xref: /openbmc/linux/mm/vmscan.c (revision ec1c86b25f4bdd9dce6436c0539d2a6ae676e1c4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 #include <linux/sched/sysctl.h>
59 
60 #include "internal.h"
61 #include "swap.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65 
66 struct scan_control {
67 	/* How many pages shrink_list() should reclaim */
68 	unsigned long nr_to_reclaim;
69 
70 	/*
71 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 	 * are scanned.
73 	 */
74 	nodemask_t	*nodemask;
75 
76 	/*
77 	 * The memory cgroup that hit its limit and as a result is the
78 	 * primary target of this reclaim invocation.
79 	 */
80 	struct mem_cgroup *target_mem_cgroup;
81 
82 	/*
83 	 * Scan pressure balancing between anon and file LRUs
84 	 */
85 	unsigned long	anon_cost;
86 	unsigned long	file_cost;
87 
88 	/* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 	unsigned int may_deactivate:2;
92 	unsigned int force_deactivate:1;
93 	unsigned int skipped_deactivate:1;
94 
95 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
96 	unsigned int may_writepage:1;
97 
98 	/* Can mapped pages be reclaimed? */
99 	unsigned int may_unmap:1;
100 
101 	/* Can pages be swapped as part of reclaim? */
102 	unsigned int may_swap:1;
103 
104 	/* Proactive reclaim invoked by userspace through memory.reclaim */
105 	unsigned int proactive:1;
106 
107 	/*
108 	 * Cgroup memory below memory.low is protected as long as we
109 	 * don't threaten to OOM. If any cgroup is reclaimed at
110 	 * reduced force or passed over entirely due to its memory.low
111 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
112 	 * result, then go back for one more cycle that reclaims the protected
113 	 * memory (memcg_low_reclaim) to avert OOM.
114 	 */
115 	unsigned int memcg_low_reclaim:1;
116 	unsigned int memcg_low_skipped:1;
117 
118 	unsigned int hibernation_mode:1;
119 
120 	/* One of the zones is ready for compaction */
121 	unsigned int compaction_ready:1;
122 
123 	/* There is easily reclaimable cold cache in the current node */
124 	unsigned int cache_trim_mode:1;
125 
126 	/* The file pages on the current node are dangerously low */
127 	unsigned int file_is_tiny:1;
128 
129 	/* Always discard instead of demoting to lower tier memory */
130 	unsigned int no_demotion:1;
131 
132 	/* Allocation order */
133 	s8 order;
134 
135 	/* Scan (total_size >> priority) pages at once */
136 	s8 priority;
137 
138 	/* The highest zone to isolate pages for reclaim from */
139 	s8 reclaim_idx;
140 
141 	/* This context's GFP mask */
142 	gfp_t gfp_mask;
143 
144 	/* Incremented by the number of inactive pages that were scanned */
145 	unsigned long nr_scanned;
146 
147 	/* Number of pages freed so far during a call to shrink_zones() */
148 	unsigned long nr_reclaimed;
149 
150 	struct {
151 		unsigned int dirty;
152 		unsigned int unqueued_dirty;
153 		unsigned int congested;
154 		unsigned int writeback;
155 		unsigned int immediate;
156 		unsigned int file_taken;
157 		unsigned int taken;
158 	} nr;
159 
160 	/* for recording the reclaimed slab by now */
161 	struct reclaim_state reclaim_state;
162 };
163 
164 #ifdef ARCH_HAS_PREFETCHW
165 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
166 	do {								\
167 		if ((_folio)->lru.prev != _base) {			\
168 			struct folio *prev;				\
169 									\
170 			prev = lru_to_folio(&(_folio->lru));		\
171 			prefetchw(&prev->_field);			\
172 		}							\
173 	} while (0)
174 #else
175 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
176 #endif
177 
178 /*
179  * From 0 .. 200.  Higher means more swappy.
180  */
181 int vm_swappiness = 60;
182 
183 static void set_task_reclaim_state(struct task_struct *task,
184 				   struct reclaim_state *rs)
185 {
186 	/* Check for an overwrite */
187 	WARN_ON_ONCE(rs && task->reclaim_state);
188 
189 	/* Check for the nulling of an already-nulled member */
190 	WARN_ON_ONCE(!rs && !task->reclaim_state);
191 
192 	task->reclaim_state = rs;
193 }
194 
195 LIST_HEAD(shrinker_list);
196 DECLARE_RWSEM(shrinker_rwsem);
197 
198 #ifdef CONFIG_MEMCG
199 static int shrinker_nr_max;
200 
201 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
202 static inline int shrinker_map_size(int nr_items)
203 {
204 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
205 }
206 
207 static inline int shrinker_defer_size(int nr_items)
208 {
209 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
210 }
211 
212 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
213 						     int nid)
214 {
215 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
216 					 lockdep_is_held(&shrinker_rwsem));
217 }
218 
219 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
220 				    int map_size, int defer_size,
221 				    int old_map_size, int old_defer_size)
222 {
223 	struct shrinker_info *new, *old;
224 	struct mem_cgroup_per_node *pn;
225 	int nid;
226 	int size = map_size + defer_size;
227 
228 	for_each_node(nid) {
229 		pn = memcg->nodeinfo[nid];
230 		old = shrinker_info_protected(memcg, nid);
231 		/* Not yet online memcg */
232 		if (!old)
233 			return 0;
234 
235 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
236 		if (!new)
237 			return -ENOMEM;
238 
239 		new->nr_deferred = (atomic_long_t *)(new + 1);
240 		new->map = (void *)new->nr_deferred + defer_size;
241 
242 		/* map: set all old bits, clear all new bits */
243 		memset(new->map, (int)0xff, old_map_size);
244 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
245 		/* nr_deferred: copy old values, clear all new values */
246 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
247 		memset((void *)new->nr_deferred + old_defer_size, 0,
248 		       defer_size - old_defer_size);
249 
250 		rcu_assign_pointer(pn->shrinker_info, new);
251 		kvfree_rcu(old, rcu);
252 	}
253 
254 	return 0;
255 }
256 
257 void free_shrinker_info(struct mem_cgroup *memcg)
258 {
259 	struct mem_cgroup_per_node *pn;
260 	struct shrinker_info *info;
261 	int nid;
262 
263 	for_each_node(nid) {
264 		pn = memcg->nodeinfo[nid];
265 		info = rcu_dereference_protected(pn->shrinker_info, true);
266 		kvfree(info);
267 		rcu_assign_pointer(pn->shrinker_info, NULL);
268 	}
269 }
270 
271 int alloc_shrinker_info(struct mem_cgroup *memcg)
272 {
273 	struct shrinker_info *info;
274 	int nid, size, ret = 0;
275 	int map_size, defer_size = 0;
276 
277 	down_write(&shrinker_rwsem);
278 	map_size = shrinker_map_size(shrinker_nr_max);
279 	defer_size = shrinker_defer_size(shrinker_nr_max);
280 	size = map_size + defer_size;
281 	for_each_node(nid) {
282 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
283 		if (!info) {
284 			free_shrinker_info(memcg);
285 			ret = -ENOMEM;
286 			break;
287 		}
288 		info->nr_deferred = (atomic_long_t *)(info + 1);
289 		info->map = (void *)info->nr_deferred + defer_size;
290 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
291 	}
292 	up_write(&shrinker_rwsem);
293 
294 	return ret;
295 }
296 
297 static inline bool need_expand(int nr_max)
298 {
299 	return round_up(nr_max, BITS_PER_LONG) >
300 	       round_up(shrinker_nr_max, BITS_PER_LONG);
301 }
302 
303 static int expand_shrinker_info(int new_id)
304 {
305 	int ret = 0;
306 	int new_nr_max = new_id + 1;
307 	int map_size, defer_size = 0;
308 	int old_map_size, old_defer_size = 0;
309 	struct mem_cgroup *memcg;
310 
311 	if (!need_expand(new_nr_max))
312 		goto out;
313 
314 	if (!root_mem_cgroup)
315 		goto out;
316 
317 	lockdep_assert_held(&shrinker_rwsem);
318 
319 	map_size = shrinker_map_size(new_nr_max);
320 	defer_size = shrinker_defer_size(new_nr_max);
321 	old_map_size = shrinker_map_size(shrinker_nr_max);
322 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
323 
324 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
325 	do {
326 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
327 					       old_map_size, old_defer_size);
328 		if (ret) {
329 			mem_cgroup_iter_break(NULL, memcg);
330 			goto out;
331 		}
332 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
333 out:
334 	if (!ret)
335 		shrinker_nr_max = new_nr_max;
336 
337 	return ret;
338 }
339 
340 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
341 {
342 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
343 		struct shrinker_info *info;
344 
345 		rcu_read_lock();
346 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
347 		/* Pairs with smp mb in shrink_slab() */
348 		smp_mb__before_atomic();
349 		set_bit(shrinker_id, info->map);
350 		rcu_read_unlock();
351 	}
352 }
353 
354 static DEFINE_IDR(shrinker_idr);
355 
356 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
357 {
358 	int id, ret = -ENOMEM;
359 
360 	if (mem_cgroup_disabled())
361 		return -ENOSYS;
362 
363 	down_write(&shrinker_rwsem);
364 	/* This may call shrinker, so it must use down_read_trylock() */
365 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
366 	if (id < 0)
367 		goto unlock;
368 
369 	if (id >= shrinker_nr_max) {
370 		if (expand_shrinker_info(id)) {
371 			idr_remove(&shrinker_idr, id);
372 			goto unlock;
373 		}
374 	}
375 	shrinker->id = id;
376 	ret = 0;
377 unlock:
378 	up_write(&shrinker_rwsem);
379 	return ret;
380 }
381 
382 static void unregister_memcg_shrinker(struct shrinker *shrinker)
383 {
384 	int id = shrinker->id;
385 
386 	BUG_ON(id < 0);
387 
388 	lockdep_assert_held(&shrinker_rwsem);
389 
390 	idr_remove(&shrinker_idr, id);
391 }
392 
393 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
394 				   struct mem_cgroup *memcg)
395 {
396 	struct shrinker_info *info;
397 
398 	info = shrinker_info_protected(memcg, nid);
399 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
400 }
401 
402 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
403 				  struct mem_cgroup *memcg)
404 {
405 	struct shrinker_info *info;
406 
407 	info = shrinker_info_protected(memcg, nid);
408 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
409 }
410 
411 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
412 {
413 	int i, nid;
414 	long nr;
415 	struct mem_cgroup *parent;
416 	struct shrinker_info *child_info, *parent_info;
417 
418 	parent = parent_mem_cgroup(memcg);
419 	if (!parent)
420 		parent = root_mem_cgroup;
421 
422 	/* Prevent from concurrent shrinker_info expand */
423 	down_read(&shrinker_rwsem);
424 	for_each_node(nid) {
425 		child_info = shrinker_info_protected(memcg, nid);
426 		parent_info = shrinker_info_protected(parent, nid);
427 		for (i = 0; i < shrinker_nr_max; i++) {
428 			nr = atomic_long_read(&child_info->nr_deferred[i]);
429 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
430 		}
431 	}
432 	up_read(&shrinker_rwsem);
433 }
434 
435 static bool cgroup_reclaim(struct scan_control *sc)
436 {
437 	return sc->target_mem_cgroup;
438 }
439 
440 /**
441  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
442  * @sc: scan_control in question
443  *
444  * The normal page dirty throttling mechanism in balance_dirty_pages() is
445  * completely broken with the legacy memcg and direct stalling in
446  * shrink_page_list() is used for throttling instead, which lacks all the
447  * niceties such as fairness, adaptive pausing, bandwidth proportional
448  * allocation and configurability.
449  *
450  * This function tests whether the vmscan currently in progress can assume
451  * that the normal dirty throttling mechanism is operational.
452  */
453 static bool writeback_throttling_sane(struct scan_control *sc)
454 {
455 	if (!cgroup_reclaim(sc))
456 		return true;
457 #ifdef CONFIG_CGROUP_WRITEBACK
458 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
459 		return true;
460 #endif
461 	return false;
462 }
463 #else
464 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
465 {
466 	return -ENOSYS;
467 }
468 
469 static void unregister_memcg_shrinker(struct shrinker *shrinker)
470 {
471 }
472 
473 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
474 				   struct mem_cgroup *memcg)
475 {
476 	return 0;
477 }
478 
479 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
480 				  struct mem_cgroup *memcg)
481 {
482 	return 0;
483 }
484 
485 static bool cgroup_reclaim(struct scan_control *sc)
486 {
487 	return false;
488 }
489 
490 static bool writeback_throttling_sane(struct scan_control *sc)
491 {
492 	return true;
493 }
494 #endif
495 
496 static long xchg_nr_deferred(struct shrinker *shrinker,
497 			     struct shrink_control *sc)
498 {
499 	int nid = sc->nid;
500 
501 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
502 		nid = 0;
503 
504 	if (sc->memcg &&
505 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
506 		return xchg_nr_deferred_memcg(nid, shrinker,
507 					      sc->memcg);
508 
509 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
510 }
511 
512 
513 static long add_nr_deferred(long nr, struct shrinker *shrinker,
514 			    struct shrink_control *sc)
515 {
516 	int nid = sc->nid;
517 
518 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
519 		nid = 0;
520 
521 	if (sc->memcg &&
522 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
523 		return add_nr_deferred_memcg(nr, nid, shrinker,
524 					     sc->memcg);
525 
526 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
527 }
528 
529 static bool can_demote(int nid, struct scan_control *sc)
530 {
531 	if (!numa_demotion_enabled)
532 		return false;
533 	if (sc && sc->no_demotion)
534 		return false;
535 	if (next_demotion_node(nid) == NUMA_NO_NODE)
536 		return false;
537 
538 	return true;
539 }
540 
541 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
542 					  int nid,
543 					  struct scan_control *sc)
544 {
545 	if (memcg == NULL) {
546 		/*
547 		 * For non-memcg reclaim, is there
548 		 * space in any swap device?
549 		 */
550 		if (get_nr_swap_pages() > 0)
551 			return true;
552 	} else {
553 		/* Is the memcg below its swap limit? */
554 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
555 			return true;
556 	}
557 
558 	/*
559 	 * The page can not be swapped.
560 	 *
561 	 * Can it be reclaimed from this node via demotion?
562 	 */
563 	return can_demote(nid, sc);
564 }
565 
566 /*
567  * This misses isolated pages which are not accounted for to save counters.
568  * As the data only determines if reclaim or compaction continues, it is
569  * not expected that isolated pages will be a dominating factor.
570  */
571 unsigned long zone_reclaimable_pages(struct zone *zone)
572 {
573 	unsigned long nr;
574 
575 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
576 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
577 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
578 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
579 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
580 
581 	return nr;
582 }
583 
584 /**
585  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
586  * @lruvec: lru vector
587  * @lru: lru to use
588  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
589  */
590 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
591 				     int zone_idx)
592 {
593 	unsigned long size = 0;
594 	int zid;
595 
596 	for (zid = 0; zid <= zone_idx; zid++) {
597 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
598 
599 		if (!managed_zone(zone))
600 			continue;
601 
602 		if (!mem_cgroup_disabled())
603 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
604 		else
605 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
606 	}
607 	return size;
608 }
609 
610 /*
611  * Add a shrinker callback to be called from the vm.
612  */
613 static int __prealloc_shrinker(struct shrinker *shrinker)
614 {
615 	unsigned int size;
616 	int err;
617 
618 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
619 		err = prealloc_memcg_shrinker(shrinker);
620 		if (err != -ENOSYS)
621 			return err;
622 
623 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
624 	}
625 
626 	size = sizeof(*shrinker->nr_deferred);
627 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
628 		size *= nr_node_ids;
629 
630 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
631 	if (!shrinker->nr_deferred)
632 		return -ENOMEM;
633 
634 	return 0;
635 }
636 
637 #ifdef CONFIG_SHRINKER_DEBUG
638 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
639 {
640 	va_list ap;
641 	int err;
642 
643 	va_start(ap, fmt);
644 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
645 	va_end(ap);
646 	if (!shrinker->name)
647 		return -ENOMEM;
648 
649 	err = __prealloc_shrinker(shrinker);
650 	if (err) {
651 		kfree_const(shrinker->name);
652 		shrinker->name = NULL;
653 	}
654 
655 	return err;
656 }
657 #else
658 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
659 {
660 	return __prealloc_shrinker(shrinker);
661 }
662 #endif
663 
664 void free_prealloced_shrinker(struct shrinker *shrinker)
665 {
666 #ifdef CONFIG_SHRINKER_DEBUG
667 	kfree_const(shrinker->name);
668 	shrinker->name = NULL;
669 #endif
670 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
671 		down_write(&shrinker_rwsem);
672 		unregister_memcg_shrinker(shrinker);
673 		up_write(&shrinker_rwsem);
674 		return;
675 	}
676 
677 	kfree(shrinker->nr_deferred);
678 	shrinker->nr_deferred = NULL;
679 }
680 
681 void register_shrinker_prepared(struct shrinker *shrinker)
682 {
683 	down_write(&shrinker_rwsem);
684 	list_add_tail(&shrinker->list, &shrinker_list);
685 	shrinker->flags |= SHRINKER_REGISTERED;
686 	shrinker_debugfs_add(shrinker);
687 	up_write(&shrinker_rwsem);
688 }
689 
690 static int __register_shrinker(struct shrinker *shrinker)
691 {
692 	int err = __prealloc_shrinker(shrinker);
693 
694 	if (err)
695 		return err;
696 	register_shrinker_prepared(shrinker);
697 	return 0;
698 }
699 
700 #ifdef CONFIG_SHRINKER_DEBUG
701 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
702 {
703 	va_list ap;
704 	int err;
705 
706 	va_start(ap, fmt);
707 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
708 	va_end(ap);
709 	if (!shrinker->name)
710 		return -ENOMEM;
711 
712 	err = __register_shrinker(shrinker);
713 	if (err) {
714 		kfree_const(shrinker->name);
715 		shrinker->name = NULL;
716 	}
717 	return err;
718 }
719 #else
720 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
721 {
722 	return __register_shrinker(shrinker);
723 }
724 #endif
725 EXPORT_SYMBOL(register_shrinker);
726 
727 /*
728  * Remove one
729  */
730 void unregister_shrinker(struct shrinker *shrinker)
731 {
732 	if (!(shrinker->flags & SHRINKER_REGISTERED))
733 		return;
734 
735 	down_write(&shrinker_rwsem);
736 	list_del(&shrinker->list);
737 	shrinker->flags &= ~SHRINKER_REGISTERED;
738 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
739 		unregister_memcg_shrinker(shrinker);
740 	shrinker_debugfs_remove(shrinker);
741 	up_write(&shrinker_rwsem);
742 
743 	kfree(shrinker->nr_deferred);
744 	shrinker->nr_deferred = NULL;
745 }
746 EXPORT_SYMBOL(unregister_shrinker);
747 
748 /**
749  * synchronize_shrinkers - Wait for all running shrinkers to complete.
750  *
751  * This is equivalent to calling unregister_shrink() and register_shrinker(),
752  * but atomically and with less overhead. This is useful to guarantee that all
753  * shrinker invocations have seen an update, before freeing memory, similar to
754  * rcu.
755  */
756 void synchronize_shrinkers(void)
757 {
758 	down_write(&shrinker_rwsem);
759 	up_write(&shrinker_rwsem);
760 }
761 EXPORT_SYMBOL(synchronize_shrinkers);
762 
763 #define SHRINK_BATCH 128
764 
765 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
766 				    struct shrinker *shrinker, int priority)
767 {
768 	unsigned long freed = 0;
769 	unsigned long long delta;
770 	long total_scan;
771 	long freeable;
772 	long nr;
773 	long new_nr;
774 	long batch_size = shrinker->batch ? shrinker->batch
775 					  : SHRINK_BATCH;
776 	long scanned = 0, next_deferred;
777 
778 	freeable = shrinker->count_objects(shrinker, shrinkctl);
779 	if (freeable == 0 || freeable == SHRINK_EMPTY)
780 		return freeable;
781 
782 	/*
783 	 * copy the current shrinker scan count into a local variable
784 	 * and zero it so that other concurrent shrinker invocations
785 	 * don't also do this scanning work.
786 	 */
787 	nr = xchg_nr_deferred(shrinker, shrinkctl);
788 
789 	if (shrinker->seeks) {
790 		delta = freeable >> priority;
791 		delta *= 4;
792 		do_div(delta, shrinker->seeks);
793 	} else {
794 		/*
795 		 * These objects don't require any IO to create. Trim
796 		 * them aggressively under memory pressure to keep
797 		 * them from causing refetches in the IO caches.
798 		 */
799 		delta = freeable / 2;
800 	}
801 
802 	total_scan = nr >> priority;
803 	total_scan += delta;
804 	total_scan = min(total_scan, (2 * freeable));
805 
806 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
807 				   freeable, delta, total_scan, priority);
808 
809 	/*
810 	 * Normally, we should not scan less than batch_size objects in one
811 	 * pass to avoid too frequent shrinker calls, but if the slab has less
812 	 * than batch_size objects in total and we are really tight on memory,
813 	 * we will try to reclaim all available objects, otherwise we can end
814 	 * up failing allocations although there are plenty of reclaimable
815 	 * objects spread over several slabs with usage less than the
816 	 * batch_size.
817 	 *
818 	 * We detect the "tight on memory" situations by looking at the total
819 	 * number of objects we want to scan (total_scan). If it is greater
820 	 * than the total number of objects on slab (freeable), we must be
821 	 * scanning at high prio and therefore should try to reclaim as much as
822 	 * possible.
823 	 */
824 	while (total_scan >= batch_size ||
825 	       total_scan >= freeable) {
826 		unsigned long ret;
827 		unsigned long nr_to_scan = min(batch_size, total_scan);
828 
829 		shrinkctl->nr_to_scan = nr_to_scan;
830 		shrinkctl->nr_scanned = nr_to_scan;
831 		ret = shrinker->scan_objects(shrinker, shrinkctl);
832 		if (ret == SHRINK_STOP)
833 			break;
834 		freed += ret;
835 
836 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
837 		total_scan -= shrinkctl->nr_scanned;
838 		scanned += shrinkctl->nr_scanned;
839 
840 		cond_resched();
841 	}
842 
843 	/*
844 	 * The deferred work is increased by any new work (delta) that wasn't
845 	 * done, decreased by old deferred work that was done now.
846 	 *
847 	 * And it is capped to two times of the freeable items.
848 	 */
849 	next_deferred = max_t(long, (nr + delta - scanned), 0);
850 	next_deferred = min(next_deferred, (2 * freeable));
851 
852 	/*
853 	 * move the unused scan count back into the shrinker in a
854 	 * manner that handles concurrent updates.
855 	 */
856 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
857 
858 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
859 	return freed;
860 }
861 
862 #ifdef CONFIG_MEMCG
863 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
864 			struct mem_cgroup *memcg, int priority)
865 {
866 	struct shrinker_info *info;
867 	unsigned long ret, freed = 0;
868 	int i;
869 
870 	if (!mem_cgroup_online(memcg))
871 		return 0;
872 
873 	if (!down_read_trylock(&shrinker_rwsem))
874 		return 0;
875 
876 	info = shrinker_info_protected(memcg, nid);
877 	if (unlikely(!info))
878 		goto unlock;
879 
880 	for_each_set_bit(i, info->map, shrinker_nr_max) {
881 		struct shrink_control sc = {
882 			.gfp_mask = gfp_mask,
883 			.nid = nid,
884 			.memcg = memcg,
885 		};
886 		struct shrinker *shrinker;
887 
888 		shrinker = idr_find(&shrinker_idr, i);
889 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
890 			if (!shrinker)
891 				clear_bit(i, info->map);
892 			continue;
893 		}
894 
895 		/* Call non-slab shrinkers even though kmem is disabled */
896 		if (!memcg_kmem_enabled() &&
897 		    !(shrinker->flags & SHRINKER_NONSLAB))
898 			continue;
899 
900 		ret = do_shrink_slab(&sc, shrinker, priority);
901 		if (ret == SHRINK_EMPTY) {
902 			clear_bit(i, info->map);
903 			/*
904 			 * After the shrinker reported that it had no objects to
905 			 * free, but before we cleared the corresponding bit in
906 			 * the memcg shrinker map, a new object might have been
907 			 * added. To make sure, we have the bit set in this
908 			 * case, we invoke the shrinker one more time and reset
909 			 * the bit if it reports that it is not empty anymore.
910 			 * The memory barrier here pairs with the barrier in
911 			 * set_shrinker_bit():
912 			 *
913 			 * list_lru_add()     shrink_slab_memcg()
914 			 *   list_add_tail()    clear_bit()
915 			 *   <MB>               <MB>
916 			 *   set_bit()          do_shrink_slab()
917 			 */
918 			smp_mb__after_atomic();
919 			ret = do_shrink_slab(&sc, shrinker, priority);
920 			if (ret == SHRINK_EMPTY)
921 				ret = 0;
922 			else
923 				set_shrinker_bit(memcg, nid, i);
924 		}
925 		freed += ret;
926 
927 		if (rwsem_is_contended(&shrinker_rwsem)) {
928 			freed = freed ? : 1;
929 			break;
930 		}
931 	}
932 unlock:
933 	up_read(&shrinker_rwsem);
934 	return freed;
935 }
936 #else /* CONFIG_MEMCG */
937 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
938 			struct mem_cgroup *memcg, int priority)
939 {
940 	return 0;
941 }
942 #endif /* CONFIG_MEMCG */
943 
944 /**
945  * shrink_slab - shrink slab caches
946  * @gfp_mask: allocation context
947  * @nid: node whose slab caches to target
948  * @memcg: memory cgroup whose slab caches to target
949  * @priority: the reclaim priority
950  *
951  * Call the shrink functions to age shrinkable caches.
952  *
953  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
954  * unaware shrinkers will receive a node id of 0 instead.
955  *
956  * @memcg specifies the memory cgroup to target. Unaware shrinkers
957  * are called only if it is the root cgroup.
958  *
959  * @priority is sc->priority, we take the number of objects and >> by priority
960  * in order to get the scan target.
961  *
962  * Returns the number of reclaimed slab objects.
963  */
964 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
965 				 struct mem_cgroup *memcg,
966 				 int priority)
967 {
968 	unsigned long ret, freed = 0;
969 	struct shrinker *shrinker;
970 
971 	/*
972 	 * The root memcg might be allocated even though memcg is disabled
973 	 * via "cgroup_disable=memory" boot parameter.  This could make
974 	 * mem_cgroup_is_root() return false, then just run memcg slab
975 	 * shrink, but skip global shrink.  This may result in premature
976 	 * oom.
977 	 */
978 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
979 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
980 
981 	if (!down_read_trylock(&shrinker_rwsem))
982 		goto out;
983 
984 	list_for_each_entry(shrinker, &shrinker_list, list) {
985 		struct shrink_control sc = {
986 			.gfp_mask = gfp_mask,
987 			.nid = nid,
988 			.memcg = memcg,
989 		};
990 
991 		ret = do_shrink_slab(&sc, shrinker, priority);
992 		if (ret == SHRINK_EMPTY)
993 			ret = 0;
994 		freed += ret;
995 		/*
996 		 * Bail out if someone want to register a new shrinker to
997 		 * prevent the registration from being stalled for long periods
998 		 * by parallel ongoing shrinking.
999 		 */
1000 		if (rwsem_is_contended(&shrinker_rwsem)) {
1001 			freed = freed ? : 1;
1002 			break;
1003 		}
1004 	}
1005 
1006 	up_read(&shrinker_rwsem);
1007 out:
1008 	cond_resched();
1009 	return freed;
1010 }
1011 
1012 static void drop_slab_node(int nid)
1013 {
1014 	unsigned long freed;
1015 	int shift = 0;
1016 
1017 	do {
1018 		struct mem_cgroup *memcg = NULL;
1019 
1020 		if (fatal_signal_pending(current))
1021 			return;
1022 
1023 		freed = 0;
1024 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
1025 		do {
1026 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1027 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1028 	} while ((freed >> shift++) > 1);
1029 }
1030 
1031 void drop_slab(void)
1032 {
1033 	int nid;
1034 
1035 	for_each_online_node(nid)
1036 		drop_slab_node(nid);
1037 }
1038 
1039 static inline int is_page_cache_freeable(struct folio *folio)
1040 {
1041 	/*
1042 	 * A freeable page cache page is referenced only by the caller
1043 	 * that isolated the page, the page cache and optional buffer
1044 	 * heads at page->private.
1045 	 */
1046 	return folio_ref_count(folio) - folio_test_private(folio) ==
1047 		1 + folio_nr_pages(folio);
1048 }
1049 
1050 /*
1051  * We detected a synchronous write error writing a folio out.  Probably
1052  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1053  * fsync(), msync() or close().
1054  *
1055  * The tricky part is that after writepage we cannot touch the mapping: nothing
1056  * prevents it from being freed up.  But we have a ref on the folio and once
1057  * that folio is locked, the mapping is pinned.
1058  *
1059  * We're allowed to run sleeping folio_lock() here because we know the caller has
1060  * __GFP_FS.
1061  */
1062 static void handle_write_error(struct address_space *mapping,
1063 				struct folio *folio, int error)
1064 {
1065 	folio_lock(folio);
1066 	if (folio_mapping(folio) == mapping)
1067 		mapping_set_error(mapping, error);
1068 	folio_unlock(folio);
1069 }
1070 
1071 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1072 {
1073 	int reclaimable = 0, write_pending = 0;
1074 	int i;
1075 
1076 	/*
1077 	 * If kswapd is disabled, reschedule if necessary but do not
1078 	 * throttle as the system is likely near OOM.
1079 	 */
1080 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1081 		return true;
1082 
1083 	/*
1084 	 * If there are a lot of dirty/writeback pages then do not
1085 	 * throttle as throttling will occur when the pages cycle
1086 	 * towards the end of the LRU if still under writeback.
1087 	 */
1088 	for (i = 0; i < MAX_NR_ZONES; i++) {
1089 		struct zone *zone = pgdat->node_zones + i;
1090 
1091 		if (!managed_zone(zone))
1092 			continue;
1093 
1094 		reclaimable += zone_reclaimable_pages(zone);
1095 		write_pending += zone_page_state_snapshot(zone,
1096 						  NR_ZONE_WRITE_PENDING);
1097 	}
1098 	if (2 * write_pending <= reclaimable)
1099 		return true;
1100 
1101 	return false;
1102 }
1103 
1104 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1105 {
1106 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1107 	long timeout, ret;
1108 	DEFINE_WAIT(wait);
1109 
1110 	/*
1111 	 * Do not throttle IO workers, kthreads other than kswapd or
1112 	 * workqueues. They may be required for reclaim to make
1113 	 * forward progress (e.g. journalling workqueues or kthreads).
1114 	 */
1115 	if (!current_is_kswapd() &&
1116 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1117 		cond_resched();
1118 		return;
1119 	}
1120 
1121 	/*
1122 	 * These figures are pulled out of thin air.
1123 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1124 	 * parallel reclaimers which is a short-lived event so the timeout is
1125 	 * short. Failing to make progress or waiting on writeback are
1126 	 * potentially long-lived events so use a longer timeout. This is shaky
1127 	 * logic as a failure to make progress could be due to anything from
1128 	 * writeback to a slow device to excessive references pages at the tail
1129 	 * of the inactive LRU.
1130 	 */
1131 	switch(reason) {
1132 	case VMSCAN_THROTTLE_WRITEBACK:
1133 		timeout = HZ/10;
1134 
1135 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1136 			WRITE_ONCE(pgdat->nr_reclaim_start,
1137 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1138 		}
1139 
1140 		break;
1141 	case VMSCAN_THROTTLE_CONGESTED:
1142 		fallthrough;
1143 	case VMSCAN_THROTTLE_NOPROGRESS:
1144 		if (skip_throttle_noprogress(pgdat)) {
1145 			cond_resched();
1146 			return;
1147 		}
1148 
1149 		timeout = 1;
1150 
1151 		break;
1152 	case VMSCAN_THROTTLE_ISOLATED:
1153 		timeout = HZ/50;
1154 		break;
1155 	default:
1156 		WARN_ON_ONCE(1);
1157 		timeout = HZ;
1158 		break;
1159 	}
1160 
1161 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1162 	ret = schedule_timeout(timeout);
1163 	finish_wait(wqh, &wait);
1164 
1165 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1166 		atomic_dec(&pgdat->nr_writeback_throttled);
1167 
1168 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1169 				jiffies_to_usecs(timeout - ret),
1170 				reason);
1171 }
1172 
1173 /*
1174  * Account for pages written if tasks are throttled waiting on dirty
1175  * pages to clean. If enough pages have been cleaned since throttling
1176  * started then wakeup the throttled tasks.
1177  */
1178 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1179 							int nr_throttled)
1180 {
1181 	unsigned long nr_written;
1182 
1183 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1184 
1185 	/*
1186 	 * This is an inaccurate read as the per-cpu deltas may not
1187 	 * be synchronised. However, given that the system is
1188 	 * writeback throttled, it is not worth taking the penalty
1189 	 * of getting an accurate count. At worst, the throttle
1190 	 * timeout guarantees forward progress.
1191 	 */
1192 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1193 		READ_ONCE(pgdat->nr_reclaim_start);
1194 
1195 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1196 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1197 }
1198 
1199 /* possible outcome of pageout() */
1200 typedef enum {
1201 	/* failed to write page out, page is locked */
1202 	PAGE_KEEP,
1203 	/* move page to the active list, page is locked */
1204 	PAGE_ACTIVATE,
1205 	/* page has been sent to the disk successfully, page is unlocked */
1206 	PAGE_SUCCESS,
1207 	/* page is clean and locked */
1208 	PAGE_CLEAN,
1209 } pageout_t;
1210 
1211 /*
1212  * pageout is called by shrink_page_list() for each dirty page.
1213  * Calls ->writepage().
1214  */
1215 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1216 			 struct swap_iocb **plug)
1217 {
1218 	/*
1219 	 * If the folio is dirty, only perform writeback if that write
1220 	 * will be non-blocking.  To prevent this allocation from being
1221 	 * stalled by pagecache activity.  But note that there may be
1222 	 * stalls if we need to run get_block().  We could test
1223 	 * PagePrivate for that.
1224 	 *
1225 	 * If this process is currently in __generic_file_write_iter() against
1226 	 * this folio's queue, we can perform writeback even if that
1227 	 * will block.
1228 	 *
1229 	 * If the folio is swapcache, write it back even if that would
1230 	 * block, for some throttling. This happens by accident, because
1231 	 * swap_backing_dev_info is bust: it doesn't reflect the
1232 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1233 	 */
1234 	if (!is_page_cache_freeable(folio))
1235 		return PAGE_KEEP;
1236 	if (!mapping) {
1237 		/*
1238 		 * Some data journaling orphaned folios can have
1239 		 * folio->mapping == NULL while being dirty with clean buffers.
1240 		 */
1241 		if (folio_test_private(folio)) {
1242 			if (try_to_free_buffers(folio)) {
1243 				folio_clear_dirty(folio);
1244 				pr_info("%s: orphaned folio\n", __func__);
1245 				return PAGE_CLEAN;
1246 			}
1247 		}
1248 		return PAGE_KEEP;
1249 	}
1250 	if (mapping->a_ops->writepage == NULL)
1251 		return PAGE_ACTIVATE;
1252 
1253 	if (folio_clear_dirty_for_io(folio)) {
1254 		int res;
1255 		struct writeback_control wbc = {
1256 			.sync_mode = WB_SYNC_NONE,
1257 			.nr_to_write = SWAP_CLUSTER_MAX,
1258 			.range_start = 0,
1259 			.range_end = LLONG_MAX,
1260 			.for_reclaim = 1,
1261 			.swap_plug = plug,
1262 		};
1263 
1264 		folio_set_reclaim(folio);
1265 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1266 		if (res < 0)
1267 			handle_write_error(mapping, folio, res);
1268 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1269 			folio_clear_reclaim(folio);
1270 			return PAGE_ACTIVATE;
1271 		}
1272 
1273 		if (!folio_test_writeback(folio)) {
1274 			/* synchronous write or broken a_ops? */
1275 			folio_clear_reclaim(folio);
1276 		}
1277 		trace_mm_vmscan_write_folio(folio);
1278 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1279 		return PAGE_SUCCESS;
1280 	}
1281 
1282 	return PAGE_CLEAN;
1283 }
1284 
1285 /*
1286  * Same as remove_mapping, but if the page is removed from the mapping, it
1287  * gets returned with a refcount of 0.
1288  */
1289 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1290 			    bool reclaimed, struct mem_cgroup *target_memcg)
1291 {
1292 	int refcount;
1293 	void *shadow = NULL;
1294 
1295 	BUG_ON(!folio_test_locked(folio));
1296 	BUG_ON(mapping != folio_mapping(folio));
1297 
1298 	if (!folio_test_swapcache(folio))
1299 		spin_lock(&mapping->host->i_lock);
1300 	xa_lock_irq(&mapping->i_pages);
1301 	/*
1302 	 * The non racy check for a busy page.
1303 	 *
1304 	 * Must be careful with the order of the tests. When someone has
1305 	 * a ref to the page, it may be possible that they dirty it then
1306 	 * drop the reference. So if PageDirty is tested before page_count
1307 	 * here, then the following race may occur:
1308 	 *
1309 	 * get_user_pages(&page);
1310 	 * [user mapping goes away]
1311 	 * write_to(page);
1312 	 *				!PageDirty(page)    [good]
1313 	 * SetPageDirty(page);
1314 	 * put_page(page);
1315 	 *				!page_count(page)   [good, discard it]
1316 	 *
1317 	 * [oops, our write_to data is lost]
1318 	 *
1319 	 * Reversing the order of the tests ensures such a situation cannot
1320 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1321 	 * load is not satisfied before that of page->_refcount.
1322 	 *
1323 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1324 	 * and thus under the i_pages lock, then this ordering is not required.
1325 	 */
1326 	refcount = 1 + folio_nr_pages(folio);
1327 	if (!folio_ref_freeze(folio, refcount))
1328 		goto cannot_free;
1329 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1330 	if (unlikely(folio_test_dirty(folio))) {
1331 		folio_ref_unfreeze(folio, refcount);
1332 		goto cannot_free;
1333 	}
1334 
1335 	if (folio_test_swapcache(folio)) {
1336 		swp_entry_t swap = folio_swap_entry(folio);
1337 		mem_cgroup_swapout(folio, swap);
1338 		if (reclaimed && !mapping_exiting(mapping))
1339 			shadow = workingset_eviction(folio, target_memcg);
1340 		__delete_from_swap_cache(folio, swap, shadow);
1341 		xa_unlock_irq(&mapping->i_pages);
1342 		put_swap_page(&folio->page, swap);
1343 	} else {
1344 		void (*free_folio)(struct folio *);
1345 
1346 		free_folio = mapping->a_ops->free_folio;
1347 		/*
1348 		 * Remember a shadow entry for reclaimed file cache in
1349 		 * order to detect refaults, thus thrashing, later on.
1350 		 *
1351 		 * But don't store shadows in an address space that is
1352 		 * already exiting.  This is not just an optimization,
1353 		 * inode reclaim needs to empty out the radix tree or
1354 		 * the nodes are lost.  Don't plant shadows behind its
1355 		 * back.
1356 		 *
1357 		 * We also don't store shadows for DAX mappings because the
1358 		 * only page cache pages found in these are zero pages
1359 		 * covering holes, and because we don't want to mix DAX
1360 		 * exceptional entries and shadow exceptional entries in the
1361 		 * same address_space.
1362 		 */
1363 		if (reclaimed && folio_is_file_lru(folio) &&
1364 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1365 			shadow = workingset_eviction(folio, target_memcg);
1366 		__filemap_remove_folio(folio, shadow);
1367 		xa_unlock_irq(&mapping->i_pages);
1368 		if (mapping_shrinkable(mapping))
1369 			inode_add_lru(mapping->host);
1370 		spin_unlock(&mapping->host->i_lock);
1371 
1372 		if (free_folio)
1373 			free_folio(folio);
1374 	}
1375 
1376 	return 1;
1377 
1378 cannot_free:
1379 	xa_unlock_irq(&mapping->i_pages);
1380 	if (!folio_test_swapcache(folio))
1381 		spin_unlock(&mapping->host->i_lock);
1382 	return 0;
1383 }
1384 
1385 /**
1386  * remove_mapping() - Attempt to remove a folio from its mapping.
1387  * @mapping: The address space.
1388  * @folio: The folio to remove.
1389  *
1390  * If the folio is dirty, under writeback or if someone else has a ref
1391  * on it, removal will fail.
1392  * Return: The number of pages removed from the mapping.  0 if the folio
1393  * could not be removed.
1394  * Context: The caller should have a single refcount on the folio and
1395  * hold its lock.
1396  */
1397 long remove_mapping(struct address_space *mapping, struct folio *folio)
1398 {
1399 	if (__remove_mapping(mapping, folio, false, NULL)) {
1400 		/*
1401 		 * Unfreezing the refcount with 1 effectively
1402 		 * drops the pagecache ref for us without requiring another
1403 		 * atomic operation.
1404 		 */
1405 		folio_ref_unfreeze(folio, 1);
1406 		return folio_nr_pages(folio);
1407 	}
1408 	return 0;
1409 }
1410 
1411 /**
1412  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1413  * @folio: Folio to be returned to an LRU list.
1414  *
1415  * Add previously isolated @folio to appropriate LRU list.
1416  * The folio may still be unevictable for other reasons.
1417  *
1418  * Context: lru_lock must not be held, interrupts must be enabled.
1419  */
1420 void folio_putback_lru(struct folio *folio)
1421 {
1422 	folio_add_lru(folio);
1423 	folio_put(folio);		/* drop ref from isolate */
1424 }
1425 
1426 enum page_references {
1427 	PAGEREF_RECLAIM,
1428 	PAGEREF_RECLAIM_CLEAN,
1429 	PAGEREF_KEEP,
1430 	PAGEREF_ACTIVATE,
1431 };
1432 
1433 static enum page_references folio_check_references(struct folio *folio,
1434 						  struct scan_control *sc)
1435 {
1436 	int referenced_ptes, referenced_folio;
1437 	unsigned long vm_flags;
1438 
1439 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1440 					   &vm_flags);
1441 	referenced_folio = folio_test_clear_referenced(folio);
1442 
1443 	/*
1444 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1445 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1446 	 */
1447 	if (vm_flags & VM_LOCKED)
1448 		return PAGEREF_ACTIVATE;
1449 
1450 	/* rmap lock contention: rotate */
1451 	if (referenced_ptes == -1)
1452 		return PAGEREF_KEEP;
1453 
1454 	if (referenced_ptes) {
1455 		/*
1456 		 * All mapped folios start out with page table
1457 		 * references from the instantiating fault, so we need
1458 		 * to look twice if a mapped file/anon folio is used more
1459 		 * than once.
1460 		 *
1461 		 * Mark it and spare it for another trip around the
1462 		 * inactive list.  Another page table reference will
1463 		 * lead to its activation.
1464 		 *
1465 		 * Note: the mark is set for activated folios as well
1466 		 * so that recently deactivated but used folios are
1467 		 * quickly recovered.
1468 		 */
1469 		folio_set_referenced(folio);
1470 
1471 		if (referenced_folio || referenced_ptes > 1)
1472 			return PAGEREF_ACTIVATE;
1473 
1474 		/*
1475 		 * Activate file-backed executable folios after first usage.
1476 		 */
1477 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1478 			return PAGEREF_ACTIVATE;
1479 
1480 		return PAGEREF_KEEP;
1481 	}
1482 
1483 	/* Reclaim if clean, defer dirty folios to writeback */
1484 	if (referenced_folio && folio_is_file_lru(folio))
1485 		return PAGEREF_RECLAIM_CLEAN;
1486 
1487 	return PAGEREF_RECLAIM;
1488 }
1489 
1490 /* Check if a page is dirty or under writeback */
1491 static void folio_check_dirty_writeback(struct folio *folio,
1492 				       bool *dirty, bool *writeback)
1493 {
1494 	struct address_space *mapping;
1495 
1496 	/*
1497 	 * Anonymous pages are not handled by flushers and must be written
1498 	 * from reclaim context. Do not stall reclaim based on them.
1499 	 * MADV_FREE anonymous pages are put into inactive file list too.
1500 	 * They could be mistakenly treated as file lru. So further anon
1501 	 * test is needed.
1502 	 */
1503 	if (!folio_is_file_lru(folio) ||
1504 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1505 		*dirty = false;
1506 		*writeback = false;
1507 		return;
1508 	}
1509 
1510 	/* By default assume that the folio flags are accurate */
1511 	*dirty = folio_test_dirty(folio);
1512 	*writeback = folio_test_writeback(folio);
1513 
1514 	/* Verify dirty/writeback state if the filesystem supports it */
1515 	if (!folio_test_private(folio))
1516 		return;
1517 
1518 	mapping = folio_mapping(folio);
1519 	if (mapping && mapping->a_ops->is_dirty_writeback)
1520 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1521 }
1522 
1523 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1524 {
1525 	struct migration_target_control mtc = {
1526 		/*
1527 		 * Allocate from 'node', or fail quickly and quietly.
1528 		 * When this happens, 'page' will likely just be discarded
1529 		 * instead of migrated.
1530 		 */
1531 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1532 			    __GFP_THISNODE  | __GFP_NOWARN |
1533 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1534 		.nid = node
1535 	};
1536 
1537 	return alloc_migration_target(page, (unsigned long)&mtc);
1538 }
1539 
1540 /*
1541  * Take pages on @demote_list and attempt to demote them to
1542  * another node.  Pages which are not demoted are left on
1543  * @demote_pages.
1544  */
1545 static unsigned int demote_page_list(struct list_head *demote_pages,
1546 				     struct pglist_data *pgdat)
1547 {
1548 	int target_nid = next_demotion_node(pgdat->node_id);
1549 	unsigned int nr_succeeded;
1550 
1551 	if (list_empty(demote_pages))
1552 		return 0;
1553 
1554 	if (target_nid == NUMA_NO_NODE)
1555 		return 0;
1556 
1557 	/* Demotion ignores all cpuset and mempolicy settings */
1558 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1559 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1560 			    &nr_succeeded);
1561 
1562 	if (current_is_kswapd())
1563 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1564 	else
1565 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1566 
1567 	return nr_succeeded;
1568 }
1569 
1570 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1571 {
1572 	if (gfp_mask & __GFP_FS)
1573 		return true;
1574 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1575 		return false;
1576 	/*
1577 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1578 	 * providing this isn't SWP_FS_OPS.
1579 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1580 	 * but that will never affect SWP_FS_OPS, so the data_race
1581 	 * is safe.
1582 	 */
1583 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1584 }
1585 
1586 /*
1587  * shrink_page_list() returns the number of reclaimed pages
1588  */
1589 static unsigned int shrink_page_list(struct list_head *page_list,
1590 				     struct pglist_data *pgdat,
1591 				     struct scan_control *sc,
1592 				     struct reclaim_stat *stat,
1593 				     bool ignore_references)
1594 {
1595 	LIST_HEAD(ret_pages);
1596 	LIST_HEAD(free_pages);
1597 	LIST_HEAD(demote_pages);
1598 	unsigned int nr_reclaimed = 0;
1599 	unsigned int pgactivate = 0;
1600 	bool do_demote_pass;
1601 	struct swap_iocb *plug = NULL;
1602 
1603 	memset(stat, 0, sizeof(*stat));
1604 	cond_resched();
1605 	do_demote_pass = can_demote(pgdat->node_id, sc);
1606 
1607 retry:
1608 	while (!list_empty(page_list)) {
1609 		struct address_space *mapping;
1610 		struct folio *folio;
1611 		enum page_references references = PAGEREF_RECLAIM;
1612 		bool dirty, writeback;
1613 		unsigned int nr_pages;
1614 
1615 		cond_resched();
1616 
1617 		folio = lru_to_folio(page_list);
1618 		list_del(&folio->lru);
1619 
1620 		if (!folio_trylock(folio))
1621 			goto keep;
1622 
1623 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1624 
1625 		nr_pages = folio_nr_pages(folio);
1626 
1627 		/* Account the number of base pages */
1628 		sc->nr_scanned += nr_pages;
1629 
1630 		if (unlikely(!folio_evictable(folio)))
1631 			goto activate_locked;
1632 
1633 		if (!sc->may_unmap && folio_mapped(folio))
1634 			goto keep_locked;
1635 
1636 		/*
1637 		 * The number of dirty pages determines if a node is marked
1638 		 * reclaim_congested. kswapd will stall and start writing
1639 		 * folios if the tail of the LRU is all dirty unqueued folios.
1640 		 */
1641 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1642 		if (dirty || writeback)
1643 			stat->nr_dirty += nr_pages;
1644 
1645 		if (dirty && !writeback)
1646 			stat->nr_unqueued_dirty += nr_pages;
1647 
1648 		/*
1649 		 * Treat this folio as congested if folios are cycling
1650 		 * through the LRU so quickly that the folios marked
1651 		 * for immediate reclaim are making it to the end of
1652 		 * the LRU a second time.
1653 		 */
1654 		if (writeback && folio_test_reclaim(folio))
1655 			stat->nr_congested += nr_pages;
1656 
1657 		/*
1658 		 * If a folio at the tail of the LRU is under writeback, there
1659 		 * are three cases to consider.
1660 		 *
1661 		 * 1) If reclaim is encountering an excessive number
1662 		 *    of folios under writeback and this folio has both
1663 		 *    the writeback and reclaim flags set, then it
1664 		 *    indicates that folios are being queued for I/O but
1665 		 *    are being recycled through the LRU before the I/O
1666 		 *    can complete. Waiting on the folio itself risks an
1667 		 *    indefinite stall if it is impossible to writeback
1668 		 *    the folio due to I/O error or disconnected storage
1669 		 *    so instead note that the LRU is being scanned too
1670 		 *    quickly and the caller can stall after the folio
1671 		 *    list has been processed.
1672 		 *
1673 		 * 2) Global or new memcg reclaim encounters a folio that is
1674 		 *    not marked for immediate reclaim, or the caller does not
1675 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1676 		 *    not to fs). In this case mark the folio for immediate
1677 		 *    reclaim and continue scanning.
1678 		 *
1679 		 *    Require may_enter_fs() because we would wait on fs, which
1680 		 *    may not have submitted I/O yet. And the loop driver might
1681 		 *    enter reclaim, and deadlock if it waits on a folio for
1682 		 *    which it is needed to do the write (loop masks off
1683 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1684 		 *    would probably show more reasons.
1685 		 *
1686 		 * 3) Legacy memcg encounters a folio that already has the
1687 		 *    reclaim flag set. memcg does not have any dirty folio
1688 		 *    throttling so we could easily OOM just because too many
1689 		 *    folios are in writeback and there is nothing else to
1690 		 *    reclaim. Wait for the writeback to complete.
1691 		 *
1692 		 * In cases 1) and 2) we activate the folios to get them out of
1693 		 * the way while we continue scanning for clean folios on the
1694 		 * inactive list and refilling from the active list. The
1695 		 * observation here is that waiting for disk writes is more
1696 		 * expensive than potentially causing reloads down the line.
1697 		 * Since they're marked for immediate reclaim, they won't put
1698 		 * memory pressure on the cache working set any longer than it
1699 		 * takes to write them to disk.
1700 		 */
1701 		if (folio_test_writeback(folio)) {
1702 			/* Case 1 above */
1703 			if (current_is_kswapd() &&
1704 			    folio_test_reclaim(folio) &&
1705 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1706 				stat->nr_immediate += nr_pages;
1707 				goto activate_locked;
1708 
1709 			/* Case 2 above */
1710 			} else if (writeback_throttling_sane(sc) ||
1711 			    !folio_test_reclaim(folio) ||
1712 			    !may_enter_fs(folio, sc->gfp_mask)) {
1713 				/*
1714 				 * This is slightly racy -
1715 				 * folio_end_writeback() might have
1716 				 * just cleared the reclaim flag, then
1717 				 * setting the reclaim flag here ends up
1718 				 * interpreted as the readahead flag - but
1719 				 * that does not matter enough to care.
1720 				 * What we do want is for this folio to
1721 				 * have the reclaim flag set next time
1722 				 * memcg reclaim reaches the tests above,
1723 				 * so it will then wait for writeback to
1724 				 * avoid OOM; and it's also appropriate
1725 				 * in global reclaim.
1726 				 */
1727 				folio_set_reclaim(folio);
1728 				stat->nr_writeback += nr_pages;
1729 				goto activate_locked;
1730 
1731 			/* Case 3 above */
1732 			} else {
1733 				folio_unlock(folio);
1734 				folio_wait_writeback(folio);
1735 				/* then go back and try same folio again */
1736 				list_add_tail(&folio->lru, page_list);
1737 				continue;
1738 			}
1739 		}
1740 
1741 		if (!ignore_references)
1742 			references = folio_check_references(folio, sc);
1743 
1744 		switch (references) {
1745 		case PAGEREF_ACTIVATE:
1746 			goto activate_locked;
1747 		case PAGEREF_KEEP:
1748 			stat->nr_ref_keep += nr_pages;
1749 			goto keep_locked;
1750 		case PAGEREF_RECLAIM:
1751 		case PAGEREF_RECLAIM_CLEAN:
1752 			; /* try to reclaim the folio below */
1753 		}
1754 
1755 		/*
1756 		 * Before reclaiming the folio, try to relocate
1757 		 * its contents to another node.
1758 		 */
1759 		if (do_demote_pass &&
1760 		    (thp_migration_supported() || !folio_test_large(folio))) {
1761 			list_add(&folio->lru, &demote_pages);
1762 			folio_unlock(folio);
1763 			continue;
1764 		}
1765 
1766 		/*
1767 		 * Anonymous process memory has backing store?
1768 		 * Try to allocate it some swap space here.
1769 		 * Lazyfree folio could be freed directly
1770 		 */
1771 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1772 			if (!folio_test_swapcache(folio)) {
1773 				if (!(sc->gfp_mask & __GFP_IO))
1774 					goto keep_locked;
1775 				if (folio_maybe_dma_pinned(folio))
1776 					goto keep_locked;
1777 				if (folio_test_large(folio)) {
1778 					/* cannot split folio, skip it */
1779 					if (!can_split_folio(folio, NULL))
1780 						goto activate_locked;
1781 					/*
1782 					 * Split folios without a PMD map right
1783 					 * away. Chances are some or all of the
1784 					 * tail pages can be freed without IO.
1785 					 */
1786 					if (!folio_entire_mapcount(folio) &&
1787 					    split_folio_to_list(folio,
1788 								page_list))
1789 						goto activate_locked;
1790 				}
1791 				if (!add_to_swap(folio)) {
1792 					if (!folio_test_large(folio))
1793 						goto activate_locked_split;
1794 					/* Fallback to swap normal pages */
1795 					if (split_folio_to_list(folio,
1796 								page_list))
1797 						goto activate_locked;
1798 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1799 					count_vm_event(THP_SWPOUT_FALLBACK);
1800 #endif
1801 					if (!add_to_swap(folio))
1802 						goto activate_locked_split;
1803 				}
1804 			}
1805 		} else if (folio_test_swapbacked(folio) &&
1806 			   folio_test_large(folio)) {
1807 			/* Split shmem folio */
1808 			if (split_folio_to_list(folio, page_list))
1809 				goto keep_locked;
1810 		}
1811 
1812 		/*
1813 		 * If the folio was split above, the tail pages will make
1814 		 * their own pass through this function and be accounted
1815 		 * then.
1816 		 */
1817 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1818 			sc->nr_scanned -= (nr_pages - 1);
1819 			nr_pages = 1;
1820 		}
1821 
1822 		/*
1823 		 * The folio is mapped into the page tables of one or more
1824 		 * processes. Try to unmap it here.
1825 		 */
1826 		if (folio_mapped(folio)) {
1827 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1828 			bool was_swapbacked = folio_test_swapbacked(folio);
1829 
1830 			if (folio_test_pmd_mappable(folio))
1831 				flags |= TTU_SPLIT_HUGE_PMD;
1832 
1833 			try_to_unmap(folio, flags);
1834 			if (folio_mapped(folio)) {
1835 				stat->nr_unmap_fail += nr_pages;
1836 				if (!was_swapbacked &&
1837 				    folio_test_swapbacked(folio))
1838 					stat->nr_lazyfree_fail += nr_pages;
1839 				goto activate_locked;
1840 			}
1841 		}
1842 
1843 		mapping = folio_mapping(folio);
1844 		if (folio_test_dirty(folio)) {
1845 			/*
1846 			 * Only kswapd can writeback filesystem folios
1847 			 * to avoid risk of stack overflow. But avoid
1848 			 * injecting inefficient single-folio I/O into
1849 			 * flusher writeback as much as possible: only
1850 			 * write folios when we've encountered many
1851 			 * dirty folios, and when we've already scanned
1852 			 * the rest of the LRU for clean folios and see
1853 			 * the same dirty folios again (with the reclaim
1854 			 * flag set).
1855 			 */
1856 			if (folio_is_file_lru(folio) &&
1857 			    (!current_is_kswapd() ||
1858 			     !folio_test_reclaim(folio) ||
1859 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1860 				/*
1861 				 * Immediately reclaim when written back.
1862 				 * Similar in principle to deactivate_page()
1863 				 * except we already have the folio isolated
1864 				 * and know it's dirty
1865 				 */
1866 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1867 						nr_pages);
1868 				folio_set_reclaim(folio);
1869 
1870 				goto activate_locked;
1871 			}
1872 
1873 			if (references == PAGEREF_RECLAIM_CLEAN)
1874 				goto keep_locked;
1875 			if (!may_enter_fs(folio, sc->gfp_mask))
1876 				goto keep_locked;
1877 			if (!sc->may_writepage)
1878 				goto keep_locked;
1879 
1880 			/*
1881 			 * Folio is dirty. Flush the TLB if a writable entry
1882 			 * potentially exists to avoid CPU writes after I/O
1883 			 * starts and then write it out here.
1884 			 */
1885 			try_to_unmap_flush_dirty();
1886 			switch (pageout(folio, mapping, &plug)) {
1887 			case PAGE_KEEP:
1888 				goto keep_locked;
1889 			case PAGE_ACTIVATE:
1890 				goto activate_locked;
1891 			case PAGE_SUCCESS:
1892 				stat->nr_pageout += nr_pages;
1893 
1894 				if (folio_test_writeback(folio))
1895 					goto keep;
1896 				if (folio_test_dirty(folio))
1897 					goto keep;
1898 
1899 				/*
1900 				 * A synchronous write - probably a ramdisk.  Go
1901 				 * ahead and try to reclaim the folio.
1902 				 */
1903 				if (!folio_trylock(folio))
1904 					goto keep;
1905 				if (folio_test_dirty(folio) ||
1906 				    folio_test_writeback(folio))
1907 					goto keep_locked;
1908 				mapping = folio_mapping(folio);
1909 				fallthrough;
1910 			case PAGE_CLEAN:
1911 				; /* try to free the folio below */
1912 			}
1913 		}
1914 
1915 		/*
1916 		 * If the folio has buffers, try to free the buffer
1917 		 * mappings associated with this folio. If we succeed
1918 		 * we try to free the folio as well.
1919 		 *
1920 		 * We do this even if the folio is dirty.
1921 		 * filemap_release_folio() does not perform I/O, but it
1922 		 * is possible for a folio to have the dirty flag set,
1923 		 * but it is actually clean (all its buffers are clean).
1924 		 * This happens if the buffers were written out directly,
1925 		 * with submit_bh(). ext3 will do this, as well as
1926 		 * the blockdev mapping.  filemap_release_folio() will
1927 		 * discover that cleanness and will drop the buffers
1928 		 * and mark the folio clean - it can be freed.
1929 		 *
1930 		 * Rarely, folios can have buffers and no ->mapping.
1931 		 * These are the folios which were not successfully
1932 		 * invalidated in truncate_cleanup_folio().  We try to
1933 		 * drop those buffers here and if that worked, and the
1934 		 * folio is no longer mapped into process address space
1935 		 * (refcount == 1) it can be freed.  Otherwise, leave
1936 		 * the folio on the LRU so it is swappable.
1937 		 */
1938 		if (folio_has_private(folio)) {
1939 			if (!filemap_release_folio(folio, sc->gfp_mask))
1940 				goto activate_locked;
1941 			if (!mapping && folio_ref_count(folio) == 1) {
1942 				folio_unlock(folio);
1943 				if (folio_put_testzero(folio))
1944 					goto free_it;
1945 				else {
1946 					/*
1947 					 * rare race with speculative reference.
1948 					 * the speculative reference will free
1949 					 * this folio shortly, so we may
1950 					 * increment nr_reclaimed here (and
1951 					 * leave it off the LRU).
1952 					 */
1953 					nr_reclaimed += nr_pages;
1954 					continue;
1955 				}
1956 			}
1957 		}
1958 
1959 		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1960 			/* follow __remove_mapping for reference */
1961 			if (!folio_ref_freeze(folio, 1))
1962 				goto keep_locked;
1963 			/*
1964 			 * The folio has only one reference left, which is
1965 			 * from the isolation. After the caller puts the
1966 			 * folio back on the lru and drops the reference, the
1967 			 * folio will be freed anyway. It doesn't matter
1968 			 * which lru it goes on. So we don't bother checking
1969 			 * the dirty flag here.
1970 			 */
1971 			count_vm_events(PGLAZYFREED, nr_pages);
1972 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1973 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
1974 							 sc->target_mem_cgroup))
1975 			goto keep_locked;
1976 
1977 		folio_unlock(folio);
1978 free_it:
1979 		/*
1980 		 * Folio may get swapped out as a whole, need to account
1981 		 * all pages in it.
1982 		 */
1983 		nr_reclaimed += nr_pages;
1984 
1985 		/*
1986 		 * Is there need to periodically free_page_list? It would
1987 		 * appear not as the counts should be low
1988 		 */
1989 		if (unlikely(folio_test_large(folio)))
1990 			destroy_large_folio(folio);
1991 		else
1992 			list_add(&folio->lru, &free_pages);
1993 		continue;
1994 
1995 activate_locked_split:
1996 		/*
1997 		 * The tail pages that are failed to add into swap cache
1998 		 * reach here.  Fixup nr_scanned and nr_pages.
1999 		 */
2000 		if (nr_pages > 1) {
2001 			sc->nr_scanned -= (nr_pages - 1);
2002 			nr_pages = 1;
2003 		}
2004 activate_locked:
2005 		/* Not a candidate for swapping, so reclaim swap space. */
2006 		if (folio_test_swapcache(folio) &&
2007 		    (mem_cgroup_swap_full(&folio->page) ||
2008 		     folio_test_mlocked(folio)))
2009 			try_to_free_swap(&folio->page);
2010 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2011 		if (!folio_test_mlocked(folio)) {
2012 			int type = folio_is_file_lru(folio);
2013 			folio_set_active(folio);
2014 			stat->nr_activate[type] += nr_pages;
2015 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2016 		}
2017 keep_locked:
2018 		folio_unlock(folio);
2019 keep:
2020 		list_add(&folio->lru, &ret_pages);
2021 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2022 				folio_test_unevictable(folio), folio);
2023 	}
2024 	/* 'page_list' is always empty here */
2025 
2026 	/* Migrate folios selected for demotion */
2027 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
2028 	/* Folios that could not be demoted are still in @demote_pages */
2029 	if (!list_empty(&demote_pages)) {
2030 		/* Folios which weren't demoted go back on @page_list for retry: */
2031 		list_splice_init(&demote_pages, page_list);
2032 		do_demote_pass = false;
2033 		goto retry;
2034 	}
2035 
2036 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2037 
2038 	mem_cgroup_uncharge_list(&free_pages);
2039 	try_to_unmap_flush();
2040 	free_unref_page_list(&free_pages);
2041 
2042 	list_splice(&ret_pages, page_list);
2043 	count_vm_events(PGACTIVATE, pgactivate);
2044 
2045 	if (plug)
2046 		swap_write_unplug(plug);
2047 	return nr_reclaimed;
2048 }
2049 
2050 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2051 					    struct list_head *folio_list)
2052 {
2053 	struct scan_control sc = {
2054 		.gfp_mask = GFP_KERNEL,
2055 		.may_unmap = 1,
2056 	};
2057 	struct reclaim_stat stat;
2058 	unsigned int nr_reclaimed;
2059 	struct folio *folio, *next;
2060 	LIST_HEAD(clean_folios);
2061 	unsigned int noreclaim_flag;
2062 
2063 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2064 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2065 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2066 		    !folio_test_unevictable(folio)) {
2067 			folio_clear_active(folio);
2068 			list_move(&folio->lru, &clean_folios);
2069 		}
2070 	}
2071 
2072 	/*
2073 	 * We should be safe here since we are only dealing with file pages and
2074 	 * we are not kswapd and therefore cannot write dirty file pages. But
2075 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2076 	 * change in the future.
2077 	 */
2078 	noreclaim_flag = memalloc_noreclaim_save();
2079 	nr_reclaimed = shrink_page_list(&clean_folios, zone->zone_pgdat, &sc,
2080 					&stat, true);
2081 	memalloc_noreclaim_restore(noreclaim_flag);
2082 
2083 	list_splice(&clean_folios, folio_list);
2084 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2085 			    -(long)nr_reclaimed);
2086 	/*
2087 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2088 	 * they will rotate back to anonymous LRU in the end if it failed to
2089 	 * discard so isolated count will be mismatched.
2090 	 * Compensate the isolated count for both LRU lists.
2091 	 */
2092 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2093 			    stat.nr_lazyfree_fail);
2094 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2095 			    -(long)stat.nr_lazyfree_fail);
2096 	return nr_reclaimed;
2097 }
2098 
2099 /*
2100  * Update LRU sizes after isolating pages. The LRU size updates must
2101  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2102  */
2103 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2104 			enum lru_list lru, unsigned long *nr_zone_taken)
2105 {
2106 	int zid;
2107 
2108 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2109 		if (!nr_zone_taken[zid])
2110 			continue;
2111 
2112 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2113 	}
2114 
2115 }
2116 
2117 /*
2118  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2119  *
2120  * lruvec->lru_lock is heavily contended.  Some of the functions that
2121  * shrink the lists perform better by taking out a batch of pages
2122  * and working on them outside the LRU lock.
2123  *
2124  * For pagecache intensive workloads, this function is the hottest
2125  * spot in the kernel (apart from copy_*_user functions).
2126  *
2127  * Lru_lock must be held before calling this function.
2128  *
2129  * @nr_to_scan:	The number of eligible pages to look through on the list.
2130  * @lruvec:	The LRU vector to pull pages from.
2131  * @dst:	The temp list to put pages on to.
2132  * @nr_scanned:	The number of pages that were scanned.
2133  * @sc:		The scan_control struct for this reclaim session
2134  * @lru:	LRU list id for isolating
2135  *
2136  * returns how many pages were moved onto *@dst.
2137  */
2138 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2139 		struct lruvec *lruvec, struct list_head *dst,
2140 		unsigned long *nr_scanned, struct scan_control *sc,
2141 		enum lru_list lru)
2142 {
2143 	struct list_head *src = &lruvec->lists[lru];
2144 	unsigned long nr_taken = 0;
2145 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2146 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2147 	unsigned long skipped = 0;
2148 	unsigned long scan, total_scan, nr_pages;
2149 	LIST_HEAD(folios_skipped);
2150 
2151 	total_scan = 0;
2152 	scan = 0;
2153 	while (scan < nr_to_scan && !list_empty(src)) {
2154 		struct list_head *move_to = src;
2155 		struct folio *folio;
2156 
2157 		folio = lru_to_folio(src);
2158 		prefetchw_prev_lru_folio(folio, src, flags);
2159 
2160 		nr_pages = folio_nr_pages(folio);
2161 		total_scan += nr_pages;
2162 
2163 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2164 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2165 			move_to = &folios_skipped;
2166 			goto move;
2167 		}
2168 
2169 		/*
2170 		 * Do not count skipped folios because that makes the function
2171 		 * return with no isolated folios if the LRU mostly contains
2172 		 * ineligible folios.  This causes the VM to not reclaim any
2173 		 * folios, triggering a premature OOM.
2174 		 * Account all pages in a folio.
2175 		 */
2176 		scan += nr_pages;
2177 
2178 		if (!folio_test_lru(folio))
2179 			goto move;
2180 		if (!sc->may_unmap && folio_mapped(folio))
2181 			goto move;
2182 
2183 		/*
2184 		 * Be careful not to clear the lru flag until after we're
2185 		 * sure the folio is not being freed elsewhere -- the
2186 		 * folio release code relies on it.
2187 		 */
2188 		if (unlikely(!folio_try_get(folio)))
2189 			goto move;
2190 
2191 		if (!folio_test_clear_lru(folio)) {
2192 			/* Another thread is already isolating this folio */
2193 			folio_put(folio);
2194 			goto move;
2195 		}
2196 
2197 		nr_taken += nr_pages;
2198 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2199 		move_to = dst;
2200 move:
2201 		list_move(&folio->lru, move_to);
2202 	}
2203 
2204 	/*
2205 	 * Splice any skipped folios to the start of the LRU list. Note that
2206 	 * this disrupts the LRU order when reclaiming for lower zones but
2207 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2208 	 * scanning would soon rescan the same folios to skip and waste lots
2209 	 * of cpu cycles.
2210 	 */
2211 	if (!list_empty(&folios_skipped)) {
2212 		int zid;
2213 
2214 		list_splice(&folios_skipped, src);
2215 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2216 			if (!nr_skipped[zid])
2217 				continue;
2218 
2219 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2220 			skipped += nr_skipped[zid];
2221 		}
2222 	}
2223 	*nr_scanned = total_scan;
2224 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2225 				    total_scan, skipped, nr_taken,
2226 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2227 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2228 	return nr_taken;
2229 }
2230 
2231 /**
2232  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2233  * @folio: Folio to isolate from its LRU list.
2234  *
2235  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2236  * corresponding to whatever LRU list the folio was on.
2237  *
2238  * The folio will have its LRU flag cleared.  If it was found on the
2239  * active list, it will have the Active flag set.  If it was found on the
2240  * unevictable list, it will have the Unevictable flag set.  These flags
2241  * may need to be cleared by the caller before letting the page go.
2242  *
2243  * Context:
2244  *
2245  * (1) Must be called with an elevated refcount on the page. This is a
2246  *     fundamental difference from isolate_lru_pages() (which is called
2247  *     without a stable reference).
2248  * (2) The lru_lock must not be held.
2249  * (3) Interrupts must be enabled.
2250  *
2251  * Return: 0 if the folio was removed from an LRU list.
2252  * -EBUSY if the folio was not on an LRU list.
2253  */
2254 int folio_isolate_lru(struct folio *folio)
2255 {
2256 	int ret = -EBUSY;
2257 
2258 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2259 
2260 	if (folio_test_clear_lru(folio)) {
2261 		struct lruvec *lruvec;
2262 
2263 		folio_get(folio);
2264 		lruvec = folio_lruvec_lock_irq(folio);
2265 		lruvec_del_folio(lruvec, folio);
2266 		unlock_page_lruvec_irq(lruvec);
2267 		ret = 0;
2268 	}
2269 
2270 	return ret;
2271 }
2272 
2273 /*
2274  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2275  * then get rescheduled. When there are massive number of tasks doing page
2276  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2277  * the LRU list will go small and be scanned faster than necessary, leading to
2278  * unnecessary swapping, thrashing and OOM.
2279  */
2280 static int too_many_isolated(struct pglist_data *pgdat, int file,
2281 		struct scan_control *sc)
2282 {
2283 	unsigned long inactive, isolated;
2284 	bool too_many;
2285 
2286 	if (current_is_kswapd())
2287 		return 0;
2288 
2289 	if (!writeback_throttling_sane(sc))
2290 		return 0;
2291 
2292 	if (file) {
2293 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2294 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2295 	} else {
2296 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2297 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2298 	}
2299 
2300 	/*
2301 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2302 	 * won't get blocked by normal direct-reclaimers, forming a circular
2303 	 * deadlock.
2304 	 */
2305 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2306 		inactive >>= 3;
2307 
2308 	too_many = isolated > inactive;
2309 
2310 	/* Wake up tasks throttled due to too_many_isolated. */
2311 	if (!too_many)
2312 		wake_throttle_isolated(pgdat);
2313 
2314 	return too_many;
2315 }
2316 
2317 /*
2318  * move_pages_to_lru() moves folios from private @list to appropriate LRU list.
2319  * On return, @list is reused as a list of folios to be freed by the caller.
2320  *
2321  * Returns the number of pages moved to the given lruvec.
2322  */
2323 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2324 				      struct list_head *list)
2325 {
2326 	int nr_pages, nr_moved = 0;
2327 	LIST_HEAD(folios_to_free);
2328 
2329 	while (!list_empty(list)) {
2330 		struct folio *folio = lru_to_folio(list);
2331 
2332 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2333 		list_del(&folio->lru);
2334 		if (unlikely(!folio_evictable(folio))) {
2335 			spin_unlock_irq(&lruvec->lru_lock);
2336 			folio_putback_lru(folio);
2337 			spin_lock_irq(&lruvec->lru_lock);
2338 			continue;
2339 		}
2340 
2341 		/*
2342 		 * The folio_set_lru needs to be kept here for list integrity.
2343 		 * Otherwise:
2344 		 *   #0 move_pages_to_lru             #1 release_pages
2345 		 *   if (!folio_put_testzero())
2346 		 *				      if (folio_put_testzero())
2347 		 *				        !lru //skip lru_lock
2348 		 *     folio_set_lru()
2349 		 *     list_add(&folio->lru,)
2350 		 *                                        list_add(&folio->lru,)
2351 		 */
2352 		folio_set_lru(folio);
2353 
2354 		if (unlikely(folio_put_testzero(folio))) {
2355 			__folio_clear_lru_flags(folio);
2356 
2357 			if (unlikely(folio_test_large(folio))) {
2358 				spin_unlock_irq(&lruvec->lru_lock);
2359 				destroy_large_folio(folio);
2360 				spin_lock_irq(&lruvec->lru_lock);
2361 			} else
2362 				list_add(&folio->lru, &folios_to_free);
2363 
2364 			continue;
2365 		}
2366 
2367 		/*
2368 		 * All pages were isolated from the same lruvec (and isolation
2369 		 * inhibits memcg migration).
2370 		 */
2371 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2372 		lruvec_add_folio(lruvec, folio);
2373 		nr_pages = folio_nr_pages(folio);
2374 		nr_moved += nr_pages;
2375 		if (folio_test_active(folio))
2376 			workingset_age_nonresident(lruvec, nr_pages);
2377 	}
2378 
2379 	/*
2380 	 * To save our caller's stack, now use input list for pages to free.
2381 	 */
2382 	list_splice(&folios_to_free, list);
2383 
2384 	return nr_moved;
2385 }
2386 
2387 /*
2388  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2389  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2390  * we should not throttle.  Otherwise it is safe to do so.
2391  */
2392 static int current_may_throttle(void)
2393 {
2394 	return !(current->flags & PF_LOCAL_THROTTLE);
2395 }
2396 
2397 /*
2398  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2399  * of reclaimed pages
2400  */
2401 static unsigned long
2402 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2403 		     struct scan_control *sc, enum lru_list lru)
2404 {
2405 	LIST_HEAD(page_list);
2406 	unsigned long nr_scanned;
2407 	unsigned int nr_reclaimed = 0;
2408 	unsigned long nr_taken;
2409 	struct reclaim_stat stat;
2410 	bool file = is_file_lru(lru);
2411 	enum vm_event_item item;
2412 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2413 	bool stalled = false;
2414 
2415 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2416 		if (stalled)
2417 			return 0;
2418 
2419 		/* wait a bit for the reclaimer. */
2420 		stalled = true;
2421 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2422 
2423 		/* We are about to die and free our memory. Return now. */
2424 		if (fatal_signal_pending(current))
2425 			return SWAP_CLUSTER_MAX;
2426 	}
2427 
2428 	lru_add_drain();
2429 
2430 	spin_lock_irq(&lruvec->lru_lock);
2431 
2432 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2433 				     &nr_scanned, sc, lru);
2434 
2435 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2436 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2437 	if (!cgroup_reclaim(sc))
2438 		__count_vm_events(item, nr_scanned);
2439 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2440 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2441 
2442 	spin_unlock_irq(&lruvec->lru_lock);
2443 
2444 	if (nr_taken == 0)
2445 		return 0;
2446 
2447 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2448 
2449 	spin_lock_irq(&lruvec->lru_lock);
2450 	move_pages_to_lru(lruvec, &page_list);
2451 
2452 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2453 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2454 	if (!cgroup_reclaim(sc))
2455 		__count_vm_events(item, nr_reclaimed);
2456 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2457 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2458 	spin_unlock_irq(&lruvec->lru_lock);
2459 
2460 	lru_note_cost(lruvec, file, stat.nr_pageout);
2461 	mem_cgroup_uncharge_list(&page_list);
2462 	free_unref_page_list(&page_list);
2463 
2464 	/*
2465 	 * If dirty pages are scanned that are not queued for IO, it
2466 	 * implies that flushers are not doing their job. This can
2467 	 * happen when memory pressure pushes dirty pages to the end of
2468 	 * the LRU before the dirty limits are breached and the dirty
2469 	 * data has expired. It can also happen when the proportion of
2470 	 * dirty pages grows not through writes but through memory
2471 	 * pressure reclaiming all the clean cache. And in some cases,
2472 	 * the flushers simply cannot keep up with the allocation
2473 	 * rate. Nudge the flusher threads in case they are asleep.
2474 	 */
2475 	if (stat.nr_unqueued_dirty == nr_taken)
2476 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2477 
2478 	sc->nr.dirty += stat.nr_dirty;
2479 	sc->nr.congested += stat.nr_congested;
2480 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2481 	sc->nr.writeback += stat.nr_writeback;
2482 	sc->nr.immediate += stat.nr_immediate;
2483 	sc->nr.taken += nr_taken;
2484 	if (file)
2485 		sc->nr.file_taken += nr_taken;
2486 
2487 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2488 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2489 	return nr_reclaimed;
2490 }
2491 
2492 /*
2493  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2494  *
2495  * We move them the other way if the folio is referenced by one or more
2496  * processes.
2497  *
2498  * If the folios are mostly unmapped, the processing is fast and it is
2499  * appropriate to hold lru_lock across the whole operation.  But if
2500  * the folios are mapped, the processing is slow (folio_referenced()), so
2501  * we should drop lru_lock around each folio.  It's impossible to balance
2502  * this, so instead we remove the folios from the LRU while processing them.
2503  * It is safe to rely on the active flag against the non-LRU folios in here
2504  * because nobody will play with that bit on a non-LRU folio.
2505  *
2506  * The downside is that we have to touch folio->_refcount against each folio.
2507  * But we had to alter folio->flags anyway.
2508  */
2509 static void shrink_active_list(unsigned long nr_to_scan,
2510 			       struct lruvec *lruvec,
2511 			       struct scan_control *sc,
2512 			       enum lru_list lru)
2513 {
2514 	unsigned long nr_taken;
2515 	unsigned long nr_scanned;
2516 	unsigned long vm_flags;
2517 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2518 	LIST_HEAD(l_active);
2519 	LIST_HEAD(l_inactive);
2520 	unsigned nr_deactivate, nr_activate;
2521 	unsigned nr_rotated = 0;
2522 	int file = is_file_lru(lru);
2523 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2524 
2525 	lru_add_drain();
2526 
2527 	spin_lock_irq(&lruvec->lru_lock);
2528 
2529 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2530 				     &nr_scanned, sc, lru);
2531 
2532 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2533 
2534 	if (!cgroup_reclaim(sc))
2535 		__count_vm_events(PGREFILL, nr_scanned);
2536 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2537 
2538 	spin_unlock_irq(&lruvec->lru_lock);
2539 
2540 	while (!list_empty(&l_hold)) {
2541 		struct folio *folio;
2542 
2543 		cond_resched();
2544 		folio = lru_to_folio(&l_hold);
2545 		list_del(&folio->lru);
2546 
2547 		if (unlikely(!folio_evictable(folio))) {
2548 			folio_putback_lru(folio);
2549 			continue;
2550 		}
2551 
2552 		if (unlikely(buffer_heads_over_limit)) {
2553 			if (folio_test_private(folio) && folio_trylock(folio)) {
2554 				if (folio_test_private(folio))
2555 					filemap_release_folio(folio, 0);
2556 				folio_unlock(folio);
2557 			}
2558 		}
2559 
2560 		/* Referenced or rmap lock contention: rotate */
2561 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2562 				     &vm_flags) != 0) {
2563 			/*
2564 			 * Identify referenced, file-backed active folios and
2565 			 * give them one more trip around the active list. So
2566 			 * that executable code get better chances to stay in
2567 			 * memory under moderate memory pressure.  Anon folios
2568 			 * are not likely to be evicted by use-once streaming
2569 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2570 			 * so we ignore them here.
2571 			 */
2572 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2573 				nr_rotated += folio_nr_pages(folio);
2574 				list_add(&folio->lru, &l_active);
2575 				continue;
2576 			}
2577 		}
2578 
2579 		folio_clear_active(folio);	/* we are de-activating */
2580 		folio_set_workingset(folio);
2581 		list_add(&folio->lru, &l_inactive);
2582 	}
2583 
2584 	/*
2585 	 * Move folios back to the lru list.
2586 	 */
2587 	spin_lock_irq(&lruvec->lru_lock);
2588 
2589 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2590 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2591 	/* Keep all free folios in l_active list */
2592 	list_splice(&l_inactive, &l_active);
2593 
2594 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2595 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2596 
2597 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2598 	spin_unlock_irq(&lruvec->lru_lock);
2599 
2600 	mem_cgroup_uncharge_list(&l_active);
2601 	free_unref_page_list(&l_active);
2602 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2603 			nr_deactivate, nr_rotated, sc->priority, file);
2604 }
2605 
2606 static unsigned int reclaim_page_list(struct list_head *page_list,
2607 				      struct pglist_data *pgdat)
2608 {
2609 	struct reclaim_stat dummy_stat;
2610 	unsigned int nr_reclaimed;
2611 	struct folio *folio;
2612 	struct scan_control sc = {
2613 		.gfp_mask = GFP_KERNEL,
2614 		.may_writepage = 1,
2615 		.may_unmap = 1,
2616 		.may_swap = 1,
2617 		.no_demotion = 1,
2618 	};
2619 
2620 	nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2621 	while (!list_empty(page_list)) {
2622 		folio = lru_to_folio(page_list);
2623 		list_del(&folio->lru);
2624 		folio_putback_lru(folio);
2625 	}
2626 
2627 	return nr_reclaimed;
2628 }
2629 
2630 unsigned long reclaim_pages(struct list_head *folio_list)
2631 {
2632 	int nid;
2633 	unsigned int nr_reclaimed = 0;
2634 	LIST_HEAD(node_folio_list);
2635 	unsigned int noreclaim_flag;
2636 
2637 	if (list_empty(folio_list))
2638 		return nr_reclaimed;
2639 
2640 	noreclaim_flag = memalloc_noreclaim_save();
2641 
2642 	nid = folio_nid(lru_to_folio(folio_list));
2643 	do {
2644 		struct folio *folio = lru_to_folio(folio_list);
2645 
2646 		if (nid == folio_nid(folio)) {
2647 			folio_clear_active(folio);
2648 			list_move(&folio->lru, &node_folio_list);
2649 			continue;
2650 		}
2651 
2652 		nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
2653 		nid = folio_nid(lru_to_folio(folio_list));
2654 	} while (!list_empty(folio_list));
2655 
2656 	nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
2657 
2658 	memalloc_noreclaim_restore(noreclaim_flag);
2659 
2660 	return nr_reclaimed;
2661 }
2662 
2663 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2664 				 struct lruvec *lruvec, struct scan_control *sc)
2665 {
2666 	if (is_active_lru(lru)) {
2667 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2668 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2669 		else
2670 			sc->skipped_deactivate = 1;
2671 		return 0;
2672 	}
2673 
2674 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2675 }
2676 
2677 /*
2678  * The inactive anon list should be small enough that the VM never has
2679  * to do too much work.
2680  *
2681  * The inactive file list should be small enough to leave most memory
2682  * to the established workingset on the scan-resistant active list,
2683  * but large enough to avoid thrashing the aggregate readahead window.
2684  *
2685  * Both inactive lists should also be large enough that each inactive
2686  * page has a chance to be referenced again before it is reclaimed.
2687  *
2688  * If that fails and refaulting is observed, the inactive list grows.
2689  *
2690  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2691  * on this LRU, maintained by the pageout code. An inactive_ratio
2692  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2693  *
2694  * total     target    max
2695  * memory    ratio     inactive
2696  * -------------------------------------
2697  *   10MB       1         5MB
2698  *  100MB       1        50MB
2699  *    1GB       3       250MB
2700  *   10GB      10       0.9GB
2701  *  100GB      31         3GB
2702  *    1TB     101        10GB
2703  *   10TB     320        32GB
2704  */
2705 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2706 {
2707 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2708 	unsigned long inactive, active;
2709 	unsigned long inactive_ratio;
2710 	unsigned long gb;
2711 
2712 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2713 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2714 
2715 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2716 	if (gb)
2717 		inactive_ratio = int_sqrt(10 * gb);
2718 	else
2719 		inactive_ratio = 1;
2720 
2721 	return inactive * inactive_ratio < active;
2722 }
2723 
2724 enum scan_balance {
2725 	SCAN_EQUAL,
2726 	SCAN_FRACT,
2727 	SCAN_ANON,
2728 	SCAN_FILE,
2729 };
2730 
2731 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2732 {
2733 	unsigned long file;
2734 	struct lruvec *target_lruvec;
2735 
2736 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2737 
2738 	/*
2739 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2740 	 * lruvec stats for heuristics.
2741 	 */
2742 	mem_cgroup_flush_stats();
2743 
2744 	/*
2745 	 * Determine the scan balance between anon and file LRUs.
2746 	 */
2747 	spin_lock_irq(&target_lruvec->lru_lock);
2748 	sc->anon_cost = target_lruvec->anon_cost;
2749 	sc->file_cost = target_lruvec->file_cost;
2750 	spin_unlock_irq(&target_lruvec->lru_lock);
2751 
2752 	/*
2753 	 * Target desirable inactive:active list ratios for the anon
2754 	 * and file LRU lists.
2755 	 */
2756 	if (!sc->force_deactivate) {
2757 		unsigned long refaults;
2758 
2759 		/*
2760 		 * When refaults are being observed, it means a new
2761 		 * workingset is being established. Deactivate to get
2762 		 * rid of any stale active pages quickly.
2763 		 */
2764 		refaults = lruvec_page_state(target_lruvec,
2765 				WORKINGSET_ACTIVATE_ANON);
2766 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2767 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2768 			sc->may_deactivate |= DEACTIVATE_ANON;
2769 		else
2770 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2771 
2772 		refaults = lruvec_page_state(target_lruvec,
2773 				WORKINGSET_ACTIVATE_FILE);
2774 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2775 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2776 			sc->may_deactivate |= DEACTIVATE_FILE;
2777 		else
2778 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2779 	} else
2780 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2781 
2782 	/*
2783 	 * If we have plenty of inactive file pages that aren't
2784 	 * thrashing, try to reclaim those first before touching
2785 	 * anonymous pages.
2786 	 */
2787 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2788 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2789 		sc->cache_trim_mode = 1;
2790 	else
2791 		sc->cache_trim_mode = 0;
2792 
2793 	/*
2794 	 * Prevent the reclaimer from falling into the cache trap: as
2795 	 * cache pages start out inactive, every cache fault will tip
2796 	 * the scan balance towards the file LRU.  And as the file LRU
2797 	 * shrinks, so does the window for rotation from references.
2798 	 * This means we have a runaway feedback loop where a tiny
2799 	 * thrashing file LRU becomes infinitely more attractive than
2800 	 * anon pages.  Try to detect this based on file LRU size.
2801 	 */
2802 	if (!cgroup_reclaim(sc)) {
2803 		unsigned long total_high_wmark = 0;
2804 		unsigned long free, anon;
2805 		int z;
2806 
2807 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2808 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2809 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2810 
2811 		for (z = 0; z < MAX_NR_ZONES; z++) {
2812 			struct zone *zone = &pgdat->node_zones[z];
2813 
2814 			if (!managed_zone(zone))
2815 				continue;
2816 
2817 			total_high_wmark += high_wmark_pages(zone);
2818 		}
2819 
2820 		/*
2821 		 * Consider anon: if that's low too, this isn't a
2822 		 * runaway file reclaim problem, but rather just
2823 		 * extreme pressure. Reclaim as per usual then.
2824 		 */
2825 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2826 
2827 		sc->file_is_tiny =
2828 			file + free <= total_high_wmark &&
2829 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2830 			anon >> sc->priority;
2831 	}
2832 }
2833 
2834 /*
2835  * Determine how aggressively the anon and file LRU lists should be
2836  * scanned.
2837  *
2838  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2839  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2840  */
2841 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2842 			   unsigned long *nr)
2843 {
2844 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2845 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2846 	unsigned long anon_cost, file_cost, total_cost;
2847 	int swappiness = mem_cgroup_swappiness(memcg);
2848 	u64 fraction[ANON_AND_FILE];
2849 	u64 denominator = 0;	/* gcc */
2850 	enum scan_balance scan_balance;
2851 	unsigned long ap, fp;
2852 	enum lru_list lru;
2853 
2854 	/* If we have no swap space, do not bother scanning anon pages. */
2855 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2856 		scan_balance = SCAN_FILE;
2857 		goto out;
2858 	}
2859 
2860 	/*
2861 	 * Global reclaim will swap to prevent OOM even with no
2862 	 * swappiness, but memcg users want to use this knob to
2863 	 * disable swapping for individual groups completely when
2864 	 * using the memory controller's swap limit feature would be
2865 	 * too expensive.
2866 	 */
2867 	if (cgroup_reclaim(sc) && !swappiness) {
2868 		scan_balance = SCAN_FILE;
2869 		goto out;
2870 	}
2871 
2872 	/*
2873 	 * Do not apply any pressure balancing cleverness when the
2874 	 * system is close to OOM, scan both anon and file equally
2875 	 * (unless the swappiness setting disagrees with swapping).
2876 	 */
2877 	if (!sc->priority && swappiness) {
2878 		scan_balance = SCAN_EQUAL;
2879 		goto out;
2880 	}
2881 
2882 	/*
2883 	 * If the system is almost out of file pages, force-scan anon.
2884 	 */
2885 	if (sc->file_is_tiny) {
2886 		scan_balance = SCAN_ANON;
2887 		goto out;
2888 	}
2889 
2890 	/*
2891 	 * If there is enough inactive page cache, we do not reclaim
2892 	 * anything from the anonymous working right now.
2893 	 */
2894 	if (sc->cache_trim_mode) {
2895 		scan_balance = SCAN_FILE;
2896 		goto out;
2897 	}
2898 
2899 	scan_balance = SCAN_FRACT;
2900 	/*
2901 	 * Calculate the pressure balance between anon and file pages.
2902 	 *
2903 	 * The amount of pressure we put on each LRU is inversely
2904 	 * proportional to the cost of reclaiming each list, as
2905 	 * determined by the share of pages that are refaulting, times
2906 	 * the relative IO cost of bringing back a swapped out
2907 	 * anonymous page vs reloading a filesystem page (swappiness).
2908 	 *
2909 	 * Although we limit that influence to ensure no list gets
2910 	 * left behind completely: at least a third of the pressure is
2911 	 * applied, before swappiness.
2912 	 *
2913 	 * With swappiness at 100, anon and file have equal IO cost.
2914 	 */
2915 	total_cost = sc->anon_cost + sc->file_cost;
2916 	anon_cost = total_cost + sc->anon_cost;
2917 	file_cost = total_cost + sc->file_cost;
2918 	total_cost = anon_cost + file_cost;
2919 
2920 	ap = swappiness * (total_cost + 1);
2921 	ap /= anon_cost + 1;
2922 
2923 	fp = (200 - swappiness) * (total_cost + 1);
2924 	fp /= file_cost + 1;
2925 
2926 	fraction[0] = ap;
2927 	fraction[1] = fp;
2928 	denominator = ap + fp;
2929 out:
2930 	for_each_evictable_lru(lru) {
2931 		int file = is_file_lru(lru);
2932 		unsigned long lruvec_size;
2933 		unsigned long low, min;
2934 		unsigned long scan;
2935 
2936 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2937 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2938 				      &min, &low);
2939 
2940 		if (min || low) {
2941 			/*
2942 			 * Scale a cgroup's reclaim pressure by proportioning
2943 			 * its current usage to its memory.low or memory.min
2944 			 * setting.
2945 			 *
2946 			 * This is important, as otherwise scanning aggression
2947 			 * becomes extremely binary -- from nothing as we
2948 			 * approach the memory protection threshold, to totally
2949 			 * nominal as we exceed it.  This results in requiring
2950 			 * setting extremely liberal protection thresholds. It
2951 			 * also means we simply get no protection at all if we
2952 			 * set it too low, which is not ideal.
2953 			 *
2954 			 * If there is any protection in place, we reduce scan
2955 			 * pressure by how much of the total memory used is
2956 			 * within protection thresholds.
2957 			 *
2958 			 * There is one special case: in the first reclaim pass,
2959 			 * we skip over all groups that are within their low
2960 			 * protection. If that fails to reclaim enough pages to
2961 			 * satisfy the reclaim goal, we come back and override
2962 			 * the best-effort low protection. However, we still
2963 			 * ideally want to honor how well-behaved groups are in
2964 			 * that case instead of simply punishing them all
2965 			 * equally. As such, we reclaim them based on how much
2966 			 * memory they are using, reducing the scan pressure
2967 			 * again by how much of the total memory used is under
2968 			 * hard protection.
2969 			 */
2970 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2971 			unsigned long protection;
2972 
2973 			/* memory.low scaling, make sure we retry before OOM */
2974 			if (!sc->memcg_low_reclaim && low > min) {
2975 				protection = low;
2976 				sc->memcg_low_skipped = 1;
2977 			} else {
2978 				protection = min;
2979 			}
2980 
2981 			/* Avoid TOCTOU with earlier protection check */
2982 			cgroup_size = max(cgroup_size, protection);
2983 
2984 			scan = lruvec_size - lruvec_size * protection /
2985 				(cgroup_size + 1);
2986 
2987 			/*
2988 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2989 			 * reclaim moving forwards, avoiding decrementing
2990 			 * sc->priority further than desirable.
2991 			 */
2992 			scan = max(scan, SWAP_CLUSTER_MAX);
2993 		} else {
2994 			scan = lruvec_size;
2995 		}
2996 
2997 		scan >>= sc->priority;
2998 
2999 		/*
3000 		 * If the cgroup's already been deleted, make sure to
3001 		 * scrape out the remaining cache.
3002 		 */
3003 		if (!scan && !mem_cgroup_online(memcg))
3004 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3005 
3006 		switch (scan_balance) {
3007 		case SCAN_EQUAL:
3008 			/* Scan lists relative to size */
3009 			break;
3010 		case SCAN_FRACT:
3011 			/*
3012 			 * Scan types proportional to swappiness and
3013 			 * their relative recent reclaim efficiency.
3014 			 * Make sure we don't miss the last page on
3015 			 * the offlined memory cgroups because of a
3016 			 * round-off error.
3017 			 */
3018 			scan = mem_cgroup_online(memcg) ?
3019 			       div64_u64(scan * fraction[file], denominator) :
3020 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3021 						  denominator);
3022 			break;
3023 		case SCAN_FILE:
3024 		case SCAN_ANON:
3025 			/* Scan one type exclusively */
3026 			if ((scan_balance == SCAN_FILE) != file)
3027 				scan = 0;
3028 			break;
3029 		default:
3030 			/* Look ma, no brain */
3031 			BUG();
3032 		}
3033 
3034 		nr[lru] = scan;
3035 	}
3036 }
3037 
3038 /*
3039  * Anonymous LRU management is a waste if there is
3040  * ultimately no way to reclaim the memory.
3041  */
3042 static bool can_age_anon_pages(struct pglist_data *pgdat,
3043 			       struct scan_control *sc)
3044 {
3045 	/* Aging the anon LRU is valuable if swap is present: */
3046 	if (total_swap_pages > 0)
3047 		return true;
3048 
3049 	/* Also valuable if anon pages can be demoted: */
3050 	return can_demote(pgdat->node_id, sc);
3051 }
3052 
3053 #ifdef CONFIG_LRU_GEN
3054 
3055 /******************************************************************************
3056  *                          shorthand helpers
3057  ******************************************************************************/
3058 
3059 #define for_each_gen_type_zone(gen, type, zone)				\
3060 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3061 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3062 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3063 
3064 static struct lruvec __maybe_unused *get_lruvec(struct mem_cgroup *memcg, int nid)
3065 {
3066 	struct pglist_data *pgdat = NODE_DATA(nid);
3067 
3068 #ifdef CONFIG_MEMCG
3069 	if (memcg) {
3070 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3071 
3072 		/* for hotadd_new_pgdat() */
3073 		if (!lruvec->pgdat)
3074 			lruvec->pgdat = pgdat;
3075 
3076 		return lruvec;
3077 	}
3078 #endif
3079 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3080 
3081 	return pgdat ? &pgdat->__lruvec : NULL;
3082 }
3083 
3084 /******************************************************************************
3085  *                          initialization
3086  ******************************************************************************/
3087 
3088 void lru_gen_init_lruvec(struct lruvec *lruvec)
3089 {
3090 	int gen, type, zone;
3091 	struct lru_gen_struct *lrugen = &lruvec->lrugen;
3092 
3093 	lrugen->max_seq = MIN_NR_GENS + 1;
3094 
3095 	for_each_gen_type_zone(gen, type, zone)
3096 		INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
3097 }
3098 
3099 #ifdef CONFIG_MEMCG
3100 void lru_gen_init_memcg(struct mem_cgroup *memcg)
3101 {
3102 }
3103 
3104 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
3105 {
3106 	int nid;
3107 
3108 	for_each_node(nid) {
3109 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3110 
3111 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
3112 					   sizeof(lruvec->lrugen.nr_pages)));
3113 	}
3114 }
3115 #endif
3116 
3117 static int __init init_lru_gen(void)
3118 {
3119 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
3120 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
3121 
3122 	return 0;
3123 };
3124 late_initcall(init_lru_gen);
3125 
3126 #endif /* CONFIG_LRU_GEN */
3127 
3128 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
3129 {
3130 	unsigned long nr[NR_LRU_LISTS];
3131 	unsigned long targets[NR_LRU_LISTS];
3132 	unsigned long nr_to_scan;
3133 	enum lru_list lru;
3134 	unsigned long nr_reclaimed = 0;
3135 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3136 	struct blk_plug plug;
3137 	bool scan_adjusted;
3138 
3139 	get_scan_count(lruvec, sc, nr);
3140 
3141 	/* Record the original scan target for proportional adjustments later */
3142 	memcpy(targets, nr, sizeof(nr));
3143 
3144 	/*
3145 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
3146 	 * event that can occur when there is little memory pressure e.g.
3147 	 * multiple streaming readers/writers. Hence, we do not abort scanning
3148 	 * when the requested number of pages are reclaimed when scanning at
3149 	 * DEF_PRIORITY on the assumption that the fact we are direct
3150 	 * reclaiming implies that kswapd is not keeping up and it is best to
3151 	 * do a batch of work at once. For memcg reclaim one check is made to
3152 	 * abort proportional reclaim if either the file or anon lru has already
3153 	 * dropped to zero at the first pass.
3154 	 */
3155 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
3156 			 sc->priority == DEF_PRIORITY);
3157 
3158 	blk_start_plug(&plug);
3159 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
3160 					nr[LRU_INACTIVE_FILE]) {
3161 		unsigned long nr_anon, nr_file, percentage;
3162 		unsigned long nr_scanned;
3163 
3164 		for_each_evictable_lru(lru) {
3165 			if (nr[lru]) {
3166 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
3167 				nr[lru] -= nr_to_scan;
3168 
3169 				nr_reclaimed += shrink_list(lru, nr_to_scan,
3170 							    lruvec, sc);
3171 			}
3172 		}
3173 
3174 		cond_resched();
3175 
3176 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
3177 			continue;
3178 
3179 		/*
3180 		 * For kswapd and memcg, reclaim at least the number of pages
3181 		 * requested. Ensure that the anon and file LRUs are scanned
3182 		 * proportionally what was requested by get_scan_count(). We
3183 		 * stop reclaiming one LRU and reduce the amount scanning
3184 		 * proportional to the original scan target.
3185 		 */
3186 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
3187 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
3188 
3189 		/*
3190 		 * It's just vindictive to attack the larger once the smaller
3191 		 * has gone to zero.  And given the way we stop scanning the
3192 		 * smaller below, this makes sure that we only make one nudge
3193 		 * towards proportionality once we've got nr_to_reclaim.
3194 		 */
3195 		if (!nr_file || !nr_anon)
3196 			break;
3197 
3198 		if (nr_file > nr_anon) {
3199 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3200 						targets[LRU_ACTIVE_ANON] + 1;
3201 			lru = LRU_BASE;
3202 			percentage = nr_anon * 100 / scan_target;
3203 		} else {
3204 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3205 						targets[LRU_ACTIVE_FILE] + 1;
3206 			lru = LRU_FILE;
3207 			percentage = nr_file * 100 / scan_target;
3208 		}
3209 
3210 		/* Stop scanning the smaller of the LRU */
3211 		nr[lru] = 0;
3212 		nr[lru + LRU_ACTIVE] = 0;
3213 
3214 		/*
3215 		 * Recalculate the other LRU scan count based on its original
3216 		 * scan target and the percentage scanning already complete
3217 		 */
3218 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3219 		nr_scanned = targets[lru] - nr[lru];
3220 		nr[lru] = targets[lru] * (100 - percentage) / 100;
3221 		nr[lru] -= min(nr[lru], nr_scanned);
3222 
3223 		lru += LRU_ACTIVE;
3224 		nr_scanned = targets[lru] - nr[lru];
3225 		nr[lru] = targets[lru] * (100 - percentage) / 100;
3226 		nr[lru] -= min(nr[lru], nr_scanned);
3227 
3228 		scan_adjusted = true;
3229 	}
3230 	blk_finish_plug(&plug);
3231 	sc->nr_reclaimed += nr_reclaimed;
3232 
3233 	/*
3234 	 * Even if we did not try to evict anon pages at all, we want to
3235 	 * rebalance the anon lru active/inactive ratio.
3236 	 */
3237 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3238 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3239 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3240 				   sc, LRU_ACTIVE_ANON);
3241 }
3242 
3243 /* Use reclaim/compaction for costly allocs or under memory pressure */
3244 static bool in_reclaim_compaction(struct scan_control *sc)
3245 {
3246 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3247 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3248 			 sc->priority < DEF_PRIORITY - 2))
3249 		return true;
3250 
3251 	return false;
3252 }
3253 
3254 /*
3255  * Reclaim/compaction is used for high-order allocation requests. It reclaims
3256  * order-0 pages before compacting the zone. should_continue_reclaim() returns
3257  * true if more pages should be reclaimed such that when the page allocator
3258  * calls try_to_compact_pages() that it will have enough free pages to succeed.
3259  * It will give up earlier than that if there is difficulty reclaiming pages.
3260  */
3261 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3262 					unsigned long nr_reclaimed,
3263 					struct scan_control *sc)
3264 {
3265 	unsigned long pages_for_compaction;
3266 	unsigned long inactive_lru_pages;
3267 	int z;
3268 
3269 	/* If not in reclaim/compaction mode, stop */
3270 	if (!in_reclaim_compaction(sc))
3271 		return false;
3272 
3273 	/*
3274 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3275 	 * number of pages that were scanned. This will return to the caller
3276 	 * with the risk reclaim/compaction and the resulting allocation attempt
3277 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3278 	 * allocations through requiring that the full LRU list has been scanned
3279 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3280 	 * scan, but that approximation was wrong, and there were corner cases
3281 	 * where always a non-zero amount of pages were scanned.
3282 	 */
3283 	if (!nr_reclaimed)
3284 		return false;
3285 
3286 	/* If compaction would go ahead or the allocation would succeed, stop */
3287 	for (z = 0; z <= sc->reclaim_idx; z++) {
3288 		struct zone *zone = &pgdat->node_zones[z];
3289 		if (!managed_zone(zone))
3290 			continue;
3291 
3292 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3293 		case COMPACT_SUCCESS:
3294 		case COMPACT_CONTINUE:
3295 			return false;
3296 		default:
3297 			/* check next zone */
3298 			;
3299 		}
3300 	}
3301 
3302 	/*
3303 	 * If we have not reclaimed enough pages for compaction and the
3304 	 * inactive lists are large enough, continue reclaiming
3305 	 */
3306 	pages_for_compaction = compact_gap(sc->order);
3307 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3308 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3309 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3310 
3311 	return inactive_lru_pages > pages_for_compaction;
3312 }
3313 
3314 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3315 {
3316 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3317 	struct mem_cgroup *memcg;
3318 
3319 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3320 	do {
3321 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3322 		unsigned long reclaimed;
3323 		unsigned long scanned;
3324 
3325 		/*
3326 		 * This loop can become CPU-bound when target memcgs
3327 		 * aren't eligible for reclaim - either because they
3328 		 * don't have any reclaimable pages, or because their
3329 		 * memory is explicitly protected. Avoid soft lockups.
3330 		 */
3331 		cond_resched();
3332 
3333 		mem_cgroup_calculate_protection(target_memcg, memcg);
3334 
3335 		if (mem_cgroup_below_min(memcg)) {
3336 			/*
3337 			 * Hard protection.
3338 			 * If there is no reclaimable memory, OOM.
3339 			 */
3340 			continue;
3341 		} else if (mem_cgroup_below_low(memcg)) {
3342 			/*
3343 			 * Soft protection.
3344 			 * Respect the protection only as long as
3345 			 * there is an unprotected supply
3346 			 * of reclaimable memory from other cgroups.
3347 			 */
3348 			if (!sc->memcg_low_reclaim) {
3349 				sc->memcg_low_skipped = 1;
3350 				continue;
3351 			}
3352 			memcg_memory_event(memcg, MEMCG_LOW);
3353 		}
3354 
3355 		reclaimed = sc->nr_reclaimed;
3356 		scanned = sc->nr_scanned;
3357 
3358 		shrink_lruvec(lruvec, sc);
3359 
3360 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3361 			    sc->priority);
3362 
3363 		/* Record the group's reclaim efficiency */
3364 		if (!sc->proactive)
3365 			vmpressure(sc->gfp_mask, memcg, false,
3366 				   sc->nr_scanned - scanned,
3367 				   sc->nr_reclaimed - reclaimed);
3368 
3369 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3370 }
3371 
3372 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3373 {
3374 	struct reclaim_state *reclaim_state = current->reclaim_state;
3375 	unsigned long nr_reclaimed, nr_scanned;
3376 	struct lruvec *target_lruvec;
3377 	bool reclaimable = false;
3378 
3379 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3380 
3381 again:
3382 	memset(&sc->nr, 0, sizeof(sc->nr));
3383 
3384 	nr_reclaimed = sc->nr_reclaimed;
3385 	nr_scanned = sc->nr_scanned;
3386 
3387 	prepare_scan_count(pgdat, sc);
3388 
3389 	shrink_node_memcgs(pgdat, sc);
3390 
3391 	if (reclaim_state) {
3392 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3393 		reclaim_state->reclaimed_slab = 0;
3394 	}
3395 
3396 	/* Record the subtree's reclaim efficiency */
3397 	if (!sc->proactive)
3398 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3399 			   sc->nr_scanned - nr_scanned,
3400 			   sc->nr_reclaimed - nr_reclaimed);
3401 
3402 	if (sc->nr_reclaimed - nr_reclaimed)
3403 		reclaimable = true;
3404 
3405 	if (current_is_kswapd()) {
3406 		/*
3407 		 * If reclaim is isolating dirty pages under writeback,
3408 		 * it implies that the long-lived page allocation rate
3409 		 * is exceeding the page laundering rate. Either the
3410 		 * global limits are not being effective at throttling
3411 		 * processes due to the page distribution throughout
3412 		 * zones or there is heavy usage of a slow backing
3413 		 * device. The only option is to throttle from reclaim
3414 		 * context which is not ideal as there is no guarantee
3415 		 * the dirtying process is throttled in the same way
3416 		 * balance_dirty_pages() manages.
3417 		 *
3418 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3419 		 * count the number of pages under pages flagged for
3420 		 * immediate reclaim and stall if any are encountered
3421 		 * in the nr_immediate check below.
3422 		 */
3423 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3424 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3425 
3426 		/* Allow kswapd to start writing pages during reclaim.*/
3427 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3428 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3429 
3430 		/*
3431 		 * If kswapd scans pages marked for immediate
3432 		 * reclaim and under writeback (nr_immediate), it
3433 		 * implies that pages are cycling through the LRU
3434 		 * faster than they are written so forcibly stall
3435 		 * until some pages complete writeback.
3436 		 */
3437 		if (sc->nr.immediate)
3438 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3439 	}
3440 
3441 	/*
3442 	 * Tag a node/memcg as congested if all the dirty pages were marked
3443 	 * for writeback and immediate reclaim (counted in nr.congested).
3444 	 *
3445 	 * Legacy memcg will stall in page writeback so avoid forcibly
3446 	 * stalling in reclaim_throttle().
3447 	 */
3448 	if ((current_is_kswapd() ||
3449 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3450 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3451 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3452 
3453 	/*
3454 	 * Stall direct reclaim for IO completions if the lruvec is
3455 	 * node is congested. Allow kswapd to continue until it
3456 	 * starts encountering unqueued dirty pages or cycling through
3457 	 * the LRU too quickly.
3458 	 */
3459 	if (!current_is_kswapd() && current_may_throttle() &&
3460 	    !sc->hibernation_mode &&
3461 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3462 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3463 
3464 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3465 				    sc))
3466 		goto again;
3467 
3468 	/*
3469 	 * Kswapd gives up on balancing particular nodes after too
3470 	 * many failures to reclaim anything from them and goes to
3471 	 * sleep. On reclaim progress, reset the failure counter. A
3472 	 * successful direct reclaim run will revive a dormant kswapd.
3473 	 */
3474 	if (reclaimable)
3475 		pgdat->kswapd_failures = 0;
3476 }
3477 
3478 /*
3479  * Returns true if compaction should go ahead for a costly-order request, or
3480  * the allocation would already succeed without compaction. Return false if we
3481  * should reclaim first.
3482  */
3483 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3484 {
3485 	unsigned long watermark;
3486 	enum compact_result suitable;
3487 
3488 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3489 	if (suitable == COMPACT_SUCCESS)
3490 		/* Allocation should succeed already. Don't reclaim. */
3491 		return true;
3492 	if (suitable == COMPACT_SKIPPED)
3493 		/* Compaction cannot yet proceed. Do reclaim. */
3494 		return false;
3495 
3496 	/*
3497 	 * Compaction is already possible, but it takes time to run and there
3498 	 * are potentially other callers using the pages just freed. So proceed
3499 	 * with reclaim to make a buffer of free pages available to give
3500 	 * compaction a reasonable chance of completing and allocating the page.
3501 	 * Note that we won't actually reclaim the whole buffer in one attempt
3502 	 * as the target watermark in should_continue_reclaim() is lower. But if
3503 	 * we are already above the high+gap watermark, don't reclaim at all.
3504 	 */
3505 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3506 
3507 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3508 }
3509 
3510 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3511 {
3512 	/*
3513 	 * If reclaim is making progress greater than 12% efficiency then
3514 	 * wake all the NOPROGRESS throttled tasks.
3515 	 */
3516 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3517 		wait_queue_head_t *wqh;
3518 
3519 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3520 		if (waitqueue_active(wqh))
3521 			wake_up(wqh);
3522 
3523 		return;
3524 	}
3525 
3526 	/*
3527 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3528 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3529 	 * under writeback and marked for immediate reclaim at the tail of the
3530 	 * LRU.
3531 	 */
3532 	if (current_is_kswapd() || cgroup_reclaim(sc))
3533 		return;
3534 
3535 	/* Throttle if making no progress at high prioities. */
3536 	if (sc->priority == 1 && !sc->nr_reclaimed)
3537 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3538 }
3539 
3540 /*
3541  * This is the direct reclaim path, for page-allocating processes.  We only
3542  * try to reclaim pages from zones which will satisfy the caller's allocation
3543  * request.
3544  *
3545  * If a zone is deemed to be full of pinned pages then just give it a light
3546  * scan then give up on it.
3547  */
3548 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3549 {
3550 	struct zoneref *z;
3551 	struct zone *zone;
3552 	unsigned long nr_soft_reclaimed;
3553 	unsigned long nr_soft_scanned;
3554 	gfp_t orig_mask;
3555 	pg_data_t *last_pgdat = NULL;
3556 	pg_data_t *first_pgdat = NULL;
3557 
3558 	/*
3559 	 * If the number of buffer_heads in the machine exceeds the maximum
3560 	 * allowed level, force direct reclaim to scan the highmem zone as
3561 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3562 	 */
3563 	orig_mask = sc->gfp_mask;
3564 	if (buffer_heads_over_limit) {
3565 		sc->gfp_mask |= __GFP_HIGHMEM;
3566 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3567 	}
3568 
3569 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3570 					sc->reclaim_idx, sc->nodemask) {
3571 		/*
3572 		 * Take care memory controller reclaiming has small influence
3573 		 * to global LRU.
3574 		 */
3575 		if (!cgroup_reclaim(sc)) {
3576 			if (!cpuset_zone_allowed(zone,
3577 						 GFP_KERNEL | __GFP_HARDWALL))
3578 				continue;
3579 
3580 			/*
3581 			 * If we already have plenty of memory free for
3582 			 * compaction in this zone, don't free any more.
3583 			 * Even though compaction is invoked for any
3584 			 * non-zero order, only frequent costly order
3585 			 * reclamation is disruptive enough to become a
3586 			 * noticeable problem, like transparent huge
3587 			 * page allocations.
3588 			 */
3589 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3590 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3591 			    compaction_ready(zone, sc)) {
3592 				sc->compaction_ready = true;
3593 				continue;
3594 			}
3595 
3596 			/*
3597 			 * Shrink each node in the zonelist once. If the
3598 			 * zonelist is ordered by zone (not the default) then a
3599 			 * node may be shrunk multiple times but in that case
3600 			 * the user prefers lower zones being preserved.
3601 			 */
3602 			if (zone->zone_pgdat == last_pgdat)
3603 				continue;
3604 
3605 			/*
3606 			 * This steals pages from memory cgroups over softlimit
3607 			 * and returns the number of reclaimed pages and
3608 			 * scanned pages. This works for global memory pressure
3609 			 * and balancing, not for a memcg's limit.
3610 			 */
3611 			nr_soft_scanned = 0;
3612 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3613 						sc->order, sc->gfp_mask,
3614 						&nr_soft_scanned);
3615 			sc->nr_reclaimed += nr_soft_reclaimed;
3616 			sc->nr_scanned += nr_soft_scanned;
3617 			/* need some check for avoid more shrink_zone() */
3618 		}
3619 
3620 		if (!first_pgdat)
3621 			first_pgdat = zone->zone_pgdat;
3622 
3623 		/* See comment about same check for global reclaim above */
3624 		if (zone->zone_pgdat == last_pgdat)
3625 			continue;
3626 		last_pgdat = zone->zone_pgdat;
3627 		shrink_node(zone->zone_pgdat, sc);
3628 	}
3629 
3630 	if (first_pgdat)
3631 		consider_reclaim_throttle(first_pgdat, sc);
3632 
3633 	/*
3634 	 * Restore to original mask to avoid the impact on the caller if we
3635 	 * promoted it to __GFP_HIGHMEM.
3636 	 */
3637 	sc->gfp_mask = orig_mask;
3638 }
3639 
3640 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3641 {
3642 	struct lruvec *target_lruvec;
3643 	unsigned long refaults;
3644 
3645 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3646 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3647 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
3648 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3649 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
3650 }
3651 
3652 /*
3653  * This is the main entry point to direct page reclaim.
3654  *
3655  * If a full scan of the inactive list fails to free enough memory then we
3656  * are "out of memory" and something needs to be killed.
3657  *
3658  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3659  * high - the zone may be full of dirty or under-writeback pages, which this
3660  * caller can't do much about.  We kick the writeback threads and take explicit
3661  * naps in the hope that some of these pages can be written.  But if the
3662  * allocating task holds filesystem locks which prevent writeout this might not
3663  * work, and the allocation attempt will fail.
3664  *
3665  * returns:	0, if no pages reclaimed
3666  * 		else, the number of pages reclaimed
3667  */
3668 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3669 					  struct scan_control *sc)
3670 {
3671 	int initial_priority = sc->priority;
3672 	pg_data_t *last_pgdat;
3673 	struct zoneref *z;
3674 	struct zone *zone;
3675 retry:
3676 	delayacct_freepages_start();
3677 
3678 	if (!cgroup_reclaim(sc))
3679 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3680 
3681 	do {
3682 		if (!sc->proactive)
3683 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3684 					sc->priority);
3685 		sc->nr_scanned = 0;
3686 		shrink_zones(zonelist, sc);
3687 
3688 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3689 			break;
3690 
3691 		if (sc->compaction_ready)
3692 			break;
3693 
3694 		/*
3695 		 * If we're getting trouble reclaiming, start doing
3696 		 * writepage even in laptop mode.
3697 		 */
3698 		if (sc->priority < DEF_PRIORITY - 2)
3699 			sc->may_writepage = 1;
3700 	} while (--sc->priority >= 0);
3701 
3702 	last_pgdat = NULL;
3703 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3704 					sc->nodemask) {
3705 		if (zone->zone_pgdat == last_pgdat)
3706 			continue;
3707 		last_pgdat = zone->zone_pgdat;
3708 
3709 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3710 
3711 		if (cgroup_reclaim(sc)) {
3712 			struct lruvec *lruvec;
3713 
3714 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3715 						   zone->zone_pgdat);
3716 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3717 		}
3718 	}
3719 
3720 	delayacct_freepages_end();
3721 
3722 	if (sc->nr_reclaimed)
3723 		return sc->nr_reclaimed;
3724 
3725 	/* Aborted reclaim to try compaction? don't OOM, then */
3726 	if (sc->compaction_ready)
3727 		return 1;
3728 
3729 	/*
3730 	 * We make inactive:active ratio decisions based on the node's
3731 	 * composition of memory, but a restrictive reclaim_idx or a
3732 	 * memory.low cgroup setting can exempt large amounts of
3733 	 * memory from reclaim. Neither of which are very common, so
3734 	 * instead of doing costly eligibility calculations of the
3735 	 * entire cgroup subtree up front, we assume the estimates are
3736 	 * good, and retry with forcible deactivation if that fails.
3737 	 */
3738 	if (sc->skipped_deactivate) {
3739 		sc->priority = initial_priority;
3740 		sc->force_deactivate = 1;
3741 		sc->skipped_deactivate = 0;
3742 		goto retry;
3743 	}
3744 
3745 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3746 	if (sc->memcg_low_skipped) {
3747 		sc->priority = initial_priority;
3748 		sc->force_deactivate = 0;
3749 		sc->memcg_low_reclaim = 1;
3750 		sc->memcg_low_skipped = 0;
3751 		goto retry;
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 static bool allow_direct_reclaim(pg_data_t *pgdat)
3758 {
3759 	struct zone *zone;
3760 	unsigned long pfmemalloc_reserve = 0;
3761 	unsigned long free_pages = 0;
3762 	int i;
3763 	bool wmark_ok;
3764 
3765 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3766 		return true;
3767 
3768 	for (i = 0; i <= ZONE_NORMAL; i++) {
3769 		zone = &pgdat->node_zones[i];
3770 		if (!managed_zone(zone))
3771 			continue;
3772 
3773 		if (!zone_reclaimable_pages(zone))
3774 			continue;
3775 
3776 		pfmemalloc_reserve += min_wmark_pages(zone);
3777 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3778 	}
3779 
3780 	/* If there are no reserves (unexpected config) then do not throttle */
3781 	if (!pfmemalloc_reserve)
3782 		return true;
3783 
3784 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3785 
3786 	/* kswapd must be awake if processes are being throttled */
3787 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3788 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3789 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3790 
3791 		wake_up_interruptible(&pgdat->kswapd_wait);
3792 	}
3793 
3794 	return wmark_ok;
3795 }
3796 
3797 /*
3798  * Throttle direct reclaimers if backing storage is backed by the network
3799  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3800  * depleted. kswapd will continue to make progress and wake the processes
3801  * when the low watermark is reached.
3802  *
3803  * Returns true if a fatal signal was delivered during throttling. If this
3804  * happens, the page allocator should not consider triggering the OOM killer.
3805  */
3806 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3807 					nodemask_t *nodemask)
3808 {
3809 	struct zoneref *z;
3810 	struct zone *zone;
3811 	pg_data_t *pgdat = NULL;
3812 
3813 	/*
3814 	 * Kernel threads should not be throttled as they may be indirectly
3815 	 * responsible for cleaning pages necessary for reclaim to make forward
3816 	 * progress. kjournald for example may enter direct reclaim while
3817 	 * committing a transaction where throttling it could forcing other
3818 	 * processes to block on log_wait_commit().
3819 	 */
3820 	if (current->flags & PF_KTHREAD)
3821 		goto out;
3822 
3823 	/*
3824 	 * If a fatal signal is pending, this process should not throttle.
3825 	 * It should return quickly so it can exit and free its memory
3826 	 */
3827 	if (fatal_signal_pending(current))
3828 		goto out;
3829 
3830 	/*
3831 	 * Check if the pfmemalloc reserves are ok by finding the first node
3832 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3833 	 * GFP_KERNEL will be required for allocating network buffers when
3834 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3835 	 *
3836 	 * Throttling is based on the first usable node and throttled processes
3837 	 * wait on a queue until kswapd makes progress and wakes them. There
3838 	 * is an affinity then between processes waking up and where reclaim
3839 	 * progress has been made assuming the process wakes on the same node.
3840 	 * More importantly, processes running on remote nodes will not compete
3841 	 * for remote pfmemalloc reserves and processes on different nodes
3842 	 * should make reasonable progress.
3843 	 */
3844 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3845 					gfp_zone(gfp_mask), nodemask) {
3846 		if (zone_idx(zone) > ZONE_NORMAL)
3847 			continue;
3848 
3849 		/* Throttle based on the first usable node */
3850 		pgdat = zone->zone_pgdat;
3851 		if (allow_direct_reclaim(pgdat))
3852 			goto out;
3853 		break;
3854 	}
3855 
3856 	/* If no zone was usable by the allocation flags then do not throttle */
3857 	if (!pgdat)
3858 		goto out;
3859 
3860 	/* Account for the throttling */
3861 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3862 
3863 	/*
3864 	 * If the caller cannot enter the filesystem, it's possible that it
3865 	 * is due to the caller holding an FS lock or performing a journal
3866 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3867 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3868 	 * blocked waiting on the same lock. Instead, throttle for up to a
3869 	 * second before continuing.
3870 	 */
3871 	if (!(gfp_mask & __GFP_FS))
3872 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3873 			allow_direct_reclaim(pgdat), HZ);
3874 	else
3875 		/* Throttle until kswapd wakes the process */
3876 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3877 			allow_direct_reclaim(pgdat));
3878 
3879 	if (fatal_signal_pending(current))
3880 		return true;
3881 
3882 out:
3883 	return false;
3884 }
3885 
3886 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3887 				gfp_t gfp_mask, nodemask_t *nodemask)
3888 {
3889 	unsigned long nr_reclaimed;
3890 	struct scan_control sc = {
3891 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3892 		.gfp_mask = current_gfp_context(gfp_mask),
3893 		.reclaim_idx = gfp_zone(gfp_mask),
3894 		.order = order,
3895 		.nodemask = nodemask,
3896 		.priority = DEF_PRIORITY,
3897 		.may_writepage = !laptop_mode,
3898 		.may_unmap = 1,
3899 		.may_swap = 1,
3900 	};
3901 
3902 	/*
3903 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3904 	 * Confirm they are large enough for max values.
3905 	 */
3906 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3907 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3908 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3909 
3910 	/*
3911 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3912 	 * 1 is returned so that the page allocator does not OOM kill at this
3913 	 * point.
3914 	 */
3915 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3916 		return 1;
3917 
3918 	set_task_reclaim_state(current, &sc.reclaim_state);
3919 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3920 
3921 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3922 
3923 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3924 	set_task_reclaim_state(current, NULL);
3925 
3926 	return nr_reclaimed;
3927 }
3928 
3929 #ifdef CONFIG_MEMCG
3930 
3931 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3932 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3933 						gfp_t gfp_mask, bool noswap,
3934 						pg_data_t *pgdat,
3935 						unsigned long *nr_scanned)
3936 {
3937 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3938 	struct scan_control sc = {
3939 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3940 		.target_mem_cgroup = memcg,
3941 		.may_writepage = !laptop_mode,
3942 		.may_unmap = 1,
3943 		.reclaim_idx = MAX_NR_ZONES - 1,
3944 		.may_swap = !noswap,
3945 	};
3946 
3947 	WARN_ON_ONCE(!current->reclaim_state);
3948 
3949 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3950 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3951 
3952 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3953 						      sc.gfp_mask);
3954 
3955 	/*
3956 	 * NOTE: Although we can get the priority field, using it
3957 	 * here is not a good idea, since it limits the pages we can scan.
3958 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3959 	 * will pick up pages from other mem cgroup's as well. We hack
3960 	 * the priority and make it zero.
3961 	 */
3962 	shrink_lruvec(lruvec, &sc);
3963 
3964 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3965 
3966 	*nr_scanned = sc.nr_scanned;
3967 
3968 	return sc.nr_reclaimed;
3969 }
3970 
3971 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3972 					   unsigned long nr_pages,
3973 					   gfp_t gfp_mask,
3974 					   unsigned int reclaim_options)
3975 {
3976 	unsigned long nr_reclaimed;
3977 	unsigned int noreclaim_flag;
3978 	struct scan_control sc = {
3979 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3980 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3981 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3982 		.reclaim_idx = MAX_NR_ZONES - 1,
3983 		.target_mem_cgroup = memcg,
3984 		.priority = DEF_PRIORITY,
3985 		.may_writepage = !laptop_mode,
3986 		.may_unmap = 1,
3987 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
3988 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
3989 	};
3990 	/*
3991 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3992 	 * equal pressure on all the nodes. This is based on the assumption that
3993 	 * the reclaim does not bail out early.
3994 	 */
3995 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3996 
3997 	set_task_reclaim_state(current, &sc.reclaim_state);
3998 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3999 	noreclaim_flag = memalloc_noreclaim_save();
4000 
4001 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4002 
4003 	memalloc_noreclaim_restore(noreclaim_flag);
4004 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
4005 	set_task_reclaim_state(current, NULL);
4006 
4007 	return nr_reclaimed;
4008 }
4009 #endif
4010 
4011 static void age_active_anon(struct pglist_data *pgdat,
4012 				struct scan_control *sc)
4013 {
4014 	struct mem_cgroup *memcg;
4015 	struct lruvec *lruvec;
4016 
4017 	if (!can_age_anon_pages(pgdat, sc))
4018 		return;
4019 
4020 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
4021 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
4022 		return;
4023 
4024 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4025 	do {
4026 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
4027 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
4028 				   sc, LRU_ACTIVE_ANON);
4029 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
4030 	} while (memcg);
4031 }
4032 
4033 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
4034 {
4035 	int i;
4036 	struct zone *zone;
4037 
4038 	/*
4039 	 * Check for watermark boosts top-down as the higher zones
4040 	 * are more likely to be boosted. Both watermarks and boosts
4041 	 * should not be checked at the same time as reclaim would
4042 	 * start prematurely when there is no boosting and a lower
4043 	 * zone is balanced.
4044 	 */
4045 	for (i = highest_zoneidx; i >= 0; i--) {
4046 		zone = pgdat->node_zones + i;
4047 		if (!managed_zone(zone))
4048 			continue;
4049 
4050 		if (zone->watermark_boost)
4051 			return true;
4052 	}
4053 
4054 	return false;
4055 }
4056 
4057 /*
4058  * Returns true if there is an eligible zone balanced for the request order
4059  * and highest_zoneidx
4060  */
4061 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
4062 {
4063 	int i;
4064 	unsigned long mark = -1;
4065 	struct zone *zone;
4066 
4067 	/*
4068 	 * Check watermarks bottom-up as lower zones are more likely to
4069 	 * meet watermarks.
4070 	 */
4071 	for (i = 0; i <= highest_zoneidx; i++) {
4072 		zone = pgdat->node_zones + i;
4073 
4074 		if (!managed_zone(zone))
4075 			continue;
4076 
4077 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
4078 			mark = wmark_pages(zone, WMARK_PROMO);
4079 		else
4080 			mark = high_wmark_pages(zone);
4081 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
4082 			return true;
4083 	}
4084 
4085 	/*
4086 	 * If a node has no managed zone within highest_zoneidx, it does not
4087 	 * need balancing by definition. This can happen if a zone-restricted
4088 	 * allocation tries to wake a remote kswapd.
4089 	 */
4090 	if (mark == -1)
4091 		return true;
4092 
4093 	return false;
4094 }
4095 
4096 /* Clear pgdat state for congested, dirty or under writeback. */
4097 static void clear_pgdat_congested(pg_data_t *pgdat)
4098 {
4099 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4100 
4101 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
4102 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
4103 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
4104 }
4105 
4106 /*
4107  * Prepare kswapd for sleeping. This verifies that there are no processes
4108  * waiting in throttle_direct_reclaim() and that watermarks have been met.
4109  *
4110  * Returns true if kswapd is ready to sleep
4111  */
4112 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4113 				int highest_zoneidx)
4114 {
4115 	/*
4116 	 * The throttled processes are normally woken up in balance_pgdat() as
4117 	 * soon as allow_direct_reclaim() is true. But there is a potential
4118 	 * race between when kswapd checks the watermarks and a process gets
4119 	 * throttled. There is also a potential race if processes get
4120 	 * throttled, kswapd wakes, a large process exits thereby balancing the
4121 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
4122 	 * the wake up checks. If kswapd is going to sleep, no process should
4123 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4124 	 * the wake up is premature, processes will wake kswapd and get
4125 	 * throttled again. The difference from wake ups in balance_pgdat() is
4126 	 * that here we are under prepare_to_wait().
4127 	 */
4128 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
4129 		wake_up_all(&pgdat->pfmemalloc_wait);
4130 
4131 	/* Hopeless node, leave it to direct reclaim */
4132 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4133 		return true;
4134 
4135 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
4136 		clear_pgdat_congested(pgdat);
4137 		return true;
4138 	}
4139 
4140 	return false;
4141 }
4142 
4143 /*
4144  * kswapd shrinks a node of pages that are at or below the highest usable
4145  * zone that is currently unbalanced.
4146  *
4147  * Returns true if kswapd scanned at least the requested number of pages to
4148  * reclaim or if the lack of progress was due to pages under writeback.
4149  * This is used to determine if the scanning priority needs to be raised.
4150  */
4151 static bool kswapd_shrink_node(pg_data_t *pgdat,
4152 			       struct scan_control *sc)
4153 {
4154 	struct zone *zone;
4155 	int z;
4156 
4157 	/* Reclaim a number of pages proportional to the number of zones */
4158 	sc->nr_to_reclaim = 0;
4159 	for (z = 0; z <= sc->reclaim_idx; z++) {
4160 		zone = pgdat->node_zones + z;
4161 		if (!managed_zone(zone))
4162 			continue;
4163 
4164 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4165 	}
4166 
4167 	/*
4168 	 * Historically care was taken to put equal pressure on all zones but
4169 	 * now pressure is applied based on node LRU order.
4170 	 */
4171 	shrink_node(pgdat, sc);
4172 
4173 	/*
4174 	 * Fragmentation may mean that the system cannot be rebalanced for
4175 	 * high-order allocations. If twice the allocation size has been
4176 	 * reclaimed then recheck watermarks only at order-0 to prevent
4177 	 * excessive reclaim. Assume that a process requested a high-order
4178 	 * can direct reclaim/compact.
4179 	 */
4180 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4181 		sc->order = 0;
4182 
4183 	return sc->nr_scanned >= sc->nr_to_reclaim;
4184 }
4185 
4186 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4187 static inline void
4188 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4189 {
4190 	int i;
4191 	struct zone *zone;
4192 
4193 	for (i = 0; i <= highest_zoneidx; i++) {
4194 		zone = pgdat->node_zones + i;
4195 
4196 		if (!managed_zone(zone))
4197 			continue;
4198 
4199 		if (active)
4200 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4201 		else
4202 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4203 	}
4204 }
4205 
4206 static inline void
4207 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4208 {
4209 	update_reclaim_active(pgdat, highest_zoneidx, true);
4210 }
4211 
4212 static inline void
4213 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4214 {
4215 	update_reclaim_active(pgdat, highest_zoneidx, false);
4216 }
4217 
4218 /*
4219  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4220  * that are eligible for use by the caller until at least one zone is
4221  * balanced.
4222  *
4223  * Returns the order kswapd finished reclaiming at.
4224  *
4225  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4226  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4227  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4228  * or lower is eligible for reclaim until at least one usable zone is
4229  * balanced.
4230  */
4231 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4232 {
4233 	int i;
4234 	unsigned long nr_soft_reclaimed;
4235 	unsigned long nr_soft_scanned;
4236 	unsigned long pflags;
4237 	unsigned long nr_boost_reclaim;
4238 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4239 	bool boosted;
4240 	struct zone *zone;
4241 	struct scan_control sc = {
4242 		.gfp_mask = GFP_KERNEL,
4243 		.order = order,
4244 		.may_unmap = 1,
4245 	};
4246 
4247 	set_task_reclaim_state(current, &sc.reclaim_state);
4248 	psi_memstall_enter(&pflags);
4249 	__fs_reclaim_acquire(_THIS_IP_);
4250 
4251 	count_vm_event(PAGEOUTRUN);
4252 
4253 	/*
4254 	 * Account for the reclaim boost. Note that the zone boost is left in
4255 	 * place so that parallel allocations that are near the watermark will
4256 	 * stall or direct reclaim until kswapd is finished.
4257 	 */
4258 	nr_boost_reclaim = 0;
4259 	for (i = 0; i <= highest_zoneidx; i++) {
4260 		zone = pgdat->node_zones + i;
4261 		if (!managed_zone(zone))
4262 			continue;
4263 
4264 		nr_boost_reclaim += zone->watermark_boost;
4265 		zone_boosts[i] = zone->watermark_boost;
4266 	}
4267 	boosted = nr_boost_reclaim;
4268 
4269 restart:
4270 	set_reclaim_active(pgdat, highest_zoneidx);
4271 	sc.priority = DEF_PRIORITY;
4272 	do {
4273 		unsigned long nr_reclaimed = sc.nr_reclaimed;
4274 		bool raise_priority = true;
4275 		bool balanced;
4276 		bool ret;
4277 
4278 		sc.reclaim_idx = highest_zoneidx;
4279 
4280 		/*
4281 		 * If the number of buffer_heads exceeds the maximum allowed
4282 		 * then consider reclaiming from all zones. This has a dual
4283 		 * purpose -- on 64-bit systems it is expected that
4284 		 * buffer_heads are stripped during active rotation. On 32-bit
4285 		 * systems, highmem pages can pin lowmem memory and shrinking
4286 		 * buffers can relieve lowmem pressure. Reclaim may still not
4287 		 * go ahead if all eligible zones for the original allocation
4288 		 * request are balanced to avoid excessive reclaim from kswapd.
4289 		 */
4290 		if (buffer_heads_over_limit) {
4291 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4292 				zone = pgdat->node_zones + i;
4293 				if (!managed_zone(zone))
4294 					continue;
4295 
4296 				sc.reclaim_idx = i;
4297 				break;
4298 			}
4299 		}
4300 
4301 		/*
4302 		 * If the pgdat is imbalanced then ignore boosting and preserve
4303 		 * the watermarks for a later time and restart. Note that the
4304 		 * zone watermarks will be still reset at the end of balancing
4305 		 * on the grounds that the normal reclaim should be enough to
4306 		 * re-evaluate if boosting is required when kswapd next wakes.
4307 		 */
4308 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4309 		if (!balanced && nr_boost_reclaim) {
4310 			nr_boost_reclaim = 0;
4311 			goto restart;
4312 		}
4313 
4314 		/*
4315 		 * If boosting is not active then only reclaim if there are no
4316 		 * eligible zones. Note that sc.reclaim_idx is not used as
4317 		 * buffer_heads_over_limit may have adjusted it.
4318 		 */
4319 		if (!nr_boost_reclaim && balanced)
4320 			goto out;
4321 
4322 		/* Limit the priority of boosting to avoid reclaim writeback */
4323 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4324 			raise_priority = false;
4325 
4326 		/*
4327 		 * Do not writeback or swap pages for boosted reclaim. The
4328 		 * intent is to relieve pressure not issue sub-optimal IO
4329 		 * from reclaim context. If no pages are reclaimed, the
4330 		 * reclaim will be aborted.
4331 		 */
4332 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4333 		sc.may_swap = !nr_boost_reclaim;
4334 
4335 		/*
4336 		 * Do some background aging of the anon list, to give
4337 		 * pages a chance to be referenced before reclaiming. All
4338 		 * pages are rotated regardless of classzone as this is
4339 		 * about consistent aging.
4340 		 */
4341 		age_active_anon(pgdat, &sc);
4342 
4343 		/*
4344 		 * If we're getting trouble reclaiming, start doing writepage
4345 		 * even in laptop mode.
4346 		 */
4347 		if (sc.priority < DEF_PRIORITY - 2)
4348 			sc.may_writepage = 1;
4349 
4350 		/* Call soft limit reclaim before calling shrink_node. */
4351 		sc.nr_scanned = 0;
4352 		nr_soft_scanned = 0;
4353 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4354 						sc.gfp_mask, &nr_soft_scanned);
4355 		sc.nr_reclaimed += nr_soft_reclaimed;
4356 
4357 		/*
4358 		 * There should be no need to raise the scanning priority if
4359 		 * enough pages are already being scanned that that high
4360 		 * watermark would be met at 100% efficiency.
4361 		 */
4362 		if (kswapd_shrink_node(pgdat, &sc))
4363 			raise_priority = false;
4364 
4365 		/*
4366 		 * If the low watermark is met there is no need for processes
4367 		 * to be throttled on pfmemalloc_wait as they should not be
4368 		 * able to safely make forward progress. Wake them
4369 		 */
4370 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4371 				allow_direct_reclaim(pgdat))
4372 			wake_up_all(&pgdat->pfmemalloc_wait);
4373 
4374 		/* Check if kswapd should be suspending */
4375 		__fs_reclaim_release(_THIS_IP_);
4376 		ret = try_to_freeze();
4377 		__fs_reclaim_acquire(_THIS_IP_);
4378 		if (ret || kthread_should_stop())
4379 			break;
4380 
4381 		/*
4382 		 * Raise priority if scanning rate is too low or there was no
4383 		 * progress in reclaiming pages
4384 		 */
4385 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4386 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4387 
4388 		/*
4389 		 * If reclaim made no progress for a boost, stop reclaim as
4390 		 * IO cannot be queued and it could be an infinite loop in
4391 		 * extreme circumstances.
4392 		 */
4393 		if (nr_boost_reclaim && !nr_reclaimed)
4394 			break;
4395 
4396 		if (raise_priority || !nr_reclaimed)
4397 			sc.priority--;
4398 	} while (sc.priority >= 1);
4399 
4400 	if (!sc.nr_reclaimed)
4401 		pgdat->kswapd_failures++;
4402 
4403 out:
4404 	clear_reclaim_active(pgdat, highest_zoneidx);
4405 
4406 	/* If reclaim was boosted, account for the reclaim done in this pass */
4407 	if (boosted) {
4408 		unsigned long flags;
4409 
4410 		for (i = 0; i <= highest_zoneidx; i++) {
4411 			if (!zone_boosts[i])
4412 				continue;
4413 
4414 			/* Increments are under the zone lock */
4415 			zone = pgdat->node_zones + i;
4416 			spin_lock_irqsave(&zone->lock, flags);
4417 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4418 			spin_unlock_irqrestore(&zone->lock, flags);
4419 		}
4420 
4421 		/*
4422 		 * As there is now likely space, wakeup kcompact to defragment
4423 		 * pageblocks.
4424 		 */
4425 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4426 	}
4427 
4428 	snapshot_refaults(NULL, pgdat);
4429 	__fs_reclaim_release(_THIS_IP_);
4430 	psi_memstall_leave(&pflags);
4431 	set_task_reclaim_state(current, NULL);
4432 
4433 	/*
4434 	 * Return the order kswapd stopped reclaiming at as
4435 	 * prepare_kswapd_sleep() takes it into account. If another caller
4436 	 * entered the allocator slow path while kswapd was awake, order will
4437 	 * remain at the higher level.
4438 	 */
4439 	return sc.order;
4440 }
4441 
4442 /*
4443  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4444  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4445  * not a valid index then either kswapd runs for first time or kswapd couldn't
4446  * sleep after previous reclaim attempt (node is still unbalanced). In that
4447  * case return the zone index of the previous kswapd reclaim cycle.
4448  */
4449 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4450 					   enum zone_type prev_highest_zoneidx)
4451 {
4452 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4453 
4454 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4455 }
4456 
4457 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4458 				unsigned int highest_zoneidx)
4459 {
4460 	long remaining = 0;
4461 	DEFINE_WAIT(wait);
4462 
4463 	if (freezing(current) || kthread_should_stop())
4464 		return;
4465 
4466 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4467 
4468 	/*
4469 	 * Try to sleep for a short interval. Note that kcompactd will only be
4470 	 * woken if it is possible to sleep for a short interval. This is
4471 	 * deliberate on the assumption that if reclaim cannot keep an
4472 	 * eligible zone balanced that it's also unlikely that compaction will
4473 	 * succeed.
4474 	 */
4475 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4476 		/*
4477 		 * Compaction records what page blocks it recently failed to
4478 		 * isolate pages from and skips them in the future scanning.
4479 		 * When kswapd is going to sleep, it is reasonable to assume
4480 		 * that pages and compaction may succeed so reset the cache.
4481 		 */
4482 		reset_isolation_suitable(pgdat);
4483 
4484 		/*
4485 		 * We have freed the memory, now we should compact it to make
4486 		 * allocation of the requested order possible.
4487 		 */
4488 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4489 
4490 		remaining = schedule_timeout(HZ/10);
4491 
4492 		/*
4493 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4494 		 * order. The values will either be from a wakeup request or
4495 		 * the previous request that slept prematurely.
4496 		 */
4497 		if (remaining) {
4498 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4499 					kswapd_highest_zoneidx(pgdat,
4500 							highest_zoneidx));
4501 
4502 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4503 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4504 		}
4505 
4506 		finish_wait(&pgdat->kswapd_wait, &wait);
4507 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4508 	}
4509 
4510 	/*
4511 	 * After a short sleep, check if it was a premature sleep. If not, then
4512 	 * go fully to sleep until explicitly woken up.
4513 	 */
4514 	if (!remaining &&
4515 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4516 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4517 
4518 		/*
4519 		 * vmstat counters are not perfectly accurate and the estimated
4520 		 * value for counters such as NR_FREE_PAGES can deviate from the
4521 		 * true value by nr_online_cpus * threshold. To avoid the zone
4522 		 * watermarks being breached while under pressure, we reduce the
4523 		 * per-cpu vmstat threshold while kswapd is awake and restore
4524 		 * them before going back to sleep.
4525 		 */
4526 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4527 
4528 		if (!kthread_should_stop())
4529 			schedule();
4530 
4531 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4532 	} else {
4533 		if (remaining)
4534 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4535 		else
4536 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4537 	}
4538 	finish_wait(&pgdat->kswapd_wait, &wait);
4539 }
4540 
4541 /*
4542  * The background pageout daemon, started as a kernel thread
4543  * from the init process.
4544  *
4545  * This basically trickles out pages so that we have _some_
4546  * free memory available even if there is no other activity
4547  * that frees anything up. This is needed for things like routing
4548  * etc, where we otherwise might have all activity going on in
4549  * asynchronous contexts that cannot page things out.
4550  *
4551  * If there are applications that are active memory-allocators
4552  * (most normal use), this basically shouldn't matter.
4553  */
4554 static int kswapd(void *p)
4555 {
4556 	unsigned int alloc_order, reclaim_order;
4557 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4558 	pg_data_t *pgdat = (pg_data_t *)p;
4559 	struct task_struct *tsk = current;
4560 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4561 
4562 	if (!cpumask_empty(cpumask))
4563 		set_cpus_allowed_ptr(tsk, cpumask);
4564 
4565 	/*
4566 	 * Tell the memory management that we're a "memory allocator",
4567 	 * and that if we need more memory we should get access to it
4568 	 * regardless (see "__alloc_pages()"). "kswapd" should
4569 	 * never get caught in the normal page freeing logic.
4570 	 *
4571 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4572 	 * you need a small amount of memory in order to be able to
4573 	 * page out something else, and this flag essentially protects
4574 	 * us from recursively trying to free more memory as we're
4575 	 * trying to free the first piece of memory in the first place).
4576 	 */
4577 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4578 	set_freezable();
4579 
4580 	WRITE_ONCE(pgdat->kswapd_order, 0);
4581 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4582 	atomic_set(&pgdat->nr_writeback_throttled, 0);
4583 	for ( ; ; ) {
4584 		bool ret;
4585 
4586 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4587 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4588 							highest_zoneidx);
4589 
4590 kswapd_try_sleep:
4591 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4592 					highest_zoneidx);
4593 
4594 		/* Read the new order and highest_zoneidx */
4595 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4596 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4597 							highest_zoneidx);
4598 		WRITE_ONCE(pgdat->kswapd_order, 0);
4599 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4600 
4601 		ret = try_to_freeze();
4602 		if (kthread_should_stop())
4603 			break;
4604 
4605 		/*
4606 		 * We can speed up thawing tasks if we don't call balance_pgdat
4607 		 * after returning from the refrigerator
4608 		 */
4609 		if (ret)
4610 			continue;
4611 
4612 		/*
4613 		 * Reclaim begins at the requested order but if a high-order
4614 		 * reclaim fails then kswapd falls back to reclaiming for
4615 		 * order-0. If that happens, kswapd will consider sleeping
4616 		 * for the order it finished reclaiming at (reclaim_order)
4617 		 * but kcompactd is woken to compact for the original
4618 		 * request (alloc_order).
4619 		 */
4620 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4621 						alloc_order);
4622 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4623 						highest_zoneidx);
4624 		if (reclaim_order < alloc_order)
4625 			goto kswapd_try_sleep;
4626 	}
4627 
4628 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4629 
4630 	return 0;
4631 }
4632 
4633 /*
4634  * A zone is low on free memory or too fragmented for high-order memory.  If
4635  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4636  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4637  * has failed or is not needed, still wake up kcompactd if only compaction is
4638  * needed.
4639  */
4640 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4641 		   enum zone_type highest_zoneidx)
4642 {
4643 	pg_data_t *pgdat;
4644 	enum zone_type curr_idx;
4645 
4646 	if (!managed_zone(zone))
4647 		return;
4648 
4649 	if (!cpuset_zone_allowed(zone, gfp_flags))
4650 		return;
4651 
4652 	pgdat = zone->zone_pgdat;
4653 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4654 
4655 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4656 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4657 
4658 	if (READ_ONCE(pgdat->kswapd_order) < order)
4659 		WRITE_ONCE(pgdat->kswapd_order, order);
4660 
4661 	if (!waitqueue_active(&pgdat->kswapd_wait))
4662 		return;
4663 
4664 	/* Hopeless node, leave it to direct reclaim if possible */
4665 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4666 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4667 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4668 		/*
4669 		 * There may be plenty of free memory available, but it's too
4670 		 * fragmented for high-order allocations.  Wake up kcompactd
4671 		 * and rely on compaction_suitable() to determine if it's
4672 		 * needed.  If it fails, it will defer subsequent attempts to
4673 		 * ratelimit its work.
4674 		 */
4675 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4676 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4677 		return;
4678 	}
4679 
4680 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4681 				      gfp_flags);
4682 	wake_up_interruptible(&pgdat->kswapd_wait);
4683 }
4684 
4685 #ifdef CONFIG_HIBERNATION
4686 /*
4687  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4688  * freed pages.
4689  *
4690  * Rather than trying to age LRUs the aim is to preserve the overall
4691  * LRU order by reclaiming preferentially
4692  * inactive > active > active referenced > active mapped
4693  */
4694 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4695 {
4696 	struct scan_control sc = {
4697 		.nr_to_reclaim = nr_to_reclaim,
4698 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4699 		.reclaim_idx = MAX_NR_ZONES - 1,
4700 		.priority = DEF_PRIORITY,
4701 		.may_writepage = 1,
4702 		.may_unmap = 1,
4703 		.may_swap = 1,
4704 		.hibernation_mode = 1,
4705 	};
4706 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4707 	unsigned long nr_reclaimed;
4708 	unsigned int noreclaim_flag;
4709 
4710 	fs_reclaim_acquire(sc.gfp_mask);
4711 	noreclaim_flag = memalloc_noreclaim_save();
4712 	set_task_reclaim_state(current, &sc.reclaim_state);
4713 
4714 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4715 
4716 	set_task_reclaim_state(current, NULL);
4717 	memalloc_noreclaim_restore(noreclaim_flag);
4718 	fs_reclaim_release(sc.gfp_mask);
4719 
4720 	return nr_reclaimed;
4721 }
4722 #endif /* CONFIG_HIBERNATION */
4723 
4724 /*
4725  * This kswapd start function will be called by init and node-hot-add.
4726  */
4727 void kswapd_run(int nid)
4728 {
4729 	pg_data_t *pgdat = NODE_DATA(nid);
4730 
4731 	pgdat_kswapd_lock(pgdat);
4732 	if (!pgdat->kswapd) {
4733 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4734 		if (IS_ERR(pgdat->kswapd)) {
4735 			/* failure at boot is fatal */
4736 			BUG_ON(system_state < SYSTEM_RUNNING);
4737 			pr_err("Failed to start kswapd on node %d\n", nid);
4738 			pgdat->kswapd = NULL;
4739 		}
4740 	}
4741 	pgdat_kswapd_unlock(pgdat);
4742 }
4743 
4744 /*
4745  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4746  * be holding mem_hotplug_begin/done().
4747  */
4748 void kswapd_stop(int nid)
4749 {
4750 	pg_data_t *pgdat = NODE_DATA(nid);
4751 	struct task_struct *kswapd;
4752 
4753 	pgdat_kswapd_lock(pgdat);
4754 	kswapd = pgdat->kswapd;
4755 	if (kswapd) {
4756 		kthread_stop(kswapd);
4757 		pgdat->kswapd = NULL;
4758 	}
4759 	pgdat_kswapd_unlock(pgdat);
4760 }
4761 
4762 static int __init kswapd_init(void)
4763 {
4764 	int nid;
4765 
4766 	swap_setup();
4767 	for_each_node_state(nid, N_MEMORY)
4768  		kswapd_run(nid);
4769 	return 0;
4770 }
4771 
4772 module_init(kswapd_init)
4773 
4774 #ifdef CONFIG_NUMA
4775 /*
4776  * Node reclaim mode
4777  *
4778  * If non-zero call node_reclaim when the number of free pages falls below
4779  * the watermarks.
4780  */
4781 int node_reclaim_mode __read_mostly;
4782 
4783 /*
4784  * Priority for NODE_RECLAIM. This determines the fraction of pages
4785  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4786  * a zone.
4787  */
4788 #define NODE_RECLAIM_PRIORITY 4
4789 
4790 /*
4791  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4792  * occur.
4793  */
4794 int sysctl_min_unmapped_ratio = 1;
4795 
4796 /*
4797  * If the number of slab pages in a zone grows beyond this percentage then
4798  * slab reclaim needs to occur.
4799  */
4800 int sysctl_min_slab_ratio = 5;
4801 
4802 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4803 {
4804 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4805 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4806 		node_page_state(pgdat, NR_ACTIVE_FILE);
4807 
4808 	/*
4809 	 * It's possible for there to be more file mapped pages than
4810 	 * accounted for by the pages on the file LRU lists because
4811 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4812 	 */
4813 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4814 }
4815 
4816 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4817 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4818 {
4819 	unsigned long nr_pagecache_reclaimable;
4820 	unsigned long delta = 0;
4821 
4822 	/*
4823 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4824 	 * potentially reclaimable. Otherwise, we have to worry about
4825 	 * pages like swapcache and node_unmapped_file_pages() provides
4826 	 * a better estimate
4827 	 */
4828 	if (node_reclaim_mode & RECLAIM_UNMAP)
4829 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4830 	else
4831 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4832 
4833 	/* If we can't clean pages, remove dirty pages from consideration */
4834 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4835 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4836 
4837 	/* Watch for any possible underflows due to delta */
4838 	if (unlikely(delta > nr_pagecache_reclaimable))
4839 		delta = nr_pagecache_reclaimable;
4840 
4841 	return nr_pagecache_reclaimable - delta;
4842 }
4843 
4844 /*
4845  * Try to free up some pages from this node through reclaim.
4846  */
4847 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4848 {
4849 	/* Minimum pages needed in order to stay on node */
4850 	const unsigned long nr_pages = 1 << order;
4851 	struct task_struct *p = current;
4852 	unsigned int noreclaim_flag;
4853 	struct scan_control sc = {
4854 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4855 		.gfp_mask = current_gfp_context(gfp_mask),
4856 		.order = order,
4857 		.priority = NODE_RECLAIM_PRIORITY,
4858 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4859 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4860 		.may_swap = 1,
4861 		.reclaim_idx = gfp_zone(gfp_mask),
4862 	};
4863 	unsigned long pflags;
4864 
4865 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4866 					   sc.gfp_mask);
4867 
4868 	cond_resched();
4869 	psi_memstall_enter(&pflags);
4870 	fs_reclaim_acquire(sc.gfp_mask);
4871 	/*
4872 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4873 	 */
4874 	noreclaim_flag = memalloc_noreclaim_save();
4875 	set_task_reclaim_state(p, &sc.reclaim_state);
4876 
4877 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
4878 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
4879 		/*
4880 		 * Free memory by calling shrink node with increasing
4881 		 * priorities until we have enough memory freed.
4882 		 */
4883 		do {
4884 			shrink_node(pgdat, &sc);
4885 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4886 	}
4887 
4888 	set_task_reclaim_state(p, NULL);
4889 	memalloc_noreclaim_restore(noreclaim_flag);
4890 	fs_reclaim_release(sc.gfp_mask);
4891 	psi_memstall_leave(&pflags);
4892 
4893 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4894 
4895 	return sc.nr_reclaimed >= nr_pages;
4896 }
4897 
4898 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4899 {
4900 	int ret;
4901 
4902 	/*
4903 	 * Node reclaim reclaims unmapped file backed pages and
4904 	 * slab pages if we are over the defined limits.
4905 	 *
4906 	 * A small portion of unmapped file backed pages is needed for
4907 	 * file I/O otherwise pages read by file I/O will be immediately
4908 	 * thrown out if the node is overallocated. So we do not reclaim
4909 	 * if less than a specified percentage of the node is used by
4910 	 * unmapped file backed pages.
4911 	 */
4912 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4913 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4914 	    pgdat->min_slab_pages)
4915 		return NODE_RECLAIM_FULL;
4916 
4917 	/*
4918 	 * Do not scan if the allocation should not be delayed.
4919 	 */
4920 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4921 		return NODE_RECLAIM_NOSCAN;
4922 
4923 	/*
4924 	 * Only run node reclaim on the local node or on nodes that do not
4925 	 * have associated processors. This will favor the local processor
4926 	 * over remote processors and spread off node memory allocations
4927 	 * as wide as possible.
4928 	 */
4929 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4930 		return NODE_RECLAIM_NOSCAN;
4931 
4932 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4933 		return NODE_RECLAIM_NOSCAN;
4934 
4935 	ret = __node_reclaim(pgdat, gfp_mask, order);
4936 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4937 
4938 	if (!ret)
4939 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4940 
4941 	return ret;
4942 }
4943 #endif
4944 
4945 void check_move_unevictable_pages(struct pagevec *pvec)
4946 {
4947 	struct folio_batch fbatch;
4948 	unsigned i;
4949 
4950 	folio_batch_init(&fbatch);
4951 	for (i = 0; i < pvec->nr; i++) {
4952 		struct page *page = pvec->pages[i];
4953 
4954 		if (PageTransTail(page))
4955 			continue;
4956 		folio_batch_add(&fbatch, page_folio(page));
4957 	}
4958 	check_move_unevictable_folios(&fbatch);
4959 }
4960 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4961 
4962 /**
4963  * check_move_unevictable_folios - Move evictable folios to appropriate zone
4964  * lru list
4965  * @fbatch: Batch of lru folios to check.
4966  *
4967  * Checks folios for evictability, if an evictable folio is in the unevictable
4968  * lru list, moves it to the appropriate evictable lru list. This function
4969  * should be only used for lru folios.
4970  */
4971 void check_move_unevictable_folios(struct folio_batch *fbatch)
4972 {
4973 	struct lruvec *lruvec = NULL;
4974 	int pgscanned = 0;
4975 	int pgrescued = 0;
4976 	int i;
4977 
4978 	for (i = 0; i < fbatch->nr; i++) {
4979 		struct folio *folio = fbatch->folios[i];
4980 		int nr_pages = folio_nr_pages(folio);
4981 
4982 		pgscanned += nr_pages;
4983 
4984 		/* block memcg migration while the folio moves between lrus */
4985 		if (!folio_test_clear_lru(folio))
4986 			continue;
4987 
4988 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
4989 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
4990 			lruvec_del_folio(lruvec, folio);
4991 			folio_clear_unevictable(folio);
4992 			lruvec_add_folio(lruvec, folio);
4993 			pgrescued += nr_pages;
4994 		}
4995 		folio_set_lru(folio);
4996 	}
4997 
4998 	if (lruvec) {
4999 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
5000 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
5001 		unlock_page_lruvec_irq(lruvec);
5002 	} else if (pgscanned) {
5003 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
5004 	}
5005 }
5006 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
5007