1 #include <linux/ceph/ceph_debug.h> 2 3 #include <linux/crc32c.h> 4 #include <linux/ctype.h> 5 #include <linux/highmem.h> 6 #include <linux/inet.h> 7 #include <linux/kthread.h> 8 #include <linux/net.h> 9 #include <linux/slab.h> 10 #include <linux/socket.h> 11 #include <linux/string.h> 12 #ifdef CONFIG_BLOCK 13 #include <linux/bio.h> 14 #endif /* CONFIG_BLOCK */ 15 #include <linux/dns_resolver.h> 16 #include <net/tcp.h> 17 18 #include <linux/ceph/ceph_features.h> 19 #include <linux/ceph/libceph.h> 20 #include <linux/ceph/messenger.h> 21 #include <linux/ceph/decode.h> 22 #include <linux/ceph/pagelist.h> 23 #include <linux/export.h> 24 25 #define list_entry_next(pos, member) \ 26 list_entry(pos->member.next, typeof(*pos), member) 27 28 /* 29 * Ceph uses the messenger to exchange ceph_msg messages with other 30 * hosts in the system. The messenger provides ordered and reliable 31 * delivery. We tolerate TCP disconnects by reconnecting (with 32 * exponential backoff) in the case of a fault (disconnection, bad 33 * crc, protocol error). Acks allow sent messages to be discarded by 34 * the sender. 35 */ 36 37 /* 38 * We track the state of the socket on a given connection using 39 * values defined below. The transition to a new socket state is 40 * handled by a function which verifies we aren't coming from an 41 * unexpected state. 42 * 43 * -------- 44 * | NEW* | transient initial state 45 * -------- 46 * | con_sock_state_init() 47 * v 48 * ---------- 49 * | CLOSED | initialized, but no socket (and no 50 * ---------- TCP connection) 51 * ^ \ 52 * | \ con_sock_state_connecting() 53 * | ---------------------- 54 * | \ 55 * + con_sock_state_closed() \ 56 * |+--------------------------- \ 57 * | \ \ \ 58 * | ----------- \ \ 59 * | | CLOSING | socket event; \ \ 60 * | ----------- await close \ \ 61 * | ^ \ | 62 * | | \ | 63 * | + con_sock_state_closing() \ | 64 * | / \ | | 65 * | / --------------- | | 66 * | / \ v v 67 * | / -------------- 68 * | / -----------------| CONNECTING | socket created, TCP 69 * | | / -------------- connect initiated 70 * | | | con_sock_state_connected() 71 * | | v 72 * ------------- 73 * | CONNECTED | TCP connection established 74 * ------------- 75 * 76 * State values for ceph_connection->sock_state; NEW is assumed to be 0. 77 */ 78 79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */ 80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */ 81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */ 82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */ 83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */ 84 85 /* 86 * connection states 87 */ 88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */ 89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */ 90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */ 91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */ 92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */ 93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */ 94 95 /* 96 * ceph_connection flag bits 97 */ 98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop 99 * messages on errors */ 100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */ 101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */ 102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */ 103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */ 104 105 static bool con_flag_valid(unsigned long con_flag) 106 { 107 switch (con_flag) { 108 case CON_FLAG_LOSSYTX: 109 case CON_FLAG_KEEPALIVE_PENDING: 110 case CON_FLAG_WRITE_PENDING: 111 case CON_FLAG_SOCK_CLOSED: 112 case CON_FLAG_BACKOFF: 113 return true; 114 default: 115 return false; 116 } 117 } 118 119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag) 120 { 121 BUG_ON(!con_flag_valid(con_flag)); 122 123 clear_bit(con_flag, &con->flags); 124 } 125 126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag) 127 { 128 BUG_ON(!con_flag_valid(con_flag)); 129 130 set_bit(con_flag, &con->flags); 131 } 132 133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag) 134 { 135 BUG_ON(!con_flag_valid(con_flag)); 136 137 return test_bit(con_flag, &con->flags); 138 } 139 140 static bool con_flag_test_and_clear(struct ceph_connection *con, 141 unsigned long con_flag) 142 { 143 BUG_ON(!con_flag_valid(con_flag)); 144 145 return test_and_clear_bit(con_flag, &con->flags); 146 } 147 148 static bool con_flag_test_and_set(struct ceph_connection *con, 149 unsigned long con_flag) 150 { 151 BUG_ON(!con_flag_valid(con_flag)); 152 153 return test_and_set_bit(con_flag, &con->flags); 154 } 155 156 /* Slab caches for frequently-allocated structures */ 157 158 static struct kmem_cache *ceph_msg_cache; 159 static struct kmem_cache *ceph_msg_data_cache; 160 161 /* static tag bytes (protocol control messages) */ 162 static char tag_msg = CEPH_MSGR_TAG_MSG; 163 static char tag_ack = CEPH_MSGR_TAG_ACK; 164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; 165 166 #ifdef CONFIG_LOCKDEP 167 static struct lock_class_key socket_class; 168 #endif 169 170 /* 171 * When skipping (ignoring) a block of input we read it into a "skip 172 * buffer," which is this many bytes in size. 173 */ 174 #define SKIP_BUF_SIZE 1024 175 176 static void queue_con(struct ceph_connection *con); 177 static void cancel_con(struct ceph_connection *con); 178 static void con_work(struct work_struct *); 179 static void con_fault(struct ceph_connection *con); 180 181 /* 182 * Nicely render a sockaddr as a string. An array of formatted 183 * strings is used, to approximate reentrancy. 184 */ 185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */ 186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG) 187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1) 188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */ 189 190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN]; 191 static atomic_t addr_str_seq = ATOMIC_INIT(0); 192 193 static struct page *zero_page; /* used in certain error cases */ 194 195 const char *ceph_pr_addr(const struct sockaddr_storage *ss) 196 { 197 int i; 198 char *s; 199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 201 202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK; 203 s = addr_str[i]; 204 205 switch (ss->ss_family) { 206 case AF_INET: 207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr, 208 ntohs(in4->sin_port)); 209 break; 210 211 case AF_INET6: 212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr, 213 ntohs(in6->sin6_port)); 214 break; 215 216 default: 217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)", 218 ss->ss_family); 219 } 220 221 return s; 222 } 223 EXPORT_SYMBOL(ceph_pr_addr); 224 225 static void encode_my_addr(struct ceph_messenger *msgr) 226 { 227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); 228 ceph_encode_addr(&msgr->my_enc_addr); 229 } 230 231 /* 232 * work queue for all reading and writing to/from the socket. 233 */ 234 static struct workqueue_struct *ceph_msgr_wq; 235 236 static int ceph_msgr_slab_init(void) 237 { 238 BUG_ON(ceph_msg_cache); 239 ceph_msg_cache = kmem_cache_create("ceph_msg", 240 sizeof (struct ceph_msg), 241 __alignof__(struct ceph_msg), 0, NULL); 242 243 if (!ceph_msg_cache) 244 return -ENOMEM; 245 246 BUG_ON(ceph_msg_data_cache); 247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data", 248 sizeof (struct ceph_msg_data), 249 __alignof__(struct ceph_msg_data), 250 0, NULL); 251 if (ceph_msg_data_cache) 252 return 0; 253 254 kmem_cache_destroy(ceph_msg_cache); 255 ceph_msg_cache = NULL; 256 257 return -ENOMEM; 258 } 259 260 static void ceph_msgr_slab_exit(void) 261 { 262 BUG_ON(!ceph_msg_data_cache); 263 kmem_cache_destroy(ceph_msg_data_cache); 264 ceph_msg_data_cache = NULL; 265 266 BUG_ON(!ceph_msg_cache); 267 kmem_cache_destroy(ceph_msg_cache); 268 ceph_msg_cache = NULL; 269 } 270 271 static void _ceph_msgr_exit(void) 272 { 273 if (ceph_msgr_wq) { 274 destroy_workqueue(ceph_msgr_wq); 275 ceph_msgr_wq = NULL; 276 } 277 278 ceph_msgr_slab_exit(); 279 280 BUG_ON(zero_page == NULL); 281 kunmap(zero_page); 282 page_cache_release(zero_page); 283 zero_page = NULL; 284 } 285 286 int ceph_msgr_init(void) 287 { 288 BUG_ON(zero_page != NULL); 289 zero_page = ZERO_PAGE(0); 290 page_cache_get(zero_page); 291 292 if (ceph_msgr_slab_init()) 293 return -ENOMEM; 294 295 /* 296 * The number of active work items is limited by the number of 297 * connections, so leave @max_active at default. 298 */ 299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0); 300 if (ceph_msgr_wq) 301 return 0; 302 303 pr_err("msgr_init failed to create workqueue\n"); 304 _ceph_msgr_exit(); 305 306 return -ENOMEM; 307 } 308 EXPORT_SYMBOL(ceph_msgr_init); 309 310 void ceph_msgr_exit(void) 311 { 312 BUG_ON(ceph_msgr_wq == NULL); 313 314 _ceph_msgr_exit(); 315 } 316 EXPORT_SYMBOL(ceph_msgr_exit); 317 318 void ceph_msgr_flush(void) 319 { 320 flush_workqueue(ceph_msgr_wq); 321 } 322 EXPORT_SYMBOL(ceph_msgr_flush); 323 324 /* Connection socket state transition functions */ 325 326 static void con_sock_state_init(struct ceph_connection *con) 327 { 328 int old_state; 329 330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW)) 332 printk("%s: unexpected old state %d\n", __func__, old_state); 333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 334 CON_SOCK_STATE_CLOSED); 335 } 336 337 static void con_sock_state_connecting(struct ceph_connection *con) 338 { 339 int old_state; 340 341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING); 342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED)) 343 printk("%s: unexpected old state %d\n", __func__, old_state); 344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 345 CON_SOCK_STATE_CONNECTING); 346 } 347 348 static void con_sock_state_connected(struct ceph_connection *con) 349 { 350 int old_state; 351 352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED); 353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING)) 354 printk("%s: unexpected old state %d\n", __func__, old_state); 355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 356 CON_SOCK_STATE_CONNECTED); 357 } 358 359 static void con_sock_state_closing(struct ceph_connection *con) 360 { 361 int old_state; 362 363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING); 364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING && 365 old_state != CON_SOCK_STATE_CONNECTED && 366 old_state != CON_SOCK_STATE_CLOSING)) 367 printk("%s: unexpected old state %d\n", __func__, old_state); 368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 369 CON_SOCK_STATE_CLOSING); 370 } 371 372 static void con_sock_state_closed(struct ceph_connection *con) 373 { 374 int old_state; 375 376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED); 377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED && 378 old_state != CON_SOCK_STATE_CLOSING && 379 old_state != CON_SOCK_STATE_CONNECTING && 380 old_state != CON_SOCK_STATE_CLOSED)) 381 printk("%s: unexpected old state %d\n", __func__, old_state); 382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state, 383 CON_SOCK_STATE_CLOSED); 384 } 385 386 /* 387 * socket callback functions 388 */ 389 390 /* data available on socket, or listen socket received a connect */ 391 static void ceph_sock_data_ready(struct sock *sk) 392 { 393 struct ceph_connection *con = sk->sk_user_data; 394 if (atomic_read(&con->msgr->stopping)) { 395 return; 396 } 397 398 if (sk->sk_state != TCP_CLOSE_WAIT) { 399 dout("%s on %p state = %lu, queueing work\n", __func__, 400 con, con->state); 401 queue_con(con); 402 } 403 } 404 405 /* socket has buffer space for writing */ 406 static void ceph_sock_write_space(struct sock *sk) 407 { 408 struct ceph_connection *con = sk->sk_user_data; 409 410 /* only queue to workqueue if there is data we want to write, 411 * and there is sufficient space in the socket buffer to accept 412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space() 413 * doesn't get called again until try_write() fills the socket 414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space() 415 * and net/core/stream.c:sk_stream_write_space(). 416 */ 417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) { 418 if (sk_stream_is_writeable(sk)) { 419 dout("%s %p queueing write work\n", __func__, con); 420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 421 queue_con(con); 422 } 423 } else { 424 dout("%s %p nothing to write\n", __func__, con); 425 } 426 } 427 428 /* socket's state has changed */ 429 static void ceph_sock_state_change(struct sock *sk) 430 { 431 struct ceph_connection *con = sk->sk_user_data; 432 433 dout("%s %p state = %lu sk_state = %u\n", __func__, 434 con, con->state, sk->sk_state); 435 436 switch (sk->sk_state) { 437 case TCP_CLOSE: 438 dout("%s TCP_CLOSE\n", __func__); 439 case TCP_CLOSE_WAIT: 440 dout("%s TCP_CLOSE_WAIT\n", __func__); 441 con_sock_state_closing(con); 442 con_flag_set(con, CON_FLAG_SOCK_CLOSED); 443 queue_con(con); 444 break; 445 case TCP_ESTABLISHED: 446 dout("%s TCP_ESTABLISHED\n", __func__); 447 con_sock_state_connected(con); 448 queue_con(con); 449 break; 450 default: /* Everything else is uninteresting */ 451 break; 452 } 453 } 454 455 /* 456 * set up socket callbacks 457 */ 458 static void set_sock_callbacks(struct socket *sock, 459 struct ceph_connection *con) 460 { 461 struct sock *sk = sock->sk; 462 sk->sk_user_data = con; 463 sk->sk_data_ready = ceph_sock_data_ready; 464 sk->sk_write_space = ceph_sock_write_space; 465 sk->sk_state_change = ceph_sock_state_change; 466 } 467 468 469 /* 470 * socket helpers 471 */ 472 473 /* 474 * initiate connection to a remote socket. 475 */ 476 static int ceph_tcp_connect(struct ceph_connection *con) 477 { 478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr; 479 struct socket *sock; 480 int ret; 481 482 BUG_ON(con->sock); 483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM, 484 IPPROTO_TCP, &sock); 485 if (ret) 486 return ret; 487 sock->sk->sk_allocation = GFP_NOFS | __GFP_MEMALLOC; 488 489 #ifdef CONFIG_LOCKDEP 490 lockdep_set_class(&sock->sk->sk_lock, &socket_class); 491 #endif 492 493 set_sock_callbacks(sock, con); 494 495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr)); 496 497 con_sock_state_connecting(con); 498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr), 499 O_NONBLOCK); 500 if (ret == -EINPROGRESS) { 501 dout("connect %s EINPROGRESS sk_state = %u\n", 502 ceph_pr_addr(&con->peer_addr.in_addr), 503 sock->sk->sk_state); 504 } else if (ret < 0) { 505 pr_err("connect %s error %d\n", 506 ceph_pr_addr(&con->peer_addr.in_addr), ret); 507 sock_release(sock); 508 con->error_msg = "connect error"; 509 510 return ret; 511 } 512 513 sk_set_memalloc(sock->sk); 514 515 con->sock = sock; 516 return 0; 517 } 518 519 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) 520 { 521 struct kvec iov = {buf, len}; 522 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 523 int r; 524 525 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); 526 if (r == -EAGAIN) 527 r = 0; 528 return r; 529 } 530 531 static int ceph_tcp_recvpage(struct socket *sock, struct page *page, 532 int page_offset, size_t length) 533 { 534 void *kaddr; 535 int ret; 536 537 BUG_ON(page_offset + length > PAGE_SIZE); 538 539 kaddr = kmap(page); 540 BUG_ON(!kaddr); 541 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length); 542 kunmap(page); 543 544 return ret; 545 } 546 547 /* 548 * write something. @more is true if caller will be sending more data 549 * shortly. 550 */ 551 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, 552 size_t kvlen, size_t len, int more) 553 { 554 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; 555 int r; 556 557 if (more) 558 msg.msg_flags |= MSG_MORE; 559 else 560 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ 561 562 r = kernel_sendmsg(sock, &msg, iov, kvlen, len); 563 if (r == -EAGAIN) 564 r = 0; 565 return r; 566 } 567 568 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page, 569 int offset, size_t size, bool more) 570 { 571 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR); 572 int ret; 573 574 ret = kernel_sendpage(sock, page, offset, size, flags); 575 if (ret == -EAGAIN) 576 ret = 0; 577 578 return ret; 579 } 580 581 static int ceph_tcp_sendpage(struct socket *sock, struct page *page, 582 int offset, size_t size, bool more) 583 { 584 int ret; 585 struct kvec iov; 586 587 /* sendpage cannot properly handle pages with page_count == 0, 588 * we need to fallback to sendmsg if that's the case */ 589 if (page_count(page) >= 1) 590 return __ceph_tcp_sendpage(sock, page, offset, size, more); 591 592 iov.iov_base = kmap(page) + offset; 593 iov.iov_len = size; 594 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more); 595 kunmap(page); 596 597 return ret; 598 } 599 600 /* 601 * Shutdown/close the socket for the given connection. 602 */ 603 static int con_close_socket(struct ceph_connection *con) 604 { 605 int rc = 0; 606 607 dout("con_close_socket on %p sock %p\n", con, con->sock); 608 if (con->sock) { 609 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); 610 sock_release(con->sock); 611 con->sock = NULL; 612 } 613 614 /* 615 * Forcibly clear the SOCK_CLOSED flag. It gets set 616 * independent of the connection mutex, and we could have 617 * received a socket close event before we had the chance to 618 * shut the socket down. 619 */ 620 con_flag_clear(con, CON_FLAG_SOCK_CLOSED); 621 622 con_sock_state_closed(con); 623 return rc; 624 } 625 626 /* 627 * Reset a connection. Discard all incoming and outgoing messages 628 * and clear *_seq state. 629 */ 630 static void ceph_msg_remove(struct ceph_msg *msg) 631 { 632 list_del_init(&msg->list_head); 633 BUG_ON(msg->con == NULL); 634 msg->con->ops->put(msg->con); 635 msg->con = NULL; 636 637 ceph_msg_put(msg); 638 } 639 static void ceph_msg_remove_list(struct list_head *head) 640 { 641 while (!list_empty(head)) { 642 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, 643 list_head); 644 ceph_msg_remove(msg); 645 } 646 } 647 648 static void reset_connection(struct ceph_connection *con) 649 { 650 /* reset connection, out_queue, msg_ and connect_seq */ 651 /* discard existing out_queue and msg_seq */ 652 dout("reset_connection %p\n", con); 653 ceph_msg_remove_list(&con->out_queue); 654 ceph_msg_remove_list(&con->out_sent); 655 656 if (con->in_msg) { 657 BUG_ON(con->in_msg->con != con); 658 con->in_msg->con = NULL; 659 ceph_msg_put(con->in_msg); 660 con->in_msg = NULL; 661 con->ops->put(con); 662 } 663 664 con->connect_seq = 0; 665 con->out_seq = 0; 666 if (con->out_msg) { 667 ceph_msg_put(con->out_msg); 668 con->out_msg = NULL; 669 } 670 con->in_seq = 0; 671 con->in_seq_acked = 0; 672 } 673 674 /* 675 * mark a peer down. drop any open connections. 676 */ 677 void ceph_con_close(struct ceph_connection *con) 678 { 679 mutex_lock(&con->mutex); 680 dout("con_close %p peer %s\n", con, 681 ceph_pr_addr(&con->peer_addr.in_addr)); 682 con->state = CON_STATE_CLOSED; 683 684 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */ 685 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING); 686 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 687 con_flag_clear(con, CON_FLAG_BACKOFF); 688 689 reset_connection(con); 690 con->peer_global_seq = 0; 691 cancel_con(con); 692 con_close_socket(con); 693 mutex_unlock(&con->mutex); 694 } 695 EXPORT_SYMBOL(ceph_con_close); 696 697 /* 698 * Reopen a closed connection, with a new peer address. 699 */ 700 void ceph_con_open(struct ceph_connection *con, 701 __u8 entity_type, __u64 entity_num, 702 struct ceph_entity_addr *addr) 703 { 704 mutex_lock(&con->mutex); 705 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr)); 706 707 WARN_ON(con->state != CON_STATE_CLOSED); 708 con->state = CON_STATE_PREOPEN; 709 710 con->peer_name.type = (__u8) entity_type; 711 con->peer_name.num = cpu_to_le64(entity_num); 712 713 memcpy(&con->peer_addr, addr, sizeof(*addr)); 714 con->delay = 0; /* reset backoff memory */ 715 mutex_unlock(&con->mutex); 716 queue_con(con); 717 } 718 EXPORT_SYMBOL(ceph_con_open); 719 720 /* 721 * return true if this connection ever successfully opened 722 */ 723 bool ceph_con_opened(struct ceph_connection *con) 724 { 725 return con->connect_seq > 0; 726 } 727 728 /* 729 * initialize a new connection. 730 */ 731 void ceph_con_init(struct ceph_connection *con, void *private, 732 const struct ceph_connection_operations *ops, 733 struct ceph_messenger *msgr) 734 { 735 dout("con_init %p\n", con); 736 memset(con, 0, sizeof(*con)); 737 con->private = private; 738 con->ops = ops; 739 con->msgr = msgr; 740 741 con_sock_state_init(con); 742 743 mutex_init(&con->mutex); 744 INIT_LIST_HEAD(&con->out_queue); 745 INIT_LIST_HEAD(&con->out_sent); 746 INIT_DELAYED_WORK(&con->work, con_work); 747 748 con->state = CON_STATE_CLOSED; 749 } 750 EXPORT_SYMBOL(ceph_con_init); 751 752 753 /* 754 * We maintain a global counter to order connection attempts. Get 755 * a unique seq greater than @gt. 756 */ 757 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) 758 { 759 u32 ret; 760 761 spin_lock(&msgr->global_seq_lock); 762 if (msgr->global_seq < gt) 763 msgr->global_seq = gt; 764 ret = ++msgr->global_seq; 765 spin_unlock(&msgr->global_seq_lock); 766 return ret; 767 } 768 769 static void con_out_kvec_reset(struct ceph_connection *con) 770 { 771 con->out_kvec_left = 0; 772 con->out_kvec_bytes = 0; 773 con->out_kvec_cur = &con->out_kvec[0]; 774 } 775 776 static void con_out_kvec_add(struct ceph_connection *con, 777 size_t size, void *data) 778 { 779 int index; 780 781 index = con->out_kvec_left; 782 BUG_ON(index >= ARRAY_SIZE(con->out_kvec)); 783 784 con->out_kvec[index].iov_len = size; 785 con->out_kvec[index].iov_base = data; 786 con->out_kvec_left++; 787 con->out_kvec_bytes += size; 788 } 789 790 #ifdef CONFIG_BLOCK 791 792 /* 793 * For a bio data item, a piece is whatever remains of the next 794 * entry in the current bio iovec, or the first entry in the next 795 * bio in the list. 796 */ 797 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor, 798 size_t length) 799 { 800 struct ceph_msg_data *data = cursor->data; 801 struct bio *bio; 802 803 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 804 805 bio = data->bio; 806 BUG_ON(!bio); 807 808 cursor->resid = min(length, data->bio_length); 809 cursor->bio = bio; 810 cursor->bvec_iter = bio->bi_iter; 811 cursor->last_piece = 812 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter); 813 } 814 815 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor, 816 size_t *page_offset, 817 size_t *length) 818 { 819 struct ceph_msg_data *data = cursor->data; 820 struct bio *bio; 821 struct bio_vec bio_vec; 822 823 BUG_ON(data->type != CEPH_MSG_DATA_BIO); 824 825 bio = cursor->bio; 826 BUG_ON(!bio); 827 828 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 829 830 *page_offset = (size_t) bio_vec.bv_offset; 831 BUG_ON(*page_offset >= PAGE_SIZE); 832 if (cursor->last_piece) /* pagelist offset is always 0 */ 833 *length = cursor->resid; 834 else 835 *length = (size_t) bio_vec.bv_len; 836 BUG_ON(*length > cursor->resid); 837 BUG_ON(*page_offset + *length > PAGE_SIZE); 838 839 return bio_vec.bv_page; 840 } 841 842 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor, 843 size_t bytes) 844 { 845 struct bio *bio; 846 struct bio_vec bio_vec; 847 848 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO); 849 850 bio = cursor->bio; 851 BUG_ON(!bio); 852 853 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter); 854 855 /* Advance the cursor offset */ 856 857 BUG_ON(cursor->resid < bytes); 858 cursor->resid -= bytes; 859 860 bio_advance_iter(bio, &cursor->bvec_iter, bytes); 861 862 if (bytes < bio_vec.bv_len) 863 return false; /* more bytes to process in this segment */ 864 865 /* Move on to the next segment, and possibly the next bio */ 866 867 if (!cursor->bvec_iter.bi_size) { 868 bio = bio->bi_next; 869 cursor->bio = bio; 870 if (bio) 871 cursor->bvec_iter = bio->bi_iter; 872 else 873 memset(&cursor->bvec_iter, 0, 874 sizeof(cursor->bvec_iter)); 875 } 876 877 if (!cursor->last_piece) { 878 BUG_ON(!cursor->resid); 879 BUG_ON(!bio); 880 /* A short read is OK, so use <= rather than == */ 881 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter)) 882 cursor->last_piece = true; 883 } 884 885 return true; 886 } 887 #endif /* CONFIG_BLOCK */ 888 889 /* 890 * For a page array, a piece comes from the first page in the array 891 * that has not already been fully consumed. 892 */ 893 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor, 894 size_t length) 895 { 896 struct ceph_msg_data *data = cursor->data; 897 int page_count; 898 899 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 900 901 BUG_ON(!data->pages); 902 BUG_ON(!data->length); 903 904 cursor->resid = min(length, data->length); 905 page_count = calc_pages_for(data->alignment, (u64)data->length); 906 cursor->page_offset = data->alignment & ~PAGE_MASK; 907 cursor->page_index = 0; 908 BUG_ON(page_count > (int)USHRT_MAX); 909 cursor->page_count = (unsigned short)page_count; 910 BUG_ON(length > SIZE_MAX - cursor->page_offset); 911 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE; 912 } 913 914 static struct page * 915 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor, 916 size_t *page_offset, size_t *length) 917 { 918 struct ceph_msg_data *data = cursor->data; 919 920 BUG_ON(data->type != CEPH_MSG_DATA_PAGES); 921 922 BUG_ON(cursor->page_index >= cursor->page_count); 923 BUG_ON(cursor->page_offset >= PAGE_SIZE); 924 925 *page_offset = cursor->page_offset; 926 if (cursor->last_piece) 927 *length = cursor->resid; 928 else 929 *length = PAGE_SIZE - *page_offset; 930 931 return data->pages[cursor->page_index]; 932 } 933 934 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor, 935 size_t bytes) 936 { 937 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES); 938 939 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE); 940 941 /* Advance the cursor page offset */ 942 943 cursor->resid -= bytes; 944 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK; 945 if (!bytes || cursor->page_offset) 946 return false; /* more bytes to process in the current page */ 947 948 if (!cursor->resid) 949 return false; /* no more data */ 950 951 /* Move on to the next page; offset is already at 0 */ 952 953 BUG_ON(cursor->page_index >= cursor->page_count); 954 cursor->page_index++; 955 cursor->last_piece = cursor->resid <= PAGE_SIZE; 956 957 return true; 958 } 959 960 /* 961 * For a pagelist, a piece is whatever remains to be consumed in the 962 * first page in the list, or the front of the next page. 963 */ 964 static void 965 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor, 966 size_t length) 967 { 968 struct ceph_msg_data *data = cursor->data; 969 struct ceph_pagelist *pagelist; 970 struct page *page; 971 972 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 973 974 pagelist = data->pagelist; 975 BUG_ON(!pagelist); 976 977 if (!length) 978 return; /* pagelist can be assigned but empty */ 979 980 BUG_ON(list_empty(&pagelist->head)); 981 page = list_first_entry(&pagelist->head, struct page, lru); 982 983 cursor->resid = min(length, pagelist->length); 984 cursor->page = page; 985 cursor->offset = 0; 986 cursor->last_piece = cursor->resid <= PAGE_SIZE; 987 } 988 989 static struct page * 990 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor, 991 size_t *page_offset, size_t *length) 992 { 993 struct ceph_msg_data *data = cursor->data; 994 struct ceph_pagelist *pagelist; 995 996 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 997 998 pagelist = data->pagelist; 999 BUG_ON(!pagelist); 1000 1001 BUG_ON(!cursor->page); 1002 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1003 1004 /* offset of first page in pagelist is always 0 */ 1005 *page_offset = cursor->offset & ~PAGE_MASK; 1006 if (cursor->last_piece) 1007 *length = cursor->resid; 1008 else 1009 *length = PAGE_SIZE - *page_offset; 1010 1011 return cursor->page; 1012 } 1013 1014 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor, 1015 size_t bytes) 1016 { 1017 struct ceph_msg_data *data = cursor->data; 1018 struct ceph_pagelist *pagelist; 1019 1020 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST); 1021 1022 pagelist = data->pagelist; 1023 BUG_ON(!pagelist); 1024 1025 BUG_ON(cursor->offset + cursor->resid != pagelist->length); 1026 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE); 1027 1028 /* Advance the cursor offset */ 1029 1030 cursor->resid -= bytes; 1031 cursor->offset += bytes; 1032 /* offset of first page in pagelist is always 0 */ 1033 if (!bytes || cursor->offset & ~PAGE_MASK) 1034 return false; /* more bytes to process in the current page */ 1035 1036 if (!cursor->resid) 1037 return false; /* no more data */ 1038 1039 /* Move on to the next page */ 1040 1041 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head)); 1042 cursor->page = list_entry_next(cursor->page, lru); 1043 cursor->last_piece = cursor->resid <= PAGE_SIZE; 1044 1045 return true; 1046 } 1047 1048 /* 1049 * Message data is handled (sent or received) in pieces, where each 1050 * piece resides on a single page. The network layer might not 1051 * consume an entire piece at once. A data item's cursor keeps 1052 * track of which piece is next to process and how much remains to 1053 * be processed in that piece. It also tracks whether the current 1054 * piece is the last one in the data item. 1055 */ 1056 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor) 1057 { 1058 size_t length = cursor->total_resid; 1059 1060 switch (cursor->data->type) { 1061 case CEPH_MSG_DATA_PAGELIST: 1062 ceph_msg_data_pagelist_cursor_init(cursor, length); 1063 break; 1064 case CEPH_MSG_DATA_PAGES: 1065 ceph_msg_data_pages_cursor_init(cursor, length); 1066 break; 1067 #ifdef CONFIG_BLOCK 1068 case CEPH_MSG_DATA_BIO: 1069 ceph_msg_data_bio_cursor_init(cursor, length); 1070 break; 1071 #endif /* CONFIG_BLOCK */ 1072 case CEPH_MSG_DATA_NONE: 1073 default: 1074 /* BUG(); */ 1075 break; 1076 } 1077 cursor->need_crc = true; 1078 } 1079 1080 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length) 1081 { 1082 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1083 struct ceph_msg_data *data; 1084 1085 BUG_ON(!length); 1086 BUG_ON(length > msg->data_length); 1087 BUG_ON(list_empty(&msg->data)); 1088 1089 cursor->data_head = &msg->data; 1090 cursor->total_resid = length; 1091 data = list_first_entry(&msg->data, struct ceph_msg_data, links); 1092 cursor->data = data; 1093 1094 __ceph_msg_data_cursor_init(cursor); 1095 } 1096 1097 /* 1098 * Return the page containing the next piece to process for a given 1099 * data item, and supply the page offset and length of that piece. 1100 * Indicate whether this is the last piece in this data item. 1101 */ 1102 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor, 1103 size_t *page_offset, size_t *length, 1104 bool *last_piece) 1105 { 1106 struct page *page; 1107 1108 switch (cursor->data->type) { 1109 case CEPH_MSG_DATA_PAGELIST: 1110 page = ceph_msg_data_pagelist_next(cursor, page_offset, length); 1111 break; 1112 case CEPH_MSG_DATA_PAGES: 1113 page = ceph_msg_data_pages_next(cursor, page_offset, length); 1114 break; 1115 #ifdef CONFIG_BLOCK 1116 case CEPH_MSG_DATA_BIO: 1117 page = ceph_msg_data_bio_next(cursor, page_offset, length); 1118 break; 1119 #endif /* CONFIG_BLOCK */ 1120 case CEPH_MSG_DATA_NONE: 1121 default: 1122 page = NULL; 1123 break; 1124 } 1125 BUG_ON(!page); 1126 BUG_ON(*page_offset + *length > PAGE_SIZE); 1127 BUG_ON(!*length); 1128 if (last_piece) 1129 *last_piece = cursor->last_piece; 1130 1131 return page; 1132 } 1133 1134 /* 1135 * Returns true if the result moves the cursor on to the next piece 1136 * of the data item. 1137 */ 1138 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, 1139 size_t bytes) 1140 { 1141 bool new_piece; 1142 1143 BUG_ON(bytes > cursor->resid); 1144 switch (cursor->data->type) { 1145 case CEPH_MSG_DATA_PAGELIST: 1146 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes); 1147 break; 1148 case CEPH_MSG_DATA_PAGES: 1149 new_piece = ceph_msg_data_pages_advance(cursor, bytes); 1150 break; 1151 #ifdef CONFIG_BLOCK 1152 case CEPH_MSG_DATA_BIO: 1153 new_piece = ceph_msg_data_bio_advance(cursor, bytes); 1154 break; 1155 #endif /* CONFIG_BLOCK */ 1156 case CEPH_MSG_DATA_NONE: 1157 default: 1158 BUG(); 1159 break; 1160 } 1161 cursor->total_resid -= bytes; 1162 1163 if (!cursor->resid && cursor->total_resid) { 1164 WARN_ON(!cursor->last_piece); 1165 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head)); 1166 cursor->data = list_entry_next(cursor->data, links); 1167 __ceph_msg_data_cursor_init(cursor); 1168 new_piece = true; 1169 } 1170 cursor->need_crc = new_piece; 1171 1172 return new_piece; 1173 } 1174 1175 static void prepare_message_data(struct ceph_msg *msg, u32 data_len) 1176 { 1177 BUG_ON(!msg); 1178 BUG_ON(!data_len); 1179 1180 /* Initialize data cursor */ 1181 1182 ceph_msg_data_cursor_init(msg, (size_t)data_len); 1183 } 1184 1185 /* 1186 * Prepare footer for currently outgoing message, and finish things 1187 * off. Assumes out_kvec* are already valid.. we just add on to the end. 1188 */ 1189 static void prepare_write_message_footer(struct ceph_connection *con) 1190 { 1191 struct ceph_msg *m = con->out_msg; 1192 int v = con->out_kvec_left; 1193 1194 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE; 1195 1196 dout("prepare_write_message_footer %p\n", con); 1197 con->out_kvec_is_msg = true; 1198 con->out_kvec[v].iov_base = &m->footer; 1199 con->out_kvec[v].iov_len = sizeof(m->footer); 1200 con->out_kvec_bytes += sizeof(m->footer); 1201 con->out_kvec_left++; 1202 con->out_more = m->more_to_follow; 1203 con->out_msg_done = true; 1204 } 1205 1206 /* 1207 * Prepare headers for the next outgoing message. 1208 */ 1209 static void prepare_write_message(struct ceph_connection *con) 1210 { 1211 struct ceph_msg *m; 1212 u32 crc; 1213 1214 con_out_kvec_reset(con); 1215 con->out_kvec_is_msg = true; 1216 con->out_msg_done = false; 1217 1218 /* Sneak an ack in there first? If we can get it into the same 1219 * TCP packet that's a good thing. */ 1220 if (con->in_seq > con->in_seq_acked) { 1221 con->in_seq_acked = con->in_seq; 1222 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1223 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1224 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1225 &con->out_temp_ack); 1226 } 1227 1228 BUG_ON(list_empty(&con->out_queue)); 1229 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head); 1230 con->out_msg = m; 1231 BUG_ON(m->con != con); 1232 1233 /* put message on sent list */ 1234 ceph_msg_get(m); 1235 list_move_tail(&m->list_head, &con->out_sent); 1236 1237 /* 1238 * only assign outgoing seq # if we haven't sent this message 1239 * yet. if it is requeued, resend with it's original seq. 1240 */ 1241 if (m->needs_out_seq) { 1242 m->hdr.seq = cpu_to_le64(++con->out_seq); 1243 m->needs_out_seq = false; 1244 } 1245 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len)); 1246 1247 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n", 1248 m, con->out_seq, le16_to_cpu(m->hdr.type), 1249 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), 1250 m->data_length); 1251 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); 1252 1253 /* tag + hdr + front + middle */ 1254 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg); 1255 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr); 1256 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base); 1257 1258 if (m->middle) 1259 con_out_kvec_add(con, m->middle->vec.iov_len, 1260 m->middle->vec.iov_base); 1261 1262 /* fill in crc (except data pages), footer */ 1263 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc)); 1264 con->out_msg->hdr.crc = cpu_to_le32(crc); 1265 con->out_msg->footer.flags = 0; 1266 1267 crc = crc32c(0, m->front.iov_base, m->front.iov_len); 1268 con->out_msg->footer.front_crc = cpu_to_le32(crc); 1269 if (m->middle) { 1270 crc = crc32c(0, m->middle->vec.iov_base, 1271 m->middle->vec.iov_len); 1272 con->out_msg->footer.middle_crc = cpu_to_le32(crc); 1273 } else 1274 con->out_msg->footer.middle_crc = 0; 1275 dout("%s front_crc %u middle_crc %u\n", __func__, 1276 le32_to_cpu(con->out_msg->footer.front_crc), 1277 le32_to_cpu(con->out_msg->footer.middle_crc)); 1278 1279 /* is there a data payload? */ 1280 con->out_msg->footer.data_crc = 0; 1281 if (m->data_length) { 1282 prepare_message_data(con->out_msg, m->data_length); 1283 con->out_more = 1; /* data + footer will follow */ 1284 } else { 1285 /* no, queue up footer too and be done */ 1286 prepare_write_message_footer(con); 1287 } 1288 1289 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1290 } 1291 1292 /* 1293 * Prepare an ack. 1294 */ 1295 static void prepare_write_ack(struct ceph_connection *con) 1296 { 1297 dout("prepare_write_ack %p %llu -> %llu\n", con, 1298 con->in_seq_acked, con->in_seq); 1299 con->in_seq_acked = con->in_seq; 1300 1301 con_out_kvec_reset(con); 1302 1303 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack); 1304 1305 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1306 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1307 &con->out_temp_ack); 1308 1309 con->out_more = 1; /* more will follow.. eventually.. */ 1310 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1311 } 1312 1313 /* 1314 * Prepare to share the seq during handshake 1315 */ 1316 static void prepare_write_seq(struct ceph_connection *con) 1317 { 1318 dout("prepare_write_seq %p %llu -> %llu\n", con, 1319 con->in_seq_acked, con->in_seq); 1320 con->in_seq_acked = con->in_seq; 1321 1322 con_out_kvec_reset(con); 1323 1324 con->out_temp_ack = cpu_to_le64(con->in_seq_acked); 1325 con_out_kvec_add(con, sizeof (con->out_temp_ack), 1326 &con->out_temp_ack); 1327 1328 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1329 } 1330 1331 /* 1332 * Prepare to write keepalive byte. 1333 */ 1334 static void prepare_write_keepalive(struct ceph_connection *con) 1335 { 1336 dout("prepare_write_keepalive %p\n", con); 1337 con_out_kvec_reset(con); 1338 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive); 1339 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1340 } 1341 1342 /* 1343 * Connection negotiation. 1344 */ 1345 1346 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con, 1347 int *auth_proto) 1348 { 1349 struct ceph_auth_handshake *auth; 1350 1351 if (!con->ops->get_authorizer) { 1352 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN; 1353 con->out_connect.authorizer_len = 0; 1354 return NULL; 1355 } 1356 1357 /* Can't hold the mutex while getting authorizer */ 1358 mutex_unlock(&con->mutex); 1359 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry); 1360 mutex_lock(&con->mutex); 1361 1362 if (IS_ERR(auth)) 1363 return auth; 1364 if (con->state != CON_STATE_NEGOTIATING) 1365 return ERR_PTR(-EAGAIN); 1366 1367 con->auth_reply_buf = auth->authorizer_reply_buf; 1368 con->auth_reply_buf_len = auth->authorizer_reply_buf_len; 1369 return auth; 1370 } 1371 1372 /* 1373 * We connected to a peer and are saying hello. 1374 */ 1375 static void prepare_write_banner(struct ceph_connection *con) 1376 { 1377 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER); 1378 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr), 1379 &con->msgr->my_enc_addr); 1380 1381 con->out_more = 0; 1382 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1383 } 1384 1385 static int prepare_write_connect(struct ceph_connection *con) 1386 { 1387 unsigned int global_seq = get_global_seq(con->msgr, 0); 1388 int proto; 1389 int auth_proto; 1390 struct ceph_auth_handshake *auth; 1391 1392 switch (con->peer_name.type) { 1393 case CEPH_ENTITY_TYPE_MON: 1394 proto = CEPH_MONC_PROTOCOL; 1395 break; 1396 case CEPH_ENTITY_TYPE_OSD: 1397 proto = CEPH_OSDC_PROTOCOL; 1398 break; 1399 case CEPH_ENTITY_TYPE_MDS: 1400 proto = CEPH_MDSC_PROTOCOL; 1401 break; 1402 default: 1403 BUG(); 1404 } 1405 1406 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, 1407 con->connect_seq, global_seq, proto); 1408 1409 con->out_connect.features = cpu_to_le64(con->msgr->supported_features); 1410 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); 1411 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); 1412 con->out_connect.global_seq = cpu_to_le32(global_seq); 1413 con->out_connect.protocol_version = cpu_to_le32(proto); 1414 con->out_connect.flags = 0; 1415 1416 auth_proto = CEPH_AUTH_UNKNOWN; 1417 auth = get_connect_authorizer(con, &auth_proto); 1418 if (IS_ERR(auth)) 1419 return PTR_ERR(auth); 1420 1421 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto); 1422 con->out_connect.authorizer_len = auth ? 1423 cpu_to_le32(auth->authorizer_buf_len) : 0; 1424 1425 con_out_kvec_add(con, sizeof (con->out_connect), 1426 &con->out_connect); 1427 if (auth && auth->authorizer_buf_len) 1428 con_out_kvec_add(con, auth->authorizer_buf_len, 1429 auth->authorizer_buf); 1430 1431 con->out_more = 0; 1432 con_flag_set(con, CON_FLAG_WRITE_PENDING); 1433 1434 return 0; 1435 } 1436 1437 /* 1438 * write as much of pending kvecs to the socket as we can. 1439 * 1 -> done 1440 * 0 -> socket full, but more to do 1441 * <0 -> error 1442 */ 1443 static int write_partial_kvec(struct ceph_connection *con) 1444 { 1445 int ret; 1446 1447 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); 1448 while (con->out_kvec_bytes > 0) { 1449 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, 1450 con->out_kvec_left, con->out_kvec_bytes, 1451 con->out_more); 1452 if (ret <= 0) 1453 goto out; 1454 con->out_kvec_bytes -= ret; 1455 if (con->out_kvec_bytes == 0) 1456 break; /* done */ 1457 1458 /* account for full iov entries consumed */ 1459 while (ret >= con->out_kvec_cur->iov_len) { 1460 BUG_ON(!con->out_kvec_left); 1461 ret -= con->out_kvec_cur->iov_len; 1462 con->out_kvec_cur++; 1463 con->out_kvec_left--; 1464 } 1465 /* and for a partially-consumed entry */ 1466 if (ret) { 1467 con->out_kvec_cur->iov_len -= ret; 1468 con->out_kvec_cur->iov_base += ret; 1469 } 1470 } 1471 con->out_kvec_left = 0; 1472 con->out_kvec_is_msg = false; 1473 ret = 1; 1474 out: 1475 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, 1476 con->out_kvec_bytes, con->out_kvec_left, ret); 1477 return ret; /* done! */ 1478 } 1479 1480 static u32 ceph_crc32c_page(u32 crc, struct page *page, 1481 unsigned int page_offset, 1482 unsigned int length) 1483 { 1484 char *kaddr; 1485 1486 kaddr = kmap(page); 1487 BUG_ON(kaddr == NULL); 1488 crc = crc32c(crc, kaddr + page_offset, length); 1489 kunmap(page); 1490 1491 return crc; 1492 } 1493 /* 1494 * Write as much message data payload as we can. If we finish, queue 1495 * up the footer. 1496 * 1 -> done, footer is now queued in out_kvec[]. 1497 * 0 -> socket full, but more to do 1498 * <0 -> error 1499 */ 1500 static int write_partial_message_data(struct ceph_connection *con) 1501 { 1502 struct ceph_msg *msg = con->out_msg; 1503 struct ceph_msg_data_cursor *cursor = &msg->cursor; 1504 bool do_datacrc = !con->msgr->nocrc; 1505 u32 crc; 1506 1507 dout("%s %p msg %p\n", __func__, con, msg); 1508 1509 if (list_empty(&msg->data)) 1510 return -EINVAL; 1511 1512 /* 1513 * Iterate through each page that contains data to be 1514 * written, and send as much as possible for each. 1515 * 1516 * If we are calculating the data crc (the default), we will 1517 * need to map the page. If we have no pages, they have 1518 * been revoked, so use the zero page. 1519 */ 1520 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0; 1521 while (cursor->resid) { 1522 struct page *page; 1523 size_t page_offset; 1524 size_t length; 1525 bool last_piece; 1526 bool need_crc; 1527 int ret; 1528 1529 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 1530 &last_piece); 1531 ret = ceph_tcp_sendpage(con->sock, page, page_offset, 1532 length, last_piece); 1533 if (ret <= 0) { 1534 if (do_datacrc) 1535 msg->footer.data_crc = cpu_to_le32(crc); 1536 1537 return ret; 1538 } 1539 if (do_datacrc && cursor->need_crc) 1540 crc = ceph_crc32c_page(crc, page, page_offset, length); 1541 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret); 1542 } 1543 1544 dout("%s %p msg %p done\n", __func__, con, msg); 1545 1546 /* prepare and queue up footer, too */ 1547 if (do_datacrc) 1548 msg->footer.data_crc = cpu_to_le32(crc); 1549 else 1550 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; 1551 con_out_kvec_reset(con); 1552 prepare_write_message_footer(con); 1553 1554 return 1; /* must return > 0 to indicate success */ 1555 } 1556 1557 /* 1558 * write some zeros 1559 */ 1560 static int write_partial_skip(struct ceph_connection *con) 1561 { 1562 int ret; 1563 1564 while (con->out_skip > 0) { 1565 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE); 1566 1567 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true); 1568 if (ret <= 0) 1569 goto out; 1570 con->out_skip -= ret; 1571 } 1572 ret = 1; 1573 out: 1574 return ret; 1575 } 1576 1577 /* 1578 * Prepare to read connection handshake, or an ack. 1579 */ 1580 static void prepare_read_banner(struct ceph_connection *con) 1581 { 1582 dout("prepare_read_banner %p\n", con); 1583 con->in_base_pos = 0; 1584 } 1585 1586 static void prepare_read_connect(struct ceph_connection *con) 1587 { 1588 dout("prepare_read_connect %p\n", con); 1589 con->in_base_pos = 0; 1590 } 1591 1592 static void prepare_read_ack(struct ceph_connection *con) 1593 { 1594 dout("prepare_read_ack %p\n", con); 1595 con->in_base_pos = 0; 1596 } 1597 1598 static void prepare_read_seq(struct ceph_connection *con) 1599 { 1600 dout("prepare_read_seq %p\n", con); 1601 con->in_base_pos = 0; 1602 con->in_tag = CEPH_MSGR_TAG_SEQ; 1603 } 1604 1605 static void prepare_read_tag(struct ceph_connection *con) 1606 { 1607 dout("prepare_read_tag %p\n", con); 1608 con->in_base_pos = 0; 1609 con->in_tag = CEPH_MSGR_TAG_READY; 1610 } 1611 1612 /* 1613 * Prepare to read a message. 1614 */ 1615 static int prepare_read_message(struct ceph_connection *con) 1616 { 1617 dout("prepare_read_message %p\n", con); 1618 BUG_ON(con->in_msg != NULL); 1619 con->in_base_pos = 0; 1620 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; 1621 return 0; 1622 } 1623 1624 1625 static int read_partial(struct ceph_connection *con, 1626 int end, int size, void *object) 1627 { 1628 while (con->in_base_pos < end) { 1629 int left = end - con->in_base_pos; 1630 int have = size - left; 1631 int ret = ceph_tcp_recvmsg(con->sock, object + have, left); 1632 if (ret <= 0) 1633 return ret; 1634 con->in_base_pos += ret; 1635 } 1636 return 1; 1637 } 1638 1639 1640 /* 1641 * Read all or part of the connect-side handshake on a new connection 1642 */ 1643 static int read_partial_banner(struct ceph_connection *con) 1644 { 1645 int size; 1646 int end; 1647 int ret; 1648 1649 dout("read_partial_banner %p at %d\n", con, con->in_base_pos); 1650 1651 /* peer's banner */ 1652 size = strlen(CEPH_BANNER); 1653 end = size; 1654 ret = read_partial(con, end, size, con->in_banner); 1655 if (ret <= 0) 1656 goto out; 1657 1658 size = sizeof (con->actual_peer_addr); 1659 end += size; 1660 ret = read_partial(con, end, size, &con->actual_peer_addr); 1661 if (ret <= 0) 1662 goto out; 1663 1664 size = sizeof (con->peer_addr_for_me); 1665 end += size; 1666 ret = read_partial(con, end, size, &con->peer_addr_for_me); 1667 if (ret <= 0) 1668 goto out; 1669 1670 out: 1671 return ret; 1672 } 1673 1674 static int read_partial_connect(struct ceph_connection *con) 1675 { 1676 int size; 1677 int end; 1678 int ret; 1679 1680 dout("read_partial_connect %p at %d\n", con, con->in_base_pos); 1681 1682 size = sizeof (con->in_reply); 1683 end = size; 1684 ret = read_partial(con, end, size, &con->in_reply); 1685 if (ret <= 0) 1686 goto out; 1687 1688 size = le32_to_cpu(con->in_reply.authorizer_len); 1689 end += size; 1690 ret = read_partial(con, end, size, con->auth_reply_buf); 1691 if (ret <= 0) 1692 goto out; 1693 1694 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", 1695 con, (int)con->in_reply.tag, 1696 le32_to_cpu(con->in_reply.connect_seq), 1697 le32_to_cpu(con->in_reply.global_seq)); 1698 out: 1699 return ret; 1700 1701 } 1702 1703 /* 1704 * Verify the hello banner looks okay. 1705 */ 1706 static int verify_hello(struct ceph_connection *con) 1707 { 1708 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { 1709 pr_err("connect to %s got bad banner\n", 1710 ceph_pr_addr(&con->peer_addr.in_addr)); 1711 con->error_msg = "protocol error, bad banner"; 1712 return -1; 1713 } 1714 return 0; 1715 } 1716 1717 static bool addr_is_blank(struct sockaddr_storage *ss) 1718 { 1719 switch (ss->ss_family) { 1720 case AF_INET: 1721 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; 1722 case AF_INET6: 1723 return 1724 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && 1725 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && 1726 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && 1727 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; 1728 } 1729 return false; 1730 } 1731 1732 static int addr_port(struct sockaddr_storage *ss) 1733 { 1734 switch (ss->ss_family) { 1735 case AF_INET: 1736 return ntohs(((struct sockaddr_in *)ss)->sin_port); 1737 case AF_INET6: 1738 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); 1739 } 1740 return 0; 1741 } 1742 1743 static void addr_set_port(struct sockaddr_storage *ss, int p) 1744 { 1745 switch (ss->ss_family) { 1746 case AF_INET: 1747 ((struct sockaddr_in *)ss)->sin_port = htons(p); 1748 break; 1749 case AF_INET6: 1750 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); 1751 break; 1752 } 1753 } 1754 1755 /* 1756 * Unlike other *_pton function semantics, zero indicates success. 1757 */ 1758 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss, 1759 char delim, const char **ipend) 1760 { 1761 struct sockaddr_in *in4 = (struct sockaddr_in *) ss; 1762 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss; 1763 1764 memset(ss, 0, sizeof(*ss)); 1765 1766 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) { 1767 ss->ss_family = AF_INET; 1768 return 0; 1769 } 1770 1771 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) { 1772 ss->ss_family = AF_INET6; 1773 return 0; 1774 } 1775 1776 return -EINVAL; 1777 } 1778 1779 /* 1780 * Extract hostname string and resolve using kernel DNS facility. 1781 */ 1782 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER 1783 static int ceph_dns_resolve_name(const char *name, size_t namelen, 1784 struct sockaddr_storage *ss, char delim, const char **ipend) 1785 { 1786 const char *end, *delim_p; 1787 char *colon_p, *ip_addr = NULL; 1788 int ip_len, ret; 1789 1790 /* 1791 * The end of the hostname occurs immediately preceding the delimiter or 1792 * the port marker (':') where the delimiter takes precedence. 1793 */ 1794 delim_p = memchr(name, delim, namelen); 1795 colon_p = memchr(name, ':', namelen); 1796 1797 if (delim_p && colon_p) 1798 end = delim_p < colon_p ? delim_p : colon_p; 1799 else if (!delim_p && colon_p) 1800 end = colon_p; 1801 else { 1802 end = delim_p; 1803 if (!end) /* case: hostname:/ */ 1804 end = name + namelen; 1805 } 1806 1807 if (end <= name) 1808 return -EINVAL; 1809 1810 /* do dns_resolve upcall */ 1811 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL); 1812 if (ip_len > 0) 1813 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL); 1814 else 1815 ret = -ESRCH; 1816 1817 kfree(ip_addr); 1818 1819 *ipend = end; 1820 1821 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name, 1822 ret, ret ? "failed" : ceph_pr_addr(ss)); 1823 1824 return ret; 1825 } 1826 #else 1827 static inline int ceph_dns_resolve_name(const char *name, size_t namelen, 1828 struct sockaddr_storage *ss, char delim, const char **ipend) 1829 { 1830 return -EINVAL; 1831 } 1832 #endif 1833 1834 /* 1835 * Parse a server name (IP or hostname). If a valid IP address is not found 1836 * then try to extract a hostname to resolve using userspace DNS upcall. 1837 */ 1838 static int ceph_parse_server_name(const char *name, size_t namelen, 1839 struct sockaddr_storage *ss, char delim, const char **ipend) 1840 { 1841 int ret; 1842 1843 ret = ceph_pton(name, namelen, ss, delim, ipend); 1844 if (ret) 1845 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend); 1846 1847 return ret; 1848 } 1849 1850 /* 1851 * Parse an ip[:port] list into an addr array. Use the default 1852 * monitor port if a port isn't specified. 1853 */ 1854 int ceph_parse_ips(const char *c, const char *end, 1855 struct ceph_entity_addr *addr, 1856 int max_count, int *count) 1857 { 1858 int i, ret = -EINVAL; 1859 const char *p = c; 1860 1861 dout("parse_ips on '%.*s'\n", (int)(end-c), c); 1862 for (i = 0; i < max_count; i++) { 1863 const char *ipend; 1864 struct sockaddr_storage *ss = &addr[i].in_addr; 1865 int port; 1866 char delim = ','; 1867 1868 if (*p == '[') { 1869 delim = ']'; 1870 p++; 1871 } 1872 1873 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend); 1874 if (ret) 1875 goto bad; 1876 ret = -EINVAL; 1877 1878 p = ipend; 1879 1880 if (delim == ']') { 1881 if (*p != ']') { 1882 dout("missing matching ']'\n"); 1883 goto bad; 1884 } 1885 p++; 1886 } 1887 1888 /* port? */ 1889 if (p < end && *p == ':') { 1890 port = 0; 1891 p++; 1892 while (p < end && *p >= '0' && *p <= '9') { 1893 port = (port * 10) + (*p - '0'); 1894 p++; 1895 } 1896 if (port == 0) 1897 port = CEPH_MON_PORT; 1898 else if (port > 65535) 1899 goto bad; 1900 } else { 1901 port = CEPH_MON_PORT; 1902 } 1903 1904 addr_set_port(ss, port); 1905 1906 dout("parse_ips got %s\n", ceph_pr_addr(ss)); 1907 1908 if (p == end) 1909 break; 1910 if (*p != ',') 1911 goto bad; 1912 p++; 1913 } 1914 1915 if (p != end) 1916 goto bad; 1917 1918 if (count) 1919 *count = i + 1; 1920 return 0; 1921 1922 bad: 1923 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c); 1924 return ret; 1925 } 1926 EXPORT_SYMBOL(ceph_parse_ips); 1927 1928 static int process_banner(struct ceph_connection *con) 1929 { 1930 dout("process_banner on %p\n", con); 1931 1932 if (verify_hello(con) < 0) 1933 return -1; 1934 1935 ceph_decode_addr(&con->actual_peer_addr); 1936 ceph_decode_addr(&con->peer_addr_for_me); 1937 1938 /* 1939 * Make sure the other end is who we wanted. note that the other 1940 * end may not yet know their ip address, so if it's 0.0.0.0, give 1941 * them the benefit of the doubt. 1942 */ 1943 if (memcmp(&con->peer_addr, &con->actual_peer_addr, 1944 sizeof(con->peer_addr)) != 0 && 1945 !(addr_is_blank(&con->actual_peer_addr.in_addr) && 1946 con->actual_peer_addr.nonce == con->peer_addr.nonce)) { 1947 pr_warn("wrong peer, want %s/%d, got %s/%d\n", 1948 ceph_pr_addr(&con->peer_addr.in_addr), 1949 (int)le32_to_cpu(con->peer_addr.nonce), 1950 ceph_pr_addr(&con->actual_peer_addr.in_addr), 1951 (int)le32_to_cpu(con->actual_peer_addr.nonce)); 1952 con->error_msg = "wrong peer at address"; 1953 return -1; 1954 } 1955 1956 /* 1957 * did we learn our address? 1958 */ 1959 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { 1960 int port = addr_port(&con->msgr->inst.addr.in_addr); 1961 1962 memcpy(&con->msgr->inst.addr.in_addr, 1963 &con->peer_addr_for_me.in_addr, 1964 sizeof(con->peer_addr_for_me.in_addr)); 1965 addr_set_port(&con->msgr->inst.addr.in_addr, port); 1966 encode_my_addr(con->msgr); 1967 dout("process_banner learned my addr is %s\n", 1968 ceph_pr_addr(&con->msgr->inst.addr.in_addr)); 1969 } 1970 1971 return 0; 1972 } 1973 1974 static int process_connect(struct ceph_connection *con) 1975 { 1976 u64 sup_feat = con->msgr->supported_features; 1977 u64 req_feat = con->msgr->required_features; 1978 u64 server_feat = ceph_sanitize_features( 1979 le64_to_cpu(con->in_reply.features)); 1980 int ret; 1981 1982 dout("process_connect on %p tag %d\n", con, (int)con->in_tag); 1983 1984 switch (con->in_reply.tag) { 1985 case CEPH_MSGR_TAG_FEATURES: 1986 pr_err("%s%lld %s feature set mismatch," 1987 " my %llx < server's %llx, missing %llx\n", 1988 ENTITY_NAME(con->peer_name), 1989 ceph_pr_addr(&con->peer_addr.in_addr), 1990 sup_feat, server_feat, server_feat & ~sup_feat); 1991 con->error_msg = "missing required protocol features"; 1992 reset_connection(con); 1993 return -1; 1994 1995 case CEPH_MSGR_TAG_BADPROTOVER: 1996 pr_err("%s%lld %s protocol version mismatch," 1997 " my %d != server's %d\n", 1998 ENTITY_NAME(con->peer_name), 1999 ceph_pr_addr(&con->peer_addr.in_addr), 2000 le32_to_cpu(con->out_connect.protocol_version), 2001 le32_to_cpu(con->in_reply.protocol_version)); 2002 con->error_msg = "protocol version mismatch"; 2003 reset_connection(con); 2004 return -1; 2005 2006 case CEPH_MSGR_TAG_BADAUTHORIZER: 2007 con->auth_retry++; 2008 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, 2009 con->auth_retry); 2010 if (con->auth_retry == 2) { 2011 con->error_msg = "connect authorization failure"; 2012 return -1; 2013 } 2014 con_out_kvec_reset(con); 2015 ret = prepare_write_connect(con); 2016 if (ret < 0) 2017 return ret; 2018 prepare_read_connect(con); 2019 break; 2020 2021 case CEPH_MSGR_TAG_RESETSESSION: 2022 /* 2023 * If we connected with a large connect_seq but the peer 2024 * has no record of a session with us (no connection, or 2025 * connect_seq == 0), they will send RESETSESION to indicate 2026 * that they must have reset their session, and may have 2027 * dropped messages. 2028 */ 2029 dout("process_connect got RESET peer seq %u\n", 2030 le32_to_cpu(con->in_reply.connect_seq)); 2031 pr_err("%s%lld %s connection reset\n", 2032 ENTITY_NAME(con->peer_name), 2033 ceph_pr_addr(&con->peer_addr.in_addr)); 2034 reset_connection(con); 2035 con_out_kvec_reset(con); 2036 ret = prepare_write_connect(con); 2037 if (ret < 0) 2038 return ret; 2039 prepare_read_connect(con); 2040 2041 /* Tell ceph about it. */ 2042 mutex_unlock(&con->mutex); 2043 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); 2044 if (con->ops->peer_reset) 2045 con->ops->peer_reset(con); 2046 mutex_lock(&con->mutex); 2047 if (con->state != CON_STATE_NEGOTIATING) 2048 return -EAGAIN; 2049 break; 2050 2051 case CEPH_MSGR_TAG_RETRY_SESSION: 2052 /* 2053 * If we sent a smaller connect_seq than the peer has, try 2054 * again with a larger value. 2055 */ 2056 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n", 2057 le32_to_cpu(con->out_connect.connect_seq), 2058 le32_to_cpu(con->in_reply.connect_seq)); 2059 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq); 2060 con_out_kvec_reset(con); 2061 ret = prepare_write_connect(con); 2062 if (ret < 0) 2063 return ret; 2064 prepare_read_connect(con); 2065 break; 2066 2067 case CEPH_MSGR_TAG_RETRY_GLOBAL: 2068 /* 2069 * If we sent a smaller global_seq than the peer has, try 2070 * again with a larger value. 2071 */ 2072 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", 2073 con->peer_global_seq, 2074 le32_to_cpu(con->in_reply.global_seq)); 2075 get_global_seq(con->msgr, 2076 le32_to_cpu(con->in_reply.global_seq)); 2077 con_out_kvec_reset(con); 2078 ret = prepare_write_connect(con); 2079 if (ret < 0) 2080 return ret; 2081 prepare_read_connect(con); 2082 break; 2083 2084 case CEPH_MSGR_TAG_SEQ: 2085 case CEPH_MSGR_TAG_READY: 2086 if (req_feat & ~server_feat) { 2087 pr_err("%s%lld %s protocol feature mismatch," 2088 " my required %llx > server's %llx, need %llx\n", 2089 ENTITY_NAME(con->peer_name), 2090 ceph_pr_addr(&con->peer_addr.in_addr), 2091 req_feat, server_feat, req_feat & ~server_feat); 2092 con->error_msg = "missing required protocol features"; 2093 reset_connection(con); 2094 return -1; 2095 } 2096 2097 WARN_ON(con->state != CON_STATE_NEGOTIATING); 2098 con->state = CON_STATE_OPEN; 2099 con->auth_retry = 0; /* we authenticated; clear flag */ 2100 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); 2101 con->connect_seq++; 2102 con->peer_features = server_feat; 2103 dout("process_connect got READY gseq %d cseq %d (%d)\n", 2104 con->peer_global_seq, 2105 le32_to_cpu(con->in_reply.connect_seq), 2106 con->connect_seq); 2107 WARN_ON(con->connect_seq != 2108 le32_to_cpu(con->in_reply.connect_seq)); 2109 2110 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY) 2111 con_flag_set(con, CON_FLAG_LOSSYTX); 2112 2113 con->delay = 0; /* reset backoff memory */ 2114 2115 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) { 2116 prepare_write_seq(con); 2117 prepare_read_seq(con); 2118 } else { 2119 prepare_read_tag(con); 2120 } 2121 break; 2122 2123 case CEPH_MSGR_TAG_WAIT: 2124 /* 2125 * If there is a connection race (we are opening 2126 * connections to each other), one of us may just have 2127 * to WAIT. This shouldn't happen if we are the 2128 * client. 2129 */ 2130 pr_err("process_connect got WAIT as client\n"); 2131 con->error_msg = "protocol error, got WAIT as client"; 2132 return -1; 2133 2134 default: 2135 pr_err("connect protocol error, will retry\n"); 2136 con->error_msg = "protocol error, garbage tag during connect"; 2137 return -1; 2138 } 2139 return 0; 2140 } 2141 2142 2143 /* 2144 * read (part of) an ack 2145 */ 2146 static int read_partial_ack(struct ceph_connection *con) 2147 { 2148 int size = sizeof (con->in_temp_ack); 2149 int end = size; 2150 2151 return read_partial(con, end, size, &con->in_temp_ack); 2152 } 2153 2154 /* 2155 * We can finally discard anything that's been acked. 2156 */ 2157 static void process_ack(struct ceph_connection *con) 2158 { 2159 struct ceph_msg *m; 2160 u64 ack = le64_to_cpu(con->in_temp_ack); 2161 u64 seq; 2162 2163 while (!list_empty(&con->out_sent)) { 2164 m = list_first_entry(&con->out_sent, struct ceph_msg, 2165 list_head); 2166 seq = le64_to_cpu(m->hdr.seq); 2167 if (seq > ack) 2168 break; 2169 dout("got ack for seq %llu type %d at %p\n", seq, 2170 le16_to_cpu(m->hdr.type), m); 2171 m->ack_stamp = jiffies; 2172 ceph_msg_remove(m); 2173 } 2174 prepare_read_tag(con); 2175 } 2176 2177 2178 static int read_partial_message_section(struct ceph_connection *con, 2179 struct kvec *section, 2180 unsigned int sec_len, u32 *crc) 2181 { 2182 int ret, left; 2183 2184 BUG_ON(!section); 2185 2186 while (section->iov_len < sec_len) { 2187 BUG_ON(section->iov_base == NULL); 2188 left = sec_len - section->iov_len; 2189 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base + 2190 section->iov_len, left); 2191 if (ret <= 0) 2192 return ret; 2193 section->iov_len += ret; 2194 } 2195 if (section->iov_len == sec_len) 2196 *crc = crc32c(0, section->iov_base, section->iov_len); 2197 2198 return 1; 2199 } 2200 2201 static int read_partial_msg_data(struct ceph_connection *con) 2202 { 2203 struct ceph_msg *msg = con->in_msg; 2204 struct ceph_msg_data_cursor *cursor = &msg->cursor; 2205 const bool do_datacrc = !con->msgr->nocrc; 2206 struct page *page; 2207 size_t page_offset; 2208 size_t length; 2209 u32 crc = 0; 2210 int ret; 2211 2212 BUG_ON(!msg); 2213 if (list_empty(&msg->data)) 2214 return -EIO; 2215 2216 if (do_datacrc) 2217 crc = con->in_data_crc; 2218 while (cursor->resid) { 2219 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length, 2220 NULL); 2221 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length); 2222 if (ret <= 0) { 2223 if (do_datacrc) 2224 con->in_data_crc = crc; 2225 2226 return ret; 2227 } 2228 2229 if (do_datacrc) 2230 crc = ceph_crc32c_page(crc, page, page_offset, ret); 2231 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret); 2232 } 2233 if (do_datacrc) 2234 con->in_data_crc = crc; 2235 2236 return 1; /* must return > 0 to indicate success */ 2237 } 2238 2239 /* 2240 * read (part of) a message. 2241 */ 2242 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip); 2243 2244 static int read_partial_message(struct ceph_connection *con) 2245 { 2246 struct ceph_msg *m = con->in_msg; 2247 int size; 2248 int end; 2249 int ret; 2250 unsigned int front_len, middle_len, data_len; 2251 bool do_datacrc = !con->msgr->nocrc; 2252 u64 seq; 2253 u32 crc; 2254 2255 dout("read_partial_message con %p msg %p\n", con, m); 2256 2257 /* header */ 2258 size = sizeof (con->in_hdr); 2259 end = size; 2260 ret = read_partial(con, end, size, &con->in_hdr); 2261 if (ret <= 0) 2262 return ret; 2263 2264 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc)); 2265 if (cpu_to_le32(crc) != con->in_hdr.crc) { 2266 pr_err("read_partial_message bad hdr " 2267 " crc %u != expected %u\n", 2268 crc, con->in_hdr.crc); 2269 return -EBADMSG; 2270 } 2271 2272 front_len = le32_to_cpu(con->in_hdr.front_len); 2273 if (front_len > CEPH_MSG_MAX_FRONT_LEN) 2274 return -EIO; 2275 middle_len = le32_to_cpu(con->in_hdr.middle_len); 2276 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN) 2277 return -EIO; 2278 data_len = le32_to_cpu(con->in_hdr.data_len); 2279 if (data_len > CEPH_MSG_MAX_DATA_LEN) 2280 return -EIO; 2281 2282 /* verify seq# */ 2283 seq = le64_to_cpu(con->in_hdr.seq); 2284 if ((s64)seq - (s64)con->in_seq < 1) { 2285 pr_info("skipping %s%lld %s seq %lld expected %lld\n", 2286 ENTITY_NAME(con->peer_name), 2287 ceph_pr_addr(&con->peer_addr.in_addr), 2288 seq, con->in_seq + 1); 2289 con->in_base_pos = -front_len - middle_len - data_len - 2290 sizeof(m->footer); 2291 con->in_tag = CEPH_MSGR_TAG_READY; 2292 return 0; 2293 } else if ((s64)seq - (s64)con->in_seq > 1) { 2294 pr_err("read_partial_message bad seq %lld expected %lld\n", 2295 seq, con->in_seq + 1); 2296 con->error_msg = "bad message sequence # for incoming message"; 2297 return -EBADMSG; 2298 } 2299 2300 /* allocate message? */ 2301 if (!con->in_msg) { 2302 int skip = 0; 2303 2304 dout("got hdr type %d front %d data %d\n", con->in_hdr.type, 2305 front_len, data_len); 2306 ret = ceph_con_in_msg_alloc(con, &skip); 2307 if (ret < 0) 2308 return ret; 2309 2310 BUG_ON(!con->in_msg ^ skip); 2311 if (con->in_msg && data_len > con->in_msg->data_length) { 2312 pr_warn("%s skipping long message (%u > %zd)\n", 2313 __func__, data_len, con->in_msg->data_length); 2314 ceph_msg_put(con->in_msg); 2315 con->in_msg = NULL; 2316 skip = 1; 2317 } 2318 if (skip) { 2319 /* skip this message */ 2320 dout("alloc_msg said skip message\n"); 2321 con->in_base_pos = -front_len - middle_len - data_len - 2322 sizeof(m->footer); 2323 con->in_tag = CEPH_MSGR_TAG_READY; 2324 con->in_seq++; 2325 return 0; 2326 } 2327 2328 BUG_ON(!con->in_msg); 2329 BUG_ON(con->in_msg->con != con); 2330 m = con->in_msg; 2331 m->front.iov_len = 0; /* haven't read it yet */ 2332 if (m->middle) 2333 m->middle->vec.iov_len = 0; 2334 2335 /* prepare for data payload, if any */ 2336 2337 if (data_len) 2338 prepare_message_data(con->in_msg, data_len); 2339 } 2340 2341 /* front */ 2342 ret = read_partial_message_section(con, &m->front, front_len, 2343 &con->in_front_crc); 2344 if (ret <= 0) 2345 return ret; 2346 2347 /* middle */ 2348 if (m->middle) { 2349 ret = read_partial_message_section(con, &m->middle->vec, 2350 middle_len, 2351 &con->in_middle_crc); 2352 if (ret <= 0) 2353 return ret; 2354 } 2355 2356 /* (page) data */ 2357 if (data_len) { 2358 ret = read_partial_msg_data(con); 2359 if (ret <= 0) 2360 return ret; 2361 } 2362 2363 /* footer */ 2364 size = sizeof (m->footer); 2365 end += size; 2366 ret = read_partial(con, end, size, &m->footer); 2367 if (ret <= 0) 2368 return ret; 2369 2370 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", 2371 m, front_len, m->footer.front_crc, middle_len, 2372 m->footer.middle_crc, data_len, m->footer.data_crc); 2373 2374 /* crc ok? */ 2375 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { 2376 pr_err("read_partial_message %p front crc %u != exp. %u\n", 2377 m, con->in_front_crc, m->footer.front_crc); 2378 return -EBADMSG; 2379 } 2380 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { 2381 pr_err("read_partial_message %p middle crc %u != exp %u\n", 2382 m, con->in_middle_crc, m->footer.middle_crc); 2383 return -EBADMSG; 2384 } 2385 if (do_datacrc && 2386 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && 2387 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { 2388 pr_err("read_partial_message %p data crc %u != exp. %u\n", m, 2389 con->in_data_crc, le32_to_cpu(m->footer.data_crc)); 2390 return -EBADMSG; 2391 } 2392 2393 return 1; /* done! */ 2394 } 2395 2396 /* 2397 * Process message. This happens in the worker thread. The callback should 2398 * be careful not to do anything that waits on other incoming messages or it 2399 * may deadlock. 2400 */ 2401 static void process_message(struct ceph_connection *con) 2402 { 2403 struct ceph_msg *msg; 2404 2405 BUG_ON(con->in_msg->con != con); 2406 con->in_msg->con = NULL; 2407 msg = con->in_msg; 2408 con->in_msg = NULL; 2409 con->ops->put(con); 2410 2411 /* if first message, set peer_name */ 2412 if (con->peer_name.type == 0) 2413 con->peer_name = msg->hdr.src; 2414 2415 con->in_seq++; 2416 mutex_unlock(&con->mutex); 2417 2418 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", 2419 msg, le64_to_cpu(msg->hdr.seq), 2420 ENTITY_NAME(msg->hdr.src), 2421 le16_to_cpu(msg->hdr.type), 2422 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2423 le32_to_cpu(msg->hdr.front_len), 2424 le32_to_cpu(msg->hdr.data_len), 2425 con->in_front_crc, con->in_middle_crc, con->in_data_crc); 2426 con->ops->dispatch(con, msg); 2427 2428 mutex_lock(&con->mutex); 2429 } 2430 2431 2432 /* 2433 * Write something to the socket. Called in a worker thread when the 2434 * socket appears to be writeable and we have something ready to send. 2435 */ 2436 static int try_write(struct ceph_connection *con) 2437 { 2438 int ret = 1; 2439 2440 dout("try_write start %p state %lu\n", con, con->state); 2441 2442 more: 2443 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); 2444 2445 /* open the socket first? */ 2446 if (con->state == CON_STATE_PREOPEN) { 2447 BUG_ON(con->sock); 2448 con->state = CON_STATE_CONNECTING; 2449 2450 con_out_kvec_reset(con); 2451 prepare_write_banner(con); 2452 prepare_read_banner(con); 2453 2454 BUG_ON(con->in_msg); 2455 con->in_tag = CEPH_MSGR_TAG_READY; 2456 dout("try_write initiating connect on %p new state %lu\n", 2457 con, con->state); 2458 ret = ceph_tcp_connect(con); 2459 if (ret < 0) { 2460 con->error_msg = "connect error"; 2461 goto out; 2462 } 2463 } 2464 2465 more_kvec: 2466 /* kvec data queued? */ 2467 if (con->out_skip) { 2468 ret = write_partial_skip(con); 2469 if (ret <= 0) 2470 goto out; 2471 } 2472 if (con->out_kvec_left) { 2473 ret = write_partial_kvec(con); 2474 if (ret <= 0) 2475 goto out; 2476 } 2477 2478 /* msg pages? */ 2479 if (con->out_msg) { 2480 if (con->out_msg_done) { 2481 ceph_msg_put(con->out_msg); 2482 con->out_msg = NULL; /* we're done with this one */ 2483 goto do_next; 2484 } 2485 2486 ret = write_partial_message_data(con); 2487 if (ret == 1) 2488 goto more_kvec; /* we need to send the footer, too! */ 2489 if (ret == 0) 2490 goto out; 2491 if (ret < 0) { 2492 dout("try_write write_partial_message_data err %d\n", 2493 ret); 2494 goto out; 2495 } 2496 } 2497 2498 do_next: 2499 if (con->state == CON_STATE_OPEN) { 2500 /* is anything else pending? */ 2501 if (!list_empty(&con->out_queue)) { 2502 prepare_write_message(con); 2503 goto more; 2504 } 2505 if (con->in_seq > con->in_seq_acked) { 2506 prepare_write_ack(con); 2507 goto more; 2508 } 2509 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) { 2510 prepare_write_keepalive(con); 2511 goto more; 2512 } 2513 } 2514 2515 /* Nothing to do! */ 2516 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2517 dout("try_write nothing else to write.\n"); 2518 ret = 0; 2519 out: 2520 dout("try_write done on %p ret %d\n", con, ret); 2521 return ret; 2522 } 2523 2524 2525 2526 /* 2527 * Read what we can from the socket. 2528 */ 2529 static int try_read(struct ceph_connection *con) 2530 { 2531 int ret = -1; 2532 2533 more: 2534 dout("try_read start on %p state %lu\n", con, con->state); 2535 if (con->state != CON_STATE_CONNECTING && 2536 con->state != CON_STATE_NEGOTIATING && 2537 con->state != CON_STATE_OPEN) 2538 return 0; 2539 2540 BUG_ON(!con->sock); 2541 2542 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, 2543 con->in_base_pos); 2544 2545 if (con->state == CON_STATE_CONNECTING) { 2546 dout("try_read connecting\n"); 2547 ret = read_partial_banner(con); 2548 if (ret <= 0) 2549 goto out; 2550 ret = process_banner(con); 2551 if (ret < 0) 2552 goto out; 2553 2554 con->state = CON_STATE_NEGOTIATING; 2555 2556 /* 2557 * Received banner is good, exchange connection info. 2558 * Do not reset out_kvec, as sending our banner raced 2559 * with receiving peer banner after connect completed. 2560 */ 2561 ret = prepare_write_connect(con); 2562 if (ret < 0) 2563 goto out; 2564 prepare_read_connect(con); 2565 2566 /* Send connection info before awaiting response */ 2567 goto out; 2568 } 2569 2570 if (con->state == CON_STATE_NEGOTIATING) { 2571 dout("try_read negotiating\n"); 2572 ret = read_partial_connect(con); 2573 if (ret <= 0) 2574 goto out; 2575 ret = process_connect(con); 2576 if (ret < 0) 2577 goto out; 2578 goto more; 2579 } 2580 2581 WARN_ON(con->state != CON_STATE_OPEN); 2582 2583 if (con->in_base_pos < 0) { 2584 /* 2585 * skipping + discarding content. 2586 * 2587 * FIXME: there must be a better way to do this! 2588 */ 2589 static char buf[SKIP_BUF_SIZE]; 2590 int skip = min((int) sizeof (buf), -con->in_base_pos); 2591 2592 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); 2593 ret = ceph_tcp_recvmsg(con->sock, buf, skip); 2594 if (ret <= 0) 2595 goto out; 2596 con->in_base_pos += ret; 2597 if (con->in_base_pos) 2598 goto more; 2599 } 2600 if (con->in_tag == CEPH_MSGR_TAG_READY) { 2601 /* 2602 * what's next? 2603 */ 2604 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); 2605 if (ret <= 0) 2606 goto out; 2607 dout("try_read got tag %d\n", (int)con->in_tag); 2608 switch (con->in_tag) { 2609 case CEPH_MSGR_TAG_MSG: 2610 prepare_read_message(con); 2611 break; 2612 case CEPH_MSGR_TAG_ACK: 2613 prepare_read_ack(con); 2614 break; 2615 case CEPH_MSGR_TAG_CLOSE: 2616 con_close_socket(con); 2617 con->state = CON_STATE_CLOSED; 2618 goto out; 2619 default: 2620 goto bad_tag; 2621 } 2622 } 2623 if (con->in_tag == CEPH_MSGR_TAG_MSG) { 2624 ret = read_partial_message(con); 2625 if (ret <= 0) { 2626 switch (ret) { 2627 case -EBADMSG: 2628 con->error_msg = "bad crc"; 2629 ret = -EIO; 2630 break; 2631 case -EIO: 2632 con->error_msg = "io error"; 2633 break; 2634 } 2635 goto out; 2636 } 2637 if (con->in_tag == CEPH_MSGR_TAG_READY) 2638 goto more; 2639 process_message(con); 2640 if (con->state == CON_STATE_OPEN) 2641 prepare_read_tag(con); 2642 goto more; 2643 } 2644 if (con->in_tag == CEPH_MSGR_TAG_ACK || 2645 con->in_tag == CEPH_MSGR_TAG_SEQ) { 2646 /* 2647 * the final handshake seq exchange is semantically 2648 * equivalent to an ACK 2649 */ 2650 ret = read_partial_ack(con); 2651 if (ret <= 0) 2652 goto out; 2653 process_ack(con); 2654 goto more; 2655 } 2656 2657 out: 2658 dout("try_read done on %p ret %d\n", con, ret); 2659 return ret; 2660 2661 bad_tag: 2662 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); 2663 con->error_msg = "protocol error, garbage tag"; 2664 ret = -1; 2665 goto out; 2666 } 2667 2668 2669 /* 2670 * Atomically queue work on a connection after the specified delay. 2671 * Bump @con reference to avoid races with connection teardown. 2672 * Returns 0 if work was queued, or an error code otherwise. 2673 */ 2674 static int queue_con_delay(struct ceph_connection *con, unsigned long delay) 2675 { 2676 if (!con->ops->get(con)) { 2677 dout("%s %p ref count 0\n", __func__, con); 2678 return -ENOENT; 2679 } 2680 2681 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) { 2682 dout("%s %p - already queued\n", __func__, con); 2683 con->ops->put(con); 2684 return -EBUSY; 2685 } 2686 2687 dout("%s %p %lu\n", __func__, con, delay); 2688 return 0; 2689 } 2690 2691 static void queue_con(struct ceph_connection *con) 2692 { 2693 (void) queue_con_delay(con, 0); 2694 } 2695 2696 static void cancel_con(struct ceph_connection *con) 2697 { 2698 if (cancel_delayed_work(&con->work)) { 2699 dout("%s %p\n", __func__, con); 2700 con->ops->put(con); 2701 } 2702 } 2703 2704 static bool con_sock_closed(struct ceph_connection *con) 2705 { 2706 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED)) 2707 return false; 2708 2709 #define CASE(x) \ 2710 case CON_STATE_ ## x: \ 2711 con->error_msg = "socket closed (con state " #x ")"; \ 2712 break; 2713 2714 switch (con->state) { 2715 CASE(CLOSED); 2716 CASE(PREOPEN); 2717 CASE(CONNECTING); 2718 CASE(NEGOTIATING); 2719 CASE(OPEN); 2720 CASE(STANDBY); 2721 default: 2722 pr_warn("%s con %p unrecognized state %lu\n", 2723 __func__, con, con->state); 2724 con->error_msg = "unrecognized con state"; 2725 BUG(); 2726 break; 2727 } 2728 #undef CASE 2729 2730 return true; 2731 } 2732 2733 static bool con_backoff(struct ceph_connection *con) 2734 { 2735 int ret; 2736 2737 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF)) 2738 return false; 2739 2740 ret = queue_con_delay(con, round_jiffies_relative(con->delay)); 2741 if (ret) { 2742 dout("%s: con %p FAILED to back off %lu\n", __func__, 2743 con, con->delay); 2744 BUG_ON(ret == -ENOENT); 2745 con_flag_set(con, CON_FLAG_BACKOFF); 2746 } 2747 2748 return true; 2749 } 2750 2751 /* Finish fault handling; con->mutex must *not* be held here */ 2752 2753 static void con_fault_finish(struct ceph_connection *con) 2754 { 2755 /* 2756 * in case we faulted due to authentication, invalidate our 2757 * current tickets so that we can get new ones. 2758 */ 2759 if (con->auth_retry && con->ops->invalidate_authorizer) { 2760 dout("calling invalidate_authorizer()\n"); 2761 con->ops->invalidate_authorizer(con); 2762 } 2763 2764 if (con->ops->fault) 2765 con->ops->fault(con); 2766 } 2767 2768 /* 2769 * Do some work on a connection. Drop a connection ref when we're done. 2770 */ 2771 static void con_work(struct work_struct *work) 2772 { 2773 struct ceph_connection *con = container_of(work, struct ceph_connection, 2774 work.work); 2775 unsigned long pflags = current->flags; 2776 bool fault; 2777 2778 current->flags |= PF_MEMALLOC; 2779 2780 mutex_lock(&con->mutex); 2781 while (true) { 2782 int ret; 2783 2784 if ((fault = con_sock_closed(con))) { 2785 dout("%s: con %p SOCK_CLOSED\n", __func__, con); 2786 break; 2787 } 2788 if (con_backoff(con)) { 2789 dout("%s: con %p BACKOFF\n", __func__, con); 2790 break; 2791 } 2792 if (con->state == CON_STATE_STANDBY) { 2793 dout("%s: con %p STANDBY\n", __func__, con); 2794 break; 2795 } 2796 if (con->state == CON_STATE_CLOSED) { 2797 dout("%s: con %p CLOSED\n", __func__, con); 2798 BUG_ON(con->sock); 2799 break; 2800 } 2801 if (con->state == CON_STATE_PREOPEN) { 2802 dout("%s: con %p PREOPEN\n", __func__, con); 2803 BUG_ON(con->sock); 2804 } 2805 2806 ret = try_read(con); 2807 if (ret < 0) { 2808 if (ret == -EAGAIN) 2809 continue; 2810 con->error_msg = "socket error on read"; 2811 fault = true; 2812 break; 2813 } 2814 2815 ret = try_write(con); 2816 if (ret < 0) { 2817 if (ret == -EAGAIN) 2818 continue; 2819 con->error_msg = "socket error on write"; 2820 fault = true; 2821 } 2822 2823 break; /* If we make it to here, we're done */ 2824 } 2825 if (fault) 2826 con_fault(con); 2827 mutex_unlock(&con->mutex); 2828 2829 if (fault) 2830 con_fault_finish(con); 2831 2832 con->ops->put(con); 2833 2834 tsk_restore_flags(current, pflags, PF_MEMALLOC); 2835 } 2836 2837 /* 2838 * Generic error/fault handler. A retry mechanism is used with 2839 * exponential backoff 2840 */ 2841 static void con_fault(struct ceph_connection *con) 2842 { 2843 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), 2844 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg); 2845 dout("fault %p state %lu to peer %s\n", 2846 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr)); 2847 2848 WARN_ON(con->state != CON_STATE_CONNECTING && 2849 con->state != CON_STATE_NEGOTIATING && 2850 con->state != CON_STATE_OPEN); 2851 2852 con_close_socket(con); 2853 2854 if (con_flag_test(con, CON_FLAG_LOSSYTX)) { 2855 dout("fault on LOSSYTX channel, marking CLOSED\n"); 2856 con->state = CON_STATE_CLOSED; 2857 return; 2858 } 2859 2860 if (con->in_msg) { 2861 BUG_ON(con->in_msg->con != con); 2862 con->in_msg->con = NULL; 2863 ceph_msg_put(con->in_msg); 2864 con->in_msg = NULL; 2865 con->ops->put(con); 2866 } 2867 2868 /* Requeue anything that hasn't been acked */ 2869 list_splice_init(&con->out_sent, &con->out_queue); 2870 2871 /* If there are no messages queued or keepalive pending, place 2872 * the connection in a STANDBY state */ 2873 if (list_empty(&con->out_queue) && 2874 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) { 2875 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con); 2876 con_flag_clear(con, CON_FLAG_WRITE_PENDING); 2877 con->state = CON_STATE_STANDBY; 2878 } else { 2879 /* retry after a delay. */ 2880 con->state = CON_STATE_PREOPEN; 2881 if (con->delay == 0) 2882 con->delay = BASE_DELAY_INTERVAL; 2883 else if (con->delay < MAX_DELAY_INTERVAL) 2884 con->delay *= 2; 2885 con_flag_set(con, CON_FLAG_BACKOFF); 2886 queue_con(con); 2887 } 2888 } 2889 2890 2891 2892 /* 2893 * initialize a new messenger instance 2894 */ 2895 void ceph_messenger_init(struct ceph_messenger *msgr, 2896 struct ceph_entity_addr *myaddr, 2897 u64 supported_features, 2898 u64 required_features, 2899 bool nocrc) 2900 { 2901 msgr->supported_features = supported_features; 2902 msgr->required_features = required_features; 2903 2904 spin_lock_init(&msgr->global_seq_lock); 2905 2906 if (myaddr) 2907 msgr->inst.addr = *myaddr; 2908 2909 /* select a random nonce */ 2910 msgr->inst.addr.type = 0; 2911 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce)); 2912 encode_my_addr(msgr); 2913 msgr->nocrc = nocrc; 2914 2915 atomic_set(&msgr->stopping, 0); 2916 2917 dout("%s %p\n", __func__, msgr); 2918 } 2919 EXPORT_SYMBOL(ceph_messenger_init); 2920 2921 static void clear_standby(struct ceph_connection *con) 2922 { 2923 /* come back from STANDBY? */ 2924 if (con->state == CON_STATE_STANDBY) { 2925 dout("clear_standby %p and ++connect_seq\n", con); 2926 con->state = CON_STATE_PREOPEN; 2927 con->connect_seq++; 2928 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING)); 2929 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)); 2930 } 2931 } 2932 2933 /* 2934 * Queue up an outgoing message on the given connection. 2935 */ 2936 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) 2937 { 2938 /* set src+dst */ 2939 msg->hdr.src = con->msgr->inst.name; 2940 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len)); 2941 msg->needs_out_seq = true; 2942 2943 mutex_lock(&con->mutex); 2944 2945 if (con->state == CON_STATE_CLOSED) { 2946 dout("con_send %p closed, dropping %p\n", con, msg); 2947 ceph_msg_put(msg); 2948 mutex_unlock(&con->mutex); 2949 return; 2950 } 2951 2952 BUG_ON(msg->con != NULL); 2953 msg->con = con->ops->get(con); 2954 BUG_ON(msg->con == NULL); 2955 2956 BUG_ON(!list_empty(&msg->list_head)); 2957 list_add_tail(&msg->list_head, &con->out_queue); 2958 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, 2959 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), 2960 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), 2961 le32_to_cpu(msg->hdr.front_len), 2962 le32_to_cpu(msg->hdr.middle_len), 2963 le32_to_cpu(msg->hdr.data_len)); 2964 2965 clear_standby(con); 2966 mutex_unlock(&con->mutex); 2967 2968 /* if there wasn't anything waiting to send before, queue 2969 * new work */ 2970 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 2971 queue_con(con); 2972 } 2973 EXPORT_SYMBOL(ceph_con_send); 2974 2975 /* 2976 * Revoke a message that was previously queued for send 2977 */ 2978 void ceph_msg_revoke(struct ceph_msg *msg) 2979 { 2980 struct ceph_connection *con = msg->con; 2981 2982 if (!con) 2983 return; /* Message not in our possession */ 2984 2985 mutex_lock(&con->mutex); 2986 if (!list_empty(&msg->list_head)) { 2987 dout("%s %p msg %p - was on queue\n", __func__, con, msg); 2988 list_del_init(&msg->list_head); 2989 BUG_ON(msg->con == NULL); 2990 msg->con->ops->put(msg->con); 2991 msg->con = NULL; 2992 msg->hdr.seq = 0; 2993 2994 ceph_msg_put(msg); 2995 } 2996 if (con->out_msg == msg) { 2997 dout("%s %p msg %p - was sending\n", __func__, con, msg); 2998 con->out_msg = NULL; 2999 if (con->out_kvec_is_msg) { 3000 con->out_skip = con->out_kvec_bytes; 3001 con->out_kvec_is_msg = false; 3002 } 3003 msg->hdr.seq = 0; 3004 3005 ceph_msg_put(msg); 3006 } 3007 mutex_unlock(&con->mutex); 3008 } 3009 3010 /* 3011 * Revoke a message that we may be reading data into 3012 */ 3013 void ceph_msg_revoke_incoming(struct ceph_msg *msg) 3014 { 3015 struct ceph_connection *con; 3016 3017 BUG_ON(msg == NULL); 3018 if (!msg->con) { 3019 dout("%s msg %p null con\n", __func__, msg); 3020 3021 return; /* Message not in our possession */ 3022 } 3023 3024 con = msg->con; 3025 mutex_lock(&con->mutex); 3026 if (con->in_msg == msg) { 3027 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len); 3028 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len); 3029 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len); 3030 3031 /* skip rest of message */ 3032 dout("%s %p msg %p revoked\n", __func__, con, msg); 3033 con->in_base_pos = con->in_base_pos - 3034 sizeof(struct ceph_msg_header) - 3035 front_len - 3036 middle_len - 3037 data_len - 3038 sizeof(struct ceph_msg_footer); 3039 ceph_msg_put(con->in_msg); 3040 con->in_msg = NULL; 3041 con->in_tag = CEPH_MSGR_TAG_READY; 3042 con->in_seq++; 3043 } else { 3044 dout("%s %p in_msg %p msg %p no-op\n", 3045 __func__, con, con->in_msg, msg); 3046 } 3047 mutex_unlock(&con->mutex); 3048 } 3049 3050 /* 3051 * Queue a keepalive byte to ensure the tcp connection is alive. 3052 */ 3053 void ceph_con_keepalive(struct ceph_connection *con) 3054 { 3055 dout("con_keepalive %p\n", con); 3056 mutex_lock(&con->mutex); 3057 clear_standby(con); 3058 mutex_unlock(&con->mutex); 3059 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 && 3060 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0) 3061 queue_con(con); 3062 } 3063 EXPORT_SYMBOL(ceph_con_keepalive); 3064 3065 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type) 3066 { 3067 struct ceph_msg_data *data; 3068 3069 if (WARN_ON(!ceph_msg_data_type_valid(type))) 3070 return NULL; 3071 3072 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS); 3073 if (data) 3074 data->type = type; 3075 INIT_LIST_HEAD(&data->links); 3076 3077 return data; 3078 } 3079 3080 static void ceph_msg_data_destroy(struct ceph_msg_data *data) 3081 { 3082 if (!data) 3083 return; 3084 3085 WARN_ON(!list_empty(&data->links)); 3086 if (data->type == CEPH_MSG_DATA_PAGELIST) 3087 ceph_pagelist_release(data->pagelist); 3088 kmem_cache_free(ceph_msg_data_cache, data); 3089 } 3090 3091 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages, 3092 size_t length, size_t alignment) 3093 { 3094 struct ceph_msg_data *data; 3095 3096 BUG_ON(!pages); 3097 BUG_ON(!length); 3098 3099 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES); 3100 BUG_ON(!data); 3101 data->pages = pages; 3102 data->length = length; 3103 data->alignment = alignment & ~PAGE_MASK; 3104 3105 list_add_tail(&data->links, &msg->data); 3106 msg->data_length += length; 3107 } 3108 EXPORT_SYMBOL(ceph_msg_data_add_pages); 3109 3110 void ceph_msg_data_add_pagelist(struct ceph_msg *msg, 3111 struct ceph_pagelist *pagelist) 3112 { 3113 struct ceph_msg_data *data; 3114 3115 BUG_ON(!pagelist); 3116 BUG_ON(!pagelist->length); 3117 3118 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST); 3119 BUG_ON(!data); 3120 data->pagelist = pagelist; 3121 3122 list_add_tail(&data->links, &msg->data); 3123 msg->data_length += pagelist->length; 3124 } 3125 EXPORT_SYMBOL(ceph_msg_data_add_pagelist); 3126 3127 #ifdef CONFIG_BLOCK 3128 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio, 3129 size_t length) 3130 { 3131 struct ceph_msg_data *data; 3132 3133 BUG_ON(!bio); 3134 3135 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO); 3136 BUG_ON(!data); 3137 data->bio = bio; 3138 data->bio_length = length; 3139 3140 list_add_tail(&data->links, &msg->data); 3141 msg->data_length += length; 3142 } 3143 EXPORT_SYMBOL(ceph_msg_data_add_bio); 3144 #endif /* CONFIG_BLOCK */ 3145 3146 /* 3147 * construct a new message with given type, size 3148 * the new msg has a ref count of 1. 3149 */ 3150 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags, 3151 bool can_fail) 3152 { 3153 struct ceph_msg *m; 3154 3155 m = kmem_cache_zalloc(ceph_msg_cache, flags); 3156 if (m == NULL) 3157 goto out; 3158 3159 m->hdr.type = cpu_to_le16(type); 3160 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); 3161 m->hdr.front_len = cpu_to_le32(front_len); 3162 3163 INIT_LIST_HEAD(&m->list_head); 3164 kref_init(&m->kref); 3165 INIT_LIST_HEAD(&m->data); 3166 3167 /* front */ 3168 if (front_len) { 3169 m->front.iov_base = ceph_kvmalloc(front_len, flags); 3170 if (m->front.iov_base == NULL) { 3171 dout("ceph_msg_new can't allocate %d bytes\n", 3172 front_len); 3173 goto out2; 3174 } 3175 } else { 3176 m->front.iov_base = NULL; 3177 } 3178 m->front_alloc_len = m->front.iov_len = front_len; 3179 3180 dout("ceph_msg_new %p front %d\n", m, front_len); 3181 return m; 3182 3183 out2: 3184 ceph_msg_put(m); 3185 out: 3186 if (!can_fail) { 3187 pr_err("msg_new can't create type %d front %d\n", type, 3188 front_len); 3189 WARN_ON(1); 3190 } else { 3191 dout("msg_new can't create type %d front %d\n", type, 3192 front_len); 3193 } 3194 return NULL; 3195 } 3196 EXPORT_SYMBOL(ceph_msg_new); 3197 3198 /* 3199 * Allocate "middle" portion of a message, if it is needed and wasn't 3200 * allocated by alloc_msg. This allows us to read a small fixed-size 3201 * per-type header in the front and then gracefully fail (i.e., 3202 * propagate the error to the caller based on info in the front) when 3203 * the middle is too large. 3204 */ 3205 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) 3206 { 3207 int type = le16_to_cpu(msg->hdr.type); 3208 int middle_len = le32_to_cpu(msg->hdr.middle_len); 3209 3210 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, 3211 ceph_msg_type_name(type), middle_len); 3212 BUG_ON(!middle_len); 3213 BUG_ON(msg->middle); 3214 3215 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS); 3216 if (!msg->middle) 3217 return -ENOMEM; 3218 return 0; 3219 } 3220 3221 /* 3222 * Allocate a message for receiving an incoming message on a 3223 * connection, and save the result in con->in_msg. Uses the 3224 * connection's private alloc_msg op if available. 3225 * 3226 * Returns 0 on success, or a negative error code. 3227 * 3228 * On success, if we set *skip = 1: 3229 * - the next message should be skipped and ignored. 3230 * - con->in_msg == NULL 3231 * or if we set *skip = 0: 3232 * - con->in_msg is non-null. 3233 * On error (ENOMEM, EAGAIN, ...), 3234 * - con->in_msg == NULL 3235 */ 3236 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip) 3237 { 3238 struct ceph_msg_header *hdr = &con->in_hdr; 3239 int middle_len = le32_to_cpu(hdr->middle_len); 3240 struct ceph_msg *msg; 3241 int ret = 0; 3242 3243 BUG_ON(con->in_msg != NULL); 3244 BUG_ON(!con->ops->alloc_msg); 3245 3246 mutex_unlock(&con->mutex); 3247 msg = con->ops->alloc_msg(con, hdr, skip); 3248 mutex_lock(&con->mutex); 3249 if (con->state != CON_STATE_OPEN) { 3250 if (msg) 3251 ceph_msg_put(msg); 3252 return -EAGAIN; 3253 } 3254 if (msg) { 3255 BUG_ON(*skip); 3256 con->in_msg = msg; 3257 con->in_msg->con = con->ops->get(con); 3258 BUG_ON(con->in_msg->con == NULL); 3259 } else { 3260 /* 3261 * Null message pointer means either we should skip 3262 * this message or we couldn't allocate memory. The 3263 * former is not an error. 3264 */ 3265 if (*skip) 3266 return 0; 3267 con->error_msg = "error allocating memory for incoming message"; 3268 3269 return -ENOMEM; 3270 } 3271 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr)); 3272 3273 if (middle_len && !con->in_msg->middle) { 3274 ret = ceph_alloc_middle(con, con->in_msg); 3275 if (ret < 0) { 3276 ceph_msg_put(con->in_msg); 3277 con->in_msg = NULL; 3278 } 3279 } 3280 3281 return ret; 3282 } 3283 3284 3285 /* 3286 * Free a generically kmalloc'd message. 3287 */ 3288 static void ceph_msg_free(struct ceph_msg *m) 3289 { 3290 dout("%s %p\n", __func__, m); 3291 ceph_kvfree(m->front.iov_base); 3292 kmem_cache_free(ceph_msg_cache, m); 3293 } 3294 3295 static void ceph_msg_release(struct kref *kref) 3296 { 3297 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref); 3298 LIST_HEAD(data); 3299 struct list_head *links; 3300 struct list_head *next; 3301 3302 dout("%s %p\n", __func__, m); 3303 WARN_ON(!list_empty(&m->list_head)); 3304 3305 /* drop middle, data, if any */ 3306 if (m->middle) { 3307 ceph_buffer_put(m->middle); 3308 m->middle = NULL; 3309 } 3310 3311 list_splice_init(&m->data, &data); 3312 list_for_each_safe(links, next, &data) { 3313 struct ceph_msg_data *data; 3314 3315 data = list_entry(links, struct ceph_msg_data, links); 3316 list_del_init(links); 3317 ceph_msg_data_destroy(data); 3318 } 3319 m->data_length = 0; 3320 3321 if (m->pool) 3322 ceph_msgpool_put(m->pool, m); 3323 else 3324 ceph_msg_free(m); 3325 } 3326 3327 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) 3328 { 3329 dout("%s %p (was %d)\n", __func__, msg, 3330 atomic_read(&msg->kref.refcount)); 3331 kref_get(&msg->kref); 3332 return msg; 3333 } 3334 EXPORT_SYMBOL(ceph_msg_get); 3335 3336 void ceph_msg_put(struct ceph_msg *msg) 3337 { 3338 dout("%s %p (was %d)\n", __func__, msg, 3339 atomic_read(&msg->kref.refcount)); 3340 kref_put(&msg->kref, ceph_msg_release); 3341 } 3342 EXPORT_SYMBOL(ceph_msg_put); 3343 3344 void ceph_msg_dump(struct ceph_msg *msg) 3345 { 3346 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg, 3347 msg->front_alloc_len, msg->data_length); 3348 print_hex_dump(KERN_DEBUG, "header: ", 3349 DUMP_PREFIX_OFFSET, 16, 1, 3350 &msg->hdr, sizeof(msg->hdr), true); 3351 print_hex_dump(KERN_DEBUG, " front: ", 3352 DUMP_PREFIX_OFFSET, 16, 1, 3353 msg->front.iov_base, msg->front.iov_len, true); 3354 if (msg->middle) 3355 print_hex_dump(KERN_DEBUG, "middle: ", 3356 DUMP_PREFIX_OFFSET, 16, 1, 3357 msg->middle->vec.iov_base, 3358 msg->middle->vec.iov_len, true); 3359 print_hex_dump(KERN_DEBUG, "footer: ", 3360 DUMP_PREFIX_OFFSET, 16, 1, 3361 &msg->footer, sizeof(msg->footer), true); 3362 } 3363 EXPORT_SYMBOL(ceph_msg_dump); 3364