xref: /openbmc/linux/net/bluetooth/hci_sync.c (revision 26afbd826ee326e63a334c37fd45e82e50a615ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  */
7 
8 #include <linux/property.h>
9 
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13 
14 #include "hci_request.h"
15 #include "hci_debugfs.h"
16 #include "smp.h"
17 #include "eir.h"
18 #include "msft.h"
19 #include "aosp.h"
20 #include "leds.h"
21 
22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
23 				  struct sk_buff *skb)
24 {
25 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
26 
27 	if (hdev->req_status != HCI_REQ_PEND)
28 		return;
29 
30 	hdev->req_result = result;
31 	hdev->req_status = HCI_REQ_DONE;
32 
33 	if (skb) {
34 		struct sock *sk = hci_skb_sk(skb);
35 
36 		/* Drop sk reference if set */
37 		if (sk)
38 			sock_put(sk);
39 
40 		hdev->req_skb = skb_get(skb);
41 	}
42 
43 	wake_up_interruptible(&hdev->req_wait_q);
44 }
45 
46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
47 					  u32 plen, const void *param,
48 					  struct sock *sk)
49 {
50 	int len = HCI_COMMAND_HDR_SIZE + plen;
51 	struct hci_command_hdr *hdr;
52 	struct sk_buff *skb;
53 
54 	skb = bt_skb_alloc(len, GFP_ATOMIC);
55 	if (!skb)
56 		return NULL;
57 
58 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
59 	hdr->opcode = cpu_to_le16(opcode);
60 	hdr->plen   = plen;
61 
62 	if (plen)
63 		skb_put_data(skb, param, plen);
64 
65 	bt_dev_dbg(hdev, "skb len %d", skb->len);
66 
67 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
68 	hci_skb_opcode(skb) = opcode;
69 
70 	/* Grab a reference if command needs to be associated with a sock (e.g.
71 	 * likely mgmt socket that initiated the command).
72 	 */
73 	if (sk) {
74 		hci_skb_sk(skb) = sk;
75 		sock_hold(sk);
76 	}
77 
78 	return skb;
79 }
80 
81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
82 			     const void *param, u8 event, struct sock *sk)
83 {
84 	struct hci_dev *hdev = req->hdev;
85 	struct sk_buff *skb;
86 
87 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
88 
89 	/* If an error occurred during request building, there is no point in
90 	 * queueing the HCI command. We can simply return.
91 	 */
92 	if (req->err)
93 		return;
94 
95 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
96 	if (!skb) {
97 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
98 			   opcode);
99 		req->err = -ENOMEM;
100 		return;
101 	}
102 
103 	if (skb_queue_empty(&req->cmd_q))
104 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
105 
106 	hci_skb_event(skb) = event;
107 
108 	skb_queue_tail(&req->cmd_q, skb);
109 }
110 
111 static int hci_cmd_sync_run(struct hci_request *req)
112 {
113 	struct hci_dev *hdev = req->hdev;
114 	struct sk_buff *skb;
115 	unsigned long flags;
116 
117 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
118 
119 	/* If an error occurred during request building, remove all HCI
120 	 * commands queued on the HCI request queue.
121 	 */
122 	if (req->err) {
123 		skb_queue_purge(&req->cmd_q);
124 		return req->err;
125 	}
126 
127 	/* Do not allow empty requests */
128 	if (skb_queue_empty(&req->cmd_q))
129 		return -ENODATA;
130 
131 	skb = skb_peek_tail(&req->cmd_q);
132 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
133 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
134 
135 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
136 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
137 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
138 
139 	queue_work(hdev->workqueue, &hdev->cmd_work);
140 
141 	return 0;
142 }
143 
144 /* This function requires the caller holds hdev->req_lock. */
145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
146 				  const void *param, u8 event, u32 timeout,
147 				  struct sock *sk)
148 {
149 	struct hci_request req;
150 	struct sk_buff *skb;
151 	int err = 0;
152 
153 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
154 
155 	hci_req_init(&req, hdev);
156 
157 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
158 
159 	hdev->req_status = HCI_REQ_PEND;
160 
161 	err = hci_cmd_sync_run(&req);
162 	if (err < 0)
163 		return ERR_PTR(err);
164 
165 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
166 					       hdev->req_status != HCI_REQ_PEND,
167 					       timeout);
168 
169 	if (err == -ERESTARTSYS)
170 		return ERR_PTR(-EINTR);
171 
172 	switch (hdev->req_status) {
173 	case HCI_REQ_DONE:
174 		err = -bt_to_errno(hdev->req_result);
175 		break;
176 
177 	case HCI_REQ_CANCELED:
178 		err = -hdev->req_result;
179 		break;
180 
181 	default:
182 		err = -ETIMEDOUT;
183 		break;
184 	}
185 
186 	hdev->req_status = 0;
187 	hdev->req_result = 0;
188 	skb = hdev->req_skb;
189 	hdev->req_skb = NULL;
190 
191 	bt_dev_dbg(hdev, "end: err %d", err);
192 
193 	if (err < 0) {
194 		kfree_skb(skb);
195 		return ERR_PTR(err);
196 	}
197 
198 	return skb;
199 }
200 EXPORT_SYMBOL(__hci_cmd_sync_sk);
201 
202 /* This function requires the caller holds hdev->req_lock. */
203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
204 			       const void *param, u32 timeout)
205 {
206 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
207 }
208 EXPORT_SYMBOL(__hci_cmd_sync);
209 
210 /* Send HCI command and wait for command complete event */
211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
212 			     const void *param, u32 timeout)
213 {
214 	struct sk_buff *skb;
215 
216 	if (!test_bit(HCI_UP, &hdev->flags))
217 		return ERR_PTR(-ENETDOWN);
218 
219 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
220 
221 	hci_req_sync_lock(hdev);
222 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
223 	hci_req_sync_unlock(hdev);
224 
225 	return skb;
226 }
227 EXPORT_SYMBOL(hci_cmd_sync);
228 
229 /* This function requires the caller holds hdev->req_lock. */
230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
231 				  const void *param, u8 event, u32 timeout)
232 {
233 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
234 				 NULL);
235 }
236 EXPORT_SYMBOL(__hci_cmd_sync_ev);
237 
238 /* This function requires the caller holds hdev->req_lock. */
239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
240 			     const void *param, u8 event, u32 timeout,
241 			     struct sock *sk)
242 {
243 	struct sk_buff *skb;
244 	u8 status;
245 
246 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
247 	if (IS_ERR(skb)) {
248 		bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
249 			   PTR_ERR(skb));
250 		return PTR_ERR(skb);
251 	}
252 
253 	/* If command return a status event skb will be set to NULL as there are
254 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
255 	 * the actual error would be found with PTR_ERR(skb).
256 	 */
257 	if (!skb)
258 		return 0;
259 
260 	status = skb->data[0];
261 
262 	kfree_skb(skb);
263 
264 	return status;
265 }
266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
267 
268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
269 			  const void *param, u32 timeout)
270 {
271 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
272 					NULL);
273 }
274 EXPORT_SYMBOL(__hci_cmd_sync_status);
275 
276 static void hci_cmd_sync_work(struct work_struct *work)
277 {
278 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
279 
280 	bt_dev_dbg(hdev, "");
281 
282 	/* Dequeue all entries and run them */
283 	while (1) {
284 		struct hci_cmd_sync_work_entry *entry;
285 
286 		mutex_lock(&hdev->cmd_sync_work_lock);
287 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
288 						 struct hci_cmd_sync_work_entry,
289 						 list);
290 		if (entry)
291 			list_del(&entry->list);
292 		mutex_unlock(&hdev->cmd_sync_work_lock);
293 
294 		if (!entry)
295 			break;
296 
297 		bt_dev_dbg(hdev, "entry %p", entry);
298 
299 		if (entry->func) {
300 			int err;
301 
302 			hci_req_sync_lock(hdev);
303 			err = entry->func(hdev, entry->data);
304 			if (entry->destroy)
305 				entry->destroy(hdev, entry->data, err);
306 			hci_req_sync_unlock(hdev);
307 		}
308 
309 		kfree(entry);
310 	}
311 }
312 
313 static void hci_cmd_sync_cancel_work(struct work_struct *work)
314 {
315 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
316 
317 	cancel_delayed_work_sync(&hdev->cmd_timer);
318 	cancel_delayed_work_sync(&hdev->ncmd_timer);
319 	atomic_set(&hdev->cmd_cnt, 1);
320 
321 	wake_up_interruptible(&hdev->req_wait_q);
322 }
323 
324 void hci_cmd_sync_init(struct hci_dev *hdev)
325 {
326 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
327 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
328 	mutex_init(&hdev->cmd_sync_work_lock);
329 
330 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
331 }
332 
333 void hci_cmd_sync_clear(struct hci_dev *hdev)
334 {
335 	struct hci_cmd_sync_work_entry *entry, *tmp;
336 
337 	cancel_work_sync(&hdev->cmd_sync_work);
338 
339 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
340 		if (entry->destroy)
341 			entry->destroy(hdev, entry->data, -ECANCELED);
342 
343 		list_del(&entry->list);
344 		kfree(entry);
345 	}
346 }
347 
348 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
349 {
350 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
351 
352 	if (hdev->req_status == HCI_REQ_PEND) {
353 		hdev->req_result = err;
354 		hdev->req_status = HCI_REQ_CANCELED;
355 
356 		cancel_delayed_work_sync(&hdev->cmd_timer);
357 		cancel_delayed_work_sync(&hdev->ncmd_timer);
358 		atomic_set(&hdev->cmd_cnt, 1);
359 
360 		wake_up_interruptible(&hdev->req_wait_q);
361 	}
362 }
363 
364 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
365 {
366 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
367 
368 	if (hdev->req_status == HCI_REQ_PEND) {
369 		hdev->req_result = err;
370 		hdev->req_status = HCI_REQ_CANCELED;
371 
372 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
373 	}
374 }
375 EXPORT_SYMBOL(hci_cmd_sync_cancel);
376 
377 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
378 		       void *data, hci_cmd_sync_work_destroy_t destroy)
379 {
380 	struct hci_cmd_sync_work_entry *entry;
381 
382 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
383 		return -ENODEV;
384 
385 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
386 	if (!entry)
387 		return -ENOMEM;
388 
389 	entry->func = func;
390 	entry->data = data;
391 	entry->destroy = destroy;
392 
393 	mutex_lock(&hdev->cmd_sync_work_lock);
394 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
395 	mutex_unlock(&hdev->cmd_sync_work_lock);
396 
397 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
398 
399 	return 0;
400 }
401 EXPORT_SYMBOL(hci_cmd_sync_queue);
402 
403 int hci_update_eir_sync(struct hci_dev *hdev)
404 {
405 	struct hci_cp_write_eir cp;
406 
407 	bt_dev_dbg(hdev, "");
408 
409 	if (!hdev_is_powered(hdev))
410 		return 0;
411 
412 	if (!lmp_ext_inq_capable(hdev))
413 		return 0;
414 
415 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
416 		return 0;
417 
418 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
419 		return 0;
420 
421 	memset(&cp, 0, sizeof(cp));
422 
423 	eir_create(hdev, cp.data);
424 
425 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
426 		return 0;
427 
428 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
429 
430 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
431 				     HCI_CMD_TIMEOUT);
432 }
433 
434 static u8 get_service_classes(struct hci_dev *hdev)
435 {
436 	struct bt_uuid *uuid;
437 	u8 val = 0;
438 
439 	list_for_each_entry(uuid, &hdev->uuids, list)
440 		val |= uuid->svc_hint;
441 
442 	return val;
443 }
444 
445 int hci_update_class_sync(struct hci_dev *hdev)
446 {
447 	u8 cod[3];
448 
449 	bt_dev_dbg(hdev, "");
450 
451 	if (!hdev_is_powered(hdev))
452 		return 0;
453 
454 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
455 		return 0;
456 
457 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
458 		return 0;
459 
460 	cod[0] = hdev->minor_class;
461 	cod[1] = hdev->major_class;
462 	cod[2] = get_service_classes(hdev);
463 
464 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
465 		cod[1] |= 0x20;
466 
467 	if (memcmp(cod, hdev->dev_class, 3) == 0)
468 		return 0;
469 
470 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
471 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
472 }
473 
474 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
475 {
476 	/* If there is no connection we are OK to advertise. */
477 	if (hci_conn_num(hdev, LE_LINK) == 0)
478 		return true;
479 
480 	/* Check le_states if there is any connection in peripheral role. */
481 	if (hdev->conn_hash.le_num_peripheral > 0) {
482 		/* Peripheral connection state and non connectable mode
483 		 * bit 20.
484 		 */
485 		if (!connectable && !(hdev->le_states[2] & 0x10))
486 			return false;
487 
488 		/* Peripheral connection state and connectable mode bit 38
489 		 * and scannable bit 21.
490 		 */
491 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
492 				    !(hdev->le_states[2] & 0x20)))
493 			return false;
494 	}
495 
496 	/* Check le_states if there is any connection in central role. */
497 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
498 		/* Central connection state and non connectable mode bit 18. */
499 		if (!connectable && !(hdev->le_states[2] & 0x02))
500 			return false;
501 
502 		/* Central connection state and connectable mode bit 35 and
503 		 * scannable 19.
504 		 */
505 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
506 				    !(hdev->le_states[2] & 0x08)))
507 			return false;
508 	}
509 
510 	return true;
511 }
512 
513 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
514 {
515 	/* If privacy is not enabled don't use RPA */
516 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
517 		return false;
518 
519 	/* If basic privacy mode is enabled use RPA */
520 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
521 		return true;
522 
523 	/* If limited privacy mode is enabled don't use RPA if we're
524 	 * both discoverable and bondable.
525 	 */
526 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
527 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
528 		return false;
529 
530 	/* We're neither bondable nor discoverable in the limited
531 	 * privacy mode, therefore use RPA.
532 	 */
533 	return true;
534 }
535 
536 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
537 {
538 	/* If we're advertising or initiating an LE connection we can't
539 	 * go ahead and change the random address at this time. This is
540 	 * because the eventual initiator address used for the
541 	 * subsequently created connection will be undefined (some
542 	 * controllers use the new address and others the one we had
543 	 * when the operation started).
544 	 *
545 	 * In this kind of scenario skip the update and let the random
546 	 * address be updated at the next cycle.
547 	 */
548 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
549 	    hci_lookup_le_connect(hdev)) {
550 		bt_dev_dbg(hdev, "Deferring random address update");
551 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
552 		return 0;
553 	}
554 
555 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
556 				     6, rpa, HCI_CMD_TIMEOUT);
557 }
558 
559 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
560 				   bool rpa, u8 *own_addr_type)
561 {
562 	int err;
563 
564 	/* If privacy is enabled use a resolvable private address. If
565 	 * current RPA has expired or there is something else than
566 	 * the current RPA in use, then generate a new one.
567 	 */
568 	if (rpa) {
569 		/* If Controller supports LL Privacy use own address type is
570 		 * 0x03
571 		 */
572 		if (use_ll_privacy(hdev))
573 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
574 		else
575 			*own_addr_type = ADDR_LE_DEV_RANDOM;
576 
577 		/* Check if RPA is valid */
578 		if (rpa_valid(hdev))
579 			return 0;
580 
581 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
582 		if (err < 0) {
583 			bt_dev_err(hdev, "failed to generate new RPA");
584 			return err;
585 		}
586 
587 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
588 		if (err)
589 			return err;
590 
591 		return 0;
592 	}
593 
594 	/* In case of required privacy without resolvable private address,
595 	 * use an non-resolvable private address. This is useful for active
596 	 * scanning and non-connectable advertising.
597 	 */
598 	if (require_privacy) {
599 		bdaddr_t nrpa;
600 
601 		while (true) {
602 			/* The non-resolvable private address is generated
603 			 * from random six bytes with the two most significant
604 			 * bits cleared.
605 			 */
606 			get_random_bytes(&nrpa, 6);
607 			nrpa.b[5] &= 0x3f;
608 
609 			/* The non-resolvable private address shall not be
610 			 * equal to the public address.
611 			 */
612 			if (bacmp(&hdev->bdaddr, &nrpa))
613 				break;
614 		}
615 
616 		*own_addr_type = ADDR_LE_DEV_RANDOM;
617 
618 		return hci_set_random_addr_sync(hdev, &nrpa);
619 	}
620 
621 	/* If forcing static address is in use or there is no public
622 	 * address use the static address as random address (but skip
623 	 * the HCI command if the current random address is already the
624 	 * static one.
625 	 *
626 	 * In case BR/EDR has been disabled on a dual-mode controller
627 	 * and a static address has been configured, then use that
628 	 * address instead of the public BR/EDR address.
629 	 */
630 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
631 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
632 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
633 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
634 		*own_addr_type = ADDR_LE_DEV_RANDOM;
635 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
636 			return hci_set_random_addr_sync(hdev,
637 							&hdev->static_addr);
638 		return 0;
639 	}
640 
641 	/* Neither privacy nor static address is being used so use a
642 	 * public address.
643 	 */
644 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
645 
646 	return 0;
647 }
648 
649 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
650 {
651 	struct hci_cp_le_set_ext_adv_enable *cp;
652 	struct hci_cp_ext_adv_set *set;
653 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
654 	u8 size;
655 
656 	/* If request specifies an instance that doesn't exist, fail */
657 	if (instance > 0) {
658 		struct adv_info *adv;
659 
660 		adv = hci_find_adv_instance(hdev, instance);
661 		if (!adv)
662 			return -EINVAL;
663 
664 		/* If not enabled there is nothing to do */
665 		if (!adv->enabled)
666 			return 0;
667 	}
668 
669 	memset(data, 0, sizeof(data));
670 
671 	cp = (void *)data;
672 	set = (void *)cp->data;
673 
674 	/* Instance 0x00 indicates all advertising instances will be disabled */
675 	cp->num_of_sets = !!instance;
676 	cp->enable = 0x00;
677 
678 	set->handle = instance;
679 
680 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
681 
682 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
683 				     size, data, HCI_CMD_TIMEOUT);
684 }
685 
686 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
687 					    bdaddr_t *random_addr)
688 {
689 	struct hci_cp_le_set_adv_set_rand_addr cp;
690 	int err;
691 
692 	if (!instance) {
693 		/* Instance 0x00 doesn't have an adv_info, instead it uses
694 		 * hdev->random_addr to track its address so whenever it needs
695 		 * to be updated this also set the random address since
696 		 * hdev->random_addr is shared with scan state machine.
697 		 */
698 		err = hci_set_random_addr_sync(hdev, random_addr);
699 		if (err)
700 			return err;
701 	}
702 
703 	memset(&cp, 0, sizeof(cp));
704 
705 	cp.handle = instance;
706 	bacpy(&cp.bdaddr, random_addr);
707 
708 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
709 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
710 }
711 
712 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
713 {
714 	struct hci_cp_le_set_ext_adv_params cp;
715 	bool connectable;
716 	u32 flags;
717 	bdaddr_t random_addr;
718 	u8 own_addr_type;
719 	int err;
720 	struct adv_info *adv;
721 	bool secondary_adv;
722 
723 	if (instance > 0) {
724 		adv = hci_find_adv_instance(hdev, instance);
725 		if (!adv)
726 			return -EINVAL;
727 	} else {
728 		adv = NULL;
729 	}
730 
731 	/* Updating parameters of an active instance will return a
732 	 * Command Disallowed error, so we must first disable the
733 	 * instance if it is active.
734 	 */
735 	if (adv && !adv->pending) {
736 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
737 		if (err)
738 			return err;
739 	}
740 
741 	flags = hci_adv_instance_flags(hdev, instance);
742 
743 	/* If the "connectable" instance flag was not set, then choose between
744 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
745 	 */
746 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
747 		      mgmt_get_connectable(hdev);
748 
749 	if (!is_advertising_allowed(hdev, connectable))
750 		return -EPERM;
751 
752 	/* Set require_privacy to true only when non-connectable
753 	 * advertising is used. In that case it is fine to use a
754 	 * non-resolvable private address.
755 	 */
756 	err = hci_get_random_address(hdev, !connectable,
757 				     adv_use_rpa(hdev, flags), adv,
758 				     &own_addr_type, &random_addr);
759 	if (err < 0)
760 		return err;
761 
762 	memset(&cp, 0, sizeof(cp));
763 
764 	if (adv) {
765 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
766 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
767 		cp.tx_power = adv->tx_power;
768 	} else {
769 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
770 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
771 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
772 	}
773 
774 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
775 
776 	if (connectable) {
777 		if (secondary_adv)
778 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
779 		else
780 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
781 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
782 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
783 		if (secondary_adv)
784 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
785 		else
786 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
787 	} else {
788 		if (secondary_adv)
789 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
790 		else
791 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
792 	}
793 
794 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
795 	 * contains the peer’s Identity Address and the Peer_Address_Type
796 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
797 	 * These parameters are used to locate the corresponding local IRK in
798 	 * the resolving list; this IRK is used to generate their own address
799 	 * used in the advertisement.
800 	 */
801 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
802 		hci_copy_identity_address(hdev, &cp.peer_addr,
803 					  &cp.peer_addr_type);
804 
805 	cp.own_addr_type = own_addr_type;
806 	cp.channel_map = hdev->le_adv_channel_map;
807 	cp.handle = instance;
808 
809 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
810 		cp.primary_phy = HCI_ADV_PHY_1M;
811 		cp.secondary_phy = HCI_ADV_PHY_2M;
812 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
813 		cp.primary_phy = HCI_ADV_PHY_CODED;
814 		cp.secondary_phy = HCI_ADV_PHY_CODED;
815 	} else {
816 		/* In all other cases use 1M */
817 		cp.primary_phy = HCI_ADV_PHY_1M;
818 		cp.secondary_phy = HCI_ADV_PHY_1M;
819 	}
820 
821 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
822 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
823 	if (err)
824 		return err;
825 
826 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
827 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
828 	    bacmp(&random_addr, BDADDR_ANY)) {
829 		/* Check if random address need to be updated */
830 		if (adv) {
831 			if (!bacmp(&random_addr, &adv->random_addr))
832 				return 0;
833 		} else {
834 			if (!bacmp(&random_addr, &hdev->random_addr))
835 				return 0;
836 		}
837 
838 		return hci_set_adv_set_random_addr_sync(hdev, instance,
839 							&random_addr);
840 	}
841 
842 	return 0;
843 }
844 
845 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
846 {
847 	struct {
848 		struct hci_cp_le_set_ext_scan_rsp_data cp;
849 		u8 data[HCI_MAX_EXT_AD_LENGTH];
850 	} pdu;
851 	u8 len;
852 	struct adv_info *adv = NULL;
853 	int err;
854 
855 	memset(&pdu, 0, sizeof(pdu));
856 
857 	if (instance) {
858 		adv = hci_find_adv_instance(hdev, instance);
859 		if (!adv || !adv->scan_rsp_changed)
860 			return 0;
861 	}
862 
863 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
864 
865 	pdu.cp.handle = instance;
866 	pdu.cp.length = len;
867 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
868 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
869 
870 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
871 				    sizeof(pdu.cp) + len, &pdu.cp,
872 				    HCI_CMD_TIMEOUT);
873 	if (err)
874 		return err;
875 
876 	if (adv) {
877 		adv->scan_rsp_changed = false;
878 	} else {
879 		memcpy(hdev->scan_rsp_data, pdu.data, len);
880 		hdev->scan_rsp_data_len = len;
881 	}
882 
883 	return 0;
884 }
885 
886 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
887 {
888 	struct hci_cp_le_set_scan_rsp_data cp;
889 	u8 len;
890 
891 	memset(&cp, 0, sizeof(cp));
892 
893 	len = eir_create_scan_rsp(hdev, instance, cp.data);
894 
895 	if (hdev->scan_rsp_data_len == len &&
896 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
897 		return 0;
898 
899 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
900 	hdev->scan_rsp_data_len = len;
901 
902 	cp.length = len;
903 
904 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
905 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
906 }
907 
908 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
909 {
910 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
911 		return 0;
912 
913 	if (ext_adv_capable(hdev))
914 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
915 
916 	return __hci_set_scan_rsp_data_sync(hdev, instance);
917 }
918 
919 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
920 {
921 	struct hci_cp_le_set_ext_adv_enable *cp;
922 	struct hci_cp_ext_adv_set *set;
923 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
924 	struct adv_info *adv;
925 
926 	if (instance > 0) {
927 		adv = hci_find_adv_instance(hdev, instance);
928 		if (!adv)
929 			return -EINVAL;
930 		/* If already enabled there is nothing to do */
931 		if (adv->enabled)
932 			return 0;
933 	} else {
934 		adv = NULL;
935 	}
936 
937 	cp = (void *)data;
938 	set = (void *)cp->data;
939 
940 	memset(cp, 0, sizeof(*cp));
941 
942 	cp->enable = 0x01;
943 	cp->num_of_sets = 0x01;
944 
945 	memset(set, 0, sizeof(*set));
946 
947 	set->handle = instance;
948 
949 	/* Set duration per instance since controller is responsible for
950 	 * scheduling it.
951 	 */
952 	if (adv && adv->timeout) {
953 		u16 duration = adv->timeout * MSEC_PER_SEC;
954 
955 		/* Time = N * 10 ms */
956 		set->duration = cpu_to_le16(duration / 10);
957 	}
958 
959 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
960 				     sizeof(*cp) +
961 				     sizeof(*set) * cp->num_of_sets,
962 				     data, HCI_CMD_TIMEOUT);
963 }
964 
965 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
966 {
967 	int err;
968 
969 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
970 	if (err)
971 		return err;
972 
973 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
974 	if (err)
975 		return err;
976 
977 	return hci_enable_ext_advertising_sync(hdev, instance);
978 }
979 
980 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
981 {
982 	int err;
983 
984 	if (ext_adv_capable(hdev))
985 		return hci_start_ext_adv_sync(hdev, instance);
986 
987 	err = hci_update_adv_data_sync(hdev, instance);
988 	if (err)
989 		return err;
990 
991 	err = hci_update_scan_rsp_data_sync(hdev, instance);
992 	if (err)
993 		return err;
994 
995 	return hci_enable_advertising_sync(hdev);
996 }
997 
998 int hci_enable_advertising_sync(struct hci_dev *hdev)
999 {
1000 	struct adv_info *adv_instance;
1001 	struct hci_cp_le_set_adv_param cp;
1002 	u8 own_addr_type, enable = 0x01;
1003 	bool connectable;
1004 	u16 adv_min_interval, adv_max_interval;
1005 	u32 flags;
1006 	u8 status;
1007 
1008 	if (ext_adv_capable(hdev))
1009 		return hci_enable_ext_advertising_sync(hdev,
1010 						       hdev->cur_adv_instance);
1011 
1012 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1013 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1014 
1015 	/* If the "connectable" instance flag was not set, then choose between
1016 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1017 	 */
1018 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1019 		      mgmt_get_connectable(hdev);
1020 
1021 	if (!is_advertising_allowed(hdev, connectable))
1022 		return -EINVAL;
1023 
1024 	status = hci_disable_advertising_sync(hdev);
1025 	if (status)
1026 		return status;
1027 
1028 	/* Clear the HCI_LE_ADV bit temporarily so that the
1029 	 * hci_update_random_address knows that it's safe to go ahead
1030 	 * and write a new random address. The flag will be set back on
1031 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1032 	 */
1033 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1034 
1035 	/* Set require_privacy to true only when non-connectable
1036 	 * advertising is used. In that case it is fine to use a
1037 	 * non-resolvable private address.
1038 	 */
1039 	status = hci_update_random_address_sync(hdev, !connectable,
1040 						adv_use_rpa(hdev, flags),
1041 						&own_addr_type);
1042 	if (status)
1043 		return status;
1044 
1045 	memset(&cp, 0, sizeof(cp));
1046 
1047 	if (adv_instance) {
1048 		adv_min_interval = adv_instance->min_interval;
1049 		adv_max_interval = adv_instance->max_interval;
1050 	} else {
1051 		adv_min_interval = hdev->le_adv_min_interval;
1052 		adv_max_interval = hdev->le_adv_max_interval;
1053 	}
1054 
1055 	if (connectable) {
1056 		cp.type = LE_ADV_IND;
1057 	} else {
1058 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1059 			cp.type = LE_ADV_SCAN_IND;
1060 		else
1061 			cp.type = LE_ADV_NONCONN_IND;
1062 
1063 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1064 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1065 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1066 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1067 		}
1068 	}
1069 
1070 	cp.min_interval = cpu_to_le16(adv_min_interval);
1071 	cp.max_interval = cpu_to_le16(adv_max_interval);
1072 	cp.own_address_type = own_addr_type;
1073 	cp.channel_map = hdev->le_adv_channel_map;
1074 
1075 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1076 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1077 	if (status)
1078 		return status;
1079 
1080 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1081 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1082 }
1083 
1084 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1085 {
1086 	return hci_enable_advertising_sync(hdev);
1087 }
1088 
1089 int hci_enable_advertising(struct hci_dev *hdev)
1090 {
1091 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1092 	    list_empty(&hdev->adv_instances))
1093 		return 0;
1094 
1095 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1096 }
1097 
1098 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1099 				     struct sock *sk)
1100 {
1101 	int err;
1102 
1103 	if (!ext_adv_capable(hdev))
1104 		return 0;
1105 
1106 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1107 	if (err)
1108 		return err;
1109 
1110 	/* If request specifies an instance that doesn't exist, fail */
1111 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1112 		return -EINVAL;
1113 
1114 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1115 					sizeof(instance), &instance, 0,
1116 					HCI_CMD_TIMEOUT, sk);
1117 }
1118 
1119 static void cancel_adv_timeout(struct hci_dev *hdev)
1120 {
1121 	if (hdev->adv_instance_timeout) {
1122 		hdev->adv_instance_timeout = 0;
1123 		cancel_delayed_work(&hdev->adv_instance_expire);
1124 	}
1125 }
1126 
1127 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1128 {
1129 	struct {
1130 		struct hci_cp_le_set_ext_adv_data cp;
1131 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1132 	} pdu;
1133 	u8 len;
1134 	struct adv_info *adv = NULL;
1135 	int err;
1136 
1137 	memset(&pdu, 0, sizeof(pdu));
1138 
1139 	if (instance) {
1140 		adv = hci_find_adv_instance(hdev, instance);
1141 		if (!adv || !adv->adv_data_changed)
1142 			return 0;
1143 	}
1144 
1145 	len = eir_create_adv_data(hdev, instance, pdu.data);
1146 
1147 	pdu.cp.length = len;
1148 	pdu.cp.handle = instance;
1149 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1150 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1151 
1152 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1153 				    sizeof(pdu.cp) + len, &pdu.cp,
1154 				    HCI_CMD_TIMEOUT);
1155 	if (err)
1156 		return err;
1157 
1158 	/* Update data if the command succeed */
1159 	if (adv) {
1160 		adv->adv_data_changed = false;
1161 	} else {
1162 		memcpy(hdev->adv_data, pdu.data, len);
1163 		hdev->adv_data_len = len;
1164 	}
1165 
1166 	return 0;
1167 }
1168 
1169 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1170 {
1171 	struct hci_cp_le_set_adv_data cp;
1172 	u8 len;
1173 
1174 	memset(&cp, 0, sizeof(cp));
1175 
1176 	len = eir_create_adv_data(hdev, instance, cp.data);
1177 
1178 	/* There's nothing to do if the data hasn't changed */
1179 	if (hdev->adv_data_len == len &&
1180 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1181 		return 0;
1182 
1183 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1184 	hdev->adv_data_len = len;
1185 
1186 	cp.length = len;
1187 
1188 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1189 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1190 }
1191 
1192 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1193 {
1194 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1195 		return 0;
1196 
1197 	if (ext_adv_capable(hdev))
1198 		return hci_set_ext_adv_data_sync(hdev, instance);
1199 
1200 	return hci_set_adv_data_sync(hdev, instance);
1201 }
1202 
1203 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1204 				   bool force)
1205 {
1206 	struct adv_info *adv = NULL;
1207 	u16 timeout;
1208 
1209 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1210 		return -EPERM;
1211 
1212 	if (hdev->adv_instance_timeout)
1213 		return -EBUSY;
1214 
1215 	adv = hci_find_adv_instance(hdev, instance);
1216 	if (!adv)
1217 		return -ENOENT;
1218 
1219 	/* A zero timeout means unlimited advertising. As long as there is
1220 	 * only one instance, duration should be ignored. We still set a timeout
1221 	 * in case further instances are being added later on.
1222 	 *
1223 	 * If the remaining lifetime of the instance is more than the duration
1224 	 * then the timeout corresponds to the duration, otherwise it will be
1225 	 * reduced to the remaining instance lifetime.
1226 	 */
1227 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1228 		timeout = adv->duration;
1229 	else
1230 		timeout = adv->remaining_time;
1231 
1232 	/* The remaining time is being reduced unless the instance is being
1233 	 * advertised without time limit.
1234 	 */
1235 	if (adv->timeout)
1236 		adv->remaining_time = adv->remaining_time - timeout;
1237 
1238 	/* Only use work for scheduling instances with legacy advertising */
1239 	if (!ext_adv_capable(hdev)) {
1240 		hdev->adv_instance_timeout = timeout;
1241 		queue_delayed_work(hdev->req_workqueue,
1242 				   &hdev->adv_instance_expire,
1243 				   msecs_to_jiffies(timeout * 1000));
1244 	}
1245 
1246 	/* If we're just re-scheduling the same instance again then do not
1247 	 * execute any HCI commands. This happens when a single instance is
1248 	 * being advertised.
1249 	 */
1250 	if (!force && hdev->cur_adv_instance == instance &&
1251 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1252 		return 0;
1253 
1254 	hdev->cur_adv_instance = instance;
1255 
1256 	return hci_start_adv_sync(hdev, instance);
1257 }
1258 
1259 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1260 {
1261 	int err;
1262 
1263 	if (!ext_adv_capable(hdev))
1264 		return 0;
1265 
1266 	/* Disable instance 0x00 to disable all instances */
1267 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1268 	if (err)
1269 		return err;
1270 
1271 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1272 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1273 }
1274 
1275 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1276 {
1277 	struct adv_info *adv, *n;
1278 
1279 	if (ext_adv_capable(hdev))
1280 		/* Remove all existing sets */
1281 		return hci_clear_adv_sets_sync(hdev, sk);
1282 
1283 	/* This is safe as long as there is no command send while the lock is
1284 	 * held.
1285 	 */
1286 	hci_dev_lock(hdev);
1287 
1288 	/* Cleanup non-ext instances */
1289 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1290 		u8 instance = adv->instance;
1291 		int err;
1292 
1293 		if (!(force || adv->timeout))
1294 			continue;
1295 
1296 		err = hci_remove_adv_instance(hdev, instance);
1297 		if (!err)
1298 			mgmt_advertising_removed(sk, hdev, instance);
1299 	}
1300 
1301 	hci_dev_unlock(hdev);
1302 
1303 	return 0;
1304 }
1305 
1306 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1307 			       struct sock *sk)
1308 {
1309 	int err;
1310 
1311 	/* If we use extended advertising, instance has to be removed first. */
1312 	if (ext_adv_capable(hdev))
1313 		return hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1314 
1315 	/* This is safe as long as there is no command send while the lock is
1316 	 * held.
1317 	 */
1318 	hci_dev_lock(hdev);
1319 
1320 	err = hci_remove_adv_instance(hdev, instance);
1321 	if (!err)
1322 		mgmt_advertising_removed(sk, hdev, instance);
1323 
1324 	hci_dev_unlock(hdev);
1325 
1326 	return err;
1327 }
1328 
1329 /* For a single instance:
1330  * - force == true: The instance will be removed even when its remaining
1331  *   lifetime is not zero.
1332  * - force == false: the instance will be deactivated but kept stored unless
1333  *   the remaining lifetime is zero.
1334  *
1335  * For instance == 0x00:
1336  * - force == true: All instances will be removed regardless of their timeout
1337  *   setting.
1338  * - force == false: Only instances that have a timeout will be removed.
1339  */
1340 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1341 				u8 instance, bool force)
1342 {
1343 	struct adv_info *next = NULL;
1344 	int err;
1345 
1346 	/* Cancel any timeout concerning the removed instance(s). */
1347 	if (!instance || hdev->cur_adv_instance == instance)
1348 		cancel_adv_timeout(hdev);
1349 
1350 	/* Get the next instance to advertise BEFORE we remove
1351 	 * the current one. This can be the same instance again
1352 	 * if there is only one instance.
1353 	 */
1354 	if (hdev->cur_adv_instance == instance)
1355 		next = hci_get_next_instance(hdev, instance);
1356 
1357 	if (!instance) {
1358 		err = hci_clear_adv_sync(hdev, sk, force);
1359 		if (err)
1360 			return err;
1361 	} else {
1362 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1363 
1364 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1365 			/* Don't advertise a removed instance. */
1366 			if (next && next->instance == instance)
1367 				next = NULL;
1368 
1369 			err = hci_remove_adv_sync(hdev, instance, sk);
1370 			if (err)
1371 				return err;
1372 		}
1373 	}
1374 
1375 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1376 		return 0;
1377 
1378 	if (next && !ext_adv_capable(hdev))
1379 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1380 
1381 	return 0;
1382 }
1383 
1384 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1385 {
1386 	struct hci_cp_read_rssi cp;
1387 
1388 	cp.handle = handle;
1389 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1390 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1391 }
1392 
1393 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1394 {
1395 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1396 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1397 }
1398 
1399 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1400 {
1401 	struct hci_cp_read_tx_power cp;
1402 
1403 	cp.handle = handle;
1404 	cp.type = type;
1405 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1406 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1407 }
1408 
1409 int hci_disable_advertising_sync(struct hci_dev *hdev)
1410 {
1411 	u8 enable = 0x00;
1412 
1413 	/* If controller is not advertising we are done. */
1414 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1415 		return 0;
1416 
1417 	if (ext_adv_capable(hdev))
1418 		return hci_disable_ext_adv_instance_sync(hdev, 0x00);
1419 
1420 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1421 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1422 }
1423 
1424 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1425 					   u8 filter_dup)
1426 {
1427 	struct hci_cp_le_set_ext_scan_enable cp;
1428 
1429 	memset(&cp, 0, sizeof(cp));
1430 	cp.enable = val;
1431 	cp.filter_dup = filter_dup;
1432 
1433 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1434 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1435 }
1436 
1437 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1438 				       u8 filter_dup)
1439 {
1440 	struct hci_cp_le_set_scan_enable cp;
1441 
1442 	if (use_ext_scan(hdev))
1443 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1444 
1445 	memset(&cp, 0, sizeof(cp));
1446 	cp.enable = val;
1447 	cp.filter_dup = filter_dup;
1448 
1449 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1450 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1451 }
1452 
1453 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1454 {
1455 	if (!use_ll_privacy(hdev))
1456 		return 0;
1457 
1458 	/* If controller is not/already resolving we are done. */
1459 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1460 		return 0;
1461 
1462 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1463 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
1464 }
1465 
1466 static int hci_scan_disable_sync(struct hci_dev *hdev)
1467 {
1468 	int err;
1469 
1470 	/* If controller is not scanning we are done. */
1471 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1472 		return 0;
1473 
1474 	if (hdev->scanning_paused) {
1475 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
1476 		return 0;
1477 	}
1478 
1479 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
1480 	if (err) {
1481 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
1482 		return err;
1483 	}
1484 
1485 	return err;
1486 }
1487 
1488 static bool scan_use_rpa(struct hci_dev *hdev)
1489 {
1490 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
1491 }
1492 
1493 static void hci_start_interleave_scan(struct hci_dev *hdev)
1494 {
1495 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
1496 	queue_delayed_work(hdev->req_workqueue,
1497 			   &hdev->interleave_scan, 0);
1498 }
1499 
1500 static bool is_interleave_scanning(struct hci_dev *hdev)
1501 {
1502 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
1503 }
1504 
1505 static void cancel_interleave_scan(struct hci_dev *hdev)
1506 {
1507 	bt_dev_dbg(hdev, "cancelling interleave scan");
1508 
1509 	cancel_delayed_work_sync(&hdev->interleave_scan);
1510 
1511 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
1512 }
1513 
1514 /* Return true if interleave_scan wasn't started until exiting this function,
1515  * otherwise, return false
1516  */
1517 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
1518 {
1519 	/* Do interleaved scan only if all of the following are true:
1520 	 * - There is at least one ADV monitor
1521 	 * - At least one pending LE connection or one device to be scanned for
1522 	 * - Monitor offloading is not supported
1523 	 * If so, we should alternate between allowlist scan and one without
1524 	 * any filters to save power.
1525 	 */
1526 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
1527 				!(list_empty(&hdev->pend_le_conns) &&
1528 				  list_empty(&hdev->pend_le_reports)) &&
1529 				hci_get_adv_monitor_offload_ext(hdev) ==
1530 				    HCI_ADV_MONITOR_EXT_NONE;
1531 	bool is_interleaving = is_interleave_scanning(hdev);
1532 
1533 	if (use_interleaving && !is_interleaving) {
1534 		hci_start_interleave_scan(hdev);
1535 		bt_dev_dbg(hdev, "starting interleave scan");
1536 		return true;
1537 	}
1538 
1539 	if (!use_interleaving && is_interleaving)
1540 		cancel_interleave_scan(hdev);
1541 
1542 	return false;
1543 }
1544 
1545 /* Removes connection to resolve list if needed.*/
1546 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
1547 					bdaddr_t *bdaddr, u8 bdaddr_type)
1548 {
1549 	struct hci_cp_le_del_from_resolv_list cp;
1550 	struct bdaddr_list_with_irk *entry;
1551 
1552 	if (!use_ll_privacy(hdev))
1553 		return 0;
1554 
1555 	/* Check if the IRK has been programmed */
1556 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
1557 						bdaddr_type);
1558 	if (!entry)
1559 		return 0;
1560 
1561 	cp.bdaddr_type = bdaddr_type;
1562 	bacpy(&cp.bdaddr, bdaddr);
1563 
1564 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
1565 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1566 }
1567 
1568 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
1569 				       bdaddr_t *bdaddr, u8 bdaddr_type)
1570 {
1571 	struct hci_cp_le_del_from_accept_list cp;
1572 	int err;
1573 
1574 	/* Check if device is on accept list before removing it */
1575 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
1576 		return 0;
1577 
1578 	cp.bdaddr_type = bdaddr_type;
1579 	bacpy(&cp.bdaddr, bdaddr);
1580 
1581 	/* Ignore errors when removing from resolving list as that is likely
1582 	 * that the device was never added.
1583 	 */
1584 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1585 
1586 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
1587 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1588 	if (err) {
1589 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
1590 		return err;
1591 	}
1592 
1593 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
1594 		   cp.bdaddr_type);
1595 
1596 	return 0;
1597 }
1598 
1599 /* Adds connection to resolve list if needed.
1600  * Setting params to NULL programs local hdev->irk
1601  */
1602 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
1603 					struct hci_conn_params *params)
1604 {
1605 	struct hci_cp_le_add_to_resolv_list cp;
1606 	struct smp_irk *irk;
1607 	struct bdaddr_list_with_irk *entry;
1608 
1609 	if (!use_ll_privacy(hdev))
1610 		return 0;
1611 
1612 	/* Attempt to program local identity address, type and irk if params is
1613 	 * NULL.
1614 	 */
1615 	if (!params) {
1616 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1617 			return 0;
1618 
1619 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
1620 		memcpy(cp.peer_irk, hdev->irk, 16);
1621 		goto done;
1622 	}
1623 
1624 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1625 	if (!irk)
1626 		return 0;
1627 
1628 	/* Check if the IK has _not_ been programmed yet. */
1629 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
1630 						&params->addr,
1631 						params->addr_type);
1632 	if (entry)
1633 		return 0;
1634 
1635 	cp.bdaddr_type = params->addr_type;
1636 	bacpy(&cp.bdaddr, &params->addr);
1637 	memcpy(cp.peer_irk, irk->val, 16);
1638 
1639 	/* Default privacy mode is always Network */
1640 	params->privacy_mode = HCI_NETWORK_PRIVACY;
1641 
1642 done:
1643 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
1644 		memcpy(cp.local_irk, hdev->irk, 16);
1645 	else
1646 		memset(cp.local_irk, 0, 16);
1647 
1648 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
1649 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1650 }
1651 
1652 /* Set Device Privacy Mode. */
1653 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
1654 					struct hci_conn_params *params)
1655 {
1656 	struct hci_cp_le_set_privacy_mode cp;
1657 	struct smp_irk *irk;
1658 
1659 	/* If device privacy mode has already been set there is nothing to do */
1660 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
1661 		return 0;
1662 
1663 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
1664 	 * indicates that LL Privacy has been enabled and
1665 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
1666 	 */
1667 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
1668 		return 0;
1669 
1670 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1671 	if (!irk)
1672 		return 0;
1673 
1674 	memset(&cp, 0, sizeof(cp));
1675 	cp.bdaddr_type = irk->addr_type;
1676 	bacpy(&cp.bdaddr, &irk->bdaddr);
1677 	cp.mode = HCI_DEVICE_PRIVACY;
1678 
1679 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
1680 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1681 }
1682 
1683 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
1684  * this attempts to program the device in the resolving list as well and
1685  * properly set the privacy mode.
1686  */
1687 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
1688 				       struct hci_conn_params *params,
1689 				       u8 *num_entries)
1690 {
1691 	struct hci_cp_le_add_to_accept_list cp;
1692 	int err;
1693 
1694 	/* During suspend, only wakeable devices can be in acceptlist */
1695 	if (hdev->suspended &&
1696 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
1697 		return 0;
1698 
1699 	/* Select filter policy to accept all advertising */
1700 	if (*num_entries >= hdev->le_accept_list_size)
1701 		return -ENOSPC;
1702 
1703 	/* Accept list can not be used with RPAs */
1704 	if (!use_ll_privacy(hdev) &&
1705 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
1706 		return -EINVAL;
1707 
1708 	/* Attempt to program the device in the resolving list first to avoid
1709 	 * having to rollback in case it fails since the resolving list is
1710 	 * dynamic it can probably be smaller than the accept list.
1711 	 */
1712 	err = hci_le_add_resolve_list_sync(hdev, params);
1713 	if (err) {
1714 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
1715 		return err;
1716 	}
1717 
1718 	/* Set Privacy Mode */
1719 	err = hci_le_set_privacy_mode_sync(hdev, params);
1720 	if (err) {
1721 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
1722 		return err;
1723 	}
1724 
1725 	/* Check if already in accept list */
1726 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
1727 				   params->addr_type))
1728 		return 0;
1729 
1730 	*num_entries += 1;
1731 	cp.bdaddr_type = params->addr_type;
1732 	bacpy(&cp.bdaddr, &params->addr);
1733 
1734 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
1735 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1736 	if (err) {
1737 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
1738 		/* Rollback the device from the resolving list */
1739 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1740 		return err;
1741 	}
1742 
1743 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
1744 		   cp.bdaddr_type);
1745 
1746 	return 0;
1747 }
1748 
1749 /* This function disables/pause all advertising instances */
1750 static int hci_pause_advertising_sync(struct hci_dev *hdev)
1751 {
1752 	int err;
1753 	int old_state;
1754 
1755 	/* If already been paused there is nothing to do. */
1756 	if (hdev->advertising_paused)
1757 		return 0;
1758 
1759 	bt_dev_dbg(hdev, "Pausing directed advertising");
1760 
1761 	/* Stop directed advertising */
1762 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1763 	if (old_state) {
1764 		/* When discoverable timeout triggers, then just make sure
1765 		 * the limited discoverable flag is cleared. Even in the case
1766 		 * of a timeout triggered from general discoverable, it is
1767 		 * safe to unconditionally clear the flag.
1768 		 */
1769 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1770 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1771 		hdev->discov_timeout = 0;
1772 	}
1773 
1774 	bt_dev_dbg(hdev, "Pausing advertising instances");
1775 
1776 	/* Call to disable any advertisements active on the controller.
1777 	 * This will succeed even if no advertisements are configured.
1778 	 */
1779 	err = hci_disable_advertising_sync(hdev);
1780 	if (err)
1781 		return err;
1782 
1783 	/* If we are using software rotation, pause the loop */
1784 	if (!ext_adv_capable(hdev))
1785 		cancel_adv_timeout(hdev);
1786 
1787 	hdev->advertising_paused = true;
1788 	hdev->advertising_old_state = old_state;
1789 
1790 	return 0;
1791 }
1792 
1793 /* This function enables all user advertising instances */
1794 static int hci_resume_advertising_sync(struct hci_dev *hdev)
1795 {
1796 	struct adv_info *adv, *tmp;
1797 	int err;
1798 
1799 	/* If advertising has not been paused there is nothing  to do. */
1800 	if (!hdev->advertising_paused)
1801 		return 0;
1802 
1803 	/* Resume directed advertising */
1804 	hdev->advertising_paused = false;
1805 	if (hdev->advertising_old_state) {
1806 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
1807 		hdev->advertising_old_state = 0;
1808 	}
1809 
1810 	bt_dev_dbg(hdev, "Resuming advertising instances");
1811 
1812 	if (ext_adv_capable(hdev)) {
1813 		/* Call for each tracked instance to be re-enabled */
1814 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
1815 			err = hci_enable_ext_advertising_sync(hdev,
1816 							      adv->instance);
1817 			if (!err)
1818 				continue;
1819 
1820 			/* If the instance cannot be resumed remove it */
1821 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
1822 							 NULL);
1823 		}
1824 	} else {
1825 		/* Schedule for most recent instance to be restarted and begin
1826 		 * the software rotation loop
1827 		 */
1828 		err = hci_schedule_adv_instance_sync(hdev,
1829 						     hdev->cur_adv_instance,
1830 						     true);
1831 	}
1832 
1833 	hdev->advertising_paused = false;
1834 
1835 	return err;
1836 }
1837 
1838 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
1839 					     bool extended, struct sock *sk)
1840 {
1841 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
1842 					HCI_OP_READ_LOCAL_OOB_DATA;
1843 
1844 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1845 }
1846 
1847 /* Device must not be scanning when updating the accept list.
1848  *
1849  * Update is done using the following sequence:
1850  *
1851  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
1852  * Remove Devices From Accept List ->
1853  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
1854  * Add Devices to Accept List ->
1855  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
1856  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
1857  * Enable Scanning
1858  *
1859  * In case of failure advertising shall be restored to its original state and
1860  * return would disable accept list since either accept or resolving list could
1861  * not be programmed.
1862  *
1863  */
1864 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
1865 {
1866 	struct hci_conn_params *params;
1867 	struct bdaddr_list *b, *t;
1868 	u8 num_entries = 0;
1869 	bool pend_conn, pend_report;
1870 	u8 filter_policy;
1871 	int err;
1872 
1873 	/* Pause advertising if resolving list can be used as controllers are
1874 	 * cannot accept resolving list modifications while advertising.
1875 	 */
1876 	if (use_ll_privacy(hdev)) {
1877 		err = hci_pause_advertising_sync(hdev);
1878 		if (err) {
1879 			bt_dev_err(hdev, "pause advertising failed: %d", err);
1880 			return 0x00;
1881 		}
1882 	}
1883 
1884 	/* Disable address resolution while reprogramming accept list since
1885 	 * devices that do have an IRK will be programmed in the resolving list
1886 	 * when LL Privacy is enabled.
1887 	 */
1888 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
1889 	if (err) {
1890 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
1891 		goto done;
1892 	}
1893 
1894 	/* Go through the current accept list programmed into the
1895 	 * controller one by one and check if that address is connected or is
1896 	 * still in the list of pending connections or list of devices to
1897 	 * report. If not present in either list, then remove it from
1898 	 * the controller.
1899 	 */
1900 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
1901 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
1902 			continue;
1903 
1904 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
1905 						      &b->bdaddr,
1906 						      b->bdaddr_type);
1907 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
1908 							&b->bdaddr,
1909 							b->bdaddr_type);
1910 
1911 		/* If the device is not likely to connect or report,
1912 		 * remove it from the acceptlist.
1913 		 */
1914 		if (!pend_conn && !pend_report) {
1915 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
1916 						    b->bdaddr_type);
1917 			continue;
1918 		}
1919 
1920 		num_entries++;
1921 	}
1922 
1923 	/* Since all no longer valid accept list entries have been
1924 	 * removed, walk through the list of pending connections
1925 	 * and ensure that any new device gets programmed into
1926 	 * the controller.
1927 	 *
1928 	 * If the list of the devices is larger than the list of
1929 	 * available accept list entries in the controller, then
1930 	 * just abort and return filer policy value to not use the
1931 	 * accept list.
1932 	 */
1933 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
1934 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1935 		if (err)
1936 			goto done;
1937 	}
1938 
1939 	/* After adding all new pending connections, walk through
1940 	 * the list of pending reports and also add these to the
1941 	 * accept list if there is still space. Abort if space runs out.
1942 	 */
1943 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
1944 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1945 		if (err)
1946 			goto done;
1947 	}
1948 
1949 	/* Use the allowlist unless the following conditions are all true:
1950 	 * - We are not currently suspending
1951 	 * - There are 1 or more ADV monitors registered and it's not offloaded
1952 	 * - Interleaved scanning is not currently using the allowlist
1953 	 */
1954 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
1955 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
1956 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
1957 		err = -EINVAL;
1958 
1959 done:
1960 	filter_policy = err ? 0x00 : 0x01;
1961 
1962 	/* Enable address resolution when LL Privacy is enabled. */
1963 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
1964 	if (err)
1965 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
1966 
1967 	/* Resume advertising if it was paused */
1968 	if (use_ll_privacy(hdev))
1969 		hci_resume_advertising_sync(hdev);
1970 
1971 	/* Select filter policy to use accept list */
1972 	return filter_policy;
1973 }
1974 
1975 /* Returns true if an le connection is in the scanning state */
1976 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
1977 {
1978 	struct hci_conn_hash *h = &hdev->conn_hash;
1979 	struct hci_conn  *c;
1980 
1981 	rcu_read_lock();
1982 
1983 	list_for_each_entry_rcu(c, &h->list, list) {
1984 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
1985 		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
1986 			rcu_read_unlock();
1987 			return true;
1988 		}
1989 	}
1990 
1991 	rcu_read_unlock();
1992 
1993 	return false;
1994 }
1995 
1996 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
1997 					  u16 interval, u16 window,
1998 					  u8 own_addr_type, u8 filter_policy)
1999 {
2000 	struct hci_cp_le_set_ext_scan_params *cp;
2001 	struct hci_cp_le_scan_phy_params *phy;
2002 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2003 	u8 num_phy = 0;
2004 
2005 	cp = (void *)data;
2006 	phy = (void *)cp->data;
2007 
2008 	memset(data, 0, sizeof(data));
2009 
2010 	cp->own_addr_type = own_addr_type;
2011 	cp->filter_policy = filter_policy;
2012 
2013 	if (scan_1m(hdev) || scan_2m(hdev)) {
2014 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2015 
2016 		phy->type = type;
2017 		phy->interval = cpu_to_le16(interval);
2018 		phy->window = cpu_to_le16(window);
2019 
2020 		num_phy++;
2021 		phy++;
2022 	}
2023 
2024 	if (scan_coded(hdev)) {
2025 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2026 
2027 		phy->type = type;
2028 		phy->interval = cpu_to_le16(interval);
2029 		phy->window = cpu_to_le16(window);
2030 
2031 		num_phy++;
2032 		phy++;
2033 	}
2034 
2035 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2036 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2037 				     data, HCI_CMD_TIMEOUT);
2038 }
2039 
2040 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2041 				      u16 interval, u16 window,
2042 				      u8 own_addr_type, u8 filter_policy)
2043 {
2044 	struct hci_cp_le_set_scan_param cp;
2045 
2046 	if (use_ext_scan(hdev))
2047 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2048 						      window, own_addr_type,
2049 						      filter_policy);
2050 
2051 	memset(&cp, 0, sizeof(cp));
2052 	cp.type = type;
2053 	cp.interval = cpu_to_le16(interval);
2054 	cp.window = cpu_to_le16(window);
2055 	cp.own_address_type = own_addr_type;
2056 	cp.filter_policy = filter_policy;
2057 
2058 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2059 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2060 }
2061 
2062 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2063 			       u16 window, u8 own_addr_type, u8 filter_policy,
2064 			       u8 filter_dup)
2065 {
2066 	int err;
2067 
2068 	if (hdev->scanning_paused) {
2069 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2070 		return 0;
2071 	}
2072 
2073 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2074 					 own_addr_type, filter_policy);
2075 	if (err)
2076 		return err;
2077 
2078 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2079 }
2080 
2081 static int hci_passive_scan_sync(struct hci_dev *hdev)
2082 {
2083 	u8 own_addr_type;
2084 	u8 filter_policy;
2085 	u16 window, interval;
2086 	int err;
2087 
2088 	if (hdev->scanning_paused) {
2089 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2090 		return 0;
2091 	}
2092 
2093 	err = hci_scan_disable_sync(hdev);
2094 	if (err) {
2095 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2096 		return err;
2097 	}
2098 
2099 	/* Set require_privacy to false since no SCAN_REQ are send
2100 	 * during passive scanning. Not using an non-resolvable address
2101 	 * here is important so that peer devices using direct
2102 	 * advertising with our address will be correctly reported
2103 	 * by the controller.
2104 	 */
2105 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2106 					   &own_addr_type))
2107 		return 0;
2108 
2109 	if (hdev->enable_advmon_interleave_scan &&
2110 	    hci_update_interleaved_scan_sync(hdev))
2111 		return 0;
2112 
2113 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2114 
2115 	/* Adding or removing entries from the accept list must
2116 	 * happen before enabling scanning. The controller does
2117 	 * not allow accept list modification while scanning.
2118 	 */
2119 	filter_policy = hci_update_accept_list_sync(hdev);
2120 
2121 	/* When the controller is using random resolvable addresses and
2122 	 * with that having LE privacy enabled, then controllers with
2123 	 * Extended Scanner Filter Policies support can now enable support
2124 	 * for handling directed advertising.
2125 	 *
2126 	 * So instead of using filter polices 0x00 (no acceptlist)
2127 	 * and 0x01 (acceptlist enabled) use the new filter policies
2128 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2129 	 */
2130 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2131 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2132 		filter_policy |= 0x02;
2133 
2134 	if (hdev->suspended) {
2135 		window = hdev->le_scan_window_suspend;
2136 		interval = hdev->le_scan_int_suspend;
2137 	} else if (hci_is_le_conn_scanning(hdev)) {
2138 		window = hdev->le_scan_window_connect;
2139 		interval = hdev->le_scan_int_connect;
2140 	} else if (hci_is_adv_monitoring(hdev)) {
2141 		window = hdev->le_scan_window_adv_monitor;
2142 		interval = hdev->le_scan_int_adv_monitor;
2143 	} else {
2144 		window = hdev->le_scan_window;
2145 		interval = hdev->le_scan_interval;
2146 	}
2147 
2148 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2149 
2150 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2151 				   own_addr_type, filter_policy,
2152 				   LE_SCAN_FILTER_DUP_ENABLE);
2153 }
2154 
2155 /* This function controls the passive scanning based on hdev->pend_le_conns
2156  * list. If there are pending LE connection we start the background scanning,
2157  * otherwise we stop it in the following sequence:
2158  *
2159  * If there are devices to scan:
2160  *
2161  * Disable Scanning -> Update Accept List ->
2162  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2163  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2164  * Enable Scanning
2165  *
2166  * Otherwise:
2167  *
2168  * Disable Scanning
2169  */
2170 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2171 {
2172 	int err;
2173 
2174 	if (!test_bit(HCI_UP, &hdev->flags) ||
2175 	    test_bit(HCI_INIT, &hdev->flags) ||
2176 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2177 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2178 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2179 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2180 		return 0;
2181 
2182 	/* No point in doing scanning if LE support hasn't been enabled */
2183 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2184 		return 0;
2185 
2186 	/* If discovery is active don't interfere with it */
2187 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2188 		return 0;
2189 
2190 	/* Reset RSSI and UUID filters when starting background scanning
2191 	 * since these filters are meant for service discovery only.
2192 	 *
2193 	 * The Start Discovery and Start Service Discovery operations
2194 	 * ensure to set proper values for RSSI threshold and UUID
2195 	 * filter list. So it is safe to just reset them here.
2196 	 */
2197 	hci_discovery_filter_clear(hdev);
2198 
2199 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2200 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2201 
2202 	if (list_empty(&hdev->pend_le_conns) &&
2203 	    list_empty(&hdev->pend_le_reports) &&
2204 	    !hci_is_adv_monitoring(hdev)) {
2205 		/* If there is no pending LE connections or devices
2206 		 * to be scanned for or no ADV monitors, we should stop the
2207 		 * background scanning.
2208 		 */
2209 
2210 		bt_dev_dbg(hdev, "stopping background scanning");
2211 
2212 		err = hci_scan_disable_sync(hdev);
2213 		if (err)
2214 			bt_dev_err(hdev, "stop background scanning failed: %d",
2215 				   err);
2216 	} else {
2217 		/* If there is at least one pending LE connection, we should
2218 		 * keep the background scan running.
2219 		 */
2220 
2221 		/* If controller is connecting, we should not start scanning
2222 		 * since some controllers are not able to scan and connect at
2223 		 * the same time.
2224 		 */
2225 		if (hci_lookup_le_connect(hdev))
2226 			return 0;
2227 
2228 		bt_dev_dbg(hdev, "start background scanning");
2229 
2230 		err = hci_passive_scan_sync(hdev);
2231 		if (err)
2232 			bt_dev_err(hdev, "start background scanning failed: %d",
2233 				   err);
2234 	}
2235 
2236 	return err;
2237 }
2238 
2239 static int update_scan_sync(struct hci_dev *hdev, void *data)
2240 {
2241 	return hci_update_scan_sync(hdev);
2242 }
2243 
2244 int hci_update_scan(struct hci_dev *hdev)
2245 {
2246 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2247 }
2248 
2249 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2250 {
2251 	return hci_update_passive_scan_sync(hdev);
2252 }
2253 
2254 int hci_update_passive_scan(struct hci_dev *hdev)
2255 {
2256 	/* Only queue if it would have any effect */
2257 	if (!test_bit(HCI_UP, &hdev->flags) ||
2258 	    test_bit(HCI_INIT, &hdev->flags) ||
2259 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2260 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2261 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2262 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2263 		return 0;
2264 
2265 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2266 }
2267 
2268 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2269 {
2270 	int err;
2271 
2272 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2273 		return 0;
2274 
2275 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2276 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2277 
2278 	if (!err) {
2279 		if (val) {
2280 			hdev->features[1][0] |= LMP_HOST_SC;
2281 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2282 		} else {
2283 			hdev->features[1][0] &= ~LMP_HOST_SC;
2284 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2285 		}
2286 	}
2287 
2288 	return err;
2289 }
2290 
2291 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2292 {
2293 	int err;
2294 
2295 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2296 	    lmp_host_ssp_capable(hdev))
2297 		return 0;
2298 
2299 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2300 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2301 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2302 	}
2303 
2304 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2305 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2306 	if (err)
2307 		return err;
2308 
2309 	return hci_write_sc_support_sync(hdev, 0x01);
2310 }
2311 
2312 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2313 {
2314 	struct hci_cp_write_le_host_supported cp;
2315 
2316 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2317 	    !lmp_bredr_capable(hdev))
2318 		return 0;
2319 
2320 	/* Check first if we already have the right host state
2321 	 * (host features set)
2322 	 */
2323 	if (le == lmp_host_le_capable(hdev) &&
2324 	    simul == lmp_host_le_br_capable(hdev))
2325 		return 0;
2326 
2327 	memset(&cp, 0, sizeof(cp));
2328 
2329 	cp.le = le;
2330 	cp.simul = simul;
2331 
2332 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2333 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2334 }
2335 
2336 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2337 {
2338 	struct adv_info *adv, *tmp;
2339 	int err;
2340 
2341 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2342 		return 0;
2343 
2344 	/* If RPA Resolution has not been enable yet it means the
2345 	 * resolving list is empty and we should attempt to program the
2346 	 * local IRK in order to support using own_addr_type
2347 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2348 	 */
2349 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2350 		hci_le_add_resolve_list_sync(hdev, NULL);
2351 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2352 	}
2353 
2354 	/* Make sure the controller has a good default for
2355 	 * advertising data. This also applies to the case
2356 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2357 	 */
2358 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2359 	    list_empty(&hdev->adv_instances)) {
2360 		if (ext_adv_capable(hdev)) {
2361 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2362 			if (!err)
2363 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2364 		} else {
2365 			err = hci_update_adv_data_sync(hdev, 0x00);
2366 			if (!err)
2367 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2368 		}
2369 
2370 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2371 			hci_enable_advertising_sync(hdev);
2372 	}
2373 
2374 	/* Call for each tracked instance to be scheduled */
2375 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2376 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2377 
2378 	return 0;
2379 }
2380 
2381 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2382 {
2383 	u8 link_sec;
2384 
2385 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2386 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2387 		return 0;
2388 
2389 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
2390 				     sizeof(link_sec), &link_sec,
2391 				     HCI_CMD_TIMEOUT);
2392 }
2393 
2394 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
2395 {
2396 	struct hci_cp_write_page_scan_activity cp;
2397 	u8 type;
2398 	int err = 0;
2399 
2400 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2401 		return 0;
2402 
2403 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
2404 		return 0;
2405 
2406 	memset(&cp, 0, sizeof(cp));
2407 
2408 	if (enable) {
2409 		type = PAGE_SCAN_TYPE_INTERLACED;
2410 
2411 		/* 160 msec page scan interval */
2412 		cp.interval = cpu_to_le16(0x0100);
2413 	} else {
2414 		type = hdev->def_page_scan_type;
2415 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
2416 	}
2417 
2418 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
2419 
2420 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
2421 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
2422 		err = __hci_cmd_sync_status(hdev,
2423 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
2424 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2425 		if (err)
2426 			return err;
2427 	}
2428 
2429 	if (hdev->page_scan_type != type)
2430 		err = __hci_cmd_sync_status(hdev,
2431 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
2432 					    sizeof(type), &type,
2433 					    HCI_CMD_TIMEOUT);
2434 
2435 	return err;
2436 }
2437 
2438 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2439 {
2440 	struct bdaddr_list *b;
2441 
2442 	list_for_each_entry(b, &hdev->accept_list, list) {
2443 		struct hci_conn *conn;
2444 
2445 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2446 		if (!conn)
2447 			return true;
2448 
2449 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2450 			return true;
2451 	}
2452 
2453 	return false;
2454 }
2455 
2456 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
2457 {
2458 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
2459 					    sizeof(val), &val,
2460 					    HCI_CMD_TIMEOUT);
2461 }
2462 
2463 int hci_update_scan_sync(struct hci_dev *hdev)
2464 {
2465 	u8 scan;
2466 
2467 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2468 		return 0;
2469 
2470 	if (!hdev_is_powered(hdev))
2471 		return 0;
2472 
2473 	if (mgmt_powering_down(hdev))
2474 		return 0;
2475 
2476 	if (hdev->scanning_paused)
2477 		return 0;
2478 
2479 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2480 	    disconnected_accept_list_entries(hdev))
2481 		scan = SCAN_PAGE;
2482 	else
2483 		scan = SCAN_DISABLED;
2484 
2485 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2486 		scan |= SCAN_INQUIRY;
2487 
2488 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2489 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2490 		return 0;
2491 
2492 	return hci_write_scan_enable_sync(hdev, scan);
2493 }
2494 
2495 int hci_update_name_sync(struct hci_dev *hdev)
2496 {
2497 	struct hci_cp_write_local_name cp;
2498 
2499 	memset(&cp, 0, sizeof(cp));
2500 
2501 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
2502 
2503 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
2504 					    sizeof(cp), &cp,
2505 					    HCI_CMD_TIMEOUT);
2506 }
2507 
2508 /* This function perform powered update HCI command sequence after the HCI init
2509  * sequence which end up resetting all states, the sequence is as follows:
2510  *
2511  * HCI_SSP_ENABLED(Enable SSP)
2512  * HCI_LE_ENABLED(Enable LE)
2513  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
2514  * Update adv data)
2515  * Enable Authentication
2516  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
2517  * Set Name -> Set EIR)
2518  */
2519 int hci_powered_update_sync(struct hci_dev *hdev)
2520 {
2521 	int err;
2522 
2523 	/* Register the available SMP channels (BR/EDR and LE) only when
2524 	 * successfully powering on the controller. This late
2525 	 * registration is required so that LE SMP can clearly decide if
2526 	 * the public address or static address is used.
2527 	 */
2528 	smp_register(hdev);
2529 
2530 	err = hci_write_ssp_mode_sync(hdev, 0x01);
2531 	if (err)
2532 		return err;
2533 
2534 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
2535 	if (err)
2536 		return err;
2537 
2538 	err = hci_powered_update_adv_sync(hdev);
2539 	if (err)
2540 		return err;
2541 
2542 	err = hci_write_auth_enable_sync(hdev);
2543 	if (err)
2544 		return err;
2545 
2546 	if (lmp_bredr_capable(hdev)) {
2547 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2548 			hci_write_fast_connectable_sync(hdev, true);
2549 		else
2550 			hci_write_fast_connectable_sync(hdev, false);
2551 		hci_update_scan_sync(hdev);
2552 		hci_update_class_sync(hdev);
2553 		hci_update_name_sync(hdev);
2554 		hci_update_eir_sync(hdev);
2555 	}
2556 
2557 	return 0;
2558 }
2559 
2560 /**
2561  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
2562  *				       (BD_ADDR) for a HCI device from
2563  *				       a firmware node property.
2564  * @hdev:	The HCI device
2565  *
2566  * Search the firmware node for 'local-bd-address'.
2567  *
2568  * All-zero BD addresses are rejected, because those could be properties
2569  * that exist in the firmware tables, but were not updated by the firmware. For
2570  * example, the DTS could define 'local-bd-address', with zero BD addresses.
2571  */
2572 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
2573 {
2574 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
2575 	bdaddr_t ba;
2576 	int ret;
2577 
2578 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
2579 					    (u8 *)&ba, sizeof(ba));
2580 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
2581 		return;
2582 
2583 	bacpy(&hdev->public_addr, &ba);
2584 }
2585 
2586 struct hci_init_stage {
2587 	int (*func)(struct hci_dev *hdev);
2588 };
2589 
2590 /* Run init stage NULL terminated function table */
2591 static int hci_init_stage_sync(struct hci_dev *hdev,
2592 			       const struct hci_init_stage *stage)
2593 {
2594 	size_t i;
2595 
2596 	for (i = 0; stage[i].func; i++) {
2597 		int err;
2598 
2599 		err = stage[i].func(hdev);
2600 		if (err)
2601 			return err;
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 /* Read Local Version */
2608 static int hci_read_local_version_sync(struct hci_dev *hdev)
2609 {
2610 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
2611 				     0, NULL, HCI_CMD_TIMEOUT);
2612 }
2613 
2614 /* Read BD Address */
2615 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
2616 {
2617 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
2618 				     0, NULL, HCI_CMD_TIMEOUT);
2619 }
2620 
2621 #define HCI_INIT(_func) \
2622 { \
2623 	.func = _func, \
2624 }
2625 
2626 static const struct hci_init_stage hci_init0[] = {
2627 	/* HCI_OP_READ_LOCAL_VERSION */
2628 	HCI_INIT(hci_read_local_version_sync),
2629 	/* HCI_OP_READ_BD_ADDR */
2630 	HCI_INIT(hci_read_bd_addr_sync),
2631 	{}
2632 };
2633 
2634 int hci_reset_sync(struct hci_dev *hdev)
2635 {
2636 	int err;
2637 
2638 	set_bit(HCI_RESET, &hdev->flags);
2639 
2640 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
2641 				    HCI_CMD_TIMEOUT);
2642 	if (err)
2643 		return err;
2644 
2645 	return 0;
2646 }
2647 
2648 static int hci_init0_sync(struct hci_dev *hdev)
2649 {
2650 	int err;
2651 
2652 	bt_dev_dbg(hdev, "");
2653 
2654 	/* Reset */
2655 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2656 		err = hci_reset_sync(hdev);
2657 		if (err)
2658 			return err;
2659 	}
2660 
2661 	return hci_init_stage_sync(hdev, hci_init0);
2662 }
2663 
2664 static int hci_unconf_init_sync(struct hci_dev *hdev)
2665 {
2666 	int err;
2667 
2668 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2669 		return 0;
2670 
2671 	err = hci_init0_sync(hdev);
2672 	if (err < 0)
2673 		return err;
2674 
2675 	if (hci_dev_test_flag(hdev, HCI_SETUP))
2676 		hci_debugfs_create_basic(hdev);
2677 
2678 	return 0;
2679 }
2680 
2681 /* Read Local Supported Features. */
2682 static int hci_read_local_features_sync(struct hci_dev *hdev)
2683 {
2684 	 /* Not all AMP controllers support this command */
2685 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
2686 		return 0;
2687 
2688 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
2689 				     0, NULL, HCI_CMD_TIMEOUT);
2690 }
2691 
2692 /* BR Controller init stage 1 command sequence */
2693 static const struct hci_init_stage br_init1[] = {
2694 	/* HCI_OP_READ_LOCAL_FEATURES */
2695 	HCI_INIT(hci_read_local_features_sync),
2696 	/* HCI_OP_READ_LOCAL_VERSION */
2697 	HCI_INIT(hci_read_local_version_sync),
2698 	/* HCI_OP_READ_BD_ADDR */
2699 	HCI_INIT(hci_read_bd_addr_sync),
2700 	{}
2701 };
2702 
2703 /* Read Local Commands */
2704 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
2705 {
2706 	/* All Bluetooth 1.2 and later controllers should support the
2707 	 * HCI command for reading the local supported commands.
2708 	 *
2709 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
2710 	 * but do not have support for this command. If that is the case,
2711 	 * the driver can quirk the behavior and skip reading the local
2712 	 * supported commands.
2713 	 */
2714 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
2715 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
2716 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
2717 					     0, NULL, HCI_CMD_TIMEOUT);
2718 
2719 	return 0;
2720 }
2721 
2722 /* Read Local AMP Info */
2723 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
2724 {
2725 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
2726 				     0, NULL, HCI_CMD_TIMEOUT);
2727 }
2728 
2729 /* Read Data Blk size */
2730 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
2731 {
2732 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
2733 				     0, NULL, HCI_CMD_TIMEOUT);
2734 }
2735 
2736 /* Read Flow Control Mode */
2737 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
2738 {
2739 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
2740 				     0, NULL, HCI_CMD_TIMEOUT);
2741 }
2742 
2743 /* Read Location Data */
2744 static int hci_read_location_data_sync(struct hci_dev *hdev)
2745 {
2746 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
2747 				     0, NULL, HCI_CMD_TIMEOUT);
2748 }
2749 
2750 /* AMP Controller init stage 1 command sequence */
2751 static const struct hci_init_stage amp_init1[] = {
2752 	/* HCI_OP_READ_LOCAL_VERSION */
2753 	HCI_INIT(hci_read_local_version_sync),
2754 	/* HCI_OP_READ_LOCAL_COMMANDS */
2755 	HCI_INIT(hci_read_local_cmds_sync),
2756 	/* HCI_OP_READ_LOCAL_AMP_INFO */
2757 	HCI_INIT(hci_read_local_amp_info_sync),
2758 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
2759 	HCI_INIT(hci_read_data_block_size_sync),
2760 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
2761 	HCI_INIT(hci_read_flow_control_mode_sync),
2762 	/* HCI_OP_READ_LOCATION_DATA */
2763 	HCI_INIT(hci_read_location_data_sync),
2764 };
2765 
2766 static int hci_init1_sync(struct hci_dev *hdev)
2767 {
2768 	int err;
2769 
2770 	bt_dev_dbg(hdev, "");
2771 
2772 	/* Reset */
2773 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2774 		err = hci_reset_sync(hdev);
2775 		if (err)
2776 			return err;
2777 	}
2778 
2779 	switch (hdev->dev_type) {
2780 	case HCI_PRIMARY:
2781 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
2782 		return hci_init_stage_sync(hdev, br_init1);
2783 	case HCI_AMP:
2784 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
2785 		return hci_init_stage_sync(hdev, amp_init1);
2786 	default:
2787 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
2788 		break;
2789 	}
2790 
2791 	return 0;
2792 }
2793 
2794 /* AMP Controller init stage 2 command sequence */
2795 static const struct hci_init_stage amp_init2[] = {
2796 	/* HCI_OP_READ_LOCAL_FEATURES */
2797 	HCI_INIT(hci_read_local_features_sync),
2798 };
2799 
2800 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
2801 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
2802 {
2803 	/* Use Read LE Buffer Size V2 if supported */
2804 	if (hdev->commands[41] & 0x20)
2805 		return __hci_cmd_sync_status(hdev,
2806 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
2807 					     0, NULL, HCI_CMD_TIMEOUT);
2808 
2809 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
2810 				     0, NULL, HCI_CMD_TIMEOUT);
2811 }
2812 
2813 /* Read Class of Device */
2814 static int hci_read_dev_class_sync(struct hci_dev *hdev)
2815 {
2816 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
2817 				     0, NULL, HCI_CMD_TIMEOUT);
2818 }
2819 
2820 /* Read Local Name */
2821 static int hci_read_local_name_sync(struct hci_dev *hdev)
2822 {
2823 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
2824 				     0, NULL, HCI_CMD_TIMEOUT);
2825 }
2826 
2827 /* Read Voice Setting */
2828 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
2829 {
2830 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
2831 				     0, NULL, HCI_CMD_TIMEOUT);
2832 }
2833 
2834 /* Read Number of Supported IAC */
2835 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
2836 {
2837 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
2838 				     0, NULL, HCI_CMD_TIMEOUT);
2839 }
2840 
2841 /* Read Current IAC LAP */
2842 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
2843 {
2844 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
2845 				     0, NULL, HCI_CMD_TIMEOUT);
2846 }
2847 
2848 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
2849 				     u8 cond_type, bdaddr_t *bdaddr,
2850 				     u8 auto_accept)
2851 {
2852 	struct hci_cp_set_event_filter cp;
2853 
2854 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2855 		return 0;
2856 
2857 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
2858 		return 0;
2859 
2860 	memset(&cp, 0, sizeof(cp));
2861 	cp.flt_type = flt_type;
2862 
2863 	if (flt_type != HCI_FLT_CLEAR_ALL) {
2864 		cp.cond_type = cond_type;
2865 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
2866 		cp.addr_conn_flt.auto_accept = auto_accept;
2867 	}
2868 
2869 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
2870 				     flt_type == HCI_FLT_CLEAR_ALL ?
2871 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
2872 				     HCI_CMD_TIMEOUT);
2873 }
2874 
2875 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
2876 {
2877 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
2878 		return 0;
2879 
2880 	/* In theory the state machine should not reach here unless
2881 	 * a hci_set_event_filter_sync() call succeeds, but we do
2882 	 * the check both for parity and as a future reminder.
2883 	 */
2884 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
2885 		return 0;
2886 
2887 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
2888 					 BDADDR_ANY, 0x00);
2889 }
2890 
2891 /* Connection accept timeout ~20 secs */
2892 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
2893 {
2894 	__le16 param = cpu_to_le16(0x7d00);
2895 
2896 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
2897 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
2898 }
2899 
2900 /* BR Controller init stage 2 command sequence */
2901 static const struct hci_init_stage br_init2[] = {
2902 	/* HCI_OP_READ_BUFFER_SIZE */
2903 	HCI_INIT(hci_read_buffer_size_sync),
2904 	/* HCI_OP_READ_CLASS_OF_DEV */
2905 	HCI_INIT(hci_read_dev_class_sync),
2906 	/* HCI_OP_READ_LOCAL_NAME */
2907 	HCI_INIT(hci_read_local_name_sync),
2908 	/* HCI_OP_READ_VOICE_SETTING */
2909 	HCI_INIT(hci_read_voice_setting_sync),
2910 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
2911 	HCI_INIT(hci_read_num_supported_iac_sync),
2912 	/* HCI_OP_READ_CURRENT_IAC_LAP */
2913 	HCI_INIT(hci_read_current_iac_lap_sync),
2914 	/* HCI_OP_SET_EVENT_FLT */
2915 	HCI_INIT(hci_clear_event_filter_sync),
2916 	/* HCI_OP_WRITE_CA_TIMEOUT */
2917 	HCI_INIT(hci_write_ca_timeout_sync),
2918 	{}
2919 };
2920 
2921 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
2922 {
2923 	u8 mode = 0x01;
2924 
2925 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2926 		return 0;
2927 
2928 	/* When SSP is available, then the host features page
2929 	 * should also be available as well. However some
2930 	 * controllers list the max_page as 0 as long as SSP
2931 	 * has not been enabled. To achieve proper debugging
2932 	 * output, force the minimum max_page to 1 at least.
2933 	 */
2934 	hdev->max_page = 0x01;
2935 
2936 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2937 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2938 }
2939 
2940 static int hci_write_eir_sync(struct hci_dev *hdev)
2941 {
2942 	struct hci_cp_write_eir cp;
2943 
2944 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2945 		return 0;
2946 
2947 	memset(hdev->eir, 0, sizeof(hdev->eir));
2948 	memset(&cp, 0, sizeof(cp));
2949 
2950 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
2951 				     HCI_CMD_TIMEOUT);
2952 }
2953 
2954 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
2955 {
2956 	u8 mode;
2957 
2958 	if (!lmp_inq_rssi_capable(hdev) &&
2959 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
2960 		return 0;
2961 
2962 	/* If Extended Inquiry Result events are supported, then
2963 	 * they are clearly preferred over Inquiry Result with RSSI
2964 	 * events.
2965 	 */
2966 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
2967 
2968 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
2969 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2970 }
2971 
2972 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
2973 {
2974 	if (!lmp_inq_tx_pwr_capable(hdev))
2975 		return 0;
2976 
2977 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
2978 				     0, NULL, HCI_CMD_TIMEOUT);
2979 }
2980 
2981 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
2982 {
2983 	struct hci_cp_read_local_ext_features cp;
2984 
2985 	if (!lmp_ext_feat_capable(hdev))
2986 		return 0;
2987 
2988 	memset(&cp, 0, sizeof(cp));
2989 	cp.page = page;
2990 
2991 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
2992 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2993 }
2994 
2995 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
2996 {
2997 	return hci_read_local_ext_features_sync(hdev, 0x01);
2998 }
2999 
3000 /* HCI Controller init stage 2 command sequence */
3001 static const struct hci_init_stage hci_init2[] = {
3002 	/* HCI_OP_READ_LOCAL_COMMANDS */
3003 	HCI_INIT(hci_read_local_cmds_sync),
3004 	/* HCI_OP_WRITE_SSP_MODE */
3005 	HCI_INIT(hci_write_ssp_mode_1_sync),
3006 	/* HCI_OP_WRITE_EIR */
3007 	HCI_INIT(hci_write_eir_sync),
3008 	/* HCI_OP_WRITE_INQUIRY_MODE */
3009 	HCI_INIT(hci_write_inquiry_mode_sync),
3010 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
3011 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3012 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3013 	HCI_INIT(hci_read_local_ext_features_1_sync),
3014 	/* HCI_OP_WRITE_AUTH_ENABLE */
3015 	HCI_INIT(hci_write_auth_enable_sync),
3016 	{}
3017 };
3018 
3019 /* Read LE Buffer Size */
3020 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3021 {
3022 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3023 				     0, NULL, HCI_CMD_TIMEOUT);
3024 }
3025 
3026 /* Read LE Local Supported Features */
3027 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3028 {
3029 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3030 				     0, NULL, HCI_CMD_TIMEOUT);
3031 }
3032 
3033 /* Read LE Supported States */
3034 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3035 {
3036 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3037 				     0, NULL, HCI_CMD_TIMEOUT);
3038 }
3039 
3040 /* LE Controller init stage 2 command sequence */
3041 static const struct hci_init_stage le_init2[] = {
3042 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3043 	HCI_INIT(hci_le_read_buffer_size_sync),
3044 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3045 	HCI_INIT(hci_le_read_local_features_sync),
3046 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3047 	HCI_INIT(hci_le_read_supported_states_sync),
3048 	{}
3049 };
3050 
3051 static int hci_init2_sync(struct hci_dev *hdev)
3052 {
3053 	int err;
3054 
3055 	bt_dev_dbg(hdev, "");
3056 
3057 	if (hdev->dev_type == HCI_AMP)
3058 		return hci_init_stage_sync(hdev, amp_init2);
3059 
3060 	err = hci_init_stage_sync(hdev, hci_init2);
3061 	if (err)
3062 		return err;
3063 
3064 	if (lmp_bredr_capable(hdev)) {
3065 		err = hci_init_stage_sync(hdev, br_init2);
3066 		if (err)
3067 			return err;
3068 	} else {
3069 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3070 	}
3071 
3072 	if (lmp_le_capable(hdev)) {
3073 		err = hci_init_stage_sync(hdev, le_init2);
3074 		if (err)
3075 			return err;
3076 		/* LE-only controllers have LE implicitly enabled */
3077 		if (!lmp_bredr_capable(hdev))
3078 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3079 	}
3080 
3081 	return 0;
3082 }
3083 
3084 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3085 {
3086 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3087 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3088 	 * command otherwise.
3089 	 */
3090 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3091 
3092 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3093 	 * any event mask for pre 1.2 devices.
3094 	 */
3095 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3096 		return 0;
3097 
3098 	if (lmp_bredr_capable(hdev)) {
3099 		events[4] |= 0x01; /* Flow Specification Complete */
3100 
3101 		/* Don't set Disconnect Complete when suspended as that
3102 		 * would wakeup the host when disconnecting due to
3103 		 * suspend.
3104 		 */
3105 		if (hdev->suspended)
3106 			events[0] &= 0xef;
3107 	} else {
3108 		/* Use a different default for LE-only devices */
3109 		memset(events, 0, sizeof(events));
3110 		events[1] |= 0x20; /* Command Complete */
3111 		events[1] |= 0x40; /* Command Status */
3112 		events[1] |= 0x80; /* Hardware Error */
3113 
3114 		/* If the controller supports the Disconnect command, enable
3115 		 * the corresponding event. In addition enable packet flow
3116 		 * control related events.
3117 		 */
3118 		if (hdev->commands[0] & 0x20) {
3119 			/* Don't set Disconnect Complete when suspended as that
3120 			 * would wakeup the host when disconnecting due to
3121 			 * suspend.
3122 			 */
3123 			if (!hdev->suspended)
3124 				events[0] |= 0x10; /* Disconnection Complete */
3125 			events[2] |= 0x04; /* Number of Completed Packets */
3126 			events[3] |= 0x02; /* Data Buffer Overflow */
3127 		}
3128 
3129 		/* If the controller supports the Read Remote Version
3130 		 * Information command, enable the corresponding event.
3131 		 */
3132 		if (hdev->commands[2] & 0x80)
3133 			events[1] |= 0x08; /* Read Remote Version Information
3134 					    * Complete
3135 					    */
3136 
3137 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3138 			events[0] |= 0x80; /* Encryption Change */
3139 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3140 		}
3141 	}
3142 
3143 	if (lmp_inq_rssi_capable(hdev) ||
3144 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3145 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3146 
3147 	if (lmp_ext_feat_capable(hdev))
3148 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3149 
3150 	if (lmp_esco_capable(hdev)) {
3151 		events[5] |= 0x08; /* Synchronous Connection Complete */
3152 		events[5] |= 0x10; /* Synchronous Connection Changed */
3153 	}
3154 
3155 	if (lmp_sniffsubr_capable(hdev))
3156 		events[5] |= 0x20; /* Sniff Subrating */
3157 
3158 	if (lmp_pause_enc_capable(hdev))
3159 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3160 
3161 	if (lmp_ext_inq_capable(hdev))
3162 		events[5] |= 0x40; /* Extended Inquiry Result */
3163 
3164 	if (lmp_no_flush_capable(hdev))
3165 		events[7] |= 0x01; /* Enhanced Flush Complete */
3166 
3167 	if (lmp_lsto_capable(hdev))
3168 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3169 
3170 	if (lmp_ssp_capable(hdev)) {
3171 		events[6] |= 0x01;	/* IO Capability Request */
3172 		events[6] |= 0x02;	/* IO Capability Response */
3173 		events[6] |= 0x04;	/* User Confirmation Request */
3174 		events[6] |= 0x08;	/* User Passkey Request */
3175 		events[6] |= 0x10;	/* Remote OOB Data Request */
3176 		events[6] |= 0x20;	/* Simple Pairing Complete */
3177 		events[7] |= 0x04;	/* User Passkey Notification */
3178 		events[7] |= 0x08;	/* Keypress Notification */
3179 		events[7] |= 0x10;	/* Remote Host Supported
3180 					 * Features Notification
3181 					 */
3182 	}
3183 
3184 	if (lmp_le_capable(hdev))
3185 		events[7] |= 0x20;	/* LE Meta-Event */
3186 
3187 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3188 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3189 }
3190 
3191 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3192 {
3193 	struct hci_cp_read_stored_link_key cp;
3194 
3195 	if (!(hdev->commands[6] & 0x20) ||
3196 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3197 		return 0;
3198 
3199 	memset(&cp, 0, sizeof(cp));
3200 	bacpy(&cp.bdaddr, BDADDR_ANY);
3201 	cp.read_all = 0x01;
3202 
3203 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3204 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3205 }
3206 
3207 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3208 {
3209 	struct hci_cp_write_def_link_policy cp;
3210 	u16 link_policy = 0;
3211 
3212 	if (!(hdev->commands[5] & 0x10))
3213 		return 0;
3214 
3215 	memset(&cp, 0, sizeof(cp));
3216 
3217 	if (lmp_rswitch_capable(hdev))
3218 		link_policy |= HCI_LP_RSWITCH;
3219 	if (lmp_hold_capable(hdev))
3220 		link_policy |= HCI_LP_HOLD;
3221 	if (lmp_sniff_capable(hdev))
3222 		link_policy |= HCI_LP_SNIFF;
3223 	if (lmp_park_capable(hdev))
3224 		link_policy |= HCI_LP_PARK;
3225 
3226 	cp.policy = cpu_to_le16(link_policy);
3227 
3228 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3229 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3230 }
3231 
3232 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3233 {
3234 	if (!(hdev->commands[8] & 0x01))
3235 		return 0;
3236 
3237 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3238 				     0, NULL, HCI_CMD_TIMEOUT);
3239 }
3240 
3241 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3242 {
3243 	if (!(hdev->commands[18] & 0x04) ||
3244 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING))
3245 		return 0;
3246 
3247 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3248 				     0, NULL, HCI_CMD_TIMEOUT);
3249 }
3250 
3251 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3252 {
3253 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3254 	 * support the Read Page Scan Type command. Check support for
3255 	 * this command in the bit mask of supported commands.
3256 	 */
3257 	if (!(hdev->commands[13] & 0x01))
3258 		return 0;
3259 
3260 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3261 				     0, NULL, HCI_CMD_TIMEOUT);
3262 }
3263 
3264 /* Read features beyond page 1 if available */
3265 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3266 {
3267 	u8 page;
3268 	int err;
3269 
3270 	if (!lmp_ext_feat_capable(hdev))
3271 		return 0;
3272 
3273 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3274 	     page++) {
3275 		err = hci_read_local_ext_features_sync(hdev, page);
3276 		if (err)
3277 			return err;
3278 	}
3279 
3280 	return 0;
3281 }
3282 
3283 /* HCI Controller init stage 3 command sequence */
3284 static const struct hci_init_stage hci_init3[] = {
3285 	/* HCI_OP_SET_EVENT_MASK */
3286 	HCI_INIT(hci_set_event_mask_sync),
3287 	/* HCI_OP_READ_STORED_LINK_KEY */
3288 	HCI_INIT(hci_read_stored_link_key_sync),
3289 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3290 	HCI_INIT(hci_setup_link_policy_sync),
3291 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3292 	HCI_INIT(hci_read_page_scan_activity_sync),
3293 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3294 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3295 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3296 	HCI_INIT(hci_read_page_scan_type_sync),
3297 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3298 	HCI_INIT(hci_read_local_ext_features_all_sync),
3299 	{}
3300 };
3301 
3302 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3303 {
3304 	u8 events[8];
3305 
3306 	if (!lmp_le_capable(hdev))
3307 		return 0;
3308 
3309 	memset(events, 0, sizeof(events));
3310 
3311 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3312 		events[0] |= 0x10;	/* LE Long Term Key Request */
3313 
3314 	/* If controller supports the Connection Parameters Request
3315 	 * Link Layer Procedure, enable the corresponding event.
3316 	 */
3317 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3318 		/* LE Remote Connection Parameter Request */
3319 		events[0] |= 0x20;
3320 
3321 	/* If the controller supports the Data Length Extension
3322 	 * feature, enable the corresponding event.
3323 	 */
3324 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3325 		events[0] |= 0x40;	/* LE Data Length Change */
3326 
3327 	/* If the controller supports LL Privacy feature or LE Extended Adv,
3328 	 * enable the corresponding event.
3329 	 */
3330 	if (use_enhanced_conn_complete(hdev))
3331 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3332 
3333 	/* If the controller supports Extended Scanner Filter
3334 	 * Policies, enable the corresponding event.
3335 	 */
3336 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3337 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3338 
3339 	/* If the controller supports Channel Selection Algorithm #2
3340 	 * feature, enable the corresponding event.
3341 	 */
3342 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3343 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3344 
3345 	/* If the controller supports the LE Set Scan Enable command,
3346 	 * enable the corresponding advertising report event.
3347 	 */
3348 	if (hdev->commands[26] & 0x08)
3349 		events[0] |= 0x02;	/* LE Advertising Report */
3350 
3351 	/* If the controller supports the LE Create Connection
3352 	 * command, enable the corresponding event.
3353 	 */
3354 	if (hdev->commands[26] & 0x10)
3355 		events[0] |= 0x01;	/* LE Connection Complete */
3356 
3357 	/* If the controller supports the LE Connection Update
3358 	 * command, enable the corresponding event.
3359 	 */
3360 	if (hdev->commands[27] & 0x04)
3361 		events[0] |= 0x04;	/* LE Connection Update Complete */
3362 
3363 	/* If the controller supports the LE Read Remote Used Features
3364 	 * command, enable the corresponding event.
3365 	 */
3366 	if (hdev->commands[27] & 0x20)
3367 		/* LE Read Remote Used Features Complete */
3368 		events[0] |= 0x08;
3369 
3370 	/* If the controller supports the LE Read Local P-256
3371 	 * Public Key command, enable the corresponding event.
3372 	 */
3373 	if (hdev->commands[34] & 0x02)
3374 		/* LE Read Local P-256 Public Key Complete */
3375 		events[0] |= 0x80;
3376 
3377 	/* If the controller supports the LE Generate DHKey
3378 	 * command, enable the corresponding event.
3379 	 */
3380 	if (hdev->commands[34] & 0x04)
3381 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
3382 
3383 	/* If the controller supports the LE Set Default PHY or
3384 	 * LE Set PHY commands, enable the corresponding event.
3385 	 */
3386 	if (hdev->commands[35] & (0x20 | 0x40))
3387 		events[1] |= 0x08;        /* LE PHY Update Complete */
3388 
3389 	/* If the controller supports LE Set Extended Scan Parameters
3390 	 * and LE Set Extended Scan Enable commands, enable the
3391 	 * corresponding event.
3392 	 */
3393 	if (use_ext_scan(hdev))
3394 		events[1] |= 0x10;	/* LE Extended Advertising Report */
3395 
3396 	/* If the controller supports the LE Extended Advertising
3397 	 * command, enable the corresponding event.
3398 	 */
3399 	if (ext_adv_capable(hdev))
3400 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
3401 
3402 	if (cis_capable(hdev)) {
3403 		events[3] |= 0x01;	/* LE CIS Established */
3404 		if (cis_peripheral_capable(hdev))
3405 			events[3] |= 0x02; /* LE CIS Request */
3406 	}
3407 
3408 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
3409 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3410 }
3411 
3412 /* Read LE Advertising Channel TX Power */
3413 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
3414 {
3415 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
3416 		/* HCI TS spec forbids mixing of legacy and extended
3417 		 * advertising commands wherein READ_ADV_TX_POWER is
3418 		 * also included. So do not call it if extended adv
3419 		 * is supported otherwise controller will return
3420 		 * COMMAND_DISALLOWED for extended commands.
3421 		 */
3422 		return __hci_cmd_sync_status(hdev,
3423 					       HCI_OP_LE_READ_ADV_TX_POWER,
3424 					       0, NULL, HCI_CMD_TIMEOUT);
3425 	}
3426 
3427 	return 0;
3428 }
3429 
3430 /* Read LE Min/Max Tx Power*/
3431 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
3432 {
3433 	if (!(hdev->commands[38] & 0x80) ||
3434 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
3435 		return 0;
3436 
3437 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
3438 				     0, NULL, HCI_CMD_TIMEOUT);
3439 }
3440 
3441 /* Read LE Accept List Size */
3442 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
3443 {
3444 	if (!(hdev->commands[26] & 0x40))
3445 		return 0;
3446 
3447 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
3448 				     0, NULL, HCI_CMD_TIMEOUT);
3449 }
3450 
3451 /* Clear LE Accept List */
3452 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
3453 {
3454 	if (!(hdev->commands[26] & 0x80))
3455 		return 0;
3456 
3457 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
3458 				     HCI_CMD_TIMEOUT);
3459 }
3460 
3461 /* Read LE Resolving List Size */
3462 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
3463 {
3464 	if (!(hdev->commands[34] & 0x40))
3465 		return 0;
3466 
3467 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
3468 				     0, NULL, HCI_CMD_TIMEOUT);
3469 }
3470 
3471 /* Clear LE Resolving List */
3472 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
3473 {
3474 	if (!(hdev->commands[34] & 0x20))
3475 		return 0;
3476 
3477 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
3478 				     HCI_CMD_TIMEOUT);
3479 }
3480 
3481 /* Set RPA timeout */
3482 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
3483 {
3484 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
3485 
3486 	if (!(hdev->commands[35] & 0x04))
3487 		return 0;
3488 
3489 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
3490 				     sizeof(timeout), &timeout,
3491 				     HCI_CMD_TIMEOUT);
3492 }
3493 
3494 /* Read LE Maximum Data Length */
3495 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
3496 {
3497 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3498 		return 0;
3499 
3500 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
3501 				     HCI_CMD_TIMEOUT);
3502 }
3503 
3504 /* Read LE Suggested Default Data Length */
3505 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
3506 {
3507 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3508 		return 0;
3509 
3510 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
3511 				     HCI_CMD_TIMEOUT);
3512 }
3513 
3514 /* Read LE Number of Supported Advertising Sets */
3515 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
3516 {
3517 	if (!ext_adv_capable(hdev))
3518 		return 0;
3519 
3520 	return __hci_cmd_sync_status(hdev,
3521 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
3522 				     0, NULL, HCI_CMD_TIMEOUT);
3523 }
3524 
3525 /* Write LE Host Supported */
3526 static int hci_set_le_support_sync(struct hci_dev *hdev)
3527 {
3528 	struct hci_cp_write_le_host_supported cp;
3529 
3530 	/* LE-only devices do not support explicit enablement */
3531 	if (!lmp_bredr_capable(hdev))
3532 		return 0;
3533 
3534 	memset(&cp, 0, sizeof(cp));
3535 
3536 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3537 		cp.le = 0x01;
3538 		cp.simul = 0x00;
3539 	}
3540 
3541 	if (cp.le == lmp_host_le_capable(hdev))
3542 		return 0;
3543 
3544 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3545 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3546 }
3547 
3548 /* LE Set Host Feature */
3549 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
3550 {
3551 	struct hci_cp_le_set_host_feature cp;
3552 
3553 	if (!iso_capable(hdev))
3554 		return 0;
3555 
3556 	memset(&cp, 0, sizeof(cp));
3557 
3558 	/* Isochronous Channels (Host Support) */
3559 	cp.bit_number = 32;
3560 	cp.bit_value = 1;
3561 
3562 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
3563 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3564 }
3565 
3566 /* LE Controller init stage 3 command sequence */
3567 static const struct hci_init_stage le_init3[] = {
3568 	/* HCI_OP_LE_SET_EVENT_MASK */
3569 	HCI_INIT(hci_le_set_event_mask_sync),
3570 	/* HCI_OP_LE_READ_ADV_TX_POWER */
3571 	HCI_INIT(hci_le_read_adv_tx_power_sync),
3572 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
3573 	HCI_INIT(hci_le_read_tx_power_sync),
3574 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
3575 	HCI_INIT(hci_le_read_accept_list_size_sync),
3576 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
3577 	HCI_INIT(hci_le_clear_accept_list_sync),
3578 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
3579 	HCI_INIT(hci_le_read_resolv_list_size_sync),
3580 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
3581 	HCI_INIT(hci_le_clear_resolv_list_sync),
3582 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
3583 	HCI_INIT(hci_le_set_rpa_timeout_sync),
3584 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
3585 	HCI_INIT(hci_le_read_max_data_len_sync),
3586 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
3587 	HCI_INIT(hci_le_read_def_data_len_sync),
3588 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
3589 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
3590 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
3591 	HCI_INIT(hci_set_le_support_sync),
3592 	/* HCI_OP_LE_SET_HOST_FEATURE */
3593 	HCI_INIT(hci_le_set_host_feature_sync),
3594 	{}
3595 };
3596 
3597 static int hci_init3_sync(struct hci_dev *hdev)
3598 {
3599 	int err;
3600 
3601 	bt_dev_dbg(hdev, "");
3602 
3603 	err = hci_init_stage_sync(hdev, hci_init3);
3604 	if (err)
3605 		return err;
3606 
3607 	if (lmp_le_capable(hdev))
3608 		return hci_init_stage_sync(hdev, le_init3);
3609 
3610 	return 0;
3611 }
3612 
3613 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
3614 {
3615 	struct hci_cp_delete_stored_link_key cp;
3616 
3617 	/* Some Broadcom based Bluetooth controllers do not support the
3618 	 * Delete Stored Link Key command. They are clearly indicating its
3619 	 * absence in the bit mask of supported commands.
3620 	 *
3621 	 * Check the supported commands and only if the command is marked
3622 	 * as supported send it. If not supported assume that the controller
3623 	 * does not have actual support for stored link keys which makes this
3624 	 * command redundant anyway.
3625 	 *
3626 	 * Some controllers indicate that they support handling deleting
3627 	 * stored link keys, but they don't. The quirk lets a driver
3628 	 * just disable this command.
3629 	 */
3630 	if (!(hdev->commands[6] & 0x80) ||
3631 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3632 		return 0;
3633 
3634 	memset(&cp, 0, sizeof(cp));
3635 	bacpy(&cp.bdaddr, BDADDR_ANY);
3636 	cp.delete_all = 0x01;
3637 
3638 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
3639 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3640 }
3641 
3642 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
3643 {
3644 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
3645 	bool changed = false;
3646 
3647 	/* Set event mask page 2 if the HCI command for it is supported */
3648 	if (!(hdev->commands[22] & 0x04))
3649 		return 0;
3650 
3651 	/* If Connectionless Peripheral Broadcast central role is supported
3652 	 * enable all necessary events for it.
3653 	 */
3654 	if (lmp_cpb_central_capable(hdev)) {
3655 		events[1] |= 0x40;	/* Triggered Clock Capture */
3656 		events[1] |= 0x80;	/* Synchronization Train Complete */
3657 		events[2] |= 0x08;	/* Truncated Page Complete */
3658 		events[2] |= 0x20;	/* CPB Channel Map Change */
3659 		changed = true;
3660 	}
3661 
3662 	/* If Connectionless Peripheral Broadcast peripheral role is supported
3663 	 * enable all necessary events for it.
3664 	 */
3665 	if (lmp_cpb_peripheral_capable(hdev)) {
3666 		events[2] |= 0x01;	/* Synchronization Train Received */
3667 		events[2] |= 0x02;	/* CPB Receive */
3668 		events[2] |= 0x04;	/* CPB Timeout */
3669 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
3670 		changed = true;
3671 	}
3672 
3673 	/* Enable Authenticated Payload Timeout Expired event if supported */
3674 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
3675 		events[2] |= 0x80;
3676 		changed = true;
3677 	}
3678 
3679 	/* Some Broadcom based controllers indicate support for Set Event
3680 	 * Mask Page 2 command, but then actually do not support it. Since
3681 	 * the default value is all bits set to zero, the command is only
3682 	 * required if the event mask has to be changed. In case no change
3683 	 * to the event mask is needed, skip this command.
3684 	 */
3685 	if (!changed)
3686 		return 0;
3687 
3688 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
3689 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3690 }
3691 
3692 /* Read local codec list if the HCI command is supported */
3693 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
3694 {
3695 	if (!(hdev->commands[29] & 0x20))
3696 		return 0;
3697 
3698 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL,
3699 				     HCI_CMD_TIMEOUT);
3700 }
3701 
3702 /* Read local pairing options if the HCI command is supported */
3703 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
3704 {
3705 	if (!(hdev->commands[41] & 0x08))
3706 		return 0;
3707 
3708 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
3709 				     0, NULL, HCI_CMD_TIMEOUT);
3710 }
3711 
3712 /* Get MWS transport configuration if the HCI command is supported */
3713 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
3714 {
3715 	if (!(hdev->commands[30] & 0x08))
3716 		return 0;
3717 
3718 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
3719 				     0, NULL, HCI_CMD_TIMEOUT);
3720 }
3721 
3722 /* Check for Synchronization Train support */
3723 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
3724 {
3725 	if (!lmp_sync_train_capable(hdev))
3726 		return 0;
3727 
3728 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
3729 				     0, NULL, HCI_CMD_TIMEOUT);
3730 }
3731 
3732 /* Enable Secure Connections if supported and configured */
3733 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
3734 {
3735 	u8 support = 0x01;
3736 
3737 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3738 	    !bredr_sc_enabled(hdev))
3739 		return 0;
3740 
3741 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3742 				     sizeof(support), &support,
3743 				     HCI_CMD_TIMEOUT);
3744 }
3745 
3746 /* Set erroneous data reporting if supported to the wideband speech
3747  * setting value
3748  */
3749 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
3750 {
3751 	struct hci_cp_write_def_err_data_reporting cp;
3752 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
3753 
3754 	if (!(hdev->commands[18] & 0x08) ||
3755 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING))
3756 		return 0;
3757 
3758 	if (enabled == hdev->err_data_reporting)
3759 		return 0;
3760 
3761 	memset(&cp, 0, sizeof(cp));
3762 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
3763 				ERR_DATA_REPORTING_DISABLED;
3764 
3765 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
3766 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3767 }
3768 
3769 static const struct hci_init_stage hci_init4[] = {
3770 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
3771 	HCI_INIT(hci_delete_stored_link_key_sync),
3772 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
3773 	HCI_INIT(hci_set_event_mask_page_2_sync),
3774 	/* HCI_OP_READ_LOCAL_CODECS */
3775 	HCI_INIT(hci_read_local_codecs_sync),
3776 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
3777 	HCI_INIT(hci_read_local_pairing_opts_sync),
3778 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
3779 	HCI_INIT(hci_get_mws_transport_config_sync),
3780 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
3781 	HCI_INIT(hci_read_sync_train_params_sync),
3782 	/* HCI_OP_WRITE_SC_SUPPORT */
3783 	HCI_INIT(hci_write_sc_support_1_sync),
3784 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
3785 	HCI_INIT(hci_set_err_data_report_sync),
3786 	{}
3787 };
3788 
3789 /* Set Suggested Default Data Length to maximum if supported */
3790 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
3791 {
3792 	struct hci_cp_le_write_def_data_len cp;
3793 
3794 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3795 		return 0;
3796 
3797 	memset(&cp, 0, sizeof(cp));
3798 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
3799 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
3800 
3801 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
3802 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3803 }
3804 
3805 /* Set Default PHY parameters if command is supported */
3806 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
3807 {
3808 	struct hci_cp_le_set_default_phy cp;
3809 
3810 	if (!(hdev->commands[35] & 0x20))
3811 		return 0;
3812 
3813 	memset(&cp, 0, sizeof(cp));
3814 	cp.all_phys = 0x00;
3815 	cp.tx_phys = hdev->le_tx_def_phys;
3816 	cp.rx_phys = hdev->le_rx_def_phys;
3817 
3818 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
3819 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3820 }
3821 
3822 static const struct hci_init_stage le_init4[] = {
3823 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
3824 	HCI_INIT(hci_le_set_write_def_data_len_sync),
3825 	/* HCI_OP_LE_SET_DEFAULT_PHY */
3826 	HCI_INIT(hci_le_set_default_phy_sync),
3827 	{}
3828 };
3829 
3830 static int hci_init4_sync(struct hci_dev *hdev)
3831 {
3832 	int err;
3833 
3834 	bt_dev_dbg(hdev, "");
3835 
3836 	err = hci_init_stage_sync(hdev, hci_init4);
3837 	if (err)
3838 		return err;
3839 
3840 	if (lmp_le_capable(hdev))
3841 		return hci_init_stage_sync(hdev, le_init4);
3842 
3843 	return 0;
3844 }
3845 
3846 static int hci_init_sync(struct hci_dev *hdev)
3847 {
3848 	int err;
3849 
3850 	err = hci_init1_sync(hdev);
3851 	if (err < 0)
3852 		return err;
3853 
3854 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3855 		hci_debugfs_create_basic(hdev);
3856 
3857 	err = hci_init2_sync(hdev);
3858 	if (err < 0)
3859 		return err;
3860 
3861 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
3862 	 * BR/EDR/LE type controllers. AMP controllers only need the
3863 	 * first two stages of init.
3864 	 */
3865 	if (hdev->dev_type != HCI_PRIMARY)
3866 		return 0;
3867 
3868 	err = hci_init3_sync(hdev);
3869 	if (err < 0)
3870 		return err;
3871 
3872 	err = hci_init4_sync(hdev);
3873 	if (err < 0)
3874 		return err;
3875 
3876 	/* This function is only called when the controller is actually in
3877 	 * configured state. When the controller is marked as unconfigured,
3878 	 * this initialization procedure is not run.
3879 	 *
3880 	 * It means that it is possible that a controller runs through its
3881 	 * setup phase and then discovers missing settings. If that is the
3882 	 * case, then this function will not be called. It then will only
3883 	 * be called during the config phase.
3884 	 *
3885 	 * So only when in setup phase or config phase, create the debugfs
3886 	 * entries and register the SMP channels.
3887 	 */
3888 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3889 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
3890 		return 0;
3891 
3892 	hci_debugfs_create_common(hdev);
3893 
3894 	if (lmp_bredr_capable(hdev))
3895 		hci_debugfs_create_bredr(hdev);
3896 
3897 	if (lmp_le_capable(hdev))
3898 		hci_debugfs_create_le(hdev);
3899 
3900 	return 0;
3901 }
3902 
3903 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
3904 
3905 static const struct {
3906 	unsigned long quirk;
3907 	const char *desc;
3908 } hci_broken_table[] = {
3909 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
3910 			 "HCI Read Local Supported Commands not supported"),
3911 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
3912 			 "HCI Delete Stored Link Key command is advertised, "
3913 			 "but not supported."),
3914 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
3915 			 "HCI Read Transmit Power Level command is advertised, "
3916 			 "but not supported."),
3917 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
3918 			 "HCI Set Event Filter command not supported."),
3919 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
3920 			 "HCI Enhanced Setup Synchronous Connection command is "
3921 			 "advertised, but not supported.")
3922 };
3923 
3924 /* This function handles hdev setup stage:
3925  *
3926  * Calls hdev->setup
3927  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
3928  */
3929 static int hci_dev_setup_sync(struct hci_dev *hdev)
3930 {
3931 	int ret = 0;
3932 	bool invalid_bdaddr;
3933 	size_t i;
3934 
3935 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3936 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
3937 		return 0;
3938 
3939 	bt_dev_dbg(hdev, "");
3940 
3941 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
3942 
3943 	if (hdev->setup)
3944 		ret = hdev->setup(hdev);
3945 
3946 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
3947 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
3948 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
3949 	}
3950 
3951 	/* The transport driver can set the quirk to mark the
3952 	 * BD_ADDR invalid before creating the HCI device or in
3953 	 * its setup callback.
3954 	 */
3955 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
3956 
3957 	if (!ret) {
3958 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
3959 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
3960 				hci_dev_get_bd_addr_from_property(hdev);
3961 
3962 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3963 			    hdev->set_bdaddr) {
3964 				ret = hdev->set_bdaddr(hdev,
3965 						       &hdev->public_addr);
3966 
3967 				/* If setting of the BD_ADDR from the device
3968 				 * property succeeds, then treat the address
3969 				 * as valid even if the invalid BD_ADDR
3970 				 * quirk indicates otherwise.
3971 				 */
3972 				if (!ret)
3973 					invalid_bdaddr = false;
3974 			}
3975 		}
3976 	}
3977 
3978 	/* The transport driver can set these quirks before
3979 	 * creating the HCI device or in its setup callback.
3980 	 *
3981 	 * For the invalid BD_ADDR quirk it is possible that
3982 	 * it becomes a valid address if the bootloader does
3983 	 * provide it (see above).
3984 	 *
3985 	 * In case any of them is set, the controller has to
3986 	 * start up as unconfigured.
3987 	 */
3988 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
3989 	    invalid_bdaddr)
3990 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3991 
3992 	/* For an unconfigured controller it is required to
3993 	 * read at least the version information provided by
3994 	 * the Read Local Version Information command.
3995 	 *
3996 	 * If the set_bdaddr driver callback is provided, then
3997 	 * also the original Bluetooth public device address
3998 	 * will be read using the Read BD Address command.
3999 	 */
4000 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4001 		return hci_unconf_init_sync(hdev);
4002 
4003 	return ret;
4004 }
4005 
4006 /* This function handles hdev init stage:
4007  *
4008  * Calls hci_dev_setup_sync to perform setup stage
4009  * Calls hci_init_sync to perform HCI command init sequence
4010  */
4011 static int hci_dev_init_sync(struct hci_dev *hdev)
4012 {
4013 	int ret;
4014 
4015 	bt_dev_dbg(hdev, "");
4016 
4017 	atomic_set(&hdev->cmd_cnt, 1);
4018 	set_bit(HCI_INIT, &hdev->flags);
4019 
4020 	ret = hci_dev_setup_sync(hdev);
4021 
4022 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4023 		/* If public address change is configured, ensure that
4024 		 * the address gets programmed. If the driver does not
4025 		 * support changing the public address, fail the power
4026 		 * on procedure.
4027 		 */
4028 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4029 		    hdev->set_bdaddr)
4030 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4031 		else
4032 			ret = -EADDRNOTAVAIL;
4033 	}
4034 
4035 	if (!ret) {
4036 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4037 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4038 			ret = hci_init_sync(hdev);
4039 			if (!ret && hdev->post_init)
4040 				ret = hdev->post_init(hdev);
4041 		}
4042 	}
4043 
4044 	/* If the HCI Reset command is clearing all diagnostic settings,
4045 	 * then they need to be reprogrammed after the init procedure
4046 	 * completed.
4047 	 */
4048 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4049 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4050 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4051 		ret = hdev->set_diag(hdev, true);
4052 
4053 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4054 		msft_do_open(hdev);
4055 		aosp_do_open(hdev);
4056 	}
4057 
4058 	clear_bit(HCI_INIT, &hdev->flags);
4059 
4060 	return ret;
4061 }
4062 
4063 int hci_dev_open_sync(struct hci_dev *hdev)
4064 {
4065 	int ret;
4066 
4067 	bt_dev_dbg(hdev, "");
4068 
4069 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4070 		ret = -ENODEV;
4071 		goto done;
4072 	}
4073 
4074 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4075 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4076 		/* Check for rfkill but allow the HCI setup stage to
4077 		 * proceed (which in itself doesn't cause any RF activity).
4078 		 */
4079 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4080 			ret = -ERFKILL;
4081 			goto done;
4082 		}
4083 
4084 		/* Check for valid public address or a configured static
4085 		 * random address, but let the HCI setup proceed to
4086 		 * be able to determine if there is a public address
4087 		 * or not.
4088 		 *
4089 		 * In case of user channel usage, it is not important
4090 		 * if a public address or static random address is
4091 		 * available.
4092 		 *
4093 		 * This check is only valid for BR/EDR controllers
4094 		 * since AMP controllers do not have an address.
4095 		 */
4096 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4097 		    hdev->dev_type == HCI_PRIMARY &&
4098 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4099 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4100 			ret = -EADDRNOTAVAIL;
4101 			goto done;
4102 		}
4103 	}
4104 
4105 	if (test_bit(HCI_UP, &hdev->flags)) {
4106 		ret = -EALREADY;
4107 		goto done;
4108 	}
4109 
4110 	if (hdev->open(hdev)) {
4111 		ret = -EIO;
4112 		goto done;
4113 	}
4114 
4115 	set_bit(HCI_RUNNING, &hdev->flags);
4116 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4117 
4118 	ret = hci_dev_init_sync(hdev);
4119 	if (!ret) {
4120 		hci_dev_hold(hdev);
4121 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4122 		hci_adv_instances_set_rpa_expired(hdev, true);
4123 		set_bit(HCI_UP, &hdev->flags);
4124 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4125 		hci_leds_update_powered(hdev, true);
4126 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4127 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4128 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4129 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4130 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4131 		    hdev->dev_type == HCI_PRIMARY) {
4132 			ret = hci_powered_update_sync(hdev);
4133 		}
4134 	} else {
4135 		/* Init failed, cleanup */
4136 		flush_work(&hdev->tx_work);
4137 
4138 		/* Since hci_rx_work() is possible to awake new cmd_work
4139 		 * it should be flushed first to avoid unexpected call of
4140 		 * hci_cmd_work()
4141 		 */
4142 		flush_work(&hdev->rx_work);
4143 		flush_work(&hdev->cmd_work);
4144 
4145 		skb_queue_purge(&hdev->cmd_q);
4146 		skb_queue_purge(&hdev->rx_q);
4147 
4148 		if (hdev->flush)
4149 			hdev->flush(hdev);
4150 
4151 		if (hdev->sent_cmd) {
4152 			kfree_skb(hdev->sent_cmd);
4153 			hdev->sent_cmd = NULL;
4154 		}
4155 
4156 		clear_bit(HCI_RUNNING, &hdev->flags);
4157 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4158 
4159 		hdev->close(hdev);
4160 		hdev->flags &= BIT(HCI_RAW);
4161 	}
4162 
4163 done:
4164 	return ret;
4165 }
4166 
4167 /* This function requires the caller holds hdev->lock */
4168 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4169 {
4170 	struct hci_conn_params *p;
4171 
4172 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4173 		if (p->conn) {
4174 			hci_conn_drop(p->conn);
4175 			hci_conn_put(p->conn);
4176 			p->conn = NULL;
4177 		}
4178 		list_del_init(&p->action);
4179 	}
4180 
4181 	BT_DBG("All LE pending actions cleared");
4182 }
4183 
4184 int hci_dev_close_sync(struct hci_dev *hdev)
4185 {
4186 	bool auto_off;
4187 	int err = 0;
4188 
4189 	bt_dev_dbg(hdev, "");
4190 
4191 	cancel_delayed_work(&hdev->power_off);
4192 	cancel_delayed_work(&hdev->ncmd_timer);
4193 
4194 	hci_request_cancel_all(hdev);
4195 
4196 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4197 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4198 	    test_bit(HCI_UP, &hdev->flags)) {
4199 		/* Execute vendor specific shutdown routine */
4200 		if (hdev->shutdown)
4201 			err = hdev->shutdown(hdev);
4202 	}
4203 
4204 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4205 		cancel_delayed_work_sync(&hdev->cmd_timer);
4206 		return err;
4207 	}
4208 
4209 	hci_leds_update_powered(hdev, false);
4210 
4211 	/* Flush RX and TX works */
4212 	flush_work(&hdev->tx_work);
4213 	flush_work(&hdev->rx_work);
4214 
4215 	if (hdev->discov_timeout > 0) {
4216 		hdev->discov_timeout = 0;
4217 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4218 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4219 	}
4220 
4221 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4222 		cancel_delayed_work(&hdev->service_cache);
4223 
4224 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4225 		struct adv_info *adv_instance;
4226 
4227 		cancel_delayed_work_sync(&hdev->rpa_expired);
4228 
4229 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4230 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4231 	}
4232 
4233 	/* Avoid potential lockdep warnings from the *_flush() calls by
4234 	 * ensuring the workqueue is empty up front.
4235 	 */
4236 	drain_workqueue(hdev->workqueue);
4237 
4238 	hci_dev_lock(hdev);
4239 
4240 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4241 
4242 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4243 
4244 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4245 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4246 	    hci_dev_test_flag(hdev, HCI_MGMT))
4247 		__mgmt_power_off(hdev);
4248 
4249 	hci_inquiry_cache_flush(hdev);
4250 	hci_pend_le_actions_clear(hdev);
4251 	hci_conn_hash_flush(hdev);
4252 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4253 	smp_unregister(hdev);
4254 	hci_dev_unlock(hdev);
4255 
4256 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4257 
4258 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4259 		aosp_do_close(hdev);
4260 		msft_do_close(hdev);
4261 	}
4262 
4263 	if (hdev->flush)
4264 		hdev->flush(hdev);
4265 
4266 	/* Reset device */
4267 	skb_queue_purge(&hdev->cmd_q);
4268 	atomic_set(&hdev->cmd_cnt, 1);
4269 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4270 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4271 		set_bit(HCI_INIT, &hdev->flags);
4272 		hci_reset_sync(hdev);
4273 		clear_bit(HCI_INIT, &hdev->flags);
4274 	}
4275 
4276 	/* flush cmd  work */
4277 	flush_work(&hdev->cmd_work);
4278 
4279 	/* Drop queues */
4280 	skb_queue_purge(&hdev->rx_q);
4281 	skb_queue_purge(&hdev->cmd_q);
4282 	skb_queue_purge(&hdev->raw_q);
4283 
4284 	/* Drop last sent command */
4285 	if (hdev->sent_cmd) {
4286 		cancel_delayed_work_sync(&hdev->cmd_timer);
4287 		kfree_skb(hdev->sent_cmd);
4288 		hdev->sent_cmd = NULL;
4289 	}
4290 
4291 	clear_bit(HCI_RUNNING, &hdev->flags);
4292 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4293 
4294 	/* After this point our queues are empty and no tasks are scheduled. */
4295 	hdev->close(hdev);
4296 
4297 	/* Clear flags */
4298 	hdev->flags &= BIT(HCI_RAW);
4299 	hci_dev_clear_volatile_flags(hdev);
4300 
4301 	/* Controller radio is available but is currently powered down */
4302 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
4303 
4304 	memset(hdev->eir, 0, sizeof(hdev->eir));
4305 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
4306 	bacpy(&hdev->random_addr, BDADDR_ANY);
4307 
4308 	hci_dev_put(hdev);
4309 	return err;
4310 }
4311 
4312 /* This function perform power on HCI command sequence as follows:
4313  *
4314  * If controller is already up (HCI_UP) performs hci_powered_update_sync
4315  * sequence otherwise run hci_dev_open_sync which will follow with
4316  * hci_powered_update_sync after the init sequence is completed.
4317  */
4318 static int hci_power_on_sync(struct hci_dev *hdev)
4319 {
4320 	int err;
4321 
4322 	if (test_bit(HCI_UP, &hdev->flags) &&
4323 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
4324 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
4325 		cancel_delayed_work(&hdev->power_off);
4326 		return hci_powered_update_sync(hdev);
4327 	}
4328 
4329 	err = hci_dev_open_sync(hdev);
4330 	if (err < 0)
4331 		return err;
4332 
4333 	/* During the HCI setup phase, a few error conditions are
4334 	 * ignored and they need to be checked now. If they are still
4335 	 * valid, it is important to return the device back off.
4336 	 */
4337 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
4338 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
4339 	    (hdev->dev_type == HCI_PRIMARY &&
4340 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4341 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
4342 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
4343 		hci_dev_close_sync(hdev);
4344 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
4345 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
4346 				   HCI_AUTO_OFF_TIMEOUT);
4347 	}
4348 
4349 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
4350 		/* For unconfigured devices, set the HCI_RAW flag
4351 		 * so that userspace can easily identify them.
4352 		 */
4353 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4354 			set_bit(HCI_RAW, &hdev->flags);
4355 
4356 		/* For fully configured devices, this will send
4357 		 * the Index Added event. For unconfigured devices,
4358 		 * it will send Unconfigued Index Added event.
4359 		 *
4360 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
4361 		 * and no event will be send.
4362 		 */
4363 		mgmt_index_added(hdev);
4364 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
4365 		/* When the controller is now configured, then it
4366 		 * is important to clear the HCI_RAW flag.
4367 		 */
4368 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4369 			clear_bit(HCI_RAW, &hdev->flags);
4370 
4371 		/* Powering on the controller with HCI_CONFIG set only
4372 		 * happens with the transition from unconfigured to
4373 		 * configured. This will send the Index Added event.
4374 		 */
4375 		mgmt_index_added(hdev);
4376 	}
4377 
4378 	return 0;
4379 }
4380 
4381 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
4382 {
4383 	struct hci_cp_remote_name_req_cancel cp;
4384 
4385 	memset(&cp, 0, sizeof(cp));
4386 	bacpy(&cp.bdaddr, addr);
4387 
4388 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
4389 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4390 }
4391 
4392 int hci_stop_discovery_sync(struct hci_dev *hdev)
4393 {
4394 	struct discovery_state *d = &hdev->discovery;
4395 	struct inquiry_entry *e;
4396 	int err;
4397 
4398 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
4399 
4400 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
4401 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
4402 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
4403 						    0, NULL, HCI_CMD_TIMEOUT);
4404 			if (err)
4405 				return err;
4406 		}
4407 
4408 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
4409 			cancel_delayed_work(&hdev->le_scan_disable);
4410 			cancel_delayed_work(&hdev->le_scan_restart);
4411 
4412 			err = hci_scan_disable_sync(hdev);
4413 			if (err)
4414 				return err;
4415 		}
4416 
4417 	} else {
4418 		err = hci_scan_disable_sync(hdev);
4419 		if (err)
4420 			return err;
4421 	}
4422 
4423 	/* Resume advertising if it was paused */
4424 	if (use_ll_privacy(hdev))
4425 		hci_resume_advertising_sync(hdev);
4426 
4427 	/* No further actions needed for LE-only discovery */
4428 	if (d->type == DISCOV_TYPE_LE)
4429 		return 0;
4430 
4431 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
4432 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
4433 						     NAME_PENDING);
4434 		if (!e)
4435 			return 0;
4436 
4437 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
4438 	}
4439 
4440 	return 0;
4441 }
4442 
4443 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
4444 					u8 reason)
4445 {
4446 	struct hci_cp_disconn_phy_link cp;
4447 
4448 	memset(&cp, 0, sizeof(cp));
4449 	cp.phy_handle = HCI_PHY_HANDLE(handle);
4450 	cp.reason = reason;
4451 
4452 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
4453 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4454 }
4455 
4456 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
4457 			       u8 reason)
4458 {
4459 	struct hci_cp_disconnect cp;
4460 
4461 	if (conn->type == AMP_LINK)
4462 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
4463 
4464 	memset(&cp, 0, sizeof(cp));
4465 	cp.handle = cpu_to_le16(conn->handle);
4466 	cp.reason = reason;
4467 
4468 	/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
4469 	 * suspending.
4470 	 */
4471 	if (!hdev->suspended)
4472 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
4473 						sizeof(cp), &cp,
4474 						HCI_EV_DISCONN_COMPLETE,
4475 						HCI_CMD_TIMEOUT, NULL);
4476 
4477 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
4478 				     HCI_CMD_TIMEOUT);
4479 }
4480 
4481 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
4482 				      struct hci_conn *conn)
4483 {
4484 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
4485 		return 0;
4486 
4487 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
4488 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4489 }
4490 
4491 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
4492 {
4493 	if (conn->type == LE_LINK)
4494 		return hci_le_connect_cancel_sync(hdev, conn);
4495 
4496 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
4497 		return 0;
4498 
4499 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
4500 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4501 }
4502 
4503 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
4504 			       u8 reason)
4505 {
4506 	struct hci_cp_reject_sync_conn_req cp;
4507 
4508 	memset(&cp, 0, sizeof(cp));
4509 	bacpy(&cp.bdaddr, &conn->dst);
4510 	cp.reason = reason;
4511 
4512 	/* SCO rejection has its own limited set of
4513 	 * allowed error values (0x0D-0x0F).
4514 	 */
4515 	if (reason < 0x0d || reason > 0x0f)
4516 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
4517 
4518 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
4519 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4520 }
4521 
4522 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4523 				u8 reason)
4524 {
4525 	struct hci_cp_reject_conn_req cp;
4526 
4527 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
4528 		return hci_reject_sco_sync(hdev, conn, reason);
4529 
4530 	memset(&cp, 0, sizeof(cp));
4531 	bacpy(&cp.bdaddr, &conn->dst);
4532 	cp.reason = reason;
4533 
4534 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
4535 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4536 }
4537 
4538 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
4539 {
4540 	int err;
4541 
4542 	switch (conn->state) {
4543 	case BT_CONNECTED:
4544 	case BT_CONFIG:
4545 		return hci_disconnect_sync(hdev, conn, reason);
4546 	case BT_CONNECT:
4547 		err = hci_connect_cancel_sync(hdev, conn);
4548 		/* Cleanup hci_conn object if it cannot be cancelled as it
4549 		 * likelly means the controller and host stack are out of sync.
4550 		 */
4551 		if (err)
4552 			hci_conn_failed(conn, err);
4553 
4554 		return err;
4555 	case BT_CONNECT2:
4556 		return hci_reject_conn_sync(hdev, conn, reason);
4557 	default:
4558 		conn->state = BT_CLOSED;
4559 		break;
4560 	}
4561 
4562 	return 0;
4563 }
4564 
4565 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
4566 {
4567 	struct hci_conn *conn, *tmp;
4568 	int err;
4569 
4570 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
4571 		err = hci_abort_conn_sync(hdev, conn, reason);
4572 		if (err)
4573 			return err;
4574 	}
4575 
4576 	return 0;
4577 }
4578 
4579 /* This function perform power off HCI command sequence as follows:
4580  *
4581  * Clear Advertising
4582  * Stop Discovery
4583  * Disconnect all connections
4584  * hci_dev_close_sync
4585  */
4586 static int hci_power_off_sync(struct hci_dev *hdev)
4587 {
4588 	int err;
4589 
4590 	/* If controller is already down there is nothing to do */
4591 	if (!test_bit(HCI_UP, &hdev->flags))
4592 		return 0;
4593 
4594 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
4595 	    test_bit(HCI_PSCAN, &hdev->flags)) {
4596 		err = hci_write_scan_enable_sync(hdev, 0x00);
4597 		if (err)
4598 			return err;
4599 	}
4600 
4601 	err = hci_clear_adv_sync(hdev, NULL, false);
4602 	if (err)
4603 		return err;
4604 
4605 	err = hci_stop_discovery_sync(hdev);
4606 	if (err)
4607 		return err;
4608 
4609 	/* Terminated due to Power Off */
4610 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4611 	if (err)
4612 		return err;
4613 
4614 	return hci_dev_close_sync(hdev);
4615 }
4616 
4617 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
4618 {
4619 	if (val)
4620 		return hci_power_on_sync(hdev);
4621 
4622 	return hci_power_off_sync(hdev);
4623 }
4624 
4625 static int hci_write_iac_sync(struct hci_dev *hdev)
4626 {
4627 	struct hci_cp_write_current_iac_lap cp;
4628 
4629 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
4630 		return 0;
4631 
4632 	memset(&cp, 0, sizeof(cp));
4633 
4634 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
4635 		/* Limited discoverable mode */
4636 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
4637 		cp.iac_lap[0] = 0x00;	/* LIAC */
4638 		cp.iac_lap[1] = 0x8b;
4639 		cp.iac_lap[2] = 0x9e;
4640 		cp.iac_lap[3] = 0x33;	/* GIAC */
4641 		cp.iac_lap[4] = 0x8b;
4642 		cp.iac_lap[5] = 0x9e;
4643 	} else {
4644 		/* General discoverable mode */
4645 		cp.num_iac = 1;
4646 		cp.iac_lap[0] = 0x33;	/* GIAC */
4647 		cp.iac_lap[1] = 0x8b;
4648 		cp.iac_lap[2] = 0x9e;
4649 	}
4650 
4651 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
4652 				     (cp.num_iac * 3) + 1, &cp,
4653 				     HCI_CMD_TIMEOUT);
4654 }
4655 
4656 int hci_update_discoverable_sync(struct hci_dev *hdev)
4657 {
4658 	int err = 0;
4659 
4660 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
4661 		err = hci_write_iac_sync(hdev);
4662 		if (err)
4663 			return err;
4664 
4665 		err = hci_update_scan_sync(hdev);
4666 		if (err)
4667 			return err;
4668 
4669 		err = hci_update_class_sync(hdev);
4670 		if (err)
4671 			return err;
4672 	}
4673 
4674 	/* Advertising instances don't use the global discoverable setting, so
4675 	 * only update AD if advertising was enabled using Set Advertising.
4676 	 */
4677 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
4678 		err = hci_update_adv_data_sync(hdev, 0x00);
4679 		if (err)
4680 			return err;
4681 
4682 		/* Discoverable mode affects the local advertising
4683 		 * address in limited privacy mode.
4684 		 */
4685 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
4686 			if (ext_adv_capable(hdev))
4687 				err = hci_start_ext_adv_sync(hdev, 0x00);
4688 			else
4689 				err = hci_enable_advertising_sync(hdev);
4690 		}
4691 	}
4692 
4693 	return err;
4694 }
4695 
4696 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
4697 {
4698 	return hci_update_discoverable_sync(hdev);
4699 }
4700 
4701 int hci_update_discoverable(struct hci_dev *hdev)
4702 {
4703 	/* Only queue if it would have any effect */
4704 	if (hdev_is_powered(hdev) &&
4705 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
4706 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
4707 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
4708 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
4709 					  NULL);
4710 
4711 	return 0;
4712 }
4713 
4714 int hci_update_connectable_sync(struct hci_dev *hdev)
4715 {
4716 	int err;
4717 
4718 	err = hci_update_scan_sync(hdev);
4719 	if (err)
4720 		return err;
4721 
4722 	/* If BR/EDR is not enabled and we disable advertising as a
4723 	 * by-product of disabling connectable, we need to update the
4724 	 * advertising flags.
4725 	 */
4726 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4727 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
4728 
4729 	/* Update the advertising parameters if necessary */
4730 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
4731 	    !list_empty(&hdev->adv_instances)) {
4732 		if (ext_adv_capable(hdev))
4733 			err = hci_start_ext_adv_sync(hdev,
4734 						     hdev->cur_adv_instance);
4735 		else
4736 			err = hci_enable_advertising_sync(hdev);
4737 
4738 		if (err)
4739 			return err;
4740 	}
4741 
4742 	return hci_update_passive_scan_sync(hdev);
4743 }
4744 
4745 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
4746 {
4747 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
4748 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
4749 	struct hci_cp_inquiry cp;
4750 
4751 	bt_dev_dbg(hdev, "");
4752 
4753 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
4754 		return 0;
4755 
4756 	hci_dev_lock(hdev);
4757 	hci_inquiry_cache_flush(hdev);
4758 	hci_dev_unlock(hdev);
4759 
4760 	memset(&cp, 0, sizeof(cp));
4761 
4762 	if (hdev->discovery.limited)
4763 		memcpy(&cp.lap, liac, sizeof(cp.lap));
4764 	else
4765 		memcpy(&cp.lap, giac, sizeof(cp.lap));
4766 
4767 	cp.length = length;
4768 
4769 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
4770 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4771 }
4772 
4773 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
4774 {
4775 	u8 own_addr_type;
4776 	/* Accept list is not used for discovery */
4777 	u8 filter_policy = 0x00;
4778 	/* Default is to enable duplicates filter */
4779 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
4780 	int err;
4781 
4782 	bt_dev_dbg(hdev, "");
4783 
4784 	/* If controller is scanning, it means the passive scanning is
4785 	 * running. Thus, we should temporarily stop it in order to set the
4786 	 * discovery scanning parameters.
4787 	 */
4788 	err = hci_scan_disable_sync(hdev);
4789 	if (err) {
4790 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
4791 		return err;
4792 	}
4793 
4794 	cancel_interleave_scan(hdev);
4795 
4796 	/* Pause advertising since active scanning disables address resolution
4797 	 * which advertising depend on in order to generate its RPAs.
4798 	 */
4799 	if (use_ll_privacy(hdev)) {
4800 		err = hci_pause_advertising_sync(hdev);
4801 		if (err) {
4802 			bt_dev_err(hdev, "pause advertising failed: %d", err);
4803 			goto failed;
4804 		}
4805 	}
4806 
4807 	/* Disable address resolution while doing active scanning since the
4808 	 * accept list shall not be used and all reports shall reach the host
4809 	 * anyway.
4810 	 */
4811 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
4812 	if (err) {
4813 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
4814 			   err);
4815 		goto failed;
4816 	}
4817 
4818 	/* All active scans will be done with either a resolvable private
4819 	 * address (when privacy feature has been enabled) or non-resolvable
4820 	 * private address.
4821 	 */
4822 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
4823 					     &own_addr_type);
4824 	if (err < 0)
4825 		own_addr_type = ADDR_LE_DEV_PUBLIC;
4826 
4827 	if (hci_is_adv_monitoring(hdev)) {
4828 		/* Duplicate filter should be disabled when some advertisement
4829 		 * monitor is activated, otherwise AdvMon can only receive one
4830 		 * advertisement for one peer(*) during active scanning, and
4831 		 * might report loss to these peers.
4832 		 *
4833 		 * Note that different controllers have different meanings of
4834 		 * |duplicate|. Some of them consider packets with the same
4835 		 * address as duplicate, and others consider packets with the
4836 		 * same address and the same RSSI as duplicate. Although in the
4837 		 * latter case we don't need to disable duplicate filter, but
4838 		 * it is common to have active scanning for a short period of
4839 		 * time, the power impact should be neglectable.
4840 		 */
4841 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
4842 	}
4843 
4844 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
4845 				  hdev->le_scan_window_discovery,
4846 				  own_addr_type, filter_policy, filter_dup);
4847 	if (!err)
4848 		return err;
4849 
4850 failed:
4851 	/* Resume advertising if it was paused */
4852 	if (use_ll_privacy(hdev))
4853 		hci_resume_advertising_sync(hdev);
4854 
4855 	/* Resume passive scanning */
4856 	hci_update_passive_scan_sync(hdev);
4857 	return err;
4858 }
4859 
4860 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
4861 {
4862 	int err;
4863 
4864 	bt_dev_dbg(hdev, "");
4865 
4866 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
4867 	if (err)
4868 		return err;
4869 
4870 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4871 }
4872 
4873 int hci_start_discovery_sync(struct hci_dev *hdev)
4874 {
4875 	unsigned long timeout;
4876 	int err;
4877 
4878 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
4879 
4880 	switch (hdev->discovery.type) {
4881 	case DISCOV_TYPE_BREDR:
4882 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4883 	case DISCOV_TYPE_INTERLEAVED:
4884 		/* When running simultaneous discovery, the LE scanning time
4885 		 * should occupy the whole discovery time sine BR/EDR inquiry
4886 		 * and LE scanning are scheduled by the controller.
4887 		 *
4888 		 * For interleaving discovery in comparison, BR/EDR inquiry
4889 		 * and LE scanning are done sequentially with separate
4890 		 * timeouts.
4891 		 */
4892 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
4893 			     &hdev->quirks)) {
4894 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4895 			/* During simultaneous discovery, we double LE scan
4896 			 * interval. We must leave some time for the controller
4897 			 * to do BR/EDR inquiry.
4898 			 */
4899 			err = hci_start_interleaved_discovery_sync(hdev);
4900 			break;
4901 		}
4902 
4903 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
4904 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4905 		break;
4906 	case DISCOV_TYPE_LE:
4907 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4908 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4909 		break;
4910 	default:
4911 		return -EINVAL;
4912 	}
4913 
4914 	if (err)
4915 		return err;
4916 
4917 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
4918 
4919 	/* When service discovery is used and the controller has a
4920 	 * strict duplicate filter, it is important to remember the
4921 	 * start and duration of the scan. This is required for
4922 	 * restarting scanning during the discovery phase.
4923 	 */
4924 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
4925 	    hdev->discovery.result_filtering) {
4926 		hdev->discovery.scan_start = jiffies;
4927 		hdev->discovery.scan_duration = timeout;
4928 	}
4929 
4930 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
4931 			   timeout);
4932 	return 0;
4933 }
4934 
4935 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
4936 {
4937 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
4938 	case HCI_ADV_MONITOR_EXT_MSFT:
4939 		msft_suspend_sync(hdev);
4940 		break;
4941 	default:
4942 		return;
4943 	}
4944 }
4945 
4946 /* This function disables discovery and mark it as paused */
4947 static int hci_pause_discovery_sync(struct hci_dev *hdev)
4948 {
4949 	int old_state = hdev->discovery.state;
4950 	int err;
4951 
4952 	/* If discovery already stopped/stopping/paused there nothing to do */
4953 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
4954 	    hdev->discovery_paused)
4955 		return 0;
4956 
4957 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
4958 	err = hci_stop_discovery_sync(hdev);
4959 	if (err)
4960 		return err;
4961 
4962 	hdev->discovery_paused = true;
4963 	hdev->discovery_old_state = old_state;
4964 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4965 
4966 	return 0;
4967 }
4968 
4969 static int hci_update_event_filter_sync(struct hci_dev *hdev)
4970 {
4971 	struct bdaddr_list_with_flags *b;
4972 	u8 scan = SCAN_DISABLED;
4973 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
4974 	int err;
4975 
4976 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4977 		return 0;
4978 
4979 	/* Some fake CSR controllers lock up after setting this type of
4980 	 * filter, so avoid sending the request altogether.
4981 	 */
4982 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
4983 		return 0;
4984 
4985 	/* Always clear event filter when starting */
4986 	hci_clear_event_filter_sync(hdev);
4987 
4988 	list_for_each_entry(b, &hdev->accept_list, list) {
4989 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
4990 			continue;
4991 
4992 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
4993 
4994 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
4995 						 HCI_CONN_SETUP_ALLOW_BDADDR,
4996 						 &b->bdaddr,
4997 						 HCI_CONN_SETUP_AUTO_ON);
4998 		if (err)
4999 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5000 				   &b->bdaddr);
5001 		else
5002 			scan = SCAN_PAGE;
5003 	}
5004 
5005 	if (scan && !scanning)
5006 		hci_write_scan_enable_sync(hdev, scan);
5007 	else if (!scan && scanning)
5008 		hci_write_scan_enable_sync(hdev, scan);
5009 
5010 	return 0;
5011 }
5012 
5013 /* This function disables scan (BR and LE) and mark it as paused */
5014 static int hci_pause_scan_sync(struct hci_dev *hdev)
5015 {
5016 	if (hdev->scanning_paused)
5017 		return 0;
5018 
5019 	/* Disable page scan if enabled */
5020 	if (test_bit(HCI_PSCAN, &hdev->flags))
5021 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5022 
5023 	hci_scan_disable_sync(hdev);
5024 
5025 	hdev->scanning_paused = true;
5026 
5027 	return 0;
5028 }
5029 
5030 /* This function performs the HCI suspend procedures in the follow order:
5031  *
5032  * Pause discovery (active scanning/inquiry)
5033  * Pause Directed Advertising/Advertising
5034  * Pause Scanning (passive scanning in case discovery was not active)
5035  * Disconnect all connections
5036  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5037  * otherwise:
5038  * Update event mask (only set events that are allowed to wake up the host)
5039  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5040  * Update passive scanning (lower duty cycle)
5041  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5042  */
5043 int hci_suspend_sync(struct hci_dev *hdev)
5044 {
5045 	int err;
5046 
5047 	/* If marked as suspended there nothing to do */
5048 	if (hdev->suspended)
5049 		return 0;
5050 
5051 	/* Mark device as suspended */
5052 	hdev->suspended = true;
5053 
5054 	/* Pause discovery if not already stopped */
5055 	hci_pause_discovery_sync(hdev);
5056 
5057 	/* Pause other advertisements */
5058 	hci_pause_advertising_sync(hdev);
5059 
5060 	/* Suspend monitor filters */
5061 	hci_suspend_monitor_sync(hdev);
5062 
5063 	/* Prevent disconnects from causing scanning to be re-enabled */
5064 	hci_pause_scan_sync(hdev);
5065 
5066 	/* Soft disconnect everything (power off) */
5067 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5068 	if (err) {
5069 		/* Set state to BT_RUNNING so resume doesn't notify */
5070 		hdev->suspend_state = BT_RUNNING;
5071 		hci_resume_sync(hdev);
5072 		return err;
5073 	}
5074 
5075 	/* Only configure accept list if disconnect succeeded and wake
5076 	 * isn't being prevented.
5077 	 */
5078 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5079 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5080 		return 0;
5081 	}
5082 
5083 	/* Unpause to take care of updating scanning params */
5084 	hdev->scanning_paused = false;
5085 
5086 	/* Update event mask so only the allowed event can wakeup the host */
5087 	hci_set_event_mask_sync(hdev);
5088 
5089 	/* Enable event filter for paired devices */
5090 	hci_update_event_filter_sync(hdev);
5091 
5092 	/* Update LE passive scan if enabled */
5093 	hci_update_passive_scan_sync(hdev);
5094 
5095 	/* Pause scan changes again. */
5096 	hdev->scanning_paused = true;
5097 
5098 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5099 
5100 	return 0;
5101 }
5102 
5103 /* This function resumes discovery */
5104 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5105 {
5106 	int err;
5107 
5108 	/* If discovery not paused there nothing to do */
5109 	if (!hdev->discovery_paused)
5110 		return 0;
5111 
5112 	hdev->discovery_paused = false;
5113 
5114 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5115 
5116 	err = hci_start_discovery_sync(hdev);
5117 
5118 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5119 				DISCOVERY_FINDING);
5120 
5121 	return err;
5122 }
5123 
5124 static void hci_resume_monitor_sync(struct hci_dev *hdev)
5125 {
5126 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5127 	case HCI_ADV_MONITOR_EXT_MSFT:
5128 		msft_resume_sync(hdev);
5129 		break;
5130 	default:
5131 		return;
5132 	}
5133 }
5134 
5135 /* This function resume scan and reset paused flag */
5136 static int hci_resume_scan_sync(struct hci_dev *hdev)
5137 {
5138 	if (!hdev->scanning_paused)
5139 		return 0;
5140 
5141 	hdev->scanning_paused = false;
5142 
5143 	hci_update_scan_sync(hdev);
5144 
5145 	/* Reset passive scanning to normal */
5146 	hci_update_passive_scan_sync(hdev);
5147 
5148 	return 0;
5149 }
5150 
5151 /* This function performs the HCI suspend procedures in the follow order:
5152  *
5153  * Restore event mask
5154  * Clear event filter
5155  * Update passive scanning (normal duty cycle)
5156  * Resume Directed Advertising/Advertising
5157  * Resume discovery (active scanning/inquiry)
5158  */
5159 int hci_resume_sync(struct hci_dev *hdev)
5160 {
5161 	/* If not marked as suspended there nothing to do */
5162 	if (!hdev->suspended)
5163 		return 0;
5164 
5165 	hdev->suspended = false;
5166 
5167 	/* Restore event mask */
5168 	hci_set_event_mask_sync(hdev);
5169 
5170 	/* Clear any event filters and restore scan state */
5171 	hci_clear_event_filter_sync(hdev);
5172 
5173 	/* Resume scanning */
5174 	hci_resume_scan_sync(hdev);
5175 
5176 	/* Resume monitor filters */
5177 	hci_resume_monitor_sync(hdev);
5178 
5179 	/* Resume other advertisements */
5180 	hci_resume_advertising_sync(hdev);
5181 
5182 	/* Resume discovery */
5183 	hci_resume_discovery_sync(hdev);
5184 
5185 	return 0;
5186 }
5187 
5188 static bool conn_use_rpa(struct hci_conn *conn)
5189 {
5190 	struct hci_dev *hdev = conn->hdev;
5191 
5192 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
5193 }
5194 
5195 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5196 						struct hci_conn *conn)
5197 {
5198 	struct hci_cp_le_set_ext_adv_params cp;
5199 	int err;
5200 	bdaddr_t random_addr;
5201 	u8 own_addr_type;
5202 
5203 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5204 					     &own_addr_type);
5205 	if (err)
5206 		return err;
5207 
5208 	/* Set require_privacy to false so that the remote device has a
5209 	 * chance of identifying us.
5210 	 */
5211 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5212 				     &own_addr_type, &random_addr);
5213 	if (err)
5214 		return err;
5215 
5216 	memset(&cp, 0, sizeof(cp));
5217 
5218 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
5219 	cp.own_addr_type = own_addr_type;
5220 	cp.channel_map = hdev->le_adv_channel_map;
5221 	cp.tx_power = HCI_TX_POWER_INVALID;
5222 	cp.primary_phy = HCI_ADV_PHY_1M;
5223 	cp.secondary_phy = HCI_ADV_PHY_1M;
5224 	cp.handle = 0x00; /* Use instance 0 for directed adv */
5225 	cp.own_addr_type = own_addr_type;
5226 	cp.peer_addr_type = conn->dst_type;
5227 	bacpy(&cp.peer_addr, &conn->dst);
5228 
5229 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
5230 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
5231 	 * does not supports advertising data when the advertising set already
5232 	 * contains some, the controller shall return erroc code 'Invalid
5233 	 * HCI Command Parameters(0x12).
5234 	 * So it is required to remove adv set for handle 0x00. since we use
5235 	 * instance 0 for directed adv.
5236 	 */
5237 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
5238 	if (err)
5239 		return err;
5240 
5241 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
5242 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5243 	if (err)
5244 		return err;
5245 
5246 	/* Check if random address need to be updated */
5247 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
5248 	    bacmp(&random_addr, BDADDR_ANY) &&
5249 	    bacmp(&random_addr, &hdev->random_addr)) {
5250 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
5251 						       &random_addr);
5252 		if (err)
5253 			return err;
5254 	}
5255 
5256 	return hci_enable_ext_advertising_sync(hdev, 0x00);
5257 }
5258 
5259 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
5260 					    struct hci_conn *conn)
5261 {
5262 	struct hci_cp_le_set_adv_param cp;
5263 	u8 status;
5264 	u8 own_addr_type;
5265 	u8 enable;
5266 
5267 	if (ext_adv_capable(hdev))
5268 		return hci_le_ext_directed_advertising_sync(hdev, conn);
5269 
5270 	/* Clear the HCI_LE_ADV bit temporarily so that the
5271 	 * hci_update_random_address knows that it's safe to go ahead
5272 	 * and write a new random address. The flag will be set back on
5273 	 * as soon as the SET_ADV_ENABLE HCI command completes.
5274 	 */
5275 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
5276 
5277 	/* Set require_privacy to false so that the remote device has a
5278 	 * chance of identifying us.
5279 	 */
5280 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5281 						&own_addr_type);
5282 	if (status)
5283 		return status;
5284 
5285 	memset(&cp, 0, sizeof(cp));
5286 
5287 	/* Some controllers might reject command if intervals are not
5288 	 * within range for undirected advertising.
5289 	 * BCM20702A0 is known to be affected by this.
5290 	 */
5291 	cp.min_interval = cpu_to_le16(0x0020);
5292 	cp.max_interval = cpu_to_le16(0x0020);
5293 
5294 	cp.type = LE_ADV_DIRECT_IND;
5295 	cp.own_address_type = own_addr_type;
5296 	cp.direct_addr_type = conn->dst_type;
5297 	bacpy(&cp.direct_addr, &conn->dst);
5298 	cp.channel_map = hdev->le_adv_channel_map;
5299 
5300 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
5301 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5302 	if (status)
5303 		return status;
5304 
5305 	enable = 0x01;
5306 
5307 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
5308 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
5309 }
5310 
5311 static void set_ext_conn_params(struct hci_conn *conn,
5312 				struct hci_cp_le_ext_conn_param *p)
5313 {
5314 	struct hci_dev *hdev = conn->hdev;
5315 
5316 	memset(p, 0, sizeof(*p));
5317 
5318 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5319 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5320 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5321 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5322 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
5323 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5324 	p->min_ce_len = cpu_to_le16(0x0000);
5325 	p->max_ce_len = cpu_to_le16(0x0000);
5326 }
5327 
5328 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
5329 				       struct hci_conn *conn, u8 own_addr_type)
5330 {
5331 	struct hci_cp_le_ext_create_conn *cp;
5332 	struct hci_cp_le_ext_conn_param *p;
5333 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
5334 	u32 plen;
5335 
5336 	cp = (void *)data;
5337 	p = (void *)cp->data;
5338 
5339 	memset(cp, 0, sizeof(*cp));
5340 
5341 	bacpy(&cp->peer_addr, &conn->dst);
5342 	cp->peer_addr_type = conn->dst_type;
5343 	cp->own_addr_type = own_addr_type;
5344 
5345 	plen = sizeof(*cp);
5346 
5347 	if (scan_1m(hdev)) {
5348 		cp->phys |= LE_SCAN_PHY_1M;
5349 		set_ext_conn_params(conn, p);
5350 
5351 		p++;
5352 		plen += sizeof(*p);
5353 	}
5354 
5355 	if (scan_2m(hdev)) {
5356 		cp->phys |= LE_SCAN_PHY_2M;
5357 		set_ext_conn_params(conn, p);
5358 
5359 		p++;
5360 		plen += sizeof(*p);
5361 	}
5362 
5363 	if (scan_coded(hdev)) {
5364 		cp->phys |= LE_SCAN_PHY_CODED;
5365 		set_ext_conn_params(conn, p);
5366 
5367 		plen += sizeof(*p);
5368 	}
5369 
5370 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
5371 					plen, data,
5372 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
5373 					conn->conn_timeout, NULL);
5374 }
5375 
5376 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
5377 {
5378 	struct hci_cp_le_create_conn cp;
5379 	struct hci_conn_params *params;
5380 	u8 own_addr_type;
5381 	int err;
5382 
5383 	/* If requested to connect as peripheral use directed advertising */
5384 	if (conn->role == HCI_ROLE_SLAVE) {
5385 		/* If we're active scanning and simultaneous roles is not
5386 		 * enabled simply reject the attempt.
5387 		 */
5388 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
5389 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
5390 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
5391 			hci_conn_del(conn);
5392 			return -EBUSY;
5393 		}
5394 
5395 		/* Pause advertising while doing directed advertising. */
5396 		hci_pause_advertising_sync(hdev);
5397 
5398 		err = hci_le_directed_advertising_sync(hdev, conn);
5399 		goto done;
5400 	}
5401 
5402 	/* Disable advertising if simultaneous roles is not in use. */
5403 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
5404 		hci_pause_advertising_sync(hdev);
5405 
5406 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
5407 	if (params) {
5408 		conn->le_conn_min_interval = params->conn_min_interval;
5409 		conn->le_conn_max_interval = params->conn_max_interval;
5410 		conn->le_conn_latency = params->conn_latency;
5411 		conn->le_supv_timeout = params->supervision_timeout;
5412 	} else {
5413 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
5414 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
5415 		conn->le_conn_latency = hdev->le_conn_latency;
5416 		conn->le_supv_timeout = hdev->le_supv_timeout;
5417 	}
5418 
5419 	/* If controller is scanning, we stop it since some controllers are
5420 	 * not able to scan and connect at the same time. Also set the
5421 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
5422 	 * handler for scan disabling knows to set the correct discovery
5423 	 * state.
5424 	 */
5425 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5426 		hci_scan_disable_sync(hdev);
5427 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
5428 	}
5429 
5430 	/* Update random address, but set require_privacy to false so
5431 	 * that we never connect with an non-resolvable address.
5432 	 */
5433 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5434 					     &own_addr_type);
5435 	if (err)
5436 		goto done;
5437 
5438 	if (use_ext_conn(hdev)) {
5439 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
5440 		goto done;
5441 	}
5442 
5443 	memset(&cp, 0, sizeof(cp));
5444 
5445 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5446 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5447 
5448 	bacpy(&cp.peer_addr, &conn->dst);
5449 	cp.peer_addr_type = conn->dst_type;
5450 	cp.own_address_type = own_addr_type;
5451 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5452 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5453 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
5454 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5455 	cp.min_ce_len = cpu_to_le16(0x0000);
5456 	cp.max_ce_len = cpu_to_le16(0x0000);
5457 
5458 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
5459 	 *
5460 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
5461 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
5462 	 * sent when a new connection has been created.
5463 	 */
5464 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
5465 				       sizeof(cp), &cp,
5466 				       use_enhanced_conn_complete(hdev) ?
5467 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
5468 				       HCI_EV_LE_CONN_COMPLETE,
5469 				       conn->conn_timeout, NULL);
5470 
5471 done:
5472 	/* Re-enable advertising after the connection attempt is finished. */
5473 	hci_resume_advertising_sync(hdev);
5474 	return err;
5475 }
5476 
5477 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
5478 {
5479 	struct hci_cp_le_remove_cig cp;
5480 
5481 	memset(&cp, 0, sizeof(cp));
5482 	cp.cig_id = handle;
5483 
5484 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
5485 				     &cp, HCI_CMD_TIMEOUT);
5486 }
5487