xref: /openbmc/linux/net/ceph/messenger.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3 
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef	CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif	/* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20 
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 static bool con_flag_valid(unsigned long con_flag)
86 {
87 	switch (con_flag) {
88 	case CEPH_CON_F_LOSSYTX:
89 	case CEPH_CON_F_KEEPALIVE_PENDING:
90 	case CEPH_CON_F_WRITE_PENDING:
91 	case CEPH_CON_F_SOCK_CLOSED:
92 	case CEPH_CON_F_BACKOFF:
93 		return true;
94 	default:
95 		return false;
96 	}
97 }
98 
99 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
100 {
101 	BUG_ON(!con_flag_valid(con_flag));
102 
103 	clear_bit(con_flag, &con->flags);
104 }
105 
106 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
107 {
108 	BUG_ON(!con_flag_valid(con_flag));
109 
110 	set_bit(con_flag, &con->flags);
111 }
112 
113 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
114 {
115 	BUG_ON(!con_flag_valid(con_flag));
116 
117 	return test_bit(con_flag, &con->flags);
118 }
119 
120 bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 				  unsigned long con_flag)
122 {
123 	BUG_ON(!con_flag_valid(con_flag));
124 
125 	return test_and_clear_bit(con_flag, &con->flags);
126 }
127 
128 bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 				unsigned long con_flag)
130 {
131 	BUG_ON(!con_flag_valid(con_flag));
132 
133 	return test_and_set_bit(con_flag, &con->flags);
134 }
135 
136 /* Slab caches for frequently-allocated structures */
137 
138 static struct kmem_cache	*ceph_msg_cache;
139 
140 #ifdef CONFIG_LOCKDEP
141 static struct lock_class_key socket_class;
142 #endif
143 
144 static void queue_con(struct ceph_connection *con);
145 static void cancel_con(struct ceph_connection *con);
146 static void ceph_con_workfn(struct work_struct *);
147 static void con_fault(struct ceph_connection *con);
148 
149 /*
150  * Nicely render a sockaddr as a string.  An array of formatted
151  * strings is used, to approximate reentrancy.
152  */
153 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
154 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
155 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
156 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
157 
158 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159 static atomic_t addr_str_seq = ATOMIC_INIT(0);
160 
161 struct page *ceph_zero_page;		/* used in certain error cases */
162 
163 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
164 {
165 	int i;
166 	char *s;
167 	struct sockaddr_storage ss = addr->in_addr; /* align */
168 	struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
170 
171 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
172 	s = addr_str[i];
173 
174 	switch (ss.ss_family) {
175 	case AF_INET:
176 		snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 			 le32_to_cpu(addr->type), &in4->sin_addr,
178 			 ntohs(in4->sin_port));
179 		break;
180 
181 	case AF_INET6:
182 		snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 			 le32_to_cpu(addr->type), &in6->sin6_addr,
184 			 ntohs(in6->sin6_port));
185 		break;
186 
187 	default:
188 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
189 			 ss.ss_family);
190 	}
191 
192 	return s;
193 }
194 EXPORT_SYMBOL(ceph_pr_addr);
195 
196 void ceph_encode_my_addr(struct ceph_messenger *msgr)
197 {
198 	if (!ceph_msgr2(from_msgr(msgr))) {
199 		memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
200 		       sizeof(msgr->my_enc_addr));
201 		ceph_encode_banner_addr(&msgr->my_enc_addr);
202 	}
203 }
204 
205 /*
206  * work queue for all reading and writing to/from the socket.
207  */
208 static struct workqueue_struct *ceph_msgr_wq;
209 
210 static int ceph_msgr_slab_init(void)
211 {
212 	BUG_ON(ceph_msg_cache);
213 	ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
214 	if (!ceph_msg_cache)
215 		return -ENOMEM;
216 
217 	return 0;
218 }
219 
220 static void ceph_msgr_slab_exit(void)
221 {
222 	BUG_ON(!ceph_msg_cache);
223 	kmem_cache_destroy(ceph_msg_cache);
224 	ceph_msg_cache = NULL;
225 }
226 
227 static void _ceph_msgr_exit(void)
228 {
229 	if (ceph_msgr_wq) {
230 		destroy_workqueue(ceph_msgr_wq);
231 		ceph_msgr_wq = NULL;
232 	}
233 
234 	BUG_ON(!ceph_zero_page);
235 	put_page(ceph_zero_page);
236 	ceph_zero_page = NULL;
237 
238 	ceph_msgr_slab_exit();
239 }
240 
241 int __init ceph_msgr_init(void)
242 {
243 	if (ceph_msgr_slab_init())
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_zero_page);
247 	ceph_zero_page = ZERO_PAGE(0);
248 	get_page(ceph_zero_page);
249 
250 	/*
251 	 * The number of active work items is limited by the number of
252 	 * connections, so leave @max_active at default.
253 	 */
254 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
255 	if (ceph_msgr_wq)
256 		return 0;
257 
258 	pr_err("msgr_init failed to create workqueue\n");
259 	_ceph_msgr_exit();
260 
261 	return -ENOMEM;
262 }
263 
264 void ceph_msgr_exit(void)
265 {
266 	BUG_ON(ceph_msgr_wq == NULL);
267 
268 	_ceph_msgr_exit();
269 }
270 
271 void ceph_msgr_flush(void)
272 {
273 	flush_workqueue(ceph_msgr_wq);
274 }
275 EXPORT_SYMBOL(ceph_msgr_flush);
276 
277 /* Connection socket state transition functions */
278 
279 static void con_sock_state_init(struct ceph_connection *con)
280 {
281 	int old_state;
282 
283 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
284 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
285 		printk("%s: unexpected old state %d\n", __func__, old_state);
286 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
287 	     CON_SOCK_STATE_CLOSED);
288 }
289 
290 static void con_sock_state_connecting(struct ceph_connection *con)
291 {
292 	int old_state;
293 
294 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
295 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
296 		printk("%s: unexpected old state %d\n", __func__, old_state);
297 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
298 	     CON_SOCK_STATE_CONNECTING);
299 }
300 
301 static void con_sock_state_connected(struct ceph_connection *con)
302 {
303 	int old_state;
304 
305 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
306 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
307 		printk("%s: unexpected old state %d\n", __func__, old_state);
308 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
309 	     CON_SOCK_STATE_CONNECTED);
310 }
311 
312 static void con_sock_state_closing(struct ceph_connection *con)
313 {
314 	int old_state;
315 
316 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
317 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
318 			old_state != CON_SOCK_STATE_CONNECTED &&
319 			old_state != CON_SOCK_STATE_CLOSING))
320 		printk("%s: unexpected old state %d\n", __func__, old_state);
321 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
322 	     CON_SOCK_STATE_CLOSING);
323 }
324 
325 static void con_sock_state_closed(struct ceph_connection *con)
326 {
327 	int old_state;
328 
329 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
331 		    old_state != CON_SOCK_STATE_CLOSING &&
332 		    old_state != CON_SOCK_STATE_CONNECTING &&
333 		    old_state != CON_SOCK_STATE_CLOSED))
334 		printk("%s: unexpected old state %d\n", __func__, old_state);
335 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 	     CON_SOCK_STATE_CLOSED);
337 }
338 
339 /*
340  * socket callback functions
341  */
342 
343 /* data available on socket, or listen socket received a connect */
344 static void ceph_sock_data_ready(struct sock *sk)
345 {
346 	struct ceph_connection *con = sk->sk_user_data;
347 	if (atomic_read(&con->msgr->stopping)) {
348 		return;
349 	}
350 
351 	if (sk->sk_state != TCP_CLOSE_WAIT) {
352 		dout("%s %p state = %d, queueing work\n", __func__,
353 		     con, con->state);
354 		queue_con(con);
355 	}
356 }
357 
358 /* socket has buffer space for writing */
359 static void ceph_sock_write_space(struct sock *sk)
360 {
361 	struct ceph_connection *con = sk->sk_user_data;
362 
363 	/* only queue to workqueue if there is data we want to write,
364 	 * and there is sufficient space in the socket buffer to accept
365 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
366 	 * doesn't get called again until try_write() fills the socket
367 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
368 	 * and net/core/stream.c:sk_stream_write_space().
369 	 */
370 	if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
371 		if (sk_stream_is_writeable(sk)) {
372 			dout("%s %p queueing write work\n", __func__, con);
373 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
374 			queue_con(con);
375 		}
376 	} else {
377 		dout("%s %p nothing to write\n", __func__, con);
378 	}
379 }
380 
381 /* socket's state has changed */
382 static void ceph_sock_state_change(struct sock *sk)
383 {
384 	struct ceph_connection *con = sk->sk_user_data;
385 
386 	dout("%s %p state = %d sk_state = %u\n", __func__,
387 	     con, con->state, sk->sk_state);
388 
389 	switch (sk->sk_state) {
390 	case TCP_CLOSE:
391 		dout("%s TCP_CLOSE\n", __func__);
392 		fallthrough;
393 	case TCP_CLOSE_WAIT:
394 		dout("%s TCP_CLOSE_WAIT\n", __func__);
395 		con_sock_state_closing(con);
396 		ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
397 		queue_con(con);
398 		break;
399 	case TCP_ESTABLISHED:
400 		dout("%s TCP_ESTABLISHED\n", __func__);
401 		con_sock_state_connected(con);
402 		queue_con(con);
403 		break;
404 	default:	/* Everything else is uninteresting */
405 		break;
406 	}
407 }
408 
409 /*
410  * set up socket callbacks
411  */
412 static void set_sock_callbacks(struct socket *sock,
413 			       struct ceph_connection *con)
414 {
415 	struct sock *sk = sock->sk;
416 	sk->sk_user_data = con;
417 	sk->sk_data_ready = ceph_sock_data_ready;
418 	sk->sk_write_space = ceph_sock_write_space;
419 	sk->sk_state_change = ceph_sock_state_change;
420 }
421 
422 
423 /*
424  * socket helpers
425  */
426 
427 /*
428  * initiate connection to a remote socket.
429  */
430 int ceph_tcp_connect(struct ceph_connection *con)
431 {
432 	struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
433 	struct socket *sock;
434 	unsigned int noio_flag;
435 	int ret;
436 
437 	dout("%s con %p peer_addr %s\n", __func__, con,
438 	     ceph_pr_addr(&con->peer_addr));
439 	BUG_ON(con->sock);
440 
441 	/* sock_create_kern() allocates with GFP_KERNEL */
442 	noio_flag = memalloc_noio_save();
443 	ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
444 			       SOCK_STREAM, IPPROTO_TCP, &sock);
445 	memalloc_noio_restore(noio_flag);
446 	if (ret)
447 		return ret;
448 	sock->sk->sk_allocation = GFP_NOFS;
449 
450 #ifdef CONFIG_LOCKDEP
451 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
452 #endif
453 
454 	set_sock_callbacks(sock, con);
455 
456 	con_sock_state_connecting(con);
457 	ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
458 				 O_NONBLOCK);
459 	if (ret == -EINPROGRESS) {
460 		dout("connect %s EINPROGRESS sk_state = %u\n",
461 		     ceph_pr_addr(&con->peer_addr),
462 		     sock->sk->sk_state);
463 	} else if (ret < 0) {
464 		pr_err("connect %s error %d\n",
465 		       ceph_pr_addr(&con->peer_addr), ret);
466 		sock_release(sock);
467 		return ret;
468 	}
469 
470 	if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
471 		tcp_sock_set_nodelay(sock->sk);
472 
473 	con->sock = sock;
474 	return 0;
475 }
476 
477 /*
478  * Shutdown/close the socket for the given connection.
479  */
480 int ceph_con_close_socket(struct ceph_connection *con)
481 {
482 	int rc = 0;
483 
484 	dout("%s con %p sock %p\n", __func__, con, con->sock);
485 	if (con->sock) {
486 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
487 		sock_release(con->sock);
488 		con->sock = NULL;
489 	}
490 
491 	/*
492 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
493 	 * independent of the connection mutex, and we could have
494 	 * received a socket close event before we had the chance to
495 	 * shut the socket down.
496 	 */
497 	ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
498 
499 	con_sock_state_closed(con);
500 	return rc;
501 }
502 
503 static void ceph_con_reset_protocol(struct ceph_connection *con)
504 {
505 	dout("%s con %p\n", __func__, con);
506 
507 	ceph_con_close_socket(con);
508 	if (con->in_msg) {
509 		WARN_ON(con->in_msg->con != con);
510 		ceph_msg_put(con->in_msg);
511 		con->in_msg = NULL;
512 	}
513 	if (con->out_msg) {
514 		WARN_ON(con->out_msg->con != con);
515 		ceph_msg_put(con->out_msg);
516 		con->out_msg = NULL;
517 	}
518 
519 	if (ceph_msgr2(from_msgr(con->msgr)))
520 		ceph_con_v2_reset_protocol(con);
521 	else
522 		ceph_con_v1_reset_protocol(con);
523 }
524 
525 /*
526  * Reset a connection.  Discard all incoming and outgoing messages
527  * and clear *_seq state.
528  */
529 static void ceph_msg_remove(struct ceph_msg *msg)
530 {
531 	list_del_init(&msg->list_head);
532 
533 	ceph_msg_put(msg);
534 }
535 
536 static void ceph_msg_remove_list(struct list_head *head)
537 {
538 	while (!list_empty(head)) {
539 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
540 							list_head);
541 		ceph_msg_remove(msg);
542 	}
543 }
544 
545 void ceph_con_reset_session(struct ceph_connection *con)
546 {
547 	dout("%s con %p\n", __func__, con);
548 
549 	WARN_ON(con->in_msg);
550 	WARN_ON(con->out_msg);
551 	ceph_msg_remove_list(&con->out_queue);
552 	ceph_msg_remove_list(&con->out_sent);
553 	con->out_seq = 0;
554 	con->in_seq = 0;
555 	con->in_seq_acked = 0;
556 
557 	if (ceph_msgr2(from_msgr(con->msgr)))
558 		ceph_con_v2_reset_session(con);
559 	else
560 		ceph_con_v1_reset_session(con);
561 }
562 
563 /*
564  * mark a peer down.  drop any open connections.
565  */
566 void ceph_con_close(struct ceph_connection *con)
567 {
568 	mutex_lock(&con->mutex);
569 	dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
570 	con->state = CEPH_CON_S_CLOSED;
571 
572 	ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX);  /* so we retry next
573 							  connect */
574 	ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
575 	ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
576 	ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
577 
578 	ceph_con_reset_protocol(con);
579 	ceph_con_reset_session(con);
580 	cancel_con(con);
581 	mutex_unlock(&con->mutex);
582 }
583 EXPORT_SYMBOL(ceph_con_close);
584 
585 /*
586  * Reopen a closed connection, with a new peer address.
587  */
588 void ceph_con_open(struct ceph_connection *con,
589 		   __u8 entity_type, __u64 entity_num,
590 		   struct ceph_entity_addr *addr)
591 {
592 	mutex_lock(&con->mutex);
593 	dout("con_open %p %s\n", con, ceph_pr_addr(addr));
594 
595 	WARN_ON(con->state != CEPH_CON_S_CLOSED);
596 	con->state = CEPH_CON_S_PREOPEN;
597 
598 	con->peer_name.type = (__u8) entity_type;
599 	con->peer_name.num = cpu_to_le64(entity_num);
600 
601 	memcpy(&con->peer_addr, addr, sizeof(*addr));
602 	con->delay = 0;      /* reset backoff memory */
603 	mutex_unlock(&con->mutex);
604 	queue_con(con);
605 }
606 EXPORT_SYMBOL(ceph_con_open);
607 
608 /*
609  * return true if this connection ever successfully opened
610  */
611 bool ceph_con_opened(struct ceph_connection *con)
612 {
613 	if (ceph_msgr2(from_msgr(con->msgr)))
614 		return ceph_con_v2_opened(con);
615 
616 	return ceph_con_v1_opened(con);
617 }
618 
619 /*
620  * initialize a new connection.
621  */
622 void ceph_con_init(struct ceph_connection *con, void *private,
623 	const struct ceph_connection_operations *ops,
624 	struct ceph_messenger *msgr)
625 {
626 	dout("con_init %p\n", con);
627 	memset(con, 0, sizeof(*con));
628 	con->private = private;
629 	con->ops = ops;
630 	con->msgr = msgr;
631 
632 	con_sock_state_init(con);
633 
634 	mutex_init(&con->mutex);
635 	INIT_LIST_HEAD(&con->out_queue);
636 	INIT_LIST_HEAD(&con->out_sent);
637 	INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
638 
639 	con->state = CEPH_CON_S_CLOSED;
640 }
641 EXPORT_SYMBOL(ceph_con_init);
642 
643 /*
644  * We maintain a global counter to order connection attempts.  Get
645  * a unique seq greater than @gt.
646  */
647 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
648 {
649 	u32 ret;
650 
651 	spin_lock(&msgr->global_seq_lock);
652 	if (msgr->global_seq < gt)
653 		msgr->global_seq = gt;
654 	ret = ++msgr->global_seq;
655 	spin_unlock(&msgr->global_seq_lock);
656 	return ret;
657 }
658 
659 /*
660  * Discard messages that have been acked by the server.
661  */
662 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
663 {
664 	struct ceph_msg *msg;
665 	u64 seq;
666 
667 	dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
668 	while (!list_empty(&con->out_sent)) {
669 		msg = list_first_entry(&con->out_sent, struct ceph_msg,
670 				       list_head);
671 		WARN_ON(msg->needs_out_seq);
672 		seq = le64_to_cpu(msg->hdr.seq);
673 		if (seq > ack_seq)
674 			break;
675 
676 		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
677 		     msg, seq);
678 		ceph_msg_remove(msg);
679 	}
680 }
681 
682 /*
683  * Discard messages that have been requeued in con_fault(), up to
684  * reconnect_seq.  This avoids gratuitously resending messages that
685  * the server had received and handled prior to reconnect.
686  */
687 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
688 {
689 	struct ceph_msg *msg;
690 	u64 seq;
691 
692 	dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
693 	while (!list_empty(&con->out_queue)) {
694 		msg = list_first_entry(&con->out_queue, struct ceph_msg,
695 				       list_head);
696 		if (msg->needs_out_seq)
697 			break;
698 		seq = le64_to_cpu(msg->hdr.seq);
699 		if (seq > reconnect_seq)
700 			break;
701 
702 		dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
703 		     msg, seq);
704 		ceph_msg_remove(msg);
705 	}
706 }
707 
708 #ifdef CONFIG_BLOCK
709 
710 /*
711  * For a bio data item, a piece is whatever remains of the next
712  * entry in the current bio iovec, or the first entry in the next
713  * bio in the list.
714  */
715 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
716 					size_t length)
717 {
718 	struct ceph_msg_data *data = cursor->data;
719 	struct ceph_bio_iter *it = &cursor->bio_iter;
720 
721 	cursor->resid = min_t(size_t, length, data->bio_length);
722 	*it = data->bio_pos;
723 	if (cursor->resid < it->iter.bi_size)
724 		it->iter.bi_size = cursor->resid;
725 
726 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
727 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
728 }
729 
730 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
731 						size_t *page_offset,
732 						size_t *length)
733 {
734 	struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
735 					   cursor->bio_iter.iter);
736 
737 	*page_offset = bv.bv_offset;
738 	*length = bv.bv_len;
739 	return bv.bv_page;
740 }
741 
742 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
743 					size_t bytes)
744 {
745 	struct ceph_bio_iter *it = &cursor->bio_iter;
746 	struct page *page = bio_iter_page(it->bio, it->iter);
747 
748 	BUG_ON(bytes > cursor->resid);
749 	BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
750 	cursor->resid -= bytes;
751 	bio_advance_iter(it->bio, &it->iter, bytes);
752 
753 	if (!cursor->resid) {
754 		BUG_ON(!cursor->last_piece);
755 		return false;   /* no more data */
756 	}
757 
758 	if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
759 		       page == bio_iter_page(it->bio, it->iter)))
760 		return false;	/* more bytes to process in this segment */
761 
762 	if (!it->iter.bi_size) {
763 		it->bio = it->bio->bi_next;
764 		it->iter = it->bio->bi_iter;
765 		if (cursor->resid < it->iter.bi_size)
766 			it->iter.bi_size = cursor->resid;
767 	}
768 
769 	BUG_ON(cursor->last_piece);
770 	BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
771 	cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
772 	return true;
773 }
774 #endif /* CONFIG_BLOCK */
775 
776 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
777 					size_t length)
778 {
779 	struct ceph_msg_data *data = cursor->data;
780 	struct bio_vec *bvecs = data->bvec_pos.bvecs;
781 
782 	cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
783 	cursor->bvec_iter = data->bvec_pos.iter;
784 	cursor->bvec_iter.bi_size = cursor->resid;
785 
786 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
787 	cursor->last_piece =
788 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
789 }
790 
791 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
792 						size_t *page_offset,
793 						size_t *length)
794 {
795 	struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
796 					   cursor->bvec_iter);
797 
798 	*page_offset = bv.bv_offset;
799 	*length = bv.bv_len;
800 	return bv.bv_page;
801 }
802 
803 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
804 					size_t bytes)
805 {
806 	struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
807 	struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
808 
809 	BUG_ON(bytes > cursor->resid);
810 	BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
811 	cursor->resid -= bytes;
812 	bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
813 
814 	if (!cursor->resid) {
815 		BUG_ON(!cursor->last_piece);
816 		return false;   /* no more data */
817 	}
818 
819 	if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
820 		       page == bvec_iter_page(bvecs, cursor->bvec_iter)))
821 		return false;	/* more bytes to process in this segment */
822 
823 	BUG_ON(cursor->last_piece);
824 	BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
825 	cursor->last_piece =
826 	    cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
827 	return true;
828 }
829 
830 /*
831  * For a page array, a piece comes from the first page in the array
832  * that has not already been fully consumed.
833  */
834 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
835 					size_t length)
836 {
837 	struct ceph_msg_data *data = cursor->data;
838 	int page_count;
839 
840 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
841 
842 	BUG_ON(!data->pages);
843 	BUG_ON(!data->length);
844 
845 	cursor->resid = min(length, data->length);
846 	page_count = calc_pages_for(data->alignment, (u64)data->length);
847 	cursor->page_offset = data->alignment & ~PAGE_MASK;
848 	cursor->page_index = 0;
849 	BUG_ON(page_count > (int)USHRT_MAX);
850 	cursor->page_count = (unsigned short)page_count;
851 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
852 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
853 }
854 
855 static struct page *
856 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
857 					size_t *page_offset, size_t *length)
858 {
859 	struct ceph_msg_data *data = cursor->data;
860 
861 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
862 
863 	BUG_ON(cursor->page_index >= cursor->page_count);
864 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
865 
866 	*page_offset = cursor->page_offset;
867 	if (cursor->last_piece)
868 		*length = cursor->resid;
869 	else
870 		*length = PAGE_SIZE - *page_offset;
871 
872 	return data->pages[cursor->page_index];
873 }
874 
875 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
876 						size_t bytes)
877 {
878 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
879 
880 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
881 
882 	/* Advance the cursor page offset */
883 
884 	cursor->resid -= bytes;
885 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
886 	if (!bytes || cursor->page_offset)
887 		return false;	/* more bytes to process in the current page */
888 
889 	if (!cursor->resid)
890 		return false;   /* no more data */
891 
892 	/* Move on to the next page; offset is already at 0 */
893 
894 	BUG_ON(cursor->page_index >= cursor->page_count);
895 	cursor->page_index++;
896 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
897 
898 	return true;
899 }
900 
901 /*
902  * For a pagelist, a piece is whatever remains to be consumed in the
903  * first page in the list, or the front of the next page.
904  */
905 static void
906 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
907 					size_t length)
908 {
909 	struct ceph_msg_data *data = cursor->data;
910 	struct ceph_pagelist *pagelist;
911 	struct page *page;
912 
913 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
914 
915 	pagelist = data->pagelist;
916 	BUG_ON(!pagelist);
917 
918 	if (!length)
919 		return;		/* pagelist can be assigned but empty */
920 
921 	BUG_ON(list_empty(&pagelist->head));
922 	page = list_first_entry(&pagelist->head, struct page, lru);
923 
924 	cursor->resid = min(length, pagelist->length);
925 	cursor->page = page;
926 	cursor->offset = 0;
927 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
928 }
929 
930 static struct page *
931 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
932 				size_t *page_offset, size_t *length)
933 {
934 	struct ceph_msg_data *data = cursor->data;
935 	struct ceph_pagelist *pagelist;
936 
937 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
938 
939 	pagelist = data->pagelist;
940 	BUG_ON(!pagelist);
941 
942 	BUG_ON(!cursor->page);
943 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
944 
945 	/* offset of first page in pagelist is always 0 */
946 	*page_offset = cursor->offset & ~PAGE_MASK;
947 	if (cursor->last_piece)
948 		*length = cursor->resid;
949 	else
950 		*length = PAGE_SIZE - *page_offset;
951 
952 	return cursor->page;
953 }
954 
955 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
956 						size_t bytes)
957 {
958 	struct ceph_msg_data *data = cursor->data;
959 	struct ceph_pagelist *pagelist;
960 
961 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
962 
963 	pagelist = data->pagelist;
964 	BUG_ON(!pagelist);
965 
966 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
967 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
968 
969 	/* Advance the cursor offset */
970 
971 	cursor->resid -= bytes;
972 	cursor->offset += bytes;
973 	/* offset of first page in pagelist is always 0 */
974 	if (!bytes || cursor->offset & ~PAGE_MASK)
975 		return false;	/* more bytes to process in the current page */
976 
977 	if (!cursor->resid)
978 		return false;   /* no more data */
979 
980 	/* Move on to the next page */
981 
982 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
983 	cursor->page = list_next_entry(cursor->page, lru);
984 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
985 
986 	return true;
987 }
988 
989 /*
990  * Message data is handled (sent or received) in pieces, where each
991  * piece resides on a single page.  The network layer might not
992  * consume an entire piece at once.  A data item's cursor keeps
993  * track of which piece is next to process and how much remains to
994  * be processed in that piece.  It also tracks whether the current
995  * piece is the last one in the data item.
996  */
997 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
998 {
999 	size_t length = cursor->total_resid;
1000 
1001 	switch (cursor->data->type) {
1002 	case CEPH_MSG_DATA_PAGELIST:
1003 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1004 		break;
1005 	case CEPH_MSG_DATA_PAGES:
1006 		ceph_msg_data_pages_cursor_init(cursor, length);
1007 		break;
1008 #ifdef CONFIG_BLOCK
1009 	case CEPH_MSG_DATA_BIO:
1010 		ceph_msg_data_bio_cursor_init(cursor, length);
1011 		break;
1012 #endif /* CONFIG_BLOCK */
1013 	case CEPH_MSG_DATA_BVECS:
1014 		ceph_msg_data_bvecs_cursor_init(cursor, length);
1015 		break;
1016 	case CEPH_MSG_DATA_NONE:
1017 	default:
1018 		/* BUG(); */
1019 		break;
1020 	}
1021 	cursor->need_crc = true;
1022 }
1023 
1024 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1025 			       struct ceph_msg *msg, size_t length)
1026 {
1027 	BUG_ON(!length);
1028 	BUG_ON(length > msg->data_length);
1029 	BUG_ON(!msg->num_data_items);
1030 
1031 	cursor->total_resid = length;
1032 	cursor->data = msg->data;
1033 
1034 	__ceph_msg_data_cursor_init(cursor);
1035 }
1036 
1037 /*
1038  * Return the page containing the next piece to process for a given
1039  * data item, and supply the page offset and length of that piece.
1040  * Indicate whether this is the last piece in this data item.
1041  */
1042 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1043 				size_t *page_offset, size_t *length,
1044 				bool *last_piece)
1045 {
1046 	struct page *page;
1047 
1048 	switch (cursor->data->type) {
1049 	case CEPH_MSG_DATA_PAGELIST:
1050 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1051 		break;
1052 	case CEPH_MSG_DATA_PAGES:
1053 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1054 		break;
1055 #ifdef CONFIG_BLOCK
1056 	case CEPH_MSG_DATA_BIO:
1057 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1058 		break;
1059 #endif /* CONFIG_BLOCK */
1060 	case CEPH_MSG_DATA_BVECS:
1061 		page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1062 		break;
1063 	case CEPH_MSG_DATA_NONE:
1064 	default:
1065 		page = NULL;
1066 		break;
1067 	}
1068 
1069 	BUG_ON(!page);
1070 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1071 	BUG_ON(!*length);
1072 	BUG_ON(*length > cursor->resid);
1073 	if (last_piece)
1074 		*last_piece = cursor->last_piece;
1075 
1076 	return page;
1077 }
1078 
1079 /*
1080  * Returns true if the result moves the cursor on to the next piece
1081  * of the data item.
1082  */
1083 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1084 {
1085 	bool new_piece;
1086 
1087 	BUG_ON(bytes > cursor->resid);
1088 	switch (cursor->data->type) {
1089 	case CEPH_MSG_DATA_PAGELIST:
1090 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1091 		break;
1092 	case CEPH_MSG_DATA_PAGES:
1093 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1094 		break;
1095 #ifdef CONFIG_BLOCK
1096 	case CEPH_MSG_DATA_BIO:
1097 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1098 		break;
1099 #endif /* CONFIG_BLOCK */
1100 	case CEPH_MSG_DATA_BVECS:
1101 		new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1102 		break;
1103 	case CEPH_MSG_DATA_NONE:
1104 	default:
1105 		BUG();
1106 		break;
1107 	}
1108 	cursor->total_resid -= bytes;
1109 
1110 	if (!cursor->resid && cursor->total_resid) {
1111 		WARN_ON(!cursor->last_piece);
1112 		cursor->data++;
1113 		__ceph_msg_data_cursor_init(cursor);
1114 		new_piece = true;
1115 	}
1116 	cursor->need_crc = new_piece;
1117 }
1118 
1119 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1120 		     unsigned int length)
1121 {
1122 	char *kaddr;
1123 
1124 	kaddr = kmap(page);
1125 	BUG_ON(kaddr == NULL);
1126 	crc = crc32c(crc, kaddr + page_offset, length);
1127 	kunmap(page);
1128 
1129 	return crc;
1130 }
1131 
1132 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1133 {
1134 	struct sockaddr_storage ss = addr->in_addr; /* align */
1135 	struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1136 	struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1137 
1138 	switch (ss.ss_family) {
1139 	case AF_INET:
1140 		return addr4->s_addr == htonl(INADDR_ANY);
1141 	case AF_INET6:
1142 		return ipv6_addr_any(addr6);
1143 	default:
1144 		return true;
1145 	}
1146 }
1147 
1148 int ceph_addr_port(const struct ceph_entity_addr *addr)
1149 {
1150 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1151 	case AF_INET:
1152 		return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1153 	case AF_INET6:
1154 		return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1155 	}
1156 	return 0;
1157 }
1158 
1159 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1160 {
1161 	switch (get_unaligned(&addr->in_addr.ss_family)) {
1162 	case AF_INET:
1163 		put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1164 		break;
1165 	case AF_INET6:
1166 		put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1167 		break;
1168 	}
1169 }
1170 
1171 /*
1172  * Unlike other *_pton function semantics, zero indicates success.
1173  */
1174 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1175 		char delim, const char **ipend)
1176 {
1177 	memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1178 
1179 	if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1180 		put_unaligned(AF_INET, &addr->in_addr.ss_family);
1181 		return 0;
1182 	}
1183 
1184 	if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1185 		put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1186 		return 0;
1187 	}
1188 
1189 	return -EINVAL;
1190 }
1191 
1192 /*
1193  * Extract hostname string and resolve using kernel DNS facility.
1194  */
1195 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1196 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1197 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1198 {
1199 	const char *end, *delim_p;
1200 	char *colon_p, *ip_addr = NULL;
1201 	int ip_len, ret;
1202 
1203 	/*
1204 	 * The end of the hostname occurs immediately preceding the delimiter or
1205 	 * the port marker (':') where the delimiter takes precedence.
1206 	 */
1207 	delim_p = memchr(name, delim, namelen);
1208 	colon_p = memchr(name, ':', namelen);
1209 
1210 	if (delim_p && colon_p)
1211 		end = delim_p < colon_p ? delim_p : colon_p;
1212 	else if (!delim_p && colon_p)
1213 		end = colon_p;
1214 	else {
1215 		end = delim_p;
1216 		if (!end) /* case: hostname:/ */
1217 			end = name + namelen;
1218 	}
1219 
1220 	if (end <= name)
1221 		return -EINVAL;
1222 
1223 	/* do dns_resolve upcall */
1224 	ip_len = dns_query(current->nsproxy->net_ns,
1225 			   NULL, name, end - name, NULL, &ip_addr, NULL, false);
1226 	if (ip_len > 0)
1227 		ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1228 	else
1229 		ret = -ESRCH;
1230 
1231 	kfree(ip_addr);
1232 
1233 	*ipend = end;
1234 
1235 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1236 			ret, ret ? "failed" : ceph_pr_addr(addr));
1237 
1238 	return ret;
1239 }
1240 #else
1241 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1242 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1243 {
1244 	return -EINVAL;
1245 }
1246 #endif
1247 
1248 /*
1249  * Parse a server name (IP or hostname). If a valid IP address is not found
1250  * then try to extract a hostname to resolve using userspace DNS upcall.
1251  */
1252 static int ceph_parse_server_name(const char *name, size_t namelen,
1253 		struct ceph_entity_addr *addr, char delim, const char **ipend)
1254 {
1255 	int ret;
1256 
1257 	ret = ceph_pton(name, namelen, addr, delim, ipend);
1258 	if (ret)
1259 		ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1260 
1261 	return ret;
1262 }
1263 
1264 /*
1265  * Parse an ip[:port] list into an addr array.  Use the default
1266  * monitor port if a port isn't specified.
1267  */
1268 int ceph_parse_ips(const char *c, const char *end,
1269 		   struct ceph_entity_addr *addr,
1270 		   int max_count, int *count)
1271 {
1272 	int i, ret = -EINVAL;
1273 	const char *p = c;
1274 
1275 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1276 	for (i = 0; i < max_count; i++) {
1277 		const char *ipend;
1278 		int port;
1279 		char delim = ',';
1280 
1281 		if (*p == '[') {
1282 			delim = ']';
1283 			p++;
1284 		}
1285 
1286 		ret = ceph_parse_server_name(p, end - p, &addr[i], delim, &ipend);
1287 		if (ret)
1288 			goto bad;
1289 		ret = -EINVAL;
1290 
1291 		p = ipend;
1292 
1293 		if (delim == ']') {
1294 			if (*p != ']') {
1295 				dout("missing matching ']'\n");
1296 				goto bad;
1297 			}
1298 			p++;
1299 		}
1300 
1301 		/* port? */
1302 		if (p < end && *p == ':') {
1303 			port = 0;
1304 			p++;
1305 			while (p < end && *p >= '0' && *p <= '9') {
1306 				port = (port * 10) + (*p - '0');
1307 				p++;
1308 			}
1309 			if (port == 0)
1310 				port = CEPH_MON_PORT;
1311 			else if (port > 65535)
1312 				goto bad;
1313 		} else {
1314 			port = CEPH_MON_PORT;
1315 		}
1316 
1317 		ceph_addr_set_port(&addr[i], port);
1318 		/*
1319 		 * We want the type to be set according to ms_mode
1320 		 * option, but options are normally parsed after mon
1321 		 * addresses.  Rather than complicating parsing, set
1322 		 * to LEGACY and override in build_initial_monmap()
1323 		 * for mon addresses and ceph_messenger_init() for
1324 		 * ip option.
1325 		 */
1326 		addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1327 		addr[i].nonce = 0;
1328 
1329 		dout("parse_ips got %s\n", ceph_pr_addr(&addr[i]));
1330 
1331 		if (p == end)
1332 			break;
1333 		if (*p != ',')
1334 			goto bad;
1335 		p++;
1336 	}
1337 
1338 	if (p != end)
1339 		goto bad;
1340 
1341 	if (count)
1342 		*count = i + 1;
1343 	return 0;
1344 
1345 bad:
1346 	return ret;
1347 }
1348 
1349 /*
1350  * Process message.  This happens in the worker thread.  The callback should
1351  * be careful not to do anything that waits on other incoming messages or it
1352  * may deadlock.
1353  */
1354 void ceph_con_process_message(struct ceph_connection *con)
1355 {
1356 	struct ceph_msg *msg = con->in_msg;
1357 
1358 	BUG_ON(con->in_msg->con != con);
1359 	con->in_msg = NULL;
1360 
1361 	/* if first message, set peer_name */
1362 	if (con->peer_name.type == 0)
1363 		con->peer_name = msg->hdr.src;
1364 
1365 	con->in_seq++;
1366 	mutex_unlock(&con->mutex);
1367 
1368 	dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1369 	     msg, le64_to_cpu(msg->hdr.seq),
1370 	     ENTITY_NAME(msg->hdr.src),
1371 	     le16_to_cpu(msg->hdr.type),
1372 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1373 	     le32_to_cpu(msg->hdr.front_len),
1374 	     le32_to_cpu(msg->hdr.middle_len),
1375 	     le32_to_cpu(msg->hdr.data_len),
1376 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1377 	con->ops->dispatch(con, msg);
1378 
1379 	mutex_lock(&con->mutex);
1380 }
1381 
1382 /*
1383  * Atomically queue work on a connection after the specified delay.
1384  * Bump @con reference to avoid races with connection teardown.
1385  * Returns 0 if work was queued, or an error code otherwise.
1386  */
1387 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1388 {
1389 	if (!con->ops->get(con)) {
1390 		dout("%s %p ref count 0\n", __func__, con);
1391 		return -ENOENT;
1392 	}
1393 
1394 	if (delay >= HZ)
1395 		delay = round_jiffies_relative(delay);
1396 
1397 	dout("%s %p %lu\n", __func__, con, delay);
1398 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1399 		dout("%s %p - already queued\n", __func__, con);
1400 		con->ops->put(con);
1401 		return -EBUSY;
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 static void queue_con(struct ceph_connection *con)
1408 {
1409 	(void) queue_con_delay(con, 0);
1410 }
1411 
1412 static void cancel_con(struct ceph_connection *con)
1413 {
1414 	if (cancel_delayed_work(&con->work)) {
1415 		dout("%s %p\n", __func__, con);
1416 		con->ops->put(con);
1417 	}
1418 }
1419 
1420 static bool con_sock_closed(struct ceph_connection *con)
1421 {
1422 	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1423 		return false;
1424 
1425 #define CASE(x)								\
1426 	case CEPH_CON_S_ ## x:						\
1427 		con->error_msg = "socket closed (con state " #x ")";	\
1428 		break;
1429 
1430 	switch (con->state) {
1431 	CASE(CLOSED);
1432 	CASE(PREOPEN);
1433 	CASE(V1_BANNER);
1434 	CASE(V1_CONNECT_MSG);
1435 	CASE(V2_BANNER_PREFIX);
1436 	CASE(V2_BANNER_PAYLOAD);
1437 	CASE(V2_HELLO);
1438 	CASE(V2_AUTH);
1439 	CASE(V2_AUTH_SIGNATURE);
1440 	CASE(V2_SESSION_CONNECT);
1441 	CASE(V2_SESSION_RECONNECT);
1442 	CASE(OPEN);
1443 	CASE(STANDBY);
1444 	default:
1445 		BUG();
1446 	}
1447 #undef CASE
1448 
1449 	return true;
1450 }
1451 
1452 static bool con_backoff(struct ceph_connection *con)
1453 {
1454 	int ret;
1455 
1456 	if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1457 		return false;
1458 
1459 	ret = queue_con_delay(con, con->delay);
1460 	if (ret) {
1461 		dout("%s: con %p FAILED to back off %lu\n", __func__,
1462 			con, con->delay);
1463 		BUG_ON(ret == -ENOENT);
1464 		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1465 	}
1466 
1467 	return true;
1468 }
1469 
1470 /* Finish fault handling; con->mutex must *not* be held here */
1471 
1472 static void con_fault_finish(struct ceph_connection *con)
1473 {
1474 	dout("%s %p\n", __func__, con);
1475 
1476 	/*
1477 	 * in case we faulted due to authentication, invalidate our
1478 	 * current tickets so that we can get new ones.
1479 	 */
1480 	if (con->v1.auth_retry) {
1481 		dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1482 		if (con->ops->invalidate_authorizer)
1483 			con->ops->invalidate_authorizer(con);
1484 		con->v1.auth_retry = 0;
1485 	}
1486 
1487 	if (con->ops->fault)
1488 		con->ops->fault(con);
1489 }
1490 
1491 /*
1492  * Do some work on a connection.  Drop a connection ref when we're done.
1493  */
1494 static void ceph_con_workfn(struct work_struct *work)
1495 {
1496 	struct ceph_connection *con = container_of(work, struct ceph_connection,
1497 						   work.work);
1498 	bool fault;
1499 
1500 	mutex_lock(&con->mutex);
1501 	while (true) {
1502 		int ret;
1503 
1504 		if ((fault = con_sock_closed(con))) {
1505 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1506 			break;
1507 		}
1508 		if (con_backoff(con)) {
1509 			dout("%s: con %p BACKOFF\n", __func__, con);
1510 			break;
1511 		}
1512 		if (con->state == CEPH_CON_S_STANDBY) {
1513 			dout("%s: con %p STANDBY\n", __func__, con);
1514 			break;
1515 		}
1516 		if (con->state == CEPH_CON_S_CLOSED) {
1517 			dout("%s: con %p CLOSED\n", __func__, con);
1518 			BUG_ON(con->sock);
1519 			break;
1520 		}
1521 		if (con->state == CEPH_CON_S_PREOPEN) {
1522 			dout("%s: con %p PREOPEN\n", __func__, con);
1523 			BUG_ON(con->sock);
1524 		}
1525 
1526 		if (ceph_msgr2(from_msgr(con->msgr)))
1527 			ret = ceph_con_v2_try_read(con);
1528 		else
1529 			ret = ceph_con_v1_try_read(con);
1530 		if (ret < 0) {
1531 			if (ret == -EAGAIN)
1532 				continue;
1533 			if (!con->error_msg)
1534 				con->error_msg = "socket error on read";
1535 			fault = true;
1536 			break;
1537 		}
1538 
1539 		if (ceph_msgr2(from_msgr(con->msgr)))
1540 			ret = ceph_con_v2_try_write(con);
1541 		else
1542 			ret = ceph_con_v1_try_write(con);
1543 		if (ret < 0) {
1544 			if (ret == -EAGAIN)
1545 				continue;
1546 			if (!con->error_msg)
1547 				con->error_msg = "socket error on write";
1548 			fault = true;
1549 		}
1550 
1551 		break;	/* If we make it to here, we're done */
1552 	}
1553 	if (fault)
1554 		con_fault(con);
1555 	mutex_unlock(&con->mutex);
1556 
1557 	if (fault)
1558 		con_fault_finish(con);
1559 
1560 	con->ops->put(con);
1561 }
1562 
1563 /*
1564  * Generic error/fault handler.  A retry mechanism is used with
1565  * exponential backoff
1566  */
1567 static void con_fault(struct ceph_connection *con)
1568 {
1569 	dout("fault %p state %d to peer %s\n",
1570 	     con, con->state, ceph_pr_addr(&con->peer_addr));
1571 
1572 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1573 		ceph_pr_addr(&con->peer_addr), con->error_msg);
1574 	con->error_msg = NULL;
1575 
1576 	WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1577 		con->state == CEPH_CON_S_CLOSED);
1578 
1579 	ceph_con_reset_protocol(con);
1580 
1581 	if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1582 		dout("fault on LOSSYTX channel, marking CLOSED\n");
1583 		con->state = CEPH_CON_S_CLOSED;
1584 		return;
1585 	}
1586 
1587 	/* Requeue anything that hasn't been acked */
1588 	list_splice_init(&con->out_sent, &con->out_queue);
1589 
1590 	/* If there are no messages queued or keepalive pending, place
1591 	 * the connection in a STANDBY state */
1592 	if (list_empty(&con->out_queue) &&
1593 	    !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1594 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1595 		ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1596 		con->state = CEPH_CON_S_STANDBY;
1597 	} else {
1598 		/* retry after a delay. */
1599 		con->state = CEPH_CON_S_PREOPEN;
1600 		if (!con->delay) {
1601 			con->delay = BASE_DELAY_INTERVAL;
1602 		} else if (con->delay < MAX_DELAY_INTERVAL) {
1603 			con->delay *= 2;
1604 			if (con->delay > MAX_DELAY_INTERVAL)
1605 				con->delay = MAX_DELAY_INTERVAL;
1606 		}
1607 		ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1608 		queue_con(con);
1609 	}
1610 }
1611 
1612 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1613 {
1614 	u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1615 	msgr->inst.addr.nonce = cpu_to_le32(nonce);
1616 	ceph_encode_my_addr(msgr);
1617 }
1618 
1619 /*
1620  * initialize a new messenger instance
1621  */
1622 void ceph_messenger_init(struct ceph_messenger *msgr,
1623 			 struct ceph_entity_addr *myaddr)
1624 {
1625 	spin_lock_init(&msgr->global_seq_lock);
1626 
1627 	if (myaddr) {
1628 		memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1629 		       sizeof(msgr->inst.addr.in_addr));
1630 		ceph_addr_set_port(&msgr->inst.addr, 0);
1631 	}
1632 
1633 	/*
1634 	 * Since nautilus, clients are identified using type ANY.
1635 	 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1636 	 */
1637 	msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1638 
1639 	/* generate a random non-zero nonce */
1640 	do {
1641 		get_random_bytes(&msgr->inst.addr.nonce,
1642 				 sizeof(msgr->inst.addr.nonce));
1643 	} while (!msgr->inst.addr.nonce);
1644 	ceph_encode_my_addr(msgr);
1645 
1646 	atomic_set(&msgr->stopping, 0);
1647 	write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1648 
1649 	dout("%s %p\n", __func__, msgr);
1650 }
1651 
1652 void ceph_messenger_fini(struct ceph_messenger *msgr)
1653 {
1654 	put_net(read_pnet(&msgr->net));
1655 }
1656 
1657 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1658 {
1659 	if (msg->con)
1660 		msg->con->ops->put(msg->con);
1661 
1662 	msg->con = con ? con->ops->get(con) : NULL;
1663 	BUG_ON(msg->con != con);
1664 }
1665 
1666 static void clear_standby(struct ceph_connection *con)
1667 {
1668 	/* come back from STANDBY? */
1669 	if (con->state == CEPH_CON_S_STANDBY) {
1670 		dout("clear_standby %p and ++connect_seq\n", con);
1671 		con->state = CEPH_CON_S_PREOPEN;
1672 		con->v1.connect_seq++;
1673 		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1674 		WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1675 	}
1676 }
1677 
1678 /*
1679  * Queue up an outgoing message on the given connection.
1680  *
1681  * Consumes a ref on @msg.
1682  */
1683 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1684 {
1685 	/* set src+dst */
1686 	msg->hdr.src = con->msgr->inst.name;
1687 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1688 	msg->needs_out_seq = true;
1689 
1690 	mutex_lock(&con->mutex);
1691 
1692 	if (con->state == CEPH_CON_S_CLOSED) {
1693 		dout("con_send %p closed, dropping %p\n", con, msg);
1694 		ceph_msg_put(msg);
1695 		mutex_unlock(&con->mutex);
1696 		return;
1697 	}
1698 
1699 	msg_con_set(msg, con);
1700 
1701 	BUG_ON(!list_empty(&msg->list_head));
1702 	list_add_tail(&msg->list_head, &con->out_queue);
1703 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1704 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1705 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1706 	     le32_to_cpu(msg->hdr.front_len),
1707 	     le32_to_cpu(msg->hdr.middle_len),
1708 	     le32_to_cpu(msg->hdr.data_len));
1709 
1710 	clear_standby(con);
1711 	mutex_unlock(&con->mutex);
1712 
1713 	/* if there wasn't anything waiting to send before, queue
1714 	 * new work */
1715 	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1716 		queue_con(con);
1717 }
1718 EXPORT_SYMBOL(ceph_con_send);
1719 
1720 /*
1721  * Revoke a message that was previously queued for send
1722  */
1723 void ceph_msg_revoke(struct ceph_msg *msg)
1724 {
1725 	struct ceph_connection *con = msg->con;
1726 
1727 	if (!con) {
1728 		dout("%s msg %p null con\n", __func__, msg);
1729 		return;		/* Message not in our possession */
1730 	}
1731 
1732 	mutex_lock(&con->mutex);
1733 	if (list_empty(&msg->list_head)) {
1734 		WARN_ON(con->out_msg == msg);
1735 		dout("%s con %p msg %p not linked\n", __func__, con, msg);
1736 		mutex_unlock(&con->mutex);
1737 		return;
1738 	}
1739 
1740 	dout("%s con %p msg %p was linked\n", __func__, con, msg);
1741 	msg->hdr.seq = 0;
1742 	ceph_msg_remove(msg);
1743 
1744 	if (con->out_msg == msg) {
1745 		WARN_ON(con->state != CEPH_CON_S_OPEN);
1746 		dout("%s con %p msg %p was sending\n", __func__, con, msg);
1747 		if (ceph_msgr2(from_msgr(con->msgr)))
1748 			ceph_con_v2_revoke(con);
1749 		else
1750 			ceph_con_v1_revoke(con);
1751 		ceph_msg_put(con->out_msg);
1752 		con->out_msg = NULL;
1753 	} else {
1754 		dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1755 		     con, msg, con->out_msg);
1756 	}
1757 	mutex_unlock(&con->mutex);
1758 }
1759 
1760 /*
1761  * Revoke a message that we may be reading data into
1762  */
1763 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1764 {
1765 	struct ceph_connection *con = msg->con;
1766 
1767 	if (!con) {
1768 		dout("%s msg %p null con\n", __func__, msg);
1769 		return;		/* Message not in our possession */
1770 	}
1771 
1772 	mutex_lock(&con->mutex);
1773 	if (con->in_msg == msg) {
1774 		WARN_ON(con->state != CEPH_CON_S_OPEN);
1775 		dout("%s con %p msg %p was recving\n", __func__, con, msg);
1776 		if (ceph_msgr2(from_msgr(con->msgr)))
1777 			ceph_con_v2_revoke_incoming(con);
1778 		else
1779 			ceph_con_v1_revoke_incoming(con);
1780 		ceph_msg_put(con->in_msg);
1781 		con->in_msg = NULL;
1782 	} else {
1783 		dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1784 		     con, msg, con->in_msg);
1785 	}
1786 	mutex_unlock(&con->mutex);
1787 }
1788 
1789 /*
1790  * Queue a keepalive byte to ensure the tcp connection is alive.
1791  */
1792 void ceph_con_keepalive(struct ceph_connection *con)
1793 {
1794 	dout("con_keepalive %p\n", con);
1795 	mutex_lock(&con->mutex);
1796 	clear_standby(con);
1797 	ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1798 	mutex_unlock(&con->mutex);
1799 
1800 	if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1801 		queue_con(con);
1802 }
1803 EXPORT_SYMBOL(ceph_con_keepalive);
1804 
1805 bool ceph_con_keepalive_expired(struct ceph_connection *con,
1806 			       unsigned long interval)
1807 {
1808 	if (interval > 0 &&
1809 	    (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1810 		struct timespec64 now;
1811 		struct timespec64 ts;
1812 		ktime_get_real_ts64(&now);
1813 		jiffies_to_timespec64(interval, &ts);
1814 		ts = timespec64_add(con->last_keepalive_ack, ts);
1815 		return timespec64_compare(&now, &ts) >= 0;
1816 	}
1817 	return false;
1818 }
1819 
1820 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1821 {
1822 	BUG_ON(msg->num_data_items >= msg->max_data_items);
1823 	return &msg->data[msg->num_data_items++];
1824 }
1825 
1826 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1827 {
1828 	if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1829 		int num_pages = calc_pages_for(data->alignment, data->length);
1830 		ceph_release_page_vector(data->pages, num_pages);
1831 	} else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1832 		ceph_pagelist_release(data->pagelist);
1833 	}
1834 }
1835 
1836 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1837 			     size_t length, size_t alignment, bool own_pages)
1838 {
1839 	struct ceph_msg_data *data;
1840 
1841 	BUG_ON(!pages);
1842 	BUG_ON(!length);
1843 
1844 	data = ceph_msg_data_add(msg);
1845 	data->type = CEPH_MSG_DATA_PAGES;
1846 	data->pages = pages;
1847 	data->length = length;
1848 	data->alignment = alignment & ~PAGE_MASK;
1849 	data->own_pages = own_pages;
1850 
1851 	msg->data_length += length;
1852 }
1853 EXPORT_SYMBOL(ceph_msg_data_add_pages);
1854 
1855 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1856 				struct ceph_pagelist *pagelist)
1857 {
1858 	struct ceph_msg_data *data;
1859 
1860 	BUG_ON(!pagelist);
1861 	BUG_ON(!pagelist->length);
1862 
1863 	data = ceph_msg_data_add(msg);
1864 	data->type = CEPH_MSG_DATA_PAGELIST;
1865 	refcount_inc(&pagelist->refcnt);
1866 	data->pagelist = pagelist;
1867 
1868 	msg->data_length += pagelist->length;
1869 }
1870 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1871 
1872 #ifdef	CONFIG_BLOCK
1873 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1874 			   u32 length)
1875 {
1876 	struct ceph_msg_data *data;
1877 
1878 	data = ceph_msg_data_add(msg);
1879 	data->type = CEPH_MSG_DATA_BIO;
1880 	data->bio_pos = *bio_pos;
1881 	data->bio_length = length;
1882 
1883 	msg->data_length += length;
1884 }
1885 EXPORT_SYMBOL(ceph_msg_data_add_bio);
1886 #endif	/* CONFIG_BLOCK */
1887 
1888 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1889 			     struct ceph_bvec_iter *bvec_pos)
1890 {
1891 	struct ceph_msg_data *data;
1892 
1893 	data = ceph_msg_data_add(msg);
1894 	data->type = CEPH_MSG_DATA_BVECS;
1895 	data->bvec_pos = *bvec_pos;
1896 
1897 	msg->data_length += bvec_pos->iter.bi_size;
1898 }
1899 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1900 
1901 /*
1902  * construct a new message with given type, size
1903  * the new msg has a ref count of 1.
1904  */
1905 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1906 			       gfp_t flags, bool can_fail)
1907 {
1908 	struct ceph_msg *m;
1909 
1910 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
1911 	if (m == NULL)
1912 		goto out;
1913 
1914 	m->hdr.type = cpu_to_le16(type);
1915 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1916 	m->hdr.front_len = cpu_to_le32(front_len);
1917 
1918 	INIT_LIST_HEAD(&m->list_head);
1919 	kref_init(&m->kref);
1920 
1921 	/* front */
1922 	if (front_len) {
1923 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
1924 		if (m->front.iov_base == NULL) {
1925 			dout("ceph_msg_new can't allocate %d bytes\n",
1926 			     front_len);
1927 			goto out2;
1928 		}
1929 	} else {
1930 		m->front.iov_base = NULL;
1931 	}
1932 	m->front_alloc_len = m->front.iov_len = front_len;
1933 
1934 	if (max_data_items) {
1935 		m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1936 					flags);
1937 		if (!m->data)
1938 			goto out2;
1939 
1940 		m->max_data_items = max_data_items;
1941 	}
1942 
1943 	dout("ceph_msg_new %p front %d\n", m, front_len);
1944 	return m;
1945 
1946 out2:
1947 	ceph_msg_put(m);
1948 out:
1949 	if (!can_fail) {
1950 		pr_err("msg_new can't create type %d front %d\n", type,
1951 		       front_len);
1952 		WARN_ON(1);
1953 	} else {
1954 		dout("msg_new can't create type %d front %d\n", type,
1955 		     front_len);
1956 	}
1957 	return NULL;
1958 }
1959 EXPORT_SYMBOL(ceph_msg_new2);
1960 
1961 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1962 			      bool can_fail)
1963 {
1964 	return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1965 }
1966 EXPORT_SYMBOL(ceph_msg_new);
1967 
1968 /*
1969  * Allocate "middle" portion of a message, if it is needed and wasn't
1970  * allocated by alloc_msg.  This allows us to read a small fixed-size
1971  * per-type header in the front and then gracefully fail (i.e.,
1972  * propagate the error to the caller based on info in the front) when
1973  * the middle is too large.
1974  */
1975 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1976 {
1977 	int type = le16_to_cpu(msg->hdr.type);
1978 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
1979 
1980 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1981 	     ceph_msg_type_name(type), middle_len);
1982 	BUG_ON(!middle_len);
1983 	BUG_ON(msg->middle);
1984 
1985 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1986 	if (!msg->middle)
1987 		return -ENOMEM;
1988 	return 0;
1989 }
1990 
1991 /*
1992  * Allocate a message for receiving an incoming message on a
1993  * connection, and save the result in con->in_msg.  Uses the
1994  * connection's private alloc_msg op if available.
1995  *
1996  * Returns 0 on success, or a negative error code.
1997  *
1998  * On success, if we set *skip = 1:
1999  *  - the next message should be skipped and ignored.
2000  *  - con->in_msg == NULL
2001  * or if we set *skip = 0:
2002  *  - con->in_msg is non-null.
2003  * On error (ENOMEM, EAGAIN, ...),
2004  *  - con->in_msg == NULL
2005  */
2006 int ceph_con_in_msg_alloc(struct ceph_connection *con,
2007 			  struct ceph_msg_header *hdr, int *skip)
2008 {
2009 	int middle_len = le32_to_cpu(hdr->middle_len);
2010 	struct ceph_msg *msg;
2011 	int ret = 0;
2012 
2013 	BUG_ON(con->in_msg != NULL);
2014 	BUG_ON(!con->ops->alloc_msg);
2015 
2016 	mutex_unlock(&con->mutex);
2017 	msg = con->ops->alloc_msg(con, hdr, skip);
2018 	mutex_lock(&con->mutex);
2019 	if (con->state != CEPH_CON_S_OPEN) {
2020 		if (msg)
2021 			ceph_msg_put(msg);
2022 		return -EAGAIN;
2023 	}
2024 	if (msg) {
2025 		BUG_ON(*skip);
2026 		msg_con_set(msg, con);
2027 		con->in_msg = msg;
2028 	} else {
2029 		/*
2030 		 * Null message pointer means either we should skip
2031 		 * this message or we couldn't allocate memory.  The
2032 		 * former is not an error.
2033 		 */
2034 		if (*skip)
2035 			return 0;
2036 
2037 		con->error_msg = "error allocating memory for incoming message";
2038 		return -ENOMEM;
2039 	}
2040 	memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2041 
2042 	if (middle_len && !con->in_msg->middle) {
2043 		ret = ceph_alloc_middle(con, con->in_msg);
2044 		if (ret < 0) {
2045 			ceph_msg_put(con->in_msg);
2046 			con->in_msg = NULL;
2047 		}
2048 	}
2049 
2050 	return ret;
2051 }
2052 
2053 void ceph_con_get_out_msg(struct ceph_connection *con)
2054 {
2055 	struct ceph_msg *msg;
2056 
2057 	BUG_ON(list_empty(&con->out_queue));
2058 	msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2059 	WARN_ON(msg->con != con);
2060 
2061 	/*
2062 	 * Put the message on "sent" list using a ref from ceph_con_send().
2063 	 * It is put when the message is acked or revoked.
2064 	 */
2065 	list_move_tail(&msg->list_head, &con->out_sent);
2066 
2067 	/*
2068 	 * Only assign outgoing seq # if we haven't sent this message
2069 	 * yet.  If it is requeued, resend with it's original seq.
2070 	 */
2071 	if (msg->needs_out_seq) {
2072 		msg->hdr.seq = cpu_to_le64(++con->out_seq);
2073 		msg->needs_out_seq = false;
2074 
2075 		if (con->ops->reencode_message)
2076 			con->ops->reencode_message(msg);
2077 	}
2078 
2079 	/*
2080 	 * Get a ref for out_msg.  It is put when we are done sending the
2081 	 * message or in case of a fault.
2082 	 */
2083 	WARN_ON(con->out_msg);
2084 	con->out_msg = ceph_msg_get(msg);
2085 }
2086 
2087 /*
2088  * Free a generically kmalloc'd message.
2089  */
2090 static void ceph_msg_free(struct ceph_msg *m)
2091 {
2092 	dout("%s %p\n", __func__, m);
2093 	kvfree(m->front.iov_base);
2094 	kfree(m->data);
2095 	kmem_cache_free(ceph_msg_cache, m);
2096 }
2097 
2098 static void ceph_msg_release(struct kref *kref)
2099 {
2100 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2101 	int i;
2102 
2103 	dout("%s %p\n", __func__, m);
2104 	WARN_ON(!list_empty(&m->list_head));
2105 
2106 	msg_con_set(m, NULL);
2107 
2108 	/* drop middle, data, if any */
2109 	if (m->middle) {
2110 		ceph_buffer_put(m->middle);
2111 		m->middle = NULL;
2112 	}
2113 
2114 	for (i = 0; i < m->num_data_items; i++)
2115 		ceph_msg_data_destroy(&m->data[i]);
2116 
2117 	if (m->pool)
2118 		ceph_msgpool_put(m->pool, m);
2119 	else
2120 		ceph_msg_free(m);
2121 }
2122 
2123 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2124 {
2125 	dout("%s %p (was %d)\n", __func__, msg,
2126 	     kref_read(&msg->kref));
2127 	kref_get(&msg->kref);
2128 	return msg;
2129 }
2130 EXPORT_SYMBOL(ceph_msg_get);
2131 
2132 void ceph_msg_put(struct ceph_msg *msg)
2133 {
2134 	dout("%s %p (was %d)\n", __func__, msg,
2135 	     kref_read(&msg->kref));
2136 	kref_put(&msg->kref, ceph_msg_release);
2137 }
2138 EXPORT_SYMBOL(ceph_msg_put);
2139 
2140 void ceph_msg_dump(struct ceph_msg *msg)
2141 {
2142 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2143 		 msg->front_alloc_len, msg->data_length);
2144 	print_hex_dump(KERN_DEBUG, "header: ",
2145 		       DUMP_PREFIX_OFFSET, 16, 1,
2146 		       &msg->hdr, sizeof(msg->hdr), true);
2147 	print_hex_dump(KERN_DEBUG, " front: ",
2148 		       DUMP_PREFIX_OFFSET, 16, 1,
2149 		       msg->front.iov_base, msg->front.iov_len, true);
2150 	if (msg->middle)
2151 		print_hex_dump(KERN_DEBUG, "middle: ",
2152 			       DUMP_PREFIX_OFFSET, 16, 1,
2153 			       msg->middle->vec.iov_base,
2154 			       msg->middle->vec.iov_len, true);
2155 	print_hex_dump(KERN_DEBUG, "footer: ",
2156 		       DUMP_PREFIX_OFFSET, 16, 1,
2157 		       &msg->footer, sizeof(msg->footer), true);
2158 }
2159 EXPORT_SYMBOL(ceph_msg_dump);
2160