1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 /* The highest zone to isolate pages for reclaim from */ 88 enum zone_type reclaim_idx; 89 90 unsigned int may_writepage:1; 91 92 /* Can mapped pages be reclaimed? */ 93 unsigned int may_unmap:1; 94 95 /* Can pages be swapped as part of reclaim? */ 96 unsigned int may_swap:1; 97 98 /* Can cgroups be reclaimed below their normal consumption range? */ 99 unsigned int may_thrash:1; 100 101 unsigned int hibernation_mode:1; 102 103 /* One of the zones is ready for compaction */ 104 unsigned int compaction_ready:1; 105 106 /* Incremented by the number of inactive pages that were scanned */ 107 unsigned long nr_scanned; 108 109 /* Number of pages freed so far during a call to shrink_zones() */ 110 unsigned long nr_reclaimed; 111 }; 112 113 #ifdef ARCH_HAS_PREFETCH 114 #define prefetch_prev_lru_page(_page, _base, _field) \ 115 do { \ 116 if ((_page)->lru.prev != _base) { \ 117 struct page *prev; \ 118 \ 119 prev = lru_to_page(&(_page->lru)); \ 120 prefetch(&prev->_field); \ 121 } \ 122 } while (0) 123 #else 124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 125 #endif 126 127 #ifdef ARCH_HAS_PREFETCHW 128 #define prefetchw_prev_lru_page(_page, _base, _field) \ 129 do { \ 130 if ((_page)->lru.prev != _base) { \ 131 struct page *prev; \ 132 \ 133 prev = lru_to_page(&(_page->lru)); \ 134 prefetchw(&prev->_field); \ 135 } \ 136 } while (0) 137 #else 138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 139 #endif 140 141 /* 142 * From 0 .. 100. Higher means more swappy. 143 */ 144 int vm_swappiness = 60; 145 /* 146 * The total number of pages which are beyond the high watermark within all 147 * zones. 148 */ 149 unsigned long vm_total_pages; 150 151 static LIST_HEAD(shrinker_list); 152 static DECLARE_RWSEM(shrinker_rwsem); 153 154 #ifdef CONFIG_MEMCG 155 static bool global_reclaim(struct scan_control *sc) 156 { 157 return !sc->target_mem_cgroup; 158 } 159 160 /** 161 * sane_reclaim - is the usual dirty throttling mechanism operational? 162 * @sc: scan_control in question 163 * 164 * The normal page dirty throttling mechanism in balance_dirty_pages() is 165 * completely broken with the legacy memcg and direct stalling in 166 * shrink_page_list() is used for throttling instead, which lacks all the 167 * niceties such as fairness, adaptive pausing, bandwidth proportional 168 * allocation and configurability. 169 * 170 * This function tests whether the vmscan currently in progress can assume 171 * that the normal dirty throttling mechanism is operational. 172 */ 173 static bool sane_reclaim(struct scan_control *sc) 174 { 175 struct mem_cgroup *memcg = sc->target_mem_cgroup; 176 177 if (!memcg) 178 return true; 179 #ifdef CONFIG_CGROUP_WRITEBACK 180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 181 return true; 182 #endif 183 return false; 184 } 185 #else 186 static bool global_reclaim(struct scan_control *sc) 187 { 188 return true; 189 } 190 191 static bool sane_reclaim(struct scan_control *sc) 192 { 193 return true; 194 } 195 #endif 196 197 /* 198 * This misses isolated pages which are not accounted for to save counters. 199 * As the data only determines if reclaim or compaction continues, it is 200 * not expected that isolated pages will be a dominating factor. 201 */ 202 unsigned long zone_reclaimable_pages(struct zone *zone) 203 { 204 unsigned long nr; 205 206 nr = zone_page_state_snapshot(zone, NR_ZONE_LRU_FILE); 207 if (get_nr_swap_pages() > 0) 208 nr += zone_page_state_snapshot(zone, NR_ZONE_LRU_ANON); 209 210 return nr; 211 } 212 213 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 214 { 215 unsigned long nr; 216 217 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 218 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 219 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 220 221 if (get_nr_swap_pages() > 0) 222 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 223 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 224 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 225 226 return nr; 227 } 228 229 bool pgdat_reclaimable(struct pglist_data *pgdat) 230 { 231 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) < 232 pgdat_reclaimable_pages(pgdat) * 6; 233 } 234 235 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) 236 { 237 if (!mem_cgroup_disabled()) 238 return mem_cgroup_get_lru_size(lruvec, lru); 239 240 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 241 } 242 243 /* 244 * Add a shrinker callback to be called from the vm. 245 */ 246 int register_shrinker(struct shrinker *shrinker) 247 { 248 size_t size = sizeof(*shrinker->nr_deferred); 249 250 if (shrinker->flags & SHRINKER_NUMA_AWARE) 251 size *= nr_node_ids; 252 253 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 254 if (!shrinker->nr_deferred) 255 return -ENOMEM; 256 257 down_write(&shrinker_rwsem); 258 list_add_tail(&shrinker->list, &shrinker_list); 259 up_write(&shrinker_rwsem); 260 return 0; 261 } 262 EXPORT_SYMBOL(register_shrinker); 263 264 /* 265 * Remove one 266 */ 267 void unregister_shrinker(struct shrinker *shrinker) 268 { 269 down_write(&shrinker_rwsem); 270 list_del(&shrinker->list); 271 up_write(&shrinker_rwsem); 272 kfree(shrinker->nr_deferred); 273 } 274 EXPORT_SYMBOL(unregister_shrinker); 275 276 #define SHRINK_BATCH 128 277 278 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 279 struct shrinker *shrinker, 280 unsigned long nr_scanned, 281 unsigned long nr_eligible) 282 { 283 unsigned long freed = 0; 284 unsigned long long delta; 285 long total_scan; 286 long freeable; 287 long nr; 288 long new_nr; 289 int nid = shrinkctl->nid; 290 long batch_size = shrinker->batch ? shrinker->batch 291 : SHRINK_BATCH; 292 293 freeable = shrinker->count_objects(shrinker, shrinkctl); 294 if (freeable == 0) 295 return 0; 296 297 /* 298 * copy the current shrinker scan count into a local variable 299 * and zero it so that other concurrent shrinker invocations 300 * don't also do this scanning work. 301 */ 302 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 303 304 total_scan = nr; 305 delta = (4 * nr_scanned) / shrinker->seeks; 306 delta *= freeable; 307 do_div(delta, nr_eligible + 1); 308 total_scan += delta; 309 if (total_scan < 0) { 310 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 311 shrinker->scan_objects, total_scan); 312 total_scan = freeable; 313 } 314 315 /* 316 * We need to avoid excessive windup on filesystem shrinkers 317 * due to large numbers of GFP_NOFS allocations causing the 318 * shrinkers to return -1 all the time. This results in a large 319 * nr being built up so when a shrink that can do some work 320 * comes along it empties the entire cache due to nr >>> 321 * freeable. This is bad for sustaining a working set in 322 * memory. 323 * 324 * Hence only allow the shrinker to scan the entire cache when 325 * a large delta change is calculated directly. 326 */ 327 if (delta < freeable / 4) 328 total_scan = min(total_scan, freeable / 2); 329 330 /* 331 * Avoid risking looping forever due to too large nr value: 332 * never try to free more than twice the estimate number of 333 * freeable entries. 334 */ 335 if (total_scan > freeable * 2) 336 total_scan = freeable * 2; 337 338 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 339 nr_scanned, nr_eligible, 340 freeable, delta, total_scan); 341 342 /* 343 * Normally, we should not scan less than batch_size objects in one 344 * pass to avoid too frequent shrinker calls, but if the slab has less 345 * than batch_size objects in total and we are really tight on memory, 346 * we will try to reclaim all available objects, otherwise we can end 347 * up failing allocations although there are plenty of reclaimable 348 * objects spread over several slabs with usage less than the 349 * batch_size. 350 * 351 * We detect the "tight on memory" situations by looking at the total 352 * number of objects we want to scan (total_scan). If it is greater 353 * than the total number of objects on slab (freeable), we must be 354 * scanning at high prio and therefore should try to reclaim as much as 355 * possible. 356 */ 357 while (total_scan >= batch_size || 358 total_scan >= freeable) { 359 unsigned long ret; 360 unsigned long nr_to_scan = min(batch_size, total_scan); 361 362 shrinkctl->nr_to_scan = nr_to_scan; 363 ret = shrinker->scan_objects(shrinker, shrinkctl); 364 if (ret == SHRINK_STOP) 365 break; 366 freed += ret; 367 368 count_vm_events(SLABS_SCANNED, nr_to_scan); 369 total_scan -= nr_to_scan; 370 371 cond_resched(); 372 } 373 374 /* 375 * move the unused scan count back into the shrinker in a 376 * manner that handles concurrent updates. If we exhausted the 377 * scan, there is no need to do an update. 378 */ 379 if (total_scan > 0) 380 new_nr = atomic_long_add_return(total_scan, 381 &shrinker->nr_deferred[nid]); 382 else 383 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 384 385 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 386 return freed; 387 } 388 389 /** 390 * shrink_slab - shrink slab caches 391 * @gfp_mask: allocation context 392 * @nid: node whose slab caches to target 393 * @memcg: memory cgroup whose slab caches to target 394 * @nr_scanned: pressure numerator 395 * @nr_eligible: pressure denominator 396 * 397 * Call the shrink functions to age shrinkable caches. 398 * 399 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 400 * unaware shrinkers will receive a node id of 0 instead. 401 * 402 * @memcg specifies the memory cgroup to target. If it is not NULL, 403 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 404 * objects from the memory cgroup specified. Otherwise, only unaware 405 * shrinkers are called. 406 * 407 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 408 * the available objects should be scanned. Page reclaim for example 409 * passes the number of pages scanned and the number of pages on the 410 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 411 * when it encountered mapped pages. The ratio is further biased by 412 * the ->seeks setting of the shrink function, which indicates the 413 * cost to recreate an object relative to that of an LRU page. 414 * 415 * Returns the number of reclaimed slab objects. 416 */ 417 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 418 struct mem_cgroup *memcg, 419 unsigned long nr_scanned, 420 unsigned long nr_eligible) 421 { 422 struct shrinker *shrinker; 423 unsigned long freed = 0; 424 425 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 426 return 0; 427 428 if (nr_scanned == 0) 429 nr_scanned = SWAP_CLUSTER_MAX; 430 431 if (!down_read_trylock(&shrinker_rwsem)) { 432 /* 433 * If we would return 0, our callers would understand that we 434 * have nothing else to shrink and give up trying. By returning 435 * 1 we keep it going and assume we'll be able to shrink next 436 * time. 437 */ 438 freed = 1; 439 goto out; 440 } 441 442 list_for_each_entry(shrinker, &shrinker_list, list) { 443 struct shrink_control sc = { 444 .gfp_mask = gfp_mask, 445 .nid = nid, 446 .memcg = memcg, 447 }; 448 449 /* 450 * If kernel memory accounting is disabled, we ignore 451 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 452 * passing NULL for memcg. 453 */ 454 if (memcg_kmem_enabled() && 455 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 456 continue; 457 458 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 459 sc.nid = 0; 460 461 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 462 } 463 464 up_read(&shrinker_rwsem); 465 out: 466 cond_resched(); 467 return freed; 468 } 469 470 void drop_slab_node(int nid) 471 { 472 unsigned long freed; 473 474 do { 475 struct mem_cgroup *memcg = NULL; 476 477 freed = 0; 478 do { 479 freed += shrink_slab(GFP_KERNEL, nid, memcg, 480 1000, 1000); 481 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 482 } while (freed > 10); 483 } 484 485 void drop_slab(void) 486 { 487 int nid; 488 489 for_each_online_node(nid) 490 drop_slab_node(nid); 491 } 492 493 static inline int is_page_cache_freeable(struct page *page) 494 { 495 /* 496 * A freeable page cache page is referenced only by the caller 497 * that isolated the page, the page cache radix tree and 498 * optional buffer heads at page->private. 499 */ 500 return page_count(page) - page_has_private(page) == 2; 501 } 502 503 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 504 { 505 if (current->flags & PF_SWAPWRITE) 506 return 1; 507 if (!inode_write_congested(inode)) 508 return 1; 509 if (inode_to_bdi(inode) == current->backing_dev_info) 510 return 1; 511 return 0; 512 } 513 514 /* 515 * We detected a synchronous write error writing a page out. Probably 516 * -ENOSPC. We need to propagate that into the address_space for a subsequent 517 * fsync(), msync() or close(). 518 * 519 * The tricky part is that after writepage we cannot touch the mapping: nothing 520 * prevents it from being freed up. But we have a ref on the page and once 521 * that page is locked, the mapping is pinned. 522 * 523 * We're allowed to run sleeping lock_page() here because we know the caller has 524 * __GFP_FS. 525 */ 526 static void handle_write_error(struct address_space *mapping, 527 struct page *page, int error) 528 { 529 lock_page(page); 530 if (page_mapping(page) == mapping) 531 mapping_set_error(mapping, error); 532 unlock_page(page); 533 } 534 535 /* possible outcome of pageout() */ 536 typedef enum { 537 /* failed to write page out, page is locked */ 538 PAGE_KEEP, 539 /* move page to the active list, page is locked */ 540 PAGE_ACTIVATE, 541 /* page has been sent to the disk successfully, page is unlocked */ 542 PAGE_SUCCESS, 543 /* page is clean and locked */ 544 PAGE_CLEAN, 545 } pageout_t; 546 547 /* 548 * pageout is called by shrink_page_list() for each dirty page. 549 * Calls ->writepage(). 550 */ 551 static pageout_t pageout(struct page *page, struct address_space *mapping, 552 struct scan_control *sc) 553 { 554 /* 555 * If the page is dirty, only perform writeback if that write 556 * will be non-blocking. To prevent this allocation from being 557 * stalled by pagecache activity. But note that there may be 558 * stalls if we need to run get_block(). We could test 559 * PagePrivate for that. 560 * 561 * If this process is currently in __generic_file_write_iter() against 562 * this page's queue, we can perform writeback even if that 563 * will block. 564 * 565 * If the page is swapcache, write it back even if that would 566 * block, for some throttling. This happens by accident, because 567 * swap_backing_dev_info is bust: it doesn't reflect the 568 * congestion state of the swapdevs. Easy to fix, if needed. 569 */ 570 if (!is_page_cache_freeable(page)) 571 return PAGE_KEEP; 572 if (!mapping) { 573 /* 574 * Some data journaling orphaned pages can have 575 * page->mapping == NULL while being dirty with clean buffers. 576 */ 577 if (page_has_private(page)) { 578 if (try_to_free_buffers(page)) { 579 ClearPageDirty(page); 580 pr_info("%s: orphaned page\n", __func__); 581 return PAGE_CLEAN; 582 } 583 } 584 return PAGE_KEEP; 585 } 586 if (mapping->a_ops->writepage == NULL) 587 return PAGE_ACTIVATE; 588 if (!may_write_to_inode(mapping->host, sc)) 589 return PAGE_KEEP; 590 591 if (clear_page_dirty_for_io(page)) { 592 int res; 593 struct writeback_control wbc = { 594 .sync_mode = WB_SYNC_NONE, 595 .nr_to_write = SWAP_CLUSTER_MAX, 596 .range_start = 0, 597 .range_end = LLONG_MAX, 598 .for_reclaim = 1, 599 }; 600 601 SetPageReclaim(page); 602 res = mapping->a_ops->writepage(page, &wbc); 603 if (res < 0) 604 handle_write_error(mapping, page, res); 605 if (res == AOP_WRITEPAGE_ACTIVATE) { 606 ClearPageReclaim(page); 607 return PAGE_ACTIVATE; 608 } 609 610 if (!PageWriteback(page)) { 611 /* synchronous write or broken a_ops? */ 612 ClearPageReclaim(page); 613 } 614 trace_mm_vmscan_writepage(page); 615 inc_node_page_state(page, NR_VMSCAN_WRITE); 616 return PAGE_SUCCESS; 617 } 618 619 return PAGE_CLEAN; 620 } 621 622 /* 623 * Same as remove_mapping, but if the page is removed from the mapping, it 624 * gets returned with a refcount of 0. 625 */ 626 static int __remove_mapping(struct address_space *mapping, struct page *page, 627 bool reclaimed) 628 { 629 unsigned long flags; 630 631 BUG_ON(!PageLocked(page)); 632 BUG_ON(mapping != page_mapping(page)); 633 634 spin_lock_irqsave(&mapping->tree_lock, flags); 635 /* 636 * The non racy check for a busy page. 637 * 638 * Must be careful with the order of the tests. When someone has 639 * a ref to the page, it may be possible that they dirty it then 640 * drop the reference. So if PageDirty is tested before page_count 641 * here, then the following race may occur: 642 * 643 * get_user_pages(&page); 644 * [user mapping goes away] 645 * write_to(page); 646 * !PageDirty(page) [good] 647 * SetPageDirty(page); 648 * put_page(page); 649 * !page_count(page) [good, discard it] 650 * 651 * [oops, our write_to data is lost] 652 * 653 * Reversing the order of the tests ensures such a situation cannot 654 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 655 * load is not satisfied before that of page->_refcount. 656 * 657 * Note that if SetPageDirty is always performed via set_page_dirty, 658 * and thus under tree_lock, then this ordering is not required. 659 */ 660 if (!page_ref_freeze(page, 2)) 661 goto cannot_free; 662 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 663 if (unlikely(PageDirty(page))) { 664 page_ref_unfreeze(page, 2); 665 goto cannot_free; 666 } 667 668 if (PageSwapCache(page)) { 669 swp_entry_t swap = { .val = page_private(page) }; 670 mem_cgroup_swapout(page, swap); 671 __delete_from_swap_cache(page); 672 spin_unlock_irqrestore(&mapping->tree_lock, flags); 673 swapcache_free(swap); 674 } else { 675 void (*freepage)(struct page *); 676 void *shadow = NULL; 677 678 freepage = mapping->a_ops->freepage; 679 /* 680 * Remember a shadow entry for reclaimed file cache in 681 * order to detect refaults, thus thrashing, later on. 682 * 683 * But don't store shadows in an address space that is 684 * already exiting. This is not just an optizimation, 685 * inode reclaim needs to empty out the radix tree or 686 * the nodes are lost. Don't plant shadows behind its 687 * back. 688 * 689 * We also don't store shadows for DAX mappings because the 690 * only page cache pages found in these are zero pages 691 * covering holes, and because we don't want to mix DAX 692 * exceptional entries and shadow exceptional entries in the 693 * same page_tree. 694 */ 695 if (reclaimed && page_is_file_cache(page) && 696 !mapping_exiting(mapping) && !dax_mapping(mapping)) 697 shadow = workingset_eviction(mapping, page); 698 __delete_from_page_cache(page, shadow); 699 spin_unlock_irqrestore(&mapping->tree_lock, flags); 700 701 if (freepage != NULL) 702 freepage(page); 703 } 704 705 return 1; 706 707 cannot_free: 708 spin_unlock_irqrestore(&mapping->tree_lock, flags); 709 return 0; 710 } 711 712 /* 713 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 714 * someone else has a ref on the page, abort and return 0. If it was 715 * successfully detached, return 1. Assumes the caller has a single ref on 716 * this page. 717 */ 718 int remove_mapping(struct address_space *mapping, struct page *page) 719 { 720 if (__remove_mapping(mapping, page, false)) { 721 /* 722 * Unfreezing the refcount with 1 rather than 2 effectively 723 * drops the pagecache ref for us without requiring another 724 * atomic operation. 725 */ 726 page_ref_unfreeze(page, 1); 727 return 1; 728 } 729 return 0; 730 } 731 732 /** 733 * putback_lru_page - put previously isolated page onto appropriate LRU list 734 * @page: page to be put back to appropriate lru list 735 * 736 * Add previously isolated @page to appropriate LRU list. 737 * Page may still be unevictable for other reasons. 738 * 739 * lru_lock must not be held, interrupts must be enabled. 740 */ 741 void putback_lru_page(struct page *page) 742 { 743 bool is_unevictable; 744 int was_unevictable = PageUnevictable(page); 745 746 VM_BUG_ON_PAGE(PageLRU(page), page); 747 748 redo: 749 ClearPageUnevictable(page); 750 751 if (page_evictable(page)) { 752 /* 753 * For evictable pages, we can use the cache. 754 * In event of a race, worst case is we end up with an 755 * unevictable page on [in]active list. 756 * We know how to handle that. 757 */ 758 is_unevictable = false; 759 lru_cache_add(page); 760 } else { 761 /* 762 * Put unevictable pages directly on zone's unevictable 763 * list. 764 */ 765 is_unevictable = true; 766 add_page_to_unevictable_list(page); 767 /* 768 * When racing with an mlock or AS_UNEVICTABLE clearing 769 * (page is unlocked) make sure that if the other thread 770 * does not observe our setting of PG_lru and fails 771 * isolation/check_move_unevictable_pages, 772 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 773 * the page back to the evictable list. 774 * 775 * The other side is TestClearPageMlocked() or shmem_lock(). 776 */ 777 smp_mb(); 778 } 779 780 /* 781 * page's status can change while we move it among lru. If an evictable 782 * page is on unevictable list, it never be freed. To avoid that, 783 * check after we added it to the list, again. 784 */ 785 if (is_unevictable && page_evictable(page)) { 786 if (!isolate_lru_page(page)) { 787 put_page(page); 788 goto redo; 789 } 790 /* This means someone else dropped this page from LRU 791 * So, it will be freed or putback to LRU again. There is 792 * nothing to do here. 793 */ 794 } 795 796 if (was_unevictable && !is_unevictable) 797 count_vm_event(UNEVICTABLE_PGRESCUED); 798 else if (!was_unevictable && is_unevictable) 799 count_vm_event(UNEVICTABLE_PGCULLED); 800 801 put_page(page); /* drop ref from isolate */ 802 } 803 804 enum page_references { 805 PAGEREF_RECLAIM, 806 PAGEREF_RECLAIM_CLEAN, 807 PAGEREF_KEEP, 808 PAGEREF_ACTIVATE, 809 }; 810 811 static enum page_references page_check_references(struct page *page, 812 struct scan_control *sc) 813 { 814 int referenced_ptes, referenced_page; 815 unsigned long vm_flags; 816 817 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 818 &vm_flags); 819 referenced_page = TestClearPageReferenced(page); 820 821 /* 822 * Mlock lost the isolation race with us. Let try_to_unmap() 823 * move the page to the unevictable list. 824 */ 825 if (vm_flags & VM_LOCKED) 826 return PAGEREF_RECLAIM; 827 828 if (referenced_ptes) { 829 if (PageSwapBacked(page)) 830 return PAGEREF_ACTIVATE; 831 /* 832 * All mapped pages start out with page table 833 * references from the instantiating fault, so we need 834 * to look twice if a mapped file page is used more 835 * than once. 836 * 837 * Mark it and spare it for another trip around the 838 * inactive list. Another page table reference will 839 * lead to its activation. 840 * 841 * Note: the mark is set for activated pages as well 842 * so that recently deactivated but used pages are 843 * quickly recovered. 844 */ 845 SetPageReferenced(page); 846 847 if (referenced_page || referenced_ptes > 1) 848 return PAGEREF_ACTIVATE; 849 850 /* 851 * Activate file-backed executable pages after first usage. 852 */ 853 if (vm_flags & VM_EXEC) 854 return PAGEREF_ACTIVATE; 855 856 return PAGEREF_KEEP; 857 } 858 859 /* Reclaim if clean, defer dirty pages to writeback */ 860 if (referenced_page && !PageSwapBacked(page)) 861 return PAGEREF_RECLAIM_CLEAN; 862 863 return PAGEREF_RECLAIM; 864 } 865 866 /* Check if a page is dirty or under writeback */ 867 static void page_check_dirty_writeback(struct page *page, 868 bool *dirty, bool *writeback) 869 { 870 struct address_space *mapping; 871 872 /* 873 * Anonymous pages are not handled by flushers and must be written 874 * from reclaim context. Do not stall reclaim based on them 875 */ 876 if (!page_is_file_cache(page)) { 877 *dirty = false; 878 *writeback = false; 879 return; 880 } 881 882 /* By default assume that the page flags are accurate */ 883 *dirty = PageDirty(page); 884 *writeback = PageWriteback(page); 885 886 /* Verify dirty/writeback state if the filesystem supports it */ 887 if (!page_has_private(page)) 888 return; 889 890 mapping = page_mapping(page); 891 if (mapping && mapping->a_ops->is_dirty_writeback) 892 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 893 } 894 895 /* 896 * shrink_page_list() returns the number of reclaimed pages 897 */ 898 static unsigned long shrink_page_list(struct list_head *page_list, 899 struct pglist_data *pgdat, 900 struct scan_control *sc, 901 enum ttu_flags ttu_flags, 902 unsigned long *ret_nr_dirty, 903 unsigned long *ret_nr_unqueued_dirty, 904 unsigned long *ret_nr_congested, 905 unsigned long *ret_nr_writeback, 906 unsigned long *ret_nr_immediate, 907 bool force_reclaim) 908 { 909 LIST_HEAD(ret_pages); 910 LIST_HEAD(free_pages); 911 int pgactivate = 0; 912 unsigned long nr_unqueued_dirty = 0; 913 unsigned long nr_dirty = 0; 914 unsigned long nr_congested = 0; 915 unsigned long nr_reclaimed = 0; 916 unsigned long nr_writeback = 0; 917 unsigned long nr_immediate = 0; 918 919 cond_resched(); 920 921 while (!list_empty(page_list)) { 922 struct address_space *mapping; 923 struct page *page; 924 int may_enter_fs; 925 enum page_references references = PAGEREF_RECLAIM_CLEAN; 926 bool dirty, writeback; 927 bool lazyfree = false; 928 int ret = SWAP_SUCCESS; 929 930 cond_resched(); 931 932 page = lru_to_page(page_list); 933 list_del(&page->lru); 934 935 if (!trylock_page(page)) 936 goto keep; 937 938 VM_BUG_ON_PAGE(PageActive(page), page); 939 940 sc->nr_scanned++; 941 942 if (unlikely(!page_evictable(page))) 943 goto cull_mlocked; 944 945 if (!sc->may_unmap && page_mapped(page)) 946 goto keep_locked; 947 948 /* Double the slab pressure for mapped and swapcache pages */ 949 if (page_mapped(page) || PageSwapCache(page)) 950 sc->nr_scanned++; 951 952 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 953 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 954 955 /* 956 * The number of dirty pages determines if a zone is marked 957 * reclaim_congested which affects wait_iff_congested. kswapd 958 * will stall and start writing pages if the tail of the LRU 959 * is all dirty unqueued pages. 960 */ 961 page_check_dirty_writeback(page, &dirty, &writeback); 962 if (dirty || writeback) 963 nr_dirty++; 964 965 if (dirty && !writeback) 966 nr_unqueued_dirty++; 967 968 /* 969 * Treat this page as congested if the underlying BDI is or if 970 * pages are cycling through the LRU so quickly that the 971 * pages marked for immediate reclaim are making it to the 972 * end of the LRU a second time. 973 */ 974 mapping = page_mapping(page); 975 if (((dirty || writeback) && mapping && 976 inode_write_congested(mapping->host)) || 977 (writeback && PageReclaim(page))) 978 nr_congested++; 979 980 /* 981 * If a page at the tail of the LRU is under writeback, there 982 * are three cases to consider. 983 * 984 * 1) If reclaim is encountering an excessive number of pages 985 * under writeback and this page is both under writeback and 986 * PageReclaim then it indicates that pages are being queued 987 * for IO but are being recycled through the LRU before the 988 * IO can complete. Waiting on the page itself risks an 989 * indefinite stall if it is impossible to writeback the 990 * page due to IO error or disconnected storage so instead 991 * note that the LRU is being scanned too quickly and the 992 * caller can stall after page list has been processed. 993 * 994 * 2) Global or new memcg reclaim encounters a page that is 995 * not marked for immediate reclaim, or the caller does not 996 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 997 * not to fs). In this case mark the page for immediate 998 * reclaim and continue scanning. 999 * 1000 * Require may_enter_fs because we would wait on fs, which 1001 * may not have submitted IO yet. And the loop driver might 1002 * enter reclaim, and deadlock if it waits on a page for 1003 * which it is needed to do the write (loop masks off 1004 * __GFP_IO|__GFP_FS for this reason); but more thought 1005 * would probably show more reasons. 1006 * 1007 * 3) Legacy memcg encounters a page that is already marked 1008 * PageReclaim. memcg does not have any dirty pages 1009 * throttling so we could easily OOM just because too many 1010 * pages are in writeback and there is nothing else to 1011 * reclaim. Wait for the writeback to complete. 1012 */ 1013 if (PageWriteback(page)) { 1014 /* Case 1 above */ 1015 if (current_is_kswapd() && 1016 PageReclaim(page) && 1017 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1018 nr_immediate++; 1019 goto keep_locked; 1020 1021 /* Case 2 above */ 1022 } else if (sane_reclaim(sc) || 1023 !PageReclaim(page) || !may_enter_fs) { 1024 /* 1025 * This is slightly racy - end_page_writeback() 1026 * might have just cleared PageReclaim, then 1027 * setting PageReclaim here end up interpreted 1028 * as PageReadahead - but that does not matter 1029 * enough to care. What we do want is for this 1030 * page to have PageReclaim set next time memcg 1031 * reclaim reaches the tests above, so it will 1032 * then wait_on_page_writeback() to avoid OOM; 1033 * and it's also appropriate in global reclaim. 1034 */ 1035 SetPageReclaim(page); 1036 nr_writeback++; 1037 goto keep_locked; 1038 1039 /* Case 3 above */ 1040 } else { 1041 unlock_page(page); 1042 wait_on_page_writeback(page); 1043 /* then go back and try same page again */ 1044 list_add_tail(&page->lru, page_list); 1045 continue; 1046 } 1047 } 1048 1049 if (!force_reclaim) 1050 references = page_check_references(page, sc); 1051 1052 switch (references) { 1053 case PAGEREF_ACTIVATE: 1054 goto activate_locked; 1055 case PAGEREF_KEEP: 1056 goto keep_locked; 1057 case PAGEREF_RECLAIM: 1058 case PAGEREF_RECLAIM_CLEAN: 1059 ; /* try to reclaim the page below */ 1060 } 1061 1062 /* 1063 * Anonymous process memory has backing store? 1064 * Try to allocate it some swap space here. 1065 */ 1066 if (PageAnon(page) && !PageSwapCache(page)) { 1067 if (!(sc->gfp_mask & __GFP_IO)) 1068 goto keep_locked; 1069 if (!add_to_swap(page, page_list)) 1070 goto activate_locked; 1071 lazyfree = true; 1072 may_enter_fs = 1; 1073 1074 /* Adding to swap updated mapping */ 1075 mapping = page_mapping(page); 1076 } else if (unlikely(PageTransHuge(page))) { 1077 /* Split file THP */ 1078 if (split_huge_page_to_list(page, page_list)) 1079 goto keep_locked; 1080 } 1081 1082 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1083 1084 /* 1085 * The page is mapped into the page tables of one or more 1086 * processes. Try to unmap it here. 1087 */ 1088 if (page_mapped(page) && mapping) { 1089 switch (ret = try_to_unmap(page, lazyfree ? 1090 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1091 (ttu_flags | TTU_BATCH_FLUSH))) { 1092 case SWAP_FAIL: 1093 goto activate_locked; 1094 case SWAP_AGAIN: 1095 goto keep_locked; 1096 case SWAP_MLOCK: 1097 goto cull_mlocked; 1098 case SWAP_LZFREE: 1099 goto lazyfree; 1100 case SWAP_SUCCESS: 1101 ; /* try to free the page below */ 1102 } 1103 } 1104 1105 if (PageDirty(page)) { 1106 /* 1107 * Only kswapd can writeback filesystem pages to 1108 * avoid risk of stack overflow but only writeback 1109 * if many dirty pages have been encountered. 1110 */ 1111 if (page_is_file_cache(page) && 1112 (!current_is_kswapd() || 1113 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1114 /* 1115 * Immediately reclaim when written back. 1116 * Similar in principal to deactivate_page() 1117 * except we already have the page isolated 1118 * and know it's dirty 1119 */ 1120 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1121 SetPageReclaim(page); 1122 1123 goto keep_locked; 1124 } 1125 1126 if (references == PAGEREF_RECLAIM_CLEAN) 1127 goto keep_locked; 1128 if (!may_enter_fs) 1129 goto keep_locked; 1130 if (!sc->may_writepage) 1131 goto keep_locked; 1132 1133 /* 1134 * Page is dirty. Flush the TLB if a writable entry 1135 * potentially exists to avoid CPU writes after IO 1136 * starts and then write it out here. 1137 */ 1138 try_to_unmap_flush_dirty(); 1139 switch (pageout(page, mapping, sc)) { 1140 case PAGE_KEEP: 1141 goto keep_locked; 1142 case PAGE_ACTIVATE: 1143 goto activate_locked; 1144 case PAGE_SUCCESS: 1145 if (PageWriteback(page)) 1146 goto keep; 1147 if (PageDirty(page)) 1148 goto keep; 1149 1150 /* 1151 * A synchronous write - probably a ramdisk. Go 1152 * ahead and try to reclaim the page. 1153 */ 1154 if (!trylock_page(page)) 1155 goto keep; 1156 if (PageDirty(page) || PageWriteback(page)) 1157 goto keep_locked; 1158 mapping = page_mapping(page); 1159 case PAGE_CLEAN: 1160 ; /* try to free the page below */ 1161 } 1162 } 1163 1164 /* 1165 * If the page has buffers, try to free the buffer mappings 1166 * associated with this page. If we succeed we try to free 1167 * the page as well. 1168 * 1169 * We do this even if the page is PageDirty(). 1170 * try_to_release_page() does not perform I/O, but it is 1171 * possible for a page to have PageDirty set, but it is actually 1172 * clean (all its buffers are clean). This happens if the 1173 * buffers were written out directly, with submit_bh(). ext3 1174 * will do this, as well as the blockdev mapping. 1175 * try_to_release_page() will discover that cleanness and will 1176 * drop the buffers and mark the page clean - it can be freed. 1177 * 1178 * Rarely, pages can have buffers and no ->mapping. These are 1179 * the pages which were not successfully invalidated in 1180 * truncate_complete_page(). We try to drop those buffers here 1181 * and if that worked, and the page is no longer mapped into 1182 * process address space (page_count == 1) it can be freed. 1183 * Otherwise, leave the page on the LRU so it is swappable. 1184 */ 1185 if (page_has_private(page)) { 1186 if (!try_to_release_page(page, sc->gfp_mask)) 1187 goto activate_locked; 1188 if (!mapping && page_count(page) == 1) { 1189 unlock_page(page); 1190 if (put_page_testzero(page)) 1191 goto free_it; 1192 else { 1193 /* 1194 * rare race with speculative reference. 1195 * the speculative reference will free 1196 * this page shortly, so we may 1197 * increment nr_reclaimed here (and 1198 * leave it off the LRU). 1199 */ 1200 nr_reclaimed++; 1201 continue; 1202 } 1203 } 1204 } 1205 1206 lazyfree: 1207 if (!mapping || !__remove_mapping(mapping, page, true)) 1208 goto keep_locked; 1209 1210 /* 1211 * At this point, we have no other references and there is 1212 * no way to pick any more up (removed from LRU, removed 1213 * from pagecache). Can use non-atomic bitops now (and 1214 * we obviously don't have to worry about waking up a process 1215 * waiting on the page lock, because there are no references. 1216 */ 1217 __ClearPageLocked(page); 1218 free_it: 1219 if (ret == SWAP_LZFREE) 1220 count_vm_event(PGLAZYFREED); 1221 1222 nr_reclaimed++; 1223 1224 /* 1225 * Is there need to periodically free_page_list? It would 1226 * appear not as the counts should be low 1227 */ 1228 list_add(&page->lru, &free_pages); 1229 continue; 1230 1231 cull_mlocked: 1232 if (PageSwapCache(page)) 1233 try_to_free_swap(page); 1234 unlock_page(page); 1235 list_add(&page->lru, &ret_pages); 1236 continue; 1237 1238 activate_locked: 1239 /* Not a candidate for swapping, so reclaim swap space. */ 1240 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1241 try_to_free_swap(page); 1242 VM_BUG_ON_PAGE(PageActive(page), page); 1243 SetPageActive(page); 1244 pgactivate++; 1245 keep_locked: 1246 unlock_page(page); 1247 keep: 1248 list_add(&page->lru, &ret_pages); 1249 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1250 } 1251 1252 mem_cgroup_uncharge_list(&free_pages); 1253 try_to_unmap_flush(); 1254 free_hot_cold_page_list(&free_pages, true); 1255 1256 list_splice(&ret_pages, page_list); 1257 count_vm_events(PGACTIVATE, pgactivate); 1258 1259 *ret_nr_dirty += nr_dirty; 1260 *ret_nr_congested += nr_congested; 1261 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1262 *ret_nr_writeback += nr_writeback; 1263 *ret_nr_immediate += nr_immediate; 1264 return nr_reclaimed; 1265 } 1266 1267 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1268 struct list_head *page_list) 1269 { 1270 struct scan_control sc = { 1271 .gfp_mask = GFP_KERNEL, 1272 .priority = DEF_PRIORITY, 1273 .may_unmap = 1, 1274 }; 1275 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1276 struct page *page, *next; 1277 LIST_HEAD(clean_pages); 1278 1279 list_for_each_entry_safe(page, next, page_list, lru) { 1280 if (page_is_file_cache(page) && !PageDirty(page) && 1281 !__PageMovable(page)) { 1282 ClearPageActive(page); 1283 list_move(&page->lru, &clean_pages); 1284 } 1285 } 1286 1287 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1288 TTU_UNMAP|TTU_IGNORE_ACCESS, 1289 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1290 list_splice(&clean_pages, page_list); 1291 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1292 return ret; 1293 } 1294 1295 /* 1296 * Attempt to remove the specified page from its LRU. Only take this page 1297 * if it is of the appropriate PageActive status. Pages which are being 1298 * freed elsewhere are also ignored. 1299 * 1300 * page: page to consider 1301 * mode: one of the LRU isolation modes defined above 1302 * 1303 * returns 0 on success, -ve errno on failure. 1304 */ 1305 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1306 { 1307 int ret = -EINVAL; 1308 1309 /* Only take pages on the LRU. */ 1310 if (!PageLRU(page)) 1311 return ret; 1312 1313 /* Compaction should not handle unevictable pages but CMA can do so */ 1314 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1315 return ret; 1316 1317 ret = -EBUSY; 1318 1319 /* 1320 * To minimise LRU disruption, the caller can indicate that it only 1321 * wants to isolate pages it will be able to operate on without 1322 * blocking - clean pages for the most part. 1323 * 1324 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1325 * is used by reclaim when it is cannot write to backing storage 1326 * 1327 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1328 * that it is possible to migrate without blocking 1329 */ 1330 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1331 /* All the caller can do on PageWriteback is block */ 1332 if (PageWriteback(page)) 1333 return ret; 1334 1335 if (PageDirty(page)) { 1336 struct address_space *mapping; 1337 1338 /* ISOLATE_CLEAN means only clean pages */ 1339 if (mode & ISOLATE_CLEAN) 1340 return ret; 1341 1342 /* 1343 * Only pages without mappings or that have a 1344 * ->migratepage callback are possible to migrate 1345 * without blocking 1346 */ 1347 mapping = page_mapping(page); 1348 if (mapping && !mapping->a_ops->migratepage) 1349 return ret; 1350 } 1351 } 1352 1353 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1354 return ret; 1355 1356 if (likely(get_page_unless_zero(page))) { 1357 /* 1358 * Be careful not to clear PageLRU until after we're 1359 * sure the page is not being freed elsewhere -- the 1360 * page release code relies on it. 1361 */ 1362 ClearPageLRU(page); 1363 ret = 0; 1364 } 1365 1366 return ret; 1367 } 1368 1369 /* 1370 * zone_lru_lock is heavily contended. Some of the functions that 1371 * shrink the lists perform better by taking out a batch of pages 1372 * and working on them outside the LRU lock. 1373 * 1374 * For pagecache intensive workloads, this function is the hottest 1375 * spot in the kernel (apart from copy_*_user functions). 1376 * 1377 * Appropriate locks must be held before calling this function. 1378 * 1379 * @nr_to_scan: The number of pages to look through on the list. 1380 * @lruvec: The LRU vector to pull pages from. 1381 * @dst: The temp list to put pages on to. 1382 * @nr_scanned: The number of pages that were scanned. 1383 * @sc: The scan_control struct for this reclaim session 1384 * @mode: One of the LRU isolation modes 1385 * @lru: LRU list id for isolating 1386 * 1387 * returns how many pages were moved onto *@dst. 1388 */ 1389 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1390 struct lruvec *lruvec, struct list_head *dst, 1391 unsigned long *nr_scanned, struct scan_control *sc, 1392 isolate_mode_t mode, enum lru_list lru) 1393 { 1394 struct list_head *src = &lruvec->lists[lru]; 1395 unsigned long nr_taken = 0; 1396 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1397 unsigned long scan, nr_pages; 1398 LIST_HEAD(pages_skipped); 1399 1400 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1401 !list_empty(src); scan++) { 1402 struct page *page; 1403 1404 page = lru_to_page(src); 1405 prefetchw_prev_lru_page(page, src, flags); 1406 1407 VM_BUG_ON_PAGE(!PageLRU(page), page); 1408 1409 if (page_zonenum(page) > sc->reclaim_idx) { 1410 list_move(&page->lru, &pages_skipped); 1411 continue; 1412 } 1413 1414 switch (__isolate_lru_page(page, mode)) { 1415 case 0: 1416 nr_pages = hpage_nr_pages(page); 1417 nr_taken += nr_pages; 1418 nr_zone_taken[page_zonenum(page)] += nr_pages; 1419 list_move(&page->lru, dst); 1420 break; 1421 1422 case -EBUSY: 1423 /* else it is being freed elsewhere */ 1424 list_move(&page->lru, src); 1425 continue; 1426 1427 default: 1428 BUG(); 1429 } 1430 } 1431 1432 /* 1433 * Splice any skipped pages to the start of the LRU list. Note that 1434 * this disrupts the LRU order when reclaiming for lower zones but 1435 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1436 * scanning would soon rescan the same pages to skip and put the 1437 * system at risk of premature OOM. 1438 */ 1439 if (!list_empty(&pages_skipped)) 1440 list_splice(&pages_skipped, src); 1441 *nr_scanned = scan; 1442 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan, 1443 nr_taken, mode, is_file_lru(lru)); 1444 for (scan = 0; scan < MAX_NR_ZONES; scan++) { 1445 nr_pages = nr_zone_taken[scan]; 1446 if (!nr_pages) 1447 continue; 1448 1449 update_lru_size(lruvec, lru, scan, -nr_pages); 1450 } 1451 return nr_taken; 1452 } 1453 1454 /** 1455 * isolate_lru_page - tries to isolate a page from its LRU list 1456 * @page: page to isolate from its LRU list 1457 * 1458 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1459 * vmstat statistic corresponding to whatever LRU list the page was on. 1460 * 1461 * Returns 0 if the page was removed from an LRU list. 1462 * Returns -EBUSY if the page was not on an LRU list. 1463 * 1464 * The returned page will have PageLRU() cleared. If it was found on 1465 * the active list, it will have PageActive set. If it was found on 1466 * the unevictable list, it will have the PageUnevictable bit set. That flag 1467 * may need to be cleared by the caller before letting the page go. 1468 * 1469 * The vmstat statistic corresponding to the list on which the page was 1470 * found will be decremented. 1471 * 1472 * Restrictions: 1473 * (1) Must be called with an elevated refcount on the page. This is a 1474 * fundamentnal difference from isolate_lru_pages (which is called 1475 * without a stable reference). 1476 * (2) the lru_lock must not be held. 1477 * (3) interrupts must be enabled. 1478 */ 1479 int isolate_lru_page(struct page *page) 1480 { 1481 int ret = -EBUSY; 1482 1483 VM_BUG_ON_PAGE(!page_count(page), page); 1484 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1485 1486 if (PageLRU(page)) { 1487 struct zone *zone = page_zone(page); 1488 struct lruvec *lruvec; 1489 1490 spin_lock_irq(zone_lru_lock(zone)); 1491 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1492 if (PageLRU(page)) { 1493 int lru = page_lru(page); 1494 get_page(page); 1495 ClearPageLRU(page); 1496 del_page_from_lru_list(page, lruvec, lru); 1497 ret = 0; 1498 } 1499 spin_unlock_irq(zone_lru_lock(zone)); 1500 } 1501 return ret; 1502 } 1503 1504 /* 1505 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1506 * then get resheduled. When there are massive number of tasks doing page 1507 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1508 * the LRU list will go small and be scanned faster than necessary, leading to 1509 * unnecessary swapping, thrashing and OOM. 1510 */ 1511 static int too_many_isolated(struct pglist_data *pgdat, int file, 1512 struct scan_control *sc) 1513 { 1514 unsigned long inactive, isolated; 1515 1516 if (current_is_kswapd()) 1517 return 0; 1518 1519 if (!sane_reclaim(sc)) 1520 return 0; 1521 1522 if (file) { 1523 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1524 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1525 } else { 1526 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1527 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1528 } 1529 1530 /* 1531 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1532 * won't get blocked by normal direct-reclaimers, forming a circular 1533 * deadlock. 1534 */ 1535 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1536 inactive >>= 3; 1537 1538 return isolated > inactive; 1539 } 1540 1541 static noinline_for_stack void 1542 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1543 { 1544 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1545 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1546 LIST_HEAD(pages_to_free); 1547 1548 /* 1549 * Put back any unfreeable pages. 1550 */ 1551 while (!list_empty(page_list)) { 1552 struct page *page = lru_to_page(page_list); 1553 int lru; 1554 1555 VM_BUG_ON_PAGE(PageLRU(page), page); 1556 list_del(&page->lru); 1557 if (unlikely(!page_evictable(page))) { 1558 spin_unlock_irq(&pgdat->lru_lock); 1559 putback_lru_page(page); 1560 spin_lock_irq(&pgdat->lru_lock); 1561 continue; 1562 } 1563 1564 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1565 1566 SetPageLRU(page); 1567 lru = page_lru(page); 1568 add_page_to_lru_list(page, lruvec, lru); 1569 1570 if (is_active_lru(lru)) { 1571 int file = is_file_lru(lru); 1572 int numpages = hpage_nr_pages(page); 1573 reclaim_stat->recent_rotated[file] += numpages; 1574 } 1575 if (put_page_testzero(page)) { 1576 __ClearPageLRU(page); 1577 __ClearPageActive(page); 1578 del_page_from_lru_list(page, lruvec, lru); 1579 1580 if (unlikely(PageCompound(page))) { 1581 spin_unlock_irq(&pgdat->lru_lock); 1582 mem_cgroup_uncharge(page); 1583 (*get_compound_page_dtor(page))(page); 1584 spin_lock_irq(&pgdat->lru_lock); 1585 } else 1586 list_add(&page->lru, &pages_to_free); 1587 } 1588 } 1589 1590 /* 1591 * To save our caller's stack, now use input list for pages to free. 1592 */ 1593 list_splice(&pages_to_free, page_list); 1594 } 1595 1596 /* 1597 * If a kernel thread (such as nfsd for loop-back mounts) services 1598 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1599 * In that case we should only throttle if the backing device it is 1600 * writing to is congested. In other cases it is safe to throttle. 1601 */ 1602 static int current_may_throttle(void) 1603 { 1604 return !(current->flags & PF_LESS_THROTTLE) || 1605 current->backing_dev_info == NULL || 1606 bdi_write_congested(current->backing_dev_info); 1607 } 1608 1609 /* 1610 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1611 * of reclaimed pages 1612 */ 1613 static noinline_for_stack unsigned long 1614 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1615 struct scan_control *sc, enum lru_list lru) 1616 { 1617 LIST_HEAD(page_list); 1618 unsigned long nr_scanned; 1619 unsigned long nr_reclaimed = 0; 1620 unsigned long nr_taken; 1621 unsigned long nr_dirty = 0; 1622 unsigned long nr_congested = 0; 1623 unsigned long nr_unqueued_dirty = 0; 1624 unsigned long nr_writeback = 0; 1625 unsigned long nr_immediate = 0; 1626 isolate_mode_t isolate_mode = 0; 1627 int file = is_file_lru(lru); 1628 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1629 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1630 1631 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1632 congestion_wait(BLK_RW_ASYNC, HZ/10); 1633 1634 /* We are about to die and free our memory. Return now. */ 1635 if (fatal_signal_pending(current)) 1636 return SWAP_CLUSTER_MAX; 1637 } 1638 1639 lru_add_drain(); 1640 1641 if (!sc->may_unmap) 1642 isolate_mode |= ISOLATE_UNMAPPED; 1643 if (!sc->may_writepage) 1644 isolate_mode |= ISOLATE_CLEAN; 1645 1646 spin_lock_irq(&pgdat->lru_lock); 1647 1648 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1649 &nr_scanned, sc, isolate_mode, lru); 1650 1651 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1652 reclaim_stat->recent_scanned[file] += nr_taken; 1653 1654 if (global_reclaim(sc)) { 1655 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1656 if (current_is_kswapd()) 1657 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1658 else 1659 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1660 } 1661 spin_unlock_irq(&pgdat->lru_lock); 1662 1663 if (nr_taken == 0) 1664 return 0; 1665 1666 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP, 1667 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1668 &nr_writeback, &nr_immediate, 1669 false); 1670 1671 spin_lock_irq(&pgdat->lru_lock); 1672 1673 if (global_reclaim(sc)) { 1674 if (current_is_kswapd()) 1675 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1676 else 1677 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1678 } 1679 1680 putback_inactive_pages(lruvec, &page_list); 1681 1682 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1683 1684 spin_unlock_irq(&pgdat->lru_lock); 1685 1686 mem_cgroup_uncharge_list(&page_list); 1687 free_hot_cold_page_list(&page_list, true); 1688 1689 /* 1690 * If reclaim is isolating dirty pages under writeback, it implies 1691 * that the long-lived page allocation rate is exceeding the page 1692 * laundering rate. Either the global limits are not being effective 1693 * at throttling processes due to the page distribution throughout 1694 * zones or there is heavy usage of a slow backing device. The 1695 * only option is to throttle from reclaim context which is not ideal 1696 * as there is no guarantee the dirtying process is throttled in the 1697 * same way balance_dirty_pages() manages. 1698 * 1699 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1700 * of pages under pages flagged for immediate reclaim and stall if any 1701 * are encountered in the nr_immediate check below. 1702 */ 1703 if (nr_writeback && nr_writeback == nr_taken) 1704 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1705 1706 /* 1707 * Legacy memcg will stall in page writeback so avoid forcibly 1708 * stalling here. 1709 */ 1710 if (sane_reclaim(sc)) { 1711 /* 1712 * Tag a zone as congested if all the dirty pages scanned were 1713 * backed by a congested BDI and wait_iff_congested will stall. 1714 */ 1715 if (nr_dirty && nr_dirty == nr_congested) 1716 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1717 1718 /* 1719 * If dirty pages are scanned that are not queued for IO, it 1720 * implies that flushers are not keeping up. In this case, flag 1721 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from 1722 * reclaim context. 1723 */ 1724 if (nr_unqueued_dirty == nr_taken) 1725 set_bit(PGDAT_DIRTY, &pgdat->flags); 1726 1727 /* 1728 * If kswapd scans pages marked marked for immediate 1729 * reclaim and under writeback (nr_immediate), it implies 1730 * that pages are cycling through the LRU faster than 1731 * they are written so also forcibly stall. 1732 */ 1733 if (nr_immediate && current_may_throttle()) 1734 congestion_wait(BLK_RW_ASYNC, HZ/10); 1735 } 1736 1737 /* 1738 * Stall direct reclaim for IO completions if underlying BDIs or zone 1739 * is congested. Allow kswapd to continue until it starts encountering 1740 * unqueued dirty pages or cycling through the LRU too quickly. 1741 */ 1742 if (!sc->hibernation_mode && !current_is_kswapd() && 1743 current_may_throttle()) 1744 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1745 1746 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1747 nr_scanned, nr_reclaimed, 1748 sc->priority, file); 1749 return nr_reclaimed; 1750 } 1751 1752 /* 1753 * This moves pages from the active list to the inactive list. 1754 * 1755 * We move them the other way if the page is referenced by one or more 1756 * processes, from rmap. 1757 * 1758 * If the pages are mostly unmapped, the processing is fast and it is 1759 * appropriate to hold zone_lru_lock across the whole operation. But if 1760 * the pages are mapped, the processing is slow (page_referenced()) so we 1761 * should drop zone_lru_lock around each page. It's impossible to balance 1762 * this, so instead we remove the pages from the LRU while processing them. 1763 * It is safe to rely on PG_active against the non-LRU pages in here because 1764 * nobody will play with that bit on a non-LRU page. 1765 * 1766 * The downside is that we have to touch page->_refcount against each page. 1767 * But we had to alter page->flags anyway. 1768 */ 1769 1770 static void move_active_pages_to_lru(struct lruvec *lruvec, 1771 struct list_head *list, 1772 struct list_head *pages_to_free, 1773 enum lru_list lru) 1774 { 1775 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1776 unsigned long pgmoved = 0; 1777 struct page *page; 1778 int nr_pages; 1779 1780 while (!list_empty(list)) { 1781 page = lru_to_page(list); 1782 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1783 1784 VM_BUG_ON_PAGE(PageLRU(page), page); 1785 SetPageLRU(page); 1786 1787 nr_pages = hpage_nr_pages(page); 1788 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1789 list_move(&page->lru, &lruvec->lists[lru]); 1790 pgmoved += nr_pages; 1791 1792 if (put_page_testzero(page)) { 1793 __ClearPageLRU(page); 1794 __ClearPageActive(page); 1795 del_page_from_lru_list(page, lruvec, lru); 1796 1797 if (unlikely(PageCompound(page))) { 1798 spin_unlock_irq(&pgdat->lru_lock); 1799 mem_cgroup_uncharge(page); 1800 (*get_compound_page_dtor(page))(page); 1801 spin_lock_irq(&pgdat->lru_lock); 1802 } else 1803 list_add(&page->lru, pages_to_free); 1804 } 1805 } 1806 1807 if (!is_active_lru(lru)) 1808 __count_vm_events(PGDEACTIVATE, pgmoved); 1809 } 1810 1811 static void shrink_active_list(unsigned long nr_to_scan, 1812 struct lruvec *lruvec, 1813 struct scan_control *sc, 1814 enum lru_list lru) 1815 { 1816 unsigned long nr_taken; 1817 unsigned long nr_scanned; 1818 unsigned long vm_flags; 1819 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1820 LIST_HEAD(l_active); 1821 LIST_HEAD(l_inactive); 1822 struct page *page; 1823 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1824 unsigned long nr_rotated = 0; 1825 isolate_mode_t isolate_mode = 0; 1826 int file = is_file_lru(lru); 1827 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1828 1829 lru_add_drain(); 1830 1831 if (!sc->may_unmap) 1832 isolate_mode |= ISOLATE_UNMAPPED; 1833 if (!sc->may_writepage) 1834 isolate_mode |= ISOLATE_CLEAN; 1835 1836 spin_lock_irq(&pgdat->lru_lock); 1837 1838 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1839 &nr_scanned, sc, isolate_mode, lru); 1840 1841 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1842 reclaim_stat->recent_scanned[file] += nr_taken; 1843 1844 if (global_reclaim(sc)) 1845 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned); 1846 __count_vm_events(PGREFILL, nr_scanned); 1847 1848 spin_unlock_irq(&pgdat->lru_lock); 1849 1850 while (!list_empty(&l_hold)) { 1851 cond_resched(); 1852 page = lru_to_page(&l_hold); 1853 list_del(&page->lru); 1854 1855 if (unlikely(!page_evictable(page))) { 1856 putback_lru_page(page); 1857 continue; 1858 } 1859 1860 if (unlikely(buffer_heads_over_limit)) { 1861 if (page_has_private(page) && trylock_page(page)) { 1862 if (page_has_private(page)) 1863 try_to_release_page(page, 0); 1864 unlock_page(page); 1865 } 1866 } 1867 1868 if (page_referenced(page, 0, sc->target_mem_cgroup, 1869 &vm_flags)) { 1870 nr_rotated += hpage_nr_pages(page); 1871 /* 1872 * Identify referenced, file-backed active pages and 1873 * give them one more trip around the active list. So 1874 * that executable code get better chances to stay in 1875 * memory under moderate memory pressure. Anon pages 1876 * are not likely to be evicted by use-once streaming 1877 * IO, plus JVM can create lots of anon VM_EXEC pages, 1878 * so we ignore them here. 1879 */ 1880 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1881 list_add(&page->lru, &l_active); 1882 continue; 1883 } 1884 } 1885 1886 ClearPageActive(page); /* we are de-activating */ 1887 list_add(&page->lru, &l_inactive); 1888 } 1889 1890 /* 1891 * Move pages back to the lru list. 1892 */ 1893 spin_lock_irq(&pgdat->lru_lock); 1894 /* 1895 * Count referenced pages from currently used mappings as rotated, 1896 * even though only some of them are actually re-activated. This 1897 * helps balance scan pressure between file and anonymous pages in 1898 * get_scan_count. 1899 */ 1900 reclaim_stat->recent_rotated[file] += nr_rotated; 1901 1902 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1903 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1904 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1905 spin_unlock_irq(&pgdat->lru_lock); 1906 1907 mem_cgroup_uncharge_list(&l_hold); 1908 free_hot_cold_page_list(&l_hold, true); 1909 } 1910 1911 /* 1912 * The inactive anon list should be small enough that the VM never has 1913 * to do too much work. 1914 * 1915 * The inactive file list should be small enough to leave most memory 1916 * to the established workingset on the scan-resistant active list, 1917 * but large enough to avoid thrashing the aggregate readahead window. 1918 * 1919 * Both inactive lists should also be large enough that each inactive 1920 * page has a chance to be referenced again before it is reclaimed. 1921 * 1922 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 1923 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 1924 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 1925 * 1926 * total target max 1927 * memory ratio inactive 1928 * ------------------------------------- 1929 * 10MB 1 5MB 1930 * 100MB 1 50MB 1931 * 1GB 3 250MB 1932 * 10GB 10 0.9GB 1933 * 100GB 31 3GB 1934 * 1TB 101 10GB 1935 * 10TB 320 32GB 1936 */ 1937 static bool inactive_list_is_low(struct lruvec *lruvec, bool file) 1938 { 1939 unsigned long inactive_ratio; 1940 unsigned long inactive; 1941 unsigned long active; 1942 unsigned long gb; 1943 1944 /* 1945 * If we don't have swap space, anonymous page deactivation 1946 * is pointless. 1947 */ 1948 if (!file && !total_swap_pages) 1949 return false; 1950 1951 inactive = lruvec_lru_size(lruvec, file * LRU_FILE); 1952 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE); 1953 1954 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1955 if (gb) 1956 inactive_ratio = int_sqrt(10 * gb); 1957 else 1958 inactive_ratio = 1; 1959 1960 return inactive * inactive_ratio < active; 1961 } 1962 1963 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1964 struct lruvec *lruvec, struct scan_control *sc) 1965 { 1966 if (is_active_lru(lru)) { 1967 if (inactive_list_is_low(lruvec, is_file_lru(lru))) 1968 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1969 return 0; 1970 } 1971 1972 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1973 } 1974 1975 enum scan_balance { 1976 SCAN_EQUAL, 1977 SCAN_FRACT, 1978 SCAN_ANON, 1979 SCAN_FILE, 1980 }; 1981 1982 /* 1983 * Determine how aggressively the anon and file LRU lists should be 1984 * scanned. The relative value of each set of LRU lists is determined 1985 * by looking at the fraction of the pages scanned we did rotate back 1986 * onto the active list instead of evict. 1987 * 1988 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1989 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1990 */ 1991 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 1992 struct scan_control *sc, unsigned long *nr, 1993 unsigned long *lru_pages) 1994 { 1995 int swappiness = mem_cgroup_swappiness(memcg); 1996 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1997 u64 fraction[2]; 1998 u64 denominator = 0; /* gcc */ 1999 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2000 unsigned long anon_prio, file_prio; 2001 enum scan_balance scan_balance; 2002 unsigned long anon, file; 2003 bool force_scan = false; 2004 unsigned long ap, fp; 2005 enum lru_list lru; 2006 bool some_scanned; 2007 int pass; 2008 2009 /* 2010 * If the zone or memcg is small, nr[l] can be 0. This 2011 * results in no scanning on this priority and a potential 2012 * priority drop. Global direct reclaim can go to the next 2013 * zone and tends to have no problems. Global kswapd is for 2014 * zone balancing and it needs to scan a minimum amount. When 2015 * reclaiming for a memcg, a priority drop can cause high 2016 * latencies, so it's better to scan a minimum amount there as 2017 * well. 2018 */ 2019 if (current_is_kswapd()) { 2020 if (!pgdat_reclaimable(pgdat)) 2021 force_scan = true; 2022 if (!mem_cgroup_online(memcg)) 2023 force_scan = true; 2024 } 2025 if (!global_reclaim(sc)) 2026 force_scan = true; 2027 2028 /* If we have no swap space, do not bother scanning anon pages. */ 2029 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2030 scan_balance = SCAN_FILE; 2031 goto out; 2032 } 2033 2034 /* 2035 * Global reclaim will swap to prevent OOM even with no 2036 * swappiness, but memcg users want to use this knob to 2037 * disable swapping for individual groups completely when 2038 * using the memory controller's swap limit feature would be 2039 * too expensive. 2040 */ 2041 if (!global_reclaim(sc) && !swappiness) { 2042 scan_balance = SCAN_FILE; 2043 goto out; 2044 } 2045 2046 /* 2047 * Do not apply any pressure balancing cleverness when the 2048 * system is close to OOM, scan both anon and file equally 2049 * (unless the swappiness setting disagrees with swapping). 2050 */ 2051 if (!sc->priority && swappiness) { 2052 scan_balance = SCAN_EQUAL; 2053 goto out; 2054 } 2055 2056 /* 2057 * Prevent the reclaimer from falling into the cache trap: as 2058 * cache pages start out inactive, every cache fault will tip 2059 * the scan balance towards the file LRU. And as the file LRU 2060 * shrinks, so does the window for rotation from references. 2061 * This means we have a runaway feedback loop where a tiny 2062 * thrashing file LRU becomes infinitely more attractive than 2063 * anon pages. Try to detect this based on file LRU size. 2064 */ 2065 if (global_reclaim(sc)) { 2066 unsigned long pgdatfile; 2067 unsigned long pgdatfree; 2068 int z; 2069 unsigned long total_high_wmark = 0; 2070 2071 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2072 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2073 node_page_state(pgdat, NR_INACTIVE_FILE); 2074 2075 for (z = 0; z < MAX_NR_ZONES; z++) { 2076 struct zone *zone = &pgdat->node_zones[z]; 2077 if (!populated_zone(zone)) 2078 continue; 2079 2080 total_high_wmark += high_wmark_pages(zone); 2081 } 2082 2083 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2084 scan_balance = SCAN_ANON; 2085 goto out; 2086 } 2087 } 2088 2089 /* 2090 * If there is enough inactive page cache, i.e. if the size of the 2091 * inactive list is greater than that of the active list *and* the 2092 * inactive list actually has some pages to scan on this priority, we 2093 * do not reclaim anything from the anonymous working set right now. 2094 * Without the second condition we could end up never scanning an 2095 * lruvec even if it has plenty of old anonymous pages unless the 2096 * system is under heavy pressure. 2097 */ 2098 if (!inactive_list_is_low(lruvec, true) && 2099 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2100 scan_balance = SCAN_FILE; 2101 goto out; 2102 } 2103 2104 scan_balance = SCAN_FRACT; 2105 2106 /* 2107 * With swappiness at 100, anonymous and file have the same priority. 2108 * This scanning priority is essentially the inverse of IO cost. 2109 */ 2110 anon_prio = swappiness; 2111 file_prio = 200 - anon_prio; 2112 2113 /* 2114 * OK, so we have swap space and a fair amount of page cache 2115 * pages. We use the recently rotated / recently scanned 2116 * ratios to determine how valuable each cache is. 2117 * 2118 * Because workloads change over time (and to avoid overflow) 2119 * we keep these statistics as a floating average, which ends 2120 * up weighing recent references more than old ones. 2121 * 2122 * anon in [0], file in [1] 2123 */ 2124 2125 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + 2126 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); 2127 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + 2128 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 2129 2130 spin_lock_irq(&pgdat->lru_lock); 2131 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2132 reclaim_stat->recent_scanned[0] /= 2; 2133 reclaim_stat->recent_rotated[0] /= 2; 2134 } 2135 2136 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2137 reclaim_stat->recent_scanned[1] /= 2; 2138 reclaim_stat->recent_rotated[1] /= 2; 2139 } 2140 2141 /* 2142 * The amount of pressure on anon vs file pages is inversely 2143 * proportional to the fraction of recently scanned pages on 2144 * each list that were recently referenced and in active use. 2145 */ 2146 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2147 ap /= reclaim_stat->recent_rotated[0] + 1; 2148 2149 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2150 fp /= reclaim_stat->recent_rotated[1] + 1; 2151 spin_unlock_irq(&pgdat->lru_lock); 2152 2153 fraction[0] = ap; 2154 fraction[1] = fp; 2155 denominator = ap + fp + 1; 2156 out: 2157 some_scanned = false; 2158 /* Only use force_scan on second pass. */ 2159 for (pass = 0; !some_scanned && pass < 2; pass++) { 2160 *lru_pages = 0; 2161 for_each_evictable_lru(lru) { 2162 int file = is_file_lru(lru); 2163 unsigned long size; 2164 unsigned long scan; 2165 2166 size = lruvec_lru_size(lruvec, lru); 2167 scan = size >> sc->priority; 2168 2169 if (!scan && pass && force_scan) 2170 scan = min(size, SWAP_CLUSTER_MAX); 2171 2172 switch (scan_balance) { 2173 case SCAN_EQUAL: 2174 /* Scan lists relative to size */ 2175 break; 2176 case SCAN_FRACT: 2177 /* 2178 * Scan types proportional to swappiness and 2179 * their relative recent reclaim efficiency. 2180 */ 2181 scan = div64_u64(scan * fraction[file], 2182 denominator); 2183 break; 2184 case SCAN_FILE: 2185 case SCAN_ANON: 2186 /* Scan one type exclusively */ 2187 if ((scan_balance == SCAN_FILE) != file) { 2188 size = 0; 2189 scan = 0; 2190 } 2191 break; 2192 default: 2193 /* Look ma, no brain */ 2194 BUG(); 2195 } 2196 2197 *lru_pages += size; 2198 nr[lru] = scan; 2199 2200 /* 2201 * Skip the second pass and don't force_scan, 2202 * if we found something to scan. 2203 */ 2204 some_scanned |= !!scan; 2205 } 2206 } 2207 } 2208 2209 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 2210 static void init_tlb_ubc(void) 2211 { 2212 /* 2213 * This deliberately does not clear the cpumask as it's expensive 2214 * and unnecessary. If there happens to be data in there then the 2215 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and 2216 * then will be cleared. 2217 */ 2218 current->tlb_ubc.flush_required = false; 2219 } 2220 #else 2221 static inline void init_tlb_ubc(void) 2222 { 2223 } 2224 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 2225 2226 /* 2227 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2228 */ 2229 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2230 struct scan_control *sc, unsigned long *lru_pages) 2231 { 2232 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2233 unsigned long nr[NR_LRU_LISTS]; 2234 unsigned long targets[NR_LRU_LISTS]; 2235 unsigned long nr_to_scan; 2236 enum lru_list lru; 2237 unsigned long nr_reclaimed = 0; 2238 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2239 struct blk_plug plug; 2240 bool scan_adjusted; 2241 2242 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2243 2244 /* Record the original scan target for proportional adjustments later */ 2245 memcpy(targets, nr, sizeof(nr)); 2246 2247 /* 2248 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2249 * event that can occur when there is little memory pressure e.g. 2250 * multiple streaming readers/writers. Hence, we do not abort scanning 2251 * when the requested number of pages are reclaimed when scanning at 2252 * DEF_PRIORITY on the assumption that the fact we are direct 2253 * reclaiming implies that kswapd is not keeping up and it is best to 2254 * do a batch of work at once. For memcg reclaim one check is made to 2255 * abort proportional reclaim if either the file or anon lru has already 2256 * dropped to zero at the first pass. 2257 */ 2258 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2259 sc->priority == DEF_PRIORITY); 2260 2261 init_tlb_ubc(); 2262 2263 blk_start_plug(&plug); 2264 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2265 nr[LRU_INACTIVE_FILE]) { 2266 unsigned long nr_anon, nr_file, percentage; 2267 unsigned long nr_scanned; 2268 2269 for_each_evictable_lru(lru) { 2270 if (nr[lru]) { 2271 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2272 nr[lru] -= nr_to_scan; 2273 2274 nr_reclaimed += shrink_list(lru, nr_to_scan, 2275 lruvec, sc); 2276 } 2277 } 2278 2279 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2280 continue; 2281 2282 /* 2283 * For kswapd and memcg, reclaim at least the number of pages 2284 * requested. Ensure that the anon and file LRUs are scanned 2285 * proportionally what was requested by get_scan_count(). We 2286 * stop reclaiming one LRU and reduce the amount scanning 2287 * proportional to the original scan target. 2288 */ 2289 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2290 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2291 2292 /* 2293 * It's just vindictive to attack the larger once the smaller 2294 * has gone to zero. And given the way we stop scanning the 2295 * smaller below, this makes sure that we only make one nudge 2296 * towards proportionality once we've got nr_to_reclaim. 2297 */ 2298 if (!nr_file || !nr_anon) 2299 break; 2300 2301 if (nr_file > nr_anon) { 2302 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2303 targets[LRU_ACTIVE_ANON] + 1; 2304 lru = LRU_BASE; 2305 percentage = nr_anon * 100 / scan_target; 2306 } else { 2307 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2308 targets[LRU_ACTIVE_FILE] + 1; 2309 lru = LRU_FILE; 2310 percentage = nr_file * 100 / scan_target; 2311 } 2312 2313 /* Stop scanning the smaller of the LRU */ 2314 nr[lru] = 0; 2315 nr[lru + LRU_ACTIVE] = 0; 2316 2317 /* 2318 * Recalculate the other LRU scan count based on its original 2319 * scan target and the percentage scanning already complete 2320 */ 2321 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2322 nr_scanned = targets[lru] - nr[lru]; 2323 nr[lru] = targets[lru] * (100 - percentage) / 100; 2324 nr[lru] -= min(nr[lru], nr_scanned); 2325 2326 lru += LRU_ACTIVE; 2327 nr_scanned = targets[lru] - nr[lru]; 2328 nr[lru] = targets[lru] * (100 - percentage) / 100; 2329 nr[lru] -= min(nr[lru], nr_scanned); 2330 2331 scan_adjusted = true; 2332 } 2333 blk_finish_plug(&plug); 2334 sc->nr_reclaimed += nr_reclaimed; 2335 2336 /* 2337 * Even if we did not try to evict anon pages at all, we want to 2338 * rebalance the anon lru active/inactive ratio. 2339 */ 2340 if (inactive_list_is_low(lruvec, false)) 2341 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2342 sc, LRU_ACTIVE_ANON); 2343 2344 throttle_vm_writeout(sc->gfp_mask); 2345 } 2346 2347 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2348 static bool in_reclaim_compaction(struct scan_control *sc) 2349 { 2350 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2351 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2352 sc->priority < DEF_PRIORITY - 2)) 2353 return true; 2354 2355 return false; 2356 } 2357 2358 /* 2359 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2360 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2361 * true if more pages should be reclaimed such that when the page allocator 2362 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2363 * It will give up earlier than that if there is difficulty reclaiming pages. 2364 */ 2365 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2366 unsigned long nr_reclaimed, 2367 unsigned long nr_scanned, 2368 struct scan_control *sc) 2369 { 2370 unsigned long pages_for_compaction; 2371 unsigned long inactive_lru_pages; 2372 int z; 2373 2374 /* If not in reclaim/compaction mode, stop */ 2375 if (!in_reclaim_compaction(sc)) 2376 return false; 2377 2378 /* Consider stopping depending on scan and reclaim activity */ 2379 if (sc->gfp_mask & __GFP_REPEAT) { 2380 /* 2381 * For __GFP_REPEAT allocations, stop reclaiming if the 2382 * full LRU list has been scanned and we are still failing 2383 * to reclaim pages. This full LRU scan is potentially 2384 * expensive but a __GFP_REPEAT caller really wants to succeed 2385 */ 2386 if (!nr_reclaimed && !nr_scanned) 2387 return false; 2388 } else { 2389 /* 2390 * For non-__GFP_REPEAT allocations which can presumably 2391 * fail without consequence, stop if we failed to reclaim 2392 * any pages from the last SWAP_CLUSTER_MAX number of 2393 * pages that were scanned. This will return to the 2394 * caller faster at the risk reclaim/compaction and 2395 * the resulting allocation attempt fails 2396 */ 2397 if (!nr_reclaimed) 2398 return false; 2399 } 2400 2401 /* 2402 * If we have not reclaimed enough pages for compaction and the 2403 * inactive lists are large enough, continue reclaiming 2404 */ 2405 pages_for_compaction = (2UL << sc->order); 2406 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2407 if (get_nr_swap_pages() > 0) 2408 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2409 if (sc->nr_reclaimed < pages_for_compaction && 2410 inactive_lru_pages > pages_for_compaction) 2411 return true; 2412 2413 /* If compaction would go ahead or the allocation would succeed, stop */ 2414 for (z = 0; z <= sc->reclaim_idx; z++) { 2415 struct zone *zone = &pgdat->node_zones[z]; 2416 if (!populated_zone(zone)) 2417 continue; 2418 2419 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2420 case COMPACT_PARTIAL: 2421 case COMPACT_CONTINUE: 2422 return false; 2423 default: 2424 /* check next zone */ 2425 ; 2426 } 2427 } 2428 return true; 2429 } 2430 2431 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2432 { 2433 struct reclaim_state *reclaim_state = current->reclaim_state; 2434 unsigned long nr_reclaimed, nr_scanned; 2435 bool reclaimable = false; 2436 2437 do { 2438 struct mem_cgroup *root = sc->target_mem_cgroup; 2439 struct mem_cgroup_reclaim_cookie reclaim = { 2440 .pgdat = pgdat, 2441 .priority = sc->priority, 2442 }; 2443 unsigned long node_lru_pages = 0; 2444 struct mem_cgroup *memcg; 2445 2446 nr_reclaimed = sc->nr_reclaimed; 2447 nr_scanned = sc->nr_scanned; 2448 2449 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2450 do { 2451 unsigned long lru_pages; 2452 unsigned long reclaimed; 2453 unsigned long scanned; 2454 2455 if (mem_cgroup_low(root, memcg)) { 2456 if (!sc->may_thrash) 2457 continue; 2458 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2459 } 2460 2461 reclaimed = sc->nr_reclaimed; 2462 scanned = sc->nr_scanned; 2463 2464 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2465 node_lru_pages += lru_pages; 2466 2467 if (!global_reclaim(sc)) 2468 shrink_slab(sc->gfp_mask, pgdat->node_id, 2469 memcg, sc->nr_scanned - scanned, 2470 lru_pages); 2471 2472 /* Record the group's reclaim efficiency */ 2473 vmpressure(sc->gfp_mask, memcg, false, 2474 sc->nr_scanned - scanned, 2475 sc->nr_reclaimed - reclaimed); 2476 2477 /* 2478 * Direct reclaim and kswapd have to scan all memory 2479 * cgroups to fulfill the overall scan target for the 2480 * node. 2481 * 2482 * Limit reclaim, on the other hand, only cares about 2483 * nr_to_reclaim pages to be reclaimed and it will 2484 * retry with decreasing priority if one round over the 2485 * whole hierarchy is not sufficient. 2486 */ 2487 if (!global_reclaim(sc) && 2488 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2489 mem_cgroup_iter_break(root, memcg); 2490 break; 2491 } 2492 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2493 2494 /* 2495 * Shrink the slab caches in the same proportion that 2496 * the eligible LRU pages were scanned. 2497 */ 2498 if (global_reclaim(sc)) 2499 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2500 sc->nr_scanned - nr_scanned, 2501 node_lru_pages); 2502 2503 if (reclaim_state) { 2504 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2505 reclaim_state->reclaimed_slab = 0; 2506 } 2507 2508 /* Record the subtree's reclaim efficiency */ 2509 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2510 sc->nr_scanned - nr_scanned, 2511 sc->nr_reclaimed - nr_reclaimed); 2512 2513 if (sc->nr_reclaimed - nr_reclaimed) 2514 reclaimable = true; 2515 2516 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2517 sc->nr_scanned - nr_scanned, sc)); 2518 2519 return reclaimable; 2520 } 2521 2522 /* 2523 * Returns true if compaction should go ahead for a high-order request, or 2524 * the high-order allocation would succeed without compaction. 2525 */ 2526 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2527 { 2528 unsigned long watermark; 2529 bool watermark_ok; 2530 2531 /* 2532 * Compaction takes time to run and there are potentially other 2533 * callers using the pages just freed. Continue reclaiming until 2534 * there is a buffer of free pages available to give compaction 2535 * a reasonable chance of completing and allocating the page 2536 */ 2537 watermark = high_wmark_pages(zone) + (2UL << sc->order); 2538 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2539 2540 /* 2541 * If compaction is deferred, reclaim up to a point where 2542 * compaction will have a chance of success when re-enabled 2543 */ 2544 if (compaction_deferred(zone, sc->order)) 2545 return watermark_ok; 2546 2547 /* 2548 * If compaction is not ready to start and allocation is not likely 2549 * to succeed without it, then keep reclaiming. 2550 */ 2551 if (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx) == COMPACT_SKIPPED) 2552 return false; 2553 2554 return watermark_ok; 2555 } 2556 2557 /* 2558 * This is the direct reclaim path, for page-allocating processes. We only 2559 * try to reclaim pages from zones which will satisfy the caller's allocation 2560 * request. 2561 * 2562 * If a zone is deemed to be full of pinned pages then just give it a light 2563 * scan then give up on it. 2564 */ 2565 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2566 { 2567 struct zoneref *z; 2568 struct zone *zone; 2569 unsigned long nr_soft_reclaimed; 2570 unsigned long nr_soft_scanned; 2571 gfp_t orig_mask; 2572 pg_data_t *last_pgdat = NULL; 2573 2574 /* 2575 * If the number of buffer_heads in the machine exceeds the maximum 2576 * allowed level, force direct reclaim to scan the highmem zone as 2577 * highmem pages could be pinning lowmem pages storing buffer_heads 2578 */ 2579 orig_mask = sc->gfp_mask; 2580 if (buffer_heads_over_limit) { 2581 sc->gfp_mask |= __GFP_HIGHMEM; 2582 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2583 } 2584 2585 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2586 sc->reclaim_idx, sc->nodemask) { 2587 if (!populated_zone(zone)) 2588 continue; 2589 2590 /* 2591 * Take care memory controller reclaiming has small influence 2592 * to global LRU. 2593 */ 2594 if (global_reclaim(sc)) { 2595 if (!cpuset_zone_allowed(zone, 2596 GFP_KERNEL | __GFP_HARDWALL)) 2597 continue; 2598 2599 if (sc->priority != DEF_PRIORITY && 2600 !pgdat_reclaimable(zone->zone_pgdat)) 2601 continue; /* Let kswapd poll it */ 2602 2603 /* 2604 * If we already have plenty of memory free for 2605 * compaction in this zone, don't free any more. 2606 * Even though compaction is invoked for any 2607 * non-zero order, only frequent costly order 2608 * reclamation is disruptive enough to become a 2609 * noticeable problem, like transparent huge 2610 * page allocations. 2611 */ 2612 if (IS_ENABLED(CONFIG_COMPACTION) && 2613 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2614 compaction_ready(zone, sc)) { 2615 sc->compaction_ready = true; 2616 continue; 2617 } 2618 2619 /* 2620 * Shrink each node in the zonelist once. If the 2621 * zonelist is ordered by zone (not the default) then a 2622 * node may be shrunk multiple times but in that case 2623 * the user prefers lower zones being preserved. 2624 */ 2625 if (zone->zone_pgdat == last_pgdat) 2626 continue; 2627 2628 /* 2629 * This steals pages from memory cgroups over softlimit 2630 * and returns the number of reclaimed pages and 2631 * scanned pages. This works for global memory pressure 2632 * and balancing, not for a memcg's limit. 2633 */ 2634 nr_soft_scanned = 0; 2635 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2636 sc->order, sc->gfp_mask, 2637 &nr_soft_scanned); 2638 sc->nr_reclaimed += nr_soft_reclaimed; 2639 sc->nr_scanned += nr_soft_scanned; 2640 /* need some check for avoid more shrink_zone() */ 2641 } 2642 2643 /* See comment about same check for global reclaim above */ 2644 if (zone->zone_pgdat == last_pgdat) 2645 continue; 2646 last_pgdat = zone->zone_pgdat; 2647 shrink_node(zone->zone_pgdat, sc); 2648 } 2649 2650 /* 2651 * Restore to original mask to avoid the impact on the caller if we 2652 * promoted it to __GFP_HIGHMEM. 2653 */ 2654 sc->gfp_mask = orig_mask; 2655 } 2656 2657 /* 2658 * This is the main entry point to direct page reclaim. 2659 * 2660 * If a full scan of the inactive list fails to free enough memory then we 2661 * are "out of memory" and something needs to be killed. 2662 * 2663 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2664 * high - the zone may be full of dirty or under-writeback pages, which this 2665 * caller can't do much about. We kick the writeback threads and take explicit 2666 * naps in the hope that some of these pages can be written. But if the 2667 * allocating task holds filesystem locks which prevent writeout this might not 2668 * work, and the allocation attempt will fail. 2669 * 2670 * returns: 0, if no pages reclaimed 2671 * else, the number of pages reclaimed 2672 */ 2673 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2674 struct scan_control *sc) 2675 { 2676 int initial_priority = sc->priority; 2677 unsigned long total_scanned = 0; 2678 unsigned long writeback_threshold; 2679 retry: 2680 delayacct_freepages_start(); 2681 2682 if (global_reclaim(sc)) 2683 count_vm_event(ALLOCSTALL); 2684 2685 do { 2686 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2687 sc->priority); 2688 sc->nr_scanned = 0; 2689 shrink_zones(zonelist, sc); 2690 2691 total_scanned += sc->nr_scanned; 2692 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2693 break; 2694 2695 if (sc->compaction_ready) 2696 break; 2697 2698 /* 2699 * If we're getting trouble reclaiming, start doing 2700 * writepage even in laptop mode. 2701 */ 2702 if (sc->priority < DEF_PRIORITY - 2) 2703 sc->may_writepage = 1; 2704 2705 /* 2706 * Try to write back as many pages as we just scanned. This 2707 * tends to cause slow streaming writers to write data to the 2708 * disk smoothly, at the dirtying rate, which is nice. But 2709 * that's undesirable in laptop mode, where we *want* lumpy 2710 * writeout. So in laptop mode, write out the whole world. 2711 */ 2712 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2713 if (total_scanned > writeback_threshold) { 2714 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2715 WB_REASON_TRY_TO_FREE_PAGES); 2716 sc->may_writepage = 1; 2717 } 2718 } while (--sc->priority >= 0); 2719 2720 delayacct_freepages_end(); 2721 2722 if (sc->nr_reclaimed) 2723 return sc->nr_reclaimed; 2724 2725 /* Aborted reclaim to try compaction? don't OOM, then */ 2726 if (sc->compaction_ready) 2727 return 1; 2728 2729 /* Untapped cgroup reserves? Don't OOM, retry. */ 2730 if (!sc->may_thrash) { 2731 sc->priority = initial_priority; 2732 sc->may_thrash = 1; 2733 goto retry; 2734 } 2735 2736 return 0; 2737 } 2738 2739 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2740 { 2741 struct zone *zone; 2742 unsigned long pfmemalloc_reserve = 0; 2743 unsigned long free_pages = 0; 2744 int i; 2745 bool wmark_ok; 2746 2747 for (i = 0; i <= ZONE_NORMAL; i++) { 2748 zone = &pgdat->node_zones[i]; 2749 if (!populated_zone(zone) || 2750 pgdat_reclaimable_pages(pgdat) == 0) 2751 continue; 2752 2753 pfmemalloc_reserve += min_wmark_pages(zone); 2754 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2755 } 2756 2757 /* If there are no reserves (unexpected config) then do not throttle */ 2758 if (!pfmemalloc_reserve) 2759 return true; 2760 2761 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2762 2763 /* kswapd must be awake if processes are being throttled */ 2764 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2765 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2766 (enum zone_type)ZONE_NORMAL); 2767 wake_up_interruptible(&pgdat->kswapd_wait); 2768 } 2769 2770 return wmark_ok; 2771 } 2772 2773 /* 2774 * Throttle direct reclaimers if backing storage is backed by the network 2775 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2776 * depleted. kswapd will continue to make progress and wake the processes 2777 * when the low watermark is reached. 2778 * 2779 * Returns true if a fatal signal was delivered during throttling. If this 2780 * happens, the page allocator should not consider triggering the OOM killer. 2781 */ 2782 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2783 nodemask_t *nodemask) 2784 { 2785 struct zoneref *z; 2786 struct zone *zone; 2787 pg_data_t *pgdat = NULL; 2788 2789 /* 2790 * Kernel threads should not be throttled as they may be indirectly 2791 * responsible for cleaning pages necessary for reclaim to make forward 2792 * progress. kjournald for example may enter direct reclaim while 2793 * committing a transaction where throttling it could forcing other 2794 * processes to block on log_wait_commit(). 2795 */ 2796 if (current->flags & PF_KTHREAD) 2797 goto out; 2798 2799 /* 2800 * If a fatal signal is pending, this process should not throttle. 2801 * It should return quickly so it can exit and free its memory 2802 */ 2803 if (fatal_signal_pending(current)) 2804 goto out; 2805 2806 /* 2807 * Check if the pfmemalloc reserves are ok by finding the first node 2808 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2809 * GFP_KERNEL will be required for allocating network buffers when 2810 * swapping over the network so ZONE_HIGHMEM is unusable. 2811 * 2812 * Throttling is based on the first usable node and throttled processes 2813 * wait on a queue until kswapd makes progress and wakes them. There 2814 * is an affinity then between processes waking up and where reclaim 2815 * progress has been made assuming the process wakes on the same node. 2816 * More importantly, processes running on remote nodes will not compete 2817 * for remote pfmemalloc reserves and processes on different nodes 2818 * should make reasonable progress. 2819 */ 2820 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2821 gfp_zone(gfp_mask), nodemask) { 2822 if (zone_idx(zone) > ZONE_NORMAL) 2823 continue; 2824 2825 /* Throttle based on the first usable node */ 2826 pgdat = zone->zone_pgdat; 2827 if (pfmemalloc_watermark_ok(pgdat)) 2828 goto out; 2829 break; 2830 } 2831 2832 /* If no zone was usable by the allocation flags then do not throttle */ 2833 if (!pgdat) 2834 goto out; 2835 2836 /* Account for the throttling */ 2837 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2838 2839 /* 2840 * If the caller cannot enter the filesystem, it's possible that it 2841 * is due to the caller holding an FS lock or performing a journal 2842 * transaction in the case of a filesystem like ext[3|4]. In this case, 2843 * it is not safe to block on pfmemalloc_wait as kswapd could be 2844 * blocked waiting on the same lock. Instead, throttle for up to a 2845 * second before continuing. 2846 */ 2847 if (!(gfp_mask & __GFP_FS)) { 2848 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2849 pfmemalloc_watermark_ok(pgdat), HZ); 2850 2851 goto check_pending; 2852 } 2853 2854 /* Throttle until kswapd wakes the process */ 2855 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2856 pfmemalloc_watermark_ok(pgdat)); 2857 2858 check_pending: 2859 if (fatal_signal_pending(current)) 2860 return true; 2861 2862 out: 2863 return false; 2864 } 2865 2866 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2867 gfp_t gfp_mask, nodemask_t *nodemask) 2868 { 2869 unsigned long nr_reclaimed; 2870 struct scan_control sc = { 2871 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2872 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2873 .reclaim_idx = gfp_zone(gfp_mask), 2874 .order = order, 2875 .nodemask = nodemask, 2876 .priority = DEF_PRIORITY, 2877 .may_writepage = !laptop_mode, 2878 .may_unmap = 1, 2879 .may_swap = 1, 2880 }; 2881 2882 /* 2883 * Do not enter reclaim if fatal signal was delivered while throttled. 2884 * 1 is returned so that the page allocator does not OOM kill at this 2885 * point. 2886 */ 2887 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2888 return 1; 2889 2890 trace_mm_vmscan_direct_reclaim_begin(order, 2891 sc.may_writepage, 2892 gfp_mask, 2893 sc.reclaim_idx); 2894 2895 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2896 2897 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2898 2899 return nr_reclaimed; 2900 } 2901 2902 #ifdef CONFIG_MEMCG 2903 2904 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 2905 gfp_t gfp_mask, bool noswap, 2906 pg_data_t *pgdat, 2907 unsigned long *nr_scanned) 2908 { 2909 struct scan_control sc = { 2910 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2911 .target_mem_cgroup = memcg, 2912 .may_writepage = !laptop_mode, 2913 .may_unmap = 1, 2914 .reclaim_idx = MAX_NR_ZONES - 1, 2915 .may_swap = !noswap, 2916 }; 2917 unsigned long lru_pages; 2918 2919 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2920 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2921 2922 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2923 sc.may_writepage, 2924 sc.gfp_mask, 2925 sc.reclaim_idx); 2926 2927 /* 2928 * NOTE: Although we can get the priority field, using it 2929 * here is not a good idea, since it limits the pages we can scan. 2930 * if we don't reclaim here, the shrink_node from balance_pgdat 2931 * will pick up pages from other mem cgroup's as well. We hack 2932 * the priority and make it zero. 2933 */ 2934 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 2935 2936 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2937 2938 *nr_scanned = sc.nr_scanned; 2939 return sc.nr_reclaimed; 2940 } 2941 2942 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2943 unsigned long nr_pages, 2944 gfp_t gfp_mask, 2945 bool may_swap) 2946 { 2947 struct zonelist *zonelist; 2948 unsigned long nr_reclaimed; 2949 int nid; 2950 struct scan_control sc = { 2951 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2952 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2953 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2954 .reclaim_idx = MAX_NR_ZONES - 1, 2955 .target_mem_cgroup = memcg, 2956 .priority = DEF_PRIORITY, 2957 .may_writepage = !laptop_mode, 2958 .may_unmap = 1, 2959 .may_swap = may_swap, 2960 }; 2961 2962 /* 2963 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2964 * take care of from where we get pages. So the node where we start the 2965 * scan does not need to be the current node. 2966 */ 2967 nid = mem_cgroup_select_victim_node(memcg); 2968 2969 zonelist = NODE_DATA(nid)->node_zonelists; 2970 2971 trace_mm_vmscan_memcg_reclaim_begin(0, 2972 sc.may_writepage, 2973 sc.gfp_mask, 2974 sc.reclaim_idx); 2975 2976 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2977 2978 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2979 2980 return nr_reclaimed; 2981 } 2982 #endif 2983 2984 static void age_active_anon(struct pglist_data *pgdat, 2985 struct scan_control *sc) 2986 { 2987 struct mem_cgroup *memcg; 2988 2989 if (!total_swap_pages) 2990 return; 2991 2992 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2993 do { 2994 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2995 2996 if (inactive_list_is_low(lruvec, false)) 2997 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2998 sc, LRU_ACTIVE_ANON); 2999 3000 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3001 } while (memcg); 3002 } 3003 3004 static bool zone_balanced(struct zone *zone, int order, int classzone_idx) 3005 { 3006 unsigned long mark = high_wmark_pages(zone); 3007 3008 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3009 return false; 3010 3011 /* 3012 * If any eligible zone is balanced then the node is not considered 3013 * to be congested or dirty 3014 */ 3015 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags); 3016 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags); 3017 3018 return true; 3019 } 3020 3021 /* 3022 * Prepare kswapd for sleeping. This verifies that there are no processes 3023 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3024 * 3025 * Returns true if kswapd is ready to sleep 3026 */ 3027 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3028 { 3029 int i; 3030 3031 /* 3032 * The throttled processes are normally woken up in balance_pgdat() as 3033 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3034 * race between when kswapd checks the watermarks and a process gets 3035 * throttled. There is also a potential race if processes get 3036 * throttled, kswapd wakes, a large process exits thereby balancing the 3037 * zones, which causes kswapd to exit balance_pgdat() before reaching 3038 * the wake up checks. If kswapd is going to sleep, no process should 3039 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3040 * the wake up is premature, processes will wake kswapd and get 3041 * throttled again. The difference from wake ups in balance_pgdat() is 3042 * that here we are under prepare_to_wait(). 3043 */ 3044 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3045 wake_up_all(&pgdat->pfmemalloc_wait); 3046 3047 for (i = 0; i <= classzone_idx; i++) { 3048 struct zone *zone = pgdat->node_zones + i; 3049 3050 if (!populated_zone(zone)) 3051 continue; 3052 3053 if (!zone_balanced(zone, order, classzone_idx)) 3054 return false; 3055 } 3056 3057 return true; 3058 } 3059 3060 /* 3061 * kswapd shrinks a node of pages that are at or below the highest usable 3062 * zone that is currently unbalanced. 3063 * 3064 * Returns true if kswapd scanned at least the requested number of pages to 3065 * reclaim or if the lack of progress was due to pages under writeback. 3066 * This is used to determine if the scanning priority needs to be raised. 3067 */ 3068 static bool kswapd_shrink_node(pg_data_t *pgdat, 3069 struct scan_control *sc) 3070 { 3071 struct zone *zone; 3072 int z; 3073 3074 /* Reclaim a number of pages proportional to the number of zones */ 3075 sc->nr_to_reclaim = 0; 3076 for (z = 0; z <= sc->reclaim_idx; z++) { 3077 zone = pgdat->node_zones + z; 3078 if (!populated_zone(zone)) 3079 continue; 3080 3081 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3082 } 3083 3084 /* 3085 * Historically care was taken to put equal pressure on all zones but 3086 * now pressure is applied based on node LRU order. 3087 */ 3088 shrink_node(pgdat, sc); 3089 3090 /* 3091 * Fragmentation may mean that the system cannot be rebalanced for 3092 * high-order allocations. If twice the allocation size has been 3093 * reclaimed then recheck watermarks only at order-0 to prevent 3094 * excessive reclaim. Assume that a process requested a high-order 3095 * can direct reclaim/compact. 3096 */ 3097 if (sc->order && sc->nr_reclaimed >= 2UL << sc->order) 3098 sc->order = 0; 3099 3100 return sc->nr_scanned >= sc->nr_to_reclaim; 3101 } 3102 3103 /* 3104 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3105 * that are eligible for use by the caller until at least one zone is 3106 * balanced. 3107 * 3108 * Returns the order kswapd finished reclaiming at. 3109 * 3110 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3111 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3112 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3113 * or lower is eligible for reclaim until at least one usable zone is 3114 * balanced. 3115 */ 3116 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3117 { 3118 int i; 3119 unsigned long nr_soft_reclaimed; 3120 unsigned long nr_soft_scanned; 3121 struct zone *zone; 3122 struct scan_control sc = { 3123 .gfp_mask = GFP_KERNEL, 3124 .order = order, 3125 .priority = DEF_PRIORITY, 3126 .may_writepage = !laptop_mode, 3127 .may_unmap = 1, 3128 .may_swap = 1, 3129 }; 3130 count_vm_event(PAGEOUTRUN); 3131 3132 do { 3133 bool raise_priority = true; 3134 3135 sc.nr_reclaimed = 0; 3136 sc.reclaim_idx = classzone_idx; 3137 3138 /* 3139 * If the number of buffer_heads exceeds the maximum allowed 3140 * then consider reclaiming from all zones. This has a dual 3141 * purpose -- on 64-bit systems it is expected that 3142 * buffer_heads are stripped during active rotation. On 32-bit 3143 * systems, highmem pages can pin lowmem memory and shrinking 3144 * buffers can relieve lowmem pressure. Reclaim may still not 3145 * go ahead if all eligible zones for the original allocation 3146 * request are balanced to avoid excessive reclaim from kswapd. 3147 */ 3148 if (buffer_heads_over_limit) { 3149 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3150 zone = pgdat->node_zones + i; 3151 if (!populated_zone(zone)) 3152 continue; 3153 3154 sc.reclaim_idx = i; 3155 break; 3156 } 3157 } 3158 3159 /* 3160 * Only reclaim if there are no eligible zones. Check from 3161 * high to low zone as allocations prefer higher zones. 3162 * Scanning from low to high zone would allow congestion to be 3163 * cleared during a very small window when a small low 3164 * zone was balanced even under extreme pressure when the 3165 * overall node may be congested. Note that sc.reclaim_idx 3166 * is not used as buffer_heads_over_limit may have adjusted 3167 * it. 3168 */ 3169 for (i = classzone_idx; i >= 0; i--) { 3170 zone = pgdat->node_zones + i; 3171 if (!populated_zone(zone)) 3172 continue; 3173 3174 if (zone_balanced(zone, sc.order, classzone_idx)) 3175 goto out; 3176 } 3177 3178 /* 3179 * Do some background aging of the anon list, to give 3180 * pages a chance to be referenced before reclaiming. All 3181 * pages are rotated regardless of classzone as this is 3182 * about consistent aging. 3183 */ 3184 age_active_anon(pgdat, &sc); 3185 3186 /* 3187 * If we're getting trouble reclaiming, start doing writepage 3188 * even in laptop mode. 3189 */ 3190 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat)) 3191 sc.may_writepage = 1; 3192 3193 /* Call soft limit reclaim before calling shrink_node. */ 3194 sc.nr_scanned = 0; 3195 nr_soft_scanned = 0; 3196 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3197 sc.gfp_mask, &nr_soft_scanned); 3198 sc.nr_reclaimed += nr_soft_reclaimed; 3199 3200 /* 3201 * There should be no need to raise the scanning priority if 3202 * enough pages are already being scanned that that high 3203 * watermark would be met at 100% efficiency. 3204 */ 3205 if (kswapd_shrink_node(pgdat, &sc)) 3206 raise_priority = false; 3207 3208 /* 3209 * If the low watermark is met there is no need for processes 3210 * to be throttled on pfmemalloc_wait as they should not be 3211 * able to safely make forward progress. Wake them 3212 */ 3213 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3214 pfmemalloc_watermark_ok(pgdat)) 3215 wake_up_all(&pgdat->pfmemalloc_wait); 3216 3217 /* Check if kswapd should be suspending */ 3218 if (try_to_freeze() || kthread_should_stop()) 3219 break; 3220 3221 /* 3222 * Raise priority if scanning rate is too low or there was no 3223 * progress in reclaiming pages 3224 */ 3225 if (raise_priority || !sc.nr_reclaimed) 3226 sc.priority--; 3227 } while (sc.priority >= 1); 3228 3229 out: 3230 /* 3231 * Return the order kswapd stopped reclaiming at as 3232 * prepare_kswapd_sleep() takes it into account. If another caller 3233 * entered the allocator slow path while kswapd was awake, order will 3234 * remain at the higher level. 3235 */ 3236 return sc.order; 3237 } 3238 3239 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3240 unsigned int classzone_idx) 3241 { 3242 long remaining = 0; 3243 DEFINE_WAIT(wait); 3244 3245 if (freezing(current) || kthread_should_stop()) 3246 return; 3247 3248 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3249 3250 /* Try to sleep for a short interval */ 3251 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3252 /* 3253 * Compaction records what page blocks it recently failed to 3254 * isolate pages from and skips them in the future scanning. 3255 * When kswapd is going to sleep, it is reasonable to assume 3256 * that pages and compaction may succeed so reset the cache. 3257 */ 3258 reset_isolation_suitable(pgdat); 3259 3260 /* 3261 * We have freed the memory, now we should compact it to make 3262 * allocation of the requested order possible. 3263 */ 3264 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3265 3266 remaining = schedule_timeout(HZ/10); 3267 3268 /* 3269 * If woken prematurely then reset kswapd_classzone_idx and 3270 * order. The values will either be from a wakeup request or 3271 * the previous request that slept prematurely. 3272 */ 3273 if (remaining) { 3274 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3275 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3276 } 3277 3278 finish_wait(&pgdat->kswapd_wait, &wait); 3279 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3280 } 3281 3282 /* 3283 * After a short sleep, check if it was a premature sleep. If not, then 3284 * go fully to sleep until explicitly woken up. 3285 */ 3286 if (!remaining && 3287 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3288 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3289 3290 /* 3291 * vmstat counters are not perfectly accurate and the estimated 3292 * value for counters such as NR_FREE_PAGES can deviate from the 3293 * true value by nr_online_cpus * threshold. To avoid the zone 3294 * watermarks being breached while under pressure, we reduce the 3295 * per-cpu vmstat threshold while kswapd is awake and restore 3296 * them before going back to sleep. 3297 */ 3298 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3299 3300 if (!kthread_should_stop()) 3301 schedule(); 3302 3303 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3304 } else { 3305 if (remaining) 3306 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3307 else 3308 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3309 } 3310 finish_wait(&pgdat->kswapd_wait, &wait); 3311 } 3312 3313 /* 3314 * The background pageout daemon, started as a kernel thread 3315 * from the init process. 3316 * 3317 * This basically trickles out pages so that we have _some_ 3318 * free memory available even if there is no other activity 3319 * that frees anything up. This is needed for things like routing 3320 * etc, where we otherwise might have all activity going on in 3321 * asynchronous contexts that cannot page things out. 3322 * 3323 * If there are applications that are active memory-allocators 3324 * (most normal use), this basically shouldn't matter. 3325 */ 3326 static int kswapd(void *p) 3327 { 3328 unsigned int alloc_order, reclaim_order, classzone_idx; 3329 pg_data_t *pgdat = (pg_data_t*)p; 3330 struct task_struct *tsk = current; 3331 3332 struct reclaim_state reclaim_state = { 3333 .reclaimed_slab = 0, 3334 }; 3335 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3336 3337 lockdep_set_current_reclaim_state(GFP_KERNEL); 3338 3339 if (!cpumask_empty(cpumask)) 3340 set_cpus_allowed_ptr(tsk, cpumask); 3341 current->reclaim_state = &reclaim_state; 3342 3343 /* 3344 * Tell the memory management that we're a "memory allocator", 3345 * and that if we need more memory we should get access to it 3346 * regardless (see "__alloc_pages()"). "kswapd" should 3347 * never get caught in the normal page freeing logic. 3348 * 3349 * (Kswapd normally doesn't need memory anyway, but sometimes 3350 * you need a small amount of memory in order to be able to 3351 * page out something else, and this flag essentially protects 3352 * us from recursively trying to free more memory as we're 3353 * trying to free the first piece of memory in the first place). 3354 */ 3355 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3356 set_freezable(); 3357 3358 pgdat->kswapd_order = alloc_order = reclaim_order = 0; 3359 pgdat->kswapd_classzone_idx = classzone_idx = 0; 3360 for ( ; ; ) { 3361 bool ret; 3362 3363 kswapd_try_sleep: 3364 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3365 classzone_idx); 3366 3367 /* Read the new order and classzone_idx */ 3368 alloc_order = reclaim_order = pgdat->kswapd_order; 3369 classzone_idx = pgdat->kswapd_classzone_idx; 3370 pgdat->kswapd_order = 0; 3371 pgdat->kswapd_classzone_idx = 0; 3372 3373 ret = try_to_freeze(); 3374 if (kthread_should_stop()) 3375 break; 3376 3377 /* 3378 * We can speed up thawing tasks if we don't call balance_pgdat 3379 * after returning from the refrigerator 3380 */ 3381 if (ret) 3382 continue; 3383 3384 /* 3385 * Reclaim begins at the requested order but if a high-order 3386 * reclaim fails then kswapd falls back to reclaiming for 3387 * order-0. If that happens, kswapd will consider sleeping 3388 * for the order it finished reclaiming at (reclaim_order) 3389 * but kcompactd is woken to compact for the original 3390 * request (alloc_order). 3391 */ 3392 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3393 alloc_order); 3394 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3395 if (reclaim_order < alloc_order) 3396 goto kswapd_try_sleep; 3397 3398 alloc_order = reclaim_order = pgdat->kswapd_order; 3399 classzone_idx = pgdat->kswapd_classzone_idx; 3400 } 3401 3402 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3403 current->reclaim_state = NULL; 3404 lockdep_clear_current_reclaim_state(); 3405 3406 return 0; 3407 } 3408 3409 /* 3410 * A zone is low on free memory, so wake its kswapd task to service it. 3411 */ 3412 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3413 { 3414 pg_data_t *pgdat; 3415 int z; 3416 3417 if (!populated_zone(zone)) 3418 return; 3419 3420 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3421 return; 3422 pgdat = zone->zone_pgdat; 3423 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx); 3424 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3425 if (!waitqueue_active(&pgdat->kswapd_wait)) 3426 return; 3427 3428 /* Only wake kswapd if all zones are unbalanced */ 3429 for (z = 0; z <= classzone_idx; z++) { 3430 zone = pgdat->node_zones + z; 3431 if (!populated_zone(zone)) 3432 continue; 3433 3434 if (zone_balanced(zone, order, classzone_idx)) 3435 return; 3436 } 3437 3438 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3439 wake_up_interruptible(&pgdat->kswapd_wait); 3440 } 3441 3442 #ifdef CONFIG_HIBERNATION 3443 /* 3444 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3445 * freed pages. 3446 * 3447 * Rather than trying to age LRUs the aim is to preserve the overall 3448 * LRU order by reclaiming preferentially 3449 * inactive > active > active referenced > active mapped 3450 */ 3451 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3452 { 3453 struct reclaim_state reclaim_state; 3454 struct scan_control sc = { 3455 .nr_to_reclaim = nr_to_reclaim, 3456 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3457 .reclaim_idx = MAX_NR_ZONES - 1, 3458 .priority = DEF_PRIORITY, 3459 .may_writepage = 1, 3460 .may_unmap = 1, 3461 .may_swap = 1, 3462 .hibernation_mode = 1, 3463 }; 3464 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3465 struct task_struct *p = current; 3466 unsigned long nr_reclaimed; 3467 3468 p->flags |= PF_MEMALLOC; 3469 lockdep_set_current_reclaim_state(sc.gfp_mask); 3470 reclaim_state.reclaimed_slab = 0; 3471 p->reclaim_state = &reclaim_state; 3472 3473 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3474 3475 p->reclaim_state = NULL; 3476 lockdep_clear_current_reclaim_state(); 3477 p->flags &= ~PF_MEMALLOC; 3478 3479 return nr_reclaimed; 3480 } 3481 #endif /* CONFIG_HIBERNATION */ 3482 3483 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3484 not required for correctness. So if the last cpu in a node goes 3485 away, we get changed to run anywhere: as the first one comes back, 3486 restore their cpu bindings. */ 3487 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3488 void *hcpu) 3489 { 3490 int nid; 3491 3492 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3493 for_each_node_state(nid, N_MEMORY) { 3494 pg_data_t *pgdat = NODE_DATA(nid); 3495 const struct cpumask *mask; 3496 3497 mask = cpumask_of_node(pgdat->node_id); 3498 3499 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3500 /* One of our CPUs online: restore mask */ 3501 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3502 } 3503 } 3504 return NOTIFY_OK; 3505 } 3506 3507 /* 3508 * This kswapd start function will be called by init and node-hot-add. 3509 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3510 */ 3511 int kswapd_run(int nid) 3512 { 3513 pg_data_t *pgdat = NODE_DATA(nid); 3514 int ret = 0; 3515 3516 if (pgdat->kswapd) 3517 return 0; 3518 3519 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3520 if (IS_ERR(pgdat->kswapd)) { 3521 /* failure at boot is fatal */ 3522 BUG_ON(system_state == SYSTEM_BOOTING); 3523 pr_err("Failed to start kswapd on node %d\n", nid); 3524 ret = PTR_ERR(pgdat->kswapd); 3525 pgdat->kswapd = NULL; 3526 } 3527 return ret; 3528 } 3529 3530 /* 3531 * Called by memory hotplug when all memory in a node is offlined. Caller must 3532 * hold mem_hotplug_begin/end(). 3533 */ 3534 void kswapd_stop(int nid) 3535 { 3536 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3537 3538 if (kswapd) { 3539 kthread_stop(kswapd); 3540 NODE_DATA(nid)->kswapd = NULL; 3541 } 3542 } 3543 3544 static int __init kswapd_init(void) 3545 { 3546 int nid; 3547 3548 swap_setup(); 3549 for_each_node_state(nid, N_MEMORY) 3550 kswapd_run(nid); 3551 hotcpu_notifier(cpu_callback, 0); 3552 return 0; 3553 } 3554 3555 module_init(kswapd_init) 3556 3557 #ifdef CONFIG_NUMA 3558 /* 3559 * Node reclaim mode 3560 * 3561 * If non-zero call node_reclaim when the number of free pages falls below 3562 * the watermarks. 3563 */ 3564 int node_reclaim_mode __read_mostly; 3565 3566 #define RECLAIM_OFF 0 3567 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3568 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3569 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3570 3571 /* 3572 * Priority for NODE_RECLAIM. This determines the fraction of pages 3573 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3574 * a zone. 3575 */ 3576 #define NODE_RECLAIM_PRIORITY 4 3577 3578 /* 3579 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3580 * occur. 3581 */ 3582 int sysctl_min_unmapped_ratio = 1; 3583 3584 /* 3585 * If the number of slab pages in a zone grows beyond this percentage then 3586 * slab reclaim needs to occur. 3587 */ 3588 int sysctl_min_slab_ratio = 5; 3589 3590 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3591 { 3592 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3593 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3594 node_page_state(pgdat, NR_ACTIVE_FILE); 3595 3596 /* 3597 * It's possible for there to be more file mapped pages than 3598 * accounted for by the pages on the file LRU lists because 3599 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3600 */ 3601 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3602 } 3603 3604 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3605 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3606 { 3607 unsigned long nr_pagecache_reclaimable; 3608 unsigned long delta = 0; 3609 3610 /* 3611 * If RECLAIM_UNMAP is set, then all file pages are considered 3612 * potentially reclaimable. Otherwise, we have to worry about 3613 * pages like swapcache and node_unmapped_file_pages() provides 3614 * a better estimate 3615 */ 3616 if (node_reclaim_mode & RECLAIM_UNMAP) 3617 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3618 else 3619 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3620 3621 /* If we can't clean pages, remove dirty pages from consideration */ 3622 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3623 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3624 3625 /* Watch for any possible underflows due to delta */ 3626 if (unlikely(delta > nr_pagecache_reclaimable)) 3627 delta = nr_pagecache_reclaimable; 3628 3629 return nr_pagecache_reclaimable - delta; 3630 } 3631 3632 /* 3633 * Try to free up some pages from this node through reclaim. 3634 */ 3635 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3636 { 3637 /* Minimum pages needed in order to stay on node */ 3638 const unsigned long nr_pages = 1 << order; 3639 struct task_struct *p = current; 3640 struct reclaim_state reclaim_state; 3641 int classzone_idx = gfp_zone(gfp_mask); 3642 struct scan_control sc = { 3643 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3644 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3645 .order = order, 3646 .priority = NODE_RECLAIM_PRIORITY, 3647 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3648 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3649 .may_swap = 1, 3650 .reclaim_idx = classzone_idx, 3651 }; 3652 3653 cond_resched(); 3654 /* 3655 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3656 * and we also need to be able to write out pages for RECLAIM_WRITE 3657 * and RECLAIM_UNMAP. 3658 */ 3659 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3660 lockdep_set_current_reclaim_state(gfp_mask); 3661 reclaim_state.reclaimed_slab = 0; 3662 p->reclaim_state = &reclaim_state; 3663 3664 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3665 /* 3666 * Free memory by calling shrink zone with increasing 3667 * priorities until we have enough memory freed. 3668 */ 3669 do { 3670 shrink_node(pgdat, &sc); 3671 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3672 } 3673 3674 p->reclaim_state = NULL; 3675 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3676 lockdep_clear_current_reclaim_state(); 3677 return sc.nr_reclaimed >= nr_pages; 3678 } 3679 3680 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3681 { 3682 int ret; 3683 3684 /* 3685 * Node reclaim reclaims unmapped file backed pages and 3686 * slab pages if we are over the defined limits. 3687 * 3688 * A small portion of unmapped file backed pages is needed for 3689 * file I/O otherwise pages read by file I/O will be immediately 3690 * thrown out if the node is overallocated. So we do not reclaim 3691 * if less than a specified percentage of the node is used by 3692 * unmapped file backed pages. 3693 */ 3694 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3695 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3696 return NODE_RECLAIM_FULL; 3697 3698 if (!pgdat_reclaimable(pgdat)) 3699 return NODE_RECLAIM_FULL; 3700 3701 /* 3702 * Do not scan if the allocation should not be delayed. 3703 */ 3704 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3705 return NODE_RECLAIM_NOSCAN; 3706 3707 /* 3708 * Only run node reclaim on the local node or on nodes that do not 3709 * have associated processors. This will favor the local processor 3710 * over remote processors and spread off node memory allocations 3711 * as wide as possible. 3712 */ 3713 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3714 return NODE_RECLAIM_NOSCAN; 3715 3716 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3717 return NODE_RECLAIM_NOSCAN; 3718 3719 ret = __node_reclaim(pgdat, gfp_mask, order); 3720 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3721 3722 if (!ret) 3723 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3724 3725 return ret; 3726 } 3727 #endif 3728 3729 /* 3730 * page_evictable - test whether a page is evictable 3731 * @page: the page to test 3732 * 3733 * Test whether page is evictable--i.e., should be placed on active/inactive 3734 * lists vs unevictable list. 3735 * 3736 * Reasons page might not be evictable: 3737 * (1) page's mapping marked unevictable 3738 * (2) page is part of an mlocked VMA 3739 * 3740 */ 3741 int page_evictable(struct page *page) 3742 { 3743 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3744 } 3745 3746 #ifdef CONFIG_SHMEM 3747 /** 3748 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3749 * @pages: array of pages to check 3750 * @nr_pages: number of pages to check 3751 * 3752 * Checks pages for evictability and moves them to the appropriate lru list. 3753 * 3754 * This function is only used for SysV IPC SHM_UNLOCK. 3755 */ 3756 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3757 { 3758 struct lruvec *lruvec; 3759 struct zone *zone = NULL; 3760 int pgscanned = 0; 3761 int pgrescued = 0; 3762 int i; 3763 3764 for (i = 0; i < nr_pages; i++) { 3765 struct page *page = pages[i]; 3766 struct zone *pagezone; 3767 3768 pgscanned++; 3769 pagezone = page_zone(page); 3770 if (pagezone != zone) { 3771 if (zone) 3772 spin_unlock_irq(zone_lru_lock(zone)); 3773 zone = pagezone; 3774 spin_lock_irq(zone_lru_lock(zone)); 3775 } 3776 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 3777 3778 if (!PageLRU(page) || !PageUnevictable(page)) 3779 continue; 3780 3781 if (page_evictable(page)) { 3782 enum lru_list lru = page_lru_base_type(page); 3783 3784 VM_BUG_ON_PAGE(PageActive(page), page); 3785 ClearPageUnevictable(page); 3786 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3787 add_page_to_lru_list(page, lruvec, lru); 3788 pgrescued++; 3789 } 3790 } 3791 3792 if (zone) { 3793 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3794 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3795 spin_unlock_irq(zone_lru_lock(zone)); 3796 } 3797 } 3798 #endif /* CONFIG_SHMEM */ 3799