xref: /openbmc/linux/mm/zsmalloc.c (revision ee24395f91b9cddccae5f6c11c37ee4ed78ff354)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 /*
34  * lock ordering:
35  *	page_lock
36  *	pool->migrate_lock
37  *	class->lock
38  *	zspage->lock
39  */
40 
41 #include <linux/module.h>
42 #include <linux/kernel.h>
43 #include <linux/sched.h>
44 #include <linux/bitops.h>
45 #include <linux/errno.h>
46 #include <linux/highmem.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/pgtable.h>
50 #include <asm/tlbflush.h>
51 #include <linux/cpumask.h>
52 #include <linux/cpu.h>
53 #include <linux/vmalloc.h>
54 #include <linux/preempt.h>
55 #include <linux/spinlock.h>
56 #include <linux/shrinker.h>
57 #include <linux/types.h>
58 #include <linux/debugfs.h>
59 #include <linux/zsmalloc.h>
60 #include <linux/zpool.h>
61 #include <linux/migrate.h>
62 #include <linux/wait.h>
63 #include <linux/pagemap.h>
64 #include <linux/fs.h>
65 #include <linux/local_lock.h>
66 
67 #define ZSPAGE_MAGIC	0x58
68 
69 /*
70  * This must be power of 2 and greater than or equal to sizeof(link_free).
71  * These two conditions ensure that any 'struct link_free' itself doesn't
72  * span more than 1 page which avoids complex case of mapping 2 pages simply
73  * to restore link_free pointer values.
74  */
75 #define ZS_ALIGN		8
76 
77 /*
78  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
79  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
80  */
81 #define ZS_MAX_ZSPAGE_ORDER 2
82 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
83 
84 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
85 
86 /*
87  * Object location (<PFN>, <obj_idx>) is encoded as
88  * a single (unsigned long) handle value.
89  *
90  * Note that object index <obj_idx> starts from 0.
91  *
92  * This is made more complicated by various memory models and PAE.
93  */
94 
95 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
96 #ifdef MAX_PHYSMEM_BITS
97 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
98 #else
99 /*
100  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
101  * be PAGE_SHIFT
102  */
103 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
104 #endif
105 #endif
106 
107 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
108 
109 /*
110  * Head in allocated object should have OBJ_ALLOCATED_TAG
111  * to identify the object was allocated or not.
112  * It's okay to add the status bit in the least bit because
113  * header keeps handle which is 4byte-aligned address so we
114  * have room for two bit at least.
115  */
116 #define OBJ_ALLOCATED_TAG 1
117 #define OBJ_TAG_BITS 1
118 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
119 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120 
121 #define HUGE_BITS	1
122 #define FULLNESS_BITS	2
123 #define CLASS_BITS	8
124 #define ISOLATED_BITS	3
125 #define MAGIC_VAL_BITS	8
126 
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
133 
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 				      ZS_SIZE_CLASS_DELTA) + 1)
150 
151 enum fullness_group {
152 	ZS_EMPTY,
153 	ZS_ALMOST_EMPTY,
154 	ZS_ALMOST_FULL,
155 	ZS_FULL,
156 	NR_ZS_FULLNESS,
157 };
158 
159 enum class_stat_type {
160 	CLASS_EMPTY,
161 	CLASS_ALMOST_EMPTY,
162 	CLASS_ALMOST_FULL,
163 	CLASS_FULL,
164 	OBJ_ALLOCATED,
165 	OBJ_USED,
166 	NR_ZS_STAT_TYPE,
167 };
168 
169 struct zs_size_stat {
170 	unsigned long objs[NR_ZS_STAT_TYPE];
171 };
172 
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
176 
177 /*
178  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
179  *	n <= N / f, where
180  * n = number of allocated objects
181  * N = total number of objects zspage can store
182  * f = fullness_threshold_frac
183  *
184  * Similarly, we assign zspage to:
185  *	ZS_ALMOST_FULL	when n > N / f
186  *	ZS_EMPTY	when n == 0
187  *	ZS_FULL		when n == N
188  *
189  * (see: fix_fullness_group())
190  */
191 static const int fullness_threshold_frac = 4;
192 static size_t huge_class_size;
193 
194 struct size_class {
195 	spinlock_t lock;
196 	struct list_head fullness_list[NR_ZS_FULLNESS];
197 	/*
198 	 * Size of objects stored in this class. Must be multiple
199 	 * of ZS_ALIGN.
200 	 */
201 	int size;
202 	int objs_per_zspage;
203 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204 	int pages_per_zspage;
205 
206 	unsigned int index;
207 	struct zs_size_stat stats;
208 };
209 
210 /*
211  * Placed within free objects to form a singly linked list.
212  * For every zspage, zspage->freeobj gives head of this list.
213  *
214  * This must be power of 2 and less than or equal to ZS_ALIGN
215  */
216 struct link_free {
217 	union {
218 		/*
219 		 * Free object index;
220 		 * It's valid for non-allocated object
221 		 */
222 		unsigned long next;
223 		/*
224 		 * Handle of allocated object.
225 		 */
226 		unsigned long handle;
227 	};
228 };
229 
230 struct zs_pool {
231 	const char *name;
232 
233 	struct size_class *size_class[ZS_SIZE_CLASSES];
234 	struct kmem_cache *handle_cachep;
235 	struct kmem_cache *zspage_cachep;
236 
237 	atomic_long_t pages_allocated;
238 
239 	struct zs_pool_stats stats;
240 
241 	/* Compact classes */
242 	struct shrinker shrinker;
243 
244 #ifdef CONFIG_ZSMALLOC_STAT
245 	struct dentry *stat_dentry;
246 #endif
247 #ifdef CONFIG_COMPACTION
248 	struct work_struct free_work;
249 #endif
250 	/* protect page/zspage migration */
251 	rwlock_t migrate_lock;
252 };
253 
254 struct zspage {
255 	struct {
256 		unsigned int huge:HUGE_BITS;
257 		unsigned int fullness:FULLNESS_BITS;
258 		unsigned int class:CLASS_BITS + 1;
259 		unsigned int isolated:ISOLATED_BITS;
260 		unsigned int magic:MAGIC_VAL_BITS;
261 	};
262 	unsigned int inuse;
263 	unsigned int freeobj;
264 	struct page *first_page;
265 	struct list_head list; /* fullness list */
266 	struct zs_pool *pool;
267 #ifdef CONFIG_COMPACTION
268 	rwlock_t lock;
269 #endif
270 };
271 
272 struct mapping_area {
273 	local_lock_t lock;
274 	char *vm_buf; /* copy buffer for objects that span pages */
275 	char *vm_addr; /* address of kmap_atomic()'ed pages */
276 	enum zs_mapmode vm_mm; /* mapping mode */
277 };
278 
279 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
280 static void SetZsHugePage(struct zspage *zspage)
281 {
282 	zspage->huge = 1;
283 }
284 
285 static bool ZsHugePage(struct zspage *zspage)
286 {
287 	return zspage->huge;
288 }
289 
290 #ifdef CONFIG_COMPACTION
291 static void migrate_lock_init(struct zspage *zspage);
292 static void migrate_read_lock(struct zspage *zspage);
293 static void migrate_read_unlock(struct zspage *zspage);
294 static void migrate_write_lock(struct zspage *zspage);
295 static void migrate_write_lock_nested(struct zspage *zspage);
296 static void migrate_write_unlock(struct zspage *zspage);
297 static void kick_deferred_free(struct zs_pool *pool);
298 static void init_deferred_free(struct zs_pool *pool);
299 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
300 #else
301 static void migrate_lock_init(struct zspage *zspage) {}
302 static void migrate_read_lock(struct zspage *zspage) {}
303 static void migrate_read_unlock(struct zspage *zspage) {}
304 static void migrate_write_lock(struct zspage *zspage) {}
305 static void migrate_write_lock_nested(struct zspage *zspage) {}
306 static void migrate_write_unlock(struct zspage *zspage) {}
307 static void kick_deferred_free(struct zs_pool *pool) {}
308 static void init_deferred_free(struct zs_pool *pool) {}
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
310 #endif
311 
312 static int create_cache(struct zs_pool *pool)
313 {
314 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
315 					0, 0, NULL);
316 	if (!pool->handle_cachep)
317 		return 1;
318 
319 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
320 					0, 0, NULL);
321 	if (!pool->zspage_cachep) {
322 		kmem_cache_destroy(pool->handle_cachep);
323 		pool->handle_cachep = NULL;
324 		return 1;
325 	}
326 
327 	return 0;
328 }
329 
330 static void destroy_cache(struct zs_pool *pool)
331 {
332 	kmem_cache_destroy(pool->handle_cachep);
333 	kmem_cache_destroy(pool->zspage_cachep);
334 }
335 
336 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
337 {
338 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
339 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
340 }
341 
342 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
343 {
344 	kmem_cache_free(pool->handle_cachep, (void *)handle);
345 }
346 
347 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
348 {
349 	return kmem_cache_zalloc(pool->zspage_cachep,
350 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352 
353 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
354 {
355 	kmem_cache_free(pool->zspage_cachep, zspage);
356 }
357 
358 /* class->lock(which owns the handle) synchronizes races */
359 static void record_obj(unsigned long handle, unsigned long obj)
360 {
361 	*(unsigned long *)handle = obj;
362 }
363 
364 /* zpool driver */
365 
366 #ifdef CONFIG_ZPOOL
367 
368 static void *zs_zpool_create(const char *name, gfp_t gfp,
369 			     const struct zpool_ops *zpool_ops,
370 			     struct zpool *zpool)
371 {
372 	/*
373 	 * Ignore global gfp flags: zs_malloc() may be invoked from
374 	 * different contexts and its caller must provide a valid
375 	 * gfp mask.
376 	 */
377 	return zs_create_pool(name);
378 }
379 
380 static void zs_zpool_destroy(void *pool)
381 {
382 	zs_destroy_pool(pool);
383 }
384 
385 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
386 			unsigned long *handle)
387 {
388 	*handle = zs_malloc(pool, size, gfp);
389 
390 	if (IS_ERR((void *)(*handle)))
391 		return PTR_ERR((void *)*handle);
392 	return 0;
393 }
394 static void zs_zpool_free(void *pool, unsigned long handle)
395 {
396 	zs_free(pool, handle);
397 }
398 
399 static void *zs_zpool_map(void *pool, unsigned long handle,
400 			enum zpool_mapmode mm)
401 {
402 	enum zs_mapmode zs_mm;
403 
404 	switch (mm) {
405 	case ZPOOL_MM_RO:
406 		zs_mm = ZS_MM_RO;
407 		break;
408 	case ZPOOL_MM_WO:
409 		zs_mm = ZS_MM_WO;
410 		break;
411 	case ZPOOL_MM_RW:
412 	default:
413 		zs_mm = ZS_MM_RW;
414 		break;
415 	}
416 
417 	return zs_map_object(pool, handle, zs_mm);
418 }
419 static void zs_zpool_unmap(void *pool, unsigned long handle)
420 {
421 	zs_unmap_object(pool, handle);
422 }
423 
424 static u64 zs_zpool_total_size(void *pool)
425 {
426 	return zs_get_total_pages(pool) << PAGE_SHIFT;
427 }
428 
429 static struct zpool_driver zs_zpool_driver = {
430 	.type =			  "zsmalloc",
431 	.owner =		  THIS_MODULE,
432 	.create =		  zs_zpool_create,
433 	.destroy =		  zs_zpool_destroy,
434 	.malloc_support_movable = true,
435 	.malloc =		  zs_zpool_malloc,
436 	.free =			  zs_zpool_free,
437 	.map =			  zs_zpool_map,
438 	.unmap =		  zs_zpool_unmap,
439 	.total_size =		  zs_zpool_total_size,
440 };
441 
442 MODULE_ALIAS("zpool-zsmalloc");
443 #endif /* CONFIG_ZPOOL */
444 
445 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
446 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
447 	.lock	= INIT_LOCAL_LOCK(lock),
448 };
449 
450 static __maybe_unused int is_first_page(struct page *page)
451 {
452 	return PagePrivate(page);
453 }
454 
455 /* Protected by class->lock */
456 static inline int get_zspage_inuse(struct zspage *zspage)
457 {
458 	return zspage->inuse;
459 }
460 
461 
462 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
463 {
464 	zspage->inuse += val;
465 }
466 
467 static inline struct page *get_first_page(struct zspage *zspage)
468 {
469 	struct page *first_page = zspage->first_page;
470 
471 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
472 	return first_page;
473 }
474 
475 static inline unsigned int get_first_obj_offset(struct page *page)
476 {
477 	return page->page_type;
478 }
479 
480 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
481 {
482 	page->page_type = offset;
483 }
484 
485 static inline unsigned int get_freeobj(struct zspage *zspage)
486 {
487 	return zspage->freeobj;
488 }
489 
490 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
491 {
492 	zspage->freeobj = obj;
493 }
494 
495 static void get_zspage_mapping(struct zspage *zspage,
496 				unsigned int *class_idx,
497 				enum fullness_group *fullness)
498 {
499 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
500 
501 	*fullness = zspage->fullness;
502 	*class_idx = zspage->class;
503 }
504 
505 static struct size_class *zspage_class(struct zs_pool *pool,
506 					     struct zspage *zspage)
507 {
508 	return pool->size_class[zspage->class];
509 }
510 
511 static void set_zspage_mapping(struct zspage *zspage,
512 				unsigned int class_idx,
513 				enum fullness_group fullness)
514 {
515 	zspage->class = class_idx;
516 	zspage->fullness = fullness;
517 }
518 
519 /*
520  * zsmalloc divides the pool into various size classes where each
521  * class maintains a list of zspages where each zspage is divided
522  * into equal sized chunks. Each allocation falls into one of these
523  * classes depending on its size. This function returns index of the
524  * size class which has chunk size big enough to hold the given size.
525  */
526 static int get_size_class_index(int size)
527 {
528 	int idx = 0;
529 
530 	if (likely(size > ZS_MIN_ALLOC_SIZE))
531 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
532 				ZS_SIZE_CLASS_DELTA);
533 
534 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
535 }
536 
537 /* type can be of enum type class_stat_type or fullness_group */
538 static inline void class_stat_inc(struct size_class *class,
539 				int type, unsigned long cnt)
540 {
541 	class->stats.objs[type] += cnt;
542 }
543 
544 /* type can be of enum type class_stat_type or fullness_group */
545 static inline void class_stat_dec(struct size_class *class,
546 				int type, unsigned long cnt)
547 {
548 	class->stats.objs[type] -= cnt;
549 }
550 
551 /* type can be of enum type class_stat_type or fullness_group */
552 static inline unsigned long zs_stat_get(struct size_class *class,
553 				int type)
554 {
555 	return class->stats.objs[type];
556 }
557 
558 #ifdef CONFIG_ZSMALLOC_STAT
559 
560 static void __init zs_stat_init(void)
561 {
562 	if (!debugfs_initialized()) {
563 		pr_warn("debugfs not available, stat dir not created\n");
564 		return;
565 	}
566 
567 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
568 }
569 
570 static void __exit zs_stat_exit(void)
571 {
572 	debugfs_remove_recursive(zs_stat_root);
573 }
574 
575 static unsigned long zs_can_compact(struct size_class *class);
576 
577 static int zs_stats_size_show(struct seq_file *s, void *v)
578 {
579 	int i;
580 	struct zs_pool *pool = s->private;
581 	struct size_class *class;
582 	int objs_per_zspage;
583 	unsigned long class_almost_full, class_almost_empty;
584 	unsigned long obj_allocated, obj_used, pages_used, freeable;
585 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
586 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
587 	unsigned long total_freeable = 0;
588 
589 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
590 			"class", "size", "almost_full", "almost_empty",
591 			"obj_allocated", "obj_used", "pages_used",
592 			"pages_per_zspage", "freeable");
593 
594 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
595 		class = pool->size_class[i];
596 
597 		if (class->index != i)
598 			continue;
599 
600 		spin_lock(&class->lock);
601 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
602 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
603 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
604 		obj_used = zs_stat_get(class, OBJ_USED);
605 		freeable = zs_can_compact(class);
606 		spin_unlock(&class->lock);
607 
608 		objs_per_zspage = class->objs_per_zspage;
609 		pages_used = obj_allocated / objs_per_zspage *
610 				class->pages_per_zspage;
611 
612 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
613 				" %10lu %10lu %16d %8lu\n",
614 			i, class->size, class_almost_full, class_almost_empty,
615 			obj_allocated, obj_used, pages_used,
616 			class->pages_per_zspage, freeable);
617 
618 		total_class_almost_full += class_almost_full;
619 		total_class_almost_empty += class_almost_empty;
620 		total_objs += obj_allocated;
621 		total_used_objs += obj_used;
622 		total_pages += pages_used;
623 		total_freeable += freeable;
624 	}
625 
626 	seq_puts(s, "\n");
627 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
628 			"Total", "", total_class_almost_full,
629 			total_class_almost_empty, total_objs,
630 			total_used_objs, total_pages, "", total_freeable);
631 
632 	return 0;
633 }
634 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
635 
636 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
637 {
638 	if (!zs_stat_root) {
639 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
640 		return;
641 	}
642 
643 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
644 
645 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
646 			    &zs_stats_size_fops);
647 }
648 
649 static void zs_pool_stat_destroy(struct zs_pool *pool)
650 {
651 	debugfs_remove_recursive(pool->stat_dentry);
652 }
653 
654 #else /* CONFIG_ZSMALLOC_STAT */
655 static void __init zs_stat_init(void)
656 {
657 }
658 
659 static void __exit zs_stat_exit(void)
660 {
661 }
662 
663 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
664 {
665 }
666 
667 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
668 {
669 }
670 #endif
671 
672 
673 /*
674  * For each size class, zspages are divided into different groups
675  * depending on how "full" they are. This was done so that we could
676  * easily find empty or nearly empty zspages when we try to shrink
677  * the pool (not yet implemented). This function returns fullness
678  * status of the given page.
679  */
680 static enum fullness_group get_fullness_group(struct size_class *class,
681 						struct zspage *zspage)
682 {
683 	int inuse, objs_per_zspage;
684 	enum fullness_group fg;
685 
686 	inuse = get_zspage_inuse(zspage);
687 	objs_per_zspage = class->objs_per_zspage;
688 
689 	if (inuse == 0)
690 		fg = ZS_EMPTY;
691 	else if (inuse == objs_per_zspage)
692 		fg = ZS_FULL;
693 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
694 		fg = ZS_ALMOST_EMPTY;
695 	else
696 		fg = ZS_ALMOST_FULL;
697 
698 	return fg;
699 }
700 
701 /*
702  * Each size class maintains various freelists and zspages are assigned
703  * to one of these freelists based on the number of live objects they
704  * have. This functions inserts the given zspage into the freelist
705  * identified by <class, fullness_group>.
706  */
707 static void insert_zspage(struct size_class *class,
708 				struct zspage *zspage,
709 				enum fullness_group fullness)
710 {
711 	struct zspage *head;
712 
713 	class_stat_inc(class, fullness, 1);
714 	head = list_first_entry_or_null(&class->fullness_list[fullness],
715 					struct zspage, list);
716 	/*
717 	 * We want to see more ZS_FULL pages and less almost empty/full.
718 	 * Put pages with higher ->inuse first.
719 	 */
720 	if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
721 		list_add(&zspage->list, &head->list);
722 	else
723 		list_add(&zspage->list, &class->fullness_list[fullness]);
724 }
725 
726 /*
727  * This function removes the given zspage from the freelist identified
728  * by <class, fullness_group>.
729  */
730 static void remove_zspage(struct size_class *class,
731 				struct zspage *zspage,
732 				enum fullness_group fullness)
733 {
734 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
735 
736 	list_del_init(&zspage->list);
737 	class_stat_dec(class, fullness, 1);
738 }
739 
740 /*
741  * Each size class maintains zspages in different fullness groups depending
742  * on the number of live objects they contain. When allocating or freeing
743  * objects, the fullness status of the page can change, say, from ALMOST_FULL
744  * to ALMOST_EMPTY when freeing an object. This function checks if such
745  * a status change has occurred for the given page and accordingly moves the
746  * page from the freelist of the old fullness group to that of the new
747  * fullness group.
748  */
749 static enum fullness_group fix_fullness_group(struct size_class *class,
750 						struct zspage *zspage)
751 {
752 	int class_idx;
753 	enum fullness_group currfg, newfg;
754 
755 	get_zspage_mapping(zspage, &class_idx, &currfg);
756 	newfg = get_fullness_group(class, zspage);
757 	if (newfg == currfg)
758 		goto out;
759 
760 	remove_zspage(class, zspage, currfg);
761 	insert_zspage(class, zspage, newfg);
762 	set_zspage_mapping(zspage, class_idx, newfg);
763 out:
764 	return newfg;
765 }
766 
767 /*
768  * We have to decide on how many pages to link together
769  * to form a zspage for each size class. This is important
770  * to reduce wastage due to unusable space left at end of
771  * each zspage which is given as:
772  *     wastage = Zp % class_size
773  *     usage = Zp - wastage
774  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
775  *
776  * For example, for size class of 3/8 * PAGE_SIZE, we should
777  * link together 3 PAGE_SIZE sized pages to form a zspage
778  * since then we can perfectly fit in 8 such objects.
779  */
780 static int get_pages_per_zspage(int class_size)
781 {
782 	int i, max_usedpc = 0;
783 	/* zspage order which gives maximum used size per KB */
784 	int max_usedpc_order = 1;
785 
786 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
787 		int zspage_size;
788 		int waste, usedpc;
789 
790 		zspage_size = i * PAGE_SIZE;
791 		waste = zspage_size % class_size;
792 		usedpc = (zspage_size - waste) * 100 / zspage_size;
793 
794 		if (usedpc > max_usedpc) {
795 			max_usedpc = usedpc;
796 			max_usedpc_order = i;
797 		}
798 	}
799 
800 	return max_usedpc_order;
801 }
802 
803 static struct zspage *get_zspage(struct page *page)
804 {
805 	struct zspage *zspage = (struct zspage *)page_private(page);
806 
807 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
808 	return zspage;
809 }
810 
811 static struct page *get_next_page(struct page *page)
812 {
813 	struct zspage *zspage = get_zspage(page);
814 
815 	if (unlikely(ZsHugePage(zspage)))
816 		return NULL;
817 
818 	return (struct page *)page->index;
819 }
820 
821 /**
822  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
823  * @obj: the encoded object value
824  * @page: page object resides in zspage
825  * @obj_idx: object index
826  */
827 static void obj_to_location(unsigned long obj, struct page **page,
828 				unsigned int *obj_idx)
829 {
830 	obj >>= OBJ_TAG_BITS;
831 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
832 	*obj_idx = (obj & OBJ_INDEX_MASK);
833 }
834 
835 static void obj_to_page(unsigned long obj, struct page **page)
836 {
837 	obj >>= OBJ_TAG_BITS;
838 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
839 }
840 
841 /**
842  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
843  * @page: page object resides in zspage
844  * @obj_idx: object index
845  */
846 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
847 {
848 	unsigned long obj;
849 
850 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
851 	obj |= obj_idx & OBJ_INDEX_MASK;
852 	obj <<= OBJ_TAG_BITS;
853 
854 	return obj;
855 }
856 
857 static unsigned long handle_to_obj(unsigned long handle)
858 {
859 	return *(unsigned long *)handle;
860 }
861 
862 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
863 {
864 	unsigned long handle;
865 	struct zspage *zspage = get_zspage(page);
866 
867 	if (unlikely(ZsHugePage(zspage))) {
868 		VM_BUG_ON_PAGE(!is_first_page(page), page);
869 		handle = page->index;
870 	} else
871 		handle = *(unsigned long *)obj;
872 
873 	if (!(handle & OBJ_ALLOCATED_TAG))
874 		return false;
875 
876 	*phandle = handle & ~OBJ_ALLOCATED_TAG;
877 	return true;
878 }
879 
880 static void reset_page(struct page *page)
881 {
882 	__ClearPageMovable(page);
883 	ClearPagePrivate(page);
884 	set_page_private(page, 0);
885 	page_mapcount_reset(page);
886 	page->index = 0;
887 }
888 
889 static int trylock_zspage(struct zspage *zspage)
890 {
891 	struct page *cursor, *fail;
892 
893 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
894 					get_next_page(cursor)) {
895 		if (!trylock_page(cursor)) {
896 			fail = cursor;
897 			goto unlock;
898 		}
899 	}
900 
901 	return 1;
902 unlock:
903 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
904 					get_next_page(cursor))
905 		unlock_page(cursor);
906 
907 	return 0;
908 }
909 
910 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
911 				struct zspage *zspage)
912 {
913 	struct page *page, *next;
914 	enum fullness_group fg;
915 	unsigned int class_idx;
916 
917 	get_zspage_mapping(zspage, &class_idx, &fg);
918 
919 	assert_spin_locked(&class->lock);
920 
921 	VM_BUG_ON(get_zspage_inuse(zspage));
922 	VM_BUG_ON(fg != ZS_EMPTY);
923 
924 	next = page = get_first_page(zspage);
925 	do {
926 		VM_BUG_ON_PAGE(!PageLocked(page), page);
927 		next = get_next_page(page);
928 		reset_page(page);
929 		unlock_page(page);
930 		dec_zone_page_state(page, NR_ZSPAGES);
931 		put_page(page);
932 		page = next;
933 	} while (page != NULL);
934 
935 	cache_free_zspage(pool, zspage);
936 
937 	class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
938 	atomic_long_sub(class->pages_per_zspage,
939 					&pool->pages_allocated);
940 }
941 
942 static void free_zspage(struct zs_pool *pool, struct size_class *class,
943 				struct zspage *zspage)
944 {
945 	VM_BUG_ON(get_zspage_inuse(zspage));
946 	VM_BUG_ON(list_empty(&zspage->list));
947 
948 	/*
949 	 * Since zs_free couldn't be sleepable, this function cannot call
950 	 * lock_page. The page locks trylock_zspage got will be released
951 	 * by __free_zspage.
952 	 */
953 	if (!trylock_zspage(zspage)) {
954 		kick_deferred_free(pool);
955 		return;
956 	}
957 
958 	remove_zspage(class, zspage, ZS_EMPTY);
959 	__free_zspage(pool, class, zspage);
960 }
961 
962 /* Initialize a newly allocated zspage */
963 static void init_zspage(struct size_class *class, struct zspage *zspage)
964 {
965 	unsigned int freeobj = 1;
966 	unsigned long off = 0;
967 	struct page *page = get_first_page(zspage);
968 
969 	while (page) {
970 		struct page *next_page;
971 		struct link_free *link;
972 		void *vaddr;
973 
974 		set_first_obj_offset(page, off);
975 
976 		vaddr = kmap_atomic(page);
977 		link = (struct link_free *)vaddr + off / sizeof(*link);
978 
979 		while ((off += class->size) < PAGE_SIZE) {
980 			link->next = freeobj++ << OBJ_TAG_BITS;
981 			link += class->size / sizeof(*link);
982 		}
983 
984 		/*
985 		 * We now come to the last (full or partial) object on this
986 		 * page, which must point to the first object on the next
987 		 * page (if present)
988 		 */
989 		next_page = get_next_page(page);
990 		if (next_page) {
991 			link->next = freeobj++ << OBJ_TAG_BITS;
992 		} else {
993 			/*
994 			 * Reset OBJ_TAG_BITS bit to last link to tell
995 			 * whether it's allocated object or not.
996 			 */
997 			link->next = -1UL << OBJ_TAG_BITS;
998 		}
999 		kunmap_atomic(vaddr);
1000 		page = next_page;
1001 		off %= PAGE_SIZE;
1002 	}
1003 
1004 	set_freeobj(zspage, 0);
1005 }
1006 
1007 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1008 				struct page *pages[])
1009 {
1010 	int i;
1011 	struct page *page;
1012 	struct page *prev_page = NULL;
1013 	int nr_pages = class->pages_per_zspage;
1014 
1015 	/*
1016 	 * Allocate individual pages and link them together as:
1017 	 * 1. all pages are linked together using page->index
1018 	 * 2. each sub-page point to zspage using page->private
1019 	 *
1020 	 * we set PG_private to identify the first page (i.e. no other sub-page
1021 	 * has this flag set).
1022 	 */
1023 	for (i = 0; i < nr_pages; i++) {
1024 		page = pages[i];
1025 		set_page_private(page, (unsigned long)zspage);
1026 		page->index = 0;
1027 		if (i == 0) {
1028 			zspage->first_page = page;
1029 			SetPagePrivate(page);
1030 			if (unlikely(class->objs_per_zspage == 1 &&
1031 					class->pages_per_zspage == 1))
1032 				SetZsHugePage(zspage);
1033 		} else {
1034 			prev_page->index = (unsigned long)page;
1035 		}
1036 		prev_page = page;
1037 	}
1038 }
1039 
1040 /*
1041  * Allocate a zspage for the given size class
1042  */
1043 static struct zspage *alloc_zspage(struct zs_pool *pool,
1044 					struct size_class *class,
1045 					gfp_t gfp)
1046 {
1047 	int i;
1048 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1049 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1050 
1051 	if (!zspage)
1052 		return NULL;
1053 
1054 	zspage->magic = ZSPAGE_MAGIC;
1055 	migrate_lock_init(zspage);
1056 
1057 	for (i = 0; i < class->pages_per_zspage; i++) {
1058 		struct page *page;
1059 
1060 		page = alloc_page(gfp);
1061 		if (!page) {
1062 			while (--i >= 0) {
1063 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1064 				__free_page(pages[i]);
1065 			}
1066 			cache_free_zspage(pool, zspage);
1067 			return NULL;
1068 		}
1069 
1070 		inc_zone_page_state(page, NR_ZSPAGES);
1071 		pages[i] = page;
1072 	}
1073 
1074 	create_page_chain(class, zspage, pages);
1075 	init_zspage(class, zspage);
1076 	zspage->pool = pool;
1077 
1078 	return zspage;
1079 }
1080 
1081 static struct zspage *find_get_zspage(struct size_class *class)
1082 {
1083 	int i;
1084 	struct zspage *zspage;
1085 
1086 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1087 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1088 				struct zspage, list);
1089 		if (zspage)
1090 			break;
1091 	}
1092 
1093 	return zspage;
1094 }
1095 
1096 static inline int __zs_cpu_up(struct mapping_area *area)
1097 {
1098 	/*
1099 	 * Make sure we don't leak memory if a cpu UP notification
1100 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1101 	 */
1102 	if (area->vm_buf)
1103 		return 0;
1104 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1105 	if (!area->vm_buf)
1106 		return -ENOMEM;
1107 	return 0;
1108 }
1109 
1110 static inline void __zs_cpu_down(struct mapping_area *area)
1111 {
1112 	kfree(area->vm_buf);
1113 	area->vm_buf = NULL;
1114 }
1115 
1116 static void *__zs_map_object(struct mapping_area *area,
1117 			struct page *pages[2], int off, int size)
1118 {
1119 	int sizes[2];
1120 	void *addr;
1121 	char *buf = area->vm_buf;
1122 
1123 	/* disable page faults to match kmap_atomic() return conditions */
1124 	pagefault_disable();
1125 
1126 	/* no read fastpath */
1127 	if (area->vm_mm == ZS_MM_WO)
1128 		goto out;
1129 
1130 	sizes[0] = PAGE_SIZE - off;
1131 	sizes[1] = size - sizes[0];
1132 
1133 	/* copy object to per-cpu buffer */
1134 	addr = kmap_atomic(pages[0]);
1135 	memcpy(buf, addr + off, sizes[0]);
1136 	kunmap_atomic(addr);
1137 	addr = kmap_atomic(pages[1]);
1138 	memcpy(buf + sizes[0], addr, sizes[1]);
1139 	kunmap_atomic(addr);
1140 out:
1141 	return area->vm_buf;
1142 }
1143 
1144 static void __zs_unmap_object(struct mapping_area *area,
1145 			struct page *pages[2], int off, int size)
1146 {
1147 	int sizes[2];
1148 	void *addr;
1149 	char *buf;
1150 
1151 	/* no write fastpath */
1152 	if (area->vm_mm == ZS_MM_RO)
1153 		goto out;
1154 
1155 	buf = area->vm_buf;
1156 	buf = buf + ZS_HANDLE_SIZE;
1157 	size -= ZS_HANDLE_SIZE;
1158 	off += ZS_HANDLE_SIZE;
1159 
1160 	sizes[0] = PAGE_SIZE - off;
1161 	sizes[1] = size - sizes[0];
1162 
1163 	/* copy per-cpu buffer to object */
1164 	addr = kmap_atomic(pages[0]);
1165 	memcpy(addr + off, buf, sizes[0]);
1166 	kunmap_atomic(addr);
1167 	addr = kmap_atomic(pages[1]);
1168 	memcpy(addr, buf + sizes[0], sizes[1]);
1169 	kunmap_atomic(addr);
1170 
1171 out:
1172 	/* enable page faults to match kunmap_atomic() return conditions */
1173 	pagefault_enable();
1174 }
1175 
1176 static int zs_cpu_prepare(unsigned int cpu)
1177 {
1178 	struct mapping_area *area;
1179 
1180 	area = &per_cpu(zs_map_area, cpu);
1181 	return __zs_cpu_up(area);
1182 }
1183 
1184 static int zs_cpu_dead(unsigned int cpu)
1185 {
1186 	struct mapping_area *area;
1187 
1188 	area = &per_cpu(zs_map_area, cpu);
1189 	__zs_cpu_down(area);
1190 	return 0;
1191 }
1192 
1193 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1194 					int objs_per_zspage)
1195 {
1196 	if (prev->pages_per_zspage == pages_per_zspage &&
1197 		prev->objs_per_zspage == objs_per_zspage)
1198 		return true;
1199 
1200 	return false;
1201 }
1202 
1203 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1204 {
1205 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1206 }
1207 
1208 unsigned long zs_get_total_pages(struct zs_pool *pool)
1209 {
1210 	return atomic_long_read(&pool->pages_allocated);
1211 }
1212 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1213 
1214 /**
1215  * zs_map_object - get address of allocated object from handle.
1216  * @pool: pool from which the object was allocated
1217  * @handle: handle returned from zs_malloc
1218  * @mm: mapping mode to use
1219  *
1220  * Before using an object allocated from zs_malloc, it must be mapped using
1221  * this function. When done with the object, it must be unmapped using
1222  * zs_unmap_object.
1223  *
1224  * Only one object can be mapped per cpu at a time. There is no protection
1225  * against nested mappings.
1226  *
1227  * This function returns with preemption and page faults disabled.
1228  */
1229 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1230 			enum zs_mapmode mm)
1231 {
1232 	struct zspage *zspage;
1233 	struct page *page;
1234 	unsigned long obj, off;
1235 	unsigned int obj_idx;
1236 
1237 	struct size_class *class;
1238 	struct mapping_area *area;
1239 	struct page *pages[2];
1240 	void *ret;
1241 
1242 	/*
1243 	 * Because we use per-cpu mapping areas shared among the
1244 	 * pools/users, we can't allow mapping in interrupt context
1245 	 * because it can corrupt another users mappings.
1246 	 */
1247 	BUG_ON(in_interrupt());
1248 
1249 	/* It guarantees it can get zspage from handle safely */
1250 	read_lock(&pool->migrate_lock);
1251 	obj = handle_to_obj(handle);
1252 	obj_to_location(obj, &page, &obj_idx);
1253 	zspage = get_zspage(page);
1254 
1255 	/*
1256 	 * migration cannot move any zpages in this zspage. Here, class->lock
1257 	 * is too heavy since callers would take some time until they calls
1258 	 * zs_unmap_object API so delegate the locking from class to zspage
1259 	 * which is smaller granularity.
1260 	 */
1261 	migrate_read_lock(zspage);
1262 	read_unlock(&pool->migrate_lock);
1263 
1264 	class = zspage_class(pool, zspage);
1265 	off = (class->size * obj_idx) & ~PAGE_MASK;
1266 
1267 	local_lock(&zs_map_area.lock);
1268 	area = this_cpu_ptr(&zs_map_area);
1269 	area->vm_mm = mm;
1270 	if (off + class->size <= PAGE_SIZE) {
1271 		/* this object is contained entirely within a page */
1272 		area->vm_addr = kmap_atomic(page);
1273 		ret = area->vm_addr + off;
1274 		goto out;
1275 	}
1276 
1277 	/* this object spans two pages */
1278 	pages[0] = page;
1279 	pages[1] = get_next_page(page);
1280 	BUG_ON(!pages[1]);
1281 
1282 	ret = __zs_map_object(area, pages, off, class->size);
1283 out:
1284 	if (likely(!ZsHugePage(zspage)))
1285 		ret += ZS_HANDLE_SIZE;
1286 
1287 	return ret;
1288 }
1289 EXPORT_SYMBOL_GPL(zs_map_object);
1290 
1291 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1292 {
1293 	struct zspage *zspage;
1294 	struct page *page;
1295 	unsigned long obj, off;
1296 	unsigned int obj_idx;
1297 
1298 	struct size_class *class;
1299 	struct mapping_area *area;
1300 
1301 	obj = handle_to_obj(handle);
1302 	obj_to_location(obj, &page, &obj_idx);
1303 	zspage = get_zspage(page);
1304 	class = zspage_class(pool, zspage);
1305 	off = (class->size * obj_idx) & ~PAGE_MASK;
1306 
1307 	area = this_cpu_ptr(&zs_map_area);
1308 	if (off + class->size <= PAGE_SIZE)
1309 		kunmap_atomic(area->vm_addr);
1310 	else {
1311 		struct page *pages[2];
1312 
1313 		pages[0] = page;
1314 		pages[1] = get_next_page(page);
1315 		BUG_ON(!pages[1]);
1316 
1317 		__zs_unmap_object(area, pages, off, class->size);
1318 	}
1319 	local_unlock(&zs_map_area.lock);
1320 
1321 	migrate_read_unlock(zspage);
1322 }
1323 EXPORT_SYMBOL_GPL(zs_unmap_object);
1324 
1325 /**
1326  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1327  *                        zsmalloc &size_class.
1328  * @pool: zsmalloc pool to use
1329  *
1330  * The function returns the size of the first huge class - any object of equal
1331  * or bigger size will be stored in zspage consisting of a single physical
1332  * page.
1333  *
1334  * Context: Any context.
1335  *
1336  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1337  */
1338 size_t zs_huge_class_size(struct zs_pool *pool)
1339 {
1340 	return huge_class_size;
1341 }
1342 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1343 
1344 static unsigned long obj_malloc(struct zs_pool *pool,
1345 				struct zspage *zspage, unsigned long handle)
1346 {
1347 	int i, nr_page, offset;
1348 	unsigned long obj;
1349 	struct link_free *link;
1350 	struct size_class *class;
1351 
1352 	struct page *m_page;
1353 	unsigned long m_offset;
1354 	void *vaddr;
1355 
1356 	class = pool->size_class[zspage->class];
1357 	handle |= OBJ_ALLOCATED_TAG;
1358 	obj = get_freeobj(zspage);
1359 
1360 	offset = obj * class->size;
1361 	nr_page = offset >> PAGE_SHIFT;
1362 	m_offset = offset & ~PAGE_MASK;
1363 	m_page = get_first_page(zspage);
1364 
1365 	for (i = 0; i < nr_page; i++)
1366 		m_page = get_next_page(m_page);
1367 
1368 	vaddr = kmap_atomic(m_page);
1369 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1371 	if (likely(!ZsHugePage(zspage)))
1372 		/* record handle in the header of allocated chunk */
1373 		link->handle = handle;
1374 	else
1375 		/* record handle to page->index */
1376 		zspage->first_page->index = handle;
1377 
1378 	kunmap_atomic(vaddr);
1379 	mod_zspage_inuse(zspage, 1);
1380 
1381 	obj = location_to_obj(m_page, obj);
1382 
1383 	return obj;
1384 }
1385 
1386 
1387 /**
1388  * zs_malloc - Allocate block of given size from pool.
1389  * @pool: pool to allocate from
1390  * @size: size of block to allocate
1391  * @gfp: gfp flags when allocating object
1392  *
1393  * On success, handle to the allocated object is returned,
1394  * otherwise an ERR_PTR().
1395  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1396  */
1397 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1398 {
1399 	unsigned long handle, obj;
1400 	struct size_class *class;
1401 	enum fullness_group newfg;
1402 	struct zspage *zspage;
1403 
1404 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1405 		return (unsigned long)ERR_PTR(-EINVAL);
1406 
1407 	handle = cache_alloc_handle(pool, gfp);
1408 	if (!handle)
1409 		return (unsigned long)ERR_PTR(-ENOMEM);
1410 
1411 	/* extra space in chunk to keep the handle */
1412 	size += ZS_HANDLE_SIZE;
1413 	class = pool->size_class[get_size_class_index(size)];
1414 
1415 	/* class->lock effectively protects the zpage migration */
1416 	spin_lock(&class->lock);
1417 	zspage = find_get_zspage(class);
1418 	if (likely(zspage)) {
1419 		obj = obj_malloc(pool, zspage, handle);
1420 		/* Now move the zspage to another fullness group, if required */
1421 		fix_fullness_group(class, zspage);
1422 		record_obj(handle, obj);
1423 		class_stat_inc(class, OBJ_USED, 1);
1424 		spin_unlock(&class->lock);
1425 
1426 		return handle;
1427 	}
1428 
1429 	spin_unlock(&class->lock);
1430 
1431 	zspage = alloc_zspage(pool, class, gfp);
1432 	if (!zspage) {
1433 		cache_free_handle(pool, handle);
1434 		return (unsigned long)ERR_PTR(-ENOMEM);
1435 	}
1436 
1437 	spin_lock(&class->lock);
1438 	obj = obj_malloc(pool, zspage, handle);
1439 	newfg = get_fullness_group(class, zspage);
1440 	insert_zspage(class, zspage, newfg);
1441 	set_zspage_mapping(zspage, class->index, newfg);
1442 	record_obj(handle, obj);
1443 	atomic_long_add(class->pages_per_zspage,
1444 				&pool->pages_allocated);
1445 	class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1446 	class_stat_inc(class, OBJ_USED, 1);
1447 
1448 	/* We completely set up zspage so mark them as movable */
1449 	SetZsPageMovable(pool, zspage);
1450 	spin_unlock(&class->lock);
1451 
1452 	return handle;
1453 }
1454 EXPORT_SYMBOL_GPL(zs_malloc);
1455 
1456 static void obj_free(int class_size, unsigned long obj)
1457 {
1458 	struct link_free *link;
1459 	struct zspage *zspage;
1460 	struct page *f_page;
1461 	unsigned long f_offset;
1462 	unsigned int f_objidx;
1463 	void *vaddr;
1464 
1465 	obj_to_location(obj, &f_page, &f_objidx);
1466 	f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1467 	zspage = get_zspage(f_page);
1468 
1469 	vaddr = kmap_atomic(f_page);
1470 
1471 	/* Insert this object in containing zspage's freelist */
1472 	link = (struct link_free *)(vaddr + f_offset);
1473 	if (likely(!ZsHugePage(zspage)))
1474 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1475 	else
1476 		f_page->index = 0;
1477 	kunmap_atomic(vaddr);
1478 	set_freeobj(zspage, f_objidx);
1479 	mod_zspage_inuse(zspage, -1);
1480 }
1481 
1482 void zs_free(struct zs_pool *pool, unsigned long handle)
1483 {
1484 	struct zspage *zspage;
1485 	struct page *f_page;
1486 	unsigned long obj;
1487 	struct size_class *class;
1488 	enum fullness_group fullness;
1489 
1490 	if (IS_ERR_OR_NULL((void *)handle))
1491 		return;
1492 
1493 	/*
1494 	 * The pool->migrate_lock protects the race with zpage's migration
1495 	 * so it's safe to get the page from handle.
1496 	 */
1497 	read_lock(&pool->migrate_lock);
1498 	obj = handle_to_obj(handle);
1499 	obj_to_page(obj, &f_page);
1500 	zspage = get_zspage(f_page);
1501 	class = zspage_class(pool, zspage);
1502 	spin_lock(&class->lock);
1503 	read_unlock(&pool->migrate_lock);
1504 
1505 	obj_free(class->size, obj);
1506 	class_stat_dec(class, OBJ_USED, 1);
1507 	fullness = fix_fullness_group(class, zspage);
1508 	if (fullness != ZS_EMPTY)
1509 		goto out;
1510 
1511 	free_zspage(pool, class, zspage);
1512 out:
1513 	spin_unlock(&class->lock);
1514 	cache_free_handle(pool, handle);
1515 }
1516 EXPORT_SYMBOL_GPL(zs_free);
1517 
1518 static void zs_object_copy(struct size_class *class, unsigned long dst,
1519 				unsigned long src)
1520 {
1521 	struct page *s_page, *d_page;
1522 	unsigned int s_objidx, d_objidx;
1523 	unsigned long s_off, d_off;
1524 	void *s_addr, *d_addr;
1525 	int s_size, d_size, size;
1526 	int written = 0;
1527 
1528 	s_size = d_size = class->size;
1529 
1530 	obj_to_location(src, &s_page, &s_objidx);
1531 	obj_to_location(dst, &d_page, &d_objidx);
1532 
1533 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1534 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1535 
1536 	if (s_off + class->size > PAGE_SIZE)
1537 		s_size = PAGE_SIZE - s_off;
1538 
1539 	if (d_off + class->size > PAGE_SIZE)
1540 		d_size = PAGE_SIZE - d_off;
1541 
1542 	s_addr = kmap_atomic(s_page);
1543 	d_addr = kmap_atomic(d_page);
1544 
1545 	while (1) {
1546 		size = min(s_size, d_size);
1547 		memcpy(d_addr + d_off, s_addr + s_off, size);
1548 		written += size;
1549 
1550 		if (written == class->size)
1551 			break;
1552 
1553 		s_off += size;
1554 		s_size -= size;
1555 		d_off += size;
1556 		d_size -= size;
1557 
1558 		/*
1559 		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1560 		 * calls must occurs in reverse order of calls to kmap_atomic().
1561 		 * So, to call kunmap_atomic(s_addr) we should first call
1562 		 * kunmap_atomic(d_addr). For more details see
1563 		 * Documentation/mm/highmem.rst.
1564 		 */
1565 		if (s_off >= PAGE_SIZE) {
1566 			kunmap_atomic(d_addr);
1567 			kunmap_atomic(s_addr);
1568 			s_page = get_next_page(s_page);
1569 			s_addr = kmap_atomic(s_page);
1570 			d_addr = kmap_atomic(d_page);
1571 			s_size = class->size - written;
1572 			s_off = 0;
1573 		}
1574 
1575 		if (d_off >= PAGE_SIZE) {
1576 			kunmap_atomic(d_addr);
1577 			d_page = get_next_page(d_page);
1578 			d_addr = kmap_atomic(d_page);
1579 			d_size = class->size - written;
1580 			d_off = 0;
1581 		}
1582 	}
1583 
1584 	kunmap_atomic(d_addr);
1585 	kunmap_atomic(s_addr);
1586 }
1587 
1588 /*
1589  * Find alloced object in zspage from index object and
1590  * return handle.
1591  */
1592 static unsigned long find_alloced_obj(struct size_class *class,
1593 					struct page *page, int *obj_idx)
1594 {
1595 	unsigned int offset;
1596 	int index = *obj_idx;
1597 	unsigned long handle = 0;
1598 	void *addr = kmap_atomic(page);
1599 
1600 	offset = get_first_obj_offset(page);
1601 	offset += class->size * index;
1602 
1603 	while (offset < PAGE_SIZE) {
1604 		if (obj_allocated(page, addr + offset, &handle))
1605 			break;
1606 
1607 		offset += class->size;
1608 		index++;
1609 	}
1610 
1611 	kunmap_atomic(addr);
1612 
1613 	*obj_idx = index;
1614 
1615 	return handle;
1616 }
1617 
1618 struct zs_compact_control {
1619 	/* Source spage for migration which could be a subpage of zspage */
1620 	struct page *s_page;
1621 	/* Destination page for migration which should be a first page
1622 	 * of zspage. */
1623 	struct page *d_page;
1624 	 /* Starting object index within @s_page which used for live object
1625 	  * in the subpage. */
1626 	int obj_idx;
1627 };
1628 
1629 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1630 				struct zs_compact_control *cc)
1631 {
1632 	unsigned long used_obj, free_obj;
1633 	unsigned long handle;
1634 	struct page *s_page = cc->s_page;
1635 	struct page *d_page = cc->d_page;
1636 	int obj_idx = cc->obj_idx;
1637 	int ret = 0;
1638 
1639 	while (1) {
1640 		handle = find_alloced_obj(class, s_page, &obj_idx);
1641 		if (!handle) {
1642 			s_page = get_next_page(s_page);
1643 			if (!s_page)
1644 				break;
1645 			obj_idx = 0;
1646 			continue;
1647 		}
1648 
1649 		/* Stop if there is no more space */
1650 		if (zspage_full(class, get_zspage(d_page))) {
1651 			ret = -ENOMEM;
1652 			break;
1653 		}
1654 
1655 		used_obj = handle_to_obj(handle);
1656 		free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1657 		zs_object_copy(class, free_obj, used_obj);
1658 		obj_idx++;
1659 		record_obj(handle, free_obj);
1660 		obj_free(class->size, used_obj);
1661 	}
1662 
1663 	/* Remember last position in this iteration */
1664 	cc->s_page = s_page;
1665 	cc->obj_idx = obj_idx;
1666 
1667 	return ret;
1668 }
1669 
1670 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1671 {
1672 	int i;
1673 	struct zspage *zspage;
1674 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1675 
1676 	if (!source) {
1677 		fg[0] = ZS_ALMOST_FULL;
1678 		fg[1] = ZS_ALMOST_EMPTY;
1679 	}
1680 
1681 	for (i = 0; i < 2; i++) {
1682 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1683 							struct zspage, list);
1684 		if (zspage) {
1685 			remove_zspage(class, zspage, fg[i]);
1686 			return zspage;
1687 		}
1688 	}
1689 
1690 	return zspage;
1691 }
1692 
1693 /*
1694  * putback_zspage - add @zspage into right class's fullness list
1695  * @class: destination class
1696  * @zspage: target page
1697  *
1698  * Return @zspage's fullness_group
1699  */
1700 static enum fullness_group putback_zspage(struct size_class *class,
1701 			struct zspage *zspage)
1702 {
1703 	enum fullness_group fullness;
1704 
1705 	fullness = get_fullness_group(class, zspage);
1706 	insert_zspage(class, zspage, fullness);
1707 	set_zspage_mapping(zspage, class->index, fullness);
1708 
1709 	return fullness;
1710 }
1711 
1712 #ifdef CONFIG_COMPACTION
1713 /*
1714  * To prevent zspage destroy during migration, zspage freeing should
1715  * hold locks of all pages in the zspage.
1716  */
1717 static void lock_zspage(struct zspage *zspage)
1718 {
1719 	struct page *curr_page, *page;
1720 
1721 	/*
1722 	 * Pages we haven't locked yet can be migrated off the list while we're
1723 	 * trying to lock them, so we need to be careful and only attempt to
1724 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1725 	 * may no longer belong to the zspage. This means that we may wait for
1726 	 * the wrong page to unlock, so we must take a reference to the page
1727 	 * prior to waiting for it to unlock outside migrate_read_lock().
1728 	 */
1729 	while (1) {
1730 		migrate_read_lock(zspage);
1731 		page = get_first_page(zspage);
1732 		if (trylock_page(page))
1733 			break;
1734 		get_page(page);
1735 		migrate_read_unlock(zspage);
1736 		wait_on_page_locked(page);
1737 		put_page(page);
1738 	}
1739 
1740 	curr_page = page;
1741 	while ((page = get_next_page(curr_page))) {
1742 		if (trylock_page(page)) {
1743 			curr_page = page;
1744 		} else {
1745 			get_page(page);
1746 			migrate_read_unlock(zspage);
1747 			wait_on_page_locked(page);
1748 			put_page(page);
1749 			migrate_read_lock(zspage);
1750 		}
1751 	}
1752 	migrate_read_unlock(zspage);
1753 }
1754 
1755 static void migrate_lock_init(struct zspage *zspage)
1756 {
1757 	rwlock_init(&zspage->lock);
1758 }
1759 
1760 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1761 {
1762 	read_lock(&zspage->lock);
1763 }
1764 
1765 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1766 {
1767 	read_unlock(&zspage->lock);
1768 }
1769 
1770 static void migrate_write_lock(struct zspage *zspage)
1771 {
1772 	write_lock(&zspage->lock);
1773 }
1774 
1775 static void migrate_write_lock_nested(struct zspage *zspage)
1776 {
1777 	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1778 }
1779 
1780 static void migrate_write_unlock(struct zspage *zspage)
1781 {
1782 	write_unlock(&zspage->lock);
1783 }
1784 
1785 /* Number of isolated subpage for *page migration* in this zspage */
1786 static void inc_zspage_isolation(struct zspage *zspage)
1787 {
1788 	zspage->isolated++;
1789 }
1790 
1791 static void dec_zspage_isolation(struct zspage *zspage)
1792 {
1793 	VM_BUG_ON(zspage->isolated == 0);
1794 	zspage->isolated--;
1795 }
1796 
1797 static const struct movable_operations zsmalloc_mops;
1798 
1799 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1800 				struct page *newpage, struct page *oldpage)
1801 {
1802 	struct page *page;
1803 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1804 	int idx = 0;
1805 
1806 	page = get_first_page(zspage);
1807 	do {
1808 		if (page == oldpage)
1809 			pages[idx] = newpage;
1810 		else
1811 			pages[idx] = page;
1812 		idx++;
1813 	} while ((page = get_next_page(page)) != NULL);
1814 
1815 	create_page_chain(class, zspage, pages);
1816 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1817 	if (unlikely(ZsHugePage(zspage)))
1818 		newpage->index = oldpage->index;
1819 	__SetPageMovable(newpage, &zsmalloc_mops);
1820 }
1821 
1822 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1823 {
1824 	struct zspage *zspage;
1825 
1826 	/*
1827 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1828 	 * lock_zspage in free_zspage.
1829 	 */
1830 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1831 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1832 
1833 	zspage = get_zspage(page);
1834 	migrate_write_lock(zspage);
1835 	inc_zspage_isolation(zspage);
1836 	migrate_write_unlock(zspage);
1837 
1838 	return true;
1839 }
1840 
1841 static int zs_page_migrate(struct page *newpage, struct page *page,
1842 		enum migrate_mode mode)
1843 {
1844 	struct zs_pool *pool;
1845 	struct size_class *class;
1846 	struct zspage *zspage;
1847 	struct page *dummy;
1848 	void *s_addr, *d_addr, *addr;
1849 	unsigned int offset;
1850 	unsigned long handle;
1851 	unsigned long old_obj, new_obj;
1852 	unsigned int obj_idx;
1853 
1854 	/*
1855 	 * We cannot support the _NO_COPY case here, because copy needs to
1856 	 * happen under the zs lock, which does not work with
1857 	 * MIGRATE_SYNC_NO_COPY workflow.
1858 	 */
1859 	if (mode == MIGRATE_SYNC_NO_COPY)
1860 		return -EINVAL;
1861 
1862 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1863 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1864 
1865 	/* The page is locked, so this pointer must remain valid */
1866 	zspage = get_zspage(page);
1867 	pool = zspage->pool;
1868 
1869 	/*
1870 	 * The pool migrate_lock protects the race between zpage migration
1871 	 * and zs_free.
1872 	 */
1873 	write_lock(&pool->migrate_lock);
1874 	class = zspage_class(pool, zspage);
1875 
1876 	/*
1877 	 * the class lock protects zpage alloc/free in the zspage.
1878 	 */
1879 	spin_lock(&class->lock);
1880 	/* the migrate_write_lock protects zpage access via zs_map_object */
1881 	migrate_write_lock(zspage);
1882 
1883 	offset = get_first_obj_offset(page);
1884 	s_addr = kmap_atomic(page);
1885 
1886 	/*
1887 	 * Here, any user cannot access all objects in the zspage so let's move.
1888 	 */
1889 	d_addr = kmap_atomic(newpage);
1890 	memcpy(d_addr, s_addr, PAGE_SIZE);
1891 	kunmap_atomic(d_addr);
1892 
1893 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1894 					addr += class->size) {
1895 		if (obj_allocated(page, addr, &handle)) {
1896 
1897 			old_obj = handle_to_obj(handle);
1898 			obj_to_location(old_obj, &dummy, &obj_idx);
1899 			new_obj = (unsigned long)location_to_obj(newpage,
1900 								obj_idx);
1901 			record_obj(handle, new_obj);
1902 		}
1903 	}
1904 	kunmap_atomic(s_addr);
1905 
1906 	replace_sub_page(class, zspage, newpage, page);
1907 	/*
1908 	 * Since we complete the data copy and set up new zspage structure,
1909 	 * it's okay to release migration_lock.
1910 	 */
1911 	write_unlock(&pool->migrate_lock);
1912 	spin_unlock(&class->lock);
1913 	dec_zspage_isolation(zspage);
1914 	migrate_write_unlock(zspage);
1915 
1916 	get_page(newpage);
1917 	if (page_zone(newpage) != page_zone(page)) {
1918 		dec_zone_page_state(page, NR_ZSPAGES);
1919 		inc_zone_page_state(newpage, NR_ZSPAGES);
1920 	}
1921 
1922 	reset_page(page);
1923 	put_page(page);
1924 
1925 	return MIGRATEPAGE_SUCCESS;
1926 }
1927 
1928 static void zs_page_putback(struct page *page)
1929 {
1930 	struct zspage *zspage;
1931 
1932 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1933 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1934 
1935 	zspage = get_zspage(page);
1936 	migrate_write_lock(zspage);
1937 	dec_zspage_isolation(zspage);
1938 	migrate_write_unlock(zspage);
1939 }
1940 
1941 static const struct movable_operations zsmalloc_mops = {
1942 	.isolate_page = zs_page_isolate,
1943 	.migrate_page = zs_page_migrate,
1944 	.putback_page = zs_page_putback,
1945 };
1946 
1947 /*
1948  * Caller should hold page_lock of all pages in the zspage
1949  * In here, we cannot use zspage meta data.
1950  */
1951 static void async_free_zspage(struct work_struct *work)
1952 {
1953 	int i;
1954 	struct size_class *class;
1955 	unsigned int class_idx;
1956 	enum fullness_group fullness;
1957 	struct zspage *zspage, *tmp;
1958 	LIST_HEAD(free_pages);
1959 	struct zs_pool *pool = container_of(work, struct zs_pool,
1960 					free_work);
1961 
1962 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1963 		class = pool->size_class[i];
1964 		if (class->index != i)
1965 			continue;
1966 
1967 		spin_lock(&class->lock);
1968 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1969 		spin_unlock(&class->lock);
1970 	}
1971 
1972 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1973 		list_del(&zspage->list);
1974 		lock_zspage(zspage);
1975 
1976 		get_zspage_mapping(zspage, &class_idx, &fullness);
1977 		VM_BUG_ON(fullness != ZS_EMPTY);
1978 		class = pool->size_class[class_idx];
1979 		spin_lock(&class->lock);
1980 		__free_zspage(pool, class, zspage);
1981 		spin_unlock(&class->lock);
1982 	}
1983 };
1984 
1985 static void kick_deferred_free(struct zs_pool *pool)
1986 {
1987 	schedule_work(&pool->free_work);
1988 }
1989 
1990 static void zs_flush_migration(struct zs_pool *pool)
1991 {
1992 	flush_work(&pool->free_work);
1993 }
1994 
1995 static void init_deferred_free(struct zs_pool *pool)
1996 {
1997 	INIT_WORK(&pool->free_work, async_free_zspage);
1998 }
1999 
2000 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2001 {
2002 	struct page *page = get_first_page(zspage);
2003 
2004 	do {
2005 		WARN_ON(!trylock_page(page));
2006 		__SetPageMovable(page, &zsmalloc_mops);
2007 		unlock_page(page);
2008 	} while ((page = get_next_page(page)) != NULL);
2009 }
2010 #else
2011 static inline void zs_flush_migration(struct zs_pool *pool) { }
2012 #endif
2013 
2014 /*
2015  *
2016  * Based on the number of unused allocated objects calculate
2017  * and return the number of pages that we can free.
2018  */
2019 static unsigned long zs_can_compact(struct size_class *class)
2020 {
2021 	unsigned long obj_wasted;
2022 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2023 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2024 
2025 	if (obj_allocated <= obj_used)
2026 		return 0;
2027 
2028 	obj_wasted = obj_allocated - obj_used;
2029 	obj_wasted /= class->objs_per_zspage;
2030 
2031 	return obj_wasted * class->pages_per_zspage;
2032 }
2033 
2034 static unsigned long __zs_compact(struct zs_pool *pool,
2035 				  struct size_class *class)
2036 {
2037 	struct zs_compact_control cc;
2038 	struct zspage *src_zspage;
2039 	struct zspage *dst_zspage = NULL;
2040 	unsigned long pages_freed = 0;
2041 
2042 	/* protect the race between zpage migration and zs_free */
2043 	write_lock(&pool->migrate_lock);
2044 	/* protect zpage allocation/free */
2045 	spin_lock(&class->lock);
2046 	while ((src_zspage = isolate_zspage(class, true))) {
2047 		/* protect someone accessing the zspage(i.e., zs_map_object) */
2048 		migrate_write_lock(src_zspage);
2049 
2050 		if (!zs_can_compact(class))
2051 			break;
2052 
2053 		cc.obj_idx = 0;
2054 		cc.s_page = get_first_page(src_zspage);
2055 
2056 		while ((dst_zspage = isolate_zspage(class, false))) {
2057 			migrate_write_lock_nested(dst_zspage);
2058 
2059 			cc.d_page = get_first_page(dst_zspage);
2060 			/*
2061 			 * If there is no more space in dst_page, resched
2062 			 * and see if anyone had allocated another zspage.
2063 			 */
2064 			if (!migrate_zspage(pool, class, &cc))
2065 				break;
2066 
2067 			putback_zspage(class, dst_zspage);
2068 			migrate_write_unlock(dst_zspage);
2069 			dst_zspage = NULL;
2070 			if (rwlock_is_contended(&pool->migrate_lock))
2071 				break;
2072 		}
2073 
2074 		/* Stop if we couldn't find slot */
2075 		if (dst_zspage == NULL)
2076 			break;
2077 
2078 		putback_zspage(class, dst_zspage);
2079 		migrate_write_unlock(dst_zspage);
2080 
2081 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2082 			migrate_write_unlock(src_zspage);
2083 			free_zspage(pool, class, src_zspage);
2084 			pages_freed += class->pages_per_zspage;
2085 		} else
2086 			migrate_write_unlock(src_zspage);
2087 		spin_unlock(&class->lock);
2088 		write_unlock(&pool->migrate_lock);
2089 		cond_resched();
2090 		write_lock(&pool->migrate_lock);
2091 		spin_lock(&class->lock);
2092 	}
2093 
2094 	if (src_zspage) {
2095 		putback_zspage(class, src_zspage);
2096 		migrate_write_unlock(src_zspage);
2097 	}
2098 
2099 	spin_unlock(&class->lock);
2100 	write_unlock(&pool->migrate_lock);
2101 
2102 	return pages_freed;
2103 }
2104 
2105 unsigned long zs_compact(struct zs_pool *pool)
2106 {
2107 	int i;
2108 	struct size_class *class;
2109 	unsigned long pages_freed = 0;
2110 
2111 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2112 		class = pool->size_class[i];
2113 		if (class->index != i)
2114 			continue;
2115 		pages_freed += __zs_compact(pool, class);
2116 	}
2117 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2118 
2119 	return pages_freed;
2120 }
2121 EXPORT_SYMBOL_GPL(zs_compact);
2122 
2123 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2124 {
2125 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2126 }
2127 EXPORT_SYMBOL_GPL(zs_pool_stats);
2128 
2129 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2130 		struct shrink_control *sc)
2131 {
2132 	unsigned long pages_freed;
2133 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2134 			shrinker);
2135 
2136 	/*
2137 	 * Compact classes and calculate compaction delta.
2138 	 * Can run concurrently with a manually triggered
2139 	 * (by user) compaction.
2140 	 */
2141 	pages_freed = zs_compact(pool);
2142 
2143 	return pages_freed ? pages_freed : SHRINK_STOP;
2144 }
2145 
2146 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2147 		struct shrink_control *sc)
2148 {
2149 	int i;
2150 	struct size_class *class;
2151 	unsigned long pages_to_free = 0;
2152 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2153 			shrinker);
2154 
2155 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2156 		class = pool->size_class[i];
2157 		if (class->index != i)
2158 			continue;
2159 
2160 		pages_to_free += zs_can_compact(class);
2161 	}
2162 
2163 	return pages_to_free;
2164 }
2165 
2166 static void zs_unregister_shrinker(struct zs_pool *pool)
2167 {
2168 	unregister_shrinker(&pool->shrinker);
2169 }
2170 
2171 static int zs_register_shrinker(struct zs_pool *pool)
2172 {
2173 	pool->shrinker.scan_objects = zs_shrinker_scan;
2174 	pool->shrinker.count_objects = zs_shrinker_count;
2175 	pool->shrinker.batch = 0;
2176 	pool->shrinker.seeks = DEFAULT_SEEKS;
2177 
2178 	return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2179 				 pool->name);
2180 }
2181 
2182 /**
2183  * zs_create_pool - Creates an allocation pool to work from.
2184  * @name: pool name to be created
2185  *
2186  * This function must be called before anything when using
2187  * the zsmalloc allocator.
2188  *
2189  * On success, a pointer to the newly created pool is returned,
2190  * otherwise NULL.
2191  */
2192 struct zs_pool *zs_create_pool(const char *name)
2193 {
2194 	int i;
2195 	struct zs_pool *pool;
2196 	struct size_class *prev_class = NULL;
2197 
2198 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2199 	if (!pool)
2200 		return NULL;
2201 
2202 	init_deferred_free(pool);
2203 	rwlock_init(&pool->migrate_lock);
2204 
2205 	pool->name = kstrdup(name, GFP_KERNEL);
2206 	if (!pool->name)
2207 		goto err;
2208 
2209 	if (create_cache(pool))
2210 		goto err;
2211 
2212 	/*
2213 	 * Iterate reversely, because, size of size_class that we want to use
2214 	 * for merging should be larger or equal to current size.
2215 	 */
2216 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2217 		int size;
2218 		int pages_per_zspage;
2219 		int objs_per_zspage;
2220 		struct size_class *class;
2221 		int fullness = 0;
2222 
2223 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2224 		if (size > ZS_MAX_ALLOC_SIZE)
2225 			size = ZS_MAX_ALLOC_SIZE;
2226 		pages_per_zspage = get_pages_per_zspage(size);
2227 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2228 
2229 		/*
2230 		 * We iterate from biggest down to smallest classes,
2231 		 * so huge_class_size holds the size of the first huge
2232 		 * class. Any object bigger than or equal to that will
2233 		 * endup in the huge class.
2234 		 */
2235 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2236 				!huge_class_size) {
2237 			huge_class_size = size;
2238 			/*
2239 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2240 			 * handle. We need to subtract it, because zs_malloc()
2241 			 * unconditionally adds handle size before it performs
2242 			 * size class search - so object may be smaller than
2243 			 * huge class size, yet it still can end up in the huge
2244 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2245 			 * right before class lookup.
2246 			 */
2247 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2248 		}
2249 
2250 		/*
2251 		 * size_class is used for normal zsmalloc operation such
2252 		 * as alloc/free for that size. Although it is natural that we
2253 		 * have one size_class for each size, there is a chance that we
2254 		 * can get more memory utilization if we use one size_class for
2255 		 * many different sizes whose size_class have same
2256 		 * characteristics. So, we makes size_class point to
2257 		 * previous size_class if possible.
2258 		 */
2259 		if (prev_class) {
2260 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2261 				pool->size_class[i] = prev_class;
2262 				continue;
2263 			}
2264 		}
2265 
2266 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2267 		if (!class)
2268 			goto err;
2269 
2270 		class->size = size;
2271 		class->index = i;
2272 		class->pages_per_zspage = pages_per_zspage;
2273 		class->objs_per_zspage = objs_per_zspage;
2274 		spin_lock_init(&class->lock);
2275 		pool->size_class[i] = class;
2276 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2277 							fullness++)
2278 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2279 
2280 		prev_class = class;
2281 	}
2282 
2283 	/* debug only, don't abort if it fails */
2284 	zs_pool_stat_create(pool, name);
2285 
2286 	/*
2287 	 * Not critical since shrinker is only used to trigger internal
2288 	 * defragmentation of the pool which is pretty optional thing.  If
2289 	 * registration fails we still can use the pool normally and user can
2290 	 * trigger compaction manually. Thus, ignore return code.
2291 	 */
2292 	zs_register_shrinker(pool);
2293 
2294 	return pool;
2295 
2296 err:
2297 	zs_destroy_pool(pool);
2298 	return NULL;
2299 }
2300 EXPORT_SYMBOL_GPL(zs_create_pool);
2301 
2302 void zs_destroy_pool(struct zs_pool *pool)
2303 {
2304 	int i;
2305 
2306 	zs_unregister_shrinker(pool);
2307 	zs_flush_migration(pool);
2308 	zs_pool_stat_destroy(pool);
2309 
2310 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2311 		int fg;
2312 		struct size_class *class = pool->size_class[i];
2313 
2314 		if (class->index != i)
2315 			continue;
2316 
2317 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2318 			if (!list_empty(&class->fullness_list[fg])) {
2319 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2320 					class->size, fg);
2321 			}
2322 		}
2323 		kfree(class);
2324 	}
2325 
2326 	destroy_cache(pool);
2327 	kfree(pool->name);
2328 	kfree(pool);
2329 }
2330 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2331 
2332 static int __init zs_init(void)
2333 {
2334 	int ret;
2335 
2336 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2337 				zs_cpu_prepare, zs_cpu_dead);
2338 	if (ret)
2339 		goto out;
2340 
2341 #ifdef CONFIG_ZPOOL
2342 	zpool_register_driver(&zs_zpool_driver);
2343 #endif
2344 
2345 	zs_stat_init();
2346 
2347 	return 0;
2348 
2349 out:
2350 	return ret;
2351 }
2352 
2353 static void __exit zs_exit(void)
2354 {
2355 #ifdef CONFIG_ZPOOL
2356 	zpool_unregister_driver(&zs_zpool_driver);
2357 #endif
2358 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2359 
2360 	zs_stat_exit();
2361 }
2362 
2363 module_init(zs_init);
2364 module_exit(zs_exit);
2365 
2366 MODULE_LICENSE("Dual BSD/GPL");
2367 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2368