xref: /openbmc/linux/net/bluetooth/hci_sync.c (revision 34a718bc86f908de8ef79affaff6a3de7b95759c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  */
7 
8 #include <linux/property.h>
9 
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13 
14 #include "hci_request.h"
15 #include "hci_debugfs.h"
16 #include "smp.h"
17 #include "eir.h"
18 #include "msft.h"
19 #include "aosp.h"
20 #include "leds.h"
21 
22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
23 				  struct sk_buff *skb)
24 {
25 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
26 
27 	if (hdev->req_status != HCI_REQ_PEND)
28 		return;
29 
30 	hdev->req_result = result;
31 	hdev->req_status = HCI_REQ_DONE;
32 
33 	if (skb) {
34 		struct sock *sk = hci_skb_sk(skb);
35 
36 		/* Drop sk reference if set */
37 		if (sk)
38 			sock_put(sk);
39 
40 		hdev->req_skb = skb_get(skb);
41 	}
42 
43 	wake_up_interruptible(&hdev->req_wait_q);
44 }
45 
46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
47 					  u32 plen, const void *param,
48 					  struct sock *sk)
49 {
50 	int len = HCI_COMMAND_HDR_SIZE + plen;
51 	struct hci_command_hdr *hdr;
52 	struct sk_buff *skb;
53 
54 	skb = bt_skb_alloc(len, GFP_ATOMIC);
55 	if (!skb)
56 		return NULL;
57 
58 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
59 	hdr->opcode = cpu_to_le16(opcode);
60 	hdr->plen   = plen;
61 
62 	if (plen)
63 		skb_put_data(skb, param, plen);
64 
65 	bt_dev_dbg(hdev, "skb len %d", skb->len);
66 
67 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
68 	hci_skb_opcode(skb) = opcode;
69 
70 	/* Grab a reference if command needs to be associated with a sock (e.g.
71 	 * likely mgmt socket that initiated the command).
72 	 */
73 	if (sk) {
74 		hci_skb_sk(skb) = sk;
75 		sock_hold(sk);
76 	}
77 
78 	return skb;
79 }
80 
81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
82 			     const void *param, u8 event, struct sock *sk)
83 {
84 	struct hci_dev *hdev = req->hdev;
85 	struct sk_buff *skb;
86 
87 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
88 
89 	/* If an error occurred during request building, there is no point in
90 	 * queueing the HCI command. We can simply return.
91 	 */
92 	if (req->err)
93 		return;
94 
95 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
96 	if (!skb) {
97 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
98 			   opcode);
99 		req->err = -ENOMEM;
100 		return;
101 	}
102 
103 	if (skb_queue_empty(&req->cmd_q))
104 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
105 
106 	hci_skb_event(skb) = event;
107 
108 	skb_queue_tail(&req->cmd_q, skb);
109 }
110 
111 static int hci_cmd_sync_run(struct hci_request *req)
112 {
113 	struct hci_dev *hdev = req->hdev;
114 	struct sk_buff *skb;
115 	unsigned long flags;
116 
117 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
118 
119 	/* If an error occurred during request building, remove all HCI
120 	 * commands queued on the HCI request queue.
121 	 */
122 	if (req->err) {
123 		skb_queue_purge(&req->cmd_q);
124 		return req->err;
125 	}
126 
127 	/* Do not allow empty requests */
128 	if (skb_queue_empty(&req->cmd_q))
129 		return -ENODATA;
130 
131 	skb = skb_peek_tail(&req->cmd_q);
132 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
133 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
134 
135 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
136 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
137 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
138 
139 	queue_work(hdev->workqueue, &hdev->cmd_work);
140 
141 	return 0;
142 }
143 
144 /* This function requires the caller holds hdev->req_lock. */
145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
146 				  const void *param, u8 event, u32 timeout,
147 				  struct sock *sk)
148 {
149 	struct hci_request req;
150 	struct sk_buff *skb;
151 	int err = 0;
152 
153 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
154 
155 	hci_req_init(&req, hdev);
156 
157 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
158 
159 	hdev->req_status = HCI_REQ_PEND;
160 
161 	err = hci_cmd_sync_run(&req);
162 	if (err < 0)
163 		return ERR_PTR(err);
164 
165 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
166 					       hdev->req_status != HCI_REQ_PEND,
167 					       timeout);
168 
169 	if (err == -ERESTARTSYS)
170 		return ERR_PTR(-EINTR);
171 
172 	switch (hdev->req_status) {
173 	case HCI_REQ_DONE:
174 		err = -bt_to_errno(hdev->req_result);
175 		break;
176 
177 	case HCI_REQ_CANCELED:
178 		err = -hdev->req_result;
179 		break;
180 
181 	default:
182 		err = -ETIMEDOUT;
183 		break;
184 	}
185 
186 	hdev->req_status = 0;
187 	hdev->req_result = 0;
188 	skb = hdev->req_skb;
189 	hdev->req_skb = NULL;
190 
191 	bt_dev_dbg(hdev, "end: err %d", err);
192 
193 	if (err < 0) {
194 		kfree_skb(skb);
195 		return ERR_PTR(err);
196 	}
197 
198 	return skb;
199 }
200 EXPORT_SYMBOL(__hci_cmd_sync_sk);
201 
202 /* This function requires the caller holds hdev->req_lock. */
203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
204 			       const void *param, u32 timeout)
205 {
206 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
207 }
208 EXPORT_SYMBOL(__hci_cmd_sync);
209 
210 /* Send HCI command and wait for command complete event */
211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
212 			     const void *param, u32 timeout)
213 {
214 	struct sk_buff *skb;
215 
216 	if (!test_bit(HCI_UP, &hdev->flags))
217 		return ERR_PTR(-ENETDOWN);
218 
219 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
220 
221 	hci_req_sync_lock(hdev);
222 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
223 	hci_req_sync_unlock(hdev);
224 
225 	return skb;
226 }
227 EXPORT_SYMBOL(hci_cmd_sync);
228 
229 /* This function requires the caller holds hdev->req_lock. */
230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
231 				  const void *param, u8 event, u32 timeout)
232 {
233 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
234 				 NULL);
235 }
236 EXPORT_SYMBOL(__hci_cmd_sync_ev);
237 
238 /* This function requires the caller holds hdev->req_lock. */
239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
240 			     const void *param, u8 event, u32 timeout,
241 			     struct sock *sk)
242 {
243 	struct sk_buff *skb;
244 	u8 status;
245 
246 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
247 	if (IS_ERR(skb)) {
248 		bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
249 			   PTR_ERR(skb));
250 		return PTR_ERR(skb);
251 	}
252 
253 	/* If command return a status event skb will be set to NULL as there are
254 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
255 	 * the actual error would be found with PTR_ERR(skb).
256 	 */
257 	if (!skb)
258 		return 0;
259 
260 	status = skb->data[0];
261 
262 	kfree_skb(skb);
263 
264 	return status;
265 }
266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
267 
268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
269 			  const void *param, u32 timeout)
270 {
271 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
272 					NULL);
273 }
274 EXPORT_SYMBOL(__hci_cmd_sync_status);
275 
276 static void hci_cmd_sync_work(struct work_struct *work)
277 {
278 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
279 
280 	bt_dev_dbg(hdev, "");
281 
282 	/* Dequeue all entries and run them */
283 	while (1) {
284 		struct hci_cmd_sync_work_entry *entry;
285 
286 		mutex_lock(&hdev->cmd_sync_work_lock);
287 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
288 						 struct hci_cmd_sync_work_entry,
289 						 list);
290 		if (entry)
291 			list_del(&entry->list);
292 		mutex_unlock(&hdev->cmd_sync_work_lock);
293 
294 		if (!entry)
295 			break;
296 
297 		bt_dev_dbg(hdev, "entry %p", entry);
298 
299 		if (entry->func) {
300 			int err;
301 
302 			hci_req_sync_lock(hdev);
303 			err = entry->func(hdev, entry->data);
304 			if (entry->destroy)
305 				entry->destroy(hdev, entry->data, err);
306 			hci_req_sync_unlock(hdev);
307 		}
308 
309 		kfree(entry);
310 	}
311 }
312 
313 static void hci_cmd_sync_cancel_work(struct work_struct *work)
314 {
315 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
316 
317 	cancel_delayed_work_sync(&hdev->cmd_timer);
318 	cancel_delayed_work_sync(&hdev->ncmd_timer);
319 	atomic_set(&hdev->cmd_cnt, 1);
320 
321 	wake_up_interruptible(&hdev->req_wait_q);
322 }
323 
324 void hci_cmd_sync_init(struct hci_dev *hdev)
325 {
326 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
327 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
328 	mutex_init(&hdev->cmd_sync_work_lock);
329 
330 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
331 }
332 
333 void hci_cmd_sync_clear(struct hci_dev *hdev)
334 {
335 	struct hci_cmd_sync_work_entry *entry, *tmp;
336 
337 	cancel_work_sync(&hdev->cmd_sync_work);
338 
339 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
340 		if (entry->destroy)
341 			entry->destroy(hdev, entry->data, -ECANCELED);
342 
343 		list_del(&entry->list);
344 		kfree(entry);
345 	}
346 }
347 
348 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
349 {
350 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
351 
352 	if (hdev->req_status == HCI_REQ_PEND) {
353 		hdev->req_result = err;
354 		hdev->req_status = HCI_REQ_CANCELED;
355 
356 		cancel_delayed_work_sync(&hdev->cmd_timer);
357 		cancel_delayed_work_sync(&hdev->ncmd_timer);
358 		atomic_set(&hdev->cmd_cnt, 1);
359 
360 		wake_up_interruptible(&hdev->req_wait_q);
361 	}
362 }
363 
364 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
365 {
366 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
367 
368 	if (hdev->req_status == HCI_REQ_PEND) {
369 		hdev->req_result = err;
370 		hdev->req_status = HCI_REQ_CANCELED;
371 
372 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
373 	}
374 }
375 EXPORT_SYMBOL(hci_cmd_sync_cancel);
376 
377 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
378 		       void *data, hci_cmd_sync_work_destroy_t destroy)
379 {
380 	struct hci_cmd_sync_work_entry *entry;
381 
382 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
383 		return -ENODEV;
384 
385 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
386 	if (!entry)
387 		return -ENOMEM;
388 
389 	entry->func = func;
390 	entry->data = data;
391 	entry->destroy = destroy;
392 
393 	mutex_lock(&hdev->cmd_sync_work_lock);
394 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
395 	mutex_unlock(&hdev->cmd_sync_work_lock);
396 
397 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
398 
399 	return 0;
400 }
401 EXPORT_SYMBOL(hci_cmd_sync_queue);
402 
403 int hci_update_eir_sync(struct hci_dev *hdev)
404 {
405 	struct hci_cp_write_eir cp;
406 
407 	bt_dev_dbg(hdev, "");
408 
409 	if (!hdev_is_powered(hdev))
410 		return 0;
411 
412 	if (!lmp_ext_inq_capable(hdev))
413 		return 0;
414 
415 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
416 		return 0;
417 
418 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
419 		return 0;
420 
421 	memset(&cp, 0, sizeof(cp));
422 
423 	eir_create(hdev, cp.data);
424 
425 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
426 		return 0;
427 
428 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
429 
430 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
431 				     HCI_CMD_TIMEOUT);
432 }
433 
434 static u8 get_service_classes(struct hci_dev *hdev)
435 {
436 	struct bt_uuid *uuid;
437 	u8 val = 0;
438 
439 	list_for_each_entry(uuid, &hdev->uuids, list)
440 		val |= uuid->svc_hint;
441 
442 	return val;
443 }
444 
445 int hci_update_class_sync(struct hci_dev *hdev)
446 {
447 	u8 cod[3];
448 
449 	bt_dev_dbg(hdev, "");
450 
451 	if (!hdev_is_powered(hdev))
452 		return 0;
453 
454 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
455 		return 0;
456 
457 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
458 		return 0;
459 
460 	cod[0] = hdev->minor_class;
461 	cod[1] = hdev->major_class;
462 	cod[2] = get_service_classes(hdev);
463 
464 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
465 		cod[1] |= 0x20;
466 
467 	if (memcmp(cod, hdev->dev_class, 3) == 0)
468 		return 0;
469 
470 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
471 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
472 }
473 
474 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
475 {
476 	/* If there is no connection we are OK to advertise. */
477 	if (hci_conn_num(hdev, LE_LINK) == 0)
478 		return true;
479 
480 	/* Check le_states if there is any connection in peripheral role. */
481 	if (hdev->conn_hash.le_num_peripheral > 0) {
482 		/* Peripheral connection state and non connectable mode
483 		 * bit 20.
484 		 */
485 		if (!connectable && !(hdev->le_states[2] & 0x10))
486 			return false;
487 
488 		/* Peripheral connection state and connectable mode bit 38
489 		 * and scannable bit 21.
490 		 */
491 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
492 				    !(hdev->le_states[2] & 0x20)))
493 			return false;
494 	}
495 
496 	/* Check le_states if there is any connection in central role. */
497 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
498 		/* Central connection state and non connectable mode bit 18. */
499 		if (!connectable && !(hdev->le_states[2] & 0x02))
500 			return false;
501 
502 		/* Central connection state and connectable mode bit 35 and
503 		 * scannable 19.
504 		 */
505 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
506 				    !(hdev->le_states[2] & 0x08)))
507 			return false;
508 	}
509 
510 	return true;
511 }
512 
513 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
514 {
515 	/* If privacy is not enabled don't use RPA */
516 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
517 		return false;
518 
519 	/* If basic privacy mode is enabled use RPA */
520 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
521 		return true;
522 
523 	/* If limited privacy mode is enabled don't use RPA if we're
524 	 * both discoverable and bondable.
525 	 */
526 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
527 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
528 		return false;
529 
530 	/* We're neither bondable nor discoverable in the limited
531 	 * privacy mode, therefore use RPA.
532 	 */
533 	return true;
534 }
535 
536 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
537 {
538 	/* If we're advertising or initiating an LE connection we can't
539 	 * go ahead and change the random address at this time. This is
540 	 * because the eventual initiator address used for the
541 	 * subsequently created connection will be undefined (some
542 	 * controllers use the new address and others the one we had
543 	 * when the operation started).
544 	 *
545 	 * In this kind of scenario skip the update and let the random
546 	 * address be updated at the next cycle.
547 	 */
548 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
549 	    hci_lookup_le_connect(hdev)) {
550 		bt_dev_dbg(hdev, "Deferring random address update");
551 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
552 		return 0;
553 	}
554 
555 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
556 				     6, rpa, HCI_CMD_TIMEOUT);
557 }
558 
559 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
560 				   bool rpa, u8 *own_addr_type)
561 {
562 	int err;
563 
564 	/* If privacy is enabled use a resolvable private address. If
565 	 * current RPA has expired or there is something else than
566 	 * the current RPA in use, then generate a new one.
567 	 */
568 	if (rpa) {
569 		/* If Controller supports LL Privacy use own address type is
570 		 * 0x03
571 		 */
572 		if (use_ll_privacy(hdev))
573 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
574 		else
575 			*own_addr_type = ADDR_LE_DEV_RANDOM;
576 
577 		/* Check if RPA is valid */
578 		if (rpa_valid(hdev))
579 			return 0;
580 
581 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
582 		if (err < 0) {
583 			bt_dev_err(hdev, "failed to generate new RPA");
584 			return err;
585 		}
586 
587 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
588 		if (err)
589 			return err;
590 
591 		return 0;
592 	}
593 
594 	/* In case of required privacy without resolvable private address,
595 	 * use an non-resolvable private address. This is useful for active
596 	 * scanning and non-connectable advertising.
597 	 */
598 	if (require_privacy) {
599 		bdaddr_t nrpa;
600 
601 		while (true) {
602 			/* The non-resolvable private address is generated
603 			 * from random six bytes with the two most significant
604 			 * bits cleared.
605 			 */
606 			get_random_bytes(&nrpa, 6);
607 			nrpa.b[5] &= 0x3f;
608 
609 			/* The non-resolvable private address shall not be
610 			 * equal to the public address.
611 			 */
612 			if (bacmp(&hdev->bdaddr, &nrpa))
613 				break;
614 		}
615 
616 		*own_addr_type = ADDR_LE_DEV_RANDOM;
617 
618 		return hci_set_random_addr_sync(hdev, &nrpa);
619 	}
620 
621 	/* If forcing static address is in use or there is no public
622 	 * address use the static address as random address (but skip
623 	 * the HCI command if the current random address is already the
624 	 * static one.
625 	 *
626 	 * In case BR/EDR has been disabled on a dual-mode controller
627 	 * and a static address has been configured, then use that
628 	 * address instead of the public BR/EDR address.
629 	 */
630 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
631 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
632 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
633 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
634 		*own_addr_type = ADDR_LE_DEV_RANDOM;
635 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
636 			return hci_set_random_addr_sync(hdev,
637 							&hdev->static_addr);
638 		return 0;
639 	}
640 
641 	/* Neither privacy nor static address is being used so use a
642 	 * public address.
643 	 */
644 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
645 
646 	return 0;
647 }
648 
649 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
650 {
651 	struct hci_cp_le_set_ext_adv_enable *cp;
652 	struct hci_cp_ext_adv_set *set;
653 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
654 	u8 size;
655 
656 	/* If request specifies an instance that doesn't exist, fail */
657 	if (instance > 0) {
658 		struct adv_info *adv;
659 
660 		adv = hci_find_adv_instance(hdev, instance);
661 		if (!adv)
662 			return -EINVAL;
663 
664 		/* If not enabled there is nothing to do */
665 		if (!adv->enabled)
666 			return 0;
667 	}
668 
669 	memset(data, 0, sizeof(data));
670 
671 	cp = (void *)data;
672 	set = (void *)cp->data;
673 
674 	/* Instance 0x00 indicates all advertising instances will be disabled */
675 	cp->num_of_sets = !!instance;
676 	cp->enable = 0x00;
677 
678 	set->handle = instance;
679 
680 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
681 
682 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
683 				     size, data, HCI_CMD_TIMEOUT);
684 }
685 
686 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
687 					    bdaddr_t *random_addr)
688 {
689 	struct hci_cp_le_set_adv_set_rand_addr cp;
690 	int err;
691 
692 	if (!instance) {
693 		/* Instance 0x00 doesn't have an adv_info, instead it uses
694 		 * hdev->random_addr to track its address so whenever it needs
695 		 * to be updated this also set the random address since
696 		 * hdev->random_addr is shared with scan state machine.
697 		 */
698 		err = hci_set_random_addr_sync(hdev, random_addr);
699 		if (err)
700 			return err;
701 	}
702 
703 	memset(&cp, 0, sizeof(cp));
704 
705 	cp.handle = instance;
706 	bacpy(&cp.bdaddr, random_addr);
707 
708 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
709 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
710 }
711 
712 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
713 {
714 	struct hci_cp_le_set_ext_adv_params cp;
715 	bool connectable;
716 	u32 flags;
717 	bdaddr_t random_addr;
718 	u8 own_addr_type;
719 	int err;
720 	struct adv_info *adv;
721 	bool secondary_adv;
722 
723 	if (instance > 0) {
724 		adv = hci_find_adv_instance(hdev, instance);
725 		if (!adv)
726 			return -EINVAL;
727 	} else {
728 		adv = NULL;
729 	}
730 
731 	/* Updating parameters of an active instance will return a
732 	 * Command Disallowed error, so we must first disable the
733 	 * instance if it is active.
734 	 */
735 	if (adv && !adv->pending) {
736 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
737 		if (err)
738 			return err;
739 	}
740 
741 	flags = hci_adv_instance_flags(hdev, instance);
742 
743 	/* If the "connectable" instance flag was not set, then choose between
744 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
745 	 */
746 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
747 		      mgmt_get_connectable(hdev);
748 
749 	if (!is_advertising_allowed(hdev, connectable))
750 		return -EPERM;
751 
752 	/* Set require_privacy to true only when non-connectable
753 	 * advertising is used. In that case it is fine to use a
754 	 * non-resolvable private address.
755 	 */
756 	err = hci_get_random_address(hdev, !connectable,
757 				     adv_use_rpa(hdev, flags), adv,
758 				     &own_addr_type, &random_addr);
759 	if (err < 0)
760 		return err;
761 
762 	memset(&cp, 0, sizeof(cp));
763 
764 	if (adv) {
765 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
766 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
767 		cp.tx_power = adv->tx_power;
768 	} else {
769 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
770 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
771 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
772 	}
773 
774 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
775 
776 	if (connectable) {
777 		if (secondary_adv)
778 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
779 		else
780 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
781 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
782 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
783 		if (secondary_adv)
784 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
785 		else
786 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
787 	} else {
788 		if (secondary_adv)
789 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
790 		else
791 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
792 	}
793 
794 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
795 	 * contains the peer’s Identity Address and the Peer_Address_Type
796 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
797 	 * These parameters are used to locate the corresponding local IRK in
798 	 * the resolving list; this IRK is used to generate their own address
799 	 * used in the advertisement.
800 	 */
801 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
802 		hci_copy_identity_address(hdev, &cp.peer_addr,
803 					  &cp.peer_addr_type);
804 
805 	cp.own_addr_type = own_addr_type;
806 	cp.channel_map = hdev->le_adv_channel_map;
807 	cp.handle = instance;
808 
809 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
810 		cp.primary_phy = HCI_ADV_PHY_1M;
811 		cp.secondary_phy = HCI_ADV_PHY_2M;
812 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
813 		cp.primary_phy = HCI_ADV_PHY_CODED;
814 		cp.secondary_phy = HCI_ADV_PHY_CODED;
815 	} else {
816 		/* In all other cases use 1M */
817 		cp.primary_phy = HCI_ADV_PHY_1M;
818 		cp.secondary_phy = HCI_ADV_PHY_1M;
819 	}
820 
821 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
822 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
823 	if (err)
824 		return err;
825 
826 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
827 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
828 	    bacmp(&random_addr, BDADDR_ANY)) {
829 		/* Check if random address need to be updated */
830 		if (adv) {
831 			if (!bacmp(&random_addr, &adv->random_addr))
832 				return 0;
833 		} else {
834 			if (!bacmp(&random_addr, &hdev->random_addr))
835 				return 0;
836 		}
837 
838 		return hci_set_adv_set_random_addr_sync(hdev, instance,
839 							&random_addr);
840 	}
841 
842 	return 0;
843 }
844 
845 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
846 {
847 	struct {
848 		struct hci_cp_le_set_ext_scan_rsp_data cp;
849 		u8 data[HCI_MAX_EXT_AD_LENGTH];
850 	} pdu;
851 	u8 len;
852 	struct adv_info *adv = NULL;
853 	int err;
854 
855 	memset(&pdu, 0, sizeof(pdu));
856 
857 	if (instance) {
858 		adv = hci_find_adv_instance(hdev, instance);
859 		if (!adv || !adv->scan_rsp_changed)
860 			return 0;
861 	}
862 
863 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
864 
865 	pdu.cp.handle = instance;
866 	pdu.cp.length = len;
867 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
868 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
869 
870 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
871 				    sizeof(pdu.cp) + len, &pdu.cp,
872 				    HCI_CMD_TIMEOUT);
873 	if (err)
874 		return err;
875 
876 	if (adv) {
877 		adv->scan_rsp_changed = false;
878 	} else {
879 		memcpy(hdev->scan_rsp_data, pdu.data, len);
880 		hdev->scan_rsp_data_len = len;
881 	}
882 
883 	return 0;
884 }
885 
886 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
887 {
888 	struct hci_cp_le_set_scan_rsp_data cp;
889 	u8 len;
890 
891 	memset(&cp, 0, sizeof(cp));
892 
893 	len = eir_create_scan_rsp(hdev, instance, cp.data);
894 
895 	if (hdev->scan_rsp_data_len == len &&
896 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
897 		return 0;
898 
899 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
900 	hdev->scan_rsp_data_len = len;
901 
902 	cp.length = len;
903 
904 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
905 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
906 }
907 
908 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
909 {
910 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
911 		return 0;
912 
913 	if (ext_adv_capable(hdev))
914 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
915 
916 	return __hci_set_scan_rsp_data_sync(hdev, instance);
917 }
918 
919 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
920 {
921 	struct hci_cp_le_set_ext_adv_enable *cp;
922 	struct hci_cp_ext_adv_set *set;
923 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
924 	struct adv_info *adv;
925 
926 	if (instance > 0) {
927 		adv = hci_find_adv_instance(hdev, instance);
928 		if (!adv)
929 			return -EINVAL;
930 		/* If already enabled there is nothing to do */
931 		if (adv->enabled)
932 			return 0;
933 	} else {
934 		adv = NULL;
935 	}
936 
937 	cp = (void *)data;
938 	set = (void *)cp->data;
939 
940 	memset(cp, 0, sizeof(*cp));
941 
942 	cp->enable = 0x01;
943 	cp->num_of_sets = 0x01;
944 
945 	memset(set, 0, sizeof(*set));
946 
947 	set->handle = instance;
948 
949 	/* Set duration per instance since controller is responsible for
950 	 * scheduling it.
951 	 */
952 	if (adv && adv->timeout) {
953 		u16 duration = adv->timeout * MSEC_PER_SEC;
954 
955 		/* Time = N * 10 ms */
956 		set->duration = cpu_to_le16(duration / 10);
957 	}
958 
959 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
960 				     sizeof(*cp) +
961 				     sizeof(*set) * cp->num_of_sets,
962 				     data, HCI_CMD_TIMEOUT);
963 }
964 
965 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
966 {
967 	int err;
968 
969 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
970 	if (err)
971 		return err;
972 
973 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
974 	if (err)
975 		return err;
976 
977 	return hci_enable_ext_advertising_sync(hdev, instance);
978 }
979 
980 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
981 {
982 	int err;
983 
984 	if (ext_adv_capable(hdev))
985 		return hci_start_ext_adv_sync(hdev, instance);
986 
987 	err = hci_update_adv_data_sync(hdev, instance);
988 	if (err)
989 		return err;
990 
991 	err = hci_update_scan_rsp_data_sync(hdev, instance);
992 	if (err)
993 		return err;
994 
995 	return hci_enable_advertising_sync(hdev);
996 }
997 
998 int hci_enable_advertising_sync(struct hci_dev *hdev)
999 {
1000 	struct adv_info *adv_instance;
1001 	struct hci_cp_le_set_adv_param cp;
1002 	u8 own_addr_type, enable = 0x01;
1003 	bool connectable;
1004 	u16 adv_min_interval, adv_max_interval;
1005 	u32 flags;
1006 	u8 status;
1007 
1008 	if (ext_adv_capable(hdev))
1009 		return hci_enable_ext_advertising_sync(hdev,
1010 						       hdev->cur_adv_instance);
1011 
1012 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1013 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1014 
1015 	/* If the "connectable" instance flag was not set, then choose between
1016 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1017 	 */
1018 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1019 		      mgmt_get_connectable(hdev);
1020 
1021 	if (!is_advertising_allowed(hdev, connectable))
1022 		return -EINVAL;
1023 
1024 	status = hci_disable_advertising_sync(hdev);
1025 	if (status)
1026 		return status;
1027 
1028 	/* Clear the HCI_LE_ADV bit temporarily so that the
1029 	 * hci_update_random_address knows that it's safe to go ahead
1030 	 * and write a new random address. The flag will be set back on
1031 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1032 	 */
1033 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1034 
1035 	/* Set require_privacy to true only when non-connectable
1036 	 * advertising is used. In that case it is fine to use a
1037 	 * non-resolvable private address.
1038 	 */
1039 	status = hci_update_random_address_sync(hdev, !connectable,
1040 						adv_use_rpa(hdev, flags),
1041 						&own_addr_type);
1042 	if (status)
1043 		return status;
1044 
1045 	memset(&cp, 0, sizeof(cp));
1046 
1047 	if (adv_instance) {
1048 		adv_min_interval = adv_instance->min_interval;
1049 		adv_max_interval = adv_instance->max_interval;
1050 	} else {
1051 		adv_min_interval = hdev->le_adv_min_interval;
1052 		adv_max_interval = hdev->le_adv_max_interval;
1053 	}
1054 
1055 	if (connectable) {
1056 		cp.type = LE_ADV_IND;
1057 	} else {
1058 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1059 			cp.type = LE_ADV_SCAN_IND;
1060 		else
1061 			cp.type = LE_ADV_NONCONN_IND;
1062 
1063 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1064 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1065 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1066 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1067 		}
1068 	}
1069 
1070 	cp.min_interval = cpu_to_le16(adv_min_interval);
1071 	cp.max_interval = cpu_to_le16(adv_max_interval);
1072 	cp.own_address_type = own_addr_type;
1073 	cp.channel_map = hdev->le_adv_channel_map;
1074 
1075 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1076 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1077 	if (status)
1078 		return status;
1079 
1080 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1081 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1082 }
1083 
1084 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1085 {
1086 	return hci_enable_advertising_sync(hdev);
1087 }
1088 
1089 int hci_enable_advertising(struct hci_dev *hdev)
1090 {
1091 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1092 	    list_empty(&hdev->adv_instances))
1093 		return 0;
1094 
1095 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1096 }
1097 
1098 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1099 				     struct sock *sk)
1100 {
1101 	int err;
1102 
1103 	if (!ext_adv_capable(hdev))
1104 		return 0;
1105 
1106 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1107 	if (err)
1108 		return err;
1109 
1110 	/* If request specifies an instance that doesn't exist, fail */
1111 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1112 		return -EINVAL;
1113 
1114 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1115 					sizeof(instance), &instance, 0,
1116 					HCI_CMD_TIMEOUT, sk);
1117 }
1118 
1119 static void cancel_adv_timeout(struct hci_dev *hdev)
1120 {
1121 	if (hdev->adv_instance_timeout) {
1122 		hdev->adv_instance_timeout = 0;
1123 		cancel_delayed_work(&hdev->adv_instance_expire);
1124 	}
1125 }
1126 
1127 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1128 {
1129 	struct {
1130 		struct hci_cp_le_set_ext_adv_data cp;
1131 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1132 	} pdu;
1133 	u8 len;
1134 	struct adv_info *adv = NULL;
1135 	int err;
1136 
1137 	memset(&pdu, 0, sizeof(pdu));
1138 
1139 	if (instance) {
1140 		adv = hci_find_adv_instance(hdev, instance);
1141 		if (!adv || !adv->adv_data_changed)
1142 			return 0;
1143 	}
1144 
1145 	len = eir_create_adv_data(hdev, instance, pdu.data);
1146 
1147 	pdu.cp.length = len;
1148 	pdu.cp.handle = instance;
1149 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1150 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1151 
1152 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1153 				    sizeof(pdu.cp) + len, &pdu.cp,
1154 				    HCI_CMD_TIMEOUT);
1155 	if (err)
1156 		return err;
1157 
1158 	/* Update data if the command succeed */
1159 	if (adv) {
1160 		adv->adv_data_changed = false;
1161 	} else {
1162 		memcpy(hdev->adv_data, pdu.data, len);
1163 		hdev->adv_data_len = len;
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1170 {
1171 	struct hci_cp_le_set_adv_data cp;
1172 	u8 len;
1173 
1174 	memset(&cp, 0, sizeof(cp));
1175 
1176 	len = eir_create_adv_data(hdev, instance, cp.data);
1177 
1178 	/* There's nothing to do if the data hasn't changed */
1179 	if (hdev->adv_data_len == len &&
1180 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1181 		return 0;
1182 
1183 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1184 	hdev->adv_data_len = len;
1185 
1186 	cp.length = len;
1187 
1188 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1189 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1190 }
1191 
1192 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1193 {
1194 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1195 		return 0;
1196 
1197 	if (ext_adv_capable(hdev))
1198 		return hci_set_ext_adv_data_sync(hdev, instance);
1199 
1200 	return hci_set_adv_data_sync(hdev, instance);
1201 }
1202 
1203 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1204 				   bool force)
1205 {
1206 	struct adv_info *adv = NULL;
1207 	u16 timeout;
1208 
1209 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1210 		return -EPERM;
1211 
1212 	if (hdev->adv_instance_timeout)
1213 		return -EBUSY;
1214 
1215 	adv = hci_find_adv_instance(hdev, instance);
1216 	if (!adv)
1217 		return -ENOENT;
1218 
1219 	/* A zero timeout means unlimited advertising. As long as there is
1220 	 * only one instance, duration should be ignored. We still set a timeout
1221 	 * in case further instances are being added later on.
1222 	 *
1223 	 * If the remaining lifetime of the instance is more than the duration
1224 	 * then the timeout corresponds to the duration, otherwise it will be
1225 	 * reduced to the remaining instance lifetime.
1226 	 */
1227 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1228 		timeout = adv->duration;
1229 	else
1230 		timeout = adv->remaining_time;
1231 
1232 	/* The remaining time is being reduced unless the instance is being
1233 	 * advertised without time limit.
1234 	 */
1235 	if (adv->timeout)
1236 		adv->remaining_time = adv->remaining_time - timeout;
1237 
1238 	/* Only use work for scheduling instances with legacy advertising */
1239 	if (!ext_adv_capable(hdev)) {
1240 		hdev->adv_instance_timeout = timeout;
1241 		queue_delayed_work(hdev->req_workqueue,
1242 				   &hdev->adv_instance_expire,
1243 				   msecs_to_jiffies(timeout * 1000));
1244 	}
1245 
1246 	/* If we're just re-scheduling the same instance again then do not
1247 	 * execute any HCI commands. This happens when a single instance is
1248 	 * being advertised.
1249 	 */
1250 	if (!force && hdev->cur_adv_instance == instance &&
1251 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1252 		return 0;
1253 
1254 	hdev->cur_adv_instance = instance;
1255 
1256 	return hci_start_adv_sync(hdev, instance);
1257 }
1258 
1259 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1260 {
1261 	int err;
1262 
1263 	if (!ext_adv_capable(hdev))
1264 		return 0;
1265 
1266 	/* Disable instance 0x00 to disable all instances */
1267 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1268 	if (err)
1269 		return err;
1270 
1271 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1272 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1273 }
1274 
1275 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1276 {
1277 	struct adv_info *adv, *n;
1278 
1279 	if (ext_adv_capable(hdev))
1280 		/* Remove all existing sets */
1281 		return hci_clear_adv_sets_sync(hdev, sk);
1282 
1283 	/* This is safe as long as there is no command send while the lock is
1284 	 * held.
1285 	 */
1286 	hci_dev_lock(hdev);
1287 
1288 	/* Cleanup non-ext instances */
1289 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1290 		u8 instance = adv->instance;
1291 		int err;
1292 
1293 		if (!(force || adv->timeout))
1294 			continue;
1295 
1296 		err = hci_remove_adv_instance(hdev, instance);
1297 		if (!err)
1298 			mgmt_advertising_removed(sk, hdev, instance);
1299 	}
1300 
1301 	hci_dev_unlock(hdev);
1302 
1303 	return 0;
1304 }
1305 
1306 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1307 			       struct sock *sk)
1308 {
1309 	int err;
1310 
1311 	/* If we use extended advertising, instance has to be removed first. */
1312 	if (ext_adv_capable(hdev))
1313 		return hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1314 
1315 	/* This is safe as long as there is no command send while the lock is
1316 	 * held.
1317 	 */
1318 	hci_dev_lock(hdev);
1319 
1320 	err = hci_remove_adv_instance(hdev, instance);
1321 	if (!err)
1322 		mgmt_advertising_removed(sk, hdev, instance);
1323 
1324 	hci_dev_unlock(hdev);
1325 
1326 	return err;
1327 }
1328 
1329 /* For a single instance:
1330  * - force == true: The instance will be removed even when its remaining
1331  *   lifetime is not zero.
1332  * - force == false: the instance will be deactivated but kept stored unless
1333  *   the remaining lifetime is zero.
1334  *
1335  * For instance == 0x00:
1336  * - force == true: All instances will be removed regardless of their timeout
1337  *   setting.
1338  * - force == false: Only instances that have a timeout will be removed.
1339  */
1340 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1341 				u8 instance, bool force)
1342 {
1343 	struct adv_info *next = NULL;
1344 	int err;
1345 
1346 	/* Cancel any timeout concerning the removed instance(s). */
1347 	if (!instance || hdev->cur_adv_instance == instance)
1348 		cancel_adv_timeout(hdev);
1349 
1350 	/* Get the next instance to advertise BEFORE we remove
1351 	 * the current one. This can be the same instance again
1352 	 * if there is only one instance.
1353 	 */
1354 	if (hdev->cur_adv_instance == instance)
1355 		next = hci_get_next_instance(hdev, instance);
1356 
1357 	if (!instance) {
1358 		err = hci_clear_adv_sync(hdev, sk, force);
1359 		if (err)
1360 			return err;
1361 	} else {
1362 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1363 
1364 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1365 			/* Don't advertise a removed instance. */
1366 			if (next && next->instance == instance)
1367 				next = NULL;
1368 
1369 			err = hci_remove_adv_sync(hdev, instance, sk);
1370 			if (err)
1371 				return err;
1372 		}
1373 	}
1374 
1375 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1376 		return 0;
1377 
1378 	if (next && !ext_adv_capable(hdev))
1379 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1380 
1381 	return 0;
1382 }
1383 
1384 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1385 {
1386 	struct hci_cp_read_rssi cp;
1387 
1388 	cp.handle = handle;
1389 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1390 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1391 }
1392 
1393 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1394 {
1395 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1396 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1397 }
1398 
1399 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1400 {
1401 	struct hci_cp_read_tx_power cp;
1402 
1403 	cp.handle = handle;
1404 	cp.type = type;
1405 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1406 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1407 }
1408 
1409 int hci_disable_advertising_sync(struct hci_dev *hdev)
1410 {
1411 	u8 enable = 0x00;
1412 
1413 	/* If controller is not advertising we are done. */
1414 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1415 		return 0;
1416 
1417 	if (ext_adv_capable(hdev))
1418 		return hci_disable_ext_adv_instance_sync(hdev, 0x00);
1419 
1420 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1421 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1422 }
1423 
1424 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1425 					   u8 filter_dup)
1426 {
1427 	struct hci_cp_le_set_ext_scan_enable cp;
1428 
1429 	memset(&cp, 0, sizeof(cp));
1430 	cp.enable = val;
1431 	cp.filter_dup = filter_dup;
1432 
1433 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1434 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1435 }
1436 
1437 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1438 				       u8 filter_dup)
1439 {
1440 	struct hci_cp_le_set_scan_enable cp;
1441 
1442 	if (use_ext_scan(hdev))
1443 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1444 
1445 	memset(&cp, 0, sizeof(cp));
1446 	cp.enable = val;
1447 	cp.filter_dup = filter_dup;
1448 
1449 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1450 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1451 }
1452 
1453 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1454 {
1455 	if (!use_ll_privacy(hdev))
1456 		return 0;
1457 
1458 	/* If controller is not/already resolving we are done. */
1459 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1460 		return 0;
1461 
1462 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1463 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
1464 }
1465 
1466 static int hci_scan_disable_sync(struct hci_dev *hdev)
1467 {
1468 	int err;
1469 
1470 	/* If controller is not scanning we are done. */
1471 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1472 		return 0;
1473 
1474 	if (hdev->scanning_paused) {
1475 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
1476 		return 0;
1477 	}
1478 
1479 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
1480 	if (err) {
1481 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
1482 		return err;
1483 	}
1484 
1485 	return err;
1486 }
1487 
1488 static bool scan_use_rpa(struct hci_dev *hdev)
1489 {
1490 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
1491 }
1492 
1493 static void hci_start_interleave_scan(struct hci_dev *hdev)
1494 {
1495 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
1496 	queue_delayed_work(hdev->req_workqueue,
1497 			   &hdev->interleave_scan, 0);
1498 }
1499 
1500 static bool is_interleave_scanning(struct hci_dev *hdev)
1501 {
1502 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
1503 }
1504 
1505 static void cancel_interleave_scan(struct hci_dev *hdev)
1506 {
1507 	bt_dev_dbg(hdev, "cancelling interleave scan");
1508 
1509 	cancel_delayed_work_sync(&hdev->interleave_scan);
1510 
1511 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
1512 }
1513 
1514 /* Return true if interleave_scan wasn't started until exiting this function,
1515  * otherwise, return false
1516  */
1517 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
1518 {
1519 	/* Do interleaved scan only if all of the following are true:
1520 	 * - There is at least one ADV monitor
1521 	 * - At least one pending LE connection or one device to be scanned for
1522 	 * - Monitor offloading is not supported
1523 	 * If so, we should alternate between allowlist scan and one without
1524 	 * any filters to save power.
1525 	 */
1526 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
1527 				!(list_empty(&hdev->pend_le_conns) &&
1528 				  list_empty(&hdev->pend_le_reports)) &&
1529 				hci_get_adv_monitor_offload_ext(hdev) ==
1530 				    HCI_ADV_MONITOR_EXT_NONE;
1531 	bool is_interleaving = is_interleave_scanning(hdev);
1532 
1533 	if (use_interleaving && !is_interleaving) {
1534 		hci_start_interleave_scan(hdev);
1535 		bt_dev_dbg(hdev, "starting interleave scan");
1536 		return true;
1537 	}
1538 
1539 	if (!use_interleaving && is_interleaving)
1540 		cancel_interleave_scan(hdev);
1541 
1542 	return false;
1543 }
1544 
1545 /* Removes connection to resolve list if needed.*/
1546 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
1547 					bdaddr_t *bdaddr, u8 bdaddr_type)
1548 {
1549 	struct hci_cp_le_del_from_resolv_list cp;
1550 	struct bdaddr_list_with_irk *entry;
1551 
1552 	if (!use_ll_privacy(hdev))
1553 		return 0;
1554 
1555 	/* Check if the IRK has been programmed */
1556 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
1557 						bdaddr_type);
1558 	if (!entry)
1559 		return 0;
1560 
1561 	cp.bdaddr_type = bdaddr_type;
1562 	bacpy(&cp.bdaddr, bdaddr);
1563 
1564 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
1565 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1566 }
1567 
1568 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
1569 				       bdaddr_t *bdaddr, u8 bdaddr_type)
1570 {
1571 	struct hci_cp_le_del_from_accept_list cp;
1572 	int err;
1573 
1574 	/* Check if device is on accept list before removing it */
1575 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
1576 		return 0;
1577 
1578 	cp.bdaddr_type = bdaddr_type;
1579 	bacpy(&cp.bdaddr, bdaddr);
1580 
1581 	/* Ignore errors when removing from resolving list as that is likely
1582 	 * that the device was never added.
1583 	 */
1584 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1585 
1586 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
1587 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1588 	if (err) {
1589 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
1590 		return err;
1591 	}
1592 
1593 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
1594 		   cp.bdaddr_type);
1595 
1596 	return 0;
1597 }
1598 
1599 /* Adds connection to resolve list if needed.
1600  * Setting params to NULL programs local hdev->irk
1601  */
1602 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
1603 					struct hci_conn_params *params)
1604 {
1605 	struct hci_cp_le_add_to_resolv_list cp;
1606 	struct smp_irk *irk;
1607 	struct bdaddr_list_with_irk *entry;
1608 
1609 	if (!use_ll_privacy(hdev))
1610 		return 0;
1611 
1612 	/* Attempt to program local identity address, type and irk if params is
1613 	 * NULL.
1614 	 */
1615 	if (!params) {
1616 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1617 			return 0;
1618 
1619 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
1620 		memcpy(cp.peer_irk, hdev->irk, 16);
1621 		goto done;
1622 	}
1623 
1624 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1625 	if (!irk)
1626 		return 0;
1627 
1628 	/* Check if the IK has _not_ been programmed yet. */
1629 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
1630 						&params->addr,
1631 						params->addr_type);
1632 	if (entry)
1633 		return 0;
1634 
1635 	cp.bdaddr_type = params->addr_type;
1636 	bacpy(&cp.bdaddr, &params->addr);
1637 	memcpy(cp.peer_irk, irk->val, 16);
1638 
1639 done:
1640 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
1641 		memcpy(cp.local_irk, hdev->irk, 16);
1642 	else
1643 		memset(cp.local_irk, 0, 16);
1644 
1645 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
1646 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1647 }
1648 
1649 /* Set Device Privacy Mode. */
1650 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
1651 					struct hci_conn_params *params)
1652 {
1653 	struct hci_cp_le_set_privacy_mode cp;
1654 	struct smp_irk *irk;
1655 
1656 	/* If device privacy mode has already been set there is nothing to do */
1657 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
1658 		return 0;
1659 
1660 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
1661 	 * indicates that LL Privacy has been enabled and
1662 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
1663 	 */
1664 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
1665 		return 0;
1666 
1667 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1668 	if (!irk)
1669 		return 0;
1670 
1671 	memset(&cp, 0, sizeof(cp));
1672 	cp.bdaddr_type = irk->addr_type;
1673 	bacpy(&cp.bdaddr, &irk->bdaddr);
1674 	cp.mode = HCI_DEVICE_PRIVACY;
1675 
1676 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
1677 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1678 }
1679 
1680 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
1681  * this attempts to program the device in the resolving list as well and
1682  * properly set the privacy mode.
1683  */
1684 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
1685 				       struct hci_conn_params *params,
1686 				       u8 *num_entries)
1687 {
1688 	struct hci_cp_le_add_to_accept_list cp;
1689 	int err;
1690 
1691 	/* During suspend, only wakeable devices can be in acceptlist */
1692 	if (hdev->suspended &&
1693 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
1694 		return 0;
1695 
1696 	/* Select filter policy to accept all advertising */
1697 	if (*num_entries >= hdev->le_accept_list_size)
1698 		return -ENOSPC;
1699 
1700 	/* Accept list can not be used with RPAs */
1701 	if (!use_ll_privacy(hdev) &&
1702 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
1703 		return -EINVAL;
1704 
1705 	/* Attempt to program the device in the resolving list first to avoid
1706 	 * having to rollback in case it fails since the resolving list is
1707 	 * dynamic it can probably be smaller than the accept list.
1708 	 */
1709 	err = hci_le_add_resolve_list_sync(hdev, params);
1710 	if (err) {
1711 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
1712 		return err;
1713 	}
1714 
1715 	/* Set Privacy Mode */
1716 	err = hci_le_set_privacy_mode_sync(hdev, params);
1717 	if (err) {
1718 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
1719 		return err;
1720 	}
1721 
1722 	/* Check if already in accept list */
1723 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
1724 				   params->addr_type))
1725 		return 0;
1726 
1727 	*num_entries += 1;
1728 	cp.bdaddr_type = params->addr_type;
1729 	bacpy(&cp.bdaddr, &params->addr);
1730 
1731 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
1732 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1733 	if (err) {
1734 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
1735 		/* Rollback the device from the resolving list */
1736 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1737 		return err;
1738 	}
1739 
1740 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
1741 		   cp.bdaddr_type);
1742 
1743 	return 0;
1744 }
1745 
1746 /* This function disables/pause all advertising instances */
1747 static int hci_pause_advertising_sync(struct hci_dev *hdev)
1748 {
1749 	int err;
1750 	int old_state;
1751 
1752 	/* If already been paused there is nothing to do. */
1753 	if (hdev->advertising_paused)
1754 		return 0;
1755 
1756 	bt_dev_dbg(hdev, "Pausing directed advertising");
1757 
1758 	/* Stop directed advertising */
1759 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1760 	if (old_state) {
1761 		/* When discoverable timeout triggers, then just make sure
1762 		 * the limited discoverable flag is cleared. Even in the case
1763 		 * of a timeout triggered from general discoverable, it is
1764 		 * safe to unconditionally clear the flag.
1765 		 */
1766 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1767 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1768 		hdev->discov_timeout = 0;
1769 	}
1770 
1771 	bt_dev_dbg(hdev, "Pausing advertising instances");
1772 
1773 	/* Call to disable any advertisements active on the controller.
1774 	 * This will succeed even if no advertisements are configured.
1775 	 */
1776 	err = hci_disable_advertising_sync(hdev);
1777 	if (err)
1778 		return err;
1779 
1780 	/* If we are using software rotation, pause the loop */
1781 	if (!ext_adv_capable(hdev))
1782 		cancel_adv_timeout(hdev);
1783 
1784 	hdev->advertising_paused = true;
1785 	hdev->advertising_old_state = old_state;
1786 
1787 	return 0;
1788 }
1789 
1790 /* This function enables all user advertising instances */
1791 static int hci_resume_advertising_sync(struct hci_dev *hdev)
1792 {
1793 	struct adv_info *adv, *tmp;
1794 	int err;
1795 
1796 	/* If advertising has not been paused there is nothing  to do. */
1797 	if (!hdev->advertising_paused)
1798 		return 0;
1799 
1800 	/* Resume directed advertising */
1801 	hdev->advertising_paused = false;
1802 	if (hdev->advertising_old_state) {
1803 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
1804 		hdev->advertising_old_state = 0;
1805 	}
1806 
1807 	bt_dev_dbg(hdev, "Resuming advertising instances");
1808 
1809 	if (ext_adv_capable(hdev)) {
1810 		/* Call for each tracked instance to be re-enabled */
1811 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
1812 			err = hci_enable_ext_advertising_sync(hdev,
1813 							      adv->instance);
1814 			if (!err)
1815 				continue;
1816 
1817 			/* If the instance cannot be resumed remove it */
1818 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
1819 							 NULL);
1820 		}
1821 	} else {
1822 		/* Schedule for most recent instance to be restarted and begin
1823 		 * the software rotation loop
1824 		 */
1825 		err = hci_schedule_adv_instance_sync(hdev,
1826 						     hdev->cur_adv_instance,
1827 						     true);
1828 	}
1829 
1830 	hdev->advertising_paused = false;
1831 
1832 	return err;
1833 }
1834 
1835 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
1836 					     bool extended, struct sock *sk)
1837 {
1838 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
1839 					HCI_OP_READ_LOCAL_OOB_DATA;
1840 
1841 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1842 }
1843 
1844 /* Device must not be scanning when updating the accept list.
1845  *
1846  * Update is done using the following sequence:
1847  *
1848  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
1849  * Remove Devices From Accept List ->
1850  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
1851  * Add Devices to Accept List ->
1852  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
1853  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
1854  * Enable Scanning
1855  *
1856  * In case of failure advertising shall be restored to its original state and
1857  * return would disable accept list since either accept or resolving list could
1858  * not be programmed.
1859  *
1860  */
1861 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
1862 {
1863 	struct hci_conn_params *params;
1864 	struct bdaddr_list *b, *t;
1865 	u8 num_entries = 0;
1866 	bool pend_conn, pend_report;
1867 	u8 filter_policy;
1868 	int err;
1869 
1870 	/* Pause advertising if resolving list can be used as controllers are
1871 	 * cannot accept resolving list modifications while advertising.
1872 	 */
1873 	if (use_ll_privacy(hdev)) {
1874 		err = hci_pause_advertising_sync(hdev);
1875 		if (err) {
1876 			bt_dev_err(hdev, "pause advertising failed: %d", err);
1877 			return 0x00;
1878 		}
1879 	}
1880 
1881 	/* Disable address resolution while reprogramming accept list since
1882 	 * devices that do have an IRK will be programmed in the resolving list
1883 	 * when LL Privacy is enabled.
1884 	 */
1885 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
1886 	if (err) {
1887 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
1888 		goto done;
1889 	}
1890 
1891 	/* Go through the current accept list programmed into the
1892 	 * controller one by one and check if that address is still
1893 	 * in the list of pending connections or list of devices to
1894 	 * report. If not present in either list, then remove it from
1895 	 * the controller.
1896 	 */
1897 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
1898 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
1899 						      &b->bdaddr,
1900 						      b->bdaddr_type);
1901 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
1902 							&b->bdaddr,
1903 							b->bdaddr_type);
1904 
1905 		/* If the device is not likely to connect or report,
1906 		 * remove it from the acceptlist.
1907 		 */
1908 		if (!pend_conn && !pend_report) {
1909 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
1910 						    b->bdaddr_type);
1911 			continue;
1912 		}
1913 
1914 		num_entries++;
1915 	}
1916 
1917 	/* Since all no longer valid accept list entries have been
1918 	 * removed, walk through the list of pending connections
1919 	 * and ensure that any new device gets programmed into
1920 	 * the controller.
1921 	 *
1922 	 * If the list of the devices is larger than the list of
1923 	 * available accept list entries in the controller, then
1924 	 * just abort and return filer policy value to not use the
1925 	 * accept list.
1926 	 */
1927 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
1928 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1929 		if (err)
1930 			goto done;
1931 	}
1932 
1933 	/* After adding all new pending connections, walk through
1934 	 * the list of pending reports and also add these to the
1935 	 * accept list if there is still space. Abort if space runs out.
1936 	 */
1937 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
1938 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1939 		if (err)
1940 			goto done;
1941 	}
1942 
1943 	/* Use the allowlist unless the following conditions are all true:
1944 	 * - We are not currently suspending
1945 	 * - There are 1 or more ADV monitors registered and it's not offloaded
1946 	 * - Interleaved scanning is not currently using the allowlist
1947 	 */
1948 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
1949 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
1950 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
1951 		err = -EINVAL;
1952 
1953 done:
1954 	filter_policy = err ? 0x00 : 0x01;
1955 
1956 	/* Enable address resolution when LL Privacy is enabled. */
1957 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
1958 	if (err)
1959 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
1960 
1961 	/* Resume advertising if it was paused */
1962 	if (use_ll_privacy(hdev))
1963 		hci_resume_advertising_sync(hdev);
1964 
1965 	/* Select filter policy to use accept list */
1966 	return filter_policy;
1967 }
1968 
1969 /* Returns true if an le connection is in the scanning state */
1970 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
1971 {
1972 	struct hci_conn_hash *h = &hdev->conn_hash;
1973 	struct hci_conn  *c;
1974 
1975 	rcu_read_lock();
1976 
1977 	list_for_each_entry_rcu(c, &h->list, list) {
1978 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
1979 		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
1980 			rcu_read_unlock();
1981 			return true;
1982 		}
1983 	}
1984 
1985 	rcu_read_unlock();
1986 
1987 	return false;
1988 }
1989 
1990 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
1991 					  u16 interval, u16 window,
1992 					  u8 own_addr_type, u8 filter_policy)
1993 {
1994 	struct hci_cp_le_set_ext_scan_params *cp;
1995 	struct hci_cp_le_scan_phy_params *phy;
1996 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
1997 	u8 num_phy = 0;
1998 
1999 	cp = (void *)data;
2000 	phy = (void *)cp->data;
2001 
2002 	memset(data, 0, sizeof(data));
2003 
2004 	cp->own_addr_type = own_addr_type;
2005 	cp->filter_policy = filter_policy;
2006 
2007 	if (scan_1m(hdev) || scan_2m(hdev)) {
2008 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2009 
2010 		phy->type = type;
2011 		phy->interval = cpu_to_le16(interval);
2012 		phy->window = cpu_to_le16(window);
2013 
2014 		num_phy++;
2015 		phy++;
2016 	}
2017 
2018 	if (scan_coded(hdev)) {
2019 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2020 
2021 		phy->type = type;
2022 		phy->interval = cpu_to_le16(interval);
2023 		phy->window = cpu_to_le16(window);
2024 
2025 		num_phy++;
2026 		phy++;
2027 	}
2028 
2029 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2030 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2031 				     data, HCI_CMD_TIMEOUT);
2032 }
2033 
2034 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2035 				      u16 interval, u16 window,
2036 				      u8 own_addr_type, u8 filter_policy)
2037 {
2038 	struct hci_cp_le_set_scan_param cp;
2039 
2040 	if (use_ext_scan(hdev))
2041 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2042 						      window, own_addr_type,
2043 						      filter_policy);
2044 
2045 	memset(&cp, 0, sizeof(cp));
2046 	cp.type = type;
2047 	cp.interval = cpu_to_le16(interval);
2048 	cp.window = cpu_to_le16(window);
2049 	cp.own_address_type = own_addr_type;
2050 	cp.filter_policy = filter_policy;
2051 
2052 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2053 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2054 }
2055 
2056 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2057 			       u16 window, u8 own_addr_type, u8 filter_policy,
2058 			       u8 filter_dup)
2059 {
2060 	int err;
2061 
2062 	if (hdev->scanning_paused) {
2063 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2064 		return 0;
2065 	}
2066 
2067 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2068 					 own_addr_type, filter_policy);
2069 	if (err)
2070 		return err;
2071 
2072 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2073 }
2074 
2075 static int hci_passive_scan_sync(struct hci_dev *hdev)
2076 {
2077 	u8 own_addr_type;
2078 	u8 filter_policy;
2079 	u16 window, interval;
2080 	int err;
2081 
2082 	if (hdev->scanning_paused) {
2083 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2084 		return 0;
2085 	}
2086 
2087 	err = hci_scan_disable_sync(hdev);
2088 	if (err) {
2089 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2090 		return err;
2091 	}
2092 
2093 	/* Set require_privacy to false since no SCAN_REQ are send
2094 	 * during passive scanning. Not using an non-resolvable address
2095 	 * here is important so that peer devices using direct
2096 	 * advertising with our address will be correctly reported
2097 	 * by the controller.
2098 	 */
2099 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2100 					   &own_addr_type))
2101 		return 0;
2102 
2103 	if (hdev->enable_advmon_interleave_scan &&
2104 	    hci_update_interleaved_scan_sync(hdev))
2105 		return 0;
2106 
2107 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2108 
2109 	/* Adding or removing entries from the accept list must
2110 	 * happen before enabling scanning. The controller does
2111 	 * not allow accept list modification while scanning.
2112 	 */
2113 	filter_policy = hci_update_accept_list_sync(hdev);
2114 
2115 	/* When the controller is using random resolvable addresses and
2116 	 * with that having LE privacy enabled, then controllers with
2117 	 * Extended Scanner Filter Policies support can now enable support
2118 	 * for handling directed advertising.
2119 	 *
2120 	 * So instead of using filter polices 0x00 (no acceptlist)
2121 	 * and 0x01 (acceptlist enabled) use the new filter policies
2122 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2123 	 */
2124 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2125 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2126 		filter_policy |= 0x02;
2127 
2128 	if (hdev->suspended) {
2129 		window = hdev->le_scan_window_suspend;
2130 		interval = hdev->le_scan_int_suspend;
2131 	} else if (hci_is_le_conn_scanning(hdev)) {
2132 		window = hdev->le_scan_window_connect;
2133 		interval = hdev->le_scan_int_connect;
2134 	} else if (hci_is_adv_monitoring(hdev)) {
2135 		window = hdev->le_scan_window_adv_monitor;
2136 		interval = hdev->le_scan_int_adv_monitor;
2137 	} else {
2138 		window = hdev->le_scan_window;
2139 		interval = hdev->le_scan_interval;
2140 	}
2141 
2142 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2143 
2144 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2145 				   own_addr_type, filter_policy,
2146 				   LE_SCAN_FILTER_DUP_ENABLE);
2147 }
2148 
2149 /* This function controls the passive scanning based on hdev->pend_le_conns
2150  * list. If there are pending LE connection we start the background scanning,
2151  * otherwise we stop it in the following sequence:
2152  *
2153  * If there are devices to scan:
2154  *
2155  * Disable Scanning -> Update Accept List ->
2156  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2157  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2158  * Enable Scanning
2159  *
2160  * Otherwise:
2161  *
2162  * Disable Scanning
2163  */
2164 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2165 {
2166 	int err;
2167 
2168 	if (!test_bit(HCI_UP, &hdev->flags) ||
2169 	    test_bit(HCI_INIT, &hdev->flags) ||
2170 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2171 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2172 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2173 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2174 		return 0;
2175 
2176 	/* No point in doing scanning if LE support hasn't been enabled */
2177 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2178 		return 0;
2179 
2180 	/* If discovery is active don't interfere with it */
2181 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2182 		return 0;
2183 
2184 	/* Reset RSSI and UUID filters when starting background scanning
2185 	 * since these filters are meant for service discovery only.
2186 	 *
2187 	 * The Start Discovery and Start Service Discovery operations
2188 	 * ensure to set proper values for RSSI threshold and UUID
2189 	 * filter list. So it is safe to just reset them here.
2190 	 */
2191 	hci_discovery_filter_clear(hdev);
2192 
2193 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2194 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2195 
2196 	if (list_empty(&hdev->pend_le_conns) &&
2197 	    list_empty(&hdev->pend_le_reports) &&
2198 	    !hci_is_adv_monitoring(hdev)) {
2199 		/* If there is no pending LE connections or devices
2200 		 * to be scanned for or no ADV monitors, we should stop the
2201 		 * background scanning.
2202 		 */
2203 
2204 		bt_dev_dbg(hdev, "stopping background scanning");
2205 
2206 		err = hci_scan_disable_sync(hdev);
2207 		if (err)
2208 			bt_dev_err(hdev, "stop background scanning failed: %d",
2209 				   err);
2210 	} else {
2211 		/* If there is at least one pending LE connection, we should
2212 		 * keep the background scan running.
2213 		 */
2214 
2215 		/* If controller is connecting, we should not start scanning
2216 		 * since some controllers are not able to scan and connect at
2217 		 * the same time.
2218 		 */
2219 		if (hci_lookup_le_connect(hdev))
2220 			return 0;
2221 
2222 		bt_dev_dbg(hdev, "start background scanning");
2223 
2224 		err = hci_passive_scan_sync(hdev);
2225 		if (err)
2226 			bt_dev_err(hdev, "start background scanning failed: %d",
2227 				   err);
2228 	}
2229 
2230 	return err;
2231 }
2232 
2233 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2234 {
2235 	return hci_update_passive_scan_sync(hdev);
2236 }
2237 
2238 int hci_update_passive_scan(struct hci_dev *hdev)
2239 {
2240 	/* Only queue if it would have any effect */
2241 	if (!test_bit(HCI_UP, &hdev->flags) ||
2242 	    test_bit(HCI_INIT, &hdev->flags) ||
2243 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2244 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2245 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2246 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2247 		return 0;
2248 
2249 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2250 }
2251 
2252 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2253 {
2254 	int err;
2255 
2256 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2257 		return 0;
2258 
2259 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2260 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2261 
2262 	if (!err) {
2263 		if (val) {
2264 			hdev->features[1][0] |= LMP_HOST_SC;
2265 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2266 		} else {
2267 			hdev->features[1][0] &= ~LMP_HOST_SC;
2268 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2269 		}
2270 	}
2271 
2272 	return err;
2273 }
2274 
2275 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2276 {
2277 	int err;
2278 
2279 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2280 	    lmp_host_ssp_capable(hdev))
2281 		return 0;
2282 
2283 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2284 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2285 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2286 	}
2287 
2288 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2289 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2290 	if (err)
2291 		return err;
2292 
2293 	return hci_write_sc_support_sync(hdev, 0x01);
2294 }
2295 
2296 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2297 {
2298 	struct hci_cp_write_le_host_supported cp;
2299 
2300 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2301 	    !lmp_bredr_capable(hdev))
2302 		return 0;
2303 
2304 	/* Check first if we already have the right host state
2305 	 * (host features set)
2306 	 */
2307 	if (le == lmp_host_le_capable(hdev) &&
2308 	    simul == lmp_host_le_br_capable(hdev))
2309 		return 0;
2310 
2311 	memset(&cp, 0, sizeof(cp));
2312 
2313 	cp.le = le;
2314 	cp.simul = simul;
2315 
2316 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2317 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2318 }
2319 
2320 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2321 {
2322 	struct adv_info *adv, *tmp;
2323 	int err;
2324 
2325 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2326 		return 0;
2327 
2328 	/* If RPA Resolution has not been enable yet it means the
2329 	 * resolving list is empty and we should attempt to program the
2330 	 * local IRK in order to support using own_addr_type
2331 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2332 	 */
2333 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2334 		hci_le_add_resolve_list_sync(hdev, NULL);
2335 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2336 	}
2337 
2338 	/* Make sure the controller has a good default for
2339 	 * advertising data. This also applies to the case
2340 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2341 	 */
2342 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2343 	    list_empty(&hdev->adv_instances)) {
2344 		if (ext_adv_capable(hdev)) {
2345 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2346 			if (!err)
2347 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2348 		} else {
2349 			err = hci_update_adv_data_sync(hdev, 0x00);
2350 			if (!err)
2351 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2352 		}
2353 
2354 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2355 			hci_enable_advertising_sync(hdev);
2356 	}
2357 
2358 	/* Call for each tracked instance to be scheduled */
2359 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2360 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2361 
2362 	return 0;
2363 }
2364 
2365 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2366 {
2367 	u8 link_sec;
2368 
2369 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2370 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2371 		return 0;
2372 
2373 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
2374 				     sizeof(link_sec), &link_sec,
2375 				     HCI_CMD_TIMEOUT);
2376 }
2377 
2378 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
2379 {
2380 	struct hci_cp_write_page_scan_activity cp;
2381 	u8 type;
2382 	int err = 0;
2383 
2384 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2385 		return 0;
2386 
2387 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
2388 		return 0;
2389 
2390 	memset(&cp, 0, sizeof(cp));
2391 
2392 	if (enable) {
2393 		type = PAGE_SCAN_TYPE_INTERLACED;
2394 
2395 		/* 160 msec page scan interval */
2396 		cp.interval = cpu_to_le16(0x0100);
2397 	} else {
2398 		type = hdev->def_page_scan_type;
2399 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
2400 	}
2401 
2402 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
2403 
2404 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
2405 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
2406 		err = __hci_cmd_sync_status(hdev,
2407 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
2408 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2409 		if (err)
2410 			return err;
2411 	}
2412 
2413 	if (hdev->page_scan_type != type)
2414 		err = __hci_cmd_sync_status(hdev,
2415 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
2416 					    sizeof(type), &type,
2417 					    HCI_CMD_TIMEOUT);
2418 
2419 	return err;
2420 }
2421 
2422 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2423 {
2424 	struct bdaddr_list *b;
2425 
2426 	list_for_each_entry(b, &hdev->accept_list, list) {
2427 		struct hci_conn *conn;
2428 
2429 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2430 		if (!conn)
2431 			return true;
2432 
2433 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2434 			return true;
2435 	}
2436 
2437 	return false;
2438 }
2439 
2440 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
2441 {
2442 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
2443 					    sizeof(val), &val,
2444 					    HCI_CMD_TIMEOUT);
2445 }
2446 
2447 int hci_update_scan_sync(struct hci_dev *hdev)
2448 {
2449 	u8 scan;
2450 
2451 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2452 		return 0;
2453 
2454 	if (!hdev_is_powered(hdev))
2455 		return 0;
2456 
2457 	if (mgmt_powering_down(hdev))
2458 		return 0;
2459 
2460 	if (hdev->scanning_paused)
2461 		return 0;
2462 
2463 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2464 	    disconnected_accept_list_entries(hdev))
2465 		scan = SCAN_PAGE;
2466 	else
2467 		scan = SCAN_DISABLED;
2468 
2469 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2470 		scan |= SCAN_INQUIRY;
2471 
2472 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2473 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2474 		return 0;
2475 
2476 	return hci_write_scan_enable_sync(hdev, scan);
2477 }
2478 
2479 int hci_update_name_sync(struct hci_dev *hdev)
2480 {
2481 	struct hci_cp_write_local_name cp;
2482 
2483 	memset(&cp, 0, sizeof(cp));
2484 
2485 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
2486 
2487 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
2488 					    sizeof(cp), &cp,
2489 					    HCI_CMD_TIMEOUT);
2490 }
2491 
2492 /* This function perform powered update HCI command sequence after the HCI init
2493  * sequence which end up resetting all states, the sequence is as follows:
2494  *
2495  * HCI_SSP_ENABLED(Enable SSP)
2496  * HCI_LE_ENABLED(Enable LE)
2497  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
2498  * Update adv data)
2499  * Enable Authentication
2500  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
2501  * Set Name -> Set EIR)
2502  */
2503 int hci_powered_update_sync(struct hci_dev *hdev)
2504 {
2505 	int err;
2506 
2507 	/* Register the available SMP channels (BR/EDR and LE) only when
2508 	 * successfully powering on the controller. This late
2509 	 * registration is required so that LE SMP can clearly decide if
2510 	 * the public address or static address is used.
2511 	 */
2512 	smp_register(hdev);
2513 
2514 	err = hci_write_ssp_mode_sync(hdev, 0x01);
2515 	if (err)
2516 		return err;
2517 
2518 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
2519 	if (err)
2520 		return err;
2521 
2522 	err = hci_powered_update_adv_sync(hdev);
2523 	if (err)
2524 		return err;
2525 
2526 	err = hci_write_auth_enable_sync(hdev);
2527 	if (err)
2528 		return err;
2529 
2530 	if (lmp_bredr_capable(hdev)) {
2531 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2532 			hci_write_fast_connectable_sync(hdev, true);
2533 		else
2534 			hci_write_fast_connectable_sync(hdev, false);
2535 		hci_update_scan_sync(hdev);
2536 		hci_update_class_sync(hdev);
2537 		hci_update_name_sync(hdev);
2538 		hci_update_eir_sync(hdev);
2539 	}
2540 
2541 	return 0;
2542 }
2543 
2544 /**
2545  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
2546  *				       (BD_ADDR) for a HCI device from
2547  *				       a firmware node property.
2548  * @hdev:	The HCI device
2549  *
2550  * Search the firmware node for 'local-bd-address'.
2551  *
2552  * All-zero BD addresses are rejected, because those could be properties
2553  * that exist in the firmware tables, but were not updated by the firmware. For
2554  * example, the DTS could define 'local-bd-address', with zero BD addresses.
2555  */
2556 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
2557 {
2558 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
2559 	bdaddr_t ba;
2560 	int ret;
2561 
2562 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
2563 					    (u8 *)&ba, sizeof(ba));
2564 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
2565 		return;
2566 
2567 	bacpy(&hdev->public_addr, &ba);
2568 }
2569 
2570 struct hci_init_stage {
2571 	int (*func)(struct hci_dev *hdev);
2572 };
2573 
2574 /* Run init stage NULL terminated function table */
2575 static int hci_init_stage_sync(struct hci_dev *hdev,
2576 			       const struct hci_init_stage *stage)
2577 {
2578 	size_t i;
2579 
2580 	for (i = 0; stage[i].func; i++) {
2581 		int err;
2582 
2583 		err = stage[i].func(hdev);
2584 		if (err)
2585 			return err;
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 /* Read Local Version */
2592 static int hci_read_local_version_sync(struct hci_dev *hdev)
2593 {
2594 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
2595 				     0, NULL, HCI_CMD_TIMEOUT);
2596 }
2597 
2598 /* Read BD Address */
2599 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
2600 {
2601 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
2602 				     0, NULL, HCI_CMD_TIMEOUT);
2603 }
2604 
2605 #define HCI_INIT(_func) \
2606 { \
2607 	.func = _func, \
2608 }
2609 
2610 static const struct hci_init_stage hci_init0[] = {
2611 	/* HCI_OP_READ_LOCAL_VERSION */
2612 	HCI_INIT(hci_read_local_version_sync),
2613 	/* HCI_OP_READ_BD_ADDR */
2614 	HCI_INIT(hci_read_bd_addr_sync),
2615 	{}
2616 };
2617 
2618 int hci_reset_sync(struct hci_dev *hdev)
2619 {
2620 	int err;
2621 
2622 	set_bit(HCI_RESET, &hdev->flags);
2623 
2624 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
2625 				    HCI_CMD_TIMEOUT);
2626 	if (err)
2627 		return err;
2628 
2629 	return 0;
2630 }
2631 
2632 static int hci_init0_sync(struct hci_dev *hdev)
2633 {
2634 	int err;
2635 
2636 	bt_dev_dbg(hdev, "");
2637 
2638 	/* Reset */
2639 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2640 		err = hci_reset_sync(hdev);
2641 		if (err)
2642 			return err;
2643 	}
2644 
2645 	return hci_init_stage_sync(hdev, hci_init0);
2646 }
2647 
2648 static int hci_unconf_init_sync(struct hci_dev *hdev)
2649 {
2650 	int err;
2651 
2652 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2653 		return 0;
2654 
2655 	err = hci_init0_sync(hdev);
2656 	if (err < 0)
2657 		return err;
2658 
2659 	if (hci_dev_test_flag(hdev, HCI_SETUP))
2660 		hci_debugfs_create_basic(hdev);
2661 
2662 	return 0;
2663 }
2664 
2665 /* Read Local Supported Features. */
2666 static int hci_read_local_features_sync(struct hci_dev *hdev)
2667 {
2668 	 /* Not all AMP controllers support this command */
2669 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
2670 		return 0;
2671 
2672 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
2673 				     0, NULL, HCI_CMD_TIMEOUT);
2674 }
2675 
2676 /* BR Controller init stage 1 command sequence */
2677 static const struct hci_init_stage br_init1[] = {
2678 	/* HCI_OP_READ_LOCAL_FEATURES */
2679 	HCI_INIT(hci_read_local_features_sync),
2680 	/* HCI_OP_READ_LOCAL_VERSION */
2681 	HCI_INIT(hci_read_local_version_sync),
2682 	/* HCI_OP_READ_BD_ADDR */
2683 	HCI_INIT(hci_read_bd_addr_sync),
2684 	{}
2685 };
2686 
2687 /* Read Local Commands */
2688 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
2689 {
2690 	/* All Bluetooth 1.2 and later controllers should support the
2691 	 * HCI command for reading the local supported commands.
2692 	 *
2693 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
2694 	 * but do not have support for this command. If that is the case,
2695 	 * the driver can quirk the behavior and skip reading the local
2696 	 * supported commands.
2697 	 */
2698 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
2699 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
2700 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
2701 					     0, NULL, HCI_CMD_TIMEOUT);
2702 
2703 	return 0;
2704 }
2705 
2706 /* Read Local AMP Info */
2707 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
2708 {
2709 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
2710 				     0, NULL, HCI_CMD_TIMEOUT);
2711 }
2712 
2713 /* Read Data Blk size */
2714 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
2715 {
2716 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
2717 				     0, NULL, HCI_CMD_TIMEOUT);
2718 }
2719 
2720 /* Read Flow Control Mode */
2721 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
2722 {
2723 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
2724 				     0, NULL, HCI_CMD_TIMEOUT);
2725 }
2726 
2727 /* Read Location Data */
2728 static int hci_read_location_data_sync(struct hci_dev *hdev)
2729 {
2730 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
2731 				     0, NULL, HCI_CMD_TIMEOUT);
2732 }
2733 
2734 /* AMP Controller init stage 1 command sequence */
2735 static const struct hci_init_stage amp_init1[] = {
2736 	/* HCI_OP_READ_LOCAL_VERSION */
2737 	HCI_INIT(hci_read_local_version_sync),
2738 	/* HCI_OP_READ_LOCAL_COMMANDS */
2739 	HCI_INIT(hci_read_local_cmds_sync),
2740 	/* HCI_OP_READ_LOCAL_AMP_INFO */
2741 	HCI_INIT(hci_read_local_amp_info_sync),
2742 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
2743 	HCI_INIT(hci_read_data_block_size_sync),
2744 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
2745 	HCI_INIT(hci_read_flow_control_mode_sync),
2746 	/* HCI_OP_READ_LOCATION_DATA */
2747 	HCI_INIT(hci_read_location_data_sync),
2748 };
2749 
2750 static int hci_init1_sync(struct hci_dev *hdev)
2751 {
2752 	int err;
2753 
2754 	bt_dev_dbg(hdev, "");
2755 
2756 	/* Reset */
2757 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2758 		err = hci_reset_sync(hdev);
2759 		if (err)
2760 			return err;
2761 	}
2762 
2763 	switch (hdev->dev_type) {
2764 	case HCI_PRIMARY:
2765 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
2766 		return hci_init_stage_sync(hdev, br_init1);
2767 	case HCI_AMP:
2768 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
2769 		return hci_init_stage_sync(hdev, amp_init1);
2770 	default:
2771 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
2772 		break;
2773 	}
2774 
2775 	return 0;
2776 }
2777 
2778 /* AMP Controller init stage 2 command sequence */
2779 static const struct hci_init_stage amp_init2[] = {
2780 	/* HCI_OP_READ_LOCAL_FEATURES */
2781 	HCI_INIT(hci_read_local_features_sync),
2782 };
2783 
2784 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
2785 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
2786 {
2787 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
2788 				     0, NULL, HCI_CMD_TIMEOUT);
2789 }
2790 
2791 /* Read Class of Device */
2792 static int hci_read_dev_class_sync(struct hci_dev *hdev)
2793 {
2794 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
2795 				     0, NULL, HCI_CMD_TIMEOUT);
2796 }
2797 
2798 /* Read Local Name */
2799 static int hci_read_local_name_sync(struct hci_dev *hdev)
2800 {
2801 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
2802 				     0, NULL, HCI_CMD_TIMEOUT);
2803 }
2804 
2805 /* Read Voice Setting */
2806 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
2807 {
2808 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
2809 				     0, NULL, HCI_CMD_TIMEOUT);
2810 }
2811 
2812 /* Read Number of Supported IAC */
2813 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
2814 {
2815 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
2816 				     0, NULL, HCI_CMD_TIMEOUT);
2817 }
2818 
2819 /* Read Current IAC LAP */
2820 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
2821 {
2822 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
2823 				     0, NULL, HCI_CMD_TIMEOUT);
2824 }
2825 
2826 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
2827 				     u8 cond_type, bdaddr_t *bdaddr,
2828 				     u8 auto_accept)
2829 {
2830 	struct hci_cp_set_event_filter cp;
2831 
2832 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2833 		return 0;
2834 
2835 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
2836 		return 0;
2837 
2838 	memset(&cp, 0, sizeof(cp));
2839 	cp.flt_type = flt_type;
2840 
2841 	if (flt_type != HCI_FLT_CLEAR_ALL) {
2842 		cp.cond_type = cond_type;
2843 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
2844 		cp.addr_conn_flt.auto_accept = auto_accept;
2845 	}
2846 
2847 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
2848 				     flt_type == HCI_FLT_CLEAR_ALL ?
2849 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
2850 				     HCI_CMD_TIMEOUT);
2851 }
2852 
2853 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
2854 {
2855 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
2856 		return 0;
2857 
2858 	/* In theory the state machine should not reach here unless
2859 	 * a hci_set_event_filter_sync() call succeeds, but we do
2860 	 * the check both for parity and as a future reminder.
2861 	 */
2862 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
2863 		return 0;
2864 
2865 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
2866 					 BDADDR_ANY, 0x00);
2867 }
2868 
2869 /* Connection accept timeout ~20 secs */
2870 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
2871 {
2872 	__le16 param = cpu_to_le16(0x7d00);
2873 
2874 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
2875 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
2876 }
2877 
2878 /* BR Controller init stage 2 command sequence */
2879 static const struct hci_init_stage br_init2[] = {
2880 	/* HCI_OP_READ_BUFFER_SIZE */
2881 	HCI_INIT(hci_read_buffer_size_sync),
2882 	/* HCI_OP_READ_CLASS_OF_DEV */
2883 	HCI_INIT(hci_read_dev_class_sync),
2884 	/* HCI_OP_READ_LOCAL_NAME */
2885 	HCI_INIT(hci_read_local_name_sync),
2886 	/* HCI_OP_READ_VOICE_SETTING */
2887 	HCI_INIT(hci_read_voice_setting_sync),
2888 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
2889 	HCI_INIT(hci_read_num_supported_iac_sync),
2890 	/* HCI_OP_READ_CURRENT_IAC_LAP */
2891 	HCI_INIT(hci_read_current_iac_lap_sync),
2892 	/* HCI_OP_SET_EVENT_FLT */
2893 	HCI_INIT(hci_clear_event_filter_sync),
2894 	/* HCI_OP_WRITE_CA_TIMEOUT */
2895 	HCI_INIT(hci_write_ca_timeout_sync),
2896 	{}
2897 };
2898 
2899 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
2900 {
2901 	u8 mode = 0x01;
2902 
2903 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2904 		return 0;
2905 
2906 	/* When SSP is available, then the host features page
2907 	 * should also be available as well. However some
2908 	 * controllers list the max_page as 0 as long as SSP
2909 	 * has not been enabled. To achieve proper debugging
2910 	 * output, force the minimum max_page to 1 at least.
2911 	 */
2912 	hdev->max_page = 0x01;
2913 
2914 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2915 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2916 }
2917 
2918 static int hci_write_eir_sync(struct hci_dev *hdev)
2919 {
2920 	struct hci_cp_write_eir cp;
2921 
2922 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2923 		return 0;
2924 
2925 	memset(hdev->eir, 0, sizeof(hdev->eir));
2926 	memset(&cp, 0, sizeof(cp));
2927 
2928 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
2929 				     HCI_CMD_TIMEOUT);
2930 }
2931 
2932 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
2933 {
2934 	u8 mode;
2935 
2936 	if (!lmp_inq_rssi_capable(hdev) &&
2937 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
2938 		return 0;
2939 
2940 	/* If Extended Inquiry Result events are supported, then
2941 	 * they are clearly preferred over Inquiry Result with RSSI
2942 	 * events.
2943 	 */
2944 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
2945 
2946 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
2947 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2948 }
2949 
2950 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
2951 {
2952 	if (!lmp_inq_tx_pwr_capable(hdev))
2953 		return 0;
2954 
2955 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
2956 				     0, NULL, HCI_CMD_TIMEOUT);
2957 }
2958 
2959 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
2960 {
2961 	struct hci_cp_read_local_ext_features cp;
2962 
2963 	if (!lmp_ext_feat_capable(hdev))
2964 		return 0;
2965 
2966 	memset(&cp, 0, sizeof(cp));
2967 	cp.page = page;
2968 
2969 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
2970 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2971 }
2972 
2973 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
2974 {
2975 	return hci_read_local_ext_features_sync(hdev, 0x01);
2976 }
2977 
2978 /* HCI Controller init stage 2 command sequence */
2979 static const struct hci_init_stage hci_init2[] = {
2980 	/* HCI_OP_READ_LOCAL_COMMANDS */
2981 	HCI_INIT(hci_read_local_cmds_sync),
2982 	/* HCI_OP_WRITE_SSP_MODE */
2983 	HCI_INIT(hci_write_ssp_mode_1_sync),
2984 	/* HCI_OP_WRITE_EIR */
2985 	HCI_INIT(hci_write_eir_sync),
2986 	/* HCI_OP_WRITE_INQUIRY_MODE */
2987 	HCI_INIT(hci_write_inquiry_mode_sync),
2988 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
2989 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
2990 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
2991 	HCI_INIT(hci_read_local_ext_features_1_sync),
2992 	/* HCI_OP_WRITE_AUTH_ENABLE */
2993 	HCI_INIT(hci_write_auth_enable_sync),
2994 	{}
2995 };
2996 
2997 /* Read LE Buffer Size */
2998 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
2999 {
3000 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3001 				     0, NULL, HCI_CMD_TIMEOUT);
3002 }
3003 
3004 /* Read LE Local Supported Features */
3005 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3006 {
3007 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3008 				     0, NULL, HCI_CMD_TIMEOUT);
3009 }
3010 
3011 /* Read LE Supported States */
3012 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3013 {
3014 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3015 				     0, NULL, HCI_CMD_TIMEOUT);
3016 }
3017 
3018 /* LE Controller init stage 2 command sequence */
3019 static const struct hci_init_stage le_init2[] = {
3020 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3021 	HCI_INIT(hci_le_read_buffer_size_sync),
3022 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3023 	HCI_INIT(hci_le_read_local_features_sync),
3024 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3025 	HCI_INIT(hci_le_read_supported_states_sync),
3026 	{}
3027 };
3028 
3029 static int hci_init2_sync(struct hci_dev *hdev)
3030 {
3031 	int err;
3032 
3033 	bt_dev_dbg(hdev, "");
3034 
3035 	if (hdev->dev_type == HCI_AMP)
3036 		return hci_init_stage_sync(hdev, amp_init2);
3037 
3038 	if (lmp_bredr_capable(hdev)) {
3039 		err = hci_init_stage_sync(hdev, br_init2);
3040 		if (err)
3041 			return err;
3042 	} else {
3043 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3044 	}
3045 
3046 	if (lmp_le_capable(hdev)) {
3047 		err = hci_init_stage_sync(hdev, le_init2);
3048 		if (err)
3049 			return err;
3050 		/* LE-only controllers have LE implicitly enabled */
3051 		if (!lmp_bredr_capable(hdev))
3052 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3053 	}
3054 
3055 	return hci_init_stage_sync(hdev, hci_init2);
3056 }
3057 
3058 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3059 {
3060 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3061 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3062 	 * command otherwise.
3063 	 */
3064 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3065 
3066 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3067 	 * any event mask for pre 1.2 devices.
3068 	 */
3069 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3070 		return 0;
3071 
3072 	if (lmp_bredr_capable(hdev)) {
3073 		events[4] |= 0x01; /* Flow Specification Complete */
3074 
3075 		/* Don't set Disconnect Complete when suspended as that
3076 		 * would wakeup the host when disconnecting due to
3077 		 * suspend.
3078 		 */
3079 		if (hdev->suspended)
3080 			events[0] &= 0xef;
3081 	} else {
3082 		/* Use a different default for LE-only devices */
3083 		memset(events, 0, sizeof(events));
3084 		events[1] |= 0x20; /* Command Complete */
3085 		events[1] |= 0x40; /* Command Status */
3086 		events[1] |= 0x80; /* Hardware Error */
3087 
3088 		/* If the controller supports the Disconnect command, enable
3089 		 * the corresponding event. In addition enable packet flow
3090 		 * control related events.
3091 		 */
3092 		if (hdev->commands[0] & 0x20) {
3093 			/* Don't set Disconnect Complete when suspended as that
3094 			 * would wakeup the host when disconnecting due to
3095 			 * suspend.
3096 			 */
3097 			if (!hdev->suspended)
3098 				events[0] |= 0x10; /* Disconnection Complete */
3099 			events[2] |= 0x04; /* Number of Completed Packets */
3100 			events[3] |= 0x02; /* Data Buffer Overflow */
3101 		}
3102 
3103 		/* If the controller supports the Read Remote Version
3104 		 * Information command, enable the corresponding event.
3105 		 */
3106 		if (hdev->commands[2] & 0x80)
3107 			events[1] |= 0x08; /* Read Remote Version Information
3108 					    * Complete
3109 					    */
3110 
3111 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3112 			events[0] |= 0x80; /* Encryption Change */
3113 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3114 		}
3115 	}
3116 
3117 	if (lmp_inq_rssi_capable(hdev) ||
3118 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3119 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3120 
3121 	if (lmp_ext_feat_capable(hdev))
3122 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3123 
3124 	if (lmp_esco_capable(hdev)) {
3125 		events[5] |= 0x08; /* Synchronous Connection Complete */
3126 		events[5] |= 0x10; /* Synchronous Connection Changed */
3127 	}
3128 
3129 	if (lmp_sniffsubr_capable(hdev))
3130 		events[5] |= 0x20; /* Sniff Subrating */
3131 
3132 	if (lmp_pause_enc_capable(hdev))
3133 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3134 
3135 	if (lmp_ext_inq_capable(hdev))
3136 		events[5] |= 0x40; /* Extended Inquiry Result */
3137 
3138 	if (lmp_no_flush_capable(hdev))
3139 		events[7] |= 0x01; /* Enhanced Flush Complete */
3140 
3141 	if (lmp_lsto_capable(hdev))
3142 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3143 
3144 	if (lmp_ssp_capable(hdev)) {
3145 		events[6] |= 0x01;	/* IO Capability Request */
3146 		events[6] |= 0x02;	/* IO Capability Response */
3147 		events[6] |= 0x04;	/* User Confirmation Request */
3148 		events[6] |= 0x08;	/* User Passkey Request */
3149 		events[6] |= 0x10;	/* Remote OOB Data Request */
3150 		events[6] |= 0x20;	/* Simple Pairing Complete */
3151 		events[7] |= 0x04;	/* User Passkey Notification */
3152 		events[7] |= 0x08;	/* Keypress Notification */
3153 		events[7] |= 0x10;	/* Remote Host Supported
3154 					 * Features Notification
3155 					 */
3156 	}
3157 
3158 	if (lmp_le_capable(hdev))
3159 		events[7] |= 0x20;	/* LE Meta-Event */
3160 
3161 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3162 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3163 }
3164 
3165 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3166 {
3167 	struct hci_cp_read_stored_link_key cp;
3168 
3169 	if (!(hdev->commands[6] & 0x20) ||
3170 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3171 		return 0;
3172 
3173 	memset(&cp, 0, sizeof(cp));
3174 	bacpy(&cp.bdaddr, BDADDR_ANY);
3175 	cp.read_all = 0x01;
3176 
3177 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3178 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3179 }
3180 
3181 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3182 {
3183 	struct hci_cp_write_def_link_policy cp;
3184 	u16 link_policy = 0;
3185 
3186 	if (!(hdev->commands[5] & 0x10))
3187 		return 0;
3188 
3189 	memset(&cp, 0, sizeof(cp));
3190 
3191 	if (lmp_rswitch_capable(hdev))
3192 		link_policy |= HCI_LP_RSWITCH;
3193 	if (lmp_hold_capable(hdev))
3194 		link_policy |= HCI_LP_HOLD;
3195 	if (lmp_sniff_capable(hdev))
3196 		link_policy |= HCI_LP_SNIFF;
3197 	if (lmp_park_capable(hdev))
3198 		link_policy |= HCI_LP_PARK;
3199 
3200 	cp.policy = cpu_to_le16(link_policy);
3201 
3202 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3203 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3204 }
3205 
3206 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3207 {
3208 	if (!(hdev->commands[8] & 0x01))
3209 		return 0;
3210 
3211 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3212 				     0, NULL, HCI_CMD_TIMEOUT);
3213 }
3214 
3215 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3216 {
3217 	if (!(hdev->commands[18] & 0x04) ||
3218 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3219 		return 0;
3220 
3221 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3222 				     0, NULL, HCI_CMD_TIMEOUT);
3223 }
3224 
3225 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3226 {
3227 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3228 	 * support the Read Page Scan Type command. Check support for
3229 	 * this command in the bit mask of supported commands.
3230 	 */
3231 	if (!(hdev->commands[13] & 0x01))
3232 		return 0;
3233 
3234 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3235 				     0, NULL, HCI_CMD_TIMEOUT);
3236 }
3237 
3238 /* Read features beyond page 1 if available */
3239 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3240 {
3241 	u8 page;
3242 	int err;
3243 
3244 	if (!lmp_ext_feat_capable(hdev))
3245 		return 0;
3246 
3247 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3248 	     page++) {
3249 		err = hci_read_local_ext_features_sync(hdev, page);
3250 		if (err)
3251 			return err;
3252 	}
3253 
3254 	return 0;
3255 }
3256 
3257 /* HCI Controller init stage 3 command sequence */
3258 static const struct hci_init_stage hci_init3[] = {
3259 	/* HCI_OP_SET_EVENT_MASK */
3260 	HCI_INIT(hci_set_event_mask_sync),
3261 	/* HCI_OP_READ_STORED_LINK_KEY */
3262 	HCI_INIT(hci_read_stored_link_key_sync),
3263 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3264 	HCI_INIT(hci_setup_link_policy_sync),
3265 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3266 	HCI_INIT(hci_read_page_scan_activity_sync),
3267 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3268 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3269 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3270 	HCI_INIT(hci_read_page_scan_type_sync),
3271 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3272 	HCI_INIT(hci_read_local_ext_features_all_sync),
3273 	{}
3274 };
3275 
3276 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3277 {
3278 	u8 events[8];
3279 
3280 	if (!lmp_le_capable(hdev))
3281 		return 0;
3282 
3283 	memset(events, 0, sizeof(events));
3284 
3285 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3286 		events[0] |= 0x10;	/* LE Long Term Key Request */
3287 
3288 	/* If controller supports the Connection Parameters Request
3289 	 * Link Layer Procedure, enable the corresponding event.
3290 	 */
3291 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3292 		/* LE Remote Connection Parameter Request */
3293 		events[0] |= 0x20;
3294 
3295 	/* If the controller supports the Data Length Extension
3296 	 * feature, enable the corresponding event.
3297 	 */
3298 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3299 		events[0] |= 0x40;	/* LE Data Length Change */
3300 
3301 	/* If the controller supports LL Privacy feature or LE Extended Adv,
3302 	 * enable the corresponding event.
3303 	 */
3304 	if (use_enhanced_conn_complete(hdev))
3305 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3306 
3307 	/* If the controller supports Extended Scanner Filter
3308 	 * Policies, enable the corresponding event.
3309 	 */
3310 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3311 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3312 
3313 	/* If the controller supports Channel Selection Algorithm #2
3314 	 * feature, enable the corresponding event.
3315 	 */
3316 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3317 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3318 
3319 	/* If the controller supports the LE Set Scan Enable command,
3320 	 * enable the corresponding advertising report event.
3321 	 */
3322 	if (hdev->commands[26] & 0x08)
3323 		events[0] |= 0x02;	/* LE Advertising Report */
3324 
3325 	/* If the controller supports the LE Create Connection
3326 	 * command, enable the corresponding event.
3327 	 */
3328 	if (hdev->commands[26] & 0x10)
3329 		events[0] |= 0x01;	/* LE Connection Complete */
3330 
3331 	/* If the controller supports the LE Connection Update
3332 	 * command, enable the corresponding event.
3333 	 */
3334 	if (hdev->commands[27] & 0x04)
3335 		events[0] |= 0x04;	/* LE Connection Update Complete */
3336 
3337 	/* If the controller supports the LE Read Remote Used Features
3338 	 * command, enable the corresponding event.
3339 	 */
3340 	if (hdev->commands[27] & 0x20)
3341 		/* LE Read Remote Used Features Complete */
3342 		events[0] |= 0x08;
3343 
3344 	/* If the controller supports the LE Read Local P-256
3345 	 * Public Key command, enable the corresponding event.
3346 	 */
3347 	if (hdev->commands[34] & 0x02)
3348 		/* LE Read Local P-256 Public Key Complete */
3349 		events[0] |= 0x80;
3350 
3351 	/* If the controller supports the LE Generate DHKey
3352 	 * command, enable the corresponding event.
3353 	 */
3354 	if (hdev->commands[34] & 0x04)
3355 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
3356 
3357 	/* If the controller supports the LE Set Default PHY or
3358 	 * LE Set PHY commands, enable the corresponding event.
3359 	 */
3360 	if (hdev->commands[35] & (0x20 | 0x40))
3361 		events[1] |= 0x08;        /* LE PHY Update Complete */
3362 
3363 	/* If the controller supports LE Set Extended Scan Parameters
3364 	 * and LE Set Extended Scan Enable commands, enable the
3365 	 * corresponding event.
3366 	 */
3367 	if (use_ext_scan(hdev))
3368 		events[1] |= 0x10;	/* LE Extended Advertising Report */
3369 
3370 	/* If the controller supports the LE Extended Advertising
3371 	 * command, enable the corresponding event.
3372 	 */
3373 	if (ext_adv_capable(hdev))
3374 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
3375 
3376 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
3377 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3378 }
3379 
3380 /* Read LE Advertising Channel TX Power */
3381 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
3382 {
3383 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
3384 		/* HCI TS spec forbids mixing of legacy and extended
3385 		 * advertising commands wherein READ_ADV_TX_POWER is
3386 		 * also included. So do not call it if extended adv
3387 		 * is supported otherwise controller will return
3388 		 * COMMAND_DISALLOWED for extended commands.
3389 		 */
3390 		return __hci_cmd_sync_status(hdev,
3391 					       HCI_OP_LE_READ_ADV_TX_POWER,
3392 					       0, NULL, HCI_CMD_TIMEOUT);
3393 	}
3394 
3395 	return 0;
3396 }
3397 
3398 /* Read LE Min/Max Tx Power*/
3399 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
3400 {
3401 	if (!(hdev->commands[38] & 0x80) ||
3402 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
3403 		return 0;
3404 
3405 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
3406 				     0, NULL, HCI_CMD_TIMEOUT);
3407 }
3408 
3409 /* Read LE Accept List Size */
3410 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
3411 {
3412 	if (!(hdev->commands[26] & 0x40))
3413 		return 0;
3414 
3415 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
3416 				     0, NULL, HCI_CMD_TIMEOUT);
3417 }
3418 
3419 /* Clear LE Accept List */
3420 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
3421 {
3422 	if (!(hdev->commands[26] & 0x80))
3423 		return 0;
3424 
3425 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
3426 				     HCI_CMD_TIMEOUT);
3427 }
3428 
3429 /* Read LE Resolving List Size */
3430 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
3431 {
3432 	if (!(hdev->commands[34] & 0x40))
3433 		return 0;
3434 
3435 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
3436 				     0, NULL, HCI_CMD_TIMEOUT);
3437 }
3438 
3439 /* Clear LE Resolving List */
3440 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
3441 {
3442 	if (!(hdev->commands[34] & 0x20))
3443 		return 0;
3444 
3445 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
3446 				     HCI_CMD_TIMEOUT);
3447 }
3448 
3449 /* Set RPA timeout */
3450 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
3451 {
3452 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
3453 
3454 	if (!(hdev->commands[35] & 0x04))
3455 		return 0;
3456 
3457 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
3458 				     sizeof(timeout), &timeout,
3459 				     HCI_CMD_TIMEOUT);
3460 }
3461 
3462 /* Read LE Maximum Data Length */
3463 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
3464 {
3465 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3466 		return 0;
3467 
3468 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
3469 				     HCI_CMD_TIMEOUT);
3470 }
3471 
3472 /* Read LE Suggested Default Data Length */
3473 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
3474 {
3475 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3476 		return 0;
3477 
3478 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
3479 				     HCI_CMD_TIMEOUT);
3480 }
3481 
3482 /* Read LE Number of Supported Advertising Sets */
3483 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
3484 {
3485 	if (!ext_adv_capable(hdev))
3486 		return 0;
3487 
3488 	return __hci_cmd_sync_status(hdev,
3489 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
3490 				     0, NULL, HCI_CMD_TIMEOUT);
3491 }
3492 
3493 /* Write LE Host Supported */
3494 static int hci_set_le_support_sync(struct hci_dev *hdev)
3495 {
3496 	struct hci_cp_write_le_host_supported cp;
3497 
3498 	/* LE-only devices do not support explicit enablement */
3499 	if (!lmp_bredr_capable(hdev))
3500 		return 0;
3501 
3502 	memset(&cp, 0, sizeof(cp));
3503 
3504 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3505 		cp.le = 0x01;
3506 		cp.simul = 0x00;
3507 	}
3508 
3509 	if (cp.le == lmp_host_le_capable(hdev))
3510 		return 0;
3511 
3512 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3513 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3514 }
3515 
3516 /* LE Controller init stage 3 command sequence */
3517 static const struct hci_init_stage le_init3[] = {
3518 	/* HCI_OP_LE_SET_EVENT_MASK */
3519 	HCI_INIT(hci_le_set_event_mask_sync),
3520 	/* HCI_OP_LE_READ_ADV_TX_POWER */
3521 	HCI_INIT(hci_le_read_adv_tx_power_sync),
3522 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
3523 	HCI_INIT(hci_le_read_tx_power_sync),
3524 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
3525 	HCI_INIT(hci_le_read_accept_list_size_sync),
3526 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
3527 	HCI_INIT(hci_le_clear_accept_list_sync),
3528 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
3529 	HCI_INIT(hci_le_read_resolv_list_size_sync),
3530 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
3531 	HCI_INIT(hci_le_clear_resolv_list_sync),
3532 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
3533 	HCI_INIT(hci_le_set_rpa_timeout_sync),
3534 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
3535 	HCI_INIT(hci_le_read_max_data_len_sync),
3536 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
3537 	HCI_INIT(hci_le_read_def_data_len_sync),
3538 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
3539 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
3540 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
3541 	HCI_INIT(hci_set_le_support_sync),
3542 	{}
3543 };
3544 
3545 static int hci_init3_sync(struct hci_dev *hdev)
3546 {
3547 	int err;
3548 
3549 	bt_dev_dbg(hdev, "");
3550 
3551 	err = hci_init_stage_sync(hdev, hci_init3);
3552 	if (err)
3553 		return err;
3554 
3555 	if (lmp_le_capable(hdev))
3556 		return hci_init_stage_sync(hdev, le_init3);
3557 
3558 	return 0;
3559 }
3560 
3561 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
3562 {
3563 	struct hci_cp_delete_stored_link_key cp;
3564 
3565 	/* Some Broadcom based Bluetooth controllers do not support the
3566 	 * Delete Stored Link Key command. They are clearly indicating its
3567 	 * absence in the bit mask of supported commands.
3568 	 *
3569 	 * Check the supported commands and only if the command is marked
3570 	 * as supported send it. If not supported assume that the controller
3571 	 * does not have actual support for stored link keys which makes this
3572 	 * command redundant anyway.
3573 	 *
3574 	 * Some controllers indicate that they support handling deleting
3575 	 * stored link keys, but they don't. The quirk lets a driver
3576 	 * just disable this command.
3577 	 */
3578 	if (!(hdev->commands[6] & 0x80) ||
3579 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3580 		return 0;
3581 
3582 	memset(&cp, 0, sizeof(cp));
3583 	bacpy(&cp.bdaddr, BDADDR_ANY);
3584 	cp.delete_all = 0x01;
3585 
3586 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
3587 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3588 }
3589 
3590 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
3591 {
3592 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
3593 	bool changed = false;
3594 
3595 	/* Set event mask page 2 if the HCI command for it is supported */
3596 	if (!(hdev->commands[22] & 0x04))
3597 		return 0;
3598 
3599 	/* If Connectionless Peripheral Broadcast central role is supported
3600 	 * enable all necessary events for it.
3601 	 */
3602 	if (lmp_cpb_central_capable(hdev)) {
3603 		events[1] |= 0x40;	/* Triggered Clock Capture */
3604 		events[1] |= 0x80;	/* Synchronization Train Complete */
3605 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
3606 		events[2] |= 0x20;	/* CPB Channel Map Change */
3607 		changed = true;
3608 	}
3609 
3610 	/* If Connectionless Peripheral Broadcast peripheral role is supported
3611 	 * enable all necessary events for it.
3612 	 */
3613 	if (lmp_cpb_peripheral_capable(hdev)) {
3614 		events[2] |= 0x01;	/* Synchronization Train Received */
3615 		events[2] |= 0x02;	/* CPB Receive */
3616 		events[2] |= 0x04;	/* CPB Timeout */
3617 		events[2] |= 0x08;	/* Truncated Page Complete */
3618 		changed = true;
3619 	}
3620 
3621 	/* Enable Authenticated Payload Timeout Expired event if supported */
3622 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
3623 		events[2] |= 0x80;
3624 		changed = true;
3625 	}
3626 
3627 	/* Some Broadcom based controllers indicate support for Set Event
3628 	 * Mask Page 2 command, but then actually do not support it. Since
3629 	 * the default value is all bits set to zero, the command is only
3630 	 * required if the event mask has to be changed. In case no change
3631 	 * to the event mask is needed, skip this command.
3632 	 */
3633 	if (!changed)
3634 		return 0;
3635 
3636 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
3637 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3638 }
3639 
3640 /* Read local codec list if the HCI command is supported */
3641 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
3642 {
3643 	if (!(hdev->commands[29] & 0x20))
3644 		return 0;
3645 
3646 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL,
3647 				     HCI_CMD_TIMEOUT);
3648 }
3649 
3650 /* Read local pairing options if the HCI command is supported */
3651 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
3652 {
3653 	if (!(hdev->commands[41] & 0x08))
3654 		return 0;
3655 
3656 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
3657 				     0, NULL, HCI_CMD_TIMEOUT);
3658 }
3659 
3660 /* Get MWS transport configuration if the HCI command is supported */
3661 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
3662 {
3663 	if (!(hdev->commands[30] & 0x08))
3664 		return 0;
3665 
3666 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
3667 				     0, NULL, HCI_CMD_TIMEOUT);
3668 }
3669 
3670 /* Check for Synchronization Train support */
3671 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
3672 {
3673 	if (!lmp_sync_train_capable(hdev))
3674 		return 0;
3675 
3676 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
3677 				     0, NULL, HCI_CMD_TIMEOUT);
3678 }
3679 
3680 /* Enable Secure Connections if supported and configured */
3681 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
3682 {
3683 	u8 support = 0x01;
3684 
3685 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3686 	    !bredr_sc_enabled(hdev))
3687 		return 0;
3688 
3689 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3690 				     sizeof(support), &support,
3691 				     HCI_CMD_TIMEOUT);
3692 }
3693 
3694 /* Set erroneous data reporting if supported to the wideband speech
3695  * setting value
3696  */
3697 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
3698 {
3699 	struct hci_cp_write_def_err_data_reporting cp;
3700 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
3701 
3702 	if (!(hdev->commands[18] & 0x08) ||
3703 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3704 		return 0;
3705 
3706 	if (enabled == hdev->err_data_reporting)
3707 		return 0;
3708 
3709 	memset(&cp, 0, sizeof(cp));
3710 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
3711 				ERR_DATA_REPORTING_DISABLED;
3712 
3713 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
3714 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3715 }
3716 
3717 static const struct hci_init_stage hci_init4[] = {
3718 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
3719 	HCI_INIT(hci_delete_stored_link_key_sync),
3720 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
3721 	HCI_INIT(hci_set_event_mask_page_2_sync),
3722 	/* HCI_OP_READ_LOCAL_CODECS */
3723 	HCI_INIT(hci_read_local_codecs_sync),
3724 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
3725 	HCI_INIT(hci_read_local_pairing_opts_sync),
3726 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
3727 	HCI_INIT(hci_get_mws_transport_config_sync),
3728 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
3729 	HCI_INIT(hci_read_sync_train_params_sync),
3730 	/* HCI_OP_WRITE_SC_SUPPORT */
3731 	HCI_INIT(hci_write_sc_support_1_sync),
3732 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
3733 	HCI_INIT(hci_set_err_data_report_sync),
3734 	{}
3735 };
3736 
3737 /* Set Suggested Default Data Length to maximum if supported */
3738 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
3739 {
3740 	struct hci_cp_le_write_def_data_len cp;
3741 
3742 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3743 		return 0;
3744 
3745 	memset(&cp, 0, sizeof(cp));
3746 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
3747 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
3748 
3749 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
3750 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3751 }
3752 
3753 /* Set Default PHY parameters if command is supported */
3754 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
3755 {
3756 	struct hci_cp_le_set_default_phy cp;
3757 
3758 	if (!(hdev->commands[35] & 0x20))
3759 		return 0;
3760 
3761 	memset(&cp, 0, sizeof(cp));
3762 	cp.all_phys = 0x00;
3763 	cp.tx_phys = hdev->le_tx_def_phys;
3764 	cp.rx_phys = hdev->le_rx_def_phys;
3765 
3766 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
3767 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3768 }
3769 
3770 static const struct hci_init_stage le_init4[] = {
3771 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
3772 	HCI_INIT(hci_le_set_write_def_data_len_sync),
3773 	/* HCI_OP_LE_SET_DEFAULT_PHY */
3774 	HCI_INIT(hci_le_set_default_phy_sync),
3775 	{}
3776 };
3777 
3778 static int hci_init4_sync(struct hci_dev *hdev)
3779 {
3780 	int err;
3781 
3782 	bt_dev_dbg(hdev, "");
3783 
3784 	err = hci_init_stage_sync(hdev, hci_init4);
3785 	if (err)
3786 		return err;
3787 
3788 	if (lmp_le_capable(hdev))
3789 		return hci_init_stage_sync(hdev, le_init4);
3790 
3791 	return 0;
3792 }
3793 
3794 static int hci_init_sync(struct hci_dev *hdev)
3795 {
3796 	int err;
3797 
3798 	err = hci_init1_sync(hdev);
3799 	if (err < 0)
3800 		return err;
3801 
3802 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3803 		hci_debugfs_create_basic(hdev);
3804 
3805 	err = hci_init2_sync(hdev);
3806 	if (err < 0)
3807 		return err;
3808 
3809 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
3810 	 * BR/EDR/LE type controllers. AMP controllers only need the
3811 	 * first two stages of init.
3812 	 */
3813 	if (hdev->dev_type != HCI_PRIMARY)
3814 		return 0;
3815 
3816 	err = hci_init3_sync(hdev);
3817 	if (err < 0)
3818 		return err;
3819 
3820 	err = hci_init4_sync(hdev);
3821 	if (err < 0)
3822 		return err;
3823 
3824 	/* This function is only called when the controller is actually in
3825 	 * configured state. When the controller is marked as unconfigured,
3826 	 * this initialization procedure is not run.
3827 	 *
3828 	 * It means that it is possible that a controller runs through its
3829 	 * setup phase and then discovers missing settings. If that is the
3830 	 * case, then this function will not be called. It then will only
3831 	 * be called during the config phase.
3832 	 *
3833 	 * So only when in setup phase or config phase, create the debugfs
3834 	 * entries and register the SMP channels.
3835 	 */
3836 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3837 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
3838 		return 0;
3839 
3840 	hci_debugfs_create_common(hdev);
3841 
3842 	if (lmp_bredr_capable(hdev))
3843 		hci_debugfs_create_bredr(hdev);
3844 
3845 	if (lmp_le_capable(hdev))
3846 		hci_debugfs_create_le(hdev);
3847 
3848 	return 0;
3849 }
3850 
3851 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
3852 
3853 static const struct {
3854 	unsigned long quirk;
3855 	const char *desc;
3856 } hci_broken_table[] = {
3857 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
3858 			 "HCI Read Local Supported Commands not supported"),
3859 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
3860 			 "HCI Delete Stored Link Key command is advertised, "
3861 			 "but not supported."),
3862 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
3863 			 "HCI Read Default Erroneous Data Reporting command is "
3864 			 "advertised, but not supported."),
3865 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
3866 			 "HCI Read Transmit Power Level command is advertised, "
3867 			 "but not supported."),
3868 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
3869 			 "HCI Set Event Filter command not supported."),
3870 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
3871 			 "HCI Enhanced Setup Synchronous Connection command is "
3872 			 "advertised, but not supported.")
3873 };
3874 
3875 int hci_dev_open_sync(struct hci_dev *hdev)
3876 {
3877 	int ret = 0;
3878 
3879 	bt_dev_dbg(hdev, "");
3880 
3881 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
3882 		ret = -ENODEV;
3883 		goto done;
3884 	}
3885 
3886 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3887 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3888 		/* Check for rfkill but allow the HCI setup stage to
3889 		 * proceed (which in itself doesn't cause any RF activity).
3890 		 */
3891 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
3892 			ret = -ERFKILL;
3893 			goto done;
3894 		}
3895 
3896 		/* Check for valid public address or a configured static
3897 		 * random address, but let the HCI setup proceed to
3898 		 * be able to determine if there is a public address
3899 		 * or not.
3900 		 *
3901 		 * In case of user channel usage, it is not important
3902 		 * if a public address or static random address is
3903 		 * available.
3904 		 *
3905 		 * This check is only valid for BR/EDR controllers
3906 		 * since AMP controllers do not have an address.
3907 		 */
3908 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3909 		    hdev->dev_type == HCI_PRIMARY &&
3910 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3911 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
3912 			ret = -EADDRNOTAVAIL;
3913 			goto done;
3914 		}
3915 	}
3916 
3917 	if (test_bit(HCI_UP, &hdev->flags)) {
3918 		ret = -EALREADY;
3919 		goto done;
3920 	}
3921 
3922 	if (hdev->open(hdev)) {
3923 		ret = -EIO;
3924 		goto done;
3925 	}
3926 
3927 	set_bit(HCI_RUNNING, &hdev->flags);
3928 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
3929 
3930 	atomic_set(&hdev->cmd_cnt, 1);
3931 	set_bit(HCI_INIT, &hdev->flags);
3932 
3933 	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
3934 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
3935 		bool invalid_bdaddr;
3936 		size_t i;
3937 
3938 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
3939 
3940 		if (hdev->setup)
3941 			ret = hdev->setup(hdev);
3942 
3943 		for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
3944 			if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
3945 				bt_dev_warn(hdev, "%s",
3946 					    hci_broken_table[i].desc);
3947 		}
3948 
3949 		/* The transport driver can set the quirk to mark the
3950 		 * BD_ADDR invalid before creating the HCI device or in
3951 		 * its setup callback.
3952 		 */
3953 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
3954 					  &hdev->quirks);
3955 
3956 		if (ret)
3957 			goto setup_failed;
3958 
3959 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
3960 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
3961 				hci_dev_get_bd_addr_from_property(hdev);
3962 
3963 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3964 			    hdev->set_bdaddr) {
3965 				ret = hdev->set_bdaddr(hdev,
3966 						       &hdev->public_addr);
3967 
3968 				/* If setting of the BD_ADDR from the device
3969 				 * property succeeds, then treat the address
3970 				 * as valid even if the invalid BD_ADDR
3971 				 * quirk indicates otherwise.
3972 				 */
3973 				if (!ret)
3974 					invalid_bdaddr = false;
3975 			}
3976 		}
3977 
3978 setup_failed:
3979 		/* The transport driver can set these quirks before
3980 		 * creating the HCI device or in its setup callback.
3981 		 *
3982 		 * For the invalid BD_ADDR quirk it is possible that
3983 		 * it becomes a valid address if the bootloader does
3984 		 * provide it (see above).
3985 		 *
3986 		 * In case any of them is set, the controller has to
3987 		 * start up as unconfigured.
3988 		 */
3989 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
3990 		    invalid_bdaddr)
3991 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3992 
3993 		/* For an unconfigured controller it is required to
3994 		 * read at least the version information provided by
3995 		 * the Read Local Version Information command.
3996 		 *
3997 		 * If the set_bdaddr driver callback is provided, then
3998 		 * also the original Bluetooth public device address
3999 		 * will be read using the Read BD Address command.
4000 		 */
4001 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4002 			ret = hci_unconf_init_sync(hdev);
4003 	}
4004 
4005 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4006 		/* If public address change is configured, ensure that
4007 		 * the address gets programmed. If the driver does not
4008 		 * support changing the public address, fail the power
4009 		 * on procedure.
4010 		 */
4011 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4012 		    hdev->set_bdaddr)
4013 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4014 		else
4015 			ret = -EADDRNOTAVAIL;
4016 	}
4017 
4018 	if (!ret) {
4019 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4020 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4021 			ret = hci_init_sync(hdev);
4022 			if (!ret && hdev->post_init)
4023 				ret = hdev->post_init(hdev);
4024 		}
4025 	}
4026 
4027 	/* If the HCI Reset command is clearing all diagnostic settings,
4028 	 * then they need to be reprogrammed after the init procedure
4029 	 * completed.
4030 	 */
4031 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4032 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4033 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4034 		ret = hdev->set_diag(hdev, true);
4035 
4036 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4037 		msft_do_open(hdev);
4038 		aosp_do_open(hdev);
4039 	}
4040 
4041 	clear_bit(HCI_INIT, &hdev->flags);
4042 
4043 	if (!ret) {
4044 		hci_dev_hold(hdev);
4045 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4046 		hci_adv_instances_set_rpa_expired(hdev, true);
4047 		set_bit(HCI_UP, &hdev->flags);
4048 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4049 		hci_leds_update_powered(hdev, true);
4050 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4051 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4052 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4053 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4054 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4055 		    hdev->dev_type == HCI_PRIMARY) {
4056 			ret = hci_powered_update_sync(hdev);
4057 		}
4058 	} else {
4059 		/* Init failed, cleanup */
4060 		flush_work(&hdev->tx_work);
4061 
4062 		/* Since hci_rx_work() is possible to awake new cmd_work
4063 		 * it should be flushed first to avoid unexpected call of
4064 		 * hci_cmd_work()
4065 		 */
4066 		flush_work(&hdev->rx_work);
4067 		flush_work(&hdev->cmd_work);
4068 
4069 		skb_queue_purge(&hdev->cmd_q);
4070 		skb_queue_purge(&hdev->rx_q);
4071 
4072 		if (hdev->flush)
4073 			hdev->flush(hdev);
4074 
4075 		if (hdev->sent_cmd) {
4076 			kfree_skb(hdev->sent_cmd);
4077 			hdev->sent_cmd = NULL;
4078 		}
4079 
4080 		clear_bit(HCI_RUNNING, &hdev->flags);
4081 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4082 
4083 		hdev->close(hdev);
4084 		hdev->flags &= BIT(HCI_RAW);
4085 	}
4086 
4087 done:
4088 	return ret;
4089 }
4090 
4091 /* This function requires the caller holds hdev->lock */
4092 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4093 {
4094 	struct hci_conn_params *p;
4095 
4096 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4097 		if (p->conn) {
4098 			hci_conn_drop(p->conn);
4099 			hci_conn_put(p->conn);
4100 			p->conn = NULL;
4101 		}
4102 		list_del_init(&p->action);
4103 	}
4104 
4105 	BT_DBG("All LE pending actions cleared");
4106 }
4107 
4108 int hci_dev_close_sync(struct hci_dev *hdev)
4109 {
4110 	bool auto_off;
4111 	int err = 0;
4112 
4113 	bt_dev_dbg(hdev, "");
4114 
4115 	cancel_delayed_work(&hdev->power_off);
4116 	cancel_delayed_work(&hdev->ncmd_timer);
4117 
4118 	hci_request_cancel_all(hdev);
4119 
4120 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4121 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4122 	    test_bit(HCI_UP, &hdev->flags)) {
4123 		/* Execute vendor specific shutdown routine */
4124 		if (hdev->shutdown)
4125 			err = hdev->shutdown(hdev);
4126 	}
4127 
4128 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4129 		cancel_delayed_work_sync(&hdev->cmd_timer);
4130 		return err;
4131 	}
4132 
4133 	hci_leds_update_powered(hdev, false);
4134 
4135 	/* Flush RX and TX works */
4136 	flush_work(&hdev->tx_work);
4137 	flush_work(&hdev->rx_work);
4138 
4139 	if (hdev->discov_timeout > 0) {
4140 		hdev->discov_timeout = 0;
4141 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4142 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4143 	}
4144 
4145 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4146 		cancel_delayed_work(&hdev->service_cache);
4147 
4148 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4149 		struct adv_info *adv_instance;
4150 
4151 		cancel_delayed_work_sync(&hdev->rpa_expired);
4152 
4153 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4154 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4155 	}
4156 
4157 	/* Avoid potential lockdep warnings from the *_flush() calls by
4158 	 * ensuring the workqueue is empty up front.
4159 	 */
4160 	drain_workqueue(hdev->workqueue);
4161 
4162 	hci_dev_lock(hdev);
4163 
4164 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4165 
4166 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4167 
4168 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4169 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4170 	    hci_dev_test_flag(hdev, HCI_MGMT))
4171 		__mgmt_power_off(hdev);
4172 
4173 	hci_inquiry_cache_flush(hdev);
4174 	hci_pend_le_actions_clear(hdev);
4175 	hci_conn_hash_flush(hdev);
4176 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4177 	smp_unregister(hdev);
4178 	hci_dev_unlock(hdev);
4179 
4180 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4181 
4182 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4183 		aosp_do_close(hdev);
4184 		msft_do_close(hdev);
4185 	}
4186 
4187 	if (hdev->flush)
4188 		hdev->flush(hdev);
4189 
4190 	/* Reset device */
4191 	skb_queue_purge(&hdev->cmd_q);
4192 	atomic_set(&hdev->cmd_cnt, 1);
4193 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4194 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4195 		set_bit(HCI_INIT, &hdev->flags);
4196 		hci_reset_sync(hdev);
4197 		clear_bit(HCI_INIT, &hdev->flags);
4198 	}
4199 
4200 	/* flush cmd  work */
4201 	flush_work(&hdev->cmd_work);
4202 
4203 	/* Drop queues */
4204 	skb_queue_purge(&hdev->rx_q);
4205 	skb_queue_purge(&hdev->cmd_q);
4206 	skb_queue_purge(&hdev->raw_q);
4207 
4208 	/* Drop last sent command */
4209 	if (hdev->sent_cmd) {
4210 		cancel_delayed_work_sync(&hdev->cmd_timer);
4211 		kfree_skb(hdev->sent_cmd);
4212 		hdev->sent_cmd = NULL;
4213 	}
4214 
4215 	clear_bit(HCI_RUNNING, &hdev->flags);
4216 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4217 
4218 	/* After this point our queues are empty and no tasks are scheduled. */
4219 	hdev->close(hdev);
4220 
4221 	/* Clear flags */
4222 	hdev->flags &= BIT(HCI_RAW);
4223 	hci_dev_clear_volatile_flags(hdev);
4224 
4225 	/* Controller radio is available but is currently powered down */
4226 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
4227 
4228 	memset(hdev->eir, 0, sizeof(hdev->eir));
4229 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
4230 	bacpy(&hdev->random_addr, BDADDR_ANY);
4231 
4232 	hci_dev_put(hdev);
4233 	return err;
4234 }
4235 
4236 /* This function perform power on HCI command sequence as follows:
4237  *
4238  * If controller is already up (HCI_UP) performs hci_powered_update_sync
4239  * sequence otherwise run hci_dev_open_sync which will follow with
4240  * hci_powered_update_sync after the init sequence is completed.
4241  */
4242 static int hci_power_on_sync(struct hci_dev *hdev)
4243 {
4244 	int err;
4245 
4246 	if (test_bit(HCI_UP, &hdev->flags) &&
4247 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
4248 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
4249 		cancel_delayed_work(&hdev->power_off);
4250 		return hci_powered_update_sync(hdev);
4251 	}
4252 
4253 	err = hci_dev_open_sync(hdev);
4254 	if (err < 0)
4255 		return err;
4256 
4257 	/* During the HCI setup phase, a few error conditions are
4258 	 * ignored and they need to be checked now. If they are still
4259 	 * valid, it is important to return the device back off.
4260 	 */
4261 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
4262 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
4263 	    (hdev->dev_type == HCI_PRIMARY &&
4264 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4265 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
4266 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
4267 		hci_dev_close_sync(hdev);
4268 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
4269 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
4270 				   HCI_AUTO_OFF_TIMEOUT);
4271 	}
4272 
4273 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
4274 		/* For unconfigured devices, set the HCI_RAW flag
4275 		 * so that userspace can easily identify them.
4276 		 */
4277 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4278 			set_bit(HCI_RAW, &hdev->flags);
4279 
4280 		/* For fully configured devices, this will send
4281 		 * the Index Added event. For unconfigured devices,
4282 		 * it will send Unconfigued Index Added event.
4283 		 *
4284 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
4285 		 * and no event will be send.
4286 		 */
4287 		mgmt_index_added(hdev);
4288 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
4289 		/* When the controller is now configured, then it
4290 		 * is important to clear the HCI_RAW flag.
4291 		 */
4292 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4293 			clear_bit(HCI_RAW, &hdev->flags);
4294 
4295 		/* Powering on the controller with HCI_CONFIG set only
4296 		 * happens with the transition from unconfigured to
4297 		 * configured. This will send the Index Added event.
4298 		 */
4299 		mgmt_index_added(hdev);
4300 	}
4301 
4302 	return 0;
4303 }
4304 
4305 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
4306 {
4307 	struct hci_cp_remote_name_req_cancel cp;
4308 
4309 	memset(&cp, 0, sizeof(cp));
4310 	bacpy(&cp.bdaddr, addr);
4311 
4312 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
4313 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4314 }
4315 
4316 int hci_stop_discovery_sync(struct hci_dev *hdev)
4317 {
4318 	struct discovery_state *d = &hdev->discovery;
4319 	struct inquiry_entry *e;
4320 	int err;
4321 
4322 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
4323 
4324 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
4325 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
4326 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
4327 						    0, NULL, HCI_CMD_TIMEOUT);
4328 			if (err)
4329 				return err;
4330 		}
4331 
4332 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
4333 			cancel_delayed_work(&hdev->le_scan_disable);
4334 			cancel_delayed_work(&hdev->le_scan_restart);
4335 
4336 			err = hci_scan_disable_sync(hdev);
4337 			if (err)
4338 				return err;
4339 		}
4340 
4341 	} else {
4342 		err = hci_scan_disable_sync(hdev);
4343 		if (err)
4344 			return err;
4345 	}
4346 
4347 	/* Resume advertising if it was paused */
4348 	if (use_ll_privacy(hdev))
4349 		hci_resume_advertising_sync(hdev);
4350 
4351 	/* No further actions needed for LE-only discovery */
4352 	if (d->type == DISCOV_TYPE_LE)
4353 		return 0;
4354 
4355 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
4356 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
4357 						     NAME_PENDING);
4358 		if (!e)
4359 			return 0;
4360 
4361 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
4362 	}
4363 
4364 	return 0;
4365 }
4366 
4367 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
4368 					u8 reason)
4369 {
4370 	struct hci_cp_disconn_phy_link cp;
4371 
4372 	memset(&cp, 0, sizeof(cp));
4373 	cp.phy_handle = HCI_PHY_HANDLE(handle);
4374 	cp.reason = reason;
4375 
4376 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
4377 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4378 }
4379 
4380 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
4381 			       u8 reason)
4382 {
4383 	struct hci_cp_disconnect cp;
4384 
4385 	if (conn->type == AMP_LINK)
4386 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
4387 
4388 	memset(&cp, 0, sizeof(cp));
4389 	cp.handle = cpu_to_le16(conn->handle);
4390 	cp.reason = reason;
4391 
4392 	/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
4393 	 * suspending.
4394 	 */
4395 	if (!hdev->suspended)
4396 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
4397 						sizeof(cp), &cp,
4398 						HCI_EV_DISCONN_COMPLETE,
4399 						HCI_CMD_TIMEOUT, NULL);
4400 
4401 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
4402 				     HCI_CMD_TIMEOUT);
4403 }
4404 
4405 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
4406 				      struct hci_conn *conn)
4407 {
4408 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
4409 		return 0;
4410 
4411 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
4412 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4413 }
4414 
4415 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
4416 {
4417 	if (conn->type == LE_LINK)
4418 		return hci_le_connect_cancel_sync(hdev, conn);
4419 
4420 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
4421 		return 0;
4422 
4423 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
4424 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4425 }
4426 
4427 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
4428 			       u8 reason)
4429 {
4430 	struct hci_cp_reject_sync_conn_req cp;
4431 
4432 	memset(&cp, 0, sizeof(cp));
4433 	bacpy(&cp.bdaddr, &conn->dst);
4434 	cp.reason = reason;
4435 
4436 	/* SCO rejection has its own limited set of
4437 	 * allowed error values (0x0D-0x0F).
4438 	 */
4439 	if (reason < 0x0d || reason > 0x0f)
4440 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
4441 
4442 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
4443 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4444 }
4445 
4446 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4447 				u8 reason)
4448 {
4449 	struct hci_cp_reject_conn_req cp;
4450 
4451 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
4452 		return hci_reject_sco_sync(hdev, conn, reason);
4453 
4454 	memset(&cp, 0, sizeof(cp));
4455 	bacpy(&cp.bdaddr, &conn->dst);
4456 	cp.reason = reason;
4457 
4458 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
4459 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4460 }
4461 
4462 static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4463 			       u8 reason)
4464 {
4465 	int err;
4466 
4467 	switch (conn->state) {
4468 	case BT_CONNECTED:
4469 	case BT_CONFIG:
4470 		return hci_disconnect_sync(hdev, conn, reason);
4471 	case BT_CONNECT:
4472 		err = hci_connect_cancel_sync(hdev, conn);
4473 		/* Cleanup hci_conn object if it cannot be cancelled as it
4474 		 * likelly means the controller and host stack are out of sync.
4475 		 */
4476 		if (err)
4477 			hci_conn_failed(conn, err);
4478 
4479 		return err;
4480 	case BT_CONNECT2:
4481 		return hci_reject_conn_sync(hdev, conn, reason);
4482 	default:
4483 		conn->state = BT_CLOSED;
4484 		break;
4485 	}
4486 
4487 	return 0;
4488 }
4489 
4490 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
4491 {
4492 	struct hci_conn *conn, *tmp;
4493 	int err;
4494 
4495 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
4496 		err = hci_abort_conn_sync(hdev, conn, reason);
4497 		if (err)
4498 			return err;
4499 	}
4500 
4501 	return 0;
4502 }
4503 
4504 /* This function perform power off HCI command sequence as follows:
4505  *
4506  * Clear Advertising
4507  * Stop Discovery
4508  * Disconnect all connections
4509  * hci_dev_close_sync
4510  */
4511 static int hci_power_off_sync(struct hci_dev *hdev)
4512 {
4513 	int err;
4514 
4515 	/* If controller is already down there is nothing to do */
4516 	if (!test_bit(HCI_UP, &hdev->flags))
4517 		return 0;
4518 
4519 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
4520 	    test_bit(HCI_PSCAN, &hdev->flags)) {
4521 		err = hci_write_scan_enable_sync(hdev, 0x00);
4522 		if (err)
4523 			return err;
4524 	}
4525 
4526 	err = hci_clear_adv_sync(hdev, NULL, false);
4527 	if (err)
4528 		return err;
4529 
4530 	err = hci_stop_discovery_sync(hdev);
4531 	if (err)
4532 		return err;
4533 
4534 	/* Terminated due to Power Off */
4535 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4536 	if (err)
4537 		return err;
4538 
4539 	return hci_dev_close_sync(hdev);
4540 }
4541 
4542 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
4543 {
4544 	if (val)
4545 		return hci_power_on_sync(hdev);
4546 
4547 	return hci_power_off_sync(hdev);
4548 }
4549 
4550 static int hci_write_iac_sync(struct hci_dev *hdev)
4551 {
4552 	struct hci_cp_write_current_iac_lap cp;
4553 
4554 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
4555 		return 0;
4556 
4557 	memset(&cp, 0, sizeof(cp));
4558 
4559 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
4560 		/* Limited discoverable mode */
4561 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
4562 		cp.iac_lap[0] = 0x00;	/* LIAC */
4563 		cp.iac_lap[1] = 0x8b;
4564 		cp.iac_lap[2] = 0x9e;
4565 		cp.iac_lap[3] = 0x33;	/* GIAC */
4566 		cp.iac_lap[4] = 0x8b;
4567 		cp.iac_lap[5] = 0x9e;
4568 	} else {
4569 		/* General discoverable mode */
4570 		cp.num_iac = 1;
4571 		cp.iac_lap[0] = 0x33;	/* GIAC */
4572 		cp.iac_lap[1] = 0x8b;
4573 		cp.iac_lap[2] = 0x9e;
4574 	}
4575 
4576 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
4577 				     (cp.num_iac * 3) + 1, &cp,
4578 				     HCI_CMD_TIMEOUT);
4579 }
4580 
4581 int hci_update_discoverable_sync(struct hci_dev *hdev)
4582 {
4583 	int err = 0;
4584 
4585 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
4586 		err = hci_write_iac_sync(hdev);
4587 		if (err)
4588 			return err;
4589 
4590 		err = hci_update_scan_sync(hdev);
4591 		if (err)
4592 			return err;
4593 
4594 		err = hci_update_class_sync(hdev);
4595 		if (err)
4596 			return err;
4597 	}
4598 
4599 	/* Advertising instances don't use the global discoverable setting, so
4600 	 * only update AD if advertising was enabled using Set Advertising.
4601 	 */
4602 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
4603 		err = hci_update_adv_data_sync(hdev, 0x00);
4604 		if (err)
4605 			return err;
4606 
4607 		/* Discoverable mode affects the local advertising
4608 		 * address in limited privacy mode.
4609 		 */
4610 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
4611 			if (ext_adv_capable(hdev))
4612 				err = hci_start_ext_adv_sync(hdev, 0x00);
4613 			else
4614 				err = hci_enable_advertising_sync(hdev);
4615 		}
4616 	}
4617 
4618 	return err;
4619 }
4620 
4621 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
4622 {
4623 	return hci_update_discoverable_sync(hdev);
4624 }
4625 
4626 int hci_update_discoverable(struct hci_dev *hdev)
4627 {
4628 	/* Only queue if it would have any effect */
4629 	if (hdev_is_powered(hdev) &&
4630 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
4631 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
4632 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
4633 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
4634 					  NULL);
4635 
4636 	return 0;
4637 }
4638 
4639 int hci_update_connectable_sync(struct hci_dev *hdev)
4640 {
4641 	int err;
4642 
4643 	err = hci_update_scan_sync(hdev);
4644 	if (err)
4645 		return err;
4646 
4647 	/* If BR/EDR is not enabled and we disable advertising as a
4648 	 * by-product of disabling connectable, we need to update the
4649 	 * advertising flags.
4650 	 */
4651 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4652 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
4653 
4654 	/* Update the advertising parameters if necessary */
4655 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
4656 	    !list_empty(&hdev->adv_instances)) {
4657 		if (ext_adv_capable(hdev))
4658 			err = hci_start_ext_adv_sync(hdev,
4659 						     hdev->cur_adv_instance);
4660 		else
4661 			err = hci_enable_advertising_sync(hdev);
4662 
4663 		if (err)
4664 			return err;
4665 	}
4666 
4667 	return hci_update_passive_scan_sync(hdev);
4668 }
4669 
4670 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
4671 {
4672 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
4673 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
4674 	struct hci_cp_inquiry cp;
4675 
4676 	bt_dev_dbg(hdev, "");
4677 
4678 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
4679 		return 0;
4680 
4681 	hci_dev_lock(hdev);
4682 	hci_inquiry_cache_flush(hdev);
4683 	hci_dev_unlock(hdev);
4684 
4685 	memset(&cp, 0, sizeof(cp));
4686 
4687 	if (hdev->discovery.limited)
4688 		memcpy(&cp.lap, liac, sizeof(cp.lap));
4689 	else
4690 		memcpy(&cp.lap, giac, sizeof(cp.lap));
4691 
4692 	cp.length = length;
4693 
4694 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
4695 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4696 }
4697 
4698 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
4699 {
4700 	u8 own_addr_type;
4701 	/* Accept list is not used for discovery */
4702 	u8 filter_policy = 0x00;
4703 	/* Default is to enable duplicates filter */
4704 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
4705 	int err;
4706 
4707 	bt_dev_dbg(hdev, "");
4708 
4709 	/* If controller is scanning, it means the passive scanning is
4710 	 * running. Thus, we should temporarily stop it in order to set the
4711 	 * discovery scanning parameters.
4712 	 */
4713 	err = hci_scan_disable_sync(hdev);
4714 	if (err) {
4715 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
4716 		return err;
4717 	}
4718 
4719 	cancel_interleave_scan(hdev);
4720 
4721 	/* Pause advertising since active scanning disables address resolution
4722 	 * which advertising depend on in order to generate its RPAs.
4723 	 */
4724 	if (use_ll_privacy(hdev)) {
4725 		err = hci_pause_advertising_sync(hdev);
4726 		if (err) {
4727 			bt_dev_err(hdev, "pause advertising failed: %d", err);
4728 			goto failed;
4729 		}
4730 	}
4731 
4732 	/* Disable address resolution while doing active scanning since the
4733 	 * accept list shall not be used and all reports shall reach the host
4734 	 * anyway.
4735 	 */
4736 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
4737 	if (err) {
4738 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
4739 			   err);
4740 		goto failed;
4741 	}
4742 
4743 	/* All active scans will be done with either a resolvable private
4744 	 * address (when privacy feature has been enabled) or non-resolvable
4745 	 * private address.
4746 	 */
4747 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
4748 					     &own_addr_type);
4749 	if (err < 0)
4750 		own_addr_type = ADDR_LE_DEV_PUBLIC;
4751 
4752 	if (hci_is_adv_monitoring(hdev)) {
4753 		/* Duplicate filter should be disabled when some advertisement
4754 		 * monitor is activated, otherwise AdvMon can only receive one
4755 		 * advertisement for one peer(*) during active scanning, and
4756 		 * might report loss to these peers.
4757 		 *
4758 		 * Note that different controllers have different meanings of
4759 		 * |duplicate|. Some of them consider packets with the same
4760 		 * address as duplicate, and others consider packets with the
4761 		 * same address and the same RSSI as duplicate. Although in the
4762 		 * latter case we don't need to disable duplicate filter, but
4763 		 * it is common to have active scanning for a short period of
4764 		 * time, the power impact should be neglectable.
4765 		 */
4766 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
4767 	}
4768 
4769 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
4770 				  hdev->le_scan_window_discovery,
4771 				  own_addr_type, filter_policy, filter_dup);
4772 	if (!err)
4773 		return err;
4774 
4775 failed:
4776 	/* Resume advertising if it was paused */
4777 	if (use_ll_privacy(hdev))
4778 		hci_resume_advertising_sync(hdev);
4779 
4780 	/* Resume passive scanning */
4781 	hci_update_passive_scan_sync(hdev);
4782 	return err;
4783 }
4784 
4785 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
4786 {
4787 	int err;
4788 
4789 	bt_dev_dbg(hdev, "");
4790 
4791 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
4792 	if (err)
4793 		return err;
4794 
4795 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4796 }
4797 
4798 int hci_start_discovery_sync(struct hci_dev *hdev)
4799 {
4800 	unsigned long timeout;
4801 	int err;
4802 
4803 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
4804 
4805 	switch (hdev->discovery.type) {
4806 	case DISCOV_TYPE_BREDR:
4807 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4808 	case DISCOV_TYPE_INTERLEAVED:
4809 		/* When running simultaneous discovery, the LE scanning time
4810 		 * should occupy the whole discovery time sine BR/EDR inquiry
4811 		 * and LE scanning are scheduled by the controller.
4812 		 *
4813 		 * For interleaving discovery in comparison, BR/EDR inquiry
4814 		 * and LE scanning are done sequentially with separate
4815 		 * timeouts.
4816 		 */
4817 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
4818 			     &hdev->quirks)) {
4819 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4820 			/* During simultaneous discovery, we double LE scan
4821 			 * interval. We must leave some time for the controller
4822 			 * to do BR/EDR inquiry.
4823 			 */
4824 			err = hci_start_interleaved_discovery_sync(hdev);
4825 			break;
4826 		}
4827 
4828 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
4829 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4830 		break;
4831 	case DISCOV_TYPE_LE:
4832 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4833 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4834 		break;
4835 	default:
4836 		return -EINVAL;
4837 	}
4838 
4839 	if (err)
4840 		return err;
4841 
4842 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
4843 
4844 	/* When service discovery is used and the controller has a
4845 	 * strict duplicate filter, it is important to remember the
4846 	 * start and duration of the scan. This is required for
4847 	 * restarting scanning during the discovery phase.
4848 	 */
4849 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
4850 	    hdev->discovery.result_filtering) {
4851 		hdev->discovery.scan_start = jiffies;
4852 		hdev->discovery.scan_duration = timeout;
4853 	}
4854 
4855 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
4856 			   timeout);
4857 	return 0;
4858 }
4859 
4860 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
4861 {
4862 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
4863 	case HCI_ADV_MONITOR_EXT_MSFT:
4864 		msft_suspend_sync(hdev);
4865 		break;
4866 	default:
4867 		return;
4868 	}
4869 }
4870 
4871 /* This function disables discovery and mark it as paused */
4872 static int hci_pause_discovery_sync(struct hci_dev *hdev)
4873 {
4874 	int old_state = hdev->discovery.state;
4875 	int err;
4876 
4877 	/* If discovery already stopped/stopping/paused there nothing to do */
4878 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
4879 	    hdev->discovery_paused)
4880 		return 0;
4881 
4882 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
4883 	err = hci_stop_discovery_sync(hdev);
4884 	if (err)
4885 		return err;
4886 
4887 	hdev->discovery_paused = true;
4888 	hdev->discovery_old_state = old_state;
4889 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4890 
4891 	return 0;
4892 }
4893 
4894 static int hci_update_event_filter_sync(struct hci_dev *hdev)
4895 {
4896 	struct bdaddr_list_with_flags *b;
4897 	u8 scan = SCAN_DISABLED;
4898 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
4899 	int err;
4900 
4901 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4902 		return 0;
4903 
4904 	/* Some fake CSR controllers lock up after setting this type of
4905 	 * filter, so avoid sending the request altogether.
4906 	 */
4907 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
4908 		return 0;
4909 
4910 	/* Always clear event filter when starting */
4911 	hci_clear_event_filter_sync(hdev);
4912 
4913 	list_for_each_entry(b, &hdev->accept_list, list) {
4914 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
4915 			continue;
4916 
4917 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
4918 
4919 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
4920 						 HCI_CONN_SETUP_ALLOW_BDADDR,
4921 						 &b->bdaddr,
4922 						 HCI_CONN_SETUP_AUTO_ON);
4923 		if (err)
4924 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
4925 				   &b->bdaddr);
4926 		else
4927 			scan = SCAN_PAGE;
4928 	}
4929 
4930 	if (scan && !scanning)
4931 		hci_write_scan_enable_sync(hdev, scan);
4932 	else if (!scan && scanning)
4933 		hci_write_scan_enable_sync(hdev, scan);
4934 
4935 	return 0;
4936 }
4937 
4938 /* This function disables scan (BR and LE) and mark it as paused */
4939 static int hci_pause_scan_sync(struct hci_dev *hdev)
4940 {
4941 	if (hdev->scanning_paused)
4942 		return 0;
4943 
4944 	/* Disable page scan if enabled */
4945 	if (test_bit(HCI_PSCAN, &hdev->flags))
4946 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
4947 
4948 	hci_scan_disable_sync(hdev);
4949 
4950 	hdev->scanning_paused = true;
4951 
4952 	return 0;
4953 }
4954 
4955 /* This function performs the HCI suspend procedures in the follow order:
4956  *
4957  * Pause discovery (active scanning/inquiry)
4958  * Pause Directed Advertising/Advertising
4959  * Pause Scanning (passive scanning in case discovery was not active)
4960  * Disconnect all connections
4961  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
4962  * otherwise:
4963  * Update event mask (only set events that are allowed to wake up the host)
4964  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
4965  * Update passive scanning (lower duty cycle)
4966  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
4967  */
4968 int hci_suspend_sync(struct hci_dev *hdev)
4969 {
4970 	int err;
4971 
4972 	/* If marked as suspended there nothing to do */
4973 	if (hdev->suspended)
4974 		return 0;
4975 
4976 	/* Mark device as suspended */
4977 	hdev->suspended = true;
4978 
4979 	/* Pause discovery if not already stopped */
4980 	hci_pause_discovery_sync(hdev);
4981 
4982 	/* Pause other advertisements */
4983 	hci_pause_advertising_sync(hdev);
4984 
4985 	/* Suspend monitor filters */
4986 	hci_suspend_monitor_sync(hdev);
4987 
4988 	/* Prevent disconnects from causing scanning to be re-enabled */
4989 	hci_pause_scan_sync(hdev);
4990 
4991 	/* Soft disconnect everything (power off) */
4992 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4993 	if (err) {
4994 		/* Set state to BT_RUNNING so resume doesn't notify */
4995 		hdev->suspend_state = BT_RUNNING;
4996 		hci_resume_sync(hdev);
4997 		return err;
4998 	}
4999 
5000 	/* Only configure accept list if disconnect succeeded and wake
5001 	 * isn't being prevented.
5002 	 */
5003 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5004 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5005 		return 0;
5006 	}
5007 
5008 	/* Unpause to take care of updating scanning params */
5009 	hdev->scanning_paused = false;
5010 
5011 	/* Update event mask so only the allowed event can wakeup the host */
5012 	hci_set_event_mask_sync(hdev);
5013 
5014 	/* Enable event filter for paired devices */
5015 	hci_update_event_filter_sync(hdev);
5016 
5017 	/* Update LE passive scan if enabled */
5018 	hci_update_passive_scan_sync(hdev);
5019 
5020 	/* Pause scan changes again. */
5021 	hdev->scanning_paused = true;
5022 
5023 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5024 
5025 	return 0;
5026 }
5027 
5028 /* This function resumes discovery */
5029 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5030 {
5031 	int err;
5032 
5033 	/* If discovery not paused there nothing to do */
5034 	if (!hdev->discovery_paused)
5035 		return 0;
5036 
5037 	hdev->discovery_paused = false;
5038 
5039 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5040 
5041 	err = hci_start_discovery_sync(hdev);
5042 
5043 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5044 				DISCOVERY_FINDING);
5045 
5046 	return err;
5047 }
5048 
5049 static void hci_resume_monitor_sync(struct hci_dev *hdev)
5050 {
5051 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5052 	case HCI_ADV_MONITOR_EXT_MSFT:
5053 		msft_resume_sync(hdev);
5054 		break;
5055 	default:
5056 		return;
5057 	}
5058 }
5059 
5060 /* This function resume scan and reset paused flag */
5061 static int hci_resume_scan_sync(struct hci_dev *hdev)
5062 {
5063 	if (!hdev->scanning_paused)
5064 		return 0;
5065 
5066 	hci_update_scan_sync(hdev);
5067 
5068 	/* Reset passive scanning to normal */
5069 	hci_update_passive_scan_sync(hdev);
5070 
5071 	hdev->scanning_paused = false;
5072 
5073 	return 0;
5074 }
5075 
5076 /* This function performs the HCI suspend procedures in the follow order:
5077  *
5078  * Restore event mask
5079  * Clear event filter
5080  * Update passive scanning (normal duty cycle)
5081  * Resume Directed Advertising/Advertising
5082  * Resume discovery (active scanning/inquiry)
5083  */
5084 int hci_resume_sync(struct hci_dev *hdev)
5085 {
5086 	/* If not marked as suspended there nothing to do */
5087 	if (!hdev->suspended)
5088 		return 0;
5089 
5090 	hdev->suspended = false;
5091 	hdev->scanning_paused = false;
5092 
5093 	/* Restore event mask */
5094 	hci_set_event_mask_sync(hdev);
5095 
5096 	/* Clear any event filters and restore scan state */
5097 	hci_clear_event_filter_sync(hdev);
5098 
5099 	/* Resume scanning */
5100 	hci_resume_scan_sync(hdev);
5101 
5102 	/* Resume monitor filters */
5103 	hci_resume_monitor_sync(hdev);
5104 
5105 	/* Resume other advertisements */
5106 	hci_resume_advertising_sync(hdev);
5107 
5108 	/* Resume discovery */
5109 	hci_resume_discovery_sync(hdev);
5110 
5111 	return 0;
5112 }
5113 
5114 static bool conn_use_rpa(struct hci_conn *conn)
5115 {
5116 	struct hci_dev *hdev = conn->hdev;
5117 
5118 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
5119 }
5120 
5121 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5122 						struct hci_conn *conn)
5123 {
5124 	struct hci_cp_le_set_ext_adv_params cp;
5125 	int err;
5126 	bdaddr_t random_addr;
5127 	u8 own_addr_type;
5128 
5129 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5130 					     &own_addr_type);
5131 	if (err)
5132 		return err;
5133 
5134 	/* Set require_privacy to false so that the remote device has a
5135 	 * chance of identifying us.
5136 	 */
5137 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5138 				     &own_addr_type, &random_addr);
5139 	if (err)
5140 		return err;
5141 
5142 	memset(&cp, 0, sizeof(cp));
5143 
5144 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
5145 	cp.own_addr_type = own_addr_type;
5146 	cp.channel_map = hdev->le_adv_channel_map;
5147 	cp.tx_power = HCI_TX_POWER_INVALID;
5148 	cp.primary_phy = HCI_ADV_PHY_1M;
5149 	cp.secondary_phy = HCI_ADV_PHY_1M;
5150 	cp.handle = 0x00; /* Use instance 0 for directed adv */
5151 	cp.own_addr_type = own_addr_type;
5152 	cp.peer_addr_type = conn->dst_type;
5153 	bacpy(&cp.peer_addr, &conn->dst);
5154 
5155 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
5156 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
5157 	 * does not supports advertising data when the advertising set already
5158 	 * contains some, the controller shall return erroc code 'Invalid
5159 	 * HCI Command Parameters(0x12).
5160 	 * So it is required to remove adv set for handle 0x00. since we use
5161 	 * instance 0 for directed adv.
5162 	 */
5163 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
5164 	if (err)
5165 		return err;
5166 
5167 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
5168 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5169 	if (err)
5170 		return err;
5171 
5172 	/* Check if random address need to be updated */
5173 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
5174 	    bacmp(&random_addr, BDADDR_ANY) &&
5175 	    bacmp(&random_addr, &hdev->random_addr)) {
5176 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
5177 						       &random_addr);
5178 		if (err)
5179 			return err;
5180 	}
5181 
5182 	return hci_enable_ext_advertising_sync(hdev, 0x00);
5183 }
5184 
5185 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
5186 					    struct hci_conn *conn)
5187 {
5188 	struct hci_cp_le_set_adv_param cp;
5189 	u8 status;
5190 	u8 own_addr_type;
5191 	u8 enable;
5192 
5193 	if (ext_adv_capable(hdev))
5194 		return hci_le_ext_directed_advertising_sync(hdev, conn);
5195 
5196 	/* Clear the HCI_LE_ADV bit temporarily so that the
5197 	 * hci_update_random_address knows that it's safe to go ahead
5198 	 * and write a new random address. The flag will be set back on
5199 	 * as soon as the SET_ADV_ENABLE HCI command completes.
5200 	 */
5201 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
5202 
5203 	/* Set require_privacy to false so that the remote device has a
5204 	 * chance of identifying us.
5205 	 */
5206 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5207 						&own_addr_type);
5208 	if (status)
5209 		return status;
5210 
5211 	memset(&cp, 0, sizeof(cp));
5212 
5213 	/* Some controllers might reject command if intervals are not
5214 	 * within range for undirected advertising.
5215 	 * BCM20702A0 is known to be affected by this.
5216 	 */
5217 	cp.min_interval = cpu_to_le16(0x0020);
5218 	cp.max_interval = cpu_to_le16(0x0020);
5219 
5220 	cp.type = LE_ADV_DIRECT_IND;
5221 	cp.own_address_type = own_addr_type;
5222 	cp.direct_addr_type = conn->dst_type;
5223 	bacpy(&cp.direct_addr, &conn->dst);
5224 	cp.channel_map = hdev->le_adv_channel_map;
5225 
5226 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
5227 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5228 	if (status)
5229 		return status;
5230 
5231 	enable = 0x01;
5232 
5233 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
5234 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
5235 }
5236 
5237 static void set_ext_conn_params(struct hci_conn *conn,
5238 				struct hci_cp_le_ext_conn_param *p)
5239 {
5240 	struct hci_dev *hdev = conn->hdev;
5241 
5242 	memset(p, 0, sizeof(*p));
5243 
5244 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5245 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5246 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5247 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5248 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
5249 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5250 	p->min_ce_len = cpu_to_le16(0x0000);
5251 	p->max_ce_len = cpu_to_le16(0x0000);
5252 }
5253 
5254 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
5255 				       struct hci_conn *conn, u8 own_addr_type)
5256 {
5257 	struct hci_cp_le_ext_create_conn *cp;
5258 	struct hci_cp_le_ext_conn_param *p;
5259 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
5260 	u32 plen;
5261 
5262 	cp = (void *)data;
5263 	p = (void *)cp->data;
5264 
5265 	memset(cp, 0, sizeof(*cp));
5266 
5267 	bacpy(&cp->peer_addr, &conn->dst);
5268 	cp->peer_addr_type = conn->dst_type;
5269 	cp->own_addr_type = own_addr_type;
5270 
5271 	plen = sizeof(*cp);
5272 
5273 	if (scan_1m(hdev)) {
5274 		cp->phys |= LE_SCAN_PHY_1M;
5275 		set_ext_conn_params(conn, p);
5276 
5277 		p++;
5278 		plen += sizeof(*p);
5279 	}
5280 
5281 	if (scan_2m(hdev)) {
5282 		cp->phys |= LE_SCAN_PHY_2M;
5283 		set_ext_conn_params(conn, p);
5284 
5285 		p++;
5286 		plen += sizeof(*p);
5287 	}
5288 
5289 	if (scan_coded(hdev)) {
5290 		cp->phys |= LE_SCAN_PHY_CODED;
5291 		set_ext_conn_params(conn, p);
5292 
5293 		plen += sizeof(*p);
5294 	}
5295 
5296 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
5297 					plen, data,
5298 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
5299 					conn->conn_timeout, NULL);
5300 }
5301 
5302 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
5303 {
5304 	struct hci_cp_le_create_conn cp;
5305 	struct hci_conn_params *params;
5306 	u8 own_addr_type;
5307 	int err;
5308 
5309 	/* If requested to connect as peripheral use directed advertising */
5310 	if (conn->role == HCI_ROLE_SLAVE) {
5311 		/* If we're active scanning and simultaneous roles is not
5312 		 * enabled simply reject the attempt.
5313 		 */
5314 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
5315 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
5316 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
5317 			hci_conn_del(conn);
5318 			return -EBUSY;
5319 		}
5320 
5321 		/* Pause advertising while doing directed advertising. */
5322 		hci_pause_advertising_sync(hdev);
5323 
5324 		err = hci_le_directed_advertising_sync(hdev, conn);
5325 		goto done;
5326 	}
5327 
5328 	/* Disable advertising if simultaneous roles is not in use. */
5329 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
5330 		hci_pause_advertising_sync(hdev);
5331 
5332 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
5333 	if (params) {
5334 		conn->le_conn_min_interval = params->conn_min_interval;
5335 		conn->le_conn_max_interval = params->conn_max_interval;
5336 		conn->le_conn_latency = params->conn_latency;
5337 		conn->le_supv_timeout = params->supervision_timeout;
5338 	} else {
5339 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
5340 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
5341 		conn->le_conn_latency = hdev->le_conn_latency;
5342 		conn->le_supv_timeout = hdev->le_supv_timeout;
5343 	}
5344 
5345 	/* If controller is scanning, we stop it since some controllers are
5346 	 * not able to scan and connect at the same time. Also set the
5347 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
5348 	 * handler for scan disabling knows to set the correct discovery
5349 	 * state.
5350 	 */
5351 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5352 		hci_scan_disable_sync(hdev);
5353 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
5354 	}
5355 
5356 	/* Update random address, but set require_privacy to false so
5357 	 * that we never connect with an non-resolvable address.
5358 	 */
5359 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5360 					     &own_addr_type);
5361 	if (err)
5362 		goto done;
5363 
5364 	if (use_ext_conn(hdev)) {
5365 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
5366 		goto done;
5367 	}
5368 
5369 	memset(&cp, 0, sizeof(cp));
5370 
5371 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5372 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5373 
5374 	bacpy(&cp.peer_addr, &conn->dst);
5375 	cp.peer_addr_type = conn->dst_type;
5376 	cp.own_address_type = own_addr_type;
5377 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5378 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5379 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
5380 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5381 	cp.min_ce_len = cpu_to_le16(0x0000);
5382 	cp.max_ce_len = cpu_to_le16(0x0000);
5383 
5384 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
5385 	 *
5386 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
5387 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
5388 	 * sent when a new connection has been created.
5389 	 */
5390 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
5391 				       sizeof(cp), &cp,
5392 				       use_enhanced_conn_complete(hdev) ?
5393 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
5394 				       HCI_EV_LE_CONN_COMPLETE,
5395 				       conn->conn_timeout, NULL);
5396 
5397 done:
5398 	/* Re-enable advertising after the connection attempt is finished. */
5399 	hci_resume_advertising_sync(hdev);
5400 	return err;
5401 }
5402