xref: /openbmc/linux/mm/zsmalloc.c (revision 010b495e2fa32353d0ef6aa70a8169e5ef617a15)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
58 
59 #define ZSPAGE_MAGIC	0x58
60 
61 /*
62  * This must be power of 2 and greater than of equal to sizeof(link_free).
63  * These two conditions ensure that any 'struct link_free' itself doesn't
64  * span more than 1 page which avoids complex case of mapping 2 pages simply
65  * to restore link_free pointer values.
66  */
67 #define ZS_ALIGN		8
68 
69 /*
70  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72  */
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * as single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 
99 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100 
101 /*
102  * Memory for allocating for handle keeps object position by
103  * encoding <page, obj_idx> and the encoded value has a room
104  * in least bit(ie, look at obj_to_location).
105  * We use the bit to synchronize between object access by
106  * user and migration.
107  */
108 #define HANDLE_PIN_BIT	0
109 
110 /*
111  * Head in allocated object should have OBJ_ALLOCATED_TAG
112  * to identify the object was allocated or not.
113  * It's okay to add the status bit in the least bit because
114  * header keeps handle which is 4byte-aligned address so we
115  * have room for two bit at least.
116  */
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121 
122 #define FULLNESS_BITS	2
123 #define CLASS_BITS	8
124 #define ISOLATED_BITS	3
125 #define MAGIC_VAL_BITS	8
126 
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
133 
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 				      ZS_SIZE_CLASS_DELTA) + 1)
150 
151 enum fullness_group {
152 	ZS_EMPTY,
153 	ZS_ALMOST_EMPTY,
154 	ZS_ALMOST_FULL,
155 	ZS_FULL,
156 	NR_ZS_FULLNESS,
157 };
158 
159 enum zs_stat_type {
160 	CLASS_EMPTY,
161 	CLASS_ALMOST_EMPTY,
162 	CLASS_ALMOST_FULL,
163 	CLASS_FULL,
164 	OBJ_ALLOCATED,
165 	OBJ_USED,
166 	NR_ZS_STAT_TYPE,
167 };
168 
169 struct zs_size_stat {
170 	unsigned long objs[NR_ZS_STAT_TYPE];
171 };
172 
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
176 
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
179 #endif
180 
181 /*
182  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183  *	n <= N / f, where
184  * n = number of allocated objects
185  * N = total number of objects zspage can store
186  * f = fullness_threshold_frac
187  *
188  * Similarly, we assign zspage to:
189  *	ZS_ALMOST_FULL	when n > N / f
190  *	ZS_EMPTY	when n == 0
191  *	ZS_FULL		when n == N
192  *
193  * (see: fix_fullness_group())
194  */
195 static const int fullness_threshold_frac = 4;
196 static size_t huge_class_size;
197 
198 struct size_class {
199 	spinlock_t lock;
200 	struct list_head fullness_list[NR_ZS_FULLNESS];
201 	/*
202 	 * Size of objects stored in this class. Must be multiple
203 	 * of ZS_ALIGN.
204 	 */
205 	int size;
206 	int objs_per_zspage;
207 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 	int pages_per_zspage;
209 
210 	unsigned int index;
211 	struct zs_size_stat stats;
212 };
213 
214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215 static void SetPageHugeObject(struct page *page)
216 {
217 	SetPageOwnerPriv1(page);
218 }
219 
220 static void ClearPageHugeObject(struct page *page)
221 {
222 	ClearPageOwnerPriv1(page);
223 }
224 
225 static int PageHugeObject(struct page *page)
226 {
227 	return PageOwnerPriv1(page);
228 }
229 
230 /*
231  * Placed within free objects to form a singly linked list.
232  * For every zspage, zspage->freeobj gives head of this list.
233  *
234  * This must be power of 2 and less than or equal to ZS_ALIGN
235  */
236 struct link_free {
237 	union {
238 		/*
239 		 * Free object index;
240 		 * It's valid for non-allocated object
241 		 */
242 		unsigned long next;
243 		/*
244 		 * Handle of allocated object.
245 		 */
246 		unsigned long handle;
247 	};
248 };
249 
250 struct zs_pool {
251 	const char *name;
252 
253 	struct size_class *size_class[ZS_SIZE_CLASSES];
254 	struct kmem_cache *handle_cachep;
255 	struct kmem_cache *zspage_cachep;
256 
257 	atomic_long_t pages_allocated;
258 
259 	struct zs_pool_stats stats;
260 
261 	/* Compact classes */
262 	struct shrinker shrinker;
263 
264 #ifdef CONFIG_ZSMALLOC_STAT
265 	struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268 	struct inode *inode;
269 	struct work_struct free_work;
270 #endif
271 };
272 
273 struct zspage {
274 	struct {
275 		unsigned int fullness:FULLNESS_BITS;
276 		unsigned int class:CLASS_BITS + 1;
277 		unsigned int isolated:ISOLATED_BITS;
278 		unsigned int magic:MAGIC_VAL_BITS;
279 	};
280 	unsigned int inuse;
281 	unsigned int freeobj;
282 	struct page *first_page;
283 	struct list_head list; /* fullness list */
284 #ifdef CONFIG_COMPACTION
285 	rwlock_t lock;
286 #endif
287 };
288 
289 struct mapping_area {
290 #ifdef CONFIG_PGTABLE_MAPPING
291 	struct vm_struct *vm; /* vm area for mapping object that span pages */
292 #else
293 	char *vm_buf; /* copy buffer for objects that span pages */
294 #endif
295 	char *vm_addr; /* address of kmap_atomic()'ed pages */
296 	enum zs_mapmode vm_mm; /* mapping mode */
297 };
298 
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool *pool);
301 static void zs_unregister_migration(struct zs_pool *pool);
302 static void migrate_lock_init(struct zspage *zspage);
303 static void migrate_read_lock(struct zspage *zspage);
304 static void migrate_read_unlock(struct zspage *zspage);
305 static void kick_deferred_free(struct zs_pool *pool);
306 static void init_deferred_free(struct zs_pool *pool);
307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308 #else
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool *pool) { return 0; }
312 static void zs_unregister_migration(struct zs_pool *pool) {}
313 static void migrate_lock_init(struct zspage *zspage) {}
314 static void migrate_read_lock(struct zspage *zspage) {}
315 static void migrate_read_unlock(struct zspage *zspage) {}
316 static void kick_deferred_free(struct zs_pool *pool) {}
317 static void init_deferred_free(struct zs_pool *pool) {}
318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319 #endif
320 
321 static int create_cache(struct zs_pool *pool)
322 {
323 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 					0, 0, NULL);
325 	if (!pool->handle_cachep)
326 		return 1;
327 
328 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 					0, 0, NULL);
330 	if (!pool->zspage_cachep) {
331 		kmem_cache_destroy(pool->handle_cachep);
332 		pool->handle_cachep = NULL;
333 		return 1;
334 	}
335 
336 	return 0;
337 }
338 
339 static void destroy_cache(struct zs_pool *pool)
340 {
341 	kmem_cache_destroy(pool->handle_cachep);
342 	kmem_cache_destroy(pool->zspage_cachep);
343 }
344 
345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
346 {
347 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
348 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
349 }
350 
351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
352 {
353 	kmem_cache_free(pool->handle_cachep, (void *)handle);
354 }
355 
356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357 {
358 	return kmem_cache_alloc(pool->zspage_cachep,
359 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
360 }
361 
362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363 {
364 	kmem_cache_free(pool->zspage_cachep, zspage);
365 }
366 
367 static void record_obj(unsigned long handle, unsigned long obj)
368 {
369 	/*
370 	 * lsb of @obj represents handle lock while other bits
371 	 * represent object value the handle is pointing so
372 	 * updating shouldn't do store tearing.
373 	 */
374 	WRITE_ONCE(*(unsigned long *)handle, obj);
375 }
376 
377 /* zpool driver */
378 
379 #ifdef CONFIG_ZPOOL
380 
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382 			     const struct zpool_ops *zpool_ops,
383 			     struct zpool *zpool)
384 {
385 	/*
386 	 * Ignore global gfp flags: zs_malloc() may be invoked from
387 	 * different contexts and its caller must provide a valid
388 	 * gfp mask.
389 	 */
390 	return zs_create_pool(name);
391 }
392 
393 static void zs_zpool_destroy(void *pool)
394 {
395 	zs_destroy_pool(pool);
396 }
397 
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 			unsigned long *handle)
400 {
401 	*handle = zs_malloc(pool, size, gfp);
402 	return *handle ? 0 : -1;
403 }
404 static void zs_zpool_free(void *pool, unsigned long handle)
405 {
406 	zs_free(pool, handle);
407 }
408 
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410 			enum zpool_mapmode mm)
411 {
412 	enum zs_mapmode zs_mm;
413 
414 	switch (mm) {
415 	case ZPOOL_MM_RO:
416 		zs_mm = ZS_MM_RO;
417 		break;
418 	case ZPOOL_MM_WO:
419 		zs_mm = ZS_MM_WO;
420 		break;
421 	case ZPOOL_MM_RW: /* fallthru */
422 	default:
423 		zs_mm = ZS_MM_RW;
424 		break;
425 	}
426 
427 	return zs_map_object(pool, handle, zs_mm);
428 }
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
430 {
431 	zs_unmap_object(pool, handle);
432 }
433 
434 static u64 zs_zpool_total_size(void *pool)
435 {
436 	return zs_get_total_pages(pool) << PAGE_SHIFT;
437 }
438 
439 static struct zpool_driver zs_zpool_driver = {
440 	.type =		"zsmalloc",
441 	.owner =	THIS_MODULE,
442 	.create =	zs_zpool_create,
443 	.destroy =	zs_zpool_destroy,
444 	.malloc =	zs_zpool_malloc,
445 	.free =		zs_zpool_free,
446 	.map =		zs_zpool_map,
447 	.unmap =	zs_zpool_unmap,
448 	.total_size =	zs_zpool_total_size,
449 };
450 
451 MODULE_ALIAS("zpool-zsmalloc");
452 #endif /* CONFIG_ZPOOL */
453 
454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
456 
457 static bool is_zspage_isolated(struct zspage *zspage)
458 {
459 	return zspage->isolated;
460 }
461 
462 static __maybe_unused int is_first_page(struct page *page)
463 {
464 	return PagePrivate(page);
465 }
466 
467 /* Protected by class->lock */
468 static inline int get_zspage_inuse(struct zspage *zspage)
469 {
470 	return zspage->inuse;
471 }
472 
473 static inline void set_zspage_inuse(struct zspage *zspage, int val)
474 {
475 	zspage->inuse = val;
476 }
477 
478 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
479 {
480 	zspage->inuse += val;
481 }
482 
483 static inline struct page *get_first_page(struct zspage *zspage)
484 {
485 	struct page *first_page = zspage->first_page;
486 
487 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
488 	return first_page;
489 }
490 
491 static inline int get_first_obj_offset(struct page *page)
492 {
493 	return page->units;
494 }
495 
496 static inline void set_first_obj_offset(struct page *page, int offset)
497 {
498 	page->units = offset;
499 }
500 
501 static inline unsigned int get_freeobj(struct zspage *zspage)
502 {
503 	return zspage->freeobj;
504 }
505 
506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
507 {
508 	zspage->freeobj = obj;
509 }
510 
511 static void get_zspage_mapping(struct zspage *zspage,
512 				unsigned int *class_idx,
513 				enum fullness_group *fullness)
514 {
515 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
516 
517 	*fullness = zspage->fullness;
518 	*class_idx = zspage->class;
519 }
520 
521 static void set_zspage_mapping(struct zspage *zspage,
522 				unsigned int class_idx,
523 				enum fullness_group fullness)
524 {
525 	zspage->class = class_idx;
526 	zspage->fullness = fullness;
527 }
528 
529 /*
530  * zsmalloc divides the pool into various size classes where each
531  * class maintains a list of zspages where each zspage is divided
532  * into equal sized chunks. Each allocation falls into one of these
533  * classes depending on its size. This function returns index of the
534  * size class which has chunk size big enough to hold the give size.
535  */
536 static int get_size_class_index(int size)
537 {
538 	int idx = 0;
539 
540 	if (likely(size > ZS_MIN_ALLOC_SIZE))
541 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 				ZS_SIZE_CLASS_DELTA);
543 
544 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545 }
546 
547 /* type can be of enum type zs_stat_type or fullness_group */
548 static inline void zs_stat_inc(struct size_class *class,
549 				int type, unsigned long cnt)
550 {
551 	class->stats.objs[type] += cnt;
552 }
553 
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_dec(struct size_class *class,
556 				int type, unsigned long cnt)
557 {
558 	class->stats.objs[type] -= cnt;
559 }
560 
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
563 				int type)
564 {
565 	return class->stats.objs[type];
566 }
567 
568 #ifdef CONFIG_ZSMALLOC_STAT
569 
570 static void __init zs_stat_init(void)
571 {
572 	if (!debugfs_initialized()) {
573 		pr_warn("debugfs not available, stat dir not created\n");
574 		return;
575 	}
576 
577 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 	if (!zs_stat_root)
579 		pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
580 }
581 
582 static void __exit zs_stat_exit(void)
583 {
584 	debugfs_remove_recursive(zs_stat_root);
585 }
586 
587 static unsigned long zs_can_compact(struct size_class *class);
588 
589 static int zs_stats_size_show(struct seq_file *s, void *v)
590 {
591 	int i;
592 	struct zs_pool *pool = s->private;
593 	struct size_class *class;
594 	int objs_per_zspage;
595 	unsigned long class_almost_full, class_almost_empty;
596 	unsigned long obj_allocated, obj_used, pages_used, freeable;
597 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
598 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
599 	unsigned long total_freeable = 0;
600 
601 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
602 			"class", "size", "almost_full", "almost_empty",
603 			"obj_allocated", "obj_used", "pages_used",
604 			"pages_per_zspage", "freeable");
605 
606 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
607 		class = pool->size_class[i];
608 
609 		if (class->index != i)
610 			continue;
611 
612 		spin_lock(&class->lock);
613 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
614 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
615 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
616 		obj_used = zs_stat_get(class, OBJ_USED);
617 		freeable = zs_can_compact(class);
618 		spin_unlock(&class->lock);
619 
620 		objs_per_zspage = class->objs_per_zspage;
621 		pages_used = obj_allocated / objs_per_zspage *
622 				class->pages_per_zspage;
623 
624 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
625 				" %10lu %10lu %16d %8lu\n",
626 			i, class->size, class_almost_full, class_almost_empty,
627 			obj_allocated, obj_used, pages_used,
628 			class->pages_per_zspage, freeable);
629 
630 		total_class_almost_full += class_almost_full;
631 		total_class_almost_empty += class_almost_empty;
632 		total_objs += obj_allocated;
633 		total_used_objs += obj_used;
634 		total_pages += pages_used;
635 		total_freeable += freeable;
636 	}
637 
638 	seq_puts(s, "\n");
639 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
640 			"Total", "", total_class_almost_full,
641 			total_class_almost_empty, total_objs,
642 			total_used_objs, total_pages, "", total_freeable);
643 
644 	return 0;
645 }
646 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
647 
648 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
649 {
650 	struct dentry *entry;
651 
652 	if (!zs_stat_root) {
653 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
654 		return;
655 	}
656 
657 	entry = debugfs_create_dir(name, zs_stat_root);
658 	if (!entry) {
659 		pr_warn("debugfs dir <%s> creation failed\n", name);
660 		return;
661 	}
662 	pool->stat_dentry = entry;
663 
664 	entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
665 			pool->stat_dentry, pool, &zs_stats_size_fops);
666 	if (!entry) {
667 		pr_warn("%s: debugfs file entry <%s> creation failed\n",
668 				name, "classes");
669 		debugfs_remove_recursive(pool->stat_dentry);
670 		pool->stat_dentry = NULL;
671 	}
672 }
673 
674 static void zs_pool_stat_destroy(struct zs_pool *pool)
675 {
676 	debugfs_remove_recursive(pool->stat_dentry);
677 }
678 
679 #else /* CONFIG_ZSMALLOC_STAT */
680 static void __init zs_stat_init(void)
681 {
682 }
683 
684 static void __exit zs_stat_exit(void)
685 {
686 }
687 
688 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
689 {
690 }
691 
692 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
693 {
694 }
695 #endif
696 
697 
698 /*
699  * For each size class, zspages are divided into different groups
700  * depending on how "full" they are. This was done so that we could
701  * easily find empty or nearly empty zspages when we try to shrink
702  * the pool (not yet implemented). This function returns fullness
703  * status of the given page.
704  */
705 static enum fullness_group get_fullness_group(struct size_class *class,
706 						struct zspage *zspage)
707 {
708 	int inuse, objs_per_zspage;
709 	enum fullness_group fg;
710 
711 	inuse = get_zspage_inuse(zspage);
712 	objs_per_zspage = class->objs_per_zspage;
713 
714 	if (inuse == 0)
715 		fg = ZS_EMPTY;
716 	else if (inuse == objs_per_zspage)
717 		fg = ZS_FULL;
718 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
719 		fg = ZS_ALMOST_EMPTY;
720 	else
721 		fg = ZS_ALMOST_FULL;
722 
723 	return fg;
724 }
725 
726 /*
727  * Each size class maintains various freelists and zspages are assigned
728  * to one of these freelists based on the number of live objects they
729  * have. This functions inserts the given zspage into the freelist
730  * identified by <class, fullness_group>.
731  */
732 static void insert_zspage(struct size_class *class,
733 				struct zspage *zspage,
734 				enum fullness_group fullness)
735 {
736 	struct zspage *head;
737 
738 	zs_stat_inc(class, fullness, 1);
739 	head = list_first_entry_or_null(&class->fullness_list[fullness],
740 					struct zspage, list);
741 	/*
742 	 * We want to see more ZS_FULL pages and less almost empty/full.
743 	 * Put pages with higher ->inuse first.
744 	 */
745 	if (head) {
746 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
747 			list_add(&zspage->list, &head->list);
748 			return;
749 		}
750 	}
751 	list_add(&zspage->list, &class->fullness_list[fullness]);
752 }
753 
754 /*
755  * This function removes the given zspage from the freelist identified
756  * by <class, fullness_group>.
757  */
758 static void remove_zspage(struct size_class *class,
759 				struct zspage *zspage,
760 				enum fullness_group fullness)
761 {
762 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
763 	VM_BUG_ON(is_zspage_isolated(zspage));
764 
765 	list_del_init(&zspage->list);
766 	zs_stat_dec(class, fullness, 1);
767 }
768 
769 /*
770  * Each size class maintains zspages in different fullness groups depending
771  * on the number of live objects they contain. When allocating or freeing
772  * objects, the fullness status of the page can change, say, from ALMOST_FULL
773  * to ALMOST_EMPTY when freeing an object. This function checks if such
774  * a status change has occurred for the given page and accordingly moves the
775  * page from the freelist of the old fullness group to that of the new
776  * fullness group.
777  */
778 static enum fullness_group fix_fullness_group(struct size_class *class,
779 						struct zspage *zspage)
780 {
781 	int class_idx;
782 	enum fullness_group currfg, newfg;
783 
784 	get_zspage_mapping(zspage, &class_idx, &currfg);
785 	newfg = get_fullness_group(class, zspage);
786 	if (newfg == currfg)
787 		goto out;
788 
789 	if (!is_zspage_isolated(zspage)) {
790 		remove_zspage(class, zspage, currfg);
791 		insert_zspage(class, zspage, newfg);
792 	}
793 
794 	set_zspage_mapping(zspage, class_idx, newfg);
795 
796 out:
797 	return newfg;
798 }
799 
800 /*
801  * We have to decide on how many pages to link together
802  * to form a zspage for each size class. This is important
803  * to reduce wastage due to unusable space left at end of
804  * each zspage which is given as:
805  *     wastage = Zp % class_size
806  *     usage = Zp - wastage
807  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
808  *
809  * For example, for size class of 3/8 * PAGE_SIZE, we should
810  * link together 3 PAGE_SIZE sized pages to form a zspage
811  * since then we can perfectly fit in 8 such objects.
812  */
813 static int get_pages_per_zspage(int class_size)
814 {
815 	int i, max_usedpc = 0;
816 	/* zspage order which gives maximum used size per KB */
817 	int max_usedpc_order = 1;
818 
819 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
820 		int zspage_size;
821 		int waste, usedpc;
822 
823 		zspage_size = i * PAGE_SIZE;
824 		waste = zspage_size % class_size;
825 		usedpc = (zspage_size - waste) * 100 / zspage_size;
826 
827 		if (usedpc > max_usedpc) {
828 			max_usedpc = usedpc;
829 			max_usedpc_order = i;
830 		}
831 	}
832 
833 	return max_usedpc_order;
834 }
835 
836 static struct zspage *get_zspage(struct page *page)
837 {
838 	struct zspage *zspage = (struct zspage *)page->private;
839 
840 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
841 	return zspage;
842 }
843 
844 static struct page *get_next_page(struct page *page)
845 {
846 	if (unlikely(PageHugeObject(page)))
847 		return NULL;
848 
849 	return page->freelist;
850 }
851 
852 /**
853  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
854  * @page: page object resides in zspage
855  * @obj_idx: object index
856  */
857 static void obj_to_location(unsigned long obj, struct page **page,
858 				unsigned int *obj_idx)
859 {
860 	obj >>= OBJ_TAG_BITS;
861 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
862 	*obj_idx = (obj & OBJ_INDEX_MASK);
863 }
864 
865 /**
866  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
867  * @page: page object resides in zspage
868  * @obj_idx: object index
869  */
870 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
871 {
872 	unsigned long obj;
873 
874 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
875 	obj |= obj_idx & OBJ_INDEX_MASK;
876 	obj <<= OBJ_TAG_BITS;
877 
878 	return obj;
879 }
880 
881 static unsigned long handle_to_obj(unsigned long handle)
882 {
883 	return *(unsigned long *)handle;
884 }
885 
886 static unsigned long obj_to_head(struct page *page, void *obj)
887 {
888 	if (unlikely(PageHugeObject(page))) {
889 		VM_BUG_ON_PAGE(!is_first_page(page), page);
890 		return page->index;
891 	} else
892 		return *(unsigned long *)obj;
893 }
894 
895 static inline int testpin_tag(unsigned long handle)
896 {
897 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
898 }
899 
900 static inline int trypin_tag(unsigned long handle)
901 {
902 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
903 }
904 
905 static void pin_tag(unsigned long handle)
906 {
907 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
908 }
909 
910 static void unpin_tag(unsigned long handle)
911 {
912 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
913 }
914 
915 static void reset_page(struct page *page)
916 {
917 	__ClearPageMovable(page);
918 	ClearPagePrivate(page);
919 	set_page_private(page, 0);
920 	page_mapcount_reset(page);
921 	ClearPageHugeObject(page);
922 	page->freelist = NULL;
923 }
924 
925 /*
926  * To prevent zspage destroy during migration, zspage freeing should
927  * hold locks of all pages in the zspage.
928  */
929 void lock_zspage(struct zspage *zspage)
930 {
931 	struct page *page = get_first_page(zspage);
932 
933 	do {
934 		lock_page(page);
935 	} while ((page = get_next_page(page)) != NULL);
936 }
937 
938 int trylock_zspage(struct zspage *zspage)
939 {
940 	struct page *cursor, *fail;
941 
942 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
943 					get_next_page(cursor)) {
944 		if (!trylock_page(cursor)) {
945 			fail = cursor;
946 			goto unlock;
947 		}
948 	}
949 
950 	return 1;
951 unlock:
952 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
953 					get_next_page(cursor))
954 		unlock_page(cursor);
955 
956 	return 0;
957 }
958 
959 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
960 				struct zspage *zspage)
961 {
962 	struct page *page, *next;
963 	enum fullness_group fg;
964 	unsigned int class_idx;
965 
966 	get_zspage_mapping(zspage, &class_idx, &fg);
967 
968 	assert_spin_locked(&class->lock);
969 
970 	VM_BUG_ON(get_zspage_inuse(zspage));
971 	VM_BUG_ON(fg != ZS_EMPTY);
972 
973 	next = page = get_first_page(zspage);
974 	do {
975 		VM_BUG_ON_PAGE(!PageLocked(page), page);
976 		next = get_next_page(page);
977 		reset_page(page);
978 		unlock_page(page);
979 		dec_zone_page_state(page, NR_ZSPAGES);
980 		put_page(page);
981 		page = next;
982 	} while (page != NULL);
983 
984 	cache_free_zspage(pool, zspage);
985 
986 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
987 	atomic_long_sub(class->pages_per_zspage,
988 					&pool->pages_allocated);
989 }
990 
991 static void free_zspage(struct zs_pool *pool, struct size_class *class,
992 				struct zspage *zspage)
993 {
994 	VM_BUG_ON(get_zspage_inuse(zspage));
995 	VM_BUG_ON(list_empty(&zspage->list));
996 
997 	if (!trylock_zspage(zspage)) {
998 		kick_deferred_free(pool);
999 		return;
1000 	}
1001 
1002 	remove_zspage(class, zspage, ZS_EMPTY);
1003 	__free_zspage(pool, class, zspage);
1004 }
1005 
1006 /* Initialize a newly allocated zspage */
1007 static void init_zspage(struct size_class *class, struct zspage *zspage)
1008 {
1009 	unsigned int freeobj = 1;
1010 	unsigned long off = 0;
1011 	struct page *page = get_first_page(zspage);
1012 
1013 	while (page) {
1014 		struct page *next_page;
1015 		struct link_free *link;
1016 		void *vaddr;
1017 
1018 		set_first_obj_offset(page, off);
1019 
1020 		vaddr = kmap_atomic(page);
1021 		link = (struct link_free *)vaddr + off / sizeof(*link);
1022 
1023 		while ((off += class->size) < PAGE_SIZE) {
1024 			link->next = freeobj++ << OBJ_TAG_BITS;
1025 			link += class->size / sizeof(*link);
1026 		}
1027 
1028 		/*
1029 		 * We now come to the last (full or partial) object on this
1030 		 * page, which must point to the first object on the next
1031 		 * page (if present)
1032 		 */
1033 		next_page = get_next_page(page);
1034 		if (next_page) {
1035 			link->next = freeobj++ << OBJ_TAG_BITS;
1036 		} else {
1037 			/*
1038 			 * Reset OBJ_TAG_BITS bit to last link to tell
1039 			 * whether it's allocated object or not.
1040 			 */
1041 			link->next = -1UL << OBJ_TAG_BITS;
1042 		}
1043 		kunmap_atomic(vaddr);
1044 		page = next_page;
1045 		off %= PAGE_SIZE;
1046 	}
1047 
1048 	set_freeobj(zspage, 0);
1049 }
1050 
1051 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1052 				struct page *pages[])
1053 {
1054 	int i;
1055 	struct page *page;
1056 	struct page *prev_page = NULL;
1057 	int nr_pages = class->pages_per_zspage;
1058 
1059 	/*
1060 	 * Allocate individual pages and link them together as:
1061 	 * 1. all pages are linked together using page->freelist
1062 	 * 2. each sub-page point to zspage using page->private
1063 	 *
1064 	 * we set PG_private to identify the first page (i.e. no other sub-page
1065 	 * has this flag set).
1066 	 */
1067 	for (i = 0; i < nr_pages; i++) {
1068 		page = pages[i];
1069 		set_page_private(page, (unsigned long)zspage);
1070 		page->freelist = NULL;
1071 		if (i == 0) {
1072 			zspage->first_page = page;
1073 			SetPagePrivate(page);
1074 			if (unlikely(class->objs_per_zspage == 1 &&
1075 					class->pages_per_zspage == 1))
1076 				SetPageHugeObject(page);
1077 		} else {
1078 			prev_page->freelist = page;
1079 		}
1080 		prev_page = page;
1081 	}
1082 }
1083 
1084 /*
1085  * Allocate a zspage for the given size class
1086  */
1087 static struct zspage *alloc_zspage(struct zs_pool *pool,
1088 					struct size_class *class,
1089 					gfp_t gfp)
1090 {
1091 	int i;
1092 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1093 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1094 
1095 	if (!zspage)
1096 		return NULL;
1097 
1098 	memset(zspage, 0, sizeof(struct zspage));
1099 	zspage->magic = ZSPAGE_MAGIC;
1100 	migrate_lock_init(zspage);
1101 
1102 	for (i = 0; i < class->pages_per_zspage; i++) {
1103 		struct page *page;
1104 
1105 		page = alloc_page(gfp);
1106 		if (!page) {
1107 			while (--i >= 0) {
1108 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1109 				__free_page(pages[i]);
1110 			}
1111 			cache_free_zspage(pool, zspage);
1112 			return NULL;
1113 		}
1114 
1115 		inc_zone_page_state(page, NR_ZSPAGES);
1116 		pages[i] = page;
1117 	}
1118 
1119 	create_page_chain(class, zspage, pages);
1120 	init_zspage(class, zspage);
1121 
1122 	return zspage;
1123 }
1124 
1125 static struct zspage *find_get_zspage(struct size_class *class)
1126 {
1127 	int i;
1128 	struct zspage *zspage;
1129 
1130 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1131 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1132 				struct zspage, list);
1133 		if (zspage)
1134 			break;
1135 	}
1136 
1137 	return zspage;
1138 }
1139 
1140 #ifdef CONFIG_PGTABLE_MAPPING
1141 static inline int __zs_cpu_up(struct mapping_area *area)
1142 {
1143 	/*
1144 	 * Make sure we don't leak memory if a cpu UP notification
1145 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1146 	 */
1147 	if (area->vm)
1148 		return 0;
1149 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1150 	if (!area->vm)
1151 		return -ENOMEM;
1152 	return 0;
1153 }
1154 
1155 static inline void __zs_cpu_down(struct mapping_area *area)
1156 {
1157 	if (area->vm)
1158 		free_vm_area(area->vm);
1159 	area->vm = NULL;
1160 }
1161 
1162 static inline void *__zs_map_object(struct mapping_area *area,
1163 				struct page *pages[2], int off, int size)
1164 {
1165 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1166 	area->vm_addr = area->vm->addr;
1167 	return area->vm_addr + off;
1168 }
1169 
1170 static inline void __zs_unmap_object(struct mapping_area *area,
1171 				struct page *pages[2], int off, int size)
1172 {
1173 	unsigned long addr = (unsigned long)area->vm_addr;
1174 
1175 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1176 }
1177 
1178 #else /* CONFIG_PGTABLE_MAPPING */
1179 
1180 static inline int __zs_cpu_up(struct mapping_area *area)
1181 {
1182 	/*
1183 	 * Make sure we don't leak memory if a cpu UP notification
1184 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1185 	 */
1186 	if (area->vm_buf)
1187 		return 0;
1188 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1189 	if (!area->vm_buf)
1190 		return -ENOMEM;
1191 	return 0;
1192 }
1193 
1194 static inline void __zs_cpu_down(struct mapping_area *area)
1195 {
1196 	kfree(area->vm_buf);
1197 	area->vm_buf = NULL;
1198 }
1199 
1200 static void *__zs_map_object(struct mapping_area *area,
1201 			struct page *pages[2], int off, int size)
1202 {
1203 	int sizes[2];
1204 	void *addr;
1205 	char *buf = area->vm_buf;
1206 
1207 	/* disable page faults to match kmap_atomic() return conditions */
1208 	pagefault_disable();
1209 
1210 	/* no read fastpath */
1211 	if (area->vm_mm == ZS_MM_WO)
1212 		goto out;
1213 
1214 	sizes[0] = PAGE_SIZE - off;
1215 	sizes[1] = size - sizes[0];
1216 
1217 	/* copy object to per-cpu buffer */
1218 	addr = kmap_atomic(pages[0]);
1219 	memcpy(buf, addr + off, sizes[0]);
1220 	kunmap_atomic(addr);
1221 	addr = kmap_atomic(pages[1]);
1222 	memcpy(buf + sizes[0], addr, sizes[1]);
1223 	kunmap_atomic(addr);
1224 out:
1225 	return area->vm_buf;
1226 }
1227 
1228 static void __zs_unmap_object(struct mapping_area *area,
1229 			struct page *pages[2], int off, int size)
1230 {
1231 	int sizes[2];
1232 	void *addr;
1233 	char *buf;
1234 
1235 	/* no write fastpath */
1236 	if (area->vm_mm == ZS_MM_RO)
1237 		goto out;
1238 
1239 	buf = area->vm_buf;
1240 	buf = buf + ZS_HANDLE_SIZE;
1241 	size -= ZS_HANDLE_SIZE;
1242 	off += ZS_HANDLE_SIZE;
1243 
1244 	sizes[0] = PAGE_SIZE - off;
1245 	sizes[1] = size - sizes[0];
1246 
1247 	/* copy per-cpu buffer to object */
1248 	addr = kmap_atomic(pages[0]);
1249 	memcpy(addr + off, buf, sizes[0]);
1250 	kunmap_atomic(addr);
1251 	addr = kmap_atomic(pages[1]);
1252 	memcpy(addr, buf + sizes[0], sizes[1]);
1253 	kunmap_atomic(addr);
1254 
1255 out:
1256 	/* enable page faults to match kunmap_atomic() return conditions */
1257 	pagefault_enable();
1258 }
1259 
1260 #endif /* CONFIG_PGTABLE_MAPPING */
1261 
1262 static int zs_cpu_prepare(unsigned int cpu)
1263 {
1264 	struct mapping_area *area;
1265 
1266 	area = &per_cpu(zs_map_area, cpu);
1267 	return __zs_cpu_up(area);
1268 }
1269 
1270 static int zs_cpu_dead(unsigned int cpu)
1271 {
1272 	struct mapping_area *area;
1273 
1274 	area = &per_cpu(zs_map_area, cpu);
1275 	__zs_cpu_down(area);
1276 	return 0;
1277 }
1278 
1279 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1280 					int objs_per_zspage)
1281 {
1282 	if (prev->pages_per_zspage == pages_per_zspage &&
1283 		prev->objs_per_zspage == objs_per_zspage)
1284 		return true;
1285 
1286 	return false;
1287 }
1288 
1289 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1290 {
1291 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1292 }
1293 
1294 unsigned long zs_get_total_pages(struct zs_pool *pool)
1295 {
1296 	return atomic_long_read(&pool->pages_allocated);
1297 }
1298 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1299 
1300 /**
1301  * zs_map_object - get address of allocated object from handle.
1302  * @pool: pool from which the object was allocated
1303  * @handle: handle returned from zs_malloc
1304  *
1305  * Before using an object allocated from zs_malloc, it must be mapped using
1306  * this function. When done with the object, it must be unmapped using
1307  * zs_unmap_object.
1308  *
1309  * Only one object can be mapped per cpu at a time. There is no protection
1310  * against nested mappings.
1311  *
1312  * This function returns with preemption and page faults disabled.
1313  */
1314 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1315 			enum zs_mapmode mm)
1316 {
1317 	struct zspage *zspage;
1318 	struct page *page;
1319 	unsigned long obj, off;
1320 	unsigned int obj_idx;
1321 
1322 	unsigned int class_idx;
1323 	enum fullness_group fg;
1324 	struct size_class *class;
1325 	struct mapping_area *area;
1326 	struct page *pages[2];
1327 	void *ret;
1328 
1329 	/*
1330 	 * Because we use per-cpu mapping areas shared among the
1331 	 * pools/users, we can't allow mapping in interrupt context
1332 	 * because it can corrupt another users mappings.
1333 	 */
1334 	BUG_ON(in_interrupt());
1335 
1336 	/* From now on, migration cannot move the object */
1337 	pin_tag(handle);
1338 
1339 	obj = handle_to_obj(handle);
1340 	obj_to_location(obj, &page, &obj_idx);
1341 	zspage = get_zspage(page);
1342 
1343 	/* migration cannot move any subpage in this zspage */
1344 	migrate_read_lock(zspage);
1345 
1346 	get_zspage_mapping(zspage, &class_idx, &fg);
1347 	class = pool->size_class[class_idx];
1348 	off = (class->size * obj_idx) & ~PAGE_MASK;
1349 
1350 	area = &get_cpu_var(zs_map_area);
1351 	area->vm_mm = mm;
1352 	if (off + class->size <= PAGE_SIZE) {
1353 		/* this object is contained entirely within a page */
1354 		area->vm_addr = kmap_atomic(page);
1355 		ret = area->vm_addr + off;
1356 		goto out;
1357 	}
1358 
1359 	/* this object spans two pages */
1360 	pages[0] = page;
1361 	pages[1] = get_next_page(page);
1362 	BUG_ON(!pages[1]);
1363 
1364 	ret = __zs_map_object(area, pages, off, class->size);
1365 out:
1366 	if (likely(!PageHugeObject(page)))
1367 		ret += ZS_HANDLE_SIZE;
1368 
1369 	return ret;
1370 }
1371 EXPORT_SYMBOL_GPL(zs_map_object);
1372 
1373 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1374 {
1375 	struct zspage *zspage;
1376 	struct page *page;
1377 	unsigned long obj, off;
1378 	unsigned int obj_idx;
1379 
1380 	unsigned int class_idx;
1381 	enum fullness_group fg;
1382 	struct size_class *class;
1383 	struct mapping_area *area;
1384 
1385 	obj = handle_to_obj(handle);
1386 	obj_to_location(obj, &page, &obj_idx);
1387 	zspage = get_zspage(page);
1388 	get_zspage_mapping(zspage, &class_idx, &fg);
1389 	class = pool->size_class[class_idx];
1390 	off = (class->size * obj_idx) & ~PAGE_MASK;
1391 
1392 	area = this_cpu_ptr(&zs_map_area);
1393 	if (off + class->size <= PAGE_SIZE)
1394 		kunmap_atomic(area->vm_addr);
1395 	else {
1396 		struct page *pages[2];
1397 
1398 		pages[0] = page;
1399 		pages[1] = get_next_page(page);
1400 		BUG_ON(!pages[1]);
1401 
1402 		__zs_unmap_object(area, pages, off, class->size);
1403 	}
1404 	put_cpu_var(zs_map_area);
1405 
1406 	migrate_read_unlock(zspage);
1407 	unpin_tag(handle);
1408 }
1409 EXPORT_SYMBOL_GPL(zs_unmap_object);
1410 
1411 /**
1412  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1413  *                        zsmalloc &size_class.
1414  * @pool: zsmalloc pool to use
1415  *
1416  * The function returns the size of the first huge class - any object of equal
1417  * or bigger size will be stored in zspage consisting of a single physical
1418  * page.
1419  *
1420  * Context: Any context.
1421  *
1422  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1423  */
1424 size_t zs_huge_class_size(struct zs_pool *pool)
1425 {
1426 	return huge_class_size;
1427 }
1428 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1429 
1430 static unsigned long obj_malloc(struct size_class *class,
1431 				struct zspage *zspage, unsigned long handle)
1432 {
1433 	int i, nr_page, offset;
1434 	unsigned long obj;
1435 	struct link_free *link;
1436 
1437 	struct page *m_page;
1438 	unsigned long m_offset;
1439 	void *vaddr;
1440 
1441 	handle |= OBJ_ALLOCATED_TAG;
1442 	obj = get_freeobj(zspage);
1443 
1444 	offset = obj * class->size;
1445 	nr_page = offset >> PAGE_SHIFT;
1446 	m_offset = offset & ~PAGE_MASK;
1447 	m_page = get_first_page(zspage);
1448 
1449 	for (i = 0; i < nr_page; i++)
1450 		m_page = get_next_page(m_page);
1451 
1452 	vaddr = kmap_atomic(m_page);
1453 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1454 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1455 	if (likely(!PageHugeObject(m_page)))
1456 		/* record handle in the header of allocated chunk */
1457 		link->handle = handle;
1458 	else
1459 		/* record handle to page->index */
1460 		zspage->first_page->index = handle;
1461 
1462 	kunmap_atomic(vaddr);
1463 	mod_zspage_inuse(zspage, 1);
1464 	zs_stat_inc(class, OBJ_USED, 1);
1465 
1466 	obj = location_to_obj(m_page, obj);
1467 
1468 	return obj;
1469 }
1470 
1471 
1472 /**
1473  * zs_malloc - Allocate block of given size from pool.
1474  * @pool: pool to allocate from
1475  * @size: size of block to allocate
1476  * @gfp: gfp flags when allocating object
1477  *
1478  * On success, handle to the allocated object is returned,
1479  * otherwise 0.
1480  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1481  */
1482 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1483 {
1484 	unsigned long handle, obj;
1485 	struct size_class *class;
1486 	enum fullness_group newfg;
1487 	struct zspage *zspage;
1488 
1489 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1490 		return 0;
1491 
1492 	handle = cache_alloc_handle(pool, gfp);
1493 	if (!handle)
1494 		return 0;
1495 
1496 	/* extra space in chunk to keep the handle */
1497 	size += ZS_HANDLE_SIZE;
1498 	class = pool->size_class[get_size_class_index(size)];
1499 
1500 	spin_lock(&class->lock);
1501 	zspage = find_get_zspage(class);
1502 	if (likely(zspage)) {
1503 		obj = obj_malloc(class, zspage, handle);
1504 		/* Now move the zspage to another fullness group, if required */
1505 		fix_fullness_group(class, zspage);
1506 		record_obj(handle, obj);
1507 		spin_unlock(&class->lock);
1508 
1509 		return handle;
1510 	}
1511 
1512 	spin_unlock(&class->lock);
1513 
1514 	zspage = alloc_zspage(pool, class, gfp);
1515 	if (!zspage) {
1516 		cache_free_handle(pool, handle);
1517 		return 0;
1518 	}
1519 
1520 	spin_lock(&class->lock);
1521 	obj = obj_malloc(class, zspage, handle);
1522 	newfg = get_fullness_group(class, zspage);
1523 	insert_zspage(class, zspage, newfg);
1524 	set_zspage_mapping(zspage, class->index, newfg);
1525 	record_obj(handle, obj);
1526 	atomic_long_add(class->pages_per_zspage,
1527 				&pool->pages_allocated);
1528 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1529 
1530 	/* We completely set up zspage so mark them as movable */
1531 	SetZsPageMovable(pool, zspage);
1532 	spin_unlock(&class->lock);
1533 
1534 	return handle;
1535 }
1536 EXPORT_SYMBOL_GPL(zs_malloc);
1537 
1538 static void obj_free(struct size_class *class, unsigned long obj)
1539 {
1540 	struct link_free *link;
1541 	struct zspage *zspage;
1542 	struct page *f_page;
1543 	unsigned long f_offset;
1544 	unsigned int f_objidx;
1545 	void *vaddr;
1546 
1547 	obj &= ~OBJ_ALLOCATED_TAG;
1548 	obj_to_location(obj, &f_page, &f_objidx);
1549 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1550 	zspage = get_zspage(f_page);
1551 
1552 	vaddr = kmap_atomic(f_page);
1553 
1554 	/* Insert this object in containing zspage's freelist */
1555 	link = (struct link_free *)(vaddr + f_offset);
1556 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1557 	kunmap_atomic(vaddr);
1558 	set_freeobj(zspage, f_objidx);
1559 	mod_zspage_inuse(zspage, -1);
1560 	zs_stat_dec(class, OBJ_USED, 1);
1561 }
1562 
1563 void zs_free(struct zs_pool *pool, unsigned long handle)
1564 {
1565 	struct zspage *zspage;
1566 	struct page *f_page;
1567 	unsigned long obj;
1568 	unsigned int f_objidx;
1569 	int class_idx;
1570 	struct size_class *class;
1571 	enum fullness_group fullness;
1572 	bool isolated;
1573 
1574 	if (unlikely(!handle))
1575 		return;
1576 
1577 	pin_tag(handle);
1578 	obj = handle_to_obj(handle);
1579 	obj_to_location(obj, &f_page, &f_objidx);
1580 	zspage = get_zspage(f_page);
1581 
1582 	migrate_read_lock(zspage);
1583 
1584 	get_zspage_mapping(zspage, &class_idx, &fullness);
1585 	class = pool->size_class[class_idx];
1586 
1587 	spin_lock(&class->lock);
1588 	obj_free(class, obj);
1589 	fullness = fix_fullness_group(class, zspage);
1590 	if (fullness != ZS_EMPTY) {
1591 		migrate_read_unlock(zspage);
1592 		goto out;
1593 	}
1594 
1595 	isolated = is_zspage_isolated(zspage);
1596 	migrate_read_unlock(zspage);
1597 	/* If zspage is isolated, zs_page_putback will free the zspage */
1598 	if (likely(!isolated))
1599 		free_zspage(pool, class, zspage);
1600 out:
1601 
1602 	spin_unlock(&class->lock);
1603 	unpin_tag(handle);
1604 	cache_free_handle(pool, handle);
1605 }
1606 EXPORT_SYMBOL_GPL(zs_free);
1607 
1608 static void zs_object_copy(struct size_class *class, unsigned long dst,
1609 				unsigned long src)
1610 {
1611 	struct page *s_page, *d_page;
1612 	unsigned int s_objidx, d_objidx;
1613 	unsigned long s_off, d_off;
1614 	void *s_addr, *d_addr;
1615 	int s_size, d_size, size;
1616 	int written = 0;
1617 
1618 	s_size = d_size = class->size;
1619 
1620 	obj_to_location(src, &s_page, &s_objidx);
1621 	obj_to_location(dst, &d_page, &d_objidx);
1622 
1623 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1624 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1625 
1626 	if (s_off + class->size > PAGE_SIZE)
1627 		s_size = PAGE_SIZE - s_off;
1628 
1629 	if (d_off + class->size > PAGE_SIZE)
1630 		d_size = PAGE_SIZE - d_off;
1631 
1632 	s_addr = kmap_atomic(s_page);
1633 	d_addr = kmap_atomic(d_page);
1634 
1635 	while (1) {
1636 		size = min(s_size, d_size);
1637 		memcpy(d_addr + d_off, s_addr + s_off, size);
1638 		written += size;
1639 
1640 		if (written == class->size)
1641 			break;
1642 
1643 		s_off += size;
1644 		s_size -= size;
1645 		d_off += size;
1646 		d_size -= size;
1647 
1648 		if (s_off >= PAGE_SIZE) {
1649 			kunmap_atomic(d_addr);
1650 			kunmap_atomic(s_addr);
1651 			s_page = get_next_page(s_page);
1652 			s_addr = kmap_atomic(s_page);
1653 			d_addr = kmap_atomic(d_page);
1654 			s_size = class->size - written;
1655 			s_off = 0;
1656 		}
1657 
1658 		if (d_off >= PAGE_SIZE) {
1659 			kunmap_atomic(d_addr);
1660 			d_page = get_next_page(d_page);
1661 			d_addr = kmap_atomic(d_page);
1662 			d_size = class->size - written;
1663 			d_off = 0;
1664 		}
1665 	}
1666 
1667 	kunmap_atomic(d_addr);
1668 	kunmap_atomic(s_addr);
1669 }
1670 
1671 /*
1672  * Find alloced object in zspage from index object and
1673  * return handle.
1674  */
1675 static unsigned long find_alloced_obj(struct size_class *class,
1676 					struct page *page, int *obj_idx)
1677 {
1678 	unsigned long head;
1679 	int offset = 0;
1680 	int index = *obj_idx;
1681 	unsigned long handle = 0;
1682 	void *addr = kmap_atomic(page);
1683 
1684 	offset = get_first_obj_offset(page);
1685 	offset += class->size * index;
1686 
1687 	while (offset < PAGE_SIZE) {
1688 		head = obj_to_head(page, addr + offset);
1689 		if (head & OBJ_ALLOCATED_TAG) {
1690 			handle = head & ~OBJ_ALLOCATED_TAG;
1691 			if (trypin_tag(handle))
1692 				break;
1693 			handle = 0;
1694 		}
1695 
1696 		offset += class->size;
1697 		index++;
1698 	}
1699 
1700 	kunmap_atomic(addr);
1701 
1702 	*obj_idx = index;
1703 
1704 	return handle;
1705 }
1706 
1707 struct zs_compact_control {
1708 	/* Source spage for migration which could be a subpage of zspage */
1709 	struct page *s_page;
1710 	/* Destination page for migration which should be a first page
1711 	 * of zspage. */
1712 	struct page *d_page;
1713 	 /* Starting object index within @s_page which used for live object
1714 	  * in the subpage. */
1715 	int obj_idx;
1716 };
1717 
1718 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1719 				struct zs_compact_control *cc)
1720 {
1721 	unsigned long used_obj, free_obj;
1722 	unsigned long handle;
1723 	struct page *s_page = cc->s_page;
1724 	struct page *d_page = cc->d_page;
1725 	int obj_idx = cc->obj_idx;
1726 	int ret = 0;
1727 
1728 	while (1) {
1729 		handle = find_alloced_obj(class, s_page, &obj_idx);
1730 		if (!handle) {
1731 			s_page = get_next_page(s_page);
1732 			if (!s_page)
1733 				break;
1734 			obj_idx = 0;
1735 			continue;
1736 		}
1737 
1738 		/* Stop if there is no more space */
1739 		if (zspage_full(class, get_zspage(d_page))) {
1740 			unpin_tag(handle);
1741 			ret = -ENOMEM;
1742 			break;
1743 		}
1744 
1745 		used_obj = handle_to_obj(handle);
1746 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1747 		zs_object_copy(class, free_obj, used_obj);
1748 		obj_idx++;
1749 		/*
1750 		 * record_obj updates handle's value to free_obj and it will
1751 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1752 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1753 		 * let's keep the lock bit.
1754 		 */
1755 		free_obj |= BIT(HANDLE_PIN_BIT);
1756 		record_obj(handle, free_obj);
1757 		unpin_tag(handle);
1758 		obj_free(class, used_obj);
1759 	}
1760 
1761 	/* Remember last position in this iteration */
1762 	cc->s_page = s_page;
1763 	cc->obj_idx = obj_idx;
1764 
1765 	return ret;
1766 }
1767 
1768 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1769 {
1770 	int i;
1771 	struct zspage *zspage;
1772 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1773 
1774 	if (!source) {
1775 		fg[0] = ZS_ALMOST_FULL;
1776 		fg[1] = ZS_ALMOST_EMPTY;
1777 	}
1778 
1779 	for (i = 0; i < 2; i++) {
1780 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1781 							struct zspage, list);
1782 		if (zspage) {
1783 			VM_BUG_ON(is_zspage_isolated(zspage));
1784 			remove_zspage(class, zspage, fg[i]);
1785 			return zspage;
1786 		}
1787 	}
1788 
1789 	return zspage;
1790 }
1791 
1792 /*
1793  * putback_zspage - add @zspage into right class's fullness list
1794  * @class: destination class
1795  * @zspage: target page
1796  *
1797  * Return @zspage's fullness_group
1798  */
1799 static enum fullness_group putback_zspage(struct size_class *class,
1800 			struct zspage *zspage)
1801 {
1802 	enum fullness_group fullness;
1803 
1804 	VM_BUG_ON(is_zspage_isolated(zspage));
1805 
1806 	fullness = get_fullness_group(class, zspage);
1807 	insert_zspage(class, zspage, fullness);
1808 	set_zspage_mapping(zspage, class->index, fullness);
1809 
1810 	return fullness;
1811 }
1812 
1813 #ifdef CONFIG_COMPACTION
1814 static struct dentry *zs_mount(struct file_system_type *fs_type,
1815 				int flags, const char *dev_name, void *data)
1816 {
1817 	static const struct dentry_operations ops = {
1818 		.d_dname = simple_dname,
1819 	};
1820 
1821 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1822 }
1823 
1824 static struct file_system_type zsmalloc_fs = {
1825 	.name		= "zsmalloc",
1826 	.mount		= zs_mount,
1827 	.kill_sb	= kill_anon_super,
1828 };
1829 
1830 static int zsmalloc_mount(void)
1831 {
1832 	int ret = 0;
1833 
1834 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1835 	if (IS_ERR(zsmalloc_mnt))
1836 		ret = PTR_ERR(zsmalloc_mnt);
1837 
1838 	return ret;
1839 }
1840 
1841 static void zsmalloc_unmount(void)
1842 {
1843 	kern_unmount(zsmalloc_mnt);
1844 }
1845 
1846 static void migrate_lock_init(struct zspage *zspage)
1847 {
1848 	rwlock_init(&zspage->lock);
1849 }
1850 
1851 static void migrate_read_lock(struct zspage *zspage)
1852 {
1853 	read_lock(&zspage->lock);
1854 }
1855 
1856 static void migrate_read_unlock(struct zspage *zspage)
1857 {
1858 	read_unlock(&zspage->lock);
1859 }
1860 
1861 static void migrate_write_lock(struct zspage *zspage)
1862 {
1863 	write_lock(&zspage->lock);
1864 }
1865 
1866 static void migrate_write_unlock(struct zspage *zspage)
1867 {
1868 	write_unlock(&zspage->lock);
1869 }
1870 
1871 /* Number of isolated subpage for *page migration* in this zspage */
1872 static void inc_zspage_isolation(struct zspage *zspage)
1873 {
1874 	zspage->isolated++;
1875 }
1876 
1877 static void dec_zspage_isolation(struct zspage *zspage)
1878 {
1879 	zspage->isolated--;
1880 }
1881 
1882 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1883 				struct page *newpage, struct page *oldpage)
1884 {
1885 	struct page *page;
1886 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1887 	int idx = 0;
1888 
1889 	page = get_first_page(zspage);
1890 	do {
1891 		if (page == oldpage)
1892 			pages[idx] = newpage;
1893 		else
1894 			pages[idx] = page;
1895 		idx++;
1896 	} while ((page = get_next_page(page)) != NULL);
1897 
1898 	create_page_chain(class, zspage, pages);
1899 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1900 	if (unlikely(PageHugeObject(oldpage)))
1901 		newpage->index = oldpage->index;
1902 	__SetPageMovable(newpage, page_mapping(oldpage));
1903 }
1904 
1905 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1906 {
1907 	struct zs_pool *pool;
1908 	struct size_class *class;
1909 	int class_idx;
1910 	enum fullness_group fullness;
1911 	struct zspage *zspage;
1912 	struct address_space *mapping;
1913 
1914 	/*
1915 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1916 	 * lock_zspage in free_zspage.
1917 	 */
1918 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1919 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1920 
1921 	zspage = get_zspage(page);
1922 
1923 	/*
1924 	 * Without class lock, fullness could be stale while class_idx is okay
1925 	 * because class_idx is constant unless page is freed so we should get
1926 	 * fullness again under class lock.
1927 	 */
1928 	get_zspage_mapping(zspage, &class_idx, &fullness);
1929 	mapping = page_mapping(page);
1930 	pool = mapping->private_data;
1931 	class = pool->size_class[class_idx];
1932 
1933 	spin_lock(&class->lock);
1934 	if (get_zspage_inuse(zspage) == 0) {
1935 		spin_unlock(&class->lock);
1936 		return false;
1937 	}
1938 
1939 	/* zspage is isolated for object migration */
1940 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941 		spin_unlock(&class->lock);
1942 		return false;
1943 	}
1944 
1945 	/*
1946 	 * If this is first time isolation for the zspage, isolate zspage from
1947 	 * size_class to prevent further object allocation from the zspage.
1948 	 */
1949 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1950 		get_zspage_mapping(zspage, &class_idx, &fullness);
1951 		remove_zspage(class, zspage, fullness);
1952 	}
1953 
1954 	inc_zspage_isolation(zspage);
1955 	spin_unlock(&class->lock);
1956 
1957 	return true;
1958 }
1959 
1960 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1961 		struct page *page, enum migrate_mode mode)
1962 {
1963 	struct zs_pool *pool;
1964 	struct size_class *class;
1965 	int class_idx;
1966 	enum fullness_group fullness;
1967 	struct zspage *zspage;
1968 	struct page *dummy;
1969 	void *s_addr, *d_addr, *addr;
1970 	int offset, pos;
1971 	unsigned long handle, head;
1972 	unsigned long old_obj, new_obj;
1973 	unsigned int obj_idx;
1974 	int ret = -EAGAIN;
1975 
1976 	/*
1977 	 * We cannot support the _NO_COPY case here, because copy needs to
1978 	 * happen under the zs lock, which does not work with
1979 	 * MIGRATE_SYNC_NO_COPY workflow.
1980 	 */
1981 	if (mode == MIGRATE_SYNC_NO_COPY)
1982 		return -EINVAL;
1983 
1984 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1985 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1986 
1987 	zspage = get_zspage(page);
1988 
1989 	/* Concurrent compactor cannot migrate any subpage in zspage */
1990 	migrate_write_lock(zspage);
1991 	get_zspage_mapping(zspage, &class_idx, &fullness);
1992 	pool = mapping->private_data;
1993 	class = pool->size_class[class_idx];
1994 	offset = get_first_obj_offset(page);
1995 
1996 	spin_lock(&class->lock);
1997 	if (!get_zspage_inuse(zspage)) {
1998 		/*
1999 		 * Set "offset" to end of the page so that every loops
2000 		 * skips unnecessary object scanning.
2001 		 */
2002 		offset = PAGE_SIZE;
2003 	}
2004 
2005 	pos = offset;
2006 	s_addr = kmap_atomic(page);
2007 	while (pos < PAGE_SIZE) {
2008 		head = obj_to_head(page, s_addr + pos);
2009 		if (head & OBJ_ALLOCATED_TAG) {
2010 			handle = head & ~OBJ_ALLOCATED_TAG;
2011 			if (!trypin_tag(handle))
2012 				goto unpin_objects;
2013 		}
2014 		pos += class->size;
2015 	}
2016 
2017 	/*
2018 	 * Here, any user cannot access all objects in the zspage so let's move.
2019 	 */
2020 	d_addr = kmap_atomic(newpage);
2021 	memcpy(d_addr, s_addr, PAGE_SIZE);
2022 	kunmap_atomic(d_addr);
2023 
2024 	for (addr = s_addr + offset; addr < s_addr + pos;
2025 					addr += class->size) {
2026 		head = obj_to_head(page, addr);
2027 		if (head & OBJ_ALLOCATED_TAG) {
2028 			handle = head & ~OBJ_ALLOCATED_TAG;
2029 			if (!testpin_tag(handle))
2030 				BUG();
2031 
2032 			old_obj = handle_to_obj(handle);
2033 			obj_to_location(old_obj, &dummy, &obj_idx);
2034 			new_obj = (unsigned long)location_to_obj(newpage,
2035 								obj_idx);
2036 			new_obj |= BIT(HANDLE_PIN_BIT);
2037 			record_obj(handle, new_obj);
2038 		}
2039 	}
2040 
2041 	replace_sub_page(class, zspage, newpage, page);
2042 	get_page(newpage);
2043 
2044 	dec_zspage_isolation(zspage);
2045 
2046 	/*
2047 	 * Page migration is done so let's putback isolated zspage to
2048 	 * the list if @page is final isolated subpage in the zspage.
2049 	 */
2050 	if (!is_zspage_isolated(zspage))
2051 		putback_zspage(class, zspage);
2052 
2053 	reset_page(page);
2054 	put_page(page);
2055 	page = newpage;
2056 
2057 	ret = MIGRATEPAGE_SUCCESS;
2058 unpin_objects:
2059 	for (addr = s_addr + offset; addr < s_addr + pos;
2060 						addr += class->size) {
2061 		head = obj_to_head(page, addr);
2062 		if (head & OBJ_ALLOCATED_TAG) {
2063 			handle = head & ~OBJ_ALLOCATED_TAG;
2064 			if (!testpin_tag(handle))
2065 				BUG();
2066 			unpin_tag(handle);
2067 		}
2068 	}
2069 	kunmap_atomic(s_addr);
2070 	spin_unlock(&class->lock);
2071 	migrate_write_unlock(zspage);
2072 
2073 	return ret;
2074 }
2075 
2076 void zs_page_putback(struct page *page)
2077 {
2078 	struct zs_pool *pool;
2079 	struct size_class *class;
2080 	int class_idx;
2081 	enum fullness_group fg;
2082 	struct address_space *mapping;
2083 	struct zspage *zspage;
2084 
2085 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2086 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2087 
2088 	zspage = get_zspage(page);
2089 	get_zspage_mapping(zspage, &class_idx, &fg);
2090 	mapping = page_mapping(page);
2091 	pool = mapping->private_data;
2092 	class = pool->size_class[class_idx];
2093 
2094 	spin_lock(&class->lock);
2095 	dec_zspage_isolation(zspage);
2096 	if (!is_zspage_isolated(zspage)) {
2097 		fg = putback_zspage(class, zspage);
2098 		/*
2099 		 * Due to page_lock, we cannot free zspage immediately
2100 		 * so let's defer.
2101 		 */
2102 		if (fg == ZS_EMPTY)
2103 			schedule_work(&pool->free_work);
2104 	}
2105 	spin_unlock(&class->lock);
2106 }
2107 
2108 const struct address_space_operations zsmalloc_aops = {
2109 	.isolate_page = zs_page_isolate,
2110 	.migratepage = zs_page_migrate,
2111 	.putback_page = zs_page_putback,
2112 };
2113 
2114 static int zs_register_migration(struct zs_pool *pool)
2115 {
2116 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2117 	if (IS_ERR(pool->inode)) {
2118 		pool->inode = NULL;
2119 		return 1;
2120 	}
2121 
2122 	pool->inode->i_mapping->private_data = pool;
2123 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2124 	return 0;
2125 }
2126 
2127 static void zs_unregister_migration(struct zs_pool *pool)
2128 {
2129 	flush_work(&pool->free_work);
2130 	iput(pool->inode);
2131 }
2132 
2133 /*
2134  * Caller should hold page_lock of all pages in the zspage
2135  * In here, we cannot use zspage meta data.
2136  */
2137 static void async_free_zspage(struct work_struct *work)
2138 {
2139 	int i;
2140 	struct size_class *class;
2141 	unsigned int class_idx;
2142 	enum fullness_group fullness;
2143 	struct zspage *zspage, *tmp;
2144 	LIST_HEAD(free_pages);
2145 	struct zs_pool *pool = container_of(work, struct zs_pool,
2146 					free_work);
2147 
2148 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2149 		class = pool->size_class[i];
2150 		if (class->index != i)
2151 			continue;
2152 
2153 		spin_lock(&class->lock);
2154 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2155 		spin_unlock(&class->lock);
2156 	}
2157 
2158 
2159 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2160 		list_del(&zspage->list);
2161 		lock_zspage(zspage);
2162 
2163 		get_zspage_mapping(zspage, &class_idx, &fullness);
2164 		VM_BUG_ON(fullness != ZS_EMPTY);
2165 		class = pool->size_class[class_idx];
2166 		spin_lock(&class->lock);
2167 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2168 		spin_unlock(&class->lock);
2169 	}
2170 };
2171 
2172 static void kick_deferred_free(struct zs_pool *pool)
2173 {
2174 	schedule_work(&pool->free_work);
2175 }
2176 
2177 static void init_deferred_free(struct zs_pool *pool)
2178 {
2179 	INIT_WORK(&pool->free_work, async_free_zspage);
2180 }
2181 
2182 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2183 {
2184 	struct page *page = get_first_page(zspage);
2185 
2186 	do {
2187 		WARN_ON(!trylock_page(page));
2188 		__SetPageMovable(page, pool->inode->i_mapping);
2189 		unlock_page(page);
2190 	} while ((page = get_next_page(page)) != NULL);
2191 }
2192 #endif
2193 
2194 /*
2195  *
2196  * Based on the number of unused allocated objects calculate
2197  * and return the number of pages that we can free.
2198  */
2199 static unsigned long zs_can_compact(struct size_class *class)
2200 {
2201 	unsigned long obj_wasted;
2202 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2203 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2204 
2205 	if (obj_allocated <= obj_used)
2206 		return 0;
2207 
2208 	obj_wasted = obj_allocated - obj_used;
2209 	obj_wasted /= class->objs_per_zspage;
2210 
2211 	return obj_wasted * class->pages_per_zspage;
2212 }
2213 
2214 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2215 {
2216 	struct zs_compact_control cc;
2217 	struct zspage *src_zspage;
2218 	struct zspage *dst_zspage = NULL;
2219 
2220 	spin_lock(&class->lock);
2221 	while ((src_zspage = isolate_zspage(class, true))) {
2222 
2223 		if (!zs_can_compact(class))
2224 			break;
2225 
2226 		cc.obj_idx = 0;
2227 		cc.s_page = get_first_page(src_zspage);
2228 
2229 		while ((dst_zspage = isolate_zspage(class, false))) {
2230 			cc.d_page = get_first_page(dst_zspage);
2231 			/*
2232 			 * If there is no more space in dst_page, resched
2233 			 * and see if anyone had allocated another zspage.
2234 			 */
2235 			if (!migrate_zspage(pool, class, &cc))
2236 				break;
2237 
2238 			putback_zspage(class, dst_zspage);
2239 		}
2240 
2241 		/* Stop if we couldn't find slot */
2242 		if (dst_zspage == NULL)
2243 			break;
2244 
2245 		putback_zspage(class, dst_zspage);
2246 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2247 			free_zspage(pool, class, src_zspage);
2248 			pool->stats.pages_compacted += class->pages_per_zspage;
2249 		}
2250 		spin_unlock(&class->lock);
2251 		cond_resched();
2252 		spin_lock(&class->lock);
2253 	}
2254 
2255 	if (src_zspage)
2256 		putback_zspage(class, src_zspage);
2257 
2258 	spin_unlock(&class->lock);
2259 }
2260 
2261 unsigned long zs_compact(struct zs_pool *pool)
2262 {
2263 	int i;
2264 	struct size_class *class;
2265 
2266 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2267 		class = pool->size_class[i];
2268 		if (!class)
2269 			continue;
2270 		if (class->index != i)
2271 			continue;
2272 		__zs_compact(pool, class);
2273 	}
2274 
2275 	return pool->stats.pages_compacted;
2276 }
2277 EXPORT_SYMBOL_GPL(zs_compact);
2278 
2279 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2280 {
2281 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2282 }
2283 EXPORT_SYMBOL_GPL(zs_pool_stats);
2284 
2285 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2286 		struct shrink_control *sc)
2287 {
2288 	unsigned long pages_freed;
2289 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2290 			shrinker);
2291 
2292 	pages_freed = pool->stats.pages_compacted;
2293 	/*
2294 	 * Compact classes and calculate compaction delta.
2295 	 * Can run concurrently with a manually triggered
2296 	 * (by user) compaction.
2297 	 */
2298 	pages_freed = zs_compact(pool) - pages_freed;
2299 
2300 	return pages_freed ? pages_freed : SHRINK_STOP;
2301 }
2302 
2303 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2304 		struct shrink_control *sc)
2305 {
2306 	int i;
2307 	struct size_class *class;
2308 	unsigned long pages_to_free = 0;
2309 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2310 			shrinker);
2311 
2312 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2313 		class = pool->size_class[i];
2314 		if (!class)
2315 			continue;
2316 		if (class->index != i)
2317 			continue;
2318 
2319 		pages_to_free += zs_can_compact(class);
2320 	}
2321 
2322 	return pages_to_free;
2323 }
2324 
2325 static void zs_unregister_shrinker(struct zs_pool *pool)
2326 {
2327 	unregister_shrinker(&pool->shrinker);
2328 }
2329 
2330 static int zs_register_shrinker(struct zs_pool *pool)
2331 {
2332 	pool->shrinker.scan_objects = zs_shrinker_scan;
2333 	pool->shrinker.count_objects = zs_shrinker_count;
2334 	pool->shrinker.batch = 0;
2335 	pool->shrinker.seeks = DEFAULT_SEEKS;
2336 
2337 	return register_shrinker(&pool->shrinker);
2338 }
2339 
2340 /**
2341  * zs_create_pool - Creates an allocation pool to work from.
2342  * @name: pool name to be created
2343  *
2344  * This function must be called before anything when using
2345  * the zsmalloc allocator.
2346  *
2347  * On success, a pointer to the newly created pool is returned,
2348  * otherwise NULL.
2349  */
2350 struct zs_pool *zs_create_pool(const char *name)
2351 {
2352 	int i;
2353 	struct zs_pool *pool;
2354 	struct size_class *prev_class = NULL;
2355 
2356 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2357 	if (!pool)
2358 		return NULL;
2359 
2360 	init_deferred_free(pool);
2361 
2362 	pool->name = kstrdup(name, GFP_KERNEL);
2363 	if (!pool->name)
2364 		goto err;
2365 
2366 	if (create_cache(pool))
2367 		goto err;
2368 
2369 	/*
2370 	 * Iterate reversely, because, size of size_class that we want to use
2371 	 * for merging should be larger or equal to current size.
2372 	 */
2373 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2374 		int size;
2375 		int pages_per_zspage;
2376 		int objs_per_zspage;
2377 		struct size_class *class;
2378 		int fullness = 0;
2379 
2380 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2381 		if (size > ZS_MAX_ALLOC_SIZE)
2382 			size = ZS_MAX_ALLOC_SIZE;
2383 		pages_per_zspage = get_pages_per_zspage(size);
2384 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2385 
2386 		/*
2387 		 * We iterate from biggest down to smallest classes,
2388 		 * so huge_class_size holds the size of the first huge
2389 		 * class. Any object bigger than or equal to that will
2390 		 * endup in the huge class.
2391 		 */
2392 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2393 				!huge_class_size) {
2394 			huge_class_size = size;
2395 			/*
2396 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2397 			 * handle. We need to subtract it, because zs_malloc()
2398 			 * unconditionally adds handle size before it performs
2399 			 * size class search - so object may be smaller than
2400 			 * huge class size, yet it still can end up in the huge
2401 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2402 			 * right before class lookup.
2403 			 */
2404 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2405 		}
2406 
2407 		/*
2408 		 * size_class is used for normal zsmalloc operation such
2409 		 * as alloc/free for that size. Although it is natural that we
2410 		 * have one size_class for each size, there is a chance that we
2411 		 * can get more memory utilization if we use one size_class for
2412 		 * many different sizes whose size_class have same
2413 		 * characteristics. So, we makes size_class point to
2414 		 * previous size_class if possible.
2415 		 */
2416 		if (prev_class) {
2417 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2418 				pool->size_class[i] = prev_class;
2419 				continue;
2420 			}
2421 		}
2422 
2423 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2424 		if (!class)
2425 			goto err;
2426 
2427 		class->size = size;
2428 		class->index = i;
2429 		class->pages_per_zspage = pages_per_zspage;
2430 		class->objs_per_zspage = objs_per_zspage;
2431 		spin_lock_init(&class->lock);
2432 		pool->size_class[i] = class;
2433 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2434 							fullness++)
2435 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2436 
2437 		prev_class = class;
2438 	}
2439 
2440 	/* debug only, don't abort if it fails */
2441 	zs_pool_stat_create(pool, name);
2442 
2443 	if (zs_register_migration(pool))
2444 		goto err;
2445 
2446 	/*
2447 	 * Not critical since shrinker is only used to trigger internal
2448 	 * defragmentation of the pool which is pretty optional thing.  If
2449 	 * registration fails we still can use the pool normally and user can
2450 	 * trigger compaction manually. Thus, ignore return code.
2451 	 */
2452 	zs_register_shrinker(pool);
2453 
2454 	return pool;
2455 
2456 err:
2457 	zs_destroy_pool(pool);
2458 	return NULL;
2459 }
2460 EXPORT_SYMBOL_GPL(zs_create_pool);
2461 
2462 void zs_destroy_pool(struct zs_pool *pool)
2463 {
2464 	int i;
2465 
2466 	zs_unregister_shrinker(pool);
2467 	zs_unregister_migration(pool);
2468 	zs_pool_stat_destroy(pool);
2469 
2470 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2471 		int fg;
2472 		struct size_class *class = pool->size_class[i];
2473 
2474 		if (!class)
2475 			continue;
2476 
2477 		if (class->index != i)
2478 			continue;
2479 
2480 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2481 			if (!list_empty(&class->fullness_list[fg])) {
2482 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2483 					class->size, fg);
2484 			}
2485 		}
2486 		kfree(class);
2487 	}
2488 
2489 	destroy_cache(pool);
2490 	kfree(pool->name);
2491 	kfree(pool);
2492 }
2493 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2494 
2495 static int __init zs_init(void)
2496 {
2497 	int ret;
2498 
2499 	ret = zsmalloc_mount();
2500 	if (ret)
2501 		goto out;
2502 
2503 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2504 				zs_cpu_prepare, zs_cpu_dead);
2505 	if (ret)
2506 		goto hp_setup_fail;
2507 
2508 #ifdef CONFIG_ZPOOL
2509 	zpool_register_driver(&zs_zpool_driver);
2510 #endif
2511 
2512 	zs_stat_init();
2513 
2514 	return 0;
2515 
2516 hp_setup_fail:
2517 	zsmalloc_unmount();
2518 out:
2519 	return ret;
2520 }
2521 
2522 static void __exit zs_exit(void)
2523 {
2524 #ifdef CONFIG_ZPOOL
2525 	zpool_unregister_driver(&zs_zpool_driver);
2526 #endif
2527 	zsmalloc_unmount();
2528 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2529 
2530 	zs_stat_exit();
2531 }
2532 
2533 module_init(zs_init);
2534 module_exit(zs_exit);
2535 
2536 MODULE_LICENSE("Dual BSD/GPL");
2537 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2538