xref: /openbmc/linux/net/ceph/messenger.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 #include <linux/ceph/ceph_debug.h>
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef	CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif	/* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17 
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24 
25 #define list_entry_next(pos, member)					\
26 	list_entry(pos->member.next, typeof(*pos), member)
27 
28 /*
29  * Ceph uses the messenger to exchange ceph_msg messages with other
30  * hosts in the system.  The messenger provides ordered and reliable
31  * delivery.  We tolerate TCP disconnects by reconnecting (with
32  * exponential backoff) in the case of a fault (disconnection, bad
33  * crc, protocol error).  Acks allow sent messages to be discarded by
34  * the sender.
35  */
36 
37 /*
38  * We track the state of the socket on a given connection using
39  * values defined below.  The transition to a new socket state is
40  * handled by a function which verifies we aren't coming from an
41  * unexpected state.
42  *
43  *      --------
44  *      | NEW* |  transient initial state
45  *      --------
46  *          | con_sock_state_init()
47  *          v
48  *      ----------
49  *      | CLOSED |  initialized, but no socket (and no
50  *      ----------  TCP connection)
51  *       ^      \
52  *       |       \ con_sock_state_connecting()
53  *       |        ----------------------
54  *       |                              \
55  *       + con_sock_state_closed()       \
56  *       |+---------------------------    \
57  *       | \                          \    \
58  *       |  -----------                \    \
59  *       |  | CLOSING |  socket event;  \    \
60  *       |  -----------  await close     \    \
61  *       |       ^                        \   |
62  *       |       |                         \  |
63  *       |       + con_sock_state_closing() \ |
64  *       |      / \                         | |
65  *       |     /   ---------------          | |
66  *       |    /                   \         v v
67  *       |   /                    --------------
68  *       |  /    -----------------| CONNECTING |  socket created, TCP
69  *       |  |   /                 --------------  connect initiated
70  *       |  |   | con_sock_state_connected()
71  *       |  |   v
72  *      -------------
73  *      | CONNECTED |  TCP connection established
74  *      -------------
75  *
76  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77  */
78 
79 #define CON_SOCK_STATE_NEW		0	/* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED		1	/* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING	2	/* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED	3	/* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING		4	/* -> CLOSED */
84 
85 /*
86  * connection states
87  */
88 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
89 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
94 
95 /*
96  * ceph_connection flag bits
97  */
98 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
99 				       * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING	   2  /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED	   3  /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
104 
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 	switch (con_flag) {
108 	case CON_FLAG_LOSSYTX:
109 	case CON_FLAG_KEEPALIVE_PENDING:
110 	case CON_FLAG_WRITE_PENDING:
111 	case CON_FLAG_SOCK_CLOSED:
112 	case CON_FLAG_BACKOFF:
113 		return true;
114 	default:
115 		return false;
116 	}
117 }
118 
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 	BUG_ON(!con_flag_valid(con_flag));
122 
123 	clear_bit(con_flag, &con->flags);
124 }
125 
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 	BUG_ON(!con_flag_valid(con_flag));
129 
130 	set_bit(con_flag, &con->flags);
131 }
132 
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 	BUG_ON(!con_flag_valid(con_flag));
136 
137 	return test_bit(con_flag, &con->flags);
138 }
139 
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 					unsigned long con_flag)
142 {
143 	BUG_ON(!con_flag_valid(con_flag));
144 
145 	return test_and_clear_bit(con_flag, &con->flags);
146 }
147 
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 					unsigned long con_flag)
150 {
151 	BUG_ON(!con_flag_valid(con_flag));
152 
153 	return test_and_set_bit(con_flag, &con->flags);
154 }
155 
156 /* Slab caches for frequently-allocated structures */
157 
158 static struct kmem_cache	*ceph_msg_cache;
159 static struct kmem_cache	*ceph_msg_data_cache;
160 
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169 
170 /*
171  * When skipping (ignoring) a block of input we read it into a "skip
172  * buffer," which is this many bytes in size.
173  */
174 #define SKIP_BUF_SIZE	1024
175 
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180 
181 /*
182  * Nicely render a sockaddr as a string.  An array of formatted
183  * strings is used, to approximate reentrancy.
184  */
185 #define ADDR_STR_COUNT_LOG	5	/* log2(# address strings in array) */
186 #define ADDR_STR_COUNT		(1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK	(ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN	64	/* 54 is enough */
189 
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192 
193 static struct page *zero_page;		/* used in certain error cases */
194 
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 	int i;
198 	char *s;
199 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201 
202 	i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 	s = addr_str[i];
204 
205 	switch (ss->ss_family) {
206 	case AF_INET:
207 		snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 			 ntohs(in4->sin_port));
209 		break;
210 
211 	case AF_INET6:
212 		snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 			 ntohs(in6->sin6_port));
214 		break;
215 
216 	default:
217 		snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 			 ss->ss_family);
219 	}
220 
221 	return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224 
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 	memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 	ceph_encode_addr(&msgr->my_enc_addr);
229 }
230 
231 /*
232  * work queue for all reading and writing to/from the socket.
233  */
234 static struct workqueue_struct *ceph_msgr_wq;
235 
236 static int ceph_msgr_slab_init(void)
237 {
238 	BUG_ON(ceph_msg_cache);
239 	ceph_msg_cache = kmem_cache_create("ceph_msg",
240 					sizeof (struct ceph_msg),
241 					__alignof__(struct ceph_msg), 0, NULL);
242 
243 	if (!ceph_msg_cache)
244 		return -ENOMEM;
245 
246 	BUG_ON(ceph_msg_data_cache);
247 	ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 					sizeof (struct ceph_msg_data),
249 					__alignof__(struct ceph_msg_data),
250 					0, NULL);
251 	if (ceph_msg_data_cache)
252 		return 0;
253 
254 	kmem_cache_destroy(ceph_msg_cache);
255 	ceph_msg_cache = NULL;
256 
257 	return -ENOMEM;
258 }
259 
260 static void ceph_msgr_slab_exit(void)
261 {
262 	BUG_ON(!ceph_msg_data_cache);
263 	kmem_cache_destroy(ceph_msg_data_cache);
264 	ceph_msg_data_cache = NULL;
265 
266 	BUG_ON(!ceph_msg_cache);
267 	kmem_cache_destroy(ceph_msg_cache);
268 	ceph_msg_cache = NULL;
269 }
270 
271 static void _ceph_msgr_exit(void)
272 {
273 	if (ceph_msgr_wq) {
274 		destroy_workqueue(ceph_msgr_wq);
275 		ceph_msgr_wq = NULL;
276 	}
277 
278 	ceph_msgr_slab_exit();
279 
280 	BUG_ON(zero_page == NULL);
281 	kunmap(zero_page);
282 	page_cache_release(zero_page);
283 	zero_page = NULL;
284 }
285 
286 int ceph_msgr_init(void)
287 {
288 	BUG_ON(zero_page != NULL);
289 	zero_page = ZERO_PAGE(0);
290 	page_cache_get(zero_page);
291 
292 	if (ceph_msgr_slab_init())
293 		return -ENOMEM;
294 
295 	/*
296 	 * The number of active work items is limited by the number of
297 	 * connections, so leave @max_active at default.
298 	 */
299 	ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 	if (ceph_msgr_wq)
301 		return 0;
302 
303 	pr_err("msgr_init failed to create workqueue\n");
304 	_ceph_msgr_exit();
305 
306 	return -ENOMEM;
307 }
308 EXPORT_SYMBOL(ceph_msgr_init);
309 
310 void ceph_msgr_exit(void)
311 {
312 	BUG_ON(ceph_msgr_wq == NULL);
313 
314 	_ceph_msgr_exit();
315 }
316 EXPORT_SYMBOL(ceph_msgr_exit);
317 
318 void ceph_msgr_flush(void)
319 {
320 	flush_workqueue(ceph_msgr_wq);
321 }
322 EXPORT_SYMBOL(ceph_msgr_flush);
323 
324 /* Connection socket state transition functions */
325 
326 static void con_sock_state_init(struct ceph_connection *con)
327 {
328 	int old_state;
329 
330 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 	if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 		printk("%s: unexpected old state %d\n", __func__, old_state);
333 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 	     CON_SOCK_STATE_CLOSED);
335 }
336 
337 static void con_sock_state_connecting(struct ceph_connection *con)
338 {
339 	int old_state;
340 
341 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 	if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 		printk("%s: unexpected old state %d\n", __func__, old_state);
344 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 	     CON_SOCK_STATE_CONNECTING);
346 }
347 
348 static void con_sock_state_connected(struct ceph_connection *con)
349 {
350 	int old_state;
351 
352 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 		printk("%s: unexpected old state %d\n", __func__, old_state);
355 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 	     CON_SOCK_STATE_CONNECTED);
357 }
358 
359 static void con_sock_state_closing(struct ceph_connection *con)
360 {
361 	int old_state;
362 
363 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 			old_state != CON_SOCK_STATE_CONNECTED &&
366 			old_state != CON_SOCK_STATE_CLOSING))
367 		printk("%s: unexpected old state %d\n", __func__, old_state);
368 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 	     CON_SOCK_STATE_CLOSING);
370 }
371 
372 static void con_sock_state_closed(struct ceph_connection *con)
373 {
374 	int old_state;
375 
376 	old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 	if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 		    old_state != CON_SOCK_STATE_CLOSING &&
379 		    old_state != CON_SOCK_STATE_CONNECTING &&
380 		    old_state != CON_SOCK_STATE_CLOSED))
381 		printk("%s: unexpected old state %d\n", __func__, old_state);
382 	dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 	     CON_SOCK_STATE_CLOSED);
384 }
385 
386 /*
387  * socket callback functions
388  */
389 
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock *sk)
392 {
393 	struct ceph_connection *con = sk->sk_user_data;
394 	if (atomic_read(&con->msgr->stopping)) {
395 		return;
396 	}
397 
398 	if (sk->sk_state != TCP_CLOSE_WAIT) {
399 		dout("%s on %p state = %lu, queueing work\n", __func__,
400 		     con, con->state);
401 		queue_con(con);
402 	}
403 }
404 
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock *sk)
407 {
408 	struct ceph_connection *con = sk->sk_user_data;
409 
410 	/* only queue to workqueue if there is data we want to write,
411 	 * and there is sufficient space in the socket buffer to accept
412 	 * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
413 	 * doesn't get called again until try_write() fills the socket
414 	 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 	 * and net/core/stream.c:sk_stream_write_space().
416 	 */
417 	if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 		if (sk_stream_is_writeable(sk)) {
419 			dout("%s %p queueing write work\n", __func__, con);
420 			clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 			queue_con(con);
422 		}
423 	} else {
424 		dout("%s %p nothing to write\n", __func__, con);
425 	}
426 }
427 
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock *sk)
430 {
431 	struct ceph_connection *con = sk->sk_user_data;
432 
433 	dout("%s %p state = %lu sk_state = %u\n", __func__,
434 	     con, con->state, sk->sk_state);
435 
436 	switch (sk->sk_state) {
437 	case TCP_CLOSE:
438 		dout("%s TCP_CLOSE\n", __func__);
439 	case TCP_CLOSE_WAIT:
440 		dout("%s TCP_CLOSE_WAIT\n", __func__);
441 		con_sock_state_closing(con);
442 		con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 		queue_con(con);
444 		break;
445 	case TCP_ESTABLISHED:
446 		dout("%s TCP_ESTABLISHED\n", __func__);
447 		con_sock_state_connected(con);
448 		queue_con(con);
449 		break;
450 	default:	/* Everything else is uninteresting */
451 		break;
452 	}
453 }
454 
455 /*
456  * set up socket callbacks
457  */
458 static void set_sock_callbacks(struct socket *sock,
459 			       struct ceph_connection *con)
460 {
461 	struct sock *sk = sock->sk;
462 	sk->sk_user_data = con;
463 	sk->sk_data_ready = ceph_sock_data_ready;
464 	sk->sk_write_space = ceph_sock_write_space;
465 	sk->sk_state_change = ceph_sock_state_change;
466 }
467 
468 
469 /*
470  * socket helpers
471  */
472 
473 /*
474  * initiate connection to a remote socket.
475  */
476 static int ceph_tcp_connect(struct ceph_connection *con)
477 {
478 	struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 	struct socket *sock;
480 	int ret;
481 
482 	BUG_ON(con->sock);
483 	ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 			       IPPROTO_TCP, &sock);
485 	if (ret)
486 		return ret;
487 	sock->sk->sk_allocation = GFP_NOFS | __GFP_MEMALLOC;
488 
489 #ifdef CONFIG_LOCKDEP
490 	lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492 
493 	set_sock_callbacks(sock, con);
494 
495 	dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496 
497 	con_sock_state_connecting(con);
498 	ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 				 O_NONBLOCK);
500 	if (ret == -EINPROGRESS) {
501 		dout("connect %s EINPROGRESS sk_state = %u\n",
502 		     ceph_pr_addr(&con->peer_addr.in_addr),
503 		     sock->sk->sk_state);
504 	} else if (ret < 0) {
505 		pr_err("connect %s error %d\n",
506 		       ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 		sock_release(sock);
508 		con->error_msg = "connect error";
509 
510 		return ret;
511 	}
512 
513 	sk_set_memalloc(sock->sk);
514 
515 	con->sock = sock;
516 	return 0;
517 }
518 
519 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
520 {
521 	struct kvec iov = {buf, len};
522 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
523 	int r;
524 
525 	r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
526 	if (r == -EAGAIN)
527 		r = 0;
528 	return r;
529 }
530 
531 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
532 		     int page_offset, size_t length)
533 {
534 	void *kaddr;
535 	int ret;
536 
537 	BUG_ON(page_offset + length > PAGE_SIZE);
538 
539 	kaddr = kmap(page);
540 	BUG_ON(!kaddr);
541 	ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
542 	kunmap(page);
543 
544 	return ret;
545 }
546 
547 /*
548  * write something.  @more is true if caller will be sending more data
549  * shortly.
550  */
551 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
552 		     size_t kvlen, size_t len, int more)
553 {
554 	struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
555 	int r;
556 
557 	if (more)
558 		msg.msg_flags |= MSG_MORE;
559 	else
560 		msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
561 
562 	r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
563 	if (r == -EAGAIN)
564 		r = 0;
565 	return r;
566 }
567 
568 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
569 		     int offset, size_t size, bool more)
570 {
571 	int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
572 	int ret;
573 
574 	ret = kernel_sendpage(sock, page, offset, size, flags);
575 	if (ret == -EAGAIN)
576 		ret = 0;
577 
578 	return ret;
579 }
580 
581 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
582 		     int offset, size_t size, bool more)
583 {
584 	int ret;
585 	struct kvec iov;
586 
587 	/* sendpage cannot properly handle pages with page_count == 0,
588 	 * we need to fallback to sendmsg if that's the case */
589 	if (page_count(page) >= 1)
590 		return __ceph_tcp_sendpage(sock, page, offset, size, more);
591 
592 	iov.iov_base = kmap(page) + offset;
593 	iov.iov_len = size;
594 	ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
595 	kunmap(page);
596 
597 	return ret;
598 }
599 
600 /*
601  * Shutdown/close the socket for the given connection.
602  */
603 static int con_close_socket(struct ceph_connection *con)
604 {
605 	int rc = 0;
606 
607 	dout("con_close_socket on %p sock %p\n", con, con->sock);
608 	if (con->sock) {
609 		rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
610 		sock_release(con->sock);
611 		con->sock = NULL;
612 	}
613 
614 	/*
615 	 * Forcibly clear the SOCK_CLOSED flag.  It gets set
616 	 * independent of the connection mutex, and we could have
617 	 * received a socket close event before we had the chance to
618 	 * shut the socket down.
619 	 */
620 	con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
621 
622 	con_sock_state_closed(con);
623 	return rc;
624 }
625 
626 /*
627  * Reset a connection.  Discard all incoming and outgoing messages
628  * and clear *_seq state.
629  */
630 static void ceph_msg_remove(struct ceph_msg *msg)
631 {
632 	list_del_init(&msg->list_head);
633 	BUG_ON(msg->con == NULL);
634 	msg->con->ops->put(msg->con);
635 	msg->con = NULL;
636 
637 	ceph_msg_put(msg);
638 }
639 static void ceph_msg_remove_list(struct list_head *head)
640 {
641 	while (!list_empty(head)) {
642 		struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
643 							list_head);
644 		ceph_msg_remove(msg);
645 	}
646 }
647 
648 static void reset_connection(struct ceph_connection *con)
649 {
650 	/* reset connection, out_queue, msg_ and connect_seq */
651 	/* discard existing out_queue and msg_seq */
652 	dout("reset_connection %p\n", con);
653 	ceph_msg_remove_list(&con->out_queue);
654 	ceph_msg_remove_list(&con->out_sent);
655 
656 	if (con->in_msg) {
657 		BUG_ON(con->in_msg->con != con);
658 		con->in_msg->con = NULL;
659 		ceph_msg_put(con->in_msg);
660 		con->in_msg = NULL;
661 		con->ops->put(con);
662 	}
663 
664 	con->connect_seq = 0;
665 	con->out_seq = 0;
666 	if (con->out_msg) {
667 		ceph_msg_put(con->out_msg);
668 		con->out_msg = NULL;
669 	}
670 	con->in_seq = 0;
671 	con->in_seq_acked = 0;
672 }
673 
674 /*
675  * mark a peer down.  drop any open connections.
676  */
677 void ceph_con_close(struct ceph_connection *con)
678 {
679 	mutex_lock(&con->mutex);
680 	dout("con_close %p peer %s\n", con,
681 	     ceph_pr_addr(&con->peer_addr.in_addr));
682 	con->state = CON_STATE_CLOSED;
683 
684 	con_flag_clear(con, CON_FLAG_LOSSYTX);	/* so we retry next connect */
685 	con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
686 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
687 	con_flag_clear(con, CON_FLAG_BACKOFF);
688 
689 	reset_connection(con);
690 	con->peer_global_seq = 0;
691 	cancel_con(con);
692 	con_close_socket(con);
693 	mutex_unlock(&con->mutex);
694 }
695 EXPORT_SYMBOL(ceph_con_close);
696 
697 /*
698  * Reopen a closed connection, with a new peer address.
699  */
700 void ceph_con_open(struct ceph_connection *con,
701 		   __u8 entity_type, __u64 entity_num,
702 		   struct ceph_entity_addr *addr)
703 {
704 	mutex_lock(&con->mutex);
705 	dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
706 
707 	WARN_ON(con->state != CON_STATE_CLOSED);
708 	con->state = CON_STATE_PREOPEN;
709 
710 	con->peer_name.type = (__u8) entity_type;
711 	con->peer_name.num = cpu_to_le64(entity_num);
712 
713 	memcpy(&con->peer_addr, addr, sizeof(*addr));
714 	con->delay = 0;      /* reset backoff memory */
715 	mutex_unlock(&con->mutex);
716 	queue_con(con);
717 }
718 EXPORT_SYMBOL(ceph_con_open);
719 
720 /*
721  * return true if this connection ever successfully opened
722  */
723 bool ceph_con_opened(struct ceph_connection *con)
724 {
725 	return con->connect_seq > 0;
726 }
727 
728 /*
729  * initialize a new connection.
730  */
731 void ceph_con_init(struct ceph_connection *con, void *private,
732 	const struct ceph_connection_operations *ops,
733 	struct ceph_messenger *msgr)
734 {
735 	dout("con_init %p\n", con);
736 	memset(con, 0, sizeof(*con));
737 	con->private = private;
738 	con->ops = ops;
739 	con->msgr = msgr;
740 
741 	con_sock_state_init(con);
742 
743 	mutex_init(&con->mutex);
744 	INIT_LIST_HEAD(&con->out_queue);
745 	INIT_LIST_HEAD(&con->out_sent);
746 	INIT_DELAYED_WORK(&con->work, con_work);
747 
748 	con->state = CON_STATE_CLOSED;
749 }
750 EXPORT_SYMBOL(ceph_con_init);
751 
752 
753 /*
754  * We maintain a global counter to order connection attempts.  Get
755  * a unique seq greater than @gt.
756  */
757 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
758 {
759 	u32 ret;
760 
761 	spin_lock(&msgr->global_seq_lock);
762 	if (msgr->global_seq < gt)
763 		msgr->global_seq = gt;
764 	ret = ++msgr->global_seq;
765 	spin_unlock(&msgr->global_seq_lock);
766 	return ret;
767 }
768 
769 static void con_out_kvec_reset(struct ceph_connection *con)
770 {
771 	con->out_kvec_left = 0;
772 	con->out_kvec_bytes = 0;
773 	con->out_kvec_cur = &con->out_kvec[0];
774 }
775 
776 static void con_out_kvec_add(struct ceph_connection *con,
777 				size_t size, void *data)
778 {
779 	int index;
780 
781 	index = con->out_kvec_left;
782 	BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
783 
784 	con->out_kvec[index].iov_len = size;
785 	con->out_kvec[index].iov_base = data;
786 	con->out_kvec_left++;
787 	con->out_kvec_bytes += size;
788 }
789 
790 #ifdef CONFIG_BLOCK
791 
792 /*
793  * For a bio data item, a piece is whatever remains of the next
794  * entry in the current bio iovec, or the first entry in the next
795  * bio in the list.
796  */
797 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
798 					size_t length)
799 {
800 	struct ceph_msg_data *data = cursor->data;
801 	struct bio *bio;
802 
803 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
804 
805 	bio = data->bio;
806 	BUG_ON(!bio);
807 
808 	cursor->resid = min(length, data->bio_length);
809 	cursor->bio = bio;
810 	cursor->bvec_iter = bio->bi_iter;
811 	cursor->last_piece =
812 		cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
813 }
814 
815 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
816 						size_t *page_offset,
817 						size_t *length)
818 {
819 	struct ceph_msg_data *data = cursor->data;
820 	struct bio *bio;
821 	struct bio_vec bio_vec;
822 
823 	BUG_ON(data->type != CEPH_MSG_DATA_BIO);
824 
825 	bio = cursor->bio;
826 	BUG_ON(!bio);
827 
828 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
829 
830 	*page_offset = (size_t) bio_vec.bv_offset;
831 	BUG_ON(*page_offset >= PAGE_SIZE);
832 	if (cursor->last_piece) /* pagelist offset is always 0 */
833 		*length = cursor->resid;
834 	else
835 		*length = (size_t) bio_vec.bv_len;
836 	BUG_ON(*length > cursor->resid);
837 	BUG_ON(*page_offset + *length > PAGE_SIZE);
838 
839 	return bio_vec.bv_page;
840 }
841 
842 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
843 					size_t bytes)
844 {
845 	struct bio *bio;
846 	struct bio_vec bio_vec;
847 
848 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
849 
850 	bio = cursor->bio;
851 	BUG_ON(!bio);
852 
853 	bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
854 
855 	/* Advance the cursor offset */
856 
857 	BUG_ON(cursor->resid < bytes);
858 	cursor->resid -= bytes;
859 
860 	bio_advance_iter(bio, &cursor->bvec_iter, bytes);
861 
862 	if (bytes < bio_vec.bv_len)
863 		return false;	/* more bytes to process in this segment */
864 
865 	/* Move on to the next segment, and possibly the next bio */
866 
867 	if (!cursor->bvec_iter.bi_size) {
868 		bio = bio->bi_next;
869 		cursor->bio = bio;
870 		if (bio)
871 			cursor->bvec_iter = bio->bi_iter;
872 		else
873 			memset(&cursor->bvec_iter, 0,
874 			       sizeof(cursor->bvec_iter));
875 	}
876 
877 	if (!cursor->last_piece) {
878 		BUG_ON(!cursor->resid);
879 		BUG_ON(!bio);
880 		/* A short read is OK, so use <= rather than == */
881 		if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
882 			cursor->last_piece = true;
883 	}
884 
885 	return true;
886 }
887 #endif /* CONFIG_BLOCK */
888 
889 /*
890  * For a page array, a piece comes from the first page in the array
891  * that has not already been fully consumed.
892  */
893 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
894 					size_t length)
895 {
896 	struct ceph_msg_data *data = cursor->data;
897 	int page_count;
898 
899 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
900 
901 	BUG_ON(!data->pages);
902 	BUG_ON(!data->length);
903 
904 	cursor->resid = min(length, data->length);
905 	page_count = calc_pages_for(data->alignment, (u64)data->length);
906 	cursor->page_offset = data->alignment & ~PAGE_MASK;
907 	cursor->page_index = 0;
908 	BUG_ON(page_count > (int)USHRT_MAX);
909 	cursor->page_count = (unsigned short)page_count;
910 	BUG_ON(length > SIZE_MAX - cursor->page_offset);
911 	cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
912 }
913 
914 static struct page *
915 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
916 					size_t *page_offset, size_t *length)
917 {
918 	struct ceph_msg_data *data = cursor->data;
919 
920 	BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
921 
922 	BUG_ON(cursor->page_index >= cursor->page_count);
923 	BUG_ON(cursor->page_offset >= PAGE_SIZE);
924 
925 	*page_offset = cursor->page_offset;
926 	if (cursor->last_piece)
927 		*length = cursor->resid;
928 	else
929 		*length = PAGE_SIZE - *page_offset;
930 
931 	return data->pages[cursor->page_index];
932 }
933 
934 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
935 						size_t bytes)
936 {
937 	BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
938 
939 	BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
940 
941 	/* Advance the cursor page offset */
942 
943 	cursor->resid -= bytes;
944 	cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
945 	if (!bytes || cursor->page_offset)
946 		return false;	/* more bytes to process in the current page */
947 
948 	if (!cursor->resid)
949 		return false;   /* no more data */
950 
951 	/* Move on to the next page; offset is already at 0 */
952 
953 	BUG_ON(cursor->page_index >= cursor->page_count);
954 	cursor->page_index++;
955 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
956 
957 	return true;
958 }
959 
960 /*
961  * For a pagelist, a piece is whatever remains to be consumed in the
962  * first page in the list, or the front of the next page.
963  */
964 static void
965 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
966 					size_t length)
967 {
968 	struct ceph_msg_data *data = cursor->data;
969 	struct ceph_pagelist *pagelist;
970 	struct page *page;
971 
972 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
973 
974 	pagelist = data->pagelist;
975 	BUG_ON(!pagelist);
976 
977 	if (!length)
978 		return;		/* pagelist can be assigned but empty */
979 
980 	BUG_ON(list_empty(&pagelist->head));
981 	page = list_first_entry(&pagelist->head, struct page, lru);
982 
983 	cursor->resid = min(length, pagelist->length);
984 	cursor->page = page;
985 	cursor->offset = 0;
986 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
987 }
988 
989 static struct page *
990 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
991 				size_t *page_offset, size_t *length)
992 {
993 	struct ceph_msg_data *data = cursor->data;
994 	struct ceph_pagelist *pagelist;
995 
996 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
997 
998 	pagelist = data->pagelist;
999 	BUG_ON(!pagelist);
1000 
1001 	BUG_ON(!cursor->page);
1002 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1003 
1004 	/* offset of first page in pagelist is always 0 */
1005 	*page_offset = cursor->offset & ~PAGE_MASK;
1006 	if (cursor->last_piece)
1007 		*length = cursor->resid;
1008 	else
1009 		*length = PAGE_SIZE - *page_offset;
1010 
1011 	return cursor->page;
1012 }
1013 
1014 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1015 						size_t bytes)
1016 {
1017 	struct ceph_msg_data *data = cursor->data;
1018 	struct ceph_pagelist *pagelist;
1019 
1020 	BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1021 
1022 	pagelist = data->pagelist;
1023 	BUG_ON(!pagelist);
1024 
1025 	BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1026 	BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1027 
1028 	/* Advance the cursor offset */
1029 
1030 	cursor->resid -= bytes;
1031 	cursor->offset += bytes;
1032 	/* offset of first page in pagelist is always 0 */
1033 	if (!bytes || cursor->offset & ~PAGE_MASK)
1034 		return false;	/* more bytes to process in the current page */
1035 
1036 	if (!cursor->resid)
1037 		return false;   /* no more data */
1038 
1039 	/* Move on to the next page */
1040 
1041 	BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1042 	cursor->page = list_entry_next(cursor->page, lru);
1043 	cursor->last_piece = cursor->resid <= PAGE_SIZE;
1044 
1045 	return true;
1046 }
1047 
1048 /*
1049  * Message data is handled (sent or received) in pieces, where each
1050  * piece resides on a single page.  The network layer might not
1051  * consume an entire piece at once.  A data item's cursor keeps
1052  * track of which piece is next to process and how much remains to
1053  * be processed in that piece.  It also tracks whether the current
1054  * piece is the last one in the data item.
1055  */
1056 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1057 {
1058 	size_t length = cursor->total_resid;
1059 
1060 	switch (cursor->data->type) {
1061 	case CEPH_MSG_DATA_PAGELIST:
1062 		ceph_msg_data_pagelist_cursor_init(cursor, length);
1063 		break;
1064 	case CEPH_MSG_DATA_PAGES:
1065 		ceph_msg_data_pages_cursor_init(cursor, length);
1066 		break;
1067 #ifdef CONFIG_BLOCK
1068 	case CEPH_MSG_DATA_BIO:
1069 		ceph_msg_data_bio_cursor_init(cursor, length);
1070 		break;
1071 #endif /* CONFIG_BLOCK */
1072 	case CEPH_MSG_DATA_NONE:
1073 	default:
1074 		/* BUG(); */
1075 		break;
1076 	}
1077 	cursor->need_crc = true;
1078 }
1079 
1080 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1081 {
1082 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1083 	struct ceph_msg_data *data;
1084 
1085 	BUG_ON(!length);
1086 	BUG_ON(length > msg->data_length);
1087 	BUG_ON(list_empty(&msg->data));
1088 
1089 	cursor->data_head = &msg->data;
1090 	cursor->total_resid = length;
1091 	data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1092 	cursor->data = data;
1093 
1094 	__ceph_msg_data_cursor_init(cursor);
1095 }
1096 
1097 /*
1098  * Return the page containing the next piece to process for a given
1099  * data item, and supply the page offset and length of that piece.
1100  * Indicate whether this is the last piece in this data item.
1101  */
1102 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1103 					size_t *page_offset, size_t *length,
1104 					bool *last_piece)
1105 {
1106 	struct page *page;
1107 
1108 	switch (cursor->data->type) {
1109 	case CEPH_MSG_DATA_PAGELIST:
1110 		page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1111 		break;
1112 	case CEPH_MSG_DATA_PAGES:
1113 		page = ceph_msg_data_pages_next(cursor, page_offset, length);
1114 		break;
1115 #ifdef CONFIG_BLOCK
1116 	case CEPH_MSG_DATA_BIO:
1117 		page = ceph_msg_data_bio_next(cursor, page_offset, length);
1118 		break;
1119 #endif /* CONFIG_BLOCK */
1120 	case CEPH_MSG_DATA_NONE:
1121 	default:
1122 		page = NULL;
1123 		break;
1124 	}
1125 	BUG_ON(!page);
1126 	BUG_ON(*page_offset + *length > PAGE_SIZE);
1127 	BUG_ON(!*length);
1128 	if (last_piece)
1129 		*last_piece = cursor->last_piece;
1130 
1131 	return page;
1132 }
1133 
1134 /*
1135  * Returns true if the result moves the cursor on to the next piece
1136  * of the data item.
1137  */
1138 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1139 				size_t bytes)
1140 {
1141 	bool new_piece;
1142 
1143 	BUG_ON(bytes > cursor->resid);
1144 	switch (cursor->data->type) {
1145 	case CEPH_MSG_DATA_PAGELIST:
1146 		new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1147 		break;
1148 	case CEPH_MSG_DATA_PAGES:
1149 		new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1150 		break;
1151 #ifdef CONFIG_BLOCK
1152 	case CEPH_MSG_DATA_BIO:
1153 		new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1154 		break;
1155 #endif /* CONFIG_BLOCK */
1156 	case CEPH_MSG_DATA_NONE:
1157 	default:
1158 		BUG();
1159 		break;
1160 	}
1161 	cursor->total_resid -= bytes;
1162 
1163 	if (!cursor->resid && cursor->total_resid) {
1164 		WARN_ON(!cursor->last_piece);
1165 		BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1166 		cursor->data = list_entry_next(cursor->data, links);
1167 		__ceph_msg_data_cursor_init(cursor);
1168 		new_piece = true;
1169 	}
1170 	cursor->need_crc = new_piece;
1171 
1172 	return new_piece;
1173 }
1174 
1175 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1176 {
1177 	BUG_ON(!msg);
1178 	BUG_ON(!data_len);
1179 
1180 	/* Initialize data cursor */
1181 
1182 	ceph_msg_data_cursor_init(msg, (size_t)data_len);
1183 }
1184 
1185 /*
1186  * Prepare footer for currently outgoing message, and finish things
1187  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1188  */
1189 static void prepare_write_message_footer(struct ceph_connection *con)
1190 {
1191 	struct ceph_msg *m = con->out_msg;
1192 	int v = con->out_kvec_left;
1193 
1194 	m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1195 
1196 	dout("prepare_write_message_footer %p\n", con);
1197 	con->out_kvec_is_msg = true;
1198 	con->out_kvec[v].iov_base = &m->footer;
1199 	con->out_kvec[v].iov_len = sizeof(m->footer);
1200 	con->out_kvec_bytes += sizeof(m->footer);
1201 	con->out_kvec_left++;
1202 	con->out_more = m->more_to_follow;
1203 	con->out_msg_done = true;
1204 }
1205 
1206 /*
1207  * Prepare headers for the next outgoing message.
1208  */
1209 static void prepare_write_message(struct ceph_connection *con)
1210 {
1211 	struct ceph_msg *m;
1212 	u32 crc;
1213 
1214 	con_out_kvec_reset(con);
1215 	con->out_kvec_is_msg = true;
1216 	con->out_msg_done = false;
1217 
1218 	/* Sneak an ack in there first?  If we can get it into the same
1219 	 * TCP packet that's a good thing. */
1220 	if (con->in_seq > con->in_seq_acked) {
1221 		con->in_seq_acked = con->in_seq;
1222 		con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1223 		con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1224 		con_out_kvec_add(con, sizeof (con->out_temp_ack),
1225 			&con->out_temp_ack);
1226 	}
1227 
1228 	BUG_ON(list_empty(&con->out_queue));
1229 	m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1230 	con->out_msg = m;
1231 	BUG_ON(m->con != con);
1232 
1233 	/* put message on sent list */
1234 	ceph_msg_get(m);
1235 	list_move_tail(&m->list_head, &con->out_sent);
1236 
1237 	/*
1238 	 * only assign outgoing seq # if we haven't sent this message
1239 	 * yet.  if it is requeued, resend with it's original seq.
1240 	 */
1241 	if (m->needs_out_seq) {
1242 		m->hdr.seq = cpu_to_le64(++con->out_seq);
1243 		m->needs_out_seq = false;
1244 	}
1245 	WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1246 
1247 	dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1248 	     m, con->out_seq, le16_to_cpu(m->hdr.type),
1249 	     le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1250 	     m->data_length);
1251 	BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1252 
1253 	/* tag + hdr + front + middle */
1254 	con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1255 	con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1256 	con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1257 
1258 	if (m->middle)
1259 		con_out_kvec_add(con, m->middle->vec.iov_len,
1260 			m->middle->vec.iov_base);
1261 
1262 	/* fill in crc (except data pages), footer */
1263 	crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1264 	con->out_msg->hdr.crc = cpu_to_le32(crc);
1265 	con->out_msg->footer.flags = 0;
1266 
1267 	crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1268 	con->out_msg->footer.front_crc = cpu_to_le32(crc);
1269 	if (m->middle) {
1270 		crc = crc32c(0, m->middle->vec.iov_base,
1271 				m->middle->vec.iov_len);
1272 		con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1273 	} else
1274 		con->out_msg->footer.middle_crc = 0;
1275 	dout("%s front_crc %u middle_crc %u\n", __func__,
1276 	     le32_to_cpu(con->out_msg->footer.front_crc),
1277 	     le32_to_cpu(con->out_msg->footer.middle_crc));
1278 
1279 	/* is there a data payload? */
1280 	con->out_msg->footer.data_crc = 0;
1281 	if (m->data_length) {
1282 		prepare_message_data(con->out_msg, m->data_length);
1283 		con->out_more = 1;  /* data + footer will follow */
1284 	} else {
1285 		/* no, queue up footer too and be done */
1286 		prepare_write_message_footer(con);
1287 	}
1288 
1289 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1290 }
1291 
1292 /*
1293  * Prepare an ack.
1294  */
1295 static void prepare_write_ack(struct ceph_connection *con)
1296 {
1297 	dout("prepare_write_ack %p %llu -> %llu\n", con,
1298 	     con->in_seq_acked, con->in_seq);
1299 	con->in_seq_acked = con->in_seq;
1300 
1301 	con_out_kvec_reset(con);
1302 
1303 	con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1304 
1305 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1306 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1307 				&con->out_temp_ack);
1308 
1309 	con->out_more = 1;  /* more will follow.. eventually.. */
1310 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1311 }
1312 
1313 /*
1314  * Prepare to share the seq during handshake
1315  */
1316 static void prepare_write_seq(struct ceph_connection *con)
1317 {
1318 	dout("prepare_write_seq %p %llu -> %llu\n", con,
1319 	     con->in_seq_acked, con->in_seq);
1320 	con->in_seq_acked = con->in_seq;
1321 
1322 	con_out_kvec_reset(con);
1323 
1324 	con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1325 	con_out_kvec_add(con, sizeof (con->out_temp_ack),
1326 			 &con->out_temp_ack);
1327 
1328 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1329 }
1330 
1331 /*
1332  * Prepare to write keepalive byte.
1333  */
1334 static void prepare_write_keepalive(struct ceph_connection *con)
1335 {
1336 	dout("prepare_write_keepalive %p\n", con);
1337 	con_out_kvec_reset(con);
1338 	con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1339 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1340 }
1341 
1342 /*
1343  * Connection negotiation.
1344  */
1345 
1346 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1347 						int *auth_proto)
1348 {
1349 	struct ceph_auth_handshake *auth;
1350 
1351 	if (!con->ops->get_authorizer) {
1352 		con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1353 		con->out_connect.authorizer_len = 0;
1354 		return NULL;
1355 	}
1356 
1357 	/* Can't hold the mutex while getting authorizer */
1358 	mutex_unlock(&con->mutex);
1359 	auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1360 	mutex_lock(&con->mutex);
1361 
1362 	if (IS_ERR(auth))
1363 		return auth;
1364 	if (con->state != CON_STATE_NEGOTIATING)
1365 		return ERR_PTR(-EAGAIN);
1366 
1367 	con->auth_reply_buf = auth->authorizer_reply_buf;
1368 	con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1369 	return auth;
1370 }
1371 
1372 /*
1373  * We connected to a peer and are saying hello.
1374  */
1375 static void prepare_write_banner(struct ceph_connection *con)
1376 {
1377 	con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1378 	con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1379 					&con->msgr->my_enc_addr);
1380 
1381 	con->out_more = 0;
1382 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1383 }
1384 
1385 static int prepare_write_connect(struct ceph_connection *con)
1386 {
1387 	unsigned int global_seq = get_global_seq(con->msgr, 0);
1388 	int proto;
1389 	int auth_proto;
1390 	struct ceph_auth_handshake *auth;
1391 
1392 	switch (con->peer_name.type) {
1393 	case CEPH_ENTITY_TYPE_MON:
1394 		proto = CEPH_MONC_PROTOCOL;
1395 		break;
1396 	case CEPH_ENTITY_TYPE_OSD:
1397 		proto = CEPH_OSDC_PROTOCOL;
1398 		break;
1399 	case CEPH_ENTITY_TYPE_MDS:
1400 		proto = CEPH_MDSC_PROTOCOL;
1401 		break;
1402 	default:
1403 		BUG();
1404 	}
1405 
1406 	dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1407 	     con->connect_seq, global_seq, proto);
1408 
1409 	con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1410 	con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1411 	con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1412 	con->out_connect.global_seq = cpu_to_le32(global_seq);
1413 	con->out_connect.protocol_version = cpu_to_le32(proto);
1414 	con->out_connect.flags = 0;
1415 
1416 	auth_proto = CEPH_AUTH_UNKNOWN;
1417 	auth = get_connect_authorizer(con, &auth_proto);
1418 	if (IS_ERR(auth))
1419 		return PTR_ERR(auth);
1420 
1421 	con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1422 	con->out_connect.authorizer_len = auth ?
1423 		cpu_to_le32(auth->authorizer_buf_len) : 0;
1424 
1425 	con_out_kvec_add(con, sizeof (con->out_connect),
1426 					&con->out_connect);
1427 	if (auth && auth->authorizer_buf_len)
1428 		con_out_kvec_add(con, auth->authorizer_buf_len,
1429 					auth->authorizer_buf);
1430 
1431 	con->out_more = 0;
1432 	con_flag_set(con, CON_FLAG_WRITE_PENDING);
1433 
1434 	return 0;
1435 }
1436 
1437 /*
1438  * write as much of pending kvecs to the socket as we can.
1439  *  1 -> done
1440  *  0 -> socket full, but more to do
1441  * <0 -> error
1442  */
1443 static int write_partial_kvec(struct ceph_connection *con)
1444 {
1445 	int ret;
1446 
1447 	dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1448 	while (con->out_kvec_bytes > 0) {
1449 		ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1450 				       con->out_kvec_left, con->out_kvec_bytes,
1451 				       con->out_more);
1452 		if (ret <= 0)
1453 			goto out;
1454 		con->out_kvec_bytes -= ret;
1455 		if (con->out_kvec_bytes == 0)
1456 			break;            /* done */
1457 
1458 		/* account for full iov entries consumed */
1459 		while (ret >= con->out_kvec_cur->iov_len) {
1460 			BUG_ON(!con->out_kvec_left);
1461 			ret -= con->out_kvec_cur->iov_len;
1462 			con->out_kvec_cur++;
1463 			con->out_kvec_left--;
1464 		}
1465 		/* and for a partially-consumed entry */
1466 		if (ret) {
1467 			con->out_kvec_cur->iov_len -= ret;
1468 			con->out_kvec_cur->iov_base += ret;
1469 		}
1470 	}
1471 	con->out_kvec_left = 0;
1472 	con->out_kvec_is_msg = false;
1473 	ret = 1;
1474 out:
1475 	dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1476 	     con->out_kvec_bytes, con->out_kvec_left, ret);
1477 	return ret;  /* done! */
1478 }
1479 
1480 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1481 				unsigned int page_offset,
1482 				unsigned int length)
1483 {
1484 	char *kaddr;
1485 
1486 	kaddr = kmap(page);
1487 	BUG_ON(kaddr == NULL);
1488 	crc = crc32c(crc, kaddr + page_offset, length);
1489 	kunmap(page);
1490 
1491 	return crc;
1492 }
1493 /*
1494  * Write as much message data payload as we can.  If we finish, queue
1495  * up the footer.
1496  *  1 -> done, footer is now queued in out_kvec[].
1497  *  0 -> socket full, but more to do
1498  * <0 -> error
1499  */
1500 static int write_partial_message_data(struct ceph_connection *con)
1501 {
1502 	struct ceph_msg *msg = con->out_msg;
1503 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
1504 	bool do_datacrc = !con->msgr->nocrc;
1505 	u32 crc;
1506 
1507 	dout("%s %p msg %p\n", __func__, con, msg);
1508 
1509 	if (list_empty(&msg->data))
1510 		return -EINVAL;
1511 
1512 	/*
1513 	 * Iterate through each page that contains data to be
1514 	 * written, and send as much as possible for each.
1515 	 *
1516 	 * If we are calculating the data crc (the default), we will
1517 	 * need to map the page.  If we have no pages, they have
1518 	 * been revoked, so use the zero page.
1519 	 */
1520 	crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1521 	while (cursor->resid) {
1522 		struct page *page;
1523 		size_t page_offset;
1524 		size_t length;
1525 		bool last_piece;
1526 		bool need_crc;
1527 		int ret;
1528 
1529 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1530 							&last_piece);
1531 		ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1532 				      length, last_piece);
1533 		if (ret <= 0) {
1534 			if (do_datacrc)
1535 				msg->footer.data_crc = cpu_to_le32(crc);
1536 
1537 			return ret;
1538 		}
1539 		if (do_datacrc && cursor->need_crc)
1540 			crc = ceph_crc32c_page(crc, page, page_offset, length);
1541 		need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1542 	}
1543 
1544 	dout("%s %p msg %p done\n", __func__, con, msg);
1545 
1546 	/* prepare and queue up footer, too */
1547 	if (do_datacrc)
1548 		msg->footer.data_crc = cpu_to_le32(crc);
1549 	else
1550 		msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1551 	con_out_kvec_reset(con);
1552 	prepare_write_message_footer(con);
1553 
1554 	return 1;	/* must return > 0 to indicate success */
1555 }
1556 
1557 /*
1558  * write some zeros
1559  */
1560 static int write_partial_skip(struct ceph_connection *con)
1561 {
1562 	int ret;
1563 
1564 	while (con->out_skip > 0) {
1565 		size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1566 
1567 		ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1568 		if (ret <= 0)
1569 			goto out;
1570 		con->out_skip -= ret;
1571 	}
1572 	ret = 1;
1573 out:
1574 	return ret;
1575 }
1576 
1577 /*
1578  * Prepare to read connection handshake, or an ack.
1579  */
1580 static void prepare_read_banner(struct ceph_connection *con)
1581 {
1582 	dout("prepare_read_banner %p\n", con);
1583 	con->in_base_pos = 0;
1584 }
1585 
1586 static void prepare_read_connect(struct ceph_connection *con)
1587 {
1588 	dout("prepare_read_connect %p\n", con);
1589 	con->in_base_pos = 0;
1590 }
1591 
1592 static void prepare_read_ack(struct ceph_connection *con)
1593 {
1594 	dout("prepare_read_ack %p\n", con);
1595 	con->in_base_pos = 0;
1596 }
1597 
1598 static void prepare_read_seq(struct ceph_connection *con)
1599 {
1600 	dout("prepare_read_seq %p\n", con);
1601 	con->in_base_pos = 0;
1602 	con->in_tag = CEPH_MSGR_TAG_SEQ;
1603 }
1604 
1605 static void prepare_read_tag(struct ceph_connection *con)
1606 {
1607 	dout("prepare_read_tag %p\n", con);
1608 	con->in_base_pos = 0;
1609 	con->in_tag = CEPH_MSGR_TAG_READY;
1610 }
1611 
1612 /*
1613  * Prepare to read a message.
1614  */
1615 static int prepare_read_message(struct ceph_connection *con)
1616 {
1617 	dout("prepare_read_message %p\n", con);
1618 	BUG_ON(con->in_msg != NULL);
1619 	con->in_base_pos = 0;
1620 	con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1621 	return 0;
1622 }
1623 
1624 
1625 static int read_partial(struct ceph_connection *con,
1626 			int end, int size, void *object)
1627 {
1628 	while (con->in_base_pos < end) {
1629 		int left = end - con->in_base_pos;
1630 		int have = size - left;
1631 		int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1632 		if (ret <= 0)
1633 			return ret;
1634 		con->in_base_pos += ret;
1635 	}
1636 	return 1;
1637 }
1638 
1639 
1640 /*
1641  * Read all or part of the connect-side handshake on a new connection
1642  */
1643 static int read_partial_banner(struct ceph_connection *con)
1644 {
1645 	int size;
1646 	int end;
1647 	int ret;
1648 
1649 	dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1650 
1651 	/* peer's banner */
1652 	size = strlen(CEPH_BANNER);
1653 	end = size;
1654 	ret = read_partial(con, end, size, con->in_banner);
1655 	if (ret <= 0)
1656 		goto out;
1657 
1658 	size = sizeof (con->actual_peer_addr);
1659 	end += size;
1660 	ret = read_partial(con, end, size, &con->actual_peer_addr);
1661 	if (ret <= 0)
1662 		goto out;
1663 
1664 	size = sizeof (con->peer_addr_for_me);
1665 	end += size;
1666 	ret = read_partial(con, end, size, &con->peer_addr_for_me);
1667 	if (ret <= 0)
1668 		goto out;
1669 
1670 out:
1671 	return ret;
1672 }
1673 
1674 static int read_partial_connect(struct ceph_connection *con)
1675 {
1676 	int size;
1677 	int end;
1678 	int ret;
1679 
1680 	dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1681 
1682 	size = sizeof (con->in_reply);
1683 	end = size;
1684 	ret = read_partial(con, end, size, &con->in_reply);
1685 	if (ret <= 0)
1686 		goto out;
1687 
1688 	size = le32_to_cpu(con->in_reply.authorizer_len);
1689 	end += size;
1690 	ret = read_partial(con, end, size, con->auth_reply_buf);
1691 	if (ret <= 0)
1692 		goto out;
1693 
1694 	dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1695 	     con, (int)con->in_reply.tag,
1696 	     le32_to_cpu(con->in_reply.connect_seq),
1697 	     le32_to_cpu(con->in_reply.global_seq));
1698 out:
1699 	return ret;
1700 
1701 }
1702 
1703 /*
1704  * Verify the hello banner looks okay.
1705  */
1706 static int verify_hello(struct ceph_connection *con)
1707 {
1708 	if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1709 		pr_err("connect to %s got bad banner\n",
1710 		       ceph_pr_addr(&con->peer_addr.in_addr));
1711 		con->error_msg = "protocol error, bad banner";
1712 		return -1;
1713 	}
1714 	return 0;
1715 }
1716 
1717 static bool addr_is_blank(struct sockaddr_storage *ss)
1718 {
1719 	switch (ss->ss_family) {
1720 	case AF_INET:
1721 		return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1722 	case AF_INET6:
1723 		return
1724 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1725 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1726 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1727 		     ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1728 	}
1729 	return false;
1730 }
1731 
1732 static int addr_port(struct sockaddr_storage *ss)
1733 {
1734 	switch (ss->ss_family) {
1735 	case AF_INET:
1736 		return ntohs(((struct sockaddr_in *)ss)->sin_port);
1737 	case AF_INET6:
1738 		return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1739 	}
1740 	return 0;
1741 }
1742 
1743 static void addr_set_port(struct sockaddr_storage *ss, int p)
1744 {
1745 	switch (ss->ss_family) {
1746 	case AF_INET:
1747 		((struct sockaddr_in *)ss)->sin_port = htons(p);
1748 		break;
1749 	case AF_INET6:
1750 		((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1751 		break;
1752 	}
1753 }
1754 
1755 /*
1756  * Unlike other *_pton function semantics, zero indicates success.
1757  */
1758 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1759 		char delim, const char **ipend)
1760 {
1761 	struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1762 	struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1763 
1764 	memset(ss, 0, sizeof(*ss));
1765 
1766 	if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1767 		ss->ss_family = AF_INET;
1768 		return 0;
1769 	}
1770 
1771 	if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1772 		ss->ss_family = AF_INET6;
1773 		return 0;
1774 	}
1775 
1776 	return -EINVAL;
1777 }
1778 
1779 /*
1780  * Extract hostname string and resolve using kernel DNS facility.
1781  */
1782 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1783 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1784 		struct sockaddr_storage *ss, char delim, const char **ipend)
1785 {
1786 	const char *end, *delim_p;
1787 	char *colon_p, *ip_addr = NULL;
1788 	int ip_len, ret;
1789 
1790 	/*
1791 	 * The end of the hostname occurs immediately preceding the delimiter or
1792 	 * the port marker (':') where the delimiter takes precedence.
1793 	 */
1794 	delim_p = memchr(name, delim, namelen);
1795 	colon_p = memchr(name, ':', namelen);
1796 
1797 	if (delim_p && colon_p)
1798 		end = delim_p < colon_p ? delim_p : colon_p;
1799 	else if (!delim_p && colon_p)
1800 		end = colon_p;
1801 	else {
1802 		end = delim_p;
1803 		if (!end) /* case: hostname:/ */
1804 			end = name + namelen;
1805 	}
1806 
1807 	if (end <= name)
1808 		return -EINVAL;
1809 
1810 	/* do dns_resolve upcall */
1811 	ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1812 	if (ip_len > 0)
1813 		ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1814 	else
1815 		ret = -ESRCH;
1816 
1817 	kfree(ip_addr);
1818 
1819 	*ipend = end;
1820 
1821 	pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1822 			ret, ret ? "failed" : ceph_pr_addr(ss));
1823 
1824 	return ret;
1825 }
1826 #else
1827 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1828 		struct sockaddr_storage *ss, char delim, const char **ipend)
1829 {
1830 	return -EINVAL;
1831 }
1832 #endif
1833 
1834 /*
1835  * Parse a server name (IP or hostname). If a valid IP address is not found
1836  * then try to extract a hostname to resolve using userspace DNS upcall.
1837  */
1838 static int ceph_parse_server_name(const char *name, size_t namelen,
1839 			struct sockaddr_storage *ss, char delim, const char **ipend)
1840 {
1841 	int ret;
1842 
1843 	ret = ceph_pton(name, namelen, ss, delim, ipend);
1844 	if (ret)
1845 		ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1846 
1847 	return ret;
1848 }
1849 
1850 /*
1851  * Parse an ip[:port] list into an addr array.  Use the default
1852  * monitor port if a port isn't specified.
1853  */
1854 int ceph_parse_ips(const char *c, const char *end,
1855 		   struct ceph_entity_addr *addr,
1856 		   int max_count, int *count)
1857 {
1858 	int i, ret = -EINVAL;
1859 	const char *p = c;
1860 
1861 	dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1862 	for (i = 0; i < max_count; i++) {
1863 		const char *ipend;
1864 		struct sockaddr_storage *ss = &addr[i].in_addr;
1865 		int port;
1866 		char delim = ',';
1867 
1868 		if (*p == '[') {
1869 			delim = ']';
1870 			p++;
1871 		}
1872 
1873 		ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1874 		if (ret)
1875 			goto bad;
1876 		ret = -EINVAL;
1877 
1878 		p = ipend;
1879 
1880 		if (delim == ']') {
1881 			if (*p != ']') {
1882 				dout("missing matching ']'\n");
1883 				goto bad;
1884 			}
1885 			p++;
1886 		}
1887 
1888 		/* port? */
1889 		if (p < end && *p == ':') {
1890 			port = 0;
1891 			p++;
1892 			while (p < end && *p >= '0' && *p <= '9') {
1893 				port = (port * 10) + (*p - '0');
1894 				p++;
1895 			}
1896 			if (port == 0)
1897 				port = CEPH_MON_PORT;
1898 			else if (port > 65535)
1899 				goto bad;
1900 		} else {
1901 			port = CEPH_MON_PORT;
1902 		}
1903 
1904 		addr_set_port(ss, port);
1905 
1906 		dout("parse_ips got %s\n", ceph_pr_addr(ss));
1907 
1908 		if (p == end)
1909 			break;
1910 		if (*p != ',')
1911 			goto bad;
1912 		p++;
1913 	}
1914 
1915 	if (p != end)
1916 		goto bad;
1917 
1918 	if (count)
1919 		*count = i + 1;
1920 	return 0;
1921 
1922 bad:
1923 	pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1924 	return ret;
1925 }
1926 EXPORT_SYMBOL(ceph_parse_ips);
1927 
1928 static int process_banner(struct ceph_connection *con)
1929 {
1930 	dout("process_banner on %p\n", con);
1931 
1932 	if (verify_hello(con) < 0)
1933 		return -1;
1934 
1935 	ceph_decode_addr(&con->actual_peer_addr);
1936 	ceph_decode_addr(&con->peer_addr_for_me);
1937 
1938 	/*
1939 	 * Make sure the other end is who we wanted.  note that the other
1940 	 * end may not yet know their ip address, so if it's 0.0.0.0, give
1941 	 * them the benefit of the doubt.
1942 	 */
1943 	if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1944 		   sizeof(con->peer_addr)) != 0 &&
1945 	    !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1946 	      con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1947 		pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1948 			ceph_pr_addr(&con->peer_addr.in_addr),
1949 			(int)le32_to_cpu(con->peer_addr.nonce),
1950 			ceph_pr_addr(&con->actual_peer_addr.in_addr),
1951 			(int)le32_to_cpu(con->actual_peer_addr.nonce));
1952 		con->error_msg = "wrong peer at address";
1953 		return -1;
1954 	}
1955 
1956 	/*
1957 	 * did we learn our address?
1958 	 */
1959 	if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1960 		int port = addr_port(&con->msgr->inst.addr.in_addr);
1961 
1962 		memcpy(&con->msgr->inst.addr.in_addr,
1963 		       &con->peer_addr_for_me.in_addr,
1964 		       sizeof(con->peer_addr_for_me.in_addr));
1965 		addr_set_port(&con->msgr->inst.addr.in_addr, port);
1966 		encode_my_addr(con->msgr);
1967 		dout("process_banner learned my addr is %s\n",
1968 		     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 static int process_connect(struct ceph_connection *con)
1975 {
1976 	u64 sup_feat = con->msgr->supported_features;
1977 	u64 req_feat = con->msgr->required_features;
1978 	u64 server_feat = ceph_sanitize_features(
1979 				le64_to_cpu(con->in_reply.features));
1980 	int ret;
1981 
1982 	dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1983 
1984 	switch (con->in_reply.tag) {
1985 	case CEPH_MSGR_TAG_FEATURES:
1986 		pr_err("%s%lld %s feature set mismatch,"
1987 		       " my %llx < server's %llx, missing %llx\n",
1988 		       ENTITY_NAME(con->peer_name),
1989 		       ceph_pr_addr(&con->peer_addr.in_addr),
1990 		       sup_feat, server_feat, server_feat & ~sup_feat);
1991 		con->error_msg = "missing required protocol features";
1992 		reset_connection(con);
1993 		return -1;
1994 
1995 	case CEPH_MSGR_TAG_BADPROTOVER:
1996 		pr_err("%s%lld %s protocol version mismatch,"
1997 		       " my %d != server's %d\n",
1998 		       ENTITY_NAME(con->peer_name),
1999 		       ceph_pr_addr(&con->peer_addr.in_addr),
2000 		       le32_to_cpu(con->out_connect.protocol_version),
2001 		       le32_to_cpu(con->in_reply.protocol_version));
2002 		con->error_msg = "protocol version mismatch";
2003 		reset_connection(con);
2004 		return -1;
2005 
2006 	case CEPH_MSGR_TAG_BADAUTHORIZER:
2007 		con->auth_retry++;
2008 		dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2009 		     con->auth_retry);
2010 		if (con->auth_retry == 2) {
2011 			con->error_msg = "connect authorization failure";
2012 			return -1;
2013 		}
2014 		con_out_kvec_reset(con);
2015 		ret = prepare_write_connect(con);
2016 		if (ret < 0)
2017 			return ret;
2018 		prepare_read_connect(con);
2019 		break;
2020 
2021 	case CEPH_MSGR_TAG_RESETSESSION:
2022 		/*
2023 		 * If we connected with a large connect_seq but the peer
2024 		 * has no record of a session with us (no connection, or
2025 		 * connect_seq == 0), they will send RESETSESION to indicate
2026 		 * that they must have reset their session, and may have
2027 		 * dropped messages.
2028 		 */
2029 		dout("process_connect got RESET peer seq %u\n",
2030 		     le32_to_cpu(con->in_reply.connect_seq));
2031 		pr_err("%s%lld %s connection reset\n",
2032 		       ENTITY_NAME(con->peer_name),
2033 		       ceph_pr_addr(&con->peer_addr.in_addr));
2034 		reset_connection(con);
2035 		con_out_kvec_reset(con);
2036 		ret = prepare_write_connect(con);
2037 		if (ret < 0)
2038 			return ret;
2039 		prepare_read_connect(con);
2040 
2041 		/* Tell ceph about it. */
2042 		mutex_unlock(&con->mutex);
2043 		pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2044 		if (con->ops->peer_reset)
2045 			con->ops->peer_reset(con);
2046 		mutex_lock(&con->mutex);
2047 		if (con->state != CON_STATE_NEGOTIATING)
2048 			return -EAGAIN;
2049 		break;
2050 
2051 	case CEPH_MSGR_TAG_RETRY_SESSION:
2052 		/*
2053 		 * If we sent a smaller connect_seq than the peer has, try
2054 		 * again with a larger value.
2055 		 */
2056 		dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2057 		     le32_to_cpu(con->out_connect.connect_seq),
2058 		     le32_to_cpu(con->in_reply.connect_seq));
2059 		con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2060 		con_out_kvec_reset(con);
2061 		ret = prepare_write_connect(con);
2062 		if (ret < 0)
2063 			return ret;
2064 		prepare_read_connect(con);
2065 		break;
2066 
2067 	case CEPH_MSGR_TAG_RETRY_GLOBAL:
2068 		/*
2069 		 * If we sent a smaller global_seq than the peer has, try
2070 		 * again with a larger value.
2071 		 */
2072 		dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2073 		     con->peer_global_seq,
2074 		     le32_to_cpu(con->in_reply.global_seq));
2075 		get_global_seq(con->msgr,
2076 			       le32_to_cpu(con->in_reply.global_seq));
2077 		con_out_kvec_reset(con);
2078 		ret = prepare_write_connect(con);
2079 		if (ret < 0)
2080 			return ret;
2081 		prepare_read_connect(con);
2082 		break;
2083 
2084 	case CEPH_MSGR_TAG_SEQ:
2085 	case CEPH_MSGR_TAG_READY:
2086 		if (req_feat & ~server_feat) {
2087 			pr_err("%s%lld %s protocol feature mismatch,"
2088 			       " my required %llx > server's %llx, need %llx\n",
2089 			       ENTITY_NAME(con->peer_name),
2090 			       ceph_pr_addr(&con->peer_addr.in_addr),
2091 			       req_feat, server_feat, req_feat & ~server_feat);
2092 			con->error_msg = "missing required protocol features";
2093 			reset_connection(con);
2094 			return -1;
2095 		}
2096 
2097 		WARN_ON(con->state != CON_STATE_NEGOTIATING);
2098 		con->state = CON_STATE_OPEN;
2099 		con->auth_retry = 0;    /* we authenticated; clear flag */
2100 		con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2101 		con->connect_seq++;
2102 		con->peer_features = server_feat;
2103 		dout("process_connect got READY gseq %d cseq %d (%d)\n",
2104 		     con->peer_global_seq,
2105 		     le32_to_cpu(con->in_reply.connect_seq),
2106 		     con->connect_seq);
2107 		WARN_ON(con->connect_seq !=
2108 			le32_to_cpu(con->in_reply.connect_seq));
2109 
2110 		if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2111 			con_flag_set(con, CON_FLAG_LOSSYTX);
2112 
2113 		con->delay = 0;      /* reset backoff memory */
2114 
2115 		if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2116 			prepare_write_seq(con);
2117 			prepare_read_seq(con);
2118 		} else {
2119 			prepare_read_tag(con);
2120 		}
2121 		break;
2122 
2123 	case CEPH_MSGR_TAG_WAIT:
2124 		/*
2125 		 * If there is a connection race (we are opening
2126 		 * connections to each other), one of us may just have
2127 		 * to WAIT.  This shouldn't happen if we are the
2128 		 * client.
2129 		 */
2130 		pr_err("process_connect got WAIT as client\n");
2131 		con->error_msg = "protocol error, got WAIT as client";
2132 		return -1;
2133 
2134 	default:
2135 		pr_err("connect protocol error, will retry\n");
2136 		con->error_msg = "protocol error, garbage tag during connect";
2137 		return -1;
2138 	}
2139 	return 0;
2140 }
2141 
2142 
2143 /*
2144  * read (part of) an ack
2145  */
2146 static int read_partial_ack(struct ceph_connection *con)
2147 {
2148 	int size = sizeof (con->in_temp_ack);
2149 	int end = size;
2150 
2151 	return read_partial(con, end, size, &con->in_temp_ack);
2152 }
2153 
2154 /*
2155  * We can finally discard anything that's been acked.
2156  */
2157 static void process_ack(struct ceph_connection *con)
2158 {
2159 	struct ceph_msg *m;
2160 	u64 ack = le64_to_cpu(con->in_temp_ack);
2161 	u64 seq;
2162 
2163 	while (!list_empty(&con->out_sent)) {
2164 		m = list_first_entry(&con->out_sent, struct ceph_msg,
2165 				     list_head);
2166 		seq = le64_to_cpu(m->hdr.seq);
2167 		if (seq > ack)
2168 			break;
2169 		dout("got ack for seq %llu type %d at %p\n", seq,
2170 		     le16_to_cpu(m->hdr.type), m);
2171 		m->ack_stamp = jiffies;
2172 		ceph_msg_remove(m);
2173 	}
2174 	prepare_read_tag(con);
2175 }
2176 
2177 
2178 static int read_partial_message_section(struct ceph_connection *con,
2179 					struct kvec *section,
2180 					unsigned int sec_len, u32 *crc)
2181 {
2182 	int ret, left;
2183 
2184 	BUG_ON(!section);
2185 
2186 	while (section->iov_len < sec_len) {
2187 		BUG_ON(section->iov_base == NULL);
2188 		left = sec_len - section->iov_len;
2189 		ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2190 				       section->iov_len, left);
2191 		if (ret <= 0)
2192 			return ret;
2193 		section->iov_len += ret;
2194 	}
2195 	if (section->iov_len == sec_len)
2196 		*crc = crc32c(0, section->iov_base, section->iov_len);
2197 
2198 	return 1;
2199 }
2200 
2201 static int read_partial_msg_data(struct ceph_connection *con)
2202 {
2203 	struct ceph_msg *msg = con->in_msg;
2204 	struct ceph_msg_data_cursor *cursor = &msg->cursor;
2205 	const bool do_datacrc = !con->msgr->nocrc;
2206 	struct page *page;
2207 	size_t page_offset;
2208 	size_t length;
2209 	u32 crc = 0;
2210 	int ret;
2211 
2212 	BUG_ON(!msg);
2213 	if (list_empty(&msg->data))
2214 		return -EIO;
2215 
2216 	if (do_datacrc)
2217 		crc = con->in_data_crc;
2218 	while (cursor->resid) {
2219 		page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2220 							NULL);
2221 		ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2222 		if (ret <= 0) {
2223 			if (do_datacrc)
2224 				con->in_data_crc = crc;
2225 
2226 			return ret;
2227 		}
2228 
2229 		if (do_datacrc)
2230 			crc = ceph_crc32c_page(crc, page, page_offset, ret);
2231 		(void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2232 	}
2233 	if (do_datacrc)
2234 		con->in_data_crc = crc;
2235 
2236 	return 1;	/* must return > 0 to indicate success */
2237 }
2238 
2239 /*
2240  * read (part of) a message.
2241  */
2242 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2243 
2244 static int read_partial_message(struct ceph_connection *con)
2245 {
2246 	struct ceph_msg *m = con->in_msg;
2247 	int size;
2248 	int end;
2249 	int ret;
2250 	unsigned int front_len, middle_len, data_len;
2251 	bool do_datacrc = !con->msgr->nocrc;
2252 	u64 seq;
2253 	u32 crc;
2254 
2255 	dout("read_partial_message con %p msg %p\n", con, m);
2256 
2257 	/* header */
2258 	size = sizeof (con->in_hdr);
2259 	end = size;
2260 	ret = read_partial(con, end, size, &con->in_hdr);
2261 	if (ret <= 0)
2262 		return ret;
2263 
2264 	crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2265 	if (cpu_to_le32(crc) != con->in_hdr.crc) {
2266 		pr_err("read_partial_message bad hdr "
2267 		       " crc %u != expected %u\n",
2268 		       crc, con->in_hdr.crc);
2269 		return -EBADMSG;
2270 	}
2271 
2272 	front_len = le32_to_cpu(con->in_hdr.front_len);
2273 	if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2274 		return -EIO;
2275 	middle_len = le32_to_cpu(con->in_hdr.middle_len);
2276 	if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2277 		return -EIO;
2278 	data_len = le32_to_cpu(con->in_hdr.data_len);
2279 	if (data_len > CEPH_MSG_MAX_DATA_LEN)
2280 		return -EIO;
2281 
2282 	/* verify seq# */
2283 	seq = le64_to_cpu(con->in_hdr.seq);
2284 	if ((s64)seq - (s64)con->in_seq < 1) {
2285 		pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2286 			ENTITY_NAME(con->peer_name),
2287 			ceph_pr_addr(&con->peer_addr.in_addr),
2288 			seq, con->in_seq + 1);
2289 		con->in_base_pos = -front_len - middle_len - data_len -
2290 			sizeof(m->footer);
2291 		con->in_tag = CEPH_MSGR_TAG_READY;
2292 		return 0;
2293 	} else if ((s64)seq - (s64)con->in_seq > 1) {
2294 		pr_err("read_partial_message bad seq %lld expected %lld\n",
2295 		       seq, con->in_seq + 1);
2296 		con->error_msg = "bad message sequence # for incoming message";
2297 		return -EBADMSG;
2298 	}
2299 
2300 	/* allocate message? */
2301 	if (!con->in_msg) {
2302 		int skip = 0;
2303 
2304 		dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2305 		     front_len, data_len);
2306 		ret = ceph_con_in_msg_alloc(con, &skip);
2307 		if (ret < 0)
2308 			return ret;
2309 
2310 		BUG_ON(!con->in_msg ^ skip);
2311 		if (con->in_msg && data_len > con->in_msg->data_length) {
2312 			pr_warn("%s skipping long message (%u > %zd)\n",
2313 				__func__, data_len, con->in_msg->data_length);
2314 			ceph_msg_put(con->in_msg);
2315 			con->in_msg = NULL;
2316 			skip = 1;
2317 		}
2318 		if (skip) {
2319 			/* skip this message */
2320 			dout("alloc_msg said skip message\n");
2321 			con->in_base_pos = -front_len - middle_len - data_len -
2322 				sizeof(m->footer);
2323 			con->in_tag = CEPH_MSGR_TAG_READY;
2324 			con->in_seq++;
2325 			return 0;
2326 		}
2327 
2328 		BUG_ON(!con->in_msg);
2329 		BUG_ON(con->in_msg->con != con);
2330 		m = con->in_msg;
2331 		m->front.iov_len = 0;    /* haven't read it yet */
2332 		if (m->middle)
2333 			m->middle->vec.iov_len = 0;
2334 
2335 		/* prepare for data payload, if any */
2336 
2337 		if (data_len)
2338 			prepare_message_data(con->in_msg, data_len);
2339 	}
2340 
2341 	/* front */
2342 	ret = read_partial_message_section(con, &m->front, front_len,
2343 					   &con->in_front_crc);
2344 	if (ret <= 0)
2345 		return ret;
2346 
2347 	/* middle */
2348 	if (m->middle) {
2349 		ret = read_partial_message_section(con, &m->middle->vec,
2350 						   middle_len,
2351 						   &con->in_middle_crc);
2352 		if (ret <= 0)
2353 			return ret;
2354 	}
2355 
2356 	/* (page) data */
2357 	if (data_len) {
2358 		ret = read_partial_msg_data(con);
2359 		if (ret <= 0)
2360 			return ret;
2361 	}
2362 
2363 	/* footer */
2364 	size = sizeof (m->footer);
2365 	end += size;
2366 	ret = read_partial(con, end, size, &m->footer);
2367 	if (ret <= 0)
2368 		return ret;
2369 
2370 	dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2371 	     m, front_len, m->footer.front_crc, middle_len,
2372 	     m->footer.middle_crc, data_len, m->footer.data_crc);
2373 
2374 	/* crc ok? */
2375 	if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2376 		pr_err("read_partial_message %p front crc %u != exp. %u\n",
2377 		       m, con->in_front_crc, m->footer.front_crc);
2378 		return -EBADMSG;
2379 	}
2380 	if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2381 		pr_err("read_partial_message %p middle crc %u != exp %u\n",
2382 		       m, con->in_middle_crc, m->footer.middle_crc);
2383 		return -EBADMSG;
2384 	}
2385 	if (do_datacrc &&
2386 	    (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2387 	    con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2388 		pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2389 		       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2390 		return -EBADMSG;
2391 	}
2392 
2393 	return 1; /* done! */
2394 }
2395 
2396 /*
2397  * Process message.  This happens in the worker thread.  The callback should
2398  * be careful not to do anything that waits on other incoming messages or it
2399  * may deadlock.
2400  */
2401 static void process_message(struct ceph_connection *con)
2402 {
2403 	struct ceph_msg *msg;
2404 
2405 	BUG_ON(con->in_msg->con != con);
2406 	con->in_msg->con = NULL;
2407 	msg = con->in_msg;
2408 	con->in_msg = NULL;
2409 	con->ops->put(con);
2410 
2411 	/* if first message, set peer_name */
2412 	if (con->peer_name.type == 0)
2413 		con->peer_name = msg->hdr.src;
2414 
2415 	con->in_seq++;
2416 	mutex_unlock(&con->mutex);
2417 
2418 	dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2419 	     msg, le64_to_cpu(msg->hdr.seq),
2420 	     ENTITY_NAME(msg->hdr.src),
2421 	     le16_to_cpu(msg->hdr.type),
2422 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2423 	     le32_to_cpu(msg->hdr.front_len),
2424 	     le32_to_cpu(msg->hdr.data_len),
2425 	     con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2426 	con->ops->dispatch(con, msg);
2427 
2428 	mutex_lock(&con->mutex);
2429 }
2430 
2431 
2432 /*
2433  * Write something to the socket.  Called in a worker thread when the
2434  * socket appears to be writeable and we have something ready to send.
2435  */
2436 static int try_write(struct ceph_connection *con)
2437 {
2438 	int ret = 1;
2439 
2440 	dout("try_write start %p state %lu\n", con, con->state);
2441 
2442 more:
2443 	dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2444 
2445 	/* open the socket first? */
2446 	if (con->state == CON_STATE_PREOPEN) {
2447 		BUG_ON(con->sock);
2448 		con->state = CON_STATE_CONNECTING;
2449 
2450 		con_out_kvec_reset(con);
2451 		prepare_write_banner(con);
2452 		prepare_read_banner(con);
2453 
2454 		BUG_ON(con->in_msg);
2455 		con->in_tag = CEPH_MSGR_TAG_READY;
2456 		dout("try_write initiating connect on %p new state %lu\n",
2457 		     con, con->state);
2458 		ret = ceph_tcp_connect(con);
2459 		if (ret < 0) {
2460 			con->error_msg = "connect error";
2461 			goto out;
2462 		}
2463 	}
2464 
2465 more_kvec:
2466 	/* kvec data queued? */
2467 	if (con->out_skip) {
2468 		ret = write_partial_skip(con);
2469 		if (ret <= 0)
2470 			goto out;
2471 	}
2472 	if (con->out_kvec_left) {
2473 		ret = write_partial_kvec(con);
2474 		if (ret <= 0)
2475 			goto out;
2476 	}
2477 
2478 	/* msg pages? */
2479 	if (con->out_msg) {
2480 		if (con->out_msg_done) {
2481 			ceph_msg_put(con->out_msg);
2482 			con->out_msg = NULL;   /* we're done with this one */
2483 			goto do_next;
2484 		}
2485 
2486 		ret = write_partial_message_data(con);
2487 		if (ret == 1)
2488 			goto more_kvec;  /* we need to send the footer, too! */
2489 		if (ret == 0)
2490 			goto out;
2491 		if (ret < 0) {
2492 			dout("try_write write_partial_message_data err %d\n",
2493 			     ret);
2494 			goto out;
2495 		}
2496 	}
2497 
2498 do_next:
2499 	if (con->state == CON_STATE_OPEN) {
2500 		/* is anything else pending? */
2501 		if (!list_empty(&con->out_queue)) {
2502 			prepare_write_message(con);
2503 			goto more;
2504 		}
2505 		if (con->in_seq > con->in_seq_acked) {
2506 			prepare_write_ack(con);
2507 			goto more;
2508 		}
2509 		if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2510 			prepare_write_keepalive(con);
2511 			goto more;
2512 		}
2513 	}
2514 
2515 	/* Nothing to do! */
2516 	con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2517 	dout("try_write nothing else to write.\n");
2518 	ret = 0;
2519 out:
2520 	dout("try_write done on %p ret %d\n", con, ret);
2521 	return ret;
2522 }
2523 
2524 
2525 
2526 /*
2527  * Read what we can from the socket.
2528  */
2529 static int try_read(struct ceph_connection *con)
2530 {
2531 	int ret = -1;
2532 
2533 more:
2534 	dout("try_read start on %p state %lu\n", con, con->state);
2535 	if (con->state != CON_STATE_CONNECTING &&
2536 	    con->state != CON_STATE_NEGOTIATING &&
2537 	    con->state != CON_STATE_OPEN)
2538 		return 0;
2539 
2540 	BUG_ON(!con->sock);
2541 
2542 	dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2543 	     con->in_base_pos);
2544 
2545 	if (con->state == CON_STATE_CONNECTING) {
2546 		dout("try_read connecting\n");
2547 		ret = read_partial_banner(con);
2548 		if (ret <= 0)
2549 			goto out;
2550 		ret = process_banner(con);
2551 		if (ret < 0)
2552 			goto out;
2553 
2554 		con->state = CON_STATE_NEGOTIATING;
2555 
2556 		/*
2557 		 * Received banner is good, exchange connection info.
2558 		 * Do not reset out_kvec, as sending our banner raced
2559 		 * with receiving peer banner after connect completed.
2560 		 */
2561 		ret = prepare_write_connect(con);
2562 		if (ret < 0)
2563 			goto out;
2564 		prepare_read_connect(con);
2565 
2566 		/* Send connection info before awaiting response */
2567 		goto out;
2568 	}
2569 
2570 	if (con->state == CON_STATE_NEGOTIATING) {
2571 		dout("try_read negotiating\n");
2572 		ret = read_partial_connect(con);
2573 		if (ret <= 0)
2574 			goto out;
2575 		ret = process_connect(con);
2576 		if (ret < 0)
2577 			goto out;
2578 		goto more;
2579 	}
2580 
2581 	WARN_ON(con->state != CON_STATE_OPEN);
2582 
2583 	if (con->in_base_pos < 0) {
2584 		/*
2585 		 * skipping + discarding content.
2586 		 *
2587 		 * FIXME: there must be a better way to do this!
2588 		 */
2589 		static char buf[SKIP_BUF_SIZE];
2590 		int skip = min((int) sizeof (buf), -con->in_base_pos);
2591 
2592 		dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2593 		ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2594 		if (ret <= 0)
2595 			goto out;
2596 		con->in_base_pos += ret;
2597 		if (con->in_base_pos)
2598 			goto more;
2599 	}
2600 	if (con->in_tag == CEPH_MSGR_TAG_READY) {
2601 		/*
2602 		 * what's next?
2603 		 */
2604 		ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2605 		if (ret <= 0)
2606 			goto out;
2607 		dout("try_read got tag %d\n", (int)con->in_tag);
2608 		switch (con->in_tag) {
2609 		case CEPH_MSGR_TAG_MSG:
2610 			prepare_read_message(con);
2611 			break;
2612 		case CEPH_MSGR_TAG_ACK:
2613 			prepare_read_ack(con);
2614 			break;
2615 		case CEPH_MSGR_TAG_CLOSE:
2616 			con_close_socket(con);
2617 			con->state = CON_STATE_CLOSED;
2618 			goto out;
2619 		default:
2620 			goto bad_tag;
2621 		}
2622 	}
2623 	if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2624 		ret = read_partial_message(con);
2625 		if (ret <= 0) {
2626 			switch (ret) {
2627 			case -EBADMSG:
2628 				con->error_msg = "bad crc";
2629 				ret = -EIO;
2630 				break;
2631 			case -EIO:
2632 				con->error_msg = "io error";
2633 				break;
2634 			}
2635 			goto out;
2636 		}
2637 		if (con->in_tag == CEPH_MSGR_TAG_READY)
2638 			goto more;
2639 		process_message(con);
2640 		if (con->state == CON_STATE_OPEN)
2641 			prepare_read_tag(con);
2642 		goto more;
2643 	}
2644 	if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2645 	    con->in_tag == CEPH_MSGR_TAG_SEQ) {
2646 		/*
2647 		 * the final handshake seq exchange is semantically
2648 		 * equivalent to an ACK
2649 		 */
2650 		ret = read_partial_ack(con);
2651 		if (ret <= 0)
2652 			goto out;
2653 		process_ack(con);
2654 		goto more;
2655 	}
2656 
2657 out:
2658 	dout("try_read done on %p ret %d\n", con, ret);
2659 	return ret;
2660 
2661 bad_tag:
2662 	pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2663 	con->error_msg = "protocol error, garbage tag";
2664 	ret = -1;
2665 	goto out;
2666 }
2667 
2668 
2669 /*
2670  * Atomically queue work on a connection after the specified delay.
2671  * Bump @con reference to avoid races with connection teardown.
2672  * Returns 0 if work was queued, or an error code otherwise.
2673  */
2674 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2675 {
2676 	if (!con->ops->get(con)) {
2677 		dout("%s %p ref count 0\n", __func__, con);
2678 		return -ENOENT;
2679 	}
2680 
2681 	if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2682 		dout("%s %p - already queued\n", __func__, con);
2683 		con->ops->put(con);
2684 		return -EBUSY;
2685 	}
2686 
2687 	dout("%s %p %lu\n", __func__, con, delay);
2688 	return 0;
2689 }
2690 
2691 static void queue_con(struct ceph_connection *con)
2692 {
2693 	(void) queue_con_delay(con, 0);
2694 }
2695 
2696 static void cancel_con(struct ceph_connection *con)
2697 {
2698 	if (cancel_delayed_work(&con->work)) {
2699 		dout("%s %p\n", __func__, con);
2700 		con->ops->put(con);
2701 	}
2702 }
2703 
2704 static bool con_sock_closed(struct ceph_connection *con)
2705 {
2706 	if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2707 		return false;
2708 
2709 #define CASE(x)								\
2710 	case CON_STATE_ ## x:						\
2711 		con->error_msg = "socket closed (con state " #x ")";	\
2712 		break;
2713 
2714 	switch (con->state) {
2715 	CASE(CLOSED);
2716 	CASE(PREOPEN);
2717 	CASE(CONNECTING);
2718 	CASE(NEGOTIATING);
2719 	CASE(OPEN);
2720 	CASE(STANDBY);
2721 	default:
2722 		pr_warn("%s con %p unrecognized state %lu\n",
2723 			__func__, con, con->state);
2724 		con->error_msg = "unrecognized con state";
2725 		BUG();
2726 		break;
2727 	}
2728 #undef CASE
2729 
2730 	return true;
2731 }
2732 
2733 static bool con_backoff(struct ceph_connection *con)
2734 {
2735 	int ret;
2736 
2737 	if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2738 		return false;
2739 
2740 	ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2741 	if (ret) {
2742 		dout("%s: con %p FAILED to back off %lu\n", __func__,
2743 			con, con->delay);
2744 		BUG_ON(ret == -ENOENT);
2745 		con_flag_set(con, CON_FLAG_BACKOFF);
2746 	}
2747 
2748 	return true;
2749 }
2750 
2751 /* Finish fault handling; con->mutex must *not* be held here */
2752 
2753 static void con_fault_finish(struct ceph_connection *con)
2754 {
2755 	/*
2756 	 * in case we faulted due to authentication, invalidate our
2757 	 * current tickets so that we can get new ones.
2758 	 */
2759 	if (con->auth_retry && con->ops->invalidate_authorizer) {
2760 		dout("calling invalidate_authorizer()\n");
2761 		con->ops->invalidate_authorizer(con);
2762 	}
2763 
2764 	if (con->ops->fault)
2765 		con->ops->fault(con);
2766 }
2767 
2768 /*
2769  * Do some work on a connection.  Drop a connection ref when we're done.
2770  */
2771 static void con_work(struct work_struct *work)
2772 {
2773 	struct ceph_connection *con = container_of(work, struct ceph_connection,
2774 						   work.work);
2775 	unsigned long pflags = current->flags;
2776 	bool fault;
2777 
2778 	current->flags |= PF_MEMALLOC;
2779 
2780 	mutex_lock(&con->mutex);
2781 	while (true) {
2782 		int ret;
2783 
2784 		if ((fault = con_sock_closed(con))) {
2785 			dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2786 			break;
2787 		}
2788 		if (con_backoff(con)) {
2789 			dout("%s: con %p BACKOFF\n", __func__, con);
2790 			break;
2791 		}
2792 		if (con->state == CON_STATE_STANDBY) {
2793 			dout("%s: con %p STANDBY\n", __func__, con);
2794 			break;
2795 		}
2796 		if (con->state == CON_STATE_CLOSED) {
2797 			dout("%s: con %p CLOSED\n", __func__, con);
2798 			BUG_ON(con->sock);
2799 			break;
2800 		}
2801 		if (con->state == CON_STATE_PREOPEN) {
2802 			dout("%s: con %p PREOPEN\n", __func__, con);
2803 			BUG_ON(con->sock);
2804 		}
2805 
2806 		ret = try_read(con);
2807 		if (ret < 0) {
2808 			if (ret == -EAGAIN)
2809 				continue;
2810 			con->error_msg = "socket error on read";
2811 			fault = true;
2812 			break;
2813 		}
2814 
2815 		ret = try_write(con);
2816 		if (ret < 0) {
2817 			if (ret == -EAGAIN)
2818 				continue;
2819 			con->error_msg = "socket error on write";
2820 			fault = true;
2821 		}
2822 
2823 		break;	/* If we make it to here, we're done */
2824 	}
2825 	if (fault)
2826 		con_fault(con);
2827 	mutex_unlock(&con->mutex);
2828 
2829 	if (fault)
2830 		con_fault_finish(con);
2831 
2832 	con->ops->put(con);
2833 
2834 	tsk_restore_flags(current, pflags, PF_MEMALLOC);
2835 }
2836 
2837 /*
2838  * Generic error/fault handler.  A retry mechanism is used with
2839  * exponential backoff
2840  */
2841 static void con_fault(struct ceph_connection *con)
2842 {
2843 	pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2844 		ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2845 	dout("fault %p state %lu to peer %s\n",
2846 	     con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2847 
2848 	WARN_ON(con->state != CON_STATE_CONNECTING &&
2849 	       con->state != CON_STATE_NEGOTIATING &&
2850 	       con->state != CON_STATE_OPEN);
2851 
2852 	con_close_socket(con);
2853 
2854 	if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2855 		dout("fault on LOSSYTX channel, marking CLOSED\n");
2856 		con->state = CON_STATE_CLOSED;
2857 		return;
2858 	}
2859 
2860 	if (con->in_msg) {
2861 		BUG_ON(con->in_msg->con != con);
2862 		con->in_msg->con = NULL;
2863 		ceph_msg_put(con->in_msg);
2864 		con->in_msg = NULL;
2865 		con->ops->put(con);
2866 	}
2867 
2868 	/* Requeue anything that hasn't been acked */
2869 	list_splice_init(&con->out_sent, &con->out_queue);
2870 
2871 	/* If there are no messages queued or keepalive pending, place
2872 	 * the connection in a STANDBY state */
2873 	if (list_empty(&con->out_queue) &&
2874 	    !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2875 		dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2876 		con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2877 		con->state = CON_STATE_STANDBY;
2878 	} else {
2879 		/* retry after a delay. */
2880 		con->state = CON_STATE_PREOPEN;
2881 		if (con->delay == 0)
2882 			con->delay = BASE_DELAY_INTERVAL;
2883 		else if (con->delay < MAX_DELAY_INTERVAL)
2884 			con->delay *= 2;
2885 		con_flag_set(con, CON_FLAG_BACKOFF);
2886 		queue_con(con);
2887 	}
2888 }
2889 
2890 
2891 
2892 /*
2893  * initialize a new messenger instance
2894  */
2895 void ceph_messenger_init(struct ceph_messenger *msgr,
2896 			struct ceph_entity_addr *myaddr,
2897 			u64 supported_features,
2898 			u64 required_features,
2899 			bool nocrc)
2900 {
2901 	msgr->supported_features = supported_features;
2902 	msgr->required_features = required_features;
2903 
2904 	spin_lock_init(&msgr->global_seq_lock);
2905 
2906 	if (myaddr)
2907 		msgr->inst.addr = *myaddr;
2908 
2909 	/* select a random nonce */
2910 	msgr->inst.addr.type = 0;
2911 	get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2912 	encode_my_addr(msgr);
2913 	msgr->nocrc = nocrc;
2914 
2915 	atomic_set(&msgr->stopping, 0);
2916 
2917 	dout("%s %p\n", __func__, msgr);
2918 }
2919 EXPORT_SYMBOL(ceph_messenger_init);
2920 
2921 static void clear_standby(struct ceph_connection *con)
2922 {
2923 	/* come back from STANDBY? */
2924 	if (con->state == CON_STATE_STANDBY) {
2925 		dout("clear_standby %p and ++connect_seq\n", con);
2926 		con->state = CON_STATE_PREOPEN;
2927 		con->connect_seq++;
2928 		WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2929 		WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2930 	}
2931 }
2932 
2933 /*
2934  * Queue up an outgoing message on the given connection.
2935  */
2936 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2937 {
2938 	/* set src+dst */
2939 	msg->hdr.src = con->msgr->inst.name;
2940 	BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2941 	msg->needs_out_seq = true;
2942 
2943 	mutex_lock(&con->mutex);
2944 
2945 	if (con->state == CON_STATE_CLOSED) {
2946 		dout("con_send %p closed, dropping %p\n", con, msg);
2947 		ceph_msg_put(msg);
2948 		mutex_unlock(&con->mutex);
2949 		return;
2950 	}
2951 
2952 	BUG_ON(msg->con != NULL);
2953 	msg->con = con->ops->get(con);
2954 	BUG_ON(msg->con == NULL);
2955 
2956 	BUG_ON(!list_empty(&msg->list_head));
2957 	list_add_tail(&msg->list_head, &con->out_queue);
2958 	dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2959 	     ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2960 	     ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2961 	     le32_to_cpu(msg->hdr.front_len),
2962 	     le32_to_cpu(msg->hdr.middle_len),
2963 	     le32_to_cpu(msg->hdr.data_len));
2964 
2965 	clear_standby(con);
2966 	mutex_unlock(&con->mutex);
2967 
2968 	/* if there wasn't anything waiting to send before, queue
2969 	 * new work */
2970 	if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2971 		queue_con(con);
2972 }
2973 EXPORT_SYMBOL(ceph_con_send);
2974 
2975 /*
2976  * Revoke a message that was previously queued for send
2977  */
2978 void ceph_msg_revoke(struct ceph_msg *msg)
2979 {
2980 	struct ceph_connection *con = msg->con;
2981 
2982 	if (!con)
2983 		return;		/* Message not in our possession */
2984 
2985 	mutex_lock(&con->mutex);
2986 	if (!list_empty(&msg->list_head)) {
2987 		dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2988 		list_del_init(&msg->list_head);
2989 		BUG_ON(msg->con == NULL);
2990 		msg->con->ops->put(msg->con);
2991 		msg->con = NULL;
2992 		msg->hdr.seq = 0;
2993 
2994 		ceph_msg_put(msg);
2995 	}
2996 	if (con->out_msg == msg) {
2997 		dout("%s %p msg %p - was sending\n", __func__, con, msg);
2998 		con->out_msg = NULL;
2999 		if (con->out_kvec_is_msg) {
3000 			con->out_skip = con->out_kvec_bytes;
3001 			con->out_kvec_is_msg = false;
3002 		}
3003 		msg->hdr.seq = 0;
3004 
3005 		ceph_msg_put(msg);
3006 	}
3007 	mutex_unlock(&con->mutex);
3008 }
3009 
3010 /*
3011  * Revoke a message that we may be reading data into
3012  */
3013 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3014 {
3015 	struct ceph_connection *con;
3016 
3017 	BUG_ON(msg == NULL);
3018 	if (!msg->con) {
3019 		dout("%s msg %p null con\n", __func__, msg);
3020 
3021 		return;		/* Message not in our possession */
3022 	}
3023 
3024 	con = msg->con;
3025 	mutex_lock(&con->mutex);
3026 	if (con->in_msg == msg) {
3027 		unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3028 		unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3029 		unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3030 
3031 		/* skip rest of message */
3032 		dout("%s %p msg %p revoked\n", __func__, con, msg);
3033 		con->in_base_pos = con->in_base_pos -
3034 				sizeof(struct ceph_msg_header) -
3035 				front_len -
3036 				middle_len -
3037 				data_len -
3038 				sizeof(struct ceph_msg_footer);
3039 		ceph_msg_put(con->in_msg);
3040 		con->in_msg = NULL;
3041 		con->in_tag = CEPH_MSGR_TAG_READY;
3042 		con->in_seq++;
3043 	} else {
3044 		dout("%s %p in_msg %p msg %p no-op\n",
3045 		     __func__, con, con->in_msg, msg);
3046 	}
3047 	mutex_unlock(&con->mutex);
3048 }
3049 
3050 /*
3051  * Queue a keepalive byte to ensure the tcp connection is alive.
3052  */
3053 void ceph_con_keepalive(struct ceph_connection *con)
3054 {
3055 	dout("con_keepalive %p\n", con);
3056 	mutex_lock(&con->mutex);
3057 	clear_standby(con);
3058 	mutex_unlock(&con->mutex);
3059 	if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3060 	    con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3061 		queue_con(con);
3062 }
3063 EXPORT_SYMBOL(ceph_con_keepalive);
3064 
3065 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3066 {
3067 	struct ceph_msg_data *data;
3068 
3069 	if (WARN_ON(!ceph_msg_data_type_valid(type)))
3070 		return NULL;
3071 
3072 	data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3073 	if (data)
3074 		data->type = type;
3075 	INIT_LIST_HEAD(&data->links);
3076 
3077 	return data;
3078 }
3079 
3080 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3081 {
3082 	if (!data)
3083 		return;
3084 
3085 	WARN_ON(!list_empty(&data->links));
3086 	if (data->type == CEPH_MSG_DATA_PAGELIST)
3087 		ceph_pagelist_release(data->pagelist);
3088 	kmem_cache_free(ceph_msg_data_cache, data);
3089 }
3090 
3091 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3092 		size_t length, size_t alignment)
3093 {
3094 	struct ceph_msg_data *data;
3095 
3096 	BUG_ON(!pages);
3097 	BUG_ON(!length);
3098 
3099 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3100 	BUG_ON(!data);
3101 	data->pages = pages;
3102 	data->length = length;
3103 	data->alignment = alignment & ~PAGE_MASK;
3104 
3105 	list_add_tail(&data->links, &msg->data);
3106 	msg->data_length += length;
3107 }
3108 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3109 
3110 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3111 				struct ceph_pagelist *pagelist)
3112 {
3113 	struct ceph_msg_data *data;
3114 
3115 	BUG_ON(!pagelist);
3116 	BUG_ON(!pagelist->length);
3117 
3118 	data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3119 	BUG_ON(!data);
3120 	data->pagelist = pagelist;
3121 
3122 	list_add_tail(&data->links, &msg->data);
3123 	msg->data_length += pagelist->length;
3124 }
3125 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3126 
3127 #ifdef	CONFIG_BLOCK
3128 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3129 		size_t length)
3130 {
3131 	struct ceph_msg_data *data;
3132 
3133 	BUG_ON(!bio);
3134 
3135 	data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3136 	BUG_ON(!data);
3137 	data->bio = bio;
3138 	data->bio_length = length;
3139 
3140 	list_add_tail(&data->links, &msg->data);
3141 	msg->data_length += length;
3142 }
3143 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3144 #endif	/* CONFIG_BLOCK */
3145 
3146 /*
3147  * construct a new message with given type, size
3148  * the new msg has a ref count of 1.
3149  */
3150 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3151 			      bool can_fail)
3152 {
3153 	struct ceph_msg *m;
3154 
3155 	m = kmem_cache_zalloc(ceph_msg_cache, flags);
3156 	if (m == NULL)
3157 		goto out;
3158 
3159 	m->hdr.type = cpu_to_le16(type);
3160 	m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3161 	m->hdr.front_len = cpu_to_le32(front_len);
3162 
3163 	INIT_LIST_HEAD(&m->list_head);
3164 	kref_init(&m->kref);
3165 	INIT_LIST_HEAD(&m->data);
3166 
3167 	/* front */
3168 	if (front_len) {
3169 		m->front.iov_base = ceph_kvmalloc(front_len, flags);
3170 		if (m->front.iov_base == NULL) {
3171 			dout("ceph_msg_new can't allocate %d bytes\n",
3172 			     front_len);
3173 			goto out2;
3174 		}
3175 	} else {
3176 		m->front.iov_base = NULL;
3177 	}
3178 	m->front_alloc_len = m->front.iov_len = front_len;
3179 
3180 	dout("ceph_msg_new %p front %d\n", m, front_len);
3181 	return m;
3182 
3183 out2:
3184 	ceph_msg_put(m);
3185 out:
3186 	if (!can_fail) {
3187 		pr_err("msg_new can't create type %d front %d\n", type,
3188 		       front_len);
3189 		WARN_ON(1);
3190 	} else {
3191 		dout("msg_new can't create type %d front %d\n", type,
3192 		     front_len);
3193 	}
3194 	return NULL;
3195 }
3196 EXPORT_SYMBOL(ceph_msg_new);
3197 
3198 /*
3199  * Allocate "middle" portion of a message, if it is needed and wasn't
3200  * allocated by alloc_msg.  This allows us to read a small fixed-size
3201  * per-type header in the front and then gracefully fail (i.e.,
3202  * propagate the error to the caller based on info in the front) when
3203  * the middle is too large.
3204  */
3205 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3206 {
3207 	int type = le16_to_cpu(msg->hdr.type);
3208 	int middle_len = le32_to_cpu(msg->hdr.middle_len);
3209 
3210 	dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3211 	     ceph_msg_type_name(type), middle_len);
3212 	BUG_ON(!middle_len);
3213 	BUG_ON(msg->middle);
3214 
3215 	msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3216 	if (!msg->middle)
3217 		return -ENOMEM;
3218 	return 0;
3219 }
3220 
3221 /*
3222  * Allocate a message for receiving an incoming message on a
3223  * connection, and save the result in con->in_msg.  Uses the
3224  * connection's private alloc_msg op if available.
3225  *
3226  * Returns 0 on success, or a negative error code.
3227  *
3228  * On success, if we set *skip = 1:
3229  *  - the next message should be skipped and ignored.
3230  *  - con->in_msg == NULL
3231  * or if we set *skip = 0:
3232  *  - con->in_msg is non-null.
3233  * On error (ENOMEM, EAGAIN, ...),
3234  *  - con->in_msg == NULL
3235  */
3236 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3237 {
3238 	struct ceph_msg_header *hdr = &con->in_hdr;
3239 	int middle_len = le32_to_cpu(hdr->middle_len);
3240 	struct ceph_msg *msg;
3241 	int ret = 0;
3242 
3243 	BUG_ON(con->in_msg != NULL);
3244 	BUG_ON(!con->ops->alloc_msg);
3245 
3246 	mutex_unlock(&con->mutex);
3247 	msg = con->ops->alloc_msg(con, hdr, skip);
3248 	mutex_lock(&con->mutex);
3249 	if (con->state != CON_STATE_OPEN) {
3250 		if (msg)
3251 			ceph_msg_put(msg);
3252 		return -EAGAIN;
3253 	}
3254 	if (msg) {
3255 		BUG_ON(*skip);
3256 		con->in_msg = msg;
3257 		con->in_msg->con = con->ops->get(con);
3258 		BUG_ON(con->in_msg->con == NULL);
3259 	} else {
3260 		/*
3261 		 * Null message pointer means either we should skip
3262 		 * this message or we couldn't allocate memory.  The
3263 		 * former is not an error.
3264 		 */
3265 		if (*skip)
3266 			return 0;
3267 		con->error_msg = "error allocating memory for incoming message";
3268 
3269 		return -ENOMEM;
3270 	}
3271 	memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3272 
3273 	if (middle_len && !con->in_msg->middle) {
3274 		ret = ceph_alloc_middle(con, con->in_msg);
3275 		if (ret < 0) {
3276 			ceph_msg_put(con->in_msg);
3277 			con->in_msg = NULL;
3278 		}
3279 	}
3280 
3281 	return ret;
3282 }
3283 
3284 
3285 /*
3286  * Free a generically kmalloc'd message.
3287  */
3288 static void ceph_msg_free(struct ceph_msg *m)
3289 {
3290 	dout("%s %p\n", __func__, m);
3291 	ceph_kvfree(m->front.iov_base);
3292 	kmem_cache_free(ceph_msg_cache, m);
3293 }
3294 
3295 static void ceph_msg_release(struct kref *kref)
3296 {
3297 	struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3298 	LIST_HEAD(data);
3299 	struct list_head *links;
3300 	struct list_head *next;
3301 
3302 	dout("%s %p\n", __func__, m);
3303 	WARN_ON(!list_empty(&m->list_head));
3304 
3305 	/* drop middle, data, if any */
3306 	if (m->middle) {
3307 		ceph_buffer_put(m->middle);
3308 		m->middle = NULL;
3309 	}
3310 
3311 	list_splice_init(&m->data, &data);
3312 	list_for_each_safe(links, next, &data) {
3313 		struct ceph_msg_data *data;
3314 
3315 		data = list_entry(links, struct ceph_msg_data, links);
3316 		list_del_init(links);
3317 		ceph_msg_data_destroy(data);
3318 	}
3319 	m->data_length = 0;
3320 
3321 	if (m->pool)
3322 		ceph_msgpool_put(m->pool, m);
3323 	else
3324 		ceph_msg_free(m);
3325 }
3326 
3327 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3328 {
3329 	dout("%s %p (was %d)\n", __func__, msg,
3330 	     atomic_read(&msg->kref.refcount));
3331 	kref_get(&msg->kref);
3332 	return msg;
3333 }
3334 EXPORT_SYMBOL(ceph_msg_get);
3335 
3336 void ceph_msg_put(struct ceph_msg *msg)
3337 {
3338 	dout("%s %p (was %d)\n", __func__, msg,
3339 	     atomic_read(&msg->kref.refcount));
3340 	kref_put(&msg->kref, ceph_msg_release);
3341 }
3342 EXPORT_SYMBOL(ceph_msg_put);
3343 
3344 void ceph_msg_dump(struct ceph_msg *msg)
3345 {
3346 	pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3347 		 msg->front_alloc_len, msg->data_length);
3348 	print_hex_dump(KERN_DEBUG, "header: ",
3349 		       DUMP_PREFIX_OFFSET, 16, 1,
3350 		       &msg->hdr, sizeof(msg->hdr), true);
3351 	print_hex_dump(KERN_DEBUG, " front: ",
3352 		       DUMP_PREFIX_OFFSET, 16, 1,
3353 		       msg->front.iov_base, msg->front.iov_len, true);
3354 	if (msg->middle)
3355 		print_hex_dump(KERN_DEBUG, "middle: ",
3356 			       DUMP_PREFIX_OFFSET, 16, 1,
3357 			       msg->middle->vec.iov_base,
3358 			       msg->middle->vec.iov_len, true);
3359 	print_hex_dump(KERN_DEBUG, "footer: ",
3360 		       DUMP_PREFIX_OFFSET, 16, 1,
3361 		       &msg->footer, sizeof(msg->footer), true);
3362 }
3363 EXPORT_SYMBOL(ceph_msg_dump);
3364