1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/migrate.h> 56 #include <linux/pagemap.h> 57 #include <linux/fs.h> 58 59 #define ZSPAGE_MAGIC 0x58 60 61 /* 62 * This must be power of 2 and greater than of equal to sizeof(link_free). 63 * These two conditions ensure that any 'struct link_free' itself doesn't 64 * span more than 1 page which avoids complex case of mapping 2 pages simply 65 * to restore link_free pointer values. 66 */ 67 #define ZS_ALIGN 8 68 69 /* 70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 72 */ 73 #define ZS_MAX_ZSPAGE_ORDER 2 74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * as single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Memory for allocating for handle keeps object position by 103 * encoding <page, obj_idx> and the encoded value has a room 104 * in least bit(ie, look at obj_to_location). 105 * We use the bit to synchronize between object access by 106 * user and migration. 107 */ 108 #define HANDLE_PIN_BIT 0 109 110 /* 111 * Head in allocated object should have OBJ_ALLOCATED_TAG 112 * to identify the object was allocated or not. 113 * It's okay to add the status bit in the least bit because 114 * header keeps handle which is 4byte-aligned address so we 115 * have room for two bit at least. 116 */ 117 #define OBJ_ALLOCATED_TAG 1 118 #define OBJ_TAG_BITS 1 119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 121 122 #define FULLNESS_BITS 2 123 #define CLASS_BITS 8 124 #define ISOLATED_BITS 3 125 #define MAGIC_VAL_BITS 8 126 127 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 129 #define ZS_MIN_ALLOC_SIZE \ 130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 131 /* each chunk includes extra space to keep handle */ 132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 133 134 /* 135 * On systems with 4K page size, this gives 255 size classes! There is a 136 * trader-off here: 137 * - Large number of size classes is potentially wasteful as free page are 138 * spread across these classes 139 * - Small number of size classes causes large internal fragmentation 140 * - Probably its better to use specific size classes (empirically 141 * determined). NOTE: all those class sizes must be set as multiple of 142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 143 * 144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 145 * (reason above) 146 */ 147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 149 ZS_SIZE_CLASS_DELTA) + 1) 150 151 enum fullness_group { 152 ZS_EMPTY, 153 ZS_ALMOST_EMPTY, 154 ZS_ALMOST_FULL, 155 ZS_FULL, 156 NR_ZS_FULLNESS, 157 }; 158 159 enum zs_stat_type { 160 CLASS_EMPTY, 161 CLASS_ALMOST_EMPTY, 162 CLASS_ALMOST_FULL, 163 CLASS_FULL, 164 OBJ_ALLOCATED, 165 OBJ_USED, 166 NR_ZS_STAT_TYPE, 167 }; 168 169 struct zs_size_stat { 170 unsigned long objs[NR_ZS_STAT_TYPE]; 171 }; 172 173 #ifdef CONFIG_ZSMALLOC_STAT 174 static struct dentry *zs_stat_root; 175 #endif 176 177 #ifdef CONFIG_COMPACTION 178 static struct vfsmount *zsmalloc_mnt; 179 #endif 180 181 /* 182 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 183 * n <= N / f, where 184 * n = number of allocated objects 185 * N = total number of objects zspage can store 186 * f = fullness_threshold_frac 187 * 188 * Similarly, we assign zspage to: 189 * ZS_ALMOST_FULL when n > N / f 190 * ZS_EMPTY when n == 0 191 * ZS_FULL when n == N 192 * 193 * (see: fix_fullness_group()) 194 */ 195 static const int fullness_threshold_frac = 4; 196 static size_t huge_class_size; 197 198 struct size_class { 199 spinlock_t lock; 200 struct list_head fullness_list[NR_ZS_FULLNESS]; 201 /* 202 * Size of objects stored in this class. Must be multiple 203 * of ZS_ALIGN. 204 */ 205 int size; 206 int objs_per_zspage; 207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 208 int pages_per_zspage; 209 210 unsigned int index; 211 struct zs_size_stat stats; 212 }; 213 214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 215 static void SetPageHugeObject(struct page *page) 216 { 217 SetPageOwnerPriv1(page); 218 } 219 220 static void ClearPageHugeObject(struct page *page) 221 { 222 ClearPageOwnerPriv1(page); 223 } 224 225 static int PageHugeObject(struct page *page) 226 { 227 return PageOwnerPriv1(page); 228 } 229 230 /* 231 * Placed within free objects to form a singly linked list. 232 * For every zspage, zspage->freeobj gives head of this list. 233 * 234 * This must be power of 2 and less than or equal to ZS_ALIGN 235 */ 236 struct link_free { 237 union { 238 /* 239 * Free object index; 240 * It's valid for non-allocated object 241 */ 242 unsigned long next; 243 /* 244 * Handle of allocated object. 245 */ 246 unsigned long handle; 247 }; 248 }; 249 250 struct zs_pool { 251 const char *name; 252 253 struct size_class *size_class[ZS_SIZE_CLASSES]; 254 struct kmem_cache *handle_cachep; 255 struct kmem_cache *zspage_cachep; 256 257 atomic_long_t pages_allocated; 258 259 struct zs_pool_stats stats; 260 261 /* Compact classes */ 262 struct shrinker shrinker; 263 264 #ifdef CONFIG_ZSMALLOC_STAT 265 struct dentry *stat_dentry; 266 #endif 267 #ifdef CONFIG_COMPACTION 268 struct inode *inode; 269 struct work_struct free_work; 270 #endif 271 }; 272 273 struct zspage { 274 struct { 275 unsigned int fullness:FULLNESS_BITS; 276 unsigned int class:CLASS_BITS + 1; 277 unsigned int isolated:ISOLATED_BITS; 278 unsigned int magic:MAGIC_VAL_BITS; 279 }; 280 unsigned int inuse; 281 unsigned int freeobj; 282 struct page *first_page; 283 struct list_head list; /* fullness list */ 284 #ifdef CONFIG_COMPACTION 285 rwlock_t lock; 286 #endif 287 }; 288 289 struct mapping_area { 290 #ifdef CONFIG_PGTABLE_MAPPING 291 struct vm_struct *vm; /* vm area for mapping object that span pages */ 292 #else 293 char *vm_buf; /* copy buffer for objects that span pages */ 294 #endif 295 char *vm_addr; /* address of kmap_atomic()'ed pages */ 296 enum zs_mapmode vm_mm; /* mapping mode */ 297 }; 298 299 #ifdef CONFIG_COMPACTION 300 static int zs_register_migration(struct zs_pool *pool); 301 static void zs_unregister_migration(struct zs_pool *pool); 302 static void migrate_lock_init(struct zspage *zspage); 303 static void migrate_read_lock(struct zspage *zspage); 304 static void migrate_read_unlock(struct zspage *zspage); 305 static void kick_deferred_free(struct zs_pool *pool); 306 static void init_deferred_free(struct zs_pool *pool); 307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 308 #else 309 static int zsmalloc_mount(void) { return 0; } 310 static void zsmalloc_unmount(void) {} 311 static int zs_register_migration(struct zs_pool *pool) { return 0; } 312 static void zs_unregister_migration(struct zs_pool *pool) {} 313 static void migrate_lock_init(struct zspage *zspage) {} 314 static void migrate_read_lock(struct zspage *zspage) {} 315 static void migrate_read_unlock(struct zspage *zspage) {} 316 static void kick_deferred_free(struct zs_pool *pool) {} 317 static void init_deferred_free(struct zs_pool *pool) {} 318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 319 #endif 320 321 static int create_cache(struct zs_pool *pool) 322 { 323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 324 0, 0, NULL); 325 if (!pool->handle_cachep) 326 return 1; 327 328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 329 0, 0, NULL); 330 if (!pool->zspage_cachep) { 331 kmem_cache_destroy(pool->handle_cachep); 332 pool->handle_cachep = NULL; 333 return 1; 334 } 335 336 return 0; 337 } 338 339 static void destroy_cache(struct zs_pool *pool) 340 { 341 kmem_cache_destroy(pool->handle_cachep); 342 kmem_cache_destroy(pool->zspage_cachep); 343 } 344 345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 346 { 347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 349 } 350 351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 352 { 353 kmem_cache_free(pool->handle_cachep, (void *)handle); 354 } 355 356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 357 { 358 return kmem_cache_alloc(pool->zspage_cachep, 359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 360 } 361 362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 363 { 364 kmem_cache_free(pool->zspage_cachep, zspage); 365 } 366 367 static void record_obj(unsigned long handle, unsigned long obj) 368 { 369 /* 370 * lsb of @obj represents handle lock while other bits 371 * represent object value the handle is pointing so 372 * updating shouldn't do store tearing. 373 */ 374 WRITE_ONCE(*(unsigned long *)handle, obj); 375 } 376 377 /* zpool driver */ 378 379 #ifdef CONFIG_ZPOOL 380 381 static void *zs_zpool_create(const char *name, gfp_t gfp, 382 const struct zpool_ops *zpool_ops, 383 struct zpool *zpool) 384 { 385 /* 386 * Ignore global gfp flags: zs_malloc() may be invoked from 387 * different contexts and its caller must provide a valid 388 * gfp mask. 389 */ 390 return zs_create_pool(name); 391 } 392 393 static void zs_zpool_destroy(void *pool) 394 { 395 zs_destroy_pool(pool); 396 } 397 398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 399 unsigned long *handle) 400 { 401 *handle = zs_malloc(pool, size, gfp); 402 return *handle ? 0 : -1; 403 } 404 static void zs_zpool_free(void *pool, unsigned long handle) 405 { 406 zs_free(pool, handle); 407 } 408 409 static void *zs_zpool_map(void *pool, unsigned long handle, 410 enum zpool_mapmode mm) 411 { 412 enum zs_mapmode zs_mm; 413 414 switch (mm) { 415 case ZPOOL_MM_RO: 416 zs_mm = ZS_MM_RO; 417 break; 418 case ZPOOL_MM_WO: 419 zs_mm = ZS_MM_WO; 420 break; 421 case ZPOOL_MM_RW: /* fallthru */ 422 default: 423 zs_mm = ZS_MM_RW; 424 break; 425 } 426 427 return zs_map_object(pool, handle, zs_mm); 428 } 429 static void zs_zpool_unmap(void *pool, unsigned long handle) 430 { 431 zs_unmap_object(pool, handle); 432 } 433 434 static u64 zs_zpool_total_size(void *pool) 435 { 436 return zs_get_total_pages(pool) << PAGE_SHIFT; 437 } 438 439 static struct zpool_driver zs_zpool_driver = { 440 .type = "zsmalloc", 441 .owner = THIS_MODULE, 442 .create = zs_zpool_create, 443 .destroy = zs_zpool_destroy, 444 .malloc = zs_zpool_malloc, 445 .free = zs_zpool_free, 446 .map = zs_zpool_map, 447 .unmap = zs_zpool_unmap, 448 .total_size = zs_zpool_total_size, 449 }; 450 451 MODULE_ALIAS("zpool-zsmalloc"); 452 #endif /* CONFIG_ZPOOL */ 453 454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 456 457 static bool is_zspage_isolated(struct zspage *zspage) 458 { 459 return zspage->isolated; 460 } 461 462 static __maybe_unused int is_first_page(struct page *page) 463 { 464 return PagePrivate(page); 465 } 466 467 /* Protected by class->lock */ 468 static inline int get_zspage_inuse(struct zspage *zspage) 469 { 470 return zspage->inuse; 471 } 472 473 static inline void set_zspage_inuse(struct zspage *zspage, int val) 474 { 475 zspage->inuse = val; 476 } 477 478 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 479 { 480 zspage->inuse += val; 481 } 482 483 static inline struct page *get_first_page(struct zspage *zspage) 484 { 485 struct page *first_page = zspage->first_page; 486 487 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 488 return first_page; 489 } 490 491 static inline int get_first_obj_offset(struct page *page) 492 { 493 return page->units; 494 } 495 496 static inline void set_first_obj_offset(struct page *page, int offset) 497 { 498 page->units = offset; 499 } 500 501 static inline unsigned int get_freeobj(struct zspage *zspage) 502 { 503 return zspage->freeobj; 504 } 505 506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 507 { 508 zspage->freeobj = obj; 509 } 510 511 static void get_zspage_mapping(struct zspage *zspage, 512 unsigned int *class_idx, 513 enum fullness_group *fullness) 514 { 515 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 516 517 *fullness = zspage->fullness; 518 *class_idx = zspage->class; 519 } 520 521 static void set_zspage_mapping(struct zspage *zspage, 522 unsigned int class_idx, 523 enum fullness_group fullness) 524 { 525 zspage->class = class_idx; 526 zspage->fullness = fullness; 527 } 528 529 /* 530 * zsmalloc divides the pool into various size classes where each 531 * class maintains a list of zspages where each zspage is divided 532 * into equal sized chunks. Each allocation falls into one of these 533 * classes depending on its size. This function returns index of the 534 * size class which has chunk size big enough to hold the give size. 535 */ 536 static int get_size_class_index(int size) 537 { 538 int idx = 0; 539 540 if (likely(size > ZS_MIN_ALLOC_SIZE)) 541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 542 ZS_SIZE_CLASS_DELTA); 543 544 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 545 } 546 547 /* type can be of enum type zs_stat_type or fullness_group */ 548 static inline void zs_stat_inc(struct size_class *class, 549 int type, unsigned long cnt) 550 { 551 class->stats.objs[type] += cnt; 552 } 553 554 /* type can be of enum type zs_stat_type or fullness_group */ 555 static inline void zs_stat_dec(struct size_class *class, 556 int type, unsigned long cnt) 557 { 558 class->stats.objs[type] -= cnt; 559 } 560 561 /* type can be of enum type zs_stat_type or fullness_group */ 562 static inline unsigned long zs_stat_get(struct size_class *class, 563 int type) 564 { 565 return class->stats.objs[type]; 566 } 567 568 #ifdef CONFIG_ZSMALLOC_STAT 569 570 static void __init zs_stat_init(void) 571 { 572 if (!debugfs_initialized()) { 573 pr_warn("debugfs not available, stat dir not created\n"); 574 return; 575 } 576 577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 578 if (!zs_stat_root) 579 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 580 } 581 582 static void __exit zs_stat_exit(void) 583 { 584 debugfs_remove_recursive(zs_stat_root); 585 } 586 587 static unsigned long zs_can_compact(struct size_class *class); 588 589 static int zs_stats_size_show(struct seq_file *s, void *v) 590 { 591 int i; 592 struct zs_pool *pool = s->private; 593 struct size_class *class; 594 int objs_per_zspage; 595 unsigned long class_almost_full, class_almost_empty; 596 unsigned long obj_allocated, obj_used, pages_used, freeable; 597 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 598 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 599 unsigned long total_freeable = 0; 600 601 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 602 "class", "size", "almost_full", "almost_empty", 603 "obj_allocated", "obj_used", "pages_used", 604 "pages_per_zspage", "freeable"); 605 606 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 607 class = pool->size_class[i]; 608 609 if (class->index != i) 610 continue; 611 612 spin_lock(&class->lock); 613 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 614 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 615 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 616 obj_used = zs_stat_get(class, OBJ_USED); 617 freeable = zs_can_compact(class); 618 spin_unlock(&class->lock); 619 620 objs_per_zspage = class->objs_per_zspage; 621 pages_used = obj_allocated / objs_per_zspage * 622 class->pages_per_zspage; 623 624 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 625 " %10lu %10lu %16d %8lu\n", 626 i, class->size, class_almost_full, class_almost_empty, 627 obj_allocated, obj_used, pages_used, 628 class->pages_per_zspage, freeable); 629 630 total_class_almost_full += class_almost_full; 631 total_class_almost_empty += class_almost_empty; 632 total_objs += obj_allocated; 633 total_used_objs += obj_used; 634 total_pages += pages_used; 635 total_freeable += freeable; 636 } 637 638 seq_puts(s, "\n"); 639 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 640 "Total", "", total_class_almost_full, 641 total_class_almost_empty, total_objs, 642 total_used_objs, total_pages, "", total_freeable); 643 644 return 0; 645 } 646 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 647 648 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 649 { 650 struct dentry *entry; 651 652 if (!zs_stat_root) { 653 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 654 return; 655 } 656 657 entry = debugfs_create_dir(name, zs_stat_root); 658 if (!entry) { 659 pr_warn("debugfs dir <%s> creation failed\n", name); 660 return; 661 } 662 pool->stat_dentry = entry; 663 664 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO, 665 pool->stat_dentry, pool, &zs_stats_size_fops); 666 if (!entry) { 667 pr_warn("%s: debugfs file entry <%s> creation failed\n", 668 name, "classes"); 669 debugfs_remove_recursive(pool->stat_dentry); 670 pool->stat_dentry = NULL; 671 } 672 } 673 674 static void zs_pool_stat_destroy(struct zs_pool *pool) 675 { 676 debugfs_remove_recursive(pool->stat_dentry); 677 } 678 679 #else /* CONFIG_ZSMALLOC_STAT */ 680 static void __init zs_stat_init(void) 681 { 682 } 683 684 static void __exit zs_stat_exit(void) 685 { 686 } 687 688 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 689 { 690 } 691 692 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 693 { 694 } 695 #endif 696 697 698 /* 699 * For each size class, zspages are divided into different groups 700 * depending on how "full" they are. This was done so that we could 701 * easily find empty or nearly empty zspages when we try to shrink 702 * the pool (not yet implemented). This function returns fullness 703 * status of the given page. 704 */ 705 static enum fullness_group get_fullness_group(struct size_class *class, 706 struct zspage *zspage) 707 { 708 int inuse, objs_per_zspage; 709 enum fullness_group fg; 710 711 inuse = get_zspage_inuse(zspage); 712 objs_per_zspage = class->objs_per_zspage; 713 714 if (inuse == 0) 715 fg = ZS_EMPTY; 716 else if (inuse == objs_per_zspage) 717 fg = ZS_FULL; 718 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 719 fg = ZS_ALMOST_EMPTY; 720 else 721 fg = ZS_ALMOST_FULL; 722 723 return fg; 724 } 725 726 /* 727 * Each size class maintains various freelists and zspages are assigned 728 * to one of these freelists based on the number of live objects they 729 * have. This functions inserts the given zspage into the freelist 730 * identified by <class, fullness_group>. 731 */ 732 static void insert_zspage(struct size_class *class, 733 struct zspage *zspage, 734 enum fullness_group fullness) 735 { 736 struct zspage *head; 737 738 zs_stat_inc(class, fullness, 1); 739 head = list_first_entry_or_null(&class->fullness_list[fullness], 740 struct zspage, list); 741 /* 742 * We want to see more ZS_FULL pages and less almost empty/full. 743 * Put pages with higher ->inuse first. 744 */ 745 if (head) { 746 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 747 list_add(&zspage->list, &head->list); 748 return; 749 } 750 } 751 list_add(&zspage->list, &class->fullness_list[fullness]); 752 } 753 754 /* 755 * This function removes the given zspage from the freelist identified 756 * by <class, fullness_group>. 757 */ 758 static void remove_zspage(struct size_class *class, 759 struct zspage *zspage, 760 enum fullness_group fullness) 761 { 762 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 763 VM_BUG_ON(is_zspage_isolated(zspage)); 764 765 list_del_init(&zspage->list); 766 zs_stat_dec(class, fullness, 1); 767 } 768 769 /* 770 * Each size class maintains zspages in different fullness groups depending 771 * on the number of live objects they contain. When allocating or freeing 772 * objects, the fullness status of the page can change, say, from ALMOST_FULL 773 * to ALMOST_EMPTY when freeing an object. This function checks if such 774 * a status change has occurred for the given page and accordingly moves the 775 * page from the freelist of the old fullness group to that of the new 776 * fullness group. 777 */ 778 static enum fullness_group fix_fullness_group(struct size_class *class, 779 struct zspage *zspage) 780 { 781 int class_idx; 782 enum fullness_group currfg, newfg; 783 784 get_zspage_mapping(zspage, &class_idx, &currfg); 785 newfg = get_fullness_group(class, zspage); 786 if (newfg == currfg) 787 goto out; 788 789 if (!is_zspage_isolated(zspage)) { 790 remove_zspage(class, zspage, currfg); 791 insert_zspage(class, zspage, newfg); 792 } 793 794 set_zspage_mapping(zspage, class_idx, newfg); 795 796 out: 797 return newfg; 798 } 799 800 /* 801 * We have to decide on how many pages to link together 802 * to form a zspage for each size class. This is important 803 * to reduce wastage due to unusable space left at end of 804 * each zspage which is given as: 805 * wastage = Zp % class_size 806 * usage = Zp - wastage 807 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 808 * 809 * For example, for size class of 3/8 * PAGE_SIZE, we should 810 * link together 3 PAGE_SIZE sized pages to form a zspage 811 * since then we can perfectly fit in 8 such objects. 812 */ 813 static int get_pages_per_zspage(int class_size) 814 { 815 int i, max_usedpc = 0; 816 /* zspage order which gives maximum used size per KB */ 817 int max_usedpc_order = 1; 818 819 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 820 int zspage_size; 821 int waste, usedpc; 822 823 zspage_size = i * PAGE_SIZE; 824 waste = zspage_size % class_size; 825 usedpc = (zspage_size - waste) * 100 / zspage_size; 826 827 if (usedpc > max_usedpc) { 828 max_usedpc = usedpc; 829 max_usedpc_order = i; 830 } 831 } 832 833 return max_usedpc_order; 834 } 835 836 static struct zspage *get_zspage(struct page *page) 837 { 838 struct zspage *zspage = (struct zspage *)page->private; 839 840 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 841 return zspage; 842 } 843 844 static struct page *get_next_page(struct page *page) 845 { 846 if (unlikely(PageHugeObject(page))) 847 return NULL; 848 849 return page->freelist; 850 } 851 852 /** 853 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 854 * @page: page object resides in zspage 855 * @obj_idx: object index 856 */ 857 static void obj_to_location(unsigned long obj, struct page **page, 858 unsigned int *obj_idx) 859 { 860 obj >>= OBJ_TAG_BITS; 861 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 862 *obj_idx = (obj & OBJ_INDEX_MASK); 863 } 864 865 /** 866 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 867 * @page: page object resides in zspage 868 * @obj_idx: object index 869 */ 870 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 871 { 872 unsigned long obj; 873 874 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 875 obj |= obj_idx & OBJ_INDEX_MASK; 876 obj <<= OBJ_TAG_BITS; 877 878 return obj; 879 } 880 881 static unsigned long handle_to_obj(unsigned long handle) 882 { 883 return *(unsigned long *)handle; 884 } 885 886 static unsigned long obj_to_head(struct page *page, void *obj) 887 { 888 if (unlikely(PageHugeObject(page))) { 889 VM_BUG_ON_PAGE(!is_first_page(page), page); 890 return page->index; 891 } else 892 return *(unsigned long *)obj; 893 } 894 895 static inline int testpin_tag(unsigned long handle) 896 { 897 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 898 } 899 900 static inline int trypin_tag(unsigned long handle) 901 { 902 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 903 } 904 905 static void pin_tag(unsigned long handle) 906 { 907 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 908 } 909 910 static void unpin_tag(unsigned long handle) 911 { 912 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 913 } 914 915 static void reset_page(struct page *page) 916 { 917 __ClearPageMovable(page); 918 ClearPagePrivate(page); 919 set_page_private(page, 0); 920 page_mapcount_reset(page); 921 ClearPageHugeObject(page); 922 page->freelist = NULL; 923 } 924 925 /* 926 * To prevent zspage destroy during migration, zspage freeing should 927 * hold locks of all pages in the zspage. 928 */ 929 void lock_zspage(struct zspage *zspage) 930 { 931 struct page *page = get_first_page(zspage); 932 933 do { 934 lock_page(page); 935 } while ((page = get_next_page(page)) != NULL); 936 } 937 938 int trylock_zspage(struct zspage *zspage) 939 { 940 struct page *cursor, *fail; 941 942 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 943 get_next_page(cursor)) { 944 if (!trylock_page(cursor)) { 945 fail = cursor; 946 goto unlock; 947 } 948 } 949 950 return 1; 951 unlock: 952 for (cursor = get_first_page(zspage); cursor != fail; cursor = 953 get_next_page(cursor)) 954 unlock_page(cursor); 955 956 return 0; 957 } 958 959 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 960 struct zspage *zspage) 961 { 962 struct page *page, *next; 963 enum fullness_group fg; 964 unsigned int class_idx; 965 966 get_zspage_mapping(zspage, &class_idx, &fg); 967 968 assert_spin_locked(&class->lock); 969 970 VM_BUG_ON(get_zspage_inuse(zspage)); 971 VM_BUG_ON(fg != ZS_EMPTY); 972 973 next = page = get_first_page(zspage); 974 do { 975 VM_BUG_ON_PAGE(!PageLocked(page), page); 976 next = get_next_page(page); 977 reset_page(page); 978 unlock_page(page); 979 dec_zone_page_state(page, NR_ZSPAGES); 980 put_page(page); 981 page = next; 982 } while (page != NULL); 983 984 cache_free_zspage(pool, zspage); 985 986 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 987 atomic_long_sub(class->pages_per_zspage, 988 &pool->pages_allocated); 989 } 990 991 static void free_zspage(struct zs_pool *pool, struct size_class *class, 992 struct zspage *zspage) 993 { 994 VM_BUG_ON(get_zspage_inuse(zspage)); 995 VM_BUG_ON(list_empty(&zspage->list)); 996 997 if (!trylock_zspage(zspage)) { 998 kick_deferred_free(pool); 999 return; 1000 } 1001 1002 remove_zspage(class, zspage, ZS_EMPTY); 1003 __free_zspage(pool, class, zspage); 1004 } 1005 1006 /* Initialize a newly allocated zspage */ 1007 static void init_zspage(struct size_class *class, struct zspage *zspage) 1008 { 1009 unsigned int freeobj = 1; 1010 unsigned long off = 0; 1011 struct page *page = get_first_page(zspage); 1012 1013 while (page) { 1014 struct page *next_page; 1015 struct link_free *link; 1016 void *vaddr; 1017 1018 set_first_obj_offset(page, off); 1019 1020 vaddr = kmap_atomic(page); 1021 link = (struct link_free *)vaddr + off / sizeof(*link); 1022 1023 while ((off += class->size) < PAGE_SIZE) { 1024 link->next = freeobj++ << OBJ_TAG_BITS; 1025 link += class->size / sizeof(*link); 1026 } 1027 1028 /* 1029 * We now come to the last (full or partial) object on this 1030 * page, which must point to the first object on the next 1031 * page (if present) 1032 */ 1033 next_page = get_next_page(page); 1034 if (next_page) { 1035 link->next = freeobj++ << OBJ_TAG_BITS; 1036 } else { 1037 /* 1038 * Reset OBJ_TAG_BITS bit to last link to tell 1039 * whether it's allocated object or not. 1040 */ 1041 link->next = -1UL << OBJ_TAG_BITS; 1042 } 1043 kunmap_atomic(vaddr); 1044 page = next_page; 1045 off %= PAGE_SIZE; 1046 } 1047 1048 set_freeobj(zspage, 0); 1049 } 1050 1051 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1052 struct page *pages[]) 1053 { 1054 int i; 1055 struct page *page; 1056 struct page *prev_page = NULL; 1057 int nr_pages = class->pages_per_zspage; 1058 1059 /* 1060 * Allocate individual pages and link them together as: 1061 * 1. all pages are linked together using page->freelist 1062 * 2. each sub-page point to zspage using page->private 1063 * 1064 * we set PG_private to identify the first page (i.e. no other sub-page 1065 * has this flag set). 1066 */ 1067 for (i = 0; i < nr_pages; i++) { 1068 page = pages[i]; 1069 set_page_private(page, (unsigned long)zspage); 1070 page->freelist = NULL; 1071 if (i == 0) { 1072 zspage->first_page = page; 1073 SetPagePrivate(page); 1074 if (unlikely(class->objs_per_zspage == 1 && 1075 class->pages_per_zspage == 1)) 1076 SetPageHugeObject(page); 1077 } else { 1078 prev_page->freelist = page; 1079 } 1080 prev_page = page; 1081 } 1082 } 1083 1084 /* 1085 * Allocate a zspage for the given size class 1086 */ 1087 static struct zspage *alloc_zspage(struct zs_pool *pool, 1088 struct size_class *class, 1089 gfp_t gfp) 1090 { 1091 int i; 1092 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1093 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1094 1095 if (!zspage) 1096 return NULL; 1097 1098 memset(zspage, 0, sizeof(struct zspage)); 1099 zspage->magic = ZSPAGE_MAGIC; 1100 migrate_lock_init(zspage); 1101 1102 for (i = 0; i < class->pages_per_zspage; i++) { 1103 struct page *page; 1104 1105 page = alloc_page(gfp); 1106 if (!page) { 1107 while (--i >= 0) { 1108 dec_zone_page_state(pages[i], NR_ZSPAGES); 1109 __free_page(pages[i]); 1110 } 1111 cache_free_zspage(pool, zspage); 1112 return NULL; 1113 } 1114 1115 inc_zone_page_state(page, NR_ZSPAGES); 1116 pages[i] = page; 1117 } 1118 1119 create_page_chain(class, zspage, pages); 1120 init_zspage(class, zspage); 1121 1122 return zspage; 1123 } 1124 1125 static struct zspage *find_get_zspage(struct size_class *class) 1126 { 1127 int i; 1128 struct zspage *zspage; 1129 1130 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1131 zspage = list_first_entry_or_null(&class->fullness_list[i], 1132 struct zspage, list); 1133 if (zspage) 1134 break; 1135 } 1136 1137 return zspage; 1138 } 1139 1140 #ifdef CONFIG_PGTABLE_MAPPING 1141 static inline int __zs_cpu_up(struct mapping_area *area) 1142 { 1143 /* 1144 * Make sure we don't leak memory if a cpu UP notification 1145 * and zs_init() race and both call zs_cpu_up() on the same cpu 1146 */ 1147 if (area->vm) 1148 return 0; 1149 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1150 if (!area->vm) 1151 return -ENOMEM; 1152 return 0; 1153 } 1154 1155 static inline void __zs_cpu_down(struct mapping_area *area) 1156 { 1157 if (area->vm) 1158 free_vm_area(area->vm); 1159 area->vm = NULL; 1160 } 1161 1162 static inline void *__zs_map_object(struct mapping_area *area, 1163 struct page *pages[2], int off, int size) 1164 { 1165 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1166 area->vm_addr = area->vm->addr; 1167 return area->vm_addr + off; 1168 } 1169 1170 static inline void __zs_unmap_object(struct mapping_area *area, 1171 struct page *pages[2], int off, int size) 1172 { 1173 unsigned long addr = (unsigned long)area->vm_addr; 1174 1175 unmap_kernel_range(addr, PAGE_SIZE * 2); 1176 } 1177 1178 #else /* CONFIG_PGTABLE_MAPPING */ 1179 1180 static inline int __zs_cpu_up(struct mapping_area *area) 1181 { 1182 /* 1183 * Make sure we don't leak memory if a cpu UP notification 1184 * and zs_init() race and both call zs_cpu_up() on the same cpu 1185 */ 1186 if (area->vm_buf) 1187 return 0; 1188 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1189 if (!area->vm_buf) 1190 return -ENOMEM; 1191 return 0; 1192 } 1193 1194 static inline void __zs_cpu_down(struct mapping_area *area) 1195 { 1196 kfree(area->vm_buf); 1197 area->vm_buf = NULL; 1198 } 1199 1200 static void *__zs_map_object(struct mapping_area *area, 1201 struct page *pages[2], int off, int size) 1202 { 1203 int sizes[2]; 1204 void *addr; 1205 char *buf = area->vm_buf; 1206 1207 /* disable page faults to match kmap_atomic() return conditions */ 1208 pagefault_disable(); 1209 1210 /* no read fastpath */ 1211 if (area->vm_mm == ZS_MM_WO) 1212 goto out; 1213 1214 sizes[0] = PAGE_SIZE - off; 1215 sizes[1] = size - sizes[0]; 1216 1217 /* copy object to per-cpu buffer */ 1218 addr = kmap_atomic(pages[0]); 1219 memcpy(buf, addr + off, sizes[0]); 1220 kunmap_atomic(addr); 1221 addr = kmap_atomic(pages[1]); 1222 memcpy(buf + sizes[0], addr, sizes[1]); 1223 kunmap_atomic(addr); 1224 out: 1225 return area->vm_buf; 1226 } 1227 1228 static void __zs_unmap_object(struct mapping_area *area, 1229 struct page *pages[2], int off, int size) 1230 { 1231 int sizes[2]; 1232 void *addr; 1233 char *buf; 1234 1235 /* no write fastpath */ 1236 if (area->vm_mm == ZS_MM_RO) 1237 goto out; 1238 1239 buf = area->vm_buf; 1240 buf = buf + ZS_HANDLE_SIZE; 1241 size -= ZS_HANDLE_SIZE; 1242 off += ZS_HANDLE_SIZE; 1243 1244 sizes[0] = PAGE_SIZE - off; 1245 sizes[1] = size - sizes[0]; 1246 1247 /* copy per-cpu buffer to object */ 1248 addr = kmap_atomic(pages[0]); 1249 memcpy(addr + off, buf, sizes[0]); 1250 kunmap_atomic(addr); 1251 addr = kmap_atomic(pages[1]); 1252 memcpy(addr, buf + sizes[0], sizes[1]); 1253 kunmap_atomic(addr); 1254 1255 out: 1256 /* enable page faults to match kunmap_atomic() return conditions */ 1257 pagefault_enable(); 1258 } 1259 1260 #endif /* CONFIG_PGTABLE_MAPPING */ 1261 1262 static int zs_cpu_prepare(unsigned int cpu) 1263 { 1264 struct mapping_area *area; 1265 1266 area = &per_cpu(zs_map_area, cpu); 1267 return __zs_cpu_up(area); 1268 } 1269 1270 static int zs_cpu_dead(unsigned int cpu) 1271 { 1272 struct mapping_area *area; 1273 1274 area = &per_cpu(zs_map_area, cpu); 1275 __zs_cpu_down(area); 1276 return 0; 1277 } 1278 1279 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1280 int objs_per_zspage) 1281 { 1282 if (prev->pages_per_zspage == pages_per_zspage && 1283 prev->objs_per_zspage == objs_per_zspage) 1284 return true; 1285 1286 return false; 1287 } 1288 1289 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1290 { 1291 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1292 } 1293 1294 unsigned long zs_get_total_pages(struct zs_pool *pool) 1295 { 1296 return atomic_long_read(&pool->pages_allocated); 1297 } 1298 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1299 1300 /** 1301 * zs_map_object - get address of allocated object from handle. 1302 * @pool: pool from which the object was allocated 1303 * @handle: handle returned from zs_malloc 1304 * 1305 * Before using an object allocated from zs_malloc, it must be mapped using 1306 * this function. When done with the object, it must be unmapped using 1307 * zs_unmap_object. 1308 * 1309 * Only one object can be mapped per cpu at a time. There is no protection 1310 * against nested mappings. 1311 * 1312 * This function returns with preemption and page faults disabled. 1313 */ 1314 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1315 enum zs_mapmode mm) 1316 { 1317 struct zspage *zspage; 1318 struct page *page; 1319 unsigned long obj, off; 1320 unsigned int obj_idx; 1321 1322 unsigned int class_idx; 1323 enum fullness_group fg; 1324 struct size_class *class; 1325 struct mapping_area *area; 1326 struct page *pages[2]; 1327 void *ret; 1328 1329 /* 1330 * Because we use per-cpu mapping areas shared among the 1331 * pools/users, we can't allow mapping in interrupt context 1332 * because it can corrupt another users mappings. 1333 */ 1334 BUG_ON(in_interrupt()); 1335 1336 /* From now on, migration cannot move the object */ 1337 pin_tag(handle); 1338 1339 obj = handle_to_obj(handle); 1340 obj_to_location(obj, &page, &obj_idx); 1341 zspage = get_zspage(page); 1342 1343 /* migration cannot move any subpage in this zspage */ 1344 migrate_read_lock(zspage); 1345 1346 get_zspage_mapping(zspage, &class_idx, &fg); 1347 class = pool->size_class[class_idx]; 1348 off = (class->size * obj_idx) & ~PAGE_MASK; 1349 1350 area = &get_cpu_var(zs_map_area); 1351 area->vm_mm = mm; 1352 if (off + class->size <= PAGE_SIZE) { 1353 /* this object is contained entirely within a page */ 1354 area->vm_addr = kmap_atomic(page); 1355 ret = area->vm_addr + off; 1356 goto out; 1357 } 1358 1359 /* this object spans two pages */ 1360 pages[0] = page; 1361 pages[1] = get_next_page(page); 1362 BUG_ON(!pages[1]); 1363 1364 ret = __zs_map_object(area, pages, off, class->size); 1365 out: 1366 if (likely(!PageHugeObject(page))) 1367 ret += ZS_HANDLE_SIZE; 1368 1369 return ret; 1370 } 1371 EXPORT_SYMBOL_GPL(zs_map_object); 1372 1373 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1374 { 1375 struct zspage *zspage; 1376 struct page *page; 1377 unsigned long obj, off; 1378 unsigned int obj_idx; 1379 1380 unsigned int class_idx; 1381 enum fullness_group fg; 1382 struct size_class *class; 1383 struct mapping_area *area; 1384 1385 obj = handle_to_obj(handle); 1386 obj_to_location(obj, &page, &obj_idx); 1387 zspage = get_zspage(page); 1388 get_zspage_mapping(zspage, &class_idx, &fg); 1389 class = pool->size_class[class_idx]; 1390 off = (class->size * obj_idx) & ~PAGE_MASK; 1391 1392 area = this_cpu_ptr(&zs_map_area); 1393 if (off + class->size <= PAGE_SIZE) 1394 kunmap_atomic(area->vm_addr); 1395 else { 1396 struct page *pages[2]; 1397 1398 pages[0] = page; 1399 pages[1] = get_next_page(page); 1400 BUG_ON(!pages[1]); 1401 1402 __zs_unmap_object(area, pages, off, class->size); 1403 } 1404 put_cpu_var(zs_map_area); 1405 1406 migrate_read_unlock(zspage); 1407 unpin_tag(handle); 1408 } 1409 EXPORT_SYMBOL_GPL(zs_unmap_object); 1410 1411 /** 1412 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1413 * zsmalloc &size_class. 1414 * @pool: zsmalloc pool to use 1415 * 1416 * The function returns the size of the first huge class - any object of equal 1417 * or bigger size will be stored in zspage consisting of a single physical 1418 * page. 1419 * 1420 * Context: Any context. 1421 * 1422 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1423 */ 1424 size_t zs_huge_class_size(struct zs_pool *pool) 1425 { 1426 return huge_class_size; 1427 } 1428 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1429 1430 static unsigned long obj_malloc(struct size_class *class, 1431 struct zspage *zspage, unsigned long handle) 1432 { 1433 int i, nr_page, offset; 1434 unsigned long obj; 1435 struct link_free *link; 1436 1437 struct page *m_page; 1438 unsigned long m_offset; 1439 void *vaddr; 1440 1441 handle |= OBJ_ALLOCATED_TAG; 1442 obj = get_freeobj(zspage); 1443 1444 offset = obj * class->size; 1445 nr_page = offset >> PAGE_SHIFT; 1446 m_offset = offset & ~PAGE_MASK; 1447 m_page = get_first_page(zspage); 1448 1449 for (i = 0; i < nr_page; i++) 1450 m_page = get_next_page(m_page); 1451 1452 vaddr = kmap_atomic(m_page); 1453 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1454 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1455 if (likely(!PageHugeObject(m_page))) 1456 /* record handle in the header of allocated chunk */ 1457 link->handle = handle; 1458 else 1459 /* record handle to page->index */ 1460 zspage->first_page->index = handle; 1461 1462 kunmap_atomic(vaddr); 1463 mod_zspage_inuse(zspage, 1); 1464 zs_stat_inc(class, OBJ_USED, 1); 1465 1466 obj = location_to_obj(m_page, obj); 1467 1468 return obj; 1469 } 1470 1471 1472 /** 1473 * zs_malloc - Allocate block of given size from pool. 1474 * @pool: pool to allocate from 1475 * @size: size of block to allocate 1476 * @gfp: gfp flags when allocating object 1477 * 1478 * On success, handle to the allocated object is returned, 1479 * otherwise 0. 1480 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1481 */ 1482 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1483 { 1484 unsigned long handle, obj; 1485 struct size_class *class; 1486 enum fullness_group newfg; 1487 struct zspage *zspage; 1488 1489 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1490 return 0; 1491 1492 handle = cache_alloc_handle(pool, gfp); 1493 if (!handle) 1494 return 0; 1495 1496 /* extra space in chunk to keep the handle */ 1497 size += ZS_HANDLE_SIZE; 1498 class = pool->size_class[get_size_class_index(size)]; 1499 1500 spin_lock(&class->lock); 1501 zspage = find_get_zspage(class); 1502 if (likely(zspage)) { 1503 obj = obj_malloc(class, zspage, handle); 1504 /* Now move the zspage to another fullness group, if required */ 1505 fix_fullness_group(class, zspage); 1506 record_obj(handle, obj); 1507 spin_unlock(&class->lock); 1508 1509 return handle; 1510 } 1511 1512 spin_unlock(&class->lock); 1513 1514 zspage = alloc_zspage(pool, class, gfp); 1515 if (!zspage) { 1516 cache_free_handle(pool, handle); 1517 return 0; 1518 } 1519 1520 spin_lock(&class->lock); 1521 obj = obj_malloc(class, zspage, handle); 1522 newfg = get_fullness_group(class, zspage); 1523 insert_zspage(class, zspage, newfg); 1524 set_zspage_mapping(zspage, class->index, newfg); 1525 record_obj(handle, obj); 1526 atomic_long_add(class->pages_per_zspage, 1527 &pool->pages_allocated); 1528 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1529 1530 /* We completely set up zspage so mark them as movable */ 1531 SetZsPageMovable(pool, zspage); 1532 spin_unlock(&class->lock); 1533 1534 return handle; 1535 } 1536 EXPORT_SYMBOL_GPL(zs_malloc); 1537 1538 static void obj_free(struct size_class *class, unsigned long obj) 1539 { 1540 struct link_free *link; 1541 struct zspage *zspage; 1542 struct page *f_page; 1543 unsigned long f_offset; 1544 unsigned int f_objidx; 1545 void *vaddr; 1546 1547 obj &= ~OBJ_ALLOCATED_TAG; 1548 obj_to_location(obj, &f_page, &f_objidx); 1549 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1550 zspage = get_zspage(f_page); 1551 1552 vaddr = kmap_atomic(f_page); 1553 1554 /* Insert this object in containing zspage's freelist */ 1555 link = (struct link_free *)(vaddr + f_offset); 1556 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1557 kunmap_atomic(vaddr); 1558 set_freeobj(zspage, f_objidx); 1559 mod_zspage_inuse(zspage, -1); 1560 zs_stat_dec(class, OBJ_USED, 1); 1561 } 1562 1563 void zs_free(struct zs_pool *pool, unsigned long handle) 1564 { 1565 struct zspage *zspage; 1566 struct page *f_page; 1567 unsigned long obj; 1568 unsigned int f_objidx; 1569 int class_idx; 1570 struct size_class *class; 1571 enum fullness_group fullness; 1572 bool isolated; 1573 1574 if (unlikely(!handle)) 1575 return; 1576 1577 pin_tag(handle); 1578 obj = handle_to_obj(handle); 1579 obj_to_location(obj, &f_page, &f_objidx); 1580 zspage = get_zspage(f_page); 1581 1582 migrate_read_lock(zspage); 1583 1584 get_zspage_mapping(zspage, &class_idx, &fullness); 1585 class = pool->size_class[class_idx]; 1586 1587 spin_lock(&class->lock); 1588 obj_free(class, obj); 1589 fullness = fix_fullness_group(class, zspage); 1590 if (fullness != ZS_EMPTY) { 1591 migrate_read_unlock(zspage); 1592 goto out; 1593 } 1594 1595 isolated = is_zspage_isolated(zspage); 1596 migrate_read_unlock(zspage); 1597 /* If zspage is isolated, zs_page_putback will free the zspage */ 1598 if (likely(!isolated)) 1599 free_zspage(pool, class, zspage); 1600 out: 1601 1602 spin_unlock(&class->lock); 1603 unpin_tag(handle); 1604 cache_free_handle(pool, handle); 1605 } 1606 EXPORT_SYMBOL_GPL(zs_free); 1607 1608 static void zs_object_copy(struct size_class *class, unsigned long dst, 1609 unsigned long src) 1610 { 1611 struct page *s_page, *d_page; 1612 unsigned int s_objidx, d_objidx; 1613 unsigned long s_off, d_off; 1614 void *s_addr, *d_addr; 1615 int s_size, d_size, size; 1616 int written = 0; 1617 1618 s_size = d_size = class->size; 1619 1620 obj_to_location(src, &s_page, &s_objidx); 1621 obj_to_location(dst, &d_page, &d_objidx); 1622 1623 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1624 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1625 1626 if (s_off + class->size > PAGE_SIZE) 1627 s_size = PAGE_SIZE - s_off; 1628 1629 if (d_off + class->size > PAGE_SIZE) 1630 d_size = PAGE_SIZE - d_off; 1631 1632 s_addr = kmap_atomic(s_page); 1633 d_addr = kmap_atomic(d_page); 1634 1635 while (1) { 1636 size = min(s_size, d_size); 1637 memcpy(d_addr + d_off, s_addr + s_off, size); 1638 written += size; 1639 1640 if (written == class->size) 1641 break; 1642 1643 s_off += size; 1644 s_size -= size; 1645 d_off += size; 1646 d_size -= size; 1647 1648 if (s_off >= PAGE_SIZE) { 1649 kunmap_atomic(d_addr); 1650 kunmap_atomic(s_addr); 1651 s_page = get_next_page(s_page); 1652 s_addr = kmap_atomic(s_page); 1653 d_addr = kmap_atomic(d_page); 1654 s_size = class->size - written; 1655 s_off = 0; 1656 } 1657 1658 if (d_off >= PAGE_SIZE) { 1659 kunmap_atomic(d_addr); 1660 d_page = get_next_page(d_page); 1661 d_addr = kmap_atomic(d_page); 1662 d_size = class->size - written; 1663 d_off = 0; 1664 } 1665 } 1666 1667 kunmap_atomic(d_addr); 1668 kunmap_atomic(s_addr); 1669 } 1670 1671 /* 1672 * Find alloced object in zspage from index object and 1673 * return handle. 1674 */ 1675 static unsigned long find_alloced_obj(struct size_class *class, 1676 struct page *page, int *obj_idx) 1677 { 1678 unsigned long head; 1679 int offset = 0; 1680 int index = *obj_idx; 1681 unsigned long handle = 0; 1682 void *addr = kmap_atomic(page); 1683 1684 offset = get_first_obj_offset(page); 1685 offset += class->size * index; 1686 1687 while (offset < PAGE_SIZE) { 1688 head = obj_to_head(page, addr + offset); 1689 if (head & OBJ_ALLOCATED_TAG) { 1690 handle = head & ~OBJ_ALLOCATED_TAG; 1691 if (trypin_tag(handle)) 1692 break; 1693 handle = 0; 1694 } 1695 1696 offset += class->size; 1697 index++; 1698 } 1699 1700 kunmap_atomic(addr); 1701 1702 *obj_idx = index; 1703 1704 return handle; 1705 } 1706 1707 struct zs_compact_control { 1708 /* Source spage for migration which could be a subpage of zspage */ 1709 struct page *s_page; 1710 /* Destination page for migration which should be a first page 1711 * of zspage. */ 1712 struct page *d_page; 1713 /* Starting object index within @s_page which used for live object 1714 * in the subpage. */ 1715 int obj_idx; 1716 }; 1717 1718 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1719 struct zs_compact_control *cc) 1720 { 1721 unsigned long used_obj, free_obj; 1722 unsigned long handle; 1723 struct page *s_page = cc->s_page; 1724 struct page *d_page = cc->d_page; 1725 int obj_idx = cc->obj_idx; 1726 int ret = 0; 1727 1728 while (1) { 1729 handle = find_alloced_obj(class, s_page, &obj_idx); 1730 if (!handle) { 1731 s_page = get_next_page(s_page); 1732 if (!s_page) 1733 break; 1734 obj_idx = 0; 1735 continue; 1736 } 1737 1738 /* Stop if there is no more space */ 1739 if (zspage_full(class, get_zspage(d_page))) { 1740 unpin_tag(handle); 1741 ret = -ENOMEM; 1742 break; 1743 } 1744 1745 used_obj = handle_to_obj(handle); 1746 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1747 zs_object_copy(class, free_obj, used_obj); 1748 obj_idx++; 1749 /* 1750 * record_obj updates handle's value to free_obj and it will 1751 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1752 * breaks synchronization using pin_tag(e,g, zs_free) so 1753 * let's keep the lock bit. 1754 */ 1755 free_obj |= BIT(HANDLE_PIN_BIT); 1756 record_obj(handle, free_obj); 1757 unpin_tag(handle); 1758 obj_free(class, used_obj); 1759 } 1760 1761 /* Remember last position in this iteration */ 1762 cc->s_page = s_page; 1763 cc->obj_idx = obj_idx; 1764 1765 return ret; 1766 } 1767 1768 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1769 { 1770 int i; 1771 struct zspage *zspage; 1772 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1773 1774 if (!source) { 1775 fg[0] = ZS_ALMOST_FULL; 1776 fg[1] = ZS_ALMOST_EMPTY; 1777 } 1778 1779 for (i = 0; i < 2; i++) { 1780 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1781 struct zspage, list); 1782 if (zspage) { 1783 VM_BUG_ON(is_zspage_isolated(zspage)); 1784 remove_zspage(class, zspage, fg[i]); 1785 return zspage; 1786 } 1787 } 1788 1789 return zspage; 1790 } 1791 1792 /* 1793 * putback_zspage - add @zspage into right class's fullness list 1794 * @class: destination class 1795 * @zspage: target page 1796 * 1797 * Return @zspage's fullness_group 1798 */ 1799 static enum fullness_group putback_zspage(struct size_class *class, 1800 struct zspage *zspage) 1801 { 1802 enum fullness_group fullness; 1803 1804 VM_BUG_ON(is_zspage_isolated(zspage)); 1805 1806 fullness = get_fullness_group(class, zspage); 1807 insert_zspage(class, zspage, fullness); 1808 set_zspage_mapping(zspage, class->index, fullness); 1809 1810 return fullness; 1811 } 1812 1813 #ifdef CONFIG_COMPACTION 1814 static struct dentry *zs_mount(struct file_system_type *fs_type, 1815 int flags, const char *dev_name, void *data) 1816 { 1817 static const struct dentry_operations ops = { 1818 .d_dname = simple_dname, 1819 }; 1820 1821 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1822 } 1823 1824 static struct file_system_type zsmalloc_fs = { 1825 .name = "zsmalloc", 1826 .mount = zs_mount, 1827 .kill_sb = kill_anon_super, 1828 }; 1829 1830 static int zsmalloc_mount(void) 1831 { 1832 int ret = 0; 1833 1834 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1835 if (IS_ERR(zsmalloc_mnt)) 1836 ret = PTR_ERR(zsmalloc_mnt); 1837 1838 return ret; 1839 } 1840 1841 static void zsmalloc_unmount(void) 1842 { 1843 kern_unmount(zsmalloc_mnt); 1844 } 1845 1846 static void migrate_lock_init(struct zspage *zspage) 1847 { 1848 rwlock_init(&zspage->lock); 1849 } 1850 1851 static void migrate_read_lock(struct zspage *zspage) 1852 { 1853 read_lock(&zspage->lock); 1854 } 1855 1856 static void migrate_read_unlock(struct zspage *zspage) 1857 { 1858 read_unlock(&zspage->lock); 1859 } 1860 1861 static void migrate_write_lock(struct zspage *zspage) 1862 { 1863 write_lock(&zspage->lock); 1864 } 1865 1866 static void migrate_write_unlock(struct zspage *zspage) 1867 { 1868 write_unlock(&zspage->lock); 1869 } 1870 1871 /* Number of isolated subpage for *page migration* in this zspage */ 1872 static void inc_zspage_isolation(struct zspage *zspage) 1873 { 1874 zspage->isolated++; 1875 } 1876 1877 static void dec_zspage_isolation(struct zspage *zspage) 1878 { 1879 zspage->isolated--; 1880 } 1881 1882 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1883 struct page *newpage, struct page *oldpage) 1884 { 1885 struct page *page; 1886 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1887 int idx = 0; 1888 1889 page = get_first_page(zspage); 1890 do { 1891 if (page == oldpage) 1892 pages[idx] = newpage; 1893 else 1894 pages[idx] = page; 1895 idx++; 1896 } while ((page = get_next_page(page)) != NULL); 1897 1898 create_page_chain(class, zspage, pages); 1899 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1900 if (unlikely(PageHugeObject(oldpage))) 1901 newpage->index = oldpage->index; 1902 __SetPageMovable(newpage, page_mapping(oldpage)); 1903 } 1904 1905 bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1906 { 1907 struct zs_pool *pool; 1908 struct size_class *class; 1909 int class_idx; 1910 enum fullness_group fullness; 1911 struct zspage *zspage; 1912 struct address_space *mapping; 1913 1914 /* 1915 * Page is locked so zspage couldn't be destroyed. For detail, look at 1916 * lock_zspage in free_zspage. 1917 */ 1918 VM_BUG_ON_PAGE(!PageMovable(page), page); 1919 VM_BUG_ON_PAGE(PageIsolated(page), page); 1920 1921 zspage = get_zspage(page); 1922 1923 /* 1924 * Without class lock, fullness could be stale while class_idx is okay 1925 * because class_idx is constant unless page is freed so we should get 1926 * fullness again under class lock. 1927 */ 1928 get_zspage_mapping(zspage, &class_idx, &fullness); 1929 mapping = page_mapping(page); 1930 pool = mapping->private_data; 1931 class = pool->size_class[class_idx]; 1932 1933 spin_lock(&class->lock); 1934 if (get_zspage_inuse(zspage) == 0) { 1935 spin_unlock(&class->lock); 1936 return false; 1937 } 1938 1939 /* zspage is isolated for object migration */ 1940 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1941 spin_unlock(&class->lock); 1942 return false; 1943 } 1944 1945 /* 1946 * If this is first time isolation for the zspage, isolate zspage from 1947 * size_class to prevent further object allocation from the zspage. 1948 */ 1949 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1950 get_zspage_mapping(zspage, &class_idx, &fullness); 1951 remove_zspage(class, zspage, fullness); 1952 } 1953 1954 inc_zspage_isolation(zspage); 1955 spin_unlock(&class->lock); 1956 1957 return true; 1958 } 1959 1960 int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1961 struct page *page, enum migrate_mode mode) 1962 { 1963 struct zs_pool *pool; 1964 struct size_class *class; 1965 int class_idx; 1966 enum fullness_group fullness; 1967 struct zspage *zspage; 1968 struct page *dummy; 1969 void *s_addr, *d_addr, *addr; 1970 int offset, pos; 1971 unsigned long handle, head; 1972 unsigned long old_obj, new_obj; 1973 unsigned int obj_idx; 1974 int ret = -EAGAIN; 1975 1976 /* 1977 * We cannot support the _NO_COPY case here, because copy needs to 1978 * happen under the zs lock, which does not work with 1979 * MIGRATE_SYNC_NO_COPY workflow. 1980 */ 1981 if (mode == MIGRATE_SYNC_NO_COPY) 1982 return -EINVAL; 1983 1984 VM_BUG_ON_PAGE(!PageMovable(page), page); 1985 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1986 1987 zspage = get_zspage(page); 1988 1989 /* Concurrent compactor cannot migrate any subpage in zspage */ 1990 migrate_write_lock(zspage); 1991 get_zspage_mapping(zspage, &class_idx, &fullness); 1992 pool = mapping->private_data; 1993 class = pool->size_class[class_idx]; 1994 offset = get_first_obj_offset(page); 1995 1996 spin_lock(&class->lock); 1997 if (!get_zspage_inuse(zspage)) { 1998 /* 1999 * Set "offset" to end of the page so that every loops 2000 * skips unnecessary object scanning. 2001 */ 2002 offset = PAGE_SIZE; 2003 } 2004 2005 pos = offset; 2006 s_addr = kmap_atomic(page); 2007 while (pos < PAGE_SIZE) { 2008 head = obj_to_head(page, s_addr + pos); 2009 if (head & OBJ_ALLOCATED_TAG) { 2010 handle = head & ~OBJ_ALLOCATED_TAG; 2011 if (!trypin_tag(handle)) 2012 goto unpin_objects; 2013 } 2014 pos += class->size; 2015 } 2016 2017 /* 2018 * Here, any user cannot access all objects in the zspage so let's move. 2019 */ 2020 d_addr = kmap_atomic(newpage); 2021 memcpy(d_addr, s_addr, PAGE_SIZE); 2022 kunmap_atomic(d_addr); 2023 2024 for (addr = s_addr + offset; addr < s_addr + pos; 2025 addr += class->size) { 2026 head = obj_to_head(page, addr); 2027 if (head & OBJ_ALLOCATED_TAG) { 2028 handle = head & ~OBJ_ALLOCATED_TAG; 2029 if (!testpin_tag(handle)) 2030 BUG(); 2031 2032 old_obj = handle_to_obj(handle); 2033 obj_to_location(old_obj, &dummy, &obj_idx); 2034 new_obj = (unsigned long)location_to_obj(newpage, 2035 obj_idx); 2036 new_obj |= BIT(HANDLE_PIN_BIT); 2037 record_obj(handle, new_obj); 2038 } 2039 } 2040 2041 replace_sub_page(class, zspage, newpage, page); 2042 get_page(newpage); 2043 2044 dec_zspage_isolation(zspage); 2045 2046 /* 2047 * Page migration is done so let's putback isolated zspage to 2048 * the list if @page is final isolated subpage in the zspage. 2049 */ 2050 if (!is_zspage_isolated(zspage)) 2051 putback_zspage(class, zspage); 2052 2053 reset_page(page); 2054 put_page(page); 2055 page = newpage; 2056 2057 ret = MIGRATEPAGE_SUCCESS; 2058 unpin_objects: 2059 for (addr = s_addr + offset; addr < s_addr + pos; 2060 addr += class->size) { 2061 head = obj_to_head(page, addr); 2062 if (head & OBJ_ALLOCATED_TAG) { 2063 handle = head & ~OBJ_ALLOCATED_TAG; 2064 if (!testpin_tag(handle)) 2065 BUG(); 2066 unpin_tag(handle); 2067 } 2068 } 2069 kunmap_atomic(s_addr); 2070 spin_unlock(&class->lock); 2071 migrate_write_unlock(zspage); 2072 2073 return ret; 2074 } 2075 2076 void zs_page_putback(struct page *page) 2077 { 2078 struct zs_pool *pool; 2079 struct size_class *class; 2080 int class_idx; 2081 enum fullness_group fg; 2082 struct address_space *mapping; 2083 struct zspage *zspage; 2084 2085 VM_BUG_ON_PAGE(!PageMovable(page), page); 2086 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2087 2088 zspage = get_zspage(page); 2089 get_zspage_mapping(zspage, &class_idx, &fg); 2090 mapping = page_mapping(page); 2091 pool = mapping->private_data; 2092 class = pool->size_class[class_idx]; 2093 2094 spin_lock(&class->lock); 2095 dec_zspage_isolation(zspage); 2096 if (!is_zspage_isolated(zspage)) { 2097 fg = putback_zspage(class, zspage); 2098 /* 2099 * Due to page_lock, we cannot free zspage immediately 2100 * so let's defer. 2101 */ 2102 if (fg == ZS_EMPTY) 2103 schedule_work(&pool->free_work); 2104 } 2105 spin_unlock(&class->lock); 2106 } 2107 2108 const struct address_space_operations zsmalloc_aops = { 2109 .isolate_page = zs_page_isolate, 2110 .migratepage = zs_page_migrate, 2111 .putback_page = zs_page_putback, 2112 }; 2113 2114 static int zs_register_migration(struct zs_pool *pool) 2115 { 2116 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2117 if (IS_ERR(pool->inode)) { 2118 pool->inode = NULL; 2119 return 1; 2120 } 2121 2122 pool->inode->i_mapping->private_data = pool; 2123 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2124 return 0; 2125 } 2126 2127 static void zs_unregister_migration(struct zs_pool *pool) 2128 { 2129 flush_work(&pool->free_work); 2130 iput(pool->inode); 2131 } 2132 2133 /* 2134 * Caller should hold page_lock of all pages in the zspage 2135 * In here, we cannot use zspage meta data. 2136 */ 2137 static void async_free_zspage(struct work_struct *work) 2138 { 2139 int i; 2140 struct size_class *class; 2141 unsigned int class_idx; 2142 enum fullness_group fullness; 2143 struct zspage *zspage, *tmp; 2144 LIST_HEAD(free_pages); 2145 struct zs_pool *pool = container_of(work, struct zs_pool, 2146 free_work); 2147 2148 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2149 class = pool->size_class[i]; 2150 if (class->index != i) 2151 continue; 2152 2153 spin_lock(&class->lock); 2154 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2155 spin_unlock(&class->lock); 2156 } 2157 2158 2159 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2160 list_del(&zspage->list); 2161 lock_zspage(zspage); 2162 2163 get_zspage_mapping(zspage, &class_idx, &fullness); 2164 VM_BUG_ON(fullness != ZS_EMPTY); 2165 class = pool->size_class[class_idx]; 2166 spin_lock(&class->lock); 2167 __free_zspage(pool, pool->size_class[class_idx], zspage); 2168 spin_unlock(&class->lock); 2169 } 2170 }; 2171 2172 static void kick_deferred_free(struct zs_pool *pool) 2173 { 2174 schedule_work(&pool->free_work); 2175 } 2176 2177 static void init_deferred_free(struct zs_pool *pool) 2178 { 2179 INIT_WORK(&pool->free_work, async_free_zspage); 2180 } 2181 2182 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2183 { 2184 struct page *page = get_first_page(zspage); 2185 2186 do { 2187 WARN_ON(!trylock_page(page)); 2188 __SetPageMovable(page, pool->inode->i_mapping); 2189 unlock_page(page); 2190 } while ((page = get_next_page(page)) != NULL); 2191 } 2192 #endif 2193 2194 /* 2195 * 2196 * Based on the number of unused allocated objects calculate 2197 * and return the number of pages that we can free. 2198 */ 2199 static unsigned long zs_can_compact(struct size_class *class) 2200 { 2201 unsigned long obj_wasted; 2202 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2203 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2204 2205 if (obj_allocated <= obj_used) 2206 return 0; 2207 2208 obj_wasted = obj_allocated - obj_used; 2209 obj_wasted /= class->objs_per_zspage; 2210 2211 return obj_wasted * class->pages_per_zspage; 2212 } 2213 2214 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2215 { 2216 struct zs_compact_control cc; 2217 struct zspage *src_zspage; 2218 struct zspage *dst_zspage = NULL; 2219 2220 spin_lock(&class->lock); 2221 while ((src_zspage = isolate_zspage(class, true))) { 2222 2223 if (!zs_can_compact(class)) 2224 break; 2225 2226 cc.obj_idx = 0; 2227 cc.s_page = get_first_page(src_zspage); 2228 2229 while ((dst_zspage = isolate_zspage(class, false))) { 2230 cc.d_page = get_first_page(dst_zspage); 2231 /* 2232 * If there is no more space in dst_page, resched 2233 * and see if anyone had allocated another zspage. 2234 */ 2235 if (!migrate_zspage(pool, class, &cc)) 2236 break; 2237 2238 putback_zspage(class, dst_zspage); 2239 } 2240 2241 /* Stop if we couldn't find slot */ 2242 if (dst_zspage == NULL) 2243 break; 2244 2245 putback_zspage(class, dst_zspage); 2246 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2247 free_zspage(pool, class, src_zspage); 2248 pool->stats.pages_compacted += class->pages_per_zspage; 2249 } 2250 spin_unlock(&class->lock); 2251 cond_resched(); 2252 spin_lock(&class->lock); 2253 } 2254 2255 if (src_zspage) 2256 putback_zspage(class, src_zspage); 2257 2258 spin_unlock(&class->lock); 2259 } 2260 2261 unsigned long zs_compact(struct zs_pool *pool) 2262 { 2263 int i; 2264 struct size_class *class; 2265 2266 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2267 class = pool->size_class[i]; 2268 if (!class) 2269 continue; 2270 if (class->index != i) 2271 continue; 2272 __zs_compact(pool, class); 2273 } 2274 2275 return pool->stats.pages_compacted; 2276 } 2277 EXPORT_SYMBOL_GPL(zs_compact); 2278 2279 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2280 { 2281 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2282 } 2283 EXPORT_SYMBOL_GPL(zs_pool_stats); 2284 2285 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2286 struct shrink_control *sc) 2287 { 2288 unsigned long pages_freed; 2289 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2290 shrinker); 2291 2292 pages_freed = pool->stats.pages_compacted; 2293 /* 2294 * Compact classes and calculate compaction delta. 2295 * Can run concurrently with a manually triggered 2296 * (by user) compaction. 2297 */ 2298 pages_freed = zs_compact(pool) - pages_freed; 2299 2300 return pages_freed ? pages_freed : SHRINK_STOP; 2301 } 2302 2303 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2304 struct shrink_control *sc) 2305 { 2306 int i; 2307 struct size_class *class; 2308 unsigned long pages_to_free = 0; 2309 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2310 shrinker); 2311 2312 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2313 class = pool->size_class[i]; 2314 if (!class) 2315 continue; 2316 if (class->index != i) 2317 continue; 2318 2319 pages_to_free += zs_can_compact(class); 2320 } 2321 2322 return pages_to_free; 2323 } 2324 2325 static void zs_unregister_shrinker(struct zs_pool *pool) 2326 { 2327 unregister_shrinker(&pool->shrinker); 2328 } 2329 2330 static int zs_register_shrinker(struct zs_pool *pool) 2331 { 2332 pool->shrinker.scan_objects = zs_shrinker_scan; 2333 pool->shrinker.count_objects = zs_shrinker_count; 2334 pool->shrinker.batch = 0; 2335 pool->shrinker.seeks = DEFAULT_SEEKS; 2336 2337 return register_shrinker(&pool->shrinker); 2338 } 2339 2340 /** 2341 * zs_create_pool - Creates an allocation pool to work from. 2342 * @name: pool name to be created 2343 * 2344 * This function must be called before anything when using 2345 * the zsmalloc allocator. 2346 * 2347 * On success, a pointer to the newly created pool is returned, 2348 * otherwise NULL. 2349 */ 2350 struct zs_pool *zs_create_pool(const char *name) 2351 { 2352 int i; 2353 struct zs_pool *pool; 2354 struct size_class *prev_class = NULL; 2355 2356 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2357 if (!pool) 2358 return NULL; 2359 2360 init_deferred_free(pool); 2361 2362 pool->name = kstrdup(name, GFP_KERNEL); 2363 if (!pool->name) 2364 goto err; 2365 2366 if (create_cache(pool)) 2367 goto err; 2368 2369 /* 2370 * Iterate reversely, because, size of size_class that we want to use 2371 * for merging should be larger or equal to current size. 2372 */ 2373 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2374 int size; 2375 int pages_per_zspage; 2376 int objs_per_zspage; 2377 struct size_class *class; 2378 int fullness = 0; 2379 2380 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2381 if (size > ZS_MAX_ALLOC_SIZE) 2382 size = ZS_MAX_ALLOC_SIZE; 2383 pages_per_zspage = get_pages_per_zspage(size); 2384 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2385 2386 /* 2387 * We iterate from biggest down to smallest classes, 2388 * so huge_class_size holds the size of the first huge 2389 * class. Any object bigger than or equal to that will 2390 * endup in the huge class. 2391 */ 2392 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2393 !huge_class_size) { 2394 huge_class_size = size; 2395 /* 2396 * The object uses ZS_HANDLE_SIZE bytes to store the 2397 * handle. We need to subtract it, because zs_malloc() 2398 * unconditionally adds handle size before it performs 2399 * size class search - so object may be smaller than 2400 * huge class size, yet it still can end up in the huge 2401 * class because it grows by ZS_HANDLE_SIZE extra bytes 2402 * right before class lookup. 2403 */ 2404 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2405 } 2406 2407 /* 2408 * size_class is used for normal zsmalloc operation such 2409 * as alloc/free for that size. Although it is natural that we 2410 * have one size_class for each size, there is a chance that we 2411 * can get more memory utilization if we use one size_class for 2412 * many different sizes whose size_class have same 2413 * characteristics. So, we makes size_class point to 2414 * previous size_class if possible. 2415 */ 2416 if (prev_class) { 2417 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2418 pool->size_class[i] = prev_class; 2419 continue; 2420 } 2421 } 2422 2423 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2424 if (!class) 2425 goto err; 2426 2427 class->size = size; 2428 class->index = i; 2429 class->pages_per_zspage = pages_per_zspage; 2430 class->objs_per_zspage = objs_per_zspage; 2431 spin_lock_init(&class->lock); 2432 pool->size_class[i] = class; 2433 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2434 fullness++) 2435 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2436 2437 prev_class = class; 2438 } 2439 2440 /* debug only, don't abort if it fails */ 2441 zs_pool_stat_create(pool, name); 2442 2443 if (zs_register_migration(pool)) 2444 goto err; 2445 2446 /* 2447 * Not critical since shrinker is only used to trigger internal 2448 * defragmentation of the pool which is pretty optional thing. If 2449 * registration fails we still can use the pool normally and user can 2450 * trigger compaction manually. Thus, ignore return code. 2451 */ 2452 zs_register_shrinker(pool); 2453 2454 return pool; 2455 2456 err: 2457 zs_destroy_pool(pool); 2458 return NULL; 2459 } 2460 EXPORT_SYMBOL_GPL(zs_create_pool); 2461 2462 void zs_destroy_pool(struct zs_pool *pool) 2463 { 2464 int i; 2465 2466 zs_unregister_shrinker(pool); 2467 zs_unregister_migration(pool); 2468 zs_pool_stat_destroy(pool); 2469 2470 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2471 int fg; 2472 struct size_class *class = pool->size_class[i]; 2473 2474 if (!class) 2475 continue; 2476 2477 if (class->index != i) 2478 continue; 2479 2480 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2481 if (!list_empty(&class->fullness_list[fg])) { 2482 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2483 class->size, fg); 2484 } 2485 } 2486 kfree(class); 2487 } 2488 2489 destroy_cache(pool); 2490 kfree(pool->name); 2491 kfree(pool); 2492 } 2493 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2494 2495 static int __init zs_init(void) 2496 { 2497 int ret; 2498 2499 ret = zsmalloc_mount(); 2500 if (ret) 2501 goto out; 2502 2503 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2504 zs_cpu_prepare, zs_cpu_dead); 2505 if (ret) 2506 goto hp_setup_fail; 2507 2508 #ifdef CONFIG_ZPOOL 2509 zpool_register_driver(&zs_zpool_driver); 2510 #endif 2511 2512 zs_stat_init(); 2513 2514 return 0; 2515 2516 hp_setup_fail: 2517 zsmalloc_unmount(); 2518 out: 2519 return ret; 2520 } 2521 2522 static void __exit zs_exit(void) 2523 { 2524 #ifdef CONFIG_ZPOOL 2525 zpool_unregister_driver(&zs_zpool_driver); 2526 #endif 2527 zsmalloc_unmount(); 2528 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2529 2530 zs_stat_exit(); 2531 } 2532 2533 module_init(zs_init); 2534 module_exit(zs_exit); 2535 2536 MODULE_LICENSE("Dual BSD/GPL"); 2537 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2538