xref: /openbmc/linux/mm/zsmalloc.c (revision eb4663b07e13bc138aad9e2a93ee9893c7139f51)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 /*
34  * lock ordering:
35  *	page_lock
36  *	pool->lock
37  *	zspage->lock
38  */
39 
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65 
66 #define ZSPAGE_MAGIC	0x58
67 
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN		8
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * a single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 
99 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100 
101 /*
102  * Head in allocated object should have OBJ_ALLOCATED_TAG
103  * to identify the object was allocated or not.
104  * It's okay to add the status bit in the least bit because
105  * header keeps handle which is 4byte-aligned address so we
106  * have room for two bit at least.
107  */
108 #define OBJ_ALLOCATED_TAG 1
109 
110 #ifdef CONFIG_ZPOOL
111 /*
112  * The second least-significant bit in the object's header identifies if the
113  * value stored at the header is a deferred handle from the last reclaim
114  * attempt.
115  *
116  * As noted above, this is valid because we have room for two bits.
117  */
118 #define OBJ_DEFERRED_HANDLE_TAG	2
119 #define OBJ_TAG_BITS	2
120 #define OBJ_TAG_MASK	(OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
121 #else
122 #define OBJ_TAG_BITS	1
123 #define OBJ_TAG_MASK	OBJ_ALLOCATED_TAG
124 #endif /* CONFIG_ZPOOL */
125 
126 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
127 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
128 
129 #define HUGE_BITS	1
130 #define FULLNESS_BITS	4
131 #define CLASS_BITS	8
132 #define ISOLATED_BITS	5
133 #define MAGIC_VAL_BITS	8
134 
135 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
136 
137 #define ZS_MAX_PAGES_PER_ZSPAGE	(_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
138 
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 /* each chunk includes extra space to keep handle */
143 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
144 
145 /*
146  * On systems with 4K page size, this gives 255 size classes! There is a
147  * trader-off here:
148  *  - Large number of size classes is potentially wasteful as free page are
149  *    spread across these classes
150  *  - Small number of size classes causes large internal fragmentation
151  *  - Probably its better to use specific size classes (empirically
152  *    determined). NOTE: all those class sizes must be set as multiple of
153  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154  *
155  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
156  *  (reason above)
157  */
158 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
159 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
160 				      ZS_SIZE_CLASS_DELTA) + 1)
161 
162 /*
163  * Pages are distinguished by the ratio of used memory (that is the ratio
164  * of ->inuse objects to all objects that page can store). For example,
165  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
166  *
167  * The number of fullness groups is not random. It allows us to keep
168  * difference between the least busy page in the group (minimum permitted
169  * number of ->inuse objects) and the most busy page (maximum permitted
170  * number of ->inuse objects) at a reasonable value.
171  */
172 enum fullness_group {
173 	ZS_INUSE_RATIO_0,
174 	ZS_INUSE_RATIO_10,
175 	/* NOTE: 8 more fullness groups here */
176 	ZS_INUSE_RATIO_99       = 10,
177 	ZS_INUSE_RATIO_100,
178 	NR_FULLNESS_GROUPS,
179 };
180 
181 enum class_stat_type {
182 	/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
183 	ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
184 	ZS_OBJS_INUSE,
185 	NR_CLASS_STAT_TYPES,
186 };
187 
188 struct zs_size_stat {
189 	unsigned long objs[NR_CLASS_STAT_TYPES];
190 };
191 
192 #ifdef CONFIG_ZSMALLOC_STAT
193 static struct dentry *zs_stat_root;
194 #endif
195 
196 static size_t huge_class_size;
197 
198 struct size_class {
199 	struct list_head fullness_list[NR_FULLNESS_GROUPS];
200 	/*
201 	 * Size of objects stored in this class. Must be multiple
202 	 * of ZS_ALIGN.
203 	 */
204 	int size;
205 	int objs_per_zspage;
206 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207 	int pages_per_zspage;
208 
209 	unsigned int index;
210 	struct zs_size_stat stats;
211 };
212 
213 /*
214  * Placed within free objects to form a singly linked list.
215  * For every zspage, zspage->freeobj gives head of this list.
216  *
217  * This must be power of 2 and less than or equal to ZS_ALIGN
218  */
219 struct link_free {
220 	union {
221 		/*
222 		 * Free object index;
223 		 * It's valid for non-allocated object
224 		 */
225 		unsigned long next;
226 		/*
227 		 * Handle of allocated object.
228 		 */
229 		unsigned long handle;
230 #ifdef CONFIG_ZPOOL
231 		/*
232 		 * Deferred handle of a reclaimed object.
233 		 */
234 		unsigned long deferred_handle;
235 #endif
236 	};
237 };
238 
239 struct zs_pool {
240 	const char *name;
241 
242 	struct size_class *size_class[ZS_SIZE_CLASSES];
243 	struct kmem_cache *handle_cachep;
244 	struct kmem_cache *zspage_cachep;
245 
246 	atomic_long_t pages_allocated;
247 
248 	struct zs_pool_stats stats;
249 
250 	/* Compact classes */
251 	struct shrinker shrinker;
252 
253 #ifdef CONFIG_ZPOOL
254 	/* List tracking the zspages in LRU order by most recently added object */
255 	struct list_head lru;
256 	struct zpool *zpool;
257 	const struct zpool_ops *zpool_ops;
258 #endif
259 
260 #ifdef CONFIG_ZSMALLOC_STAT
261 	struct dentry *stat_dentry;
262 #endif
263 #ifdef CONFIG_COMPACTION
264 	struct work_struct free_work;
265 #endif
266 	spinlock_t lock;
267 	atomic_t compaction_in_progress;
268 };
269 
270 struct zspage {
271 	struct {
272 		unsigned int huge:HUGE_BITS;
273 		unsigned int fullness:FULLNESS_BITS;
274 		unsigned int class:CLASS_BITS + 1;
275 		unsigned int isolated:ISOLATED_BITS;
276 		unsigned int magic:MAGIC_VAL_BITS;
277 	};
278 	unsigned int inuse;
279 	unsigned int freeobj;
280 	struct page *first_page;
281 	struct list_head list; /* fullness list */
282 
283 #ifdef CONFIG_ZPOOL
284 	/* links the zspage to the lru list in the pool */
285 	struct list_head lru;
286 	bool under_reclaim;
287 #endif
288 
289 	struct zs_pool *pool;
290 	rwlock_t lock;
291 };
292 
293 struct mapping_area {
294 	local_lock_t lock;
295 	char *vm_buf; /* copy buffer for objects that span pages */
296 	char *vm_addr; /* address of kmap_atomic()'ed pages */
297 	enum zs_mapmode vm_mm; /* mapping mode */
298 };
299 
300 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
301 static void SetZsHugePage(struct zspage *zspage)
302 {
303 	zspage->huge = 1;
304 }
305 
306 static bool ZsHugePage(struct zspage *zspage)
307 {
308 	return zspage->huge;
309 }
310 
311 static void migrate_lock_init(struct zspage *zspage);
312 static void migrate_read_lock(struct zspage *zspage);
313 static void migrate_read_unlock(struct zspage *zspage);
314 
315 #ifdef CONFIG_COMPACTION
316 static void migrate_write_lock(struct zspage *zspage);
317 static void migrate_write_lock_nested(struct zspage *zspage);
318 static void migrate_write_unlock(struct zspage *zspage);
319 static void kick_deferred_free(struct zs_pool *pool);
320 static void init_deferred_free(struct zs_pool *pool);
321 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
322 #else
323 static void migrate_write_lock(struct zspage *zspage) {}
324 static void migrate_write_lock_nested(struct zspage *zspage) {}
325 static void migrate_write_unlock(struct zspage *zspage) {}
326 static void kick_deferred_free(struct zs_pool *pool) {}
327 static void init_deferred_free(struct zs_pool *pool) {}
328 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
329 #endif
330 
331 static int create_cache(struct zs_pool *pool)
332 {
333 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
334 					0, 0, NULL);
335 	if (!pool->handle_cachep)
336 		return 1;
337 
338 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
339 					0, 0, NULL);
340 	if (!pool->zspage_cachep) {
341 		kmem_cache_destroy(pool->handle_cachep);
342 		pool->handle_cachep = NULL;
343 		return 1;
344 	}
345 
346 	return 0;
347 }
348 
349 static void destroy_cache(struct zs_pool *pool)
350 {
351 	kmem_cache_destroy(pool->handle_cachep);
352 	kmem_cache_destroy(pool->zspage_cachep);
353 }
354 
355 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
356 {
357 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
358 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
359 }
360 
361 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
362 {
363 	kmem_cache_free(pool->handle_cachep, (void *)handle);
364 }
365 
366 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
367 {
368 	return kmem_cache_zalloc(pool->zspage_cachep,
369 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
370 }
371 
372 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
373 {
374 	kmem_cache_free(pool->zspage_cachep, zspage);
375 }
376 
377 /* pool->lock(which owns the handle) synchronizes races */
378 static void record_obj(unsigned long handle, unsigned long obj)
379 {
380 	*(unsigned long *)handle = obj;
381 }
382 
383 /* zpool driver */
384 
385 #ifdef CONFIG_ZPOOL
386 
387 static void *zs_zpool_create(const char *name, gfp_t gfp,
388 			     const struct zpool_ops *zpool_ops,
389 			     struct zpool *zpool)
390 {
391 	/*
392 	 * Ignore global gfp flags: zs_malloc() may be invoked from
393 	 * different contexts and its caller must provide a valid
394 	 * gfp mask.
395 	 */
396 	struct zs_pool *pool = zs_create_pool(name);
397 
398 	if (pool) {
399 		pool->zpool = zpool;
400 		pool->zpool_ops = zpool_ops;
401 	}
402 
403 	return pool;
404 }
405 
406 static void zs_zpool_destroy(void *pool)
407 {
408 	zs_destroy_pool(pool);
409 }
410 
411 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
412 			unsigned long *handle)
413 {
414 	*handle = zs_malloc(pool, size, gfp);
415 
416 	if (IS_ERR_VALUE(*handle))
417 		return PTR_ERR((void *)*handle);
418 	return 0;
419 }
420 static void zs_zpool_free(void *pool, unsigned long handle)
421 {
422 	zs_free(pool, handle);
423 }
424 
425 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
426 
427 static int zs_zpool_shrink(void *pool, unsigned int pages,
428 			unsigned int *reclaimed)
429 {
430 	unsigned int total = 0;
431 	int ret = -EINVAL;
432 
433 	while (total < pages) {
434 		ret = zs_reclaim_page(pool, 8);
435 		if (ret < 0)
436 			break;
437 		total++;
438 	}
439 
440 	if (reclaimed)
441 		*reclaimed = total;
442 
443 	return ret;
444 }
445 
446 static void *zs_zpool_map(void *pool, unsigned long handle,
447 			enum zpool_mapmode mm)
448 {
449 	enum zs_mapmode zs_mm;
450 
451 	switch (mm) {
452 	case ZPOOL_MM_RO:
453 		zs_mm = ZS_MM_RO;
454 		break;
455 	case ZPOOL_MM_WO:
456 		zs_mm = ZS_MM_WO;
457 		break;
458 	case ZPOOL_MM_RW:
459 	default:
460 		zs_mm = ZS_MM_RW;
461 		break;
462 	}
463 
464 	return zs_map_object(pool, handle, zs_mm);
465 }
466 static void zs_zpool_unmap(void *pool, unsigned long handle)
467 {
468 	zs_unmap_object(pool, handle);
469 }
470 
471 static u64 zs_zpool_total_size(void *pool)
472 {
473 	return zs_get_total_pages(pool) << PAGE_SHIFT;
474 }
475 
476 static struct zpool_driver zs_zpool_driver = {
477 	.type =			  "zsmalloc",
478 	.owner =		  THIS_MODULE,
479 	.create =		  zs_zpool_create,
480 	.destroy =		  zs_zpool_destroy,
481 	.malloc_support_movable = true,
482 	.malloc =		  zs_zpool_malloc,
483 	.free =			  zs_zpool_free,
484 	.shrink =		  zs_zpool_shrink,
485 	.map =			  zs_zpool_map,
486 	.unmap =		  zs_zpool_unmap,
487 	.total_size =		  zs_zpool_total_size,
488 };
489 
490 MODULE_ALIAS("zpool-zsmalloc");
491 #endif /* CONFIG_ZPOOL */
492 
493 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
494 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
495 	.lock	= INIT_LOCAL_LOCK(lock),
496 };
497 
498 static __maybe_unused int is_first_page(struct page *page)
499 {
500 	return PagePrivate(page);
501 }
502 
503 /* Protected by pool->lock */
504 static inline int get_zspage_inuse(struct zspage *zspage)
505 {
506 	return zspage->inuse;
507 }
508 
509 
510 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
511 {
512 	zspage->inuse += val;
513 }
514 
515 static inline struct page *get_first_page(struct zspage *zspage)
516 {
517 	struct page *first_page = zspage->first_page;
518 
519 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
520 	return first_page;
521 }
522 
523 static inline unsigned int get_first_obj_offset(struct page *page)
524 {
525 	return page->page_type;
526 }
527 
528 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
529 {
530 	page->page_type = offset;
531 }
532 
533 static inline unsigned int get_freeobj(struct zspage *zspage)
534 {
535 	return zspage->freeobj;
536 }
537 
538 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
539 {
540 	zspage->freeobj = obj;
541 }
542 
543 static void get_zspage_mapping(struct zspage *zspage,
544 			       unsigned int *class_idx,
545 			       int *fullness)
546 {
547 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
548 
549 	*fullness = zspage->fullness;
550 	*class_idx = zspage->class;
551 }
552 
553 static struct size_class *zspage_class(struct zs_pool *pool,
554 				       struct zspage *zspage)
555 {
556 	return pool->size_class[zspage->class];
557 }
558 
559 static void set_zspage_mapping(struct zspage *zspage,
560 			       unsigned int class_idx,
561 			       int fullness)
562 {
563 	zspage->class = class_idx;
564 	zspage->fullness = fullness;
565 }
566 
567 /*
568  * zsmalloc divides the pool into various size classes where each
569  * class maintains a list of zspages where each zspage is divided
570  * into equal sized chunks. Each allocation falls into one of these
571  * classes depending on its size. This function returns index of the
572  * size class which has chunk size big enough to hold the given size.
573  */
574 static int get_size_class_index(int size)
575 {
576 	int idx = 0;
577 
578 	if (likely(size > ZS_MIN_ALLOC_SIZE))
579 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
580 				ZS_SIZE_CLASS_DELTA);
581 
582 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
583 }
584 
585 static inline void class_stat_inc(struct size_class *class,
586 				int type, unsigned long cnt)
587 {
588 	class->stats.objs[type] += cnt;
589 }
590 
591 static inline void class_stat_dec(struct size_class *class,
592 				int type, unsigned long cnt)
593 {
594 	class->stats.objs[type] -= cnt;
595 }
596 
597 static inline unsigned long zs_stat_get(struct size_class *class, int type)
598 {
599 	return class->stats.objs[type];
600 }
601 
602 #ifdef CONFIG_ZSMALLOC_STAT
603 
604 static void __init zs_stat_init(void)
605 {
606 	if (!debugfs_initialized()) {
607 		pr_warn("debugfs not available, stat dir not created\n");
608 		return;
609 	}
610 
611 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
612 }
613 
614 static void __exit zs_stat_exit(void)
615 {
616 	debugfs_remove_recursive(zs_stat_root);
617 }
618 
619 static unsigned long zs_can_compact(struct size_class *class);
620 
621 static int zs_stats_size_show(struct seq_file *s, void *v)
622 {
623 	int i, fg;
624 	struct zs_pool *pool = s->private;
625 	struct size_class *class;
626 	int objs_per_zspage;
627 	unsigned long obj_allocated, obj_used, pages_used, freeable;
628 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
629 	unsigned long total_freeable = 0;
630 	unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
631 
632 	seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
633 			"class", "size", "10%", "20%", "30%", "40%",
634 			"50%", "60%", "70%", "80%", "90%", "99%", "100%",
635 			"obj_allocated", "obj_used", "pages_used",
636 			"pages_per_zspage", "freeable");
637 
638 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
639 
640 		class = pool->size_class[i];
641 
642 		if (class->index != i)
643 			continue;
644 
645 		spin_lock(&pool->lock);
646 
647 		seq_printf(s, " %5u %5u ", i, class->size);
648 		for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
649 			inuse_totals[fg] += zs_stat_get(class, fg);
650 			seq_printf(s, "%9lu ", zs_stat_get(class, fg));
651 		}
652 
653 		obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
654 		obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
655 		freeable = zs_can_compact(class);
656 		spin_unlock(&pool->lock);
657 
658 		objs_per_zspage = class->objs_per_zspage;
659 		pages_used = obj_allocated / objs_per_zspage *
660 				class->pages_per_zspage;
661 
662 		seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
663 			   obj_allocated, obj_used, pages_used,
664 			   class->pages_per_zspage, freeable);
665 
666 		total_objs += obj_allocated;
667 		total_used_objs += obj_used;
668 		total_pages += pages_used;
669 		total_freeable += freeable;
670 	}
671 
672 	seq_puts(s, "\n");
673 	seq_printf(s, " %5s %5s ", "Total", "");
674 
675 	for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
676 		seq_printf(s, "%9lu ", inuse_totals[fg]);
677 
678 	seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
679 		   total_objs, total_used_objs, total_pages, "",
680 		   total_freeable);
681 
682 	return 0;
683 }
684 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
685 
686 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
687 {
688 	if (!zs_stat_root) {
689 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
690 		return;
691 	}
692 
693 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
694 
695 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
696 			    &zs_stats_size_fops);
697 }
698 
699 static void zs_pool_stat_destroy(struct zs_pool *pool)
700 {
701 	debugfs_remove_recursive(pool->stat_dentry);
702 }
703 
704 #else /* CONFIG_ZSMALLOC_STAT */
705 static void __init zs_stat_init(void)
706 {
707 }
708 
709 static void __exit zs_stat_exit(void)
710 {
711 }
712 
713 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
714 {
715 }
716 
717 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
718 {
719 }
720 #endif
721 
722 
723 /*
724  * For each size class, zspages are divided into different groups
725  * depending on their usage ratio. This function returns fullness
726  * status of the given page.
727  */
728 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
729 {
730 	int inuse, objs_per_zspage, ratio;
731 
732 	inuse = get_zspage_inuse(zspage);
733 	objs_per_zspage = class->objs_per_zspage;
734 
735 	if (inuse == 0)
736 		return ZS_INUSE_RATIO_0;
737 	if (inuse == objs_per_zspage)
738 		return ZS_INUSE_RATIO_100;
739 
740 	ratio = 100 * inuse / objs_per_zspage;
741 	/*
742 	 * Take integer division into consideration: a page with one inuse
743 	 * object out of 127 possible, will end up having 0 usage ratio,
744 	 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
745 	 */
746 	return ratio / 10 + 1;
747 }
748 
749 /*
750  * Each size class maintains various freelists and zspages are assigned
751  * to one of these freelists based on the number of live objects they
752  * have. This functions inserts the given zspage into the freelist
753  * identified by <class, fullness_group>.
754  */
755 static void insert_zspage(struct size_class *class,
756 				struct zspage *zspage,
757 				int fullness)
758 {
759 	class_stat_inc(class, fullness, 1);
760 	list_add(&zspage->list, &class->fullness_list[fullness]);
761 }
762 
763 /*
764  * This function removes the given zspage from the freelist identified
765  * by <class, fullness_group>.
766  */
767 static void remove_zspage(struct size_class *class,
768 				struct zspage *zspage,
769 				int fullness)
770 {
771 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
772 
773 	list_del_init(&zspage->list);
774 	class_stat_dec(class, fullness, 1);
775 }
776 
777 /*
778  * Each size class maintains zspages in different fullness groups depending
779  * on the number of live objects they contain. When allocating or freeing
780  * objects, the fullness status of the page can change, for instance, from
781  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
782  * checks if such a status change has occurred for the given page and
783  * accordingly moves the page from the list of the old fullness group to that
784  * of the new fullness group.
785  */
786 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
787 {
788 	int class_idx;
789 	int currfg, newfg;
790 
791 	get_zspage_mapping(zspage, &class_idx, &currfg);
792 	newfg = get_fullness_group(class, zspage);
793 	if (newfg == currfg)
794 		goto out;
795 
796 	remove_zspage(class, zspage, currfg);
797 	insert_zspage(class, zspage, newfg);
798 	set_zspage_mapping(zspage, class_idx, newfg);
799 out:
800 	return newfg;
801 }
802 
803 static struct zspage *get_zspage(struct page *page)
804 {
805 	struct zspage *zspage = (struct zspage *)page_private(page);
806 
807 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
808 	return zspage;
809 }
810 
811 static struct page *get_next_page(struct page *page)
812 {
813 	struct zspage *zspage = get_zspage(page);
814 
815 	if (unlikely(ZsHugePage(zspage)))
816 		return NULL;
817 
818 	return (struct page *)page->index;
819 }
820 
821 /**
822  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
823  * @obj: the encoded object value
824  * @page: page object resides in zspage
825  * @obj_idx: object index
826  */
827 static void obj_to_location(unsigned long obj, struct page **page,
828 				unsigned int *obj_idx)
829 {
830 	obj >>= OBJ_TAG_BITS;
831 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
832 	*obj_idx = (obj & OBJ_INDEX_MASK);
833 }
834 
835 static void obj_to_page(unsigned long obj, struct page **page)
836 {
837 	obj >>= OBJ_TAG_BITS;
838 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
839 }
840 
841 /**
842  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
843  * @page: page object resides in zspage
844  * @obj_idx: object index
845  */
846 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
847 {
848 	unsigned long obj;
849 
850 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
851 	obj |= obj_idx & OBJ_INDEX_MASK;
852 	obj <<= OBJ_TAG_BITS;
853 
854 	return obj;
855 }
856 
857 static unsigned long handle_to_obj(unsigned long handle)
858 {
859 	return *(unsigned long *)handle;
860 }
861 
862 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
863 		int tag)
864 {
865 	unsigned long handle;
866 	struct zspage *zspage = get_zspage(page);
867 
868 	if (unlikely(ZsHugePage(zspage))) {
869 		VM_BUG_ON_PAGE(!is_first_page(page), page);
870 		handle = page->index;
871 	} else
872 		handle = *(unsigned long *)obj;
873 
874 	if (!(handle & tag))
875 		return false;
876 
877 	/* Clear all tags before returning the handle */
878 	*phandle = handle & ~OBJ_TAG_MASK;
879 	return true;
880 }
881 
882 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
883 {
884 	return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
885 }
886 
887 #ifdef CONFIG_ZPOOL
888 static bool obj_stores_deferred_handle(struct page *page, void *obj,
889 		unsigned long *phandle)
890 {
891 	return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
892 }
893 #endif
894 
895 static void reset_page(struct page *page)
896 {
897 	__ClearPageMovable(page);
898 	ClearPagePrivate(page);
899 	set_page_private(page, 0);
900 	page_mapcount_reset(page);
901 	page->index = 0;
902 }
903 
904 static int trylock_zspage(struct zspage *zspage)
905 {
906 	struct page *cursor, *fail;
907 
908 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
909 					get_next_page(cursor)) {
910 		if (!trylock_page(cursor)) {
911 			fail = cursor;
912 			goto unlock;
913 		}
914 	}
915 
916 	return 1;
917 unlock:
918 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
919 					get_next_page(cursor))
920 		unlock_page(cursor);
921 
922 	return 0;
923 }
924 
925 #ifdef CONFIG_ZPOOL
926 static unsigned long find_deferred_handle_obj(struct size_class *class,
927 		struct page *page, int *obj_idx);
928 
929 /*
930  * Free all the deferred handles whose objects are freed in zs_free.
931  */
932 static void free_handles(struct zs_pool *pool, struct size_class *class,
933 		struct zspage *zspage)
934 {
935 	int obj_idx = 0;
936 	struct page *page = get_first_page(zspage);
937 	unsigned long handle;
938 
939 	while (1) {
940 		handle = find_deferred_handle_obj(class, page, &obj_idx);
941 		if (!handle) {
942 			page = get_next_page(page);
943 			if (!page)
944 				break;
945 			obj_idx = 0;
946 			continue;
947 		}
948 
949 		cache_free_handle(pool, handle);
950 		obj_idx++;
951 	}
952 }
953 #else
954 static inline void free_handles(struct zs_pool *pool, struct size_class *class,
955 		struct zspage *zspage) {}
956 #endif
957 
958 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
959 				struct zspage *zspage)
960 {
961 	struct page *page, *next;
962 	int fg;
963 	unsigned int class_idx;
964 
965 	get_zspage_mapping(zspage, &class_idx, &fg);
966 
967 	assert_spin_locked(&pool->lock);
968 
969 	VM_BUG_ON(get_zspage_inuse(zspage));
970 	VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
971 
972 	/* Free all deferred handles from zs_free */
973 	free_handles(pool, class, zspage);
974 
975 	next = page = get_first_page(zspage);
976 	do {
977 		VM_BUG_ON_PAGE(!PageLocked(page), page);
978 		next = get_next_page(page);
979 		reset_page(page);
980 		unlock_page(page);
981 		dec_zone_page_state(page, NR_ZSPAGES);
982 		put_page(page);
983 		page = next;
984 	} while (page != NULL);
985 
986 	cache_free_zspage(pool, zspage);
987 
988 	class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
989 	atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
990 }
991 
992 static void free_zspage(struct zs_pool *pool, struct size_class *class,
993 				struct zspage *zspage)
994 {
995 	VM_BUG_ON(get_zspage_inuse(zspage));
996 	VM_BUG_ON(list_empty(&zspage->list));
997 
998 	/*
999 	 * Since zs_free couldn't be sleepable, this function cannot call
1000 	 * lock_page. The page locks trylock_zspage got will be released
1001 	 * by __free_zspage.
1002 	 */
1003 	if (!trylock_zspage(zspage)) {
1004 		kick_deferred_free(pool);
1005 		return;
1006 	}
1007 
1008 	remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
1009 #ifdef CONFIG_ZPOOL
1010 	list_del(&zspage->lru);
1011 #endif
1012 	__free_zspage(pool, class, zspage);
1013 }
1014 
1015 /* Initialize a newly allocated zspage */
1016 static void init_zspage(struct size_class *class, struct zspage *zspage)
1017 {
1018 	unsigned int freeobj = 1;
1019 	unsigned long off = 0;
1020 	struct page *page = get_first_page(zspage);
1021 
1022 	while (page) {
1023 		struct page *next_page;
1024 		struct link_free *link;
1025 		void *vaddr;
1026 
1027 		set_first_obj_offset(page, off);
1028 
1029 		vaddr = kmap_atomic(page);
1030 		link = (struct link_free *)vaddr + off / sizeof(*link);
1031 
1032 		while ((off += class->size) < PAGE_SIZE) {
1033 			link->next = freeobj++ << OBJ_TAG_BITS;
1034 			link += class->size / sizeof(*link);
1035 		}
1036 
1037 		/*
1038 		 * We now come to the last (full or partial) object on this
1039 		 * page, which must point to the first object on the next
1040 		 * page (if present)
1041 		 */
1042 		next_page = get_next_page(page);
1043 		if (next_page) {
1044 			link->next = freeobj++ << OBJ_TAG_BITS;
1045 		} else {
1046 			/*
1047 			 * Reset OBJ_TAG_BITS bit to last link to tell
1048 			 * whether it's allocated object or not.
1049 			 */
1050 			link->next = -1UL << OBJ_TAG_BITS;
1051 		}
1052 		kunmap_atomic(vaddr);
1053 		page = next_page;
1054 		off %= PAGE_SIZE;
1055 	}
1056 
1057 #ifdef CONFIG_ZPOOL
1058 	INIT_LIST_HEAD(&zspage->lru);
1059 	zspage->under_reclaim = false;
1060 #endif
1061 
1062 	set_freeobj(zspage, 0);
1063 }
1064 
1065 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1066 				struct page *pages[])
1067 {
1068 	int i;
1069 	struct page *page;
1070 	struct page *prev_page = NULL;
1071 	int nr_pages = class->pages_per_zspage;
1072 
1073 	/*
1074 	 * Allocate individual pages and link them together as:
1075 	 * 1. all pages are linked together using page->index
1076 	 * 2. each sub-page point to zspage using page->private
1077 	 *
1078 	 * we set PG_private to identify the first page (i.e. no other sub-page
1079 	 * has this flag set).
1080 	 */
1081 	for (i = 0; i < nr_pages; i++) {
1082 		page = pages[i];
1083 		set_page_private(page, (unsigned long)zspage);
1084 		page->index = 0;
1085 		if (i == 0) {
1086 			zspage->first_page = page;
1087 			SetPagePrivate(page);
1088 			if (unlikely(class->objs_per_zspage == 1 &&
1089 					class->pages_per_zspage == 1))
1090 				SetZsHugePage(zspage);
1091 		} else {
1092 			prev_page->index = (unsigned long)page;
1093 		}
1094 		prev_page = page;
1095 	}
1096 }
1097 
1098 /*
1099  * Allocate a zspage for the given size class
1100  */
1101 static struct zspage *alloc_zspage(struct zs_pool *pool,
1102 					struct size_class *class,
1103 					gfp_t gfp)
1104 {
1105 	int i;
1106 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1107 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1108 
1109 	if (!zspage)
1110 		return NULL;
1111 
1112 	zspage->magic = ZSPAGE_MAGIC;
1113 	migrate_lock_init(zspage);
1114 
1115 	for (i = 0; i < class->pages_per_zspage; i++) {
1116 		struct page *page;
1117 
1118 		page = alloc_page(gfp);
1119 		if (!page) {
1120 			while (--i >= 0) {
1121 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1122 				__free_page(pages[i]);
1123 			}
1124 			cache_free_zspage(pool, zspage);
1125 			return NULL;
1126 		}
1127 
1128 		inc_zone_page_state(page, NR_ZSPAGES);
1129 		pages[i] = page;
1130 	}
1131 
1132 	create_page_chain(class, zspage, pages);
1133 	init_zspage(class, zspage);
1134 	zspage->pool = pool;
1135 
1136 	return zspage;
1137 }
1138 
1139 static struct zspage *find_get_zspage(struct size_class *class)
1140 {
1141 	int i;
1142 	struct zspage *zspage;
1143 
1144 	for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1145 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1146 						  struct zspage, list);
1147 		if (zspage)
1148 			break;
1149 	}
1150 
1151 	return zspage;
1152 }
1153 
1154 static inline int __zs_cpu_up(struct mapping_area *area)
1155 {
1156 	/*
1157 	 * Make sure we don't leak memory if a cpu UP notification
1158 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1159 	 */
1160 	if (area->vm_buf)
1161 		return 0;
1162 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1163 	if (!area->vm_buf)
1164 		return -ENOMEM;
1165 	return 0;
1166 }
1167 
1168 static inline void __zs_cpu_down(struct mapping_area *area)
1169 {
1170 	kfree(area->vm_buf);
1171 	area->vm_buf = NULL;
1172 }
1173 
1174 static void *__zs_map_object(struct mapping_area *area,
1175 			struct page *pages[2], int off, int size)
1176 {
1177 	int sizes[2];
1178 	void *addr;
1179 	char *buf = area->vm_buf;
1180 
1181 	/* disable page faults to match kmap_atomic() return conditions */
1182 	pagefault_disable();
1183 
1184 	/* no read fastpath */
1185 	if (area->vm_mm == ZS_MM_WO)
1186 		goto out;
1187 
1188 	sizes[0] = PAGE_SIZE - off;
1189 	sizes[1] = size - sizes[0];
1190 
1191 	/* copy object to per-cpu buffer */
1192 	addr = kmap_atomic(pages[0]);
1193 	memcpy(buf, addr + off, sizes[0]);
1194 	kunmap_atomic(addr);
1195 	addr = kmap_atomic(pages[1]);
1196 	memcpy(buf + sizes[0], addr, sizes[1]);
1197 	kunmap_atomic(addr);
1198 out:
1199 	return area->vm_buf;
1200 }
1201 
1202 static void __zs_unmap_object(struct mapping_area *area,
1203 			struct page *pages[2], int off, int size)
1204 {
1205 	int sizes[2];
1206 	void *addr;
1207 	char *buf;
1208 
1209 	/* no write fastpath */
1210 	if (area->vm_mm == ZS_MM_RO)
1211 		goto out;
1212 
1213 	buf = area->vm_buf;
1214 	buf = buf + ZS_HANDLE_SIZE;
1215 	size -= ZS_HANDLE_SIZE;
1216 	off += ZS_HANDLE_SIZE;
1217 
1218 	sizes[0] = PAGE_SIZE - off;
1219 	sizes[1] = size - sizes[0];
1220 
1221 	/* copy per-cpu buffer to object */
1222 	addr = kmap_atomic(pages[0]);
1223 	memcpy(addr + off, buf, sizes[0]);
1224 	kunmap_atomic(addr);
1225 	addr = kmap_atomic(pages[1]);
1226 	memcpy(addr, buf + sizes[0], sizes[1]);
1227 	kunmap_atomic(addr);
1228 
1229 out:
1230 	/* enable page faults to match kunmap_atomic() return conditions */
1231 	pagefault_enable();
1232 }
1233 
1234 static int zs_cpu_prepare(unsigned int cpu)
1235 {
1236 	struct mapping_area *area;
1237 
1238 	area = &per_cpu(zs_map_area, cpu);
1239 	return __zs_cpu_up(area);
1240 }
1241 
1242 static int zs_cpu_dead(unsigned int cpu)
1243 {
1244 	struct mapping_area *area;
1245 
1246 	area = &per_cpu(zs_map_area, cpu);
1247 	__zs_cpu_down(area);
1248 	return 0;
1249 }
1250 
1251 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1252 					int objs_per_zspage)
1253 {
1254 	if (prev->pages_per_zspage == pages_per_zspage &&
1255 		prev->objs_per_zspage == objs_per_zspage)
1256 		return true;
1257 
1258 	return false;
1259 }
1260 
1261 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1262 {
1263 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1264 }
1265 
1266 /**
1267  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1268  * that hold objects of the provided size.
1269  * @pool: zsmalloc pool to use
1270  * @size: object size
1271  *
1272  * Context: Any context.
1273  *
1274  * Return: the index of the zsmalloc &size_class that hold objects of the
1275  * provided size.
1276  */
1277 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1278 {
1279 	struct size_class *class;
1280 
1281 	class = pool->size_class[get_size_class_index(size)];
1282 
1283 	return class->index;
1284 }
1285 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1286 
1287 unsigned long zs_get_total_pages(struct zs_pool *pool)
1288 {
1289 	return atomic_long_read(&pool->pages_allocated);
1290 }
1291 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1292 
1293 /**
1294  * zs_map_object - get address of allocated object from handle.
1295  * @pool: pool from which the object was allocated
1296  * @handle: handle returned from zs_malloc
1297  * @mm: mapping mode to use
1298  *
1299  * Before using an object allocated from zs_malloc, it must be mapped using
1300  * this function. When done with the object, it must be unmapped using
1301  * zs_unmap_object.
1302  *
1303  * Only one object can be mapped per cpu at a time. There is no protection
1304  * against nested mappings.
1305  *
1306  * This function returns with preemption and page faults disabled.
1307  */
1308 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1309 			enum zs_mapmode mm)
1310 {
1311 	struct zspage *zspage;
1312 	struct page *page;
1313 	unsigned long obj, off;
1314 	unsigned int obj_idx;
1315 
1316 	struct size_class *class;
1317 	struct mapping_area *area;
1318 	struct page *pages[2];
1319 	void *ret;
1320 
1321 	/*
1322 	 * Because we use per-cpu mapping areas shared among the
1323 	 * pools/users, we can't allow mapping in interrupt context
1324 	 * because it can corrupt another users mappings.
1325 	 */
1326 	BUG_ON(in_interrupt());
1327 
1328 	/* It guarantees it can get zspage from handle safely */
1329 	spin_lock(&pool->lock);
1330 	obj = handle_to_obj(handle);
1331 	obj_to_location(obj, &page, &obj_idx);
1332 	zspage = get_zspage(page);
1333 
1334 	/*
1335 	 * migration cannot move any zpages in this zspage. Here, pool->lock
1336 	 * is too heavy since callers would take some time until they calls
1337 	 * zs_unmap_object API so delegate the locking from class to zspage
1338 	 * which is smaller granularity.
1339 	 */
1340 	migrate_read_lock(zspage);
1341 	spin_unlock(&pool->lock);
1342 
1343 	class = zspage_class(pool, zspage);
1344 	off = (class->size * obj_idx) & ~PAGE_MASK;
1345 
1346 	local_lock(&zs_map_area.lock);
1347 	area = this_cpu_ptr(&zs_map_area);
1348 	area->vm_mm = mm;
1349 	if (off + class->size <= PAGE_SIZE) {
1350 		/* this object is contained entirely within a page */
1351 		area->vm_addr = kmap_atomic(page);
1352 		ret = area->vm_addr + off;
1353 		goto out;
1354 	}
1355 
1356 	/* this object spans two pages */
1357 	pages[0] = page;
1358 	pages[1] = get_next_page(page);
1359 	BUG_ON(!pages[1]);
1360 
1361 	ret = __zs_map_object(area, pages, off, class->size);
1362 out:
1363 	if (likely(!ZsHugePage(zspage)))
1364 		ret += ZS_HANDLE_SIZE;
1365 
1366 	return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(zs_map_object);
1369 
1370 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1371 {
1372 	struct zspage *zspage;
1373 	struct page *page;
1374 	unsigned long obj, off;
1375 	unsigned int obj_idx;
1376 
1377 	struct size_class *class;
1378 	struct mapping_area *area;
1379 
1380 	obj = handle_to_obj(handle);
1381 	obj_to_location(obj, &page, &obj_idx);
1382 	zspage = get_zspage(page);
1383 	class = zspage_class(pool, zspage);
1384 	off = (class->size * obj_idx) & ~PAGE_MASK;
1385 
1386 	area = this_cpu_ptr(&zs_map_area);
1387 	if (off + class->size <= PAGE_SIZE)
1388 		kunmap_atomic(area->vm_addr);
1389 	else {
1390 		struct page *pages[2];
1391 
1392 		pages[0] = page;
1393 		pages[1] = get_next_page(page);
1394 		BUG_ON(!pages[1]);
1395 
1396 		__zs_unmap_object(area, pages, off, class->size);
1397 	}
1398 	local_unlock(&zs_map_area.lock);
1399 
1400 	migrate_read_unlock(zspage);
1401 }
1402 EXPORT_SYMBOL_GPL(zs_unmap_object);
1403 
1404 /**
1405  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1406  *                        zsmalloc &size_class.
1407  * @pool: zsmalloc pool to use
1408  *
1409  * The function returns the size of the first huge class - any object of equal
1410  * or bigger size will be stored in zspage consisting of a single physical
1411  * page.
1412  *
1413  * Context: Any context.
1414  *
1415  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1416  */
1417 size_t zs_huge_class_size(struct zs_pool *pool)
1418 {
1419 	return huge_class_size;
1420 }
1421 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1422 
1423 static unsigned long obj_malloc(struct zs_pool *pool,
1424 				struct zspage *zspage, unsigned long handle)
1425 {
1426 	int i, nr_page, offset;
1427 	unsigned long obj;
1428 	struct link_free *link;
1429 	struct size_class *class;
1430 
1431 	struct page *m_page;
1432 	unsigned long m_offset;
1433 	void *vaddr;
1434 
1435 	class = pool->size_class[zspage->class];
1436 	handle |= OBJ_ALLOCATED_TAG;
1437 	obj = get_freeobj(zspage);
1438 
1439 	offset = obj * class->size;
1440 	nr_page = offset >> PAGE_SHIFT;
1441 	m_offset = offset & ~PAGE_MASK;
1442 	m_page = get_first_page(zspage);
1443 
1444 	for (i = 0; i < nr_page; i++)
1445 		m_page = get_next_page(m_page);
1446 
1447 	vaddr = kmap_atomic(m_page);
1448 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1449 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1450 	if (likely(!ZsHugePage(zspage)))
1451 		/* record handle in the header of allocated chunk */
1452 		link->handle = handle;
1453 	else
1454 		/* record handle to page->index */
1455 		zspage->first_page->index = handle;
1456 
1457 	kunmap_atomic(vaddr);
1458 	mod_zspage_inuse(zspage, 1);
1459 
1460 	obj = location_to_obj(m_page, obj);
1461 
1462 	return obj;
1463 }
1464 
1465 
1466 /**
1467  * zs_malloc - Allocate block of given size from pool.
1468  * @pool: pool to allocate from
1469  * @size: size of block to allocate
1470  * @gfp: gfp flags when allocating object
1471  *
1472  * On success, handle to the allocated object is returned,
1473  * otherwise an ERR_PTR().
1474  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1475  */
1476 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1477 {
1478 	unsigned long handle, obj;
1479 	struct size_class *class;
1480 	int newfg;
1481 	struct zspage *zspage;
1482 
1483 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1484 		return (unsigned long)ERR_PTR(-EINVAL);
1485 
1486 	handle = cache_alloc_handle(pool, gfp);
1487 	if (!handle)
1488 		return (unsigned long)ERR_PTR(-ENOMEM);
1489 
1490 	/* extra space in chunk to keep the handle */
1491 	size += ZS_HANDLE_SIZE;
1492 	class = pool->size_class[get_size_class_index(size)];
1493 
1494 	/* pool->lock effectively protects the zpage migration */
1495 	spin_lock(&pool->lock);
1496 	zspage = find_get_zspage(class);
1497 	if (likely(zspage)) {
1498 		obj = obj_malloc(pool, zspage, handle);
1499 		/* Now move the zspage to another fullness group, if required */
1500 		fix_fullness_group(class, zspage);
1501 		record_obj(handle, obj);
1502 		class_stat_inc(class, ZS_OBJS_INUSE, 1);
1503 
1504 		goto out;
1505 	}
1506 
1507 	spin_unlock(&pool->lock);
1508 
1509 	zspage = alloc_zspage(pool, class, gfp);
1510 	if (!zspage) {
1511 		cache_free_handle(pool, handle);
1512 		return (unsigned long)ERR_PTR(-ENOMEM);
1513 	}
1514 
1515 	spin_lock(&pool->lock);
1516 	obj = obj_malloc(pool, zspage, handle);
1517 	newfg = get_fullness_group(class, zspage);
1518 	insert_zspage(class, zspage, newfg);
1519 	set_zspage_mapping(zspage, class->index, newfg);
1520 	record_obj(handle, obj);
1521 	atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1522 	class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1523 	class_stat_inc(class, ZS_OBJS_INUSE, 1);
1524 
1525 	/* We completely set up zspage so mark them as movable */
1526 	SetZsPageMovable(pool, zspage);
1527 out:
1528 #ifdef CONFIG_ZPOOL
1529 	/* Add/move zspage to beginning of LRU */
1530 	if (!list_empty(&zspage->lru))
1531 		list_del(&zspage->lru);
1532 	list_add(&zspage->lru, &pool->lru);
1533 #endif
1534 
1535 	spin_unlock(&pool->lock);
1536 
1537 	return handle;
1538 }
1539 EXPORT_SYMBOL_GPL(zs_malloc);
1540 
1541 static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1542 {
1543 	struct link_free *link;
1544 	struct zspage *zspage;
1545 	struct page *f_page;
1546 	unsigned long f_offset;
1547 	unsigned int f_objidx;
1548 	void *vaddr;
1549 
1550 	obj_to_location(obj, &f_page, &f_objidx);
1551 	f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1552 	zspage = get_zspage(f_page);
1553 
1554 	vaddr = kmap_atomic(f_page);
1555 	link = (struct link_free *)(vaddr + f_offset);
1556 
1557 	if (handle) {
1558 #ifdef CONFIG_ZPOOL
1559 		/* Stores the (deferred) handle in the object's header */
1560 		*handle |= OBJ_DEFERRED_HANDLE_TAG;
1561 		*handle &= ~OBJ_ALLOCATED_TAG;
1562 
1563 		if (likely(!ZsHugePage(zspage)))
1564 			link->deferred_handle = *handle;
1565 		else
1566 			f_page->index = *handle;
1567 #endif
1568 	} else {
1569 		/* Insert this object in containing zspage's freelist */
1570 		if (likely(!ZsHugePage(zspage)))
1571 			link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1572 		else
1573 			f_page->index = 0;
1574 		set_freeobj(zspage, f_objidx);
1575 	}
1576 
1577 	kunmap_atomic(vaddr);
1578 	mod_zspage_inuse(zspage, -1);
1579 }
1580 
1581 void zs_free(struct zs_pool *pool, unsigned long handle)
1582 {
1583 	struct zspage *zspage;
1584 	struct page *f_page;
1585 	unsigned long obj;
1586 	struct size_class *class;
1587 	int fullness;
1588 
1589 	if (IS_ERR_OR_NULL((void *)handle))
1590 		return;
1591 
1592 	/*
1593 	 * The pool->lock protects the race with zpage's migration
1594 	 * so it's safe to get the page from handle.
1595 	 */
1596 	spin_lock(&pool->lock);
1597 	obj = handle_to_obj(handle);
1598 	obj_to_page(obj, &f_page);
1599 	zspage = get_zspage(f_page);
1600 	class = zspage_class(pool, zspage);
1601 
1602 	class_stat_dec(class, ZS_OBJS_INUSE, 1);
1603 
1604 #ifdef CONFIG_ZPOOL
1605 	if (zspage->under_reclaim) {
1606 		/*
1607 		 * Reclaim needs the handles during writeback. It'll free
1608 		 * them along with the zspage when it's done with them.
1609 		 *
1610 		 * Record current deferred handle in the object's header.
1611 		 */
1612 		obj_free(class->size, obj, &handle);
1613 		spin_unlock(&pool->lock);
1614 		return;
1615 	}
1616 #endif
1617 	obj_free(class->size, obj, NULL);
1618 
1619 	fullness = fix_fullness_group(class, zspage);
1620 	if (fullness == ZS_INUSE_RATIO_0)
1621 		free_zspage(pool, class, zspage);
1622 
1623 	spin_unlock(&pool->lock);
1624 	cache_free_handle(pool, handle);
1625 }
1626 EXPORT_SYMBOL_GPL(zs_free);
1627 
1628 static void zs_object_copy(struct size_class *class, unsigned long dst,
1629 				unsigned long src)
1630 {
1631 	struct page *s_page, *d_page;
1632 	unsigned int s_objidx, d_objidx;
1633 	unsigned long s_off, d_off;
1634 	void *s_addr, *d_addr;
1635 	int s_size, d_size, size;
1636 	int written = 0;
1637 
1638 	s_size = d_size = class->size;
1639 
1640 	obj_to_location(src, &s_page, &s_objidx);
1641 	obj_to_location(dst, &d_page, &d_objidx);
1642 
1643 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1644 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1645 
1646 	if (s_off + class->size > PAGE_SIZE)
1647 		s_size = PAGE_SIZE - s_off;
1648 
1649 	if (d_off + class->size > PAGE_SIZE)
1650 		d_size = PAGE_SIZE - d_off;
1651 
1652 	s_addr = kmap_atomic(s_page);
1653 	d_addr = kmap_atomic(d_page);
1654 
1655 	while (1) {
1656 		size = min(s_size, d_size);
1657 		memcpy(d_addr + d_off, s_addr + s_off, size);
1658 		written += size;
1659 
1660 		if (written == class->size)
1661 			break;
1662 
1663 		s_off += size;
1664 		s_size -= size;
1665 		d_off += size;
1666 		d_size -= size;
1667 
1668 		/*
1669 		 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1670 		 * calls must occurs in reverse order of calls to kmap_atomic().
1671 		 * So, to call kunmap_atomic(s_addr) we should first call
1672 		 * kunmap_atomic(d_addr). For more details see
1673 		 * Documentation/mm/highmem.rst.
1674 		 */
1675 		if (s_off >= PAGE_SIZE) {
1676 			kunmap_atomic(d_addr);
1677 			kunmap_atomic(s_addr);
1678 			s_page = get_next_page(s_page);
1679 			s_addr = kmap_atomic(s_page);
1680 			d_addr = kmap_atomic(d_page);
1681 			s_size = class->size - written;
1682 			s_off = 0;
1683 		}
1684 
1685 		if (d_off >= PAGE_SIZE) {
1686 			kunmap_atomic(d_addr);
1687 			d_page = get_next_page(d_page);
1688 			d_addr = kmap_atomic(d_page);
1689 			d_size = class->size - written;
1690 			d_off = 0;
1691 		}
1692 	}
1693 
1694 	kunmap_atomic(d_addr);
1695 	kunmap_atomic(s_addr);
1696 }
1697 
1698 /*
1699  * Find object with a certain tag in zspage from index object and
1700  * return handle.
1701  */
1702 static unsigned long find_tagged_obj(struct size_class *class,
1703 					struct page *page, int *obj_idx, int tag)
1704 {
1705 	unsigned int offset;
1706 	int index = *obj_idx;
1707 	unsigned long handle = 0;
1708 	void *addr = kmap_atomic(page);
1709 
1710 	offset = get_first_obj_offset(page);
1711 	offset += class->size * index;
1712 
1713 	while (offset < PAGE_SIZE) {
1714 		if (obj_tagged(page, addr + offset, &handle, tag))
1715 			break;
1716 
1717 		offset += class->size;
1718 		index++;
1719 	}
1720 
1721 	kunmap_atomic(addr);
1722 
1723 	*obj_idx = index;
1724 
1725 	return handle;
1726 }
1727 
1728 /*
1729  * Find alloced object in zspage from index object and
1730  * return handle.
1731  */
1732 static unsigned long find_alloced_obj(struct size_class *class,
1733 					struct page *page, int *obj_idx)
1734 {
1735 	return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1736 }
1737 
1738 #ifdef CONFIG_ZPOOL
1739 /*
1740  * Find object storing a deferred handle in header in zspage from index object
1741  * and return handle.
1742  */
1743 static unsigned long find_deferred_handle_obj(struct size_class *class,
1744 		struct page *page, int *obj_idx)
1745 {
1746 	return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1747 }
1748 #endif
1749 
1750 struct zs_compact_control {
1751 	/* Source spage for migration which could be a subpage of zspage */
1752 	struct page *s_page;
1753 	/* Destination page for migration which should be a first page
1754 	 * of zspage. */
1755 	struct page *d_page;
1756 	 /* Starting object index within @s_page which used for live object
1757 	  * in the subpage. */
1758 	int obj_idx;
1759 };
1760 
1761 static void migrate_zspage(struct zs_pool *pool, struct size_class *class,
1762 			   struct zs_compact_control *cc)
1763 {
1764 	unsigned long used_obj, free_obj;
1765 	unsigned long handle;
1766 	struct page *s_page = cc->s_page;
1767 	struct page *d_page = cc->d_page;
1768 	int obj_idx = cc->obj_idx;
1769 
1770 	while (1) {
1771 		handle = find_alloced_obj(class, s_page, &obj_idx);
1772 		if (!handle) {
1773 			s_page = get_next_page(s_page);
1774 			if (!s_page)
1775 				break;
1776 			obj_idx = 0;
1777 			continue;
1778 		}
1779 
1780 		/* Stop if there is no more space */
1781 		if (zspage_full(class, get_zspage(d_page)))
1782 			break;
1783 
1784 		used_obj = handle_to_obj(handle);
1785 		free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1786 		zs_object_copy(class, free_obj, used_obj);
1787 		obj_idx++;
1788 		record_obj(handle, free_obj);
1789 		obj_free(class->size, used_obj, NULL);
1790 	}
1791 
1792 	/* Remember last position in this iteration */
1793 	cc->s_page = s_page;
1794 	cc->obj_idx = obj_idx;
1795 }
1796 
1797 static struct zspage *isolate_src_zspage(struct size_class *class)
1798 {
1799 	struct zspage *zspage;
1800 	int fg;
1801 
1802 	for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1803 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1804 						  struct zspage, list);
1805 		if (zspage) {
1806 			remove_zspage(class, zspage, fg);
1807 			return zspage;
1808 		}
1809 	}
1810 
1811 	return zspage;
1812 }
1813 
1814 static struct zspage *isolate_dst_zspage(struct size_class *class)
1815 {
1816 	struct zspage *zspage;
1817 	int fg;
1818 
1819 	for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1820 		zspage = list_first_entry_or_null(&class->fullness_list[fg],
1821 						  struct zspage, list);
1822 		if (zspage) {
1823 			remove_zspage(class, zspage, fg);
1824 			return zspage;
1825 		}
1826 	}
1827 
1828 	return zspage;
1829 }
1830 
1831 /*
1832  * putback_zspage - add @zspage into right class's fullness list
1833  * @class: destination class
1834  * @zspage: target page
1835  *
1836  * Return @zspage's fullness status
1837  */
1838 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1839 {
1840 	int fullness;
1841 
1842 	fullness = get_fullness_group(class, zspage);
1843 	insert_zspage(class, zspage, fullness);
1844 	set_zspage_mapping(zspage, class->index, fullness);
1845 
1846 	return fullness;
1847 }
1848 
1849 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1850 /*
1851  * To prevent zspage destroy during migration, zspage freeing should
1852  * hold locks of all pages in the zspage.
1853  */
1854 static void lock_zspage(struct zspage *zspage)
1855 {
1856 	struct page *curr_page, *page;
1857 
1858 	/*
1859 	 * Pages we haven't locked yet can be migrated off the list while we're
1860 	 * trying to lock them, so we need to be careful and only attempt to
1861 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1862 	 * may no longer belong to the zspage. This means that we may wait for
1863 	 * the wrong page to unlock, so we must take a reference to the page
1864 	 * prior to waiting for it to unlock outside migrate_read_lock().
1865 	 */
1866 	while (1) {
1867 		migrate_read_lock(zspage);
1868 		page = get_first_page(zspage);
1869 		if (trylock_page(page))
1870 			break;
1871 		get_page(page);
1872 		migrate_read_unlock(zspage);
1873 		wait_on_page_locked(page);
1874 		put_page(page);
1875 	}
1876 
1877 	curr_page = page;
1878 	while ((page = get_next_page(curr_page))) {
1879 		if (trylock_page(page)) {
1880 			curr_page = page;
1881 		} else {
1882 			get_page(page);
1883 			migrate_read_unlock(zspage);
1884 			wait_on_page_locked(page);
1885 			put_page(page);
1886 			migrate_read_lock(zspage);
1887 		}
1888 	}
1889 	migrate_read_unlock(zspage);
1890 }
1891 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1892 
1893 #ifdef CONFIG_ZPOOL
1894 /*
1895  * Unlocks all the pages of the zspage.
1896  *
1897  * pool->lock must be held before this function is called
1898  * to prevent the underlying pages from migrating.
1899  */
1900 static void unlock_zspage(struct zspage *zspage)
1901 {
1902 	struct page *page = get_first_page(zspage);
1903 
1904 	do {
1905 		unlock_page(page);
1906 	} while ((page = get_next_page(page)) != NULL);
1907 }
1908 #endif /* CONFIG_ZPOOL */
1909 
1910 static void migrate_lock_init(struct zspage *zspage)
1911 {
1912 	rwlock_init(&zspage->lock);
1913 }
1914 
1915 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1916 {
1917 	read_lock(&zspage->lock);
1918 }
1919 
1920 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1921 {
1922 	read_unlock(&zspage->lock);
1923 }
1924 
1925 #ifdef CONFIG_COMPACTION
1926 static void migrate_write_lock(struct zspage *zspage)
1927 {
1928 	write_lock(&zspage->lock);
1929 }
1930 
1931 static void migrate_write_lock_nested(struct zspage *zspage)
1932 {
1933 	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1934 }
1935 
1936 static void migrate_write_unlock(struct zspage *zspage)
1937 {
1938 	write_unlock(&zspage->lock);
1939 }
1940 
1941 /* Number of isolated subpage for *page migration* in this zspage */
1942 static void inc_zspage_isolation(struct zspage *zspage)
1943 {
1944 	zspage->isolated++;
1945 }
1946 
1947 static void dec_zspage_isolation(struct zspage *zspage)
1948 {
1949 	VM_BUG_ON(zspage->isolated == 0);
1950 	zspage->isolated--;
1951 }
1952 
1953 static const struct movable_operations zsmalloc_mops;
1954 
1955 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1956 				struct page *newpage, struct page *oldpage)
1957 {
1958 	struct page *page;
1959 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1960 	int idx = 0;
1961 
1962 	page = get_first_page(zspage);
1963 	do {
1964 		if (page == oldpage)
1965 			pages[idx] = newpage;
1966 		else
1967 			pages[idx] = page;
1968 		idx++;
1969 	} while ((page = get_next_page(page)) != NULL);
1970 
1971 	create_page_chain(class, zspage, pages);
1972 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1973 	if (unlikely(ZsHugePage(zspage)))
1974 		newpage->index = oldpage->index;
1975 	__SetPageMovable(newpage, &zsmalloc_mops);
1976 }
1977 
1978 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1979 {
1980 	struct zspage *zspage;
1981 
1982 	/*
1983 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1984 	 * lock_zspage in free_zspage.
1985 	 */
1986 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1987 
1988 	zspage = get_zspage(page);
1989 	migrate_write_lock(zspage);
1990 	inc_zspage_isolation(zspage);
1991 	migrate_write_unlock(zspage);
1992 
1993 	return true;
1994 }
1995 
1996 static int zs_page_migrate(struct page *newpage, struct page *page,
1997 		enum migrate_mode mode)
1998 {
1999 	struct zs_pool *pool;
2000 	struct size_class *class;
2001 	struct zspage *zspage;
2002 	struct page *dummy;
2003 	void *s_addr, *d_addr, *addr;
2004 	unsigned int offset;
2005 	unsigned long handle;
2006 	unsigned long old_obj, new_obj;
2007 	unsigned int obj_idx;
2008 
2009 	/*
2010 	 * We cannot support the _NO_COPY case here, because copy needs to
2011 	 * happen under the zs lock, which does not work with
2012 	 * MIGRATE_SYNC_NO_COPY workflow.
2013 	 */
2014 	if (mode == MIGRATE_SYNC_NO_COPY)
2015 		return -EINVAL;
2016 
2017 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2018 
2019 	/* The page is locked, so this pointer must remain valid */
2020 	zspage = get_zspage(page);
2021 	pool = zspage->pool;
2022 
2023 	/*
2024 	 * The pool's lock protects the race between zpage migration
2025 	 * and zs_free.
2026 	 */
2027 	spin_lock(&pool->lock);
2028 	class = zspage_class(pool, zspage);
2029 
2030 	/* the migrate_write_lock protects zpage access via zs_map_object */
2031 	migrate_write_lock(zspage);
2032 
2033 	offset = get_first_obj_offset(page);
2034 	s_addr = kmap_atomic(page);
2035 
2036 	/*
2037 	 * Here, any user cannot access all objects in the zspage so let's move.
2038 	 */
2039 	d_addr = kmap_atomic(newpage);
2040 	memcpy(d_addr, s_addr, PAGE_SIZE);
2041 	kunmap_atomic(d_addr);
2042 
2043 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2044 					addr += class->size) {
2045 		if (obj_allocated(page, addr, &handle)) {
2046 
2047 			old_obj = handle_to_obj(handle);
2048 			obj_to_location(old_obj, &dummy, &obj_idx);
2049 			new_obj = (unsigned long)location_to_obj(newpage,
2050 								obj_idx);
2051 			record_obj(handle, new_obj);
2052 		}
2053 	}
2054 	kunmap_atomic(s_addr);
2055 
2056 	replace_sub_page(class, zspage, newpage, page);
2057 	/*
2058 	 * Since we complete the data copy and set up new zspage structure,
2059 	 * it's okay to release the pool's lock.
2060 	 */
2061 	spin_unlock(&pool->lock);
2062 	dec_zspage_isolation(zspage);
2063 	migrate_write_unlock(zspage);
2064 
2065 	get_page(newpage);
2066 	if (page_zone(newpage) != page_zone(page)) {
2067 		dec_zone_page_state(page, NR_ZSPAGES);
2068 		inc_zone_page_state(newpage, NR_ZSPAGES);
2069 	}
2070 
2071 	reset_page(page);
2072 	put_page(page);
2073 
2074 	return MIGRATEPAGE_SUCCESS;
2075 }
2076 
2077 static void zs_page_putback(struct page *page)
2078 {
2079 	struct zspage *zspage;
2080 
2081 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2082 
2083 	zspage = get_zspage(page);
2084 	migrate_write_lock(zspage);
2085 	dec_zspage_isolation(zspage);
2086 	migrate_write_unlock(zspage);
2087 }
2088 
2089 static const struct movable_operations zsmalloc_mops = {
2090 	.isolate_page = zs_page_isolate,
2091 	.migrate_page = zs_page_migrate,
2092 	.putback_page = zs_page_putback,
2093 };
2094 
2095 /*
2096  * Caller should hold page_lock of all pages in the zspage
2097  * In here, we cannot use zspage meta data.
2098  */
2099 static void async_free_zspage(struct work_struct *work)
2100 {
2101 	int i;
2102 	struct size_class *class;
2103 	unsigned int class_idx;
2104 	int fullness;
2105 	struct zspage *zspage, *tmp;
2106 	LIST_HEAD(free_pages);
2107 	struct zs_pool *pool = container_of(work, struct zs_pool,
2108 					free_work);
2109 
2110 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2111 		class = pool->size_class[i];
2112 		if (class->index != i)
2113 			continue;
2114 
2115 		spin_lock(&pool->lock);
2116 		list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
2117 				 &free_pages);
2118 		spin_unlock(&pool->lock);
2119 	}
2120 
2121 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2122 		list_del(&zspage->list);
2123 		lock_zspage(zspage);
2124 
2125 		get_zspage_mapping(zspage, &class_idx, &fullness);
2126 		VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
2127 		class = pool->size_class[class_idx];
2128 		spin_lock(&pool->lock);
2129 #ifdef CONFIG_ZPOOL
2130 		list_del(&zspage->lru);
2131 #endif
2132 		__free_zspage(pool, class, zspage);
2133 		spin_unlock(&pool->lock);
2134 	}
2135 };
2136 
2137 static void kick_deferred_free(struct zs_pool *pool)
2138 {
2139 	schedule_work(&pool->free_work);
2140 }
2141 
2142 static void zs_flush_migration(struct zs_pool *pool)
2143 {
2144 	flush_work(&pool->free_work);
2145 }
2146 
2147 static void init_deferred_free(struct zs_pool *pool)
2148 {
2149 	INIT_WORK(&pool->free_work, async_free_zspage);
2150 }
2151 
2152 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2153 {
2154 	struct page *page = get_first_page(zspage);
2155 
2156 	do {
2157 		WARN_ON(!trylock_page(page));
2158 		__SetPageMovable(page, &zsmalloc_mops);
2159 		unlock_page(page);
2160 	} while ((page = get_next_page(page)) != NULL);
2161 }
2162 #else
2163 static inline void zs_flush_migration(struct zs_pool *pool) { }
2164 #endif
2165 
2166 /*
2167  *
2168  * Based on the number of unused allocated objects calculate
2169  * and return the number of pages that we can free.
2170  */
2171 static unsigned long zs_can_compact(struct size_class *class)
2172 {
2173 	unsigned long obj_wasted;
2174 	unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
2175 	unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
2176 
2177 	if (obj_allocated <= obj_used)
2178 		return 0;
2179 
2180 	obj_wasted = obj_allocated - obj_used;
2181 	obj_wasted /= class->objs_per_zspage;
2182 
2183 	return obj_wasted * class->pages_per_zspage;
2184 }
2185 
2186 static unsigned long __zs_compact(struct zs_pool *pool,
2187 				  struct size_class *class)
2188 {
2189 	struct zs_compact_control cc;
2190 	struct zspage *src_zspage = NULL;
2191 	struct zspage *dst_zspage = NULL;
2192 	unsigned long pages_freed = 0;
2193 
2194 	/*
2195 	 * protect the race between zpage migration and zs_free
2196 	 * as well as zpage allocation/free
2197 	 */
2198 	spin_lock(&pool->lock);
2199 	while (zs_can_compact(class)) {
2200 		int fg;
2201 
2202 		if (!dst_zspage) {
2203 			dst_zspage = isolate_dst_zspage(class);
2204 			if (!dst_zspage)
2205 				break;
2206 			migrate_write_lock(dst_zspage);
2207 			cc.d_page = get_first_page(dst_zspage);
2208 		}
2209 
2210 		src_zspage = isolate_src_zspage(class);
2211 		if (!src_zspage)
2212 			break;
2213 
2214 		migrate_write_lock_nested(src_zspage);
2215 
2216 		cc.obj_idx = 0;
2217 		cc.s_page = get_first_page(src_zspage);
2218 		migrate_zspage(pool, class, &cc);
2219 		fg = putback_zspage(class, src_zspage);
2220 		migrate_write_unlock(src_zspage);
2221 
2222 		if (fg == ZS_INUSE_RATIO_0) {
2223 			free_zspage(pool, class, src_zspage);
2224 			pages_freed += class->pages_per_zspage;
2225 		}
2226 		src_zspage = NULL;
2227 
2228 		if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2229 		    || spin_is_contended(&pool->lock)) {
2230 			putback_zspage(class, dst_zspage);
2231 			migrate_write_unlock(dst_zspage);
2232 			dst_zspage = NULL;
2233 
2234 			spin_unlock(&pool->lock);
2235 			cond_resched();
2236 			spin_lock(&pool->lock);
2237 		}
2238 	}
2239 
2240 	if (src_zspage) {
2241 		putback_zspage(class, src_zspage);
2242 		migrate_write_unlock(src_zspage);
2243 	}
2244 
2245 	if (dst_zspage) {
2246 		putback_zspage(class, dst_zspage);
2247 		migrate_write_unlock(dst_zspage);
2248 	}
2249 	spin_unlock(&pool->lock);
2250 
2251 	return pages_freed;
2252 }
2253 
2254 unsigned long zs_compact(struct zs_pool *pool)
2255 {
2256 	int i;
2257 	struct size_class *class;
2258 	unsigned long pages_freed = 0;
2259 
2260 	/*
2261 	 * Pool compaction is performed under pool->lock so it is basically
2262 	 * single-threaded. Having more than one thread in __zs_compact()
2263 	 * will increase pool->lock contention, which will impact other
2264 	 * zsmalloc operations that need pool->lock.
2265 	 */
2266 	if (atomic_xchg(&pool->compaction_in_progress, 1))
2267 		return 0;
2268 
2269 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2270 		class = pool->size_class[i];
2271 		if (class->index != i)
2272 			continue;
2273 		pages_freed += __zs_compact(pool, class);
2274 	}
2275 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2276 	atomic_set(&pool->compaction_in_progress, 0);
2277 
2278 	return pages_freed;
2279 }
2280 EXPORT_SYMBOL_GPL(zs_compact);
2281 
2282 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2283 {
2284 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2285 }
2286 EXPORT_SYMBOL_GPL(zs_pool_stats);
2287 
2288 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2289 		struct shrink_control *sc)
2290 {
2291 	unsigned long pages_freed;
2292 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2293 			shrinker);
2294 
2295 	/*
2296 	 * Compact classes and calculate compaction delta.
2297 	 * Can run concurrently with a manually triggered
2298 	 * (by user) compaction.
2299 	 */
2300 	pages_freed = zs_compact(pool);
2301 
2302 	return pages_freed ? pages_freed : SHRINK_STOP;
2303 }
2304 
2305 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2306 		struct shrink_control *sc)
2307 {
2308 	int i;
2309 	struct size_class *class;
2310 	unsigned long pages_to_free = 0;
2311 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2312 			shrinker);
2313 
2314 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2315 		class = pool->size_class[i];
2316 		if (class->index != i)
2317 			continue;
2318 
2319 		pages_to_free += zs_can_compact(class);
2320 	}
2321 
2322 	return pages_to_free;
2323 }
2324 
2325 static void zs_unregister_shrinker(struct zs_pool *pool)
2326 {
2327 	unregister_shrinker(&pool->shrinker);
2328 }
2329 
2330 static int zs_register_shrinker(struct zs_pool *pool)
2331 {
2332 	pool->shrinker.scan_objects = zs_shrinker_scan;
2333 	pool->shrinker.count_objects = zs_shrinker_count;
2334 	pool->shrinker.batch = 0;
2335 	pool->shrinker.seeks = DEFAULT_SEEKS;
2336 
2337 	return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2338 				 pool->name);
2339 }
2340 
2341 static int calculate_zspage_chain_size(int class_size)
2342 {
2343 	int i, min_waste = INT_MAX;
2344 	int chain_size = 1;
2345 
2346 	if (is_power_of_2(class_size))
2347 		return chain_size;
2348 
2349 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2350 		int waste;
2351 
2352 		waste = (i * PAGE_SIZE) % class_size;
2353 		if (waste < min_waste) {
2354 			min_waste = waste;
2355 			chain_size = i;
2356 		}
2357 	}
2358 
2359 	return chain_size;
2360 }
2361 
2362 /**
2363  * zs_create_pool - Creates an allocation pool to work from.
2364  * @name: pool name to be created
2365  *
2366  * This function must be called before anything when using
2367  * the zsmalloc allocator.
2368  *
2369  * On success, a pointer to the newly created pool is returned,
2370  * otherwise NULL.
2371  */
2372 struct zs_pool *zs_create_pool(const char *name)
2373 {
2374 	int i;
2375 	struct zs_pool *pool;
2376 	struct size_class *prev_class = NULL;
2377 
2378 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2379 	if (!pool)
2380 		return NULL;
2381 
2382 	init_deferred_free(pool);
2383 	spin_lock_init(&pool->lock);
2384 	atomic_set(&pool->compaction_in_progress, 0);
2385 
2386 	pool->name = kstrdup(name, GFP_KERNEL);
2387 	if (!pool->name)
2388 		goto err;
2389 
2390 	if (create_cache(pool))
2391 		goto err;
2392 
2393 	/*
2394 	 * Iterate reversely, because, size of size_class that we want to use
2395 	 * for merging should be larger or equal to current size.
2396 	 */
2397 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2398 		int size;
2399 		int pages_per_zspage;
2400 		int objs_per_zspage;
2401 		struct size_class *class;
2402 		int fullness;
2403 
2404 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2405 		if (size > ZS_MAX_ALLOC_SIZE)
2406 			size = ZS_MAX_ALLOC_SIZE;
2407 		pages_per_zspage = calculate_zspage_chain_size(size);
2408 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2409 
2410 		/*
2411 		 * We iterate from biggest down to smallest classes,
2412 		 * so huge_class_size holds the size of the first huge
2413 		 * class. Any object bigger than or equal to that will
2414 		 * endup in the huge class.
2415 		 */
2416 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2417 				!huge_class_size) {
2418 			huge_class_size = size;
2419 			/*
2420 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2421 			 * handle. We need to subtract it, because zs_malloc()
2422 			 * unconditionally adds handle size before it performs
2423 			 * size class search - so object may be smaller than
2424 			 * huge class size, yet it still can end up in the huge
2425 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2426 			 * right before class lookup.
2427 			 */
2428 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2429 		}
2430 
2431 		/*
2432 		 * size_class is used for normal zsmalloc operation such
2433 		 * as alloc/free for that size. Although it is natural that we
2434 		 * have one size_class for each size, there is a chance that we
2435 		 * can get more memory utilization if we use one size_class for
2436 		 * many different sizes whose size_class have same
2437 		 * characteristics. So, we makes size_class point to
2438 		 * previous size_class if possible.
2439 		 */
2440 		if (prev_class) {
2441 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2442 				pool->size_class[i] = prev_class;
2443 				continue;
2444 			}
2445 		}
2446 
2447 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2448 		if (!class)
2449 			goto err;
2450 
2451 		class->size = size;
2452 		class->index = i;
2453 		class->pages_per_zspage = pages_per_zspage;
2454 		class->objs_per_zspage = objs_per_zspage;
2455 		pool->size_class[i] = class;
2456 
2457 		fullness = ZS_INUSE_RATIO_0;
2458 		while (fullness < NR_FULLNESS_GROUPS) {
2459 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2460 			fullness++;
2461 		}
2462 
2463 		prev_class = class;
2464 	}
2465 
2466 	/* debug only, don't abort if it fails */
2467 	zs_pool_stat_create(pool, name);
2468 
2469 	/*
2470 	 * Not critical since shrinker is only used to trigger internal
2471 	 * defragmentation of the pool which is pretty optional thing.  If
2472 	 * registration fails we still can use the pool normally and user can
2473 	 * trigger compaction manually. Thus, ignore return code.
2474 	 */
2475 	zs_register_shrinker(pool);
2476 
2477 #ifdef CONFIG_ZPOOL
2478 	INIT_LIST_HEAD(&pool->lru);
2479 #endif
2480 
2481 	return pool;
2482 
2483 err:
2484 	zs_destroy_pool(pool);
2485 	return NULL;
2486 }
2487 EXPORT_SYMBOL_GPL(zs_create_pool);
2488 
2489 void zs_destroy_pool(struct zs_pool *pool)
2490 {
2491 	int i;
2492 
2493 	zs_unregister_shrinker(pool);
2494 	zs_flush_migration(pool);
2495 	zs_pool_stat_destroy(pool);
2496 
2497 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2498 		int fg;
2499 		struct size_class *class = pool->size_class[i];
2500 
2501 		if (!class)
2502 			continue;
2503 
2504 		if (class->index != i)
2505 			continue;
2506 
2507 		for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2508 			if (list_empty(&class->fullness_list[fg]))
2509 				continue;
2510 
2511 			pr_err("Class-%d fullness group %d is not empty\n",
2512 			       class->size, fg);
2513 		}
2514 		kfree(class);
2515 	}
2516 
2517 	destroy_cache(pool);
2518 	kfree(pool->name);
2519 	kfree(pool);
2520 }
2521 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2522 
2523 #ifdef CONFIG_ZPOOL
2524 static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2525 		struct zspage *zspage)
2526 {
2527 	unsigned int obj_idx = 0;
2528 	unsigned long handle, off = 0; /* off is within-page offset */
2529 	struct page *page = get_first_page(zspage);
2530 	struct link_free *prev_free = NULL;
2531 	void *prev_page_vaddr = NULL;
2532 
2533 	/* in case no free object found */
2534 	set_freeobj(zspage, (unsigned int)(-1UL));
2535 
2536 	while (page) {
2537 		void *vaddr = kmap_atomic(page);
2538 		struct page *next_page;
2539 
2540 		while (off < PAGE_SIZE) {
2541 			void *obj_addr = vaddr + off;
2542 
2543 			/* skip allocated object */
2544 			if (obj_allocated(page, obj_addr, &handle)) {
2545 				obj_idx++;
2546 				off += class->size;
2547 				continue;
2548 			}
2549 
2550 			/* free deferred handle from reclaim attempt */
2551 			if (obj_stores_deferred_handle(page, obj_addr, &handle))
2552 				cache_free_handle(pool, handle);
2553 
2554 			if (prev_free)
2555 				prev_free->next = obj_idx << OBJ_TAG_BITS;
2556 			else /* first free object found */
2557 				set_freeobj(zspage, obj_idx);
2558 
2559 			prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2560 			/* if last free object in a previous page, need to unmap */
2561 			if (prev_page_vaddr) {
2562 				kunmap_atomic(prev_page_vaddr);
2563 				prev_page_vaddr = NULL;
2564 			}
2565 
2566 			obj_idx++;
2567 			off += class->size;
2568 		}
2569 
2570 		/*
2571 		 * Handle the last (full or partial) object on this page.
2572 		 */
2573 		next_page = get_next_page(page);
2574 		if (next_page) {
2575 			if (!prev_free || prev_page_vaddr) {
2576 				/*
2577 				 * There is no free object in this page, so we can safely
2578 				 * unmap it.
2579 				 */
2580 				kunmap_atomic(vaddr);
2581 			} else {
2582 				/* update prev_page_vaddr since prev_free is on this page */
2583 				prev_page_vaddr = vaddr;
2584 			}
2585 		} else { /* this is the last page */
2586 			if (prev_free) {
2587 				/*
2588 				 * Reset OBJ_TAG_BITS bit to last link to tell
2589 				 * whether it's allocated object or not.
2590 				 */
2591 				prev_free->next = -1UL << OBJ_TAG_BITS;
2592 			}
2593 
2594 			/* unmap previous page (if not done yet) */
2595 			if (prev_page_vaddr) {
2596 				kunmap_atomic(prev_page_vaddr);
2597 				prev_page_vaddr = NULL;
2598 			}
2599 
2600 			kunmap_atomic(vaddr);
2601 		}
2602 
2603 		page = next_page;
2604 		off %= PAGE_SIZE;
2605 	}
2606 }
2607 
2608 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2609 {
2610 	int i, obj_idx, ret = 0;
2611 	unsigned long handle;
2612 	struct zspage *zspage;
2613 	struct page *page;
2614 	int fullness;
2615 
2616 	/* Lock LRU and fullness list */
2617 	spin_lock(&pool->lock);
2618 	if (list_empty(&pool->lru)) {
2619 		spin_unlock(&pool->lock);
2620 		return -EINVAL;
2621 	}
2622 
2623 	for (i = 0; i < retries; i++) {
2624 		struct size_class *class;
2625 
2626 		zspage = list_last_entry(&pool->lru, struct zspage, lru);
2627 		list_del(&zspage->lru);
2628 
2629 		/* zs_free may free objects, but not the zspage and handles */
2630 		zspage->under_reclaim = true;
2631 
2632 		class = zspage_class(pool, zspage);
2633 		fullness = get_fullness_group(class, zspage);
2634 
2635 		/* Lock out object allocations and object compaction */
2636 		remove_zspage(class, zspage, fullness);
2637 
2638 		spin_unlock(&pool->lock);
2639 		cond_resched();
2640 
2641 		/* Lock backing pages into place */
2642 		lock_zspage(zspage);
2643 
2644 		obj_idx = 0;
2645 		page = get_first_page(zspage);
2646 		while (1) {
2647 			handle = find_alloced_obj(class, page, &obj_idx);
2648 			if (!handle) {
2649 				page = get_next_page(page);
2650 				if (!page)
2651 					break;
2652 				obj_idx = 0;
2653 				continue;
2654 			}
2655 
2656 			/*
2657 			 * This will write the object and call zs_free.
2658 			 *
2659 			 * zs_free will free the object, but the
2660 			 * under_reclaim flag prevents it from freeing
2661 			 * the zspage altogether. This is necessary so
2662 			 * that we can continue working with the
2663 			 * zspage potentially after the last object
2664 			 * has been freed.
2665 			 */
2666 			ret = pool->zpool_ops->evict(pool->zpool, handle);
2667 			if (ret)
2668 				goto next;
2669 
2670 			obj_idx++;
2671 		}
2672 
2673 next:
2674 		/* For freeing the zspage, or putting it back in the pool and LRU list. */
2675 		spin_lock(&pool->lock);
2676 		zspage->under_reclaim = false;
2677 
2678 		if (!get_zspage_inuse(zspage)) {
2679 			/*
2680 			 * Fullness went stale as zs_free() won't touch it
2681 			 * while the page is removed from the pool. Fix it
2682 			 * up for the check in __free_zspage().
2683 			 */
2684 			zspage->fullness = ZS_INUSE_RATIO_0;
2685 
2686 			__free_zspage(pool, class, zspage);
2687 			spin_unlock(&pool->lock);
2688 			return 0;
2689 		}
2690 
2691 		/*
2692 		 * Eviction fails on one of the handles, so we need to restore zspage.
2693 		 * We need to rebuild its freelist (and free stored deferred handles),
2694 		 * put it back to the correct size class, and add it to the LRU list.
2695 		 */
2696 		restore_freelist(pool, class, zspage);
2697 		putback_zspage(class, zspage);
2698 		list_add(&zspage->lru, &pool->lru);
2699 		unlock_zspage(zspage);
2700 	}
2701 
2702 	spin_unlock(&pool->lock);
2703 	return -EAGAIN;
2704 }
2705 #endif /* CONFIG_ZPOOL */
2706 
2707 static int __init zs_init(void)
2708 {
2709 	int ret;
2710 
2711 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2712 				zs_cpu_prepare, zs_cpu_dead);
2713 	if (ret)
2714 		goto out;
2715 
2716 #ifdef CONFIG_ZPOOL
2717 	zpool_register_driver(&zs_zpool_driver);
2718 #endif
2719 
2720 	zs_stat_init();
2721 
2722 	return 0;
2723 
2724 out:
2725 	return ret;
2726 }
2727 
2728 static void __exit zs_exit(void)
2729 {
2730 #ifdef CONFIG_ZPOOL
2731 	zpool_unregister_driver(&zs_zpool_driver);
2732 #endif
2733 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2734 
2735 	zs_stat_exit();
2736 }
2737 
2738 module_init(zs_init);
2739 module_exit(zs_exit);
2740 
2741 MODULE_LICENSE("Dual BSD/GPL");
2742 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2743