1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 /* The highest zone to isolate pages for reclaim from */ 88 enum zone_type reclaim_idx; 89 90 unsigned int may_writepage:1; 91 92 /* Can mapped pages be reclaimed? */ 93 unsigned int may_unmap:1; 94 95 /* Can pages be swapped as part of reclaim? */ 96 unsigned int may_swap:1; 97 98 /* Can cgroups be reclaimed below their normal consumption range? */ 99 unsigned int may_thrash:1; 100 101 unsigned int hibernation_mode:1; 102 103 /* One of the zones is ready for compaction */ 104 unsigned int compaction_ready:1; 105 106 /* Incremented by the number of inactive pages that were scanned */ 107 unsigned long nr_scanned; 108 109 /* Number of pages freed so far during a call to shrink_zones() */ 110 unsigned long nr_reclaimed; 111 }; 112 113 #ifdef ARCH_HAS_PREFETCH 114 #define prefetch_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetch(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 #ifdef ARCH_HAS_PREFETCHW 128 #define prefetchw_prev_lru_page(_page, _base, _field) \ 129 do { \ 130 if ((_page)->lru.prev != _base) { \ 131 struct page *prev; \ 132 \ 133 prev = lru_to_page(&(_page->lru)); \ 134 prefetchw(&prev->_field); \ 135 } \ 136 } while (0) 137 #else 138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 139 #endif 140 141 /* 142 * From 0 .. 100. Higher means more swappy. 143 */ 144 int vm_swappiness = 60; 145 /* 146 * The total number of pages which are beyond the high watermark within all 147 * zones. 148 */ 149 unsigned long vm_total_pages; 150 151 static LIST_HEAD(shrinker_list); 152 static DECLARE_RWSEM(shrinker_rwsem); 153 154 #ifdef CONFIG_MEMCG 155 static bool global_reclaim(struct scan_control *sc) 156 { 157 return !sc->target_mem_cgroup; 158 } 159 160 /** 161 * sane_reclaim - is the usual dirty throttling mechanism operational? 162 * @sc: scan_control in question 163 * 164 * The normal page dirty throttling mechanism in balance_dirty_pages() is 165 * completely broken with the legacy memcg and direct stalling in 166 * shrink_page_list() is used for throttling instead, which lacks all the 167 * niceties such as fairness, adaptive pausing, bandwidth proportional 168 * allocation and configurability. 169 * 170 * This function tests whether the vmscan currently in progress can assume 171 * that the normal dirty throttling mechanism is operational. 172 */ 173 static bool sane_reclaim(struct scan_control *sc) 174 { 175 struct mem_cgroup *memcg = sc->target_mem_cgroup; 176 177 if (!memcg) 178 return true; 179 #ifdef CONFIG_CGROUP_WRITEBACK 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 181 return true; 182 #endif 183 return false; 184 } 185 #else 186 static bool global_reclaim(struct scan_control *sc) 187 { 188 return true; 189 } 190 191 static bool sane_reclaim(struct scan_control *sc) 192 { 193 return true; 194 } 195 #endif 196 197 /* 198 * This misses isolated pages which are not accounted for to save counters. 199 * As the data only determines if reclaim or compaction continues, it is 200 * not expected that isolated pages will be a dominating factor. 201 */ 202 unsigned long zone_reclaimable_pages(struct zone *zone) 203 { 204 unsigned long nr; 205 206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 208 if (get_nr_swap_pages() > 0) 209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 211 212 return nr; 213 } 214 215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 216 { 217 unsigned long nr; 218 219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 222 223 if (get_nr_swap_pages() > 0) 224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 227 228 return nr; 229 } 230 231 bool pgdat_reclaimable(struct pglist_data *pgdat) 232 { 233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) < 234 pgdat_reclaimable_pages(pgdat) * 6; 235 } 236 237 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) 238 { 239 if (!mem_cgroup_disabled()) 240 return mem_cgroup_get_lru_size(lruvec, lru); 241 242 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 243 } 244 245 unsigned long lruvec_zone_lru_size(struct lruvec *lruvec, enum lru_list lru, 246 int zone_idx) 247 { 248 if (!mem_cgroup_disabled()) 249 return mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx); 250 251 return zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zone_idx], 252 NR_ZONE_LRU_BASE + lru); 253 } 254 255 /* 256 * Add a shrinker callback to be called from the vm. 257 */ 258 int register_shrinker(struct shrinker *shrinker) 259 { 260 size_t size = sizeof(*shrinker->nr_deferred); 261 262 if (shrinker->flags & SHRINKER_NUMA_AWARE) 263 size *= nr_node_ids; 264 265 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 266 if (!shrinker->nr_deferred) 267 return -ENOMEM; 268 269 down_write(&shrinker_rwsem); 270 list_add_tail(&shrinker->list, &shrinker_list); 271 up_write(&shrinker_rwsem); 272 return 0; 273 } 274 EXPORT_SYMBOL(register_shrinker); 275 276 /* 277 * Remove one 278 */ 279 void unregister_shrinker(struct shrinker *shrinker) 280 { 281 down_write(&shrinker_rwsem); 282 list_del(&shrinker->list); 283 up_write(&shrinker_rwsem); 284 kfree(shrinker->nr_deferred); 285 } 286 EXPORT_SYMBOL(unregister_shrinker); 287 288 #define SHRINK_BATCH 128 289 290 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 291 struct shrinker *shrinker, 292 unsigned long nr_scanned, 293 unsigned long nr_eligible) 294 { 295 unsigned long freed = 0; 296 unsigned long long delta; 297 long total_scan; 298 long freeable; 299 long nr; 300 long new_nr; 301 int nid = shrinkctl->nid; 302 long batch_size = shrinker->batch ? shrinker->batch 303 : SHRINK_BATCH; 304 long scanned = 0, next_deferred; 305 306 freeable = shrinker->count_objects(shrinker, shrinkctl); 307 if (freeable == 0) 308 return 0; 309 310 /* 311 * copy the current shrinker scan count into a local variable 312 * and zero it so that other concurrent shrinker invocations 313 * don't also do this scanning work. 314 */ 315 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 316 317 total_scan = nr; 318 delta = (4 * nr_scanned) / shrinker->seeks; 319 delta *= freeable; 320 do_div(delta, nr_eligible + 1); 321 total_scan += delta; 322 if (total_scan < 0) { 323 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 324 shrinker->scan_objects, total_scan); 325 total_scan = freeable; 326 next_deferred = nr; 327 } else 328 next_deferred = total_scan; 329 330 /* 331 * We need to avoid excessive windup on filesystem shrinkers 332 * due to large numbers of GFP_NOFS allocations causing the 333 * shrinkers to return -1 all the time. This results in a large 334 * nr being built up so when a shrink that can do some work 335 * comes along it empties the entire cache due to nr >>> 336 * freeable. This is bad for sustaining a working set in 337 * memory. 338 * 339 * Hence only allow the shrinker to scan the entire cache when 340 * a large delta change is calculated directly. 341 */ 342 if (delta < freeable / 4) 343 total_scan = min(total_scan, freeable / 2); 344 345 /* 346 * Avoid risking looping forever due to too large nr value: 347 * never try to free more than twice the estimate number of 348 * freeable entries. 349 */ 350 if (total_scan > freeable * 2) 351 total_scan = freeable * 2; 352 353 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 354 nr_scanned, nr_eligible, 355 freeable, delta, total_scan); 356 357 /* 358 * Normally, we should not scan less than batch_size objects in one 359 * pass to avoid too frequent shrinker calls, but if the slab has less 360 * than batch_size objects in total and we are really tight on memory, 361 * we will try to reclaim all available objects, otherwise we can end 362 * up failing allocations although there are plenty of reclaimable 363 * objects spread over several slabs with usage less than the 364 * batch_size. 365 * 366 * We detect the "tight on memory" situations by looking at the total 367 * number of objects we want to scan (total_scan). If it is greater 368 * than the total number of objects on slab (freeable), we must be 369 * scanning at high prio and therefore should try to reclaim as much as 370 * possible. 371 */ 372 while (total_scan >= batch_size || 373 total_scan >= freeable) { 374 unsigned long ret; 375 unsigned long nr_to_scan = min(batch_size, total_scan); 376 377 shrinkctl->nr_to_scan = nr_to_scan; 378 ret = shrinker->scan_objects(shrinker, shrinkctl); 379 if (ret == SHRINK_STOP) 380 break; 381 freed += ret; 382 383 count_vm_events(SLABS_SCANNED, nr_to_scan); 384 total_scan -= nr_to_scan; 385 scanned += nr_to_scan; 386 387 cond_resched(); 388 } 389 390 if (next_deferred >= scanned) 391 next_deferred -= scanned; 392 else 393 next_deferred = 0; 394 /* 395 * move the unused scan count back into the shrinker in a 396 * manner that handles concurrent updates. If we exhausted the 397 * scan, there is no need to do an update. 398 */ 399 if (next_deferred > 0) 400 new_nr = atomic_long_add_return(next_deferred, 401 &shrinker->nr_deferred[nid]); 402 else 403 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 404 405 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 406 return freed; 407 } 408 409 /** 410 * shrink_slab - shrink slab caches 411 * @gfp_mask: allocation context 412 * @nid: node whose slab caches to target 413 * @memcg: memory cgroup whose slab caches to target 414 * @nr_scanned: pressure numerator 415 * @nr_eligible: pressure denominator 416 * 417 * Call the shrink functions to age shrinkable caches. 418 * 419 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 420 * unaware shrinkers will receive a node id of 0 instead. 421 * 422 * @memcg specifies the memory cgroup to target. If it is not NULL, 423 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 424 * objects from the memory cgroup specified. Otherwise, only unaware 425 * shrinkers are called. 426 * 427 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 428 * the available objects should be scanned. Page reclaim for example 429 * passes the number of pages scanned and the number of pages on the 430 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 431 * when it encountered mapped pages. The ratio is further biased by 432 * the ->seeks setting of the shrink function, which indicates the 433 * cost to recreate an object relative to that of an LRU page. 434 * 435 * Returns the number of reclaimed slab objects. 436 */ 437 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 438 struct mem_cgroup *memcg, 439 unsigned long nr_scanned, 440 unsigned long nr_eligible) 441 { 442 struct shrinker *shrinker; 443 unsigned long freed = 0; 444 445 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 446 return 0; 447 448 if (nr_scanned == 0) 449 nr_scanned = SWAP_CLUSTER_MAX; 450 451 if (!down_read_trylock(&shrinker_rwsem)) { 452 /* 453 * If we would return 0, our callers would understand that we 454 * have nothing else to shrink and give up trying. By returning 455 * 1 we keep it going and assume we'll be able to shrink next 456 * time. 457 */ 458 freed = 1; 459 goto out; 460 } 461 462 list_for_each_entry(shrinker, &shrinker_list, list) { 463 struct shrink_control sc = { 464 .gfp_mask = gfp_mask, 465 .nid = nid, 466 .memcg = memcg, 467 }; 468 469 /* 470 * If kernel memory accounting is disabled, we ignore 471 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 472 * passing NULL for memcg. 473 */ 474 if (memcg_kmem_enabled() && 475 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 476 continue; 477 478 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 479 sc.nid = 0; 480 481 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 482 } 483 484 up_read(&shrinker_rwsem); 485 out: 486 cond_resched(); 487 return freed; 488 } 489 490 void drop_slab_node(int nid) 491 { 492 unsigned long freed; 493 494 do { 495 struct mem_cgroup *memcg = NULL; 496 497 freed = 0; 498 do { 499 freed += shrink_slab(GFP_KERNEL, nid, memcg, 500 1000, 1000); 501 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 502 } while (freed > 10); 503 } 504 505 void drop_slab(void) 506 { 507 int nid; 508 509 for_each_online_node(nid) 510 drop_slab_node(nid); 511 } 512 513 static inline int is_page_cache_freeable(struct page *page) 514 { 515 /* 516 * A freeable page cache page is referenced only by the caller 517 * that isolated the page, the page cache radix tree and 518 * optional buffer heads at page->private. 519 */ 520 return page_count(page) - page_has_private(page) == 2; 521 } 522 523 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 524 { 525 if (current->flags & PF_SWAPWRITE) 526 return 1; 527 if (!inode_write_congested(inode)) 528 return 1; 529 if (inode_to_bdi(inode) == current->backing_dev_info) 530 return 1; 531 return 0; 532 } 533 534 /* 535 * We detected a synchronous write error writing a page out. Probably 536 * -ENOSPC. We need to propagate that into the address_space for a subsequent 537 * fsync(), msync() or close(). 538 * 539 * The tricky part is that after writepage we cannot touch the mapping: nothing 540 * prevents it from being freed up. But we have a ref on the page and once 541 * that page is locked, the mapping is pinned. 542 * 543 * We're allowed to run sleeping lock_page() here because we know the caller has 544 * __GFP_FS. 545 */ 546 static void handle_write_error(struct address_space *mapping, 547 struct page *page, int error) 548 { 549 lock_page(page); 550 if (page_mapping(page) == mapping) 551 mapping_set_error(mapping, error); 552 unlock_page(page); 553 } 554 555 /* possible outcome of pageout() */ 556 typedef enum { 557 /* failed to write page out, page is locked */ 558 PAGE_KEEP, 559 /* move page to the active list, page is locked */ 560 PAGE_ACTIVATE, 561 /* page has been sent to the disk successfully, page is unlocked */ 562 PAGE_SUCCESS, 563 /* page is clean and locked */ 564 PAGE_CLEAN, 565 } pageout_t; 566 567 /* 568 * pageout is called by shrink_page_list() for each dirty page. 569 * Calls ->writepage(). 570 */ 571 static pageout_t pageout(struct page *page, struct address_space *mapping, 572 struct scan_control *sc) 573 { 574 /* 575 * If the page is dirty, only perform writeback if that write 576 * will be non-blocking. To prevent this allocation from being 577 * stalled by pagecache activity. But note that there may be 578 * stalls if we need to run get_block(). We could test 579 * PagePrivate for that. 580 * 581 * If this process is currently in __generic_file_write_iter() against 582 * this page's queue, we can perform writeback even if that 583 * will block. 584 * 585 * If the page is swapcache, write it back even if that would 586 * block, for some throttling. This happens by accident, because 587 * swap_backing_dev_info is bust: it doesn't reflect the 588 * congestion state of the swapdevs. Easy to fix, if needed. 589 */ 590 if (!is_page_cache_freeable(page)) 591 return PAGE_KEEP; 592 if (!mapping) { 593 /* 594 * Some data journaling orphaned pages can have 595 * page->mapping == NULL while being dirty with clean buffers. 596 */ 597 if (page_has_private(page)) { 598 if (try_to_free_buffers(page)) { 599 ClearPageDirty(page); 600 pr_info("%s: orphaned page\n", __func__); 601 return PAGE_CLEAN; 602 } 603 } 604 return PAGE_KEEP; 605 } 606 if (mapping->a_ops->writepage == NULL) 607 return PAGE_ACTIVATE; 608 if (!may_write_to_inode(mapping->host, sc)) 609 return PAGE_KEEP; 610 611 if (clear_page_dirty_for_io(page)) { 612 int res; 613 struct writeback_control wbc = { 614 .sync_mode = WB_SYNC_NONE, 615 .nr_to_write = SWAP_CLUSTER_MAX, 616 .range_start = 0, 617 .range_end = LLONG_MAX, 618 .for_reclaim = 1, 619 }; 620 621 SetPageReclaim(page); 622 res = mapping->a_ops->writepage(page, &wbc); 623 if (res < 0) 624 handle_write_error(mapping, page, res); 625 if (res == AOP_WRITEPAGE_ACTIVATE) { 626 ClearPageReclaim(page); 627 return PAGE_ACTIVATE; 628 } 629 630 if (!PageWriteback(page)) { 631 /* synchronous write or broken a_ops? */ 632 ClearPageReclaim(page); 633 } 634 trace_mm_vmscan_writepage(page); 635 inc_node_page_state(page, NR_VMSCAN_WRITE); 636 return PAGE_SUCCESS; 637 } 638 639 return PAGE_CLEAN; 640 } 641 642 /* 643 * Same as remove_mapping, but if the page is removed from the mapping, it 644 * gets returned with a refcount of 0. 645 */ 646 static int __remove_mapping(struct address_space *mapping, struct page *page, 647 bool reclaimed) 648 { 649 unsigned long flags; 650 651 BUG_ON(!PageLocked(page)); 652 BUG_ON(mapping != page_mapping(page)); 653 654 spin_lock_irqsave(&mapping->tree_lock, flags); 655 /* 656 * The non racy check for a busy page. 657 * 658 * Must be careful with the order of the tests. When someone has 659 * a ref to the page, it may be possible that they dirty it then 660 * drop the reference. So if PageDirty is tested before page_count 661 * here, then the following race may occur: 662 * 663 * get_user_pages(&page); 664 * [user mapping goes away] 665 * write_to(page); 666 * !PageDirty(page) [good] 667 * SetPageDirty(page); 668 * put_page(page); 669 * !page_count(page) [good, discard it] 670 * 671 * [oops, our write_to data is lost] 672 * 673 * Reversing the order of the tests ensures such a situation cannot 674 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 675 * load is not satisfied before that of page->_refcount. 676 * 677 * Note that if SetPageDirty is always performed via set_page_dirty, 678 * and thus under tree_lock, then this ordering is not required. 679 */ 680 if (!page_ref_freeze(page, 2)) 681 goto cannot_free; 682 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 683 if (unlikely(PageDirty(page))) { 684 page_ref_unfreeze(page, 2); 685 goto cannot_free; 686 } 687 688 if (PageSwapCache(page)) { 689 swp_entry_t swap = { .val = page_private(page) }; 690 mem_cgroup_swapout(page, swap); 691 __delete_from_swap_cache(page); 692 spin_unlock_irqrestore(&mapping->tree_lock, flags); 693 swapcache_free(swap); 694 } else { 695 void (*freepage)(struct page *); 696 void *shadow = NULL; 697 698 freepage = mapping->a_ops->freepage; 699 /* 700 * Remember a shadow entry for reclaimed file cache in 701 * order to detect refaults, thus thrashing, later on. 702 * 703 * But don't store shadows in an address space that is 704 * already exiting. This is not just an optizimation, 705 * inode reclaim needs to empty out the radix tree or 706 * the nodes are lost. Don't plant shadows behind its 707 * back. 708 * 709 * We also don't store shadows for DAX mappings because the 710 * only page cache pages found in these are zero pages 711 * covering holes, and because we don't want to mix DAX 712 * exceptional entries and shadow exceptional entries in the 713 * same page_tree. 714 */ 715 if (reclaimed && page_is_file_cache(page) && 716 !mapping_exiting(mapping) && !dax_mapping(mapping)) 717 shadow = workingset_eviction(mapping, page); 718 __delete_from_page_cache(page, shadow); 719 spin_unlock_irqrestore(&mapping->tree_lock, flags); 720 721 if (freepage != NULL) 722 freepage(page); 723 } 724 725 return 1; 726 727 cannot_free: 728 spin_unlock_irqrestore(&mapping->tree_lock, flags); 729 return 0; 730 } 731 732 /* 733 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 734 * someone else has a ref on the page, abort and return 0. If it was 735 * successfully detached, return 1. Assumes the caller has a single ref on 736 * this page. 737 */ 738 int remove_mapping(struct address_space *mapping, struct page *page) 739 { 740 if (__remove_mapping(mapping, page, false)) { 741 /* 742 * Unfreezing the refcount with 1 rather than 2 effectively 743 * drops the pagecache ref for us without requiring another 744 * atomic operation. 745 */ 746 page_ref_unfreeze(page, 1); 747 return 1; 748 } 749 return 0; 750 } 751 752 /** 753 * putback_lru_page - put previously isolated page onto appropriate LRU list 754 * @page: page to be put back to appropriate lru list 755 * 756 * Add previously isolated @page to appropriate LRU list. 757 * Page may still be unevictable for other reasons. 758 * 759 * lru_lock must not be held, interrupts must be enabled. 760 */ 761 void putback_lru_page(struct page *page) 762 { 763 bool is_unevictable; 764 int was_unevictable = PageUnevictable(page); 765 766 VM_BUG_ON_PAGE(PageLRU(page), page); 767 768 redo: 769 ClearPageUnevictable(page); 770 771 if (page_evictable(page)) { 772 /* 773 * For evictable pages, we can use the cache. 774 * In event of a race, worst case is we end up with an 775 * unevictable page on [in]active list. 776 * We know how to handle that. 777 */ 778 is_unevictable = false; 779 lru_cache_add(page); 780 } else { 781 /* 782 * Put unevictable pages directly on zone's unevictable 783 * list. 784 */ 785 is_unevictable = true; 786 add_page_to_unevictable_list(page); 787 /* 788 * When racing with an mlock or AS_UNEVICTABLE clearing 789 * (page is unlocked) make sure that if the other thread 790 * does not observe our setting of PG_lru and fails 791 * isolation/check_move_unevictable_pages, 792 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 793 * the page back to the evictable list. 794 * 795 * The other side is TestClearPageMlocked() or shmem_lock(). 796 */ 797 smp_mb(); 798 } 799 800 /* 801 * page's status can change while we move it among lru. If an evictable 802 * page is on unevictable list, it never be freed. To avoid that, 803 * check after we added it to the list, again. 804 */ 805 if (is_unevictable && page_evictable(page)) { 806 if (!isolate_lru_page(page)) { 807 put_page(page); 808 goto redo; 809 } 810 /* This means someone else dropped this page from LRU 811 * So, it will be freed or putback to LRU again. There is 812 * nothing to do here. 813 */ 814 } 815 816 if (was_unevictable && !is_unevictable) 817 count_vm_event(UNEVICTABLE_PGRESCUED); 818 else if (!was_unevictable && is_unevictable) 819 count_vm_event(UNEVICTABLE_PGCULLED); 820 821 put_page(page); /* drop ref from isolate */ 822 } 823 824 enum page_references { 825 PAGEREF_RECLAIM, 826 PAGEREF_RECLAIM_CLEAN, 827 PAGEREF_KEEP, 828 PAGEREF_ACTIVATE, 829 }; 830 831 static enum page_references page_check_references(struct page *page, 832 struct scan_control *sc) 833 { 834 int referenced_ptes, referenced_page; 835 unsigned long vm_flags; 836 837 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 838 &vm_flags); 839 referenced_page = TestClearPageReferenced(page); 840 841 /* 842 * Mlock lost the isolation race with us. Let try_to_unmap() 843 * move the page to the unevictable list. 844 */ 845 if (vm_flags & VM_LOCKED) 846 return PAGEREF_RECLAIM; 847 848 if (referenced_ptes) { 849 if (PageSwapBacked(page)) 850 return PAGEREF_ACTIVATE; 851 /* 852 * All mapped pages start out with page table 853 * references from the instantiating fault, so we need 854 * to look twice if a mapped file page is used more 855 * than once. 856 * 857 * Mark it and spare it for another trip around the 858 * inactive list. Another page table reference will 859 * lead to its activation. 860 * 861 * Note: the mark is set for activated pages as well 862 * so that recently deactivated but used pages are 863 * quickly recovered. 864 */ 865 SetPageReferenced(page); 866 867 if (referenced_page || referenced_ptes > 1) 868 return PAGEREF_ACTIVATE; 869 870 /* 871 * Activate file-backed executable pages after first usage. 872 */ 873 if (vm_flags & VM_EXEC) 874 return PAGEREF_ACTIVATE; 875 876 return PAGEREF_KEEP; 877 } 878 879 /* Reclaim if clean, defer dirty pages to writeback */ 880 if (referenced_page && !PageSwapBacked(page)) 881 return PAGEREF_RECLAIM_CLEAN; 882 883 return PAGEREF_RECLAIM; 884 } 885 886 /* Check if a page is dirty or under writeback */ 887 static void page_check_dirty_writeback(struct page *page, 888 bool *dirty, bool *writeback) 889 { 890 struct address_space *mapping; 891 892 /* 893 * Anonymous pages are not handled by flushers and must be written 894 * from reclaim context. Do not stall reclaim based on them 895 */ 896 if (!page_is_file_cache(page)) { 897 *dirty = false; 898 *writeback = false; 899 return; 900 } 901 902 /* By default assume that the page flags are accurate */ 903 *dirty = PageDirty(page); 904 *writeback = PageWriteback(page); 905 906 /* Verify dirty/writeback state if the filesystem supports it */ 907 if (!page_has_private(page)) 908 return; 909 910 mapping = page_mapping(page); 911 if (mapping && mapping->a_ops->is_dirty_writeback) 912 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 913 } 914 915 struct reclaim_stat { 916 unsigned nr_dirty; 917 unsigned nr_unqueued_dirty; 918 unsigned nr_congested; 919 unsigned nr_writeback; 920 unsigned nr_immediate; 921 unsigned nr_activate; 922 unsigned nr_ref_keep; 923 unsigned nr_unmap_fail; 924 }; 925 926 /* 927 * shrink_page_list() returns the number of reclaimed pages 928 */ 929 static unsigned long shrink_page_list(struct list_head *page_list, 930 struct pglist_data *pgdat, 931 struct scan_control *sc, 932 enum ttu_flags ttu_flags, 933 struct reclaim_stat *stat, 934 bool force_reclaim) 935 { 936 LIST_HEAD(ret_pages); 937 LIST_HEAD(free_pages); 938 int pgactivate = 0; 939 unsigned nr_unqueued_dirty = 0; 940 unsigned nr_dirty = 0; 941 unsigned nr_congested = 0; 942 unsigned nr_reclaimed = 0; 943 unsigned nr_writeback = 0; 944 unsigned nr_immediate = 0; 945 unsigned nr_ref_keep = 0; 946 unsigned nr_unmap_fail = 0; 947 948 cond_resched(); 949 950 while (!list_empty(page_list)) { 951 struct address_space *mapping; 952 struct page *page; 953 int may_enter_fs; 954 enum page_references references = PAGEREF_RECLAIM_CLEAN; 955 bool dirty, writeback; 956 bool lazyfree = false; 957 int ret = SWAP_SUCCESS; 958 959 cond_resched(); 960 961 page = lru_to_page(page_list); 962 list_del(&page->lru); 963 964 if (!trylock_page(page)) 965 goto keep; 966 967 VM_BUG_ON_PAGE(PageActive(page), page); 968 969 sc->nr_scanned++; 970 971 if (unlikely(!page_evictable(page))) 972 goto cull_mlocked; 973 974 if (!sc->may_unmap && page_mapped(page)) 975 goto keep_locked; 976 977 /* Double the slab pressure for mapped and swapcache pages */ 978 if (page_mapped(page) || PageSwapCache(page)) 979 sc->nr_scanned++; 980 981 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 982 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 983 984 /* 985 * The number of dirty pages determines if a zone is marked 986 * reclaim_congested which affects wait_iff_congested. kswapd 987 * will stall and start writing pages if the tail of the LRU 988 * is all dirty unqueued pages. 989 */ 990 page_check_dirty_writeback(page, &dirty, &writeback); 991 if (dirty || writeback) 992 nr_dirty++; 993 994 if (dirty && !writeback) 995 nr_unqueued_dirty++; 996 997 /* 998 * Treat this page as congested if the underlying BDI is or if 999 * pages are cycling through the LRU so quickly that the 1000 * pages marked for immediate reclaim are making it to the 1001 * end of the LRU a second time. 1002 */ 1003 mapping = page_mapping(page); 1004 if (((dirty || writeback) && mapping && 1005 inode_write_congested(mapping->host)) || 1006 (writeback && PageReclaim(page))) 1007 nr_congested++; 1008 1009 /* 1010 * If a page at the tail of the LRU is under writeback, there 1011 * are three cases to consider. 1012 * 1013 * 1) If reclaim is encountering an excessive number of pages 1014 * under writeback and this page is both under writeback and 1015 * PageReclaim then it indicates that pages are being queued 1016 * for IO but are being recycled through the LRU before the 1017 * IO can complete. Waiting on the page itself risks an 1018 * indefinite stall if it is impossible to writeback the 1019 * page due to IO error or disconnected storage so instead 1020 * note that the LRU is being scanned too quickly and the 1021 * caller can stall after page list has been processed. 1022 * 1023 * 2) Global or new memcg reclaim encounters a page that is 1024 * not marked for immediate reclaim, or the caller does not 1025 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1026 * not to fs). In this case mark the page for immediate 1027 * reclaim and continue scanning. 1028 * 1029 * Require may_enter_fs because we would wait on fs, which 1030 * may not have submitted IO yet. And the loop driver might 1031 * enter reclaim, and deadlock if it waits on a page for 1032 * which it is needed to do the write (loop masks off 1033 * __GFP_IO|__GFP_FS for this reason); but more thought 1034 * would probably show more reasons. 1035 * 1036 * 3) Legacy memcg encounters a page that is already marked 1037 * PageReclaim. memcg does not have any dirty pages 1038 * throttling so we could easily OOM just because too many 1039 * pages are in writeback and there is nothing else to 1040 * reclaim. Wait for the writeback to complete. 1041 */ 1042 if (PageWriteback(page)) { 1043 /* Case 1 above */ 1044 if (current_is_kswapd() && 1045 PageReclaim(page) && 1046 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1047 nr_immediate++; 1048 goto keep_locked; 1049 1050 /* Case 2 above */ 1051 } else if (sane_reclaim(sc) || 1052 !PageReclaim(page) || !may_enter_fs) { 1053 /* 1054 * This is slightly racy - end_page_writeback() 1055 * might have just cleared PageReclaim, then 1056 * setting PageReclaim here end up interpreted 1057 * as PageReadahead - but that does not matter 1058 * enough to care. What we do want is for this 1059 * page to have PageReclaim set next time memcg 1060 * reclaim reaches the tests above, so it will 1061 * then wait_on_page_writeback() to avoid OOM; 1062 * and it's also appropriate in global reclaim. 1063 */ 1064 SetPageReclaim(page); 1065 nr_writeback++; 1066 goto keep_locked; 1067 1068 /* Case 3 above */ 1069 } else { 1070 unlock_page(page); 1071 wait_on_page_writeback(page); 1072 /* then go back and try same page again */ 1073 list_add_tail(&page->lru, page_list); 1074 continue; 1075 } 1076 } 1077 1078 if (!force_reclaim) 1079 references = page_check_references(page, sc); 1080 1081 switch (references) { 1082 case PAGEREF_ACTIVATE: 1083 goto activate_locked; 1084 case PAGEREF_KEEP: 1085 nr_ref_keep++; 1086 goto keep_locked; 1087 case PAGEREF_RECLAIM: 1088 case PAGEREF_RECLAIM_CLEAN: 1089 ; /* try to reclaim the page below */ 1090 } 1091 1092 /* 1093 * Anonymous process memory has backing store? 1094 * Try to allocate it some swap space here. 1095 */ 1096 if (PageAnon(page) && !PageSwapCache(page)) { 1097 if (!(sc->gfp_mask & __GFP_IO)) 1098 goto keep_locked; 1099 if (!add_to_swap(page, page_list)) 1100 goto activate_locked; 1101 lazyfree = true; 1102 may_enter_fs = 1; 1103 1104 /* Adding to swap updated mapping */ 1105 mapping = page_mapping(page); 1106 } else if (unlikely(PageTransHuge(page))) { 1107 /* Split file THP */ 1108 if (split_huge_page_to_list(page, page_list)) 1109 goto keep_locked; 1110 } 1111 1112 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1113 1114 /* 1115 * The page is mapped into the page tables of one or more 1116 * processes. Try to unmap it here. 1117 */ 1118 if (page_mapped(page) && mapping) { 1119 switch (ret = try_to_unmap(page, lazyfree ? 1120 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1121 (ttu_flags | TTU_BATCH_FLUSH))) { 1122 case SWAP_FAIL: 1123 nr_unmap_fail++; 1124 goto activate_locked; 1125 case SWAP_AGAIN: 1126 goto keep_locked; 1127 case SWAP_MLOCK: 1128 goto cull_mlocked; 1129 case SWAP_LZFREE: 1130 goto lazyfree; 1131 case SWAP_SUCCESS: 1132 ; /* try to free the page below */ 1133 } 1134 } 1135 1136 if (PageDirty(page)) { 1137 /* 1138 * Only kswapd can writeback filesystem pages to 1139 * avoid risk of stack overflow but only writeback 1140 * if many dirty pages have been encountered. 1141 */ 1142 if (page_is_file_cache(page) && 1143 (!current_is_kswapd() || 1144 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1145 /* 1146 * Immediately reclaim when written back. 1147 * Similar in principal to deactivate_page() 1148 * except we already have the page isolated 1149 * and know it's dirty 1150 */ 1151 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1152 SetPageReclaim(page); 1153 1154 goto keep_locked; 1155 } 1156 1157 if (references == PAGEREF_RECLAIM_CLEAN) 1158 goto keep_locked; 1159 if (!may_enter_fs) 1160 goto keep_locked; 1161 if (!sc->may_writepage) 1162 goto keep_locked; 1163 1164 /* 1165 * Page is dirty. Flush the TLB if a writable entry 1166 * potentially exists to avoid CPU writes after IO 1167 * starts and then write it out here. 1168 */ 1169 try_to_unmap_flush_dirty(); 1170 switch (pageout(page, mapping, sc)) { 1171 case PAGE_KEEP: 1172 goto keep_locked; 1173 case PAGE_ACTIVATE: 1174 goto activate_locked; 1175 case PAGE_SUCCESS: 1176 if (PageWriteback(page)) 1177 goto keep; 1178 if (PageDirty(page)) 1179 goto keep; 1180 1181 /* 1182 * A synchronous write - probably a ramdisk. Go 1183 * ahead and try to reclaim the page. 1184 */ 1185 if (!trylock_page(page)) 1186 goto keep; 1187 if (PageDirty(page) || PageWriteback(page)) 1188 goto keep_locked; 1189 mapping = page_mapping(page); 1190 case PAGE_CLEAN: 1191 ; /* try to free the page below */ 1192 } 1193 } 1194 1195 /* 1196 * If the page has buffers, try to free the buffer mappings 1197 * associated with this page. If we succeed we try to free 1198 * the page as well. 1199 * 1200 * We do this even if the page is PageDirty(). 1201 * try_to_release_page() does not perform I/O, but it is 1202 * possible for a page to have PageDirty set, but it is actually 1203 * clean (all its buffers are clean). This happens if the 1204 * buffers were written out directly, with submit_bh(). ext3 1205 * will do this, as well as the blockdev mapping. 1206 * try_to_release_page() will discover that cleanness and will 1207 * drop the buffers and mark the page clean - it can be freed. 1208 * 1209 * Rarely, pages can have buffers and no ->mapping. These are 1210 * the pages which were not successfully invalidated in 1211 * truncate_complete_page(). We try to drop those buffers here 1212 * and if that worked, and the page is no longer mapped into 1213 * process address space (page_count == 1) it can be freed. 1214 * Otherwise, leave the page on the LRU so it is swappable. 1215 */ 1216 if (page_has_private(page)) { 1217 if (!try_to_release_page(page, sc->gfp_mask)) 1218 goto activate_locked; 1219 if (!mapping && page_count(page) == 1) { 1220 unlock_page(page); 1221 if (put_page_testzero(page)) 1222 goto free_it; 1223 else { 1224 /* 1225 * rare race with speculative reference. 1226 * the speculative reference will free 1227 * this page shortly, so we may 1228 * increment nr_reclaimed here (and 1229 * leave it off the LRU). 1230 */ 1231 nr_reclaimed++; 1232 continue; 1233 } 1234 } 1235 } 1236 1237 lazyfree: 1238 if (!mapping || !__remove_mapping(mapping, page, true)) 1239 goto keep_locked; 1240 1241 /* 1242 * At this point, we have no other references and there is 1243 * no way to pick any more up (removed from LRU, removed 1244 * from pagecache). Can use non-atomic bitops now (and 1245 * we obviously don't have to worry about waking up a process 1246 * waiting on the page lock, because there are no references. 1247 */ 1248 __ClearPageLocked(page); 1249 free_it: 1250 if (ret == SWAP_LZFREE) 1251 count_vm_event(PGLAZYFREED); 1252 1253 nr_reclaimed++; 1254 1255 /* 1256 * Is there need to periodically free_page_list? It would 1257 * appear not as the counts should be low 1258 */ 1259 list_add(&page->lru, &free_pages); 1260 continue; 1261 1262 cull_mlocked: 1263 if (PageSwapCache(page)) 1264 try_to_free_swap(page); 1265 unlock_page(page); 1266 list_add(&page->lru, &ret_pages); 1267 continue; 1268 1269 activate_locked: 1270 /* Not a candidate for swapping, so reclaim swap space. */ 1271 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1272 try_to_free_swap(page); 1273 VM_BUG_ON_PAGE(PageActive(page), page); 1274 SetPageActive(page); 1275 pgactivate++; 1276 keep_locked: 1277 unlock_page(page); 1278 keep: 1279 list_add(&page->lru, &ret_pages); 1280 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1281 } 1282 1283 mem_cgroup_uncharge_list(&free_pages); 1284 try_to_unmap_flush(); 1285 free_hot_cold_page_list(&free_pages, true); 1286 1287 list_splice(&ret_pages, page_list); 1288 count_vm_events(PGACTIVATE, pgactivate); 1289 1290 if (stat) { 1291 stat->nr_dirty = nr_dirty; 1292 stat->nr_congested = nr_congested; 1293 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1294 stat->nr_writeback = nr_writeback; 1295 stat->nr_immediate = nr_immediate; 1296 stat->nr_activate = pgactivate; 1297 stat->nr_ref_keep = nr_ref_keep; 1298 stat->nr_unmap_fail = nr_unmap_fail; 1299 } 1300 return nr_reclaimed; 1301 } 1302 1303 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1304 struct list_head *page_list) 1305 { 1306 struct scan_control sc = { 1307 .gfp_mask = GFP_KERNEL, 1308 .priority = DEF_PRIORITY, 1309 .may_unmap = 1, 1310 }; 1311 unsigned long ret; 1312 struct page *page, *next; 1313 LIST_HEAD(clean_pages); 1314 1315 list_for_each_entry_safe(page, next, page_list, lru) { 1316 if (page_is_file_cache(page) && !PageDirty(page) && 1317 !__PageMovable(page)) { 1318 ClearPageActive(page); 1319 list_move(&page->lru, &clean_pages); 1320 } 1321 } 1322 1323 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1324 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true); 1325 list_splice(&clean_pages, page_list); 1326 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1327 return ret; 1328 } 1329 1330 /* 1331 * Attempt to remove the specified page from its LRU. Only take this page 1332 * if it is of the appropriate PageActive status. Pages which are being 1333 * freed elsewhere are also ignored. 1334 * 1335 * page: page to consider 1336 * mode: one of the LRU isolation modes defined above 1337 * 1338 * returns 0 on success, -ve errno on failure. 1339 */ 1340 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1341 { 1342 int ret = -EINVAL; 1343 1344 /* Only take pages on the LRU. */ 1345 if (!PageLRU(page)) 1346 return ret; 1347 1348 /* Compaction should not handle unevictable pages but CMA can do so */ 1349 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1350 return ret; 1351 1352 ret = -EBUSY; 1353 1354 /* 1355 * To minimise LRU disruption, the caller can indicate that it only 1356 * wants to isolate pages it will be able to operate on without 1357 * blocking - clean pages for the most part. 1358 * 1359 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1360 * is used by reclaim when it is cannot write to backing storage 1361 * 1362 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1363 * that it is possible to migrate without blocking 1364 */ 1365 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1366 /* All the caller can do on PageWriteback is block */ 1367 if (PageWriteback(page)) 1368 return ret; 1369 1370 if (PageDirty(page)) { 1371 struct address_space *mapping; 1372 1373 /* ISOLATE_CLEAN means only clean pages */ 1374 if (mode & ISOLATE_CLEAN) 1375 return ret; 1376 1377 /* 1378 * Only pages without mappings or that have a 1379 * ->migratepage callback are possible to migrate 1380 * without blocking 1381 */ 1382 mapping = page_mapping(page); 1383 if (mapping && !mapping->a_ops->migratepage) 1384 return ret; 1385 } 1386 } 1387 1388 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1389 return ret; 1390 1391 if (likely(get_page_unless_zero(page))) { 1392 /* 1393 * Be careful not to clear PageLRU until after we're 1394 * sure the page is not being freed elsewhere -- the 1395 * page release code relies on it. 1396 */ 1397 ClearPageLRU(page); 1398 ret = 0; 1399 } 1400 1401 return ret; 1402 } 1403 1404 1405 /* 1406 * Update LRU sizes after isolating pages. The LRU size updates must 1407 * be complete before mem_cgroup_update_lru_size due to a santity check. 1408 */ 1409 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1410 enum lru_list lru, unsigned long *nr_zone_taken) 1411 { 1412 int zid; 1413 1414 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1415 if (!nr_zone_taken[zid]) 1416 continue; 1417 1418 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1419 #ifdef CONFIG_MEMCG 1420 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1421 #endif 1422 } 1423 1424 } 1425 1426 /* 1427 * zone_lru_lock is heavily contended. Some of the functions that 1428 * shrink the lists perform better by taking out a batch of pages 1429 * and working on them outside the LRU lock. 1430 * 1431 * For pagecache intensive workloads, this function is the hottest 1432 * spot in the kernel (apart from copy_*_user functions). 1433 * 1434 * Appropriate locks must be held before calling this function. 1435 * 1436 * @nr_to_scan: The number of pages to look through on the list. 1437 * @lruvec: The LRU vector to pull pages from. 1438 * @dst: The temp list to put pages on to. 1439 * @nr_scanned: The number of pages that were scanned. 1440 * @sc: The scan_control struct for this reclaim session 1441 * @mode: One of the LRU isolation modes 1442 * @lru: LRU list id for isolating 1443 * 1444 * returns how many pages were moved onto *@dst. 1445 */ 1446 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1447 struct lruvec *lruvec, struct list_head *dst, 1448 unsigned long *nr_scanned, struct scan_control *sc, 1449 isolate_mode_t mode, enum lru_list lru) 1450 { 1451 struct list_head *src = &lruvec->lists[lru]; 1452 unsigned long nr_taken = 0; 1453 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1454 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1455 unsigned long skipped = 0, total_skipped = 0; 1456 unsigned long scan, nr_pages; 1457 LIST_HEAD(pages_skipped); 1458 1459 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1460 !list_empty(src);) { 1461 struct page *page; 1462 1463 page = lru_to_page(src); 1464 prefetchw_prev_lru_page(page, src, flags); 1465 1466 VM_BUG_ON_PAGE(!PageLRU(page), page); 1467 1468 if (page_zonenum(page) > sc->reclaim_idx) { 1469 list_move(&page->lru, &pages_skipped); 1470 nr_skipped[page_zonenum(page)]++; 1471 continue; 1472 } 1473 1474 /* 1475 * Account for scanned and skipped separetly to avoid the pgdat 1476 * being prematurely marked unreclaimable by pgdat_reclaimable. 1477 */ 1478 scan++; 1479 1480 switch (__isolate_lru_page(page, mode)) { 1481 case 0: 1482 nr_pages = hpage_nr_pages(page); 1483 nr_taken += nr_pages; 1484 nr_zone_taken[page_zonenum(page)] += nr_pages; 1485 list_move(&page->lru, dst); 1486 break; 1487 1488 case -EBUSY: 1489 /* else it is being freed elsewhere */ 1490 list_move(&page->lru, src); 1491 continue; 1492 1493 default: 1494 BUG(); 1495 } 1496 } 1497 1498 /* 1499 * Splice any skipped pages to the start of the LRU list. Note that 1500 * this disrupts the LRU order when reclaiming for lower zones but 1501 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1502 * scanning would soon rescan the same pages to skip and put the 1503 * system at risk of premature OOM. 1504 */ 1505 if (!list_empty(&pages_skipped)) { 1506 int zid; 1507 1508 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1509 if (!nr_skipped[zid]) 1510 continue; 1511 1512 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1513 skipped += nr_skipped[zid]; 1514 } 1515 1516 /* 1517 * Account skipped pages as a partial scan as the pgdat may be 1518 * close to unreclaimable. If the LRU list is empty, account 1519 * skipped pages as a full scan. 1520 */ 1521 total_skipped = list_empty(src) ? skipped : skipped >> 2; 1522 1523 list_splice(&pages_skipped, src); 1524 } 1525 *nr_scanned = scan + total_skipped; 1526 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1527 scan, skipped, nr_taken, mode, lru); 1528 update_lru_sizes(lruvec, lru, nr_zone_taken); 1529 return nr_taken; 1530 } 1531 1532 /** 1533 * isolate_lru_page - tries to isolate a page from its LRU list 1534 * @page: page to isolate from its LRU list 1535 * 1536 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1537 * vmstat statistic corresponding to whatever LRU list the page was on. 1538 * 1539 * Returns 0 if the page was removed from an LRU list. 1540 * Returns -EBUSY if the page was not on an LRU list. 1541 * 1542 * The returned page will have PageLRU() cleared. If it was found on 1543 * the active list, it will have PageActive set. If it was found on 1544 * the unevictable list, it will have the PageUnevictable bit set. That flag 1545 * may need to be cleared by the caller before letting the page go. 1546 * 1547 * The vmstat statistic corresponding to the list on which the page was 1548 * found will be decremented. 1549 * 1550 * Restrictions: 1551 * (1) Must be called with an elevated refcount on the page. This is a 1552 * fundamentnal difference from isolate_lru_pages (which is called 1553 * without a stable reference). 1554 * (2) the lru_lock must not be held. 1555 * (3) interrupts must be enabled. 1556 */ 1557 int isolate_lru_page(struct page *page) 1558 { 1559 int ret = -EBUSY; 1560 1561 VM_BUG_ON_PAGE(!page_count(page), page); 1562 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1563 1564 if (PageLRU(page)) { 1565 struct zone *zone = page_zone(page); 1566 struct lruvec *lruvec; 1567 1568 spin_lock_irq(zone_lru_lock(zone)); 1569 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1570 if (PageLRU(page)) { 1571 int lru = page_lru(page); 1572 get_page(page); 1573 ClearPageLRU(page); 1574 del_page_from_lru_list(page, lruvec, lru); 1575 ret = 0; 1576 } 1577 spin_unlock_irq(zone_lru_lock(zone)); 1578 } 1579 return ret; 1580 } 1581 1582 /* 1583 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1584 * then get resheduled. When there are massive number of tasks doing page 1585 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1586 * the LRU list will go small and be scanned faster than necessary, leading to 1587 * unnecessary swapping, thrashing and OOM. 1588 */ 1589 static int too_many_isolated(struct pglist_data *pgdat, int file, 1590 struct scan_control *sc) 1591 { 1592 unsigned long inactive, isolated; 1593 1594 if (current_is_kswapd()) 1595 return 0; 1596 1597 if (!sane_reclaim(sc)) 1598 return 0; 1599 1600 if (file) { 1601 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1602 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1603 } else { 1604 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1605 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1606 } 1607 1608 /* 1609 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1610 * won't get blocked by normal direct-reclaimers, forming a circular 1611 * deadlock. 1612 */ 1613 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1614 inactive >>= 3; 1615 1616 return isolated > inactive; 1617 } 1618 1619 static noinline_for_stack void 1620 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1621 { 1622 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1623 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1624 LIST_HEAD(pages_to_free); 1625 1626 /* 1627 * Put back any unfreeable pages. 1628 */ 1629 while (!list_empty(page_list)) { 1630 struct page *page = lru_to_page(page_list); 1631 int lru; 1632 1633 VM_BUG_ON_PAGE(PageLRU(page), page); 1634 list_del(&page->lru); 1635 if (unlikely(!page_evictable(page))) { 1636 spin_unlock_irq(&pgdat->lru_lock); 1637 putback_lru_page(page); 1638 spin_lock_irq(&pgdat->lru_lock); 1639 continue; 1640 } 1641 1642 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1643 1644 SetPageLRU(page); 1645 lru = page_lru(page); 1646 add_page_to_lru_list(page, lruvec, lru); 1647 1648 if (is_active_lru(lru)) { 1649 int file = is_file_lru(lru); 1650 int numpages = hpage_nr_pages(page); 1651 reclaim_stat->recent_rotated[file] += numpages; 1652 } 1653 if (put_page_testzero(page)) { 1654 __ClearPageLRU(page); 1655 __ClearPageActive(page); 1656 del_page_from_lru_list(page, lruvec, lru); 1657 1658 if (unlikely(PageCompound(page))) { 1659 spin_unlock_irq(&pgdat->lru_lock); 1660 mem_cgroup_uncharge(page); 1661 (*get_compound_page_dtor(page))(page); 1662 spin_lock_irq(&pgdat->lru_lock); 1663 } else 1664 list_add(&page->lru, &pages_to_free); 1665 } 1666 } 1667 1668 /* 1669 * To save our caller's stack, now use input list for pages to free. 1670 */ 1671 list_splice(&pages_to_free, page_list); 1672 } 1673 1674 /* 1675 * If a kernel thread (such as nfsd for loop-back mounts) services 1676 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1677 * In that case we should only throttle if the backing device it is 1678 * writing to is congested. In other cases it is safe to throttle. 1679 */ 1680 static int current_may_throttle(void) 1681 { 1682 return !(current->flags & PF_LESS_THROTTLE) || 1683 current->backing_dev_info == NULL || 1684 bdi_write_congested(current->backing_dev_info); 1685 } 1686 1687 static bool inactive_reclaimable_pages(struct lruvec *lruvec, 1688 struct scan_control *sc, enum lru_list lru) 1689 { 1690 int zid; 1691 struct zone *zone; 1692 int file = is_file_lru(lru); 1693 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1694 1695 if (!global_reclaim(sc)) 1696 return true; 1697 1698 for (zid = sc->reclaim_idx; zid >= 0; zid--) { 1699 zone = &pgdat->node_zones[zid]; 1700 if (!managed_zone(zone)) 1701 continue; 1702 1703 if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE + 1704 LRU_FILE * file) >= SWAP_CLUSTER_MAX) 1705 return true; 1706 } 1707 1708 return false; 1709 } 1710 1711 /* 1712 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1713 * of reclaimed pages 1714 */ 1715 static noinline_for_stack unsigned long 1716 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1717 struct scan_control *sc, enum lru_list lru) 1718 { 1719 LIST_HEAD(page_list); 1720 unsigned long nr_scanned; 1721 unsigned long nr_reclaimed = 0; 1722 unsigned long nr_taken; 1723 struct reclaim_stat stat = {}; 1724 isolate_mode_t isolate_mode = 0; 1725 int file = is_file_lru(lru); 1726 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1727 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1728 1729 if (!inactive_reclaimable_pages(lruvec, sc, lru)) 1730 return 0; 1731 1732 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1733 congestion_wait(BLK_RW_ASYNC, HZ/10); 1734 1735 /* We are about to die and free our memory. Return now. */ 1736 if (fatal_signal_pending(current)) 1737 return SWAP_CLUSTER_MAX; 1738 } 1739 1740 lru_add_drain(); 1741 1742 if (!sc->may_unmap) 1743 isolate_mode |= ISOLATE_UNMAPPED; 1744 if (!sc->may_writepage) 1745 isolate_mode |= ISOLATE_CLEAN; 1746 1747 spin_lock_irq(&pgdat->lru_lock); 1748 1749 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1750 &nr_scanned, sc, isolate_mode, lru); 1751 1752 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1753 reclaim_stat->recent_scanned[file] += nr_taken; 1754 1755 if (global_reclaim(sc)) { 1756 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1757 if (current_is_kswapd()) 1758 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1759 else 1760 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1761 } 1762 spin_unlock_irq(&pgdat->lru_lock); 1763 1764 if (nr_taken == 0) 1765 return 0; 1766 1767 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP, 1768 &stat, false); 1769 1770 spin_lock_irq(&pgdat->lru_lock); 1771 1772 if (global_reclaim(sc)) { 1773 if (current_is_kswapd()) 1774 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1775 else 1776 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1777 } 1778 1779 putback_inactive_pages(lruvec, &page_list); 1780 1781 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1782 1783 spin_unlock_irq(&pgdat->lru_lock); 1784 1785 mem_cgroup_uncharge_list(&page_list); 1786 free_hot_cold_page_list(&page_list, true); 1787 1788 /* 1789 * If reclaim is isolating dirty pages under writeback, it implies 1790 * that the long-lived page allocation rate is exceeding the page 1791 * laundering rate. Either the global limits are not being effective 1792 * at throttling processes due to the page distribution throughout 1793 * zones or there is heavy usage of a slow backing device. The 1794 * only option is to throttle from reclaim context which is not ideal 1795 * as there is no guarantee the dirtying process is throttled in the 1796 * same way balance_dirty_pages() manages. 1797 * 1798 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1799 * of pages under pages flagged for immediate reclaim and stall if any 1800 * are encountered in the nr_immediate check below. 1801 */ 1802 if (stat.nr_writeback && stat.nr_writeback == nr_taken) 1803 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1804 1805 /* 1806 * Legacy memcg will stall in page writeback so avoid forcibly 1807 * stalling here. 1808 */ 1809 if (sane_reclaim(sc)) { 1810 /* 1811 * Tag a zone as congested if all the dirty pages scanned were 1812 * backed by a congested BDI and wait_iff_congested will stall. 1813 */ 1814 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) 1815 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1816 1817 /* 1818 * If dirty pages are scanned that are not queued for IO, it 1819 * implies that flushers are not keeping up. In this case, flag 1820 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from 1821 * reclaim context. 1822 */ 1823 if (stat.nr_unqueued_dirty == nr_taken) 1824 set_bit(PGDAT_DIRTY, &pgdat->flags); 1825 1826 /* 1827 * If kswapd scans pages marked marked for immediate 1828 * reclaim and under writeback (nr_immediate), it implies 1829 * that pages are cycling through the LRU faster than 1830 * they are written so also forcibly stall. 1831 */ 1832 if (stat.nr_immediate && current_may_throttle()) 1833 congestion_wait(BLK_RW_ASYNC, HZ/10); 1834 } 1835 1836 /* 1837 * Stall direct reclaim for IO completions if underlying BDIs or zone 1838 * is congested. Allow kswapd to continue until it starts encountering 1839 * unqueued dirty pages or cycling through the LRU too quickly. 1840 */ 1841 if (!sc->hibernation_mode && !current_is_kswapd() && 1842 current_may_throttle()) 1843 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1844 1845 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1846 nr_scanned, nr_reclaimed, 1847 stat.nr_dirty, stat.nr_writeback, 1848 stat.nr_congested, stat.nr_immediate, 1849 stat.nr_activate, stat.nr_ref_keep, 1850 stat.nr_unmap_fail, 1851 sc->priority, file); 1852 return nr_reclaimed; 1853 } 1854 1855 /* 1856 * This moves pages from the active list to the inactive list. 1857 * 1858 * We move them the other way if the page is referenced by one or more 1859 * processes, from rmap. 1860 * 1861 * If the pages are mostly unmapped, the processing is fast and it is 1862 * appropriate to hold zone_lru_lock across the whole operation. But if 1863 * the pages are mapped, the processing is slow (page_referenced()) so we 1864 * should drop zone_lru_lock around each page. It's impossible to balance 1865 * this, so instead we remove the pages from the LRU while processing them. 1866 * It is safe to rely on PG_active against the non-LRU pages in here because 1867 * nobody will play with that bit on a non-LRU page. 1868 * 1869 * The downside is that we have to touch page->_refcount against each page. 1870 * But we had to alter page->flags anyway. 1871 * 1872 * Returns the number of pages moved to the given lru. 1873 */ 1874 1875 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1876 struct list_head *list, 1877 struct list_head *pages_to_free, 1878 enum lru_list lru) 1879 { 1880 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1881 struct page *page; 1882 int nr_pages; 1883 int nr_moved = 0; 1884 1885 while (!list_empty(list)) { 1886 page = lru_to_page(list); 1887 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1888 1889 VM_BUG_ON_PAGE(PageLRU(page), page); 1890 SetPageLRU(page); 1891 1892 nr_pages = hpage_nr_pages(page); 1893 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1894 list_move(&page->lru, &lruvec->lists[lru]); 1895 1896 if (put_page_testzero(page)) { 1897 __ClearPageLRU(page); 1898 __ClearPageActive(page); 1899 del_page_from_lru_list(page, lruvec, lru); 1900 1901 if (unlikely(PageCompound(page))) { 1902 spin_unlock_irq(&pgdat->lru_lock); 1903 mem_cgroup_uncharge(page); 1904 (*get_compound_page_dtor(page))(page); 1905 spin_lock_irq(&pgdat->lru_lock); 1906 } else 1907 list_add(&page->lru, pages_to_free); 1908 } else { 1909 nr_moved += nr_pages; 1910 } 1911 } 1912 1913 if (!is_active_lru(lru)) 1914 __count_vm_events(PGDEACTIVATE, nr_moved); 1915 1916 return nr_moved; 1917 } 1918 1919 static void shrink_active_list(unsigned long nr_to_scan, 1920 struct lruvec *lruvec, 1921 struct scan_control *sc, 1922 enum lru_list lru) 1923 { 1924 unsigned long nr_taken; 1925 unsigned long nr_scanned; 1926 unsigned long vm_flags; 1927 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1928 LIST_HEAD(l_active); 1929 LIST_HEAD(l_inactive); 1930 struct page *page; 1931 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1932 unsigned nr_deactivate, nr_activate; 1933 unsigned nr_rotated = 0; 1934 isolate_mode_t isolate_mode = 0; 1935 int file = is_file_lru(lru); 1936 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1937 1938 lru_add_drain(); 1939 1940 if (!sc->may_unmap) 1941 isolate_mode |= ISOLATE_UNMAPPED; 1942 if (!sc->may_writepage) 1943 isolate_mode |= ISOLATE_CLEAN; 1944 1945 spin_lock_irq(&pgdat->lru_lock); 1946 1947 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1948 &nr_scanned, sc, isolate_mode, lru); 1949 1950 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1951 reclaim_stat->recent_scanned[file] += nr_taken; 1952 1953 if (global_reclaim(sc)) 1954 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1955 __count_vm_events(PGREFILL, nr_scanned); 1956 1957 spin_unlock_irq(&pgdat->lru_lock); 1958 1959 while (!list_empty(&l_hold)) { 1960 cond_resched(); 1961 page = lru_to_page(&l_hold); 1962 list_del(&page->lru); 1963 1964 if (unlikely(!page_evictable(page))) { 1965 putback_lru_page(page); 1966 continue; 1967 } 1968 1969 if (unlikely(buffer_heads_over_limit)) { 1970 if (page_has_private(page) && trylock_page(page)) { 1971 if (page_has_private(page)) 1972 try_to_release_page(page, 0); 1973 unlock_page(page); 1974 } 1975 } 1976 1977 if (page_referenced(page, 0, sc->target_mem_cgroup, 1978 &vm_flags)) { 1979 nr_rotated += hpage_nr_pages(page); 1980 /* 1981 * Identify referenced, file-backed active pages and 1982 * give them one more trip around the active list. So 1983 * that executable code get better chances to stay in 1984 * memory under moderate memory pressure. Anon pages 1985 * are not likely to be evicted by use-once streaming 1986 * IO, plus JVM can create lots of anon VM_EXEC pages, 1987 * so we ignore them here. 1988 */ 1989 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1990 list_add(&page->lru, &l_active); 1991 continue; 1992 } 1993 } 1994 1995 ClearPageActive(page); /* we are de-activating */ 1996 list_add(&page->lru, &l_inactive); 1997 } 1998 1999 /* 2000 * Move pages back to the lru list. 2001 */ 2002 spin_lock_irq(&pgdat->lru_lock); 2003 /* 2004 * Count referenced pages from currently used mappings as rotated, 2005 * even though only some of them are actually re-activated. This 2006 * helps balance scan pressure between file and anonymous pages in 2007 * get_scan_count. 2008 */ 2009 reclaim_stat->recent_rotated[file] += nr_rotated; 2010 2011 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 2012 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 2013 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2014 spin_unlock_irq(&pgdat->lru_lock); 2015 2016 mem_cgroup_uncharge_list(&l_hold); 2017 free_hot_cold_page_list(&l_hold, true); 2018 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2019 nr_deactivate, nr_rotated, sc->priority, file); 2020 } 2021 2022 /* 2023 * The inactive anon list should be small enough that the VM never has 2024 * to do too much work. 2025 * 2026 * The inactive file list should be small enough to leave most memory 2027 * to the established workingset on the scan-resistant active list, 2028 * but large enough to avoid thrashing the aggregate readahead window. 2029 * 2030 * Both inactive lists should also be large enough that each inactive 2031 * page has a chance to be referenced again before it is reclaimed. 2032 * 2033 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2034 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 2035 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2036 * 2037 * total target max 2038 * memory ratio inactive 2039 * ------------------------------------- 2040 * 10MB 1 5MB 2041 * 100MB 1 50MB 2042 * 1GB 3 250MB 2043 * 10GB 10 0.9GB 2044 * 100GB 31 3GB 2045 * 1TB 101 10GB 2046 * 10TB 320 32GB 2047 */ 2048 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2049 struct scan_control *sc, bool trace) 2050 { 2051 unsigned long inactive_ratio; 2052 unsigned long total_inactive, inactive; 2053 unsigned long total_active, active; 2054 unsigned long gb; 2055 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2056 int zid; 2057 2058 /* 2059 * If we don't have swap space, anonymous page deactivation 2060 * is pointless. 2061 */ 2062 if (!file && !total_swap_pages) 2063 return false; 2064 2065 total_inactive = inactive = lruvec_lru_size(lruvec, file * LRU_FILE); 2066 total_active = active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE); 2067 2068 /* 2069 * For zone-constrained allocations, it is necessary to check if 2070 * deactivations are required for lowmem to be reclaimed. This 2071 * calculates the inactive/active pages available in eligible zones. 2072 */ 2073 for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) { 2074 struct zone *zone = &pgdat->node_zones[zid]; 2075 unsigned long inactive_zone, active_zone; 2076 2077 if (!managed_zone(zone)) 2078 continue; 2079 2080 inactive_zone = lruvec_zone_lru_size(lruvec, file * LRU_FILE, zid); 2081 active_zone = lruvec_zone_lru_size(lruvec, (file * LRU_FILE) + LRU_ACTIVE, zid); 2082 2083 inactive -= min(inactive, inactive_zone); 2084 active -= min(active, active_zone); 2085 } 2086 2087 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2088 if (gb) 2089 inactive_ratio = int_sqrt(10 * gb); 2090 else 2091 inactive_ratio = 1; 2092 2093 if (trace) 2094 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, 2095 sc->reclaim_idx, 2096 total_inactive, inactive, 2097 total_active, active, inactive_ratio, file); 2098 return inactive * inactive_ratio < active; 2099 } 2100 2101 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2102 struct lruvec *lruvec, struct scan_control *sc) 2103 { 2104 if (is_active_lru(lru)) { 2105 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) 2106 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2107 return 0; 2108 } 2109 2110 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2111 } 2112 2113 enum scan_balance { 2114 SCAN_EQUAL, 2115 SCAN_FRACT, 2116 SCAN_ANON, 2117 SCAN_FILE, 2118 }; 2119 2120 /* 2121 * Determine how aggressively the anon and file LRU lists should be 2122 * scanned. The relative value of each set of LRU lists is determined 2123 * by looking at the fraction of the pages scanned we did rotate back 2124 * onto the active list instead of evict. 2125 * 2126 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2127 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2128 */ 2129 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2130 struct scan_control *sc, unsigned long *nr, 2131 unsigned long *lru_pages) 2132 { 2133 int swappiness = mem_cgroup_swappiness(memcg); 2134 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2135 u64 fraction[2]; 2136 u64 denominator = 0; /* gcc */ 2137 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2138 unsigned long anon_prio, file_prio; 2139 enum scan_balance scan_balance; 2140 unsigned long anon, file; 2141 bool force_scan = false; 2142 unsigned long ap, fp; 2143 enum lru_list lru; 2144 bool some_scanned; 2145 int pass; 2146 2147 /* 2148 * If the zone or memcg is small, nr[l] can be 0. This 2149 * results in no scanning on this priority and a potential 2150 * priority drop. Global direct reclaim can go to the next 2151 * zone and tends to have no problems. Global kswapd is for 2152 * zone balancing and it needs to scan a minimum amount. When 2153 * reclaiming for a memcg, a priority drop can cause high 2154 * latencies, so it's better to scan a minimum amount there as 2155 * well. 2156 */ 2157 if (current_is_kswapd()) { 2158 if (!pgdat_reclaimable(pgdat)) 2159 force_scan = true; 2160 if (!mem_cgroup_online(memcg)) 2161 force_scan = true; 2162 } 2163 if (!global_reclaim(sc)) 2164 force_scan = true; 2165 2166 /* If we have no swap space, do not bother scanning anon pages. */ 2167 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2168 scan_balance = SCAN_FILE; 2169 goto out; 2170 } 2171 2172 /* 2173 * Global reclaim will swap to prevent OOM even with no 2174 * swappiness, but memcg users want to use this knob to 2175 * disable swapping for individual groups completely when 2176 * using the memory controller's swap limit feature would be 2177 * too expensive. 2178 */ 2179 if (!global_reclaim(sc) && !swappiness) { 2180 scan_balance = SCAN_FILE; 2181 goto out; 2182 } 2183 2184 /* 2185 * Do not apply any pressure balancing cleverness when the 2186 * system is close to OOM, scan both anon and file equally 2187 * (unless the swappiness setting disagrees with swapping). 2188 */ 2189 if (!sc->priority && swappiness) { 2190 scan_balance = SCAN_EQUAL; 2191 goto out; 2192 } 2193 2194 /* 2195 * Prevent the reclaimer from falling into the cache trap: as 2196 * cache pages start out inactive, every cache fault will tip 2197 * the scan balance towards the file LRU. And as the file LRU 2198 * shrinks, so does the window for rotation from references. 2199 * This means we have a runaway feedback loop where a tiny 2200 * thrashing file LRU becomes infinitely more attractive than 2201 * anon pages. Try to detect this based on file LRU size. 2202 */ 2203 if (global_reclaim(sc)) { 2204 unsigned long pgdatfile; 2205 unsigned long pgdatfree; 2206 int z; 2207 unsigned long total_high_wmark = 0; 2208 2209 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2210 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2211 node_page_state(pgdat, NR_INACTIVE_FILE); 2212 2213 for (z = 0; z < MAX_NR_ZONES; z++) { 2214 struct zone *zone = &pgdat->node_zones[z]; 2215 if (!managed_zone(zone)) 2216 continue; 2217 2218 total_high_wmark += high_wmark_pages(zone); 2219 } 2220 2221 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2222 scan_balance = SCAN_ANON; 2223 goto out; 2224 } 2225 } 2226 2227 /* 2228 * If there is enough inactive page cache, i.e. if the size of the 2229 * inactive list is greater than that of the active list *and* the 2230 * inactive list actually has some pages to scan on this priority, we 2231 * do not reclaim anything from the anonymous working set right now. 2232 * Without the second condition we could end up never scanning an 2233 * lruvec even if it has plenty of old anonymous pages unless the 2234 * system is under heavy pressure. 2235 */ 2236 if (!inactive_list_is_low(lruvec, true, sc, false) && 2237 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2238 scan_balance = SCAN_FILE; 2239 goto out; 2240 } 2241 2242 scan_balance = SCAN_FRACT; 2243 2244 /* 2245 * With swappiness at 100, anonymous and file have the same priority. 2246 * This scanning priority is essentially the inverse of IO cost. 2247 */ 2248 anon_prio = swappiness; 2249 file_prio = 200 - anon_prio; 2250 2251 /* 2252 * OK, so we have swap space and a fair amount of page cache 2253 * pages. We use the recently rotated / recently scanned 2254 * ratios to determine how valuable each cache is. 2255 * 2256 * Because workloads change over time (and to avoid overflow) 2257 * we keep these statistics as a floating average, which ends 2258 * up weighing recent references more than old ones. 2259 * 2260 * anon in [0], file in [1] 2261 */ 2262 2263 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + 2264 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); 2265 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + 2266 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 2267 2268 spin_lock_irq(&pgdat->lru_lock); 2269 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2270 reclaim_stat->recent_scanned[0] /= 2; 2271 reclaim_stat->recent_rotated[0] /= 2; 2272 } 2273 2274 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2275 reclaim_stat->recent_scanned[1] /= 2; 2276 reclaim_stat->recent_rotated[1] /= 2; 2277 } 2278 2279 /* 2280 * The amount of pressure on anon vs file pages is inversely 2281 * proportional to the fraction of recently scanned pages on 2282 * each list that were recently referenced and in active use. 2283 */ 2284 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2285 ap /= reclaim_stat->recent_rotated[0] + 1; 2286 2287 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2288 fp /= reclaim_stat->recent_rotated[1] + 1; 2289 spin_unlock_irq(&pgdat->lru_lock); 2290 2291 fraction[0] = ap; 2292 fraction[1] = fp; 2293 denominator = ap + fp + 1; 2294 out: 2295 some_scanned = false; 2296 /* Only use force_scan on second pass. */ 2297 for (pass = 0; !some_scanned && pass < 2; pass++) { 2298 *lru_pages = 0; 2299 for_each_evictable_lru(lru) { 2300 int file = is_file_lru(lru); 2301 unsigned long size; 2302 unsigned long scan; 2303 2304 size = lruvec_lru_size(lruvec, lru); 2305 scan = size >> sc->priority; 2306 2307 if (!scan && pass && force_scan) 2308 scan = min(size, SWAP_CLUSTER_MAX); 2309 2310 switch (scan_balance) { 2311 case SCAN_EQUAL: 2312 /* Scan lists relative to size */ 2313 break; 2314 case SCAN_FRACT: 2315 /* 2316 * Scan types proportional to swappiness and 2317 * their relative recent reclaim efficiency. 2318 */ 2319 scan = div64_u64(scan * fraction[file], 2320 denominator); 2321 break; 2322 case SCAN_FILE: 2323 case SCAN_ANON: 2324 /* Scan one type exclusively */ 2325 if ((scan_balance == SCAN_FILE) != file) { 2326 size = 0; 2327 scan = 0; 2328 } 2329 break; 2330 default: 2331 /* Look ma, no brain */ 2332 BUG(); 2333 } 2334 2335 *lru_pages += size; 2336 nr[lru] = scan; 2337 2338 /* 2339 * Skip the second pass and don't force_scan, 2340 * if we found something to scan. 2341 */ 2342 some_scanned |= !!scan; 2343 } 2344 } 2345 } 2346 2347 /* 2348 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2349 */ 2350 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2351 struct scan_control *sc, unsigned long *lru_pages) 2352 { 2353 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2354 unsigned long nr[NR_LRU_LISTS]; 2355 unsigned long targets[NR_LRU_LISTS]; 2356 unsigned long nr_to_scan; 2357 enum lru_list lru; 2358 unsigned long nr_reclaimed = 0; 2359 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2360 struct blk_plug plug; 2361 bool scan_adjusted; 2362 2363 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2364 2365 /* Record the original scan target for proportional adjustments later */ 2366 memcpy(targets, nr, sizeof(nr)); 2367 2368 /* 2369 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2370 * event that can occur when there is little memory pressure e.g. 2371 * multiple streaming readers/writers. Hence, we do not abort scanning 2372 * when the requested number of pages are reclaimed when scanning at 2373 * DEF_PRIORITY on the assumption that the fact we are direct 2374 * reclaiming implies that kswapd is not keeping up and it is best to 2375 * do a batch of work at once. For memcg reclaim one check is made to 2376 * abort proportional reclaim if either the file or anon lru has already 2377 * dropped to zero at the first pass. 2378 */ 2379 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2380 sc->priority == DEF_PRIORITY); 2381 2382 blk_start_plug(&plug); 2383 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2384 nr[LRU_INACTIVE_FILE]) { 2385 unsigned long nr_anon, nr_file, percentage; 2386 unsigned long nr_scanned; 2387 2388 for_each_evictable_lru(lru) { 2389 if (nr[lru]) { 2390 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2391 nr[lru] -= nr_to_scan; 2392 2393 nr_reclaimed += shrink_list(lru, nr_to_scan, 2394 lruvec, sc); 2395 } 2396 } 2397 2398 cond_resched(); 2399 2400 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2401 continue; 2402 2403 /* 2404 * For kswapd and memcg, reclaim at least the number of pages 2405 * requested. Ensure that the anon and file LRUs are scanned 2406 * proportionally what was requested by get_scan_count(). We 2407 * stop reclaiming one LRU and reduce the amount scanning 2408 * proportional to the original scan target. 2409 */ 2410 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2411 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2412 2413 /* 2414 * It's just vindictive to attack the larger once the smaller 2415 * has gone to zero. And given the way we stop scanning the 2416 * smaller below, this makes sure that we only make one nudge 2417 * towards proportionality once we've got nr_to_reclaim. 2418 */ 2419 if (!nr_file || !nr_anon) 2420 break; 2421 2422 if (nr_file > nr_anon) { 2423 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2424 targets[LRU_ACTIVE_ANON] + 1; 2425 lru = LRU_BASE; 2426 percentage = nr_anon * 100 / scan_target; 2427 } else { 2428 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2429 targets[LRU_ACTIVE_FILE] + 1; 2430 lru = LRU_FILE; 2431 percentage = nr_file * 100 / scan_target; 2432 } 2433 2434 /* Stop scanning the smaller of the LRU */ 2435 nr[lru] = 0; 2436 nr[lru + LRU_ACTIVE] = 0; 2437 2438 /* 2439 * Recalculate the other LRU scan count based on its original 2440 * scan target and the percentage scanning already complete 2441 */ 2442 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2443 nr_scanned = targets[lru] - nr[lru]; 2444 nr[lru] = targets[lru] * (100 - percentage) / 100; 2445 nr[lru] -= min(nr[lru], nr_scanned); 2446 2447 lru += LRU_ACTIVE; 2448 nr_scanned = targets[lru] - nr[lru]; 2449 nr[lru] = targets[lru] * (100 - percentage) / 100; 2450 nr[lru] -= min(nr[lru], nr_scanned); 2451 2452 scan_adjusted = true; 2453 } 2454 blk_finish_plug(&plug); 2455 sc->nr_reclaimed += nr_reclaimed; 2456 2457 /* 2458 * Even if we did not try to evict anon pages at all, we want to 2459 * rebalance the anon lru active/inactive ratio. 2460 */ 2461 if (inactive_list_is_low(lruvec, false, sc, true)) 2462 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2463 sc, LRU_ACTIVE_ANON); 2464 } 2465 2466 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2467 static bool in_reclaim_compaction(struct scan_control *sc) 2468 { 2469 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2470 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2471 sc->priority < DEF_PRIORITY - 2)) 2472 return true; 2473 2474 return false; 2475 } 2476 2477 /* 2478 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2479 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2480 * true if more pages should be reclaimed such that when the page allocator 2481 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2482 * It will give up earlier than that if there is difficulty reclaiming pages. 2483 */ 2484 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2485 unsigned long nr_reclaimed, 2486 unsigned long nr_scanned, 2487 struct scan_control *sc) 2488 { 2489 unsigned long pages_for_compaction; 2490 unsigned long inactive_lru_pages; 2491 int z; 2492 2493 /* If not in reclaim/compaction mode, stop */ 2494 if (!in_reclaim_compaction(sc)) 2495 return false; 2496 2497 /* Consider stopping depending on scan and reclaim activity */ 2498 if (sc->gfp_mask & __GFP_REPEAT) { 2499 /* 2500 * For __GFP_REPEAT allocations, stop reclaiming if the 2501 * full LRU list has been scanned and we are still failing 2502 * to reclaim pages. This full LRU scan is potentially 2503 * expensive but a __GFP_REPEAT caller really wants to succeed 2504 */ 2505 if (!nr_reclaimed && !nr_scanned) 2506 return false; 2507 } else { 2508 /* 2509 * For non-__GFP_REPEAT allocations which can presumably 2510 * fail without consequence, stop if we failed to reclaim 2511 * any pages from the last SWAP_CLUSTER_MAX number of 2512 * pages that were scanned. This will return to the 2513 * caller faster at the risk reclaim/compaction and 2514 * the resulting allocation attempt fails 2515 */ 2516 if (!nr_reclaimed) 2517 return false; 2518 } 2519 2520 /* 2521 * If we have not reclaimed enough pages for compaction and the 2522 * inactive lists are large enough, continue reclaiming 2523 */ 2524 pages_for_compaction = compact_gap(sc->order); 2525 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2526 if (get_nr_swap_pages() > 0) 2527 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2528 if (sc->nr_reclaimed < pages_for_compaction && 2529 inactive_lru_pages > pages_for_compaction) 2530 return true; 2531 2532 /* If compaction would go ahead or the allocation would succeed, stop */ 2533 for (z = 0; z <= sc->reclaim_idx; z++) { 2534 struct zone *zone = &pgdat->node_zones[z]; 2535 if (!managed_zone(zone)) 2536 continue; 2537 2538 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2539 case COMPACT_SUCCESS: 2540 case COMPACT_CONTINUE: 2541 return false; 2542 default: 2543 /* check next zone */ 2544 ; 2545 } 2546 } 2547 return true; 2548 } 2549 2550 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2551 { 2552 struct reclaim_state *reclaim_state = current->reclaim_state; 2553 unsigned long nr_reclaimed, nr_scanned; 2554 bool reclaimable = false; 2555 2556 do { 2557 struct mem_cgroup *root = sc->target_mem_cgroup; 2558 struct mem_cgroup_reclaim_cookie reclaim = { 2559 .pgdat = pgdat, 2560 .priority = sc->priority, 2561 }; 2562 unsigned long node_lru_pages = 0; 2563 struct mem_cgroup *memcg; 2564 2565 nr_reclaimed = sc->nr_reclaimed; 2566 nr_scanned = sc->nr_scanned; 2567 2568 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2569 do { 2570 unsigned long lru_pages; 2571 unsigned long reclaimed; 2572 unsigned long scanned; 2573 2574 if (mem_cgroup_low(root, memcg)) { 2575 if (!sc->may_thrash) 2576 continue; 2577 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2578 } 2579 2580 reclaimed = sc->nr_reclaimed; 2581 scanned = sc->nr_scanned; 2582 2583 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2584 node_lru_pages += lru_pages; 2585 2586 if (memcg) 2587 shrink_slab(sc->gfp_mask, pgdat->node_id, 2588 memcg, sc->nr_scanned - scanned, 2589 lru_pages); 2590 2591 /* Record the group's reclaim efficiency */ 2592 vmpressure(sc->gfp_mask, memcg, false, 2593 sc->nr_scanned - scanned, 2594 sc->nr_reclaimed - reclaimed); 2595 2596 /* 2597 * Direct reclaim and kswapd have to scan all memory 2598 * cgroups to fulfill the overall scan target for the 2599 * node. 2600 * 2601 * Limit reclaim, on the other hand, only cares about 2602 * nr_to_reclaim pages to be reclaimed and it will 2603 * retry with decreasing priority if one round over the 2604 * whole hierarchy is not sufficient. 2605 */ 2606 if (!global_reclaim(sc) && 2607 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2608 mem_cgroup_iter_break(root, memcg); 2609 break; 2610 } 2611 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2612 2613 /* 2614 * Shrink the slab caches in the same proportion that 2615 * the eligible LRU pages were scanned. 2616 */ 2617 if (global_reclaim(sc)) 2618 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2619 sc->nr_scanned - nr_scanned, 2620 node_lru_pages); 2621 2622 if (reclaim_state) { 2623 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2624 reclaim_state->reclaimed_slab = 0; 2625 } 2626 2627 /* Record the subtree's reclaim efficiency */ 2628 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2629 sc->nr_scanned - nr_scanned, 2630 sc->nr_reclaimed - nr_reclaimed); 2631 2632 if (sc->nr_reclaimed - nr_reclaimed) 2633 reclaimable = true; 2634 2635 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2636 sc->nr_scanned - nr_scanned, sc)); 2637 2638 return reclaimable; 2639 } 2640 2641 /* 2642 * Returns true if compaction should go ahead for a costly-order request, or 2643 * the allocation would already succeed without compaction. Return false if we 2644 * should reclaim first. 2645 */ 2646 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2647 { 2648 unsigned long watermark; 2649 enum compact_result suitable; 2650 2651 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2652 if (suitable == COMPACT_SUCCESS) 2653 /* Allocation should succeed already. Don't reclaim. */ 2654 return true; 2655 if (suitable == COMPACT_SKIPPED) 2656 /* Compaction cannot yet proceed. Do reclaim. */ 2657 return false; 2658 2659 /* 2660 * Compaction is already possible, but it takes time to run and there 2661 * are potentially other callers using the pages just freed. So proceed 2662 * with reclaim to make a buffer of free pages available to give 2663 * compaction a reasonable chance of completing and allocating the page. 2664 * Note that we won't actually reclaim the whole buffer in one attempt 2665 * as the target watermark in should_continue_reclaim() is lower. But if 2666 * we are already above the high+gap watermark, don't reclaim at all. 2667 */ 2668 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2669 2670 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2671 } 2672 2673 /* 2674 * This is the direct reclaim path, for page-allocating processes. We only 2675 * try to reclaim pages from zones which will satisfy the caller's allocation 2676 * request. 2677 * 2678 * If a zone is deemed to be full of pinned pages then just give it a light 2679 * scan then give up on it. 2680 */ 2681 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2682 { 2683 struct zoneref *z; 2684 struct zone *zone; 2685 unsigned long nr_soft_reclaimed; 2686 unsigned long nr_soft_scanned; 2687 gfp_t orig_mask; 2688 pg_data_t *last_pgdat = NULL; 2689 2690 /* 2691 * If the number of buffer_heads in the machine exceeds the maximum 2692 * allowed level, force direct reclaim to scan the highmem zone as 2693 * highmem pages could be pinning lowmem pages storing buffer_heads 2694 */ 2695 orig_mask = sc->gfp_mask; 2696 if (buffer_heads_over_limit) { 2697 sc->gfp_mask |= __GFP_HIGHMEM; 2698 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2699 } 2700 2701 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2702 sc->reclaim_idx, sc->nodemask) { 2703 /* 2704 * Take care memory controller reclaiming has small influence 2705 * to global LRU. 2706 */ 2707 if (global_reclaim(sc)) { 2708 if (!cpuset_zone_allowed(zone, 2709 GFP_KERNEL | __GFP_HARDWALL)) 2710 continue; 2711 2712 if (sc->priority != DEF_PRIORITY && 2713 !pgdat_reclaimable(zone->zone_pgdat)) 2714 continue; /* Let kswapd poll it */ 2715 2716 /* 2717 * If we already have plenty of memory free for 2718 * compaction in this zone, don't free any more. 2719 * Even though compaction is invoked for any 2720 * non-zero order, only frequent costly order 2721 * reclamation is disruptive enough to become a 2722 * noticeable problem, like transparent huge 2723 * page allocations. 2724 */ 2725 if (IS_ENABLED(CONFIG_COMPACTION) && 2726 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2727 compaction_ready(zone, sc)) { 2728 sc->compaction_ready = true; 2729 continue; 2730 } 2731 2732 /* 2733 * Shrink each node in the zonelist once. If the 2734 * zonelist is ordered by zone (not the default) then a 2735 * node may be shrunk multiple times but in that case 2736 * the user prefers lower zones being preserved. 2737 */ 2738 if (zone->zone_pgdat == last_pgdat) 2739 continue; 2740 2741 /* 2742 * This steals pages from memory cgroups over softlimit 2743 * and returns the number of reclaimed pages and 2744 * scanned pages. This works for global memory pressure 2745 * and balancing, not for a memcg's limit. 2746 */ 2747 nr_soft_scanned = 0; 2748 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2749 sc->order, sc->gfp_mask, 2750 &nr_soft_scanned); 2751 sc->nr_reclaimed += nr_soft_reclaimed; 2752 sc->nr_scanned += nr_soft_scanned; 2753 /* need some check for avoid more shrink_zone() */ 2754 } 2755 2756 /* See comment about same check for global reclaim above */ 2757 if (zone->zone_pgdat == last_pgdat) 2758 continue; 2759 last_pgdat = zone->zone_pgdat; 2760 shrink_node(zone->zone_pgdat, sc); 2761 } 2762 2763 /* 2764 * Restore to original mask to avoid the impact on the caller if we 2765 * promoted it to __GFP_HIGHMEM. 2766 */ 2767 sc->gfp_mask = orig_mask; 2768 } 2769 2770 /* 2771 * This is the main entry point to direct page reclaim. 2772 * 2773 * If a full scan of the inactive list fails to free enough memory then we 2774 * are "out of memory" and something needs to be killed. 2775 * 2776 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2777 * high - the zone may be full of dirty or under-writeback pages, which this 2778 * caller can't do much about. We kick the writeback threads and take explicit 2779 * naps in the hope that some of these pages can be written. But if the 2780 * allocating task holds filesystem locks which prevent writeout this might not 2781 * work, and the allocation attempt will fail. 2782 * 2783 * returns: 0, if no pages reclaimed 2784 * else, the number of pages reclaimed 2785 */ 2786 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2787 struct scan_control *sc) 2788 { 2789 int initial_priority = sc->priority; 2790 unsigned long total_scanned = 0; 2791 unsigned long writeback_threshold; 2792 retry: 2793 delayacct_freepages_start(); 2794 2795 if (global_reclaim(sc)) 2796 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2797 2798 do { 2799 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2800 sc->priority); 2801 sc->nr_scanned = 0; 2802 shrink_zones(zonelist, sc); 2803 2804 total_scanned += sc->nr_scanned; 2805 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2806 break; 2807 2808 if (sc->compaction_ready) 2809 break; 2810 2811 /* 2812 * If we're getting trouble reclaiming, start doing 2813 * writepage even in laptop mode. 2814 */ 2815 if (sc->priority < DEF_PRIORITY - 2) 2816 sc->may_writepage = 1; 2817 2818 /* 2819 * Try to write back as many pages as we just scanned. This 2820 * tends to cause slow streaming writers to write data to the 2821 * disk smoothly, at the dirtying rate, which is nice. But 2822 * that's undesirable in laptop mode, where we *want* lumpy 2823 * writeout. So in laptop mode, write out the whole world. 2824 */ 2825 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2826 if (total_scanned > writeback_threshold) { 2827 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2828 WB_REASON_TRY_TO_FREE_PAGES); 2829 sc->may_writepage = 1; 2830 } 2831 } while (--sc->priority >= 0); 2832 2833 delayacct_freepages_end(); 2834 2835 if (sc->nr_reclaimed) 2836 return sc->nr_reclaimed; 2837 2838 /* Aborted reclaim to try compaction? don't OOM, then */ 2839 if (sc->compaction_ready) 2840 return 1; 2841 2842 /* Untapped cgroup reserves? Don't OOM, retry. */ 2843 if (!sc->may_thrash) { 2844 sc->priority = initial_priority; 2845 sc->may_thrash = 1; 2846 goto retry; 2847 } 2848 2849 return 0; 2850 } 2851 2852 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2853 { 2854 struct zone *zone; 2855 unsigned long pfmemalloc_reserve = 0; 2856 unsigned long free_pages = 0; 2857 int i; 2858 bool wmark_ok; 2859 2860 for (i = 0; i <= ZONE_NORMAL; i++) { 2861 zone = &pgdat->node_zones[i]; 2862 if (!managed_zone(zone) || 2863 pgdat_reclaimable_pages(pgdat) == 0) 2864 continue; 2865 2866 pfmemalloc_reserve += min_wmark_pages(zone); 2867 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2868 } 2869 2870 /* If there are no reserves (unexpected config) then do not throttle */ 2871 if (!pfmemalloc_reserve) 2872 return true; 2873 2874 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2875 2876 /* kswapd must be awake if processes are being throttled */ 2877 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2878 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2879 (enum zone_type)ZONE_NORMAL); 2880 wake_up_interruptible(&pgdat->kswapd_wait); 2881 } 2882 2883 return wmark_ok; 2884 } 2885 2886 /* 2887 * Throttle direct reclaimers if backing storage is backed by the network 2888 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2889 * depleted. kswapd will continue to make progress and wake the processes 2890 * when the low watermark is reached. 2891 * 2892 * Returns true if a fatal signal was delivered during throttling. If this 2893 * happens, the page allocator should not consider triggering the OOM killer. 2894 */ 2895 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2896 nodemask_t *nodemask) 2897 { 2898 struct zoneref *z; 2899 struct zone *zone; 2900 pg_data_t *pgdat = NULL; 2901 2902 /* 2903 * Kernel threads should not be throttled as they may be indirectly 2904 * responsible for cleaning pages necessary for reclaim to make forward 2905 * progress. kjournald for example may enter direct reclaim while 2906 * committing a transaction where throttling it could forcing other 2907 * processes to block on log_wait_commit(). 2908 */ 2909 if (current->flags & PF_KTHREAD) 2910 goto out; 2911 2912 /* 2913 * If a fatal signal is pending, this process should not throttle. 2914 * It should return quickly so it can exit and free its memory 2915 */ 2916 if (fatal_signal_pending(current)) 2917 goto out; 2918 2919 /* 2920 * Check if the pfmemalloc reserves are ok by finding the first node 2921 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2922 * GFP_KERNEL will be required for allocating network buffers when 2923 * swapping over the network so ZONE_HIGHMEM is unusable. 2924 * 2925 * Throttling is based on the first usable node and throttled processes 2926 * wait on a queue until kswapd makes progress and wakes them. There 2927 * is an affinity then between processes waking up and where reclaim 2928 * progress has been made assuming the process wakes on the same node. 2929 * More importantly, processes running on remote nodes will not compete 2930 * for remote pfmemalloc reserves and processes on different nodes 2931 * should make reasonable progress. 2932 */ 2933 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2934 gfp_zone(gfp_mask), nodemask) { 2935 if (zone_idx(zone) > ZONE_NORMAL) 2936 continue; 2937 2938 /* Throttle based on the first usable node */ 2939 pgdat = zone->zone_pgdat; 2940 if (pfmemalloc_watermark_ok(pgdat)) 2941 goto out; 2942 break; 2943 } 2944 2945 /* If no zone was usable by the allocation flags then do not throttle */ 2946 if (!pgdat) 2947 goto out; 2948 2949 /* Account for the throttling */ 2950 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2951 2952 /* 2953 * If the caller cannot enter the filesystem, it's possible that it 2954 * is due to the caller holding an FS lock or performing a journal 2955 * transaction in the case of a filesystem like ext[3|4]. In this case, 2956 * it is not safe to block on pfmemalloc_wait as kswapd could be 2957 * blocked waiting on the same lock. Instead, throttle for up to a 2958 * second before continuing. 2959 */ 2960 if (!(gfp_mask & __GFP_FS)) { 2961 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2962 pfmemalloc_watermark_ok(pgdat), HZ); 2963 2964 goto check_pending; 2965 } 2966 2967 /* Throttle until kswapd wakes the process */ 2968 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2969 pfmemalloc_watermark_ok(pgdat)); 2970 2971 check_pending: 2972 if (fatal_signal_pending(current)) 2973 return true; 2974 2975 out: 2976 return false; 2977 } 2978 2979 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2980 gfp_t gfp_mask, nodemask_t *nodemask) 2981 { 2982 unsigned long nr_reclaimed; 2983 struct scan_control sc = { 2984 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2985 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2986 .reclaim_idx = gfp_zone(gfp_mask), 2987 .order = order, 2988 .nodemask = nodemask, 2989 .priority = DEF_PRIORITY, 2990 .may_writepage = !laptop_mode, 2991 .may_unmap = 1, 2992 .may_swap = 1, 2993 }; 2994 2995 /* 2996 * Do not enter reclaim if fatal signal was delivered while throttled. 2997 * 1 is returned so that the page allocator does not OOM kill at this 2998 * point. 2999 */ 3000 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 3001 return 1; 3002 3003 trace_mm_vmscan_direct_reclaim_begin(order, 3004 sc.may_writepage, 3005 gfp_mask, 3006 sc.reclaim_idx); 3007 3008 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3009 3010 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3011 3012 return nr_reclaimed; 3013 } 3014 3015 #ifdef CONFIG_MEMCG 3016 3017 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3018 gfp_t gfp_mask, bool noswap, 3019 pg_data_t *pgdat, 3020 unsigned long *nr_scanned) 3021 { 3022 struct scan_control sc = { 3023 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3024 .target_mem_cgroup = memcg, 3025 .may_writepage = !laptop_mode, 3026 .may_unmap = 1, 3027 .reclaim_idx = MAX_NR_ZONES - 1, 3028 .may_swap = !noswap, 3029 }; 3030 unsigned long lru_pages; 3031 3032 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3033 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3034 3035 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3036 sc.may_writepage, 3037 sc.gfp_mask, 3038 sc.reclaim_idx); 3039 3040 /* 3041 * NOTE: Although we can get the priority field, using it 3042 * here is not a good idea, since it limits the pages we can scan. 3043 * if we don't reclaim here, the shrink_node from balance_pgdat 3044 * will pick up pages from other mem cgroup's as well. We hack 3045 * the priority and make it zero. 3046 */ 3047 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3048 3049 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3050 3051 *nr_scanned = sc.nr_scanned; 3052 return sc.nr_reclaimed; 3053 } 3054 3055 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3056 unsigned long nr_pages, 3057 gfp_t gfp_mask, 3058 bool may_swap) 3059 { 3060 struct zonelist *zonelist; 3061 unsigned long nr_reclaimed; 3062 int nid; 3063 struct scan_control sc = { 3064 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3065 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3066 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3067 .reclaim_idx = MAX_NR_ZONES - 1, 3068 .target_mem_cgroup = memcg, 3069 .priority = DEF_PRIORITY, 3070 .may_writepage = !laptop_mode, 3071 .may_unmap = 1, 3072 .may_swap = may_swap, 3073 }; 3074 3075 /* 3076 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3077 * take care of from where we get pages. So the node where we start the 3078 * scan does not need to be the current node. 3079 */ 3080 nid = mem_cgroup_select_victim_node(memcg); 3081 3082 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3083 3084 trace_mm_vmscan_memcg_reclaim_begin(0, 3085 sc.may_writepage, 3086 sc.gfp_mask, 3087 sc.reclaim_idx); 3088 3089 current->flags |= PF_MEMALLOC; 3090 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3091 current->flags &= ~PF_MEMALLOC; 3092 3093 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3094 3095 return nr_reclaimed; 3096 } 3097 #endif 3098 3099 static void age_active_anon(struct pglist_data *pgdat, 3100 struct scan_control *sc) 3101 { 3102 struct mem_cgroup *memcg; 3103 3104 if (!total_swap_pages) 3105 return; 3106 3107 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3108 do { 3109 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3110 3111 if (inactive_list_is_low(lruvec, false, sc, true)) 3112 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3113 sc, LRU_ACTIVE_ANON); 3114 3115 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3116 } while (memcg); 3117 } 3118 3119 static bool zone_balanced(struct zone *zone, int order, int classzone_idx) 3120 { 3121 unsigned long mark = high_wmark_pages(zone); 3122 3123 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3124 return false; 3125 3126 /* 3127 * If any eligible zone is balanced then the node is not considered 3128 * to be congested or dirty 3129 */ 3130 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags); 3131 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags); 3132 3133 return true; 3134 } 3135 3136 /* 3137 * Prepare kswapd for sleeping. This verifies that there are no processes 3138 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3139 * 3140 * Returns true if kswapd is ready to sleep 3141 */ 3142 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3143 { 3144 int i; 3145 3146 /* 3147 * The throttled processes are normally woken up in balance_pgdat() as 3148 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3149 * race between when kswapd checks the watermarks and a process gets 3150 * throttled. There is also a potential race if processes get 3151 * throttled, kswapd wakes, a large process exits thereby balancing the 3152 * zones, which causes kswapd to exit balance_pgdat() before reaching 3153 * the wake up checks. If kswapd is going to sleep, no process should 3154 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3155 * the wake up is premature, processes will wake kswapd and get 3156 * throttled again. The difference from wake ups in balance_pgdat() is 3157 * that here we are under prepare_to_wait(). 3158 */ 3159 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3160 wake_up_all(&pgdat->pfmemalloc_wait); 3161 3162 for (i = 0; i <= classzone_idx; i++) { 3163 struct zone *zone = pgdat->node_zones + i; 3164 3165 if (!managed_zone(zone)) 3166 continue; 3167 3168 if (!zone_balanced(zone, order, classzone_idx)) 3169 return false; 3170 } 3171 3172 return true; 3173 } 3174 3175 /* 3176 * kswapd shrinks a node of pages that are at or below the highest usable 3177 * zone that is currently unbalanced. 3178 * 3179 * Returns true if kswapd scanned at least the requested number of pages to 3180 * reclaim or if the lack of progress was due to pages under writeback. 3181 * This is used to determine if the scanning priority needs to be raised. 3182 */ 3183 static bool kswapd_shrink_node(pg_data_t *pgdat, 3184 struct scan_control *sc) 3185 { 3186 struct zone *zone; 3187 int z; 3188 3189 /* Reclaim a number of pages proportional to the number of zones */ 3190 sc->nr_to_reclaim = 0; 3191 for (z = 0; z <= sc->reclaim_idx; z++) { 3192 zone = pgdat->node_zones + z; 3193 if (!managed_zone(zone)) 3194 continue; 3195 3196 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3197 } 3198 3199 /* 3200 * Historically care was taken to put equal pressure on all zones but 3201 * now pressure is applied based on node LRU order. 3202 */ 3203 shrink_node(pgdat, sc); 3204 3205 /* 3206 * Fragmentation may mean that the system cannot be rebalanced for 3207 * high-order allocations. If twice the allocation size has been 3208 * reclaimed then recheck watermarks only at order-0 to prevent 3209 * excessive reclaim. Assume that a process requested a high-order 3210 * can direct reclaim/compact. 3211 */ 3212 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3213 sc->order = 0; 3214 3215 return sc->nr_scanned >= sc->nr_to_reclaim; 3216 } 3217 3218 /* 3219 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3220 * that are eligible for use by the caller until at least one zone is 3221 * balanced. 3222 * 3223 * Returns the order kswapd finished reclaiming at. 3224 * 3225 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3226 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3227 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3228 * or lower is eligible for reclaim until at least one usable zone is 3229 * balanced. 3230 */ 3231 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3232 { 3233 int i; 3234 unsigned long nr_soft_reclaimed; 3235 unsigned long nr_soft_scanned; 3236 struct zone *zone; 3237 struct scan_control sc = { 3238 .gfp_mask = GFP_KERNEL, 3239 .order = order, 3240 .priority = DEF_PRIORITY, 3241 .may_writepage = !laptop_mode, 3242 .may_unmap = 1, 3243 .may_swap = 1, 3244 }; 3245 count_vm_event(PAGEOUTRUN); 3246 3247 do { 3248 bool raise_priority = true; 3249 3250 sc.nr_reclaimed = 0; 3251 sc.reclaim_idx = classzone_idx; 3252 3253 /* 3254 * If the number of buffer_heads exceeds the maximum allowed 3255 * then consider reclaiming from all zones. This has a dual 3256 * purpose -- on 64-bit systems it is expected that 3257 * buffer_heads are stripped during active rotation. On 32-bit 3258 * systems, highmem pages can pin lowmem memory and shrinking 3259 * buffers can relieve lowmem pressure. Reclaim may still not 3260 * go ahead if all eligible zones for the original allocation 3261 * request are balanced to avoid excessive reclaim from kswapd. 3262 */ 3263 if (buffer_heads_over_limit) { 3264 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3265 zone = pgdat->node_zones + i; 3266 if (!managed_zone(zone)) 3267 continue; 3268 3269 sc.reclaim_idx = i; 3270 break; 3271 } 3272 } 3273 3274 /* 3275 * Only reclaim if there are no eligible zones. Check from 3276 * high to low zone as allocations prefer higher zones. 3277 * Scanning from low to high zone would allow congestion to be 3278 * cleared during a very small window when a small low 3279 * zone was balanced even under extreme pressure when the 3280 * overall node may be congested. Note that sc.reclaim_idx 3281 * is not used as buffer_heads_over_limit may have adjusted 3282 * it. 3283 */ 3284 for (i = classzone_idx; i >= 0; i--) { 3285 zone = pgdat->node_zones + i; 3286 if (!managed_zone(zone)) 3287 continue; 3288 3289 if (zone_balanced(zone, sc.order, classzone_idx)) 3290 goto out; 3291 } 3292 3293 /* 3294 * Do some background aging of the anon list, to give 3295 * pages a chance to be referenced before reclaiming. All 3296 * pages are rotated regardless of classzone as this is 3297 * about consistent aging. 3298 */ 3299 age_active_anon(pgdat, &sc); 3300 3301 /* 3302 * If we're getting trouble reclaiming, start doing writepage 3303 * even in laptop mode. 3304 */ 3305 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat)) 3306 sc.may_writepage = 1; 3307 3308 /* Call soft limit reclaim before calling shrink_node. */ 3309 sc.nr_scanned = 0; 3310 nr_soft_scanned = 0; 3311 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3312 sc.gfp_mask, &nr_soft_scanned); 3313 sc.nr_reclaimed += nr_soft_reclaimed; 3314 3315 /* 3316 * There should be no need to raise the scanning priority if 3317 * enough pages are already being scanned that that high 3318 * watermark would be met at 100% efficiency. 3319 */ 3320 if (kswapd_shrink_node(pgdat, &sc)) 3321 raise_priority = false; 3322 3323 /* 3324 * If the low watermark is met there is no need for processes 3325 * to be throttled on pfmemalloc_wait as they should not be 3326 * able to safely make forward progress. Wake them 3327 */ 3328 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3329 pfmemalloc_watermark_ok(pgdat)) 3330 wake_up_all(&pgdat->pfmemalloc_wait); 3331 3332 /* Check if kswapd should be suspending */ 3333 if (try_to_freeze() || kthread_should_stop()) 3334 break; 3335 3336 /* 3337 * Raise priority if scanning rate is too low or there was no 3338 * progress in reclaiming pages 3339 */ 3340 if (raise_priority || !sc.nr_reclaimed) 3341 sc.priority--; 3342 } while (sc.priority >= 1); 3343 3344 out: 3345 /* 3346 * Return the order kswapd stopped reclaiming at as 3347 * prepare_kswapd_sleep() takes it into account. If another caller 3348 * entered the allocator slow path while kswapd was awake, order will 3349 * remain at the higher level. 3350 */ 3351 return sc.order; 3352 } 3353 3354 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3355 unsigned int classzone_idx) 3356 { 3357 long remaining = 0; 3358 DEFINE_WAIT(wait); 3359 3360 if (freezing(current) || kthread_should_stop()) 3361 return; 3362 3363 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3364 3365 /* Try to sleep for a short interval */ 3366 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3367 /* 3368 * Compaction records what page blocks it recently failed to 3369 * isolate pages from and skips them in the future scanning. 3370 * When kswapd is going to sleep, it is reasonable to assume 3371 * that pages and compaction may succeed so reset the cache. 3372 */ 3373 reset_isolation_suitable(pgdat); 3374 3375 /* 3376 * We have freed the memory, now we should compact it to make 3377 * allocation of the requested order possible. 3378 */ 3379 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3380 3381 remaining = schedule_timeout(HZ/10); 3382 3383 /* 3384 * If woken prematurely then reset kswapd_classzone_idx and 3385 * order. The values will either be from a wakeup request or 3386 * the previous request that slept prematurely. 3387 */ 3388 if (remaining) { 3389 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3390 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3391 } 3392 3393 finish_wait(&pgdat->kswapd_wait, &wait); 3394 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3395 } 3396 3397 /* 3398 * After a short sleep, check if it was a premature sleep. If not, then 3399 * go fully to sleep until explicitly woken up. 3400 */ 3401 if (!remaining && 3402 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3403 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3404 3405 /* 3406 * vmstat counters are not perfectly accurate and the estimated 3407 * value for counters such as NR_FREE_PAGES can deviate from the 3408 * true value by nr_online_cpus * threshold. To avoid the zone 3409 * watermarks being breached while under pressure, we reduce the 3410 * per-cpu vmstat threshold while kswapd is awake and restore 3411 * them before going back to sleep. 3412 */ 3413 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3414 3415 if (!kthread_should_stop()) 3416 schedule(); 3417 3418 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3419 } else { 3420 if (remaining) 3421 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3422 else 3423 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3424 } 3425 finish_wait(&pgdat->kswapd_wait, &wait); 3426 } 3427 3428 /* 3429 * The background pageout daemon, started as a kernel thread 3430 * from the init process. 3431 * 3432 * This basically trickles out pages so that we have _some_ 3433 * free memory available even if there is no other activity 3434 * that frees anything up. This is needed for things like routing 3435 * etc, where we otherwise might have all activity going on in 3436 * asynchronous contexts that cannot page things out. 3437 * 3438 * If there are applications that are active memory-allocators 3439 * (most normal use), this basically shouldn't matter. 3440 */ 3441 static int kswapd(void *p) 3442 { 3443 unsigned int alloc_order, reclaim_order, classzone_idx; 3444 pg_data_t *pgdat = (pg_data_t*)p; 3445 struct task_struct *tsk = current; 3446 3447 struct reclaim_state reclaim_state = { 3448 .reclaimed_slab = 0, 3449 }; 3450 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3451 3452 lockdep_set_current_reclaim_state(GFP_KERNEL); 3453 3454 if (!cpumask_empty(cpumask)) 3455 set_cpus_allowed_ptr(tsk, cpumask); 3456 current->reclaim_state = &reclaim_state; 3457 3458 /* 3459 * Tell the memory management that we're a "memory allocator", 3460 * and that if we need more memory we should get access to it 3461 * regardless (see "__alloc_pages()"). "kswapd" should 3462 * never get caught in the normal page freeing logic. 3463 * 3464 * (Kswapd normally doesn't need memory anyway, but sometimes 3465 * you need a small amount of memory in order to be able to 3466 * page out something else, and this flag essentially protects 3467 * us from recursively trying to free more memory as we're 3468 * trying to free the first piece of memory in the first place). 3469 */ 3470 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3471 set_freezable(); 3472 3473 pgdat->kswapd_order = alloc_order = reclaim_order = 0; 3474 pgdat->kswapd_classzone_idx = classzone_idx = 0; 3475 for ( ; ; ) { 3476 bool ret; 3477 3478 kswapd_try_sleep: 3479 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3480 classzone_idx); 3481 3482 /* Read the new order and classzone_idx */ 3483 alloc_order = reclaim_order = pgdat->kswapd_order; 3484 classzone_idx = pgdat->kswapd_classzone_idx; 3485 pgdat->kswapd_order = 0; 3486 pgdat->kswapd_classzone_idx = 0; 3487 3488 ret = try_to_freeze(); 3489 if (kthread_should_stop()) 3490 break; 3491 3492 /* 3493 * We can speed up thawing tasks if we don't call balance_pgdat 3494 * after returning from the refrigerator 3495 */ 3496 if (ret) 3497 continue; 3498 3499 /* 3500 * Reclaim begins at the requested order but if a high-order 3501 * reclaim fails then kswapd falls back to reclaiming for 3502 * order-0. If that happens, kswapd will consider sleeping 3503 * for the order it finished reclaiming at (reclaim_order) 3504 * but kcompactd is woken to compact for the original 3505 * request (alloc_order). 3506 */ 3507 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3508 alloc_order); 3509 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3510 if (reclaim_order < alloc_order) 3511 goto kswapd_try_sleep; 3512 3513 alloc_order = reclaim_order = pgdat->kswapd_order; 3514 classzone_idx = pgdat->kswapd_classzone_idx; 3515 } 3516 3517 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3518 current->reclaim_state = NULL; 3519 lockdep_clear_current_reclaim_state(); 3520 3521 return 0; 3522 } 3523 3524 /* 3525 * A zone is low on free memory, so wake its kswapd task to service it. 3526 */ 3527 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3528 { 3529 pg_data_t *pgdat; 3530 int z; 3531 3532 if (!managed_zone(zone)) 3533 return; 3534 3535 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3536 return; 3537 pgdat = zone->zone_pgdat; 3538 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3539 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3540 if (!waitqueue_active(&pgdat->kswapd_wait)) 3541 return; 3542 3543 /* Only wake kswapd if all zones are unbalanced */ 3544 for (z = 0; z <= classzone_idx; z++) { 3545 zone = pgdat->node_zones + z; 3546 if (!managed_zone(zone)) 3547 continue; 3548 3549 if (zone_balanced(zone, order, classzone_idx)) 3550 return; 3551 } 3552 3553 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3554 wake_up_interruptible(&pgdat->kswapd_wait); 3555 } 3556 3557 #ifdef CONFIG_HIBERNATION 3558 /* 3559 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3560 * freed pages. 3561 * 3562 * Rather than trying to age LRUs the aim is to preserve the overall 3563 * LRU order by reclaiming preferentially 3564 * inactive > active > active referenced > active mapped 3565 */ 3566 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3567 { 3568 struct reclaim_state reclaim_state; 3569 struct scan_control sc = { 3570 .nr_to_reclaim = nr_to_reclaim, 3571 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3572 .reclaim_idx = MAX_NR_ZONES - 1, 3573 .priority = DEF_PRIORITY, 3574 .may_writepage = 1, 3575 .may_unmap = 1, 3576 .may_swap = 1, 3577 .hibernation_mode = 1, 3578 }; 3579 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3580 struct task_struct *p = current; 3581 unsigned long nr_reclaimed; 3582 3583 p->flags |= PF_MEMALLOC; 3584 lockdep_set_current_reclaim_state(sc.gfp_mask); 3585 reclaim_state.reclaimed_slab = 0; 3586 p->reclaim_state = &reclaim_state; 3587 3588 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3589 3590 p->reclaim_state = NULL; 3591 lockdep_clear_current_reclaim_state(); 3592 p->flags &= ~PF_MEMALLOC; 3593 3594 return nr_reclaimed; 3595 } 3596 #endif /* CONFIG_HIBERNATION */ 3597 3598 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3599 not required for correctness. So if the last cpu in a node goes 3600 away, we get changed to run anywhere: as the first one comes back, 3601 restore their cpu bindings. */ 3602 static int kswapd_cpu_online(unsigned int cpu) 3603 { 3604 int nid; 3605 3606 for_each_node_state(nid, N_MEMORY) { 3607 pg_data_t *pgdat = NODE_DATA(nid); 3608 const struct cpumask *mask; 3609 3610 mask = cpumask_of_node(pgdat->node_id); 3611 3612 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3613 /* One of our CPUs online: restore mask */ 3614 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3615 } 3616 return 0; 3617 } 3618 3619 /* 3620 * This kswapd start function will be called by init and node-hot-add. 3621 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3622 */ 3623 int kswapd_run(int nid) 3624 { 3625 pg_data_t *pgdat = NODE_DATA(nid); 3626 int ret = 0; 3627 3628 if (pgdat->kswapd) 3629 return 0; 3630 3631 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3632 if (IS_ERR(pgdat->kswapd)) { 3633 /* failure at boot is fatal */ 3634 BUG_ON(system_state == SYSTEM_BOOTING); 3635 pr_err("Failed to start kswapd on node %d\n", nid); 3636 ret = PTR_ERR(pgdat->kswapd); 3637 pgdat->kswapd = NULL; 3638 } 3639 return ret; 3640 } 3641 3642 /* 3643 * Called by memory hotplug when all memory in a node is offlined. Caller must 3644 * hold mem_hotplug_begin/end(). 3645 */ 3646 void kswapd_stop(int nid) 3647 { 3648 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3649 3650 if (kswapd) { 3651 kthread_stop(kswapd); 3652 NODE_DATA(nid)->kswapd = NULL; 3653 } 3654 } 3655 3656 static int __init kswapd_init(void) 3657 { 3658 int nid, ret; 3659 3660 swap_setup(); 3661 for_each_node_state(nid, N_MEMORY) 3662 kswapd_run(nid); 3663 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3664 "mm/vmscan:online", kswapd_cpu_online, 3665 NULL); 3666 WARN_ON(ret < 0); 3667 return 0; 3668 } 3669 3670 module_init(kswapd_init) 3671 3672 #ifdef CONFIG_NUMA 3673 /* 3674 * Node reclaim mode 3675 * 3676 * If non-zero call node_reclaim when the number of free pages falls below 3677 * the watermarks. 3678 */ 3679 int node_reclaim_mode __read_mostly; 3680 3681 #define RECLAIM_OFF 0 3682 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3683 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3684 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3685 3686 /* 3687 * Priority for NODE_RECLAIM. This determines the fraction of pages 3688 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3689 * a zone. 3690 */ 3691 #define NODE_RECLAIM_PRIORITY 4 3692 3693 /* 3694 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3695 * occur. 3696 */ 3697 int sysctl_min_unmapped_ratio = 1; 3698 3699 /* 3700 * If the number of slab pages in a zone grows beyond this percentage then 3701 * slab reclaim needs to occur. 3702 */ 3703 int sysctl_min_slab_ratio = 5; 3704 3705 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3706 { 3707 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3708 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3709 node_page_state(pgdat, NR_ACTIVE_FILE); 3710 3711 /* 3712 * It's possible for there to be more file mapped pages than 3713 * accounted for by the pages on the file LRU lists because 3714 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3715 */ 3716 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3717 } 3718 3719 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3720 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3721 { 3722 unsigned long nr_pagecache_reclaimable; 3723 unsigned long delta = 0; 3724 3725 /* 3726 * If RECLAIM_UNMAP is set, then all file pages are considered 3727 * potentially reclaimable. Otherwise, we have to worry about 3728 * pages like swapcache and node_unmapped_file_pages() provides 3729 * a better estimate 3730 */ 3731 if (node_reclaim_mode & RECLAIM_UNMAP) 3732 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3733 else 3734 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3735 3736 /* If we can't clean pages, remove dirty pages from consideration */ 3737 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3738 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3739 3740 /* Watch for any possible underflows due to delta */ 3741 if (unlikely(delta > nr_pagecache_reclaimable)) 3742 delta = nr_pagecache_reclaimable; 3743 3744 return nr_pagecache_reclaimable - delta; 3745 } 3746 3747 /* 3748 * Try to free up some pages from this node through reclaim. 3749 */ 3750 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3751 { 3752 /* Minimum pages needed in order to stay on node */ 3753 const unsigned long nr_pages = 1 << order; 3754 struct task_struct *p = current; 3755 struct reclaim_state reclaim_state; 3756 int classzone_idx = gfp_zone(gfp_mask); 3757 struct scan_control sc = { 3758 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3759 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3760 .order = order, 3761 .priority = NODE_RECLAIM_PRIORITY, 3762 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3763 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3764 .may_swap = 1, 3765 .reclaim_idx = classzone_idx, 3766 }; 3767 3768 cond_resched(); 3769 /* 3770 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3771 * and we also need to be able to write out pages for RECLAIM_WRITE 3772 * and RECLAIM_UNMAP. 3773 */ 3774 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3775 lockdep_set_current_reclaim_state(gfp_mask); 3776 reclaim_state.reclaimed_slab = 0; 3777 p->reclaim_state = &reclaim_state; 3778 3779 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3780 /* 3781 * Free memory by calling shrink zone with increasing 3782 * priorities until we have enough memory freed. 3783 */ 3784 do { 3785 shrink_node(pgdat, &sc); 3786 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3787 } 3788 3789 p->reclaim_state = NULL; 3790 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3791 lockdep_clear_current_reclaim_state(); 3792 return sc.nr_reclaimed >= nr_pages; 3793 } 3794 3795 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3796 { 3797 int ret; 3798 3799 /* 3800 * Node reclaim reclaims unmapped file backed pages and 3801 * slab pages if we are over the defined limits. 3802 * 3803 * A small portion of unmapped file backed pages is needed for 3804 * file I/O otherwise pages read by file I/O will be immediately 3805 * thrown out if the node is overallocated. So we do not reclaim 3806 * if less than a specified percentage of the node is used by 3807 * unmapped file backed pages. 3808 */ 3809 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3810 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3811 return NODE_RECLAIM_FULL; 3812 3813 if (!pgdat_reclaimable(pgdat)) 3814 return NODE_RECLAIM_FULL; 3815 3816 /* 3817 * Do not scan if the allocation should not be delayed. 3818 */ 3819 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3820 return NODE_RECLAIM_NOSCAN; 3821 3822 /* 3823 * Only run node reclaim on the local node or on nodes that do not 3824 * have associated processors. This will favor the local processor 3825 * over remote processors and spread off node memory allocations 3826 * as wide as possible. 3827 */ 3828 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3829 return NODE_RECLAIM_NOSCAN; 3830 3831 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3832 return NODE_RECLAIM_NOSCAN; 3833 3834 ret = __node_reclaim(pgdat, gfp_mask, order); 3835 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3836 3837 if (!ret) 3838 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3839 3840 return ret; 3841 } 3842 #endif 3843 3844 /* 3845 * page_evictable - test whether a page is evictable 3846 * @page: the page to test 3847 * 3848 * Test whether page is evictable--i.e., should be placed on active/inactive 3849 * lists vs unevictable list. 3850 * 3851 * Reasons page might not be evictable: 3852 * (1) page's mapping marked unevictable 3853 * (2) page is part of an mlocked VMA 3854 * 3855 */ 3856 int page_evictable(struct page *page) 3857 { 3858 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3859 } 3860 3861 #ifdef CONFIG_SHMEM 3862 /** 3863 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3864 * @pages: array of pages to check 3865 * @nr_pages: number of pages to check 3866 * 3867 * Checks pages for evictability and moves them to the appropriate lru list. 3868 * 3869 * This function is only used for SysV IPC SHM_UNLOCK. 3870 */ 3871 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3872 { 3873 struct lruvec *lruvec; 3874 struct pglist_data *pgdat = NULL; 3875 int pgscanned = 0; 3876 int pgrescued = 0; 3877 int i; 3878 3879 for (i = 0; i < nr_pages; i++) { 3880 struct page *page = pages[i]; 3881 struct pglist_data *pagepgdat = page_pgdat(page); 3882 3883 pgscanned++; 3884 if (pagepgdat != pgdat) { 3885 if (pgdat) 3886 spin_unlock_irq(&pgdat->lru_lock); 3887 pgdat = pagepgdat; 3888 spin_lock_irq(&pgdat->lru_lock); 3889 } 3890 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3891 3892 if (!PageLRU(page) || !PageUnevictable(page)) 3893 continue; 3894 3895 if (page_evictable(page)) { 3896 enum lru_list lru = page_lru_base_type(page); 3897 3898 VM_BUG_ON_PAGE(PageActive(page), page); 3899 ClearPageUnevictable(page); 3900 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3901 add_page_to_lru_list(page, lruvec, lru); 3902 pgrescued++; 3903 } 3904 } 3905 3906 if (pgdat) { 3907 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3908 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3909 spin_unlock_irq(&pgdat->lru_lock); 3910 } 3911 } 3912 #endif /* CONFIG_SHMEM */ 3913