xref: /openbmc/linux/net/8021q/vlan_dev.c (revision d5cb9783536a41df9f9cba5b0a1d78047ed787f7)
1 /* -*- linux-c -*-
2  * INET		802.1Q VLAN
3  *		Ethernet-type device handling.
4  *
5  * Authors:	Ben Greear <greearb@candelatech.com>
6  *              Please send support related email to: vlan@scry.wanfear.com
7  *              VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
8  *
9  * Fixes:       Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
10  *                - reset skb->pkt_type on incoming packets when MAC was changed
11  *                - see that changed MAC is saddr for outgoing packets
12  *              Oct 20, 2001:  Ard van Breeman:
13  *                - Fix MC-list, finally.
14  *                - Flush MC-list on VLAN destroy.
15  *
16  *
17  *		This program is free software; you can redistribute it and/or
18  *		modify it under the terms of the GNU General Public License
19  *		as published by the Free Software Foundation; either version
20  *		2 of the License, or (at your option) any later version.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/in.h>
26 #include <linux/init.h>
27 #include <asm/uaccess.h> /* for copy_from_user */
28 #include <linux/skbuff.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <net/datalink.h>
32 #include <net/p8022.h>
33 #include <net/arp.h>
34 
35 #include "vlan.h"
36 #include "vlanproc.h"
37 #include <linux/if_vlan.h>
38 #include <net/ip.h>
39 
40 /*
41  *	Rebuild the Ethernet MAC header. This is called after an ARP
42  *	(or in future other address resolution) has completed on this
43  *	sk_buff. We now let ARP fill in the other fields.
44  *
45  *	This routine CANNOT use cached dst->neigh!
46  *	Really, it is used only when dst->neigh is wrong.
47  *
48  * TODO:  This needs a checkup, I'm ignorant here. --BLG
49  */
50 int vlan_dev_rebuild_header(struct sk_buff *skb)
51 {
52 	struct net_device *dev = skb->dev;
53 	struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
54 
55 	switch (veth->h_vlan_encapsulated_proto) {
56 #ifdef CONFIG_INET
57 	case __constant_htons(ETH_P_IP):
58 
59 		/* TODO:  Confirm this will work with VLAN headers... */
60 		return arp_find(veth->h_dest, skb);
61 #endif
62 	default:
63 		printk(VLAN_DBG
64 		       "%s: unable to resolve type %X addresses.\n",
65 		       dev->name, (int)veth->h_vlan_encapsulated_proto);
66 
67 		memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
68 		break;
69 	};
70 
71 	return 0;
72 }
73 
74 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
75 {
76 	if (VLAN_DEV_INFO(skb->dev)->flags & 1) {
77 		if (skb_shared(skb) || skb_cloned(skb)) {
78 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
79 			kfree_skb(skb);
80 			skb = nskb;
81 		}
82 		if (skb) {
83 			/* Lifted from Gleb's VLAN code... */
84 			memmove(skb->data - ETH_HLEN,
85 				skb->data - VLAN_ETH_HLEN, 12);
86 			skb->mac.raw += VLAN_HLEN;
87 		}
88 	}
89 
90 	return skb;
91 }
92 
93 /*
94  *	Determine the packet's protocol ID. The rule here is that we
95  *	assume 802.3 if the type field is short enough to be a length.
96  *	This is normal practice and works for any 'now in use' protocol.
97  *
98  *  Also, at this point we assume that we ARE dealing exclusively with
99  *  VLAN packets, or packets that should be made into VLAN packets based
100  *  on a default VLAN ID.
101  *
102  *  NOTE:  Should be similar to ethernet/eth.c.
103  *
104  *  SANITY NOTE:  This method is called when a packet is moving up the stack
105  *                towards userland.  To get here, it would have already passed
106  *                through the ethernet/eth.c eth_type_trans() method.
107  *  SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
108  *                 stored UNALIGNED in the memory.  RISC systems don't like
109  *                 such cases very much...
110  *  SANITY NOTE 2a:  According to Dave Miller & Alexey, it will always be aligned,
111  *                 so there doesn't need to be any of the unaligned stuff.  It has
112  *                 been commented out now...  --Ben
113  *
114  */
115 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
116                   struct packet_type* ptype, struct net_device *orig_dev)
117 {
118 	unsigned char *rawp = NULL;
119 	struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data);
120 	unsigned short vid;
121 	struct net_device_stats *stats;
122 	unsigned short vlan_TCI;
123 	__be16 proto;
124 
125 	/* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */
126 	vlan_TCI = ntohs(vhdr->h_vlan_TCI);
127 
128 	vid = (vlan_TCI & VLAN_VID_MASK);
129 
130 #ifdef VLAN_DEBUG
131 	printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n",
132 		__FUNCTION__, skb, vid);
133 #endif
134 
135 	/* Ok, we will find the correct VLAN device, strip the header,
136 	 * and then go on as usual.
137 	 */
138 
139 	/* We have 12 bits of vlan ID.
140 	 *
141 	 * We must not drop allow preempt until we hold a
142 	 * reference to the device (netif_rx does that) or we
143 	 * fail.
144 	 */
145 
146 	rcu_read_lock();
147 	skb->dev = __find_vlan_dev(dev, vid);
148 	if (!skb->dev) {
149 		rcu_read_unlock();
150 
151 #ifdef VLAN_DEBUG
152 		printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n",
153 			__FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex);
154 #endif
155 		kfree_skb(skb);
156 		return -1;
157 	}
158 
159 	skb->dev->last_rx = jiffies;
160 
161 	/* Bump the rx counters for the VLAN device. */
162 	stats = vlan_dev_get_stats(skb->dev);
163 	stats->rx_packets++;
164 	stats->rx_bytes += skb->len;
165 
166 	skb_pull(skb, VLAN_HLEN); /* take off the VLAN header (4 bytes currently) */
167 
168 	/* Ok, lets check to make sure the device (dev) we
169 	 * came in on is what this VLAN is attached to.
170 	 */
171 
172 	if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) {
173 		rcu_read_unlock();
174 
175 #ifdef VLAN_DEBUG
176 		printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s  real_dev: %s, skb_dev: %s\n",
177 			__FUNCTION__, skb, dev->name,
178 			VLAN_DEV_INFO(skb->dev)->real_dev->name,
179 			skb->dev->name);
180 #endif
181 		kfree_skb(skb);
182 		stats->rx_errors++;
183 		return -1;
184 	}
185 
186 	/*
187 	 * Deal with ingress priority mapping.
188 	 */
189 	skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI));
190 
191 #ifdef VLAN_DEBUG
192 	printk(VLAN_DBG "%s: priority: %lu  for TCI: %hu (hbo)\n",
193 		__FUNCTION__, (unsigned long)(skb->priority),
194 		ntohs(vhdr->h_vlan_TCI));
195 #endif
196 
197 	/* The ethernet driver already did the pkt_type calculations
198 	 * for us...
199 	 */
200 	switch (skb->pkt_type) {
201 	case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
202 		// stats->broadcast ++; // no such counter :-(
203 		break;
204 
205 	case PACKET_MULTICAST:
206 		stats->multicast++;
207 		break;
208 
209 	case PACKET_OTHERHOST:
210 		/* Our lower layer thinks this is not local, let's make sure.
211 		 * This allows the VLAN to have a different MAC than the underlying
212 		 * device, and still route correctly.
213 		 */
214 		if (memcmp(eth_hdr(skb)->h_dest, skb->dev->dev_addr, ETH_ALEN) == 0) {
215 			/* It is for our (changed) MAC-address! */
216 			skb->pkt_type = PACKET_HOST;
217 		}
218 		break;
219 	default:
220 		break;
221 	};
222 
223 	/*  Was a VLAN packet, grab the encapsulated protocol, which the layer
224 	 * three protocols care about.
225 	 */
226 	/* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */
227 	proto = vhdr->h_vlan_encapsulated_proto;
228 
229 	skb->protocol = proto;
230 	if (ntohs(proto) >= 1536) {
231 		/* place it back on the queue to be handled by
232 		 * true layer 3 protocols.
233 		 */
234 
235 		/* See if we are configured to re-write the VLAN header
236 		 * to make it look like ethernet...
237 		 */
238 		skb = vlan_check_reorder_header(skb);
239 
240 		/* Can be null if skb-clone fails when re-ordering */
241 		if (skb) {
242 			netif_rx(skb);
243 		} else {
244 			/* TODO:  Add a more specific counter here. */
245 			stats->rx_errors++;
246 		}
247 		rcu_read_unlock();
248 		return 0;
249 	}
250 
251 	rawp = skb->data;
252 
253 	/*
254 	 * This is a magic hack to spot IPX packets. Older Novell breaks
255 	 * the protocol design and runs IPX over 802.3 without an 802.2 LLC
256 	 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
257 	 * won't work for fault tolerant netware but does for the rest.
258 	 */
259 	if (*(unsigned short *)rawp == 0xFFFF) {
260 		skb->protocol = __constant_htons(ETH_P_802_3);
261 		/* place it back on the queue to be handled by true layer 3 protocols.
262 		 */
263 
264 		/* See if we are configured to re-write the VLAN header
265 		 * to make it look like ethernet...
266 		 */
267 		skb = vlan_check_reorder_header(skb);
268 
269 		/* Can be null if skb-clone fails when re-ordering */
270 		if (skb) {
271 			netif_rx(skb);
272 		} else {
273 			/* TODO:  Add a more specific counter here. */
274 			stats->rx_errors++;
275 		}
276 		rcu_read_unlock();
277 		return 0;
278 	}
279 
280 	/*
281 	 *	Real 802.2 LLC
282 	 */
283 	skb->protocol = __constant_htons(ETH_P_802_2);
284 	/* place it back on the queue to be handled by upper layer protocols.
285 	 */
286 
287 	/* See if we are configured to re-write the VLAN header
288 	 * to make it look like ethernet...
289 	 */
290 	skb = vlan_check_reorder_header(skb);
291 
292 	/* Can be null if skb-clone fails when re-ordering */
293 	if (skb) {
294 		netif_rx(skb);
295 	} else {
296 		/* TODO:  Add a more specific counter here. */
297 		stats->rx_errors++;
298 	}
299 	rcu_read_unlock();
300 	return 0;
301 }
302 
303 static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev,
304 							  struct sk_buff* skb)
305 {
306 	struct vlan_priority_tci_mapping *mp =
307 		VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)];
308 
309 	while (mp) {
310 		if (mp->priority == skb->priority) {
311 			return mp->vlan_qos; /* This should already be shifted to mask
312 					      * correctly with the VLAN's TCI
313 					      */
314 		}
315 		mp = mp->next;
316 	}
317 	return 0;
318 }
319 
320 /*
321  *	Create the VLAN header for an arbitrary protocol layer
322  *
323  *	saddr=NULL	means use device source address
324  *	daddr=NULL	means leave destination address (eg unresolved arp)
325  *
326  *  This is called when the SKB is moving down the stack towards the
327  *  physical devices.
328  */
329 int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
330                          unsigned short type, void *daddr, void *saddr,
331                          unsigned len)
332 {
333 	struct vlan_hdr *vhdr;
334 	unsigned short veth_TCI = 0;
335 	int rc = 0;
336 	int build_vlan_header = 0;
337 	struct net_device *vdev = dev; /* save this for the bottom of the method */
338 
339 #ifdef VLAN_DEBUG
340 	printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n",
341 		__FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr);
342 #endif
343 
344 	/* build vlan header only if re_order_header flag is NOT set.  This
345 	 * fixes some programs that get confused when they see a VLAN device
346 	 * sending a frame that is VLAN encoded (the consensus is that the VLAN
347 	 * device should look completely like an Ethernet device when the
348 	 * REORDER_HEADER flag is set)	The drawback to this is some extra
349 	 * header shuffling in the hard_start_xmit.  Users can turn off this
350 	 * REORDER behaviour with the vconfig tool.
351 	 */
352 	build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0);
353 
354 	if (build_vlan_header) {
355 		vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
356 
357 		/* build the four bytes that make this a VLAN header. */
358 
359 		/* Now, construct the second two bytes. This field looks something
360 		 * like:
361 		 * usr_priority: 3 bits	 (high bits)
362 		 * CFI		 1 bit
363 		 * VLAN ID	 12 bits (low bits)
364 		 *
365 		 */
366 		veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
367 		veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
368 
369 		vhdr->h_vlan_TCI = htons(veth_TCI);
370 
371 		/*
372 		 *  Set the protocol type.
373 		 *  For a packet of type ETH_P_802_3 we put the length in here instead.
374 		 *  It is up to the 802.2 layer to carry protocol information.
375 		 */
376 
377 		if (type != ETH_P_802_3) {
378 			vhdr->h_vlan_encapsulated_proto = htons(type);
379 		} else {
380 			vhdr->h_vlan_encapsulated_proto = htons(len);
381 		}
382 	}
383 
384 	/* Before delegating work to the lower layer, enter our MAC-address */
385 	if (saddr == NULL)
386 		saddr = dev->dev_addr;
387 
388 	dev = VLAN_DEV_INFO(dev)->real_dev;
389 
390 	/* MPLS can send us skbuffs w/out enough space.	 This check will grow the
391 	 * skb if it doesn't have enough headroom.  Not a beautiful solution, so
392 	 * I'll tick a counter so that users can know it's happening...	 If they
393 	 * care...
394 	 */
395 
396 	/* NOTE:  This may still break if the underlying device is not the final
397 	 * device (and thus there are more headers to add...)  It should work for
398 	 * good-ole-ethernet though.
399 	 */
400 	if (skb_headroom(skb) < dev->hard_header_len) {
401 		struct sk_buff *sk_tmp = skb;
402 		skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len);
403 		kfree_skb(sk_tmp);
404 		if (skb == NULL) {
405 			struct net_device_stats *stats = vlan_dev_get_stats(vdev);
406 			stats->tx_dropped++;
407 			return -ENOMEM;
408 		}
409 		VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++;
410 #ifdef VLAN_DEBUG
411 		printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name);
412 #endif
413 	}
414 
415 	if (build_vlan_header) {
416 		/* Now make the underlying real hard header */
417 		rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN);
418 
419 		if (rc > 0) {
420 			rc += VLAN_HLEN;
421 		} else if (rc < 0) {
422 			rc -= VLAN_HLEN;
423 		}
424 	} else {
425 		/* If here, then we'll just make a normal looking ethernet frame,
426 		 * but, the hard_start_xmit method will insert the tag (it has to
427 		 * be able to do this for bridged and other skbs that don't come
428 		 * down the protocol stack in an orderly manner.
429 		 */
430 		rc = dev->hard_header(skb, dev, type, daddr, saddr, len);
431 	}
432 
433 	return rc;
434 }
435 
436 int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
437 {
438 	struct net_device_stats *stats = vlan_dev_get_stats(dev);
439 	struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
440 
441 	/* Handle non-VLAN frames if they are sent to us, for example by DHCP.
442 	 *
443 	 * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
444 	 * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
445 	 */
446 
447 	if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) {
448 		int orig_headroom = skb_headroom(skb);
449 		unsigned short veth_TCI;
450 
451 		/* This is not a VLAN frame...but we can fix that! */
452 		VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++;
453 
454 #ifdef VLAN_DEBUG
455 		printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n",
456 			__FUNCTION__, htons(veth->h_vlan_proto));
457 #endif
458 		/* Construct the second two bytes. This field looks something
459 		 * like:
460 		 * usr_priority: 3 bits	 (high bits)
461 		 * CFI		 1 bit
462 		 * VLAN ID	 12 bits (low bits)
463 		 */
464 		veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
465 		veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
466 
467 		skb = __vlan_put_tag(skb, veth_TCI);
468 		if (!skb) {
469 			stats->tx_dropped++;
470 			return 0;
471 		}
472 
473 		if (orig_headroom < VLAN_HLEN) {
474 			VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++;
475 		}
476 	}
477 
478 #ifdef VLAN_DEBUG
479 	printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n",
480 		__FUNCTION__, skb, skb->dev->name);
481 	printk(VLAN_DBG "  %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n",
482 	       veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5],
483 	       veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5],
484 	       veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto);
485 #endif
486 
487 	stats->tx_packets++; /* for statics only */
488 	stats->tx_bytes += skb->len;
489 
490 	skb->dev = VLAN_DEV_INFO(dev)->real_dev;
491 	dev_queue_xmit(skb);
492 
493 	return 0;
494 }
495 
496 int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
497 {
498 	struct net_device_stats *stats = vlan_dev_get_stats(dev);
499 	unsigned short veth_TCI;
500 
501 	/* Construct the second two bytes. This field looks something
502 	 * like:
503 	 * usr_priority: 3 bits	 (high bits)
504 	 * CFI		 1 bit
505 	 * VLAN ID	 12 bits (low bits)
506 	 */
507 	veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
508 	veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
509 	skb = __vlan_hwaccel_put_tag(skb, veth_TCI);
510 
511 	stats->tx_packets++;
512 	stats->tx_bytes += skb->len;
513 
514 	skb->dev = VLAN_DEV_INFO(dev)->real_dev;
515 	dev_queue_xmit(skb);
516 
517 	return 0;
518 }
519 
520 int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
521 {
522 	/* TODO: gotta make sure the underlying layer can handle it,
523 	 * maybe an IFF_VLAN_CAPABLE flag for devices?
524 	 */
525 	if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu)
526 		return -ERANGE;
527 
528 	dev->mtu = new_mtu;
529 
530 	return 0;
531 }
532 
533 int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
534 {
535 	struct net_device *dev = dev_get_by_name(dev_name);
536 
537 	if (dev) {
538 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
539 			/* see if a priority mapping exists.. */
540 			VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
541 			dev_put(dev);
542 			return 0;
543 		}
544 
545 		dev_put(dev);
546 	}
547 	return -EINVAL;
548 }
549 
550 int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
551 {
552 	struct net_device *dev = dev_get_by_name(dev_name);
553 	struct vlan_priority_tci_mapping *mp = NULL;
554 	struct vlan_priority_tci_mapping *np;
555 
556 	if (dev) {
557 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
558 			/* See if a priority mapping exists.. */
559 			mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
560 			while (mp) {
561 				if (mp->priority == skb_prio) {
562 					mp->vlan_qos = ((vlan_prio << 13) & 0xE000);
563 					dev_put(dev);
564 					return 0;
565 				}
566 				mp = mp->next;
567 			}
568 
569 			/* Create a new mapping then. */
570 			mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
571 			np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
572 			if (np) {
573 				np->next = mp;
574 				np->priority = skb_prio;
575 				np->vlan_qos = ((vlan_prio << 13) & 0xE000);
576 				VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np;
577 				dev_put(dev);
578 				return 0;
579 			} else {
580 				dev_put(dev);
581 				return -ENOBUFS;
582 			}
583 		}
584 		dev_put(dev);
585 	}
586 	return -EINVAL;
587 }
588 
589 /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */
590 int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val)
591 {
592 	struct net_device *dev = dev_get_by_name(dev_name);
593 
594 	if (dev) {
595 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
596 			/* verify flag is supported */
597 			if (flag == 1) {
598 				if (flag_val) {
599 					VLAN_DEV_INFO(dev)->flags |= 1;
600 				} else {
601 					VLAN_DEV_INFO(dev)->flags &= ~1;
602 				}
603 				dev_put(dev);
604 				return 0;
605 			} else {
606 				printk(KERN_ERR  "%s: flag %i is not valid.\n",
607 					__FUNCTION__, (int)(flag));
608 				dev_put(dev);
609 				return -EINVAL;
610 			}
611 		} else {
612 			printk(KERN_ERR
613 			       "%s: %s is not a vlan device, priv_flags: %hX.\n",
614 			       __FUNCTION__, dev->name, dev->priv_flags);
615 			dev_put(dev);
616 		}
617 	} else {
618 		printk(KERN_ERR  "%s: Could not find device: %s\n",
619 			__FUNCTION__, dev_name);
620 	}
621 
622 	return -EINVAL;
623 }
624 
625 
626 int vlan_dev_get_realdev_name(const char *dev_name, char* result)
627 {
628 	struct net_device *dev = dev_get_by_name(dev_name);
629 	int rv = 0;
630 	if (dev) {
631 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
632 			strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23);
633 			rv = 0;
634 		} else {
635 			rv = -EINVAL;
636 		}
637 		dev_put(dev);
638 	} else {
639 		rv = -ENODEV;
640 	}
641 	return rv;
642 }
643 
644 int vlan_dev_get_vid(const char *dev_name, unsigned short* result)
645 {
646 	struct net_device *dev = dev_get_by_name(dev_name);
647 	int rv = 0;
648 	if (dev) {
649 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
650 			*result = VLAN_DEV_INFO(dev)->vlan_id;
651 			rv = 0;
652 		} else {
653 			rv = -EINVAL;
654 		}
655 		dev_put(dev);
656 	} else {
657 		rv = -ENODEV;
658 	}
659 	return rv;
660 }
661 
662 
663 int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p)
664 {
665 	struct sockaddr *addr = (struct sockaddr *)(addr_struct_p);
666 	int i;
667 
668 	if (netif_running(dev))
669 		return -EBUSY;
670 
671 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
672 
673 	printk("%s: Setting MAC address to ", dev->name);
674 	for (i = 0; i < 6; i++)
675 		printk(" %2.2x", dev->dev_addr[i]);
676 	printk(".\n");
677 
678 	if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr,
679 		   dev->dev_addr,
680 		   dev->addr_len) != 0) {
681 		if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) {
682 			int flgs = VLAN_DEV_INFO(dev)->real_dev->flags;
683 
684 			/* Increment our in-use promiscuity counter */
685 			dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1);
686 
687 			/* Make PROMISC visible to the user. */
688 			flgs |= IFF_PROMISC;
689 			printk("VLAN (%s):  Setting underlying device (%s) to promiscious mode.\n",
690 			       dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
691 			dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs);
692 		}
693 	} else {
694 		printk("VLAN (%s):  Underlying device (%s) has same MAC, not checking promiscious mode.\n",
695 		       dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
696 	}
697 
698 	return 0;
699 }
700 
701 static inline int vlan_dmi_equals(struct dev_mc_list *dmi1,
702                                   struct dev_mc_list *dmi2)
703 {
704 	return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) &&
705 		(memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0));
706 }
707 
708 /** dmi is a single entry into a dev_mc_list, a single node.  mc_list is
709  *  an entire list, and we'll iterate through it.
710  */
711 static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
712 {
713 	struct dev_mc_list *idmi;
714 
715 	for (idmi = mc_list; idmi != NULL; ) {
716 		if (vlan_dmi_equals(dmi, idmi)) {
717 			if (dmi->dmi_users > idmi->dmi_users)
718 				return 1;
719 			else
720 				return 0;
721 		} else {
722 			idmi = idmi->next;
723 		}
724 	}
725 
726 	return 1;
727 }
728 
729 static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list)
730 {
731 	struct dev_mc_list *dmi = mc_list;
732 	struct dev_mc_list *next;
733 
734 	while(dmi) {
735 		next = dmi->next;
736 		kfree(dmi);
737 		dmi = next;
738 	}
739 }
740 
741 static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info)
742 {
743 	struct dev_mc_list *dmi, *new_dmi;
744 
745 	vlan_destroy_mc_list(vlan_info->old_mc_list);
746 	vlan_info->old_mc_list = NULL;
747 
748 	for (dmi = mc_list; dmi != NULL; dmi = dmi->next) {
749 		new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC);
750 		if (new_dmi == NULL) {
751 			printk(KERN_ERR "vlan: cannot allocate memory. "
752 			       "Multicast may not work properly from now.\n");
753 			return;
754 		}
755 
756 		/* Copy whole structure, then make new 'next' pointer */
757 		*new_dmi = *dmi;
758 		new_dmi->next = vlan_info->old_mc_list;
759 		vlan_info->old_mc_list = new_dmi;
760 	}
761 }
762 
763 static void vlan_flush_mc_list(struct net_device *dev)
764 {
765 	struct dev_mc_list *dmi = dev->mc_list;
766 
767 	while (dmi) {
768 		printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n",
769 		       dev->name,
770 		       dmi->dmi_addr[0],
771 		       dmi->dmi_addr[1],
772 		       dmi->dmi_addr[2],
773 		       dmi->dmi_addr[3],
774 		       dmi->dmi_addr[4],
775 		       dmi->dmi_addr[5]);
776 		dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
777 		dmi = dev->mc_list;
778 	}
779 
780 	/* dev->mc_list is NULL by the time we get here. */
781 	vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list);
782 	VLAN_DEV_INFO(dev)->old_mc_list = NULL;
783 }
784 
785 int vlan_dev_open(struct net_device *dev)
786 {
787 	if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP))
788 		return -ENETDOWN;
789 
790 	return 0;
791 }
792 
793 int vlan_dev_stop(struct net_device *dev)
794 {
795 	vlan_flush_mc_list(dev);
796 	return 0;
797 }
798 
799 int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
800 {
801 	struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev;
802 	struct ifreq ifrr;
803 	int err = -EOPNOTSUPP;
804 
805 	strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
806 	ifrr.ifr_ifru = ifr->ifr_ifru;
807 
808 	switch(cmd) {
809 	case SIOCGMIIPHY:
810 	case SIOCGMIIREG:
811 	case SIOCSMIIREG:
812 		if (real_dev->do_ioctl && netif_device_present(real_dev))
813 			err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
814 		break;
815 
816 	case SIOCETHTOOL:
817 		err = dev_ethtool(&ifrr);
818 	}
819 
820 	if (!err)
821 		ifr->ifr_ifru = ifrr.ifr_ifru;
822 
823 	return err;
824 }
825 
826 /** Taken from Gleb + Lennert's VLAN code, and modified... */
827 void vlan_dev_set_multicast_list(struct net_device *vlan_dev)
828 {
829 	struct dev_mc_list *dmi;
830 	struct net_device *real_dev;
831 	int inc;
832 
833 	if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) {
834 		/* Then it's a real vlan device, as far as we can tell.. */
835 		real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev;
836 
837 		/* compare the current promiscuity to the last promisc we had.. */
838 		inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity;
839 		if (inc) {
840 			printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n",
841 			       vlan_dev->name, inc);
842 			dev_set_promiscuity(real_dev, inc); /* found in dev.c */
843 			VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity;
844 		}
845 
846 		inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti;
847 		if (inc) {
848 			printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n",
849 			       vlan_dev->name, inc);
850 			dev_set_allmulti(real_dev, inc); /* dev.c */
851 			VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti;
852 		}
853 
854 		/* looking for addresses to add to master's list */
855 		for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) {
856 			if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) {
857 				dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
858 				printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n",
859 				       vlan_dev->name,
860 				       dmi->dmi_addr[0],
861 				       dmi->dmi_addr[1],
862 				       dmi->dmi_addr[2],
863 				       dmi->dmi_addr[3],
864 				       dmi->dmi_addr[4],
865 				       dmi->dmi_addr[5]);
866 			}
867 		}
868 
869 		/* looking for addresses to delete from master's list */
870 		for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) {
871 			if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) {
872 				/* if we think we should add it to the new list, then we should really
873 				 * delete it from the real list on the underlying device.
874 				 */
875 				dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
876 				printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n",
877 				       vlan_dev->name,
878 				       dmi->dmi_addr[0],
879 				       dmi->dmi_addr[1],
880 				       dmi->dmi_addr[2],
881 				       dmi->dmi_addr[3],
882 				       dmi->dmi_addr[4],
883 				       dmi->dmi_addr[5]);
884 			}
885 		}
886 
887 		/* save multicast list */
888 		vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev));
889 	}
890 }
891