netdevice_notifier);
1674 
1675 /**
1676  * unregister_netdevice_notifier - unregister a network notifier block
1677  * @nb: notifier
1678  *
1679  * Unregister a notifier previously registered by
1680  * register_netdevice_notifier(). The notifier is unlinked into the
1681  * kernel structures and may then be reused. A negative errno code
1682  * is returned on a failure.
1683  *
1684  * After unregistering unregister and down device events are synthesized
1685  * for all devices on the device list to the removed notifier to remove
1686  * the need for special case cleanup code.
1687  */
1688 
1689 int unregister_netdevice_notifier(struct notifier_block *nb)
1690 {
1691 	struct net_device *dev;
1692 	struct net *net;
1693 	int err;
1694 
1695 	rtnl_lock();
1696 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1697 	if (err)
1698 		goto unlock;
1699 
1700 	down_read(&net_rwsem);
1701 	for_each_net(net) {
1702 		for_each_netdev(net, dev) {
1703 			if (dev->flags & IFF_UP) {
1704 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1705 							dev);
1706 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1707 			}
1708 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1709 		}
1710 	}
1711 	up_read(&net_rwsem);
1712 unlock:
1713 	rtnl_unlock();
1714 	return err;
1715 }
1716 EXPORT_SYMBOL(unregister_netdevice_notifier);
1717 
1718 /**
1719  *	call_netdevice_notifiers_info - call all network notifier blocks
1720  *	@val: value passed unmodified to notifier function
1721  *	@info: notifier information data
1722  *
1723  *	Call all network notifier blocks.  Parameters and return value
1724  *	are as for raw_notifier_call_chain().
1725  */
1726 
1727 static int call_netdevice_notifiers_info(unsigned long val,
1728 					 struct netdev_notifier_info *info)
1729 {
1730 	ASSERT_RTNL();
1731 	return raw_notifier_call_chain(&netdev_chain, val, info);
1732 }
1733 
1734 /**
1735  *	call_netdevice_notifiers - call all network notifier blocks
1736  *      @val: value passed unmodified to notifier function
1737  *      @dev: net_device pointer passed unmodified to notifier function
1738  *
1739  *	Call all network notifier blocks.  Parameters and return value
1740  *	are as for raw_notifier_call_chain().
1741  */
1742 
1743 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1744 {
1745 	struct netdev_notifier_info info = {
1746 		.dev = dev,
1747 	};
1748 
1749 	return call_netdevice_notifiers_info(val, &info);
1750 }
1751 EXPORT_SYMBOL(call_netdevice_notifiers);
1752 
1753 #ifdef CONFIG_NET_INGRESS
1754 static struct static_key ingress_needed __read_mostly;
1755 
1756 void net_inc_ingress_queue(void)
1757 {
1758 	static_key_slow_inc(&ingress_needed);
1759 }
1760 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1761 
1762 void net_dec_ingress_queue(void)
1763 {
1764 	static_key_slow_dec(&ingress_needed);
1765 }
1766 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1767 #endif
1768 
1769 #ifdef CONFIG_NET_EGRESS
1770 static struct static_key egress_needed __read_mostly;
1771 
1772 void net_inc_egress_queue(void)
1773 {
1774 	static_key_slow_inc(&egress_needed);
1775 }
1776 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1777 
1778 void net_dec_egress_queue(void)
1779 {
1780 	static_key_slow_dec(&egress_needed);
1781 }
1782 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1783 #endif
1784 
1785 static struct static_key netstamp_needed __read_mostly;
1786 #ifdef HAVE_JUMP_LABEL
1787 static atomic_t netstamp_needed_deferred;
1788 static atomic_t netstamp_wanted;
1789 static void netstamp_clear(struct work_struct *work)
1790 {
1791 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1792 	int wanted;
1793 
1794 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1795 	if (wanted > 0)
1796 		static_key_enable(&netstamp_needed);
1797 	else
1798 		static_key_disable(&netstamp_needed);
1799 }
1800 static DECLARE_WORK(netstamp_work, netstamp_clear);
1801 #endif
1802 
1803 void net_enable_timestamp(void)
1804 {
1805 #ifdef HAVE_JUMP_LABEL
1806 	int wanted;
1807 
1808 	while (1) {
1809 		wanted = atomic_read(&netstamp_wanted);
1810 		if (wanted <= 0)
1811 			break;
1812 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1813 			return;
1814 	}
1815 	atomic_inc(&netstamp_needed_deferred);
1816 	schedule_work(&netstamp_work);
1817 #else
1818 	static_key_slow_inc(&netstamp_needed);
1819 #endif
1820 }
1821 EXPORT_SYMBOL(net_enable_timestamp);
1822 
1823 void net_disable_timestamp(void)
1824 {
1825 #ifdef HAVE_JUMP_LABEL
1826 	int wanted;
1827 
1828 	while (1) {
1829 		wanted = atomic_read(&netstamp_wanted);
1830 		if (wanted <= 1)
1831 			break;
1832 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1833 			return;
1834 	}
1835 	atomic_dec(&netstamp_needed_deferred);
1836 	schedule_work(&netstamp_work);
1837 #else
1838 	static_key_slow_dec(&netstamp_needed);
1839 #endif
1840 }
1841 EXPORT_SYMBOL(net_disable_timestamp);
1842 
1843 static inline void net_timestamp_set(struct sk_buff *skb)
1844 {
1845 	skb->tstamp = 0;
1846 	if (static_key_false(&netstamp_needed))
1847 		__net_timestamp(skb);
1848 }
1849 
1850 #define net_timestamp_check(COND, SKB)			\
1851 	if (static_key_false(&netstamp_needed)) {		\
1852 		if ((COND) && !(SKB)->tstamp)	\
1853 			__net_timestamp(SKB);		\
1854 	}						\
1855 
1856 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1857 {
1858 	unsigned int len;
1859 
1860 	if (!(dev->flags & IFF_UP))
1861 		return false;
1862 
1863 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1864 	if (skb->len <= len)
1865 		return true;
1866 
1867 	/* if TSO is enabled, we don't care about the length as the packet
1868 	 * could be forwarded without being segmented before
1869 	 */
1870 	if (skb_is_gso(skb))
1871 		return true;
1872 
1873 	return false;
1874 }
1875 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1876 
1877 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1878 {
1879 	int ret = ____dev_forward_skb(dev, skb);
1880 
1881 	if (likely(!ret)) {
1882 		skb->protocol = eth_type_trans(skb, dev);
1883 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1884 	}
1885 
1886 	return ret;
1887 }
1888 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1889 
1890 /**
1891  * dev_forward_skb - loopback an skb to another netif
1892  *
1893  * @dev: destination network device
1894  * @skb: buffer to forward
1895  *
1896  * return values:
1897  *	NET_RX_SUCCESS	(no congestion)
1898  *	NET_RX_DROP     (packet was dropped, but freed)
1899  *
1900  * dev_forward_skb can be used for injecting an skb from the
1901  * start_xmit function of one device into the receive queue
1902  * of another device.
1903  *
1904  * The receiving device may be in another namespace, so
1905  * we have to clear all information in the skb that could
1906  * impact namespace isolation.
1907  */
1908 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1909 {
1910 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1911 }
1912 EXPORT_SYMBOL_GPL(dev_forward_skb);
1913 
1914 static inline int deliver_skb(struct sk_buff *skb,
1915 			      struct packet_type *pt_prev,
1916 			      struct net_device *orig_dev)
1917 {
1918 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1919 		return -ENOMEM;
1920 	refcount_inc(&skb->users);
1921 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1922 }
1923 
1924 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1925 					  struct packet_type **pt,
1926 					  struct net_device *orig_dev,
1927 					  __be16 type,
1928 					  struct list_head *ptype_list)
1929 {
1930 	struct packet_type *ptype, *pt_prev = *pt;
1931 
1932 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1933 		if (ptype->type != type)
1934 			continue;
1935 		if (pt_prev)
1936 			deliver_skb(skb, pt_prev, orig_dev);
1937 		pt_prev = ptype;
1938 	}
1939 	*pt = pt_prev;
1940 }
1941 
1942 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1943 {
1944 	if (!ptype->af_packet_priv || !skb->sk)
1945 		return false;
1946 
1947 	if (ptype->id_match)
1948 		return ptype->id_match(ptype, skb->sk);
1949 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1950 		return true;
1951 
1952 	return false;
1953 }
1954 
1955 /*
1956  *	Support routine. Sends outgoing frames to any network
1957  *	taps currently in use.
1958  */
1959 
1960 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1961 {
1962 	struct packet_type *ptype;
1963 	struct sk_buff *skb2 = NULL;
1964 	struct packet_type *pt_prev = NULL;
1965 	struct list_head *ptype_list = &ptype_all;
1966 
1967 	rcu_read_lock();
1968 again:
1969 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1970 		/* Never send packets back to the socket
1971 		 * they originated from - MvS (miquels@drinkel.ow.org)
1972 		 */
1973 		if (skb_loop_sk(ptype, skb))
1974 			continue;
1975 
1976 		if (pt_prev) {
1977 			deliver_skb(skb2, pt_prev, skb->dev);
1978 			pt_prev = ptype;
1979 			continue;
1980 		}
1981 
1982 		/* need to clone skb, done only once */
1983 		skb2 = skb_clone(skb, GFP_ATOMIC);
1984 		if (!skb2)
1985 			goto out_unlock;
1986 
1987 		net_timestamp_set(skb2);
1988 
1989 		/* skb->nh should be correctly
1990 		 * set by sender, so that the second statement is
1991 		 * just protection against buggy protocols.
1992 		 */
1993 		skb_reset_mac_header(skb2);
1994 
1995 		if (skb_network_header(skb2) < skb2->data ||
1996 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1997 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1998 					     ntohs(skb2->protocol),
1999 					     dev->name);
2000 			skb_reset_network_header(skb2);
2001 		}
2002 
2003 		skb2->transport_header = skb2->network_header;
2004 		skb2->pkt_type = PACKET_OUTGOING;
2005 		pt_prev = ptype;
2006 	}
2007 
2008 	if (ptype_list == &ptype_all) {
2009 		ptype_list = &dev->ptype_all;
2010 		goto again;
2011 	}
2012 out_unlock:
2013 	if (pt_prev) {
2014 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2015 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2016 		else
2017 			kfree_skb(skb2);
2018 	}
2019 	rcu_read_unlock();
2020 }
2021 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2022 
2023 /**
2024  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2025  * @dev: Network device
2026  * @txq: number of queues available
2027  *
2028  * If real_num_tx_queues is changed the tc mappings may no longer be
2029  * valid. To resolve this verify the tc mapping remains valid and if
2030  * not NULL the mapping. With no priorities mapping to this
2031  * offset/count pair it will no longer be used. In the worst case TC0
2032  * is invalid nothing can be done so disable priority mappings. If is
2033  * expected that drivers will fix this mapping if they can before
2034  * calling netif_set_real_num_tx_queues.
2035  */
2036 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2037 {
2038 	int i;
2039 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2040 
2041 	/* If TC0 is invalidated disable TC mapping */
2042 	if (tc->offset + tc->count > txq) {
2043 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2044 		dev->num_tc = 0;
2045 		return;
2046 	}
2047 
2048 	/* Invalidated prio to tc mappings set to TC0 */
2049 	for (i = 1; i < TC_BITMASK + 1; i++) {
2050 		int q = netdev_get_prio_tc_map(dev, i);
2051 
2052 		tc = &dev->tc_to_txq[q];
2053 		if (tc->offset + tc->count > txq) {
2054 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2055 				i, q);
2056 			netdev_set_prio_tc_map(dev, i, 0);
2057 		}
2058 	}
2059 }
2060 
2061 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2062 {
2063 	if (dev->num_tc) {
2064 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2065 		int i;
2066 
2067 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2068 			if ((txq - tc->offset) < tc->count)
2069 				return i;
2070 		}
2071 
2072 		return -1;
2073 	}
2074 
2075 	return 0;
2076 }
2077 EXPORT_SYMBOL(netdev_txq_to_tc);
2078 
2079 #ifdef CONFIG_XPS
2080 static DEFINE_MUTEX(xps_map_mutex);
2081 #define xmap_dereference(P)		\
2082 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2083 
2084 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2085 			     int tci, u16 index)
2086 {
2087 	struct xps_map *map = NULL;
2088 	int pos;
2089 
2090 	if (dev_maps)
2091 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2092 	if (!map)
2093 		return false;
2094 
2095 	for (pos = map->len; pos--;) {
2096 		if (map->queues[pos] != index)
2097 			continue;
2098 
2099 		if (map->len > 1) {
2100 			map->queues[pos] = map->queues[--map->len];
2101 			break;
2102 		}
2103 
2104 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2105 		kfree_rcu(map, rcu);
2106 		return false;
2107 	}
2108 
2109 	return true;
2110 }
2111 
2112 static bool remove_xps_queue_cpu(struct net_device *dev,
2113 				 struct xps_dev_maps *dev_maps,
2114 				 int cpu, u16 offset, u16 count)
2115 {
2116 	int num_tc = dev->num_tc ? : 1;
2117 	bool active = false;
2118 	int tci;
2119 
2120 	for (tci = cpu * num_tc; num_tc--; tci++) {
2121 		int i, j;
2122 
2123 		for (i = count, j = offset; i--; j++) {
2124 			if (!remove_xps_queue(dev_maps, cpu, j))
2125 				break;
2126 		}
2127 
2128 		active |= i < 0;
2129 	}
2130 
2131 	return active;
2132 }
2133 
2134 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2135 				   u16 count)
2136 {
2137 	struct xps_dev_maps *dev_maps;
2138 	int cpu, i;
2139 	bool active = false;
2140 
2141 	mutex_lock(&xps_map_mutex);
2142 	dev_maps = xmap_dereference(dev->xps_maps);
2143 
2144 	if (!dev_maps)
2145 		goto out_no_maps;
2146 
2147 	for_each_possible_cpu(cpu)
2148 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2149 					       offset, count);
2150 
2151 	if (!active) {
2152 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2153 		kfree_rcu(dev_maps, rcu);
2154 	}
2155 
2156 	for (i = offset + (count - 1); count--; i--)
2157 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2158 					     NUMA_NO_NODE);
2159 
2160 out_no_maps:
2161 	mutex_unlock(&xps_map_mutex);
2162 }
2163 
2164 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2165 {
2166 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2167 }
2168 
2169 static struct xps_map *expand_xps_map(struct xps_map *map,
2170 				      int cpu, u16 index)
2171 {
2172 	struct xps_map *new_map;
2173 	int alloc_len = XPS_MIN_MAP_ALLOC;
2174 	int i, pos;
2175 
2176 	for (pos = 0; map && pos < map->len; pos++) {
2177 		if (map->queues[pos] != index)
2178 			continue;
2179 		return map;
2180 	}
2181 
2182 	/* Need to add queue to this CPU's existing map */
2183 	if (map) {
2184 		if (pos < map->alloc_len)
2185 			return map;
2186 
2187 		alloc_len = map->alloc_len * 2;
2188 	}
2189 
2190 	/* Need to allocate new map to store queue on this CPU's map */
2191 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2192 			       cpu_to_node(cpu));
2193 	if (!new_map)
2194 		return NULL;
2195 
2196 	for (i = 0; i < pos; i++)
2197 		new_map->queues[i] = map->queues[i];
2198 	new_map->alloc_len = alloc_len;
2199 	new_map->len = pos;
2200 
2201 	return new_map;
2202 }
2203 
2204 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2205 			u16 index)
2206 {
2207 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2208 	int i, cpu, tci, numa_node_id = -2;
2209 	int maps_sz, num_tc = 1, tc = 0;
2210 	struct xps_map *map, *new_map;
2211 	bool active = false;
2212 
2213 	if (dev->num_tc) {
2214 		num_tc = dev->num_tc;
2215 		tc = netdev_txq_to_tc(dev, index);
2216 		if (tc < 0)
2217 			return -EINVAL;
2218 	}
2219 
2220 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2221 	if (maps_sz < L1_CACHE_BYTES)
2222 		maps_sz = L1_CACHE_BYTES;
2223 
2224 	mutex_lock(&xps_map_mutex);
2225 
2226 	dev_maps = xmap_dereference(dev->xps_maps);
2227 
2228 	/* allocate memory for queue storage */
2229 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2230 		if (!new_dev_maps)
2231 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2232 		if (!new_dev_maps) {
2233 			mutex_unlock(&xps_map_mutex);
2234 			return -ENOMEM;
2235 		}
2236 
2237 		tci = cpu * num_tc + tc;
2238 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2239 				 NULL;
2240 
2241 		map = expand_xps_map(map, cpu, index);
2242 		if (!map)
2243 			goto error;
2244 
2245 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2246 	}
2247 
2248 	if (!new_dev_maps)
2249 		goto out_no_new_maps;
2250 
2251 	for_each_possible_cpu(cpu) {
2252 		/* copy maps belonging to foreign traffic classes */
2253 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2254 			/* fill in the new device map from the old device map */
2255 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2256 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2257 		}
2258 
2259 		/* We need to explicitly update tci as prevous loop
2260 		 * could break out early if dev_maps is NULL.
2261 		 */
2262 		tci = cpu * num_tc + tc;
2263 
2264 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2265 			/* add queue to CPU maps */
2266 			int pos = 0;
2267 
2268 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2269 			while ((pos < map->len) && (map->queues[pos] != index))
2270 				pos++;
2271 
2272 			if (pos == map->len)
2273 				map->queues[map->len++] = index;
2274 #ifdef CONFIG_NUMA
2275 			if (numa_node_id == -2)
2276 				numa_node_id = cpu_to_node(cpu);
2277 			else if (numa_node_id != cpu_to_node(cpu))
2278 				numa_node_id = -1;
2279 #endif
2280 		} else if (dev_maps) {
2281 			/* fill in the new device map from the old device map */
2282 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2283 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2284 		}
2285 
2286 		/* copy maps belonging to foreign traffic classes */
2287 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2288 			/* fill in the new device map from the old device map */
2289 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2290 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2291 		}
2292 	}
2293 
2294 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2295 
2296 	/* Cleanup old maps */
2297 	if (!dev_maps)
2298 		goto out_no_old_maps;
2299 
2300 	for_each_possible_cpu(cpu) {
2301 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2302 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2303 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2304 			if (map && map != new_map)
2305 				kfree_rcu(map, rcu);
2306 		}
2307 	}
2308 
2309 	kfree_rcu(dev_maps, rcu);
2310 
2311 out_no_old_maps:
2312 	dev_maps = new_dev_maps;
2313 	active = true;
2314 
2315 out_no_new_maps:
2316 	/* update Tx queue numa node */
2317 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2318 				     (numa_node_id >= 0) ? numa_node_id :
2319 				     NUMA_NO_NODE);
2320 
2321 	if (!dev_maps)
2322 		goto out_no_maps;
2323 
2324 	/* removes queue from unused CPUs */
2325 	for_each_possible_cpu(cpu) {
2326 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2327 			active |= remove_xps_queue(dev_maps, tci, index);
2328 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2329 			active |= remove_xps_queue(dev_maps, tci, index);
2330 		for (i = num_tc - tc, tci++; --i; tci++)
2331 			active |= remove_xps_queue(dev_maps, tci, index);
2332 	}
2333 
2334 	/* free map if not active */
2335 	if (!active) {
2336 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2337 		kfree_rcu(dev_maps, rcu);
2338 	}
2339 
2340 out_no_maps:
2341 	mutex_unlock(&xps_map_mutex);
2342 
2343 	return 0;
2344 error:
2345 	/* remove any maps that we added */
2346 	for_each_possible_cpu(cpu) {
2347 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2348 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2349 			map = dev_maps ?
2350 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2351 			      NULL;
2352 			if (new_map && new_map != map)
2353 				kfree(new_map);
2354 		}
2355 	}
2356 
2357 	mutex_unlock(&xps_map_mutex);
2358 
2359 	kfree(new_dev_maps);
2360 	return -ENOMEM;
2361 }
2362 EXPORT_SYMBOL(netif_set_xps_queue);
2363 
2364 #endif
2365 void netdev_reset_tc(struct net_device *dev)
2366 {
2367 #ifdef CONFIG_XPS
2368 	netif_reset_xps_queues_gt(dev, 0);
2369 #endif
2370 	dev->num_tc = 0;
2371 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2372 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2373 }
2374 EXPORT_SYMBOL(netdev_reset_tc);
2375 
2376 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2377 {
2378 	if (tc >= dev->num_tc)
2379 		return -EINVAL;
2380 
2381 #ifdef CONFIG_XPS
2382 	netif_reset_xps_queues(dev, offset, count);
2383 #endif
2384 	dev->tc_to_txq[tc].count = count;
2385 	dev->tc_to_txq[tc].offset = offset;
2386 	return 0;
2387 }
2388 EXPORT_SYMBOL(netdev_set_tc_queue);
2389 
2390 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2391 {
2392 	if (num_tc > TC_MAX_QUEUE)
2393 		return -EINVAL;
2394 
2395 #ifdef CONFIG_XPS
2396 	netif_reset_xps_queues_gt(dev, 0);
2397 #endif
2398 	dev->num_tc = num_tc;
2399 	return 0;
2400 }
2401 EXPORT_SYMBOL(netdev_set_num_tc);
2402 
2403 /*
2404  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2405  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2406  */
2407 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2408 {
2409 	bool disabling;
2410 	int rc;
2411 
2412 	disabling = txq < dev->real_num_tx_queues;
2413 
2414 	if (txq < 1 || txq > dev->num_tx_queues)
2415 		return -EINVAL;
2416 
2417 	if (dev->reg_state == NETREG_REGISTERED ||
2418 	    dev->reg_state == NETREG_UNREGISTERING) {
2419 		ASSERT_RTNL();
2420 
2421 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2422 						  txq);
2423 		if (rc)
2424 			return rc;
2425 
2426 		if (dev->num_tc)
2427 			netif_setup_tc(dev, txq);
2428 
2429 		dev->real_num_tx_queues = txq;
2430 
2431 		if (disabling) {
2432 			synchronize_net();
2433 			qdisc_reset_all_tx_gt(dev, txq);
2434 #ifdef CONFIG_XPS
2435 			netif_reset_xps_queues_gt(dev, txq);
2436 #endif
2437 		}
2438 	} else {
2439 		dev->real_num_tx_queues = txq;
2440 	}
2441 
2442 	return 0;
2443 }
2444 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2445 
2446 #ifdef CONFIG_SYSFS
2447 /**
2448  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2449  *	@dev: Network device
2450  *	@rxq: Actual number of RX queues
2451  *
2452  *	This must be called either with the rtnl_lock held or before
2453  *	registration of the net device.  Returns 0 on success, or a
2454  *	negative error code.  If called before registration, it always
2455  *	succeeds.
2456  */
2457 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2458 {
2459 	int rc;
2460 
2461 	if (rxq < 1 || rxq > dev->num_rx_queues)
2462 		return -EINVAL;
2463 
2464 	if (dev->reg_state == NETREG_REGISTERED) {
2465 		ASSERT_RTNL();
2466 
2467 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2468 						  rxq);
2469 		if (rc)
2470 			return rc;
2471 	}
2472 
2473 	dev->real_num_rx_queues = rxq;
2474 	return 0;
2475 }
2476 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2477 #endif
2478 
2479 /**
2480  * netif_get_num_default_rss_queues - default number of RSS queues
2481  *
2482  * This routine should set an upper limit on the number of RSS queues
2483  * used by default by multiqueue devices.
2484  */
2485 int netif_get_num_default_rss_queues(void)
2486 {
2487 	return is_kdump_kernel() ?
2488 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2489 }
2490 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2491 
2492 static void __netif_reschedule(struct Qdisc *q)
2493 {
2494 	struct softnet_data *sd;
2495 	unsigned long flags;
2496 
2497 	local_irq_save(flags);
2498 	sd = this_cpu_ptr(&softnet_data);
2499 	q->next_sched = NULL;
2500 	*sd->output_queue_tailp = q;
2501 	sd->output_queue_tailp = &q->next_sched;
2502 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2503 	local_irq_restore(flags);
2504 }
2505 
2506 void __netif_schedule(struct Qdisc *q)
2507 {
2508 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2509 		__netif_reschedule(q);
2510 }
2511 EXPORT_SYMBOL(__netif_schedule);
2512 
2513 struct dev_kfree_skb_cb {
2514 	enum skb_free_reason reason;
2515 };
2516 
2517 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2518 {
2519 	return (struct dev_kfree_skb_cb *)skb->cb;
2520 }
2521 
2522 void netif_schedule_queue(struct netdev_queue *txq)
2523 {
2524 	rcu_read_lock();
2525 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2526 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2527 
2528 		__netif_schedule(q);
2529 	}
2530 	rcu_read_unlock();
2531 }
2532 EXPORT_SYMBOL(netif_schedule_queue);
2533 
2534 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2535 {
2536 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2537 		struct Qdisc *q;
2538 
2539 		rcu_read_lock();
2540 		q = rcu_dereference(dev_queue->qdisc);
2541 		__netif_schedule(q);
2542 		rcu_read_unlock();
2543 	}
2544 }
2545 EXPORT_SYMBOL(netif_tx_wake_queue);
2546 
2547 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2548 {
2549 	unsigned long flags;
2550 
2551 	if (unlikely(!skb))
2552 		return;
2553 
2554 	if (likely(refcount_read(&skb->users) == 1)) {
2555 		smp_rmb();
2556 		refcount_set(&skb->users, 0);
2557 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2558 		return;
2559 	}
2560 	get_kfree_skb_cb(skb)->reason = reason;
2561 	local_irq_save(flags);
2562 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2563 	__this_cpu_write(softnet_data.completion_queue, skb);
2564 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2565 	local_irq_restore(flags);
2566 }
2567 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2568 
2569 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2570 {
2571 	if (in_irq() || irqs_disabled())
2572 		__dev_kfree_skb_irq(skb, reason);
2573 	else
2574 		dev_kfree_skb(skb);
2575 }
2576 EXPORT_SYMBOL(__dev_kfree_skb_any);
2577 
2578 
2579 /**
2580  * netif_device_detach - mark device as removed
2581  * @dev: network device
2582  *
2583  * Mark device as removed from system and therefore no longer available.
2584  */
2585 void netif_device_detach(struct net_device *dev)
2586 {
2587 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2588 	    netif_running(dev)) {
2589 		netif_tx_stop_all_queues(dev);
2590 	}
2591 }
2592 EXPORT_SYMBOL(netif_device_detach);
2593 
2594 /**
2595  * netif_device_attach - mark device as attached
2596  * @dev: network device
2597  *
2598  * Mark device as attached from system and restart if needed.
2599  */
2600 void netif_device_attach(struct net_device *dev)
2601 {
2602 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2603 	    netif_running(dev)) {
2604 		netif_tx_wake_all_queues(dev);
2605 		__netdev_watchdog_up(dev);
2606 	}
2607 }
2608 EXPORT_SYMBOL(netif_device_attach);
2609 
2610 /*
2611  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2612  * to be used as a distribution range.
2613  */
2614 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2615 		  unsigned int num_tx_queues)
2616 {
2617 	u32 hash;
2618 	u16 qoffset = 0;
2619 	u16 qcount = num_tx_queues;
2620 
2621 	if (skb_rx_queue_recorded(skb)) {
2622 		hash = skb_get_rx_queue(skb);
2623 		while (unlikely(hash >= num_tx_queues))
2624 			hash -= num_tx_queues;
2625 		return hash;
2626 	}
2627 
2628 	if (dev->num_tc) {
2629 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2630 
2631 		qoffset = dev->tc_to_txq[tc].offset;
2632 		qcount = dev->tc_to_txq[tc].count;
2633 	}
2634 
2635 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2636 }
2637 EXPORT_SYMBOL(__skb_tx_hash);
2638 
2639 static void skb_warn_bad_offload(const struct sk_buff *skb)
2640 {
2641 	static const netdev_features_t null_features;
2642 	struct net_device *dev = skb->dev;
2643 	const char *name = "";
2644 
2645 	if (!net_ratelimit())
2646 		return;
2647 
2648 	if (dev) {
2649 		if (dev->dev.parent)
2650 			name = dev_driver_string(dev->dev.parent);
2651 		else
2652 			name = netdev_name(dev);
2653 	}
2654 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2655 	     "gso_type=%d ip_summed=%d\n",
2656 	     name, dev ? &dev->features : &null_features,
2657 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2658 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2659 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2660 }
2661 
2662 /*
2663  * Invalidate hardware checksum when packet is to be mangled, and
2664  * complete checksum manually on outgoing path.
2665  */
2666 int skb_checksum_help(struct sk_buff *skb)
2667 {
2668 	__wsum csum;
2669 	int ret = 0, offset;
2670 
2671 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2672 		goto out_set_summed;
2673 
2674 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2675 		skb_warn_bad_offload(skb);
2676 		return -EINVAL;
2677 	}
2678 
2679 	/* Before computing a checksum, we should make sure no frag could
2680 	 * be modified by an external entity : checksum could be wrong.
2681 	 */
2682 	if (skb_has_shared_frag(skb)) {
2683 		ret = __skb_linearize(skb);
2684 		if (ret)
2685 			goto out;
2686 	}
2687 
2688 	offset = skb_checksum_start_offset(skb);
2689 	BUG_ON(offset >= skb_headlen(skb));
2690 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2691 
2692 	offset += skb->csum_offset;
2693 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2694 
2695 	if (skb_cloned(skb) &&
2696 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2697 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2698 		if (ret)
2699 			goto out;
2700 	}
2701 
2702 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2703 out_set_summed:
2704 	skb->ip_summed = CHECKSUM_NONE;
2705 out:
2706 	return ret;
2707 }
2708 EXPORT_SYMBOL(skb_checksum_help);
2709 
2710 int skb_crc32c_csum_help(struct sk_buff *skb)
2711 {
2712 	__le32 crc32c_csum;
2713 	int ret = 0, offset, start;
2714 
2715 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2716 		goto out;
2717 
2718 	if (unlikely(skb_is_gso(skb)))
2719 		goto out;
2720 
2721 	/* Before computing a checksum, we should make sure no frag could
2722 	 * be modified by an external entity : checksum could be wrong.
2723 	 */
2724 	if (unlikely(skb_has_shared_frag(skb))) {
2725 		ret = __skb_linearize(skb);
2726 		if (ret)
2727 			goto out;
2728 	}
2729 	start = skb_checksum_start_offset(skb);
2730 	offset = start + offsetof(struct sctphdr, checksum);
2731 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2732 		ret = -EINVAL;
2733 		goto out;
2734 	}
2735 	if (skb_cloned(skb) &&
2736 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2737 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2738 		if (ret)
2739 			goto out;
2740 	}
2741 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2742 						  skb->len - start, ~(__u32)0,
2743 						  crc32c_csum_stub));
2744 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2745 	skb->ip_summed = CHECKSUM_NONE;
2746 	skb->csum_not_inet = 0;
2747 out:
2748 	return ret;
2749 }
2750 
2751 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2752 {
2753 	__be16 type = skb->protocol;
2754 
2755 	/* Tunnel gso handlers can set protocol to ethernet. */
2756 	if (type == htons(ETH_P_TEB)) {
2757 		struct ethhdr *eth;
2758 
2759 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2760 			return 0;
2761 
2762 		eth = (struct ethhdr *)skb_mac_header(skb);
2763 		type = eth->h_proto;
2764 	}
2765 
2766 	return __vlan_get_protocol(skb, type, depth);
2767 }
2768 
2769 /**
2770  *	skb_mac_gso_segment - mac layer segmentation handler.
2771  *	@skb: buffer to segment
2772  *	@features: features for the output path (see dev->features)
2773  */
2774 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2775 				    netdev_features_t features)
2776 {
2777 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2778 	struct packet_offload *ptype;
2779 	int vlan_depth = skb->mac_len;
2780 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2781 
2782 	if (unlikely(!type))
2783 		return ERR_PTR(-EINVAL);
2784 
2785 	__skb_pull(skb, vlan_depth);
2786 
2787 	rcu_read_lock();
2788 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2789 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2790 			segs = ptype->callbacks.gso_segment(skb, features);
2791 			break;
2792 		}
2793 	}
2794 	rcu_read_unlock();
2795 
2796 	__skb_push(skb, skb->data - skb_mac_header(skb));
2797 
2798 	return segs;
2799 }
2800 EXPORT_SYMBOL(skb_mac_gso_segment);
2801 
2802 
2803 /* openvswitch calls this on rx path, so we need a different check.
2804  */
2805 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2806 {
2807 	if (tx_path)
2808 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2809 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2810 
2811 	return skb->ip_summed == CHECKSUM_NONE;
2812 }
2813 
2814 /**
2815  *	__skb_gso_segment - Perform segmentation on skb.
2816  *	@skb: buffer to segment
2817  *	@features: features for the output path (see dev->features)
2818  *	@tx_path: whether it is called in TX path
2819  *
2820  *	This function segments the given skb and returns a list of segments.
2821  *
2822  *	It may return NULL if the skb requires no segmentation.  This is
2823  *	only possible when GSO is used for verifying header integrity.
2824  *
2825  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2826  */
2827 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2828 				  netdev_features_t features, bool tx_path)
2829 {
2830 	struct sk_buff *segs;
2831 
2832 	if (unlikely(skb_needs_check(skb, tx_path))) {
2833 		int err;
2834 
2835 		/* We're going to init ->check field in TCP or UDP header */
2836 		err = skb_cow_head(skb, 0);
2837 		if (err < 0)
2838 			return ERR_PTR(err);
2839 	}
2840 
2841 	/* Only report GSO partial support if it will enable us to
2842 	 * support segmentation on this frame without needing additional
2843 	 * work.
2844 	 */
2845 	if (features & NETIF_F_GSO_PARTIAL) {
2846 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2847 		struct net_device *dev = skb->dev;
2848 
2849 		partial_features |= dev->features & dev->gso_partial_features;
2850 		if (!skb_gso_ok(skb, features | partial_features))
2851 			features &= ~NETIF_F_GSO_PARTIAL;
2852 	}
2853 
2854 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2855 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2856 
2857 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2858 	SKB_GSO_CB(skb)->encap_level = 0;
2859 
2860 	skb_reset_mac_header(skb);
2861 	skb_reset_mac_len(skb);
2862 
2863 	segs = skb_mac_gso_segment(skb, features);
2864 
2865 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2866 		skb_warn_bad_offload(skb);
2867 
2868 	return segs;
2869 }
2870 EXPORT_SYMBOL(__skb_gso_segment);
2871 
2872 /* Take action when hardware reception checksum errors are detected. */
2873 #ifdef CONFIG_BUG
2874 void netdev_rx_csum_fault(struct net_device *dev)
2875 {
2876 	if (net_ratelimit()) {
2877 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2878 		dump_stack();
2879 	}
2880 }
2881 EXPORT_SYMBOL(netdev_rx_csum_fault);
2882 #endif
2883 
2884 /* Actually, we should eliminate this check as soon as we know, that:
2885  * 1. IOMMU is present and allows to map all the memory.
2886  * 2. No high memory really exists on this machine.
2887  */
2888 
2889 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2890 {
2891 #ifdef CONFIG_HIGHMEM
2892 	int i;
2893 
2894 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2895 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2896 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2897 
2898 			if (PageHighMem(skb_frag_page(frag)))
2899 				return 1;
2900 		}
2901 	}
2902 
2903 	if (PCI_DMA_BUS_IS_PHYS) {
2904 		struct device *pdev = dev->dev.parent;
2905 
2906 		if (!pdev)
2907 			return 0;
2908 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2909 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2910 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2911 
2912 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2913 				return 1;
2914 		}
2915 	}
2916 #endif
2917 	return 0;
2918 }
2919 
2920 /* If MPLS offload request, verify we are testing hardware MPLS features
2921  * instead of standard features for the netdev.
2922  */
2923 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2924 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2925 					   netdev_features_t features,
2926 					   __be16 type)
2927 {
2928 	if (eth_p_mpls(type))
2929 		features &= skb->dev->mpls_features;
2930 
2931 	return features;
2932 }
2933 #else
2934 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2935 					   netdev_features_t features,
2936 					   __be16 type)
2937 {
2938 	return features;
2939 }
2940 #endif
2941 
2942 static netdev_features_t harmonize_features(struct sk_buff *skb,
2943 	netdev_features_t features)
2944 {
2945 	int tmp;
2946 	__be16 type;
2947 
2948 	type = skb_network_protocol(skb, &tmp);
2949 	features = net_mpls_features(skb, features, type);
2950 
2951 	if (skb->ip_summed != CHECKSUM_NONE &&
2952 	    !can_checksum_protocol(features, type)) {
2953 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2954 	}
2955 	if (illegal_highdma(skb->dev, skb))
2956 		features &= ~NETIF_F_SG;
2957 
2958 	return features;
2959 }
2960 
2961 netdev_features_t passthru_features_check(struct sk_buff *skb,
2962 					  struct net_device *dev,
2963 					  netdev_features_t features)
2964 {
2965 	return features;
2966 }
2967 EXPORT_SYMBOL(passthru_features_check);
2968 
2969 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2970 					     struct net_device *dev,
2971 					     netdev_features_t features)
2972 {
2973 	return vlan_features_check(skb, features);
2974 }
2975 
2976 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2977 					    struct net_device *dev,
2978 					    netdev_features_t features)
2979 {
2980 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2981 
2982 	if (gso_segs > dev->gso_max_segs)
2983 		return features & ~NETIF_F_GSO_MASK;
2984 
2985 	/* Support for GSO partial features requires software
2986 	 * intervention before we can actually process the packets
2987 	 * so we need to strip support for any partial features now
2988 	 * and we can pull them back in after we have partially
2989 	 * segmented the frame.
2990 	 */
2991 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2992 		features &= ~dev->gso_partial_features;
2993 
2994 	/* Make sure to clear the IPv4 ID mangling feature if the
2995 	 * IPv4 header has the potential to be fragmented.
2996 	 */
2997 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2998 		struct iphdr *iph = skb->encapsulation ?
2999 				    inner_ip_hdr(skb) : ip_hdr(skb);
3000 
3001 		if (!(iph->frag_off & htons(IP_DF)))
3002 			features &= ~NETIF_F_TSO_MANGLEID;
3003 	}
3004 
3005 	return features;
3006 }
3007 
3008 netdev_features_t netif_skb_features(struct sk_buff *skb)
3009 {
3010 	struct net_device *dev = skb->dev;
3011 	netdev_features_t features = dev->features;
3012 
3013 	if (skb_is_gso(skb))
3014 		features = gso_features_check(skb, dev, features);
3015 
3016 	/* If encapsulation offload request, verify we are testing
3017 	 * hardware encapsulation features instead of standard
3018 	 * features for the netdev
3019 	 */
3020 	if (skb->encapsulation)
3021 		features &= dev->hw_enc_features;
3022 
3023 	if (skb_vlan_tagged(skb))
3024 		features = netdev_intersect_features(features,
3025 						     dev->vlan_features |
3026 						     NETIF_F_HW_VLAN_CTAG_TX |
3027 						     NETIF_F_HW_VLAN_STAG_TX);
3028 
3029 	if (dev->netdev_ops->ndo_features_check)
3030 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3031 								features);
3032 	else
3033 		features &= dflt_features_check(skb, dev, features);
3034 
3035 	return harmonize_features(skb, features);
3036 }
3037 EXPORT_SYMBOL(netif_skb_features);
3038 
3039 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3040 		    struct netdev_queue *txq, bool more)
3041 {
3042 	unsigned int len;
3043 	int rc;
3044 
3045 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3046 		dev_queue_xmit_nit(skb, dev);
3047 
3048 	len = skb->len;
3049 	trace_net_dev_start_xmit(skb, dev);
3050 	rc = netdev_start_xmit(skb, dev, txq, more);
3051 	trace_net_dev_xmit(skb, rc, dev, len);
3052 
3053 	return rc;
3054 }
3055 
3056 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3057 				    struct netdev_queue *txq, int *ret)
3058 {
3059 	struct sk_buff *skb = first;
3060 	int rc = NETDEV_TX_OK;
3061 
3062 	while (skb) {
3063 		struct sk_buff *next = skb->next;
3064 
3065 		skb->next = NULL;
3066 		rc = xmit_one(skb, dev, txq, next != NULL);
3067 		if (unlikely(!dev_xmit_complete(rc))) {
3068 			skb->next = next;
3069 			goto out;
3070 		}
3071 
3072 		skb = next;
3073 		if (netif_xmit_stopped(txq) && skb) {
3074 			rc = NETDEV_TX_BUSY;
3075 			break;
3076 		}
3077 	}
3078 
3079 out:
3080 	*ret = rc;
3081 	return skb;
3082 }
3083 
3084 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3085 					  netdev_features_t features)
3086 {
3087 	if (skb_vlan_tag_present(skb) &&
3088 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3089 		skb = __vlan_hwaccel_push_inside(skb);
3090 	return skb;
3091 }
3092 
3093 int skb_csum_hwoffload_help(struct sk_buff *skb,
3094 			    const netdev_features_t features)
3095 {
3096 	if (unlikely(skb->csum_not_inet))
3097 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3098 			skb_crc32c_csum_help(skb);
3099 
3100 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3101 }
3102 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3103 
3104 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3105 {
3106 	netdev_features_t features;
3107 
3108 	features = netif_skb_features(skb);
3109 	skb = validate_xmit_vlan(skb, features);
3110 	if (unlikely(!skb))
3111 		goto out_null;
3112 
3113 	if (netif_needs_gso(skb, features)) {
3114 		struct sk_buff *segs;
3115 
3116 		segs = skb_gso_segment(skb, features);
3117 		if (IS_ERR(segs)) {
3118 			goto out_kfree_skb;
3119 		} else if (segs) {
3120 			consume_skb(skb);
3121 			skb = segs;
3122 		}
3123 	} else {
3124 		if (skb_needs_linearize(skb, features) &&
3125 		    __skb_linearize(skb))
3126 			goto out_kfree_skb;
3127 
3128 		/* If packet is not checksummed and device does not
3129 		 * support checksumming for this protocol, complete
3130 		 * checksumming here.
3131 		 */
3132 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3133 			if (skb->encapsulation)
3134 				skb_set_inner_transport_header(skb,
3135 							       skb_checksum_start_offset(skb));
3136 			else
3137 				skb_set_transport_header(skb,
3138 							 skb_checksum_start_offset(skb));
3139 			if (skb_csum_hwoffload_help(skb, features))
3140 				goto out_kfree_skb;
3141 		}
3142 	}
3143 
3144 	skb = validate_xmit_xfrm(skb, features, again);
3145 
3146 	return skb;
3147 
3148 out_kfree_skb:
3149 	kfree_skb(skb);
3150 out_null:
3151 	atomic_long_inc(&dev->tx_dropped);
3152 	return NULL;
3153 }
3154 
3155 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3156 {
3157 	struct sk_buff *next, *head = NULL, *tail;
3158 
3159 	for (; skb != NULL; skb = next) {
3160 		next = skb->next;
3161 		skb->next = NULL;
3162 
3163 		/* in case skb wont be segmented, point to itself */
3164 		skb->prev = skb;
3165 
3166 		skb = validate_xmit_skb(skb, dev, again);
3167 		if (!skb)
3168 			continue;
3169 
3170 		if (!head)
3171 			head = skb;
3172 		else
3173 			tail->next = skb;
3174 		/* If skb was segmented, skb->prev points to
3175 		 * the last segment. If not, it still contains skb.
3176 		 */
3177 		tail = skb->prev;
3178 	}
3179 	return head;
3180 }
3181 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3182 
3183 static void qdisc_pkt_len_init(struct sk_buff *skb)
3184 {
3185 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3186 
3187 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3188 
3189 	/* To get more precise estimation of bytes sent on wire,
3190 	 * we add to pkt_len the headers size of all segments
3191 	 */
3192 	if (shinfo->gso_size)  {
3193 		unsigned int hdr_len;
3194 		u16 gso_segs = shinfo->gso_segs;
3195 
3196 		/* mac layer + network layer */
3197 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3198 
3199 		/* + transport layer */
3200 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3201 			const struct tcphdr *th;
3202 			struct tcphdr _tcphdr;
3203 
3204 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3205 						sizeof(_tcphdr), &_tcphdr);
3206 			if (likely(th))
3207 				hdr_len += __tcp_hdrlen(th);
3208 		} else {
3209 			struct udphdr _udphdr;
3210 
3211 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3212 					       sizeof(_udphdr), &_udphdr))
3213 				hdr_len += sizeof(struct udphdr);
3214 		}
3215 
3216 		if (shinfo->gso_type & SKB_GSO_DODGY)
3217 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3218 						shinfo->gso_size);
3219 
3220 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3221 	}
3222 }
3223 
3224 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3225 				 struct net_device *dev,
3226 				 struct netdev_queue *txq)
3227 {
3228 	spinlock_t *root_lock = qdisc_lock(q);
3229 	struct sk_buff *to_free = NULL;
3230 	bool contended;
3231 	int rc;
3232 
3233 	qdisc_calculate_pkt_len(skb, q);
3234 
3235 	if (q->flags & TCQ_F_NOLOCK) {
3236 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3237 			__qdisc_drop(skb, &to_free);
3238 			rc = NET_XMIT_DROP;
3239 		} else {
3240 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3241 			__qdisc_run(q);
3242 		}
3243 
3244 		if (unlikely(to_free))
3245 			kfree_skb_list(to_free);
3246 		return rc;
3247 	}
3248 
3249 	/*
3250 	 * Heuristic to force contended enqueues to serialize on a
3251 	 * separate lock before trying to get qdisc main lock.
3252 	 * This permits qdisc->running owner to get the lock more
3253 	 * often and dequeue packets faster.
3254 	 */
3255 	contended = qdisc_is_running(q);
3256 	if (unlikely(contended))
3257 		spin_lock(&q->busylock);
3258 
3259 	spin_lock(root_lock);
3260 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3261 		__qdisc_drop(skb, &to_free);
3262 		rc = NET_XMIT_DROP;
3263 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3264 		   qdisc_run_begin(q)) {
3265 		/*
3266 		 * This is a work-conserving queue; there are no old skbs
3267 		 * waiting to be sent out; and the qdisc is not running -
3268 		 * xmit the skb directly.
3269 		 */
3270 
3271 		qdisc_bstats_update(q, skb);
3272 
3273 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3274 			if (unlikely(contended)) {
3275 				spin_unlock(&q->busylock);
3276 				contended = false;
3277 			}
3278 			__qdisc_run(q);
3279 		}
3280 
3281 		qdisc_run_end(q);
3282 		rc = NET_XMIT_SUCCESS;
3283 	} else {
3284 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3285 		if (qdisc_run_begin(q)) {
3286 			if (unlikely(contended)) {
3287 				spin_unlock(&q->busylock);
3288 				contended = false;
3289 			}
3290 			__qdisc_run(q);
3291 			qdisc_run_end(q);
3292 		}
3293 	}
3294 	spin_unlock(root_lock);
3295 	if (unlikely(to_free))
3296 		kfree_skb_list(to_free);
3297 	if (unlikely(contended))
3298 		spin_unlock(&q->busylock);
3299 	return rc;
3300 }
3301 
3302 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3303 static void skb_update_prio(struct sk_buff *skb)
3304 {
3305 	const struct netprio_map *map;
3306 	const struct sock *sk;
3307 	unsigned int prioidx;
3308 
3309 	if (skb->priority)
3310 		return;
3311 	map = rcu_dereference_bh(skb->dev->priomap);
3312 	if (!map)
3313 		return;
3314 	sk = skb_to_full_sk(skb);
3315 	if (!sk)
3316 		return;
3317 
3318 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3319 
3320 	if (prioidx < map->priomap_len)
3321 		skb->priority = map->priomap[prioidx];
3322 }
3323 #else
3324 #define skb_update_prio(skb)
3325 #endif
3326 
3327 DEFINE_PER_CPU(int, xmit_recursion);
3328 EXPORT_SYMBOL(xmit_recursion);
3329 
3330 /**
3331  *	dev_loopback_xmit - loop back @skb
3332  *	@net: network namespace this loopback is happening in
3333  *	@sk:  sk needed to be a netfilter okfn
3334  *	@skb: buffer to transmit
3335  */
3336 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3337 {
3338 	skb_reset_mac_header(skb);
3339 	__skb_pull(skb, skb_network_offset(skb));
3340 	skb->pkt_type = PACKET_LOOPBACK;
3341 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3342 	WARN_ON(!skb_dst(skb));
3343 	skb_dst_force(skb);
3344 	netif_rx_ni(skb);
3345 	return 0;
3346 }
3347 EXPORT_SYMBOL(dev_loopback_xmit);
3348 
3349 #ifdef CONFIG_NET_EGRESS
3350 static struct sk_buff *
3351 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3352 {
3353 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3354 	struct tcf_result cl_res;
3355 
3356 	if (!miniq)
3357 		return skb;
3358 
3359 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3360 	mini_qdisc_bstats_cpu_update(miniq, skb);
3361 
3362 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3363 	case TC_ACT_OK:
3364 	case TC_ACT_RECLASSIFY:
3365 		skb->tc_index = TC_H_MIN(cl_res.classid);
3366 		break;
3367 	case TC_ACT_SHOT:
3368 		mini_qdisc_qstats_cpu_drop(miniq);
3369 		*ret = NET_XMIT_DROP;
3370 		kfree_skb(skb);
3371 		return NULL;
3372 	case TC_ACT_STOLEN:
3373 	case TC_ACT_QUEUED:
3374 	case TC_ACT_TRAP:
3375 		*ret = NET_XMIT_SUCCESS;
3376 		consume_skb(skb);
3377 		return NULL;
3378 	case TC_ACT_REDIRECT:
3379 		/* No need to push/pop skb's mac_header here on egress! */
3380 		skb_do_redirect(skb);
3381 		*ret = NET_XMIT_SUCCESS;
3382 		return NULL;
3383 	default:
3384 		break;
3385 	}
3386 
3387 	return skb;
3388 }
3389 #endif /* CONFIG_NET_EGRESS */
3390 
3391 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3392 {
3393 #ifdef CONFIG_XPS
3394 	struct xps_dev_maps *dev_maps;
3395 	struct xps_map *map;
3396 	int queue_index = -1;
3397 
3398 	rcu_read_lock();
3399 	dev_maps = rcu_dereference(dev->xps_maps);
3400 	if (dev_maps) {
3401 		unsigned int tci = skb->sender_cpu - 1;
3402 
3403 		if (dev->num_tc) {
3404 			tci *= dev->num_tc;
3405 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3406 		}
3407 
3408 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3409 		if (map) {
3410 			if (map->len == 1)
3411 				queue_index = map->queues[0];
3412 			else
3413 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3414 									   map->len)];
3415 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3416 				queue_index = -1;
3417 		}
3418 	}
3419 	rcu_read_unlock();
3420 
3421 	return queue_index;
3422 #else
3423 	return -1;
3424 #endif
3425 }
3426 
3427 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3428 {
3429 	struct sock *sk = skb->sk;
3430 	int queue_index = sk_tx_queue_get(sk);
3431 
3432 	if (queue_index < 0 || skb->ooo_okay ||
3433 	    queue_index >= dev->real_num_tx_queues) {
3434 		int new_index = get_xps_queue(dev, skb);
3435 
3436 		if (new_index < 0)
3437 			new_index = skb_tx_hash(dev, skb);
3438 
3439 		if (queue_index != new_index && sk &&
3440 		    sk_fullsock(sk) &&
3441 		    rcu_access_pointer(sk->sk_dst_cache))
3442 			sk_tx_queue_set(sk, new_index);
3443 
3444 		queue_index = new_index;
3445 	}
3446 
3447 	return queue_index;
3448 }
3449 
3450 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3451 				    struct sk_buff *skb,
3452 				    void *accel_priv)
3453 {
3454 	int queue_index = 0;
3455 
3456 #ifdef CONFIG_XPS
3457 	u32 sender_cpu = skb->sender_cpu - 1;
3458 
3459 	if (sender_cpu >= (u32)NR_CPUS)
3460 		skb->sender_cpu = raw_smp_processor_id() + 1;
3461 #endif
3462 
3463 	if (dev->real_num_tx_queues != 1) {
3464 		const struct net_device_ops *ops = dev->netdev_ops;
3465 
3466 		if (ops->ndo_select_queue)
3467 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3468 							    __netdev_pick_tx);
3469 		else
3470 			queue_index = __netdev_pick_tx(dev, skb);
3471 
3472 		queue_index = netdev_cap_txqueue(dev, queue_index);
3473 	}
3474 
3475 	skb_set_queue_mapping(skb, queue_index);
3476 	return netdev_get_tx_queue(dev, queue_index);
3477 }
3478 
3479 /**
3480  *	__dev_queue_xmit - transmit a buffer
3481  *	@skb: buffer to transmit
3482  *	@accel_priv: private data used for L2 forwarding offload
3483  *
3484  *	Queue a buffer for transmission to a network device. The caller must
3485  *	have set the device and priority and built the buffer before calling
3486  *	this function. The function can be called from an interrupt.
3487  *
3488  *	A negative errno code is returned on a failure. A success does not
3489  *	guarantee the frame will be transmitted as it may be dropped due
3490  *	to congestion or traffic shaping.
3491  *
3492  * -----------------------------------------------------------------------------------
3493  *      I notice this method can also return errors from the queue disciplines,
3494  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3495  *      be positive.
3496  *
3497  *      Regardless of the return value, the skb is consumed, so it is currently
3498  *      difficult to retry a send to this method.  (You can bump the ref count
3499  *      before sending to hold a reference for retry if you are careful.)
3500  *
3501  *      When calling this method, interrupts MUST be enabled.  This is because
3502  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3503  *          --BLG
3504  */
3505 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3506 {
3507 	struct net_device *dev = skb->dev;
3508 	struct netdev_queue *txq;
3509 	struct Qdisc *q;
3510 	int rc = -ENOMEM;
3511 	bool again = false;
3512 
3513 	skb_reset_mac_header(skb);
3514 
3515 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3516 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3517 
3518 	/* Disable soft irqs for various locks below. Also
3519 	 * stops preemption for RCU.
3520 	 */
3521 	rcu_read_lock_bh();
3522 
3523 	skb_update_prio(skb);
3524 
3525 	qdisc_pkt_len_init(skb);
3526 #ifdef CONFIG_NET_CLS_ACT
3527 	skb->tc_at_ingress = 0;
3528 # ifdef CONFIG_NET_EGRESS
3529 	if (static_key_false(&egress_needed)) {
3530 		skb = sch_handle_egress(skb, &rc, dev);
3531 		if (!skb)
3532 			goto out;
3533 	}
3534 # endif
3535 #endif
3536 	/* If device/qdisc don't need skb->dst, release it right now while
3537 	 * its hot in this cpu cache.
3538 	 */
3539 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3540 		skb_dst_drop(skb);
3541 	else
3542 		skb_dst_force(skb);
3543 
3544 	txq = netdev_pick_tx(dev, skb, accel_priv);
3545 	q = rcu_dereference_bh(txq->qdisc);
3546 
3547 	trace_net_dev_queue(skb);
3548 	if (q->enqueue) {
3549 		rc = __dev_xmit_skb(skb, q, dev, txq);
3550 		goto out;
3551 	}
3552 
3553 	/* The device has no queue. Common case for software devices:
3554 	 * loopback, all the sorts of tunnels...
3555 
3556 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3557 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3558 	 * counters.)
3559 	 * However, it is possible, that they rely on protection
3560 	 * made by us here.
3561 
3562 	 * Check this and shot the lock. It is not prone from deadlocks.
3563 	 *Either shot noqueue qdisc, it is even simpler 8)
3564 	 */
3565 	if (dev->flags & IFF_UP) {
3566 		int cpu = smp_processor_id(); /* ok because BHs are off */
3567 
3568 		if (txq->xmit_lock_owner != cpu) {
3569 			if (unlikely(__this_cpu_read(xmit_recursion) >
3570 				     XMIT_RECURSION_LIMIT))
3571 				goto recursion_alert;
3572 
3573 			skb = validate_xmit_skb(skb, dev, &again);
3574 			if (!skb)
3575 				goto out;
3576 
3577 			HARD_TX_LOCK(dev, txq, cpu);
3578 
3579 			if (!netif_xmit_stopped(txq)) {
3580 				__this_cpu_inc(xmit_recursion);
3581 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3582 				__this_cpu_dec(xmit_recursion);
3583 				if (dev_xmit_complete(rc)) {
3584 					HARD_TX_UNLOCK(dev, txq);
3585 					goto out;
3586 				}
3587 			}
3588 			HARD_TX_UNLOCK(dev, txq);
3589 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3590 					     dev->name);
3591 		} else {
3592 			/* Recursion is detected! It is possible,
3593 			 * unfortunately
3594 			 */
3595 recursion_alert:
3596 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3597 					     dev->name);
3598 		}
3599 	}
3600 
3601 	rc = -ENETDOWN;
3602 	rcu_read_unlock_bh();
3603 
3604 	atomic_long_inc(&dev->tx_dropped);
3605 	kfree_skb_list(skb);
3606 	return rc;
3607 out:
3608 	rcu_read_unlock_bh();
3609 	return rc;
3610 }
3611 
3612 int dev_queue_xmit(struct sk_buff *skb)
3613 {
3614 	return __dev_queue_xmit(skb, NULL);
3615 }
3616 EXPORT_SYMBOL(dev_queue_xmit);
3617 
3618 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3619 {
3620 	return __dev_queue_xmit(skb, accel_priv);
3621 }
3622 EXPORT_SYMBOL(dev_queue_xmit_accel);
3623 
3624 
3625 /*************************************************************************
3626  *			Receiver routines
3627  *************************************************************************/
3628 
3629 int netdev_max_backlog __read_mostly = 1000;
3630 EXPORT_SYMBOL(netdev_max_backlog);
3631 
3632 int netdev_tstamp_prequeue __read_mostly = 1;
3633 int netdev_budget __read_mostly = 300;
3634 unsigned int __read_mostly netdev_budget_usecs = 2000;
3635 int weight_p __read_mostly = 64;           /* old backlog weight */
3636 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3637 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3638 int dev_rx_weight __read_mostly = 64;
3639 int dev_tx_weight __read_mostly = 64;
3640 
3641 /* Called with irq disabled */
3642 static inline void ____napi_schedule(struct softnet_data *sd,
3643 				     struct napi_struct *napi)
3644 {
3645 	list_add_tail(&napi->poll_list, &sd->poll_list);
3646 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3647 }
3648 
3649 #ifdef CONFIG_RPS
3650 
3651 /* One global table that all flow-based protocols share. */
3652 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3653 EXPORT_SYMBOL(rps_sock_flow_table);
3654 u32 rps_cpu_mask __read_mostly;
3655 EXPORT_SYMBOL(rps_cpu_mask);
3656 
3657 struct static_key rps_needed __read_mostly;
3658 EXPORT_SYMBOL(rps_needed);
3659 struct static_key rfs_needed __read_mostly;
3660 EXPORT_SYMBOL(rfs_needed);
3661 
3662 static struct rps_dev_flow *
3663 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3664 	    struct rps_dev_flow *rflow, u16 next_cpu)
3665 {
3666 	if (next_cpu < nr_cpu_ids) {
3667 #ifdef CONFIG_RFS_ACCEL
3668 		struct netdev_rx_queue *rxqueue;
3669 		struct rps_dev_flow_table *flow_table;
3670 		struct rps_dev_flow *old_rflow;
3671 		u32 flow_id;
3672 		u16 rxq_index;
3673 		int rc;
3674 
3675 		/* Should we steer this flow to a different hardware queue? */
3676 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3677 		    !(dev->features & NETIF_F_NTUPLE))
3678 			goto out;
3679 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3680 		if (rxq_index == skb_get_rx_queue(skb))
3681 			goto out;
3682 
3683 		rxqueue = dev->_rx + rxq_index;
3684 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3685 		if (!flow_table)
3686 			goto out;
3687 		flow_id = skb_get_hash(skb) & flow_table->mask;
3688 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3689 							rxq_index, flow_id);
3690 		if (rc < 0)
3691 			goto out;
3692 		old_rflow = rflow;
3693 		rflow = &flow_table->flows[flow_id];
3694 		rflow->filter = rc;
3695 		if (old_rflow->filter == rflow->filter)
3696 			old_rflow->filter = RPS_NO_FILTER;
3697 	out:
3698 #endif
3699 		rflow->last_qtail =
3700 			per_cpu(softnet_data, next_cpu).input_queue_head;
3701 	}
3702 
3703 	rflow->cpu = next_cpu;
3704 	return rflow;
3705 }
3706 
3707 /*
3708  * get_rps_cpu is called from netif_receive_skb and returns the target
3709  * CPU from the RPS map of the receiving queue for a given skb.
3710  * rcu_read_lock must be held on entry.
3711  */
3712 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3713 		       struct rps_dev_flow **rflowp)
3714 {
3715 	const struct rps_sock_flow_table *sock_flow_table;
3716 	struct netdev_rx_queue *rxqueue = dev->_rx;
3717 	struct rps_dev_flow_table *flow_table;
3718 	struct rps_map *map;
3719 	int cpu = -1;
3720 	u32 tcpu;
3721 	u32 hash;
3722 
3723 	if (skb_rx_queue_recorded(skb)) {
3724 		u16 index = skb_get_rx_queue(skb);
3725 
3726 		if (unlikely(index >= dev->real_num_rx_queues)) {
3727 			WARN_ONCE(dev->real_num_rx_queues > 1,
3728 				  "%s received packet on queue %u, but number "
3729 				  "of RX queues is %u\n",
3730 				  dev->name, index, dev->real_num_rx_queues);
3731 			goto done;
3732 		}
3733 		rxqueue += index;
3734 	}
3735 
3736 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3737 
3738 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3739 	map = rcu_dereference(rxqueue->rps_map);
3740 	if (!flow_table && !map)
3741 		goto done;
3742 
3743 	skb_reset_network_header(skb);
3744 	hash = skb_get_hash(skb);
3745 	if (!hash)
3746 		goto done;
3747 
3748 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3749 	if (flow_table && sock_flow_table) {
3750 		struct rps_dev_flow *rflow;
3751 		u32 next_cpu;
3752 		u32 ident;
3753 
3754 		/* First check into global flow table if there is a match */
3755 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3756 		if ((ident ^ hash) & ~rps_cpu_mask)
3757 			goto try_rps;
3758 
3759 		next_cpu = ident & rps_cpu_mask;
3760 
3761 		/* OK, now we know there is a match,
3762 		 * we can look at the local (per receive queue) flow table
3763 		 */
3764 		rflow = &flow_table->flows[hash & flow_table->mask];
3765 		tcpu = rflow->cpu;
3766 
3767 		/*
3768 		 * If the desired CPU (where last recvmsg was done) is
3769 		 * different from current CPU (one in the rx-queue flow
3770 		 * table entry), switch if one of the following holds:
3771 		 *   - Current CPU is unset (>= nr_cpu_ids).
3772 		 *   - Current CPU is offline.
3773 		 *   - The current CPU's queue tail has advanced beyond the
3774 		 *     last packet that was enqueued using this table entry.
3775 		 *     This guarantees that all previous packets for the flow
3776 		 *     have been dequeued, thus preserving in order delivery.
3777 		 */
3778 		if (unlikely(tcpu != next_cpu) &&
3779 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3780 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3781 		      rflow->last_qtail)) >= 0)) {
3782 			tcpu = next_cpu;
3783 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3784 		}
3785 
3786 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3787 			*rflowp = rflow;
3788 			cpu = tcpu;
3789 			goto done;
3790 		}
3791 	}
3792 
3793 try_rps:
3794 
3795 	if (map) {
3796 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3797 		if (cpu_online(tcpu)) {
3798 			cpu = tcpu;
3799 			goto done;
3800 		}
3801 	}
3802 
3803 done:
3804 	return cpu;
3805 }
3806 
3807 #ifdef CONFIG_RFS_ACCEL
3808 
3809 /**
3810  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3811  * @dev: Device on which the filter was set
3812  * @rxq_index: RX queue index
3813  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3814  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3815  *
3816  * Drivers that implement ndo_rx_flow_steer() should periodically call
3817  * this function for each installed filter and remove the filters for
3818  * which it returns %true.
3819  */
3820 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3821 			 u32 flow_id, u16 filter_id)
3822 {
3823 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3824 	struct rps_dev_flow_table *flow_table;
3825 	struct rps_dev_flow *rflow;
3826 	bool expire = true;
3827 	unsigned int cpu;
3828 
3829 	rcu_read_lock();
3830 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3831 	if (flow_table && flow_id <= flow_table->mask) {
3832 		rflow = &flow_table->flows[flow_id];
3833 		cpu = READ_ONCE(rflow->cpu);
3834 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3835 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3836 			   rflow->last_qtail) <
3837 		     (int)(10 * flow_table->mask)))
3838 			expire = false;
3839 	}
3840 	rcu_read_unlock();
3841 	return expire;
3842 }
3843 EXPORT_SYMBOL(rps_may_expire_flow);
3844 
3845 #endif /* CONFIG_RFS_ACCEL */
3846 
3847 /* Called from hardirq (IPI) context */
3848 static void rps_trigger_softirq(void *data)
3849 {
3850 	struct softnet_data *sd = data;
3851 
3852 	____napi_schedule(sd, &sd->backlog);
3853 	sd->received_rps++;
3854 }
3855 
3856 #endif /* CONFIG_RPS */
3857 
3858 /*
3859  * Check if this softnet_data structure is another cpu one
3860  * If yes, queue it to our IPI list and return 1
3861  * If no, return 0
3862  */
3863 static int rps_ipi_queued(struct softnet_data *sd)
3864 {
3865 #ifdef CONFIG_RPS
3866 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3867 
3868 	if (sd != mysd) {
3869 		sd->rps_ipi_next = mysd->rps_ipi_list;
3870 		mysd->rps_ipi_list = sd;
3871 
3872 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3873 		return 1;
3874 	}
3875 #endif /* CONFIG_RPS */
3876 	return 0;
3877 }
3878 
3879 #ifdef CONFIG_NET_FLOW_LIMIT
3880 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3881 #endif
3882 
3883 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3884 {
3885 #ifdef CONFIG_NET_FLOW_LIMIT
3886 	struct sd_flow_limit *fl;
3887 	struct softnet_data *sd;
3888 	unsigned int old_flow, new_flow;
3889 
3890 	if (qlen < (netdev_max_backlog >> 1))
3891 		return false;
3892 
3893 	sd = this_cpu_ptr(&softnet_data);
3894 
3895 	rcu_read_lock();
3896 	fl = rcu_dereference(sd->flow_limit);
3897 	if (fl) {
3898 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3899 		old_flow = fl->history[fl->history_head];
3900 		fl->history[fl->history_head] = new_flow;
3901 
3902 		fl->history_head++;
3903 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3904 
3905 		if (likely(fl->buckets[old_flow]))
3906 			fl->buckets[old_flow]--;
3907 
3908 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3909 			fl->count++;
3910 			rcu_read_unlock();
3911 			return true;
3912 		}
3913 	}
3914 	rcu_read_unlock();
3915 #endif
3916 	return false;
3917 }
3918 
3919 /*
3920  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3921  * queue (may be a remote CPU queue).
3922  */
3923 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3924 			      unsigned int *qtail)
3925 {
3926 	struct softnet_data *sd;
3927 	unsigned long flags;
3928 	unsigned int qlen;
3929 
3930 	sd = &per_cpu(softnet_data, cpu);
3931 
3932 	local_irq_save(flags);
3933 
3934 	rps_lock(sd);
3935 	if (!netif_running(skb->dev))
3936 		goto drop;
3937 	qlen = skb_queue_len(&sd->input_pkt_queue);
3938 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3939 		if (qlen) {
3940 enqueue:
3941 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3942 			input_queue_tail_incr_save(sd, qtail);
3943 			rps_unlock(sd);
3944 			local_irq_restore(flags);
3945 			return NET_RX_SUCCESS;
3946 		}
3947 
3948 		/* Schedule NAPI for backlog device
3949 		 * We can use non atomic operation since we own the queue lock
3950 		 */
3951 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3952 			if (!rps_ipi_queued(sd))
3953 				____napi_schedule(sd, &sd->backlog);
3954 		}
3955 		goto enqueue;
3956 	}
3957 
3958 drop:
3959 	sd->dropped++;
3960 	rps_unlock(sd);
3961 
3962 	local_irq_restore(flags);
3963 
3964 	atomic_long_inc(&skb->dev->rx_dropped);
3965 	kfree_skb(skb);
3966 	return NET_RX_DROP;
3967 }
3968 
3969 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3970 {
3971 	struct net_device *dev = skb->dev;
3972 	struct netdev_rx_queue *rxqueue;
3973 
3974 	rxqueue = dev->_rx;
3975 
3976 	if (skb_rx_queue_recorded(skb)) {
3977 		u16 index = skb_get_rx_queue(skb);
3978 
3979 		if (unlikely(index >= dev->real_num_rx_queues)) {
3980 			WARN_ONCE(dev->real_num_rx_queues > 1,
3981 				  "%s received packet on queue %u, but number "
3982 				  "of RX queues is %u\n",
3983 				  dev->name, index, dev->real_num_rx_queues);
3984 
3985 			return rxqueue; /* Return first rxqueue */
3986 		}
3987 		rxqueue += index;
3988 	}
3989 	return rxqueue;
3990 }
3991 
3992 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3993 				     struct bpf_prog *xdp_prog)
3994 {
3995 	struct netdev_rx_queue *rxqueue;
3996 	u32 metalen, act = XDP_DROP;
3997 	struct xdp_buff xdp;
3998 	void *orig_data;
3999 	int hlen, off;
4000 	u32 mac_len;
4001 
4002 	/* Reinjected packets coming from act_mirred or similar should
4003 	 * not get XDP generic processing.
4004 	 */
4005 	if (skb_cloned(skb))
4006 		return XDP_PASS;
4007 
4008 	/* XDP packets must be linear and must have sufficient headroom
4009 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4010 	 * native XDP provides, thus we need to do it here as well.
4011 	 */
4012 	if (skb_is_nonlinear(skb) ||
4013 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4014 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4015 		int troom = skb->tail + skb->data_len - skb->end;
4016 
4017 		/* In case we have to go down the path and also linearize,
4018 		 * then lets do the pskb_expand_head() work just once here.
4019 		 */
4020 		if (pskb_expand_head(skb,
4021 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4022 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4023 			goto do_drop;
4024 		if (skb_linearize(skb))
4025 			goto do_drop;
4026 	}
4027 
4028 	/* The XDP program wants to see the packet starting at the MAC
4029 	 * header.
4030 	 */
4031 	mac_len = skb->data - skb_mac_header(skb);
4032 	hlen = skb_headlen(skb) + mac_len;
4033 	xdp.data = skb->data - mac_len;
4034 	xdp.data_meta = xdp.data;
4035 	xdp.data_end = xdp.data + hlen;
4036 	xdp.data_hard_start = skb->data - skb_headroom(skb);
4037 	orig_data = xdp.data;
4038 
4039 	rxqueue = netif_get_rxqueue(skb);
4040 	xdp.rxq = &rxqueue->xdp_rxq;
4041 
4042 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
4043 
4044 	off = xdp.data - orig_data;
4045 	if (off > 0)
4046 		__skb_pull(skb, off);
4047 	else if (off < 0)
4048 		__skb_push(skb, -off);
4049 	skb->mac_header += off;
4050 
4051 	switch (act) {
4052 	case XDP_REDIRECT:
4053 	case XDP_TX:
4054 		__skb_push(skb, mac_len);
4055 		break;
4056 	case XDP_PASS:
4057 		metalen = xdp.data - xdp.data_meta;
4058 		if (metalen)
4059 			skb_metadata_set(skb, metalen);
4060 		break;
4061 	default:
4062 		bpf_warn_invalid_xdp_action(act);
4063 		/* fall through */
4064 	case XDP_ABORTED:
4065 		trace_xdp_exception(skb->dev, xdp_prog, act);
4066 		/* fall through */
4067 	case XDP_DROP:
4068 	do_drop:
4069 		kfree_skb(skb);
4070 		break;
4071 	}
4072 
4073 	return act;
4074 }
4075 
4076 /* When doing generic XDP we have to bypass the qdisc layer and the
4077  * network taps in order to match in-driver-XDP behavior.
4078  */
4079 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4080 {
4081 	struct net_device *dev = skb->dev;
4082 	struct netdev_queue *txq;
4083 	bool free_skb = true;
4084 	int cpu, rc;
4085 
4086 	txq = netdev_pick_tx(dev, skb, NULL);
4087 	cpu = smp_processor_id();
4088 	HARD_TX_LOCK(dev, txq, cpu);
4089 	if (!netif_xmit_stopped(txq)) {
4090 		rc = netdev_start_xmit(skb, dev, txq, 0);
4091 		if (dev_xmit_complete(rc))
4092 			free_skb = false;
4093 	}
4094 	HARD_TX_UNLOCK(dev, txq);
4095 	if (free_skb) {
4096 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4097 		kfree_skb(skb);
4098 	}
4099 }
4100 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4101 
4102 static struct static_key generic_xdp_needed __read_mostly;
4103 
4104 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4105 {
4106 	if (xdp_prog) {
4107 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4108 		int err;
4109 
4110 		if (act != XDP_PASS) {
4111 			switch (act) {
4112 			case XDP_REDIRECT:
4113 				err = xdp_do_generic_redirect(skb->dev, skb,
4114 							      xdp_prog);
4115 				if (err)
4116 					goto out_redir;
4117 			/* fallthru to submit skb */
4118 			case XDP_TX:
4119 				generic_xdp_tx(skb, xdp_prog);
4120 				break;
4121 			}
4122 			return XDP_DROP;
4123 		}
4124 	}
4125 	return XDP_PASS;
4126 out_redir:
4127 	kfree_skb(skb);
4128 	return XDP_DROP;
4129 }
4130 EXPORT_SYMBOL_GPL(do_xdp_generic);
4131 
4132 static int netif_rx_internal(struct sk_buff *skb)
4133 {
4134 	int ret;
4135 
4136 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4137 
4138 	trace_netif_rx(skb);
4139 
4140 	if (static_key_false(&generic_xdp_needed)) {
4141 		int ret;
4142 
4143 		preempt_disable();
4144 		rcu_read_lock();
4145 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4146 		rcu_read_unlock();
4147 		preempt_enable();
4148 
4149 		/* Consider XDP consuming the packet a success from
4150 		 * the netdev point of view we do not want to count
4151 		 * this as an error.
4152 		 */
4153 		if (ret != XDP_PASS)
4154 			return NET_RX_SUCCESS;
4155 	}
4156 
4157 #ifdef CONFIG_RPS
4158 	if (static_key_false(&rps_needed)) {
4159 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4160 		int cpu;
4161 
4162 		preempt_disable();
4163 		rcu_read_lock();
4164 
4165 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4166 		if (cpu < 0)
4167 			cpu = smp_processor_id();
4168 
4169 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4170 
4171 		rcu_read_unlock();
4172 		preempt_enable();
4173 	} else
4174 #endif
4175 	{
4176 		unsigned int qtail;
4177 
4178 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4179 		put_cpu();
4180 	}
4181 	return ret;
4182 }
4183 
4184 /**
4185  *	netif_rx	-	post buffer to the network code
4186  *	@skb: buffer to post
4187  *
4188  *	This function receives a packet from a device driver and queues it for
4189  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4190  *	may be dropped during processing for congestion control or by the
4191  *	protocol layers.
4192  *
4193  *	return values:
4194  *	NET_RX_SUCCESS	(no congestion)
4195  *	NET_RX_DROP     (packet was dropped)
4196  *
4197  */
4198 
4199 int netif_rx(struct sk_buff *skb)
4200 {
4201 	trace_netif_rx_entry(skb);
4202 
4203 	return netif_rx_internal(skb);
4204 }
4205 EXPORT_SYMBOL(netif_rx);
4206 
4207 int netif_rx_ni(struct sk_buff *skb)
4208 {
4209 	int err;
4210 
4211 	trace_netif_rx_ni_entry(skb);
4212 
4213 	preempt_disable();
4214 	err = netif_rx_internal(skb);
4215 	if (local_softirq_pending())
4216 		do_softirq();
4217 	preempt_enable();
4218 
4219 	return err;
4220 }
4221 EXPORT_SYMBOL(netif_rx_ni);
4222 
4223 static __latent_entropy void net_tx_action(struct softirq_action *h)
4224 {
4225 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4226 
4227 	if (sd->completion_queue) {
4228 		struct sk_buff *clist;
4229 
4230 		local_irq_disable();
4231 		clist = sd->completion_queue;
4232 		sd->completion_queue = NULL;
4233 		local_irq_enable();
4234 
4235 		while (clist) {
4236 			struct sk_buff *skb = clist;
4237 
4238 			clist = clist->next;
4239 
4240 			WARN_ON(refcount_read(&skb->users));
4241 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4242 				trace_consume_skb(skb);
4243 			else
4244 				trace_kfree_skb(skb, net_tx_action);
4245 
4246 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4247 				__kfree_skb(skb);
4248 			else
4249 				__kfree_skb_defer(skb);
4250 		}
4251 
4252 		__kfree_skb_flush();
4253 	}
4254 
4255 	if (sd->output_queue) {
4256 		struct Qdisc *head;
4257 
4258 		local_irq_disable();
4259 		head = sd->output_queue;
4260 		sd->output_queue = NULL;
4261 		sd->output_queue_tailp = &sd->output_queue;
4262 		local_irq_enable();
4263 
4264 		while (head) {
4265 			struct Qdisc *q = head;
4266 			spinlock_t *root_lock = NULL;
4267 
4268 			head = head->next_sched;
4269 
4270 			if (!(q->flags & TCQ_F_NOLOCK)) {
4271 				root_lock = qdisc_lock(q);
4272 				spin_lock(root_lock);
4273 			}
4274 			/* We need to make sure head->next_sched is read
4275 			 * before clearing __QDISC_STATE_SCHED
4276 			 */
4277 			smp_mb__before_atomic();
4278 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4279 			qdisc_run(q);
4280 			if (root_lock)
4281 				spin_unlock(root_lock);
4282 		}
4283 	}
4284 
4285 	xfrm_dev_backlog(sd);
4286 }
4287 
4288 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4289 /* This hook is defined here for ATM LANE */
4290 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4291 			     unsigned char *addr) __read_mostly;
4292 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4293 #endif
4294 
4295 static inline struct sk_buff *
4296 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4297 		   struct net_device *orig_dev)
4298 {
4299 #ifdef CONFIG_NET_CLS_ACT
4300 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4301 	struct tcf_result cl_res;
4302 
4303 	/* If there's at least one ingress present somewhere (so
4304 	 * we get here via enabled static key), remaining devices
4305 	 * that are not configured with an ingress qdisc will bail
4306 	 * out here.
4307 	 */
4308 	if (!miniq)
4309 		return skb;
4310 
4311 	if (*pt_prev) {
4312 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4313 		*pt_prev = NULL;
4314 	}
4315 
4316 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4317 	skb->tc_at_ingress = 1;
4318 	mini_qdisc_bstats_cpu_update(miniq, skb);
4319 
4320 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4321 	case TC_ACT_OK:
4322 	case TC_ACT_RECLASSIFY:
4323 		skb->tc_index = TC_H_MIN(cl_res.classid);
4324 		break;
4325 	case TC_ACT_SHOT:
4326 		mini_qdisc_qstats_cpu_drop(miniq);
4327 		kfree_skb(skb);
4328 		return NULL;
4329 	case TC_ACT_STOLEN:
4330 	case TC_ACT_QUEUED:
4331 	case TC_ACT_TRAP:
4332 		consume_skb(skb);
4333 		return NULL;
4334 	case TC_ACT_REDIRECT:
4335 		/* skb_mac_header check was done by cls/act_bpf, so
4336 		 * we can safely push the L2 header back before
4337 		 * redirecting to another netdev
4338 		 */
4339 		__skb_push(skb, skb->mac_len);
4340 		skb_do_redirect(skb);
4341 		return NULL;
4342 	default:
4343 		break;
4344 	}
4345 #endif /* CONFIG_NET_CLS_ACT */
4346 	return skb;
4347 }
4348 
4349 /**
4350  *	netdev_is_rx_handler_busy - check if receive handler is registered
4351  *	@dev: device to check
4352  *
4353  *	Check if a receive handler is already registered for a given device.
4354  *	Return true if there one.
4355  *
4356  *	The caller must hold the rtnl_mutex.
4357  */
4358 bool netdev_is_rx_handler_busy(struct net_device *dev)
4359 {
4360 	ASSERT_RTNL();
4361 	return dev && rtnl_dereference(dev->rx_handler);
4362 }
4363 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4364 
4365 /**
4366  *	netdev_rx_handler_register - register receive handler
4367  *	@dev: device to register a handler for
4368  *	@rx_handler: receive handler to register
4369  *	@rx_handler_data: data pointer that is used by rx handler
4370  *
4371  *	Register a receive handler for a device. This handler will then be
4372  *	called from __netif_receive_skb. A negative errno code is returned
4373  *	on a failure.
4374  *
4375  *	The caller must hold the rtnl_mutex.
4376  *
4377  *	For a general description of rx_handler, see enum rx_handler_result.
4378  */
4379 int netdev_rx_handler_register(struct net_device *dev,
4380 			       rx_handler_func_t *rx_handler,
4381 			       void *rx_handler_data)
4382 {
4383 	if (netdev_is_rx_handler_busy(dev))
4384 		return -EBUSY;
4385 
4386 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4387 		return -EINVAL;
4388 
4389 	/* Note: rx_handler_data must be set before rx_handler */
4390 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4391 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4392 
4393 	return 0;
4394 }
4395 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4396 
4397 /**
4398  *	netdev_rx_handler_unregister - unregister receive handler
4399  *	@dev: device to unregister a handler from
4400  *
4401  *	Unregister a receive handler from a device.
4402  *
4403  *	The caller must hold the rtnl_mutex.
4404  */
4405 void netdev_rx_handler_unregister(struct net_device *dev)
4406 {
4407 
4408 	ASSERT_RTNL();
4409 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4410 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4411 	 * section has a guarantee to see a non NULL rx_handler_data
4412 	 * as well.
4413 	 */
4414 	synchronize_net();
4415 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4416 }
4417 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4418 
4419 /*
4420  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4421  * the special handling of PFMEMALLOC skbs.
4422  */
4423 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4424 {
4425 	switch (skb->protocol) {
4426 	case htons(ETH_P_ARP):
4427 	case htons(ETH_P_IP):
4428 	case htons(ETH_P_IPV6):
4429 	case htons(ETH_P_8021Q):
4430 	case htons(ETH_P_8021AD):
4431 		return true;
4432 	default:
4433 		return false;
4434 	}
4435 }
4436 
4437 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4438 			     int *ret, struct net_device *orig_dev)
4439 {
4440 #ifdef CONFIG_NETFILTER_INGRESS
4441 	if (nf_hook_ingress_active(skb)) {
4442 		int ingress_retval;
4443 
4444 		if (*pt_prev) {
4445 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4446 			*pt_prev = NULL;
4447 		}
4448 
4449 		rcu_read_lock();
4450 		ingress_retval = nf_hook_ingress(skb);
4451 		rcu_read_unlock();
4452 		return ingress_retval;
4453 	}
4454 #endif /* CONFIG_NETFILTER_INGRESS */
4455 	return 0;
4456 }
4457 
4458 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4459 {
4460 	struct packet_type *ptype, *pt_prev;
4461 	rx_handler_func_t *rx_handler;
4462 	struct net_device *orig_dev;
4463 	bool deliver_exact = false;
4464 	int ret = NET_RX_DROP;
4465 	__be16 type;
4466 
4467 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4468 
4469 	trace_netif_receive_skb(skb);
4470 
4471 	orig_dev = skb->dev;
4472 
4473 	skb_reset_network_header(skb);
4474 	if (!skb_transport_header_was_set(skb))
4475 		skb_reset_transport_header(skb);
4476 	skb_reset_mac_len(skb);
4477 
4478 	pt_prev = NULL;
4479 
4480 another_round:
4481 	skb->skb_iif = skb->dev->ifindex;
4482 
4483 	__this_cpu_inc(softnet_data.processed);
4484 
4485 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4486 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4487 		skb = skb_vlan_untag(skb);
4488 		if (unlikely(!skb))
4489 			goto out;
4490 	}
4491 
4492 	if (skb_skip_tc_classify(skb))
4493 		goto skip_classify;
4494 
4495 	if (pfmemalloc)
4496 		goto skip_taps;
4497 
4498 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4499 		if (pt_prev)
4500 			ret = deliver_skb(skb, pt_prev, orig_dev);
4501 		pt_prev = ptype;
4502 	}
4503 
4504 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4505 		if (pt_prev)
4506 			ret = deliver_skb(skb, pt_prev, orig_dev);
4507 		pt_prev = ptype;
4508 	}
4509 
4510 skip_taps:
4511 #ifdef CONFIG_NET_INGRESS
4512 	if (static_key_false(&ingress_needed)) {
4513 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4514 		if (!skb)
4515 			goto out;
4516 
4517 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4518 			goto out;
4519 	}
4520 #endif
4521 	skb_reset_tc(skb);
4522 skip_classify:
4523 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4524 		goto drop;
4525 
4526 	if (skb_vlan_tag_present(skb)) {
4527 		if (pt_prev) {
4528 			ret = deliver_skb(skb, pt_prev, orig_dev);
4529 			pt_prev = NULL;
4530 		}
4531 		if (vlan_do_receive(&skb))
4532 			goto another_round;
4533 		else if (unlikely(!skb))
4534 			goto out;
4535 	}
4536 
4537 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4538 	if (rx_handler) {
4539 		if (pt_prev) {
4540 			ret = deliver_skb(skb, pt_prev, orig_dev);
4541 			pt_prev = NULL;
4542 		}
4543 		switch (rx_handler(&skb)) {
4544 		case RX_HANDLER_CONSUMED:
4545 			ret = NET_RX_SUCCESS;
4546 			goto out;
4547 		case RX_HANDLER_ANOTHER:
4548 			goto another_round;
4549 		case RX_HANDLER_EXACT:
4550 			deliver_exact = true;
4551 		case RX_HANDLER_PASS:
4552 			break;
4553 		default:
4554 			BUG();
4555 		}
4556 	}
4557 
4558 	if (unlikely(skb_vlan_tag_present(skb))) {
4559 		if (skb_vlan_tag_get_id(skb))
4560 			skb->pkt_type = PACKET_OTHERHOST;
4561 		/* Note: we might in the future use prio bits
4562 		 * and set skb->priority like in vlan_do_receive()
4563 		 * For the time being, just ignore Priority Code Point
4564 		 */
4565 		skb->vlan_tci = 0;
4566 	}
4567 
4568 	type = skb->protocol;
4569 
4570 	/* deliver only exact match when indicated */
4571 	if (likely(!deliver_exact)) {
4572 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4573 				       &ptype_base[ntohs(type) &
4574 						   PTYPE_HASH_MASK]);
4575 	}
4576 
4577 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4578 			       &orig_dev->ptype_specific);
4579 
4580 	if (unlikely(skb->dev != orig_dev)) {
4581 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4582 				       &skb->dev->ptype_specific);
4583 	}
4584 
4585 	if (pt_prev) {
4586 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4587 			goto drop;
4588 		else
4589 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4590 	} else {
4591 drop:
4592 		if (!deliver_exact)
4593 			atomic_long_inc(&skb->dev->rx_dropped);
4594 		else
4595 			atomic_long_inc(&skb->dev->rx_nohandler);
4596 		kfree_skb(skb);
4597 		/* Jamal, now you will not able to escape explaining
4598 		 * me how you were going to use this. :-)
4599 		 */
4600 		ret = NET_RX_DROP;
4601 	}
4602 
4603 out:
4604 	return ret;
4605 }
4606 
4607 /**
4608  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4609  *	@skb: buffer to process
4610  *
4611  *	More direct receive version of netif_receive_skb().  It should
4612  *	only be used by callers that have a need to skip RPS and Generic XDP.
4613  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4614  *
4615  *	This function may only be called from softirq context and interrupts
4616  *	should be enabled.
4617  *
4618  *	Return values (usually ignored):
4619  *	NET_RX_SUCCESS: no congestion
4620  *	NET_RX_DROP: packet was dropped
4621  */
4622 int netif_receive_skb_core(struct sk_buff *skb)
4623 {
4624 	int ret;
4625 
4626 	rcu_read_lock();
4627 	ret = __netif_receive_skb_core(skb, false);
4628 	rcu_read_unlock();
4629 
4630 	return ret;
4631 }
4632 EXPORT_SYMBOL(netif_receive_skb_core);
4633 
4634 static int __netif_receive_skb(struct sk_buff *skb)
4635 {
4636 	int ret;
4637 
4638 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4639 		unsigned int noreclaim_flag;
4640 
4641 		/*
4642 		 * PFMEMALLOC skbs are special, they should
4643 		 * - be delivered to SOCK_MEMALLOC sockets only
4644 		 * - stay away from userspace
4645 		 * - have bounded memory usage
4646 		 *
4647 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4648 		 * context down to all allocation sites.
4649 		 */
4650 		noreclaim_flag = memalloc_noreclaim_save();
4651 		ret = __netif_receive_skb_core(skb, true);
4652 		memalloc_noreclaim_restore(noreclaim_flag);
4653 	} else
4654 		ret = __netif_receive_skb_core(skb, false);
4655 
4656 	return ret;
4657 }
4658 
4659 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4660 {
4661 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4662 	struct bpf_prog *new = xdp->prog;
4663 	int ret = 0;
4664 
4665 	switch (xdp->command) {
4666 	case XDP_SETUP_PROG:
4667 		rcu_assign_pointer(dev->xdp_prog, new);
4668 		if (old)
4669 			bpf_prog_put(old);
4670 
4671 		if (old && !new) {
4672 			static_key_slow_dec(&generic_xdp_needed);
4673 		} else if (new && !old) {
4674 			static_key_slow_inc(&generic_xdp_needed);
4675 			dev_disable_lro(dev);
4676 			dev_disable_gro_hw(dev);
4677 		}
4678 		break;
4679 
4680 	case XDP_QUERY_PROG:
4681 		xdp->prog_attached = !!old;
4682 		xdp->prog_id = old ? old->aux->id : 0;
4683 		break;
4684 
4685 	default:
4686 		ret = -EINVAL;
4687 		break;
4688 	}
4689 
4690 	return ret;
4691 }
4692 
4693 static int netif_receive_skb_internal(struct sk_buff *skb)
4694 {
4695 	int ret;
4696 
4697 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4698 
4699 	if (skb_defer_rx_timestamp(skb))
4700 		return NET_RX_SUCCESS;
4701 
4702 	if (static_key_false(&generic_xdp_needed)) {
4703 		int ret;
4704 
4705 		preempt_disable();
4706 		rcu_read_lock();
4707 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4708 		rcu_read_unlock();
4709 		preempt_enable();
4710 
4711 		if (ret != XDP_PASS)
4712 			return NET_RX_DROP;
4713 	}
4714 
4715 	rcu_read_lock();
4716 #ifdef CONFIG_RPS
4717 	if (static_key_false(&rps_needed)) {
4718 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4719 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4720 
4721 		if (cpu >= 0) {
4722 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4723 			rcu_read_unlock();
4724 			return ret;
4725 		}
4726 	}
4727 #endif
4728 	ret = __netif_receive_skb(skb);
4729 	rcu_read_unlock();
4730 	return ret;
4731 }
4732 
4733 /**
4734  *	netif_receive_skb - process receive buffer from network
4735  *	@skb: buffer to process
4736  *
4737  *	netif_receive_skb() is the main receive data processing function.
4738  *	It always succeeds. The buffer may be dropped during processing
4739  *	for congestion control or by the protocol layers.
4740  *
4741  *	This function may only be called from softirq context and interrupts
4742  *	should be enabled.
4743  *
4744  *	Return values (usually ignored):
4745  *	NET_RX_SUCCESS: no congestion
4746  *	NET_RX_DROP: packet was dropped
4747  */
4748 int netif_receive_skb(struct sk_buff *skb)
4749 {
4750 	trace_netif_receive_skb_entry(skb);
4751 
4752 	return netif_receive_skb_internal(skb);
4753 }
4754 EXPORT_SYMBOL(netif_receive_skb);
4755 
4756 DEFINE_PER_CPU(struct work_struct, flush_works);
4757 
4758 /* Network device is going away, flush any packets still pending */
4759 static void flush_backlog(struct work_struct *work)
4760 {
4761 	struct sk_buff *skb, *tmp;
4762 	struct softnet_data *sd;
4763 
4764 	local_bh_disable();
4765 	sd = this_cpu_ptr(&softnet_data);
4766 
4767 	local_irq_disable();
4768 	rps_lock(sd);
4769 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4770 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4771 			__skb_unlink(skb, &sd->input_pkt_queue);
4772 			kfree_skb(skb);
4773 			input_queue_head_incr(sd);
4774 		}
4775 	}
4776 	rps_unlock(sd);
4777 	local_irq_enable();
4778 
4779 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4780 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4781 			__skb_unlink(skb, &sd->process_queue);
4782 			kfree_skb(skb);
4783 			input_queue_head_incr(sd);
4784 		}
4785 	}
4786 	local_bh_enable();
4787 }
4788 
4789 static void flush_all_backlogs(void)
4790 {
4791 	unsigned int cpu;
4792 
4793 	get_online_cpus();
4794 
4795 	for_each_online_cpu(cpu)
4796 		queue_work_on(cpu, system_highpri_wq,
4797 			      per_cpu_ptr(&flush_works, cpu));
4798 
4799 	for_each_online_cpu(cpu)
4800 		flush_work(per_cpu_ptr(&flush_works, cpu));
4801 
4802 	put_online_cpus();
4803 }
4804 
4805 static int napi_gro_complete(struct sk_buff *skb)
4806 {
4807 	struct packet_offload *ptype;
4808 	__be16 type = skb->protocol;
4809 	struct list_head *head = &offload_base;
4810 	int err = -ENOENT;
4811 
4812 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4813 
4814 	if (NAPI_GRO_CB(skb)->count == 1) {
4815 		skb_shinfo(skb)->gso_size = 0;
4816 		goto out;
4817 	}
4818 
4819 	rcu_read_lock();
4820 	list_for_each_entry_rcu(ptype, head, list) {
4821 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4822 			continue;
4823 
4824 		err = ptype->callbacks.gro_complete(skb, 0);
4825 		break;
4826 	}
4827 	rcu_read_unlock();
4828 
4829 	if (err) {
4830 		WARN_ON(&ptype->list == head);
4831 		kfree_skb(skb);
4832 		return NET_RX_SUCCESS;
4833 	}
4834 
4835 out:
4836 	return netif_receive_skb_internal(skb);
4837 }
4838 
4839 /* napi->gro_list contains packets ordered by age.
4840  * youngest packets at the head of it.
4841  * Complete skbs in reverse order to reduce latencies.
4842  */
4843 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4844 {
4845 	struct sk_buff *skb, *prev = NULL;
4846 
4847 	/* scan list and build reverse chain */
4848 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4849 		skb->prev = prev;
4850 		prev = skb;
4851 	}
4852 
4853 	for (skb = prev; skb; skb = prev) {
4854 		skb->next = NULL;
4855 
4856 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4857 			return;
4858 
4859 		prev = skb->prev;
4860 		napi_gro_complete(skb);
4861 		napi->gro_count--;
4862 	}
4863 
4864 	napi->gro_list = NULL;
4865 }
4866 EXPORT_SYMBOL(napi_gro_flush);
4867 
4868 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4869 {
4870 	struct sk_buff *p;
4871 	unsigned int maclen = skb->dev->hard_header_len;
4872 	u32 hash = skb_get_hash_raw(skb);
4873 
4874 	for (p = napi->gro_list; p; p = p->next) {
4875 		unsigned long diffs;
4876 
4877 		NAPI_GRO_CB(p)->flush = 0;
4878 
4879 		if (hash != skb_get_hash_raw(p)) {
4880 			NAPI_GRO_CB(p)->same_flow = 0;
4881 			continue;
4882 		}
4883 
4884 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4885 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4886 		diffs |= skb_metadata_dst_cmp(p, skb);
4887 		diffs |= skb_metadata_differs(p, skb);
4888 		if (maclen == ETH_HLEN)
4889 			diffs |= compare_ether_header(skb_mac_header(p),
4890 						      skb_mac_header(skb));
4891 		else if (!diffs)
4892 			diffs = memcmp(skb_mac_header(p),
4893 				       skb_mac_header(skb),
4894 				       maclen);
4895 		NAPI_GRO_CB(p)->same_flow = !diffs;
4896 	}
4897 }
4898 
4899 static void skb_gro_reset_offset(struct sk_buff *skb)
4900 {
4901 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4902 	const skb_frag_t *frag0 = &pinfo->frags[0];
4903 
4904 	NAPI_GRO_CB(skb)->data_offset = 0;
4905 	NAPI_GRO_CB(skb)->frag0 = NULL;
4906 	NAPI_GRO_CB(skb)->frag0_len = 0;
4907 
4908 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4909 	    pinfo->nr_frags &&
4910 	    !PageHighMem(skb_frag_page(frag0))) {
4911 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4912 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4913 						    skb_frag_size(frag0),
4914 						    skb->end - skb->tail);
4915 	}
4916 }
4917 
4918 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4919 {
4920 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4921 
4922 	BUG_ON(skb->end - skb->tail < grow);
4923 
4924 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4925 
4926 	skb->data_len -= grow;
4927 	skb->tail += grow;
4928 
4929 	pinfo->frags[0].page_offset += grow;
4930 	skb_frag_size_sub(&pinfo->frags[0], grow);
4931 
4932 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4933 		skb_frag_unref(skb, 0);
4934 		memmove(pinfo->frags, pinfo->frags + 1,
4935 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4936 	}
4937 }
4938 
4939 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4940 {
4941 	struct sk_buff **pp = NULL;
4942 	struct packet_offload *ptype;
4943 	__be16 type = skb->protocol;
4944 	struct list_head *head = &offload_base;
4945 	int same_flow;
4946 	enum gro_result ret;
4947 	int grow;
4948 
4949 	if (netif_elide_gro(skb->dev))
4950 		goto normal;
4951 
4952 	gro_list_prepare(napi, skb);
4953 
4954 	rcu_read_lock();
4955 	list_for_each_entry_rcu(ptype, head, list) {
4956 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4957 			continue;
4958 
4959 		skb_set_network_header(skb, skb_gro_offset(skb));
4960 		skb_reset_mac_len(skb);
4961 		NAPI_GRO_CB(skb)->same_flow = 0;
4962 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4963 		NAPI_GRO_CB(skb)->free = 0;
4964 		NAPI_GRO_CB(skb)->encap_mark = 0;
4965 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4966 		NAPI_GRO_CB(skb)->is_fou = 0;
4967 		NAPI_GRO_CB(skb)->is_atomic = 1;
4968 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4969 
4970 		/* Setup for GRO checksum validation */
4971 		switch (skb->ip_summed) {
4972 		case CHECKSUM_COMPLETE:
4973 			NAPI_GRO_CB(skb)->csum = skb->csum;
4974 			NAPI_GRO_CB(skb)->csum_valid = 1;
4975 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4976 			break;
4977 		case CHECKSUM_UNNECESSARY:
4978 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4979 			NAPI_GRO_CB(skb)->csum_valid = 0;
4980 			break;
4981 		default:
4982 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4983 			NAPI_GRO_CB(skb)->csum_valid = 0;
4984 		}
4985 
4986 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4987 		break;
4988 	}
4989 	rcu_read_unlock();
4990 
4991 	if (&ptype->list == head)
4992 		goto normal;
4993 
4994 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4995 		ret = GRO_CONSUMED;
4996 		goto ok;
4997 	}
4998 
4999 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5000 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5001 
5002 	if (pp) {
5003 		struct sk_buff *nskb = *pp;
5004 
5005 		*pp = nskb->next;
5006 		nskb->next = NULL;
5007 		napi_gro_complete(nskb);
5008 		napi->gro_count--;
5009 	}
5010 
5011 	if (same_flow)
5012 		goto ok;
5013 
5014 	if (NAPI_GRO_CB(skb)->flush)
5015 		goto normal;
5016 
5017 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5018 		struct sk_buff *nskb = napi->gro_list;
5019 
5020 		/* locate the end of the list to select the 'oldest' flow */
5021 		while (nskb->next) {
5022 			pp = &nskb->next;
5023 			nskb = *pp;
5024 		}
5025 		*pp = NULL;
5026 		nskb->next = NULL;
5027 		napi_gro_complete(nskb);
5028 	} else {
5029 		napi->gro_count++;
5030 	}
5031 	NAPI_GRO_CB(skb)->count = 1;
5032 	NAPI_GRO_CB(skb)->age = jiffies;
5033 	NAPI_GRO_CB(skb)->last = skb;
5034 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5035 	skb->next = napi->gro_list;
5036 	napi->gro_list = skb;
5037 	ret = GRO_HELD;
5038 
5039 pull:
5040 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5041 	if (grow > 0)
5042 		gro_pull_from_frag0(skb, grow);
5043 ok:
5044 	return ret;
5045 
5046 normal:
5047 	ret = GRO_NORMAL;
5048 	goto pull;
5049 }
5050 
5051 struct packet_offload *gro_find_receive_by_type(__be16 type)
5052 {
5053 	struct list_head *offload_head = &offload_base;
5054 	struct packet_offload *ptype;
5055 
5056 	list_for_each_entry_rcu(ptype, offload_head, list) {
5057 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5058 			continue;
5059 		return ptype;
5060 	}
5061 	return NULL;
5062 }
5063 EXPORT_SYMBOL(gro_find_receive_by_type);
5064 
5065 struct packet_offload *gro_find_complete_by_type(__be16 type)
5066 {
5067 	struct list_head *offload_head = &offload_base;
5068 	struct packet_offload *ptype;
5069 
5070 	list_for_each_entry_rcu(ptype, offload_head, list) {
5071 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5072 			continue;
5073 		return ptype;
5074 	}
5075 	return NULL;
5076 }
5077 EXPORT_SYMBOL(gro_find_complete_by_type);
5078 
5079 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5080 {
5081 	skb_dst_drop(skb);
5082 	secpath_reset(skb);
5083 	kmem_cache_free(skbuff_head_cache, skb);
5084 }
5085 
5086 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5087 {
5088 	switch (ret) {
5089 	case GRO_NORMAL:
5090 		if (netif_receive_skb_internal(skb))
5091 			ret = GRO_DROP;
5092 		break;
5093 
5094 	case GRO_DROP:
5095 		kfree_skb(skb);
5096 		break;
5097 
5098 	case GRO_MERGED_FREE:
5099 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5100 			napi_skb_free_stolen_head(skb);
5101 		else
5102 			__kfree_skb(skb);
5103 		break;
5104 
5105 	case GRO_HELD:
5106 	case GRO_MERGED:
5107 	case GRO_CONSUMED:
5108 		break;
5109 	}
5110 
5111 	return ret;
5112 }
5113 
5114 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5115 {
5116 	skb_mark_napi_id(skb, napi);
5117 	trace_napi_gro_receive_entry(skb);
5118 
5119 	skb_gro_reset_offset(skb);
5120 
5121 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5122 }
5123 EXPORT_SYMBOL(napi_gro_receive);
5124 
5125 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5126 {
5127 	if (unlikely(skb->pfmemalloc)) {
5128 		consume_skb(skb);
5129 		return;
5130 	}
5131 	__skb_pull(skb, skb_headlen(skb));
5132 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5133 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5134 	skb->vlan_tci = 0;
5135 	skb->dev = napi->dev;
5136 	skb->skb_iif = 0;
5137 	skb->encapsulation = 0;
5138 	skb_shinfo(skb)->gso_type = 0;
5139 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5140 	secpath_reset(skb);
5141 
5142 	napi->skb = skb;
5143 }
5144 
5145 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5146 {
5147 	struct sk_buff *skb = napi->skb;
5148 
5149 	if (!skb) {
5150 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5151 		if (skb) {
5152 			napi->skb = skb;
5153 			skb_mark_napi_id(skb, napi);
5154 		}
5155 	}
5156 	return skb;
5157 }
5158 EXPORT_SYMBOL(napi_get_frags);
5159 
5160 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5161 				      struct sk_buff *skb,
5162 				      gro_result_t ret)
5163 {
5164 	switch (ret) {
5165 	case GRO_NORMAL:
5166 	case GRO_HELD:
5167 		__skb_push(skb, ETH_HLEN);
5168 		skb->protocol = eth_type_trans(skb, skb->dev);
5169 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5170 			ret = GRO_DROP;
5171 		break;
5172 
5173 	case GRO_DROP:
5174 		napi_reuse_skb(napi, skb);
5175 		break;
5176 
5177 	case GRO_MERGED_FREE:
5178 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5179 			napi_skb_free_stolen_head(skb);
5180 		else
5181 			napi_reuse_skb(napi, skb);
5182 		break;
5183 
5184 	case GRO_MERGED:
5185 	case GRO_CONSUMED:
5186 		break;
5187 	}
5188 
5189 	return ret;
5190 }
5191 
5192 /* Upper GRO stack assumes network header starts at gro_offset=0
5193  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5194  * We copy ethernet header into skb->data to have a common layout.
5195  */
5196 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5197 {
5198 	struct sk_buff *skb = napi->skb;
5199 	const struct ethhdr *eth;
5200 	unsigned int hlen = sizeof(*eth);
5201 
5202 	napi->skb = NULL;
5203 
5204 	skb_reset_mac_header(skb);
5205 	skb_gro_reset_offset(skb);
5206 
5207 	eth = skb_gro_header_fast(skb, 0);
5208 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5209 		eth = skb_gro_header_slow(skb, hlen, 0);
5210 		if (unlikely(!eth)) {
5211 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5212 					     __func__, napi->dev->name);
5213 			napi_reuse_skb(napi, skb);
5214 			return NULL;
5215 		}
5216 	} else {
5217 		gro_pull_from_frag0(skb, hlen);
5218 		NAPI_GRO_CB(skb)->frag0 += hlen;
5219 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5220 	}
5221 	__skb_pull(skb, hlen);
5222 
5223 	/*
5224 	 * This works because the only protocols we care about don't require
5225 	 * special handling.
5226 	 * We'll fix it up properly in napi_frags_finish()
5227 	 */
5228 	skb->protocol = eth->h_proto;
5229 
5230 	return skb;
5231 }
5232 
5233 gro_result_t napi_gro_frags(struct napi_struct *napi)
5234 {
5235 	struct sk_buff *skb = napi_frags_skb(napi);
5236 
5237 	if (!skb)
5238 		return GRO_DROP;
5239 
5240 	trace_napi_gro_frags_entry(skb);
5241 
5242 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5243 }
5244 EXPORT_SYMBOL(napi_gro_frags);
5245 
5246 /* Compute the checksum from gro_offset and return the folded value
5247  * after adding in any pseudo checksum.
5248  */
5249 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5250 {
5251 	__wsum wsum;
5252 	__sum16 sum;
5253 
5254 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5255 
5256 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5257 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5258 	if (likely(!sum)) {
5259 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5260 		    !skb->csum_complete_sw)
5261 			netdev_rx_csum_fault(skb->dev);
5262 	}
5263 
5264 	NAPI_GRO_CB(skb)->csum = wsum;
5265 	NAPI_GRO_CB(skb)->csum_valid = 1;
5266 
5267 	return sum;
5268 }
5269 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5270 
5271 static void net_rps_send_ipi(struct softnet_data *remsd)
5272 {
5273 #ifdef CONFIG_RPS
5274 	while (remsd) {
5275 		struct softnet_data *next = remsd->rps_ipi_next;
5276 
5277 		if (cpu_online(remsd->cpu))
5278 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5279 		remsd = next;
5280 	}
5281 #endif
5282 }
5283 
5284 /*
5285  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5286  * Note: called with local irq disabled, but exits with local irq enabled.
5287  */
5288 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5289 {
5290 #ifdef CONFIG_RPS
5291 	struct softnet_data *remsd = sd->rps_ipi_list;
5292 
5293 	if (remsd) {
5294 		sd->rps_ipi_list = NULL;
5295 
5296 		local_irq_enable();
5297 
5298 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5299 		net_rps_send_ipi(remsd);
5300 	} else
5301 #endif
5302 		local_irq_enable();
5303 }
5304 
5305 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5306 {
5307 #ifdef CONFIG_RPS
5308 	return sd->rps_ipi_list != NULL;
5309 #else
5310 	return false;
5311 #endif
5312 }
5313 
5314 static int process_backlog(struct napi_struct *napi, int quota)
5315 {
5316 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5317 	bool again = true;
5318 	int work = 0;
5319 
5320 	/* Check if we have pending ipi, its better to send them now,
5321 	 * not waiting net_rx_action() end.
5322 	 */
5323 	if (sd_has_rps_ipi_waiting(sd)) {
5324 		local_irq_disable();
5325 		net_rps_action_and_irq_enable(sd);
5326 	}
5327 
5328 	napi->weight = dev_rx_weight;
5329 	while (again) {
5330 		struct sk_buff *skb;
5331 
5332 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5333 			rcu_read_lock();
5334 			__netif_receive_skb(skb);
5335 			rcu_read_unlock();
5336 			input_queue_head_incr(sd);
5337 			if (++work >= quota)
5338 				return work;
5339 
5340 		}
5341 
5342 		local_irq_disable();
5343 		rps_lock(sd);
5344 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5345 			/*
5346 			 * Inline a custom version of __napi_complete().
5347 			 * only current cpu owns and manipulates this napi,
5348 			 * and NAPI_STATE_SCHED is the only possible flag set
5349 			 * on backlog.
5350 			 * We can use a plain write instead of clear_bit(),
5351 			 * and we dont need an smp_mb() memory barrier.
5352 			 */
5353 			napi->state = 0;
5354 			again = false;
5355 		} else {
5356 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5357 						   &sd->process_queue);
5358 		}
5359 		rps_unlock(sd);
5360 		local_irq_enable();
5361 	}
5362 
5363 	return work;
5364 }
5365 
5366 /**
5367  * __napi_schedule - schedule for receive
5368  * @n: entry to schedule
5369  *
5370  * The entry's receive function will be scheduled to run.
5371  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5372  */
5373 void __napi_schedule(struct napi_struct *n)
5374 {
5375 	unsigned long flags;
5376 
5377 	local_irq_save(flags);
5378 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5379 	local_irq_restore(flags);
5380 }
5381 EXPORT_SYMBOL(__napi_schedule);
5382 
5383 /**
5384  *	napi_schedule_prep - check if napi can be scheduled
5385  *	@n: napi context
5386  *
5387  * Test if NAPI routine is already running, and if not mark
5388  * it as running.  This is used as a condition variable
5389  * insure only one NAPI poll instance runs.  We also make
5390  * sure there is no pending NAPI disable.
5391  */
5392 bool napi_schedule_prep(struct napi_struct *n)
5393 {
5394 	unsigned long val, new;
5395 
5396 	do {
5397 		val = READ_ONCE(n->state);
5398 		if (unlikely(val & NAPIF_STATE_DISABLE))
5399 			return false;
5400 		new = val | NAPIF_STATE_SCHED;
5401 
5402 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5403 		 * This was suggested by Alexander Duyck, as compiler
5404 		 * emits better code than :
5405 		 * if (val & NAPIF_STATE_SCHED)
5406 		 *     new |= NAPIF_STATE_MISSED;
5407 		 */
5408 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5409 						   NAPIF_STATE_MISSED;
5410 	} while (cmpxchg(&n->state, val, new) != val);
5411 
5412 	return !(val & NAPIF_STATE_SCHED);
5413 }
5414 EXPORT_SYMBOL(napi_schedule_prep);
5415 
5416 /**
5417  * __napi_schedule_irqoff - schedule for receive
5418  * @n: entry to schedule
5419  *
5420  * Variant of __napi_schedule() assuming hard irqs are masked
5421  */
5422 void __napi_schedule_irqoff(struct napi_struct *n)
5423 {
5424 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5425 }
5426 EXPORT_SYMBOL(__napi_schedule_irqoff);
5427 
5428 bool napi_complete_done(struct napi_struct *n, int work_done)
5429 {
5430 	unsigned long flags, val, new;
5431 
5432 	/*
5433 	 * 1) Don't let napi dequeue from the cpu poll list
5434 	 *    just in case its running on a different cpu.
5435 	 * 2) If we are busy polling, do nothing here, we have
5436 	 *    the guarantee we will be called later.
5437 	 */
5438 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5439 				 NAPIF_STATE_IN_BUSY_POLL)))
5440 		return false;
5441 
5442 	if (n->gro_list) {
5443 		unsigned long timeout = 0;
5444 
5445 		if (work_done)
5446 			timeout = n->dev->gro_flush_timeout;
5447 
5448 		if (timeout)
5449 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5450 				      HRTIMER_MODE_REL_PINNED);
5451 		else
5452 			napi_gro_flush(n, false);
5453 	}
5454 	if (unlikely(!list_empty(&n->poll_list))) {
5455 		/* If n->poll_list is not empty, we need to mask irqs */
5456 		local_irq_save(flags);
5457 		list_del_init(&n->poll_list);
5458 		local_irq_restore(flags);
5459 	}
5460 
5461 	do {
5462 		val = READ_ONCE(n->state);
5463 
5464 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5465 
5466 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5467 
5468 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5469 		 * because we will call napi->poll() one more time.
5470 		 * This C code was suggested by Alexander Duyck to help gcc.
5471 		 */
5472 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5473 						    NAPIF_STATE_SCHED;
5474 	} while (cmpxchg(&n->state, val, new) != val);
5475 
5476 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5477 		__napi_schedule(n);
5478 		return false;
5479 	}
5480 
5481 	return true;
5482 }
5483 EXPORT_SYMBOL(napi_complete_done);
5484 
5485 /* must be called under rcu_read_lock(), as we dont take a reference */
5486 static struct napi_struct *napi_by_id(unsigned int napi_id)
5487 {
5488 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5489 	struct napi_struct *napi;
5490 
5491 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5492 		if (napi->napi_id == napi_id)
5493 			return napi;
5494 
5495 	return NULL;
5496 }
5497 
5498 #if defined(CONFIG_NET_RX_BUSY_POLL)
5499 
5500 #define BUSY_POLL_BUDGET 8
5501 
5502 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5503 {
5504 	int rc;
5505 
5506 	/* Busy polling means there is a high chance device driver hard irq
5507 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5508 	 * set in napi_schedule_prep().
5509 	 * Since we are about to call napi->poll() once more, we can safely
5510 	 * clear NAPI_STATE_MISSED.
5511 	 *
5512 	 * Note: x86 could use a single "lock and ..." instruction
5513 	 * to perform these two clear_bit()
5514 	 */
5515 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5516 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5517 
5518 	local_bh_disable();
5519 
5520 	/* All we really want here is to re-enable device interrupts.
5521 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5522 	 */
5523 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5524 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5525 	netpoll_poll_unlock(have_poll_lock);
5526 	if (rc == BUSY_POLL_BUDGET)
5527 		__napi_schedule(napi);
5528 	local_bh_enable();
5529 }
5530 
5531 void napi_busy_loop(unsigned int napi_id,
5532 		    bool (*loop_end)(void *, unsigned long),
5533 		    void *loop_end_arg)
5534 {
5535 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5536 	int (*napi_poll)(struct napi_struct *napi, int budget);
5537 	void *have_poll_lock = NULL;
5538 	struct napi_struct *napi;
5539 
5540 restart:
5541 	napi_poll = NULL;
5542 
5543 	rcu_read_lock();
5544 
5545 	napi = napi_by_id(napi_id);
5546 	if (!napi)
5547 		goto out;
5548 
5549 	preempt_disable();
5550 	for (;;) {
5551 		int work = 0;
5552 
5553 		local_bh_disable();
5554 		if (!napi_poll) {
5555 			unsigned long val = READ_ONCE(napi->state);
5556 
5557 			/* If multiple threads are competing for this napi,
5558 			 * we avoid dirtying napi->state as much as we can.
5559 			 */
5560 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5561 				   NAPIF_STATE_IN_BUSY_POLL))
5562 				goto count;
5563 			if (cmpxchg(&napi->state, val,
5564 				    val | NAPIF_STATE_IN_BUSY_POLL |
5565 					  NAPIF_STATE_SCHED) != val)
5566 				goto count;
5567 			have_poll_lock = netpoll_poll_lock(napi);
5568 			napi_poll = napi->poll;
5569 		}
5570 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5571 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5572 count:
5573 		if (work > 0)
5574 			__NET_ADD_STATS(dev_net(napi->dev),
5575 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5576 		local_bh_enable();
5577 
5578 		if (!loop_end || loop_end(loop_end_arg, start_time))
5579 			break;
5580 
5581 		if (unlikely(need_resched())) {
5582 			if (napi_poll)
5583 				busy_poll_stop(napi, have_poll_lock);
5584 			preempt_enable();
5585 			rcu_read_unlock();
5586 			cond_resched();
5587 			if (loop_end(loop_end_arg, start_time))
5588 				return;
5589 			goto restart;
5590 		}
5591 		cpu_relax();
5592 	}
5593 	if (napi_poll)
5594 		busy_poll_stop(napi, have_poll_lock);
5595 	preempt_enable();
5596 out:
5597 	rcu_read_unlock();
5598 }
5599 EXPORT_SYMBOL(napi_busy_loop);
5600 
5601 #endif /* CONFIG_NET_RX_BUSY_POLL */
5602 
5603 static void napi_hash_add(struct napi_struct *napi)
5604 {
5605 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5606 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5607 		return;
5608 
5609 	spin_lock(&napi_hash_lock);
5610 
5611 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5612 	do {
5613 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5614 			napi_gen_id = MIN_NAPI_ID;
5615 	} while (napi_by_id(napi_gen_id));
5616 	napi->napi_id = napi_gen_id;
5617 
5618 	hlist_add_head_rcu(&napi->napi_hash_node,
5619 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5620 
5621 	spin_unlock(&napi_hash_lock);
5622 }
5623 
5624 /* Warning : caller is responsible to make sure rcu grace period
5625  * is respected before freeing memory containing @napi
5626  */
5627 bool napi_hash_del(struct napi_struct *napi)
5628 {
5629 	bool rcu_sync_needed = false;
5630 
5631 	spin_lock(&napi_hash_lock);
5632 
5633 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5634 		rcu_sync_needed = true;
5635 		hlist_del_rcu(&napi->napi_hash_node);
5636 	}
5637 	spin_unlock(&napi_hash_lock);
5638 	return rcu_sync_needed;
5639 }
5640 EXPORT_SYMBOL_GPL(napi_hash_del);
5641 
5642 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5643 {
5644 	struct napi_struct *napi;
5645 
5646 	napi = container_of(timer, struct napi_struct, timer);
5647 
5648 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5649 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5650 	 */
5651 	if (napi->gro_list && !napi_disable_pending(napi) &&
5652 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5653 		__napi_schedule_irqoff(napi);
5654 
5655 	return HRTIMER_NORESTART;
5656 }
5657 
5658 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5659 		    int (*poll)(struct napi_struct *, int), int weight)
5660 {
5661 	INIT_LIST_HEAD(&napi->poll_list);
5662 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5663 	napi->timer.function = napi_watchdog;
5664 	napi->gro_count = 0;
5665 	napi->gro_list = NULL;
5666 	napi->skb = NULL;
5667 	napi->poll = poll;
5668 	if (weight > NAPI_POLL_WEIGHT)
5669 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5670 			    weight, dev->name);
5671 	napi->weight = weight;
5672 	list_add(&napi->dev_list, &dev->napi_list);
5673 	napi->dev = dev;
5674 #ifdef CONFIG_NETPOLL
5675 	napi->poll_owner = -1;
5676 #endif
5677 	set_bit(NAPI_STATE_SCHED, &napi->state);
5678 	napi_hash_add(napi);
5679 }
5680 EXPORT_SYMBOL(netif_napi_add);
5681 
5682 void napi_disable(struct napi_struct *n)
5683 {
5684 	might_sleep();
5685 	set_bit(NAPI_STATE_DISABLE, &n->state);
5686 
5687 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5688 		msleep(1);
5689 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5690 		msleep(1);
5691 
5692 	hrtimer_cancel(&n->timer);
5693 
5694 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5695 }
5696 EXPORT_SYMBOL(napi_disable);
5697 
5698 /* Must be called in process context */
5699 void netif_napi_del(struct napi_struct *napi)
5700 {
5701 	might_sleep();
5702 	if (napi_hash_del(napi))
5703 		synchronize_net();
5704 	list_del_init(&napi->dev_list);
5705 	napi_free_frags(napi);
5706 
5707 	kfree_skb_list(napi->gro_list);
5708 	napi->gro_list = NULL;
5709 	napi->gro_count = 0;
5710 }
5711 EXPORT_SYMBOL(netif_napi_del);
5712 
5713 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5714 {
5715 	void *have;
5716 	int work, weight;
5717 
5718 	list_del_init(&n->poll_list);
5719 
5720 	have = netpoll_poll_lock(n);
5721 
5722 	weight = n->weight;
5723 
5724 	/* This NAPI_STATE_SCHED test is for avoiding a race
5725 	 * with netpoll's poll_napi().  Only the entity which
5726 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5727 	 * actually make the ->poll() call.  Therefore we avoid
5728 	 * accidentally calling ->poll() when NAPI is not scheduled.
5729 	 */
5730 	work = 0;
5731 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5732 		work = n->poll(n, weight);
5733 		trace_napi_poll(n, work, weight);
5734 	}
5735 
5736 	WARN_ON_ONCE(work > weight);
5737 
5738 	if (likely(work < weight))
5739 		goto out_unlock;
5740 
5741 	/* Drivers must not modify the NAPI state if they
5742 	 * consume the entire weight.  In such cases this code
5743 	 * still "owns" the NAPI instance and therefore can
5744 	 * move the instance around on the list at-will.
5745 	 */
5746 	if (unlikely(napi_disable_pending(n))) {
5747 		napi_complete(n);
5748 		goto out_unlock;
5749 	}
5750 
5751 	if (n->gro_list) {
5752 		/* flush too old packets
5753 		 * If HZ < 1000, flush all packets.
5754 		 */
5755 		napi_gro_flush(n, HZ >= 1000);
5756 	}
5757 
5758 	/* Some drivers may have called napi_schedule
5759 	 * prior to exhausting their budget.
5760 	 */
5761 	if (unlikely(!list_empty(&n->poll_list))) {
5762 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5763 			     n->dev ? n->dev->name : "backlog");
5764 		goto out_unlock;
5765 	}
5766 
5767 	list_add_tail(&n->poll_list, repoll);
5768 
5769 out_unlock:
5770 	netpoll_poll_unlock(have);
5771 
5772 	return work;
5773 }
5774 
5775 static __latent_entropy void net_rx_action(struct softirq_action *h)
5776 {
5777 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5778 	unsigned long time_limit = jiffies +
5779 		usecs_to_jiffies(netdev_budget_usecs);
5780 	int budget = netdev_budget;
5781 	LIST_HEAD(list);
5782 	LIST_HEAD(repoll);
5783 
5784 	local_irq_disable();
5785 	list_splice_init(&sd->poll_list, &list);
5786 	local_irq_enable();
5787 
5788 	for (;;) {
5789 		struct napi_struct *n;
5790 
5791 		if (list_empty(&list)) {
5792 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5793 				goto out;
5794 			break;
5795 		}
5796 
5797 		n = list_first_entry(&list, struct napi_struct, poll_list);
5798 		budget -= napi_poll(n, &repoll);
5799 
5800 		/* If softirq window is exhausted then punt.
5801 		 * Allow this to run for 2 jiffies since which will allow
5802 		 * an average latency of 1.5/HZ.
5803 		 */
5804 		if (unlikely(budget <= 0 ||
5805 			     time_after_eq(jiffies, time_limit))) {
5806 			sd->time_squeeze++;
5807 			break;
5808 		}
5809 	}
5810 
5811 	local_irq_disable();
5812 
5813 	list_splice_tail_init(&sd->poll_list, &list);
5814 	list_splice_tail(&repoll, &list);
5815 	list_splice(&list, &sd->poll_list);
5816 	if (!list_empty(&sd->poll_list))
5817 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5818 
5819 	net_rps_action_and_irq_enable(sd);
5820 out:
5821 	__kfree_skb_flush();
5822 }
5823 
5824 struct netdev_adjacent {
5825 	struct net_device *dev;
5826 
5827 	/* upper master flag, there can only be one master device per list */
5828 	bool master;
5829 
5830 	/* counter for the number of times this device was added to us */
5831 	u16 ref_nr;
5832 
5833 	/* private field for the users */
5834 	void *private;
5835 
5836 	struct list_head list;
5837 	struct rcu_head rcu;
5838 };
5839 
5840 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5841 						 struct list_head *adj_list)
5842 {
5843 	struct netdev_adjacent *adj;
5844 
5845 	list_for_each_entry(adj, adj_list, list) {
5846 		if (adj->dev == adj_dev)
5847 			return adj;
5848 	}
5849 	return NULL;
5850 }
5851 
5852 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5853 {
5854 	struct net_device *dev = data;
5855 
5856 	return upper_dev == dev;
5857 }
5858 
5859 /**
5860  * netdev_has_upper_dev - Check if device is linked to an upper device
5861  * @dev: device
5862  * @upper_dev: upper device to check
5863  *
5864  * Find out if a device is linked to specified upper device and return true
5865  * in case it is. Note that this checks only immediate upper device,
5866  * not through a complete stack of devices. The caller must hold the RTNL lock.
5867  */
5868 bool netdev_has_upper_dev(struct net_device *dev,
5869 			  struct net_device *upper_dev)
5870 {
5871 	ASSERT_RTNL();
5872 
5873 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5874 					     upper_dev);
5875 }
5876 EXPORT_SYMBOL(netdev_has_upper_dev);
5877 
5878 /**
5879  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5880  * @dev: device
5881  * @upper_dev: upper device to check
5882  *
5883  * Find out if a device is linked to specified upper device and return true
5884  * in case it is. Note that this checks the entire upper device chain.
5885  * The caller must hold rcu lock.
5886  */
5887 
5888 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5889 				  struct net_device *upper_dev)
5890 {
5891 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5892 					       upper_dev);
5893 }
5894 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5895 
5896 /**
5897  * netdev_has_any_upper_dev - Check if device is linked to some device
5898  * @dev: device
5899  *
5900  * Find out if a device is linked to an upper device and return true in case
5901  * it is. The caller must hold the RTNL lock.
5902  */
5903 bool netdev_has_any_upper_dev(struct net_device *dev)
5904 {
5905 	ASSERT_RTNL();
5906 
5907 	return !list_empty(&dev->adj_list.upper);
5908 }
5909 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5910 
5911 /**
5912  * netdev_master_upper_dev_get - Get master upper device
5913  * @dev: device
5914  *
5915  * Find a master upper device and return pointer to it or NULL in case
5916  * it's not there. The caller must hold the RTNL lock.
5917  */
5918 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5919 {
5920 	struct netdev_adjacent *upper;
5921 
5922 	ASSERT_RTNL();
5923 
5924 	if (list_empty(&dev->adj_list.upper))
5925 		return NULL;
5926 
5927 	upper = list_first_entry(&dev->adj_list.upper,
5928 				 struct netdev_adjacent, list);
5929 	if (likely(upper->master))
5930 		return upper->dev;
5931 	return NULL;
5932 }
5933 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5934 
5935 /**
5936  * netdev_has_any_lower_dev - Check if device is linked to some device
5937  * @dev: device
5938  *
5939  * Find out if a device is linked to a lower device and return true in case
5940  * it is. The caller must hold the RTNL lock.
5941  */
5942 static bool netdev_has_any_lower_dev(struct net_device *dev)
5943 {
5944 	ASSERT_RTNL();
5945 
5946 	return !list_empty(&dev->adj_list.lower);
5947 }
5948 
5949 void *netdev_adjacent_get_private(struct list_head *adj_list)
5950 {
5951 	struct netdev_adjacent *adj;
5952 
5953 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5954 
5955 	return adj->private;
5956 }
5957 EXPORT_SYMBOL(netdev_adjacent_get_private);
5958 
5959 /**
5960  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5961  * @dev: device
5962  * @iter: list_head ** of the current position
5963  *
5964  * Gets the next device from the dev's upper list, starting from iter
5965  * position. The caller must hold RCU read lock.
5966  */
5967 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5968 						 struct list_head **iter)
5969 {
5970 	struct netdev_adjacent *upper;
5971 
5972 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5973 
5974 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5975 
5976 	if (&upper->list == &dev->adj_list.upper)
5977 		return NULL;
5978 
5979 	*iter = &upper->list;
5980 
5981 	return upper->dev;
5982 }
5983 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5984 
5985 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5986 						    struct list_head **iter)
5987 {
5988 	struct netdev_adjacent *upper;
5989 
5990 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5991 
5992 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5993 
5994 	if (&upper->list == &dev->adj_list.upper)
5995 		return NULL;
5996 
5997 	*iter = &upper->list;
5998 
5999 	return upper->dev;
6000 }
6001 
6002 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6003 				  int (*fn)(struct net_device *dev,
6004 					    void *data),
6005 				  void *data)
6006 {
6007 	struct net_device *udev;
6008 	struct list_head *iter;
6009 	int ret;
6010 
6011 	for (iter = &dev->adj_list.upper,
6012 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6013 	     udev;
6014 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6015 		/* first is the upper device itself */
6016 		ret = fn(udev, data);
6017 		if (ret)
6018 			return ret;
6019 
6020 		/* then look at all of its upper devices */
6021 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6022 		if (ret)
6023 			return ret;
6024 	}
6025 
6026 	return 0;
6027 }
6028 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6029 
6030 /**
6031  * netdev_lower_get_next_private - Get the next ->private from the
6032  *				   lower neighbour list
6033  * @dev: device
6034  * @iter: list_head ** of the current position
6035  *
6036  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6037  * list, starting from iter position. The caller must hold either hold the
6038  * RTNL lock or its own locking that guarantees that the neighbour lower
6039  * list will remain unchanged.
6040  */
6041 void *netdev_lower_get_next_private(struct net_device *dev,
6042 				    struct list_head **iter)
6043 {
6044 	struct netdev_adjacent *lower;
6045 
6046 	lower = list_entry(*iter, struct netdev_adjacent, list);
6047 
6048 	if (&lower->list == &dev->adj_list.lower)
6049 		return NULL;
6050 
6051 	*iter = lower->list.next;
6052 
6053 	return lower->private;
6054 }
6055 EXPORT_SYMBOL(netdev_lower_get_next_private);
6056 
6057 /**
6058  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6059  *				       lower neighbour list, RCU
6060  *				       variant
6061  * @dev: device
6062  * @iter: list_head ** of the current position
6063  *
6064  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6065  * list, starting from iter position. The caller must hold RCU read lock.
6066  */
6067 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6068 					struct list_head **iter)
6069 {
6070 	struct netdev_adjacent *lower;
6071 
6072 	WARN_ON_ONCE(!rcu_read_lock_held());
6073 
6074 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6075 
6076 	if (&lower->list == &dev->adj_list.lower)
6077 		return NULL;
6078 
6079 	*iter = &lower->list;
6080 
6081 	return lower->private;
6082 }
6083 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6084 
6085 /**
6086  * netdev_lower_get_next - Get the next device from the lower neighbour
6087  *                         list
6088  * @dev: device
6089  * @iter: list_head ** of the current position
6090  *
6091  * Gets the next netdev_adjacent from the dev's lower neighbour
6092  * list, starting from iter position. The caller must hold RTNL lock or
6093  * its own locking that guarantees that the neighbour lower
6094  * list will remain unchanged.
6095  */
6096 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6097 {
6098 	struct netdev_adjacent *lower;
6099 
6100 	lower = list_entry(*iter, struct netdev_adjacent, list);
6101 
6102 	if (&lower->list == &dev->adj_list.lower)
6103 		return NULL;
6104 
6105 	*iter = lower->list.next;
6106 
6107 	return lower->dev;
6108 }
6109 EXPORT_SYMBOL(netdev_lower_get_next);
6110 
6111 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6112 						struct list_head **iter)
6113 {
6114 	struct netdev_adjacent *lower;
6115 
6116 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6117 
6118 	if (&lower->list == &dev->adj_list.lower)
6119 		return NULL;
6120 
6121 	*iter = &lower->list;
6122 
6123 	return lower->dev;
6124 }
6125 
6126 int netdev_walk_all_lower_dev(struct net_device *dev,
6127 			      int (*fn)(struct net_device *dev,
6128 					void *data),
6129 			      void *data)
6130 {
6131 	struct net_device *ldev;
6132 	struct list_head *iter;
6133 	int ret;
6134 
6135 	for (iter = &dev->adj_list.lower,
6136 	     ldev = netdev_next_lower_dev(dev, &iter);
6137 	     ldev;
6138 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6139 		/* first is the lower device itself */
6140 		ret = fn(ldev, data);
6141 		if (ret)
6142 			return ret;
6143 
6144 		/* then look at all of its lower devices */
6145 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6146 		if (ret)
6147 			return ret;
6148 	}
6149 
6150 	return 0;
6151 }
6152 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6153 
6154 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6155 						    struct list_head **iter)
6156 {
6157 	struct netdev_adjacent *lower;
6158 
6159 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6160 	if (&lower->list == &dev->adj_list.lower)
6161 		return NULL;
6162 
6163 	*iter = &lower->list;
6164 
6165 	return lower->dev;
6166 }
6167 
6168 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6169 				  int (*fn)(struct net_device *dev,
6170 					    void *data),
6171 				  void *data)
6172 {
6173 	struct net_device *ldev;
6174 	struct list_head *iter;
6175 	int ret;
6176 
6177 	for (iter = &dev->adj_list.lower,
6178 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6179 	     ldev;
6180 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6181 		/* first is the lower device itself */
6182 		ret = fn(ldev, data);
6183 		if (ret)
6184 			return ret;
6185 
6186 		/* then look at all of its lower devices */
6187 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6188 		if (ret)
6189 			return ret;
6190 	}
6191 
6192 	return 0;
6193 }
6194 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6195 
6196 /**
6197  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6198  *				       lower neighbour list, RCU
6199  *				       variant
6200  * @dev: device
6201  *
6202  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6203  * list. The caller must hold RCU read lock.
6204  */
6205 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6206 {
6207 	struct netdev_adjacent *lower;
6208 
6209 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6210 			struct netdev_adjacent, list);
6211 	if (lower)
6212 		return lower->private;
6213 	return NULL;
6214 }
6215 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6216 
6217 /**
6218  * netdev_master_upper_dev_get_rcu - Get master upper device
6219  * @dev: device
6220  *
6221  * Find a master upper device and return pointer to it or NULL in case
6222  * it's not there. The caller must hold the RCU read lock.
6223  */
6224 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6225 {
6226 	struct netdev_adjacent *upper;
6227 
6228 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6229 				       struct netdev_adjacent, list);
6230 	if (upper && likely(upper->master))
6231 		return upper->dev;
6232 	return NULL;
6233 }
6234 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6235 
6236 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6237 			      struct net_device *adj_dev,
6238 			      struct list_head *dev_list)
6239 {
6240 	char linkname[IFNAMSIZ+7];
6241 
6242 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6243 		"upper_%s" : "lower_%s", adj_dev->name);
6244 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6245 				 linkname);
6246 }
6247 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6248 			       char *name,
6249 			       struct list_head *dev_list)
6250 {
6251 	char linkname[IFNAMSIZ+7];
6252 
6253 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6254 		"upper_%s" : "lower_%s", name);
6255 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6256 }
6257 
6258 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6259 						 struct net_device *adj_dev,
6260 						 struct list_head *dev_list)
6261 {
6262 	return (dev_list == &dev->adj_list.upper ||
6263 		dev_list == &dev->adj_list.lower) &&
6264 		net_eq(dev_net(dev), dev_net(adj_dev));
6265 }
6266 
6267 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6268 					struct net_device *adj_dev,
6269 					struct list_head *dev_list,
6270 					void *private, bool master)
6271 {
6272 	struct netdev_adjacent *adj;
6273 	int ret;
6274 
6275 	adj = __netdev_find_adj(adj_dev, dev_list);
6276 
6277 	if (adj) {
6278 		adj->ref_nr += 1;
6279 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6280 			 dev->name, adj_dev->name, adj->ref_nr);
6281 
6282 		return 0;
6283 	}
6284 
6285 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6286 	if (!adj)
6287 		return -ENOMEM;
6288 
6289 	adj->dev = adj_dev;
6290 	adj->master = master;
6291 	adj->ref_nr = 1;
6292 	adj->private = private;
6293 	dev_hold(adj_dev);
6294 
6295 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6296 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6297 
6298 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6299 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6300 		if (ret)
6301 			goto free_adj;
6302 	}
6303 
6304 	/* Ensure that master link is always the first item in list. */
6305 	if (master) {
6306 		ret = sysfs_create_link(&(dev->dev.kobj),
6307 					&(adj_dev->dev.kobj), "master");
6308 		if (ret)
6309 			goto remove_symlinks;
6310 
6311 		list_add_rcu(&adj->list, dev_list);
6312 	} else {
6313 		list_add_tail_rcu(&adj->list, dev_list);
6314 	}
6315 
6316 	return 0;
6317 
6318 remove_symlinks:
6319 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6320 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6321 free_adj:
6322 	kfree(adj);
6323 	dev_put(adj_dev);
6324 
6325 	return ret;
6326 }
6327 
6328 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6329 					 struct net_device *adj_dev,
6330 					 u16 ref_nr,
6331 					 struct list_head *dev_list)
6332 {
6333 	struct netdev_adjacent *adj;
6334 
6335 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6336 		 dev->name, adj_dev->name, ref_nr);
6337 
6338 	adj = __netdev_find_adj(adj_dev, dev_list);
6339 
6340 	if (!adj) {
6341 		pr_err("Adjacency does not exist for device %s from %s\n",
6342 		       dev->name, adj_dev->name);
6343 		WARN_ON(1);
6344 		return;
6345 	}
6346 
6347 	if (adj->ref_nr > ref_nr) {
6348 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6349 			 dev->name, adj_dev->name, ref_nr,
6350 			 adj->ref_nr - ref_nr);
6351 		adj->ref_nr -= ref_nr;
6352 		return;
6353 	}
6354 
6355 	if (adj->master)
6356 		sysfs_remove_link(&(dev->dev.kobj), "master");
6357 
6358 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6359 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6360 
6361 	list_del_rcu(&adj->list);
6362 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6363 		 adj_dev->name, dev->name, adj_dev->name);
6364 	dev_put(adj_dev);
6365 	kfree_rcu(adj, rcu);
6366 }
6367 
6368 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6369 					    struct net_device *upper_dev,
6370 					    struct list_head *up_list,
6371 					    struct list_head *down_list,
6372 					    void *private, bool master)
6373 {
6374 	int ret;
6375 
6376 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6377 					   private, master);
6378 	if (ret)
6379 		return ret;
6380 
6381 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6382 					   private, false);
6383 	if (ret) {
6384 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6385 		return ret;
6386 	}
6387 
6388 	return 0;
6389 }
6390 
6391 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6392 					       struct net_device *upper_dev,
6393 					       u16 ref_nr,
6394 					       struct list_head *up_list,
6395 					       struct list_head *down_list)
6396 {
6397 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6398 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6399 }
6400 
6401 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6402 						struct net_device *upper_dev,
6403 						void *private, bool master)
6404 {
6405 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6406 						&dev->adj_list.upper,
6407 						&upper_dev->adj_list.lower,
6408 						private, master);
6409 }
6410 
6411 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6412 						   struct net_device *upper_dev)
6413 {
6414 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6415 					   &dev->adj_list.upper,
6416 					   &upper_dev->adj_list.lower);
6417 }
6418 
6419 static int __netdev_upper_dev_link(struct net_device *dev,
6420 				   struct net_device *upper_dev, bool master,
6421 				   void *upper_priv, void *upper_info,
6422 				   struct netlink_ext_ack *extack)
6423 {
6424 	struct netdev_notifier_changeupper_info changeupper_info = {
6425 		.info = {
6426 			.dev = dev,
6427 			.extack = extack,
6428 		},
6429 		.upper_dev = upper_dev,
6430 		.master = master,
6431 		.linking = true,
6432 		.upper_info = upper_info,
6433 	};
6434 	struct net_device *master_dev;
6435 	int ret = 0;
6436 
6437 	ASSERT_RTNL();
6438 
6439 	if (dev == upper_dev)
6440 		return -EBUSY;
6441 
6442 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6443 	if (netdev_has_upper_dev(upper_dev, dev))
6444 		return -EBUSY;
6445 
6446 	if (!master) {
6447 		if (netdev_has_upper_dev(dev, upper_dev))
6448 			return -EEXIST;
6449 	} else {
6450 		master_dev = netdev_master_upper_dev_get(dev);
6451 		if (master_dev)
6452 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6453 	}
6454 
6455 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6456 					    &changeupper_info.info);
6457 	ret = notifier_to_errno(ret);
6458 	if (ret)
6459 		return ret;
6460 
6461 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6462 						   master);
6463 	if (ret)
6464 		return ret;
6465 
6466 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6467 					    &changeupper_info.info);
6468 	ret = notifier_to_errno(ret);
6469 	if (ret)
6470 		goto rollback;
6471 
6472 	return 0;
6473 
6474 rollback:
6475 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6476 
6477 	return ret;
6478 }
6479 
6480 /**
6481  * netdev_upper_dev_link - Add a link to the upper device
6482  * @dev: device
6483  * @upper_dev: new upper device
6484  * @extack: netlink extended ack
6485  *
6486  * Adds a link to device which is upper to this one. The caller must hold
6487  * the RTNL lock. On a failure a negative errno code is returned.
6488  * On success the reference counts are adjusted and the function
6489  * returns zero.
6490  */
6491 int netdev_upper_dev_link(struct net_device *dev,
6492 			  struct net_device *upper_dev,
6493 			  struct netlink_ext_ack *extack)
6494 {
6495 	return __netdev_upper_dev_link(dev, upper_dev, false,
6496 				       NULL, NULL, extack);
6497 }
6498 EXPORT_SYMBOL(netdev_upper_dev_link);
6499 
6500 /**
6501  * netdev_master_upper_dev_link - Add a master link to the upper device
6502  * @dev: device
6503  * @upper_dev: new upper device
6504  * @upper_priv: upper device private
6505  * @upper_info: upper info to be passed down via notifier
6506  * @extack: netlink extended ack
6507  *
6508  * Adds a link to device which is upper to this one. In this case, only
6509  * one master upper device can be linked, although other non-master devices
6510  * might be linked as well. The caller must hold the RTNL lock.
6511  * On a failure a negative errno code is returned. On success the reference
6512  * counts are adjusted and the function returns zero.
6513  */
6514 int netdev_master_upper_dev_link(struct net_device *dev,
6515 				 struct net_device *upper_dev,
6516 				 void *upper_priv, void *upper_info,
6517 				 struct netlink_ext_ack *extack)
6518 {
6519 	return __netdev_upper_dev_link(dev, upper_dev, true,
6520 				       upper_priv, upper_info, extack);
6521 }
6522 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6523 
6524 /**
6525  * netdev_upper_dev_unlink - Removes a link to upper device
6526  * @dev: device
6527  * @upper_dev: new upper device
6528  *
6529  * Removes a link to device which is upper to this one. The caller must hold
6530  * the RTNL lock.
6531  */
6532 void netdev_upper_dev_unlink(struct net_device *dev,
6533 			     struct net_device *upper_dev)
6534 {
6535 	struct netdev_notifier_changeupper_info changeupper_info = {
6536 		.info = {
6537 			.dev = dev,
6538 		},
6539 		.upper_dev = upper_dev,
6540 		.linking = false,
6541 	};
6542 
6543 	ASSERT_RTNL();
6544 
6545 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6546 
6547 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6548 				      &changeupper_info.info);
6549 
6550 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6551 
6552 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6553 				      &changeupper_info.info);
6554 }
6555 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6556 
6557 /**
6558  * netdev_bonding_info_change - Dispatch event about slave change
6559  * @dev: device
6560  * @bonding_info: info to dispatch
6561  *
6562  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6563  * The caller must hold the RTNL lock.
6564  */
6565 void netdev_bonding_info_change(struct net_device *dev,
6566 				struct netdev_bonding_info *bonding_info)
6567 {
6568 	struct netdev_notifier_bonding_info info = {
6569 		.info.dev = dev,
6570 	};
6571 
6572 	memcpy(&info.bonding_info, bonding_info,
6573 	       sizeof(struct netdev_bonding_info));
6574 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6575 				      &info.info);
6576 }
6577 EXPORT_SYMBOL(netdev_bonding_info_change);
6578 
6579 static void netdev_adjacent_add_links(struct net_device *dev)
6580 {
6581 	struct netdev_adjacent *iter;
6582 
6583 	struct net *net = dev_net(dev);
6584 
6585 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6586 		if (!net_eq(net, dev_net(iter->dev)))
6587 			continue;
6588 		netdev_adjacent_sysfs_add(iter->dev, dev,
6589 					  &iter->dev->adj_list.lower);
6590 		netdev_adjacent_sysfs_add(dev, iter->dev,
6591 					  &dev->adj_list.upper);
6592 	}
6593 
6594 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6595 		if (!net_eq(net, dev_net(iter->dev)))
6596 			continue;
6597 		netdev_adjacent_sysfs_add(iter->dev, dev,
6598 					  &iter->dev->adj_list.upper);
6599 		netdev_adjacent_sysfs_add(dev, iter->dev,
6600 					  &dev->adj_list.lower);
6601 	}
6602 }
6603 
6604 static void netdev_adjacent_del_links(struct net_device *dev)
6605 {
6606 	struct netdev_adjacent *iter;
6607 
6608 	struct net *net = dev_net(dev);
6609 
6610 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6611 		if (!net_eq(net, dev_net(iter->dev)))
6612 			continue;
6613 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6614 					  &iter->dev->adj_list.lower);
6615 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6616 					  &dev->adj_list.upper);
6617 	}
6618 
6619 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6620 		if (!net_eq(net, dev_net(iter->dev)))
6621 			continue;
6622 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6623 					  &iter->dev->adj_list.upper);
6624 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6625 					  &dev->adj_list.lower);
6626 	}
6627 }
6628 
6629 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6630 {
6631 	struct netdev_adjacent *iter;
6632 
6633 	struct net *net = dev_net(dev);
6634 
6635 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6636 		if (!net_eq(net, dev_net(iter->dev)))
6637 			continue;
6638 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6639 					  &iter->dev->adj_list.lower);
6640 		netdev_adjacent_sysfs_add(iter->dev, dev,
6641 					  &iter->dev->adj_list.lower);
6642 	}
6643 
6644 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6645 		if (!net_eq(net, dev_net(iter->dev)))
6646 			continue;
6647 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6648 					  &iter->dev->adj_list.upper);
6649 		netdev_adjacent_sysfs_add(iter->dev, dev,
6650 					  &iter->dev->adj_list.upper);
6651 	}
6652 }
6653 
6654 void *netdev_lower_dev_get_private(struct net_device *dev,
6655 				   struct net_device *lower_dev)
6656 {
6657 	struct netdev_adjacent *lower;
6658 
6659 	if (!lower_dev)
6660 		return NULL;
6661 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6662 	if (!lower)
6663 		return NULL;
6664 
6665 	return lower->private;
6666 }
6667 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6668 
6669 
6670 int dev_get_nest_level(struct net_device *dev)
6671 {
6672 	struct net_device *lower = NULL;
6673 	struct list_head *iter;
6674 	int max_nest = -1;
6675 	int nest;
6676 
6677 	ASSERT_RTNL();
6678 
6679 	netdev_for_each_lower_dev(dev, lower, iter) {
6680 		nest = dev_get_nest_level(lower);
6681 		if (max_nest < nest)
6682 			max_nest = nest;
6683 	}
6684 
6685 	return max_nest + 1;
6686 }
6687 EXPORT_SYMBOL(dev_get_nest_level);
6688 
6689 /**
6690  * netdev_lower_change - Dispatch event about lower device state change
6691  * @lower_dev: device
6692  * @lower_state_info: state to dispatch
6693  *
6694  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6695  * The caller must hold the RTNL lock.
6696  */
6697 void netdev_lower_state_changed(struct net_device *lower_dev,
6698 				void *lower_state_info)
6699 {
6700 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6701 		.info.dev = lower_dev,
6702 	};
6703 
6704 	ASSERT_RTNL();
6705 	changelowerstate_info.lower_state_info = lower_state_info;
6706 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6707 				      &changelowerstate_info.info);
6708 }
6709 EXPORT_SYMBOL(netdev_lower_state_changed);
6710 
6711 static void dev_change_rx_flags(struct net_device *dev, int flags)
6712 {
6713 	const struct net_device_ops *ops = dev->netdev_ops;
6714 
6715 	if (ops->ndo_change_rx_flags)
6716 		ops->ndo_change_rx_flags(dev, flags);
6717 }
6718 
6719 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6720 {
6721 	unsigned int old_flags = dev->flags;
6722 	kuid_t uid;
6723 	kgid_t gid;
6724 
6725 	ASSERT_RTNL();
6726 
6727 	dev->flags |= IFF_PROMISC;
6728 	dev->promiscuity += inc;
6729 	if (dev->promiscuity == 0) {
6730 		/*
6731 		 * Avoid overflow.
6732 		 * If inc causes overflow, untouch promisc and return error.
6733 		 */
6734 		if (inc < 0)
6735 			dev->flags &= ~IFF_PROMISC;
6736 		else {
6737 			dev->promiscuity -= inc;
6738 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6739 				dev->name);
6740 			return -EOVERFLOW;
6741 		}
6742 	}
6743 	if (dev->flags != old_flags) {
6744 		pr_info("device %s %s promiscuous mode\n",
6745 			dev->name,
6746 			dev->flags & IFF_PROMISC ? "entered" : "left");
6747 		if (audit_enabled) {
6748 			current_uid_gid(&uid, &gid);
6749 			audit_log(current->audit_context, GFP_ATOMIC,
6750 				AUDIT_ANOM_PROMISCUOUS,
6751 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6752 				dev->name, (dev->flags & IFF_PROMISC),
6753 				(old_flags & IFF_PROMISC),
6754 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6755 				from_kuid(&init_user_ns, uid),
6756 				from_kgid(&init_user_ns, gid),
6757 				audit_get_sessionid(current));
6758 		}
6759 
6760 		dev_change_rx_flags(dev, IFF_PROMISC);
6761 	}
6762 	if (notify)
6763 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6764 	return 0;
6765 }
6766 
6767 /**
6768  *	dev_set_promiscuity	- update promiscuity count on a device
6769  *	@dev: device
6770  *	@inc: modifier
6771  *
6772  *	Add or remove promiscuity from a device. While the count in the device
6773  *	remains above zero the interface remains promiscuous. Once it hits zero
6774  *	the device reverts back to normal filtering operation. A negative inc
6775  *	value is used to drop promiscuity on the device.
6776  *	Return 0 if successful or a negative errno code on error.
6777  */
6778 int dev_set_promiscuity(struct net_device *dev, int inc)
6779 {
6780 	unsigned int old_flags = dev->flags;
6781 	int err;
6782 
6783 	err = __dev_set_promiscuity(dev, inc, true);
6784 	if (err < 0)
6785 		return err;
6786 	if (dev->flags != old_flags)
6787 		dev_set_rx_mode(dev);
6788 	return err;
6789 }
6790 EXPORT_SYMBOL(dev_set_promiscuity);
6791 
6792 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6793 {
6794 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6795 
6796 	ASSERT_RTNL();
6797 
6798 	dev->flags |= IFF_ALLMULTI;
6799 	dev->allmulti += inc;
6800 	if (dev->allmulti == 0) {
6801 		/*
6802 		 * Avoid overflow.
6803 		 * If inc causes overflow, untouch allmulti and return error.
6804 		 */
6805 		if (inc < 0)
6806 			dev->flags &= ~IFF_ALLMULTI;
6807 		else {
6808 			dev->allmulti -= inc;
6809 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6810 				dev->name);
6811 			return -EOVERFLOW;
6812 		}
6813 	}
6814 	if (dev->flags ^ old_flags) {
6815 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6816 		dev_set_rx_mode(dev);
6817 		if (notify)
6818 			__dev_notify_flags(dev, old_flags,
6819 					   dev->gflags ^ old_gflags);
6820 	}
6821 	return 0;
6822 }
6823 
6824 /**
6825  *	dev_set_allmulti	- update allmulti count on a device
6826  *	@dev: device
6827  *	@inc: modifier
6828  *
6829  *	Add or remove reception of all multicast frames to a device. While the
6830  *	count in the device remains above zero the interface remains listening
6831  *	to all interfaces. Once it hits zero the device reverts back to normal
6832  *	filtering operation. A negative @inc value is used to drop the counter
6833  *	when releasing a resource needing all multicasts.
6834  *	Return 0 if successful or a negative errno code on error.
6835  */
6836 
6837 int dev_set_allmulti(struct net_device *dev, int inc)
6838 {
6839 	return __dev_set_allmulti(dev, inc, true);
6840 }
6841 EXPORT_SYMBOL(dev_set_allmulti);
6842 
6843 /*
6844  *	Upload unicast and multicast address lists to device and
6845  *	configure RX filtering. When the device doesn't support unicast
6846  *	filtering it is put in promiscuous mode while unicast addresses
6847  *	are present.
6848  */
6849 void __dev_set_rx_mode(struct net_device *dev)
6850 {
6851 	const struct net_device_ops *ops = dev->netdev_ops;
6852 
6853 	/* dev_open will call this function so the list will stay sane. */
6854 	if (!(dev->flags&IFF_UP))
6855 		return;
6856 
6857 	if (!netif_device_present(dev))
6858 		return;
6859 
6860 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6861 		/* Unicast addresses changes may only happen under the rtnl,
6862 		 * therefore calling __dev_set_promiscuity here is safe.
6863 		 */
6864 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6865 			__dev_set_promiscuity(dev, 1, false);
6866 			dev->uc_promisc = true;
6867 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6868 			__dev_set_promiscuity(dev, -1, false);
6869 			dev->uc_promisc = false;
6870 		}
6871 	}
6872 
6873 	if (ops->ndo_set_rx_mode)
6874 		ops->ndo_set_rx_mode(dev);
6875 }
6876 
6877 void dev_set_rx_mode(struct net_device *dev)
6878 {
6879 	netif_addr_lock_bh(dev);
6880 	__dev_set_rx_mode(dev);
6881 	netif_addr_unlock_bh(dev);
6882 }
6883 
6884 /**
6885  *	dev_get_flags - get flags reported to userspace
6886  *	@dev: device
6887  *
6888  *	Get the combination of flag bits exported through APIs to userspace.
6889  */
6890 unsigned int dev_get_flags(const struct net_device *dev)
6891 {
6892 	unsigned int flags;
6893 
6894 	flags = (dev->flags & ~(IFF_PROMISC |
6895 				IFF_ALLMULTI |
6896 				IFF_RUNNING |
6897 				IFF_LOWER_UP |
6898 				IFF_DORMANT)) |
6899 		(dev->gflags & (IFF_PROMISC |
6900 				IFF_ALLMULTI));
6901 
6902 	if (netif_running(dev)) {
6903 		if (netif_oper_up(dev))
6904 			flags |= IFF_RUNNING;
6905 		if (netif_carrier_ok(dev))
6906 			flags |= IFF_LOWER_UP;
6907 		if (netif_dormant(dev))
6908 			flags |= IFF_DORMANT;
6909 	}
6910 
6911 	return flags;
6912 }
6913 EXPORT_SYMBOL(dev_get_flags);
6914 
6915 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6916 {
6917 	unsigned int old_flags = dev->flags;
6918 	int ret;
6919 
6920 	ASSERT_RTNL();
6921 
6922 	/*
6923 	 *	Set the flags on our device.
6924 	 */
6925 
6926 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6927 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6928 			       IFF_AUTOMEDIA)) |
6929 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6930 				    IFF_ALLMULTI));
6931 
6932 	/*
6933 	 *	Load in the correct multicast list now the flags have changed.
6934 	 */
6935 
6936 	if ((old_flags ^ flags) & IFF_MULTICAST)
6937 		dev_change_rx_flags(dev, IFF_MULTICAST);
6938 
6939 	dev_set_rx_mode(dev);
6940 
6941 	/*
6942 	 *	Have we downed the interface. We handle IFF_UP ourselves
6943 	 *	according to user attempts to set it, rather than blindly
6944 	 *	setting it.
6945 	 */
6946 
6947 	ret = 0;
6948 	if ((old_flags ^ flags) & IFF_UP) {
6949 		if (old_flags & IFF_UP)
6950 			__dev_close(dev);
6951 		else
6952 			ret = __dev_open(dev);
6953 	}
6954 
6955 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6956 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6957 		unsigned int old_flags = dev->flags;
6958 
6959 		dev->gflags ^= IFF_PROMISC;
6960 
6961 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6962 			if (dev->flags != old_flags)
6963 				dev_set_rx_mode(dev);
6964 	}
6965 
6966 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6967 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6968 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6969 	 */
6970 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6971 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6972 
6973 		dev->gflags ^= IFF_ALLMULTI;
6974 		__dev_set_allmulti(dev, inc, false);
6975 	}
6976 
6977 	return ret;
6978 }
6979 
6980 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6981 			unsigned int gchanges)
6982 {
6983 	unsigned int changes = dev->flags ^ old_flags;
6984 
6985 	if (gchanges)
6986 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6987 
6988 	if (changes & IFF_UP) {
6989 		if (dev->flags & IFF_UP)
6990 			call_netdevice_notifiers(NETDEV_UP, dev);
6991 		else
6992 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6993 	}
6994 
6995 	if (dev->flags & IFF_UP &&
6996 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6997 		struct netdev_notifier_change_info change_info = {
6998 			.info = {
6999 				.dev = dev,
7000 			},
7001 			.flags_changed = changes,
7002 		};
7003 
7004 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7005 	}
7006 }
7007 
7008 /**
7009  *	dev_change_flags - change device settings
7010  *	@dev: device
7011  *	@flags: device state flags
7012  *
7013  *	Change settings on device based state flags. The flags are
7014  *	in the userspace exported format.
7015  */
7016 int dev_change_flags(struct net_device *dev, unsigned int flags)
7017 {
7018 	int ret;
7019 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7020 
7021 	ret = __dev_change_flags(dev, flags);
7022 	if (ret < 0)
7023 		return ret;
7024 
7025 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7026 	__dev_notify_flags(dev, old_flags, changes);
7027 	return ret;
7028 }
7029 EXPORT_SYMBOL(dev_change_flags);
7030 
7031 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7032 {
7033 	const struct net_device_ops *ops = dev->netdev_ops;
7034 
7035 	if (ops->ndo_change_mtu)
7036 		return ops->ndo_change_mtu(dev, new_mtu);
7037 
7038 	dev->mtu = new_mtu;
7039 	return 0;
7040 }
7041 EXPORT_SYMBOL(__dev_set_mtu);
7042 
7043 /**
7044  *	dev_set_mtu - Change maximum transfer unit
7045  *	@dev: device
7046  *	@new_mtu: new transfer unit
7047  *
7048  *	Change the maximum transfer size of the network device.
7049  */
7050 int dev_set_mtu(struct net_device *dev, int new_mtu)
7051 {
7052 	int err, orig_mtu;
7053 
7054 	if (new_mtu == dev->mtu)
7055 		return 0;
7056 
7057 	/* MTU must be positive, and in range */
7058 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7059 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7060 				    dev->name, new_mtu, dev->min_mtu);
7061 		return -EINVAL;
7062 	}
7063 
7064 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7065 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7066 				    dev->name, new_mtu, dev->max_mtu);
7067 		return -EINVAL;
7068 	}
7069 
7070 	if (!netif_device_present(dev))
7071 		return -ENODEV;
7072 
7073 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7074 	err = notifier_to_errno(err);
7075 	if (err)
7076 		return err;
7077 
7078 	orig_mtu = dev->mtu;
7079 	err = __dev_set_mtu(dev, new_mtu);
7080 
7081 	if (!err) {
7082 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7083 		err = notifier_to_errno(err);
7084 		if (err) {
7085 			/* setting mtu back and notifying everyone again,
7086 			 * so that they have a chance to revert changes.
7087 			 */
7088 			__dev_set_mtu(dev, orig_mtu);
7089 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7090 		}
7091 	}
7092 	return err;
7093 }
7094 EXPORT_SYMBOL(dev_set_mtu);
7095 
7096 /**
7097  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7098  *	@dev: device
7099  *	@new_len: new tx queue length
7100  */
7101 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7102 {
7103 	unsigned int orig_len = dev->tx_queue_len;
7104 	int res;
7105 
7106 	if (new_len != (unsigned int)new_len)
7107 		return -ERANGE;
7108 
7109 	if (new_len != orig_len) {
7110 		dev->tx_queue_len = new_len;
7111 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7112 		res = notifier_to_errno(res);
7113 		if (res) {
7114 			netdev_err(dev,
7115 				   "refused to change device tx_queue_len\n");
7116 			dev->tx_queue_len = orig_len;
7117 			return res;
7118 		}
7119 		return dev_qdisc_change_tx_queue_len(dev);
7120 	}
7121 
7122 	return 0;
7123 }
7124 
7125 /**
7126  *	dev_set_group - Change group this device belongs to
7127  *	@dev: device
7128  *	@new_group: group this device should belong to
7129  */
7130 void dev_set_group(struct net_device *dev, int new_group)
7131 {
7132 	dev->group = new_group;
7133 }
7134 EXPORT_SYMBOL(dev_set_group);
7135 
7136 /**
7137  *	dev_set_mac_address - Change Media Access Control Address
7138  *	@dev: device
7139  *	@sa: new address
7140  *
7141  *	Change the hardware (MAC) address of the device
7142  */
7143 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7144 {
7145 	const struct net_device_ops *ops = dev->netdev_ops;
7146 	int err;
7147 
7148 	if (!ops->ndo_set_mac_address)
7149 		return -EOPNOTSUPP;
7150 	if (sa->sa_family != dev->type)
7151 		return -EINVAL;
7152 	if (!netif_device_present(dev))
7153 		return -ENODEV;
7154 	err = ops->ndo_set_mac_address(dev, sa);
7155 	if (err)
7156 		return err;
7157 	dev->addr_assign_type = NET_ADDR_SET;
7158 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7159 	add_device_randomness(dev->dev_addr, dev->addr_len);
7160 	return 0;
7161 }
7162 EXPORT_SYMBOL(dev_set_mac_address);
7163 
7164 /**
7165  *	dev_change_carrier - Change device carrier
7166  *	@dev: device
7167  *	@new_carrier: new value
7168  *
7169  *	Change device carrier
7170  */
7171 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7172 {
7173 	const struct net_device_ops *ops = dev->netdev_ops;
7174 
7175 	if (!ops->ndo_change_carrier)
7176 		return -EOPNOTSUPP;
7177 	if (!netif_device_present(dev))
7178 		return -ENODEV;
7179 	return ops->ndo_change_carrier(dev, new_carrier);
7180 }
7181 EXPORT_SYMBOL(dev_change_carrier);
7182 
7183 /**
7184  *	dev_get_phys_port_id - Get device physical port ID
7185  *	@dev: device
7186  *	@ppid: port ID
7187  *
7188  *	Get device physical port ID
7189  */
7190 int dev_get_phys_port_id(struct net_device *dev,
7191 			 struct netdev_phys_item_id *ppid)
7192 {
7193 	const struct net_device_ops *ops = dev->netdev_ops;
7194 
7195 	if (!ops->ndo_get_phys_port_id)
7196 		return -EOPNOTSUPP;
7197 	return ops->ndo_get_phys_port_id(dev, ppid);
7198 }
7199 EXPORT_SYMBOL(dev_get_phys_port_id);
7200 
7201 /**
7202  *	dev_get_phys_port_name - Get device physical port name
7203  *	@dev: device
7204  *	@name: port name
7205  *	@len: limit of bytes to copy to name
7206  *
7207  *	Get device physical port name
7208  */
7209 int dev_get_phys_port_name(struct net_device *dev,
7210 			   char *name, size_t len)
7211 {
7212 	const struct net_device_ops *ops = dev->netdev_ops;
7213 
7214 	if (!ops->ndo_get_phys_port_name)
7215 		return -EOPNOTSUPP;
7216 	return ops->ndo_get_phys_port_name(dev, name, len);
7217 }
7218 EXPORT_SYMBOL(dev_get_phys_port_name);
7219 
7220 /**
7221  *	dev_change_proto_down - update protocol port state information
7222  *	@dev: device
7223  *	@proto_down: new value
7224  *
7225  *	This info can be used by switch drivers to set the phys state of the
7226  *	port.
7227  */
7228 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7229 {
7230 	const struct net_device_ops *ops = dev->netdev_ops;
7231 
7232 	if (!ops->ndo_change_proto_down)
7233 		return -EOPNOTSUPP;
7234 	if (!netif_device_present(dev))
7235 		return -ENODEV;
7236 	return ops->ndo_change_proto_down(dev, proto_down);
7237 }
7238 EXPORT_SYMBOL(dev_change_proto_down);
7239 
7240 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7241 		     struct netdev_bpf *xdp)
7242 {
7243 	memset(xdp, 0, sizeof(*xdp));
7244 	xdp->command = XDP_QUERY_PROG;
7245 
7246 	/* Query must always succeed. */
7247 	WARN_ON(bpf_op(dev, xdp) < 0);
7248 }
7249 
7250 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7251 {
7252 	struct netdev_bpf xdp;
7253 
7254 	__dev_xdp_query(dev, bpf_op, &xdp);
7255 
7256 	return xdp.prog_attached;
7257 }
7258 
7259 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7260 			   struct netlink_ext_ack *extack, u32 flags,
7261 			   struct bpf_prog *prog)
7262 {
7263 	struct netdev_bpf xdp;
7264 
7265 	memset(&xdp, 0, sizeof(xdp));
7266 	if (flags & XDP_FLAGS_HW_MODE)
7267 		xdp.command = XDP_SETUP_PROG_HW;
7268 	else
7269 		xdp.command = XDP_SETUP_PROG;
7270 	xdp.extack = extack;
7271 	xdp.flags = flags;
7272 	xdp.prog = prog;
7273 
7274 	return bpf_op(dev, &xdp);
7275 }
7276 
7277 static void dev_xdp_uninstall(struct net_device *dev)
7278 {
7279 	struct netdev_bpf xdp;
7280 	bpf_op_t ndo_bpf;
7281 
7282 	/* Remove generic XDP */
7283 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7284 
7285 	/* Remove from the driver */
7286 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7287 	if (!ndo_bpf)
7288 		return;
7289 
7290 	__dev_xdp_query(dev, ndo_bpf, &xdp);
7291 	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7292 		return;
7293 
7294 	/* Program removal should always succeed */
7295 	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7296 }
7297 
7298 /**
7299  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7300  *	@dev: device
7301  *	@extack: netlink extended ack
7302  *	@fd: new program fd or negative value to clear
7303  *	@flags: xdp-related flags
7304  *
7305  *	Set or clear a bpf program for a device
7306  */
7307 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7308 		      int fd, u32 flags)
7309 {
7310 	const struct net_device_ops *ops = dev->netdev_ops;
7311 	struct bpf_prog *prog = NULL;
7312 	bpf_op_t bpf_op, bpf_chk;
7313 	int err;
7314 
7315 	ASSERT_RTNL();
7316 
7317 	bpf_op = bpf_chk = ops->ndo_bpf;
7318 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7319 		return -EOPNOTSUPP;
7320 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7321 		bpf_op = generic_xdp_install;
7322 	if (bpf_op == bpf_chk)
7323 		bpf_chk = generic_xdp_install;
7324 
7325 	if (fd >= 0) {
7326 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7327 			return -EEXIST;
7328 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7329 		    __dev_xdp_attached(dev, bpf_op))
7330 			return -EBUSY;
7331 
7332 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7333 					     bpf_op == ops->ndo_bpf);
7334 		if (IS_ERR(prog))
7335 			return PTR_ERR(prog);
7336 
7337 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7338 		    bpf_prog_is_dev_bound(prog->aux)) {
7339 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7340 			bpf_prog_put(prog);
7341 			return -EINVAL;
7342 		}
7343 	}
7344 
7345 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7346 	if (err < 0 && prog)
7347 		bpf_prog_put(prog);
7348 
7349 	return err;
7350 }
7351 
7352 /**
7353  *	dev_new_index	-	allocate an ifindex
7354  *	@net: the applicable net namespace
7355  *
7356  *	Returns a suitable unique value for a new device interface
7357  *	number.  The caller must hold the rtnl semaphore or the
7358  *	dev_base_lock to be sure it remains unique.
7359  */
7360 static int dev_new_index(struct net *net)
7361 {
7362 	int ifindex = net->ifindex;
7363 
7364 	for (;;) {
7365 		if (++ifindex <= 0)
7366 			ifindex = 1;
7367 		if (!__dev_get_by_index(net, ifindex))
7368 			return net->ifindex = ifindex;
7369 	}
7370 }
7371 
7372 /* Delayed registration/unregisteration */
7373 static LIST_HEAD(net_todo_list);
7374 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7375 
7376 static void net_set_todo(struct net_device *dev)
7377 {
7378 	list_add_tail(&dev->todo_list, &net_todo_list);
7379 	dev_net(dev)->dev_unreg_count++;
7380 }
7381 
7382 static void rollback_registered_many(struct list_head *head)
7383 {
7384 	struct net_device *dev, *tmp;
7385 	LIST_HEAD(close_head);
7386 
7387 	BUG_ON(dev_boot_phase);
7388 	ASSERT_RTNL();
7389 
7390 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7391 		/* Some devices call without registering
7392 		 * for initialization unwind. Remove those
7393 		 * devices and proceed with the remaining.
7394 		 */
7395 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7396 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7397 				 dev->name, dev);
7398 
7399 			WARN_ON(1);
7400 			list_del(&dev->unreg_list);
7401 			continue;
7402 		}
7403 		dev->dismantle = true;
7404 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7405 	}
7406 
7407 	/* If device is running, close it first. */
7408 	list_for_each_entry(dev, head, unreg_list)
7409 		list_add_tail(&dev->close_list, &close_head);
7410 	dev_close_many(&close_head, true);
7411 
7412 	list_for_each_entry(dev, head, unreg_list) {
7413 		/* And unlink it from device chain. */
7414 		unlist_netdevice(dev);
7415 
7416 		dev->reg_state = NETREG_UNREGISTERING;
7417 	}
7418 	flush_all_backlogs();
7419 
7420 	synchronize_net();
7421 
7422 	list_for_each_entry(dev, head, unreg_list) {
7423 		struct sk_buff *skb = NULL;
7424 
7425 		/* Shutdown queueing discipline. */
7426 		dev_shutdown(dev);
7427 
7428 		dev_xdp_uninstall(dev);
7429 
7430 		/* Notify protocols, that we are about to destroy
7431 		 * this device. They should clean all the things.
7432 		 */
7433 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7434 
7435 		if (!dev->rtnl_link_ops ||
7436 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7437 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7438 						     GFP_KERNEL, NULL, 0);
7439 
7440 		/*
7441 		 *	Flush the unicast and multicast chains
7442 		 */
7443 		dev_uc_flush(dev);
7444 		dev_mc_flush(dev);
7445 
7446 		if (dev->netdev_ops->ndo_uninit)
7447 			dev->netdev_ops->ndo_uninit(dev);
7448 
7449 		if (skb)
7450 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7451 
7452 		/* Notifier chain MUST detach us all upper devices. */
7453 		WARN_ON(netdev_has_any_upper_dev(dev));
7454 		WARN_ON(netdev_has_any_lower_dev(dev));
7455 
7456 		/* Remove entries from kobject tree */
7457 		netdev_unregister_kobject(dev);
7458 #ifdef CONFIG_XPS
7459 		/* Remove XPS queueing entries */
7460 		netif_reset_xps_queues_gt(dev, 0);
7461 #endif
7462 	}
7463 
7464 	synchronize_net();
7465 
7466 	list_for_each_entry(dev, head, unreg_list)
7467 		dev_put(dev);
7468 }
7469 
7470 static void rollback_registered(struct net_device *dev)
7471 {
7472 	LIST_HEAD(single);
7473 
7474 	list_add(&dev->unreg_list, &single);
7475 	rollback_registered_many(&single);
7476 	list_del(&single);
7477 }
7478 
7479 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7480 	struct net_device *upper, netdev_features_t features)
7481 {
7482 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7483 	netdev_features_t feature;
7484 	int feature_bit;
7485 
7486 	for_each_netdev_feature(&upper_disables, feature_bit) {
7487 		feature = __NETIF_F_BIT(feature_bit);
7488 		if (!(upper->wanted_features & feature)
7489 		    && (features & feature)) {
7490 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7491 				   &feature, upper->name);
7492 			features &= ~feature;
7493 		}
7494 	}
7495 
7496 	return features;
7497 }
7498 
7499 static void netdev_sync_lower_features(struct net_device *upper,
7500 	struct net_device *lower, netdev_features_t features)
7501 {
7502 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7503 	netdev_features_t feature;
7504 	int feature_bit;
7505 
7506 	for_each_netdev_feature(&upper_disables, feature_bit) {
7507 		feature = __NETIF_F_BIT(feature_bit);
7508 		if (!(features & feature) && (lower->features & feature)) {
7509 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7510 				   &feature, lower->name);
7511 			lower->wanted_features &= ~feature;
7512 			netdev_update_features(lower);
7513 
7514 			if (unlikely(lower->features & feature))
7515 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7516 					    &feature, lower->name);
7517 		}
7518 	}
7519 }
7520 
7521 static netdev_features_t netdev_fix_features(struct net_device *dev,
7522 	netdev_features_t features)
7523 {
7524 	/* Fix illegal checksum combinations */
7525 	if ((features & NETIF_F_HW_CSUM) &&
7526 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7527 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7528 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7529 	}
7530 
7531 	/* TSO requires that SG is present as well. */
7532 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7533 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7534 		features &= ~NETIF_F_ALL_TSO;
7535 	}
7536 
7537 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7538 					!(features & NETIF_F_IP_CSUM)) {
7539 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7540 		features &= ~NETIF_F_TSO;
7541 		features &= ~NETIF_F_TSO_ECN;
7542 	}
7543 
7544 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7545 					 !(features & NETIF_F_IPV6_CSUM)) {
7546 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7547 		features &= ~NETIF_F_TSO6;
7548 	}
7549 
7550 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7551 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7552 		features &= ~NETIF_F_TSO_MANGLEID;
7553 
7554 	/* TSO ECN requires that TSO is present as well. */
7555 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7556 		features &= ~NETIF_F_TSO_ECN;
7557 
7558 	/* Software GSO depends on SG. */
7559 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7560 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7561 		features &= ~NETIF_F_GSO;
7562 	}
7563 
7564 	/* GSO partial features require GSO partial be set */
7565 	if ((features & dev->gso_partial_features) &&
7566 	    !(features & NETIF_F_GSO_PARTIAL)) {
7567 		netdev_dbg(dev,
7568 			   "Dropping partially supported GSO features since no GSO partial.\n");
7569 		features &= ~dev->gso_partial_features;
7570 	}
7571 
7572 	if (!(features & NETIF_F_RXCSUM)) {
7573 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7574 		 * successfully merged by hardware must also have the
7575 		 * checksum verified by hardware.  If the user does not
7576 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7577 		 */
7578 		if (features & NETIF_F_GRO_HW) {
7579 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7580 			features &= ~NETIF_F_GRO_HW;
7581 		}
7582 	}
7583 
7584 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
7585 	if (features & NETIF_F_RXFCS) {
7586 		if (features & NETIF_F_LRO) {
7587 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7588 			features &= ~NETIF_F_LRO;
7589 		}
7590 
7591 		if (features & NETIF_F_GRO_HW) {
7592 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7593 			features &= ~NETIF_F_GRO_HW;
7594 		}
7595 	}
7596 
7597 	return features;
7598 }
7599 
7600 int __netdev_update_features(struct net_device *dev)
7601 {
7602 	struct net_device *upper, *lower;
7603 	netdev_features_t features;
7604 	struct list_head *iter;
7605 	int err = -1;
7606 
7607 	ASSERT_RTNL();
7608 
7609 	features = netdev_get_wanted_features(dev);
7610 
7611 	if (dev->netdev_ops->ndo_fix_features)
7612 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7613 
7614 	/* driver might be less strict about feature dependencies */
7615 	features = netdev_fix_features(dev, features);
7616 
7617 	/* some features can't be enabled if they're off an an upper device */
7618 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7619 		features = netdev_sync_upper_features(dev, upper, features);
7620 
7621 	if (dev->features == features)
7622 		goto sync_lower;
7623 
7624 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7625 		&dev->features, &features);
7626 
7627 	if (dev->netdev_ops->ndo_set_features)
7628 		err = dev->netdev_ops->ndo_set_features(dev, features);
7629 	else
7630 		err = 0;
7631 
7632 	if (unlikely(err < 0)) {
7633 		netdev_err(dev,
7634 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7635 			err, &features, &dev->features);
7636 		/* return non-0 since some features might have changed and
7637 		 * it's better to fire a spurious notification than miss it
7638 		 */
7639 		return -1;
7640 	}
7641 
7642 sync_lower:
7643 	/* some features must be disabled on lower devices when disabled
7644 	 * on an upper device (think: bonding master or bridge)
7645 	 */
7646 	netdev_for_each_lower_dev(dev, lower, iter)
7647 		netdev_sync_lower_features(dev, lower, features);
7648 
7649 	if (!err) {
7650 		netdev_features_t diff = features ^ dev->features;
7651 
7652 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7653 			/* udp_tunnel_{get,drop}_rx_info both need
7654 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7655 			 * device, or they won't do anything.
7656 			 * Thus we need to update dev->features
7657 			 * *before* calling udp_tunnel_get_rx_info,
7658 			 * but *after* calling udp_tunnel_drop_rx_info.
7659 			 */
7660 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7661 				dev->features = features;
7662 				udp_tunnel_get_rx_info(dev);
7663 			} else {
7664 				udp_tunnel_drop_rx_info(dev);
7665 			}
7666 		}
7667 
7668 		dev->features = features;
7669 	}
7670 
7671 	return err < 0 ? 0 : 1;
7672 }
7673 
7674 /**
7675  *	netdev_update_features - recalculate device features
7676  *	@dev: the device to check
7677  *
7678  *	Recalculate dev->features set and send notifications if it
7679  *	has changed. Should be called after driver or hardware dependent
7680  *	conditions might have changed that influence the features.
7681  */
7682 void netdev_update_features(struct net_device *dev)
7683 {
7684 	if (__netdev_update_features(dev))
7685 		netdev_features_change(dev);
7686 }
7687 EXPORT_SYMBOL(netdev_update_features);
7688 
7689 /**
7690  *	netdev_change_features - recalculate device features
7691  *	@dev: the device to check
7692  *
7693  *	Recalculate dev->features set and send notifications even
7694  *	if they have not changed. Should be called instead of
7695  *	netdev_update_features() if also dev->vlan_features might
7696  *	have changed to allow the changes to be propagated to stacked
7697  *	VLAN devices.
7698  */
7699 void netdev_change_features(struct net_device *dev)
7700 {
7701 	__netdev_update_features(dev);
7702 	netdev_features_change(dev);
7703 }
7704 EXPORT_SYMBOL(netdev_change_features);
7705 
7706 /**
7707  *	netif_stacked_transfer_operstate -	transfer operstate
7708  *	@rootdev: the root or lower level device to transfer state from
7709  *	@dev: the device to transfer operstate to
7710  *
7711  *	Transfer operational state from root to device. This is normally
7712  *	called when a stacking relationship exists between the root
7713  *	device and the device(a leaf device).
7714  */
7715 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7716 					struct net_device *dev)
7717 {
7718 	if (rootdev->operstate == IF_OPER_DORMANT)
7719 		netif_dormant_on(dev);
7720 	else
7721 		netif_dormant_off(dev);
7722 
7723 	if (netif_carrier_ok(rootdev))
7724 		netif_carrier_on(dev);
7725 	else
7726 		netif_carrier_off(dev);
7727 }
7728 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7729 
7730 static int netif_alloc_rx_queues(struct net_device *dev)
7731 {
7732 	unsigned int i, count = dev->num_rx_queues;
7733 	struct netdev_rx_queue *rx;
7734 	size_t sz = count * sizeof(*rx);
7735 	int err = 0;
7736 
7737 	BUG_ON(count < 1);
7738 
7739 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7740 	if (!rx)
7741 		return -ENOMEM;
7742 
7743 	dev->_rx = rx;
7744 
7745 	for (i = 0; i < count; i++) {
7746 		rx[i].dev = dev;
7747 
7748 		/* XDP RX-queue setup */
7749 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7750 		if (err < 0)
7751 			goto err_rxq_info;
7752 	}
7753 	return 0;
7754 
7755 err_rxq_info:
7756 	/* Rollback successful reg's and free other resources */
7757 	while (i--)
7758 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7759 	kvfree(dev->_rx);
7760 	dev->_rx = NULL;
7761 	return err;
7762 }
7763 
7764 static void netif_free_rx_queues(struct net_device *dev)
7765 {
7766 	unsigned int i, count = dev->num_rx_queues;
7767 
7768 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7769 	if (!dev->_rx)
7770 		return;
7771 
7772 	for (i = 0; i < count; i++)
7773 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7774 
7775 	kvfree(dev->_rx);
7776 }
7777 
7778 static void netdev_init_one_queue(struct net_device *dev,
7779 				  struct netdev_queue *queue, void *_unused)
7780 {
7781 	/* Initialize queue lock */
7782 	spin_lock_init(&queue->_xmit_lock);
7783 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7784 	queue->xmit_lock_owner = -1;
7785 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7786 	queue->dev = dev;
7787 #ifdef CONFIG_BQL
7788 	dql_init(&queue->dql, HZ);
7789 #endif
7790 }
7791 
7792 static void netif_free_tx_queues(struct net_device *dev)
7793 {
7794 	kvfree(dev->_tx);
7795 }
7796 
7797 static int netif_alloc_netdev_queues(struct net_device *dev)
7798 {
7799 	unsigned int count = dev->num_tx_queues;
7800 	struct netdev_queue *tx;
7801 	size_t sz = count * sizeof(*tx);
7802 
7803 	if (count < 1 || count > 0xffff)
7804 		return -EINVAL;
7805 
7806 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7807 	if (!tx)
7808 		return -ENOMEM;
7809 
7810 	dev->_tx = tx;
7811 
7812 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7813 	spin_lock_init(&dev->tx_global_lock);
7814 
7815 	return 0;
7816 }
7817 
7818 void netif_tx_stop_all_queues(struct net_device *dev)
7819 {
7820 	unsigned int i;
7821 
7822 	for (i = 0; i < dev->num_tx_queues; i++) {
7823 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7824 
7825 		netif_tx_stop_queue(txq);
7826 	}
7827 }
7828 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7829 
7830 /**
7831  *	register_netdevice	- register a network device
7832  *	@dev: device to register
7833  *
7834  *	Take a completed network device structure and add it to the kernel
7835  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7836  *	chain. 0 is returned on success. A negative errno code is returned
7837  *	on a failure to set up the device, or if the name is a duplicate.
7838  *
7839  *	Callers must hold the rtnl semaphore. You may want
7840  *	register_netdev() instead of this.
7841  *
7842  *	BUGS:
7843  *	The locking appears insufficient to guarantee two parallel registers
7844  *	will not get the same name.
7845  */
7846 
7847 int register_netdevice(struct net_device *dev)
7848 {
7849 	int ret;
7850 	struct net *net = dev_net(dev);
7851 
7852 	BUG_ON(dev_boot_phase);
7853 	ASSERT_RTNL();
7854 
7855 	might_sleep();
7856 
7857 	/* When net_device's are persistent, this will be fatal. */
7858 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7859 	BUG_ON(!net);
7860 
7861 	spin_lock_init(&dev->addr_list_lock);
7862 	netdev_set_addr_lockdep_class(dev);
7863 
7864 	ret = dev_get_valid_name(net, dev, dev->name);
7865 	if (ret < 0)
7866 		goto out;
7867 
7868 	/* Init, if this function is available */
7869 	if (dev->netdev_ops->ndo_init) {
7870 		ret = dev->netdev_ops->ndo_init(dev);
7871 		if (ret) {
7872 			if (ret > 0)
7873 				ret = -EIO;
7874 			goto out;
7875 		}
7876 	}
7877 
7878 	if (((dev->hw_features | dev->features) &
7879 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7880 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7881 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7882 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7883 		ret = -EINVAL;
7884 		goto err_uninit;
7885 	}
7886 
7887 	ret = -EBUSY;
7888 	if (!dev->ifindex)
7889 		dev->ifindex = dev_new_index(net);
7890 	else if (__dev_get_by_index(net, dev->ifindex))
7891 		goto err_uninit;
7892 
7893 	/* Transfer changeable features to wanted_features and enable
7894 	 * software offloads (GSO and GRO).
7895 	 */
7896 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7897 	dev->features |= NETIF_F_SOFT_FEATURES;
7898 
7899 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7900 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7901 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7902 	}
7903 
7904 	dev->wanted_features = dev->features & dev->hw_features;
7905 
7906 	if (!(dev->flags & IFF_LOOPBACK))
7907 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7908 
7909 	/* If IPv4 TCP segmentation offload is supported we should also
7910 	 * allow the device to enable segmenting the frame with the option
7911 	 * of ignoring a static IP ID value.  This doesn't enable the
7912 	 * feature itself but allows the user to enable it later.
7913 	 */
7914 	if (dev->hw_features & NETIF_F_TSO)
7915 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7916 	if (dev->vlan_features & NETIF_F_TSO)
7917 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7918 	if (dev->mpls_features & NETIF_F_TSO)
7919 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7920 	if (dev->hw_enc_features & NETIF_F_TSO)
7921 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7922 
7923 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7924 	 */
7925 	dev->vlan_features |= NETIF_F_HIGHDMA;
7926 
7927 	/* Make NETIF_F_SG inheritable to tunnel devices.
7928 	 */
7929 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7930 
7931 	/* Make NETIF_F_SG inheritable to MPLS.
7932 	 */
7933 	dev->mpls_features |= NETIF_F_SG;
7934 
7935 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7936 	ret = notifier_to_errno(ret);
7937 	if (ret)
7938 		goto err_uninit;
7939 
7940 	ret = netdev_register_kobject(dev);
7941 	if (ret)
7942 		goto err_uninit;
7943 	dev->reg_state = NETREG_REGISTERED;
7944 
7945 	__netdev_update_features(dev);
7946 
7947 	/*
7948 	 *	Default initial state at registry is that the
7949 	 *	device is present.
7950 	 */
7951 
7952 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7953 
7954 	linkwatch_init_dev(dev);
7955 
7956 	dev_init_scheduler(dev);
7957 	dev_hold(dev);
7958 	list_netdevice(dev);
7959 	add_device_randomness(dev->dev_addr, dev->addr_len);
7960 
7961 	/* If the device has permanent device address, driver should
7962 	 * set dev_addr and also addr_assign_type should be set to
7963 	 * NET_ADDR_PERM (default value).
7964 	 */
7965 	if (dev->addr_assign_type == NET_ADDR_PERM)
7966 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7967 
7968 	/* Notify protocols, that a new device appeared. */
7969 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7970 	ret = notifier_to_errno(ret);
7971 	if (ret) {
7972 		rollback_registered(dev);
7973 		dev->reg_state = NETREG_UNREGISTERED;
7974 	}
7975 	/*
7976 	 *	Prevent userspace races by waiting until the network
7977 	 *	device is fully setup before sending notifications.
7978 	 */
7979 	if (!dev->rtnl_link_ops ||
7980 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7981 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7982 
7983 out:
7984 	return ret;
7985 
7986 err_uninit:
7987 	if (dev->netdev_ops->ndo_uninit)
7988 		dev->netdev_ops->ndo_uninit(dev);
7989 	if (dev->priv_destructor)
7990 		dev->priv_destructor(dev);
7991 	goto out;
7992 }
7993 EXPORT_SYMBOL(register_netdevice);
7994 
7995 /**
7996  *	init_dummy_netdev	- init a dummy network device for NAPI
7997  *	@dev: device to init
7998  *
7999  *	This takes a network device structure and initialize the minimum
8000  *	amount of fields so it can be used to schedule NAPI polls without
8001  *	registering a full blown interface. This is to be used by drivers
8002  *	that need to tie several hardware interfaces to a single NAPI
8003  *	poll scheduler due to HW limitations.
8004  */
8005 int init_dummy_netdev(struct net_device *dev)
8006 {
8007 	/* Clear everything. Note we don't initialize spinlocks
8008 	 * are they aren't supposed to be taken by any of the
8009 	 * NAPI code and this dummy netdev is supposed to be
8010 	 * only ever used for NAPI polls
8011 	 */
8012 	memset(dev, 0, sizeof(struct net_device));
8013 
8014 	/* make sure we BUG if trying to hit standard
8015 	 * register/unregister code path
8016 	 */
8017 	dev->reg_state = NETREG_DUMMY;
8018 
8019 	/* NAPI wants this */
8020 	INIT_LIST_HEAD(&dev->napi_list);
8021 
8022 	/* a dummy interface is started by default */
8023 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8024 	set_bit(__LINK_STATE_START, &dev->state);
8025 
8026 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8027 	 * because users of this 'device' dont need to change
8028 	 * its refcount.
8029 	 */
8030 
8031 	return 0;
8032 }
8033 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8034 
8035 
8036 /**
8037  *	register_netdev	- register a network device
8038  *	@dev: device to register
8039  *
8040  *	Take a completed network device structure and add it to the kernel
8041  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8042  *	chain. 0 is returned on success. A negative errno code is returned
8043  *	on a failure to set up the device, or if the name is a duplicate.
8044  *
8045  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8046  *	and expands the device name if you passed a format string to
8047  *	alloc_netdev.
8048  */
8049 int register_netdev(struct net_device *dev)
8050 {
8051 	int err;
8052 
8053 	if (rtnl_lock_killable())
8054 		return -EINTR;
8055 	err = register_netdevice(dev);
8056 	rtnl_unlock();
8057 	return err;
8058 }
8059 EXPORT_SYMBOL(register_netdev);
8060 
8061 int netdev_refcnt_read(const struct net_device *dev)
8062 {
8063 	int i, refcnt = 0;
8064 
8065 	for_each_possible_cpu(i)
8066 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8067 	return refcnt;
8068 }
8069 EXPORT_SYMBOL(netdev_refcnt_read);
8070 
8071 /**
8072  * netdev_wait_allrefs - wait until all references are gone.
8073  * @dev: target net_device
8074  *
8075  * This is called when unregistering network devices.
8076  *
8077  * Any protocol or device that holds a reference should register
8078  * for netdevice notification, and cleanup and put back the
8079  * reference if they receive an UNREGISTER event.
8080  * We can get stuck here if buggy protocols don't correctly
8081  * call dev_put.
8082  */
8083 static void netdev_wait_allrefs(struct net_device *dev)
8084 {
8085 	unsigned long rebroadcast_time, warning_time;
8086 	int refcnt;
8087 
8088 	linkwatch_forget_dev(dev);
8089 
8090 	rebroadcast_time = warning_time = jiffies;
8091 	refcnt = netdev_refcnt_read(dev);
8092 
8093 	while (refcnt != 0) {
8094 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8095 			rtnl_lock();
8096 
8097 			/* Rebroadcast unregister notification */
8098 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8099 
8100 			__rtnl_unlock();
8101 			rcu_barrier();
8102 			rtnl_lock();
8103 
8104 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8105 				     &dev->state)) {
8106 				/* We must not have linkwatch events
8107 				 * pending on unregister. If this
8108 				 * happens, we simply run the queue
8109 				 * unscheduled, resulting in a noop
8110 				 * for this device.
8111 				 */
8112 				linkwatch_run_queue();
8113 			}
8114 
8115 			__rtnl_unlock();
8116 
8117 			rebroadcast_time = jiffies;
8118 		}
8119 
8120 		msleep(250);
8121 
8122 		refcnt = netdev_refcnt_read(dev);
8123 
8124 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8125 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8126 				 dev->name, refcnt);
8127 			warning_time = jiffies;
8128 		}
8129 	}
8130 }
8131 
8132 /* The sequence is:
8133  *
8134  *	rtnl_lock();
8135  *	...
8136  *	register_netdevice(x1);
8137  *	register_netdevice(x2);
8138  *	...
8139  *	unregister_netdevice(y1);
8140  *	unregister_netdevice(y2);
8141  *      ...
8142  *	rtnl_unlock();
8143  *	free_netdev(y1);
8144  *	free_netdev(y2);
8145  *
8146  * We are invoked by rtnl_unlock().
8147  * This allows us to deal with problems:
8148  * 1) We can delete sysfs objects which invoke hotplug
8149  *    without deadlocking with linkwatch via keventd.
8150  * 2) Since we run with the RTNL semaphore not held, we can sleep
8151  *    safely in order to wait for the netdev refcnt to drop to zero.
8152  *
8153  * We must not return until all unregister events added during
8154  * the interval the lock was held have been completed.
8155  */
8156 void netdev_run_todo(void)
8157 {
8158 	struct list_head list;
8159 
8160 	/* Snapshot list, allow later requests */
8161 	list_replace_init(&net_todo_list, &list);
8162 
8163 	__rtnl_unlock();
8164 
8165 
8166 	/* Wait for rcu callbacks to finish before next phase */
8167 	if (!list_empty(&list))
8168 		rcu_barrier();
8169 
8170 	while (!list_empty(&list)) {
8171 		struct net_device *dev
8172 			= list_first_entry(&list, struct net_device, todo_list);
8173 		list_del(&dev->todo_list);
8174 
8175 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8176 			pr_err("network todo '%s' but state %d\n",
8177 			       dev->name, dev->reg_state);
8178 			dump_stack();
8179 			continue;
8180 		}
8181 
8182 		dev->reg_state = NETREG_UNREGISTERED;
8183 
8184 		netdev_wait_allrefs(dev);
8185 
8186 		/* paranoia */
8187 		BUG_ON(netdev_refcnt_read(dev));
8188 		BUG_ON(!list_empty(&dev->ptype_all));
8189 		BUG_ON(!list_empty(&dev->ptype_specific));
8190 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8191 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8192 #if IS_ENABLED(CONFIG_DECNET)
8193 		WARN_ON(dev->dn_ptr);
8194 #endif
8195 		if (dev->priv_destructor)
8196 			dev->priv_destructor(dev);
8197 		if (dev->needs_free_netdev)
8198 			free_netdev(dev);
8199 
8200 		/* Report a network device has been unregistered */
8201 		rtnl_lock();
8202 		dev_net(dev)->dev_unreg_count--;
8203 		__rtnl_unlock();
8204 		wake_up(&netdev_unregistering_wq);
8205 
8206 		/* Free network device */
8207 		kobject_put(&dev->dev.kobj);
8208 	}
8209 }
8210 
8211 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8212  * all the same fields in the same order as net_device_stats, with only
8213  * the type differing, but rtnl_link_stats64 may have additional fields
8214  * at the end for newer counters.
8215  */
8216 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8217 			     const struct net_device_stats *netdev_stats)
8218 {
8219 #if BITS_PER_LONG == 64
8220 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8221 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8222 	/* zero out counters that only exist in rtnl_link_stats64 */
8223 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8224 	       sizeof(*stats64) - sizeof(*netdev_stats));
8225 #else
8226 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8227 	const unsigned long *src = (const unsigned long *)netdev_stats;
8228 	u64 *dst = (u64 *)stats64;
8229 
8230 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8231 	for (i = 0; i < n; i++)
8232 		dst[i] = src[i];
8233 	/* zero out counters that only exist in rtnl_link_stats64 */
8234 	memset((char *)stats64 + n * sizeof(u64), 0,
8235 	       sizeof(*stats64) - n * sizeof(u64));
8236 #endif
8237 }
8238 EXPORT_SYMBOL(netdev_stats_to_stats64);
8239 
8240 /**
8241  *	dev_get_stats	- get network device statistics
8242  *	@dev: device to get statistics from
8243  *	@storage: place to store stats
8244  *
8245  *	Get network statistics from device. Return @storage.
8246  *	The device driver may provide its own method by setting
8247  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8248  *	otherwise the internal statistics structure is used.
8249  */
8250 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8251 					struct rtnl_link_stats64 *storage)
8252 {
8253 	const struct net_device_ops *ops = dev->netdev_ops;
8254 
8255 	if (ops->ndo_get_stats64) {
8256 		memset(storage, 0, sizeof(*storage));
8257 		ops->ndo_get_stats64(dev, storage);
8258 	} else if (ops->ndo_get_stats) {
8259 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8260 	} else {
8261 		netdev_stats_to_stats64(storage, &dev->stats);
8262 	}
8263 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8264 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8265 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8266 	return storage;
8267 }
8268 EXPORT_SYMBOL(dev_get_stats);
8269 
8270 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8271 {
8272 	struct netdev_queue *queue = dev_ingress_queue(dev);
8273 
8274 #ifdef CONFIG_NET_CLS_ACT
8275 	if (queue)
8276 		return queue;
8277 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8278 	if (!queue)
8279 		return NULL;
8280 	netdev_init_one_queue(dev, queue, NULL);
8281 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8282 	queue->qdisc_sleeping = &noop_qdisc;
8283 	rcu_assign_pointer(dev->ingress_queue, queue);
8284 #endif
8285 	return queue;
8286 }
8287 
8288 static const struct ethtool_ops default_ethtool_ops;
8289 
8290 void netdev_set_default_ethtool_ops(struct net_device *dev,
8291 				    const struct ethtool_ops *ops)
8292 {
8293 	if (dev->ethtool_ops == &default_ethtool_ops)
8294 		dev->ethtool_ops = ops;
8295 }
8296 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8297 
8298 void netdev_freemem(struct net_device *dev)
8299 {
8300 	char *addr = (char *)dev - dev->padded;
8301 
8302 	kvfree(addr);
8303 }
8304 
8305 /**
8306  * alloc_netdev_mqs - allocate network device
8307  * @sizeof_priv: size of private data to allocate space for
8308  * @name: device name format string
8309  * @name_assign_type: origin of device name
8310  * @setup: callback to initialize device
8311  * @txqs: the number of TX subqueues to allocate
8312  * @rxqs: the number of RX subqueues to allocate
8313  *
8314  * Allocates a struct net_device with private data area for driver use
8315  * and performs basic initialization.  Also allocates subqueue structs
8316  * for each queue on the device.
8317  */
8318 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8319 		unsigned char name_assign_type,
8320 		void (*setup)(struct net_device *),
8321 		unsigned int txqs, unsigned int rxqs)
8322 {
8323 	struct net_device *dev;
8324 	unsigned int alloc_size;
8325 	struct net_device *p;
8326 
8327 	BUG_ON(strlen(name) >= sizeof(dev->name));
8328 
8329 	if (txqs < 1) {
8330 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8331 		return NULL;
8332 	}
8333 
8334 	if (rxqs < 1) {
8335 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8336 		return NULL;
8337 	}
8338 
8339 	alloc_size = sizeof(struct net_device);
8340 	if (sizeof_priv) {
8341 		/* ensure 32-byte alignment of private area */
8342 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8343 		alloc_size += sizeof_priv;
8344 	}
8345 	/* ensure 32-byte alignment of whole construct */
8346 	alloc_size += NETDEV_ALIGN - 1;
8347 
8348 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8349 	if (!p)
8350 		return NULL;
8351 
8352 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8353 	dev->padded = (char *)dev - (char *)p;
8354 
8355 	dev->pcpu_refcnt = alloc_percpu(int);
8356 	if (!dev->pcpu_refcnt)
8357 		goto free_dev;
8358 
8359 	if (dev_addr_init(dev))
8360 		goto free_pcpu;
8361 
8362 	dev_mc_init(dev);
8363 	dev_uc_init(dev);
8364 
8365 	dev_net_set(dev, &init_net);
8366 
8367 	dev->gso_max_size = GSO_MAX_SIZE;
8368 	dev->gso_max_segs = GSO_MAX_SEGS;
8369 
8370 	INIT_LIST_HEAD(&dev->napi_list);
8371 	INIT_LIST_HEAD(&dev->unreg_list);
8372 	INIT_LIST_HEAD(&dev->close_list);
8373 	INIT_LIST_HEAD(&dev->link_watch_list);
8374 	INIT_LIST_HEAD(&dev->adj_list.upper);
8375 	INIT_LIST_HEAD(&dev->adj_list.lower);
8376 	INIT_LIST_HEAD(&dev->ptype_all);
8377 	INIT_LIST_HEAD(&dev->ptype_specific);
8378 #ifdef CONFIG_NET_SCHED
8379 	hash_init(dev->qdisc_hash);
8380 #endif
8381 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8382 	setup(dev);
8383 
8384 	if (!dev->tx_queue_len) {
8385 		dev->priv_flags |= IFF_NO_QUEUE;
8386 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8387 	}
8388 
8389 	dev->num_tx_queues = txqs;
8390 	dev->real_num_tx_queues = txqs;
8391 	if (netif_alloc_netdev_queues(dev))
8392 		goto free_all;
8393 
8394 	dev->num_rx_queues = rxqs;
8395 	dev->real_num_rx_queues = rxqs;
8396 	if (netif_alloc_rx_queues(dev))
8397 		goto free_all;
8398 
8399 	strcpy(dev->name, name);
8400 	dev->name_assign_type = name_assign_type;
8401 	dev->group = INIT_NETDEV_GROUP;
8402 	if (!dev->ethtool_ops)
8403 		dev->ethtool_ops = &default_ethtool_ops;
8404 
8405 	nf_hook_ingress_init(dev);
8406 
8407 	return dev;
8408 
8409 free_all:
8410 	free_netdev(dev);
8411 	return NULL;
8412 
8413 free_pcpu:
8414 	free_percpu(dev->pcpu_refcnt);
8415 free_dev:
8416 	netdev_freemem(dev);
8417 	return NULL;
8418 }
8419 EXPORT_SYMBOL(alloc_netdev_mqs);
8420 
8421 /**
8422  * free_netdev - free network device
8423  * @dev: device
8424  *
8425  * This function does the last stage of destroying an allocated device
8426  * interface. The reference to the device object is released. If this
8427  * is the last reference then it will be freed.Must be called in process
8428  * context.
8429  */
8430 void free_netdev(struct net_device *dev)
8431 {
8432 	struct napi_struct *p, *n;
8433 
8434 	might_sleep();
8435 	netif_free_tx_queues(dev);
8436 	netif_free_rx_queues(dev);
8437 
8438 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8439 
8440 	/* Flush device addresses */
8441 	dev_addr_flush(dev);
8442 
8443 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8444 		netif_napi_del(p);
8445 
8446 	free_percpu(dev->pcpu_refcnt);
8447 	dev->pcpu_refcnt = NULL;
8448 
8449 	/*  Compatibility with error handling in drivers */
8450 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8451 		netdev_freemem(dev);
8452 		return;
8453 	}
8454 
8455 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8456 	dev->reg_state = NETREG_RELEASED;
8457 
8458 	/* will free via device release */
8459 	put_device(&dev->dev);
8460 }
8461 EXPORT_SYMBOL(free_netdev);
8462 
8463 /**
8464  *	synchronize_net -  Synchronize with packet receive processing
8465  *
8466  *	Wait for packets currently being received to be done.
8467  *	Does not block later packets from starting.
8468  */
8469 void synchronize_net(void)
8470 {
8471 	might_sleep();
8472 	if (rtnl_is_locked())
8473 		synchronize_rcu_expedited();
8474 	else
8475 		synchronize_rcu();
8476 }
8477 EXPORT_SYMBOL(synchronize_net);
8478 
8479 /**
8480  *	unregister_netdevice_queue - remove device from the kernel
8481  *	@dev: device
8482  *	@head: list
8483  *
8484  *	This function shuts down a device interface and removes it
8485  *	from the kernel tables.
8486  *	If head not NULL, device is queued to be unregistered later.
8487  *
8488  *	Callers must hold the rtnl semaphore.  You may want
8489  *	unregister_netdev() instead of this.
8490  */
8491 
8492 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8493 {
8494 	ASSERT_RTNL();
8495 
8496 	if (head) {
8497 		list_move_tail(&dev->unreg_list, head);
8498 	} else {
8499 		rollback_registered(dev);
8500 		/* Finish processing unregister after unlock */
8501 		net_set_todo(dev);
8502 	}
8503 }
8504 EXPORT_SYMBOL(unregister_netdevice_queue);
8505 
8506 /**
8507  *	unregister_netdevice_many - unregister many devices
8508  *	@head: list of devices
8509  *
8510  *  Note: As most callers use a stack allocated list_head,
8511  *  we force a list_del() to make sure stack wont be corrupted later.
8512  */
8513 void unregister_netdevice_many(struct list_head *head)
8514 {
8515 	struct net_device *dev;
8516 
8517 	if (!list_empty(head)) {
8518 		rollback_registered_many(head);
8519 		list_for_each_entry(dev, head, unreg_list)
8520 			net_set_todo(dev);
8521 		list_del(head);
8522 	}
8523 }
8524 EXPORT_SYMBOL(unregister_netdevice_many);
8525 
8526 /**
8527  *	unregister_netdev - remove device from the kernel
8528  *	@dev: device
8529  *
8530  *	This function shuts down a device interface and removes it
8531  *	from the kernel tables.
8532  *
8533  *	This is just a wrapper for unregister_netdevice that takes
8534  *	the rtnl semaphore.  In general you want to use this and not
8535  *	unregister_netdevice.
8536  */
8537 void unregister_netdev(struct net_device *dev)
8538 {
8539 	rtnl_lock();
8540 	unregister_netdevice(dev);
8541 	rtnl_unlock();
8542 }
8543 EXPORT_SYMBOL(unregister_netdev);
8544 
8545 /**
8546  *	dev_change_net_namespace - move device to different nethost namespace
8547  *	@dev: device
8548  *	@net: network namespace
8549  *	@pat: If not NULL name pattern to try if the current device name
8550  *	      is already taken in the destination network namespace.
8551  *
8552  *	This function shuts down a device interface and moves it
8553  *	to a new network namespace. On success 0 is returned, on
8554  *	a failure a netagive errno code is returned.
8555  *
8556  *	Callers must hold the rtnl semaphore.
8557  */
8558 
8559 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8560 {
8561 	int err, new_nsid, new_ifindex;
8562 
8563 	ASSERT_RTNL();
8564 
8565 	/* Don't allow namespace local devices to be moved. */
8566 	err = -EINVAL;
8567 	if (dev->features & NETIF_F_NETNS_LOCAL)
8568 		goto out;
8569 
8570 	/* Ensure the device has been registrered */
8571 	if (dev->reg_state != NETREG_REGISTERED)
8572 		goto out;
8573 
8574 	/* Get out if there is nothing todo */
8575 	err = 0;
8576 	if (net_eq(dev_net(dev), net))
8577 		goto out;
8578 
8579 	/* Pick the destination device name, and ensure
8580 	 * we can use it in the destination network namespace.
8581 	 */
8582 	err = -EEXIST;
8583 	if (__dev_get_by_name(net, dev->name)) {
8584 		/* We get here if we can't use the current device name */
8585 		if (!pat)
8586 			goto out;
8587 		if (dev_get_valid_name(net, dev, pat) < 0)
8588 			goto out;
8589 	}
8590 
8591 	/*
8592 	 * And now a mini version of register_netdevice unregister_netdevice.
8593 	 */
8594 
8595 	/* If device is running close it first. */
8596 	dev_close(dev);
8597 
8598 	/* And unlink it from device chain */
8599 	err = -ENODEV;
8600 	unlist_netdevice(dev);
8601 
8602 	synchronize_net();
8603 
8604 	/* Shutdown queueing discipline. */
8605 	dev_shutdown(dev);
8606 
8607 	/* Notify protocols, that we are about to destroy
8608 	 * this device. They should clean all the things.
8609 	 *
8610 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8611 	 * This is wanted because this way 8021q and macvlan know
8612 	 * the device is just moving and can keep their slaves up.
8613 	 */
8614 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8615 	rcu_barrier();
8616 
8617 	new_nsid = peernet2id_alloc(dev_net(dev), net);
8618 	/* If there is an ifindex conflict assign a new one */
8619 	if (__dev_get_by_index(net, dev->ifindex))
8620 		new_ifindex = dev_new_index(net);
8621 	else
8622 		new_ifindex = dev->ifindex;
8623 
8624 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8625 			    new_ifindex);
8626 
8627 	/*
8628 	 *	Flush the unicast and multicast chains
8629 	 */
8630 	dev_uc_flush(dev);
8631 	dev_mc_flush(dev);
8632 
8633 	/* Send a netdev-removed uevent to the old namespace */
8634 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8635 	netdev_adjacent_del_links(dev);
8636 
8637 	/* Actually switch the network namespace */
8638 	dev_net_set(dev, net);
8639 	dev->ifindex = new_ifindex;
8640 
8641 	/* Send a netdev-add uevent to the new namespace */
8642 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8643 	netdev_adjacent_add_links(dev);
8644 
8645 	/* Fixup kobjects */
8646 	err = device_rename(&dev->dev, dev->name);
8647 	WARN_ON(err);
8648 
8649 	/* Add the device back in the hashes */
8650 	list_netdevice(dev);
8651 
8652 	/* Notify protocols, that a new device appeared. */
8653 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8654 
8655 	/*
8656 	 *	Prevent userspace races by waiting until the network
8657 	 *	device is fully setup before sending notifications.
8658 	 */
8659 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8660 
8661 	synchronize_net();
8662 	err = 0;
8663 out:
8664 	return err;
8665 }
8666 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8667 
8668 static int dev_cpu_dead(unsigned int oldcpu)
8669 {
8670 	struct sk_buff **list_skb;
8671 	struct sk_buff *skb;
8672 	unsigned int cpu;
8673 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8674 
8675 	local_irq_disable();
8676 	cpu = smp_processor_id();
8677 	sd = &per_cpu(softnet_data, cpu);
8678 	oldsd = &per_cpu(softnet_data, oldcpu);
8679 
8680 	/* Find end of our completion_queue. */
8681 	list_skb = &sd->completion_queue;
8682 	while (*list_skb)
8683 		list_skb = &(*list_skb)->next;
8684 	/* Append completion queue from offline CPU. */
8685 	*list_skb = oldsd->completion_queue;
8686 	oldsd->completion_queue = NULL;
8687 
8688 	/* Append output queue from offline CPU. */
8689 	if (oldsd->output_queue) {
8690 		*sd->output_queue_tailp = oldsd->output_queue;
8691 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8692 		oldsd->output_queue = NULL;
8693 		oldsd->output_queue_tailp = &oldsd->output_queue;
8694 	}
8695 	/* Append NAPI poll list from offline CPU, with one exception :
8696 	 * process_backlog() must be called by cpu owning percpu backlog.
8697 	 * We properly handle process_queue & input_pkt_queue later.
8698 	 */
8699 	while (!list_empty(&oldsd->poll_list)) {
8700 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8701 							    struct napi_struct,
8702 							    poll_list);
8703 
8704 		list_del_init(&napi->poll_list);
8705 		if (napi->poll == process_backlog)
8706 			napi->state = 0;
8707 		else
8708 			____napi_schedule(sd, napi);
8709 	}
8710 
8711 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8712 	local_irq_enable();
8713 
8714 #ifdef CONFIG_RPS
8715 	remsd = oldsd->rps_ipi_list;
8716 	oldsd->rps_ipi_list = NULL;
8717 #endif
8718 	/* send out pending IPI's on offline CPU */
8719 	net_rps_send_ipi(remsd);
8720 
8721 	/* Process offline CPU's input_pkt_queue */
8722 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8723 		netif_rx_ni(skb);
8724 		input_queue_head_incr(oldsd);
8725 	}
8726 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8727 		netif_rx_ni(skb);
8728 		input_queue_head_incr(oldsd);
8729 	}
8730 
8731 	return 0;
8732 }
8733 
8734 /**
8735  *	netdev_increment_features - increment feature set by one
8736  *	@all: current feature set
8737  *	@one: new feature set
8738  *	@mask: mask feature set
8739  *
8740  *	Computes a new feature set after adding a device with feature set
8741  *	@one to the master device with current feature set @all.  Will not
8742  *	enable anything that is off in @mask. Returns the new feature set.
8743  */
8744 netdev_features_t netdev_increment_features(netdev_features_t all,
8745 	netdev_features_t one, netdev_features_t mask)
8746 {
8747 	if (mask & NETIF_F_HW_CSUM)
8748 		mask |= NETIF_F_CSUM_MASK;
8749 	mask |= NETIF_F_VLAN_CHALLENGED;
8750 
8751 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8752 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8753 
8754 	/* If one device supports hw checksumming, set for all. */
8755 	if (all & NETIF_F_HW_CSUM)
8756 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8757 
8758 	return all;
8759 }
8760 EXPORT_SYMBOL(netdev_increment_features);
8761 
8762 static struct hlist_head * __net_init netdev_create_hash(void)
8763 {
8764 	int i;
8765 	struct hlist_head *hash;
8766 
8767 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8768 	if (hash != NULL)
8769 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8770 			INIT_HLIST_HEAD(&hash[i]);
8771 
8772 	return hash;
8773 }
8774 
8775 /* Initialize per network namespace state */
8776 static int __net_init netdev_init(struct net *net)
8777 {
8778 	if (net != &init_net)
8779 		INIT_LIST_HEAD(&net->dev_base_head);
8780 
8781 	net->dev_name_head = netdev_create_hash();
8782 	if (net->dev_name_head == NULL)
8783 		goto err_name;
8784 
8785 	net->dev_index_head = netdev_create_hash();
8786 	if (net->dev_index_head == NULL)
8787 		goto err_idx;
8788 
8789 	return 0;
8790 
8791 err_idx:
8792 	kfree(net->dev_name_head);
8793 err_name:
8794 	return -ENOMEM;
8795 }
8796 
8797 /**
8798  *	netdev_drivername - network driver for the device
8799  *	@dev: network device
8800  *
8801  *	Determine network driver for device.
8802  */
8803 const char *netdev_drivername(const struct net_device *dev)
8804 {
8805 	const struct device_driver *driver;
8806 	const struct device *parent;
8807 	const char *empty = "";
8808 
8809 	parent = dev->dev.parent;
8810 	if (!parent)
8811 		return empty;
8812 
8813 	driver = parent->driver;
8814 	if (driver && driver->name)
8815 		return driver->name;
8816 	return empty;
8817 }
8818 
8819 static void __netdev_printk(const char *level, const struct net_device *dev,
8820 			    struct va_format *vaf)
8821 {
8822 	if (dev && dev->dev.parent) {
8823 		dev_printk_emit(level[1] - '0',
8824 				dev->dev.parent,
8825 				"%s %s %s%s: %pV",
8826 				dev_driver_string(dev->dev.parent),
8827 				dev_name(dev->dev.parent),
8828 				netdev_name(dev), netdev_reg_state(dev),
8829 				vaf);
8830 	} else if (dev) {
8831 		printk("%s%s%s: %pV",
8832 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8833 	} else {
8834 		printk("%s(NULL net_device): %pV", level, vaf);
8835 	}
8836 }
8837 
8838 void netdev_printk(const char *level, const struct net_device *dev,
8839 		   const char *format, ...)
8840 {
8841 	struct va_format vaf;
8842 	va_list args;
8843 
8844 	va_start(args, format);
8845 
8846 	vaf.fmt = format;
8847 	vaf.va = &args;
8848 
8849 	__netdev_printk(level, dev, &vaf);
8850 
8851 	va_end(args);
8852 }
8853 EXPORT_SYMBOL(netdev_printk);
8854 
8855 #define define_netdev_printk_level(func, level)			\
8856 void func(const struct net_device *dev, const char *fmt, ...)	\
8857 {								\
8858 	struct va_format vaf;					\
8859 	va_list args;						\
8860 								\
8861 	va_start(args, fmt);					\
8862 								\
8863 	vaf.fmt = fmt;						\
8864 	vaf.va = &args;						\
8865 								\
8866 	__netdev_printk(level, dev, &vaf);			\
8867 								\
8868 	va_end(args);						\
8869 }								\
8870 EXPORT_SYMBOL(func);
8871 
8872 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8873 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8874 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8875 define_netdev_printk_level(netdev_err, KERN_ERR);
8876 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8877 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8878 define_netdev_printk_level(netdev_info, KERN_INFO);
8879 
8880 static void __net_exit netdev_exit(struct net *net)
8881 {
8882 	kfree(net->dev_name_head);
8883 	kfree(net->dev_index_head);
8884 	if (net != &init_net)
8885 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8886 }
8887 
8888 static struct pernet_operations __net_initdata netdev_net_ops = {
8889 	.init = netdev_init,
8890 	.exit = netdev_exit,
8891 };
8892 
8893 static void __net_exit default_device_exit(struct net *net)
8894 {
8895 	struct net_device *dev, *aux;
8896 	/*
8897 	 * Push all migratable network devices back to the
8898 	 * initial network namespace
8899 	 */
8900 	rtnl_lock();
8901 	for_each_netdev_safe(net, dev, aux) {
8902 		int err;
8903 		char fb_name[IFNAMSIZ];
8904 
8905 		/* Ignore unmoveable devices (i.e. loopback) */
8906 		if (dev->features & NETIF_F_NETNS_LOCAL)
8907 			continue;
8908 
8909 		/* Leave virtual devices for the generic cleanup */
8910 		if (dev->rtnl_link_ops)
8911 			continue;
8912 
8913 		/* Push remaining network devices to init_net */
8914 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8915 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8916 		if (err) {
8917 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8918 				 __func__, dev->name, err);
8919 			BUG();
8920 		}
8921 	}
8922 	rtnl_unlock();
8923 }
8924 
8925 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8926 {
8927 	/* Return with the rtnl_lock held when there are no network
8928 	 * devices unregistering in any network namespace in net_list.
8929 	 */
8930 	struct net *net;
8931 	bool unregistering;
8932 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8933 
8934 	add_wait_queue(&netdev_unregistering_wq, &wait);
8935 	for (;;) {
8936 		unregistering = false;
8937 		rtnl_lock();
8938 		list_for_each_entry(net, net_list, exit_list) {
8939 			if (net->dev_unreg_count > 0) {
8940 				unregistering = true;
8941 				break;
8942 			}
8943 		}
8944 		if (!unregistering)
8945 			break;
8946 		__rtnl_unlock();
8947 
8948 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8949 	}
8950 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8951 }
8952 
8953 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8954 {
8955 	/* At exit all network devices most be removed from a network
8956 	 * namespace.  Do this in the reverse order of registration.
8957 	 * Do this across as many network namespaces as possible to
8958 	 * improve batching efficiency.
8959 	 */
8960 	struct net_device *dev;
8961 	struct net *net;
8962 	LIST_HEAD(dev_kill_list);
8963 
8964 	/* To prevent network device cleanup code from dereferencing
8965 	 * loopback devices or network devices that have been freed
8966 	 * wait here for all pending unregistrations to complete,
8967 	 * before unregistring the loopback device and allowing the
8968 	 * network namespace be freed.
8969 	 *
8970 	 * The netdev todo list containing all network devices
8971 	 * unregistrations that happen in default_device_exit_batch
8972 	 * will run in the rtnl_unlock() at the end of
8973 	 * default_device_exit_batch.
8974 	 */
8975 	rtnl_lock_unregistering(net_list);
8976 	list_for_each_entry(net, net_list, exit_list) {
8977 		for_each_netdev_reverse(net, dev) {
8978 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8979 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8980 			else
8981 				unregister_netdevice_queue(dev, &dev_kill_list);
8982 		}
8983 	}
8984 	unregister_netdevice_many(&dev_kill_list);
8985 	rtnl_unlock();
8986 }
8987 
8988 static struct pernet_operations __net_initdata default_device_ops = {
8989 	.exit = default_device_exit,
8990 	.exit_batch = default_device_exit_batch,
8991 };
8992 
8993 /*
8994  *	Initialize the DEV module. At boot time this walks the device list and
8995  *	unhooks any devices that fail to initialise (normally hardware not
8996  *	present) and leaves us with a valid list of present and active devices.
8997  *
8998  */
8999 
9000 /*
9001  *       This is called single threaded during boot, so no need
9002  *       to take the rtnl semaphore.
9003  */
9004 static int __init net_dev_init(void)
9005 {
9006 	int i, rc = -ENOMEM;
9007 
9008 	BUG_ON(!dev_boot_phase);
9009 
9010 	if (dev_proc_init())
9011 		goto out;
9012 
9013 	if (netdev_kobject_init())
9014 		goto out;
9015 
9016 	INIT_LIST_HEAD(&ptype_all);
9017 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9018 		INIT_LIST_HEAD(&ptype_base[i]);
9019 
9020 	INIT_LIST_HEAD(&offload_base);
9021 
9022 	if (register_pernet_subsys(&netdev_net_ops))
9023 		goto out;
9024 
9025 	/*
9026 	 *	Initialise the packet receive queues.
9027 	 */
9028 
9029 	for_each_possible_cpu(i) {
9030 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9031 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9032 
9033 		INIT_WORK(flush, flush_backlog);
9034 
9035 		skb_queue_head_init(&sd->input_pkt_queue);
9036 		skb_queue_head_init(&sd->process_queue);
9037 #ifdef CONFIG_XFRM_OFFLOAD
9038 		skb_queue_head_init(&sd->xfrm_backlog);
9039 #endif
9040 		INIT_LIST_HEAD(&sd->poll_list);
9041 		sd->output_queue_tailp = &sd->output_queue;
9042 #ifdef CONFIG_RPS
9043 		sd->csd.func = rps_trigger_softirq;
9044 		sd->csd.info = sd;
9045 		sd->cpu = i;
9046 #endif
9047 
9048 		sd->backlog.poll = process_backlog;
9049 		sd->backlog.weight = weight_p;
9050 	}
9051 
9052 	dev_boot_phase = 0;
9053 
9054 	/* The loopback device is special if any other network devices
9055 	 * is present in a network namespace the loopback device must
9056 	 * be present. Since we now dynamically allocate and free the
9057 	 * loopback device ensure this invariant is maintained by
9058 	 * keeping the loopback device as the first device on the
9059 	 * list of network devices.  Ensuring the loopback devices
9060 	 * is the first device that appears and the last network device
9061 	 * that disappears.
9062 	 */
9063 	if (register_pernet_device(&loopback_net_ops))
9064 		goto out;
9065 
9066 	if (register_pernet_device(&default_device_ops))
9067 		goto out;
9068 
9069 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9070 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9071 
9072 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9073 				       NULL, dev_cpu_dead);
9074 	WARN_ON(rc < 0);
9075 	rc = 0;
9076 out:
9077 	return rc;
9078 }
9079 
9080 subsys_initcall(net_dev_init);
9081