xref: /openbmc/linux/net/bluetooth/hci_sock.c (revision 404e077a16bb7796908b604b2df02cd650c965aa)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI sockets. */
26 #include <linux/compat.h>
27 #include <linux/export.h>
28 #include <linux/utsname.h>
29 #include <linux/sched.h>
30 #include <asm/unaligned.h>
31 
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/hci_mon.h>
35 #include <net/bluetooth/mgmt.h>
36 
37 #include "mgmt_util.h"
38 
39 static LIST_HEAD(mgmt_chan_list);
40 static DEFINE_MUTEX(mgmt_chan_list_lock);
41 
42 static DEFINE_IDA(sock_cookie_ida);
43 
44 static atomic_t monitor_promisc = ATOMIC_INIT(0);
45 
46 /* ----- HCI socket interface ----- */
47 
48 /* Socket info */
49 #define hci_pi(sk) ((struct hci_pinfo *) sk)
50 
51 struct hci_pinfo {
52 	struct bt_sock    bt;
53 	struct hci_dev    *hdev;
54 	struct hci_filter filter;
55 	__u8              cmsg_mask;
56 	unsigned short    channel;
57 	unsigned long     flags;
58 	__u32             cookie;
59 	char              comm[TASK_COMM_LEN];
60 	__u16             mtu;
61 };
62 
63 static struct hci_dev *hci_hdev_from_sock(struct sock *sk)
64 {
65 	struct hci_dev *hdev = hci_pi(sk)->hdev;
66 
67 	if (!hdev)
68 		return ERR_PTR(-EBADFD);
69 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
70 		return ERR_PTR(-EPIPE);
71 	return hdev;
72 }
73 
74 void hci_sock_set_flag(struct sock *sk, int nr)
75 {
76 	set_bit(nr, &hci_pi(sk)->flags);
77 }
78 
79 void hci_sock_clear_flag(struct sock *sk, int nr)
80 {
81 	clear_bit(nr, &hci_pi(sk)->flags);
82 }
83 
84 int hci_sock_test_flag(struct sock *sk, int nr)
85 {
86 	return test_bit(nr, &hci_pi(sk)->flags);
87 }
88 
89 unsigned short hci_sock_get_channel(struct sock *sk)
90 {
91 	return hci_pi(sk)->channel;
92 }
93 
94 u32 hci_sock_get_cookie(struct sock *sk)
95 {
96 	return hci_pi(sk)->cookie;
97 }
98 
99 static bool hci_sock_gen_cookie(struct sock *sk)
100 {
101 	int id = hci_pi(sk)->cookie;
102 
103 	if (!id) {
104 		id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL);
105 		if (id < 0)
106 			id = 0xffffffff;
107 
108 		hci_pi(sk)->cookie = id;
109 		get_task_comm(hci_pi(sk)->comm, current);
110 		return true;
111 	}
112 
113 	return false;
114 }
115 
116 static void hci_sock_free_cookie(struct sock *sk)
117 {
118 	int id = hci_pi(sk)->cookie;
119 
120 	if (id) {
121 		hci_pi(sk)->cookie = 0xffffffff;
122 		ida_simple_remove(&sock_cookie_ida, id);
123 	}
124 }
125 
126 static inline int hci_test_bit(int nr, const void *addr)
127 {
128 	return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
129 }
130 
131 /* Security filter */
132 #define HCI_SFLT_MAX_OGF  5
133 
134 struct hci_sec_filter {
135 	__u32 type_mask;
136 	__u32 event_mask[2];
137 	__u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
138 };
139 
140 static const struct hci_sec_filter hci_sec_filter = {
141 	/* Packet types */
142 	0x10,
143 	/* Events */
144 	{ 0x1000d9fe, 0x0000b00c },
145 	/* Commands */
146 	{
147 		{ 0x0 },
148 		/* OGF_LINK_CTL */
149 		{ 0xbe000006, 0x00000001, 0x00000000, 0x00 },
150 		/* OGF_LINK_POLICY */
151 		{ 0x00005200, 0x00000000, 0x00000000, 0x00 },
152 		/* OGF_HOST_CTL */
153 		{ 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
154 		/* OGF_INFO_PARAM */
155 		{ 0x000002be, 0x00000000, 0x00000000, 0x00 },
156 		/* OGF_STATUS_PARAM */
157 		{ 0x000000ea, 0x00000000, 0x00000000, 0x00 }
158 	}
159 };
160 
161 static struct bt_sock_list hci_sk_list = {
162 	.lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
163 };
164 
165 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb)
166 {
167 	struct hci_filter *flt;
168 	int flt_type, flt_event;
169 
170 	/* Apply filter */
171 	flt = &hci_pi(sk)->filter;
172 
173 	flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS;
174 
175 	if (!test_bit(flt_type, &flt->type_mask))
176 		return true;
177 
178 	/* Extra filter for event packets only */
179 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT)
180 		return false;
181 
182 	flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
183 
184 	if (!hci_test_bit(flt_event, &flt->event_mask))
185 		return true;
186 
187 	/* Check filter only when opcode is set */
188 	if (!flt->opcode)
189 		return false;
190 
191 	if (flt_event == HCI_EV_CMD_COMPLETE &&
192 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 3)))
193 		return true;
194 
195 	if (flt_event == HCI_EV_CMD_STATUS &&
196 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 4)))
197 		return true;
198 
199 	return false;
200 }
201 
202 /* Send frame to RAW socket */
203 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
204 {
205 	struct sock *sk;
206 	struct sk_buff *skb_copy = NULL;
207 
208 	BT_DBG("hdev %p len %d", hdev, skb->len);
209 
210 	read_lock(&hci_sk_list.lock);
211 
212 	sk_for_each(sk, &hci_sk_list.head) {
213 		struct sk_buff *nskb;
214 
215 		if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
216 			continue;
217 
218 		/* Don't send frame to the socket it came from */
219 		if (skb->sk == sk)
220 			continue;
221 
222 		if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) {
223 			if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
224 			    hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
225 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
226 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
227 			    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
228 				continue;
229 			if (is_filtered_packet(sk, skb))
230 				continue;
231 		} else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
232 			if (!bt_cb(skb)->incoming)
233 				continue;
234 			if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
235 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
236 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
237 			    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
238 				continue;
239 		} else {
240 			/* Don't send frame to other channel types */
241 			continue;
242 		}
243 
244 		if (!skb_copy) {
245 			/* Create a private copy with headroom */
246 			skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true);
247 			if (!skb_copy)
248 				continue;
249 
250 			/* Put type byte before the data */
251 			memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1);
252 		}
253 
254 		nskb = skb_clone(skb_copy, GFP_ATOMIC);
255 		if (!nskb)
256 			continue;
257 
258 		if (sock_queue_rcv_skb(sk, nskb))
259 			kfree_skb(nskb);
260 	}
261 
262 	read_unlock(&hci_sk_list.lock);
263 
264 	kfree_skb(skb_copy);
265 }
266 
267 /* Send frame to sockets with specific channel */
268 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
269 				  int flag, struct sock *skip_sk)
270 {
271 	struct sock *sk;
272 
273 	BT_DBG("channel %u len %d", channel, skb->len);
274 
275 	sk_for_each(sk, &hci_sk_list.head) {
276 		struct sk_buff *nskb;
277 
278 		/* Ignore socket without the flag set */
279 		if (!hci_sock_test_flag(sk, flag))
280 			continue;
281 
282 		/* Skip the original socket */
283 		if (sk == skip_sk)
284 			continue;
285 
286 		if (sk->sk_state != BT_BOUND)
287 			continue;
288 
289 		if (hci_pi(sk)->channel != channel)
290 			continue;
291 
292 		nskb = skb_clone(skb, GFP_ATOMIC);
293 		if (!nskb)
294 			continue;
295 
296 		if (sock_queue_rcv_skb(sk, nskb))
297 			kfree_skb(nskb);
298 	}
299 
300 }
301 
302 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
303 			 int flag, struct sock *skip_sk)
304 {
305 	read_lock(&hci_sk_list.lock);
306 	__hci_send_to_channel(channel, skb, flag, skip_sk);
307 	read_unlock(&hci_sk_list.lock);
308 }
309 
310 /* Send frame to monitor socket */
311 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
312 {
313 	struct sk_buff *skb_copy = NULL;
314 	struct hci_mon_hdr *hdr;
315 	__le16 opcode;
316 
317 	if (!atomic_read(&monitor_promisc))
318 		return;
319 
320 	BT_DBG("hdev %p len %d", hdev, skb->len);
321 
322 	switch (hci_skb_pkt_type(skb)) {
323 	case HCI_COMMAND_PKT:
324 		opcode = cpu_to_le16(HCI_MON_COMMAND_PKT);
325 		break;
326 	case HCI_EVENT_PKT:
327 		opcode = cpu_to_le16(HCI_MON_EVENT_PKT);
328 		break;
329 	case HCI_ACLDATA_PKT:
330 		if (bt_cb(skb)->incoming)
331 			opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT);
332 		else
333 			opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT);
334 		break;
335 	case HCI_SCODATA_PKT:
336 		if (bt_cb(skb)->incoming)
337 			opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT);
338 		else
339 			opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT);
340 		break;
341 	case HCI_ISODATA_PKT:
342 		if (bt_cb(skb)->incoming)
343 			opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT);
344 		else
345 			opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT);
346 		break;
347 	case HCI_DIAG_PKT:
348 		opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG);
349 		break;
350 	default:
351 		return;
352 	}
353 
354 	/* Create a private copy with headroom */
355 	skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true);
356 	if (!skb_copy)
357 		return;
358 
359 	/* Put header before the data */
360 	hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE);
361 	hdr->opcode = opcode;
362 	hdr->index = cpu_to_le16(hdev->id);
363 	hdr->len = cpu_to_le16(skb->len);
364 
365 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy,
366 			    HCI_SOCK_TRUSTED, NULL);
367 	kfree_skb(skb_copy);
368 }
369 
370 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
371 				 void *data, u16 data_len, ktime_t tstamp,
372 				 int flag, struct sock *skip_sk)
373 {
374 	struct sock *sk;
375 	__le16 index;
376 
377 	if (hdev)
378 		index = cpu_to_le16(hdev->id);
379 	else
380 		index = cpu_to_le16(MGMT_INDEX_NONE);
381 
382 	read_lock(&hci_sk_list.lock);
383 
384 	sk_for_each(sk, &hci_sk_list.head) {
385 		struct hci_mon_hdr *hdr;
386 		struct sk_buff *skb;
387 
388 		if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL)
389 			continue;
390 
391 		/* Ignore socket without the flag set */
392 		if (!hci_sock_test_flag(sk, flag))
393 			continue;
394 
395 		/* Skip the original socket */
396 		if (sk == skip_sk)
397 			continue;
398 
399 		skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC);
400 		if (!skb)
401 			continue;
402 
403 		put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
404 		put_unaligned_le16(event, skb_put(skb, 2));
405 
406 		if (data)
407 			skb_put_data(skb, data, data_len);
408 
409 		skb->tstamp = tstamp;
410 
411 		hdr = skb_push(skb, HCI_MON_HDR_SIZE);
412 		hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT);
413 		hdr->index = index;
414 		hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
415 
416 		__hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
417 				      HCI_SOCK_TRUSTED, NULL);
418 		kfree_skb(skb);
419 	}
420 
421 	read_unlock(&hci_sk_list.lock);
422 }
423 
424 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
425 {
426 	struct hci_mon_hdr *hdr;
427 	struct hci_mon_new_index *ni;
428 	struct hci_mon_index_info *ii;
429 	struct sk_buff *skb;
430 	__le16 opcode;
431 
432 	switch (event) {
433 	case HCI_DEV_REG:
434 		skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
435 		if (!skb)
436 			return NULL;
437 
438 		ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
439 		ni->type = hdev->dev_type;
440 		ni->bus = hdev->bus;
441 		bacpy(&ni->bdaddr, &hdev->bdaddr);
442 		memcpy(ni->name, hdev->name, 8);
443 
444 		opcode = cpu_to_le16(HCI_MON_NEW_INDEX);
445 		break;
446 
447 	case HCI_DEV_UNREG:
448 		skb = bt_skb_alloc(0, GFP_ATOMIC);
449 		if (!skb)
450 			return NULL;
451 
452 		opcode = cpu_to_le16(HCI_MON_DEL_INDEX);
453 		break;
454 
455 	case HCI_DEV_SETUP:
456 		if (hdev->manufacturer == 0xffff)
457 			return NULL;
458 		fallthrough;
459 
460 	case HCI_DEV_UP:
461 		skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC);
462 		if (!skb)
463 			return NULL;
464 
465 		ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE);
466 		bacpy(&ii->bdaddr, &hdev->bdaddr);
467 		ii->manufacturer = cpu_to_le16(hdev->manufacturer);
468 
469 		opcode = cpu_to_le16(HCI_MON_INDEX_INFO);
470 		break;
471 
472 	case HCI_DEV_OPEN:
473 		skb = bt_skb_alloc(0, GFP_ATOMIC);
474 		if (!skb)
475 			return NULL;
476 
477 		opcode = cpu_to_le16(HCI_MON_OPEN_INDEX);
478 		break;
479 
480 	case HCI_DEV_CLOSE:
481 		skb = bt_skb_alloc(0, GFP_ATOMIC);
482 		if (!skb)
483 			return NULL;
484 
485 		opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX);
486 		break;
487 
488 	default:
489 		return NULL;
490 	}
491 
492 	__net_timestamp(skb);
493 
494 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
495 	hdr->opcode = opcode;
496 	hdr->index = cpu_to_le16(hdev->id);
497 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
498 
499 	return skb;
500 }
501 
502 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk)
503 {
504 	struct hci_mon_hdr *hdr;
505 	struct sk_buff *skb;
506 	u16 format;
507 	u8 ver[3];
508 	u32 flags;
509 
510 	/* No message needed when cookie is not present */
511 	if (!hci_pi(sk)->cookie)
512 		return NULL;
513 
514 	switch (hci_pi(sk)->channel) {
515 	case HCI_CHANNEL_RAW:
516 		format = 0x0000;
517 		ver[0] = BT_SUBSYS_VERSION;
518 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
519 		break;
520 	case HCI_CHANNEL_USER:
521 		format = 0x0001;
522 		ver[0] = BT_SUBSYS_VERSION;
523 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
524 		break;
525 	case HCI_CHANNEL_CONTROL:
526 		format = 0x0002;
527 		mgmt_fill_version_info(ver);
528 		break;
529 	default:
530 		/* No message for unsupported format */
531 		return NULL;
532 	}
533 
534 	skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC);
535 	if (!skb)
536 		return NULL;
537 
538 	flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0;
539 
540 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
541 	put_unaligned_le16(format, skb_put(skb, 2));
542 	skb_put_data(skb, ver, sizeof(ver));
543 	put_unaligned_le32(flags, skb_put(skb, 4));
544 	skb_put_u8(skb, TASK_COMM_LEN);
545 	skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN);
546 
547 	__net_timestamp(skb);
548 
549 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
550 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN);
551 	if (hci_pi(sk)->hdev)
552 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
553 	else
554 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
555 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
556 
557 	return skb;
558 }
559 
560 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk)
561 {
562 	struct hci_mon_hdr *hdr;
563 	struct sk_buff *skb;
564 
565 	/* No message needed when cookie is not present */
566 	if (!hci_pi(sk)->cookie)
567 		return NULL;
568 
569 	switch (hci_pi(sk)->channel) {
570 	case HCI_CHANNEL_RAW:
571 	case HCI_CHANNEL_USER:
572 	case HCI_CHANNEL_CONTROL:
573 		break;
574 	default:
575 		/* No message for unsupported format */
576 		return NULL;
577 	}
578 
579 	skb = bt_skb_alloc(4, GFP_ATOMIC);
580 	if (!skb)
581 		return NULL;
582 
583 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
584 
585 	__net_timestamp(skb);
586 
587 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
588 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE);
589 	if (hci_pi(sk)->hdev)
590 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
591 	else
592 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
593 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
594 
595 	return skb;
596 }
597 
598 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index,
599 						   u16 opcode, u16 len,
600 						   const void *buf)
601 {
602 	struct hci_mon_hdr *hdr;
603 	struct sk_buff *skb;
604 
605 	skb = bt_skb_alloc(6 + len, GFP_ATOMIC);
606 	if (!skb)
607 		return NULL;
608 
609 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
610 	put_unaligned_le16(opcode, skb_put(skb, 2));
611 
612 	if (buf)
613 		skb_put_data(skb, buf, len);
614 
615 	__net_timestamp(skb);
616 
617 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
618 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND);
619 	hdr->index = cpu_to_le16(index);
620 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
621 
622 	return skb;
623 }
624 
625 static void __printf(2, 3)
626 send_monitor_note(struct sock *sk, const char *fmt, ...)
627 {
628 	size_t len;
629 	struct hci_mon_hdr *hdr;
630 	struct sk_buff *skb;
631 	va_list args;
632 
633 	va_start(args, fmt);
634 	len = vsnprintf(NULL, 0, fmt, args);
635 	va_end(args);
636 
637 	skb = bt_skb_alloc(len + 1, GFP_ATOMIC);
638 	if (!skb)
639 		return;
640 
641 	va_start(args, fmt);
642 	vsprintf(skb_put(skb, len), fmt, args);
643 	*(u8 *)skb_put(skb, 1) = 0;
644 	va_end(args);
645 
646 	__net_timestamp(skb);
647 
648 	hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE);
649 	hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE);
650 	hdr->index = cpu_to_le16(HCI_DEV_NONE);
651 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
652 
653 	if (sock_queue_rcv_skb(sk, skb))
654 		kfree_skb(skb);
655 }
656 
657 static void send_monitor_replay(struct sock *sk)
658 {
659 	struct hci_dev *hdev;
660 
661 	read_lock(&hci_dev_list_lock);
662 
663 	list_for_each_entry(hdev, &hci_dev_list, list) {
664 		struct sk_buff *skb;
665 
666 		skb = create_monitor_event(hdev, HCI_DEV_REG);
667 		if (!skb)
668 			continue;
669 
670 		if (sock_queue_rcv_skb(sk, skb))
671 			kfree_skb(skb);
672 
673 		if (!test_bit(HCI_RUNNING, &hdev->flags))
674 			continue;
675 
676 		skb = create_monitor_event(hdev, HCI_DEV_OPEN);
677 		if (!skb)
678 			continue;
679 
680 		if (sock_queue_rcv_skb(sk, skb))
681 			kfree_skb(skb);
682 
683 		if (test_bit(HCI_UP, &hdev->flags))
684 			skb = create_monitor_event(hdev, HCI_DEV_UP);
685 		else if (hci_dev_test_flag(hdev, HCI_SETUP))
686 			skb = create_monitor_event(hdev, HCI_DEV_SETUP);
687 		else
688 			skb = NULL;
689 
690 		if (skb) {
691 			if (sock_queue_rcv_skb(sk, skb))
692 				kfree_skb(skb);
693 		}
694 	}
695 
696 	read_unlock(&hci_dev_list_lock);
697 }
698 
699 static void send_monitor_control_replay(struct sock *mon_sk)
700 {
701 	struct sock *sk;
702 
703 	read_lock(&hci_sk_list.lock);
704 
705 	sk_for_each(sk, &hci_sk_list.head) {
706 		struct sk_buff *skb;
707 
708 		skb = create_monitor_ctrl_open(sk);
709 		if (!skb)
710 			continue;
711 
712 		if (sock_queue_rcv_skb(mon_sk, skb))
713 			kfree_skb(skb);
714 	}
715 
716 	read_unlock(&hci_sk_list.lock);
717 }
718 
719 /* Generate internal stack event */
720 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
721 {
722 	struct hci_event_hdr *hdr;
723 	struct hci_ev_stack_internal *ev;
724 	struct sk_buff *skb;
725 
726 	skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
727 	if (!skb)
728 		return;
729 
730 	hdr = skb_put(skb, HCI_EVENT_HDR_SIZE);
731 	hdr->evt  = HCI_EV_STACK_INTERNAL;
732 	hdr->plen = sizeof(*ev) + dlen;
733 
734 	ev = skb_put(skb, sizeof(*ev) + dlen);
735 	ev->type = type;
736 	memcpy(ev->data, data, dlen);
737 
738 	bt_cb(skb)->incoming = 1;
739 	__net_timestamp(skb);
740 
741 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
742 	hci_send_to_sock(hdev, skb);
743 	kfree_skb(skb);
744 }
745 
746 void hci_sock_dev_event(struct hci_dev *hdev, int event)
747 {
748 	BT_DBG("hdev %s event %d", hdev->name, event);
749 
750 	if (atomic_read(&monitor_promisc)) {
751 		struct sk_buff *skb;
752 
753 		/* Send event to monitor */
754 		skb = create_monitor_event(hdev, event);
755 		if (skb) {
756 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
757 					    HCI_SOCK_TRUSTED, NULL);
758 			kfree_skb(skb);
759 		}
760 	}
761 
762 	if (event <= HCI_DEV_DOWN) {
763 		struct hci_ev_si_device ev;
764 
765 		/* Send event to sockets */
766 		ev.event  = event;
767 		ev.dev_id = hdev->id;
768 		hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
769 	}
770 
771 	if (event == HCI_DEV_UNREG) {
772 		struct sock *sk;
773 
774 		/* Wake up sockets using this dead device */
775 		read_lock(&hci_sk_list.lock);
776 		sk_for_each(sk, &hci_sk_list.head) {
777 			if (hci_pi(sk)->hdev == hdev) {
778 				sk->sk_err = EPIPE;
779 				sk->sk_state_change(sk);
780 			}
781 		}
782 		read_unlock(&hci_sk_list.lock);
783 	}
784 }
785 
786 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel)
787 {
788 	struct hci_mgmt_chan *c;
789 
790 	list_for_each_entry(c, &mgmt_chan_list, list) {
791 		if (c->channel == channel)
792 			return c;
793 	}
794 
795 	return NULL;
796 }
797 
798 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel)
799 {
800 	struct hci_mgmt_chan *c;
801 
802 	mutex_lock(&mgmt_chan_list_lock);
803 	c = __hci_mgmt_chan_find(channel);
804 	mutex_unlock(&mgmt_chan_list_lock);
805 
806 	return c;
807 }
808 
809 int hci_mgmt_chan_register(struct hci_mgmt_chan *c)
810 {
811 	if (c->channel < HCI_CHANNEL_CONTROL)
812 		return -EINVAL;
813 
814 	mutex_lock(&mgmt_chan_list_lock);
815 	if (__hci_mgmt_chan_find(c->channel)) {
816 		mutex_unlock(&mgmt_chan_list_lock);
817 		return -EALREADY;
818 	}
819 
820 	list_add_tail(&c->list, &mgmt_chan_list);
821 
822 	mutex_unlock(&mgmt_chan_list_lock);
823 
824 	return 0;
825 }
826 EXPORT_SYMBOL(hci_mgmt_chan_register);
827 
828 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c)
829 {
830 	mutex_lock(&mgmt_chan_list_lock);
831 	list_del(&c->list);
832 	mutex_unlock(&mgmt_chan_list_lock);
833 }
834 EXPORT_SYMBOL(hci_mgmt_chan_unregister);
835 
836 static int hci_sock_release(struct socket *sock)
837 {
838 	struct sock *sk = sock->sk;
839 	struct hci_dev *hdev;
840 	struct sk_buff *skb;
841 
842 	BT_DBG("sock %p sk %p", sock, sk);
843 
844 	if (!sk)
845 		return 0;
846 
847 	lock_sock(sk);
848 
849 	switch (hci_pi(sk)->channel) {
850 	case HCI_CHANNEL_MONITOR:
851 		atomic_dec(&monitor_promisc);
852 		break;
853 	case HCI_CHANNEL_RAW:
854 	case HCI_CHANNEL_USER:
855 	case HCI_CHANNEL_CONTROL:
856 		/* Send event to monitor */
857 		skb = create_monitor_ctrl_close(sk);
858 		if (skb) {
859 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
860 					    HCI_SOCK_TRUSTED, NULL);
861 			kfree_skb(skb);
862 		}
863 
864 		hci_sock_free_cookie(sk);
865 		break;
866 	}
867 
868 	bt_sock_unlink(&hci_sk_list, sk);
869 
870 	hdev = hci_pi(sk)->hdev;
871 	if (hdev) {
872 		if (hci_pi(sk)->channel == HCI_CHANNEL_USER &&
873 		    !hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
874 			/* When releasing a user channel exclusive access,
875 			 * call hci_dev_do_close directly instead of calling
876 			 * hci_dev_close to ensure the exclusive access will
877 			 * be released and the controller brought back down.
878 			 *
879 			 * The checking of HCI_AUTO_OFF is not needed in this
880 			 * case since it will have been cleared already when
881 			 * opening the user channel.
882 			 *
883 			 * Make sure to also check that we haven't already
884 			 * unregistered since all the cleanup will have already
885 			 * been complete and hdev will get released when we put
886 			 * below.
887 			 */
888 			hci_dev_do_close(hdev);
889 			hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
890 			mgmt_index_added(hdev);
891 		}
892 
893 		atomic_dec(&hdev->promisc);
894 		hci_dev_put(hdev);
895 	}
896 
897 	sock_orphan(sk);
898 	release_sock(sk);
899 	sock_put(sk);
900 	return 0;
901 }
902 
903 static int hci_sock_reject_list_add(struct hci_dev *hdev, void __user *arg)
904 {
905 	bdaddr_t bdaddr;
906 	int err;
907 
908 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
909 		return -EFAULT;
910 
911 	hci_dev_lock(hdev);
912 
913 	err = hci_bdaddr_list_add(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
914 
915 	hci_dev_unlock(hdev);
916 
917 	return err;
918 }
919 
920 static int hci_sock_reject_list_del(struct hci_dev *hdev, void __user *arg)
921 {
922 	bdaddr_t bdaddr;
923 	int err;
924 
925 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
926 		return -EFAULT;
927 
928 	hci_dev_lock(hdev);
929 
930 	err = hci_bdaddr_list_del(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
931 
932 	hci_dev_unlock(hdev);
933 
934 	return err;
935 }
936 
937 /* Ioctls that require bound socket */
938 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
939 				unsigned long arg)
940 {
941 	struct hci_dev *hdev = hci_hdev_from_sock(sk);
942 
943 	if (IS_ERR(hdev))
944 		return PTR_ERR(hdev);
945 
946 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
947 		return -EBUSY;
948 
949 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
950 		return -EOPNOTSUPP;
951 
952 	if (hdev->dev_type != HCI_PRIMARY)
953 		return -EOPNOTSUPP;
954 
955 	switch (cmd) {
956 	case HCISETRAW:
957 		if (!capable(CAP_NET_ADMIN))
958 			return -EPERM;
959 		return -EOPNOTSUPP;
960 
961 	case HCIGETCONNINFO:
962 		return hci_get_conn_info(hdev, (void __user *)arg);
963 
964 	case HCIGETAUTHINFO:
965 		return hci_get_auth_info(hdev, (void __user *)arg);
966 
967 	case HCIBLOCKADDR:
968 		if (!capable(CAP_NET_ADMIN))
969 			return -EPERM;
970 		return hci_sock_reject_list_add(hdev, (void __user *)arg);
971 
972 	case HCIUNBLOCKADDR:
973 		if (!capable(CAP_NET_ADMIN))
974 			return -EPERM;
975 		return hci_sock_reject_list_del(hdev, (void __user *)arg);
976 	}
977 
978 	return -ENOIOCTLCMD;
979 }
980 
981 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
982 			  unsigned long arg)
983 {
984 	void __user *argp = (void __user *)arg;
985 	struct sock *sk = sock->sk;
986 	int err;
987 
988 	BT_DBG("cmd %x arg %lx", cmd, arg);
989 
990 	/* Make sure the cmd is valid before doing anything */
991 	switch (cmd) {
992 	case HCIGETDEVLIST:
993 	case HCIGETDEVINFO:
994 	case HCIGETCONNLIST:
995 	case HCIDEVUP:
996 	case HCIDEVDOWN:
997 	case HCIDEVRESET:
998 	case HCIDEVRESTAT:
999 	case HCISETSCAN:
1000 	case HCISETAUTH:
1001 	case HCISETENCRYPT:
1002 	case HCISETPTYPE:
1003 	case HCISETLINKPOL:
1004 	case HCISETLINKMODE:
1005 	case HCISETACLMTU:
1006 	case HCISETSCOMTU:
1007 	case HCIINQUIRY:
1008 	case HCISETRAW:
1009 	case HCIGETCONNINFO:
1010 	case HCIGETAUTHINFO:
1011 	case HCIBLOCKADDR:
1012 	case HCIUNBLOCKADDR:
1013 		break;
1014 	default:
1015 		return -ENOIOCTLCMD;
1016 	}
1017 
1018 	lock_sock(sk);
1019 
1020 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1021 		err = -EBADFD;
1022 		goto done;
1023 	}
1024 
1025 	/* When calling an ioctl on an unbound raw socket, then ensure
1026 	 * that the monitor gets informed. Ensure that the resulting event
1027 	 * is only send once by checking if the cookie exists or not. The
1028 	 * socket cookie will be only ever generated once for the lifetime
1029 	 * of a given socket.
1030 	 */
1031 	if (hci_sock_gen_cookie(sk)) {
1032 		struct sk_buff *skb;
1033 
1034 		/* Perform careful checks before setting the HCI_SOCK_TRUSTED
1035 		 * flag. Make sure that not only the current task but also
1036 		 * the socket opener has the required capability, since
1037 		 * privileged programs can be tricked into making ioctl calls
1038 		 * on HCI sockets, and the socket should not be marked as
1039 		 * trusted simply because the ioctl caller is privileged.
1040 		 */
1041 		if (sk_capable(sk, CAP_NET_ADMIN))
1042 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1043 
1044 		/* Send event to monitor */
1045 		skb = create_monitor_ctrl_open(sk);
1046 		if (skb) {
1047 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1048 					    HCI_SOCK_TRUSTED, NULL);
1049 			kfree_skb(skb);
1050 		}
1051 	}
1052 
1053 	release_sock(sk);
1054 
1055 	switch (cmd) {
1056 	case HCIGETDEVLIST:
1057 		return hci_get_dev_list(argp);
1058 
1059 	case HCIGETDEVINFO:
1060 		return hci_get_dev_info(argp);
1061 
1062 	case HCIGETCONNLIST:
1063 		return hci_get_conn_list(argp);
1064 
1065 	case HCIDEVUP:
1066 		if (!capable(CAP_NET_ADMIN))
1067 			return -EPERM;
1068 		return hci_dev_open(arg);
1069 
1070 	case HCIDEVDOWN:
1071 		if (!capable(CAP_NET_ADMIN))
1072 			return -EPERM;
1073 		return hci_dev_close(arg);
1074 
1075 	case HCIDEVRESET:
1076 		if (!capable(CAP_NET_ADMIN))
1077 			return -EPERM;
1078 		return hci_dev_reset(arg);
1079 
1080 	case HCIDEVRESTAT:
1081 		if (!capable(CAP_NET_ADMIN))
1082 			return -EPERM;
1083 		return hci_dev_reset_stat(arg);
1084 
1085 	case HCISETSCAN:
1086 	case HCISETAUTH:
1087 	case HCISETENCRYPT:
1088 	case HCISETPTYPE:
1089 	case HCISETLINKPOL:
1090 	case HCISETLINKMODE:
1091 	case HCISETACLMTU:
1092 	case HCISETSCOMTU:
1093 		if (!capable(CAP_NET_ADMIN))
1094 			return -EPERM;
1095 		return hci_dev_cmd(cmd, argp);
1096 
1097 	case HCIINQUIRY:
1098 		return hci_inquiry(argp);
1099 	}
1100 
1101 	lock_sock(sk);
1102 
1103 	err = hci_sock_bound_ioctl(sk, cmd, arg);
1104 
1105 done:
1106 	release_sock(sk);
1107 	return err;
1108 }
1109 
1110 #ifdef CONFIG_COMPAT
1111 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd,
1112 				 unsigned long arg)
1113 {
1114 	switch (cmd) {
1115 	case HCIDEVUP:
1116 	case HCIDEVDOWN:
1117 	case HCIDEVRESET:
1118 	case HCIDEVRESTAT:
1119 		return hci_sock_ioctl(sock, cmd, arg);
1120 	}
1121 
1122 	return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
1123 }
1124 #endif
1125 
1126 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
1127 			 int addr_len)
1128 {
1129 	struct sockaddr_hci haddr;
1130 	struct sock *sk = sock->sk;
1131 	struct hci_dev *hdev = NULL;
1132 	struct sk_buff *skb;
1133 	int len, err = 0;
1134 
1135 	BT_DBG("sock %p sk %p", sock, sk);
1136 
1137 	if (!addr)
1138 		return -EINVAL;
1139 
1140 	memset(&haddr, 0, sizeof(haddr));
1141 	len = min_t(unsigned int, sizeof(haddr), addr_len);
1142 	memcpy(&haddr, addr, len);
1143 
1144 	if (haddr.hci_family != AF_BLUETOOTH)
1145 		return -EINVAL;
1146 
1147 	lock_sock(sk);
1148 
1149 	/* Allow detaching from dead device and attaching to alive device, if
1150 	 * the caller wants to re-bind (instead of close) this socket in
1151 	 * response to hci_sock_dev_event(HCI_DEV_UNREG) notification.
1152 	 */
1153 	hdev = hci_pi(sk)->hdev;
1154 	if (hdev && hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1155 		hci_pi(sk)->hdev = NULL;
1156 		sk->sk_state = BT_OPEN;
1157 		hci_dev_put(hdev);
1158 	}
1159 	hdev = NULL;
1160 
1161 	if (sk->sk_state == BT_BOUND) {
1162 		err = -EALREADY;
1163 		goto done;
1164 	}
1165 
1166 	switch (haddr.hci_channel) {
1167 	case HCI_CHANNEL_RAW:
1168 		if (hci_pi(sk)->hdev) {
1169 			err = -EALREADY;
1170 			goto done;
1171 		}
1172 
1173 		if (haddr.hci_dev != HCI_DEV_NONE) {
1174 			hdev = hci_dev_get(haddr.hci_dev);
1175 			if (!hdev) {
1176 				err = -ENODEV;
1177 				goto done;
1178 			}
1179 
1180 			atomic_inc(&hdev->promisc);
1181 		}
1182 
1183 		hci_pi(sk)->channel = haddr.hci_channel;
1184 
1185 		if (!hci_sock_gen_cookie(sk)) {
1186 			/* In the case when a cookie has already been assigned,
1187 			 * then there has been already an ioctl issued against
1188 			 * an unbound socket and with that triggered an open
1189 			 * notification. Send a close notification first to
1190 			 * allow the state transition to bounded.
1191 			 */
1192 			skb = create_monitor_ctrl_close(sk);
1193 			if (skb) {
1194 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1195 						    HCI_SOCK_TRUSTED, NULL);
1196 				kfree_skb(skb);
1197 			}
1198 		}
1199 
1200 		if (capable(CAP_NET_ADMIN))
1201 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1202 
1203 		hci_pi(sk)->hdev = hdev;
1204 
1205 		/* Send event to monitor */
1206 		skb = create_monitor_ctrl_open(sk);
1207 		if (skb) {
1208 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1209 					    HCI_SOCK_TRUSTED, NULL);
1210 			kfree_skb(skb);
1211 		}
1212 		break;
1213 
1214 	case HCI_CHANNEL_USER:
1215 		if (hci_pi(sk)->hdev) {
1216 			err = -EALREADY;
1217 			goto done;
1218 		}
1219 
1220 		if (haddr.hci_dev == HCI_DEV_NONE) {
1221 			err = -EINVAL;
1222 			goto done;
1223 		}
1224 
1225 		if (!capable(CAP_NET_ADMIN)) {
1226 			err = -EPERM;
1227 			goto done;
1228 		}
1229 
1230 		hdev = hci_dev_get(haddr.hci_dev);
1231 		if (!hdev) {
1232 			err = -ENODEV;
1233 			goto done;
1234 		}
1235 
1236 		if (test_bit(HCI_INIT, &hdev->flags) ||
1237 		    hci_dev_test_flag(hdev, HCI_SETUP) ||
1238 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1239 		    (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1240 		     test_bit(HCI_UP, &hdev->flags))) {
1241 			err = -EBUSY;
1242 			hci_dev_put(hdev);
1243 			goto done;
1244 		}
1245 
1246 		if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) {
1247 			err = -EUSERS;
1248 			hci_dev_put(hdev);
1249 			goto done;
1250 		}
1251 
1252 		mgmt_index_removed(hdev);
1253 
1254 		err = hci_dev_open(hdev->id);
1255 		if (err) {
1256 			if (err == -EALREADY) {
1257 				/* In case the transport is already up and
1258 				 * running, clear the error here.
1259 				 *
1260 				 * This can happen when opening a user
1261 				 * channel and HCI_AUTO_OFF grace period
1262 				 * is still active.
1263 				 */
1264 				err = 0;
1265 			} else {
1266 				hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
1267 				mgmt_index_added(hdev);
1268 				hci_dev_put(hdev);
1269 				goto done;
1270 			}
1271 		}
1272 
1273 		hci_pi(sk)->channel = haddr.hci_channel;
1274 
1275 		if (!hci_sock_gen_cookie(sk)) {
1276 			/* In the case when a cookie has already been assigned,
1277 			 * this socket will transition from a raw socket into
1278 			 * a user channel socket. For a clean transition, send
1279 			 * the close notification first.
1280 			 */
1281 			skb = create_monitor_ctrl_close(sk);
1282 			if (skb) {
1283 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1284 						    HCI_SOCK_TRUSTED, NULL);
1285 				kfree_skb(skb);
1286 			}
1287 		}
1288 
1289 		/* The user channel is restricted to CAP_NET_ADMIN
1290 		 * capabilities and with that implicitly trusted.
1291 		 */
1292 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1293 
1294 		hci_pi(sk)->hdev = hdev;
1295 
1296 		/* Send event to monitor */
1297 		skb = create_monitor_ctrl_open(sk);
1298 		if (skb) {
1299 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1300 					    HCI_SOCK_TRUSTED, NULL);
1301 			kfree_skb(skb);
1302 		}
1303 
1304 		atomic_inc(&hdev->promisc);
1305 		break;
1306 
1307 	case HCI_CHANNEL_MONITOR:
1308 		if (haddr.hci_dev != HCI_DEV_NONE) {
1309 			err = -EINVAL;
1310 			goto done;
1311 		}
1312 
1313 		if (!capable(CAP_NET_RAW)) {
1314 			err = -EPERM;
1315 			goto done;
1316 		}
1317 
1318 		hci_pi(sk)->channel = haddr.hci_channel;
1319 
1320 		/* The monitor interface is restricted to CAP_NET_RAW
1321 		 * capabilities and with that implicitly trusted.
1322 		 */
1323 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1324 
1325 		send_monitor_note(sk, "Linux version %s (%s)",
1326 				  init_utsname()->release,
1327 				  init_utsname()->machine);
1328 		send_monitor_note(sk, "Bluetooth subsystem version %u.%u",
1329 				  BT_SUBSYS_VERSION, BT_SUBSYS_REVISION);
1330 		send_monitor_replay(sk);
1331 		send_monitor_control_replay(sk);
1332 
1333 		atomic_inc(&monitor_promisc);
1334 		break;
1335 
1336 	case HCI_CHANNEL_LOGGING:
1337 		if (haddr.hci_dev != HCI_DEV_NONE) {
1338 			err = -EINVAL;
1339 			goto done;
1340 		}
1341 
1342 		if (!capable(CAP_NET_ADMIN)) {
1343 			err = -EPERM;
1344 			goto done;
1345 		}
1346 
1347 		hci_pi(sk)->channel = haddr.hci_channel;
1348 		break;
1349 
1350 	default:
1351 		if (!hci_mgmt_chan_find(haddr.hci_channel)) {
1352 			err = -EINVAL;
1353 			goto done;
1354 		}
1355 
1356 		if (haddr.hci_dev != HCI_DEV_NONE) {
1357 			err = -EINVAL;
1358 			goto done;
1359 		}
1360 
1361 		/* Users with CAP_NET_ADMIN capabilities are allowed
1362 		 * access to all management commands and events. For
1363 		 * untrusted users the interface is restricted and
1364 		 * also only untrusted events are sent.
1365 		 */
1366 		if (capable(CAP_NET_ADMIN))
1367 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1368 
1369 		hci_pi(sk)->channel = haddr.hci_channel;
1370 
1371 		/* At the moment the index and unconfigured index events
1372 		 * are enabled unconditionally. Setting them on each
1373 		 * socket when binding keeps this functionality. They
1374 		 * however might be cleared later and then sending of these
1375 		 * events will be disabled, but that is then intentional.
1376 		 *
1377 		 * This also enables generic events that are safe to be
1378 		 * received by untrusted users. Example for such events
1379 		 * are changes to settings, class of device, name etc.
1380 		 */
1381 		if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) {
1382 			if (!hci_sock_gen_cookie(sk)) {
1383 				/* In the case when a cookie has already been
1384 				 * assigned, this socket will transition from
1385 				 * a raw socket into a control socket. To
1386 				 * allow for a clean transition, send the
1387 				 * close notification first.
1388 				 */
1389 				skb = create_monitor_ctrl_close(sk);
1390 				if (skb) {
1391 					hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1392 							    HCI_SOCK_TRUSTED, NULL);
1393 					kfree_skb(skb);
1394 				}
1395 			}
1396 
1397 			/* Send event to monitor */
1398 			skb = create_monitor_ctrl_open(sk);
1399 			if (skb) {
1400 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1401 						    HCI_SOCK_TRUSTED, NULL);
1402 				kfree_skb(skb);
1403 			}
1404 
1405 			hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS);
1406 			hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS);
1407 			hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS);
1408 			hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS);
1409 			hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS);
1410 			hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS);
1411 		}
1412 		break;
1413 	}
1414 
1415 	/* Default MTU to HCI_MAX_FRAME_SIZE if not set */
1416 	if (!hci_pi(sk)->mtu)
1417 		hci_pi(sk)->mtu = HCI_MAX_FRAME_SIZE;
1418 
1419 	sk->sk_state = BT_BOUND;
1420 
1421 done:
1422 	release_sock(sk);
1423 	return err;
1424 }
1425 
1426 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
1427 			    int peer)
1428 {
1429 	struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr;
1430 	struct sock *sk = sock->sk;
1431 	struct hci_dev *hdev;
1432 	int err = 0;
1433 
1434 	BT_DBG("sock %p sk %p", sock, sk);
1435 
1436 	if (peer)
1437 		return -EOPNOTSUPP;
1438 
1439 	lock_sock(sk);
1440 
1441 	hdev = hci_hdev_from_sock(sk);
1442 	if (IS_ERR(hdev)) {
1443 		err = PTR_ERR(hdev);
1444 		goto done;
1445 	}
1446 
1447 	haddr->hci_family = AF_BLUETOOTH;
1448 	haddr->hci_dev    = hdev->id;
1449 	haddr->hci_channel= hci_pi(sk)->channel;
1450 	err = sizeof(*haddr);
1451 
1452 done:
1453 	release_sock(sk);
1454 	return err;
1455 }
1456 
1457 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
1458 			  struct sk_buff *skb)
1459 {
1460 	__u8 mask = hci_pi(sk)->cmsg_mask;
1461 
1462 	if (mask & HCI_CMSG_DIR) {
1463 		int incoming = bt_cb(skb)->incoming;
1464 		put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
1465 			 &incoming);
1466 	}
1467 
1468 	if (mask & HCI_CMSG_TSTAMP) {
1469 #ifdef CONFIG_COMPAT
1470 		struct old_timeval32 ctv;
1471 #endif
1472 		struct __kernel_old_timeval tv;
1473 		void *data;
1474 		int len;
1475 
1476 		skb_get_timestamp(skb, &tv);
1477 
1478 		data = &tv;
1479 		len = sizeof(tv);
1480 #ifdef CONFIG_COMPAT
1481 		if (!COMPAT_USE_64BIT_TIME &&
1482 		    (msg->msg_flags & MSG_CMSG_COMPAT)) {
1483 			ctv.tv_sec = tv.tv_sec;
1484 			ctv.tv_usec = tv.tv_usec;
1485 			data = &ctv;
1486 			len = sizeof(ctv);
1487 		}
1488 #endif
1489 
1490 		put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
1491 	}
1492 }
1493 
1494 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg,
1495 			    size_t len, int flags)
1496 {
1497 	struct sock *sk = sock->sk;
1498 	struct sk_buff *skb;
1499 	int copied, err;
1500 	unsigned int skblen;
1501 
1502 	BT_DBG("sock %p, sk %p", sock, sk);
1503 
1504 	if (flags & MSG_OOB)
1505 		return -EOPNOTSUPP;
1506 
1507 	if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING)
1508 		return -EOPNOTSUPP;
1509 
1510 	if (sk->sk_state == BT_CLOSED)
1511 		return 0;
1512 
1513 	skb = skb_recv_datagram(sk, flags, &err);
1514 	if (!skb)
1515 		return err;
1516 
1517 	skblen = skb->len;
1518 	copied = skb->len;
1519 	if (len < copied) {
1520 		msg->msg_flags |= MSG_TRUNC;
1521 		copied = len;
1522 	}
1523 
1524 	skb_reset_transport_header(skb);
1525 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
1526 
1527 	switch (hci_pi(sk)->channel) {
1528 	case HCI_CHANNEL_RAW:
1529 		hci_sock_cmsg(sk, msg, skb);
1530 		break;
1531 	case HCI_CHANNEL_USER:
1532 	case HCI_CHANNEL_MONITOR:
1533 		sock_recv_timestamp(msg, sk, skb);
1534 		break;
1535 	default:
1536 		if (hci_mgmt_chan_find(hci_pi(sk)->channel))
1537 			sock_recv_timestamp(msg, sk, skb);
1538 		break;
1539 	}
1540 
1541 	skb_free_datagram(sk, skb);
1542 
1543 	if (flags & MSG_TRUNC)
1544 		copied = skblen;
1545 
1546 	return err ? : copied;
1547 }
1548 
1549 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk,
1550 			struct sk_buff *skb)
1551 {
1552 	u8 *cp;
1553 	struct mgmt_hdr *hdr;
1554 	u16 opcode, index, len;
1555 	struct hci_dev *hdev = NULL;
1556 	const struct hci_mgmt_handler *handler;
1557 	bool var_len, no_hdev;
1558 	int err;
1559 
1560 	BT_DBG("got %d bytes", skb->len);
1561 
1562 	if (skb->len < sizeof(*hdr))
1563 		return -EINVAL;
1564 
1565 	hdr = (void *)skb->data;
1566 	opcode = __le16_to_cpu(hdr->opcode);
1567 	index = __le16_to_cpu(hdr->index);
1568 	len = __le16_to_cpu(hdr->len);
1569 
1570 	if (len != skb->len - sizeof(*hdr)) {
1571 		err = -EINVAL;
1572 		goto done;
1573 	}
1574 
1575 	if (chan->channel == HCI_CHANNEL_CONTROL) {
1576 		struct sk_buff *cmd;
1577 
1578 		/* Send event to monitor */
1579 		cmd = create_monitor_ctrl_command(sk, index, opcode, len,
1580 						  skb->data + sizeof(*hdr));
1581 		if (cmd) {
1582 			hci_send_to_channel(HCI_CHANNEL_MONITOR, cmd,
1583 					    HCI_SOCK_TRUSTED, NULL);
1584 			kfree_skb(cmd);
1585 		}
1586 	}
1587 
1588 	if (opcode >= chan->handler_count ||
1589 	    chan->handlers[opcode].func == NULL) {
1590 		BT_DBG("Unknown op %u", opcode);
1591 		err = mgmt_cmd_status(sk, index, opcode,
1592 				      MGMT_STATUS_UNKNOWN_COMMAND);
1593 		goto done;
1594 	}
1595 
1596 	handler = &chan->handlers[opcode];
1597 
1598 	if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) &&
1599 	    !(handler->flags & HCI_MGMT_UNTRUSTED)) {
1600 		err = mgmt_cmd_status(sk, index, opcode,
1601 				      MGMT_STATUS_PERMISSION_DENIED);
1602 		goto done;
1603 	}
1604 
1605 	if (index != MGMT_INDEX_NONE) {
1606 		hdev = hci_dev_get(index);
1607 		if (!hdev) {
1608 			err = mgmt_cmd_status(sk, index, opcode,
1609 					      MGMT_STATUS_INVALID_INDEX);
1610 			goto done;
1611 		}
1612 
1613 		if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1614 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1615 		    hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1616 			err = mgmt_cmd_status(sk, index, opcode,
1617 					      MGMT_STATUS_INVALID_INDEX);
1618 			goto done;
1619 		}
1620 
1621 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1622 		    !(handler->flags & HCI_MGMT_UNCONFIGURED)) {
1623 			err = mgmt_cmd_status(sk, index, opcode,
1624 					      MGMT_STATUS_INVALID_INDEX);
1625 			goto done;
1626 		}
1627 	}
1628 
1629 	if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) {
1630 		no_hdev = (handler->flags & HCI_MGMT_NO_HDEV);
1631 		if (no_hdev != !hdev) {
1632 			err = mgmt_cmd_status(sk, index, opcode,
1633 					      MGMT_STATUS_INVALID_INDEX);
1634 			goto done;
1635 		}
1636 	}
1637 
1638 	var_len = (handler->flags & HCI_MGMT_VAR_LEN);
1639 	if ((var_len && len < handler->data_len) ||
1640 	    (!var_len && len != handler->data_len)) {
1641 		err = mgmt_cmd_status(sk, index, opcode,
1642 				      MGMT_STATUS_INVALID_PARAMS);
1643 		goto done;
1644 	}
1645 
1646 	if (hdev && chan->hdev_init)
1647 		chan->hdev_init(sk, hdev);
1648 
1649 	cp = skb->data + sizeof(*hdr);
1650 
1651 	err = handler->func(sk, hdev, cp, len);
1652 	if (err < 0)
1653 		goto done;
1654 
1655 	err = skb->len;
1656 
1657 done:
1658 	if (hdev)
1659 		hci_dev_put(hdev);
1660 
1661 	return err;
1662 }
1663 
1664 static int hci_logging_frame(struct sock *sk, struct sk_buff *skb,
1665 			     unsigned int flags)
1666 {
1667 	struct hci_mon_hdr *hdr;
1668 	struct hci_dev *hdev;
1669 	u16 index;
1670 	int err;
1671 
1672 	/* The logging frame consists at minimum of the standard header,
1673 	 * the priority byte, the ident length byte and at least one string
1674 	 * terminator NUL byte. Anything shorter are invalid packets.
1675 	 */
1676 	if (skb->len < sizeof(*hdr) + 3)
1677 		return -EINVAL;
1678 
1679 	hdr = (void *)skb->data;
1680 
1681 	if (__le16_to_cpu(hdr->len) != skb->len - sizeof(*hdr))
1682 		return -EINVAL;
1683 
1684 	if (__le16_to_cpu(hdr->opcode) == 0x0000) {
1685 		__u8 priority = skb->data[sizeof(*hdr)];
1686 		__u8 ident_len = skb->data[sizeof(*hdr) + 1];
1687 
1688 		/* Only the priorities 0-7 are valid and with that any other
1689 		 * value results in an invalid packet.
1690 		 *
1691 		 * The priority byte is followed by an ident length byte and
1692 		 * the NUL terminated ident string. Check that the ident
1693 		 * length is not overflowing the packet and also that the
1694 		 * ident string itself is NUL terminated. In case the ident
1695 		 * length is zero, the length value actually doubles as NUL
1696 		 * terminator identifier.
1697 		 *
1698 		 * The message follows the ident string (if present) and
1699 		 * must be NUL terminated. Otherwise it is not a valid packet.
1700 		 */
1701 		if (priority > 7 || skb->data[skb->len - 1] != 0x00 ||
1702 		    ident_len > skb->len - sizeof(*hdr) - 3 ||
1703 		    skb->data[sizeof(*hdr) + ident_len + 1] != 0x00)
1704 			return -EINVAL;
1705 	} else {
1706 		return -EINVAL;
1707 	}
1708 
1709 	index = __le16_to_cpu(hdr->index);
1710 
1711 	if (index != MGMT_INDEX_NONE) {
1712 		hdev = hci_dev_get(index);
1713 		if (!hdev)
1714 			return -ENODEV;
1715 	} else {
1716 		hdev = NULL;
1717 	}
1718 
1719 	hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING);
1720 
1721 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL);
1722 	err = skb->len;
1723 
1724 	if (hdev)
1725 		hci_dev_put(hdev);
1726 
1727 	return err;
1728 }
1729 
1730 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1731 			    size_t len)
1732 {
1733 	struct sock *sk = sock->sk;
1734 	struct hci_mgmt_chan *chan;
1735 	struct hci_dev *hdev;
1736 	struct sk_buff *skb;
1737 	int err;
1738 	const unsigned int flags = msg->msg_flags;
1739 
1740 	BT_DBG("sock %p sk %p", sock, sk);
1741 
1742 	if (flags & MSG_OOB)
1743 		return -EOPNOTSUPP;
1744 
1745 	if (flags & ~(MSG_DONTWAIT | MSG_NOSIGNAL | MSG_ERRQUEUE | MSG_CMSG_COMPAT))
1746 		return -EINVAL;
1747 
1748 	if (len < 4 || len > hci_pi(sk)->mtu)
1749 		return -EINVAL;
1750 
1751 	skb = bt_skb_sendmsg(sk, msg, len, len, 0, 0);
1752 	if (IS_ERR(skb))
1753 		return PTR_ERR(skb);
1754 
1755 	lock_sock(sk);
1756 
1757 	switch (hci_pi(sk)->channel) {
1758 	case HCI_CHANNEL_RAW:
1759 	case HCI_CHANNEL_USER:
1760 		break;
1761 	case HCI_CHANNEL_MONITOR:
1762 		err = -EOPNOTSUPP;
1763 		goto drop;
1764 	case HCI_CHANNEL_LOGGING:
1765 		err = hci_logging_frame(sk, skb, flags);
1766 		goto drop;
1767 	default:
1768 		mutex_lock(&mgmt_chan_list_lock);
1769 		chan = __hci_mgmt_chan_find(hci_pi(sk)->channel);
1770 		if (chan)
1771 			err = hci_mgmt_cmd(chan, sk, skb);
1772 		else
1773 			err = -EINVAL;
1774 
1775 		mutex_unlock(&mgmt_chan_list_lock);
1776 		goto drop;
1777 	}
1778 
1779 	hdev = hci_hdev_from_sock(sk);
1780 	if (IS_ERR(hdev)) {
1781 		err = PTR_ERR(hdev);
1782 		goto drop;
1783 	}
1784 
1785 	if (!test_bit(HCI_UP, &hdev->flags)) {
1786 		err = -ENETDOWN;
1787 		goto drop;
1788 	}
1789 
1790 	hci_skb_pkt_type(skb) = skb->data[0];
1791 	skb_pull(skb, 1);
1792 
1793 	if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
1794 		/* No permission check is needed for user channel
1795 		 * since that gets enforced when binding the socket.
1796 		 *
1797 		 * However check that the packet type is valid.
1798 		 */
1799 		if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
1800 		    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1801 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1802 		    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1803 			err = -EINVAL;
1804 			goto drop;
1805 		}
1806 
1807 		skb_queue_tail(&hdev->raw_q, skb);
1808 		queue_work(hdev->workqueue, &hdev->tx_work);
1809 	} else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) {
1810 		u16 opcode = get_unaligned_le16(skb->data);
1811 		u16 ogf = hci_opcode_ogf(opcode);
1812 		u16 ocf = hci_opcode_ocf(opcode);
1813 
1814 		if (((ogf > HCI_SFLT_MAX_OGF) ||
1815 		     !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
1816 				   &hci_sec_filter.ocf_mask[ogf])) &&
1817 		    !capable(CAP_NET_RAW)) {
1818 			err = -EPERM;
1819 			goto drop;
1820 		}
1821 
1822 		/* Since the opcode has already been extracted here, store
1823 		 * a copy of the value for later use by the drivers.
1824 		 */
1825 		hci_skb_opcode(skb) = opcode;
1826 
1827 		if (ogf == 0x3f) {
1828 			skb_queue_tail(&hdev->raw_q, skb);
1829 			queue_work(hdev->workqueue, &hdev->tx_work);
1830 		} else {
1831 			/* Stand-alone HCI commands must be flagged as
1832 			 * single-command requests.
1833 			 */
1834 			bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
1835 
1836 			skb_queue_tail(&hdev->cmd_q, skb);
1837 			queue_work(hdev->workqueue, &hdev->cmd_work);
1838 		}
1839 	} else {
1840 		if (!capable(CAP_NET_RAW)) {
1841 			err = -EPERM;
1842 			goto drop;
1843 		}
1844 
1845 		if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1846 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1847 		    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1848 			err = -EINVAL;
1849 			goto drop;
1850 		}
1851 
1852 		skb_queue_tail(&hdev->raw_q, skb);
1853 		queue_work(hdev->workqueue, &hdev->tx_work);
1854 	}
1855 
1856 	err = len;
1857 
1858 done:
1859 	release_sock(sk);
1860 	return err;
1861 
1862 drop:
1863 	kfree_skb(skb);
1864 	goto done;
1865 }
1866 
1867 static int hci_sock_setsockopt_old(struct socket *sock, int level, int optname,
1868 				   sockptr_t optval, unsigned int len)
1869 {
1870 	struct hci_ufilter uf = { .opcode = 0 };
1871 	struct sock *sk = sock->sk;
1872 	int err = 0, opt = 0;
1873 
1874 	BT_DBG("sk %p, opt %d", sk, optname);
1875 
1876 	lock_sock(sk);
1877 
1878 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1879 		err = -EBADFD;
1880 		goto done;
1881 	}
1882 
1883 	switch (optname) {
1884 	case HCI_DATA_DIR:
1885 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1886 			err = -EFAULT;
1887 			break;
1888 		}
1889 
1890 		if (opt)
1891 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
1892 		else
1893 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
1894 		break;
1895 
1896 	case HCI_TIME_STAMP:
1897 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1898 			err = -EFAULT;
1899 			break;
1900 		}
1901 
1902 		if (opt)
1903 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
1904 		else
1905 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
1906 		break;
1907 
1908 	case HCI_FILTER:
1909 		{
1910 			struct hci_filter *f = &hci_pi(sk)->filter;
1911 
1912 			uf.type_mask = f->type_mask;
1913 			uf.opcode    = f->opcode;
1914 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1915 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1916 		}
1917 
1918 		len = min_t(unsigned int, len, sizeof(uf));
1919 		if (copy_from_sockptr(&uf, optval, len)) {
1920 			err = -EFAULT;
1921 			break;
1922 		}
1923 
1924 		if (!capable(CAP_NET_RAW)) {
1925 			uf.type_mask &= hci_sec_filter.type_mask;
1926 			uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
1927 			uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
1928 		}
1929 
1930 		{
1931 			struct hci_filter *f = &hci_pi(sk)->filter;
1932 
1933 			f->type_mask = uf.type_mask;
1934 			f->opcode    = uf.opcode;
1935 			*((u32 *) f->event_mask + 0) = uf.event_mask[0];
1936 			*((u32 *) f->event_mask + 1) = uf.event_mask[1];
1937 		}
1938 		break;
1939 
1940 	default:
1941 		err = -ENOPROTOOPT;
1942 		break;
1943 	}
1944 
1945 done:
1946 	release_sock(sk);
1947 	return err;
1948 }
1949 
1950 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
1951 			       sockptr_t optval, unsigned int len)
1952 {
1953 	struct sock *sk = sock->sk;
1954 	int err = 0;
1955 	u16 opt;
1956 
1957 	BT_DBG("sk %p, opt %d", sk, optname);
1958 
1959 	if (level == SOL_HCI)
1960 		return hci_sock_setsockopt_old(sock, level, optname, optval,
1961 					       len);
1962 
1963 	if (level != SOL_BLUETOOTH)
1964 		return -ENOPROTOOPT;
1965 
1966 	lock_sock(sk);
1967 
1968 	switch (optname) {
1969 	case BT_SNDMTU:
1970 	case BT_RCVMTU:
1971 		switch (hci_pi(sk)->channel) {
1972 		/* Don't allow changing MTU for channels that are meant for HCI
1973 		 * traffic only.
1974 		 */
1975 		case HCI_CHANNEL_RAW:
1976 		case HCI_CHANNEL_USER:
1977 			err = -ENOPROTOOPT;
1978 			goto done;
1979 		}
1980 
1981 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1982 			err = -EFAULT;
1983 			break;
1984 		}
1985 
1986 		hci_pi(sk)->mtu = opt;
1987 		break;
1988 
1989 	default:
1990 		err = -ENOPROTOOPT;
1991 		break;
1992 	}
1993 
1994 done:
1995 	release_sock(sk);
1996 	return err;
1997 }
1998 
1999 static int hci_sock_getsockopt_old(struct socket *sock, int level, int optname,
2000 				   char __user *optval, int __user *optlen)
2001 {
2002 	struct hci_ufilter uf;
2003 	struct sock *sk = sock->sk;
2004 	int len, opt, err = 0;
2005 
2006 	BT_DBG("sk %p, opt %d", sk, optname);
2007 
2008 	if (get_user(len, optlen))
2009 		return -EFAULT;
2010 
2011 	lock_sock(sk);
2012 
2013 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
2014 		err = -EBADFD;
2015 		goto done;
2016 	}
2017 
2018 	switch (optname) {
2019 	case HCI_DATA_DIR:
2020 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
2021 			opt = 1;
2022 		else
2023 			opt = 0;
2024 
2025 		if (put_user(opt, optval))
2026 			err = -EFAULT;
2027 		break;
2028 
2029 	case HCI_TIME_STAMP:
2030 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
2031 			opt = 1;
2032 		else
2033 			opt = 0;
2034 
2035 		if (put_user(opt, optval))
2036 			err = -EFAULT;
2037 		break;
2038 
2039 	case HCI_FILTER:
2040 		{
2041 			struct hci_filter *f = &hci_pi(sk)->filter;
2042 
2043 			memset(&uf, 0, sizeof(uf));
2044 			uf.type_mask = f->type_mask;
2045 			uf.opcode    = f->opcode;
2046 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
2047 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
2048 		}
2049 
2050 		len = min_t(unsigned int, len, sizeof(uf));
2051 		if (copy_to_user(optval, &uf, len))
2052 			err = -EFAULT;
2053 		break;
2054 
2055 	default:
2056 		err = -ENOPROTOOPT;
2057 		break;
2058 	}
2059 
2060 done:
2061 	release_sock(sk);
2062 	return err;
2063 }
2064 
2065 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
2066 			       char __user *optval, int __user *optlen)
2067 {
2068 	struct sock *sk = sock->sk;
2069 	int err = 0;
2070 
2071 	BT_DBG("sk %p, opt %d", sk, optname);
2072 
2073 	if (level == SOL_HCI)
2074 		return hci_sock_getsockopt_old(sock, level, optname, optval,
2075 					       optlen);
2076 
2077 	if (level != SOL_BLUETOOTH)
2078 		return -ENOPROTOOPT;
2079 
2080 	lock_sock(sk);
2081 
2082 	switch (optname) {
2083 	case BT_SNDMTU:
2084 	case BT_RCVMTU:
2085 		if (put_user(hci_pi(sk)->mtu, (u16 __user *)optval))
2086 			err = -EFAULT;
2087 		break;
2088 
2089 	default:
2090 		err = -ENOPROTOOPT;
2091 		break;
2092 	}
2093 
2094 	release_sock(sk);
2095 	return err;
2096 }
2097 
2098 static void hci_sock_destruct(struct sock *sk)
2099 {
2100 	mgmt_cleanup(sk);
2101 	skb_queue_purge(&sk->sk_receive_queue);
2102 	skb_queue_purge(&sk->sk_write_queue);
2103 }
2104 
2105 static const struct proto_ops hci_sock_ops = {
2106 	.family		= PF_BLUETOOTH,
2107 	.owner		= THIS_MODULE,
2108 	.release	= hci_sock_release,
2109 	.bind		= hci_sock_bind,
2110 	.getname	= hci_sock_getname,
2111 	.sendmsg	= hci_sock_sendmsg,
2112 	.recvmsg	= hci_sock_recvmsg,
2113 	.ioctl		= hci_sock_ioctl,
2114 #ifdef CONFIG_COMPAT
2115 	.compat_ioctl	= hci_sock_compat_ioctl,
2116 #endif
2117 	.poll		= datagram_poll,
2118 	.listen		= sock_no_listen,
2119 	.shutdown	= sock_no_shutdown,
2120 	.setsockopt	= hci_sock_setsockopt,
2121 	.getsockopt	= hci_sock_getsockopt,
2122 	.connect	= sock_no_connect,
2123 	.socketpair	= sock_no_socketpair,
2124 	.accept		= sock_no_accept,
2125 	.mmap		= sock_no_mmap
2126 };
2127 
2128 static struct proto hci_sk_proto = {
2129 	.name		= "HCI",
2130 	.owner		= THIS_MODULE,
2131 	.obj_size	= sizeof(struct hci_pinfo)
2132 };
2133 
2134 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
2135 			   int kern)
2136 {
2137 	struct sock *sk;
2138 
2139 	BT_DBG("sock %p", sock);
2140 
2141 	if (sock->type != SOCK_RAW)
2142 		return -ESOCKTNOSUPPORT;
2143 
2144 	sock->ops = &hci_sock_ops;
2145 
2146 	sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern);
2147 	if (!sk)
2148 		return -ENOMEM;
2149 
2150 	sock_init_data(sock, sk);
2151 
2152 	sock_reset_flag(sk, SOCK_ZAPPED);
2153 
2154 	sk->sk_protocol = protocol;
2155 
2156 	sock->state = SS_UNCONNECTED;
2157 	sk->sk_state = BT_OPEN;
2158 	sk->sk_destruct = hci_sock_destruct;
2159 
2160 	bt_sock_link(&hci_sk_list, sk);
2161 	return 0;
2162 }
2163 
2164 static const struct net_proto_family hci_sock_family_ops = {
2165 	.family	= PF_BLUETOOTH,
2166 	.owner	= THIS_MODULE,
2167 	.create	= hci_sock_create,
2168 };
2169 
2170 int __init hci_sock_init(void)
2171 {
2172 	int err;
2173 
2174 	BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr));
2175 
2176 	err = proto_register(&hci_sk_proto, 0);
2177 	if (err < 0)
2178 		return err;
2179 
2180 	err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
2181 	if (err < 0) {
2182 		BT_ERR("HCI socket registration failed");
2183 		goto error;
2184 	}
2185 
2186 	err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL);
2187 	if (err < 0) {
2188 		BT_ERR("Failed to create HCI proc file");
2189 		bt_sock_unregister(BTPROTO_HCI);
2190 		goto error;
2191 	}
2192 
2193 	BT_INFO("HCI socket layer initialized");
2194 
2195 	return 0;
2196 
2197 error:
2198 	proto_unregister(&hci_sk_proto);
2199 	return err;
2200 }
2201 
2202 void hci_sock_cleanup(void)
2203 {
2204 	bt_procfs_cleanup(&init_net, "hci");
2205 	bt_sock_unregister(BTPROTO_HCI);
2206 	proto_unregister(&hci_sk_proto);
2207 }
2208