1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_debugfs.h" 16 #include "smp.h" 17 #include "eir.h" 18 #include "msft.h" 19 #include "aosp.h" 20 #include "leds.h" 21 22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 23 struct sk_buff *skb) 24 { 25 bt_dev_dbg(hdev, "result 0x%2.2x", result); 26 27 if (hdev->req_status != HCI_REQ_PEND) 28 return; 29 30 hdev->req_result = result; 31 hdev->req_status = HCI_REQ_DONE; 32 33 if (skb) { 34 struct sock *sk = hci_skb_sk(skb); 35 36 /* Drop sk reference if set */ 37 if (sk) 38 sock_put(sk); 39 40 hdev->req_skb = skb_get(skb); 41 } 42 43 wake_up_interruptible(&hdev->req_wait_q); 44 } 45 46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 47 u32 plen, const void *param, 48 struct sock *sk) 49 { 50 int len = HCI_COMMAND_HDR_SIZE + plen; 51 struct hci_command_hdr *hdr; 52 struct sk_buff *skb; 53 54 skb = bt_skb_alloc(len, GFP_ATOMIC); 55 if (!skb) 56 return NULL; 57 58 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 59 hdr->opcode = cpu_to_le16(opcode); 60 hdr->plen = plen; 61 62 if (plen) 63 skb_put_data(skb, param, plen); 64 65 bt_dev_dbg(hdev, "skb len %d", skb->len); 66 67 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 68 hci_skb_opcode(skb) = opcode; 69 70 /* Grab a reference if command needs to be associated with a sock (e.g. 71 * likely mgmt socket that initiated the command). 72 */ 73 if (sk) { 74 hci_skb_sk(skb) = sk; 75 sock_hold(sk); 76 } 77 78 return skb; 79 } 80 81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 82 const void *param, u8 event, struct sock *sk) 83 { 84 struct hci_dev *hdev = req->hdev; 85 struct sk_buff *skb; 86 87 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 88 89 /* If an error occurred during request building, there is no point in 90 * queueing the HCI command. We can simply return. 91 */ 92 if (req->err) 93 return; 94 95 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 96 if (!skb) { 97 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 98 opcode); 99 req->err = -ENOMEM; 100 return; 101 } 102 103 if (skb_queue_empty(&req->cmd_q)) 104 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 105 106 hci_skb_event(skb) = event; 107 108 skb_queue_tail(&req->cmd_q, skb); 109 } 110 111 static int hci_cmd_sync_run(struct hci_request *req) 112 { 113 struct hci_dev *hdev = req->hdev; 114 struct sk_buff *skb; 115 unsigned long flags; 116 117 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 118 119 /* If an error occurred during request building, remove all HCI 120 * commands queued on the HCI request queue. 121 */ 122 if (req->err) { 123 skb_queue_purge(&req->cmd_q); 124 return req->err; 125 } 126 127 /* Do not allow empty requests */ 128 if (skb_queue_empty(&req->cmd_q)) 129 return -ENODATA; 130 131 skb = skb_peek_tail(&req->cmd_q); 132 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 133 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 134 135 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 136 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 137 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 138 139 queue_work(hdev->workqueue, &hdev->cmd_work); 140 141 return 0; 142 } 143 144 /* This function requires the caller holds hdev->req_lock. */ 145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 146 const void *param, u8 event, u32 timeout, 147 struct sock *sk) 148 { 149 struct hci_request req; 150 struct sk_buff *skb; 151 int err = 0; 152 153 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 154 155 hci_req_init(&req, hdev); 156 157 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 158 159 hdev->req_status = HCI_REQ_PEND; 160 161 err = hci_cmd_sync_run(&req); 162 if (err < 0) 163 return ERR_PTR(err); 164 165 err = wait_event_interruptible_timeout(hdev->req_wait_q, 166 hdev->req_status != HCI_REQ_PEND, 167 timeout); 168 169 if (err == -ERESTARTSYS) 170 return ERR_PTR(-EINTR); 171 172 switch (hdev->req_status) { 173 case HCI_REQ_DONE: 174 err = -bt_to_errno(hdev->req_result); 175 break; 176 177 case HCI_REQ_CANCELED: 178 err = -hdev->req_result; 179 break; 180 181 default: 182 err = -ETIMEDOUT; 183 break; 184 } 185 186 hdev->req_status = 0; 187 hdev->req_result = 0; 188 skb = hdev->req_skb; 189 hdev->req_skb = NULL; 190 191 bt_dev_dbg(hdev, "end: err %d", err); 192 193 if (err < 0) { 194 kfree_skb(skb); 195 return ERR_PTR(err); 196 } 197 198 return skb; 199 } 200 EXPORT_SYMBOL(__hci_cmd_sync_sk); 201 202 /* This function requires the caller holds hdev->req_lock. */ 203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 204 const void *param, u32 timeout) 205 { 206 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 207 } 208 EXPORT_SYMBOL(__hci_cmd_sync); 209 210 /* Send HCI command and wait for command complete event */ 211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 212 const void *param, u32 timeout) 213 { 214 struct sk_buff *skb; 215 216 if (!test_bit(HCI_UP, &hdev->flags)) 217 return ERR_PTR(-ENETDOWN); 218 219 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 220 221 hci_req_sync_lock(hdev); 222 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 223 hci_req_sync_unlock(hdev); 224 225 return skb; 226 } 227 EXPORT_SYMBOL(hci_cmd_sync); 228 229 /* This function requires the caller holds hdev->req_lock. */ 230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 231 const void *param, u8 event, u32 timeout) 232 { 233 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 234 NULL); 235 } 236 EXPORT_SYMBOL(__hci_cmd_sync_ev); 237 238 /* This function requires the caller holds hdev->req_lock. */ 239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 240 const void *param, u8 event, u32 timeout, 241 struct sock *sk) 242 { 243 struct sk_buff *skb; 244 u8 status; 245 246 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 247 if (IS_ERR(skb)) { 248 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 249 PTR_ERR(skb)); 250 return PTR_ERR(skb); 251 } 252 253 /* If command return a status event skb will be set to NULL as there are 254 * no parameters, in case of failure IS_ERR(skb) would have be set to 255 * the actual error would be found with PTR_ERR(skb). 256 */ 257 if (!skb) 258 return 0; 259 260 status = skb->data[0]; 261 262 kfree_skb(skb); 263 264 return status; 265 } 266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 267 268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 269 const void *param, u32 timeout) 270 { 271 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 272 NULL); 273 } 274 EXPORT_SYMBOL(__hci_cmd_sync_status); 275 276 static void hci_cmd_sync_work(struct work_struct *work) 277 { 278 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 279 280 bt_dev_dbg(hdev, ""); 281 282 /* Dequeue all entries and run them */ 283 while (1) { 284 struct hci_cmd_sync_work_entry *entry; 285 286 mutex_lock(&hdev->cmd_sync_work_lock); 287 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 288 struct hci_cmd_sync_work_entry, 289 list); 290 if (entry) 291 list_del(&entry->list); 292 mutex_unlock(&hdev->cmd_sync_work_lock); 293 294 if (!entry) 295 break; 296 297 bt_dev_dbg(hdev, "entry %p", entry); 298 299 if (entry->func) { 300 int err; 301 302 hci_req_sync_lock(hdev); 303 err = entry->func(hdev, entry->data); 304 if (entry->destroy) 305 entry->destroy(hdev, entry->data, err); 306 hci_req_sync_unlock(hdev); 307 } 308 309 kfree(entry); 310 } 311 } 312 313 static void hci_cmd_sync_cancel_work(struct work_struct *work) 314 { 315 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 316 317 cancel_delayed_work_sync(&hdev->cmd_timer); 318 cancel_delayed_work_sync(&hdev->ncmd_timer); 319 atomic_set(&hdev->cmd_cnt, 1); 320 321 wake_up_interruptible(&hdev->req_wait_q); 322 } 323 324 void hci_cmd_sync_init(struct hci_dev *hdev) 325 { 326 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 327 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 328 mutex_init(&hdev->cmd_sync_work_lock); 329 330 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 331 } 332 333 void hci_cmd_sync_clear(struct hci_dev *hdev) 334 { 335 struct hci_cmd_sync_work_entry *entry, *tmp; 336 337 cancel_work_sync(&hdev->cmd_sync_work); 338 339 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 340 if (entry->destroy) 341 entry->destroy(hdev, entry->data, -ECANCELED); 342 343 list_del(&entry->list); 344 kfree(entry); 345 } 346 } 347 348 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 349 { 350 bt_dev_dbg(hdev, "err 0x%2.2x", err); 351 352 if (hdev->req_status == HCI_REQ_PEND) { 353 hdev->req_result = err; 354 hdev->req_status = HCI_REQ_CANCELED; 355 356 cancel_delayed_work_sync(&hdev->cmd_timer); 357 cancel_delayed_work_sync(&hdev->ncmd_timer); 358 atomic_set(&hdev->cmd_cnt, 1); 359 360 wake_up_interruptible(&hdev->req_wait_q); 361 } 362 } 363 364 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 365 { 366 bt_dev_dbg(hdev, "err 0x%2.2x", err); 367 368 if (hdev->req_status == HCI_REQ_PEND) { 369 hdev->req_result = err; 370 hdev->req_status = HCI_REQ_CANCELED; 371 372 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 373 } 374 } 375 EXPORT_SYMBOL(hci_cmd_sync_cancel); 376 377 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 378 void *data, hci_cmd_sync_work_destroy_t destroy) 379 { 380 struct hci_cmd_sync_work_entry *entry; 381 382 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 383 return -ENODEV; 384 385 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 386 if (!entry) 387 return -ENOMEM; 388 389 entry->func = func; 390 entry->data = data; 391 entry->destroy = destroy; 392 393 mutex_lock(&hdev->cmd_sync_work_lock); 394 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 395 mutex_unlock(&hdev->cmd_sync_work_lock); 396 397 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 398 399 return 0; 400 } 401 EXPORT_SYMBOL(hci_cmd_sync_queue); 402 403 int hci_update_eir_sync(struct hci_dev *hdev) 404 { 405 struct hci_cp_write_eir cp; 406 407 bt_dev_dbg(hdev, ""); 408 409 if (!hdev_is_powered(hdev)) 410 return 0; 411 412 if (!lmp_ext_inq_capable(hdev)) 413 return 0; 414 415 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 416 return 0; 417 418 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 419 return 0; 420 421 memset(&cp, 0, sizeof(cp)); 422 423 eir_create(hdev, cp.data); 424 425 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 426 return 0; 427 428 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 429 430 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 431 HCI_CMD_TIMEOUT); 432 } 433 434 static u8 get_service_classes(struct hci_dev *hdev) 435 { 436 struct bt_uuid *uuid; 437 u8 val = 0; 438 439 list_for_each_entry(uuid, &hdev->uuids, list) 440 val |= uuid->svc_hint; 441 442 return val; 443 } 444 445 int hci_update_class_sync(struct hci_dev *hdev) 446 { 447 u8 cod[3]; 448 449 bt_dev_dbg(hdev, ""); 450 451 if (!hdev_is_powered(hdev)) 452 return 0; 453 454 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 455 return 0; 456 457 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 458 return 0; 459 460 cod[0] = hdev->minor_class; 461 cod[1] = hdev->major_class; 462 cod[2] = get_service_classes(hdev); 463 464 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 465 cod[1] |= 0x20; 466 467 if (memcmp(cod, hdev->dev_class, 3) == 0) 468 return 0; 469 470 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 471 sizeof(cod), cod, HCI_CMD_TIMEOUT); 472 } 473 474 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 475 { 476 /* If there is no connection we are OK to advertise. */ 477 if (hci_conn_num(hdev, LE_LINK) == 0) 478 return true; 479 480 /* Check le_states if there is any connection in peripheral role. */ 481 if (hdev->conn_hash.le_num_peripheral > 0) { 482 /* Peripheral connection state and non connectable mode 483 * bit 20. 484 */ 485 if (!connectable && !(hdev->le_states[2] & 0x10)) 486 return false; 487 488 /* Peripheral connection state and connectable mode bit 38 489 * and scannable bit 21. 490 */ 491 if (connectable && (!(hdev->le_states[4] & 0x40) || 492 !(hdev->le_states[2] & 0x20))) 493 return false; 494 } 495 496 /* Check le_states if there is any connection in central role. */ 497 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 498 /* Central connection state and non connectable mode bit 18. */ 499 if (!connectable && !(hdev->le_states[2] & 0x02)) 500 return false; 501 502 /* Central connection state and connectable mode bit 35 and 503 * scannable 19. 504 */ 505 if (connectable && (!(hdev->le_states[4] & 0x08) || 506 !(hdev->le_states[2] & 0x08))) 507 return false; 508 } 509 510 return true; 511 } 512 513 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 514 { 515 /* If privacy is not enabled don't use RPA */ 516 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 517 return false; 518 519 /* If basic privacy mode is enabled use RPA */ 520 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 521 return true; 522 523 /* If limited privacy mode is enabled don't use RPA if we're 524 * both discoverable and bondable. 525 */ 526 if ((flags & MGMT_ADV_FLAG_DISCOV) && 527 hci_dev_test_flag(hdev, HCI_BONDABLE)) 528 return false; 529 530 /* We're neither bondable nor discoverable in the limited 531 * privacy mode, therefore use RPA. 532 */ 533 return true; 534 } 535 536 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 537 { 538 /* If we're advertising or initiating an LE connection we can't 539 * go ahead and change the random address at this time. This is 540 * because the eventual initiator address used for the 541 * subsequently created connection will be undefined (some 542 * controllers use the new address and others the one we had 543 * when the operation started). 544 * 545 * In this kind of scenario skip the update and let the random 546 * address be updated at the next cycle. 547 */ 548 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 549 hci_lookup_le_connect(hdev)) { 550 bt_dev_dbg(hdev, "Deferring random address update"); 551 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 552 return 0; 553 } 554 555 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 556 6, rpa, HCI_CMD_TIMEOUT); 557 } 558 559 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 560 bool rpa, u8 *own_addr_type) 561 { 562 int err; 563 564 /* If privacy is enabled use a resolvable private address. If 565 * current RPA has expired or there is something else than 566 * the current RPA in use, then generate a new one. 567 */ 568 if (rpa) { 569 /* If Controller supports LL Privacy use own address type is 570 * 0x03 571 */ 572 if (use_ll_privacy(hdev)) 573 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 574 else 575 *own_addr_type = ADDR_LE_DEV_RANDOM; 576 577 /* Check if RPA is valid */ 578 if (rpa_valid(hdev)) 579 return 0; 580 581 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 582 if (err < 0) { 583 bt_dev_err(hdev, "failed to generate new RPA"); 584 return err; 585 } 586 587 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 588 if (err) 589 return err; 590 591 return 0; 592 } 593 594 /* In case of required privacy without resolvable private address, 595 * use an non-resolvable private address. This is useful for active 596 * scanning and non-connectable advertising. 597 */ 598 if (require_privacy) { 599 bdaddr_t nrpa; 600 601 while (true) { 602 /* The non-resolvable private address is generated 603 * from random six bytes with the two most significant 604 * bits cleared. 605 */ 606 get_random_bytes(&nrpa, 6); 607 nrpa.b[5] &= 0x3f; 608 609 /* The non-resolvable private address shall not be 610 * equal to the public address. 611 */ 612 if (bacmp(&hdev->bdaddr, &nrpa)) 613 break; 614 } 615 616 *own_addr_type = ADDR_LE_DEV_RANDOM; 617 618 return hci_set_random_addr_sync(hdev, &nrpa); 619 } 620 621 /* If forcing static address is in use or there is no public 622 * address use the static address as random address (but skip 623 * the HCI command if the current random address is already the 624 * static one. 625 * 626 * In case BR/EDR has been disabled on a dual-mode controller 627 * and a static address has been configured, then use that 628 * address instead of the public BR/EDR address. 629 */ 630 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 631 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 632 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 633 bacmp(&hdev->static_addr, BDADDR_ANY))) { 634 *own_addr_type = ADDR_LE_DEV_RANDOM; 635 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 636 return hci_set_random_addr_sync(hdev, 637 &hdev->static_addr); 638 return 0; 639 } 640 641 /* Neither privacy nor static address is being used so use a 642 * public address. 643 */ 644 *own_addr_type = ADDR_LE_DEV_PUBLIC; 645 646 return 0; 647 } 648 649 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 650 { 651 struct hci_cp_le_set_ext_adv_enable *cp; 652 struct hci_cp_ext_adv_set *set; 653 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 654 u8 size; 655 656 /* If request specifies an instance that doesn't exist, fail */ 657 if (instance > 0) { 658 struct adv_info *adv; 659 660 adv = hci_find_adv_instance(hdev, instance); 661 if (!adv) 662 return -EINVAL; 663 664 /* If not enabled there is nothing to do */ 665 if (!adv->enabled) 666 return 0; 667 } 668 669 memset(data, 0, sizeof(data)); 670 671 cp = (void *)data; 672 set = (void *)cp->data; 673 674 /* Instance 0x00 indicates all advertising instances will be disabled */ 675 cp->num_of_sets = !!instance; 676 cp->enable = 0x00; 677 678 set->handle = instance; 679 680 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 681 682 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 683 size, data, HCI_CMD_TIMEOUT); 684 } 685 686 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 687 bdaddr_t *random_addr) 688 { 689 struct hci_cp_le_set_adv_set_rand_addr cp; 690 int err; 691 692 if (!instance) { 693 /* Instance 0x00 doesn't have an adv_info, instead it uses 694 * hdev->random_addr to track its address so whenever it needs 695 * to be updated this also set the random address since 696 * hdev->random_addr is shared with scan state machine. 697 */ 698 err = hci_set_random_addr_sync(hdev, random_addr); 699 if (err) 700 return err; 701 } 702 703 memset(&cp, 0, sizeof(cp)); 704 705 cp.handle = instance; 706 bacpy(&cp.bdaddr, random_addr); 707 708 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 709 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 710 } 711 712 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 713 { 714 struct hci_cp_le_set_ext_adv_params cp; 715 bool connectable; 716 u32 flags; 717 bdaddr_t random_addr; 718 u8 own_addr_type; 719 int err; 720 struct adv_info *adv; 721 bool secondary_adv; 722 723 if (instance > 0) { 724 adv = hci_find_adv_instance(hdev, instance); 725 if (!adv) 726 return -EINVAL; 727 } else { 728 adv = NULL; 729 } 730 731 /* Updating parameters of an active instance will return a 732 * Command Disallowed error, so we must first disable the 733 * instance if it is active. 734 */ 735 if (adv && !adv->pending) { 736 err = hci_disable_ext_adv_instance_sync(hdev, instance); 737 if (err) 738 return err; 739 } 740 741 flags = hci_adv_instance_flags(hdev, instance); 742 743 /* If the "connectable" instance flag was not set, then choose between 744 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 745 */ 746 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 747 mgmt_get_connectable(hdev); 748 749 if (!is_advertising_allowed(hdev, connectable)) 750 return -EPERM; 751 752 /* Set require_privacy to true only when non-connectable 753 * advertising is used. In that case it is fine to use a 754 * non-resolvable private address. 755 */ 756 err = hci_get_random_address(hdev, !connectable, 757 adv_use_rpa(hdev, flags), adv, 758 &own_addr_type, &random_addr); 759 if (err < 0) 760 return err; 761 762 memset(&cp, 0, sizeof(cp)); 763 764 if (adv) { 765 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 766 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 767 cp.tx_power = adv->tx_power; 768 } else { 769 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 770 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 771 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 772 } 773 774 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 775 776 if (connectable) { 777 if (secondary_adv) 778 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 779 else 780 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 781 } else if (hci_adv_instance_is_scannable(hdev, instance) || 782 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 783 if (secondary_adv) 784 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 785 else 786 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 787 } else { 788 if (secondary_adv) 789 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 790 else 791 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 792 } 793 794 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 795 * contains the peer’s Identity Address and the Peer_Address_Type 796 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 797 * These parameters are used to locate the corresponding local IRK in 798 * the resolving list; this IRK is used to generate their own address 799 * used in the advertisement. 800 */ 801 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 802 hci_copy_identity_address(hdev, &cp.peer_addr, 803 &cp.peer_addr_type); 804 805 cp.own_addr_type = own_addr_type; 806 cp.channel_map = hdev->le_adv_channel_map; 807 cp.handle = instance; 808 809 if (flags & MGMT_ADV_FLAG_SEC_2M) { 810 cp.primary_phy = HCI_ADV_PHY_1M; 811 cp.secondary_phy = HCI_ADV_PHY_2M; 812 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 813 cp.primary_phy = HCI_ADV_PHY_CODED; 814 cp.secondary_phy = HCI_ADV_PHY_CODED; 815 } else { 816 /* In all other cases use 1M */ 817 cp.primary_phy = HCI_ADV_PHY_1M; 818 cp.secondary_phy = HCI_ADV_PHY_1M; 819 } 820 821 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 822 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 823 if (err) 824 return err; 825 826 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 827 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 828 bacmp(&random_addr, BDADDR_ANY)) { 829 /* Check if random address need to be updated */ 830 if (adv) { 831 if (!bacmp(&random_addr, &adv->random_addr)) 832 return 0; 833 } else { 834 if (!bacmp(&random_addr, &hdev->random_addr)) 835 return 0; 836 } 837 838 return hci_set_adv_set_random_addr_sync(hdev, instance, 839 &random_addr); 840 } 841 842 return 0; 843 } 844 845 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 846 { 847 struct { 848 struct hci_cp_le_set_ext_scan_rsp_data cp; 849 u8 data[HCI_MAX_EXT_AD_LENGTH]; 850 } pdu; 851 u8 len; 852 struct adv_info *adv = NULL; 853 int err; 854 855 memset(&pdu, 0, sizeof(pdu)); 856 857 if (instance) { 858 adv = hci_find_adv_instance(hdev, instance); 859 if (!adv || !adv->scan_rsp_changed) 860 return 0; 861 } 862 863 len = eir_create_scan_rsp(hdev, instance, pdu.data); 864 865 pdu.cp.handle = instance; 866 pdu.cp.length = len; 867 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 868 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 869 870 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 871 sizeof(pdu.cp) + len, &pdu.cp, 872 HCI_CMD_TIMEOUT); 873 if (err) 874 return err; 875 876 if (adv) { 877 adv->scan_rsp_changed = false; 878 } else { 879 memcpy(hdev->scan_rsp_data, pdu.data, len); 880 hdev->scan_rsp_data_len = len; 881 } 882 883 return 0; 884 } 885 886 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 887 { 888 struct hci_cp_le_set_scan_rsp_data cp; 889 u8 len; 890 891 memset(&cp, 0, sizeof(cp)); 892 893 len = eir_create_scan_rsp(hdev, instance, cp.data); 894 895 if (hdev->scan_rsp_data_len == len && 896 !memcmp(cp.data, hdev->scan_rsp_data, len)) 897 return 0; 898 899 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 900 hdev->scan_rsp_data_len = len; 901 902 cp.length = len; 903 904 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 905 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 906 } 907 908 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 909 { 910 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 911 return 0; 912 913 if (ext_adv_capable(hdev)) 914 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 915 916 return __hci_set_scan_rsp_data_sync(hdev, instance); 917 } 918 919 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 920 { 921 struct hci_cp_le_set_ext_adv_enable *cp; 922 struct hci_cp_ext_adv_set *set; 923 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 924 struct adv_info *adv; 925 926 if (instance > 0) { 927 adv = hci_find_adv_instance(hdev, instance); 928 if (!adv) 929 return -EINVAL; 930 /* If already enabled there is nothing to do */ 931 if (adv->enabled) 932 return 0; 933 } else { 934 adv = NULL; 935 } 936 937 cp = (void *)data; 938 set = (void *)cp->data; 939 940 memset(cp, 0, sizeof(*cp)); 941 942 cp->enable = 0x01; 943 cp->num_of_sets = 0x01; 944 945 memset(set, 0, sizeof(*set)); 946 947 set->handle = instance; 948 949 /* Set duration per instance since controller is responsible for 950 * scheduling it. 951 */ 952 if (adv && adv->timeout) { 953 u16 duration = adv->timeout * MSEC_PER_SEC; 954 955 /* Time = N * 10 ms */ 956 set->duration = cpu_to_le16(duration / 10); 957 } 958 959 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 960 sizeof(*cp) + 961 sizeof(*set) * cp->num_of_sets, 962 data, HCI_CMD_TIMEOUT); 963 } 964 965 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 966 { 967 int err; 968 969 err = hci_setup_ext_adv_instance_sync(hdev, instance); 970 if (err) 971 return err; 972 973 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 974 if (err) 975 return err; 976 977 return hci_enable_ext_advertising_sync(hdev, instance); 978 } 979 980 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 981 { 982 int err; 983 984 if (ext_adv_capable(hdev)) 985 return hci_start_ext_adv_sync(hdev, instance); 986 987 err = hci_update_adv_data_sync(hdev, instance); 988 if (err) 989 return err; 990 991 err = hci_update_scan_rsp_data_sync(hdev, instance); 992 if (err) 993 return err; 994 995 return hci_enable_advertising_sync(hdev); 996 } 997 998 int hci_enable_advertising_sync(struct hci_dev *hdev) 999 { 1000 struct adv_info *adv_instance; 1001 struct hci_cp_le_set_adv_param cp; 1002 u8 own_addr_type, enable = 0x01; 1003 bool connectable; 1004 u16 adv_min_interval, adv_max_interval; 1005 u32 flags; 1006 u8 status; 1007 1008 if (ext_adv_capable(hdev)) 1009 return hci_enable_ext_advertising_sync(hdev, 1010 hdev->cur_adv_instance); 1011 1012 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1013 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1014 1015 /* If the "connectable" instance flag was not set, then choose between 1016 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1017 */ 1018 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1019 mgmt_get_connectable(hdev); 1020 1021 if (!is_advertising_allowed(hdev, connectable)) 1022 return -EINVAL; 1023 1024 status = hci_disable_advertising_sync(hdev); 1025 if (status) 1026 return status; 1027 1028 /* Clear the HCI_LE_ADV bit temporarily so that the 1029 * hci_update_random_address knows that it's safe to go ahead 1030 * and write a new random address. The flag will be set back on 1031 * as soon as the SET_ADV_ENABLE HCI command completes. 1032 */ 1033 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1034 1035 /* Set require_privacy to true only when non-connectable 1036 * advertising is used. In that case it is fine to use a 1037 * non-resolvable private address. 1038 */ 1039 status = hci_update_random_address_sync(hdev, !connectable, 1040 adv_use_rpa(hdev, flags), 1041 &own_addr_type); 1042 if (status) 1043 return status; 1044 1045 memset(&cp, 0, sizeof(cp)); 1046 1047 if (adv_instance) { 1048 adv_min_interval = adv_instance->min_interval; 1049 adv_max_interval = adv_instance->max_interval; 1050 } else { 1051 adv_min_interval = hdev->le_adv_min_interval; 1052 adv_max_interval = hdev->le_adv_max_interval; 1053 } 1054 1055 if (connectable) { 1056 cp.type = LE_ADV_IND; 1057 } else { 1058 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1059 cp.type = LE_ADV_SCAN_IND; 1060 else 1061 cp.type = LE_ADV_NONCONN_IND; 1062 1063 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1064 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1065 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1066 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1067 } 1068 } 1069 1070 cp.min_interval = cpu_to_le16(adv_min_interval); 1071 cp.max_interval = cpu_to_le16(adv_max_interval); 1072 cp.own_address_type = own_addr_type; 1073 cp.channel_map = hdev->le_adv_channel_map; 1074 1075 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1076 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1077 if (status) 1078 return status; 1079 1080 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1081 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1082 } 1083 1084 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1085 { 1086 return hci_enable_advertising_sync(hdev); 1087 } 1088 1089 int hci_enable_advertising(struct hci_dev *hdev) 1090 { 1091 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1092 list_empty(&hdev->adv_instances)) 1093 return 0; 1094 1095 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1096 } 1097 1098 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1099 struct sock *sk) 1100 { 1101 int err; 1102 1103 if (!ext_adv_capable(hdev)) 1104 return 0; 1105 1106 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1107 if (err) 1108 return err; 1109 1110 /* If request specifies an instance that doesn't exist, fail */ 1111 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1112 return -EINVAL; 1113 1114 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1115 sizeof(instance), &instance, 0, 1116 HCI_CMD_TIMEOUT, sk); 1117 } 1118 1119 static void cancel_adv_timeout(struct hci_dev *hdev) 1120 { 1121 if (hdev->adv_instance_timeout) { 1122 hdev->adv_instance_timeout = 0; 1123 cancel_delayed_work(&hdev->adv_instance_expire); 1124 } 1125 } 1126 1127 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1128 { 1129 struct { 1130 struct hci_cp_le_set_ext_adv_data cp; 1131 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1132 } pdu; 1133 u8 len; 1134 struct adv_info *adv = NULL; 1135 int err; 1136 1137 memset(&pdu, 0, sizeof(pdu)); 1138 1139 if (instance) { 1140 adv = hci_find_adv_instance(hdev, instance); 1141 if (!adv || !adv->adv_data_changed) 1142 return 0; 1143 } 1144 1145 len = eir_create_adv_data(hdev, instance, pdu.data); 1146 1147 pdu.cp.length = len; 1148 pdu.cp.handle = instance; 1149 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1150 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1151 1152 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1153 sizeof(pdu.cp) + len, &pdu.cp, 1154 HCI_CMD_TIMEOUT); 1155 if (err) 1156 return err; 1157 1158 /* Update data if the command succeed */ 1159 if (adv) { 1160 adv->adv_data_changed = false; 1161 } else { 1162 memcpy(hdev->adv_data, pdu.data, len); 1163 hdev->adv_data_len = len; 1164 } 1165 1166 return 0; 1167 } 1168 1169 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1170 { 1171 struct hci_cp_le_set_adv_data cp; 1172 u8 len; 1173 1174 memset(&cp, 0, sizeof(cp)); 1175 1176 len = eir_create_adv_data(hdev, instance, cp.data); 1177 1178 /* There's nothing to do if the data hasn't changed */ 1179 if (hdev->adv_data_len == len && 1180 memcmp(cp.data, hdev->adv_data, len) == 0) 1181 return 0; 1182 1183 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1184 hdev->adv_data_len = len; 1185 1186 cp.length = len; 1187 1188 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1189 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1190 } 1191 1192 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1193 { 1194 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1195 return 0; 1196 1197 if (ext_adv_capable(hdev)) 1198 return hci_set_ext_adv_data_sync(hdev, instance); 1199 1200 return hci_set_adv_data_sync(hdev, instance); 1201 } 1202 1203 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1204 bool force) 1205 { 1206 struct adv_info *adv = NULL; 1207 u16 timeout; 1208 1209 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1210 return -EPERM; 1211 1212 if (hdev->adv_instance_timeout) 1213 return -EBUSY; 1214 1215 adv = hci_find_adv_instance(hdev, instance); 1216 if (!adv) 1217 return -ENOENT; 1218 1219 /* A zero timeout means unlimited advertising. As long as there is 1220 * only one instance, duration should be ignored. We still set a timeout 1221 * in case further instances are being added later on. 1222 * 1223 * If the remaining lifetime of the instance is more than the duration 1224 * then the timeout corresponds to the duration, otherwise it will be 1225 * reduced to the remaining instance lifetime. 1226 */ 1227 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1228 timeout = adv->duration; 1229 else 1230 timeout = adv->remaining_time; 1231 1232 /* The remaining time is being reduced unless the instance is being 1233 * advertised without time limit. 1234 */ 1235 if (adv->timeout) 1236 adv->remaining_time = adv->remaining_time - timeout; 1237 1238 /* Only use work for scheduling instances with legacy advertising */ 1239 if (!ext_adv_capable(hdev)) { 1240 hdev->adv_instance_timeout = timeout; 1241 queue_delayed_work(hdev->req_workqueue, 1242 &hdev->adv_instance_expire, 1243 msecs_to_jiffies(timeout * 1000)); 1244 } 1245 1246 /* If we're just re-scheduling the same instance again then do not 1247 * execute any HCI commands. This happens when a single instance is 1248 * being advertised. 1249 */ 1250 if (!force && hdev->cur_adv_instance == instance && 1251 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1252 return 0; 1253 1254 hdev->cur_adv_instance = instance; 1255 1256 return hci_start_adv_sync(hdev, instance); 1257 } 1258 1259 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1260 { 1261 int err; 1262 1263 if (!ext_adv_capable(hdev)) 1264 return 0; 1265 1266 /* Disable instance 0x00 to disable all instances */ 1267 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1268 if (err) 1269 return err; 1270 1271 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1272 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1273 } 1274 1275 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1276 { 1277 struct adv_info *adv, *n; 1278 1279 if (ext_adv_capable(hdev)) 1280 /* Remove all existing sets */ 1281 return hci_clear_adv_sets_sync(hdev, sk); 1282 1283 /* This is safe as long as there is no command send while the lock is 1284 * held. 1285 */ 1286 hci_dev_lock(hdev); 1287 1288 /* Cleanup non-ext instances */ 1289 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1290 u8 instance = adv->instance; 1291 int err; 1292 1293 if (!(force || adv->timeout)) 1294 continue; 1295 1296 err = hci_remove_adv_instance(hdev, instance); 1297 if (!err) 1298 mgmt_advertising_removed(sk, hdev, instance); 1299 } 1300 1301 hci_dev_unlock(hdev); 1302 1303 return 0; 1304 } 1305 1306 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1307 struct sock *sk) 1308 { 1309 int err; 1310 1311 /* If we use extended advertising, instance has to be removed first. */ 1312 if (ext_adv_capable(hdev)) 1313 return hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1314 1315 /* This is safe as long as there is no command send while the lock is 1316 * held. 1317 */ 1318 hci_dev_lock(hdev); 1319 1320 err = hci_remove_adv_instance(hdev, instance); 1321 if (!err) 1322 mgmt_advertising_removed(sk, hdev, instance); 1323 1324 hci_dev_unlock(hdev); 1325 1326 return err; 1327 } 1328 1329 /* For a single instance: 1330 * - force == true: The instance will be removed even when its remaining 1331 * lifetime is not zero. 1332 * - force == false: the instance will be deactivated but kept stored unless 1333 * the remaining lifetime is zero. 1334 * 1335 * For instance == 0x00: 1336 * - force == true: All instances will be removed regardless of their timeout 1337 * setting. 1338 * - force == false: Only instances that have a timeout will be removed. 1339 */ 1340 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1341 u8 instance, bool force) 1342 { 1343 struct adv_info *next = NULL; 1344 int err; 1345 1346 /* Cancel any timeout concerning the removed instance(s). */ 1347 if (!instance || hdev->cur_adv_instance == instance) 1348 cancel_adv_timeout(hdev); 1349 1350 /* Get the next instance to advertise BEFORE we remove 1351 * the current one. This can be the same instance again 1352 * if there is only one instance. 1353 */ 1354 if (hdev->cur_adv_instance == instance) 1355 next = hci_get_next_instance(hdev, instance); 1356 1357 if (!instance) { 1358 err = hci_clear_adv_sync(hdev, sk, force); 1359 if (err) 1360 return err; 1361 } else { 1362 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1363 1364 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1365 /* Don't advertise a removed instance. */ 1366 if (next && next->instance == instance) 1367 next = NULL; 1368 1369 err = hci_remove_adv_sync(hdev, instance, sk); 1370 if (err) 1371 return err; 1372 } 1373 } 1374 1375 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1376 return 0; 1377 1378 if (next && !ext_adv_capable(hdev)) 1379 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1380 1381 return 0; 1382 } 1383 1384 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1385 { 1386 struct hci_cp_read_rssi cp; 1387 1388 cp.handle = handle; 1389 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1390 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1391 } 1392 1393 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1394 { 1395 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1396 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1397 } 1398 1399 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1400 { 1401 struct hci_cp_read_tx_power cp; 1402 1403 cp.handle = handle; 1404 cp.type = type; 1405 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1406 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1407 } 1408 1409 int hci_disable_advertising_sync(struct hci_dev *hdev) 1410 { 1411 u8 enable = 0x00; 1412 1413 /* If controller is not advertising we are done. */ 1414 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1415 return 0; 1416 1417 if (ext_adv_capable(hdev)) 1418 return hci_disable_ext_adv_instance_sync(hdev, 0x00); 1419 1420 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1421 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1422 } 1423 1424 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1425 u8 filter_dup) 1426 { 1427 struct hci_cp_le_set_ext_scan_enable cp; 1428 1429 memset(&cp, 0, sizeof(cp)); 1430 cp.enable = val; 1431 cp.filter_dup = filter_dup; 1432 1433 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1434 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1435 } 1436 1437 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1438 u8 filter_dup) 1439 { 1440 struct hci_cp_le_set_scan_enable cp; 1441 1442 if (use_ext_scan(hdev)) 1443 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1444 1445 memset(&cp, 0, sizeof(cp)); 1446 cp.enable = val; 1447 cp.filter_dup = filter_dup; 1448 1449 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 1450 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1451 } 1452 1453 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 1454 { 1455 if (!use_ll_privacy(hdev)) 1456 return 0; 1457 1458 /* If controller is not/already resolving we are done. */ 1459 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1460 return 0; 1461 1462 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1463 sizeof(val), &val, HCI_CMD_TIMEOUT); 1464 } 1465 1466 static int hci_scan_disable_sync(struct hci_dev *hdev) 1467 { 1468 int err; 1469 1470 /* If controller is not scanning we are done. */ 1471 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1472 return 0; 1473 1474 if (hdev->scanning_paused) { 1475 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 1476 return 0; 1477 } 1478 1479 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 1480 if (err) { 1481 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 1482 return err; 1483 } 1484 1485 return err; 1486 } 1487 1488 static bool scan_use_rpa(struct hci_dev *hdev) 1489 { 1490 return hci_dev_test_flag(hdev, HCI_PRIVACY); 1491 } 1492 1493 static void hci_start_interleave_scan(struct hci_dev *hdev) 1494 { 1495 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 1496 queue_delayed_work(hdev->req_workqueue, 1497 &hdev->interleave_scan, 0); 1498 } 1499 1500 static bool is_interleave_scanning(struct hci_dev *hdev) 1501 { 1502 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 1503 } 1504 1505 static void cancel_interleave_scan(struct hci_dev *hdev) 1506 { 1507 bt_dev_dbg(hdev, "cancelling interleave scan"); 1508 1509 cancel_delayed_work_sync(&hdev->interleave_scan); 1510 1511 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 1512 } 1513 1514 /* Return true if interleave_scan wasn't started until exiting this function, 1515 * otherwise, return false 1516 */ 1517 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 1518 { 1519 /* Do interleaved scan only if all of the following are true: 1520 * - There is at least one ADV monitor 1521 * - At least one pending LE connection or one device to be scanned for 1522 * - Monitor offloading is not supported 1523 * If so, we should alternate between allowlist scan and one without 1524 * any filters to save power. 1525 */ 1526 bool use_interleaving = hci_is_adv_monitoring(hdev) && 1527 !(list_empty(&hdev->pend_le_conns) && 1528 list_empty(&hdev->pend_le_reports)) && 1529 hci_get_adv_monitor_offload_ext(hdev) == 1530 HCI_ADV_MONITOR_EXT_NONE; 1531 bool is_interleaving = is_interleave_scanning(hdev); 1532 1533 if (use_interleaving && !is_interleaving) { 1534 hci_start_interleave_scan(hdev); 1535 bt_dev_dbg(hdev, "starting interleave scan"); 1536 return true; 1537 } 1538 1539 if (!use_interleaving && is_interleaving) 1540 cancel_interleave_scan(hdev); 1541 1542 return false; 1543 } 1544 1545 /* Removes connection to resolve list if needed.*/ 1546 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 1547 bdaddr_t *bdaddr, u8 bdaddr_type) 1548 { 1549 struct hci_cp_le_del_from_resolv_list cp; 1550 struct bdaddr_list_with_irk *entry; 1551 1552 if (!use_ll_privacy(hdev)) 1553 return 0; 1554 1555 /* Check if the IRK has been programmed */ 1556 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 1557 bdaddr_type); 1558 if (!entry) 1559 return 0; 1560 1561 cp.bdaddr_type = bdaddr_type; 1562 bacpy(&cp.bdaddr, bdaddr); 1563 1564 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 1565 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1566 } 1567 1568 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 1569 bdaddr_t *bdaddr, u8 bdaddr_type) 1570 { 1571 struct hci_cp_le_del_from_accept_list cp; 1572 int err; 1573 1574 /* Check if device is on accept list before removing it */ 1575 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 1576 return 0; 1577 1578 cp.bdaddr_type = bdaddr_type; 1579 bacpy(&cp.bdaddr, bdaddr); 1580 1581 /* Ignore errors when removing from resolving list as that is likely 1582 * that the device was never added. 1583 */ 1584 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1585 1586 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 1587 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1588 if (err) { 1589 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 1590 return err; 1591 } 1592 1593 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 1594 cp.bdaddr_type); 1595 1596 return 0; 1597 } 1598 1599 /* Adds connection to resolve list if needed. 1600 * Setting params to NULL programs local hdev->irk 1601 */ 1602 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 1603 struct hci_conn_params *params) 1604 { 1605 struct hci_cp_le_add_to_resolv_list cp; 1606 struct smp_irk *irk; 1607 struct bdaddr_list_with_irk *entry; 1608 1609 if (!use_ll_privacy(hdev)) 1610 return 0; 1611 1612 /* Attempt to program local identity address, type and irk if params is 1613 * NULL. 1614 */ 1615 if (!params) { 1616 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1617 return 0; 1618 1619 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 1620 memcpy(cp.peer_irk, hdev->irk, 16); 1621 goto done; 1622 } 1623 1624 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1625 if (!irk) 1626 return 0; 1627 1628 /* Check if the IK has _not_ been programmed yet. */ 1629 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 1630 ¶ms->addr, 1631 params->addr_type); 1632 if (entry) 1633 return 0; 1634 1635 cp.bdaddr_type = params->addr_type; 1636 bacpy(&cp.bdaddr, ¶ms->addr); 1637 memcpy(cp.peer_irk, irk->val, 16); 1638 1639 /* Default privacy mode is always Network */ 1640 params->privacy_mode = HCI_NETWORK_PRIVACY; 1641 1642 done: 1643 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 1644 memcpy(cp.local_irk, hdev->irk, 16); 1645 else 1646 memset(cp.local_irk, 0, 16); 1647 1648 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 1649 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1650 } 1651 1652 /* Set Device Privacy Mode. */ 1653 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 1654 struct hci_conn_params *params) 1655 { 1656 struct hci_cp_le_set_privacy_mode cp; 1657 struct smp_irk *irk; 1658 1659 /* If device privacy mode has already been set there is nothing to do */ 1660 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 1661 return 0; 1662 1663 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 1664 * indicates that LL Privacy has been enabled and 1665 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 1666 */ 1667 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 1668 return 0; 1669 1670 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1671 if (!irk) 1672 return 0; 1673 1674 memset(&cp, 0, sizeof(cp)); 1675 cp.bdaddr_type = irk->addr_type; 1676 bacpy(&cp.bdaddr, &irk->bdaddr); 1677 cp.mode = HCI_DEVICE_PRIVACY; 1678 1679 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 1680 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1681 } 1682 1683 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 1684 * this attempts to program the device in the resolving list as well and 1685 * properly set the privacy mode. 1686 */ 1687 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 1688 struct hci_conn_params *params, 1689 u8 *num_entries) 1690 { 1691 struct hci_cp_le_add_to_accept_list cp; 1692 int err; 1693 1694 /* During suspend, only wakeable devices can be in acceptlist */ 1695 if (hdev->suspended && 1696 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 1697 return 0; 1698 1699 /* Select filter policy to accept all advertising */ 1700 if (*num_entries >= hdev->le_accept_list_size) 1701 return -ENOSPC; 1702 1703 /* Accept list can not be used with RPAs */ 1704 if (!use_ll_privacy(hdev) && 1705 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 1706 return -EINVAL; 1707 1708 /* Attempt to program the device in the resolving list first to avoid 1709 * having to rollback in case it fails since the resolving list is 1710 * dynamic it can probably be smaller than the accept list. 1711 */ 1712 err = hci_le_add_resolve_list_sync(hdev, params); 1713 if (err) { 1714 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 1715 return err; 1716 } 1717 1718 /* Set Privacy Mode */ 1719 err = hci_le_set_privacy_mode_sync(hdev, params); 1720 if (err) { 1721 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 1722 return err; 1723 } 1724 1725 /* Check if already in accept list */ 1726 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 1727 params->addr_type)) 1728 return 0; 1729 1730 *num_entries += 1; 1731 cp.bdaddr_type = params->addr_type; 1732 bacpy(&cp.bdaddr, ¶ms->addr); 1733 1734 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 1735 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1736 if (err) { 1737 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 1738 /* Rollback the device from the resolving list */ 1739 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1740 return err; 1741 } 1742 1743 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 1744 cp.bdaddr_type); 1745 1746 return 0; 1747 } 1748 1749 /* This function disables/pause all advertising instances */ 1750 static int hci_pause_advertising_sync(struct hci_dev *hdev) 1751 { 1752 int err; 1753 int old_state; 1754 1755 /* If already been paused there is nothing to do. */ 1756 if (hdev->advertising_paused) 1757 return 0; 1758 1759 bt_dev_dbg(hdev, "Pausing directed advertising"); 1760 1761 /* Stop directed advertising */ 1762 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 1763 if (old_state) { 1764 /* When discoverable timeout triggers, then just make sure 1765 * the limited discoverable flag is cleared. Even in the case 1766 * of a timeout triggered from general discoverable, it is 1767 * safe to unconditionally clear the flag. 1768 */ 1769 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1770 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1771 hdev->discov_timeout = 0; 1772 } 1773 1774 bt_dev_dbg(hdev, "Pausing advertising instances"); 1775 1776 /* Call to disable any advertisements active on the controller. 1777 * This will succeed even if no advertisements are configured. 1778 */ 1779 err = hci_disable_advertising_sync(hdev); 1780 if (err) 1781 return err; 1782 1783 /* If we are using software rotation, pause the loop */ 1784 if (!ext_adv_capable(hdev)) 1785 cancel_adv_timeout(hdev); 1786 1787 hdev->advertising_paused = true; 1788 hdev->advertising_old_state = old_state; 1789 1790 return 0; 1791 } 1792 1793 /* This function enables all user advertising instances */ 1794 static int hci_resume_advertising_sync(struct hci_dev *hdev) 1795 { 1796 struct adv_info *adv, *tmp; 1797 int err; 1798 1799 /* If advertising has not been paused there is nothing to do. */ 1800 if (!hdev->advertising_paused) 1801 return 0; 1802 1803 /* Resume directed advertising */ 1804 hdev->advertising_paused = false; 1805 if (hdev->advertising_old_state) { 1806 hci_dev_set_flag(hdev, HCI_ADVERTISING); 1807 hdev->advertising_old_state = 0; 1808 } 1809 1810 bt_dev_dbg(hdev, "Resuming advertising instances"); 1811 1812 if (ext_adv_capable(hdev)) { 1813 /* Call for each tracked instance to be re-enabled */ 1814 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 1815 err = hci_enable_ext_advertising_sync(hdev, 1816 adv->instance); 1817 if (!err) 1818 continue; 1819 1820 /* If the instance cannot be resumed remove it */ 1821 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 1822 NULL); 1823 } 1824 } else { 1825 /* Schedule for most recent instance to be restarted and begin 1826 * the software rotation loop 1827 */ 1828 err = hci_schedule_adv_instance_sync(hdev, 1829 hdev->cur_adv_instance, 1830 true); 1831 } 1832 1833 hdev->advertising_paused = false; 1834 1835 return err; 1836 } 1837 1838 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 1839 bool extended, struct sock *sk) 1840 { 1841 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 1842 HCI_OP_READ_LOCAL_OOB_DATA; 1843 1844 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1845 } 1846 1847 /* Device must not be scanning when updating the accept list. 1848 * 1849 * Update is done using the following sequence: 1850 * 1851 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 1852 * Remove Devices From Accept List -> 1853 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 1854 * Add Devices to Accept List -> 1855 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 1856 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 1857 * Enable Scanning 1858 * 1859 * In case of failure advertising shall be restored to its original state and 1860 * return would disable accept list since either accept or resolving list could 1861 * not be programmed. 1862 * 1863 */ 1864 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 1865 { 1866 struct hci_conn_params *params; 1867 struct bdaddr_list *b, *t; 1868 u8 num_entries = 0; 1869 bool pend_conn, pend_report; 1870 u8 filter_policy; 1871 int err; 1872 1873 /* Pause advertising if resolving list can be used as controllers are 1874 * cannot accept resolving list modifications while advertising. 1875 */ 1876 if (use_ll_privacy(hdev)) { 1877 err = hci_pause_advertising_sync(hdev); 1878 if (err) { 1879 bt_dev_err(hdev, "pause advertising failed: %d", err); 1880 return 0x00; 1881 } 1882 } 1883 1884 /* Disable address resolution while reprogramming accept list since 1885 * devices that do have an IRK will be programmed in the resolving list 1886 * when LL Privacy is enabled. 1887 */ 1888 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 1889 if (err) { 1890 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 1891 goto done; 1892 } 1893 1894 /* Go through the current accept list programmed into the 1895 * controller one by one and check if that address is connected or is 1896 * still in the list of pending connections or list of devices to 1897 * report. If not present in either list, then remove it from 1898 * the controller. 1899 */ 1900 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 1901 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 1902 continue; 1903 1904 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 1905 &b->bdaddr, 1906 b->bdaddr_type); 1907 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 1908 &b->bdaddr, 1909 b->bdaddr_type); 1910 1911 /* If the device is not likely to connect or report, 1912 * remove it from the acceptlist. 1913 */ 1914 if (!pend_conn && !pend_report) { 1915 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 1916 b->bdaddr_type); 1917 continue; 1918 } 1919 1920 num_entries++; 1921 } 1922 1923 /* Since all no longer valid accept list entries have been 1924 * removed, walk through the list of pending connections 1925 * and ensure that any new device gets programmed into 1926 * the controller. 1927 * 1928 * If the list of the devices is larger than the list of 1929 * available accept list entries in the controller, then 1930 * just abort and return filer policy value to not use the 1931 * accept list. 1932 */ 1933 list_for_each_entry(params, &hdev->pend_le_conns, action) { 1934 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 1935 if (err) 1936 goto done; 1937 } 1938 1939 /* After adding all new pending connections, walk through 1940 * the list of pending reports and also add these to the 1941 * accept list if there is still space. Abort if space runs out. 1942 */ 1943 list_for_each_entry(params, &hdev->pend_le_reports, action) { 1944 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 1945 if (err) 1946 goto done; 1947 } 1948 1949 /* Use the allowlist unless the following conditions are all true: 1950 * - We are not currently suspending 1951 * - There are 1 or more ADV monitors registered and it's not offloaded 1952 * - Interleaved scanning is not currently using the allowlist 1953 */ 1954 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 1955 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 1956 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 1957 err = -EINVAL; 1958 1959 done: 1960 filter_policy = err ? 0x00 : 0x01; 1961 1962 /* Enable address resolution when LL Privacy is enabled. */ 1963 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 1964 if (err) 1965 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 1966 1967 /* Resume advertising if it was paused */ 1968 if (use_ll_privacy(hdev)) 1969 hci_resume_advertising_sync(hdev); 1970 1971 /* Select filter policy to use accept list */ 1972 return filter_policy; 1973 } 1974 1975 /* Returns true if an le connection is in the scanning state */ 1976 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 1977 { 1978 struct hci_conn_hash *h = &hdev->conn_hash; 1979 struct hci_conn *c; 1980 1981 rcu_read_lock(); 1982 1983 list_for_each_entry_rcu(c, &h->list, list) { 1984 if (c->type == LE_LINK && c->state == BT_CONNECT && 1985 test_bit(HCI_CONN_SCANNING, &c->flags)) { 1986 rcu_read_unlock(); 1987 return true; 1988 } 1989 } 1990 1991 rcu_read_unlock(); 1992 1993 return false; 1994 } 1995 1996 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 1997 u16 interval, u16 window, 1998 u8 own_addr_type, u8 filter_policy) 1999 { 2000 struct hci_cp_le_set_ext_scan_params *cp; 2001 struct hci_cp_le_scan_phy_params *phy; 2002 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2003 u8 num_phy = 0; 2004 2005 cp = (void *)data; 2006 phy = (void *)cp->data; 2007 2008 memset(data, 0, sizeof(data)); 2009 2010 cp->own_addr_type = own_addr_type; 2011 cp->filter_policy = filter_policy; 2012 2013 if (scan_1m(hdev) || scan_2m(hdev)) { 2014 cp->scanning_phys |= LE_SCAN_PHY_1M; 2015 2016 phy->type = type; 2017 phy->interval = cpu_to_le16(interval); 2018 phy->window = cpu_to_le16(window); 2019 2020 num_phy++; 2021 phy++; 2022 } 2023 2024 if (scan_coded(hdev)) { 2025 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2026 2027 phy->type = type; 2028 phy->interval = cpu_to_le16(interval); 2029 phy->window = cpu_to_le16(window); 2030 2031 num_phy++; 2032 phy++; 2033 } 2034 2035 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2036 sizeof(*cp) + sizeof(*phy) * num_phy, 2037 data, HCI_CMD_TIMEOUT); 2038 } 2039 2040 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2041 u16 interval, u16 window, 2042 u8 own_addr_type, u8 filter_policy) 2043 { 2044 struct hci_cp_le_set_scan_param cp; 2045 2046 if (use_ext_scan(hdev)) 2047 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2048 window, own_addr_type, 2049 filter_policy); 2050 2051 memset(&cp, 0, sizeof(cp)); 2052 cp.type = type; 2053 cp.interval = cpu_to_le16(interval); 2054 cp.window = cpu_to_le16(window); 2055 cp.own_address_type = own_addr_type; 2056 cp.filter_policy = filter_policy; 2057 2058 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2059 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2060 } 2061 2062 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2063 u16 window, u8 own_addr_type, u8 filter_policy, 2064 u8 filter_dup) 2065 { 2066 int err; 2067 2068 if (hdev->scanning_paused) { 2069 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2070 return 0; 2071 } 2072 2073 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2074 own_addr_type, filter_policy); 2075 if (err) 2076 return err; 2077 2078 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2079 } 2080 2081 static int hci_passive_scan_sync(struct hci_dev *hdev) 2082 { 2083 u8 own_addr_type; 2084 u8 filter_policy; 2085 u16 window, interval; 2086 int err; 2087 2088 if (hdev->scanning_paused) { 2089 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2090 return 0; 2091 } 2092 2093 err = hci_scan_disable_sync(hdev); 2094 if (err) { 2095 bt_dev_err(hdev, "disable scanning failed: %d", err); 2096 return err; 2097 } 2098 2099 /* Set require_privacy to false since no SCAN_REQ are send 2100 * during passive scanning. Not using an non-resolvable address 2101 * here is important so that peer devices using direct 2102 * advertising with our address will be correctly reported 2103 * by the controller. 2104 */ 2105 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2106 &own_addr_type)) 2107 return 0; 2108 2109 if (hdev->enable_advmon_interleave_scan && 2110 hci_update_interleaved_scan_sync(hdev)) 2111 return 0; 2112 2113 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2114 2115 /* Adding or removing entries from the accept list must 2116 * happen before enabling scanning. The controller does 2117 * not allow accept list modification while scanning. 2118 */ 2119 filter_policy = hci_update_accept_list_sync(hdev); 2120 2121 /* When the controller is using random resolvable addresses and 2122 * with that having LE privacy enabled, then controllers with 2123 * Extended Scanner Filter Policies support can now enable support 2124 * for handling directed advertising. 2125 * 2126 * So instead of using filter polices 0x00 (no acceptlist) 2127 * and 0x01 (acceptlist enabled) use the new filter policies 2128 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2129 */ 2130 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2131 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2132 filter_policy |= 0x02; 2133 2134 if (hdev->suspended) { 2135 window = hdev->le_scan_window_suspend; 2136 interval = hdev->le_scan_int_suspend; 2137 } else if (hci_is_le_conn_scanning(hdev)) { 2138 window = hdev->le_scan_window_connect; 2139 interval = hdev->le_scan_int_connect; 2140 } else if (hci_is_adv_monitoring(hdev)) { 2141 window = hdev->le_scan_window_adv_monitor; 2142 interval = hdev->le_scan_int_adv_monitor; 2143 } else { 2144 window = hdev->le_scan_window; 2145 interval = hdev->le_scan_interval; 2146 } 2147 2148 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2149 2150 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2151 own_addr_type, filter_policy, 2152 LE_SCAN_FILTER_DUP_ENABLE); 2153 } 2154 2155 /* This function controls the passive scanning based on hdev->pend_le_conns 2156 * list. If there are pending LE connection we start the background scanning, 2157 * otherwise we stop it in the following sequence: 2158 * 2159 * If there are devices to scan: 2160 * 2161 * Disable Scanning -> Update Accept List -> 2162 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2163 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2164 * Enable Scanning 2165 * 2166 * Otherwise: 2167 * 2168 * Disable Scanning 2169 */ 2170 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2171 { 2172 int err; 2173 2174 if (!test_bit(HCI_UP, &hdev->flags) || 2175 test_bit(HCI_INIT, &hdev->flags) || 2176 hci_dev_test_flag(hdev, HCI_SETUP) || 2177 hci_dev_test_flag(hdev, HCI_CONFIG) || 2178 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2179 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2180 return 0; 2181 2182 /* No point in doing scanning if LE support hasn't been enabled */ 2183 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2184 return 0; 2185 2186 /* If discovery is active don't interfere with it */ 2187 if (hdev->discovery.state != DISCOVERY_STOPPED) 2188 return 0; 2189 2190 /* Reset RSSI and UUID filters when starting background scanning 2191 * since these filters are meant for service discovery only. 2192 * 2193 * The Start Discovery and Start Service Discovery operations 2194 * ensure to set proper values for RSSI threshold and UUID 2195 * filter list. So it is safe to just reset them here. 2196 */ 2197 hci_discovery_filter_clear(hdev); 2198 2199 bt_dev_dbg(hdev, "ADV monitoring is %s", 2200 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2201 2202 if (list_empty(&hdev->pend_le_conns) && 2203 list_empty(&hdev->pend_le_reports) && 2204 !hci_is_adv_monitoring(hdev)) { 2205 /* If there is no pending LE connections or devices 2206 * to be scanned for or no ADV monitors, we should stop the 2207 * background scanning. 2208 */ 2209 2210 bt_dev_dbg(hdev, "stopping background scanning"); 2211 2212 err = hci_scan_disable_sync(hdev); 2213 if (err) 2214 bt_dev_err(hdev, "stop background scanning failed: %d", 2215 err); 2216 } else { 2217 /* If there is at least one pending LE connection, we should 2218 * keep the background scan running. 2219 */ 2220 2221 /* If controller is connecting, we should not start scanning 2222 * since some controllers are not able to scan and connect at 2223 * the same time. 2224 */ 2225 if (hci_lookup_le_connect(hdev)) 2226 return 0; 2227 2228 bt_dev_dbg(hdev, "start background scanning"); 2229 2230 err = hci_passive_scan_sync(hdev); 2231 if (err) 2232 bt_dev_err(hdev, "start background scanning failed: %d", 2233 err); 2234 } 2235 2236 return err; 2237 } 2238 2239 static int update_scan_sync(struct hci_dev *hdev, void *data) 2240 { 2241 return hci_update_scan_sync(hdev); 2242 } 2243 2244 int hci_update_scan(struct hci_dev *hdev) 2245 { 2246 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2247 } 2248 2249 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2250 { 2251 return hci_update_passive_scan_sync(hdev); 2252 } 2253 2254 int hci_update_passive_scan(struct hci_dev *hdev) 2255 { 2256 /* Only queue if it would have any effect */ 2257 if (!test_bit(HCI_UP, &hdev->flags) || 2258 test_bit(HCI_INIT, &hdev->flags) || 2259 hci_dev_test_flag(hdev, HCI_SETUP) || 2260 hci_dev_test_flag(hdev, HCI_CONFIG) || 2261 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2262 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2263 return 0; 2264 2265 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2266 } 2267 2268 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2269 { 2270 int err; 2271 2272 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2273 return 0; 2274 2275 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2276 sizeof(val), &val, HCI_CMD_TIMEOUT); 2277 2278 if (!err) { 2279 if (val) { 2280 hdev->features[1][0] |= LMP_HOST_SC; 2281 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2282 } else { 2283 hdev->features[1][0] &= ~LMP_HOST_SC; 2284 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2285 } 2286 } 2287 2288 return err; 2289 } 2290 2291 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2292 { 2293 int err; 2294 2295 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2296 lmp_host_ssp_capable(hdev)) 2297 return 0; 2298 2299 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2300 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2301 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2302 } 2303 2304 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2305 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2306 if (err) 2307 return err; 2308 2309 return hci_write_sc_support_sync(hdev, 0x01); 2310 } 2311 2312 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2313 { 2314 struct hci_cp_write_le_host_supported cp; 2315 2316 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2317 !lmp_bredr_capable(hdev)) 2318 return 0; 2319 2320 /* Check first if we already have the right host state 2321 * (host features set) 2322 */ 2323 if (le == lmp_host_le_capable(hdev) && 2324 simul == lmp_host_le_br_capable(hdev)) 2325 return 0; 2326 2327 memset(&cp, 0, sizeof(cp)); 2328 2329 cp.le = le; 2330 cp.simul = simul; 2331 2332 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2333 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2334 } 2335 2336 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2337 { 2338 struct adv_info *adv, *tmp; 2339 int err; 2340 2341 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2342 return 0; 2343 2344 /* If RPA Resolution has not been enable yet it means the 2345 * resolving list is empty and we should attempt to program the 2346 * local IRK in order to support using own_addr_type 2347 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2348 */ 2349 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2350 hci_le_add_resolve_list_sync(hdev, NULL); 2351 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2352 } 2353 2354 /* Make sure the controller has a good default for 2355 * advertising data. This also applies to the case 2356 * where BR/EDR was toggled during the AUTO_OFF phase. 2357 */ 2358 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2359 list_empty(&hdev->adv_instances)) { 2360 if (ext_adv_capable(hdev)) { 2361 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2362 if (!err) 2363 hci_update_scan_rsp_data_sync(hdev, 0x00); 2364 } else { 2365 err = hci_update_adv_data_sync(hdev, 0x00); 2366 if (!err) 2367 hci_update_scan_rsp_data_sync(hdev, 0x00); 2368 } 2369 2370 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2371 hci_enable_advertising_sync(hdev); 2372 } 2373 2374 /* Call for each tracked instance to be scheduled */ 2375 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2376 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2377 2378 return 0; 2379 } 2380 2381 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2382 { 2383 u8 link_sec; 2384 2385 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2386 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 2387 return 0; 2388 2389 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 2390 sizeof(link_sec), &link_sec, 2391 HCI_CMD_TIMEOUT); 2392 } 2393 2394 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 2395 { 2396 struct hci_cp_write_page_scan_activity cp; 2397 u8 type; 2398 int err = 0; 2399 2400 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2401 return 0; 2402 2403 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 2404 return 0; 2405 2406 memset(&cp, 0, sizeof(cp)); 2407 2408 if (enable) { 2409 type = PAGE_SCAN_TYPE_INTERLACED; 2410 2411 /* 160 msec page scan interval */ 2412 cp.interval = cpu_to_le16(0x0100); 2413 } else { 2414 type = hdev->def_page_scan_type; 2415 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 2416 } 2417 2418 cp.window = cpu_to_le16(hdev->def_page_scan_window); 2419 2420 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 2421 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 2422 err = __hci_cmd_sync_status(hdev, 2423 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 2424 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2425 if (err) 2426 return err; 2427 } 2428 2429 if (hdev->page_scan_type != type) 2430 err = __hci_cmd_sync_status(hdev, 2431 HCI_OP_WRITE_PAGE_SCAN_TYPE, 2432 sizeof(type), &type, 2433 HCI_CMD_TIMEOUT); 2434 2435 return err; 2436 } 2437 2438 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 2439 { 2440 struct bdaddr_list *b; 2441 2442 list_for_each_entry(b, &hdev->accept_list, list) { 2443 struct hci_conn *conn; 2444 2445 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 2446 if (!conn) 2447 return true; 2448 2449 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 2450 return true; 2451 } 2452 2453 return false; 2454 } 2455 2456 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 2457 { 2458 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 2459 sizeof(val), &val, 2460 HCI_CMD_TIMEOUT); 2461 } 2462 2463 int hci_update_scan_sync(struct hci_dev *hdev) 2464 { 2465 u8 scan; 2466 2467 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2468 return 0; 2469 2470 if (!hdev_is_powered(hdev)) 2471 return 0; 2472 2473 if (mgmt_powering_down(hdev)) 2474 return 0; 2475 2476 if (hdev->scanning_paused) 2477 return 0; 2478 2479 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 2480 disconnected_accept_list_entries(hdev)) 2481 scan = SCAN_PAGE; 2482 else 2483 scan = SCAN_DISABLED; 2484 2485 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2486 scan |= SCAN_INQUIRY; 2487 2488 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 2489 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 2490 return 0; 2491 2492 return hci_write_scan_enable_sync(hdev, scan); 2493 } 2494 2495 int hci_update_name_sync(struct hci_dev *hdev) 2496 { 2497 struct hci_cp_write_local_name cp; 2498 2499 memset(&cp, 0, sizeof(cp)); 2500 2501 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 2502 2503 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 2504 sizeof(cp), &cp, 2505 HCI_CMD_TIMEOUT); 2506 } 2507 2508 /* This function perform powered update HCI command sequence after the HCI init 2509 * sequence which end up resetting all states, the sequence is as follows: 2510 * 2511 * HCI_SSP_ENABLED(Enable SSP) 2512 * HCI_LE_ENABLED(Enable LE) 2513 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 2514 * Update adv data) 2515 * Enable Authentication 2516 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 2517 * Set Name -> Set EIR) 2518 */ 2519 int hci_powered_update_sync(struct hci_dev *hdev) 2520 { 2521 int err; 2522 2523 /* Register the available SMP channels (BR/EDR and LE) only when 2524 * successfully powering on the controller. This late 2525 * registration is required so that LE SMP can clearly decide if 2526 * the public address or static address is used. 2527 */ 2528 smp_register(hdev); 2529 2530 err = hci_write_ssp_mode_sync(hdev, 0x01); 2531 if (err) 2532 return err; 2533 2534 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 2535 if (err) 2536 return err; 2537 2538 err = hci_powered_update_adv_sync(hdev); 2539 if (err) 2540 return err; 2541 2542 err = hci_write_auth_enable_sync(hdev); 2543 if (err) 2544 return err; 2545 2546 if (lmp_bredr_capable(hdev)) { 2547 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 2548 hci_write_fast_connectable_sync(hdev, true); 2549 else 2550 hci_write_fast_connectable_sync(hdev, false); 2551 hci_update_scan_sync(hdev); 2552 hci_update_class_sync(hdev); 2553 hci_update_name_sync(hdev); 2554 hci_update_eir_sync(hdev); 2555 } 2556 2557 return 0; 2558 } 2559 2560 /** 2561 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 2562 * (BD_ADDR) for a HCI device from 2563 * a firmware node property. 2564 * @hdev: The HCI device 2565 * 2566 * Search the firmware node for 'local-bd-address'. 2567 * 2568 * All-zero BD addresses are rejected, because those could be properties 2569 * that exist in the firmware tables, but were not updated by the firmware. For 2570 * example, the DTS could define 'local-bd-address', with zero BD addresses. 2571 */ 2572 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 2573 { 2574 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 2575 bdaddr_t ba; 2576 int ret; 2577 2578 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 2579 (u8 *)&ba, sizeof(ba)); 2580 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 2581 return; 2582 2583 bacpy(&hdev->public_addr, &ba); 2584 } 2585 2586 struct hci_init_stage { 2587 int (*func)(struct hci_dev *hdev); 2588 }; 2589 2590 /* Run init stage NULL terminated function table */ 2591 static int hci_init_stage_sync(struct hci_dev *hdev, 2592 const struct hci_init_stage *stage) 2593 { 2594 size_t i; 2595 2596 for (i = 0; stage[i].func; i++) { 2597 int err; 2598 2599 err = stage[i].func(hdev); 2600 if (err) 2601 return err; 2602 } 2603 2604 return 0; 2605 } 2606 2607 /* Read Local Version */ 2608 static int hci_read_local_version_sync(struct hci_dev *hdev) 2609 { 2610 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 2611 0, NULL, HCI_CMD_TIMEOUT); 2612 } 2613 2614 /* Read BD Address */ 2615 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 2616 { 2617 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 2618 0, NULL, HCI_CMD_TIMEOUT); 2619 } 2620 2621 #define HCI_INIT(_func) \ 2622 { \ 2623 .func = _func, \ 2624 } 2625 2626 static const struct hci_init_stage hci_init0[] = { 2627 /* HCI_OP_READ_LOCAL_VERSION */ 2628 HCI_INIT(hci_read_local_version_sync), 2629 /* HCI_OP_READ_BD_ADDR */ 2630 HCI_INIT(hci_read_bd_addr_sync), 2631 {} 2632 }; 2633 2634 int hci_reset_sync(struct hci_dev *hdev) 2635 { 2636 int err; 2637 2638 set_bit(HCI_RESET, &hdev->flags); 2639 2640 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 2641 HCI_CMD_TIMEOUT); 2642 if (err) 2643 return err; 2644 2645 return 0; 2646 } 2647 2648 static int hci_init0_sync(struct hci_dev *hdev) 2649 { 2650 int err; 2651 2652 bt_dev_dbg(hdev, ""); 2653 2654 /* Reset */ 2655 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2656 err = hci_reset_sync(hdev); 2657 if (err) 2658 return err; 2659 } 2660 2661 return hci_init_stage_sync(hdev, hci_init0); 2662 } 2663 2664 static int hci_unconf_init_sync(struct hci_dev *hdev) 2665 { 2666 int err; 2667 2668 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2669 return 0; 2670 2671 err = hci_init0_sync(hdev); 2672 if (err < 0) 2673 return err; 2674 2675 if (hci_dev_test_flag(hdev, HCI_SETUP)) 2676 hci_debugfs_create_basic(hdev); 2677 2678 return 0; 2679 } 2680 2681 /* Read Local Supported Features. */ 2682 static int hci_read_local_features_sync(struct hci_dev *hdev) 2683 { 2684 /* Not all AMP controllers support this command */ 2685 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 2686 return 0; 2687 2688 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 2689 0, NULL, HCI_CMD_TIMEOUT); 2690 } 2691 2692 /* BR Controller init stage 1 command sequence */ 2693 static const struct hci_init_stage br_init1[] = { 2694 /* HCI_OP_READ_LOCAL_FEATURES */ 2695 HCI_INIT(hci_read_local_features_sync), 2696 /* HCI_OP_READ_LOCAL_VERSION */ 2697 HCI_INIT(hci_read_local_version_sync), 2698 /* HCI_OP_READ_BD_ADDR */ 2699 HCI_INIT(hci_read_bd_addr_sync), 2700 {} 2701 }; 2702 2703 /* Read Local Commands */ 2704 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 2705 { 2706 /* All Bluetooth 1.2 and later controllers should support the 2707 * HCI command for reading the local supported commands. 2708 * 2709 * Unfortunately some controllers indicate Bluetooth 1.2 support, 2710 * but do not have support for this command. If that is the case, 2711 * the driver can quirk the behavior and skip reading the local 2712 * supported commands. 2713 */ 2714 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 2715 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 2716 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 2717 0, NULL, HCI_CMD_TIMEOUT); 2718 2719 return 0; 2720 } 2721 2722 /* Read Local AMP Info */ 2723 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 2724 { 2725 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 2726 0, NULL, HCI_CMD_TIMEOUT); 2727 } 2728 2729 /* Read Data Blk size */ 2730 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 2731 { 2732 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 2733 0, NULL, HCI_CMD_TIMEOUT); 2734 } 2735 2736 /* Read Flow Control Mode */ 2737 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 2738 { 2739 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 2740 0, NULL, HCI_CMD_TIMEOUT); 2741 } 2742 2743 /* Read Location Data */ 2744 static int hci_read_location_data_sync(struct hci_dev *hdev) 2745 { 2746 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 2747 0, NULL, HCI_CMD_TIMEOUT); 2748 } 2749 2750 /* AMP Controller init stage 1 command sequence */ 2751 static const struct hci_init_stage amp_init1[] = { 2752 /* HCI_OP_READ_LOCAL_VERSION */ 2753 HCI_INIT(hci_read_local_version_sync), 2754 /* HCI_OP_READ_LOCAL_COMMANDS */ 2755 HCI_INIT(hci_read_local_cmds_sync), 2756 /* HCI_OP_READ_LOCAL_AMP_INFO */ 2757 HCI_INIT(hci_read_local_amp_info_sync), 2758 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 2759 HCI_INIT(hci_read_data_block_size_sync), 2760 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 2761 HCI_INIT(hci_read_flow_control_mode_sync), 2762 /* HCI_OP_READ_LOCATION_DATA */ 2763 HCI_INIT(hci_read_location_data_sync), 2764 }; 2765 2766 static int hci_init1_sync(struct hci_dev *hdev) 2767 { 2768 int err; 2769 2770 bt_dev_dbg(hdev, ""); 2771 2772 /* Reset */ 2773 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2774 err = hci_reset_sync(hdev); 2775 if (err) 2776 return err; 2777 } 2778 2779 switch (hdev->dev_type) { 2780 case HCI_PRIMARY: 2781 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 2782 return hci_init_stage_sync(hdev, br_init1); 2783 case HCI_AMP: 2784 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 2785 return hci_init_stage_sync(hdev, amp_init1); 2786 default: 2787 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 2788 break; 2789 } 2790 2791 return 0; 2792 } 2793 2794 /* AMP Controller init stage 2 command sequence */ 2795 static const struct hci_init_stage amp_init2[] = { 2796 /* HCI_OP_READ_LOCAL_FEATURES */ 2797 HCI_INIT(hci_read_local_features_sync), 2798 }; 2799 2800 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 2801 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 2802 { 2803 /* Use Read LE Buffer Size V2 if supported */ 2804 if (hdev->commands[41] & 0x20) 2805 return __hci_cmd_sync_status(hdev, 2806 HCI_OP_LE_READ_BUFFER_SIZE_V2, 2807 0, NULL, HCI_CMD_TIMEOUT); 2808 2809 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 2810 0, NULL, HCI_CMD_TIMEOUT); 2811 } 2812 2813 /* Read Class of Device */ 2814 static int hci_read_dev_class_sync(struct hci_dev *hdev) 2815 { 2816 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 2817 0, NULL, HCI_CMD_TIMEOUT); 2818 } 2819 2820 /* Read Local Name */ 2821 static int hci_read_local_name_sync(struct hci_dev *hdev) 2822 { 2823 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 2824 0, NULL, HCI_CMD_TIMEOUT); 2825 } 2826 2827 /* Read Voice Setting */ 2828 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 2829 { 2830 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 2831 0, NULL, HCI_CMD_TIMEOUT); 2832 } 2833 2834 /* Read Number of Supported IAC */ 2835 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 2836 { 2837 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 2838 0, NULL, HCI_CMD_TIMEOUT); 2839 } 2840 2841 /* Read Current IAC LAP */ 2842 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 2843 { 2844 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 2845 0, NULL, HCI_CMD_TIMEOUT); 2846 } 2847 2848 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 2849 u8 cond_type, bdaddr_t *bdaddr, 2850 u8 auto_accept) 2851 { 2852 struct hci_cp_set_event_filter cp; 2853 2854 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2855 return 0; 2856 2857 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 2858 return 0; 2859 2860 memset(&cp, 0, sizeof(cp)); 2861 cp.flt_type = flt_type; 2862 2863 if (flt_type != HCI_FLT_CLEAR_ALL) { 2864 cp.cond_type = cond_type; 2865 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 2866 cp.addr_conn_flt.auto_accept = auto_accept; 2867 } 2868 2869 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 2870 flt_type == HCI_FLT_CLEAR_ALL ? 2871 sizeof(cp.flt_type) : sizeof(cp), &cp, 2872 HCI_CMD_TIMEOUT); 2873 } 2874 2875 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 2876 { 2877 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 2878 return 0; 2879 2880 /* In theory the state machine should not reach here unless 2881 * a hci_set_event_filter_sync() call succeeds, but we do 2882 * the check both for parity and as a future reminder. 2883 */ 2884 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 2885 return 0; 2886 2887 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 2888 BDADDR_ANY, 0x00); 2889 } 2890 2891 /* Connection accept timeout ~20 secs */ 2892 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 2893 { 2894 __le16 param = cpu_to_le16(0x7d00); 2895 2896 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2897 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 2898 } 2899 2900 /* BR Controller init stage 2 command sequence */ 2901 static const struct hci_init_stage br_init2[] = { 2902 /* HCI_OP_READ_BUFFER_SIZE */ 2903 HCI_INIT(hci_read_buffer_size_sync), 2904 /* HCI_OP_READ_CLASS_OF_DEV */ 2905 HCI_INIT(hci_read_dev_class_sync), 2906 /* HCI_OP_READ_LOCAL_NAME */ 2907 HCI_INIT(hci_read_local_name_sync), 2908 /* HCI_OP_READ_VOICE_SETTING */ 2909 HCI_INIT(hci_read_voice_setting_sync), 2910 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 2911 HCI_INIT(hci_read_num_supported_iac_sync), 2912 /* HCI_OP_READ_CURRENT_IAC_LAP */ 2913 HCI_INIT(hci_read_current_iac_lap_sync), 2914 /* HCI_OP_SET_EVENT_FLT */ 2915 HCI_INIT(hci_clear_event_filter_sync), 2916 /* HCI_OP_WRITE_CA_TIMEOUT */ 2917 HCI_INIT(hci_write_ca_timeout_sync), 2918 {} 2919 }; 2920 2921 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 2922 { 2923 u8 mode = 0x01; 2924 2925 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 2926 return 0; 2927 2928 /* When SSP is available, then the host features page 2929 * should also be available as well. However some 2930 * controllers list the max_page as 0 as long as SSP 2931 * has not been enabled. To achieve proper debugging 2932 * output, force the minimum max_page to 1 at least. 2933 */ 2934 hdev->max_page = 0x01; 2935 2936 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2937 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2938 } 2939 2940 static int hci_write_eir_sync(struct hci_dev *hdev) 2941 { 2942 struct hci_cp_write_eir cp; 2943 2944 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 2945 return 0; 2946 2947 memset(hdev->eir, 0, sizeof(hdev->eir)); 2948 memset(&cp, 0, sizeof(cp)); 2949 2950 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 2951 HCI_CMD_TIMEOUT); 2952 } 2953 2954 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 2955 { 2956 u8 mode; 2957 2958 if (!lmp_inq_rssi_capable(hdev) && 2959 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 2960 return 0; 2961 2962 /* If Extended Inquiry Result events are supported, then 2963 * they are clearly preferred over Inquiry Result with RSSI 2964 * events. 2965 */ 2966 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 2967 2968 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 2969 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2970 } 2971 2972 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 2973 { 2974 if (!lmp_inq_tx_pwr_capable(hdev)) 2975 return 0; 2976 2977 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 2978 0, NULL, HCI_CMD_TIMEOUT); 2979 } 2980 2981 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 2982 { 2983 struct hci_cp_read_local_ext_features cp; 2984 2985 if (!lmp_ext_feat_capable(hdev)) 2986 return 0; 2987 2988 memset(&cp, 0, sizeof(cp)); 2989 cp.page = page; 2990 2991 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 2992 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2993 } 2994 2995 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 2996 { 2997 return hci_read_local_ext_features_sync(hdev, 0x01); 2998 } 2999 3000 /* HCI Controller init stage 2 command sequence */ 3001 static const struct hci_init_stage hci_init2[] = { 3002 /* HCI_OP_READ_LOCAL_COMMANDS */ 3003 HCI_INIT(hci_read_local_cmds_sync), 3004 /* HCI_OP_WRITE_SSP_MODE */ 3005 HCI_INIT(hci_write_ssp_mode_1_sync), 3006 /* HCI_OP_WRITE_EIR */ 3007 HCI_INIT(hci_write_eir_sync), 3008 /* HCI_OP_WRITE_INQUIRY_MODE */ 3009 HCI_INIT(hci_write_inquiry_mode_sync), 3010 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3011 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3012 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3013 HCI_INIT(hci_read_local_ext_features_1_sync), 3014 /* HCI_OP_WRITE_AUTH_ENABLE */ 3015 HCI_INIT(hci_write_auth_enable_sync), 3016 {} 3017 }; 3018 3019 /* Read LE Buffer Size */ 3020 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3021 { 3022 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3023 0, NULL, HCI_CMD_TIMEOUT); 3024 } 3025 3026 /* Read LE Local Supported Features */ 3027 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3028 { 3029 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3030 0, NULL, HCI_CMD_TIMEOUT); 3031 } 3032 3033 /* Read LE Supported States */ 3034 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3035 { 3036 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3037 0, NULL, HCI_CMD_TIMEOUT); 3038 } 3039 3040 /* LE Controller init stage 2 command sequence */ 3041 static const struct hci_init_stage le_init2[] = { 3042 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3043 HCI_INIT(hci_le_read_buffer_size_sync), 3044 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3045 HCI_INIT(hci_le_read_local_features_sync), 3046 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3047 HCI_INIT(hci_le_read_supported_states_sync), 3048 {} 3049 }; 3050 3051 static int hci_init2_sync(struct hci_dev *hdev) 3052 { 3053 int err; 3054 3055 bt_dev_dbg(hdev, ""); 3056 3057 if (hdev->dev_type == HCI_AMP) 3058 return hci_init_stage_sync(hdev, amp_init2); 3059 3060 err = hci_init_stage_sync(hdev, hci_init2); 3061 if (err) 3062 return err; 3063 3064 if (lmp_bredr_capable(hdev)) { 3065 err = hci_init_stage_sync(hdev, br_init2); 3066 if (err) 3067 return err; 3068 } else { 3069 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3070 } 3071 3072 if (lmp_le_capable(hdev)) { 3073 err = hci_init_stage_sync(hdev, le_init2); 3074 if (err) 3075 return err; 3076 /* LE-only controllers have LE implicitly enabled */ 3077 if (!lmp_bredr_capable(hdev)) 3078 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3079 } 3080 3081 return 0; 3082 } 3083 3084 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3085 { 3086 /* The second byte is 0xff instead of 0x9f (two reserved bits 3087 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3088 * command otherwise. 3089 */ 3090 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3091 3092 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3093 * any event mask for pre 1.2 devices. 3094 */ 3095 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3096 return 0; 3097 3098 if (lmp_bredr_capable(hdev)) { 3099 events[4] |= 0x01; /* Flow Specification Complete */ 3100 3101 /* Don't set Disconnect Complete when suspended as that 3102 * would wakeup the host when disconnecting due to 3103 * suspend. 3104 */ 3105 if (hdev->suspended) 3106 events[0] &= 0xef; 3107 } else { 3108 /* Use a different default for LE-only devices */ 3109 memset(events, 0, sizeof(events)); 3110 events[1] |= 0x20; /* Command Complete */ 3111 events[1] |= 0x40; /* Command Status */ 3112 events[1] |= 0x80; /* Hardware Error */ 3113 3114 /* If the controller supports the Disconnect command, enable 3115 * the corresponding event. In addition enable packet flow 3116 * control related events. 3117 */ 3118 if (hdev->commands[0] & 0x20) { 3119 /* Don't set Disconnect Complete when suspended as that 3120 * would wakeup the host when disconnecting due to 3121 * suspend. 3122 */ 3123 if (!hdev->suspended) 3124 events[0] |= 0x10; /* Disconnection Complete */ 3125 events[2] |= 0x04; /* Number of Completed Packets */ 3126 events[3] |= 0x02; /* Data Buffer Overflow */ 3127 } 3128 3129 /* If the controller supports the Read Remote Version 3130 * Information command, enable the corresponding event. 3131 */ 3132 if (hdev->commands[2] & 0x80) 3133 events[1] |= 0x08; /* Read Remote Version Information 3134 * Complete 3135 */ 3136 3137 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3138 events[0] |= 0x80; /* Encryption Change */ 3139 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3140 } 3141 } 3142 3143 if (lmp_inq_rssi_capable(hdev) || 3144 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3145 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3146 3147 if (lmp_ext_feat_capable(hdev)) 3148 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3149 3150 if (lmp_esco_capable(hdev)) { 3151 events[5] |= 0x08; /* Synchronous Connection Complete */ 3152 events[5] |= 0x10; /* Synchronous Connection Changed */ 3153 } 3154 3155 if (lmp_sniffsubr_capable(hdev)) 3156 events[5] |= 0x20; /* Sniff Subrating */ 3157 3158 if (lmp_pause_enc_capable(hdev)) 3159 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3160 3161 if (lmp_ext_inq_capable(hdev)) 3162 events[5] |= 0x40; /* Extended Inquiry Result */ 3163 3164 if (lmp_no_flush_capable(hdev)) 3165 events[7] |= 0x01; /* Enhanced Flush Complete */ 3166 3167 if (lmp_lsto_capable(hdev)) 3168 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3169 3170 if (lmp_ssp_capable(hdev)) { 3171 events[6] |= 0x01; /* IO Capability Request */ 3172 events[6] |= 0x02; /* IO Capability Response */ 3173 events[6] |= 0x04; /* User Confirmation Request */ 3174 events[6] |= 0x08; /* User Passkey Request */ 3175 events[6] |= 0x10; /* Remote OOB Data Request */ 3176 events[6] |= 0x20; /* Simple Pairing Complete */ 3177 events[7] |= 0x04; /* User Passkey Notification */ 3178 events[7] |= 0x08; /* Keypress Notification */ 3179 events[7] |= 0x10; /* Remote Host Supported 3180 * Features Notification 3181 */ 3182 } 3183 3184 if (lmp_le_capable(hdev)) 3185 events[7] |= 0x20; /* LE Meta-Event */ 3186 3187 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3188 sizeof(events), events, HCI_CMD_TIMEOUT); 3189 } 3190 3191 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3192 { 3193 struct hci_cp_read_stored_link_key cp; 3194 3195 if (!(hdev->commands[6] & 0x20) || 3196 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3197 return 0; 3198 3199 memset(&cp, 0, sizeof(cp)); 3200 bacpy(&cp.bdaddr, BDADDR_ANY); 3201 cp.read_all = 0x01; 3202 3203 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3204 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3205 } 3206 3207 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3208 { 3209 struct hci_cp_write_def_link_policy cp; 3210 u16 link_policy = 0; 3211 3212 if (!(hdev->commands[5] & 0x10)) 3213 return 0; 3214 3215 memset(&cp, 0, sizeof(cp)); 3216 3217 if (lmp_rswitch_capable(hdev)) 3218 link_policy |= HCI_LP_RSWITCH; 3219 if (lmp_hold_capable(hdev)) 3220 link_policy |= HCI_LP_HOLD; 3221 if (lmp_sniff_capable(hdev)) 3222 link_policy |= HCI_LP_SNIFF; 3223 if (lmp_park_capable(hdev)) 3224 link_policy |= HCI_LP_PARK; 3225 3226 cp.policy = cpu_to_le16(link_policy); 3227 3228 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3229 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3230 } 3231 3232 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3233 { 3234 if (!(hdev->commands[8] & 0x01)) 3235 return 0; 3236 3237 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3238 0, NULL, HCI_CMD_TIMEOUT); 3239 } 3240 3241 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3242 { 3243 if (!(hdev->commands[18] & 0x04) || 3244 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING)) 3245 return 0; 3246 3247 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3248 0, NULL, HCI_CMD_TIMEOUT); 3249 } 3250 3251 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3252 { 3253 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3254 * support the Read Page Scan Type command. Check support for 3255 * this command in the bit mask of supported commands. 3256 */ 3257 if (!(hdev->commands[13] & 0x01)) 3258 return 0; 3259 3260 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3261 0, NULL, HCI_CMD_TIMEOUT); 3262 } 3263 3264 /* Read features beyond page 1 if available */ 3265 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3266 { 3267 u8 page; 3268 int err; 3269 3270 if (!lmp_ext_feat_capable(hdev)) 3271 return 0; 3272 3273 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3274 page++) { 3275 err = hci_read_local_ext_features_sync(hdev, page); 3276 if (err) 3277 return err; 3278 } 3279 3280 return 0; 3281 } 3282 3283 /* HCI Controller init stage 3 command sequence */ 3284 static const struct hci_init_stage hci_init3[] = { 3285 /* HCI_OP_SET_EVENT_MASK */ 3286 HCI_INIT(hci_set_event_mask_sync), 3287 /* HCI_OP_READ_STORED_LINK_KEY */ 3288 HCI_INIT(hci_read_stored_link_key_sync), 3289 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3290 HCI_INIT(hci_setup_link_policy_sync), 3291 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3292 HCI_INIT(hci_read_page_scan_activity_sync), 3293 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3294 HCI_INIT(hci_read_def_err_data_reporting_sync), 3295 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3296 HCI_INIT(hci_read_page_scan_type_sync), 3297 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3298 HCI_INIT(hci_read_local_ext_features_all_sync), 3299 {} 3300 }; 3301 3302 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3303 { 3304 u8 events[8]; 3305 3306 if (!lmp_le_capable(hdev)) 3307 return 0; 3308 3309 memset(events, 0, sizeof(events)); 3310 3311 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3312 events[0] |= 0x10; /* LE Long Term Key Request */ 3313 3314 /* If controller supports the Connection Parameters Request 3315 * Link Layer Procedure, enable the corresponding event. 3316 */ 3317 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3318 /* LE Remote Connection Parameter Request */ 3319 events[0] |= 0x20; 3320 3321 /* If the controller supports the Data Length Extension 3322 * feature, enable the corresponding event. 3323 */ 3324 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3325 events[0] |= 0x40; /* LE Data Length Change */ 3326 3327 /* If the controller supports LL Privacy feature or LE Extended Adv, 3328 * enable the corresponding event. 3329 */ 3330 if (use_enhanced_conn_complete(hdev)) 3331 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3332 3333 /* If the controller supports Extended Scanner Filter 3334 * Policies, enable the corresponding event. 3335 */ 3336 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3337 events[1] |= 0x04; /* LE Direct Advertising Report */ 3338 3339 /* If the controller supports Channel Selection Algorithm #2 3340 * feature, enable the corresponding event. 3341 */ 3342 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3343 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3344 3345 /* If the controller supports the LE Set Scan Enable command, 3346 * enable the corresponding advertising report event. 3347 */ 3348 if (hdev->commands[26] & 0x08) 3349 events[0] |= 0x02; /* LE Advertising Report */ 3350 3351 /* If the controller supports the LE Create Connection 3352 * command, enable the corresponding event. 3353 */ 3354 if (hdev->commands[26] & 0x10) 3355 events[0] |= 0x01; /* LE Connection Complete */ 3356 3357 /* If the controller supports the LE Connection Update 3358 * command, enable the corresponding event. 3359 */ 3360 if (hdev->commands[27] & 0x04) 3361 events[0] |= 0x04; /* LE Connection Update Complete */ 3362 3363 /* If the controller supports the LE Read Remote Used Features 3364 * command, enable the corresponding event. 3365 */ 3366 if (hdev->commands[27] & 0x20) 3367 /* LE Read Remote Used Features Complete */ 3368 events[0] |= 0x08; 3369 3370 /* If the controller supports the LE Read Local P-256 3371 * Public Key command, enable the corresponding event. 3372 */ 3373 if (hdev->commands[34] & 0x02) 3374 /* LE Read Local P-256 Public Key Complete */ 3375 events[0] |= 0x80; 3376 3377 /* If the controller supports the LE Generate DHKey 3378 * command, enable the corresponding event. 3379 */ 3380 if (hdev->commands[34] & 0x04) 3381 events[1] |= 0x01; /* LE Generate DHKey Complete */ 3382 3383 /* If the controller supports the LE Set Default PHY or 3384 * LE Set PHY commands, enable the corresponding event. 3385 */ 3386 if (hdev->commands[35] & (0x20 | 0x40)) 3387 events[1] |= 0x08; /* LE PHY Update Complete */ 3388 3389 /* If the controller supports LE Set Extended Scan Parameters 3390 * and LE Set Extended Scan Enable commands, enable the 3391 * corresponding event. 3392 */ 3393 if (use_ext_scan(hdev)) 3394 events[1] |= 0x10; /* LE Extended Advertising Report */ 3395 3396 /* If the controller supports the LE Extended Advertising 3397 * command, enable the corresponding event. 3398 */ 3399 if (ext_adv_capable(hdev)) 3400 events[2] |= 0x02; /* LE Advertising Set Terminated */ 3401 3402 if (cis_capable(hdev)) { 3403 events[3] |= 0x01; /* LE CIS Established */ 3404 if (cis_peripheral_capable(hdev)) 3405 events[3] |= 0x02; /* LE CIS Request */ 3406 } 3407 3408 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 3409 sizeof(events), events, HCI_CMD_TIMEOUT); 3410 } 3411 3412 /* Read LE Advertising Channel TX Power */ 3413 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 3414 { 3415 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 3416 /* HCI TS spec forbids mixing of legacy and extended 3417 * advertising commands wherein READ_ADV_TX_POWER is 3418 * also included. So do not call it if extended adv 3419 * is supported otherwise controller will return 3420 * COMMAND_DISALLOWED for extended commands. 3421 */ 3422 return __hci_cmd_sync_status(hdev, 3423 HCI_OP_LE_READ_ADV_TX_POWER, 3424 0, NULL, HCI_CMD_TIMEOUT); 3425 } 3426 3427 return 0; 3428 } 3429 3430 /* Read LE Min/Max Tx Power*/ 3431 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 3432 { 3433 if (!(hdev->commands[38] & 0x80) || 3434 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 3435 return 0; 3436 3437 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 3438 0, NULL, HCI_CMD_TIMEOUT); 3439 } 3440 3441 /* Read LE Accept List Size */ 3442 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 3443 { 3444 if (!(hdev->commands[26] & 0x40)) 3445 return 0; 3446 3447 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 3448 0, NULL, HCI_CMD_TIMEOUT); 3449 } 3450 3451 /* Clear LE Accept List */ 3452 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 3453 { 3454 if (!(hdev->commands[26] & 0x80)) 3455 return 0; 3456 3457 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 3458 HCI_CMD_TIMEOUT); 3459 } 3460 3461 /* Read LE Resolving List Size */ 3462 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 3463 { 3464 if (!(hdev->commands[34] & 0x40)) 3465 return 0; 3466 3467 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 3468 0, NULL, HCI_CMD_TIMEOUT); 3469 } 3470 3471 /* Clear LE Resolving List */ 3472 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 3473 { 3474 if (!(hdev->commands[34] & 0x20)) 3475 return 0; 3476 3477 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 3478 HCI_CMD_TIMEOUT); 3479 } 3480 3481 /* Set RPA timeout */ 3482 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 3483 { 3484 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 3485 3486 if (!(hdev->commands[35] & 0x04)) 3487 return 0; 3488 3489 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 3490 sizeof(timeout), &timeout, 3491 HCI_CMD_TIMEOUT); 3492 } 3493 3494 /* Read LE Maximum Data Length */ 3495 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 3496 { 3497 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3498 return 0; 3499 3500 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 3501 HCI_CMD_TIMEOUT); 3502 } 3503 3504 /* Read LE Suggested Default Data Length */ 3505 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 3506 { 3507 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3508 return 0; 3509 3510 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 3511 HCI_CMD_TIMEOUT); 3512 } 3513 3514 /* Read LE Number of Supported Advertising Sets */ 3515 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 3516 { 3517 if (!ext_adv_capable(hdev)) 3518 return 0; 3519 3520 return __hci_cmd_sync_status(hdev, 3521 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 3522 0, NULL, HCI_CMD_TIMEOUT); 3523 } 3524 3525 /* Write LE Host Supported */ 3526 static int hci_set_le_support_sync(struct hci_dev *hdev) 3527 { 3528 struct hci_cp_write_le_host_supported cp; 3529 3530 /* LE-only devices do not support explicit enablement */ 3531 if (!lmp_bredr_capable(hdev)) 3532 return 0; 3533 3534 memset(&cp, 0, sizeof(cp)); 3535 3536 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 3537 cp.le = 0x01; 3538 cp.simul = 0x00; 3539 } 3540 3541 if (cp.le == lmp_host_le_capable(hdev)) 3542 return 0; 3543 3544 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3545 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3546 } 3547 3548 /* LE Set Host Feature */ 3549 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 3550 { 3551 struct hci_cp_le_set_host_feature cp; 3552 3553 if (!iso_capable(hdev)) 3554 return 0; 3555 3556 memset(&cp, 0, sizeof(cp)); 3557 3558 /* Isochronous Channels (Host Support) */ 3559 cp.bit_number = 32; 3560 cp.bit_value = 1; 3561 3562 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 3563 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3564 } 3565 3566 /* LE Controller init stage 3 command sequence */ 3567 static const struct hci_init_stage le_init3[] = { 3568 /* HCI_OP_LE_SET_EVENT_MASK */ 3569 HCI_INIT(hci_le_set_event_mask_sync), 3570 /* HCI_OP_LE_READ_ADV_TX_POWER */ 3571 HCI_INIT(hci_le_read_adv_tx_power_sync), 3572 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 3573 HCI_INIT(hci_le_read_tx_power_sync), 3574 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 3575 HCI_INIT(hci_le_read_accept_list_size_sync), 3576 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 3577 HCI_INIT(hci_le_clear_accept_list_sync), 3578 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 3579 HCI_INIT(hci_le_read_resolv_list_size_sync), 3580 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 3581 HCI_INIT(hci_le_clear_resolv_list_sync), 3582 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 3583 HCI_INIT(hci_le_set_rpa_timeout_sync), 3584 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 3585 HCI_INIT(hci_le_read_max_data_len_sync), 3586 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 3587 HCI_INIT(hci_le_read_def_data_len_sync), 3588 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 3589 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 3590 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 3591 HCI_INIT(hci_set_le_support_sync), 3592 /* HCI_OP_LE_SET_HOST_FEATURE */ 3593 HCI_INIT(hci_le_set_host_feature_sync), 3594 {} 3595 }; 3596 3597 static int hci_init3_sync(struct hci_dev *hdev) 3598 { 3599 int err; 3600 3601 bt_dev_dbg(hdev, ""); 3602 3603 err = hci_init_stage_sync(hdev, hci_init3); 3604 if (err) 3605 return err; 3606 3607 if (lmp_le_capable(hdev)) 3608 return hci_init_stage_sync(hdev, le_init3); 3609 3610 return 0; 3611 } 3612 3613 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 3614 { 3615 struct hci_cp_delete_stored_link_key cp; 3616 3617 /* Some Broadcom based Bluetooth controllers do not support the 3618 * Delete Stored Link Key command. They are clearly indicating its 3619 * absence in the bit mask of supported commands. 3620 * 3621 * Check the supported commands and only if the command is marked 3622 * as supported send it. If not supported assume that the controller 3623 * does not have actual support for stored link keys which makes this 3624 * command redundant anyway. 3625 * 3626 * Some controllers indicate that they support handling deleting 3627 * stored link keys, but they don't. The quirk lets a driver 3628 * just disable this command. 3629 */ 3630 if (!(hdev->commands[6] & 0x80) || 3631 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3632 return 0; 3633 3634 memset(&cp, 0, sizeof(cp)); 3635 bacpy(&cp.bdaddr, BDADDR_ANY); 3636 cp.delete_all = 0x01; 3637 3638 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 3639 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3640 } 3641 3642 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 3643 { 3644 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 3645 bool changed = false; 3646 3647 /* Set event mask page 2 if the HCI command for it is supported */ 3648 if (!(hdev->commands[22] & 0x04)) 3649 return 0; 3650 3651 /* If Connectionless Peripheral Broadcast central role is supported 3652 * enable all necessary events for it. 3653 */ 3654 if (lmp_cpb_central_capable(hdev)) { 3655 events[1] |= 0x40; /* Triggered Clock Capture */ 3656 events[1] |= 0x80; /* Synchronization Train Complete */ 3657 events[2] |= 0x08; /* Truncated Page Complete */ 3658 events[2] |= 0x20; /* CPB Channel Map Change */ 3659 changed = true; 3660 } 3661 3662 /* If Connectionless Peripheral Broadcast peripheral role is supported 3663 * enable all necessary events for it. 3664 */ 3665 if (lmp_cpb_peripheral_capable(hdev)) { 3666 events[2] |= 0x01; /* Synchronization Train Received */ 3667 events[2] |= 0x02; /* CPB Receive */ 3668 events[2] |= 0x04; /* CPB Timeout */ 3669 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 3670 changed = true; 3671 } 3672 3673 /* Enable Authenticated Payload Timeout Expired event if supported */ 3674 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 3675 events[2] |= 0x80; 3676 changed = true; 3677 } 3678 3679 /* Some Broadcom based controllers indicate support for Set Event 3680 * Mask Page 2 command, but then actually do not support it. Since 3681 * the default value is all bits set to zero, the command is only 3682 * required if the event mask has to be changed. In case no change 3683 * to the event mask is needed, skip this command. 3684 */ 3685 if (!changed) 3686 return 0; 3687 3688 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 3689 sizeof(events), events, HCI_CMD_TIMEOUT); 3690 } 3691 3692 /* Read local codec list if the HCI command is supported */ 3693 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 3694 { 3695 if (!(hdev->commands[29] & 0x20)) 3696 return 0; 3697 3698 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL, 3699 HCI_CMD_TIMEOUT); 3700 } 3701 3702 /* Read local pairing options if the HCI command is supported */ 3703 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 3704 { 3705 if (!(hdev->commands[41] & 0x08)) 3706 return 0; 3707 3708 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 3709 0, NULL, HCI_CMD_TIMEOUT); 3710 } 3711 3712 /* Get MWS transport configuration if the HCI command is supported */ 3713 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 3714 { 3715 if (!(hdev->commands[30] & 0x08)) 3716 return 0; 3717 3718 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 3719 0, NULL, HCI_CMD_TIMEOUT); 3720 } 3721 3722 /* Check for Synchronization Train support */ 3723 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 3724 { 3725 if (!lmp_sync_train_capable(hdev)) 3726 return 0; 3727 3728 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 3729 0, NULL, HCI_CMD_TIMEOUT); 3730 } 3731 3732 /* Enable Secure Connections if supported and configured */ 3733 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 3734 { 3735 u8 support = 0x01; 3736 3737 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3738 !bredr_sc_enabled(hdev)) 3739 return 0; 3740 3741 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3742 sizeof(support), &support, 3743 HCI_CMD_TIMEOUT); 3744 } 3745 3746 /* Set erroneous data reporting if supported to the wideband speech 3747 * setting value 3748 */ 3749 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 3750 { 3751 struct hci_cp_write_def_err_data_reporting cp; 3752 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 3753 3754 if (!(hdev->commands[18] & 0x08) || 3755 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING)) 3756 return 0; 3757 3758 if (enabled == hdev->err_data_reporting) 3759 return 0; 3760 3761 memset(&cp, 0, sizeof(cp)); 3762 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 3763 ERR_DATA_REPORTING_DISABLED; 3764 3765 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 3766 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3767 } 3768 3769 static const struct hci_init_stage hci_init4[] = { 3770 /* HCI_OP_DELETE_STORED_LINK_KEY */ 3771 HCI_INIT(hci_delete_stored_link_key_sync), 3772 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 3773 HCI_INIT(hci_set_event_mask_page_2_sync), 3774 /* HCI_OP_READ_LOCAL_CODECS */ 3775 HCI_INIT(hci_read_local_codecs_sync), 3776 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 3777 HCI_INIT(hci_read_local_pairing_opts_sync), 3778 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 3779 HCI_INIT(hci_get_mws_transport_config_sync), 3780 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 3781 HCI_INIT(hci_read_sync_train_params_sync), 3782 /* HCI_OP_WRITE_SC_SUPPORT */ 3783 HCI_INIT(hci_write_sc_support_1_sync), 3784 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 3785 HCI_INIT(hci_set_err_data_report_sync), 3786 {} 3787 }; 3788 3789 /* Set Suggested Default Data Length to maximum if supported */ 3790 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 3791 { 3792 struct hci_cp_le_write_def_data_len cp; 3793 3794 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3795 return 0; 3796 3797 memset(&cp, 0, sizeof(cp)); 3798 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 3799 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 3800 3801 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 3802 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3803 } 3804 3805 /* Set Default PHY parameters if command is supported */ 3806 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 3807 { 3808 struct hci_cp_le_set_default_phy cp; 3809 3810 if (!(hdev->commands[35] & 0x20)) 3811 return 0; 3812 3813 memset(&cp, 0, sizeof(cp)); 3814 cp.all_phys = 0x00; 3815 cp.tx_phys = hdev->le_tx_def_phys; 3816 cp.rx_phys = hdev->le_rx_def_phys; 3817 3818 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 3819 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3820 } 3821 3822 static const struct hci_init_stage le_init4[] = { 3823 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 3824 HCI_INIT(hci_le_set_write_def_data_len_sync), 3825 /* HCI_OP_LE_SET_DEFAULT_PHY */ 3826 HCI_INIT(hci_le_set_default_phy_sync), 3827 {} 3828 }; 3829 3830 static int hci_init4_sync(struct hci_dev *hdev) 3831 { 3832 int err; 3833 3834 bt_dev_dbg(hdev, ""); 3835 3836 err = hci_init_stage_sync(hdev, hci_init4); 3837 if (err) 3838 return err; 3839 3840 if (lmp_le_capable(hdev)) 3841 return hci_init_stage_sync(hdev, le_init4); 3842 3843 return 0; 3844 } 3845 3846 static int hci_init_sync(struct hci_dev *hdev) 3847 { 3848 int err; 3849 3850 err = hci_init1_sync(hdev); 3851 if (err < 0) 3852 return err; 3853 3854 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3855 hci_debugfs_create_basic(hdev); 3856 3857 err = hci_init2_sync(hdev); 3858 if (err < 0) 3859 return err; 3860 3861 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 3862 * BR/EDR/LE type controllers. AMP controllers only need the 3863 * first two stages of init. 3864 */ 3865 if (hdev->dev_type != HCI_PRIMARY) 3866 return 0; 3867 3868 err = hci_init3_sync(hdev); 3869 if (err < 0) 3870 return err; 3871 3872 err = hci_init4_sync(hdev); 3873 if (err < 0) 3874 return err; 3875 3876 /* This function is only called when the controller is actually in 3877 * configured state. When the controller is marked as unconfigured, 3878 * this initialization procedure is not run. 3879 * 3880 * It means that it is possible that a controller runs through its 3881 * setup phase and then discovers missing settings. If that is the 3882 * case, then this function will not be called. It then will only 3883 * be called during the config phase. 3884 * 3885 * So only when in setup phase or config phase, create the debugfs 3886 * entries and register the SMP channels. 3887 */ 3888 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3889 !hci_dev_test_flag(hdev, HCI_CONFIG)) 3890 return 0; 3891 3892 hci_debugfs_create_common(hdev); 3893 3894 if (lmp_bredr_capable(hdev)) 3895 hci_debugfs_create_bredr(hdev); 3896 3897 if (lmp_le_capable(hdev)) 3898 hci_debugfs_create_le(hdev); 3899 3900 return 0; 3901 } 3902 3903 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 3904 3905 static const struct { 3906 unsigned long quirk; 3907 const char *desc; 3908 } hci_broken_table[] = { 3909 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 3910 "HCI Read Local Supported Commands not supported"), 3911 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 3912 "HCI Delete Stored Link Key command is advertised, " 3913 "but not supported."), 3914 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 3915 "HCI Read Transmit Power Level command is advertised, " 3916 "but not supported."), 3917 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 3918 "HCI Set Event Filter command not supported."), 3919 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 3920 "HCI Enhanced Setup Synchronous Connection command is " 3921 "advertised, but not supported.") 3922 }; 3923 3924 /* This function handles hdev setup stage: 3925 * 3926 * Calls hdev->setup 3927 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 3928 */ 3929 static int hci_dev_setup_sync(struct hci_dev *hdev) 3930 { 3931 int ret = 0; 3932 bool invalid_bdaddr; 3933 size_t i; 3934 3935 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3936 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 3937 return 0; 3938 3939 bt_dev_dbg(hdev, ""); 3940 3941 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 3942 3943 if (hdev->setup) 3944 ret = hdev->setup(hdev); 3945 3946 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 3947 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 3948 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 3949 } 3950 3951 /* The transport driver can set the quirk to mark the 3952 * BD_ADDR invalid before creating the HCI device or in 3953 * its setup callback. 3954 */ 3955 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 3956 3957 if (!ret) { 3958 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 3959 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 3960 hci_dev_get_bd_addr_from_property(hdev); 3961 3962 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 3963 hdev->set_bdaddr) { 3964 ret = hdev->set_bdaddr(hdev, 3965 &hdev->public_addr); 3966 3967 /* If setting of the BD_ADDR from the device 3968 * property succeeds, then treat the address 3969 * as valid even if the invalid BD_ADDR 3970 * quirk indicates otherwise. 3971 */ 3972 if (!ret) 3973 invalid_bdaddr = false; 3974 } 3975 } 3976 } 3977 3978 /* The transport driver can set these quirks before 3979 * creating the HCI device or in its setup callback. 3980 * 3981 * For the invalid BD_ADDR quirk it is possible that 3982 * it becomes a valid address if the bootloader does 3983 * provide it (see above). 3984 * 3985 * In case any of them is set, the controller has to 3986 * start up as unconfigured. 3987 */ 3988 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 3989 invalid_bdaddr) 3990 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3991 3992 /* For an unconfigured controller it is required to 3993 * read at least the version information provided by 3994 * the Read Local Version Information command. 3995 * 3996 * If the set_bdaddr driver callback is provided, then 3997 * also the original Bluetooth public device address 3998 * will be read using the Read BD Address command. 3999 */ 4000 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4001 return hci_unconf_init_sync(hdev); 4002 4003 return ret; 4004 } 4005 4006 /* This function handles hdev init stage: 4007 * 4008 * Calls hci_dev_setup_sync to perform setup stage 4009 * Calls hci_init_sync to perform HCI command init sequence 4010 */ 4011 static int hci_dev_init_sync(struct hci_dev *hdev) 4012 { 4013 int ret; 4014 4015 bt_dev_dbg(hdev, ""); 4016 4017 atomic_set(&hdev->cmd_cnt, 1); 4018 set_bit(HCI_INIT, &hdev->flags); 4019 4020 ret = hci_dev_setup_sync(hdev); 4021 4022 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4023 /* If public address change is configured, ensure that 4024 * the address gets programmed. If the driver does not 4025 * support changing the public address, fail the power 4026 * on procedure. 4027 */ 4028 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4029 hdev->set_bdaddr) 4030 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4031 else 4032 ret = -EADDRNOTAVAIL; 4033 } 4034 4035 if (!ret) { 4036 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4037 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4038 ret = hci_init_sync(hdev); 4039 if (!ret && hdev->post_init) 4040 ret = hdev->post_init(hdev); 4041 } 4042 } 4043 4044 /* If the HCI Reset command is clearing all diagnostic settings, 4045 * then they need to be reprogrammed after the init procedure 4046 * completed. 4047 */ 4048 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4049 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4050 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4051 ret = hdev->set_diag(hdev, true); 4052 4053 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4054 msft_do_open(hdev); 4055 aosp_do_open(hdev); 4056 } 4057 4058 clear_bit(HCI_INIT, &hdev->flags); 4059 4060 return ret; 4061 } 4062 4063 int hci_dev_open_sync(struct hci_dev *hdev) 4064 { 4065 int ret; 4066 4067 bt_dev_dbg(hdev, ""); 4068 4069 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4070 ret = -ENODEV; 4071 goto done; 4072 } 4073 4074 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4075 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4076 /* Check for rfkill but allow the HCI setup stage to 4077 * proceed (which in itself doesn't cause any RF activity). 4078 */ 4079 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4080 ret = -ERFKILL; 4081 goto done; 4082 } 4083 4084 /* Check for valid public address or a configured static 4085 * random address, but let the HCI setup proceed to 4086 * be able to determine if there is a public address 4087 * or not. 4088 * 4089 * In case of user channel usage, it is not important 4090 * if a public address or static random address is 4091 * available. 4092 * 4093 * This check is only valid for BR/EDR controllers 4094 * since AMP controllers do not have an address. 4095 */ 4096 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4097 hdev->dev_type == HCI_PRIMARY && 4098 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4099 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4100 ret = -EADDRNOTAVAIL; 4101 goto done; 4102 } 4103 } 4104 4105 if (test_bit(HCI_UP, &hdev->flags)) { 4106 ret = -EALREADY; 4107 goto done; 4108 } 4109 4110 if (hdev->open(hdev)) { 4111 ret = -EIO; 4112 goto done; 4113 } 4114 4115 set_bit(HCI_RUNNING, &hdev->flags); 4116 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4117 4118 ret = hci_dev_init_sync(hdev); 4119 if (!ret) { 4120 hci_dev_hold(hdev); 4121 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4122 hci_adv_instances_set_rpa_expired(hdev, true); 4123 set_bit(HCI_UP, &hdev->flags); 4124 hci_sock_dev_event(hdev, HCI_DEV_UP); 4125 hci_leds_update_powered(hdev, true); 4126 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4127 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4128 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4129 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4130 hci_dev_test_flag(hdev, HCI_MGMT) && 4131 hdev->dev_type == HCI_PRIMARY) { 4132 ret = hci_powered_update_sync(hdev); 4133 } 4134 } else { 4135 /* Init failed, cleanup */ 4136 flush_work(&hdev->tx_work); 4137 4138 /* Since hci_rx_work() is possible to awake new cmd_work 4139 * it should be flushed first to avoid unexpected call of 4140 * hci_cmd_work() 4141 */ 4142 flush_work(&hdev->rx_work); 4143 flush_work(&hdev->cmd_work); 4144 4145 skb_queue_purge(&hdev->cmd_q); 4146 skb_queue_purge(&hdev->rx_q); 4147 4148 if (hdev->flush) 4149 hdev->flush(hdev); 4150 4151 if (hdev->sent_cmd) { 4152 kfree_skb(hdev->sent_cmd); 4153 hdev->sent_cmd = NULL; 4154 } 4155 4156 clear_bit(HCI_RUNNING, &hdev->flags); 4157 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4158 4159 hdev->close(hdev); 4160 hdev->flags &= BIT(HCI_RAW); 4161 } 4162 4163 done: 4164 return ret; 4165 } 4166 4167 /* This function requires the caller holds hdev->lock */ 4168 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4169 { 4170 struct hci_conn_params *p; 4171 4172 list_for_each_entry(p, &hdev->le_conn_params, list) { 4173 if (p->conn) { 4174 hci_conn_drop(p->conn); 4175 hci_conn_put(p->conn); 4176 p->conn = NULL; 4177 } 4178 list_del_init(&p->action); 4179 } 4180 4181 BT_DBG("All LE pending actions cleared"); 4182 } 4183 4184 int hci_dev_close_sync(struct hci_dev *hdev) 4185 { 4186 bool auto_off; 4187 int err = 0; 4188 4189 bt_dev_dbg(hdev, ""); 4190 4191 cancel_delayed_work(&hdev->power_off); 4192 cancel_delayed_work(&hdev->ncmd_timer); 4193 4194 hci_request_cancel_all(hdev); 4195 4196 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4197 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4198 test_bit(HCI_UP, &hdev->flags)) { 4199 /* Execute vendor specific shutdown routine */ 4200 if (hdev->shutdown) 4201 err = hdev->shutdown(hdev); 4202 } 4203 4204 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4205 cancel_delayed_work_sync(&hdev->cmd_timer); 4206 return err; 4207 } 4208 4209 hci_leds_update_powered(hdev, false); 4210 4211 /* Flush RX and TX works */ 4212 flush_work(&hdev->tx_work); 4213 flush_work(&hdev->rx_work); 4214 4215 if (hdev->discov_timeout > 0) { 4216 hdev->discov_timeout = 0; 4217 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4218 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4219 } 4220 4221 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4222 cancel_delayed_work(&hdev->service_cache); 4223 4224 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4225 struct adv_info *adv_instance; 4226 4227 cancel_delayed_work_sync(&hdev->rpa_expired); 4228 4229 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4230 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4231 } 4232 4233 /* Avoid potential lockdep warnings from the *_flush() calls by 4234 * ensuring the workqueue is empty up front. 4235 */ 4236 drain_workqueue(hdev->workqueue); 4237 4238 hci_dev_lock(hdev); 4239 4240 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4241 4242 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4243 4244 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4245 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4246 hci_dev_test_flag(hdev, HCI_MGMT)) 4247 __mgmt_power_off(hdev); 4248 4249 hci_inquiry_cache_flush(hdev); 4250 hci_pend_le_actions_clear(hdev); 4251 hci_conn_hash_flush(hdev); 4252 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 4253 smp_unregister(hdev); 4254 hci_dev_unlock(hdev); 4255 4256 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4257 4258 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4259 aosp_do_close(hdev); 4260 msft_do_close(hdev); 4261 } 4262 4263 if (hdev->flush) 4264 hdev->flush(hdev); 4265 4266 /* Reset device */ 4267 skb_queue_purge(&hdev->cmd_q); 4268 atomic_set(&hdev->cmd_cnt, 1); 4269 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4270 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4271 set_bit(HCI_INIT, &hdev->flags); 4272 hci_reset_sync(hdev); 4273 clear_bit(HCI_INIT, &hdev->flags); 4274 } 4275 4276 /* flush cmd work */ 4277 flush_work(&hdev->cmd_work); 4278 4279 /* Drop queues */ 4280 skb_queue_purge(&hdev->rx_q); 4281 skb_queue_purge(&hdev->cmd_q); 4282 skb_queue_purge(&hdev->raw_q); 4283 4284 /* Drop last sent command */ 4285 if (hdev->sent_cmd) { 4286 cancel_delayed_work_sync(&hdev->cmd_timer); 4287 kfree_skb(hdev->sent_cmd); 4288 hdev->sent_cmd = NULL; 4289 } 4290 4291 clear_bit(HCI_RUNNING, &hdev->flags); 4292 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4293 4294 /* After this point our queues are empty and no tasks are scheduled. */ 4295 hdev->close(hdev); 4296 4297 /* Clear flags */ 4298 hdev->flags &= BIT(HCI_RAW); 4299 hci_dev_clear_volatile_flags(hdev); 4300 4301 /* Controller radio is available but is currently powered down */ 4302 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 4303 4304 memset(hdev->eir, 0, sizeof(hdev->eir)); 4305 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 4306 bacpy(&hdev->random_addr, BDADDR_ANY); 4307 4308 hci_dev_put(hdev); 4309 return err; 4310 } 4311 4312 /* This function perform power on HCI command sequence as follows: 4313 * 4314 * If controller is already up (HCI_UP) performs hci_powered_update_sync 4315 * sequence otherwise run hci_dev_open_sync which will follow with 4316 * hci_powered_update_sync after the init sequence is completed. 4317 */ 4318 static int hci_power_on_sync(struct hci_dev *hdev) 4319 { 4320 int err; 4321 4322 if (test_bit(HCI_UP, &hdev->flags) && 4323 hci_dev_test_flag(hdev, HCI_MGMT) && 4324 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 4325 cancel_delayed_work(&hdev->power_off); 4326 return hci_powered_update_sync(hdev); 4327 } 4328 4329 err = hci_dev_open_sync(hdev); 4330 if (err < 0) 4331 return err; 4332 4333 /* During the HCI setup phase, a few error conditions are 4334 * ignored and they need to be checked now. If they are still 4335 * valid, it is important to return the device back off. 4336 */ 4337 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 4338 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 4339 (hdev->dev_type == HCI_PRIMARY && 4340 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4341 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 4342 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 4343 hci_dev_close_sync(hdev); 4344 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 4345 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 4346 HCI_AUTO_OFF_TIMEOUT); 4347 } 4348 4349 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 4350 /* For unconfigured devices, set the HCI_RAW flag 4351 * so that userspace can easily identify them. 4352 */ 4353 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4354 set_bit(HCI_RAW, &hdev->flags); 4355 4356 /* For fully configured devices, this will send 4357 * the Index Added event. For unconfigured devices, 4358 * it will send Unconfigued Index Added event. 4359 * 4360 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 4361 * and no event will be send. 4362 */ 4363 mgmt_index_added(hdev); 4364 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 4365 /* When the controller is now configured, then it 4366 * is important to clear the HCI_RAW flag. 4367 */ 4368 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4369 clear_bit(HCI_RAW, &hdev->flags); 4370 4371 /* Powering on the controller with HCI_CONFIG set only 4372 * happens with the transition from unconfigured to 4373 * configured. This will send the Index Added event. 4374 */ 4375 mgmt_index_added(hdev); 4376 } 4377 4378 return 0; 4379 } 4380 4381 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 4382 { 4383 struct hci_cp_remote_name_req_cancel cp; 4384 4385 memset(&cp, 0, sizeof(cp)); 4386 bacpy(&cp.bdaddr, addr); 4387 4388 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 4389 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4390 } 4391 4392 int hci_stop_discovery_sync(struct hci_dev *hdev) 4393 { 4394 struct discovery_state *d = &hdev->discovery; 4395 struct inquiry_entry *e; 4396 int err; 4397 4398 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 4399 4400 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 4401 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 4402 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 4403 0, NULL, HCI_CMD_TIMEOUT); 4404 if (err) 4405 return err; 4406 } 4407 4408 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 4409 cancel_delayed_work(&hdev->le_scan_disable); 4410 cancel_delayed_work(&hdev->le_scan_restart); 4411 4412 err = hci_scan_disable_sync(hdev); 4413 if (err) 4414 return err; 4415 } 4416 4417 } else { 4418 err = hci_scan_disable_sync(hdev); 4419 if (err) 4420 return err; 4421 } 4422 4423 /* Resume advertising if it was paused */ 4424 if (use_ll_privacy(hdev)) 4425 hci_resume_advertising_sync(hdev); 4426 4427 /* No further actions needed for LE-only discovery */ 4428 if (d->type == DISCOV_TYPE_LE) 4429 return 0; 4430 4431 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 4432 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 4433 NAME_PENDING); 4434 if (!e) 4435 return 0; 4436 4437 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 4438 } 4439 4440 return 0; 4441 } 4442 4443 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 4444 u8 reason) 4445 { 4446 struct hci_cp_disconn_phy_link cp; 4447 4448 memset(&cp, 0, sizeof(cp)); 4449 cp.phy_handle = HCI_PHY_HANDLE(handle); 4450 cp.reason = reason; 4451 4452 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 4453 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4454 } 4455 4456 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 4457 u8 reason) 4458 { 4459 struct hci_cp_disconnect cp; 4460 4461 if (conn->type == AMP_LINK) 4462 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 4463 4464 memset(&cp, 0, sizeof(cp)); 4465 cp.handle = cpu_to_le16(conn->handle); 4466 cp.reason = reason; 4467 4468 /* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not 4469 * suspending. 4470 */ 4471 if (!hdev->suspended) 4472 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 4473 sizeof(cp), &cp, 4474 HCI_EV_DISCONN_COMPLETE, 4475 HCI_CMD_TIMEOUT, NULL); 4476 4477 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 4478 HCI_CMD_TIMEOUT); 4479 } 4480 4481 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 4482 struct hci_conn *conn) 4483 { 4484 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 4485 return 0; 4486 4487 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 4488 6, &conn->dst, HCI_CMD_TIMEOUT); 4489 } 4490 4491 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 4492 { 4493 if (conn->type == LE_LINK) 4494 return hci_le_connect_cancel_sync(hdev, conn); 4495 4496 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 4497 return 0; 4498 4499 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 4500 6, &conn->dst, HCI_CMD_TIMEOUT); 4501 } 4502 4503 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 4504 u8 reason) 4505 { 4506 struct hci_cp_reject_sync_conn_req cp; 4507 4508 memset(&cp, 0, sizeof(cp)); 4509 bacpy(&cp.bdaddr, &conn->dst); 4510 cp.reason = reason; 4511 4512 /* SCO rejection has its own limited set of 4513 * allowed error values (0x0D-0x0F). 4514 */ 4515 if (reason < 0x0d || reason > 0x0f) 4516 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 4517 4518 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 4519 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4520 } 4521 4522 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 4523 u8 reason) 4524 { 4525 struct hci_cp_reject_conn_req cp; 4526 4527 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 4528 return hci_reject_sco_sync(hdev, conn, reason); 4529 4530 memset(&cp, 0, sizeof(cp)); 4531 bacpy(&cp.bdaddr, &conn->dst); 4532 cp.reason = reason; 4533 4534 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 4535 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4536 } 4537 4538 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 4539 { 4540 int err; 4541 4542 switch (conn->state) { 4543 case BT_CONNECTED: 4544 case BT_CONFIG: 4545 return hci_disconnect_sync(hdev, conn, reason); 4546 case BT_CONNECT: 4547 err = hci_connect_cancel_sync(hdev, conn); 4548 /* Cleanup hci_conn object if it cannot be cancelled as it 4549 * likelly means the controller and host stack are out of sync. 4550 */ 4551 if (err) 4552 hci_conn_failed(conn, err); 4553 4554 return err; 4555 case BT_CONNECT2: 4556 return hci_reject_conn_sync(hdev, conn, reason); 4557 default: 4558 conn->state = BT_CLOSED; 4559 break; 4560 } 4561 4562 return 0; 4563 } 4564 4565 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 4566 { 4567 struct hci_conn *conn, *tmp; 4568 int err; 4569 4570 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 4571 err = hci_abort_conn_sync(hdev, conn, reason); 4572 if (err) 4573 return err; 4574 } 4575 4576 return 0; 4577 } 4578 4579 /* This function perform power off HCI command sequence as follows: 4580 * 4581 * Clear Advertising 4582 * Stop Discovery 4583 * Disconnect all connections 4584 * hci_dev_close_sync 4585 */ 4586 static int hci_power_off_sync(struct hci_dev *hdev) 4587 { 4588 int err; 4589 4590 /* If controller is already down there is nothing to do */ 4591 if (!test_bit(HCI_UP, &hdev->flags)) 4592 return 0; 4593 4594 if (test_bit(HCI_ISCAN, &hdev->flags) || 4595 test_bit(HCI_PSCAN, &hdev->flags)) { 4596 err = hci_write_scan_enable_sync(hdev, 0x00); 4597 if (err) 4598 return err; 4599 } 4600 4601 err = hci_clear_adv_sync(hdev, NULL, false); 4602 if (err) 4603 return err; 4604 4605 err = hci_stop_discovery_sync(hdev); 4606 if (err) 4607 return err; 4608 4609 /* Terminated due to Power Off */ 4610 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 4611 if (err) 4612 return err; 4613 4614 return hci_dev_close_sync(hdev); 4615 } 4616 4617 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 4618 { 4619 if (val) 4620 return hci_power_on_sync(hdev); 4621 4622 return hci_power_off_sync(hdev); 4623 } 4624 4625 static int hci_write_iac_sync(struct hci_dev *hdev) 4626 { 4627 struct hci_cp_write_current_iac_lap cp; 4628 4629 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 4630 return 0; 4631 4632 memset(&cp, 0, sizeof(cp)); 4633 4634 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 4635 /* Limited discoverable mode */ 4636 cp.num_iac = min_t(u8, hdev->num_iac, 2); 4637 cp.iac_lap[0] = 0x00; /* LIAC */ 4638 cp.iac_lap[1] = 0x8b; 4639 cp.iac_lap[2] = 0x9e; 4640 cp.iac_lap[3] = 0x33; /* GIAC */ 4641 cp.iac_lap[4] = 0x8b; 4642 cp.iac_lap[5] = 0x9e; 4643 } else { 4644 /* General discoverable mode */ 4645 cp.num_iac = 1; 4646 cp.iac_lap[0] = 0x33; /* GIAC */ 4647 cp.iac_lap[1] = 0x8b; 4648 cp.iac_lap[2] = 0x9e; 4649 } 4650 4651 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 4652 (cp.num_iac * 3) + 1, &cp, 4653 HCI_CMD_TIMEOUT); 4654 } 4655 4656 int hci_update_discoverable_sync(struct hci_dev *hdev) 4657 { 4658 int err = 0; 4659 4660 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 4661 err = hci_write_iac_sync(hdev); 4662 if (err) 4663 return err; 4664 4665 err = hci_update_scan_sync(hdev); 4666 if (err) 4667 return err; 4668 4669 err = hci_update_class_sync(hdev); 4670 if (err) 4671 return err; 4672 } 4673 4674 /* Advertising instances don't use the global discoverable setting, so 4675 * only update AD if advertising was enabled using Set Advertising. 4676 */ 4677 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 4678 err = hci_update_adv_data_sync(hdev, 0x00); 4679 if (err) 4680 return err; 4681 4682 /* Discoverable mode affects the local advertising 4683 * address in limited privacy mode. 4684 */ 4685 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 4686 if (ext_adv_capable(hdev)) 4687 err = hci_start_ext_adv_sync(hdev, 0x00); 4688 else 4689 err = hci_enable_advertising_sync(hdev); 4690 } 4691 } 4692 4693 return err; 4694 } 4695 4696 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 4697 { 4698 return hci_update_discoverable_sync(hdev); 4699 } 4700 4701 int hci_update_discoverable(struct hci_dev *hdev) 4702 { 4703 /* Only queue if it would have any effect */ 4704 if (hdev_is_powered(hdev) && 4705 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 4706 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 4707 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 4708 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 4709 NULL); 4710 4711 return 0; 4712 } 4713 4714 int hci_update_connectable_sync(struct hci_dev *hdev) 4715 { 4716 int err; 4717 4718 err = hci_update_scan_sync(hdev); 4719 if (err) 4720 return err; 4721 4722 /* If BR/EDR is not enabled and we disable advertising as a 4723 * by-product of disabling connectable, we need to update the 4724 * advertising flags. 4725 */ 4726 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4727 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 4728 4729 /* Update the advertising parameters if necessary */ 4730 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 4731 !list_empty(&hdev->adv_instances)) { 4732 if (ext_adv_capable(hdev)) 4733 err = hci_start_ext_adv_sync(hdev, 4734 hdev->cur_adv_instance); 4735 else 4736 err = hci_enable_advertising_sync(hdev); 4737 4738 if (err) 4739 return err; 4740 } 4741 4742 return hci_update_passive_scan_sync(hdev); 4743 } 4744 4745 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 4746 { 4747 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 4748 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 4749 struct hci_cp_inquiry cp; 4750 4751 bt_dev_dbg(hdev, ""); 4752 4753 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 4754 return 0; 4755 4756 hci_dev_lock(hdev); 4757 hci_inquiry_cache_flush(hdev); 4758 hci_dev_unlock(hdev); 4759 4760 memset(&cp, 0, sizeof(cp)); 4761 4762 if (hdev->discovery.limited) 4763 memcpy(&cp.lap, liac, sizeof(cp.lap)); 4764 else 4765 memcpy(&cp.lap, giac, sizeof(cp.lap)); 4766 4767 cp.length = length; 4768 4769 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 4770 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4771 } 4772 4773 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 4774 { 4775 u8 own_addr_type; 4776 /* Accept list is not used for discovery */ 4777 u8 filter_policy = 0x00; 4778 /* Default is to enable duplicates filter */ 4779 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 4780 int err; 4781 4782 bt_dev_dbg(hdev, ""); 4783 4784 /* If controller is scanning, it means the passive scanning is 4785 * running. Thus, we should temporarily stop it in order to set the 4786 * discovery scanning parameters. 4787 */ 4788 err = hci_scan_disable_sync(hdev); 4789 if (err) { 4790 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 4791 return err; 4792 } 4793 4794 cancel_interleave_scan(hdev); 4795 4796 /* Pause advertising since active scanning disables address resolution 4797 * which advertising depend on in order to generate its RPAs. 4798 */ 4799 if (use_ll_privacy(hdev)) { 4800 err = hci_pause_advertising_sync(hdev); 4801 if (err) { 4802 bt_dev_err(hdev, "pause advertising failed: %d", err); 4803 goto failed; 4804 } 4805 } 4806 4807 /* Disable address resolution while doing active scanning since the 4808 * accept list shall not be used and all reports shall reach the host 4809 * anyway. 4810 */ 4811 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 4812 if (err) { 4813 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 4814 err); 4815 goto failed; 4816 } 4817 4818 /* All active scans will be done with either a resolvable private 4819 * address (when privacy feature has been enabled) or non-resolvable 4820 * private address. 4821 */ 4822 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 4823 &own_addr_type); 4824 if (err < 0) 4825 own_addr_type = ADDR_LE_DEV_PUBLIC; 4826 4827 if (hci_is_adv_monitoring(hdev)) { 4828 /* Duplicate filter should be disabled when some advertisement 4829 * monitor is activated, otherwise AdvMon can only receive one 4830 * advertisement for one peer(*) during active scanning, and 4831 * might report loss to these peers. 4832 * 4833 * Note that different controllers have different meanings of 4834 * |duplicate|. Some of them consider packets with the same 4835 * address as duplicate, and others consider packets with the 4836 * same address and the same RSSI as duplicate. Although in the 4837 * latter case we don't need to disable duplicate filter, but 4838 * it is common to have active scanning for a short period of 4839 * time, the power impact should be neglectable. 4840 */ 4841 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 4842 } 4843 4844 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 4845 hdev->le_scan_window_discovery, 4846 own_addr_type, filter_policy, filter_dup); 4847 if (!err) 4848 return err; 4849 4850 failed: 4851 /* Resume advertising if it was paused */ 4852 if (use_ll_privacy(hdev)) 4853 hci_resume_advertising_sync(hdev); 4854 4855 /* Resume passive scanning */ 4856 hci_update_passive_scan_sync(hdev); 4857 return err; 4858 } 4859 4860 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 4861 { 4862 int err; 4863 4864 bt_dev_dbg(hdev, ""); 4865 4866 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 4867 if (err) 4868 return err; 4869 4870 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 4871 } 4872 4873 int hci_start_discovery_sync(struct hci_dev *hdev) 4874 { 4875 unsigned long timeout; 4876 int err; 4877 4878 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 4879 4880 switch (hdev->discovery.type) { 4881 case DISCOV_TYPE_BREDR: 4882 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 4883 case DISCOV_TYPE_INTERLEAVED: 4884 /* When running simultaneous discovery, the LE scanning time 4885 * should occupy the whole discovery time sine BR/EDR inquiry 4886 * and LE scanning are scheduled by the controller. 4887 * 4888 * For interleaving discovery in comparison, BR/EDR inquiry 4889 * and LE scanning are done sequentially with separate 4890 * timeouts. 4891 */ 4892 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 4893 &hdev->quirks)) { 4894 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 4895 /* During simultaneous discovery, we double LE scan 4896 * interval. We must leave some time for the controller 4897 * to do BR/EDR inquiry. 4898 */ 4899 err = hci_start_interleaved_discovery_sync(hdev); 4900 break; 4901 } 4902 4903 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 4904 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 4905 break; 4906 case DISCOV_TYPE_LE: 4907 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 4908 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 4909 break; 4910 default: 4911 return -EINVAL; 4912 } 4913 4914 if (err) 4915 return err; 4916 4917 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 4918 4919 /* When service discovery is used and the controller has a 4920 * strict duplicate filter, it is important to remember the 4921 * start and duration of the scan. This is required for 4922 * restarting scanning during the discovery phase. 4923 */ 4924 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 4925 hdev->discovery.result_filtering) { 4926 hdev->discovery.scan_start = jiffies; 4927 hdev->discovery.scan_duration = timeout; 4928 } 4929 4930 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 4931 timeout); 4932 return 0; 4933 } 4934 4935 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 4936 { 4937 switch (hci_get_adv_monitor_offload_ext(hdev)) { 4938 case HCI_ADV_MONITOR_EXT_MSFT: 4939 msft_suspend_sync(hdev); 4940 break; 4941 default: 4942 return; 4943 } 4944 } 4945 4946 /* This function disables discovery and mark it as paused */ 4947 static int hci_pause_discovery_sync(struct hci_dev *hdev) 4948 { 4949 int old_state = hdev->discovery.state; 4950 int err; 4951 4952 /* If discovery already stopped/stopping/paused there nothing to do */ 4953 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 4954 hdev->discovery_paused) 4955 return 0; 4956 4957 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 4958 err = hci_stop_discovery_sync(hdev); 4959 if (err) 4960 return err; 4961 4962 hdev->discovery_paused = true; 4963 hdev->discovery_old_state = old_state; 4964 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4965 4966 return 0; 4967 } 4968 4969 static int hci_update_event_filter_sync(struct hci_dev *hdev) 4970 { 4971 struct bdaddr_list_with_flags *b; 4972 u8 scan = SCAN_DISABLED; 4973 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 4974 int err; 4975 4976 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4977 return 0; 4978 4979 /* Some fake CSR controllers lock up after setting this type of 4980 * filter, so avoid sending the request altogether. 4981 */ 4982 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 4983 return 0; 4984 4985 /* Always clear event filter when starting */ 4986 hci_clear_event_filter_sync(hdev); 4987 4988 list_for_each_entry(b, &hdev->accept_list, list) { 4989 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 4990 continue; 4991 4992 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 4993 4994 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 4995 HCI_CONN_SETUP_ALLOW_BDADDR, 4996 &b->bdaddr, 4997 HCI_CONN_SETUP_AUTO_ON); 4998 if (err) 4999 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5000 &b->bdaddr); 5001 else 5002 scan = SCAN_PAGE; 5003 } 5004 5005 if (scan && !scanning) 5006 hci_write_scan_enable_sync(hdev, scan); 5007 else if (!scan && scanning) 5008 hci_write_scan_enable_sync(hdev, scan); 5009 5010 return 0; 5011 } 5012 5013 /* This function disables scan (BR and LE) and mark it as paused */ 5014 static int hci_pause_scan_sync(struct hci_dev *hdev) 5015 { 5016 if (hdev->scanning_paused) 5017 return 0; 5018 5019 /* Disable page scan if enabled */ 5020 if (test_bit(HCI_PSCAN, &hdev->flags)) 5021 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5022 5023 hci_scan_disable_sync(hdev); 5024 5025 hdev->scanning_paused = true; 5026 5027 return 0; 5028 } 5029 5030 /* This function performs the HCI suspend procedures in the follow order: 5031 * 5032 * Pause discovery (active scanning/inquiry) 5033 * Pause Directed Advertising/Advertising 5034 * Pause Scanning (passive scanning in case discovery was not active) 5035 * Disconnect all connections 5036 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5037 * otherwise: 5038 * Update event mask (only set events that are allowed to wake up the host) 5039 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5040 * Update passive scanning (lower duty cycle) 5041 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5042 */ 5043 int hci_suspend_sync(struct hci_dev *hdev) 5044 { 5045 int err; 5046 5047 /* If marked as suspended there nothing to do */ 5048 if (hdev->suspended) 5049 return 0; 5050 5051 /* Mark device as suspended */ 5052 hdev->suspended = true; 5053 5054 /* Pause discovery if not already stopped */ 5055 hci_pause_discovery_sync(hdev); 5056 5057 /* Pause other advertisements */ 5058 hci_pause_advertising_sync(hdev); 5059 5060 /* Suspend monitor filters */ 5061 hci_suspend_monitor_sync(hdev); 5062 5063 /* Prevent disconnects from causing scanning to be re-enabled */ 5064 hci_pause_scan_sync(hdev); 5065 5066 /* Soft disconnect everything (power off) */ 5067 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5068 if (err) { 5069 /* Set state to BT_RUNNING so resume doesn't notify */ 5070 hdev->suspend_state = BT_RUNNING; 5071 hci_resume_sync(hdev); 5072 return err; 5073 } 5074 5075 /* Only configure accept list if disconnect succeeded and wake 5076 * isn't being prevented. 5077 */ 5078 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5079 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5080 return 0; 5081 } 5082 5083 /* Unpause to take care of updating scanning params */ 5084 hdev->scanning_paused = false; 5085 5086 /* Update event mask so only the allowed event can wakeup the host */ 5087 hci_set_event_mask_sync(hdev); 5088 5089 /* Enable event filter for paired devices */ 5090 hci_update_event_filter_sync(hdev); 5091 5092 /* Update LE passive scan if enabled */ 5093 hci_update_passive_scan_sync(hdev); 5094 5095 /* Pause scan changes again. */ 5096 hdev->scanning_paused = true; 5097 5098 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5099 5100 return 0; 5101 } 5102 5103 /* This function resumes discovery */ 5104 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5105 { 5106 int err; 5107 5108 /* If discovery not paused there nothing to do */ 5109 if (!hdev->discovery_paused) 5110 return 0; 5111 5112 hdev->discovery_paused = false; 5113 5114 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5115 5116 err = hci_start_discovery_sync(hdev); 5117 5118 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5119 DISCOVERY_FINDING); 5120 5121 return err; 5122 } 5123 5124 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5125 { 5126 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5127 case HCI_ADV_MONITOR_EXT_MSFT: 5128 msft_resume_sync(hdev); 5129 break; 5130 default: 5131 return; 5132 } 5133 } 5134 5135 /* This function resume scan and reset paused flag */ 5136 static int hci_resume_scan_sync(struct hci_dev *hdev) 5137 { 5138 if (!hdev->scanning_paused) 5139 return 0; 5140 5141 hdev->scanning_paused = false; 5142 5143 hci_update_scan_sync(hdev); 5144 5145 /* Reset passive scanning to normal */ 5146 hci_update_passive_scan_sync(hdev); 5147 5148 return 0; 5149 } 5150 5151 /* This function performs the HCI suspend procedures in the follow order: 5152 * 5153 * Restore event mask 5154 * Clear event filter 5155 * Update passive scanning (normal duty cycle) 5156 * Resume Directed Advertising/Advertising 5157 * Resume discovery (active scanning/inquiry) 5158 */ 5159 int hci_resume_sync(struct hci_dev *hdev) 5160 { 5161 /* If not marked as suspended there nothing to do */ 5162 if (!hdev->suspended) 5163 return 0; 5164 5165 hdev->suspended = false; 5166 5167 /* Restore event mask */ 5168 hci_set_event_mask_sync(hdev); 5169 5170 /* Clear any event filters and restore scan state */ 5171 hci_clear_event_filter_sync(hdev); 5172 5173 /* Resume scanning */ 5174 hci_resume_scan_sync(hdev); 5175 5176 /* Resume monitor filters */ 5177 hci_resume_monitor_sync(hdev); 5178 5179 /* Resume other advertisements */ 5180 hci_resume_advertising_sync(hdev); 5181 5182 /* Resume discovery */ 5183 hci_resume_discovery_sync(hdev); 5184 5185 return 0; 5186 } 5187 5188 static bool conn_use_rpa(struct hci_conn *conn) 5189 { 5190 struct hci_dev *hdev = conn->hdev; 5191 5192 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5193 } 5194 5195 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5196 struct hci_conn *conn) 5197 { 5198 struct hci_cp_le_set_ext_adv_params cp; 5199 int err; 5200 bdaddr_t random_addr; 5201 u8 own_addr_type; 5202 5203 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5204 &own_addr_type); 5205 if (err) 5206 return err; 5207 5208 /* Set require_privacy to false so that the remote device has a 5209 * chance of identifying us. 5210 */ 5211 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5212 &own_addr_type, &random_addr); 5213 if (err) 5214 return err; 5215 5216 memset(&cp, 0, sizeof(cp)); 5217 5218 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 5219 cp.own_addr_type = own_addr_type; 5220 cp.channel_map = hdev->le_adv_channel_map; 5221 cp.tx_power = HCI_TX_POWER_INVALID; 5222 cp.primary_phy = HCI_ADV_PHY_1M; 5223 cp.secondary_phy = HCI_ADV_PHY_1M; 5224 cp.handle = 0x00; /* Use instance 0 for directed adv */ 5225 cp.own_addr_type = own_addr_type; 5226 cp.peer_addr_type = conn->dst_type; 5227 bacpy(&cp.peer_addr, &conn->dst); 5228 5229 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 5230 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 5231 * does not supports advertising data when the advertising set already 5232 * contains some, the controller shall return erroc code 'Invalid 5233 * HCI Command Parameters(0x12). 5234 * So it is required to remove adv set for handle 0x00. since we use 5235 * instance 0 for directed adv. 5236 */ 5237 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 5238 if (err) 5239 return err; 5240 5241 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 5242 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5243 if (err) 5244 return err; 5245 5246 /* Check if random address need to be updated */ 5247 if (own_addr_type == ADDR_LE_DEV_RANDOM && 5248 bacmp(&random_addr, BDADDR_ANY) && 5249 bacmp(&random_addr, &hdev->random_addr)) { 5250 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 5251 &random_addr); 5252 if (err) 5253 return err; 5254 } 5255 5256 return hci_enable_ext_advertising_sync(hdev, 0x00); 5257 } 5258 5259 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 5260 struct hci_conn *conn) 5261 { 5262 struct hci_cp_le_set_adv_param cp; 5263 u8 status; 5264 u8 own_addr_type; 5265 u8 enable; 5266 5267 if (ext_adv_capable(hdev)) 5268 return hci_le_ext_directed_advertising_sync(hdev, conn); 5269 5270 /* Clear the HCI_LE_ADV bit temporarily so that the 5271 * hci_update_random_address knows that it's safe to go ahead 5272 * and write a new random address. The flag will be set back on 5273 * as soon as the SET_ADV_ENABLE HCI command completes. 5274 */ 5275 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5276 5277 /* Set require_privacy to false so that the remote device has a 5278 * chance of identifying us. 5279 */ 5280 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5281 &own_addr_type); 5282 if (status) 5283 return status; 5284 5285 memset(&cp, 0, sizeof(cp)); 5286 5287 /* Some controllers might reject command if intervals are not 5288 * within range for undirected advertising. 5289 * BCM20702A0 is known to be affected by this. 5290 */ 5291 cp.min_interval = cpu_to_le16(0x0020); 5292 cp.max_interval = cpu_to_le16(0x0020); 5293 5294 cp.type = LE_ADV_DIRECT_IND; 5295 cp.own_address_type = own_addr_type; 5296 cp.direct_addr_type = conn->dst_type; 5297 bacpy(&cp.direct_addr, &conn->dst); 5298 cp.channel_map = hdev->le_adv_channel_map; 5299 5300 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 5301 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5302 if (status) 5303 return status; 5304 5305 enable = 0x01; 5306 5307 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 5308 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 5309 } 5310 5311 static void set_ext_conn_params(struct hci_conn *conn, 5312 struct hci_cp_le_ext_conn_param *p) 5313 { 5314 struct hci_dev *hdev = conn->hdev; 5315 5316 memset(p, 0, sizeof(*p)); 5317 5318 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5319 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5320 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5321 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5322 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 5323 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5324 p->min_ce_len = cpu_to_le16(0x0000); 5325 p->max_ce_len = cpu_to_le16(0x0000); 5326 } 5327 5328 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 5329 struct hci_conn *conn, u8 own_addr_type) 5330 { 5331 struct hci_cp_le_ext_create_conn *cp; 5332 struct hci_cp_le_ext_conn_param *p; 5333 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 5334 u32 plen; 5335 5336 cp = (void *)data; 5337 p = (void *)cp->data; 5338 5339 memset(cp, 0, sizeof(*cp)); 5340 5341 bacpy(&cp->peer_addr, &conn->dst); 5342 cp->peer_addr_type = conn->dst_type; 5343 cp->own_addr_type = own_addr_type; 5344 5345 plen = sizeof(*cp); 5346 5347 if (scan_1m(hdev)) { 5348 cp->phys |= LE_SCAN_PHY_1M; 5349 set_ext_conn_params(conn, p); 5350 5351 p++; 5352 plen += sizeof(*p); 5353 } 5354 5355 if (scan_2m(hdev)) { 5356 cp->phys |= LE_SCAN_PHY_2M; 5357 set_ext_conn_params(conn, p); 5358 5359 p++; 5360 plen += sizeof(*p); 5361 } 5362 5363 if (scan_coded(hdev)) { 5364 cp->phys |= LE_SCAN_PHY_CODED; 5365 set_ext_conn_params(conn, p); 5366 5367 plen += sizeof(*p); 5368 } 5369 5370 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 5371 plen, data, 5372 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 5373 conn->conn_timeout, NULL); 5374 } 5375 5376 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 5377 { 5378 struct hci_cp_le_create_conn cp; 5379 struct hci_conn_params *params; 5380 u8 own_addr_type; 5381 int err; 5382 5383 /* If requested to connect as peripheral use directed advertising */ 5384 if (conn->role == HCI_ROLE_SLAVE) { 5385 /* If we're active scanning and simultaneous roles is not 5386 * enabled simply reject the attempt. 5387 */ 5388 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 5389 hdev->le_scan_type == LE_SCAN_ACTIVE && 5390 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 5391 hci_conn_del(conn); 5392 return -EBUSY; 5393 } 5394 5395 /* Pause advertising while doing directed advertising. */ 5396 hci_pause_advertising_sync(hdev); 5397 5398 err = hci_le_directed_advertising_sync(hdev, conn); 5399 goto done; 5400 } 5401 5402 /* Disable advertising if simultaneous roles is not in use. */ 5403 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 5404 hci_pause_advertising_sync(hdev); 5405 5406 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 5407 if (params) { 5408 conn->le_conn_min_interval = params->conn_min_interval; 5409 conn->le_conn_max_interval = params->conn_max_interval; 5410 conn->le_conn_latency = params->conn_latency; 5411 conn->le_supv_timeout = params->supervision_timeout; 5412 } else { 5413 conn->le_conn_min_interval = hdev->le_conn_min_interval; 5414 conn->le_conn_max_interval = hdev->le_conn_max_interval; 5415 conn->le_conn_latency = hdev->le_conn_latency; 5416 conn->le_supv_timeout = hdev->le_supv_timeout; 5417 } 5418 5419 /* If controller is scanning, we stop it since some controllers are 5420 * not able to scan and connect at the same time. Also set the 5421 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 5422 * handler for scan disabling knows to set the correct discovery 5423 * state. 5424 */ 5425 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5426 hci_scan_disable_sync(hdev); 5427 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 5428 } 5429 5430 /* Update random address, but set require_privacy to false so 5431 * that we never connect with an non-resolvable address. 5432 */ 5433 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5434 &own_addr_type); 5435 if (err) 5436 goto done; 5437 5438 if (use_ext_conn(hdev)) { 5439 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 5440 goto done; 5441 } 5442 5443 memset(&cp, 0, sizeof(cp)); 5444 5445 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5446 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5447 5448 bacpy(&cp.peer_addr, &conn->dst); 5449 cp.peer_addr_type = conn->dst_type; 5450 cp.own_address_type = own_addr_type; 5451 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5452 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5453 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 5454 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5455 cp.min_ce_len = cpu_to_le16(0x0000); 5456 cp.max_ce_len = cpu_to_le16(0x0000); 5457 5458 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 5459 * 5460 * If this event is unmasked and the HCI_LE_Connection_Complete event 5461 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 5462 * sent when a new connection has been created. 5463 */ 5464 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 5465 sizeof(cp), &cp, 5466 use_enhanced_conn_complete(hdev) ? 5467 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 5468 HCI_EV_LE_CONN_COMPLETE, 5469 conn->conn_timeout, NULL); 5470 5471 done: 5472 /* Re-enable advertising after the connection attempt is finished. */ 5473 hci_resume_advertising_sync(hdev); 5474 return err; 5475 } 5476 5477 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 5478 { 5479 struct hci_cp_le_remove_cig cp; 5480 5481 memset(&cp, 0, sizeof(cp)); 5482 cp.cig_id = handle; 5483 5484 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 5485 &cp, HCI_CMD_TIMEOUT); 5486 } 5487