xref: /openbmc/linux/net/8021q/vlan_dev.c (revision e868d61272caa648214046a096e5a6bfc068dc8c)
1 /* -*- linux-c -*-
2  * INET		802.1Q VLAN
3  *		Ethernet-type device handling.
4  *
5  * Authors:	Ben Greear <greearb@candelatech.com>
6  *              Please send support related email to: vlan@scry.wanfear.com
7  *              VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
8  *
9  * Fixes:       Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
10  *                - reset skb->pkt_type on incoming packets when MAC was changed
11  *                - see that changed MAC is saddr for outgoing packets
12  *              Oct 20, 2001:  Ard van Breeman:
13  *                - Fix MC-list, finally.
14  *                - Flush MC-list on VLAN destroy.
15  *
16  *
17  *		This program is free software; you can redistribute it and/or
18  *		modify it under the terms of the GNU General Public License
19  *		as published by the Free Software Foundation; either version
20  *		2 of the License, or (at your option) any later version.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/in.h>
26 #include <linux/init.h>
27 #include <asm/uaccess.h> /* for copy_from_user */
28 #include <linux/skbuff.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <net/datalink.h>
32 #include <net/p8022.h>
33 #include <net/arp.h>
34 
35 #include "vlan.h"
36 #include "vlanproc.h"
37 #include <linux/if_vlan.h>
38 #include <net/ip.h>
39 
40 /*
41  *	Rebuild the Ethernet MAC header. This is called after an ARP
42  *	(or in future other address resolution) has completed on this
43  *	sk_buff. We now let ARP fill in the other fields.
44  *
45  *	This routine CANNOT use cached dst->neigh!
46  *	Really, it is used only when dst->neigh is wrong.
47  *
48  * TODO:  This needs a checkup, I'm ignorant here. --BLG
49  */
50 int vlan_dev_rebuild_header(struct sk_buff *skb)
51 {
52 	struct net_device *dev = skb->dev;
53 	struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
54 
55 	switch (veth->h_vlan_encapsulated_proto) {
56 #ifdef CONFIG_INET
57 	case __constant_htons(ETH_P_IP):
58 
59 		/* TODO:  Confirm this will work with VLAN headers... */
60 		return arp_find(veth->h_dest, skb);
61 #endif
62 	default:
63 		printk(VLAN_DBG
64 		       "%s: unable to resolve type %X addresses.\n",
65 		       dev->name, ntohs(veth->h_vlan_encapsulated_proto));
66 
67 		memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
68 		break;
69 	}
70 
71 	return 0;
72 }
73 
74 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
75 {
76 	if (VLAN_DEV_INFO(skb->dev)->flags & 1) {
77 		if (skb_shared(skb) || skb_cloned(skb)) {
78 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
79 			kfree_skb(skb);
80 			skb = nskb;
81 		}
82 		if (skb) {
83 			/* Lifted from Gleb's VLAN code... */
84 			memmove(skb->data - ETH_HLEN,
85 				skb->data - VLAN_ETH_HLEN, 12);
86 			skb->mac_header += VLAN_HLEN;
87 		}
88 	}
89 
90 	return skb;
91 }
92 
93 /*
94  *	Determine the packet's protocol ID. The rule here is that we
95  *	assume 802.3 if the type field is short enough to be a length.
96  *	This is normal practice and works for any 'now in use' protocol.
97  *
98  *  Also, at this point we assume that we ARE dealing exclusively with
99  *  VLAN packets, or packets that should be made into VLAN packets based
100  *  on a default VLAN ID.
101  *
102  *  NOTE:  Should be similar to ethernet/eth.c.
103  *
104  *  SANITY NOTE:  This method is called when a packet is moving up the stack
105  *                towards userland.  To get here, it would have already passed
106  *                through the ethernet/eth.c eth_type_trans() method.
107  *  SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
108  *                 stored UNALIGNED in the memory.  RISC systems don't like
109  *                 such cases very much...
110  *  SANITY NOTE 2a:  According to Dave Miller & Alexey, it will always be aligned,
111  *                 so there doesn't need to be any of the unaligned stuff.  It has
112  *                 been commented out now...  --Ben
113  *
114  */
115 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
116 		  struct packet_type* ptype, struct net_device *orig_dev)
117 {
118 	unsigned char *rawp = NULL;
119 	struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data);
120 	unsigned short vid;
121 	struct net_device_stats *stats;
122 	unsigned short vlan_TCI;
123 	__be16 proto;
124 
125 	/* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */
126 	vlan_TCI = ntohs(vhdr->h_vlan_TCI);
127 
128 	vid = (vlan_TCI & VLAN_VID_MASK);
129 
130 #ifdef VLAN_DEBUG
131 	printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n",
132 		__FUNCTION__, skb, vid);
133 #endif
134 
135 	/* Ok, we will find the correct VLAN device, strip the header,
136 	 * and then go on as usual.
137 	 */
138 
139 	/* We have 12 bits of vlan ID.
140 	 *
141 	 * We must not drop allow preempt until we hold a
142 	 * reference to the device (netif_rx does that) or we
143 	 * fail.
144 	 */
145 
146 	rcu_read_lock();
147 	skb->dev = __find_vlan_dev(dev, vid);
148 	if (!skb->dev) {
149 		rcu_read_unlock();
150 
151 #ifdef VLAN_DEBUG
152 		printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n",
153 			__FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex);
154 #endif
155 		kfree_skb(skb);
156 		return -1;
157 	}
158 
159 	skb->dev->last_rx = jiffies;
160 
161 	/* Bump the rx counters for the VLAN device. */
162 	stats = vlan_dev_get_stats(skb->dev);
163 	stats->rx_packets++;
164 	stats->rx_bytes += skb->len;
165 
166 	/* Take off the VLAN header (4 bytes currently) */
167 	skb_pull_rcsum(skb, VLAN_HLEN);
168 
169 	/* Ok, lets check to make sure the device (dev) we
170 	 * came in on is what this VLAN is attached to.
171 	 */
172 
173 	if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) {
174 		rcu_read_unlock();
175 
176 #ifdef VLAN_DEBUG
177 		printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s  real_dev: %s, skb_dev: %s\n",
178 			__FUNCTION__, skb, dev->name,
179 			VLAN_DEV_INFO(skb->dev)->real_dev->name,
180 			skb->dev->name);
181 #endif
182 		kfree_skb(skb);
183 		stats->rx_errors++;
184 		return -1;
185 	}
186 
187 	/*
188 	 * Deal with ingress priority mapping.
189 	 */
190 	skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI));
191 
192 #ifdef VLAN_DEBUG
193 	printk(VLAN_DBG "%s: priority: %lu  for TCI: %hu (hbo)\n",
194 		__FUNCTION__, (unsigned long)(skb->priority),
195 		ntohs(vhdr->h_vlan_TCI));
196 #endif
197 
198 	/* The ethernet driver already did the pkt_type calculations
199 	 * for us...
200 	 */
201 	switch (skb->pkt_type) {
202 	case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
203 		// stats->broadcast ++; // no such counter :-(
204 		break;
205 
206 	case PACKET_MULTICAST:
207 		stats->multicast++;
208 		break;
209 
210 	case PACKET_OTHERHOST:
211 		/* Our lower layer thinks this is not local, let's make sure.
212 		 * This allows the VLAN to have a different MAC than the underlying
213 		 * device, and still route correctly.
214 		 */
215 		if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) {
216 			/* It is for our (changed) MAC-address! */
217 			skb->pkt_type = PACKET_HOST;
218 		}
219 		break;
220 	default:
221 		break;
222 	}
223 
224 	/*  Was a VLAN packet, grab the encapsulated protocol, which the layer
225 	 * three protocols care about.
226 	 */
227 	/* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */
228 	proto = vhdr->h_vlan_encapsulated_proto;
229 
230 	skb->protocol = proto;
231 	if (ntohs(proto) >= 1536) {
232 		/* place it back on the queue to be handled by
233 		 * true layer 3 protocols.
234 		 */
235 
236 		/* See if we are configured to re-write the VLAN header
237 		 * to make it look like ethernet...
238 		 */
239 		skb = vlan_check_reorder_header(skb);
240 
241 		/* Can be null if skb-clone fails when re-ordering */
242 		if (skb) {
243 			netif_rx(skb);
244 		} else {
245 			/* TODO:  Add a more specific counter here. */
246 			stats->rx_errors++;
247 		}
248 		rcu_read_unlock();
249 		return 0;
250 	}
251 
252 	rawp = skb->data;
253 
254 	/*
255 	 * This is a magic hack to spot IPX packets. Older Novell breaks
256 	 * the protocol design and runs IPX over 802.3 without an 802.2 LLC
257 	 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
258 	 * won't work for fault tolerant netware but does for the rest.
259 	 */
260 	if (*(unsigned short *)rawp == 0xFFFF) {
261 		skb->protocol = htons(ETH_P_802_3);
262 		/* place it back on the queue to be handled by true layer 3 protocols.
263 		 */
264 
265 		/* See if we are configured to re-write the VLAN header
266 		 * to make it look like ethernet...
267 		 */
268 		skb = vlan_check_reorder_header(skb);
269 
270 		/* Can be null if skb-clone fails when re-ordering */
271 		if (skb) {
272 			netif_rx(skb);
273 		} else {
274 			/* TODO:  Add a more specific counter here. */
275 			stats->rx_errors++;
276 		}
277 		rcu_read_unlock();
278 		return 0;
279 	}
280 
281 	/*
282 	 *	Real 802.2 LLC
283 	 */
284 	skb->protocol = htons(ETH_P_802_2);
285 	/* place it back on the queue to be handled by upper layer protocols.
286 	 */
287 
288 	/* See if we are configured to re-write the VLAN header
289 	 * to make it look like ethernet...
290 	 */
291 	skb = vlan_check_reorder_header(skb);
292 
293 	/* Can be null if skb-clone fails when re-ordering */
294 	if (skb) {
295 		netif_rx(skb);
296 	} else {
297 		/* TODO:  Add a more specific counter here. */
298 		stats->rx_errors++;
299 	}
300 	rcu_read_unlock();
301 	return 0;
302 }
303 
304 static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev,
305 							  struct sk_buff* skb)
306 {
307 	struct vlan_priority_tci_mapping *mp =
308 		VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)];
309 
310 	while (mp) {
311 		if (mp->priority == skb->priority) {
312 			return mp->vlan_qos; /* This should already be shifted to mask
313 					      * correctly with the VLAN's TCI
314 					      */
315 		}
316 		mp = mp->next;
317 	}
318 	return 0;
319 }
320 
321 /*
322  *	Create the VLAN header for an arbitrary protocol layer
323  *
324  *	saddr=NULL	means use device source address
325  *	daddr=NULL	means leave destination address (eg unresolved arp)
326  *
327  *  This is called when the SKB is moving down the stack towards the
328  *  physical devices.
329  */
330 int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
331 			 unsigned short type, void *daddr, void *saddr,
332 			 unsigned len)
333 {
334 	struct vlan_hdr *vhdr;
335 	unsigned short veth_TCI = 0;
336 	int rc = 0;
337 	int build_vlan_header = 0;
338 	struct net_device *vdev = dev; /* save this for the bottom of the method */
339 
340 #ifdef VLAN_DEBUG
341 	printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n",
342 		__FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr);
343 #endif
344 
345 	/* build vlan header only if re_order_header flag is NOT set.  This
346 	 * fixes some programs that get confused when they see a VLAN device
347 	 * sending a frame that is VLAN encoded (the consensus is that the VLAN
348 	 * device should look completely like an Ethernet device when the
349 	 * REORDER_HEADER flag is set)	The drawback to this is some extra
350 	 * header shuffling in the hard_start_xmit.  Users can turn off this
351 	 * REORDER behaviour with the vconfig tool.
352 	 */
353 	build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0);
354 
355 	if (build_vlan_header) {
356 		vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
357 
358 		/* build the four bytes that make this a VLAN header. */
359 
360 		/* Now, construct the second two bytes. This field looks something
361 		 * like:
362 		 * usr_priority: 3 bits	 (high bits)
363 		 * CFI		 1 bit
364 		 * VLAN ID	 12 bits (low bits)
365 		 *
366 		 */
367 		veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
368 		veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
369 
370 		vhdr->h_vlan_TCI = htons(veth_TCI);
371 
372 		/*
373 		 *  Set the protocol type.
374 		 *  For a packet of type ETH_P_802_3 we put the length in here instead.
375 		 *  It is up to the 802.2 layer to carry protocol information.
376 		 */
377 
378 		if (type != ETH_P_802_3) {
379 			vhdr->h_vlan_encapsulated_proto = htons(type);
380 		} else {
381 			vhdr->h_vlan_encapsulated_proto = htons(len);
382 		}
383 
384 		skb->protocol = htons(ETH_P_8021Q);
385 		skb_reset_network_header(skb);
386 	}
387 
388 	/* Before delegating work to the lower layer, enter our MAC-address */
389 	if (saddr == NULL)
390 		saddr = dev->dev_addr;
391 
392 	dev = VLAN_DEV_INFO(dev)->real_dev;
393 
394 	/* MPLS can send us skbuffs w/out enough space.	 This check will grow the
395 	 * skb if it doesn't have enough headroom.  Not a beautiful solution, so
396 	 * I'll tick a counter so that users can know it's happening...	 If they
397 	 * care...
398 	 */
399 
400 	/* NOTE:  This may still break if the underlying device is not the final
401 	 * device (and thus there are more headers to add...)  It should work for
402 	 * good-ole-ethernet though.
403 	 */
404 	if (skb_headroom(skb) < dev->hard_header_len) {
405 		struct sk_buff *sk_tmp = skb;
406 		skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len);
407 		kfree_skb(sk_tmp);
408 		if (skb == NULL) {
409 			struct net_device_stats *stats = vlan_dev_get_stats(vdev);
410 			stats->tx_dropped++;
411 			return -ENOMEM;
412 		}
413 		VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++;
414 #ifdef VLAN_DEBUG
415 		printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name);
416 #endif
417 	}
418 
419 	if (build_vlan_header) {
420 		/* Now make the underlying real hard header */
421 		rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN);
422 
423 		if (rc > 0) {
424 			rc += VLAN_HLEN;
425 		} else if (rc < 0) {
426 			rc -= VLAN_HLEN;
427 		}
428 	} else {
429 		/* If here, then we'll just make a normal looking ethernet frame,
430 		 * but, the hard_start_xmit method will insert the tag (it has to
431 		 * be able to do this for bridged and other skbs that don't come
432 		 * down the protocol stack in an orderly manner.
433 		 */
434 		rc = dev->hard_header(skb, dev, type, daddr, saddr, len);
435 	}
436 
437 	return rc;
438 }
439 
440 int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
441 {
442 	struct net_device_stats *stats = vlan_dev_get_stats(dev);
443 	struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
444 
445 	/* Handle non-VLAN frames if they are sent to us, for example by DHCP.
446 	 *
447 	 * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
448 	 * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
449 	 */
450 
451 	if (veth->h_vlan_proto != htons(ETH_P_8021Q)) {
452 		int orig_headroom = skb_headroom(skb);
453 		unsigned short veth_TCI;
454 
455 		/* This is not a VLAN frame...but we can fix that! */
456 		VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++;
457 
458 #ifdef VLAN_DEBUG
459 		printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n",
460 			__FUNCTION__, htons(veth->h_vlan_proto));
461 #endif
462 		/* Construct the second two bytes. This field looks something
463 		 * like:
464 		 * usr_priority: 3 bits	 (high bits)
465 		 * CFI		 1 bit
466 		 * VLAN ID	 12 bits (low bits)
467 		 */
468 		veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
469 		veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
470 
471 		skb = __vlan_put_tag(skb, veth_TCI);
472 		if (!skb) {
473 			stats->tx_dropped++;
474 			return 0;
475 		}
476 
477 		if (orig_headroom < VLAN_HLEN) {
478 			VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++;
479 		}
480 	}
481 
482 #ifdef VLAN_DEBUG
483 	printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n",
484 		__FUNCTION__, skb, skb->dev->name);
485 	printk(VLAN_DBG "  %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n",
486 	       veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5],
487 	       veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5],
488 	       veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto);
489 #endif
490 
491 	stats->tx_packets++; /* for statics only */
492 	stats->tx_bytes += skb->len;
493 
494 	skb->dev = VLAN_DEV_INFO(dev)->real_dev;
495 	dev_queue_xmit(skb);
496 
497 	return 0;
498 }
499 
500 int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
501 {
502 	struct net_device_stats *stats = vlan_dev_get_stats(dev);
503 	unsigned short veth_TCI;
504 
505 	/* Construct the second two bytes. This field looks something
506 	 * like:
507 	 * usr_priority: 3 bits	 (high bits)
508 	 * CFI		 1 bit
509 	 * VLAN ID	 12 bits (low bits)
510 	 */
511 	veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
512 	veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
513 	skb = __vlan_hwaccel_put_tag(skb, veth_TCI);
514 
515 	stats->tx_packets++;
516 	stats->tx_bytes += skb->len;
517 
518 	skb->dev = VLAN_DEV_INFO(dev)->real_dev;
519 	dev_queue_xmit(skb);
520 
521 	return 0;
522 }
523 
524 int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
525 {
526 	/* TODO: gotta make sure the underlying layer can handle it,
527 	 * maybe an IFF_VLAN_CAPABLE flag for devices?
528 	 */
529 	if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu)
530 		return -ERANGE;
531 
532 	dev->mtu = new_mtu;
533 
534 	return 0;
535 }
536 
537 int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
538 {
539 	struct net_device *dev = dev_get_by_name(dev_name);
540 
541 	if (dev) {
542 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
543 			/* see if a priority mapping exists.. */
544 			VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
545 			dev_put(dev);
546 			return 0;
547 		}
548 
549 		dev_put(dev);
550 	}
551 	return -EINVAL;
552 }
553 
554 int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
555 {
556 	struct net_device *dev = dev_get_by_name(dev_name);
557 	struct vlan_priority_tci_mapping *mp = NULL;
558 	struct vlan_priority_tci_mapping *np;
559 
560 	if (dev) {
561 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
562 			/* See if a priority mapping exists.. */
563 			mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
564 			while (mp) {
565 				if (mp->priority == skb_prio) {
566 					mp->vlan_qos = ((vlan_prio << 13) & 0xE000);
567 					dev_put(dev);
568 					return 0;
569 				}
570 				mp = mp->next;
571 			}
572 
573 			/* Create a new mapping then. */
574 			mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
575 			np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
576 			if (np) {
577 				np->next = mp;
578 				np->priority = skb_prio;
579 				np->vlan_qos = ((vlan_prio << 13) & 0xE000);
580 				VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np;
581 				dev_put(dev);
582 				return 0;
583 			} else {
584 				dev_put(dev);
585 				return -ENOBUFS;
586 			}
587 		}
588 		dev_put(dev);
589 	}
590 	return -EINVAL;
591 }
592 
593 /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */
594 int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val)
595 {
596 	struct net_device *dev = dev_get_by_name(dev_name);
597 
598 	if (dev) {
599 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
600 			/* verify flag is supported */
601 			if (flag == 1) {
602 				if (flag_val) {
603 					VLAN_DEV_INFO(dev)->flags |= 1;
604 				} else {
605 					VLAN_DEV_INFO(dev)->flags &= ~1;
606 				}
607 				dev_put(dev);
608 				return 0;
609 			} else {
610 				printk(KERN_ERR  "%s: flag %i is not valid.\n",
611 					__FUNCTION__, (int)(flag));
612 				dev_put(dev);
613 				return -EINVAL;
614 			}
615 		} else {
616 			printk(KERN_ERR
617 			       "%s: %s is not a vlan device, priv_flags: %hX.\n",
618 			       __FUNCTION__, dev->name, dev->priv_flags);
619 			dev_put(dev);
620 		}
621 	} else {
622 		printk(KERN_ERR  "%s: Could not find device: %s\n",
623 			__FUNCTION__, dev_name);
624 	}
625 
626 	return -EINVAL;
627 }
628 
629 
630 int vlan_dev_get_realdev_name(const char *dev_name, char* result)
631 {
632 	struct net_device *dev = dev_get_by_name(dev_name);
633 	int rv = 0;
634 	if (dev) {
635 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
636 			strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23);
637 			rv = 0;
638 		} else {
639 			rv = -EINVAL;
640 		}
641 		dev_put(dev);
642 	} else {
643 		rv = -ENODEV;
644 	}
645 	return rv;
646 }
647 
648 int vlan_dev_get_vid(const char *dev_name, unsigned short* result)
649 {
650 	struct net_device *dev = dev_get_by_name(dev_name);
651 	int rv = 0;
652 	if (dev) {
653 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
654 			*result = VLAN_DEV_INFO(dev)->vlan_id;
655 			rv = 0;
656 		} else {
657 			rv = -EINVAL;
658 		}
659 		dev_put(dev);
660 	} else {
661 		rv = -ENODEV;
662 	}
663 	return rv;
664 }
665 
666 
667 int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p)
668 {
669 	struct sockaddr *addr = (struct sockaddr *)(addr_struct_p);
670 	int i;
671 
672 	if (netif_running(dev))
673 		return -EBUSY;
674 
675 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
676 
677 	printk("%s: Setting MAC address to ", dev->name);
678 	for (i = 0; i < 6; i++)
679 		printk(" %2.2x", dev->dev_addr[i]);
680 	printk(".\n");
681 
682 	if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr,
683 		   dev->dev_addr,
684 		   dev->addr_len) != 0) {
685 		if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) {
686 			int flgs = VLAN_DEV_INFO(dev)->real_dev->flags;
687 
688 			/* Increment our in-use promiscuity counter */
689 			dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1);
690 
691 			/* Make PROMISC visible to the user. */
692 			flgs |= IFF_PROMISC;
693 			printk("VLAN (%s):  Setting underlying device (%s) to promiscious mode.\n",
694 			       dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
695 			dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs);
696 		}
697 	} else {
698 		printk("VLAN (%s):  Underlying device (%s) has same MAC, not checking promiscious mode.\n",
699 		       dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
700 	}
701 
702 	return 0;
703 }
704 
705 static inline int vlan_dmi_equals(struct dev_mc_list *dmi1,
706 				  struct dev_mc_list *dmi2)
707 {
708 	return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) &&
709 		(memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0));
710 }
711 
712 /** dmi is a single entry into a dev_mc_list, a single node.  mc_list is
713  *  an entire list, and we'll iterate through it.
714  */
715 static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
716 {
717 	struct dev_mc_list *idmi;
718 
719 	for (idmi = mc_list; idmi != NULL; ) {
720 		if (vlan_dmi_equals(dmi, idmi)) {
721 			if (dmi->dmi_users > idmi->dmi_users)
722 				return 1;
723 			else
724 				return 0;
725 		} else {
726 			idmi = idmi->next;
727 		}
728 	}
729 
730 	return 1;
731 }
732 
733 static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list)
734 {
735 	struct dev_mc_list *dmi = mc_list;
736 	struct dev_mc_list *next;
737 
738 	while(dmi) {
739 		next = dmi->next;
740 		kfree(dmi);
741 		dmi = next;
742 	}
743 }
744 
745 static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info)
746 {
747 	struct dev_mc_list *dmi, *new_dmi;
748 
749 	vlan_destroy_mc_list(vlan_info->old_mc_list);
750 	vlan_info->old_mc_list = NULL;
751 
752 	for (dmi = mc_list; dmi != NULL; dmi = dmi->next) {
753 		new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC);
754 		if (new_dmi == NULL) {
755 			printk(KERN_ERR "vlan: cannot allocate memory. "
756 			       "Multicast may not work properly from now.\n");
757 			return;
758 		}
759 
760 		/* Copy whole structure, then make new 'next' pointer */
761 		*new_dmi = *dmi;
762 		new_dmi->next = vlan_info->old_mc_list;
763 		vlan_info->old_mc_list = new_dmi;
764 	}
765 }
766 
767 static void vlan_flush_mc_list(struct net_device *dev)
768 {
769 	struct dev_mc_list *dmi = dev->mc_list;
770 
771 	while (dmi) {
772 		printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n",
773 		       dev->name,
774 		       dmi->dmi_addr[0],
775 		       dmi->dmi_addr[1],
776 		       dmi->dmi_addr[2],
777 		       dmi->dmi_addr[3],
778 		       dmi->dmi_addr[4],
779 		       dmi->dmi_addr[5]);
780 		dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
781 		dmi = dev->mc_list;
782 	}
783 
784 	/* dev->mc_list is NULL by the time we get here. */
785 	vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list);
786 	VLAN_DEV_INFO(dev)->old_mc_list = NULL;
787 }
788 
789 int vlan_dev_open(struct net_device *dev)
790 {
791 	if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP))
792 		return -ENETDOWN;
793 
794 	return 0;
795 }
796 
797 int vlan_dev_stop(struct net_device *dev)
798 {
799 	vlan_flush_mc_list(dev);
800 	return 0;
801 }
802 
803 int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
804 {
805 	struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev;
806 	struct ifreq ifrr;
807 	int err = -EOPNOTSUPP;
808 
809 	strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
810 	ifrr.ifr_ifru = ifr->ifr_ifru;
811 
812 	switch(cmd) {
813 	case SIOCGMIIPHY:
814 	case SIOCGMIIREG:
815 	case SIOCSMIIREG:
816 		if (real_dev->do_ioctl && netif_device_present(real_dev))
817 			err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
818 		break;
819 
820 	case SIOCETHTOOL:
821 		err = dev_ethtool(&ifrr);
822 	}
823 
824 	if (!err)
825 		ifr->ifr_ifru = ifrr.ifr_ifru;
826 
827 	return err;
828 }
829 
830 /** Taken from Gleb + Lennert's VLAN code, and modified... */
831 void vlan_dev_set_multicast_list(struct net_device *vlan_dev)
832 {
833 	struct dev_mc_list *dmi;
834 	struct net_device *real_dev;
835 	int inc;
836 
837 	if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) {
838 		/* Then it's a real vlan device, as far as we can tell.. */
839 		real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev;
840 
841 		/* compare the current promiscuity to the last promisc we had.. */
842 		inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity;
843 		if (inc) {
844 			printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n",
845 			       vlan_dev->name, inc);
846 			dev_set_promiscuity(real_dev, inc); /* found in dev.c */
847 			VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity;
848 		}
849 
850 		inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti;
851 		if (inc) {
852 			printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n",
853 			       vlan_dev->name, inc);
854 			dev_set_allmulti(real_dev, inc); /* dev.c */
855 			VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti;
856 		}
857 
858 		/* looking for addresses to add to master's list */
859 		for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) {
860 			if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) {
861 				dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
862 				printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n",
863 				       vlan_dev->name,
864 				       dmi->dmi_addr[0],
865 				       dmi->dmi_addr[1],
866 				       dmi->dmi_addr[2],
867 				       dmi->dmi_addr[3],
868 				       dmi->dmi_addr[4],
869 				       dmi->dmi_addr[5]);
870 			}
871 		}
872 
873 		/* looking for addresses to delete from master's list */
874 		for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) {
875 			if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) {
876 				/* if we think we should add it to the new list, then we should really
877 				 * delete it from the real list on the underlying device.
878 				 */
879 				dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
880 				printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n",
881 				       vlan_dev->name,
882 				       dmi->dmi_addr[0],
883 				       dmi->dmi_addr[1],
884 				       dmi->dmi_addr[2],
885 				       dmi->dmi_addr[3],
886 				       dmi->dmi_addr[4],
887 				       dmi->dmi_addr[5]);
888 			}
889 		}
890 
891 		/* save multicast list */
892 		vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev));
893 	}
894 }
895