xref: /openbmc/linux/mm/zswap.c (revision 78eee7b5f110c9884c8ffd1dfcdd9c29296f3e43)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a backend for frontswap that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/frontswap.h>
24 #include <linux/rbtree.h>
25 #include <linux/swap.h>
26 #include <linux/crypto.h>
27 #include <linux/scatterlist.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31 
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38 
39 /*********************************
40 * statistics
41 **********************************/
42 /* Total bytes used by the compressed storage */
43 static u64 zswap_pool_total_size;
44 /* The number of compressed pages currently stored in zswap */
45 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
46 /* The number of same-value filled pages currently stored in zswap */
47 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
48 
49 /*
50  * The statistics below are not protected from concurrent access for
51  * performance reasons so they may not be a 100% accurate.  However,
52  * they do provide useful information on roughly how many times a
53  * certain event is occurring.
54 */
55 
56 /* Pool limit was hit (see zswap_max_pool_percent) */
57 static u64 zswap_pool_limit_hit;
58 /* Pages written back when pool limit was reached */
59 static u64 zswap_written_back_pages;
60 /* Store failed due to a reclaim failure after pool limit was reached */
61 static u64 zswap_reject_reclaim_fail;
62 /* Compressed page was too big for the allocator to (optimally) store */
63 static u64 zswap_reject_compress_poor;
64 /* Store failed because underlying allocator could not get memory */
65 static u64 zswap_reject_alloc_fail;
66 /* Store failed because the entry metadata could not be allocated (rare) */
67 static u64 zswap_reject_kmemcache_fail;
68 /* Duplicate store was encountered (rare) */
69 static u64 zswap_duplicate_entry;
70 
71 /* Shrinker work queue */
72 static struct workqueue_struct *shrink_wq;
73 /* Pool limit was hit, we need to calm down */
74 static bool zswap_pool_reached_full;
75 
76 /*********************************
77 * tunables
78 **********************************/
79 
80 #define ZSWAP_PARAM_UNSET ""
81 
82 /* Enable/disable zswap */
83 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
84 static int zswap_enabled_param_set(const char *,
85 				   const struct kernel_param *);
86 static const struct kernel_param_ops zswap_enabled_param_ops = {
87 	.set =		zswap_enabled_param_set,
88 	.get =		param_get_bool,
89 };
90 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
91 
92 /* Crypto compressor to use */
93 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
94 static int zswap_compressor_param_set(const char *,
95 				      const struct kernel_param *);
96 static const struct kernel_param_ops zswap_compressor_param_ops = {
97 	.set =		zswap_compressor_param_set,
98 	.get =		param_get_charp,
99 	.free =		param_free_charp,
100 };
101 module_param_cb(compressor, &zswap_compressor_param_ops,
102 		&zswap_compressor, 0644);
103 
104 /* Compressed storage zpool to use */
105 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
106 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
107 static const struct kernel_param_ops zswap_zpool_param_ops = {
108 	.set =		zswap_zpool_param_set,
109 	.get =		param_get_charp,
110 	.free =		param_free_charp,
111 };
112 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
113 
114 /* The maximum percentage of memory that the compressed pool can occupy */
115 static unsigned int zswap_max_pool_percent = 20;
116 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
117 
118 /* The threshold for accepting new pages after the max_pool_percent was hit */
119 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
120 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
121 		   uint, 0644);
122 
123 /* Enable/disable handling same-value filled pages (enabled by default) */
124 static bool zswap_same_filled_pages_enabled = true;
125 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
126 		   bool, 0644);
127 
128 /*********************************
129 * data structures
130 **********************************/
131 
132 struct crypto_acomp_ctx {
133 	struct crypto_acomp *acomp;
134 	struct acomp_req *req;
135 	struct crypto_wait wait;
136 	u8 *dstmem;
137 	struct mutex *mutex;
138 };
139 
140 struct zswap_pool {
141 	struct zpool *zpool;
142 	struct crypto_acomp_ctx __percpu *acomp_ctx;
143 	struct kref kref;
144 	struct list_head list;
145 	struct work_struct release_work;
146 	struct work_struct shrink_work;
147 	struct hlist_node node;
148 	char tfm_name[CRYPTO_MAX_ALG_NAME];
149 };
150 
151 /*
152  * struct zswap_entry
153  *
154  * This structure contains the metadata for tracking a single compressed
155  * page within zswap.
156  *
157  * rbnode - links the entry into red-black tree for the appropriate swap type
158  * offset - the swap offset for the entry.  Index into the red-black tree.
159  * refcount - the number of outstanding reference to the entry. This is needed
160  *            to protect against premature freeing of the entry by code
161  *            concurrent calls to load, invalidate, and writeback.  The lock
162  *            for the zswap_tree structure that contains the entry must
163  *            be held while changing the refcount.  Since the lock must
164  *            be held, there is no reason to also make refcount atomic.
165  * length - the length in bytes of the compressed page data.  Needed during
166  *          decompression. For a same value filled page length is 0.
167  * pool - the zswap_pool the entry's data is in
168  * handle - zpool allocation handle that stores the compressed page data
169  * value - value of the same-value filled pages which have same content
170  */
171 struct zswap_entry {
172 	struct rb_node rbnode;
173 	pgoff_t offset;
174 	int refcount;
175 	unsigned int length;
176 	struct zswap_pool *pool;
177 	union {
178 		unsigned long handle;
179 		unsigned long value;
180 	};
181 };
182 
183 struct zswap_header {
184 	swp_entry_t swpentry;
185 };
186 
187 /*
188  * The tree lock in the zswap_tree struct protects a few things:
189  * - the rbtree
190  * - the refcount field of each entry in the tree
191  */
192 struct zswap_tree {
193 	struct rb_root rbroot;
194 	spinlock_t lock;
195 };
196 
197 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
198 
199 /* RCU-protected iteration */
200 static LIST_HEAD(zswap_pools);
201 /* protects zswap_pools list modification */
202 static DEFINE_SPINLOCK(zswap_pools_lock);
203 /* pool counter to provide unique names to zpool */
204 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
205 
206 /* used by param callback function */
207 static bool zswap_init_started;
208 
209 /* fatal error during init */
210 static bool zswap_init_failed;
211 
212 /* init completed, but couldn't create the initial pool */
213 static bool zswap_has_pool;
214 
215 /*********************************
216 * helpers and fwd declarations
217 **********************************/
218 
219 #define zswap_pool_debug(msg, p)				\
220 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
221 		 zpool_get_type((p)->zpool))
222 
223 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
224 static int zswap_pool_get(struct zswap_pool *pool);
225 static void zswap_pool_put(struct zswap_pool *pool);
226 
227 static const struct zpool_ops zswap_zpool_ops = {
228 	.evict = zswap_writeback_entry
229 };
230 
231 static bool zswap_is_full(void)
232 {
233 	return totalram_pages() * zswap_max_pool_percent / 100 <
234 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
235 }
236 
237 static bool zswap_can_accept(void)
238 {
239 	return totalram_pages() * zswap_accept_thr_percent / 100 *
240 				zswap_max_pool_percent / 100 >
241 			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
242 }
243 
244 static void zswap_update_total_size(void)
245 {
246 	struct zswap_pool *pool;
247 	u64 total = 0;
248 
249 	rcu_read_lock();
250 
251 	list_for_each_entry_rcu(pool, &zswap_pools, list)
252 		total += zpool_get_total_size(pool->zpool);
253 
254 	rcu_read_unlock();
255 
256 	zswap_pool_total_size = total;
257 }
258 
259 /*********************************
260 * zswap entry functions
261 **********************************/
262 static struct kmem_cache *zswap_entry_cache;
263 
264 static int __init zswap_entry_cache_create(void)
265 {
266 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
267 	return zswap_entry_cache == NULL;
268 }
269 
270 static void __init zswap_entry_cache_destroy(void)
271 {
272 	kmem_cache_destroy(zswap_entry_cache);
273 }
274 
275 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
276 {
277 	struct zswap_entry *entry;
278 	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
279 	if (!entry)
280 		return NULL;
281 	entry->refcount = 1;
282 	RB_CLEAR_NODE(&entry->rbnode);
283 	return entry;
284 }
285 
286 static void zswap_entry_cache_free(struct zswap_entry *entry)
287 {
288 	kmem_cache_free(zswap_entry_cache, entry);
289 }
290 
291 /*********************************
292 * rbtree functions
293 **********************************/
294 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
295 {
296 	struct rb_node *node = root->rb_node;
297 	struct zswap_entry *entry;
298 
299 	while (node) {
300 		entry = rb_entry(node, struct zswap_entry, rbnode);
301 		if (entry->offset > offset)
302 			node = node->rb_left;
303 		else if (entry->offset < offset)
304 			node = node->rb_right;
305 		else
306 			return entry;
307 	}
308 	return NULL;
309 }
310 
311 /*
312  * In the case that a entry with the same offset is found, a pointer to
313  * the existing entry is stored in dupentry and the function returns -EEXIST
314  */
315 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
316 			struct zswap_entry **dupentry)
317 {
318 	struct rb_node **link = &root->rb_node, *parent = NULL;
319 	struct zswap_entry *myentry;
320 
321 	while (*link) {
322 		parent = *link;
323 		myentry = rb_entry(parent, struct zswap_entry, rbnode);
324 		if (myentry->offset > entry->offset)
325 			link = &(*link)->rb_left;
326 		else if (myentry->offset < entry->offset)
327 			link = &(*link)->rb_right;
328 		else {
329 			*dupentry = myentry;
330 			return -EEXIST;
331 		}
332 	}
333 	rb_link_node(&entry->rbnode, parent, link);
334 	rb_insert_color(&entry->rbnode, root);
335 	return 0;
336 }
337 
338 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
339 {
340 	if (!RB_EMPTY_NODE(&entry->rbnode)) {
341 		rb_erase(&entry->rbnode, root);
342 		RB_CLEAR_NODE(&entry->rbnode);
343 	}
344 }
345 
346 /*
347  * Carries out the common pattern of freeing and entry's zpool allocation,
348  * freeing the entry itself, and decrementing the number of stored pages.
349  */
350 static void zswap_free_entry(struct zswap_entry *entry)
351 {
352 	if (!entry->length)
353 		atomic_dec(&zswap_same_filled_pages);
354 	else {
355 		zpool_free(entry->pool->zpool, entry->handle);
356 		zswap_pool_put(entry->pool);
357 	}
358 	zswap_entry_cache_free(entry);
359 	atomic_dec(&zswap_stored_pages);
360 	zswap_update_total_size();
361 }
362 
363 /* caller must hold the tree lock */
364 static void zswap_entry_get(struct zswap_entry *entry)
365 {
366 	entry->refcount++;
367 }
368 
369 /* caller must hold the tree lock
370 * remove from the tree and free it, if nobody reference the entry
371 */
372 static void zswap_entry_put(struct zswap_tree *tree,
373 			struct zswap_entry *entry)
374 {
375 	int refcount = --entry->refcount;
376 
377 	BUG_ON(refcount < 0);
378 	if (refcount == 0) {
379 		zswap_rb_erase(&tree->rbroot, entry);
380 		zswap_free_entry(entry);
381 	}
382 }
383 
384 /* caller must hold the tree lock */
385 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
386 				pgoff_t offset)
387 {
388 	struct zswap_entry *entry;
389 
390 	entry = zswap_rb_search(root, offset);
391 	if (entry)
392 		zswap_entry_get(entry);
393 
394 	return entry;
395 }
396 
397 /*********************************
398 * per-cpu code
399 **********************************/
400 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
401 /*
402  * If users dynamically change the zpool type and compressor at runtime, i.e.
403  * zswap is running, zswap can have more than one zpool on one cpu, but they
404  * are sharing dtsmem. So we need this mutex to be per-cpu.
405  */
406 static DEFINE_PER_CPU(struct mutex *, zswap_mutex);
407 
408 static int zswap_dstmem_prepare(unsigned int cpu)
409 {
410 	struct mutex *mutex;
411 	u8 *dst;
412 
413 	dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
414 	if (!dst)
415 		return -ENOMEM;
416 
417 	mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu));
418 	if (!mutex) {
419 		kfree(dst);
420 		return -ENOMEM;
421 	}
422 
423 	mutex_init(mutex);
424 	per_cpu(zswap_dstmem, cpu) = dst;
425 	per_cpu(zswap_mutex, cpu) = mutex;
426 	return 0;
427 }
428 
429 static int zswap_dstmem_dead(unsigned int cpu)
430 {
431 	struct mutex *mutex;
432 	u8 *dst;
433 
434 	mutex = per_cpu(zswap_mutex, cpu);
435 	kfree(mutex);
436 	per_cpu(zswap_mutex, cpu) = NULL;
437 
438 	dst = per_cpu(zswap_dstmem, cpu);
439 	kfree(dst);
440 	per_cpu(zswap_dstmem, cpu) = NULL;
441 
442 	return 0;
443 }
444 
445 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
446 {
447 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
448 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
449 	struct crypto_acomp *acomp;
450 	struct acomp_req *req;
451 
452 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
453 	if (IS_ERR(acomp)) {
454 		pr_err("could not alloc crypto acomp %s : %ld\n",
455 				pool->tfm_name, PTR_ERR(acomp));
456 		return PTR_ERR(acomp);
457 	}
458 	acomp_ctx->acomp = acomp;
459 
460 	req = acomp_request_alloc(acomp_ctx->acomp);
461 	if (!req) {
462 		pr_err("could not alloc crypto acomp_request %s\n",
463 		       pool->tfm_name);
464 		crypto_free_acomp(acomp_ctx->acomp);
465 		return -ENOMEM;
466 	}
467 	acomp_ctx->req = req;
468 
469 	crypto_init_wait(&acomp_ctx->wait);
470 	/*
471 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
472 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
473 	 * won't be called, crypto_wait_req() will return without blocking.
474 	 */
475 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
476 				   crypto_req_done, &acomp_ctx->wait);
477 
478 	acomp_ctx->mutex = per_cpu(zswap_mutex, cpu);
479 	acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu);
480 
481 	return 0;
482 }
483 
484 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
485 {
486 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
487 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
488 
489 	if (!IS_ERR_OR_NULL(acomp_ctx)) {
490 		if (!IS_ERR_OR_NULL(acomp_ctx->req))
491 			acomp_request_free(acomp_ctx->req);
492 		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
493 			crypto_free_acomp(acomp_ctx->acomp);
494 	}
495 
496 	return 0;
497 }
498 
499 /*********************************
500 * pool functions
501 **********************************/
502 
503 static struct zswap_pool *__zswap_pool_current(void)
504 {
505 	struct zswap_pool *pool;
506 
507 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
508 	WARN_ONCE(!pool && zswap_has_pool,
509 		  "%s: no page storage pool!\n", __func__);
510 
511 	return pool;
512 }
513 
514 static struct zswap_pool *zswap_pool_current(void)
515 {
516 	assert_spin_locked(&zswap_pools_lock);
517 
518 	return __zswap_pool_current();
519 }
520 
521 static struct zswap_pool *zswap_pool_current_get(void)
522 {
523 	struct zswap_pool *pool;
524 
525 	rcu_read_lock();
526 
527 	pool = __zswap_pool_current();
528 	if (!zswap_pool_get(pool))
529 		pool = NULL;
530 
531 	rcu_read_unlock();
532 
533 	return pool;
534 }
535 
536 static struct zswap_pool *zswap_pool_last_get(void)
537 {
538 	struct zswap_pool *pool, *last = NULL;
539 
540 	rcu_read_lock();
541 
542 	list_for_each_entry_rcu(pool, &zswap_pools, list)
543 		last = pool;
544 	WARN_ONCE(!last && zswap_has_pool,
545 		  "%s: no page storage pool!\n", __func__);
546 	if (!zswap_pool_get(last))
547 		last = NULL;
548 
549 	rcu_read_unlock();
550 
551 	return last;
552 }
553 
554 /* type and compressor must be null-terminated */
555 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
556 {
557 	struct zswap_pool *pool;
558 
559 	assert_spin_locked(&zswap_pools_lock);
560 
561 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
562 		if (strcmp(pool->tfm_name, compressor))
563 			continue;
564 		if (strcmp(zpool_get_type(pool->zpool), type))
565 			continue;
566 		/* if we can't get it, it's about to be destroyed */
567 		if (!zswap_pool_get(pool))
568 			continue;
569 		return pool;
570 	}
571 
572 	return NULL;
573 }
574 
575 static void shrink_worker(struct work_struct *w)
576 {
577 	struct zswap_pool *pool = container_of(w, typeof(*pool),
578 						shrink_work);
579 
580 	if (zpool_shrink(pool->zpool, 1, NULL))
581 		zswap_reject_reclaim_fail++;
582 	zswap_pool_put(pool);
583 }
584 
585 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
586 {
587 	struct zswap_pool *pool;
588 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
589 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
590 	int ret;
591 
592 	if (!zswap_has_pool) {
593 		/* if either are unset, pool initialization failed, and we
594 		 * need both params to be set correctly before trying to
595 		 * create a pool.
596 		 */
597 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
598 			return NULL;
599 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
600 			return NULL;
601 	}
602 
603 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
604 	if (!pool)
605 		return NULL;
606 
607 	/* unique name for each pool specifically required by zsmalloc */
608 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
609 
610 	pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
611 	if (!pool->zpool) {
612 		pr_err("%s zpool not available\n", type);
613 		goto error;
614 	}
615 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
616 
617 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
618 
619 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
620 	if (!pool->acomp_ctx) {
621 		pr_err("percpu alloc failed\n");
622 		goto error;
623 	}
624 
625 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
626 				       &pool->node);
627 	if (ret)
628 		goto error;
629 	pr_debug("using %s compressor\n", pool->tfm_name);
630 
631 	/* being the current pool takes 1 ref; this func expects the
632 	 * caller to always add the new pool as the current pool
633 	 */
634 	kref_init(&pool->kref);
635 	INIT_LIST_HEAD(&pool->list);
636 	INIT_WORK(&pool->shrink_work, shrink_worker);
637 
638 	zswap_pool_debug("created", pool);
639 
640 	return pool;
641 
642 error:
643 	if (pool->acomp_ctx)
644 		free_percpu(pool->acomp_ctx);
645 	if (pool->zpool)
646 		zpool_destroy_pool(pool->zpool);
647 	kfree(pool);
648 	return NULL;
649 }
650 
651 static __init struct zswap_pool *__zswap_pool_create_fallback(void)
652 {
653 	bool has_comp, has_zpool;
654 
655 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
656 	if (!has_comp && strcmp(zswap_compressor,
657 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
658 		pr_err("compressor %s not available, using default %s\n",
659 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
660 		param_free_charp(&zswap_compressor);
661 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
662 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
663 	}
664 	if (!has_comp) {
665 		pr_err("default compressor %s not available\n",
666 		       zswap_compressor);
667 		param_free_charp(&zswap_compressor);
668 		zswap_compressor = ZSWAP_PARAM_UNSET;
669 	}
670 
671 	has_zpool = zpool_has_pool(zswap_zpool_type);
672 	if (!has_zpool && strcmp(zswap_zpool_type,
673 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
674 		pr_err("zpool %s not available, using default %s\n",
675 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
676 		param_free_charp(&zswap_zpool_type);
677 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
678 		has_zpool = zpool_has_pool(zswap_zpool_type);
679 	}
680 	if (!has_zpool) {
681 		pr_err("default zpool %s not available\n",
682 		       zswap_zpool_type);
683 		param_free_charp(&zswap_zpool_type);
684 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
685 	}
686 
687 	if (!has_comp || !has_zpool)
688 		return NULL;
689 
690 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
691 }
692 
693 static void zswap_pool_destroy(struct zswap_pool *pool)
694 {
695 	zswap_pool_debug("destroying", pool);
696 
697 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
698 	free_percpu(pool->acomp_ctx);
699 	zpool_destroy_pool(pool->zpool);
700 	kfree(pool);
701 }
702 
703 static int __must_check zswap_pool_get(struct zswap_pool *pool)
704 {
705 	if (!pool)
706 		return 0;
707 
708 	return kref_get_unless_zero(&pool->kref);
709 }
710 
711 static void __zswap_pool_release(struct work_struct *work)
712 {
713 	struct zswap_pool *pool = container_of(work, typeof(*pool),
714 						release_work);
715 
716 	synchronize_rcu();
717 
718 	/* nobody should have been able to get a kref... */
719 	WARN_ON(kref_get_unless_zero(&pool->kref));
720 
721 	/* pool is now off zswap_pools list and has no references. */
722 	zswap_pool_destroy(pool);
723 }
724 
725 static void __zswap_pool_empty(struct kref *kref)
726 {
727 	struct zswap_pool *pool;
728 
729 	pool = container_of(kref, typeof(*pool), kref);
730 
731 	spin_lock(&zswap_pools_lock);
732 
733 	WARN_ON(pool == zswap_pool_current());
734 
735 	list_del_rcu(&pool->list);
736 
737 	INIT_WORK(&pool->release_work, __zswap_pool_release);
738 	schedule_work(&pool->release_work);
739 
740 	spin_unlock(&zswap_pools_lock);
741 }
742 
743 static void zswap_pool_put(struct zswap_pool *pool)
744 {
745 	kref_put(&pool->kref, __zswap_pool_empty);
746 }
747 
748 /*********************************
749 * param callbacks
750 **********************************/
751 
752 /* val must be a null-terminated string */
753 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
754 			     char *type, char *compressor)
755 {
756 	struct zswap_pool *pool, *put_pool = NULL;
757 	char *s = strstrip((char *)val);
758 	int ret;
759 
760 	if (zswap_init_failed) {
761 		pr_err("can't set param, initialization failed\n");
762 		return -ENODEV;
763 	}
764 
765 	/* no change required */
766 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
767 		return 0;
768 
769 	/* if this is load-time (pre-init) param setting,
770 	 * don't create a pool; that's done during init.
771 	 */
772 	if (!zswap_init_started)
773 		return param_set_charp(s, kp);
774 
775 	if (!type) {
776 		if (!zpool_has_pool(s)) {
777 			pr_err("zpool %s not available\n", s);
778 			return -ENOENT;
779 		}
780 		type = s;
781 	} else if (!compressor) {
782 		if (!crypto_has_acomp(s, 0, 0)) {
783 			pr_err("compressor %s not available\n", s);
784 			return -ENOENT;
785 		}
786 		compressor = s;
787 	} else {
788 		WARN_ON(1);
789 		return -EINVAL;
790 	}
791 
792 	spin_lock(&zswap_pools_lock);
793 
794 	pool = zswap_pool_find_get(type, compressor);
795 	if (pool) {
796 		zswap_pool_debug("using existing", pool);
797 		WARN_ON(pool == zswap_pool_current());
798 		list_del_rcu(&pool->list);
799 	}
800 
801 	spin_unlock(&zswap_pools_lock);
802 
803 	if (!pool)
804 		pool = zswap_pool_create(type, compressor);
805 
806 	if (pool)
807 		ret = param_set_charp(s, kp);
808 	else
809 		ret = -EINVAL;
810 
811 	spin_lock(&zswap_pools_lock);
812 
813 	if (!ret) {
814 		put_pool = zswap_pool_current();
815 		list_add_rcu(&pool->list, &zswap_pools);
816 		zswap_has_pool = true;
817 	} else if (pool) {
818 		/* add the possibly pre-existing pool to the end of the pools
819 		 * list; if it's new (and empty) then it'll be removed and
820 		 * destroyed by the put after we drop the lock
821 		 */
822 		list_add_tail_rcu(&pool->list, &zswap_pools);
823 		put_pool = pool;
824 	}
825 
826 	spin_unlock(&zswap_pools_lock);
827 
828 	if (!zswap_has_pool && !pool) {
829 		/* if initial pool creation failed, and this pool creation also
830 		 * failed, maybe both compressor and zpool params were bad.
831 		 * Allow changing this param, so pool creation will succeed
832 		 * when the other param is changed. We already verified this
833 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
834 		 * checks above.
835 		 */
836 		ret = param_set_charp(s, kp);
837 	}
838 
839 	/* drop the ref from either the old current pool,
840 	 * or the new pool we failed to add
841 	 */
842 	if (put_pool)
843 		zswap_pool_put(put_pool);
844 
845 	return ret;
846 }
847 
848 static int zswap_compressor_param_set(const char *val,
849 				      const struct kernel_param *kp)
850 {
851 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
852 }
853 
854 static int zswap_zpool_param_set(const char *val,
855 				 const struct kernel_param *kp)
856 {
857 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
858 }
859 
860 static int zswap_enabled_param_set(const char *val,
861 				   const struct kernel_param *kp)
862 {
863 	if (zswap_init_failed) {
864 		pr_err("can't enable, initialization failed\n");
865 		return -ENODEV;
866 	}
867 	if (!zswap_has_pool && zswap_init_started) {
868 		pr_err("can't enable, no pool configured\n");
869 		return -ENODEV;
870 	}
871 
872 	return param_set_bool(val, kp);
873 }
874 
875 /*********************************
876 * writeback code
877 **********************************/
878 /* return enum for zswap_get_swap_cache_page */
879 enum zswap_get_swap_ret {
880 	ZSWAP_SWAPCACHE_NEW,
881 	ZSWAP_SWAPCACHE_EXIST,
882 	ZSWAP_SWAPCACHE_FAIL,
883 };
884 
885 /*
886  * zswap_get_swap_cache_page
887  *
888  * This is an adaption of read_swap_cache_async()
889  *
890  * This function tries to find a page with the given swap entry
891  * in the swapper_space address space (the swap cache).  If the page
892  * is found, it is returned in retpage.  Otherwise, a page is allocated,
893  * added to the swap cache, and returned in retpage.
894  *
895  * If success, the swap cache page is returned in retpage
896  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
897  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
898  *     the new page is added to swapcache and locked
899  * Returns ZSWAP_SWAPCACHE_FAIL on error
900  */
901 static int zswap_get_swap_cache_page(swp_entry_t entry,
902 				struct page **retpage)
903 {
904 	bool page_was_allocated;
905 
906 	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
907 			NULL, 0, &page_was_allocated);
908 	if (page_was_allocated)
909 		return ZSWAP_SWAPCACHE_NEW;
910 	if (!*retpage)
911 		return ZSWAP_SWAPCACHE_FAIL;
912 	return ZSWAP_SWAPCACHE_EXIST;
913 }
914 
915 /*
916  * Attempts to free an entry by adding a page to the swap cache,
917  * decompressing the entry data into the page, and issuing a
918  * bio write to write the page back to the swap device.
919  *
920  * This can be thought of as a "resumed writeback" of the page
921  * to the swap device.  We are basically resuming the same swap
922  * writeback path that was intercepted with the frontswap_store()
923  * in the first place.  After the page has been decompressed into
924  * the swap cache, the compressed version stored by zswap can be
925  * freed.
926  */
927 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
928 {
929 	struct zswap_header *zhdr;
930 	swp_entry_t swpentry;
931 	struct zswap_tree *tree;
932 	pgoff_t offset;
933 	struct zswap_entry *entry;
934 	struct page *page;
935 	struct scatterlist input, output;
936 	struct crypto_acomp_ctx *acomp_ctx;
937 
938 	u8 *src, *tmp = NULL;
939 	unsigned int dlen;
940 	int ret;
941 	struct writeback_control wbc = {
942 		.sync_mode = WB_SYNC_NONE,
943 	};
944 
945 	if (!zpool_can_sleep_mapped(pool)) {
946 		tmp = kmalloc(PAGE_SIZE, GFP_ATOMIC);
947 		if (!tmp)
948 			return -ENOMEM;
949 	}
950 
951 	/* extract swpentry from data */
952 	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
953 	swpentry = zhdr->swpentry; /* here */
954 	tree = zswap_trees[swp_type(swpentry)];
955 	offset = swp_offset(swpentry);
956 
957 	/* find and ref zswap entry */
958 	spin_lock(&tree->lock);
959 	entry = zswap_entry_find_get(&tree->rbroot, offset);
960 	if (!entry) {
961 		/* entry was invalidated */
962 		spin_unlock(&tree->lock);
963 		zpool_unmap_handle(pool, handle);
964 		kfree(tmp);
965 		return 0;
966 	}
967 	spin_unlock(&tree->lock);
968 	BUG_ON(offset != entry->offset);
969 
970 	src = (u8 *)zhdr + sizeof(struct zswap_header);
971 	if (!zpool_can_sleep_mapped(pool)) {
972 		memcpy(tmp, src, entry->length);
973 		src = tmp;
974 		zpool_unmap_handle(pool, handle);
975 	}
976 
977 	/* try to allocate swap cache page */
978 	switch (zswap_get_swap_cache_page(swpentry, &page)) {
979 	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
980 		ret = -ENOMEM;
981 		goto fail;
982 
983 	case ZSWAP_SWAPCACHE_EXIST:
984 		/* page is already in the swap cache, ignore for now */
985 		put_page(page);
986 		ret = -EEXIST;
987 		goto fail;
988 
989 	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
990 		/* decompress */
991 		acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
992 		dlen = PAGE_SIZE;
993 
994 		mutex_lock(acomp_ctx->mutex);
995 		sg_init_one(&input, src, entry->length);
996 		sg_init_table(&output, 1);
997 		sg_set_page(&output, page, PAGE_SIZE, 0);
998 		acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
999 		ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1000 		dlen = acomp_ctx->req->dlen;
1001 		mutex_unlock(acomp_ctx->mutex);
1002 
1003 		BUG_ON(ret);
1004 		BUG_ON(dlen != PAGE_SIZE);
1005 
1006 		/* page is up to date */
1007 		SetPageUptodate(page);
1008 	}
1009 
1010 	/* move it to the tail of the inactive list after end_writeback */
1011 	SetPageReclaim(page);
1012 
1013 	/* start writeback */
1014 	__swap_writepage(page, &wbc, end_swap_bio_write);
1015 	put_page(page);
1016 	zswap_written_back_pages++;
1017 
1018 	spin_lock(&tree->lock);
1019 	/* drop local reference */
1020 	zswap_entry_put(tree, entry);
1021 
1022 	/*
1023 	* There are two possible situations for entry here:
1024 	* (1) refcount is 1(normal case),  entry is valid and on the tree
1025 	* (2) refcount is 0, entry is freed and not on the tree
1026 	*     because invalidate happened during writeback
1027 	*  search the tree and free the entry if find entry
1028 	*/
1029 	if (entry == zswap_rb_search(&tree->rbroot, offset))
1030 		zswap_entry_put(tree, entry);
1031 	spin_unlock(&tree->lock);
1032 
1033 	goto end;
1034 
1035 	/*
1036 	* if we get here due to ZSWAP_SWAPCACHE_EXIST
1037 	* a load may be happening concurrently.
1038 	* it is safe and okay to not free the entry.
1039 	* if we free the entry in the following put
1040 	* it is also okay to return !0
1041 	*/
1042 fail:
1043 	spin_lock(&tree->lock);
1044 	zswap_entry_put(tree, entry);
1045 	spin_unlock(&tree->lock);
1046 
1047 end:
1048 	if (zpool_can_sleep_mapped(pool))
1049 		zpool_unmap_handle(pool, handle);
1050 	else
1051 		kfree(tmp);
1052 
1053 	return ret;
1054 }
1055 
1056 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1057 {
1058 	unsigned int pos;
1059 	unsigned long *page;
1060 
1061 	page = (unsigned long *)ptr;
1062 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
1063 		if (page[pos] != page[0])
1064 			return 0;
1065 	}
1066 	*value = page[0];
1067 	return 1;
1068 }
1069 
1070 static void zswap_fill_page(void *ptr, unsigned long value)
1071 {
1072 	unsigned long *page;
1073 
1074 	page = (unsigned long *)ptr;
1075 	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1076 }
1077 
1078 /*********************************
1079 * frontswap hooks
1080 **********************************/
1081 /* attempts to compress and store an single page */
1082 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
1083 				struct page *page)
1084 {
1085 	struct zswap_tree *tree = zswap_trees[type];
1086 	struct zswap_entry *entry, *dupentry;
1087 	struct scatterlist input, output;
1088 	struct crypto_acomp_ctx *acomp_ctx;
1089 	int ret;
1090 	unsigned int hlen, dlen = PAGE_SIZE;
1091 	unsigned long handle, value;
1092 	char *buf;
1093 	u8 *src, *dst;
1094 	struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
1095 	gfp_t gfp;
1096 
1097 	/* THP isn't supported */
1098 	if (PageTransHuge(page)) {
1099 		ret = -EINVAL;
1100 		goto reject;
1101 	}
1102 
1103 	if (!zswap_enabled || !tree) {
1104 		ret = -ENODEV;
1105 		goto reject;
1106 	}
1107 
1108 	/* reclaim space if needed */
1109 	if (zswap_is_full()) {
1110 		struct zswap_pool *pool;
1111 
1112 		zswap_pool_limit_hit++;
1113 		zswap_pool_reached_full = true;
1114 		pool = zswap_pool_last_get();
1115 		if (pool)
1116 			queue_work(shrink_wq, &pool->shrink_work);
1117 		ret = -ENOMEM;
1118 		goto reject;
1119 	}
1120 
1121 	if (zswap_pool_reached_full) {
1122 	       if (!zswap_can_accept()) {
1123 			ret = -ENOMEM;
1124 			goto reject;
1125 		} else
1126 			zswap_pool_reached_full = false;
1127 	}
1128 
1129 	/* allocate entry */
1130 	entry = zswap_entry_cache_alloc(GFP_KERNEL);
1131 	if (!entry) {
1132 		zswap_reject_kmemcache_fail++;
1133 		ret = -ENOMEM;
1134 		goto reject;
1135 	}
1136 
1137 	if (zswap_same_filled_pages_enabled) {
1138 		src = kmap_atomic(page);
1139 		if (zswap_is_page_same_filled(src, &value)) {
1140 			kunmap_atomic(src);
1141 			entry->offset = offset;
1142 			entry->length = 0;
1143 			entry->value = value;
1144 			atomic_inc(&zswap_same_filled_pages);
1145 			goto insert_entry;
1146 		}
1147 		kunmap_atomic(src);
1148 	}
1149 
1150 	/* if entry is successfully added, it keeps the reference */
1151 	entry->pool = zswap_pool_current_get();
1152 	if (!entry->pool) {
1153 		ret = -EINVAL;
1154 		goto freepage;
1155 	}
1156 
1157 	/* compress */
1158 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1159 
1160 	mutex_lock(acomp_ctx->mutex);
1161 
1162 	dst = acomp_ctx->dstmem;
1163 	sg_init_table(&input, 1);
1164 	sg_set_page(&input, page, PAGE_SIZE, 0);
1165 
1166 	/* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */
1167 	sg_init_one(&output, dst, PAGE_SIZE * 2);
1168 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1169 	/*
1170 	 * it maybe looks a little bit silly that we send an asynchronous request,
1171 	 * then wait for its completion synchronously. This makes the process look
1172 	 * synchronous in fact.
1173 	 * Theoretically, acomp supports users send multiple acomp requests in one
1174 	 * acomp instance, then get those requests done simultaneously. but in this
1175 	 * case, frontswap actually does store and load page by page, there is no
1176 	 * existing method to send the second page before the first page is done
1177 	 * in one thread doing frontswap.
1178 	 * but in different threads running on different cpu, we have different
1179 	 * acomp instance, so multiple threads can do (de)compression in parallel.
1180 	 */
1181 	ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1182 	dlen = acomp_ctx->req->dlen;
1183 
1184 	if (ret) {
1185 		ret = -EINVAL;
1186 		goto put_dstmem;
1187 	}
1188 
1189 	/* store */
1190 	hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1191 	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1192 	if (zpool_malloc_support_movable(entry->pool->zpool))
1193 		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1194 	ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle);
1195 	if (ret == -ENOSPC) {
1196 		zswap_reject_compress_poor++;
1197 		goto put_dstmem;
1198 	}
1199 	if (ret) {
1200 		zswap_reject_alloc_fail++;
1201 		goto put_dstmem;
1202 	}
1203 	buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_WO);
1204 	memcpy(buf, &zhdr, hlen);
1205 	memcpy(buf + hlen, dst, dlen);
1206 	zpool_unmap_handle(entry->pool->zpool, handle);
1207 	mutex_unlock(acomp_ctx->mutex);
1208 
1209 	/* populate entry */
1210 	entry->offset = offset;
1211 	entry->handle = handle;
1212 	entry->length = dlen;
1213 
1214 insert_entry:
1215 	/* map */
1216 	spin_lock(&tree->lock);
1217 	do {
1218 		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1219 		if (ret == -EEXIST) {
1220 			zswap_duplicate_entry++;
1221 			/* remove from rbtree */
1222 			zswap_rb_erase(&tree->rbroot, dupentry);
1223 			zswap_entry_put(tree, dupentry);
1224 		}
1225 	} while (ret == -EEXIST);
1226 	spin_unlock(&tree->lock);
1227 
1228 	/* update stats */
1229 	atomic_inc(&zswap_stored_pages);
1230 	zswap_update_total_size();
1231 
1232 	return 0;
1233 
1234 put_dstmem:
1235 	mutex_unlock(acomp_ctx->mutex);
1236 	zswap_pool_put(entry->pool);
1237 freepage:
1238 	zswap_entry_cache_free(entry);
1239 reject:
1240 	return ret;
1241 }
1242 
1243 /*
1244  * returns 0 if the page was successfully decompressed
1245  * return -1 on entry not found or error
1246 */
1247 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1248 				struct page *page)
1249 {
1250 	struct zswap_tree *tree = zswap_trees[type];
1251 	struct zswap_entry *entry;
1252 	struct scatterlist input, output;
1253 	struct crypto_acomp_ctx *acomp_ctx;
1254 	u8 *src, *dst, *tmp;
1255 	unsigned int dlen;
1256 	int ret;
1257 
1258 	/* find */
1259 	spin_lock(&tree->lock);
1260 	entry = zswap_entry_find_get(&tree->rbroot, offset);
1261 	if (!entry) {
1262 		/* entry was written back */
1263 		spin_unlock(&tree->lock);
1264 		return -1;
1265 	}
1266 	spin_unlock(&tree->lock);
1267 
1268 	if (!entry->length) {
1269 		dst = kmap_atomic(page);
1270 		zswap_fill_page(dst, entry->value);
1271 		kunmap_atomic(dst);
1272 		ret = 0;
1273 		goto freeentry;
1274 	}
1275 
1276 	if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1277 
1278 		tmp = kmalloc(entry->length, GFP_ATOMIC);
1279 		if (!tmp) {
1280 			ret = -ENOMEM;
1281 			goto freeentry;
1282 		}
1283 	}
1284 
1285 	/* decompress */
1286 	dlen = PAGE_SIZE;
1287 	src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1288 	if (zpool_evictable(entry->pool->zpool))
1289 		src += sizeof(struct zswap_header);
1290 
1291 	if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1292 
1293 		memcpy(tmp, src, entry->length);
1294 		src = tmp;
1295 
1296 		zpool_unmap_handle(entry->pool->zpool, entry->handle);
1297 	}
1298 
1299 	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1300 	mutex_lock(acomp_ctx->mutex);
1301 	sg_init_one(&input, src, entry->length);
1302 	sg_init_table(&output, 1);
1303 	sg_set_page(&output, page, PAGE_SIZE, 0);
1304 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1305 	ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1306 	mutex_unlock(acomp_ctx->mutex);
1307 
1308 	if (zpool_can_sleep_mapped(entry->pool->zpool))
1309 		zpool_unmap_handle(entry->pool->zpool, entry->handle);
1310 	else
1311 		kfree(tmp);
1312 
1313 	BUG_ON(ret);
1314 
1315 freeentry:
1316 	spin_lock(&tree->lock);
1317 	zswap_entry_put(tree, entry);
1318 	spin_unlock(&tree->lock);
1319 
1320 	return ret;
1321 }
1322 
1323 /* frees an entry in zswap */
1324 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1325 {
1326 	struct zswap_tree *tree = zswap_trees[type];
1327 	struct zswap_entry *entry;
1328 
1329 	/* find */
1330 	spin_lock(&tree->lock);
1331 	entry = zswap_rb_search(&tree->rbroot, offset);
1332 	if (!entry) {
1333 		/* entry was written back */
1334 		spin_unlock(&tree->lock);
1335 		return;
1336 	}
1337 
1338 	/* remove from rbtree */
1339 	zswap_rb_erase(&tree->rbroot, entry);
1340 
1341 	/* drop the initial reference from entry creation */
1342 	zswap_entry_put(tree, entry);
1343 
1344 	spin_unlock(&tree->lock);
1345 }
1346 
1347 /* frees all zswap entries for the given swap type */
1348 static void zswap_frontswap_invalidate_area(unsigned type)
1349 {
1350 	struct zswap_tree *tree = zswap_trees[type];
1351 	struct zswap_entry *entry, *n;
1352 
1353 	if (!tree)
1354 		return;
1355 
1356 	/* walk the tree and free everything */
1357 	spin_lock(&tree->lock);
1358 	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1359 		zswap_free_entry(entry);
1360 	tree->rbroot = RB_ROOT;
1361 	spin_unlock(&tree->lock);
1362 	kfree(tree);
1363 	zswap_trees[type] = NULL;
1364 }
1365 
1366 static void zswap_frontswap_init(unsigned type)
1367 {
1368 	struct zswap_tree *tree;
1369 
1370 	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1371 	if (!tree) {
1372 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1373 		return;
1374 	}
1375 
1376 	tree->rbroot = RB_ROOT;
1377 	spin_lock_init(&tree->lock);
1378 	zswap_trees[type] = tree;
1379 }
1380 
1381 static struct frontswap_ops zswap_frontswap_ops = {
1382 	.store = zswap_frontswap_store,
1383 	.load = zswap_frontswap_load,
1384 	.invalidate_page = zswap_frontswap_invalidate_page,
1385 	.invalidate_area = zswap_frontswap_invalidate_area,
1386 	.init = zswap_frontswap_init
1387 };
1388 
1389 /*********************************
1390 * debugfs functions
1391 **********************************/
1392 #ifdef CONFIG_DEBUG_FS
1393 #include <linux/debugfs.h>
1394 
1395 static struct dentry *zswap_debugfs_root;
1396 
1397 static int __init zswap_debugfs_init(void)
1398 {
1399 	if (!debugfs_initialized())
1400 		return -ENODEV;
1401 
1402 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1403 
1404 	debugfs_create_u64("pool_limit_hit", 0444,
1405 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1406 	debugfs_create_u64("reject_reclaim_fail", 0444,
1407 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1408 	debugfs_create_u64("reject_alloc_fail", 0444,
1409 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1410 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1411 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1412 	debugfs_create_u64("reject_compress_poor", 0444,
1413 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1414 	debugfs_create_u64("written_back_pages", 0444,
1415 			   zswap_debugfs_root, &zswap_written_back_pages);
1416 	debugfs_create_u64("duplicate_entry", 0444,
1417 			   zswap_debugfs_root, &zswap_duplicate_entry);
1418 	debugfs_create_u64("pool_total_size", 0444,
1419 			   zswap_debugfs_root, &zswap_pool_total_size);
1420 	debugfs_create_atomic_t("stored_pages", 0444,
1421 				zswap_debugfs_root, &zswap_stored_pages);
1422 	debugfs_create_atomic_t("same_filled_pages", 0444,
1423 				zswap_debugfs_root, &zswap_same_filled_pages);
1424 
1425 	return 0;
1426 }
1427 #else
1428 static int __init zswap_debugfs_init(void)
1429 {
1430 	return 0;
1431 }
1432 #endif
1433 
1434 /*********************************
1435 * module init and exit
1436 **********************************/
1437 static int __init init_zswap(void)
1438 {
1439 	struct zswap_pool *pool;
1440 	int ret;
1441 
1442 	zswap_init_started = true;
1443 
1444 	if (zswap_entry_cache_create()) {
1445 		pr_err("entry cache creation failed\n");
1446 		goto cache_fail;
1447 	}
1448 
1449 	ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1450 				zswap_dstmem_prepare, zswap_dstmem_dead);
1451 	if (ret) {
1452 		pr_err("dstmem alloc failed\n");
1453 		goto dstmem_fail;
1454 	}
1455 
1456 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1457 				      "mm/zswap_pool:prepare",
1458 				      zswap_cpu_comp_prepare,
1459 				      zswap_cpu_comp_dead);
1460 	if (ret)
1461 		goto hp_fail;
1462 
1463 	pool = __zswap_pool_create_fallback();
1464 	if (pool) {
1465 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1466 			zpool_get_type(pool->zpool));
1467 		list_add(&pool->list, &zswap_pools);
1468 		zswap_has_pool = true;
1469 	} else {
1470 		pr_err("pool creation failed\n");
1471 		zswap_enabled = false;
1472 	}
1473 
1474 	shrink_wq = create_workqueue("zswap-shrink");
1475 	if (!shrink_wq)
1476 		goto fallback_fail;
1477 
1478 	frontswap_register_ops(&zswap_frontswap_ops);
1479 	if (zswap_debugfs_init())
1480 		pr_warn("debugfs initialization failed\n");
1481 	return 0;
1482 
1483 fallback_fail:
1484 	if (pool)
1485 		zswap_pool_destroy(pool);
1486 hp_fail:
1487 	cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1488 dstmem_fail:
1489 	zswap_entry_cache_destroy();
1490 cache_fail:
1491 	/* if built-in, we aren't unloaded on failure; don't allow use */
1492 	zswap_init_failed = true;
1493 	zswap_enabled = false;
1494 	return -ENOMEM;
1495 }
1496 /* must be late so crypto has time to come up */
1497 late_initcall(init_zswap);
1498 
1499 MODULE_LICENSE("GPL");
1500 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1501 MODULE_DESCRIPTION("Compressed cache for swap pages");
1502