xref: /openbmc/linux/mm/vmscan.c (revision f0958906cd2bf3730cd7938b8af80a1c23e8ac06)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	/* The highest zone to isolate pages for reclaim from */
88 	enum zone_type reclaim_idx;
89 
90 	unsigned int may_writepage:1;
91 
92 	/* Can mapped pages be reclaimed? */
93 	unsigned int may_unmap:1;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	unsigned int may_swap:1;
97 
98 	/* Can cgroups be reclaimed below their normal consumption range? */
99 	unsigned int may_thrash:1;
100 
101 	unsigned int hibernation_mode:1;
102 
103 	/* One of the zones is ready for compaction */
104 	unsigned int compaction_ready:1;
105 
106 	/* Incremented by the number of inactive pages that were scanned */
107 	unsigned long nr_scanned;
108 
109 	/* Number of pages freed so far during a call to shrink_zones() */
110 	unsigned long nr_reclaimed;
111 };
112 
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetch(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field)			\
129 	do {								\
130 		if ((_page)->lru.prev != _base) {			\
131 			struct page *prev;				\
132 									\
133 			prev = lru_to_page(&(_page->lru));		\
134 			prefetchw(&prev->_field);			\
135 		}							\
136 	} while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
140 
141 /*
142  * From 0 .. 100.  Higher means more swappy.
143  */
144 int vm_swappiness = 60;
145 /*
146  * The total number of pages which are beyond the high watermark within all
147  * zones.
148  */
149 unsigned long vm_total_pages;
150 
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153 
154 #ifdef CONFIG_MEMCG
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 	return !sc->target_mem_cgroup;
158 }
159 
160 /**
161  * sane_reclaim - is the usual dirty throttling mechanism operational?
162  * @sc: scan_control in question
163  *
164  * The normal page dirty throttling mechanism in balance_dirty_pages() is
165  * completely broken with the legacy memcg and direct stalling in
166  * shrink_page_list() is used for throttling instead, which lacks all the
167  * niceties such as fairness, adaptive pausing, bandwidth proportional
168  * allocation and configurability.
169  *
170  * This function tests whether the vmscan currently in progress can assume
171  * that the normal dirty throttling mechanism is operational.
172  */
173 static bool sane_reclaim(struct scan_control *sc)
174 {
175 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
176 
177 	if (!memcg)
178 		return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 		return true;
182 #endif
183 	return false;
184 }
185 #else
186 static bool global_reclaim(struct scan_control *sc)
187 {
188 	return true;
189 }
190 
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 	return true;
194 }
195 #endif
196 
197 /*
198  * This misses isolated pages which are not accounted for to save counters.
199  * As the data only determines if reclaim or compaction continues, it is
200  * not expected that isolated pages will be a dominating factor.
201  */
202 unsigned long zone_reclaimable_pages(struct zone *zone)
203 {
204 	unsigned long nr;
205 
206 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 	if (get_nr_swap_pages() > 0)
209 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211 
212 	return nr;
213 }
214 
215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216 {
217 	unsigned long nr;
218 
219 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222 
223 	if (get_nr_swap_pages() > 0)
224 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227 
228 	return nr;
229 }
230 
231 bool pgdat_reclaimable(struct pglist_data *pgdat)
232 {
233 	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 		pgdat_reclaimable_pages(pgdat) * 6;
235 }
236 
237 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
238 {
239 	if (!mem_cgroup_disabled())
240 		return mem_cgroup_get_lru_size(lruvec, lru);
241 
242 	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
243 }
244 
245 unsigned long lruvec_zone_lru_size(struct lruvec *lruvec, enum lru_list lru,
246 				   int zone_idx)
247 {
248 	if (!mem_cgroup_disabled())
249 		return mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx);
250 
251 	return zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zone_idx],
252 			       NR_ZONE_LRU_BASE + lru);
253 }
254 
255 /*
256  * Add a shrinker callback to be called from the vm.
257  */
258 int register_shrinker(struct shrinker *shrinker)
259 {
260 	size_t size = sizeof(*shrinker->nr_deferred);
261 
262 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
263 		size *= nr_node_ids;
264 
265 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
266 	if (!shrinker->nr_deferred)
267 		return -ENOMEM;
268 
269 	down_write(&shrinker_rwsem);
270 	list_add_tail(&shrinker->list, &shrinker_list);
271 	up_write(&shrinker_rwsem);
272 	return 0;
273 }
274 EXPORT_SYMBOL(register_shrinker);
275 
276 /*
277  * Remove one
278  */
279 void unregister_shrinker(struct shrinker *shrinker)
280 {
281 	down_write(&shrinker_rwsem);
282 	list_del(&shrinker->list);
283 	up_write(&shrinker_rwsem);
284 	kfree(shrinker->nr_deferred);
285 }
286 EXPORT_SYMBOL(unregister_shrinker);
287 
288 #define SHRINK_BATCH 128
289 
290 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
291 				    struct shrinker *shrinker,
292 				    unsigned long nr_scanned,
293 				    unsigned long nr_eligible)
294 {
295 	unsigned long freed = 0;
296 	unsigned long long delta;
297 	long total_scan;
298 	long freeable;
299 	long nr;
300 	long new_nr;
301 	int nid = shrinkctl->nid;
302 	long batch_size = shrinker->batch ? shrinker->batch
303 					  : SHRINK_BATCH;
304 	long scanned = 0, next_deferred;
305 
306 	freeable = shrinker->count_objects(shrinker, shrinkctl);
307 	if (freeable == 0)
308 		return 0;
309 
310 	/*
311 	 * copy the current shrinker scan count into a local variable
312 	 * and zero it so that other concurrent shrinker invocations
313 	 * don't also do this scanning work.
314 	 */
315 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
316 
317 	total_scan = nr;
318 	delta = (4 * nr_scanned) / shrinker->seeks;
319 	delta *= freeable;
320 	do_div(delta, nr_eligible + 1);
321 	total_scan += delta;
322 	if (total_scan < 0) {
323 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
324 		       shrinker->scan_objects, total_scan);
325 		total_scan = freeable;
326 		next_deferred = nr;
327 	} else
328 		next_deferred = total_scan;
329 
330 	/*
331 	 * We need to avoid excessive windup on filesystem shrinkers
332 	 * due to large numbers of GFP_NOFS allocations causing the
333 	 * shrinkers to return -1 all the time. This results in a large
334 	 * nr being built up so when a shrink that can do some work
335 	 * comes along it empties the entire cache due to nr >>>
336 	 * freeable. This is bad for sustaining a working set in
337 	 * memory.
338 	 *
339 	 * Hence only allow the shrinker to scan the entire cache when
340 	 * a large delta change is calculated directly.
341 	 */
342 	if (delta < freeable / 4)
343 		total_scan = min(total_scan, freeable / 2);
344 
345 	/*
346 	 * Avoid risking looping forever due to too large nr value:
347 	 * never try to free more than twice the estimate number of
348 	 * freeable entries.
349 	 */
350 	if (total_scan > freeable * 2)
351 		total_scan = freeable * 2;
352 
353 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
354 				   nr_scanned, nr_eligible,
355 				   freeable, delta, total_scan);
356 
357 	/*
358 	 * Normally, we should not scan less than batch_size objects in one
359 	 * pass to avoid too frequent shrinker calls, but if the slab has less
360 	 * than batch_size objects in total and we are really tight on memory,
361 	 * we will try to reclaim all available objects, otherwise we can end
362 	 * up failing allocations although there are plenty of reclaimable
363 	 * objects spread over several slabs with usage less than the
364 	 * batch_size.
365 	 *
366 	 * We detect the "tight on memory" situations by looking at the total
367 	 * number of objects we want to scan (total_scan). If it is greater
368 	 * than the total number of objects on slab (freeable), we must be
369 	 * scanning at high prio and therefore should try to reclaim as much as
370 	 * possible.
371 	 */
372 	while (total_scan >= batch_size ||
373 	       total_scan >= freeable) {
374 		unsigned long ret;
375 		unsigned long nr_to_scan = min(batch_size, total_scan);
376 
377 		shrinkctl->nr_to_scan = nr_to_scan;
378 		ret = shrinker->scan_objects(shrinker, shrinkctl);
379 		if (ret == SHRINK_STOP)
380 			break;
381 		freed += ret;
382 
383 		count_vm_events(SLABS_SCANNED, nr_to_scan);
384 		total_scan -= nr_to_scan;
385 		scanned += nr_to_scan;
386 
387 		cond_resched();
388 	}
389 
390 	if (next_deferred >= scanned)
391 		next_deferred -= scanned;
392 	else
393 		next_deferred = 0;
394 	/*
395 	 * move the unused scan count back into the shrinker in a
396 	 * manner that handles concurrent updates. If we exhausted the
397 	 * scan, there is no need to do an update.
398 	 */
399 	if (next_deferred > 0)
400 		new_nr = atomic_long_add_return(next_deferred,
401 						&shrinker->nr_deferred[nid]);
402 	else
403 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
404 
405 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
406 	return freed;
407 }
408 
409 /**
410  * shrink_slab - shrink slab caches
411  * @gfp_mask: allocation context
412  * @nid: node whose slab caches to target
413  * @memcg: memory cgroup whose slab caches to target
414  * @nr_scanned: pressure numerator
415  * @nr_eligible: pressure denominator
416  *
417  * Call the shrink functions to age shrinkable caches.
418  *
419  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
420  * unaware shrinkers will receive a node id of 0 instead.
421  *
422  * @memcg specifies the memory cgroup to target. If it is not NULL,
423  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
424  * objects from the memory cgroup specified. Otherwise, only unaware
425  * shrinkers are called.
426  *
427  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
428  * the available objects should be scanned.  Page reclaim for example
429  * passes the number of pages scanned and the number of pages on the
430  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
431  * when it encountered mapped pages.  The ratio is further biased by
432  * the ->seeks setting of the shrink function, which indicates the
433  * cost to recreate an object relative to that of an LRU page.
434  *
435  * Returns the number of reclaimed slab objects.
436  */
437 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
438 				 struct mem_cgroup *memcg,
439 				 unsigned long nr_scanned,
440 				 unsigned long nr_eligible)
441 {
442 	struct shrinker *shrinker;
443 	unsigned long freed = 0;
444 
445 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
446 		return 0;
447 
448 	if (nr_scanned == 0)
449 		nr_scanned = SWAP_CLUSTER_MAX;
450 
451 	if (!down_read_trylock(&shrinker_rwsem)) {
452 		/*
453 		 * If we would return 0, our callers would understand that we
454 		 * have nothing else to shrink and give up trying. By returning
455 		 * 1 we keep it going and assume we'll be able to shrink next
456 		 * time.
457 		 */
458 		freed = 1;
459 		goto out;
460 	}
461 
462 	list_for_each_entry(shrinker, &shrinker_list, list) {
463 		struct shrink_control sc = {
464 			.gfp_mask = gfp_mask,
465 			.nid = nid,
466 			.memcg = memcg,
467 		};
468 
469 		/*
470 		 * If kernel memory accounting is disabled, we ignore
471 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
472 		 * passing NULL for memcg.
473 		 */
474 		if (memcg_kmem_enabled() &&
475 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
476 			continue;
477 
478 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
479 			sc.nid = 0;
480 
481 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
482 	}
483 
484 	up_read(&shrinker_rwsem);
485 out:
486 	cond_resched();
487 	return freed;
488 }
489 
490 void drop_slab_node(int nid)
491 {
492 	unsigned long freed;
493 
494 	do {
495 		struct mem_cgroup *memcg = NULL;
496 
497 		freed = 0;
498 		do {
499 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
500 					     1000, 1000);
501 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
502 	} while (freed > 10);
503 }
504 
505 void drop_slab(void)
506 {
507 	int nid;
508 
509 	for_each_online_node(nid)
510 		drop_slab_node(nid);
511 }
512 
513 static inline int is_page_cache_freeable(struct page *page)
514 {
515 	/*
516 	 * A freeable page cache page is referenced only by the caller
517 	 * that isolated the page, the page cache radix tree and
518 	 * optional buffer heads at page->private.
519 	 */
520 	return page_count(page) - page_has_private(page) == 2;
521 }
522 
523 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
524 {
525 	if (current->flags & PF_SWAPWRITE)
526 		return 1;
527 	if (!inode_write_congested(inode))
528 		return 1;
529 	if (inode_to_bdi(inode) == current->backing_dev_info)
530 		return 1;
531 	return 0;
532 }
533 
534 /*
535  * We detected a synchronous write error writing a page out.  Probably
536  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
537  * fsync(), msync() or close().
538  *
539  * The tricky part is that after writepage we cannot touch the mapping: nothing
540  * prevents it from being freed up.  But we have a ref on the page and once
541  * that page is locked, the mapping is pinned.
542  *
543  * We're allowed to run sleeping lock_page() here because we know the caller has
544  * __GFP_FS.
545  */
546 static void handle_write_error(struct address_space *mapping,
547 				struct page *page, int error)
548 {
549 	lock_page(page);
550 	if (page_mapping(page) == mapping)
551 		mapping_set_error(mapping, error);
552 	unlock_page(page);
553 }
554 
555 /* possible outcome of pageout() */
556 typedef enum {
557 	/* failed to write page out, page is locked */
558 	PAGE_KEEP,
559 	/* move page to the active list, page is locked */
560 	PAGE_ACTIVATE,
561 	/* page has been sent to the disk successfully, page is unlocked */
562 	PAGE_SUCCESS,
563 	/* page is clean and locked */
564 	PAGE_CLEAN,
565 } pageout_t;
566 
567 /*
568  * pageout is called by shrink_page_list() for each dirty page.
569  * Calls ->writepage().
570  */
571 static pageout_t pageout(struct page *page, struct address_space *mapping,
572 			 struct scan_control *sc)
573 {
574 	/*
575 	 * If the page is dirty, only perform writeback if that write
576 	 * will be non-blocking.  To prevent this allocation from being
577 	 * stalled by pagecache activity.  But note that there may be
578 	 * stalls if we need to run get_block().  We could test
579 	 * PagePrivate for that.
580 	 *
581 	 * If this process is currently in __generic_file_write_iter() against
582 	 * this page's queue, we can perform writeback even if that
583 	 * will block.
584 	 *
585 	 * If the page is swapcache, write it back even if that would
586 	 * block, for some throttling. This happens by accident, because
587 	 * swap_backing_dev_info is bust: it doesn't reflect the
588 	 * congestion state of the swapdevs.  Easy to fix, if needed.
589 	 */
590 	if (!is_page_cache_freeable(page))
591 		return PAGE_KEEP;
592 	if (!mapping) {
593 		/*
594 		 * Some data journaling orphaned pages can have
595 		 * page->mapping == NULL while being dirty with clean buffers.
596 		 */
597 		if (page_has_private(page)) {
598 			if (try_to_free_buffers(page)) {
599 				ClearPageDirty(page);
600 				pr_info("%s: orphaned page\n", __func__);
601 				return PAGE_CLEAN;
602 			}
603 		}
604 		return PAGE_KEEP;
605 	}
606 	if (mapping->a_ops->writepage == NULL)
607 		return PAGE_ACTIVATE;
608 	if (!may_write_to_inode(mapping->host, sc))
609 		return PAGE_KEEP;
610 
611 	if (clear_page_dirty_for_io(page)) {
612 		int res;
613 		struct writeback_control wbc = {
614 			.sync_mode = WB_SYNC_NONE,
615 			.nr_to_write = SWAP_CLUSTER_MAX,
616 			.range_start = 0,
617 			.range_end = LLONG_MAX,
618 			.for_reclaim = 1,
619 		};
620 
621 		SetPageReclaim(page);
622 		res = mapping->a_ops->writepage(page, &wbc);
623 		if (res < 0)
624 			handle_write_error(mapping, page, res);
625 		if (res == AOP_WRITEPAGE_ACTIVATE) {
626 			ClearPageReclaim(page);
627 			return PAGE_ACTIVATE;
628 		}
629 
630 		if (!PageWriteback(page)) {
631 			/* synchronous write or broken a_ops? */
632 			ClearPageReclaim(page);
633 		}
634 		trace_mm_vmscan_writepage(page);
635 		inc_node_page_state(page, NR_VMSCAN_WRITE);
636 		return PAGE_SUCCESS;
637 	}
638 
639 	return PAGE_CLEAN;
640 }
641 
642 /*
643  * Same as remove_mapping, but if the page is removed from the mapping, it
644  * gets returned with a refcount of 0.
645  */
646 static int __remove_mapping(struct address_space *mapping, struct page *page,
647 			    bool reclaimed)
648 {
649 	unsigned long flags;
650 
651 	BUG_ON(!PageLocked(page));
652 	BUG_ON(mapping != page_mapping(page));
653 
654 	spin_lock_irqsave(&mapping->tree_lock, flags);
655 	/*
656 	 * The non racy check for a busy page.
657 	 *
658 	 * Must be careful with the order of the tests. When someone has
659 	 * a ref to the page, it may be possible that they dirty it then
660 	 * drop the reference. So if PageDirty is tested before page_count
661 	 * here, then the following race may occur:
662 	 *
663 	 * get_user_pages(&page);
664 	 * [user mapping goes away]
665 	 * write_to(page);
666 	 *				!PageDirty(page)    [good]
667 	 * SetPageDirty(page);
668 	 * put_page(page);
669 	 *				!page_count(page)   [good, discard it]
670 	 *
671 	 * [oops, our write_to data is lost]
672 	 *
673 	 * Reversing the order of the tests ensures such a situation cannot
674 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
675 	 * load is not satisfied before that of page->_refcount.
676 	 *
677 	 * Note that if SetPageDirty is always performed via set_page_dirty,
678 	 * and thus under tree_lock, then this ordering is not required.
679 	 */
680 	if (!page_ref_freeze(page, 2))
681 		goto cannot_free;
682 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
683 	if (unlikely(PageDirty(page))) {
684 		page_ref_unfreeze(page, 2);
685 		goto cannot_free;
686 	}
687 
688 	if (PageSwapCache(page)) {
689 		swp_entry_t swap = { .val = page_private(page) };
690 		mem_cgroup_swapout(page, swap);
691 		__delete_from_swap_cache(page);
692 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
693 		swapcache_free(swap);
694 	} else {
695 		void (*freepage)(struct page *);
696 		void *shadow = NULL;
697 
698 		freepage = mapping->a_ops->freepage;
699 		/*
700 		 * Remember a shadow entry for reclaimed file cache in
701 		 * order to detect refaults, thus thrashing, later on.
702 		 *
703 		 * But don't store shadows in an address space that is
704 		 * already exiting.  This is not just an optizimation,
705 		 * inode reclaim needs to empty out the radix tree or
706 		 * the nodes are lost.  Don't plant shadows behind its
707 		 * back.
708 		 *
709 		 * We also don't store shadows for DAX mappings because the
710 		 * only page cache pages found in these are zero pages
711 		 * covering holes, and because we don't want to mix DAX
712 		 * exceptional entries and shadow exceptional entries in the
713 		 * same page_tree.
714 		 */
715 		if (reclaimed && page_is_file_cache(page) &&
716 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
717 			shadow = workingset_eviction(mapping, page);
718 		__delete_from_page_cache(page, shadow);
719 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
720 
721 		if (freepage != NULL)
722 			freepage(page);
723 	}
724 
725 	return 1;
726 
727 cannot_free:
728 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
729 	return 0;
730 }
731 
732 /*
733  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
734  * someone else has a ref on the page, abort and return 0.  If it was
735  * successfully detached, return 1.  Assumes the caller has a single ref on
736  * this page.
737  */
738 int remove_mapping(struct address_space *mapping, struct page *page)
739 {
740 	if (__remove_mapping(mapping, page, false)) {
741 		/*
742 		 * Unfreezing the refcount with 1 rather than 2 effectively
743 		 * drops the pagecache ref for us without requiring another
744 		 * atomic operation.
745 		 */
746 		page_ref_unfreeze(page, 1);
747 		return 1;
748 	}
749 	return 0;
750 }
751 
752 /**
753  * putback_lru_page - put previously isolated page onto appropriate LRU list
754  * @page: page to be put back to appropriate lru list
755  *
756  * Add previously isolated @page to appropriate LRU list.
757  * Page may still be unevictable for other reasons.
758  *
759  * lru_lock must not be held, interrupts must be enabled.
760  */
761 void putback_lru_page(struct page *page)
762 {
763 	bool is_unevictable;
764 	int was_unevictable = PageUnevictable(page);
765 
766 	VM_BUG_ON_PAGE(PageLRU(page), page);
767 
768 redo:
769 	ClearPageUnevictable(page);
770 
771 	if (page_evictable(page)) {
772 		/*
773 		 * For evictable pages, we can use the cache.
774 		 * In event of a race, worst case is we end up with an
775 		 * unevictable page on [in]active list.
776 		 * We know how to handle that.
777 		 */
778 		is_unevictable = false;
779 		lru_cache_add(page);
780 	} else {
781 		/*
782 		 * Put unevictable pages directly on zone's unevictable
783 		 * list.
784 		 */
785 		is_unevictable = true;
786 		add_page_to_unevictable_list(page);
787 		/*
788 		 * When racing with an mlock or AS_UNEVICTABLE clearing
789 		 * (page is unlocked) make sure that if the other thread
790 		 * does not observe our setting of PG_lru and fails
791 		 * isolation/check_move_unevictable_pages,
792 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
793 		 * the page back to the evictable list.
794 		 *
795 		 * The other side is TestClearPageMlocked() or shmem_lock().
796 		 */
797 		smp_mb();
798 	}
799 
800 	/*
801 	 * page's status can change while we move it among lru. If an evictable
802 	 * page is on unevictable list, it never be freed. To avoid that,
803 	 * check after we added it to the list, again.
804 	 */
805 	if (is_unevictable && page_evictable(page)) {
806 		if (!isolate_lru_page(page)) {
807 			put_page(page);
808 			goto redo;
809 		}
810 		/* This means someone else dropped this page from LRU
811 		 * So, it will be freed or putback to LRU again. There is
812 		 * nothing to do here.
813 		 */
814 	}
815 
816 	if (was_unevictable && !is_unevictable)
817 		count_vm_event(UNEVICTABLE_PGRESCUED);
818 	else if (!was_unevictable && is_unevictable)
819 		count_vm_event(UNEVICTABLE_PGCULLED);
820 
821 	put_page(page);		/* drop ref from isolate */
822 }
823 
824 enum page_references {
825 	PAGEREF_RECLAIM,
826 	PAGEREF_RECLAIM_CLEAN,
827 	PAGEREF_KEEP,
828 	PAGEREF_ACTIVATE,
829 };
830 
831 static enum page_references page_check_references(struct page *page,
832 						  struct scan_control *sc)
833 {
834 	int referenced_ptes, referenced_page;
835 	unsigned long vm_flags;
836 
837 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
838 					  &vm_flags);
839 	referenced_page = TestClearPageReferenced(page);
840 
841 	/*
842 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
843 	 * move the page to the unevictable list.
844 	 */
845 	if (vm_flags & VM_LOCKED)
846 		return PAGEREF_RECLAIM;
847 
848 	if (referenced_ptes) {
849 		if (PageSwapBacked(page))
850 			return PAGEREF_ACTIVATE;
851 		/*
852 		 * All mapped pages start out with page table
853 		 * references from the instantiating fault, so we need
854 		 * to look twice if a mapped file page is used more
855 		 * than once.
856 		 *
857 		 * Mark it and spare it for another trip around the
858 		 * inactive list.  Another page table reference will
859 		 * lead to its activation.
860 		 *
861 		 * Note: the mark is set for activated pages as well
862 		 * so that recently deactivated but used pages are
863 		 * quickly recovered.
864 		 */
865 		SetPageReferenced(page);
866 
867 		if (referenced_page || referenced_ptes > 1)
868 			return PAGEREF_ACTIVATE;
869 
870 		/*
871 		 * Activate file-backed executable pages after first usage.
872 		 */
873 		if (vm_flags & VM_EXEC)
874 			return PAGEREF_ACTIVATE;
875 
876 		return PAGEREF_KEEP;
877 	}
878 
879 	/* Reclaim if clean, defer dirty pages to writeback */
880 	if (referenced_page && !PageSwapBacked(page))
881 		return PAGEREF_RECLAIM_CLEAN;
882 
883 	return PAGEREF_RECLAIM;
884 }
885 
886 /* Check if a page is dirty or under writeback */
887 static void page_check_dirty_writeback(struct page *page,
888 				       bool *dirty, bool *writeback)
889 {
890 	struct address_space *mapping;
891 
892 	/*
893 	 * Anonymous pages are not handled by flushers and must be written
894 	 * from reclaim context. Do not stall reclaim based on them
895 	 */
896 	if (!page_is_file_cache(page)) {
897 		*dirty = false;
898 		*writeback = false;
899 		return;
900 	}
901 
902 	/* By default assume that the page flags are accurate */
903 	*dirty = PageDirty(page);
904 	*writeback = PageWriteback(page);
905 
906 	/* Verify dirty/writeback state if the filesystem supports it */
907 	if (!page_has_private(page))
908 		return;
909 
910 	mapping = page_mapping(page);
911 	if (mapping && mapping->a_ops->is_dirty_writeback)
912 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
913 }
914 
915 struct reclaim_stat {
916 	unsigned nr_dirty;
917 	unsigned nr_unqueued_dirty;
918 	unsigned nr_congested;
919 	unsigned nr_writeback;
920 	unsigned nr_immediate;
921 	unsigned nr_activate;
922 	unsigned nr_ref_keep;
923 	unsigned nr_unmap_fail;
924 };
925 
926 /*
927  * shrink_page_list() returns the number of reclaimed pages
928  */
929 static unsigned long shrink_page_list(struct list_head *page_list,
930 				      struct pglist_data *pgdat,
931 				      struct scan_control *sc,
932 				      enum ttu_flags ttu_flags,
933 				      struct reclaim_stat *stat,
934 				      bool force_reclaim)
935 {
936 	LIST_HEAD(ret_pages);
937 	LIST_HEAD(free_pages);
938 	int pgactivate = 0;
939 	unsigned nr_unqueued_dirty = 0;
940 	unsigned nr_dirty = 0;
941 	unsigned nr_congested = 0;
942 	unsigned nr_reclaimed = 0;
943 	unsigned nr_writeback = 0;
944 	unsigned nr_immediate = 0;
945 	unsigned nr_ref_keep = 0;
946 	unsigned nr_unmap_fail = 0;
947 
948 	cond_resched();
949 
950 	while (!list_empty(page_list)) {
951 		struct address_space *mapping;
952 		struct page *page;
953 		int may_enter_fs;
954 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
955 		bool dirty, writeback;
956 		bool lazyfree = false;
957 		int ret = SWAP_SUCCESS;
958 
959 		cond_resched();
960 
961 		page = lru_to_page(page_list);
962 		list_del(&page->lru);
963 
964 		if (!trylock_page(page))
965 			goto keep;
966 
967 		VM_BUG_ON_PAGE(PageActive(page), page);
968 
969 		sc->nr_scanned++;
970 
971 		if (unlikely(!page_evictable(page)))
972 			goto cull_mlocked;
973 
974 		if (!sc->may_unmap && page_mapped(page))
975 			goto keep_locked;
976 
977 		/* Double the slab pressure for mapped and swapcache pages */
978 		if (page_mapped(page) || PageSwapCache(page))
979 			sc->nr_scanned++;
980 
981 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
982 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
983 
984 		/*
985 		 * The number of dirty pages determines if a zone is marked
986 		 * reclaim_congested which affects wait_iff_congested. kswapd
987 		 * will stall and start writing pages if the tail of the LRU
988 		 * is all dirty unqueued pages.
989 		 */
990 		page_check_dirty_writeback(page, &dirty, &writeback);
991 		if (dirty || writeback)
992 			nr_dirty++;
993 
994 		if (dirty && !writeback)
995 			nr_unqueued_dirty++;
996 
997 		/*
998 		 * Treat this page as congested if the underlying BDI is or if
999 		 * pages are cycling through the LRU so quickly that the
1000 		 * pages marked for immediate reclaim are making it to the
1001 		 * end of the LRU a second time.
1002 		 */
1003 		mapping = page_mapping(page);
1004 		if (((dirty || writeback) && mapping &&
1005 		     inode_write_congested(mapping->host)) ||
1006 		    (writeback && PageReclaim(page)))
1007 			nr_congested++;
1008 
1009 		/*
1010 		 * If a page at the tail of the LRU is under writeback, there
1011 		 * are three cases to consider.
1012 		 *
1013 		 * 1) If reclaim is encountering an excessive number of pages
1014 		 *    under writeback and this page is both under writeback and
1015 		 *    PageReclaim then it indicates that pages are being queued
1016 		 *    for IO but are being recycled through the LRU before the
1017 		 *    IO can complete. Waiting on the page itself risks an
1018 		 *    indefinite stall if it is impossible to writeback the
1019 		 *    page due to IO error or disconnected storage so instead
1020 		 *    note that the LRU is being scanned too quickly and the
1021 		 *    caller can stall after page list has been processed.
1022 		 *
1023 		 * 2) Global or new memcg reclaim encounters a page that is
1024 		 *    not marked for immediate reclaim, or the caller does not
1025 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1026 		 *    not to fs). In this case mark the page for immediate
1027 		 *    reclaim and continue scanning.
1028 		 *
1029 		 *    Require may_enter_fs because we would wait on fs, which
1030 		 *    may not have submitted IO yet. And the loop driver might
1031 		 *    enter reclaim, and deadlock if it waits on a page for
1032 		 *    which it is needed to do the write (loop masks off
1033 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1034 		 *    would probably show more reasons.
1035 		 *
1036 		 * 3) Legacy memcg encounters a page that is already marked
1037 		 *    PageReclaim. memcg does not have any dirty pages
1038 		 *    throttling so we could easily OOM just because too many
1039 		 *    pages are in writeback and there is nothing else to
1040 		 *    reclaim. Wait for the writeback to complete.
1041 		 */
1042 		if (PageWriteback(page)) {
1043 			/* Case 1 above */
1044 			if (current_is_kswapd() &&
1045 			    PageReclaim(page) &&
1046 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1047 				nr_immediate++;
1048 				goto keep_locked;
1049 
1050 			/* Case 2 above */
1051 			} else if (sane_reclaim(sc) ||
1052 			    !PageReclaim(page) || !may_enter_fs) {
1053 				/*
1054 				 * This is slightly racy - end_page_writeback()
1055 				 * might have just cleared PageReclaim, then
1056 				 * setting PageReclaim here end up interpreted
1057 				 * as PageReadahead - but that does not matter
1058 				 * enough to care.  What we do want is for this
1059 				 * page to have PageReclaim set next time memcg
1060 				 * reclaim reaches the tests above, so it will
1061 				 * then wait_on_page_writeback() to avoid OOM;
1062 				 * and it's also appropriate in global reclaim.
1063 				 */
1064 				SetPageReclaim(page);
1065 				nr_writeback++;
1066 				goto keep_locked;
1067 
1068 			/* Case 3 above */
1069 			} else {
1070 				unlock_page(page);
1071 				wait_on_page_writeback(page);
1072 				/* then go back and try same page again */
1073 				list_add_tail(&page->lru, page_list);
1074 				continue;
1075 			}
1076 		}
1077 
1078 		if (!force_reclaim)
1079 			references = page_check_references(page, sc);
1080 
1081 		switch (references) {
1082 		case PAGEREF_ACTIVATE:
1083 			goto activate_locked;
1084 		case PAGEREF_KEEP:
1085 			nr_ref_keep++;
1086 			goto keep_locked;
1087 		case PAGEREF_RECLAIM:
1088 		case PAGEREF_RECLAIM_CLEAN:
1089 			; /* try to reclaim the page below */
1090 		}
1091 
1092 		/*
1093 		 * Anonymous process memory has backing store?
1094 		 * Try to allocate it some swap space here.
1095 		 */
1096 		if (PageAnon(page) && !PageSwapCache(page)) {
1097 			if (!(sc->gfp_mask & __GFP_IO))
1098 				goto keep_locked;
1099 			if (!add_to_swap(page, page_list))
1100 				goto activate_locked;
1101 			lazyfree = true;
1102 			may_enter_fs = 1;
1103 
1104 			/* Adding to swap updated mapping */
1105 			mapping = page_mapping(page);
1106 		} else if (unlikely(PageTransHuge(page))) {
1107 			/* Split file THP */
1108 			if (split_huge_page_to_list(page, page_list))
1109 				goto keep_locked;
1110 		}
1111 
1112 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1113 
1114 		/*
1115 		 * The page is mapped into the page tables of one or more
1116 		 * processes. Try to unmap it here.
1117 		 */
1118 		if (page_mapped(page) && mapping) {
1119 			switch (ret = try_to_unmap(page, lazyfree ?
1120 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1121 				(ttu_flags | TTU_BATCH_FLUSH))) {
1122 			case SWAP_FAIL:
1123 				nr_unmap_fail++;
1124 				goto activate_locked;
1125 			case SWAP_AGAIN:
1126 				goto keep_locked;
1127 			case SWAP_MLOCK:
1128 				goto cull_mlocked;
1129 			case SWAP_LZFREE:
1130 				goto lazyfree;
1131 			case SWAP_SUCCESS:
1132 				; /* try to free the page below */
1133 			}
1134 		}
1135 
1136 		if (PageDirty(page)) {
1137 			/*
1138 			 * Only kswapd can writeback filesystem pages to
1139 			 * avoid risk of stack overflow but only writeback
1140 			 * if many dirty pages have been encountered.
1141 			 */
1142 			if (page_is_file_cache(page) &&
1143 					(!current_is_kswapd() ||
1144 					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1145 				/*
1146 				 * Immediately reclaim when written back.
1147 				 * Similar in principal to deactivate_page()
1148 				 * except we already have the page isolated
1149 				 * and know it's dirty
1150 				 */
1151 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1152 				SetPageReclaim(page);
1153 
1154 				goto keep_locked;
1155 			}
1156 
1157 			if (references == PAGEREF_RECLAIM_CLEAN)
1158 				goto keep_locked;
1159 			if (!may_enter_fs)
1160 				goto keep_locked;
1161 			if (!sc->may_writepage)
1162 				goto keep_locked;
1163 
1164 			/*
1165 			 * Page is dirty. Flush the TLB if a writable entry
1166 			 * potentially exists to avoid CPU writes after IO
1167 			 * starts and then write it out here.
1168 			 */
1169 			try_to_unmap_flush_dirty();
1170 			switch (pageout(page, mapping, sc)) {
1171 			case PAGE_KEEP:
1172 				goto keep_locked;
1173 			case PAGE_ACTIVATE:
1174 				goto activate_locked;
1175 			case PAGE_SUCCESS:
1176 				if (PageWriteback(page))
1177 					goto keep;
1178 				if (PageDirty(page))
1179 					goto keep;
1180 
1181 				/*
1182 				 * A synchronous write - probably a ramdisk.  Go
1183 				 * ahead and try to reclaim the page.
1184 				 */
1185 				if (!trylock_page(page))
1186 					goto keep;
1187 				if (PageDirty(page) || PageWriteback(page))
1188 					goto keep_locked;
1189 				mapping = page_mapping(page);
1190 			case PAGE_CLEAN:
1191 				; /* try to free the page below */
1192 			}
1193 		}
1194 
1195 		/*
1196 		 * If the page has buffers, try to free the buffer mappings
1197 		 * associated with this page. If we succeed we try to free
1198 		 * the page as well.
1199 		 *
1200 		 * We do this even if the page is PageDirty().
1201 		 * try_to_release_page() does not perform I/O, but it is
1202 		 * possible for a page to have PageDirty set, but it is actually
1203 		 * clean (all its buffers are clean).  This happens if the
1204 		 * buffers were written out directly, with submit_bh(). ext3
1205 		 * will do this, as well as the blockdev mapping.
1206 		 * try_to_release_page() will discover that cleanness and will
1207 		 * drop the buffers and mark the page clean - it can be freed.
1208 		 *
1209 		 * Rarely, pages can have buffers and no ->mapping.  These are
1210 		 * the pages which were not successfully invalidated in
1211 		 * truncate_complete_page().  We try to drop those buffers here
1212 		 * and if that worked, and the page is no longer mapped into
1213 		 * process address space (page_count == 1) it can be freed.
1214 		 * Otherwise, leave the page on the LRU so it is swappable.
1215 		 */
1216 		if (page_has_private(page)) {
1217 			if (!try_to_release_page(page, sc->gfp_mask))
1218 				goto activate_locked;
1219 			if (!mapping && page_count(page) == 1) {
1220 				unlock_page(page);
1221 				if (put_page_testzero(page))
1222 					goto free_it;
1223 				else {
1224 					/*
1225 					 * rare race with speculative reference.
1226 					 * the speculative reference will free
1227 					 * this page shortly, so we may
1228 					 * increment nr_reclaimed here (and
1229 					 * leave it off the LRU).
1230 					 */
1231 					nr_reclaimed++;
1232 					continue;
1233 				}
1234 			}
1235 		}
1236 
1237 lazyfree:
1238 		if (!mapping || !__remove_mapping(mapping, page, true))
1239 			goto keep_locked;
1240 
1241 		/*
1242 		 * At this point, we have no other references and there is
1243 		 * no way to pick any more up (removed from LRU, removed
1244 		 * from pagecache). Can use non-atomic bitops now (and
1245 		 * we obviously don't have to worry about waking up a process
1246 		 * waiting on the page lock, because there are no references.
1247 		 */
1248 		__ClearPageLocked(page);
1249 free_it:
1250 		if (ret == SWAP_LZFREE)
1251 			count_vm_event(PGLAZYFREED);
1252 
1253 		nr_reclaimed++;
1254 
1255 		/*
1256 		 * Is there need to periodically free_page_list? It would
1257 		 * appear not as the counts should be low
1258 		 */
1259 		list_add(&page->lru, &free_pages);
1260 		continue;
1261 
1262 cull_mlocked:
1263 		if (PageSwapCache(page))
1264 			try_to_free_swap(page);
1265 		unlock_page(page);
1266 		list_add(&page->lru, &ret_pages);
1267 		continue;
1268 
1269 activate_locked:
1270 		/* Not a candidate for swapping, so reclaim swap space. */
1271 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1272 			try_to_free_swap(page);
1273 		VM_BUG_ON_PAGE(PageActive(page), page);
1274 		SetPageActive(page);
1275 		pgactivate++;
1276 keep_locked:
1277 		unlock_page(page);
1278 keep:
1279 		list_add(&page->lru, &ret_pages);
1280 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1281 	}
1282 
1283 	mem_cgroup_uncharge_list(&free_pages);
1284 	try_to_unmap_flush();
1285 	free_hot_cold_page_list(&free_pages, true);
1286 
1287 	list_splice(&ret_pages, page_list);
1288 	count_vm_events(PGACTIVATE, pgactivate);
1289 
1290 	if (stat) {
1291 		stat->nr_dirty = nr_dirty;
1292 		stat->nr_congested = nr_congested;
1293 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1294 		stat->nr_writeback = nr_writeback;
1295 		stat->nr_immediate = nr_immediate;
1296 		stat->nr_activate = pgactivate;
1297 		stat->nr_ref_keep = nr_ref_keep;
1298 		stat->nr_unmap_fail = nr_unmap_fail;
1299 	}
1300 	return nr_reclaimed;
1301 }
1302 
1303 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1304 					    struct list_head *page_list)
1305 {
1306 	struct scan_control sc = {
1307 		.gfp_mask = GFP_KERNEL,
1308 		.priority = DEF_PRIORITY,
1309 		.may_unmap = 1,
1310 	};
1311 	unsigned long ret;
1312 	struct page *page, *next;
1313 	LIST_HEAD(clean_pages);
1314 
1315 	list_for_each_entry_safe(page, next, page_list, lru) {
1316 		if (page_is_file_cache(page) && !PageDirty(page) &&
1317 		    !__PageMovable(page)) {
1318 			ClearPageActive(page);
1319 			list_move(&page->lru, &clean_pages);
1320 		}
1321 	}
1322 
1323 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1324 			TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1325 	list_splice(&clean_pages, page_list);
1326 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1327 	return ret;
1328 }
1329 
1330 /*
1331  * Attempt to remove the specified page from its LRU.  Only take this page
1332  * if it is of the appropriate PageActive status.  Pages which are being
1333  * freed elsewhere are also ignored.
1334  *
1335  * page:	page to consider
1336  * mode:	one of the LRU isolation modes defined above
1337  *
1338  * returns 0 on success, -ve errno on failure.
1339  */
1340 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1341 {
1342 	int ret = -EINVAL;
1343 
1344 	/* Only take pages on the LRU. */
1345 	if (!PageLRU(page))
1346 		return ret;
1347 
1348 	/* Compaction should not handle unevictable pages but CMA can do so */
1349 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1350 		return ret;
1351 
1352 	ret = -EBUSY;
1353 
1354 	/*
1355 	 * To minimise LRU disruption, the caller can indicate that it only
1356 	 * wants to isolate pages it will be able to operate on without
1357 	 * blocking - clean pages for the most part.
1358 	 *
1359 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1360 	 * is used by reclaim when it is cannot write to backing storage
1361 	 *
1362 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1363 	 * that it is possible to migrate without blocking
1364 	 */
1365 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1366 		/* All the caller can do on PageWriteback is block */
1367 		if (PageWriteback(page))
1368 			return ret;
1369 
1370 		if (PageDirty(page)) {
1371 			struct address_space *mapping;
1372 
1373 			/* ISOLATE_CLEAN means only clean pages */
1374 			if (mode & ISOLATE_CLEAN)
1375 				return ret;
1376 
1377 			/*
1378 			 * Only pages without mappings or that have a
1379 			 * ->migratepage callback are possible to migrate
1380 			 * without blocking
1381 			 */
1382 			mapping = page_mapping(page);
1383 			if (mapping && !mapping->a_ops->migratepage)
1384 				return ret;
1385 		}
1386 	}
1387 
1388 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1389 		return ret;
1390 
1391 	if (likely(get_page_unless_zero(page))) {
1392 		/*
1393 		 * Be careful not to clear PageLRU until after we're
1394 		 * sure the page is not being freed elsewhere -- the
1395 		 * page release code relies on it.
1396 		 */
1397 		ClearPageLRU(page);
1398 		ret = 0;
1399 	}
1400 
1401 	return ret;
1402 }
1403 
1404 
1405 /*
1406  * Update LRU sizes after isolating pages. The LRU size updates must
1407  * be complete before mem_cgroup_update_lru_size due to a santity check.
1408  */
1409 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1410 			enum lru_list lru, unsigned long *nr_zone_taken)
1411 {
1412 	int zid;
1413 
1414 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1415 		if (!nr_zone_taken[zid])
1416 			continue;
1417 
1418 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1419 #ifdef CONFIG_MEMCG
1420 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1421 #endif
1422 	}
1423 
1424 }
1425 
1426 /*
1427  * zone_lru_lock is heavily contended.  Some of the functions that
1428  * shrink the lists perform better by taking out a batch of pages
1429  * and working on them outside the LRU lock.
1430  *
1431  * For pagecache intensive workloads, this function is the hottest
1432  * spot in the kernel (apart from copy_*_user functions).
1433  *
1434  * Appropriate locks must be held before calling this function.
1435  *
1436  * @nr_to_scan:	The number of pages to look through on the list.
1437  * @lruvec:	The LRU vector to pull pages from.
1438  * @dst:	The temp list to put pages on to.
1439  * @nr_scanned:	The number of pages that were scanned.
1440  * @sc:		The scan_control struct for this reclaim session
1441  * @mode:	One of the LRU isolation modes
1442  * @lru:	LRU list id for isolating
1443  *
1444  * returns how many pages were moved onto *@dst.
1445  */
1446 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1447 		struct lruvec *lruvec, struct list_head *dst,
1448 		unsigned long *nr_scanned, struct scan_control *sc,
1449 		isolate_mode_t mode, enum lru_list lru)
1450 {
1451 	struct list_head *src = &lruvec->lists[lru];
1452 	unsigned long nr_taken = 0;
1453 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1454 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1455 	unsigned long skipped = 0, total_skipped = 0;
1456 	unsigned long scan, nr_pages;
1457 	LIST_HEAD(pages_skipped);
1458 
1459 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1460 					!list_empty(src);) {
1461 		struct page *page;
1462 
1463 		page = lru_to_page(src);
1464 		prefetchw_prev_lru_page(page, src, flags);
1465 
1466 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1467 
1468 		if (page_zonenum(page) > sc->reclaim_idx) {
1469 			list_move(&page->lru, &pages_skipped);
1470 			nr_skipped[page_zonenum(page)]++;
1471 			continue;
1472 		}
1473 
1474 		/*
1475 		 * Account for scanned and skipped separetly to avoid the pgdat
1476 		 * being prematurely marked unreclaimable by pgdat_reclaimable.
1477 		 */
1478 		scan++;
1479 
1480 		switch (__isolate_lru_page(page, mode)) {
1481 		case 0:
1482 			nr_pages = hpage_nr_pages(page);
1483 			nr_taken += nr_pages;
1484 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1485 			list_move(&page->lru, dst);
1486 			break;
1487 
1488 		case -EBUSY:
1489 			/* else it is being freed elsewhere */
1490 			list_move(&page->lru, src);
1491 			continue;
1492 
1493 		default:
1494 			BUG();
1495 		}
1496 	}
1497 
1498 	/*
1499 	 * Splice any skipped pages to the start of the LRU list. Note that
1500 	 * this disrupts the LRU order when reclaiming for lower zones but
1501 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1502 	 * scanning would soon rescan the same pages to skip and put the
1503 	 * system at risk of premature OOM.
1504 	 */
1505 	if (!list_empty(&pages_skipped)) {
1506 		int zid;
1507 
1508 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1509 			if (!nr_skipped[zid])
1510 				continue;
1511 
1512 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1513 			skipped += nr_skipped[zid];
1514 		}
1515 
1516 		/*
1517 		 * Account skipped pages as a partial scan as the pgdat may be
1518 		 * close to unreclaimable. If the LRU list is empty, account
1519 		 * skipped pages as a full scan.
1520 		 */
1521 		total_skipped = list_empty(src) ? skipped : skipped >> 2;
1522 
1523 		list_splice(&pages_skipped, src);
1524 	}
1525 	*nr_scanned = scan + total_skipped;
1526 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1527 				    scan, skipped, nr_taken, mode, lru);
1528 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1529 	return nr_taken;
1530 }
1531 
1532 /**
1533  * isolate_lru_page - tries to isolate a page from its LRU list
1534  * @page: page to isolate from its LRU list
1535  *
1536  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1537  * vmstat statistic corresponding to whatever LRU list the page was on.
1538  *
1539  * Returns 0 if the page was removed from an LRU list.
1540  * Returns -EBUSY if the page was not on an LRU list.
1541  *
1542  * The returned page will have PageLRU() cleared.  If it was found on
1543  * the active list, it will have PageActive set.  If it was found on
1544  * the unevictable list, it will have the PageUnevictable bit set. That flag
1545  * may need to be cleared by the caller before letting the page go.
1546  *
1547  * The vmstat statistic corresponding to the list on which the page was
1548  * found will be decremented.
1549  *
1550  * Restrictions:
1551  * (1) Must be called with an elevated refcount on the page. This is a
1552  *     fundamentnal difference from isolate_lru_pages (which is called
1553  *     without a stable reference).
1554  * (2) the lru_lock must not be held.
1555  * (3) interrupts must be enabled.
1556  */
1557 int isolate_lru_page(struct page *page)
1558 {
1559 	int ret = -EBUSY;
1560 
1561 	VM_BUG_ON_PAGE(!page_count(page), page);
1562 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1563 
1564 	if (PageLRU(page)) {
1565 		struct zone *zone = page_zone(page);
1566 		struct lruvec *lruvec;
1567 
1568 		spin_lock_irq(zone_lru_lock(zone));
1569 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1570 		if (PageLRU(page)) {
1571 			int lru = page_lru(page);
1572 			get_page(page);
1573 			ClearPageLRU(page);
1574 			del_page_from_lru_list(page, lruvec, lru);
1575 			ret = 0;
1576 		}
1577 		spin_unlock_irq(zone_lru_lock(zone));
1578 	}
1579 	return ret;
1580 }
1581 
1582 /*
1583  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1584  * then get resheduled. When there are massive number of tasks doing page
1585  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1586  * the LRU list will go small and be scanned faster than necessary, leading to
1587  * unnecessary swapping, thrashing and OOM.
1588  */
1589 static int too_many_isolated(struct pglist_data *pgdat, int file,
1590 		struct scan_control *sc)
1591 {
1592 	unsigned long inactive, isolated;
1593 
1594 	if (current_is_kswapd())
1595 		return 0;
1596 
1597 	if (!sane_reclaim(sc))
1598 		return 0;
1599 
1600 	if (file) {
1601 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1602 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1603 	} else {
1604 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1605 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1606 	}
1607 
1608 	/*
1609 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1610 	 * won't get blocked by normal direct-reclaimers, forming a circular
1611 	 * deadlock.
1612 	 */
1613 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1614 		inactive >>= 3;
1615 
1616 	return isolated > inactive;
1617 }
1618 
1619 static noinline_for_stack void
1620 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1621 {
1622 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1623 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1624 	LIST_HEAD(pages_to_free);
1625 
1626 	/*
1627 	 * Put back any unfreeable pages.
1628 	 */
1629 	while (!list_empty(page_list)) {
1630 		struct page *page = lru_to_page(page_list);
1631 		int lru;
1632 
1633 		VM_BUG_ON_PAGE(PageLRU(page), page);
1634 		list_del(&page->lru);
1635 		if (unlikely(!page_evictable(page))) {
1636 			spin_unlock_irq(&pgdat->lru_lock);
1637 			putback_lru_page(page);
1638 			spin_lock_irq(&pgdat->lru_lock);
1639 			continue;
1640 		}
1641 
1642 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1643 
1644 		SetPageLRU(page);
1645 		lru = page_lru(page);
1646 		add_page_to_lru_list(page, lruvec, lru);
1647 
1648 		if (is_active_lru(lru)) {
1649 			int file = is_file_lru(lru);
1650 			int numpages = hpage_nr_pages(page);
1651 			reclaim_stat->recent_rotated[file] += numpages;
1652 		}
1653 		if (put_page_testzero(page)) {
1654 			__ClearPageLRU(page);
1655 			__ClearPageActive(page);
1656 			del_page_from_lru_list(page, lruvec, lru);
1657 
1658 			if (unlikely(PageCompound(page))) {
1659 				spin_unlock_irq(&pgdat->lru_lock);
1660 				mem_cgroup_uncharge(page);
1661 				(*get_compound_page_dtor(page))(page);
1662 				spin_lock_irq(&pgdat->lru_lock);
1663 			} else
1664 				list_add(&page->lru, &pages_to_free);
1665 		}
1666 	}
1667 
1668 	/*
1669 	 * To save our caller's stack, now use input list for pages to free.
1670 	 */
1671 	list_splice(&pages_to_free, page_list);
1672 }
1673 
1674 /*
1675  * If a kernel thread (such as nfsd for loop-back mounts) services
1676  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1677  * In that case we should only throttle if the backing device it is
1678  * writing to is congested.  In other cases it is safe to throttle.
1679  */
1680 static int current_may_throttle(void)
1681 {
1682 	return !(current->flags & PF_LESS_THROTTLE) ||
1683 		current->backing_dev_info == NULL ||
1684 		bdi_write_congested(current->backing_dev_info);
1685 }
1686 
1687 static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1688 				struct scan_control *sc, enum lru_list lru)
1689 {
1690 	int zid;
1691 	struct zone *zone;
1692 	int file = is_file_lru(lru);
1693 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1694 
1695 	if (!global_reclaim(sc))
1696 		return true;
1697 
1698 	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1699 		zone = &pgdat->node_zones[zid];
1700 		if (!managed_zone(zone))
1701 			continue;
1702 
1703 		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1704 				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1705 			return true;
1706 	}
1707 
1708 	return false;
1709 }
1710 
1711 /*
1712  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1713  * of reclaimed pages
1714  */
1715 static noinline_for_stack unsigned long
1716 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1717 		     struct scan_control *sc, enum lru_list lru)
1718 {
1719 	LIST_HEAD(page_list);
1720 	unsigned long nr_scanned;
1721 	unsigned long nr_reclaimed = 0;
1722 	unsigned long nr_taken;
1723 	struct reclaim_stat stat = {};
1724 	isolate_mode_t isolate_mode = 0;
1725 	int file = is_file_lru(lru);
1726 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1727 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1728 
1729 	if (!inactive_reclaimable_pages(lruvec, sc, lru))
1730 		return 0;
1731 
1732 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1733 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1734 
1735 		/* We are about to die and free our memory. Return now. */
1736 		if (fatal_signal_pending(current))
1737 			return SWAP_CLUSTER_MAX;
1738 	}
1739 
1740 	lru_add_drain();
1741 
1742 	if (!sc->may_unmap)
1743 		isolate_mode |= ISOLATE_UNMAPPED;
1744 	if (!sc->may_writepage)
1745 		isolate_mode |= ISOLATE_CLEAN;
1746 
1747 	spin_lock_irq(&pgdat->lru_lock);
1748 
1749 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1750 				     &nr_scanned, sc, isolate_mode, lru);
1751 
1752 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1753 	reclaim_stat->recent_scanned[file] += nr_taken;
1754 
1755 	if (global_reclaim(sc)) {
1756 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1757 		if (current_is_kswapd())
1758 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1759 		else
1760 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1761 	}
1762 	spin_unlock_irq(&pgdat->lru_lock);
1763 
1764 	if (nr_taken == 0)
1765 		return 0;
1766 
1767 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1768 				&stat, false);
1769 
1770 	spin_lock_irq(&pgdat->lru_lock);
1771 
1772 	if (global_reclaim(sc)) {
1773 		if (current_is_kswapd())
1774 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1775 		else
1776 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1777 	}
1778 
1779 	putback_inactive_pages(lruvec, &page_list);
1780 
1781 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1782 
1783 	spin_unlock_irq(&pgdat->lru_lock);
1784 
1785 	mem_cgroup_uncharge_list(&page_list);
1786 	free_hot_cold_page_list(&page_list, true);
1787 
1788 	/*
1789 	 * If reclaim is isolating dirty pages under writeback, it implies
1790 	 * that the long-lived page allocation rate is exceeding the page
1791 	 * laundering rate. Either the global limits are not being effective
1792 	 * at throttling processes due to the page distribution throughout
1793 	 * zones or there is heavy usage of a slow backing device. The
1794 	 * only option is to throttle from reclaim context which is not ideal
1795 	 * as there is no guarantee the dirtying process is throttled in the
1796 	 * same way balance_dirty_pages() manages.
1797 	 *
1798 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1799 	 * of pages under pages flagged for immediate reclaim and stall if any
1800 	 * are encountered in the nr_immediate check below.
1801 	 */
1802 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1803 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1804 
1805 	/*
1806 	 * Legacy memcg will stall in page writeback so avoid forcibly
1807 	 * stalling here.
1808 	 */
1809 	if (sane_reclaim(sc)) {
1810 		/*
1811 		 * Tag a zone as congested if all the dirty pages scanned were
1812 		 * backed by a congested BDI and wait_iff_congested will stall.
1813 		 */
1814 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1815 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1816 
1817 		/*
1818 		 * If dirty pages are scanned that are not queued for IO, it
1819 		 * implies that flushers are not keeping up. In this case, flag
1820 		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1821 		 * reclaim context.
1822 		 */
1823 		if (stat.nr_unqueued_dirty == nr_taken)
1824 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1825 
1826 		/*
1827 		 * If kswapd scans pages marked marked for immediate
1828 		 * reclaim and under writeback (nr_immediate), it implies
1829 		 * that pages are cycling through the LRU faster than
1830 		 * they are written so also forcibly stall.
1831 		 */
1832 		if (stat.nr_immediate && current_may_throttle())
1833 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1834 	}
1835 
1836 	/*
1837 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1838 	 * is congested. Allow kswapd to continue until it starts encountering
1839 	 * unqueued dirty pages or cycling through the LRU too quickly.
1840 	 */
1841 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1842 	    current_may_throttle())
1843 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1844 
1845 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1846 			nr_scanned, nr_reclaimed,
1847 			stat.nr_dirty,  stat.nr_writeback,
1848 			stat.nr_congested, stat.nr_immediate,
1849 			stat.nr_activate, stat.nr_ref_keep,
1850 			stat.nr_unmap_fail,
1851 			sc->priority, file);
1852 	return nr_reclaimed;
1853 }
1854 
1855 /*
1856  * This moves pages from the active list to the inactive list.
1857  *
1858  * We move them the other way if the page is referenced by one or more
1859  * processes, from rmap.
1860  *
1861  * If the pages are mostly unmapped, the processing is fast and it is
1862  * appropriate to hold zone_lru_lock across the whole operation.  But if
1863  * the pages are mapped, the processing is slow (page_referenced()) so we
1864  * should drop zone_lru_lock around each page.  It's impossible to balance
1865  * this, so instead we remove the pages from the LRU while processing them.
1866  * It is safe to rely on PG_active against the non-LRU pages in here because
1867  * nobody will play with that bit on a non-LRU page.
1868  *
1869  * The downside is that we have to touch page->_refcount against each page.
1870  * But we had to alter page->flags anyway.
1871  *
1872  * Returns the number of pages moved to the given lru.
1873  */
1874 
1875 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1876 				     struct list_head *list,
1877 				     struct list_head *pages_to_free,
1878 				     enum lru_list lru)
1879 {
1880 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1881 	struct page *page;
1882 	int nr_pages;
1883 	int nr_moved = 0;
1884 
1885 	while (!list_empty(list)) {
1886 		page = lru_to_page(list);
1887 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1888 
1889 		VM_BUG_ON_PAGE(PageLRU(page), page);
1890 		SetPageLRU(page);
1891 
1892 		nr_pages = hpage_nr_pages(page);
1893 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1894 		list_move(&page->lru, &lruvec->lists[lru]);
1895 
1896 		if (put_page_testzero(page)) {
1897 			__ClearPageLRU(page);
1898 			__ClearPageActive(page);
1899 			del_page_from_lru_list(page, lruvec, lru);
1900 
1901 			if (unlikely(PageCompound(page))) {
1902 				spin_unlock_irq(&pgdat->lru_lock);
1903 				mem_cgroup_uncharge(page);
1904 				(*get_compound_page_dtor(page))(page);
1905 				spin_lock_irq(&pgdat->lru_lock);
1906 			} else
1907 				list_add(&page->lru, pages_to_free);
1908 		} else {
1909 			nr_moved += nr_pages;
1910 		}
1911 	}
1912 
1913 	if (!is_active_lru(lru))
1914 		__count_vm_events(PGDEACTIVATE, nr_moved);
1915 
1916 	return nr_moved;
1917 }
1918 
1919 static void shrink_active_list(unsigned long nr_to_scan,
1920 			       struct lruvec *lruvec,
1921 			       struct scan_control *sc,
1922 			       enum lru_list lru)
1923 {
1924 	unsigned long nr_taken;
1925 	unsigned long nr_scanned;
1926 	unsigned long vm_flags;
1927 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1928 	LIST_HEAD(l_active);
1929 	LIST_HEAD(l_inactive);
1930 	struct page *page;
1931 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1932 	unsigned nr_deactivate, nr_activate;
1933 	unsigned nr_rotated = 0;
1934 	isolate_mode_t isolate_mode = 0;
1935 	int file = is_file_lru(lru);
1936 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1937 
1938 	lru_add_drain();
1939 
1940 	if (!sc->may_unmap)
1941 		isolate_mode |= ISOLATE_UNMAPPED;
1942 	if (!sc->may_writepage)
1943 		isolate_mode |= ISOLATE_CLEAN;
1944 
1945 	spin_lock_irq(&pgdat->lru_lock);
1946 
1947 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1948 				     &nr_scanned, sc, isolate_mode, lru);
1949 
1950 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1951 	reclaim_stat->recent_scanned[file] += nr_taken;
1952 
1953 	if (global_reclaim(sc))
1954 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1955 	__count_vm_events(PGREFILL, nr_scanned);
1956 
1957 	spin_unlock_irq(&pgdat->lru_lock);
1958 
1959 	while (!list_empty(&l_hold)) {
1960 		cond_resched();
1961 		page = lru_to_page(&l_hold);
1962 		list_del(&page->lru);
1963 
1964 		if (unlikely(!page_evictable(page))) {
1965 			putback_lru_page(page);
1966 			continue;
1967 		}
1968 
1969 		if (unlikely(buffer_heads_over_limit)) {
1970 			if (page_has_private(page) && trylock_page(page)) {
1971 				if (page_has_private(page))
1972 					try_to_release_page(page, 0);
1973 				unlock_page(page);
1974 			}
1975 		}
1976 
1977 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1978 				    &vm_flags)) {
1979 			nr_rotated += hpage_nr_pages(page);
1980 			/*
1981 			 * Identify referenced, file-backed active pages and
1982 			 * give them one more trip around the active list. So
1983 			 * that executable code get better chances to stay in
1984 			 * memory under moderate memory pressure.  Anon pages
1985 			 * are not likely to be evicted by use-once streaming
1986 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1987 			 * so we ignore them here.
1988 			 */
1989 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1990 				list_add(&page->lru, &l_active);
1991 				continue;
1992 			}
1993 		}
1994 
1995 		ClearPageActive(page);	/* we are de-activating */
1996 		list_add(&page->lru, &l_inactive);
1997 	}
1998 
1999 	/*
2000 	 * Move pages back to the lru list.
2001 	 */
2002 	spin_lock_irq(&pgdat->lru_lock);
2003 	/*
2004 	 * Count referenced pages from currently used mappings as rotated,
2005 	 * even though only some of them are actually re-activated.  This
2006 	 * helps balance scan pressure between file and anonymous pages in
2007 	 * get_scan_count.
2008 	 */
2009 	reclaim_stat->recent_rotated[file] += nr_rotated;
2010 
2011 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2012 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2013 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2014 	spin_unlock_irq(&pgdat->lru_lock);
2015 
2016 	mem_cgroup_uncharge_list(&l_hold);
2017 	free_hot_cold_page_list(&l_hold, true);
2018 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2019 			nr_deactivate, nr_rotated, sc->priority, file);
2020 }
2021 
2022 /*
2023  * The inactive anon list should be small enough that the VM never has
2024  * to do too much work.
2025  *
2026  * The inactive file list should be small enough to leave most memory
2027  * to the established workingset on the scan-resistant active list,
2028  * but large enough to avoid thrashing the aggregate readahead window.
2029  *
2030  * Both inactive lists should also be large enough that each inactive
2031  * page has a chance to be referenced again before it is reclaimed.
2032  *
2033  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2034  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2035  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2036  *
2037  * total     target    max
2038  * memory    ratio     inactive
2039  * -------------------------------------
2040  *   10MB       1         5MB
2041  *  100MB       1        50MB
2042  *    1GB       3       250MB
2043  *   10GB      10       0.9GB
2044  *  100GB      31         3GB
2045  *    1TB     101        10GB
2046  *   10TB     320        32GB
2047  */
2048 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2049 						struct scan_control *sc, bool trace)
2050 {
2051 	unsigned long inactive_ratio;
2052 	unsigned long total_inactive, inactive;
2053 	unsigned long total_active, active;
2054 	unsigned long gb;
2055 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2056 	int zid;
2057 
2058 	/*
2059 	 * If we don't have swap space, anonymous page deactivation
2060 	 * is pointless.
2061 	 */
2062 	if (!file && !total_swap_pages)
2063 		return false;
2064 
2065 	total_inactive = inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
2066 	total_active = active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
2067 
2068 	/*
2069 	 * For zone-constrained allocations, it is necessary to check if
2070 	 * deactivations are required for lowmem to be reclaimed. This
2071 	 * calculates the inactive/active pages available in eligible zones.
2072 	 */
2073 	for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
2074 		struct zone *zone = &pgdat->node_zones[zid];
2075 		unsigned long inactive_zone, active_zone;
2076 
2077 		if (!managed_zone(zone))
2078 			continue;
2079 
2080 		inactive_zone = lruvec_zone_lru_size(lruvec, file * LRU_FILE, zid);
2081 		active_zone = lruvec_zone_lru_size(lruvec, (file * LRU_FILE) + LRU_ACTIVE, zid);
2082 
2083 		inactive -= min(inactive, inactive_zone);
2084 		active -= min(active, active_zone);
2085 	}
2086 
2087 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2088 	if (gb)
2089 		inactive_ratio = int_sqrt(10 * gb);
2090 	else
2091 		inactive_ratio = 1;
2092 
2093 	if (trace)
2094 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id,
2095 				sc->reclaim_idx,
2096 				total_inactive, inactive,
2097 				total_active, active, inactive_ratio, file);
2098 	return inactive * inactive_ratio < active;
2099 }
2100 
2101 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2102 				 struct lruvec *lruvec, struct scan_control *sc)
2103 {
2104 	if (is_active_lru(lru)) {
2105 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2106 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2107 		return 0;
2108 	}
2109 
2110 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2111 }
2112 
2113 enum scan_balance {
2114 	SCAN_EQUAL,
2115 	SCAN_FRACT,
2116 	SCAN_ANON,
2117 	SCAN_FILE,
2118 };
2119 
2120 /*
2121  * Determine how aggressively the anon and file LRU lists should be
2122  * scanned.  The relative value of each set of LRU lists is determined
2123  * by looking at the fraction of the pages scanned we did rotate back
2124  * onto the active list instead of evict.
2125  *
2126  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2127  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2128  */
2129 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2130 			   struct scan_control *sc, unsigned long *nr,
2131 			   unsigned long *lru_pages)
2132 {
2133 	int swappiness = mem_cgroup_swappiness(memcg);
2134 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2135 	u64 fraction[2];
2136 	u64 denominator = 0;	/* gcc */
2137 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2138 	unsigned long anon_prio, file_prio;
2139 	enum scan_balance scan_balance;
2140 	unsigned long anon, file;
2141 	bool force_scan = false;
2142 	unsigned long ap, fp;
2143 	enum lru_list lru;
2144 	bool some_scanned;
2145 	int pass;
2146 
2147 	/*
2148 	 * If the zone or memcg is small, nr[l] can be 0.  This
2149 	 * results in no scanning on this priority and a potential
2150 	 * priority drop.  Global direct reclaim can go to the next
2151 	 * zone and tends to have no problems. Global kswapd is for
2152 	 * zone balancing and it needs to scan a minimum amount. When
2153 	 * reclaiming for a memcg, a priority drop can cause high
2154 	 * latencies, so it's better to scan a minimum amount there as
2155 	 * well.
2156 	 */
2157 	if (current_is_kswapd()) {
2158 		if (!pgdat_reclaimable(pgdat))
2159 			force_scan = true;
2160 		if (!mem_cgroup_online(memcg))
2161 			force_scan = true;
2162 	}
2163 	if (!global_reclaim(sc))
2164 		force_scan = true;
2165 
2166 	/* If we have no swap space, do not bother scanning anon pages. */
2167 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2168 		scan_balance = SCAN_FILE;
2169 		goto out;
2170 	}
2171 
2172 	/*
2173 	 * Global reclaim will swap to prevent OOM even with no
2174 	 * swappiness, but memcg users want to use this knob to
2175 	 * disable swapping for individual groups completely when
2176 	 * using the memory controller's swap limit feature would be
2177 	 * too expensive.
2178 	 */
2179 	if (!global_reclaim(sc) && !swappiness) {
2180 		scan_balance = SCAN_FILE;
2181 		goto out;
2182 	}
2183 
2184 	/*
2185 	 * Do not apply any pressure balancing cleverness when the
2186 	 * system is close to OOM, scan both anon and file equally
2187 	 * (unless the swappiness setting disagrees with swapping).
2188 	 */
2189 	if (!sc->priority && swappiness) {
2190 		scan_balance = SCAN_EQUAL;
2191 		goto out;
2192 	}
2193 
2194 	/*
2195 	 * Prevent the reclaimer from falling into the cache trap: as
2196 	 * cache pages start out inactive, every cache fault will tip
2197 	 * the scan balance towards the file LRU.  And as the file LRU
2198 	 * shrinks, so does the window for rotation from references.
2199 	 * This means we have a runaway feedback loop where a tiny
2200 	 * thrashing file LRU becomes infinitely more attractive than
2201 	 * anon pages.  Try to detect this based on file LRU size.
2202 	 */
2203 	if (global_reclaim(sc)) {
2204 		unsigned long pgdatfile;
2205 		unsigned long pgdatfree;
2206 		int z;
2207 		unsigned long total_high_wmark = 0;
2208 
2209 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2210 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2211 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2212 
2213 		for (z = 0; z < MAX_NR_ZONES; z++) {
2214 			struct zone *zone = &pgdat->node_zones[z];
2215 			if (!managed_zone(zone))
2216 				continue;
2217 
2218 			total_high_wmark += high_wmark_pages(zone);
2219 		}
2220 
2221 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2222 			scan_balance = SCAN_ANON;
2223 			goto out;
2224 		}
2225 	}
2226 
2227 	/*
2228 	 * If there is enough inactive page cache, i.e. if the size of the
2229 	 * inactive list is greater than that of the active list *and* the
2230 	 * inactive list actually has some pages to scan on this priority, we
2231 	 * do not reclaim anything from the anonymous working set right now.
2232 	 * Without the second condition we could end up never scanning an
2233 	 * lruvec even if it has plenty of old anonymous pages unless the
2234 	 * system is under heavy pressure.
2235 	 */
2236 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2237 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2238 		scan_balance = SCAN_FILE;
2239 		goto out;
2240 	}
2241 
2242 	scan_balance = SCAN_FRACT;
2243 
2244 	/*
2245 	 * With swappiness at 100, anonymous and file have the same priority.
2246 	 * This scanning priority is essentially the inverse of IO cost.
2247 	 */
2248 	anon_prio = swappiness;
2249 	file_prio = 200 - anon_prio;
2250 
2251 	/*
2252 	 * OK, so we have swap space and a fair amount of page cache
2253 	 * pages.  We use the recently rotated / recently scanned
2254 	 * ratios to determine how valuable each cache is.
2255 	 *
2256 	 * Because workloads change over time (and to avoid overflow)
2257 	 * we keep these statistics as a floating average, which ends
2258 	 * up weighing recent references more than old ones.
2259 	 *
2260 	 * anon in [0], file in [1]
2261 	 */
2262 
2263 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2264 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2265 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2266 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2267 
2268 	spin_lock_irq(&pgdat->lru_lock);
2269 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2270 		reclaim_stat->recent_scanned[0] /= 2;
2271 		reclaim_stat->recent_rotated[0] /= 2;
2272 	}
2273 
2274 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2275 		reclaim_stat->recent_scanned[1] /= 2;
2276 		reclaim_stat->recent_rotated[1] /= 2;
2277 	}
2278 
2279 	/*
2280 	 * The amount of pressure on anon vs file pages is inversely
2281 	 * proportional to the fraction of recently scanned pages on
2282 	 * each list that were recently referenced and in active use.
2283 	 */
2284 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2285 	ap /= reclaim_stat->recent_rotated[0] + 1;
2286 
2287 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2288 	fp /= reclaim_stat->recent_rotated[1] + 1;
2289 	spin_unlock_irq(&pgdat->lru_lock);
2290 
2291 	fraction[0] = ap;
2292 	fraction[1] = fp;
2293 	denominator = ap + fp + 1;
2294 out:
2295 	some_scanned = false;
2296 	/* Only use force_scan on second pass. */
2297 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2298 		*lru_pages = 0;
2299 		for_each_evictable_lru(lru) {
2300 			int file = is_file_lru(lru);
2301 			unsigned long size;
2302 			unsigned long scan;
2303 
2304 			size = lruvec_lru_size(lruvec, lru);
2305 			scan = size >> sc->priority;
2306 
2307 			if (!scan && pass && force_scan)
2308 				scan = min(size, SWAP_CLUSTER_MAX);
2309 
2310 			switch (scan_balance) {
2311 			case SCAN_EQUAL:
2312 				/* Scan lists relative to size */
2313 				break;
2314 			case SCAN_FRACT:
2315 				/*
2316 				 * Scan types proportional to swappiness and
2317 				 * their relative recent reclaim efficiency.
2318 				 */
2319 				scan = div64_u64(scan * fraction[file],
2320 							denominator);
2321 				break;
2322 			case SCAN_FILE:
2323 			case SCAN_ANON:
2324 				/* Scan one type exclusively */
2325 				if ((scan_balance == SCAN_FILE) != file) {
2326 					size = 0;
2327 					scan = 0;
2328 				}
2329 				break;
2330 			default:
2331 				/* Look ma, no brain */
2332 				BUG();
2333 			}
2334 
2335 			*lru_pages += size;
2336 			nr[lru] = scan;
2337 
2338 			/*
2339 			 * Skip the second pass and don't force_scan,
2340 			 * if we found something to scan.
2341 			 */
2342 			some_scanned |= !!scan;
2343 		}
2344 	}
2345 }
2346 
2347 /*
2348  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2349  */
2350 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2351 			      struct scan_control *sc, unsigned long *lru_pages)
2352 {
2353 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2354 	unsigned long nr[NR_LRU_LISTS];
2355 	unsigned long targets[NR_LRU_LISTS];
2356 	unsigned long nr_to_scan;
2357 	enum lru_list lru;
2358 	unsigned long nr_reclaimed = 0;
2359 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2360 	struct blk_plug plug;
2361 	bool scan_adjusted;
2362 
2363 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2364 
2365 	/* Record the original scan target for proportional adjustments later */
2366 	memcpy(targets, nr, sizeof(nr));
2367 
2368 	/*
2369 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2370 	 * event that can occur when there is little memory pressure e.g.
2371 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2372 	 * when the requested number of pages are reclaimed when scanning at
2373 	 * DEF_PRIORITY on the assumption that the fact we are direct
2374 	 * reclaiming implies that kswapd is not keeping up and it is best to
2375 	 * do a batch of work at once. For memcg reclaim one check is made to
2376 	 * abort proportional reclaim if either the file or anon lru has already
2377 	 * dropped to zero at the first pass.
2378 	 */
2379 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2380 			 sc->priority == DEF_PRIORITY);
2381 
2382 	blk_start_plug(&plug);
2383 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2384 					nr[LRU_INACTIVE_FILE]) {
2385 		unsigned long nr_anon, nr_file, percentage;
2386 		unsigned long nr_scanned;
2387 
2388 		for_each_evictable_lru(lru) {
2389 			if (nr[lru]) {
2390 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2391 				nr[lru] -= nr_to_scan;
2392 
2393 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2394 							    lruvec, sc);
2395 			}
2396 		}
2397 
2398 		cond_resched();
2399 
2400 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2401 			continue;
2402 
2403 		/*
2404 		 * For kswapd and memcg, reclaim at least the number of pages
2405 		 * requested. Ensure that the anon and file LRUs are scanned
2406 		 * proportionally what was requested by get_scan_count(). We
2407 		 * stop reclaiming one LRU and reduce the amount scanning
2408 		 * proportional to the original scan target.
2409 		 */
2410 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2411 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2412 
2413 		/*
2414 		 * It's just vindictive to attack the larger once the smaller
2415 		 * has gone to zero.  And given the way we stop scanning the
2416 		 * smaller below, this makes sure that we only make one nudge
2417 		 * towards proportionality once we've got nr_to_reclaim.
2418 		 */
2419 		if (!nr_file || !nr_anon)
2420 			break;
2421 
2422 		if (nr_file > nr_anon) {
2423 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2424 						targets[LRU_ACTIVE_ANON] + 1;
2425 			lru = LRU_BASE;
2426 			percentage = nr_anon * 100 / scan_target;
2427 		} else {
2428 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2429 						targets[LRU_ACTIVE_FILE] + 1;
2430 			lru = LRU_FILE;
2431 			percentage = nr_file * 100 / scan_target;
2432 		}
2433 
2434 		/* Stop scanning the smaller of the LRU */
2435 		nr[lru] = 0;
2436 		nr[lru + LRU_ACTIVE] = 0;
2437 
2438 		/*
2439 		 * Recalculate the other LRU scan count based on its original
2440 		 * scan target and the percentage scanning already complete
2441 		 */
2442 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2443 		nr_scanned = targets[lru] - nr[lru];
2444 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2445 		nr[lru] -= min(nr[lru], nr_scanned);
2446 
2447 		lru += LRU_ACTIVE;
2448 		nr_scanned = targets[lru] - nr[lru];
2449 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2450 		nr[lru] -= min(nr[lru], nr_scanned);
2451 
2452 		scan_adjusted = true;
2453 	}
2454 	blk_finish_plug(&plug);
2455 	sc->nr_reclaimed += nr_reclaimed;
2456 
2457 	/*
2458 	 * Even if we did not try to evict anon pages at all, we want to
2459 	 * rebalance the anon lru active/inactive ratio.
2460 	 */
2461 	if (inactive_list_is_low(lruvec, false, sc, true))
2462 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2463 				   sc, LRU_ACTIVE_ANON);
2464 }
2465 
2466 /* Use reclaim/compaction for costly allocs or under memory pressure */
2467 static bool in_reclaim_compaction(struct scan_control *sc)
2468 {
2469 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2470 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2471 			 sc->priority < DEF_PRIORITY - 2))
2472 		return true;
2473 
2474 	return false;
2475 }
2476 
2477 /*
2478  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2479  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2480  * true if more pages should be reclaimed such that when the page allocator
2481  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2482  * It will give up earlier than that if there is difficulty reclaiming pages.
2483  */
2484 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2485 					unsigned long nr_reclaimed,
2486 					unsigned long nr_scanned,
2487 					struct scan_control *sc)
2488 {
2489 	unsigned long pages_for_compaction;
2490 	unsigned long inactive_lru_pages;
2491 	int z;
2492 
2493 	/* If not in reclaim/compaction mode, stop */
2494 	if (!in_reclaim_compaction(sc))
2495 		return false;
2496 
2497 	/* Consider stopping depending on scan and reclaim activity */
2498 	if (sc->gfp_mask & __GFP_REPEAT) {
2499 		/*
2500 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2501 		 * full LRU list has been scanned and we are still failing
2502 		 * to reclaim pages. This full LRU scan is potentially
2503 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2504 		 */
2505 		if (!nr_reclaimed && !nr_scanned)
2506 			return false;
2507 	} else {
2508 		/*
2509 		 * For non-__GFP_REPEAT allocations which can presumably
2510 		 * fail without consequence, stop if we failed to reclaim
2511 		 * any pages from the last SWAP_CLUSTER_MAX number of
2512 		 * pages that were scanned. This will return to the
2513 		 * caller faster at the risk reclaim/compaction and
2514 		 * the resulting allocation attempt fails
2515 		 */
2516 		if (!nr_reclaimed)
2517 			return false;
2518 	}
2519 
2520 	/*
2521 	 * If we have not reclaimed enough pages for compaction and the
2522 	 * inactive lists are large enough, continue reclaiming
2523 	 */
2524 	pages_for_compaction = compact_gap(sc->order);
2525 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2526 	if (get_nr_swap_pages() > 0)
2527 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2528 	if (sc->nr_reclaimed < pages_for_compaction &&
2529 			inactive_lru_pages > pages_for_compaction)
2530 		return true;
2531 
2532 	/* If compaction would go ahead or the allocation would succeed, stop */
2533 	for (z = 0; z <= sc->reclaim_idx; z++) {
2534 		struct zone *zone = &pgdat->node_zones[z];
2535 		if (!managed_zone(zone))
2536 			continue;
2537 
2538 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2539 		case COMPACT_SUCCESS:
2540 		case COMPACT_CONTINUE:
2541 			return false;
2542 		default:
2543 			/* check next zone */
2544 			;
2545 		}
2546 	}
2547 	return true;
2548 }
2549 
2550 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2551 {
2552 	struct reclaim_state *reclaim_state = current->reclaim_state;
2553 	unsigned long nr_reclaimed, nr_scanned;
2554 	bool reclaimable = false;
2555 
2556 	do {
2557 		struct mem_cgroup *root = sc->target_mem_cgroup;
2558 		struct mem_cgroup_reclaim_cookie reclaim = {
2559 			.pgdat = pgdat,
2560 			.priority = sc->priority,
2561 		};
2562 		unsigned long node_lru_pages = 0;
2563 		struct mem_cgroup *memcg;
2564 
2565 		nr_reclaimed = sc->nr_reclaimed;
2566 		nr_scanned = sc->nr_scanned;
2567 
2568 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2569 		do {
2570 			unsigned long lru_pages;
2571 			unsigned long reclaimed;
2572 			unsigned long scanned;
2573 
2574 			if (mem_cgroup_low(root, memcg)) {
2575 				if (!sc->may_thrash)
2576 					continue;
2577 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2578 			}
2579 
2580 			reclaimed = sc->nr_reclaimed;
2581 			scanned = sc->nr_scanned;
2582 
2583 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2584 			node_lru_pages += lru_pages;
2585 
2586 			if (memcg)
2587 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2588 					    memcg, sc->nr_scanned - scanned,
2589 					    lru_pages);
2590 
2591 			/* Record the group's reclaim efficiency */
2592 			vmpressure(sc->gfp_mask, memcg, false,
2593 				   sc->nr_scanned - scanned,
2594 				   sc->nr_reclaimed - reclaimed);
2595 
2596 			/*
2597 			 * Direct reclaim and kswapd have to scan all memory
2598 			 * cgroups to fulfill the overall scan target for the
2599 			 * node.
2600 			 *
2601 			 * Limit reclaim, on the other hand, only cares about
2602 			 * nr_to_reclaim pages to be reclaimed and it will
2603 			 * retry with decreasing priority if one round over the
2604 			 * whole hierarchy is not sufficient.
2605 			 */
2606 			if (!global_reclaim(sc) &&
2607 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2608 				mem_cgroup_iter_break(root, memcg);
2609 				break;
2610 			}
2611 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2612 
2613 		/*
2614 		 * Shrink the slab caches in the same proportion that
2615 		 * the eligible LRU pages were scanned.
2616 		 */
2617 		if (global_reclaim(sc))
2618 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2619 				    sc->nr_scanned - nr_scanned,
2620 				    node_lru_pages);
2621 
2622 		if (reclaim_state) {
2623 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2624 			reclaim_state->reclaimed_slab = 0;
2625 		}
2626 
2627 		/* Record the subtree's reclaim efficiency */
2628 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2629 			   sc->nr_scanned - nr_scanned,
2630 			   sc->nr_reclaimed - nr_reclaimed);
2631 
2632 		if (sc->nr_reclaimed - nr_reclaimed)
2633 			reclaimable = true;
2634 
2635 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2636 					 sc->nr_scanned - nr_scanned, sc));
2637 
2638 	return reclaimable;
2639 }
2640 
2641 /*
2642  * Returns true if compaction should go ahead for a costly-order request, or
2643  * the allocation would already succeed without compaction. Return false if we
2644  * should reclaim first.
2645  */
2646 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2647 {
2648 	unsigned long watermark;
2649 	enum compact_result suitable;
2650 
2651 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2652 	if (suitable == COMPACT_SUCCESS)
2653 		/* Allocation should succeed already. Don't reclaim. */
2654 		return true;
2655 	if (suitable == COMPACT_SKIPPED)
2656 		/* Compaction cannot yet proceed. Do reclaim. */
2657 		return false;
2658 
2659 	/*
2660 	 * Compaction is already possible, but it takes time to run and there
2661 	 * are potentially other callers using the pages just freed. So proceed
2662 	 * with reclaim to make a buffer of free pages available to give
2663 	 * compaction a reasonable chance of completing and allocating the page.
2664 	 * Note that we won't actually reclaim the whole buffer in one attempt
2665 	 * as the target watermark in should_continue_reclaim() is lower. But if
2666 	 * we are already above the high+gap watermark, don't reclaim at all.
2667 	 */
2668 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2669 
2670 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2671 }
2672 
2673 /*
2674  * This is the direct reclaim path, for page-allocating processes.  We only
2675  * try to reclaim pages from zones which will satisfy the caller's allocation
2676  * request.
2677  *
2678  * If a zone is deemed to be full of pinned pages then just give it a light
2679  * scan then give up on it.
2680  */
2681 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2682 {
2683 	struct zoneref *z;
2684 	struct zone *zone;
2685 	unsigned long nr_soft_reclaimed;
2686 	unsigned long nr_soft_scanned;
2687 	gfp_t orig_mask;
2688 	pg_data_t *last_pgdat = NULL;
2689 
2690 	/*
2691 	 * If the number of buffer_heads in the machine exceeds the maximum
2692 	 * allowed level, force direct reclaim to scan the highmem zone as
2693 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2694 	 */
2695 	orig_mask = sc->gfp_mask;
2696 	if (buffer_heads_over_limit) {
2697 		sc->gfp_mask |= __GFP_HIGHMEM;
2698 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2699 	}
2700 
2701 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2702 					sc->reclaim_idx, sc->nodemask) {
2703 		/*
2704 		 * Take care memory controller reclaiming has small influence
2705 		 * to global LRU.
2706 		 */
2707 		if (global_reclaim(sc)) {
2708 			if (!cpuset_zone_allowed(zone,
2709 						 GFP_KERNEL | __GFP_HARDWALL))
2710 				continue;
2711 
2712 			if (sc->priority != DEF_PRIORITY &&
2713 			    !pgdat_reclaimable(zone->zone_pgdat))
2714 				continue;	/* Let kswapd poll it */
2715 
2716 			/*
2717 			 * If we already have plenty of memory free for
2718 			 * compaction in this zone, don't free any more.
2719 			 * Even though compaction is invoked for any
2720 			 * non-zero order, only frequent costly order
2721 			 * reclamation is disruptive enough to become a
2722 			 * noticeable problem, like transparent huge
2723 			 * page allocations.
2724 			 */
2725 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2726 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2727 			    compaction_ready(zone, sc)) {
2728 				sc->compaction_ready = true;
2729 				continue;
2730 			}
2731 
2732 			/*
2733 			 * Shrink each node in the zonelist once. If the
2734 			 * zonelist is ordered by zone (not the default) then a
2735 			 * node may be shrunk multiple times but in that case
2736 			 * the user prefers lower zones being preserved.
2737 			 */
2738 			if (zone->zone_pgdat == last_pgdat)
2739 				continue;
2740 
2741 			/*
2742 			 * This steals pages from memory cgroups over softlimit
2743 			 * and returns the number of reclaimed pages and
2744 			 * scanned pages. This works for global memory pressure
2745 			 * and balancing, not for a memcg's limit.
2746 			 */
2747 			nr_soft_scanned = 0;
2748 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2749 						sc->order, sc->gfp_mask,
2750 						&nr_soft_scanned);
2751 			sc->nr_reclaimed += nr_soft_reclaimed;
2752 			sc->nr_scanned += nr_soft_scanned;
2753 			/* need some check for avoid more shrink_zone() */
2754 		}
2755 
2756 		/* See comment about same check for global reclaim above */
2757 		if (zone->zone_pgdat == last_pgdat)
2758 			continue;
2759 		last_pgdat = zone->zone_pgdat;
2760 		shrink_node(zone->zone_pgdat, sc);
2761 	}
2762 
2763 	/*
2764 	 * Restore to original mask to avoid the impact on the caller if we
2765 	 * promoted it to __GFP_HIGHMEM.
2766 	 */
2767 	sc->gfp_mask = orig_mask;
2768 }
2769 
2770 /*
2771  * This is the main entry point to direct page reclaim.
2772  *
2773  * If a full scan of the inactive list fails to free enough memory then we
2774  * are "out of memory" and something needs to be killed.
2775  *
2776  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2777  * high - the zone may be full of dirty or under-writeback pages, which this
2778  * caller can't do much about.  We kick the writeback threads and take explicit
2779  * naps in the hope that some of these pages can be written.  But if the
2780  * allocating task holds filesystem locks which prevent writeout this might not
2781  * work, and the allocation attempt will fail.
2782  *
2783  * returns:	0, if no pages reclaimed
2784  * 		else, the number of pages reclaimed
2785  */
2786 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2787 					  struct scan_control *sc)
2788 {
2789 	int initial_priority = sc->priority;
2790 	unsigned long total_scanned = 0;
2791 	unsigned long writeback_threshold;
2792 retry:
2793 	delayacct_freepages_start();
2794 
2795 	if (global_reclaim(sc))
2796 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2797 
2798 	do {
2799 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2800 				sc->priority);
2801 		sc->nr_scanned = 0;
2802 		shrink_zones(zonelist, sc);
2803 
2804 		total_scanned += sc->nr_scanned;
2805 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2806 			break;
2807 
2808 		if (sc->compaction_ready)
2809 			break;
2810 
2811 		/*
2812 		 * If we're getting trouble reclaiming, start doing
2813 		 * writepage even in laptop mode.
2814 		 */
2815 		if (sc->priority < DEF_PRIORITY - 2)
2816 			sc->may_writepage = 1;
2817 
2818 		/*
2819 		 * Try to write back as many pages as we just scanned.  This
2820 		 * tends to cause slow streaming writers to write data to the
2821 		 * disk smoothly, at the dirtying rate, which is nice.   But
2822 		 * that's undesirable in laptop mode, where we *want* lumpy
2823 		 * writeout.  So in laptop mode, write out the whole world.
2824 		 */
2825 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2826 		if (total_scanned > writeback_threshold) {
2827 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2828 						WB_REASON_TRY_TO_FREE_PAGES);
2829 			sc->may_writepage = 1;
2830 		}
2831 	} while (--sc->priority >= 0);
2832 
2833 	delayacct_freepages_end();
2834 
2835 	if (sc->nr_reclaimed)
2836 		return sc->nr_reclaimed;
2837 
2838 	/* Aborted reclaim to try compaction? don't OOM, then */
2839 	if (sc->compaction_ready)
2840 		return 1;
2841 
2842 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2843 	if (!sc->may_thrash) {
2844 		sc->priority = initial_priority;
2845 		sc->may_thrash = 1;
2846 		goto retry;
2847 	}
2848 
2849 	return 0;
2850 }
2851 
2852 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2853 {
2854 	struct zone *zone;
2855 	unsigned long pfmemalloc_reserve = 0;
2856 	unsigned long free_pages = 0;
2857 	int i;
2858 	bool wmark_ok;
2859 
2860 	for (i = 0; i <= ZONE_NORMAL; i++) {
2861 		zone = &pgdat->node_zones[i];
2862 		if (!managed_zone(zone) ||
2863 		    pgdat_reclaimable_pages(pgdat) == 0)
2864 			continue;
2865 
2866 		pfmemalloc_reserve += min_wmark_pages(zone);
2867 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2868 	}
2869 
2870 	/* If there are no reserves (unexpected config) then do not throttle */
2871 	if (!pfmemalloc_reserve)
2872 		return true;
2873 
2874 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2875 
2876 	/* kswapd must be awake if processes are being throttled */
2877 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2878 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2879 						(enum zone_type)ZONE_NORMAL);
2880 		wake_up_interruptible(&pgdat->kswapd_wait);
2881 	}
2882 
2883 	return wmark_ok;
2884 }
2885 
2886 /*
2887  * Throttle direct reclaimers if backing storage is backed by the network
2888  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2889  * depleted. kswapd will continue to make progress and wake the processes
2890  * when the low watermark is reached.
2891  *
2892  * Returns true if a fatal signal was delivered during throttling. If this
2893  * happens, the page allocator should not consider triggering the OOM killer.
2894  */
2895 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2896 					nodemask_t *nodemask)
2897 {
2898 	struct zoneref *z;
2899 	struct zone *zone;
2900 	pg_data_t *pgdat = NULL;
2901 
2902 	/*
2903 	 * Kernel threads should not be throttled as they may be indirectly
2904 	 * responsible for cleaning pages necessary for reclaim to make forward
2905 	 * progress. kjournald for example may enter direct reclaim while
2906 	 * committing a transaction where throttling it could forcing other
2907 	 * processes to block on log_wait_commit().
2908 	 */
2909 	if (current->flags & PF_KTHREAD)
2910 		goto out;
2911 
2912 	/*
2913 	 * If a fatal signal is pending, this process should not throttle.
2914 	 * It should return quickly so it can exit and free its memory
2915 	 */
2916 	if (fatal_signal_pending(current))
2917 		goto out;
2918 
2919 	/*
2920 	 * Check if the pfmemalloc reserves are ok by finding the first node
2921 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2922 	 * GFP_KERNEL will be required for allocating network buffers when
2923 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2924 	 *
2925 	 * Throttling is based on the first usable node and throttled processes
2926 	 * wait on a queue until kswapd makes progress and wakes them. There
2927 	 * is an affinity then between processes waking up and where reclaim
2928 	 * progress has been made assuming the process wakes on the same node.
2929 	 * More importantly, processes running on remote nodes will not compete
2930 	 * for remote pfmemalloc reserves and processes on different nodes
2931 	 * should make reasonable progress.
2932 	 */
2933 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2934 					gfp_zone(gfp_mask), nodemask) {
2935 		if (zone_idx(zone) > ZONE_NORMAL)
2936 			continue;
2937 
2938 		/* Throttle based on the first usable node */
2939 		pgdat = zone->zone_pgdat;
2940 		if (pfmemalloc_watermark_ok(pgdat))
2941 			goto out;
2942 		break;
2943 	}
2944 
2945 	/* If no zone was usable by the allocation flags then do not throttle */
2946 	if (!pgdat)
2947 		goto out;
2948 
2949 	/* Account for the throttling */
2950 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2951 
2952 	/*
2953 	 * If the caller cannot enter the filesystem, it's possible that it
2954 	 * is due to the caller holding an FS lock or performing a journal
2955 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2956 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2957 	 * blocked waiting on the same lock. Instead, throttle for up to a
2958 	 * second before continuing.
2959 	 */
2960 	if (!(gfp_mask & __GFP_FS)) {
2961 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2962 			pfmemalloc_watermark_ok(pgdat), HZ);
2963 
2964 		goto check_pending;
2965 	}
2966 
2967 	/* Throttle until kswapd wakes the process */
2968 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2969 		pfmemalloc_watermark_ok(pgdat));
2970 
2971 check_pending:
2972 	if (fatal_signal_pending(current))
2973 		return true;
2974 
2975 out:
2976 	return false;
2977 }
2978 
2979 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2980 				gfp_t gfp_mask, nodemask_t *nodemask)
2981 {
2982 	unsigned long nr_reclaimed;
2983 	struct scan_control sc = {
2984 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2985 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2986 		.reclaim_idx = gfp_zone(gfp_mask),
2987 		.order = order,
2988 		.nodemask = nodemask,
2989 		.priority = DEF_PRIORITY,
2990 		.may_writepage = !laptop_mode,
2991 		.may_unmap = 1,
2992 		.may_swap = 1,
2993 	};
2994 
2995 	/*
2996 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2997 	 * 1 is returned so that the page allocator does not OOM kill at this
2998 	 * point.
2999 	 */
3000 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
3001 		return 1;
3002 
3003 	trace_mm_vmscan_direct_reclaim_begin(order,
3004 				sc.may_writepage,
3005 				gfp_mask,
3006 				sc.reclaim_idx);
3007 
3008 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3009 
3010 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3011 
3012 	return nr_reclaimed;
3013 }
3014 
3015 #ifdef CONFIG_MEMCG
3016 
3017 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3018 						gfp_t gfp_mask, bool noswap,
3019 						pg_data_t *pgdat,
3020 						unsigned long *nr_scanned)
3021 {
3022 	struct scan_control sc = {
3023 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3024 		.target_mem_cgroup = memcg,
3025 		.may_writepage = !laptop_mode,
3026 		.may_unmap = 1,
3027 		.reclaim_idx = MAX_NR_ZONES - 1,
3028 		.may_swap = !noswap,
3029 	};
3030 	unsigned long lru_pages;
3031 
3032 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3033 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3034 
3035 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3036 						      sc.may_writepage,
3037 						      sc.gfp_mask,
3038 						      sc.reclaim_idx);
3039 
3040 	/*
3041 	 * NOTE: Although we can get the priority field, using it
3042 	 * here is not a good idea, since it limits the pages we can scan.
3043 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3044 	 * will pick up pages from other mem cgroup's as well. We hack
3045 	 * the priority and make it zero.
3046 	 */
3047 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3048 
3049 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3050 
3051 	*nr_scanned = sc.nr_scanned;
3052 	return sc.nr_reclaimed;
3053 }
3054 
3055 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3056 					   unsigned long nr_pages,
3057 					   gfp_t gfp_mask,
3058 					   bool may_swap)
3059 {
3060 	struct zonelist *zonelist;
3061 	unsigned long nr_reclaimed;
3062 	int nid;
3063 	struct scan_control sc = {
3064 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3065 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3066 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3067 		.reclaim_idx = MAX_NR_ZONES - 1,
3068 		.target_mem_cgroup = memcg,
3069 		.priority = DEF_PRIORITY,
3070 		.may_writepage = !laptop_mode,
3071 		.may_unmap = 1,
3072 		.may_swap = may_swap,
3073 	};
3074 
3075 	/*
3076 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3077 	 * take care of from where we get pages. So the node where we start the
3078 	 * scan does not need to be the current node.
3079 	 */
3080 	nid = mem_cgroup_select_victim_node(memcg);
3081 
3082 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3083 
3084 	trace_mm_vmscan_memcg_reclaim_begin(0,
3085 					    sc.may_writepage,
3086 					    sc.gfp_mask,
3087 					    sc.reclaim_idx);
3088 
3089 	current->flags |= PF_MEMALLOC;
3090 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3091 	current->flags &= ~PF_MEMALLOC;
3092 
3093 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3094 
3095 	return nr_reclaimed;
3096 }
3097 #endif
3098 
3099 static void age_active_anon(struct pglist_data *pgdat,
3100 				struct scan_control *sc)
3101 {
3102 	struct mem_cgroup *memcg;
3103 
3104 	if (!total_swap_pages)
3105 		return;
3106 
3107 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3108 	do {
3109 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3110 
3111 		if (inactive_list_is_low(lruvec, false, sc, true))
3112 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3113 					   sc, LRU_ACTIVE_ANON);
3114 
3115 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3116 	} while (memcg);
3117 }
3118 
3119 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3120 {
3121 	unsigned long mark = high_wmark_pages(zone);
3122 
3123 	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3124 		return false;
3125 
3126 	/*
3127 	 * If any eligible zone is balanced then the node is not considered
3128 	 * to be congested or dirty
3129 	 */
3130 	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3131 	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3132 
3133 	return true;
3134 }
3135 
3136 /*
3137  * Prepare kswapd for sleeping. This verifies that there are no processes
3138  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3139  *
3140  * Returns true if kswapd is ready to sleep
3141  */
3142 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3143 {
3144 	int i;
3145 
3146 	/*
3147 	 * The throttled processes are normally woken up in balance_pgdat() as
3148 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3149 	 * race between when kswapd checks the watermarks and a process gets
3150 	 * throttled. There is also a potential race if processes get
3151 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3152 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3153 	 * the wake up checks. If kswapd is going to sleep, no process should
3154 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3155 	 * the wake up is premature, processes will wake kswapd and get
3156 	 * throttled again. The difference from wake ups in balance_pgdat() is
3157 	 * that here we are under prepare_to_wait().
3158 	 */
3159 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3160 		wake_up_all(&pgdat->pfmemalloc_wait);
3161 
3162 	for (i = 0; i <= classzone_idx; i++) {
3163 		struct zone *zone = pgdat->node_zones + i;
3164 
3165 		if (!managed_zone(zone))
3166 			continue;
3167 
3168 		if (!zone_balanced(zone, order, classzone_idx))
3169 			return false;
3170 	}
3171 
3172 	return true;
3173 }
3174 
3175 /*
3176  * kswapd shrinks a node of pages that are at or below the highest usable
3177  * zone that is currently unbalanced.
3178  *
3179  * Returns true if kswapd scanned at least the requested number of pages to
3180  * reclaim or if the lack of progress was due to pages under writeback.
3181  * This is used to determine if the scanning priority needs to be raised.
3182  */
3183 static bool kswapd_shrink_node(pg_data_t *pgdat,
3184 			       struct scan_control *sc)
3185 {
3186 	struct zone *zone;
3187 	int z;
3188 
3189 	/* Reclaim a number of pages proportional to the number of zones */
3190 	sc->nr_to_reclaim = 0;
3191 	for (z = 0; z <= sc->reclaim_idx; z++) {
3192 		zone = pgdat->node_zones + z;
3193 		if (!managed_zone(zone))
3194 			continue;
3195 
3196 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3197 	}
3198 
3199 	/*
3200 	 * Historically care was taken to put equal pressure on all zones but
3201 	 * now pressure is applied based on node LRU order.
3202 	 */
3203 	shrink_node(pgdat, sc);
3204 
3205 	/*
3206 	 * Fragmentation may mean that the system cannot be rebalanced for
3207 	 * high-order allocations. If twice the allocation size has been
3208 	 * reclaimed then recheck watermarks only at order-0 to prevent
3209 	 * excessive reclaim. Assume that a process requested a high-order
3210 	 * can direct reclaim/compact.
3211 	 */
3212 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3213 		sc->order = 0;
3214 
3215 	return sc->nr_scanned >= sc->nr_to_reclaim;
3216 }
3217 
3218 /*
3219  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3220  * that are eligible for use by the caller until at least one zone is
3221  * balanced.
3222  *
3223  * Returns the order kswapd finished reclaiming at.
3224  *
3225  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3226  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3227  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3228  * or lower is eligible for reclaim until at least one usable zone is
3229  * balanced.
3230  */
3231 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3232 {
3233 	int i;
3234 	unsigned long nr_soft_reclaimed;
3235 	unsigned long nr_soft_scanned;
3236 	struct zone *zone;
3237 	struct scan_control sc = {
3238 		.gfp_mask = GFP_KERNEL,
3239 		.order = order,
3240 		.priority = DEF_PRIORITY,
3241 		.may_writepage = !laptop_mode,
3242 		.may_unmap = 1,
3243 		.may_swap = 1,
3244 	};
3245 	count_vm_event(PAGEOUTRUN);
3246 
3247 	do {
3248 		bool raise_priority = true;
3249 
3250 		sc.nr_reclaimed = 0;
3251 		sc.reclaim_idx = classzone_idx;
3252 
3253 		/*
3254 		 * If the number of buffer_heads exceeds the maximum allowed
3255 		 * then consider reclaiming from all zones. This has a dual
3256 		 * purpose -- on 64-bit systems it is expected that
3257 		 * buffer_heads are stripped during active rotation. On 32-bit
3258 		 * systems, highmem pages can pin lowmem memory and shrinking
3259 		 * buffers can relieve lowmem pressure. Reclaim may still not
3260 		 * go ahead if all eligible zones for the original allocation
3261 		 * request are balanced to avoid excessive reclaim from kswapd.
3262 		 */
3263 		if (buffer_heads_over_limit) {
3264 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3265 				zone = pgdat->node_zones + i;
3266 				if (!managed_zone(zone))
3267 					continue;
3268 
3269 				sc.reclaim_idx = i;
3270 				break;
3271 			}
3272 		}
3273 
3274 		/*
3275 		 * Only reclaim if there are no eligible zones. Check from
3276 		 * high to low zone as allocations prefer higher zones.
3277 		 * Scanning from low to high zone would allow congestion to be
3278 		 * cleared during a very small window when a small low
3279 		 * zone was balanced even under extreme pressure when the
3280 		 * overall node may be congested. Note that sc.reclaim_idx
3281 		 * is not used as buffer_heads_over_limit may have adjusted
3282 		 * it.
3283 		 */
3284 		for (i = classzone_idx; i >= 0; i--) {
3285 			zone = pgdat->node_zones + i;
3286 			if (!managed_zone(zone))
3287 				continue;
3288 
3289 			if (zone_balanced(zone, sc.order, classzone_idx))
3290 				goto out;
3291 		}
3292 
3293 		/*
3294 		 * Do some background aging of the anon list, to give
3295 		 * pages a chance to be referenced before reclaiming. All
3296 		 * pages are rotated regardless of classzone as this is
3297 		 * about consistent aging.
3298 		 */
3299 		age_active_anon(pgdat, &sc);
3300 
3301 		/*
3302 		 * If we're getting trouble reclaiming, start doing writepage
3303 		 * even in laptop mode.
3304 		 */
3305 		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3306 			sc.may_writepage = 1;
3307 
3308 		/* Call soft limit reclaim before calling shrink_node. */
3309 		sc.nr_scanned = 0;
3310 		nr_soft_scanned = 0;
3311 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3312 						sc.gfp_mask, &nr_soft_scanned);
3313 		sc.nr_reclaimed += nr_soft_reclaimed;
3314 
3315 		/*
3316 		 * There should be no need to raise the scanning priority if
3317 		 * enough pages are already being scanned that that high
3318 		 * watermark would be met at 100% efficiency.
3319 		 */
3320 		if (kswapd_shrink_node(pgdat, &sc))
3321 			raise_priority = false;
3322 
3323 		/*
3324 		 * If the low watermark is met there is no need for processes
3325 		 * to be throttled on pfmemalloc_wait as they should not be
3326 		 * able to safely make forward progress. Wake them
3327 		 */
3328 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3329 				pfmemalloc_watermark_ok(pgdat))
3330 			wake_up_all(&pgdat->pfmemalloc_wait);
3331 
3332 		/* Check if kswapd should be suspending */
3333 		if (try_to_freeze() || kthread_should_stop())
3334 			break;
3335 
3336 		/*
3337 		 * Raise priority if scanning rate is too low or there was no
3338 		 * progress in reclaiming pages
3339 		 */
3340 		if (raise_priority || !sc.nr_reclaimed)
3341 			sc.priority--;
3342 	} while (sc.priority >= 1);
3343 
3344 out:
3345 	/*
3346 	 * Return the order kswapd stopped reclaiming at as
3347 	 * prepare_kswapd_sleep() takes it into account. If another caller
3348 	 * entered the allocator slow path while kswapd was awake, order will
3349 	 * remain at the higher level.
3350 	 */
3351 	return sc.order;
3352 }
3353 
3354 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3355 				unsigned int classzone_idx)
3356 {
3357 	long remaining = 0;
3358 	DEFINE_WAIT(wait);
3359 
3360 	if (freezing(current) || kthread_should_stop())
3361 		return;
3362 
3363 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3364 
3365 	/* Try to sleep for a short interval */
3366 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3367 		/*
3368 		 * Compaction records what page blocks it recently failed to
3369 		 * isolate pages from and skips them in the future scanning.
3370 		 * When kswapd is going to sleep, it is reasonable to assume
3371 		 * that pages and compaction may succeed so reset the cache.
3372 		 */
3373 		reset_isolation_suitable(pgdat);
3374 
3375 		/*
3376 		 * We have freed the memory, now we should compact it to make
3377 		 * allocation of the requested order possible.
3378 		 */
3379 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3380 
3381 		remaining = schedule_timeout(HZ/10);
3382 
3383 		/*
3384 		 * If woken prematurely then reset kswapd_classzone_idx and
3385 		 * order. The values will either be from a wakeup request or
3386 		 * the previous request that slept prematurely.
3387 		 */
3388 		if (remaining) {
3389 			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3390 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3391 		}
3392 
3393 		finish_wait(&pgdat->kswapd_wait, &wait);
3394 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3395 	}
3396 
3397 	/*
3398 	 * After a short sleep, check if it was a premature sleep. If not, then
3399 	 * go fully to sleep until explicitly woken up.
3400 	 */
3401 	if (!remaining &&
3402 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3403 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3404 
3405 		/*
3406 		 * vmstat counters are not perfectly accurate and the estimated
3407 		 * value for counters such as NR_FREE_PAGES can deviate from the
3408 		 * true value by nr_online_cpus * threshold. To avoid the zone
3409 		 * watermarks being breached while under pressure, we reduce the
3410 		 * per-cpu vmstat threshold while kswapd is awake and restore
3411 		 * them before going back to sleep.
3412 		 */
3413 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3414 
3415 		if (!kthread_should_stop())
3416 			schedule();
3417 
3418 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3419 	} else {
3420 		if (remaining)
3421 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3422 		else
3423 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3424 	}
3425 	finish_wait(&pgdat->kswapd_wait, &wait);
3426 }
3427 
3428 /*
3429  * The background pageout daemon, started as a kernel thread
3430  * from the init process.
3431  *
3432  * This basically trickles out pages so that we have _some_
3433  * free memory available even if there is no other activity
3434  * that frees anything up. This is needed for things like routing
3435  * etc, where we otherwise might have all activity going on in
3436  * asynchronous contexts that cannot page things out.
3437  *
3438  * If there are applications that are active memory-allocators
3439  * (most normal use), this basically shouldn't matter.
3440  */
3441 static int kswapd(void *p)
3442 {
3443 	unsigned int alloc_order, reclaim_order, classzone_idx;
3444 	pg_data_t *pgdat = (pg_data_t*)p;
3445 	struct task_struct *tsk = current;
3446 
3447 	struct reclaim_state reclaim_state = {
3448 		.reclaimed_slab = 0,
3449 	};
3450 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3451 
3452 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3453 
3454 	if (!cpumask_empty(cpumask))
3455 		set_cpus_allowed_ptr(tsk, cpumask);
3456 	current->reclaim_state = &reclaim_state;
3457 
3458 	/*
3459 	 * Tell the memory management that we're a "memory allocator",
3460 	 * and that if we need more memory we should get access to it
3461 	 * regardless (see "__alloc_pages()"). "kswapd" should
3462 	 * never get caught in the normal page freeing logic.
3463 	 *
3464 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3465 	 * you need a small amount of memory in order to be able to
3466 	 * page out something else, and this flag essentially protects
3467 	 * us from recursively trying to free more memory as we're
3468 	 * trying to free the first piece of memory in the first place).
3469 	 */
3470 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3471 	set_freezable();
3472 
3473 	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3474 	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3475 	for ( ; ; ) {
3476 		bool ret;
3477 
3478 kswapd_try_sleep:
3479 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3480 					classzone_idx);
3481 
3482 		/* Read the new order and classzone_idx */
3483 		alloc_order = reclaim_order = pgdat->kswapd_order;
3484 		classzone_idx = pgdat->kswapd_classzone_idx;
3485 		pgdat->kswapd_order = 0;
3486 		pgdat->kswapd_classzone_idx = 0;
3487 
3488 		ret = try_to_freeze();
3489 		if (kthread_should_stop())
3490 			break;
3491 
3492 		/*
3493 		 * We can speed up thawing tasks if we don't call balance_pgdat
3494 		 * after returning from the refrigerator
3495 		 */
3496 		if (ret)
3497 			continue;
3498 
3499 		/*
3500 		 * Reclaim begins at the requested order but if a high-order
3501 		 * reclaim fails then kswapd falls back to reclaiming for
3502 		 * order-0. If that happens, kswapd will consider sleeping
3503 		 * for the order it finished reclaiming at (reclaim_order)
3504 		 * but kcompactd is woken to compact for the original
3505 		 * request (alloc_order).
3506 		 */
3507 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3508 						alloc_order);
3509 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3510 		if (reclaim_order < alloc_order)
3511 			goto kswapd_try_sleep;
3512 
3513 		alloc_order = reclaim_order = pgdat->kswapd_order;
3514 		classzone_idx = pgdat->kswapd_classzone_idx;
3515 	}
3516 
3517 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3518 	current->reclaim_state = NULL;
3519 	lockdep_clear_current_reclaim_state();
3520 
3521 	return 0;
3522 }
3523 
3524 /*
3525  * A zone is low on free memory, so wake its kswapd task to service it.
3526  */
3527 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3528 {
3529 	pg_data_t *pgdat;
3530 	int z;
3531 
3532 	if (!managed_zone(zone))
3533 		return;
3534 
3535 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3536 		return;
3537 	pgdat = zone->zone_pgdat;
3538 	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3539 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3540 	if (!waitqueue_active(&pgdat->kswapd_wait))
3541 		return;
3542 
3543 	/* Only wake kswapd if all zones are unbalanced */
3544 	for (z = 0; z <= classzone_idx; z++) {
3545 		zone = pgdat->node_zones + z;
3546 		if (!managed_zone(zone))
3547 			continue;
3548 
3549 		if (zone_balanced(zone, order, classzone_idx))
3550 			return;
3551 	}
3552 
3553 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3554 	wake_up_interruptible(&pgdat->kswapd_wait);
3555 }
3556 
3557 #ifdef CONFIG_HIBERNATION
3558 /*
3559  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3560  * freed pages.
3561  *
3562  * Rather than trying to age LRUs the aim is to preserve the overall
3563  * LRU order by reclaiming preferentially
3564  * inactive > active > active referenced > active mapped
3565  */
3566 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3567 {
3568 	struct reclaim_state reclaim_state;
3569 	struct scan_control sc = {
3570 		.nr_to_reclaim = nr_to_reclaim,
3571 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3572 		.reclaim_idx = MAX_NR_ZONES - 1,
3573 		.priority = DEF_PRIORITY,
3574 		.may_writepage = 1,
3575 		.may_unmap = 1,
3576 		.may_swap = 1,
3577 		.hibernation_mode = 1,
3578 	};
3579 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3580 	struct task_struct *p = current;
3581 	unsigned long nr_reclaimed;
3582 
3583 	p->flags |= PF_MEMALLOC;
3584 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3585 	reclaim_state.reclaimed_slab = 0;
3586 	p->reclaim_state = &reclaim_state;
3587 
3588 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3589 
3590 	p->reclaim_state = NULL;
3591 	lockdep_clear_current_reclaim_state();
3592 	p->flags &= ~PF_MEMALLOC;
3593 
3594 	return nr_reclaimed;
3595 }
3596 #endif /* CONFIG_HIBERNATION */
3597 
3598 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3599    not required for correctness.  So if the last cpu in a node goes
3600    away, we get changed to run anywhere: as the first one comes back,
3601    restore their cpu bindings. */
3602 static int kswapd_cpu_online(unsigned int cpu)
3603 {
3604 	int nid;
3605 
3606 	for_each_node_state(nid, N_MEMORY) {
3607 		pg_data_t *pgdat = NODE_DATA(nid);
3608 		const struct cpumask *mask;
3609 
3610 		mask = cpumask_of_node(pgdat->node_id);
3611 
3612 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3613 			/* One of our CPUs online: restore mask */
3614 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3615 	}
3616 	return 0;
3617 }
3618 
3619 /*
3620  * This kswapd start function will be called by init and node-hot-add.
3621  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3622  */
3623 int kswapd_run(int nid)
3624 {
3625 	pg_data_t *pgdat = NODE_DATA(nid);
3626 	int ret = 0;
3627 
3628 	if (pgdat->kswapd)
3629 		return 0;
3630 
3631 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3632 	if (IS_ERR(pgdat->kswapd)) {
3633 		/* failure at boot is fatal */
3634 		BUG_ON(system_state == SYSTEM_BOOTING);
3635 		pr_err("Failed to start kswapd on node %d\n", nid);
3636 		ret = PTR_ERR(pgdat->kswapd);
3637 		pgdat->kswapd = NULL;
3638 	}
3639 	return ret;
3640 }
3641 
3642 /*
3643  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3644  * hold mem_hotplug_begin/end().
3645  */
3646 void kswapd_stop(int nid)
3647 {
3648 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3649 
3650 	if (kswapd) {
3651 		kthread_stop(kswapd);
3652 		NODE_DATA(nid)->kswapd = NULL;
3653 	}
3654 }
3655 
3656 static int __init kswapd_init(void)
3657 {
3658 	int nid, ret;
3659 
3660 	swap_setup();
3661 	for_each_node_state(nid, N_MEMORY)
3662  		kswapd_run(nid);
3663 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3664 					"mm/vmscan:online", kswapd_cpu_online,
3665 					NULL);
3666 	WARN_ON(ret < 0);
3667 	return 0;
3668 }
3669 
3670 module_init(kswapd_init)
3671 
3672 #ifdef CONFIG_NUMA
3673 /*
3674  * Node reclaim mode
3675  *
3676  * If non-zero call node_reclaim when the number of free pages falls below
3677  * the watermarks.
3678  */
3679 int node_reclaim_mode __read_mostly;
3680 
3681 #define RECLAIM_OFF 0
3682 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3683 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3684 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3685 
3686 /*
3687  * Priority for NODE_RECLAIM. This determines the fraction of pages
3688  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3689  * a zone.
3690  */
3691 #define NODE_RECLAIM_PRIORITY 4
3692 
3693 /*
3694  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3695  * occur.
3696  */
3697 int sysctl_min_unmapped_ratio = 1;
3698 
3699 /*
3700  * If the number of slab pages in a zone grows beyond this percentage then
3701  * slab reclaim needs to occur.
3702  */
3703 int sysctl_min_slab_ratio = 5;
3704 
3705 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3706 {
3707 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3708 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3709 		node_page_state(pgdat, NR_ACTIVE_FILE);
3710 
3711 	/*
3712 	 * It's possible for there to be more file mapped pages than
3713 	 * accounted for by the pages on the file LRU lists because
3714 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3715 	 */
3716 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3717 }
3718 
3719 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3720 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3721 {
3722 	unsigned long nr_pagecache_reclaimable;
3723 	unsigned long delta = 0;
3724 
3725 	/*
3726 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3727 	 * potentially reclaimable. Otherwise, we have to worry about
3728 	 * pages like swapcache and node_unmapped_file_pages() provides
3729 	 * a better estimate
3730 	 */
3731 	if (node_reclaim_mode & RECLAIM_UNMAP)
3732 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3733 	else
3734 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3735 
3736 	/* If we can't clean pages, remove dirty pages from consideration */
3737 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3738 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3739 
3740 	/* Watch for any possible underflows due to delta */
3741 	if (unlikely(delta > nr_pagecache_reclaimable))
3742 		delta = nr_pagecache_reclaimable;
3743 
3744 	return nr_pagecache_reclaimable - delta;
3745 }
3746 
3747 /*
3748  * Try to free up some pages from this node through reclaim.
3749  */
3750 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3751 {
3752 	/* Minimum pages needed in order to stay on node */
3753 	const unsigned long nr_pages = 1 << order;
3754 	struct task_struct *p = current;
3755 	struct reclaim_state reclaim_state;
3756 	int classzone_idx = gfp_zone(gfp_mask);
3757 	struct scan_control sc = {
3758 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3759 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3760 		.order = order,
3761 		.priority = NODE_RECLAIM_PRIORITY,
3762 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3763 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3764 		.may_swap = 1,
3765 		.reclaim_idx = classzone_idx,
3766 	};
3767 
3768 	cond_resched();
3769 	/*
3770 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3771 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3772 	 * and RECLAIM_UNMAP.
3773 	 */
3774 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3775 	lockdep_set_current_reclaim_state(gfp_mask);
3776 	reclaim_state.reclaimed_slab = 0;
3777 	p->reclaim_state = &reclaim_state;
3778 
3779 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3780 		/*
3781 		 * Free memory by calling shrink zone with increasing
3782 		 * priorities until we have enough memory freed.
3783 		 */
3784 		do {
3785 			shrink_node(pgdat, &sc);
3786 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3787 	}
3788 
3789 	p->reclaim_state = NULL;
3790 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3791 	lockdep_clear_current_reclaim_state();
3792 	return sc.nr_reclaimed >= nr_pages;
3793 }
3794 
3795 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3796 {
3797 	int ret;
3798 
3799 	/*
3800 	 * Node reclaim reclaims unmapped file backed pages and
3801 	 * slab pages if we are over the defined limits.
3802 	 *
3803 	 * A small portion of unmapped file backed pages is needed for
3804 	 * file I/O otherwise pages read by file I/O will be immediately
3805 	 * thrown out if the node is overallocated. So we do not reclaim
3806 	 * if less than a specified percentage of the node is used by
3807 	 * unmapped file backed pages.
3808 	 */
3809 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3810 	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3811 		return NODE_RECLAIM_FULL;
3812 
3813 	if (!pgdat_reclaimable(pgdat))
3814 		return NODE_RECLAIM_FULL;
3815 
3816 	/*
3817 	 * Do not scan if the allocation should not be delayed.
3818 	 */
3819 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3820 		return NODE_RECLAIM_NOSCAN;
3821 
3822 	/*
3823 	 * Only run node reclaim on the local node or on nodes that do not
3824 	 * have associated processors. This will favor the local processor
3825 	 * over remote processors and spread off node memory allocations
3826 	 * as wide as possible.
3827 	 */
3828 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3829 		return NODE_RECLAIM_NOSCAN;
3830 
3831 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3832 		return NODE_RECLAIM_NOSCAN;
3833 
3834 	ret = __node_reclaim(pgdat, gfp_mask, order);
3835 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3836 
3837 	if (!ret)
3838 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3839 
3840 	return ret;
3841 }
3842 #endif
3843 
3844 /*
3845  * page_evictable - test whether a page is evictable
3846  * @page: the page to test
3847  *
3848  * Test whether page is evictable--i.e., should be placed on active/inactive
3849  * lists vs unevictable list.
3850  *
3851  * Reasons page might not be evictable:
3852  * (1) page's mapping marked unevictable
3853  * (2) page is part of an mlocked VMA
3854  *
3855  */
3856 int page_evictable(struct page *page)
3857 {
3858 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3859 }
3860 
3861 #ifdef CONFIG_SHMEM
3862 /**
3863  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3864  * @pages:	array of pages to check
3865  * @nr_pages:	number of pages to check
3866  *
3867  * Checks pages for evictability and moves them to the appropriate lru list.
3868  *
3869  * This function is only used for SysV IPC SHM_UNLOCK.
3870  */
3871 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3872 {
3873 	struct lruvec *lruvec;
3874 	struct pglist_data *pgdat = NULL;
3875 	int pgscanned = 0;
3876 	int pgrescued = 0;
3877 	int i;
3878 
3879 	for (i = 0; i < nr_pages; i++) {
3880 		struct page *page = pages[i];
3881 		struct pglist_data *pagepgdat = page_pgdat(page);
3882 
3883 		pgscanned++;
3884 		if (pagepgdat != pgdat) {
3885 			if (pgdat)
3886 				spin_unlock_irq(&pgdat->lru_lock);
3887 			pgdat = pagepgdat;
3888 			spin_lock_irq(&pgdat->lru_lock);
3889 		}
3890 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3891 
3892 		if (!PageLRU(page) || !PageUnevictable(page))
3893 			continue;
3894 
3895 		if (page_evictable(page)) {
3896 			enum lru_list lru = page_lru_base_type(page);
3897 
3898 			VM_BUG_ON_PAGE(PageActive(page), page);
3899 			ClearPageUnevictable(page);
3900 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3901 			add_page_to_lru_list(page, lruvec, lru);
3902 			pgrescued++;
3903 		}
3904 	}
3905 
3906 	if (pgdat) {
3907 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3908 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3909 		spin_unlock_irq(&pgdat->lru_lock);
3910 	}
3911 }
3912 #endif /* CONFIG_SHMEM */
3913