1 /* -*- linux-c -*- 2 * INET 802.1Q VLAN 3 * Ethernet-type device handling. 4 * 5 * Authors: Ben Greear <greearb@candelatech.com> 6 * Please send support related email to: vlan@scry.wanfear.com 7 * VLAN Home Page: http://www.candelatech.com/~greear/vlan.html 8 * 9 * Fixes: Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com> 10 * - reset skb->pkt_type on incoming packets when MAC was changed 11 * - see that changed MAC is saddr for outgoing packets 12 * Oct 20, 2001: Ard van Breeman: 13 * - Fix MC-list, finally. 14 * - Flush MC-list on VLAN destroy. 15 * 16 * 17 * This program is free software; you can redistribute it and/or 18 * modify it under the terms of the GNU General Public License 19 * as published by the Free Software Foundation; either version 20 * 2 of the License, or (at your option) any later version. 21 */ 22 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/in.h> 26 #include <linux/init.h> 27 #include <asm/uaccess.h> /* for copy_from_user */ 28 #include <linux/skbuff.h> 29 #include <linux/netdevice.h> 30 #include <linux/etherdevice.h> 31 #include <net/datalink.h> 32 #include <net/p8022.h> 33 #include <net/arp.h> 34 35 #include "vlan.h" 36 #include "vlanproc.h" 37 #include <linux/if_vlan.h> 38 #include <net/ip.h> 39 40 /* 41 * Rebuild the Ethernet MAC header. This is called after an ARP 42 * (or in future other address resolution) has completed on this 43 * sk_buff. We now let ARP fill in the other fields. 44 * 45 * This routine CANNOT use cached dst->neigh! 46 * Really, it is used only when dst->neigh is wrong. 47 * 48 * TODO: This needs a checkup, I'm ignorant here. --BLG 49 */ 50 int vlan_dev_rebuild_header(struct sk_buff *skb) 51 { 52 struct net_device *dev = skb->dev; 53 struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); 54 55 switch (veth->h_vlan_encapsulated_proto) { 56 #ifdef CONFIG_INET 57 case __constant_htons(ETH_P_IP): 58 59 /* TODO: Confirm this will work with VLAN headers... */ 60 return arp_find(veth->h_dest, skb); 61 #endif 62 default: 63 printk(VLAN_DBG 64 "%s: unable to resolve type %X addresses.\n", 65 dev->name, (int)veth->h_vlan_encapsulated_proto); 66 67 memcpy(veth->h_source, dev->dev_addr, ETH_ALEN); 68 break; 69 }; 70 71 return 0; 72 } 73 74 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb) 75 { 76 if (VLAN_DEV_INFO(skb->dev)->flags & 1) { 77 if (skb_shared(skb) || skb_cloned(skb)) { 78 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 79 kfree_skb(skb); 80 skb = nskb; 81 } 82 if (skb) { 83 /* Lifted from Gleb's VLAN code... */ 84 memmove(skb->data - ETH_HLEN, 85 skb->data - VLAN_ETH_HLEN, 12); 86 skb->mac.raw += VLAN_HLEN; 87 } 88 } 89 90 return skb; 91 } 92 93 /* 94 * Determine the packet's protocol ID. The rule here is that we 95 * assume 802.3 if the type field is short enough to be a length. 96 * This is normal practice and works for any 'now in use' protocol. 97 * 98 * Also, at this point we assume that we ARE dealing exclusively with 99 * VLAN packets, or packets that should be made into VLAN packets based 100 * on a default VLAN ID. 101 * 102 * NOTE: Should be similar to ethernet/eth.c. 103 * 104 * SANITY NOTE: This method is called when a packet is moving up the stack 105 * towards userland. To get here, it would have already passed 106 * through the ethernet/eth.c eth_type_trans() method. 107 * SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be 108 * stored UNALIGNED in the memory. RISC systems don't like 109 * such cases very much... 110 * SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be aligned, 111 * so there doesn't need to be any of the unaligned stuff. It has 112 * been commented out now... --Ben 113 * 114 */ 115 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev, 116 struct packet_type* ptype, struct net_device *orig_dev) 117 { 118 unsigned char *rawp = NULL; 119 struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data); 120 unsigned short vid; 121 struct net_device_stats *stats; 122 unsigned short vlan_TCI; 123 __be16 proto; 124 125 /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */ 126 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 127 128 vid = (vlan_TCI & VLAN_VID_MASK); 129 130 #ifdef VLAN_DEBUG 131 printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n", 132 __FUNCTION__, skb, vid); 133 #endif 134 135 /* Ok, we will find the correct VLAN device, strip the header, 136 * and then go on as usual. 137 */ 138 139 /* We have 12 bits of vlan ID. 140 * 141 * We must not drop allow preempt until we hold a 142 * reference to the device (netif_rx does that) or we 143 * fail. 144 */ 145 146 rcu_read_lock(); 147 skb->dev = __find_vlan_dev(dev, vid); 148 if (!skb->dev) { 149 rcu_read_unlock(); 150 151 #ifdef VLAN_DEBUG 152 printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n", 153 __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex); 154 #endif 155 kfree_skb(skb); 156 return -1; 157 } 158 159 skb->dev->last_rx = jiffies; 160 161 /* Bump the rx counters for the VLAN device. */ 162 stats = vlan_dev_get_stats(skb->dev); 163 stats->rx_packets++; 164 stats->rx_bytes += skb->len; 165 166 skb_pull(skb, VLAN_HLEN); /* take off the VLAN header (4 bytes currently) */ 167 168 /* Ok, lets check to make sure the device (dev) we 169 * came in on is what this VLAN is attached to. 170 */ 171 172 if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) { 173 rcu_read_unlock(); 174 175 #ifdef VLAN_DEBUG 176 printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s real_dev: %s, skb_dev: %s\n", 177 __FUNCTION__, skb, dev->name, 178 VLAN_DEV_INFO(skb->dev)->real_dev->name, 179 skb->dev->name); 180 #endif 181 kfree_skb(skb); 182 stats->rx_errors++; 183 return -1; 184 } 185 186 /* 187 * Deal with ingress priority mapping. 188 */ 189 skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI)); 190 191 #ifdef VLAN_DEBUG 192 printk(VLAN_DBG "%s: priority: %lu for TCI: %hu (hbo)\n", 193 __FUNCTION__, (unsigned long)(skb->priority), 194 ntohs(vhdr->h_vlan_TCI)); 195 #endif 196 197 /* The ethernet driver already did the pkt_type calculations 198 * for us... 199 */ 200 switch (skb->pkt_type) { 201 case PACKET_BROADCAST: /* Yeah, stats collect these together.. */ 202 // stats->broadcast ++; // no such counter :-( 203 break; 204 205 case PACKET_MULTICAST: 206 stats->multicast++; 207 break; 208 209 case PACKET_OTHERHOST: 210 /* Our lower layer thinks this is not local, let's make sure. 211 * This allows the VLAN to have a different MAC than the underlying 212 * device, and still route correctly. 213 */ 214 if (memcmp(eth_hdr(skb)->h_dest, skb->dev->dev_addr, ETH_ALEN) == 0) { 215 /* It is for our (changed) MAC-address! */ 216 skb->pkt_type = PACKET_HOST; 217 } 218 break; 219 default: 220 break; 221 }; 222 223 /* Was a VLAN packet, grab the encapsulated protocol, which the layer 224 * three protocols care about. 225 */ 226 /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */ 227 proto = vhdr->h_vlan_encapsulated_proto; 228 229 skb->protocol = proto; 230 if (ntohs(proto) >= 1536) { 231 /* place it back on the queue to be handled by 232 * true layer 3 protocols. 233 */ 234 235 /* See if we are configured to re-write the VLAN header 236 * to make it look like ethernet... 237 */ 238 skb = vlan_check_reorder_header(skb); 239 240 /* Can be null if skb-clone fails when re-ordering */ 241 if (skb) { 242 netif_rx(skb); 243 } else { 244 /* TODO: Add a more specific counter here. */ 245 stats->rx_errors++; 246 } 247 rcu_read_unlock(); 248 return 0; 249 } 250 251 rawp = skb->data; 252 253 /* 254 * This is a magic hack to spot IPX packets. Older Novell breaks 255 * the protocol design and runs IPX over 802.3 without an 802.2 LLC 256 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This 257 * won't work for fault tolerant netware but does for the rest. 258 */ 259 if (*(unsigned short *)rawp == 0xFFFF) { 260 skb->protocol = __constant_htons(ETH_P_802_3); 261 /* place it back on the queue to be handled by true layer 3 protocols. 262 */ 263 264 /* See if we are configured to re-write the VLAN header 265 * to make it look like ethernet... 266 */ 267 skb = vlan_check_reorder_header(skb); 268 269 /* Can be null if skb-clone fails when re-ordering */ 270 if (skb) { 271 netif_rx(skb); 272 } else { 273 /* TODO: Add a more specific counter here. */ 274 stats->rx_errors++; 275 } 276 rcu_read_unlock(); 277 return 0; 278 } 279 280 /* 281 * Real 802.2 LLC 282 */ 283 skb->protocol = __constant_htons(ETH_P_802_2); 284 /* place it back on the queue to be handled by upper layer protocols. 285 */ 286 287 /* See if we are configured to re-write the VLAN header 288 * to make it look like ethernet... 289 */ 290 skb = vlan_check_reorder_header(skb); 291 292 /* Can be null if skb-clone fails when re-ordering */ 293 if (skb) { 294 netif_rx(skb); 295 } else { 296 /* TODO: Add a more specific counter here. */ 297 stats->rx_errors++; 298 } 299 rcu_read_unlock(); 300 return 0; 301 } 302 303 static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev, 304 struct sk_buff* skb) 305 { 306 struct vlan_priority_tci_mapping *mp = 307 VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)]; 308 309 while (mp) { 310 if (mp->priority == skb->priority) { 311 return mp->vlan_qos; /* This should already be shifted to mask 312 * correctly with the VLAN's TCI 313 */ 314 } 315 mp = mp->next; 316 } 317 return 0; 318 } 319 320 /* 321 * Create the VLAN header for an arbitrary protocol layer 322 * 323 * saddr=NULL means use device source address 324 * daddr=NULL means leave destination address (eg unresolved arp) 325 * 326 * This is called when the SKB is moving down the stack towards the 327 * physical devices. 328 */ 329 int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, 330 unsigned short type, void *daddr, void *saddr, 331 unsigned len) 332 { 333 struct vlan_hdr *vhdr; 334 unsigned short veth_TCI = 0; 335 int rc = 0; 336 int build_vlan_header = 0; 337 struct net_device *vdev = dev; /* save this for the bottom of the method */ 338 339 #ifdef VLAN_DEBUG 340 printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n", 341 __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr); 342 #endif 343 344 /* build vlan header only if re_order_header flag is NOT set. This 345 * fixes some programs that get confused when they see a VLAN device 346 * sending a frame that is VLAN encoded (the consensus is that the VLAN 347 * device should look completely like an Ethernet device when the 348 * REORDER_HEADER flag is set) The drawback to this is some extra 349 * header shuffling in the hard_start_xmit. Users can turn off this 350 * REORDER behaviour with the vconfig tool. 351 */ 352 build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0); 353 354 if (build_vlan_header) { 355 vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN); 356 357 /* build the four bytes that make this a VLAN header. */ 358 359 /* Now, construct the second two bytes. This field looks something 360 * like: 361 * usr_priority: 3 bits (high bits) 362 * CFI 1 bit 363 * VLAN ID 12 bits (low bits) 364 * 365 */ 366 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; 367 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); 368 369 vhdr->h_vlan_TCI = htons(veth_TCI); 370 371 /* 372 * Set the protocol type. 373 * For a packet of type ETH_P_802_3 we put the length in here instead. 374 * It is up to the 802.2 layer to carry protocol information. 375 */ 376 377 if (type != ETH_P_802_3) { 378 vhdr->h_vlan_encapsulated_proto = htons(type); 379 } else { 380 vhdr->h_vlan_encapsulated_proto = htons(len); 381 } 382 } 383 384 /* Before delegating work to the lower layer, enter our MAC-address */ 385 if (saddr == NULL) 386 saddr = dev->dev_addr; 387 388 dev = VLAN_DEV_INFO(dev)->real_dev; 389 390 /* MPLS can send us skbuffs w/out enough space. This check will grow the 391 * skb if it doesn't have enough headroom. Not a beautiful solution, so 392 * I'll tick a counter so that users can know it's happening... If they 393 * care... 394 */ 395 396 /* NOTE: This may still break if the underlying device is not the final 397 * device (and thus there are more headers to add...) It should work for 398 * good-ole-ethernet though. 399 */ 400 if (skb_headroom(skb) < dev->hard_header_len) { 401 struct sk_buff *sk_tmp = skb; 402 skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len); 403 kfree_skb(sk_tmp); 404 if (skb == NULL) { 405 struct net_device_stats *stats = vlan_dev_get_stats(vdev); 406 stats->tx_dropped++; 407 return -ENOMEM; 408 } 409 VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++; 410 #ifdef VLAN_DEBUG 411 printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name); 412 #endif 413 } 414 415 if (build_vlan_header) { 416 /* Now make the underlying real hard header */ 417 rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN); 418 419 if (rc > 0) { 420 rc += VLAN_HLEN; 421 } else if (rc < 0) { 422 rc -= VLAN_HLEN; 423 } 424 } else { 425 /* If here, then we'll just make a normal looking ethernet frame, 426 * but, the hard_start_xmit method will insert the tag (it has to 427 * be able to do this for bridged and other skbs that don't come 428 * down the protocol stack in an orderly manner. 429 */ 430 rc = dev->hard_header(skb, dev, type, daddr, saddr, len); 431 } 432 433 return rc; 434 } 435 436 int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 437 { 438 struct net_device_stats *stats = vlan_dev_get_stats(dev); 439 struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); 440 441 /* Handle non-VLAN frames if they are sent to us, for example by DHCP. 442 * 443 * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING 444 * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs... 445 */ 446 447 if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) { 448 int orig_headroom = skb_headroom(skb); 449 unsigned short veth_TCI; 450 451 /* This is not a VLAN frame...but we can fix that! */ 452 VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++; 453 454 #ifdef VLAN_DEBUG 455 printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n", 456 __FUNCTION__, htons(veth->h_vlan_proto)); 457 #endif 458 /* Construct the second two bytes. This field looks something 459 * like: 460 * usr_priority: 3 bits (high bits) 461 * CFI 1 bit 462 * VLAN ID 12 bits (low bits) 463 */ 464 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; 465 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); 466 467 skb = __vlan_put_tag(skb, veth_TCI); 468 if (!skb) { 469 stats->tx_dropped++; 470 return 0; 471 } 472 473 if (orig_headroom < VLAN_HLEN) { 474 VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++; 475 } 476 } 477 478 #ifdef VLAN_DEBUG 479 printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n", 480 __FUNCTION__, skb, skb->dev->name); 481 printk(VLAN_DBG " %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n", 482 veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5], 483 veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5], 484 veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto); 485 #endif 486 487 stats->tx_packets++; /* for statics only */ 488 stats->tx_bytes += skb->len; 489 490 skb->dev = VLAN_DEV_INFO(dev)->real_dev; 491 dev_queue_xmit(skb); 492 493 return 0; 494 } 495 496 int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 497 { 498 struct net_device_stats *stats = vlan_dev_get_stats(dev); 499 unsigned short veth_TCI; 500 501 /* Construct the second two bytes. This field looks something 502 * like: 503 * usr_priority: 3 bits (high bits) 504 * CFI 1 bit 505 * VLAN ID 12 bits (low bits) 506 */ 507 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; 508 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); 509 skb = __vlan_hwaccel_put_tag(skb, veth_TCI); 510 511 stats->tx_packets++; 512 stats->tx_bytes += skb->len; 513 514 skb->dev = VLAN_DEV_INFO(dev)->real_dev; 515 dev_queue_xmit(skb); 516 517 return 0; 518 } 519 520 int vlan_dev_change_mtu(struct net_device *dev, int new_mtu) 521 { 522 /* TODO: gotta make sure the underlying layer can handle it, 523 * maybe an IFF_VLAN_CAPABLE flag for devices? 524 */ 525 if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu) 526 return -ERANGE; 527 528 dev->mtu = new_mtu; 529 530 return 0; 531 } 532 533 int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) 534 { 535 struct net_device *dev = dev_get_by_name(dev_name); 536 537 if (dev) { 538 if (dev->priv_flags & IFF_802_1Q_VLAN) { 539 /* see if a priority mapping exists.. */ 540 VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio; 541 dev_put(dev); 542 return 0; 543 } 544 545 dev_put(dev); 546 } 547 return -EINVAL; 548 } 549 550 int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) 551 { 552 struct net_device *dev = dev_get_by_name(dev_name); 553 struct vlan_priority_tci_mapping *mp = NULL; 554 struct vlan_priority_tci_mapping *np; 555 556 if (dev) { 557 if (dev->priv_flags & IFF_802_1Q_VLAN) { 558 /* See if a priority mapping exists.. */ 559 mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; 560 while (mp) { 561 if (mp->priority == skb_prio) { 562 mp->vlan_qos = ((vlan_prio << 13) & 0xE000); 563 dev_put(dev); 564 return 0; 565 } 566 mp = mp->next; 567 } 568 569 /* Create a new mapping then. */ 570 mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; 571 np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL); 572 if (np) { 573 np->next = mp; 574 np->priority = skb_prio; 575 np->vlan_qos = ((vlan_prio << 13) & 0xE000); 576 VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np; 577 dev_put(dev); 578 return 0; 579 } else { 580 dev_put(dev); 581 return -ENOBUFS; 582 } 583 } 584 dev_put(dev); 585 } 586 return -EINVAL; 587 } 588 589 /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */ 590 int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val) 591 { 592 struct net_device *dev = dev_get_by_name(dev_name); 593 594 if (dev) { 595 if (dev->priv_flags & IFF_802_1Q_VLAN) { 596 /* verify flag is supported */ 597 if (flag == 1) { 598 if (flag_val) { 599 VLAN_DEV_INFO(dev)->flags |= 1; 600 } else { 601 VLAN_DEV_INFO(dev)->flags &= ~1; 602 } 603 dev_put(dev); 604 return 0; 605 } else { 606 printk(KERN_ERR "%s: flag %i is not valid.\n", 607 __FUNCTION__, (int)(flag)); 608 dev_put(dev); 609 return -EINVAL; 610 } 611 } else { 612 printk(KERN_ERR 613 "%s: %s is not a vlan device, priv_flags: %hX.\n", 614 __FUNCTION__, dev->name, dev->priv_flags); 615 dev_put(dev); 616 } 617 } else { 618 printk(KERN_ERR "%s: Could not find device: %s\n", 619 __FUNCTION__, dev_name); 620 } 621 622 return -EINVAL; 623 } 624 625 626 int vlan_dev_get_realdev_name(const char *dev_name, char* result) 627 { 628 struct net_device *dev = dev_get_by_name(dev_name); 629 int rv = 0; 630 if (dev) { 631 if (dev->priv_flags & IFF_802_1Q_VLAN) { 632 strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23); 633 rv = 0; 634 } else { 635 rv = -EINVAL; 636 } 637 dev_put(dev); 638 } else { 639 rv = -ENODEV; 640 } 641 return rv; 642 } 643 644 int vlan_dev_get_vid(const char *dev_name, unsigned short* result) 645 { 646 struct net_device *dev = dev_get_by_name(dev_name); 647 int rv = 0; 648 if (dev) { 649 if (dev->priv_flags & IFF_802_1Q_VLAN) { 650 *result = VLAN_DEV_INFO(dev)->vlan_id; 651 rv = 0; 652 } else { 653 rv = -EINVAL; 654 } 655 dev_put(dev); 656 } else { 657 rv = -ENODEV; 658 } 659 return rv; 660 } 661 662 663 int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p) 664 { 665 struct sockaddr *addr = (struct sockaddr *)(addr_struct_p); 666 int i; 667 668 if (netif_running(dev)) 669 return -EBUSY; 670 671 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 672 673 printk("%s: Setting MAC address to ", dev->name); 674 for (i = 0; i < 6; i++) 675 printk(" %2.2x", dev->dev_addr[i]); 676 printk(".\n"); 677 678 if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr, 679 dev->dev_addr, 680 dev->addr_len) != 0) { 681 if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) { 682 int flgs = VLAN_DEV_INFO(dev)->real_dev->flags; 683 684 /* Increment our in-use promiscuity counter */ 685 dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1); 686 687 /* Make PROMISC visible to the user. */ 688 flgs |= IFF_PROMISC; 689 printk("VLAN (%s): Setting underlying device (%s) to promiscious mode.\n", 690 dev->name, VLAN_DEV_INFO(dev)->real_dev->name); 691 dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs); 692 } 693 } else { 694 printk("VLAN (%s): Underlying device (%s) has same MAC, not checking promiscious mode.\n", 695 dev->name, VLAN_DEV_INFO(dev)->real_dev->name); 696 } 697 698 return 0; 699 } 700 701 static inline int vlan_dmi_equals(struct dev_mc_list *dmi1, 702 struct dev_mc_list *dmi2) 703 { 704 return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) && 705 (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0)); 706 } 707 708 /** dmi is a single entry into a dev_mc_list, a single node. mc_list is 709 * an entire list, and we'll iterate through it. 710 */ 711 static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 712 { 713 struct dev_mc_list *idmi; 714 715 for (idmi = mc_list; idmi != NULL; ) { 716 if (vlan_dmi_equals(dmi, idmi)) { 717 if (dmi->dmi_users > idmi->dmi_users) 718 return 1; 719 else 720 return 0; 721 } else { 722 idmi = idmi->next; 723 } 724 } 725 726 return 1; 727 } 728 729 static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list) 730 { 731 struct dev_mc_list *dmi = mc_list; 732 struct dev_mc_list *next; 733 734 while(dmi) { 735 next = dmi->next; 736 kfree(dmi); 737 dmi = next; 738 } 739 } 740 741 static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info) 742 { 743 struct dev_mc_list *dmi, *new_dmi; 744 745 vlan_destroy_mc_list(vlan_info->old_mc_list); 746 vlan_info->old_mc_list = NULL; 747 748 for (dmi = mc_list; dmi != NULL; dmi = dmi->next) { 749 new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC); 750 if (new_dmi == NULL) { 751 printk(KERN_ERR "vlan: cannot allocate memory. " 752 "Multicast may not work properly from now.\n"); 753 return; 754 } 755 756 /* Copy whole structure, then make new 'next' pointer */ 757 *new_dmi = *dmi; 758 new_dmi->next = vlan_info->old_mc_list; 759 vlan_info->old_mc_list = new_dmi; 760 } 761 } 762 763 static void vlan_flush_mc_list(struct net_device *dev) 764 { 765 struct dev_mc_list *dmi = dev->mc_list; 766 767 while (dmi) { 768 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n", 769 dev->name, 770 dmi->dmi_addr[0], 771 dmi->dmi_addr[1], 772 dmi->dmi_addr[2], 773 dmi->dmi_addr[3], 774 dmi->dmi_addr[4], 775 dmi->dmi_addr[5]); 776 dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 777 dmi = dev->mc_list; 778 } 779 780 /* dev->mc_list is NULL by the time we get here. */ 781 vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list); 782 VLAN_DEV_INFO(dev)->old_mc_list = NULL; 783 } 784 785 int vlan_dev_open(struct net_device *dev) 786 { 787 if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP)) 788 return -ENETDOWN; 789 790 return 0; 791 } 792 793 int vlan_dev_stop(struct net_device *dev) 794 { 795 vlan_flush_mc_list(dev); 796 return 0; 797 } 798 799 int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 800 { 801 struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev; 802 struct ifreq ifrr; 803 int err = -EOPNOTSUPP; 804 805 strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ); 806 ifrr.ifr_ifru = ifr->ifr_ifru; 807 808 switch(cmd) { 809 case SIOCGMIIPHY: 810 case SIOCGMIIREG: 811 case SIOCSMIIREG: 812 if (real_dev->do_ioctl && netif_device_present(real_dev)) 813 err = real_dev->do_ioctl(real_dev, &ifrr, cmd); 814 break; 815 816 case SIOCETHTOOL: 817 err = dev_ethtool(&ifrr); 818 } 819 820 if (!err) 821 ifr->ifr_ifru = ifrr.ifr_ifru; 822 823 return err; 824 } 825 826 /** Taken from Gleb + Lennert's VLAN code, and modified... */ 827 void vlan_dev_set_multicast_list(struct net_device *vlan_dev) 828 { 829 struct dev_mc_list *dmi; 830 struct net_device *real_dev; 831 int inc; 832 833 if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) { 834 /* Then it's a real vlan device, as far as we can tell.. */ 835 real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev; 836 837 /* compare the current promiscuity to the last promisc we had.. */ 838 inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity; 839 if (inc) { 840 printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n", 841 vlan_dev->name, inc); 842 dev_set_promiscuity(real_dev, inc); /* found in dev.c */ 843 VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity; 844 } 845 846 inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti; 847 if (inc) { 848 printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n", 849 vlan_dev->name, inc); 850 dev_set_allmulti(real_dev, inc); /* dev.c */ 851 VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti; 852 } 853 854 /* looking for addresses to add to master's list */ 855 for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) { 856 if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) { 857 dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 858 printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n", 859 vlan_dev->name, 860 dmi->dmi_addr[0], 861 dmi->dmi_addr[1], 862 dmi->dmi_addr[2], 863 dmi->dmi_addr[3], 864 dmi->dmi_addr[4], 865 dmi->dmi_addr[5]); 866 } 867 } 868 869 /* looking for addresses to delete from master's list */ 870 for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) { 871 if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) { 872 /* if we think we should add it to the new list, then we should really 873 * delete it from the real list on the underlying device. 874 */ 875 dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 876 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n", 877 vlan_dev->name, 878 dmi->dmi_addr[0], 879 dmi->dmi_addr[1], 880 dmi->dmi_addr[2], 881 dmi->dmi_addr[3], 882 dmi->dmi_addr[4], 883 dmi->dmi_addr[5]); 884 } 885 } 886 887 /* save multicast list */ 888 vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev)); 889 } 890 } 891