xref: /openbmc/linux/mm/vmscan.c (revision e5146b12e2d02af04608301c958d95b2fc47a0f9)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	/* The highest zone to isolate pages for reclaim from */
88 	enum zone_type reclaim_idx;
89 
90 	unsigned int may_writepage:1;
91 
92 	/* Can mapped pages be reclaimed? */
93 	unsigned int may_unmap:1;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	unsigned int may_swap:1;
97 
98 	/* Can cgroups be reclaimed below their normal consumption range? */
99 	unsigned int may_thrash:1;
100 
101 	unsigned int hibernation_mode:1;
102 
103 	/* One of the zones is ready for compaction */
104 	unsigned int compaction_ready:1;
105 
106 	/* Incremented by the number of inactive pages that were scanned */
107 	unsigned long nr_scanned;
108 
109 	/* Number of pages freed so far during a call to shrink_zones() */
110 	unsigned long nr_reclaimed;
111 };
112 
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetch(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field)			\
129 	do {								\
130 		if ((_page)->lru.prev != _base) {			\
131 			struct page *prev;				\
132 									\
133 			prev = lru_to_page(&(_page->lru));		\
134 			prefetchw(&prev->_field);			\
135 		}							\
136 	} while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
140 
141 /*
142  * From 0 .. 100.  Higher means more swappy.
143  */
144 int vm_swappiness = 60;
145 /*
146  * The total number of pages which are beyond the high watermark within all
147  * zones.
148  */
149 unsigned long vm_total_pages;
150 
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153 
154 #ifdef CONFIG_MEMCG
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 	return !sc->target_mem_cgroup;
158 }
159 
160 /**
161  * sane_reclaim - is the usual dirty throttling mechanism operational?
162  * @sc: scan_control in question
163  *
164  * The normal page dirty throttling mechanism in balance_dirty_pages() is
165  * completely broken with the legacy memcg and direct stalling in
166  * shrink_page_list() is used for throttling instead, which lacks all the
167  * niceties such as fairness, adaptive pausing, bandwidth proportional
168  * allocation and configurability.
169  *
170  * This function tests whether the vmscan currently in progress can assume
171  * that the normal dirty throttling mechanism is operational.
172  */
173 static bool sane_reclaim(struct scan_control *sc)
174 {
175 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
176 
177 	if (!memcg)
178 		return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 		return true;
182 #endif
183 	return false;
184 }
185 #else
186 static bool global_reclaim(struct scan_control *sc)
187 {
188 	return true;
189 }
190 
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 	return true;
194 }
195 #endif
196 
197 /*
198  * This misses isolated pages which are not accounted for to save counters.
199  * As the data only determines if reclaim or compaction continues, it is
200  * not expected that isolated pages will be a dominating factor.
201  */
202 unsigned long zone_reclaimable_pages(struct zone *zone)
203 {
204 	unsigned long nr;
205 
206 	nr = zone_page_state_snapshot(zone, NR_ZONE_LRU_FILE);
207 	if (get_nr_swap_pages() > 0)
208 		nr += zone_page_state_snapshot(zone, NR_ZONE_LRU_ANON);
209 
210 	return nr;
211 }
212 
213 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
214 {
215 	unsigned long nr;
216 
217 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
218 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
219 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
220 
221 	if (get_nr_swap_pages() > 0)
222 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
223 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
224 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
225 
226 	return nr;
227 }
228 
229 bool pgdat_reclaimable(struct pglist_data *pgdat)
230 {
231 	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
232 		pgdat_reclaimable_pages(pgdat) * 6;
233 }
234 
235 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
236 {
237 	if (!mem_cgroup_disabled())
238 		return mem_cgroup_get_lru_size(lruvec, lru);
239 
240 	return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
241 }
242 
243 /*
244  * Add a shrinker callback to be called from the vm.
245  */
246 int register_shrinker(struct shrinker *shrinker)
247 {
248 	size_t size = sizeof(*shrinker->nr_deferred);
249 
250 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
251 		size *= nr_node_ids;
252 
253 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
254 	if (!shrinker->nr_deferred)
255 		return -ENOMEM;
256 
257 	down_write(&shrinker_rwsem);
258 	list_add_tail(&shrinker->list, &shrinker_list);
259 	up_write(&shrinker_rwsem);
260 	return 0;
261 }
262 EXPORT_SYMBOL(register_shrinker);
263 
264 /*
265  * Remove one
266  */
267 void unregister_shrinker(struct shrinker *shrinker)
268 {
269 	down_write(&shrinker_rwsem);
270 	list_del(&shrinker->list);
271 	up_write(&shrinker_rwsem);
272 	kfree(shrinker->nr_deferred);
273 }
274 EXPORT_SYMBOL(unregister_shrinker);
275 
276 #define SHRINK_BATCH 128
277 
278 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
279 				    struct shrinker *shrinker,
280 				    unsigned long nr_scanned,
281 				    unsigned long nr_eligible)
282 {
283 	unsigned long freed = 0;
284 	unsigned long long delta;
285 	long total_scan;
286 	long freeable;
287 	long nr;
288 	long new_nr;
289 	int nid = shrinkctl->nid;
290 	long batch_size = shrinker->batch ? shrinker->batch
291 					  : SHRINK_BATCH;
292 
293 	freeable = shrinker->count_objects(shrinker, shrinkctl);
294 	if (freeable == 0)
295 		return 0;
296 
297 	/*
298 	 * copy the current shrinker scan count into a local variable
299 	 * and zero it so that other concurrent shrinker invocations
300 	 * don't also do this scanning work.
301 	 */
302 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
303 
304 	total_scan = nr;
305 	delta = (4 * nr_scanned) / shrinker->seeks;
306 	delta *= freeable;
307 	do_div(delta, nr_eligible + 1);
308 	total_scan += delta;
309 	if (total_scan < 0) {
310 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
311 		       shrinker->scan_objects, total_scan);
312 		total_scan = freeable;
313 	}
314 
315 	/*
316 	 * We need to avoid excessive windup on filesystem shrinkers
317 	 * due to large numbers of GFP_NOFS allocations causing the
318 	 * shrinkers to return -1 all the time. This results in a large
319 	 * nr being built up so when a shrink that can do some work
320 	 * comes along it empties the entire cache due to nr >>>
321 	 * freeable. This is bad for sustaining a working set in
322 	 * memory.
323 	 *
324 	 * Hence only allow the shrinker to scan the entire cache when
325 	 * a large delta change is calculated directly.
326 	 */
327 	if (delta < freeable / 4)
328 		total_scan = min(total_scan, freeable / 2);
329 
330 	/*
331 	 * Avoid risking looping forever due to too large nr value:
332 	 * never try to free more than twice the estimate number of
333 	 * freeable entries.
334 	 */
335 	if (total_scan > freeable * 2)
336 		total_scan = freeable * 2;
337 
338 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
339 				   nr_scanned, nr_eligible,
340 				   freeable, delta, total_scan);
341 
342 	/*
343 	 * Normally, we should not scan less than batch_size objects in one
344 	 * pass to avoid too frequent shrinker calls, but if the slab has less
345 	 * than batch_size objects in total and we are really tight on memory,
346 	 * we will try to reclaim all available objects, otherwise we can end
347 	 * up failing allocations although there are plenty of reclaimable
348 	 * objects spread over several slabs with usage less than the
349 	 * batch_size.
350 	 *
351 	 * We detect the "tight on memory" situations by looking at the total
352 	 * number of objects we want to scan (total_scan). If it is greater
353 	 * than the total number of objects on slab (freeable), we must be
354 	 * scanning at high prio and therefore should try to reclaim as much as
355 	 * possible.
356 	 */
357 	while (total_scan >= batch_size ||
358 	       total_scan >= freeable) {
359 		unsigned long ret;
360 		unsigned long nr_to_scan = min(batch_size, total_scan);
361 
362 		shrinkctl->nr_to_scan = nr_to_scan;
363 		ret = shrinker->scan_objects(shrinker, shrinkctl);
364 		if (ret == SHRINK_STOP)
365 			break;
366 		freed += ret;
367 
368 		count_vm_events(SLABS_SCANNED, nr_to_scan);
369 		total_scan -= nr_to_scan;
370 
371 		cond_resched();
372 	}
373 
374 	/*
375 	 * move the unused scan count back into the shrinker in a
376 	 * manner that handles concurrent updates. If we exhausted the
377 	 * scan, there is no need to do an update.
378 	 */
379 	if (total_scan > 0)
380 		new_nr = atomic_long_add_return(total_scan,
381 						&shrinker->nr_deferred[nid]);
382 	else
383 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
384 
385 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
386 	return freed;
387 }
388 
389 /**
390  * shrink_slab - shrink slab caches
391  * @gfp_mask: allocation context
392  * @nid: node whose slab caches to target
393  * @memcg: memory cgroup whose slab caches to target
394  * @nr_scanned: pressure numerator
395  * @nr_eligible: pressure denominator
396  *
397  * Call the shrink functions to age shrinkable caches.
398  *
399  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
400  * unaware shrinkers will receive a node id of 0 instead.
401  *
402  * @memcg specifies the memory cgroup to target. If it is not NULL,
403  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
404  * objects from the memory cgroup specified. Otherwise, only unaware
405  * shrinkers are called.
406  *
407  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
408  * the available objects should be scanned.  Page reclaim for example
409  * passes the number of pages scanned and the number of pages on the
410  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
411  * when it encountered mapped pages.  The ratio is further biased by
412  * the ->seeks setting of the shrink function, which indicates the
413  * cost to recreate an object relative to that of an LRU page.
414  *
415  * Returns the number of reclaimed slab objects.
416  */
417 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
418 				 struct mem_cgroup *memcg,
419 				 unsigned long nr_scanned,
420 				 unsigned long nr_eligible)
421 {
422 	struct shrinker *shrinker;
423 	unsigned long freed = 0;
424 
425 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
426 		return 0;
427 
428 	if (nr_scanned == 0)
429 		nr_scanned = SWAP_CLUSTER_MAX;
430 
431 	if (!down_read_trylock(&shrinker_rwsem)) {
432 		/*
433 		 * If we would return 0, our callers would understand that we
434 		 * have nothing else to shrink and give up trying. By returning
435 		 * 1 we keep it going and assume we'll be able to shrink next
436 		 * time.
437 		 */
438 		freed = 1;
439 		goto out;
440 	}
441 
442 	list_for_each_entry(shrinker, &shrinker_list, list) {
443 		struct shrink_control sc = {
444 			.gfp_mask = gfp_mask,
445 			.nid = nid,
446 			.memcg = memcg,
447 		};
448 
449 		/*
450 		 * If kernel memory accounting is disabled, we ignore
451 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
452 		 * passing NULL for memcg.
453 		 */
454 		if (memcg_kmem_enabled() &&
455 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
456 			continue;
457 
458 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
459 			sc.nid = 0;
460 
461 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
462 	}
463 
464 	up_read(&shrinker_rwsem);
465 out:
466 	cond_resched();
467 	return freed;
468 }
469 
470 void drop_slab_node(int nid)
471 {
472 	unsigned long freed;
473 
474 	do {
475 		struct mem_cgroup *memcg = NULL;
476 
477 		freed = 0;
478 		do {
479 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
480 					     1000, 1000);
481 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
482 	} while (freed > 10);
483 }
484 
485 void drop_slab(void)
486 {
487 	int nid;
488 
489 	for_each_online_node(nid)
490 		drop_slab_node(nid);
491 }
492 
493 static inline int is_page_cache_freeable(struct page *page)
494 {
495 	/*
496 	 * A freeable page cache page is referenced only by the caller
497 	 * that isolated the page, the page cache radix tree and
498 	 * optional buffer heads at page->private.
499 	 */
500 	return page_count(page) - page_has_private(page) == 2;
501 }
502 
503 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
504 {
505 	if (current->flags & PF_SWAPWRITE)
506 		return 1;
507 	if (!inode_write_congested(inode))
508 		return 1;
509 	if (inode_to_bdi(inode) == current->backing_dev_info)
510 		return 1;
511 	return 0;
512 }
513 
514 /*
515  * We detected a synchronous write error writing a page out.  Probably
516  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
517  * fsync(), msync() or close().
518  *
519  * The tricky part is that after writepage we cannot touch the mapping: nothing
520  * prevents it from being freed up.  But we have a ref on the page and once
521  * that page is locked, the mapping is pinned.
522  *
523  * We're allowed to run sleeping lock_page() here because we know the caller has
524  * __GFP_FS.
525  */
526 static void handle_write_error(struct address_space *mapping,
527 				struct page *page, int error)
528 {
529 	lock_page(page);
530 	if (page_mapping(page) == mapping)
531 		mapping_set_error(mapping, error);
532 	unlock_page(page);
533 }
534 
535 /* possible outcome of pageout() */
536 typedef enum {
537 	/* failed to write page out, page is locked */
538 	PAGE_KEEP,
539 	/* move page to the active list, page is locked */
540 	PAGE_ACTIVATE,
541 	/* page has been sent to the disk successfully, page is unlocked */
542 	PAGE_SUCCESS,
543 	/* page is clean and locked */
544 	PAGE_CLEAN,
545 } pageout_t;
546 
547 /*
548  * pageout is called by shrink_page_list() for each dirty page.
549  * Calls ->writepage().
550  */
551 static pageout_t pageout(struct page *page, struct address_space *mapping,
552 			 struct scan_control *sc)
553 {
554 	/*
555 	 * If the page is dirty, only perform writeback if that write
556 	 * will be non-blocking.  To prevent this allocation from being
557 	 * stalled by pagecache activity.  But note that there may be
558 	 * stalls if we need to run get_block().  We could test
559 	 * PagePrivate for that.
560 	 *
561 	 * If this process is currently in __generic_file_write_iter() against
562 	 * this page's queue, we can perform writeback even if that
563 	 * will block.
564 	 *
565 	 * If the page is swapcache, write it back even if that would
566 	 * block, for some throttling. This happens by accident, because
567 	 * swap_backing_dev_info is bust: it doesn't reflect the
568 	 * congestion state of the swapdevs.  Easy to fix, if needed.
569 	 */
570 	if (!is_page_cache_freeable(page))
571 		return PAGE_KEEP;
572 	if (!mapping) {
573 		/*
574 		 * Some data journaling orphaned pages can have
575 		 * page->mapping == NULL while being dirty with clean buffers.
576 		 */
577 		if (page_has_private(page)) {
578 			if (try_to_free_buffers(page)) {
579 				ClearPageDirty(page);
580 				pr_info("%s: orphaned page\n", __func__);
581 				return PAGE_CLEAN;
582 			}
583 		}
584 		return PAGE_KEEP;
585 	}
586 	if (mapping->a_ops->writepage == NULL)
587 		return PAGE_ACTIVATE;
588 	if (!may_write_to_inode(mapping->host, sc))
589 		return PAGE_KEEP;
590 
591 	if (clear_page_dirty_for_io(page)) {
592 		int res;
593 		struct writeback_control wbc = {
594 			.sync_mode = WB_SYNC_NONE,
595 			.nr_to_write = SWAP_CLUSTER_MAX,
596 			.range_start = 0,
597 			.range_end = LLONG_MAX,
598 			.for_reclaim = 1,
599 		};
600 
601 		SetPageReclaim(page);
602 		res = mapping->a_ops->writepage(page, &wbc);
603 		if (res < 0)
604 			handle_write_error(mapping, page, res);
605 		if (res == AOP_WRITEPAGE_ACTIVATE) {
606 			ClearPageReclaim(page);
607 			return PAGE_ACTIVATE;
608 		}
609 
610 		if (!PageWriteback(page)) {
611 			/* synchronous write or broken a_ops? */
612 			ClearPageReclaim(page);
613 		}
614 		trace_mm_vmscan_writepage(page);
615 		inc_node_page_state(page, NR_VMSCAN_WRITE);
616 		return PAGE_SUCCESS;
617 	}
618 
619 	return PAGE_CLEAN;
620 }
621 
622 /*
623  * Same as remove_mapping, but if the page is removed from the mapping, it
624  * gets returned with a refcount of 0.
625  */
626 static int __remove_mapping(struct address_space *mapping, struct page *page,
627 			    bool reclaimed)
628 {
629 	unsigned long flags;
630 
631 	BUG_ON(!PageLocked(page));
632 	BUG_ON(mapping != page_mapping(page));
633 
634 	spin_lock_irqsave(&mapping->tree_lock, flags);
635 	/*
636 	 * The non racy check for a busy page.
637 	 *
638 	 * Must be careful with the order of the tests. When someone has
639 	 * a ref to the page, it may be possible that they dirty it then
640 	 * drop the reference. So if PageDirty is tested before page_count
641 	 * here, then the following race may occur:
642 	 *
643 	 * get_user_pages(&page);
644 	 * [user mapping goes away]
645 	 * write_to(page);
646 	 *				!PageDirty(page)    [good]
647 	 * SetPageDirty(page);
648 	 * put_page(page);
649 	 *				!page_count(page)   [good, discard it]
650 	 *
651 	 * [oops, our write_to data is lost]
652 	 *
653 	 * Reversing the order of the tests ensures such a situation cannot
654 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
655 	 * load is not satisfied before that of page->_refcount.
656 	 *
657 	 * Note that if SetPageDirty is always performed via set_page_dirty,
658 	 * and thus under tree_lock, then this ordering is not required.
659 	 */
660 	if (!page_ref_freeze(page, 2))
661 		goto cannot_free;
662 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
663 	if (unlikely(PageDirty(page))) {
664 		page_ref_unfreeze(page, 2);
665 		goto cannot_free;
666 	}
667 
668 	if (PageSwapCache(page)) {
669 		swp_entry_t swap = { .val = page_private(page) };
670 		mem_cgroup_swapout(page, swap);
671 		__delete_from_swap_cache(page);
672 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
673 		swapcache_free(swap);
674 	} else {
675 		void (*freepage)(struct page *);
676 		void *shadow = NULL;
677 
678 		freepage = mapping->a_ops->freepage;
679 		/*
680 		 * Remember a shadow entry for reclaimed file cache in
681 		 * order to detect refaults, thus thrashing, later on.
682 		 *
683 		 * But don't store shadows in an address space that is
684 		 * already exiting.  This is not just an optizimation,
685 		 * inode reclaim needs to empty out the radix tree or
686 		 * the nodes are lost.  Don't plant shadows behind its
687 		 * back.
688 		 *
689 		 * We also don't store shadows for DAX mappings because the
690 		 * only page cache pages found in these are zero pages
691 		 * covering holes, and because we don't want to mix DAX
692 		 * exceptional entries and shadow exceptional entries in the
693 		 * same page_tree.
694 		 */
695 		if (reclaimed && page_is_file_cache(page) &&
696 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
697 			shadow = workingset_eviction(mapping, page);
698 		__delete_from_page_cache(page, shadow);
699 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
700 
701 		if (freepage != NULL)
702 			freepage(page);
703 	}
704 
705 	return 1;
706 
707 cannot_free:
708 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
709 	return 0;
710 }
711 
712 /*
713  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
714  * someone else has a ref on the page, abort and return 0.  If it was
715  * successfully detached, return 1.  Assumes the caller has a single ref on
716  * this page.
717  */
718 int remove_mapping(struct address_space *mapping, struct page *page)
719 {
720 	if (__remove_mapping(mapping, page, false)) {
721 		/*
722 		 * Unfreezing the refcount with 1 rather than 2 effectively
723 		 * drops the pagecache ref for us without requiring another
724 		 * atomic operation.
725 		 */
726 		page_ref_unfreeze(page, 1);
727 		return 1;
728 	}
729 	return 0;
730 }
731 
732 /**
733  * putback_lru_page - put previously isolated page onto appropriate LRU list
734  * @page: page to be put back to appropriate lru list
735  *
736  * Add previously isolated @page to appropriate LRU list.
737  * Page may still be unevictable for other reasons.
738  *
739  * lru_lock must not be held, interrupts must be enabled.
740  */
741 void putback_lru_page(struct page *page)
742 {
743 	bool is_unevictable;
744 	int was_unevictable = PageUnevictable(page);
745 
746 	VM_BUG_ON_PAGE(PageLRU(page), page);
747 
748 redo:
749 	ClearPageUnevictable(page);
750 
751 	if (page_evictable(page)) {
752 		/*
753 		 * For evictable pages, we can use the cache.
754 		 * In event of a race, worst case is we end up with an
755 		 * unevictable page on [in]active list.
756 		 * We know how to handle that.
757 		 */
758 		is_unevictable = false;
759 		lru_cache_add(page);
760 	} else {
761 		/*
762 		 * Put unevictable pages directly on zone's unevictable
763 		 * list.
764 		 */
765 		is_unevictable = true;
766 		add_page_to_unevictable_list(page);
767 		/*
768 		 * When racing with an mlock or AS_UNEVICTABLE clearing
769 		 * (page is unlocked) make sure that if the other thread
770 		 * does not observe our setting of PG_lru and fails
771 		 * isolation/check_move_unevictable_pages,
772 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
773 		 * the page back to the evictable list.
774 		 *
775 		 * The other side is TestClearPageMlocked() or shmem_lock().
776 		 */
777 		smp_mb();
778 	}
779 
780 	/*
781 	 * page's status can change while we move it among lru. If an evictable
782 	 * page is on unevictable list, it never be freed. To avoid that,
783 	 * check after we added it to the list, again.
784 	 */
785 	if (is_unevictable && page_evictable(page)) {
786 		if (!isolate_lru_page(page)) {
787 			put_page(page);
788 			goto redo;
789 		}
790 		/* This means someone else dropped this page from LRU
791 		 * So, it will be freed or putback to LRU again. There is
792 		 * nothing to do here.
793 		 */
794 	}
795 
796 	if (was_unevictable && !is_unevictable)
797 		count_vm_event(UNEVICTABLE_PGRESCUED);
798 	else if (!was_unevictable && is_unevictable)
799 		count_vm_event(UNEVICTABLE_PGCULLED);
800 
801 	put_page(page);		/* drop ref from isolate */
802 }
803 
804 enum page_references {
805 	PAGEREF_RECLAIM,
806 	PAGEREF_RECLAIM_CLEAN,
807 	PAGEREF_KEEP,
808 	PAGEREF_ACTIVATE,
809 };
810 
811 static enum page_references page_check_references(struct page *page,
812 						  struct scan_control *sc)
813 {
814 	int referenced_ptes, referenced_page;
815 	unsigned long vm_flags;
816 
817 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
818 					  &vm_flags);
819 	referenced_page = TestClearPageReferenced(page);
820 
821 	/*
822 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
823 	 * move the page to the unevictable list.
824 	 */
825 	if (vm_flags & VM_LOCKED)
826 		return PAGEREF_RECLAIM;
827 
828 	if (referenced_ptes) {
829 		if (PageSwapBacked(page))
830 			return PAGEREF_ACTIVATE;
831 		/*
832 		 * All mapped pages start out with page table
833 		 * references from the instantiating fault, so we need
834 		 * to look twice if a mapped file page is used more
835 		 * than once.
836 		 *
837 		 * Mark it and spare it for another trip around the
838 		 * inactive list.  Another page table reference will
839 		 * lead to its activation.
840 		 *
841 		 * Note: the mark is set for activated pages as well
842 		 * so that recently deactivated but used pages are
843 		 * quickly recovered.
844 		 */
845 		SetPageReferenced(page);
846 
847 		if (referenced_page || referenced_ptes > 1)
848 			return PAGEREF_ACTIVATE;
849 
850 		/*
851 		 * Activate file-backed executable pages after first usage.
852 		 */
853 		if (vm_flags & VM_EXEC)
854 			return PAGEREF_ACTIVATE;
855 
856 		return PAGEREF_KEEP;
857 	}
858 
859 	/* Reclaim if clean, defer dirty pages to writeback */
860 	if (referenced_page && !PageSwapBacked(page))
861 		return PAGEREF_RECLAIM_CLEAN;
862 
863 	return PAGEREF_RECLAIM;
864 }
865 
866 /* Check if a page is dirty or under writeback */
867 static void page_check_dirty_writeback(struct page *page,
868 				       bool *dirty, bool *writeback)
869 {
870 	struct address_space *mapping;
871 
872 	/*
873 	 * Anonymous pages are not handled by flushers and must be written
874 	 * from reclaim context. Do not stall reclaim based on them
875 	 */
876 	if (!page_is_file_cache(page)) {
877 		*dirty = false;
878 		*writeback = false;
879 		return;
880 	}
881 
882 	/* By default assume that the page flags are accurate */
883 	*dirty = PageDirty(page);
884 	*writeback = PageWriteback(page);
885 
886 	/* Verify dirty/writeback state if the filesystem supports it */
887 	if (!page_has_private(page))
888 		return;
889 
890 	mapping = page_mapping(page);
891 	if (mapping && mapping->a_ops->is_dirty_writeback)
892 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
893 }
894 
895 /*
896  * shrink_page_list() returns the number of reclaimed pages
897  */
898 static unsigned long shrink_page_list(struct list_head *page_list,
899 				      struct pglist_data *pgdat,
900 				      struct scan_control *sc,
901 				      enum ttu_flags ttu_flags,
902 				      unsigned long *ret_nr_dirty,
903 				      unsigned long *ret_nr_unqueued_dirty,
904 				      unsigned long *ret_nr_congested,
905 				      unsigned long *ret_nr_writeback,
906 				      unsigned long *ret_nr_immediate,
907 				      bool force_reclaim)
908 {
909 	LIST_HEAD(ret_pages);
910 	LIST_HEAD(free_pages);
911 	int pgactivate = 0;
912 	unsigned long nr_unqueued_dirty = 0;
913 	unsigned long nr_dirty = 0;
914 	unsigned long nr_congested = 0;
915 	unsigned long nr_reclaimed = 0;
916 	unsigned long nr_writeback = 0;
917 	unsigned long nr_immediate = 0;
918 
919 	cond_resched();
920 
921 	while (!list_empty(page_list)) {
922 		struct address_space *mapping;
923 		struct page *page;
924 		int may_enter_fs;
925 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
926 		bool dirty, writeback;
927 		bool lazyfree = false;
928 		int ret = SWAP_SUCCESS;
929 
930 		cond_resched();
931 
932 		page = lru_to_page(page_list);
933 		list_del(&page->lru);
934 
935 		if (!trylock_page(page))
936 			goto keep;
937 
938 		VM_BUG_ON_PAGE(PageActive(page), page);
939 
940 		sc->nr_scanned++;
941 
942 		if (unlikely(!page_evictable(page)))
943 			goto cull_mlocked;
944 
945 		if (!sc->may_unmap && page_mapped(page))
946 			goto keep_locked;
947 
948 		/* Double the slab pressure for mapped and swapcache pages */
949 		if (page_mapped(page) || PageSwapCache(page))
950 			sc->nr_scanned++;
951 
952 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
953 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
954 
955 		/*
956 		 * The number of dirty pages determines if a zone is marked
957 		 * reclaim_congested which affects wait_iff_congested. kswapd
958 		 * will stall and start writing pages if the tail of the LRU
959 		 * is all dirty unqueued pages.
960 		 */
961 		page_check_dirty_writeback(page, &dirty, &writeback);
962 		if (dirty || writeback)
963 			nr_dirty++;
964 
965 		if (dirty && !writeback)
966 			nr_unqueued_dirty++;
967 
968 		/*
969 		 * Treat this page as congested if the underlying BDI is or if
970 		 * pages are cycling through the LRU so quickly that the
971 		 * pages marked for immediate reclaim are making it to the
972 		 * end of the LRU a second time.
973 		 */
974 		mapping = page_mapping(page);
975 		if (((dirty || writeback) && mapping &&
976 		     inode_write_congested(mapping->host)) ||
977 		    (writeback && PageReclaim(page)))
978 			nr_congested++;
979 
980 		/*
981 		 * If a page at the tail of the LRU is under writeback, there
982 		 * are three cases to consider.
983 		 *
984 		 * 1) If reclaim is encountering an excessive number of pages
985 		 *    under writeback and this page is both under writeback and
986 		 *    PageReclaim then it indicates that pages are being queued
987 		 *    for IO but are being recycled through the LRU before the
988 		 *    IO can complete. Waiting on the page itself risks an
989 		 *    indefinite stall if it is impossible to writeback the
990 		 *    page due to IO error or disconnected storage so instead
991 		 *    note that the LRU is being scanned too quickly and the
992 		 *    caller can stall after page list has been processed.
993 		 *
994 		 * 2) Global or new memcg reclaim encounters a page that is
995 		 *    not marked for immediate reclaim, or the caller does not
996 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
997 		 *    not to fs). In this case mark the page for immediate
998 		 *    reclaim and continue scanning.
999 		 *
1000 		 *    Require may_enter_fs because we would wait on fs, which
1001 		 *    may not have submitted IO yet. And the loop driver might
1002 		 *    enter reclaim, and deadlock if it waits on a page for
1003 		 *    which it is needed to do the write (loop masks off
1004 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1005 		 *    would probably show more reasons.
1006 		 *
1007 		 * 3) Legacy memcg encounters a page that is already marked
1008 		 *    PageReclaim. memcg does not have any dirty pages
1009 		 *    throttling so we could easily OOM just because too many
1010 		 *    pages are in writeback and there is nothing else to
1011 		 *    reclaim. Wait for the writeback to complete.
1012 		 */
1013 		if (PageWriteback(page)) {
1014 			/* Case 1 above */
1015 			if (current_is_kswapd() &&
1016 			    PageReclaim(page) &&
1017 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1018 				nr_immediate++;
1019 				goto keep_locked;
1020 
1021 			/* Case 2 above */
1022 			} else if (sane_reclaim(sc) ||
1023 			    !PageReclaim(page) || !may_enter_fs) {
1024 				/*
1025 				 * This is slightly racy - end_page_writeback()
1026 				 * might have just cleared PageReclaim, then
1027 				 * setting PageReclaim here end up interpreted
1028 				 * as PageReadahead - but that does not matter
1029 				 * enough to care.  What we do want is for this
1030 				 * page to have PageReclaim set next time memcg
1031 				 * reclaim reaches the tests above, so it will
1032 				 * then wait_on_page_writeback() to avoid OOM;
1033 				 * and it's also appropriate in global reclaim.
1034 				 */
1035 				SetPageReclaim(page);
1036 				nr_writeback++;
1037 				goto keep_locked;
1038 
1039 			/* Case 3 above */
1040 			} else {
1041 				unlock_page(page);
1042 				wait_on_page_writeback(page);
1043 				/* then go back and try same page again */
1044 				list_add_tail(&page->lru, page_list);
1045 				continue;
1046 			}
1047 		}
1048 
1049 		if (!force_reclaim)
1050 			references = page_check_references(page, sc);
1051 
1052 		switch (references) {
1053 		case PAGEREF_ACTIVATE:
1054 			goto activate_locked;
1055 		case PAGEREF_KEEP:
1056 			goto keep_locked;
1057 		case PAGEREF_RECLAIM:
1058 		case PAGEREF_RECLAIM_CLEAN:
1059 			; /* try to reclaim the page below */
1060 		}
1061 
1062 		/*
1063 		 * Anonymous process memory has backing store?
1064 		 * Try to allocate it some swap space here.
1065 		 */
1066 		if (PageAnon(page) && !PageSwapCache(page)) {
1067 			if (!(sc->gfp_mask & __GFP_IO))
1068 				goto keep_locked;
1069 			if (!add_to_swap(page, page_list))
1070 				goto activate_locked;
1071 			lazyfree = true;
1072 			may_enter_fs = 1;
1073 
1074 			/* Adding to swap updated mapping */
1075 			mapping = page_mapping(page);
1076 		} else if (unlikely(PageTransHuge(page))) {
1077 			/* Split file THP */
1078 			if (split_huge_page_to_list(page, page_list))
1079 				goto keep_locked;
1080 		}
1081 
1082 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1083 
1084 		/*
1085 		 * The page is mapped into the page tables of one or more
1086 		 * processes. Try to unmap it here.
1087 		 */
1088 		if (page_mapped(page) && mapping) {
1089 			switch (ret = try_to_unmap(page, lazyfree ?
1090 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1091 				(ttu_flags | TTU_BATCH_FLUSH))) {
1092 			case SWAP_FAIL:
1093 				goto activate_locked;
1094 			case SWAP_AGAIN:
1095 				goto keep_locked;
1096 			case SWAP_MLOCK:
1097 				goto cull_mlocked;
1098 			case SWAP_LZFREE:
1099 				goto lazyfree;
1100 			case SWAP_SUCCESS:
1101 				; /* try to free the page below */
1102 			}
1103 		}
1104 
1105 		if (PageDirty(page)) {
1106 			/*
1107 			 * Only kswapd can writeback filesystem pages to
1108 			 * avoid risk of stack overflow but only writeback
1109 			 * if many dirty pages have been encountered.
1110 			 */
1111 			if (page_is_file_cache(page) &&
1112 					(!current_is_kswapd() ||
1113 					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1114 				/*
1115 				 * Immediately reclaim when written back.
1116 				 * Similar in principal to deactivate_page()
1117 				 * except we already have the page isolated
1118 				 * and know it's dirty
1119 				 */
1120 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1121 				SetPageReclaim(page);
1122 
1123 				goto keep_locked;
1124 			}
1125 
1126 			if (references == PAGEREF_RECLAIM_CLEAN)
1127 				goto keep_locked;
1128 			if (!may_enter_fs)
1129 				goto keep_locked;
1130 			if (!sc->may_writepage)
1131 				goto keep_locked;
1132 
1133 			/*
1134 			 * Page is dirty. Flush the TLB if a writable entry
1135 			 * potentially exists to avoid CPU writes after IO
1136 			 * starts and then write it out here.
1137 			 */
1138 			try_to_unmap_flush_dirty();
1139 			switch (pageout(page, mapping, sc)) {
1140 			case PAGE_KEEP:
1141 				goto keep_locked;
1142 			case PAGE_ACTIVATE:
1143 				goto activate_locked;
1144 			case PAGE_SUCCESS:
1145 				if (PageWriteback(page))
1146 					goto keep;
1147 				if (PageDirty(page))
1148 					goto keep;
1149 
1150 				/*
1151 				 * A synchronous write - probably a ramdisk.  Go
1152 				 * ahead and try to reclaim the page.
1153 				 */
1154 				if (!trylock_page(page))
1155 					goto keep;
1156 				if (PageDirty(page) || PageWriteback(page))
1157 					goto keep_locked;
1158 				mapping = page_mapping(page);
1159 			case PAGE_CLEAN:
1160 				; /* try to free the page below */
1161 			}
1162 		}
1163 
1164 		/*
1165 		 * If the page has buffers, try to free the buffer mappings
1166 		 * associated with this page. If we succeed we try to free
1167 		 * the page as well.
1168 		 *
1169 		 * We do this even if the page is PageDirty().
1170 		 * try_to_release_page() does not perform I/O, but it is
1171 		 * possible for a page to have PageDirty set, but it is actually
1172 		 * clean (all its buffers are clean).  This happens if the
1173 		 * buffers were written out directly, with submit_bh(). ext3
1174 		 * will do this, as well as the blockdev mapping.
1175 		 * try_to_release_page() will discover that cleanness and will
1176 		 * drop the buffers and mark the page clean - it can be freed.
1177 		 *
1178 		 * Rarely, pages can have buffers and no ->mapping.  These are
1179 		 * the pages which were not successfully invalidated in
1180 		 * truncate_complete_page().  We try to drop those buffers here
1181 		 * and if that worked, and the page is no longer mapped into
1182 		 * process address space (page_count == 1) it can be freed.
1183 		 * Otherwise, leave the page on the LRU so it is swappable.
1184 		 */
1185 		if (page_has_private(page)) {
1186 			if (!try_to_release_page(page, sc->gfp_mask))
1187 				goto activate_locked;
1188 			if (!mapping && page_count(page) == 1) {
1189 				unlock_page(page);
1190 				if (put_page_testzero(page))
1191 					goto free_it;
1192 				else {
1193 					/*
1194 					 * rare race with speculative reference.
1195 					 * the speculative reference will free
1196 					 * this page shortly, so we may
1197 					 * increment nr_reclaimed here (and
1198 					 * leave it off the LRU).
1199 					 */
1200 					nr_reclaimed++;
1201 					continue;
1202 				}
1203 			}
1204 		}
1205 
1206 lazyfree:
1207 		if (!mapping || !__remove_mapping(mapping, page, true))
1208 			goto keep_locked;
1209 
1210 		/*
1211 		 * At this point, we have no other references and there is
1212 		 * no way to pick any more up (removed from LRU, removed
1213 		 * from pagecache). Can use non-atomic bitops now (and
1214 		 * we obviously don't have to worry about waking up a process
1215 		 * waiting on the page lock, because there are no references.
1216 		 */
1217 		__ClearPageLocked(page);
1218 free_it:
1219 		if (ret == SWAP_LZFREE)
1220 			count_vm_event(PGLAZYFREED);
1221 
1222 		nr_reclaimed++;
1223 
1224 		/*
1225 		 * Is there need to periodically free_page_list? It would
1226 		 * appear not as the counts should be low
1227 		 */
1228 		list_add(&page->lru, &free_pages);
1229 		continue;
1230 
1231 cull_mlocked:
1232 		if (PageSwapCache(page))
1233 			try_to_free_swap(page);
1234 		unlock_page(page);
1235 		list_add(&page->lru, &ret_pages);
1236 		continue;
1237 
1238 activate_locked:
1239 		/* Not a candidate for swapping, so reclaim swap space. */
1240 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1241 			try_to_free_swap(page);
1242 		VM_BUG_ON_PAGE(PageActive(page), page);
1243 		SetPageActive(page);
1244 		pgactivate++;
1245 keep_locked:
1246 		unlock_page(page);
1247 keep:
1248 		list_add(&page->lru, &ret_pages);
1249 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1250 	}
1251 
1252 	mem_cgroup_uncharge_list(&free_pages);
1253 	try_to_unmap_flush();
1254 	free_hot_cold_page_list(&free_pages, true);
1255 
1256 	list_splice(&ret_pages, page_list);
1257 	count_vm_events(PGACTIVATE, pgactivate);
1258 
1259 	*ret_nr_dirty += nr_dirty;
1260 	*ret_nr_congested += nr_congested;
1261 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1262 	*ret_nr_writeback += nr_writeback;
1263 	*ret_nr_immediate += nr_immediate;
1264 	return nr_reclaimed;
1265 }
1266 
1267 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1268 					    struct list_head *page_list)
1269 {
1270 	struct scan_control sc = {
1271 		.gfp_mask = GFP_KERNEL,
1272 		.priority = DEF_PRIORITY,
1273 		.may_unmap = 1,
1274 	};
1275 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1276 	struct page *page, *next;
1277 	LIST_HEAD(clean_pages);
1278 
1279 	list_for_each_entry_safe(page, next, page_list, lru) {
1280 		if (page_is_file_cache(page) && !PageDirty(page) &&
1281 		    !__PageMovable(page)) {
1282 			ClearPageActive(page);
1283 			list_move(&page->lru, &clean_pages);
1284 		}
1285 	}
1286 
1287 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1288 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1289 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1290 	list_splice(&clean_pages, page_list);
1291 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1292 	return ret;
1293 }
1294 
1295 /*
1296  * Attempt to remove the specified page from its LRU.  Only take this page
1297  * if it is of the appropriate PageActive status.  Pages which are being
1298  * freed elsewhere are also ignored.
1299  *
1300  * page:	page to consider
1301  * mode:	one of the LRU isolation modes defined above
1302  *
1303  * returns 0 on success, -ve errno on failure.
1304  */
1305 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1306 {
1307 	int ret = -EINVAL;
1308 
1309 	/* Only take pages on the LRU. */
1310 	if (!PageLRU(page))
1311 		return ret;
1312 
1313 	/* Compaction should not handle unevictable pages but CMA can do so */
1314 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1315 		return ret;
1316 
1317 	ret = -EBUSY;
1318 
1319 	/*
1320 	 * To minimise LRU disruption, the caller can indicate that it only
1321 	 * wants to isolate pages it will be able to operate on without
1322 	 * blocking - clean pages for the most part.
1323 	 *
1324 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1325 	 * is used by reclaim when it is cannot write to backing storage
1326 	 *
1327 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1328 	 * that it is possible to migrate without blocking
1329 	 */
1330 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1331 		/* All the caller can do on PageWriteback is block */
1332 		if (PageWriteback(page))
1333 			return ret;
1334 
1335 		if (PageDirty(page)) {
1336 			struct address_space *mapping;
1337 
1338 			/* ISOLATE_CLEAN means only clean pages */
1339 			if (mode & ISOLATE_CLEAN)
1340 				return ret;
1341 
1342 			/*
1343 			 * Only pages without mappings or that have a
1344 			 * ->migratepage callback are possible to migrate
1345 			 * without blocking
1346 			 */
1347 			mapping = page_mapping(page);
1348 			if (mapping && !mapping->a_ops->migratepage)
1349 				return ret;
1350 		}
1351 	}
1352 
1353 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1354 		return ret;
1355 
1356 	if (likely(get_page_unless_zero(page))) {
1357 		/*
1358 		 * Be careful not to clear PageLRU until after we're
1359 		 * sure the page is not being freed elsewhere -- the
1360 		 * page release code relies on it.
1361 		 */
1362 		ClearPageLRU(page);
1363 		ret = 0;
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 /*
1370  * zone_lru_lock is heavily contended.  Some of the functions that
1371  * shrink the lists perform better by taking out a batch of pages
1372  * and working on them outside the LRU lock.
1373  *
1374  * For pagecache intensive workloads, this function is the hottest
1375  * spot in the kernel (apart from copy_*_user functions).
1376  *
1377  * Appropriate locks must be held before calling this function.
1378  *
1379  * @nr_to_scan:	The number of pages to look through on the list.
1380  * @lruvec:	The LRU vector to pull pages from.
1381  * @dst:	The temp list to put pages on to.
1382  * @nr_scanned:	The number of pages that were scanned.
1383  * @sc:		The scan_control struct for this reclaim session
1384  * @mode:	One of the LRU isolation modes
1385  * @lru:	LRU list id for isolating
1386  *
1387  * returns how many pages were moved onto *@dst.
1388  */
1389 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1390 		struct lruvec *lruvec, struct list_head *dst,
1391 		unsigned long *nr_scanned, struct scan_control *sc,
1392 		isolate_mode_t mode, enum lru_list lru)
1393 {
1394 	struct list_head *src = &lruvec->lists[lru];
1395 	unsigned long nr_taken = 0;
1396 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1397 	unsigned long scan, nr_pages;
1398 	LIST_HEAD(pages_skipped);
1399 
1400 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1401 					!list_empty(src); scan++) {
1402 		struct page *page;
1403 
1404 		page = lru_to_page(src);
1405 		prefetchw_prev_lru_page(page, src, flags);
1406 
1407 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1408 
1409 		if (page_zonenum(page) > sc->reclaim_idx) {
1410 			list_move(&page->lru, &pages_skipped);
1411 			continue;
1412 		}
1413 
1414 		switch (__isolate_lru_page(page, mode)) {
1415 		case 0:
1416 			nr_pages = hpage_nr_pages(page);
1417 			nr_taken += nr_pages;
1418 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1419 			list_move(&page->lru, dst);
1420 			break;
1421 
1422 		case -EBUSY:
1423 			/* else it is being freed elsewhere */
1424 			list_move(&page->lru, src);
1425 			continue;
1426 
1427 		default:
1428 			BUG();
1429 		}
1430 	}
1431 
1432 	/*
1433 	 * Splice any skipped pages to the start of the LRU list. Note that
1434 	 * this disrupts the LRU order when reclaiming for lower zones but
1435 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1436 	 * scanning would soon rescan the same pages to skip and put the
1437 	 * system at risk of premature OOM.
1438 	 */
1439 	if (!list_empty(&pages_skipped))
1440 		list_splice(&pages_skipped, src);
1441 	*nr_scanned = scan;
1442 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1443 				    nr_taken, mode, is_file_lru(lru));
1444 	for (scan = 0; scan < MAX_NR_ZONES; scan++) {
1445 		nr_pages = nr_zone_taken[scan];
1446 		if (!nr_pages)
1447 			continue;
1448 
1449 		update_lru_size(lruvec, lru, scan, -nr_pages);
1450 	}
1451 	return nr_taken;
1452 }
1453 
1454 /**
1455  * isolate_lru_page - tries to isolate a page from its LRU list
1456  * @page: page to isolate from its LRU list
1457  *
1458  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1459  * vmstat statistic corresponding to whatever LRU list the page was on.
1460  *
1461  * Returns 0 if the page was removed from an LRU list.
1462  * Returns -EBUSY if the page was not on an LRU list.
1463  *
1464  * The returned page will have PageLRU() cleared.  If it was found on
1465  * the active list, it will have PageActive set.  If it was found on
1466  * the unevictable list, it will have the PageUnevictable bit set. That flag
1467  * may need to be cleared by the caller before letting the page go.
1468  *
1469  * The vmstat statistic corresponding to the list on which the page was
1470  * found will be decremented.
1471  *
1472  * Restrictions:
1473  * (1) Must be called with an elevated refcount on the page. This is a
1474  *     fundamentnal difference from isolate_lru_pages (which is called
1475  *     without a stable reference).
1476  * (2) the lru_lock must not be held.
1477  * (3) interrupts must be enabled.
1478  */
1479 int isolate_lru_page(struct page *page)
1480 {
1481 	int ret = -EBUSY;
1482 
1483 	VM_BUG_ON_PAGE(!page_count(page), page);
1484 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1485 
1486 	if (PageLRU(page)) {
1487 		struct zone *zone = page_zone(page);
1488 		struct lruvec *lruvec;
1489 
1490 		spin_lock_irq(zone_lru_lock(zone));
1491 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1492 		if (PageLRU(page)) {
1493 			int lru = page_lru(page);
1494 			get_page(page);
1495 			ClearPageLRU(page);
1496 			del_page_from_lru_list(page, lruvec, lru);
1497 			ret = 0;
1498 		}
1499 		spin_unlock_irq(zone_lru_lock(zone));
1500 	}
1501 	return ret;
1502 }
1503 
1504 /*
1505  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1506  * then get resheduled. When there are massive number of tasks doing page
1507  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1508  * the LRU list will go small and be scanned faster than necessary, leading to
1509  * unnecessary swapping, thrashing and OOM.
1510  */
1511 static int too_many_isolated(struct pglist_data *pgdat, int file,
1512 		struct scan_control *sc)
1513 {
1514 	unsigned long inactive, isolated;
1515 
1516 	if (current_is_kswapd())
1517 		return 0;
1518 
1519 	if (!sane_reclaim(sc))
1520 		return 0;
1521 
1522 	if (file) {
1523 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1524 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1525 	} else {
1526 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1527 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1528 	}
1529 
1530 	/*
1531 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1532 	 * won't get blocked by normal direct-reclaimers, forming a circular
1533 	 * deadlock.
1534 	 */
1535 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1536 		inactive >>= 3;
1537 
1538 	return isolated > inactive;
1539 }
1540 
1541 static noinline_for_stack void
1542 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1543 {
1544 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1545 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1546 	LIST_HEAD(pages_to_free);
1547 
1548 	/*
1549 	 * Put back any unfreeable pages.
1550 	 */
1551 	while (!list_empty(page_list)) {
1552 		struct page *page = lru_to_page(page_list);
1553 		int lru;
1554 
1555 		VM_BUG_ON_PAGE(PageLRU(page), page);
1556 		list_del(&page->lru);
1557 		if (unlikely(!page_evictable(page))) {
1558 			spin_unlock_irq(&pgdat->lru_lock);
1559 			putback_lru_page(page);
1560 			spin_lock_irq(&pgdat->lru_lock);
1561 			continue;
1562 		}
1563 
1564 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1565 
1566 		SetPageLRU(page);
1567 		lru = page_lru(page);
1568 		add_page_to_lru_list(page, lruvec, lru);
1569 
1570 		if (is_active_lru(lru)) {
1571 			int file = is_file_lru(lru);
1572 			int numpages = hpage_nr_pages(page);
1573 			reclaim_stat->recent_rotated[file] += numpages;
1574 		}
1575 		if (put_page_testzero(page)) {
1576 			__ClearPageLRU(page);
1577 			__ClearPageActive(page);
1578 			del_page_from_lru_list(page, lruvec, lru);
1579 
1580 			if (unlikely(PageCompound(page))) {
1581 				spin_unlock_irq(&pgdat->lru_lock);
1582 				mem_cgroup_uncharge(page);
1583 				(*get_compound_page_dtor(page))(page);
1584 				spin_lock_irq(&pgdat->lru_lock);
1585 			} else
1586 				list_add(&page->lru, &pages_to_free);
1587 		}
1588 	}
1589 
1590 	/*
1591 	 * To save our caller's stack, now use input list for pages to free.
1592 	 */
1593 	list_splice(&pages_to_free, page_list);
1594 }
1595 
1596 /*
1597  * If a kernel thread (such as nfsd for loop-back mounts) services
1598  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1599  * In that case we should only throttle if the backing device it is
1600  * writing to is congested.  In other cases it is safe to throttle.
1601  */
1602 static int current_may_throttle(void)
1603 {
1604 	return !(current->flags & PF_LESS_THROTTLE) ||
1605 		current->backing_dev_info == NULL ||
1606 		bdi_write_congested(current->backing_dev_info);
1607 }
1608 
1609 /*
1610  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1611  * of reclaimed pages
1612  */
1613 static noinline_for_stack unsigned long
1614 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1615 		     struct scan_control *sc, enum lru_list lru)
1616 {
1617 	LIST_HEAD(page_list);
1618 	unsigned long nr_scanned;
1619 	unsigned long nr_reclaimed = 0;
1620 	unsigned long nr_taken;
1621 	unsigned long nr_dirty = 0;
1622 	unsigned long nr_congested = 0;
1623 	unsigned long nr_unqueued_dirty = 0;
1624 	unsigned long nr_writeback = 0;
1625 	unsigned long nr_immediate = 0;
1626 	isolate_mode_t isolate_mode = 0;
1627 	int file = is_file_lru(lru);
1628 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1629 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1630 
1631 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1632 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1633 
1634 		/* We are about to die and free our memory. Return now. */
1635 		if (fatal_signal_pending(current))
1636 			return SWAP_CLUSTER_MAX;
1637 	}
1638 
1639 	lru_add_drain();
1640 
1641 	if (!sc->may_unmap)
1642 		isolate_mode |= ISOLATE_UNMAPPED;
1643 	if (!sc->may_writepage)
1644 		isolate_mode |= ISOLATE_CLEAN;
1645 
1646 	spin_lock_irq(&pgdat->lru_lock);
1647 
1648 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1649 				     &nr_scanned, sc, isolate_mode, lru);
1650 
1651 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1652 	reclaim_stat->recent_scanned[file] += nr_taken;
1653 
1654 	if (global_reclaim(sc)) {
1655 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1656 		if (current_is_kswapd())
1657 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1658 		else
1659 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1660 	}
1661 	spin_unlock_irq(&pgdat->lru_lock);
1662 
1663 	if (nr_taken == 0)
1664 		return 0;
1665 
1666 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1667 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1668 				&nr_writeback, &nr_immediate,
1669 				false);
1670 
1671 	spin_lock_irq(&pgdat->lru_lock);
1672 
1673 	if (global_reclaim(sc)) {
1674 		if (current_is_kswapd())
1675 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1676 		else
1677 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1678 	}
1679 
1680 	putback_inactive_pages(lruvec, &page_list);
1681 
1682 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1683 
1684 	spin_unlock_irq(&pgdat->lru_lock);
1685 
1686 	mem_cgroup_uncharge_list(&page_list);
1687 	free_hot_cold_page_list(&page_list, true);
1688 
1689 	/*
1690 	 * If reclaim is isolating dirty pages under writeback, it implies
1691 	 * that the long-lived page allocation rate is exceeding the page
1692 	 * laundering rate. Either the global limits are not being effective
1693 	 * at throttling processes due to the page distribution throughout
1694 	 * zones or there is heavy usage of a slow backing device. The
1695 	 * only option is to throttle from reclaim context which is not ideal
1696 	 * as there is no guarantee the dirtying process is throttled in the
1697 	 * same way balance_dirty_pages() manages.
1698 	 *
1699 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1700 	 * of pages under pages flagged for immediate reclaim and stall if any
1701 	 * are encountered in the nr_immediate check below.
1702 	 */
1703 	if (nr_writeback && nr_writeback == nr_taken)
1704 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1705 
1706 	/*
1707 	 * Legacy memcg will stall in page writeback so avoid forcibly
1708 	 * stalling here.
1709 	 */
1710 	if (sane_reclaim(sc)) {
1711 		/*
1712 		 * Tag a zone as congested if all the dirty pages scanned were
1713 		 * backed by a congested BDI and wait_iff_congested will stall.
1714 		 */
1715 		if (nr_dirty && nr_dirty == nr_congested)
1716 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1717 
1718 		/*
1719 		 * If dirty pages are scanned that are not queued for IO, it
1720 		 * implies that flushers are not keeping up. In this case, flag
1721 		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1722 		 * reclaim context.
1723 		 */
1724 		if (nr_unqueued_dirty == nr_taken)
1725 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1726 
1727 		/*
1728 		 * If kswapd scans pages marked marked for immediate
1729 		 * reclaim and under writeback (nr_immediate), it implies
1730 		 * that pages are cycling through the LRU faster than
1731 		 * they are written so also forcibly stall.
1732 		 */
1733 		if (nr_immediate && current_may_throttle())
1734 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1735 	}
1736 
1737 	/*
1738 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1739 	 * is congested. Allow kswapd to continue until it starts encountering
1740 	 * unqueued dirty pages or cycling through the LRU too quickly.
1741 	 */
1742 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1743 	    current_may_throttle())
1744 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1745 
1746 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1747 			nr_scanned, nr_reclaimed,
1748 			sc->priority, file);
1749 	return nr_reclaimed;
1750 }
1751 
1752 /*
1753  * This moves pages from the active list to the inactive list.
1754  *
1755  * We move them the other way if the page is referenced by one or more
1756  * processes, from rmap.
1757  *
1758  * If the pages are mostly unmapped, the processing is fast and it is
1759  * appropriate to hold zone_lru_lock across the whole operation.  But if
1760  * the pages are mapped, the processing is slow (page_referenced()) so we
1761  * should drop zone_lru_lock around each page.  It's impossible to balance
1762  * this, so instead we remove the pages from the LRU while processing them.
1763  * It is safe to rely on PG_active against the non-LRU pages in here because
1764  * nobody will play with that bit on a non-LRU page.
1765  *
1766  * The downside is that we have to touch page->_refcount against each page.
1767  * But we had to alter page->flags anyway.
1768  */
1769 
1770 static void move_active_pages_to_lru(struct lruvec *lruvec,
1771 				     struct list_head *list,
1772 				     struct list_head *pages_to_free,
1773 				     enum lru_list lru)
1774 {
1775 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1776 	unsigned long pgmoved = 0;
1777 	struct page *page;
1778 	int nr_pages;
1779 
1780 	while (!list_empty(list)) {
1781 		page = lru_to_page(list);
1782 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1783 
1784 		VM_BUG_ON_PAGE(PageLRU(page), page);
1785 		SetPageLRU(page);
1786 
1787 		nr_pages = hpage_nr_pages(page);
1788 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1789 		list_move(&page->lru, &lruvec->lists[lru]);
1790 		pgmoved += nr_pages;
1791 
1792 		if (put_page_testzero(page)) {
1793 			__ClearPageLRU(page);
1794 			__ClearPageActive(page);
1795 			del_page_from_lru_list(page, lruvec, lru);
1796 
1797 			if (unlikely(PageCompound(page))) {
1798 				spin_unlock_irq(&pgdat->lru_lock);
1799 				mem_cgroup_uncharge(page);
1800 				(*get_compound_page_dtor(page))(page);
1801 				spin_lock_irq(&pgdat->lru_lock);
1802 			} else
1803 				list_add(&page->lru, pages_to_free);
1804 		}
1805 	}
1806 
1807 	if (!is_active_lru(lru))
1808 		__count_vm_events(PGDEACTIVATE, pgmoved);
1809 }
1810 
1811 static void shrink_active_list(unsigned long nr_to_scan,
1812 			       struct lruvec *lruvec,
1813 			       struct scan_control *sc,
1814 			       enum lru_list lru)
1815 {
1816 	unsigned long nr_taken;
1817 	unsigned long nr_scanned;
1818 	unsigned long vm_flags;
1819 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1820 	LIST_HEAD(l_active);
1821 	LIST_HEAD(l_inactive);
1822 	struct page *page;
1823 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1824 	unsigned long nr_rotated = 0;
1825 	isolate_mode_t isolate_mode = 0;
1826 	int file = is_file_lru(lru);
1827 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1828 
1829 	lru_add_drain();
1830 
1831 	if (!sc->may_unmap)
1832 		isolate_mode |= ISOLATE_UNMAPPED;
1833 	if (!sc->may_writepage)
1834 		isolate_mode |= ISOLATE_CLEAN;
1835 
1836 	spin_lock_irq(&pgdat->lru_lock);
1837 
1838 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1839 				     &nr_scanned, sc, isolate_mode, lru);
1840 
1841 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1842 	reclaim_stat->recent_scanned[file] += nr_taken;
1843 
1844 	if (global_reclaim(sc))
1845 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1846 	__count_vm_events(PGREFILL, nr_scanned);
1847 
1848 	spin_unlock_irq(&pgdat->lru_lock);
1849 
1850 	while (!list_empty(&l_hold)) {
1851 		cond_resched();
1852 		page = lru_to_page(&l_hold);
1853 		list_del(&page->lru);
1854 
1855 		if (unlikely(!page_evictable(page))) {
1856 			putback_lru_page(page);
1857 			continue;
1858 		}
1859 
1860 		if (unlikely(buffer_heads_over_limit)) {
1861 			if (page_has_private(page) && trylock_page(page)) {
1862 				if (page_has_private(page))
1863 					try_to_release_page(page, 0);
1864 				unlock_page(page);
1865 			}
1866 		}
1867 
1868 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1869 				    &vm_flags)) {
1870 			nr_rotated += hpage_nr_pages(page);
1871 			/*
1872 			 * Identify referenced, file-backed active pages and
1873 			 * give them one more trip around the active list. So
1874 			 * that executable code get better chances to stay in
1875 			 * memory under moderate memory pressure.  Anon pages
1876 			 * are not likely to be evicted by use-once streaming
1877 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1878 			 * so we ignore them here.
1879 			 */
1880 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1881 				list_add(&page->lru, &l_active);
1882 				continue;
1883 			}
1884 		}
1885 
1886 		ClearPageActive(page);	/* we are de-activating */
1887 		list_add(&page->lru, &l_inactive);
1888 	}
1889 
1890 	/*
1891 	 * Move pages back to the lru list.
1892 	 */
1893 	spin_lock_irq(&pgdat->lru_lock);
1894 	/*
1895 	 * Count referenced pages from currently used mappings as rotated,
1896 	 * even though only some of them are actually re-activated.  This
1897 	 * helps balance scan pressure between file and anonymous pages in
1898 	 * get_scan_count.
1899 	 */
1900 	reclaim_stat->recent_rotated[file] += nr_rotated;
1901 
1902 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1903 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1904 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1905 	spin_unlock_irq(&pgdat->lru_lock);
1906 
1907 	mem_cgroup_uncharge_list(&l_hold);
1908 	free_hot_cold_page_list(&l_hold, true);
1909 }
1910 
1911 /*
1912  * The inactive anon list should be small enough that the VM never has
1913  * to do too much work.
1914  *
1915  * The inactive file list should be small enough to leave most memory
1916  * to the established workingset on the scan-resistant active list,
1917  * but large enough to avoid thrashing the aggregate readahead window.
1918  *
1919  * Both inactive lists should also be large enough that each inactive
1920  * page has a chance to be referenced again before it is reclaimed.
1921  *
1922  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
1923  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
1924  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
1925  *
1926  * total     target    max
1927  * memory    ratio     inactive
1928  * -------------------------------------
1929  *   10MB       1         5MB
1930  *  100MB       1        50MB
1931  *    1GB       3       250MB
1932  *   10GB      10       0.9GB
1933  *  100GB      31         3GB
1934  *    1TB     101        10GB
1935  *   10TB     320        32GB
1936  */
1937 static bool inactive_list_is_low(struct lruvec *lruvec, bool file)
1938 {
1939 	unsigned long inactive_ratio;
1940 	unsigned long inactive;
1941 	unsigned long active;
1942 	unsigned long gb;
1943 
1944 	/*
1945 	 * If we don't have swap space, anonymous page deactivation
1946 	 * is pointless.
1947 	 */
1948 	if (!file && !total_swap_pages)
1949 		return false;
1950 
1951 	inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
1952 	active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
1953 
1954 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1955 	if (gb)
1956 		inactive_ratio = int_sqrt(10 * gb);
1957 	else
1958 		inactive_ratio = 1;
1959 
1960 	return inactive * inactive_ratio < active;
1961 }
1962 
1963 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1964 				 struct lruvec *lruvec, struct scan_control *sc)
1965 {
1966 	if (is_active_lru(lru)) {
1967 		if (inactive_list_is_low(lruvec, is_file_lru(lru)))
1968 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1969 		return 0;
1970 	}
1971 
1972 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1973 }
1974 
1975 enum scan_balance {
1976 	SCAN_EQUAL,
1977 	SCAN_FRACT,
1978 	SCAN_ANON,
1979 	SCAN_FILE,
1980 };
1981 
1982 /*
1983  * Determine how aggressively the anon and file LRU lists should be
1984  * scanned.  The relative value of each set of LRU lists is determined
1985  * by looking at the fraction of the pages scanned we did rotate back
1986  * onto the active list instead of evict.
1987  *
1988  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1989  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1990  */
1991 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1992 			   struct scan_control *sc, unsigned long *nr,
1993 			   unsigned long *lru_pages)
1994 {
1995 	int swappiness = mem_cgroup_swappiness(memcg);
1996 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1997 	u64 fraction[2];
1998 	u64 denominator = 0;	/* gcc */
1999 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2000 	unsigned long anon_prio, file_prio;
2001 	enum scan_balance scan_balance;
2002 	unsigned long anon, file;
2003 	bool force_scan = false;
2004 	unsigned long ap, fp;
2005 	enum lru_list lru;
2006 	bool some_scanned;
2007 	int pass;
2008 
2009 	/*
2010 	 * If the zone or memcg is small, nr[l] can be 0.  This
2011 	 * results in no scanning on this priority and a potential
2012 	 * priority drop.  Global direct reclaim can go to the next
2013 	 * zone and tends to have no problems. Global kswapd is for
2014 	 * zone balancing and it needs to scan a minimum amount. When
2015 	 * reclaiming for a memcg, a priority drop can cause high
2016 	 * latencies, so it's better to scan a minimum amount there as
2017 	 * well.
2018 	 */
2019 	if (current_is_kswapd()) {
2020 		if (!pgdat_reclaimable(pgdat))
2021 			force_scan = true;
2022 		if (!mem_cgroup_online(memcg))
2023 			force_scan = true;
2024 	}
2025 	if (!global_reclaim(sc))
2026 		force_scan = true;
2027 
2028 	/* If we have no swap space, do not bother scanning anon pages. */
2029 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2030 		scan_balance = SCAN_FILE;
2031 		goto out;
2032 	}
2033 
2034 	/*
2035 	 * Global reclaim will swap to prevent OOM even with no
2036 	 * swappiness, but memcg users want to use this knob to
2037 	 * disable swapping for individual groups completely when
2038 	 * using the memory controller's swap limit feature would be
2039 	 * too expensive.
2040 	 */
2041 	if (!global_reclaim(sc) && !swappiness) {
2042 		scan_balance = SCAN_FILE;
2043 		goto out;
2044 	}
2045 
2046 	/*
2047 	 * Do not apply any pressure balancing cleverness when the
2048 	 * system is close to OOM, scan both anon and file equally
2049 	 * (unless the swappiness setting disagrees with swapping).
2050 	 */
2051 	if (!sc->priority && swappiness) {
2052 		scan_balance = SCAN_EQUAL;
2053 		goto out;
2054 	}
2055 
2056 	/*
2057 	 * Prevent the reclaimer from falling into the cache trap: as
2058 	 * cache pages start out inactive, every cache fault will tip
2059 	 * the scan balance towards the file LRU.  And as the file LRU
2060 	 * shrinks, so does the window for rotation from references.
2061 	 * This means we have a runaway feedback loop where a tiny
2062 	 * thrashing file LRU becomes infinitely more attractive than
2063 	 * anon pages.  Try to detect this based on file LRU size.
2064 	 */
2065 	if (global_reclaim(sc)) {
2066 		unsigned long pgdatfile;
2067 		unsigned long pgdatfree;
2068 		int z;
2069 		unsigned long total_high_wmark = 0;
2070 
2071 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2072 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2073 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2074 
2075 		for (z = 0; z < MAX_NR_ZONES; z++) {
2076 			struct zone *zone = &pgdat->node_zones[z];
2077 			if (!populated_zone(zone))
2078 				continue;
2079 
2080 			total_high_wmark += high_wmark_pages(zone);
2081 		}
2082 
2083 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2084 			scan_balance = SCAN_ANON;
2085 			goto out;
2086 		}
2087 	}
2088 
2089 	/*
2090 	 * If there is enough inactive page cache, i.e. if the size of the
2091 	 * inactive list is greater than that of the active list *and* the
2092 	 * inactive list actually has some pages to scan on this priority, we
2093 	 * do not reclaim anything from the anonymous working set right now.
2094 	 * Without the second condition we could end up never scanning an
2095 	 * lruvec even if it has plenty of old anonymous pages unless the
2096 	 * system is under heavy pressure.
2097 	 */
2098 	if (!inactive_list_is_low(lruvec, true) &&
2099 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2100 		scan_balance = SCAN_FILE;
2101 		goto out;
2102 	}
2103 
2104 	scan_balance = SCAN_FRACT;
2105 
2106 	/*
2107 	 * With swappiness at 100, anonymous and file have the same priority.
2108 	 * This scanning priority is essentially the inverse of IO cost.
2109 	 */
2110 	anon_prio = swappiness;
2111 	file_prio = 200 - anon_prio;
2112 
2113 	/*
2114 	 * OK, so we have swap space and a fair amount of page cache
2115 	 * pages.  We use the recently rotated / recently scanned
2116 	 * ratios to determine how valuable each cache is.
2117 	 *
2118 	 * Because workloads change over time (and to avoid overflow)
2119 	 * we keep these statistics as a floating average, which ends
2120 	 * up weighing recent references more than old ones.
2121 	 *
2122 	 * anon in [0], file in [1]
2123 	 */
2124 
2125 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2126 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2127 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2128 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2129 
2130 	spin_lock_irq(&pgdat->lru_lock);
2131 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2132 		reclaim_stat->recent_scanned[0] /= 2;
2133 		reclaim_stat->recent_rotated[0] /= 2;
2134 	}
2135 
2136 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2137 		reclaim_stat->recent_scanned[1] /= 2;
2138 		reclaim_stat->recent_rotated[1] /= 2;
2139 	}
2140 
2141 	/*
2142 	 * The amount of pressure on anon vs file pages is inversely
2143 	 * proportional to the fraction of recently scanned pages on
2144 	 * each list that were recently referenced and in active use.
2145 	 */
2146 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2147 	ap /= reclaim_stat->recent_rotated[0] + 1;
2148 
2149 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2150 	fp /= reclaim_stat->recent_rotated[1] + 1;
2151 	spin_unlock_irq(&pgdat->lru_lock);
2152 
2153 	fraction[0] = ap;
2154 	fraction[1] = fp;
2155 	denominator = ap + fp + 1;
2156 out:
2157 	some_scanned = false;
2158 	/* Only use force_scan on second pass. */
2159 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2160 		*lru_pages = 0;
2161 		for_each_evictable_lru(lru) {
2162 			int file = is_file_lru(lru);
2163 			unsigned long size;
2164 			unsigned long scan;
2165 
2166 			size = lruvec_lru_size(lruvec, lru);
2167 			scan = size >> sc->priority;
2168 
2169 			if (!scan && pass && force_scan)
2170 				scan = min(size, SWAP_CLUSTER_MAX);
2171 
2172 			switch (scan_balance) {
2173 			case SCAN_EQUAL:
2174 				/* Scan lists relative to size */
2175 				break;
2176 			case SCAN_FRACT:
2177 				/*
2178 				 * Scan types proportional to swappiness and
2179 				 * their relative recent reclaim efficiency.
2180 				 */
2181 				scan = div64_u64(scan * fraction[file],
2182 							denominator);
2183 				break;
2184 			case SCAN_FILE:
2185 			case SCAN_ANON:
2186 				/* Scan one type exclusively */
2187 				if ((scan_balance == SCAN_FILE) != file) {
2188 					size = 0;
2189 					scan = 0;
2190 				}
2191 				break;
2192 			default:
2193 				/* Look ma, no brain */
2194 				BUG();
2195 			}
2196 
2197 			*lru_pages += size;
2198 			nr[lru] = scan;
2199 
2200 			/*
2201 			 * Skip the second pass and don't force_scan,
2202 			 * if we found something to scan.
2203 			 */
2204 			some_scanned |= !!scan;
2205 		}
2206 	}
2207 }
2208 
2209 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2210 static void init_tlb_ubc(void)
2211 {
2212 	/*
2213 	 * This deliberately does not clear the cpumask as it's expensive
2214 	 * and unnecessary. If there happens to be data in there then the
2215 	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2216 	 * then will be cleared.
2217 	 */
2218 	current->tlb_ubc.flush_required = false;
2219 }
2220 #else
2221 static inline void init_tlb_ubc(void)
2222 {
2223 }
2224 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2225 
2226 /*
2227  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2228  */
2229 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2230 			      struct scan_control *sc, unsigned long *lru_pages)
2231 {
2232 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2233 	unsigned long nr[NR_LRU_LISTS];
2234 	unsigned long targets[NR_LRU_LISTS];
2235 	unsigned long nr_to_scan;
2236 	enum lru_list lru;
2237 	unsigned long nr_reclaimed = 0;
2238 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2239 	struct blk_plug plug;
2240 	bool scan_adjusted;
2241 
2242 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2243 
2244 	/* Record the original scan target for proportional adjustments later */
2245 	memcpy(targets, nr, sizeof(nr));
2246 
2247 	/*
2248 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2249 	 * event that can occur when there is little memory pressure e.g.
2250 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2251 	 * when the requested number of pages are reclaimed when scanning at
2252 	 * DEF_PRIORITY on the assumption that the fact we are direct
2253 	 * reclaiming implies that kswapd is not keeping up and it is best to
2254 	 * do a batch of work at once. For memcg reclaim one check is made to
2255 	 * abort proportional reclaim if either the file or anon lru has already
2256 	 * dropped to zero at the first pass.
2257 	 */
2258 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2259 			 sc->priority == DEF_PRIORITY);
2260 
2261 	init_tlb_ubc();
2262 
2263 	blk_start_plug(&plug);
2264 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2265 					nr[LRU_INACTIVE_FILE]) {
2266 		unsigned long nr_anon, nr_file, percentage;
2267 		unsigned long nr_scanned;
2268 
2269 		for_each_evictable_lru(lru) {
2270 			if (nr[lru]) {
2271 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2272 				nr[lru] -= nr_to_scan;
2273 
2274 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2275 							    lruvec, sc);
2276 			}
2277 		}
2278 
2279 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2280 			continue;
2281 
2282 		/*
2283 		 * For kswapd and memcg, reclaim at least the number of pages
2284 		 * requested. Ensure that the anon and file LRUs are scanned
2285 		 * proportionally what was requested by get_scan_count(). We
2286 		 * stop reclaiming one LRU and reduce the amount scanning
2287 		 * proportional to the original scan target.
2288 		 */
2289 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2290 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2291 
2292 		/*
2293 		 * It's just vindictive to attack the larger once the smaller
2294 		 * has gone to zero.  And given the way we stop scanning the
2295 		 * smaller below, this makes sure that we only make one nudge
2296 		 * towards proportionality once we've got nr_to_reclaim.
2297 		 */
2298 		if (!nr_file || !nr_anon)
2299 			break;
2300 
2301 		if (nr_file > nr_anon) {
2302 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2303 						targets[LRU_ACTIVE_ANON] + 1;
2304 			lru = LRU_BASE;
2305 			percentage = nr_anon * 100 / scan_target;
2306 		} else {
2307 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2308 						targets[LRU_ACTIVE_FILE] + 1;
2309 			lru = LRU_FILE;
2310 			percentage = nr_file * 100 / scan_target;
2311 		}
2312 
2313 		/* Stop scanning the smaller of the LRU */
2314 		nr[lru] = 0;
2315 		nr[lru + LRU_ACTIVE] = 0;
2316 
2317 		/*
2318 		 * Recalculate the other LRU scan count based on its original
2319 		 * scan target and the percentage scanning already complete
2320 		 */
2321 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2322 		nr_scanned = targets[lru] - nr[lru];
2323 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2324 		nr[lru] -= min(nr[lru], nr_scanned);
2325 
2326 		lru += LRU_ACTIVE;
2327 		nr_scanned = targets[lru] - nr[lru];
2328 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2329 		nr[lru] -= min(nr[lru], nr_scanned);
2330 
2331 		scan_adjusted = true;
2332 	}
2333 	blk_finish_plug(&plug);
2334 	sc->nr_reclaimed += nr_reclaimed;
2335 
2336 	/*
2337 	 * Even if we did not try to evict anon pages at all, we want to
2338 	 * rebalance the anon lru active/inactive ratio.
2339 	 */
2340 	if (inactive_list_is_low(lruvec, false))
2341 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2342 				   sc, LRU_ACTIVE_ANON);
2343 
2344 	throttle_vm_writeout(sc->gfp_mask);
2345 }
2346 
2347 /* Use reclaim/compaction for costly allocs or under memory pressure */
2348 static bool in_reclaim_compaction(struct scan_control *sc)
2349 {
2350 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2351 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2352 			 sc->priority < DEF_PRIORITY - 2))
2353 		return true;
2354 
2355 	return false;
2356 }
2357 
2358 /*
2359  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2360  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2361  * true if more pages should be reclaimed such that when the page allocator
2362  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2363  * It will give up earlier than that if there is difficulty reclaiming pages.
2364  */
2365 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2366 					unsigned long nr_reclaimed,
2367 					unsigned long nr_scanned,
2368 					struct scan_control *sc)
2369 {
2370 	unsigned long pages_for_compaction;
2371 	unsigned long inactive_lru_pages;
2372 	int z;
2373 
2374 	/* If not in reclaim/compaction mode, stop */
2375 	if (!in_reclaim_compaction(sc))
2376 		return false;
2377 
2378 	/* Consider stopping depending on scan and reclaim activity */
2379 	if (sc->gfp_mask & __GFP_REPEAT) {
2380 		/*
2381 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2382 		 * full LRU list has been scanned and we are still failing
2383 		 * to reclaim pages. This full LRU scan is potentially
2384 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2385 		 */
2386 		if (!nr_reclaimed && !nr_scanned)
2387 			return false;
2388 	} else {
2389 		/*
2390 		 * For non-__GFP_REPEAT allocations which can presumably
2391 		 * fail without consequence, stop if we failed to reclaim
2392 		 * any pages from the last SWAP_CLUSTER_MAX number of
2393 		 * pages that were scanned. This will return to the
2394 		 * caller faster at the risk reclaim/compaction and
2395 		 * the resulting allocation attempt fails
2396 		 */
2397 		if (!nr_reclaimed)
2398 			return false;
2399 	}
2400 
2401 	/*
2402 	 * If we have not reclaimed enough pages for compaction and the
2403 	 * inactive lists are large enough, continue reclaiming
2404 	 */
2405 	pages_for_compaction = (2UL << sc->order);
2406 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2407 	if (get_nr_swap_pages() > 0)
2408 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2409 	if (sc->nr_reclaimed < pages_for_compaction &&
2410 			inactive_lru_pages > pages_for_compaction)
2411 		return true;
2412 
2413 	/* If compaction would go ahead or the allocation would succeed, stop */
2414 	for (z = 0; z <= sc->reclaim_idx; z++) {
2415 		struct zone *zone = &pgdat->node_zones[z];
2416 		if (!populated_zone(zone))
2417 			continue;
2418 
2419 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2420 		case COMPACT_PARTIAL:
2421 		case COMPACT_CONTINUE:
2422 			return false;
2423 		default:
2424 			/* check next zone */
2425 			;
2426 		}
2427 	}
2428 	return true;
2429 }
2430 
2431 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2432 {
2433 	struct reclaim_state *reclaim_state = current->reclaim_state;
2434 	unsigned long nr_reclaimed, nr_scanned;
2435 	bool reclaimable = false;
2436 
2437 	do {
2438 		struct mem_cgroup *root = sc->target_mem_cgroup;
2439 		struct mem_cgroup_reclaim_cookie reclaim = {
2440 			.pgdat = pgdat,
2441 			.priority = sc->priority,
2442 		};
2443 		unsigned long node_lru_pages = 0;
2444 		struct mem_cgroup *memcg;
2445 
2446 		nr_reclaimed = sc->nr_reclaimed;
2447 		nr_scanned = sc->nr_scanned;
2448 
2449 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2450 		do {
2451 			unsigned long lru_pages;
2452 			unsigned long reclaimed;
2453 			unsigned long scanned;
2454 
2455 			if (mem_cgroup_low(root, memcg)) {
2456 				if (!sc->may_thrash)
2457 					continue;
2458 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2459 			}
2460 
2461 			reclaimed = sc->nr_reclaimed;
2462 			scanned = sc->nr_scanned;
2463 
2464 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2465 			node_lru_pages += lru_pages;
2466 
2467 			if (!global_reclaim(sc))
2468 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2469 					    memcg, sc->nr_scanned - scanned,
2470 					    lru_pages);
2471 
2472 			/* Record the group's reclaim efficiency */
2473 			vmpressure(sc->gfp_mask, memcg, false,
2474 				   sc->nr_scanned - scanned,
2475 				   sc->nr_reclaimed - reclaimed);
2476 
2477 			/*
2478 			 * Direct reclaim and kswapd have to scan all memory
2479 			 * cgroups to fulfill the overall scan target for the
2480 			 * node.
2481 			 *
2482 			 * Limit reclaim, on the other hand, only cares about
2483 			 * nr_to_reclaim pages to be reclaimed and it will
2484 			 * retry with decreasing priority if one round over the
2485 			 * whole hierarchy is not sufficient.
2486 			 */
2487 			if (!global_reclaim(sc) &&
2488 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2489 				mem_cgroup_iter_break(root, memcg);
2490 				break;
2491 			}
2492 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2493 
2494 		/*
2495 		 * Shrink the slab caches in the same proportion that
2496 		 * the eligible LRU pages were scanned.
2497 		 */
2498 		if (global_reclaim(sc))
2499 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2500 				    sc->nr_scanned - nr_scanned,
2501 				    node_lru_pages);
2502 
2503 		if (reclaim_state) {
2504 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2505 			reclaim_state->reclaimed_slab = 0;
2506 		}
2507 
2508 		/* Record the subtree's reclaim efficiency */
2509 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2510 			   sc->nr_scanned - nr_scanned,
2511 			   sc->nr_reclaimed - nr_reclaimed);
2512 
2513 		if (sc->nr_reclaimed - nr_reclaimed)
2514 			reclaimable = true;
2515 
2516 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2517 					 sc->nr_scanned - nr_scanned, sc));
2518 
2519 	return reclaimable;
2520 }
2521 
2522 /*
2523  * Returns true if compaction should go ahead for a high-order request, or
2524  * the high-order allocation would succeed without compaction.
2525  */
2526 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2527 {
2528 	unsigned long watermark;
2529 	bool watermark_ok;
2530 
2531 	/*
2532 	 * Compaction takes time to run and there are potentially other
2533 	 * callers using the pages just freed. Continue reclaiming until
2534 	 * there is a buffer of free pages available to give compaction
2535 	 * a reasonable chance of completing and allocating the page
2536 	 */
2537 	watermark = high_wmark_pages(zone) + (2UL << sc->order);
2538 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2539 
2540 	/*
2541 	 * If compaction is deferred, reclaim up to a point where
2542 	 * compaction will have a chance of success when re-enabled
2543 	 */
2544 	if (compaction_deferred(zone, sc->order))
2545 		return watermark_ok;
2546 
2547 	/*
2548 	 * If compaction is not ready to start and allocation is not likely
2549 	 * to succeed without it, then keep reclaiming.
2550 	 */
2551 	if (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx) == COMPACT_SKIPPED)
2552 		return false;
2553 
2554 	return watermark_ok;
2555 }
2556 
2557 /*
2558  * This is the direct reclaim path, for page-allocating processes.  We only
2559  * try to reclaim pages from zones which will satisfy the caller's allocation
2560  * request.
2561  *
2562  * If a zone is deemed to be full of pinned pages then just give it a light
2563  * scan then give up on it.
2564  */
2565 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2566 {
2567 	struct zoneref *z;
2568 	struct zone *zone;
2569 	unsigned long nr_soft_reclaimed;
2570 	unsigned long nr_soft_scanned;
2571 	gfp_t orig_mask;
2572 	pg_data_t *last_pgdat = NULL;
2573 
2574 	/*
2575 	 * If the number of buffer_heads in the machine exceeds the maximum
2576 	 * allowed level, force direct reclaim to scan the highmem zone as
2577 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2578 	 */
2579 	orig_mask = sc->gfp_mask;
2580 	if (buffer_heads_over_limit) {
2581 		sc->gfp_mask |= __GFP_HIGHMEM;
2582 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2583 	}
2584 
2585 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2586 					sc->reclaim_idx, sc->nodemask) {
2587 		if (!populated_zone(zone))
2588 			continue;
2589 
2590 		/*
2591 		 * Take care memory controller reclaiming has small influence
2592 		 * to global LRU.
2593 		 */
2594 		if (global_reclaim(sc)) {
2595 			if (!cpuset_zone_allowed(zone,
2596 						 GFP_KERNEL | __GFP_HARDWALL))
2597 				continue;
2598 
2599 			if (sc->priority != DEF_PRIORITY &&
2600 			    !pgdat_reclaimable(zone->zone_pgdat))
2601 				continue;	/* Let kswapd poll it */
2602 
2603 			/*
2604 			 * If we already have plenty of memory free for
2605 			 * compaction in this zone, don't free any more.
2606 			 * Even though compaction is invoked for any
2607 			 * non-zero order, only frequent costly order
2608 			 * reclamation is disruptive enough to become a
2609 			 * noticeable problem, like transparent huge
2610 			 * page allocations.
2611 			 */
2612 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2613 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2614 			    compaction_ready(zone, sc)) {
2615 				sc->compaction_ready = true;
2616 				continue;
2617 			}
2618 
2619 			/*
2620 			 * Shrink each node in the zonelist once. If the
2621 			 * zonelist is ordered by zone (not the default) then a
2622 			 * node may be shrunk multiple times but in that case
2623 			 * the user prefers lower zones being preserved.
2624 			 */
2625 			if (zone->zone_pgdat == last_pgdat)
2626 				continue;
2627 
2628 			/*
2629 			 * This steals pages from memory cgroups over softlimit
2630 			 * and returns the number of reclaimed pages and
2631 			 * scanned pages. This works for global memory pressure
2632 			 * and balancing, not for a memcg's limit.
2633 			 */
2634 			nr_soft_scanned = 0;
2635 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2636 						sc->order, sc->gfp_mask,
2637 						&nr_soft_scanned);
2638 			sc->nr_reclaimed += nr_soft_reclaimed;
2639 			sc->nr_scanned += nr_soft_scanned;
2640 			/* need some check for avoid more shrink_zone() */
2641 		}
2642 
2643 		/* See comment about same check for global reclaim above */
2644 		if (zone->zone_pgdat == last_pgdat)
2645 			continue;
2646 		last_pgdat = zone->zone_pgdat;
2647 		shrink_node(zone->zone_pgdat, sc);
2648 	}
2649 
2650 	/*
2651 	 * Restore to original mask to avoid the impact on the caller if we
2652 	 * promoted it to __GFP_HIGHMEM.
2653 	 */
2654 	sc->gfp_mask = orig_mask;
2655 }
2656 
2657 /*
2658  * This is the main entry point to direct page reclaim.
2659  *
2660  * If a full scan of the inactive list fails to free enough memory then we
2661  * are "out of memory" and something needs to be killed.
2662  *
2663  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2664  * high - the zone may be full of dirty or under-writeback pages, which this
2665  * caller can't do much about.  We kick the writeback threads and take explicit
2666  * naps in the hope that some of these pages can be written.  But if the
2667  * allocating task holds filesystem locks which prevent writeout this might not
2668  * work, and the allocation attempt will fail.
2669  *
2670  * returns:	0, if no pages reclaimed
2671  * 		else, the number of pages reclaimed
2672  */
2673 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2674 					  struct scan_control *sc)
2675 {
2676 	int initial_priority = sc->priority;
2677 	unsigned long total_scanned = 0;
2678 	unsigned long writeback_threshold;
2679 retry:
2680 	delayacct_freepages_start();
2681 
2682 	if (global_reclaim(sc))
2683 		count_vm_event(ALLOCSTALL);
2684 
2685 	do {
2686 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2687 				sc->priority);
2688 		sc->nr_scanned = 0;
2689 		shrink_zones(zonelist, sc);
2690 
2691 		total_scanned += sc->nr_scanned;
2692 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2693 			break;
2694 
2695 		if (sc->compaction_ready)
2696 			break;
2697 
2698 		/*
2699 		 * If we're getting trouble reclaiming, start doing
2700 		 * writepage even in laptop mode.
2701 		 */
2702 		if (sc->priority < DEF_PRIORITY - 2)
2703 			sc->may_writepage = 1;
2704 
2705 		/*
2706 		 * Try to write back as many pages as we just scanned.  This
2707 		 * tends to cause slow streaming writers to write data to the
2708 		 * disk smoothly, at the dirtying rate, which is nice.   But
2709 		 * that's undesirable in laptop mode, where we *want* lumpy
2710 		 * writeout.  So in laptop mode, write out the whole world.
2711 		 */
2712 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2713 		if (total_scanned > writeback_threshold) {
2714 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2715 						WB_REASON_TRY_TO_FREE_PAGES);
2716 			sc->may_writepage = 1;
2717 		}
2718 	} while (--sc->priority >= 0);
2719 
2720 	delayacct_freepages_end();
2721 
2722 	if (sc->nr_reclaimed)
2723 		return sc->nr_reclaimed;
2724 
2725 	/* Aborted reclaim to try compaction? don't OOM, then */
2726 	if (sc->compaction_ready)
2727 		return 1;
2728 
2729 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2730 	if (!sc->may_thrash) {
2731 		sc->priority = initial_priority;
2732 		sc->may_thrash = 1;
2733 		goto retry;
2734 	}
2735 
2736 	return 0;
2737 }
2738 
2739 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2740 {
2741 	struct zone *zone;
2742 	unsigned long pfmemalloc_reserve = 0;
2743 	unsigned long free_pages = 0;
2744 	int i;
2745 	bool wmark_ok;
2746 
2747 	for (i = 0; i <= ZONE_NORMAL; i++) {
2748 		zone = &pgdat->node_zones[i];
2749 		if (!populated_zone(zone) ||
2750 		    pgdat_reclaimable_pages(pgdat) == 0)
2751 			continue;
2752 
2753 		pfmemalloc_reserve += min_wmark_pages(zone);
2754 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2755 	}
2756 
2757 	/* If there are no reserves (unexpected config) then do not throttle */
2758 	if (!pfmemalloc_reserve)
2759 		return true;
2760 
2761 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2762 
2763 	/* kswapd must be awake if processes are being throttled */
2764 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2765 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2766 						(enum zone_type)ZONE_NORMAL);
2767 		wake_up_interruptible(&pgdat->kswapd_wait);
2768 	}
2769 
2770 	return wmark_ok;
2771 }
2772 
2773 /*
2774  * Throttle direct reclaimers if backing storage is backed by the network
2775  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2776  * depleted. kswapd will continue to make progress and wake the processes
2777  * when the low watermark is reached.
2778  *
2779  * Returns true if a fatal signal was delivered during throttling. If this
2780  * happens, the page allocator should not consider triggering the OOM killer.
2781  */
2782 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2783 					nodemask_t *nodemask)
2784 {
2785 	struct zoneref *z;
2786 	struct zone *zone;
2787 	pg_data_t *pgdat = NULL;
2788 
2789 	/*
2790 	 * Kernel threads should not be throttled as they may be indirectly
2791 	 * responsible for cleaning pages necessary for reclaim to make forward
2792 	 * progress. kjournald for example may enter direct reclaim while
2793 	 * committing a transaction where throttling it could forcing other
2794 	 * processes to block on log_wait_commit().
2795 	 */
2796 	if (current->flags & PF_KTHREAD)
2797 		goto out;
2798 
2799 	/*
2800 	 * If a fatal signal is pending, this process should not throttle.
2801 	 * It should return quickly so it can exit and free its memory
2802 	 */
2803 	if (fatal_signal_pending(current))
2804 		goto out;
2805 
2806 	/*
2807 	 * Check if the pfmemalloc reserves are ok by finding the first node
2808 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2809 	 * GFP_KERNEL will be required for allocating network buffers when
2810 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2811 	 *
2812 	 * Throttling is based on the first usable node and throttled processes
2813 	 * wait on a queue until kswapd makes progress and wakes them. There
2814 	 * is an affinity then between processes waking up and where reclaim
2815 	 * progress has been made assuming the process wakes on the same node.
2816 	 * More importantly, processes running on remote nodes will not compete
2817 	 * for remote pfmemalloc reserves and processes on different nodes
2818 	 * should make reasonable progress.
2819 	 */
2820 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2821 					gfp_zone(gfp_mask), nodemask) {
2822 		if (zone_idx(zone) > ZONE_NORMAL)
2823 			continue;
2824 
2825 		/* Throttle based on the first usable node */
2826 		pgdat = zone->zone_pgdat;
2827 		if (pfmemalloc_watermark_ok(pgdat))
2828 			goto out;
2829 		break;
2830 	}
2831 
2832 	/* If no zone was usable by the allocation flags then do not throttle */
2833 	if (!pgdat)
2834 		goto out;
2835 
2836 	/* Account for the throttling */
2837 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2838 
2839 	/*
2840 	 * If the caller cannot enter the filesystem, it's possible that it
2841 	 * is due to the caller holding an FS lock or performing a journal
2842 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2843 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2844 	 * blocked waiting on the same lock. Instead, throttle for up to a
2845 	 * second before continuing.
2846 	 */
2847 	if (!(gfp_mask & __GFP_FS)) {
2848 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2849 			pfmemalloc_watermark_ok(pgdat), HZ);
2850 
2851 		goto check_pending;
2852 	}
2853 
2854 	/* Throttle until kswapd wakes the process */
2855 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2856 		pfmemalloc_watermark_ok(pgdat));
2857 
2858 check_pending:
2859 	if (fatal_signal_pending(current))
2860 		return true;
2861 
2862 out:
2863 	return false;
2864 }
2865 
2866 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2867 				gfp_t gfp_mask, nodemask_t *nodemask)
2868 {
2869 	unsigned long nr_reclaimed;
2870 	struct scan_control sc = {
2871 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2872 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2873 		.reclaim_idx = gfp_zone(gfp_mask),
2874 		.order = order,
2875 		.nodemask = nodemask,
2876 		.priority = DEF_PRIORITY,
2877 		.may_writepage = !laptop_mode,
2878 		.may_unmap = 1,
2879 		.may_swap = 1,
2880 	};
2881 
2882 	/*
2883 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2884 	 * 1 is returned so that the page allocator does not OOM kill at this
2885 	 * point.
2886 	 */
2887 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2888 		return 1;
2889 
2890 	trace_mm_vmscan_direct_reclaim_begin(order,
2891 				sc.may_writepage,
2892 				gfp_mask,
2893 				sc.reclaim_idx);
2894 
2895 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2896 
2897 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2898 
2899 	return nr_reclaimed;
2900 }
2901 
2902 #ifdef CONFIG_MEMCG
2903 
2904 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2905 						gfp_t gfp_mask, bool noswap,
2906 						pg_data_t *pgdat,
2907 						unsigned long *nr_scanned)
2908 {
2909 	struct scan_control sc = {
2910 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2911 		.target_mem_cgroup = memcg,
2912 		.may_writepage = !laptop_mode,
2913 		.may_unmap = 1,
2914 		.reclaim_idx = MAX_NR_ZONES - 1,
2915 		.may_swap = !noswap,
2916 	};
2917 	unsigned long lru_pages;
2918 
2919 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2920 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2921 
2922 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2923 						      sc.may_writepage,
2924 						      sc.gfp_mask,
2925 						      sc.reclaim_idx);
2926 
2927 	/*
2928 	 * NOTE: Although we can get the priority field, using it
2929 	 * here is not a good idea, since it limits the pages we can scan.
2930 	 * if we don't reclaim here, the shrink_node from balance_pgdat
2931 	 * will pick up pages from other mem cgroup's as well. We hack
2932 	 * the priority and make it zero.
2933 	 */
2934 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
2935 
2936 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2937 
2938 	*nr_scanned = sc.nr_scanned;
2939 	return sc.nr_reclaimed;
2940 }
2941 
2942 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2943 					   unsigned long nr_pages,
2944 					   gfp_t gfp_mask,
2945 					   bool may_swap)
2946 {
2947 	struct zonelist *zonelist;
2948 	unsigned long nr_reclaimed;
2949 	int nid;
2950 	struct scan_control sc = {
2951 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2952 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2953 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2954 		.reclaim_idx = MAX_NR_ZONES - 1,
2955 		.target_mem_cgroup = memcg,
2956 		.priority = DEF_PRIORITY,
2957 		.may_writepage = !laptop_mode,
2958 		.may_unmap = 1,
2959 		.may_swap = may_swap,
2960 	};
2961 
2962 	/*
2963 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2964 	 * take care of from where we get pages. So the node where we start the
2965 	 * scan does not need to be the current node.
2966 	 */
2967 	nid = mem_cgroup_select_victim_node(memcg);
2968 
2969 	zonelist = NODE_DATA(nid)->node_zonelists;
2970 
2971 	trace_mm_vmscan_memcg_reclaim_begin(0,
2972 					    sc.may_writepage,
2973 					    sc.gfp_mask,
2974 					    sc.reclaim_idx);
2975 
2976 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2977 
2978 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2979 
2980 	return nr_reclaimed;
2981 }
2982 #endif
2983 
2984 static void age_active_anon(struct pglist_data *pgdat,
2985 				struct scan_control *sc)
2986 {
2987 	struct mem_cgroup *memcg;
2988 
2989 	if (!total_swap_pages)
2990 		return;
2991 
2992 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2993 	do {
2994 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2995 
2996 		if (inactive_list_is_low(lruvec, false))
2997 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2998 					   sc, LRU_ACTIVE_ANON);
2999 
3000 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3001 	} while (memcg);
3002 }
3003 
3004 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3005 {
3006 	unsigned long mark = high_wmark_pages(zone);
3007 
3008 	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3009 		return false;
3010 
3011 	/*
3012 	 * If any eligible zone is balanced then the node is not considered
3013 	 * to be congested or dirty
3014 	 */
3015 	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3016 	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3017 
3018 	return true;
3019 }
3020 
3021 /*
3022  * Prepare kswapd for sleeping. This verifies that there are no processes
3023  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3024  *
3025  * Returns true if kswapd is ready to sleep
3026  */
3027 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3028 {
3029 	int i;
3030 
3031 	/*
3032 	 * The throttled processes are normally woken up in balance_pgdat() as
3033 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3034 	 * race between when kswapd checks the watermarks and a process gets
3035 	 * throttled. There is also a potential race if processes get
3036 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3037 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3038 	 * the wake up checks. If kswapd is going to sleep, no process should
3039 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3040 	 * the wake up is premature, processes will wake kswapd and get
3041 	 * throttled again. The difference from wake ups in balance_pgdat() is
3042 	 * that here we are under prepare_to_wait().
3043 	 */
3044 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3045 		wake_up_all(&pgdat->pfmemalloc_wait);
3046 
3047 	for (i = 0; i <= classzone_idx; i++) {
3048 		struct zone *zone = pgdat->node_zones + i;
3049 
3050 		if (!populated_zone(zone))
3051 			continue;
3052 
3053 		if (!zone_balanced(zone, order, classzone_idx))
3054 			return false;
3055 	}
3056 
3057 	return true;
3058 }
3059 
3060 /*
3061  * kswapd shrinks a node of pages that are at or below the highest usable
3062  * zone that is currently unbalanced.
3063  *
3064  * Returns true if kswapd scanned at least the requested number of pages to
3065  * reclaim or if the lack of progress was due to pages under writeback.
3066  * This is used to determine if the scanning priority needs to be raised.
3067  */
3068 static bool kswapd_shrink_node(pg_data_t *pgdat,
3069 			       struct scan_control *sc)
3070 {
3071 	struct zone *zone;
3072 	int z;
3073 
3074 	/* Reclaim a number of pages proportional to the number of zones */
3075 	sc->nr_to_reclaim = 0;
3076 	for (z = 0; z <= sc->reclaim_idx; z++) {
3077 		zone = pgdat->node_zones + z;
3078 		if (!populated_zone(zone))
3079 			continue;
3080 
3081 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3082 	}
3083 
3084 	/*
3085 	 * Historically care was taken to put equal pressure on all zones but
3086 	 * now pressure is applied based on node LRU order.
3087 	 */
3088 	shrink_node(pgdat, sc);
3089 
3090 	/*
3091 	 * Fragmentation may mean that the system cannot be rebalanced for
3092 	 * high-order allocations. If twice the allocation size has been
3093 	 * reclaimed then recheck watermarks only at order-0 to prevent
3094 	 * excessive reclaim. Assume that a process requested a high-order
3095 	 * can direct reclaim/compact.
3096 	 */
3097 	if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
3098 		sc->order = 0;
3099 
3100 	return sc->nr_scanned >= sc->nr_to_reclaim;
3101 }
3102 
3103 /*
3104  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3105  * that are eligible for use by the caller until at least one zone is
3106  * balanced.
3107  *
3108  * Returns the order kswapd finished reclaiming at.
3109  *
3110  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3111  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3112  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3113  * or lower is eligible for reclaim until at least one usable zone is
3114  * balanced.
3115  */
3116 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3117 {
3118 	int i;
3119 	unsigned long nr_soft_reclaimed;
3120 	unsigned long nr_soft_scanned;
3121 	struct zone *zone;
3122 	struct scan_control sc = {
3123 		.gfp_mask = GFP_KERNEL,
3124 		.order = order,
3125 		.priority = DEF_PRIORITY,
3126 		.may_writepage = !laptop_mode,
3127 		.may_unmap = 1,
3128 		.may_swap = 1,
3129 	};
3130 	count_vm_event(PAGEOUTRUN);
3131 
3132 	do {
3133 		bool raise_priority = true;
3134 
3135 		sc.nr_reclaimed = 0;
3136 		sc.reclaim_idx = classzone_idx;
3137 
3138 		/*
3139 		 * If the number of buffer_heads exceeds the maximum allowed
3140 		 * then consider reclaiming from all zones. This has a dual
3141 		 * purpose -- on 64-bit systems it is expected that
3142 		 * buffer_heads are stripped during active rotation. On 32-bit
3143 		 * systems, highmem pages can pin lowmem memory and shrinking
3144 		 * buffers can relieve lowmem pressure. Reclaim may still not
3145 		 * go ahead if all eligible zones for the original allocation
3146 		 * request are balanced to avoid excessive reclaim from kswapd.
3147 		 */
3148 		if (buffer_heads_over_limit) {
3149 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3150 				zone = pgdat->node_zones + i;
3151 				if (!populated_zone(zone))
3152 					continue;
3153 
3154 				sc.reclaim_idx = i;
3155 				break;
3156 			}
3157 		}
3158 
3159 		/*
3160 		 * Only reclaim if there are no eligible zones. Check from
3161 		 * high to low zone as allocations prefer higher zones.
3162 		 * Scanning from low to high zone would allow congestion to be
3163 		 * cleared during a very small window when a small low
3164 		 * zone was balanced even under extreme pressure when the
3165 		 * overall node may be congested. Note that sc.reclaim_idx
3166 		 * is not used as buffer_heads_over_limit may have adjusted
3167 		 * it.
3168 		 */
3169 		for (i = classzone_idx; i >= 0; i--) {
3170 			zone = pgdat->node_zones + i;
3171 			if (!populated_zone(zone))
3172 				continue;
3173 
3174 			if (zone_balanced(zone, sc.order, classzone_idx))
3175 				goto out;
3176 		}
3177 
3178 		/*
3179 		 * Do some background aging of the anon list, to give
3180 		 * pages a chance to be referenced before reclaiming. All
3181 		 * pages are rotated regardless of classzone as this is
3182 		 * about consistent aging.
3183 		 */
3184 		age_active_anon(pgdat, &sc);
3185 
3186 		/*
3187 		 * If we're getting trouble reclaiming, start doing writepage
3188 		 * even in laptop mode.
3189 		 */
3190 		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3191 			sc.may_writepage = 1;
3192 
3193 		/* Call soft limit reclaim before calling shrink_node. */
3194 		sc.nr_scanned = 0;
3195 		nr_soft_scanned = 0;
3196 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3197 						sc.gfp_mask, &nr_soft_scanned);
3198 		sc.nr_reclaimed += nr_soft_reclaimed;
3199 
3200 		/*
3201 		 * There should be no need to raise the scanning priority if
3202 		 * enough pages are already being scanned that that high
3203 		 * watermark would be met at 100% efficiency.
3204 		 */
3205 		if (kswapd_shrink_node(pgdat, &sc))
3206 			raise_priority = false;
3207 
3208 		/*
3209 		 * If the low watermark is met there is no need for processes
3210 		 * to be throttled on pfmemalloc_wait as they should not be
3211 		 * able to safely make forward progress. Wake them
3212 		 */
3213 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3214 				pfmemalloc_watermark_ok(pgdat))
3215 			wake_up_all(&pgdat->pfmemalloc_wait);
3216 
3217 		/* Check if kswapd should be suspending */
3218 		if (try_to_freeze() || kthread_should_stop())
3219 			break;
3220 
3221 		/*
3222 		 * Raise priority if scanning rate is too low or there was no
3223 		 * progress in reclaiming pages
3224 		 */
3225 		if (raise_priority || !sc.nr_reclaimed)
3226 			sc.priority--;
3227 	} while (sc.priority >= 1);
3228 
3229 out:
3230 	/*
3231 	 * Return the order kswapd stopped reclaiming at as
3232 	 * prepare_kswapd_sleep() takes it into account. If another caller
3233 	 * entered the allocator slow path while kswapd was awake, order will
3234 	 * remain at the higher level.
3235 	 */
3236 	return sc.order;
3237 }
3238 
3239 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3240 				unsigned int classzone_idx)
3241 {
3242 	long remaining = 0;
3243 	DEFINE_WAIT(wait);
3244 
3245 	if (freezing(current) || kthread_should_stop())
3246 		return;
3247 
3248 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3249 
3250 	/* Try to sleep for a short interval */
3251 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3252 		/*
3253 		 * Compaction records what page blocks it recently failed to
3254 		 * isolate pages from and skips them in the future scanning.
3255 		 * When kswapd is going to sleep, it is reasonable to assume
3256 		 * that pages and compaction may succeed so reset the cache.
3257 		 */
3258 		reset_isolation_suitable(pgdat);
3259 
3260 		/*
3261 		 * We have freed the memory, now we should compact it to make
3262 		 * allocation of the requested order possible.
3263 		 */
3264 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3265 
3266 		remaining = schedule_timeout(HZ/10);
3267 
3268 		/*
3269 		 * If woken prematurely then reset kswapd_classzone_idx and
3270 		 * order. The values will either be from a wakeup request or
3271 		 * the previous request that slept prematurely.
3272 		 */
3273 		if (remaining) {
3274 			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3275 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3276 		}
3277 
3278 		finish_wait(&pgdat->kswapd_wait, &wait);
3279 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3280 	}
3281 
3282 	/*
3283 	 * After a short sleep, check if it was a premature sleep. If not, then
3284 	 * go fully to sleep until explicitly woken up.
3285 	 */
3286 	if (!remaining &&
3287 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3288 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3289 
3290 		/*
3291 		 * vmstat counters are not perfectly accurate and the estimated
3292 		 * value for counters such as NR_FREE_PAGES can deviate from the
3293 		 * true value by nr_online_cpus * threshold. To avoid the zone
3294 		 * watermarks being breached while under pressure, we reduce the
3295 		 * per-cpu vmstat threshold while kswapd is awake and restore
3296 		 * them before going back to sleep.
3297 		 */
3298 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3299 
3300 		if (!kthread_should_stop())
3301 			schedule();
3302 
3303 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3304 	} else {
3305 		if (remaining)
3306 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3307 		else
3308 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3309 	}
3310 	finish_wait(&pgdat->kswapd_wait, &wait);
3311 }
3312 
3313 /*
3314  * The background pageout daemon, started as a kernel thread
3315  * from the init process.
3316  *
3317  * This basically trickles out pages so that we have _some_
3318  * free memory available even if there is no other activity
3319  * that frees anything up. This is needed for things like routing
3320  * etc, where we otherwise might have all activity going on in
3321  * asynchronous contexts that cannot page things out.
3322  *
3323  * If there are applications that are active memory-allocators
3324  * (most normal use), this basically shouldn't matter.
3325  */
3326 static int kswapd(void *p)
3327 {
3328 	unsigned int alloc_order, reclaim_order, classzone_idx;
3329 	pg_data_t *pgdat = (pg_data_t*)p;
3330 	struct task_struct *tsk = current;
3331 
3332 	struct reclaim_state reclaim_state = {
3333 		.reclaimed_slab = 0,
3334 	};
3335 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3336 
3337 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3338 
3339 	if (!cpumask_empty(cpumask))
3340 		set_cpus_allowed_ptr(tsk, cpumask);
3341 	current->reclaim_state = &reclaim_state;
3342 
3343 	/*
3344 	 * Tell the memory management that we're a "memory allocator",
3345 	 * and that if we need more memory we should get access to it
3346 	 * regardless (see "__alloc_pages()"). "kswapd" should
3347 	 * never get caught in the normal page freeing logic.
3348 	 *
3349 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3350 	 * you need a small amount of memory in order to be able to
3351 	 * page out something else, and this flag essentially protects
3352 	 * us from recursively trying to free more memory as we're
3353 	 * trying to free the first piece of memory in the first place).
3354 	 */
3355 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3356 	set_freezable();
3357 
3358 	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3359 	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3360 	for ( ; ; ) {
3361 		bool ret;
3362 
3363 kswapd_try_sleep:
3364 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3365 					classzone_idx);
3366 
3367 		/* Read the new order and classzone_idx */
3368 		alloc_order = reclaim_order = pgdat->kswapd_order;
3369 		classzone_idx = pgdat->kswapd_classzone_idx;
3370 		pgdat->kswapd_order = 0;
3371 		pgdat->kswapd_classzone_idx = 0;
3372 
3373 		ret = try_to_freeze();
3374 		if (kthread_should_stop())
3375 			break;
3376 
3377 		/*
3378 		 * We can speed up thawing tasks if we don't call balance_pgdat
3379 		 * after returning from the refrigerator
3380 		 */
3381 		if (ret)
3382 			continue;
3383 
3384 		/*
3385 		 * Reclaim begins at the requested order but if a high-order
3386 		 * reclaim fails then kswapd falls back to reclaiming for
3387 		 * order-0. If that happens, kswapd will consider sleeping
3388 		 * for the order it finished reclaiming at (reclaim_order)
3389 		 * but kcompactd is woken to compact for the original
3390 		 * request (alloc_order).
3391 		 */
3392 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3393 						alloc_order);
3394 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3395 		if (reclaim_order < alloc_order)
3396 			goto kswapd_try_sleep;
3397 
3398 		alloc_order = reclaim_order = pgdat->kswapd_order;
3399 		classzone_idx = pgdat->kswapd_classzone_idx;
3400 	}
3401 
3402 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3403 	current->reclaim_state = NULL;
3404 	lockdep_clear_current_reclaim_state();
3405 
3406 	return 0;
3407 }
3408 
3409 /*
3410  * A zone is low on free memory, so wake its kswapd task to service it.
3411  */
3412 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3413 {
3414 	pg_data_t *pgdat;
3415 	int z;
3416 
3417 	if (!populated_zone(zone))
3418 		return;
3419 
3420 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3421 		return;
3422 	pgdat = zone->zone_pgdat;
3423 	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3424 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3425 	if (!waitqueue_active(&pgdat->kswapd_wait))
3426 		return;
3427 
3428 	/* Only wake kswapd if all zones are unbalanced */
3429 	for (z = 0; z <= classzone_idx; z++) {
3430 		zone = pgdat->node_zones + z;
3431 		if (!populated_zone(zone))
3432 			continue;
3433 
3434 		if (zone_balanced(zone, order, classzone_idx))
3435 			return;
3436 	}
3437 
3438 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3439 	wake_up_interruptible(&pgdat->kswapd_wait);
3440 }
3441 
3442 #ifdef CONFIG_HIBERNATION
3443 /*
3444  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3445  * freed pages.
3446  *
3447  * Rather than trying to age LRUs the aim is to preserve the overall
3448  * LRU order by reclaiming preferentially
3449  * inactive > active > active referenced > active mapped
3450  */
3451 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3452 {
3453 	struct reclaim_state reclaim_state;
3454 	struct scan_control sc = {
3455 		.nr_to_reclaim = nr_to_reclaim,
3456 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3457 		.reclaim_idx = MAX_NR_ZONES - 1,
3458 		.priority = DEF_PRIORITY,
3459 		.may_writepage = 1,
3460 		.may_unmap = 1,
3461 		.may_swap = 1,
3462 		.hibernation_mode = 1,
3463 	};
3464 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3465 	struct task_struct *p = current;
3466 	unsigned long nr_reclaimed;
3467 
3468 	p->flags |= PF_MEMALLOC;
3469 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3470 	reclaim_state.reclaimed_slab = 0;
3471 	p->reclaim_state = &reclaim_state;
3472 
3473 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3474 
3475 	p->reclaim_state = NULL;
3476 	lockdep_clear_current_reclaim_state();
3477 	p->flags &= ~PF_MEMALLOC;
3478 
3479 	return nr_reclaimed;
3480 }
3481 #endif /* CONFIG_HIBERNATION */
3482 
3483 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3484    not required for correctness.  So if the last cpu in a node goes
3485    away, we get changed to run anywhere: as the first one comes back,
3486    restore their cpu bindings. */
3487 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3488 			void *hcpu)
3489 {
3490 	int nid;
3491 
3492 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3493 		for_each_node_state(nid, N_MEMORY) {
3494 			pg_data_t *pgdat = NODE_DATA(nid);
3495 			const struct cpumask *mask;
3496 
3497 			mask = cpumask_of_node(pgdat->node_id);
3498 
3499 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3500 				/* One of our CPUs online: restore mask */
3501 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3502 		}
3503 	}
3504 	return NOTIFY_OK;
3505 }
3506 
3507 /*
3508  * This kswapd start function will be called by init and node-hot-add.
3509  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3510  */
3511 int kswapd_run(int nid)
3512 {
3513 	pg_data_t *pgdat = NODE_DATA(nid);
3514 	int ret = 0;
3515 
3516 	if (pgdat->kswapd)
3517 		return 0;
3518 
3519 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3520 	if (IS_ERR(pgdat->kswapd)) {
3521 		/* failure at boot is fatal */
3522 		BUG_ON(system_state == SYSTEM_BOOTING);
3523 		pr_err("Failed to start kswapd on node %d\n", nid);
3524 		ret = PTR_ERR(pgdat->kswapd);
3525 		pgdat->kswapd = NULL;
3526 	}
3527 	return ret;
3528 }
3529 
3530 /*
3531  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3532  * hold mem_hotplug_begin/end().
3533  */
3534 void kswapd_stop(int nid)
3535 {
3536 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3537 
3538 	if (kswapd) {
3539 		kthread_stop(kswapd);
3540 		NODE_DATA(nid)->kswapd = NULL;
3541 	}
3542 }
3543 
3544 static int __init kswapd_init(void)
3545 {
3546 	int nid;
3547 
3548 	swap_setup();
3549 	for_each_node_state(nid, N_MEMORY)
3550  		kswapd_run(nid);
3551 	hotcpu_notifier(cpu_callback, 0);
3552 	return 0;
3553 }
3554 
3555 module_init(kswapd_init)
3556 
3557 #ifdef CONFIG_NUMA
3558 /*
3559  * Node reclaim mode
3560  *
3561  * If non-zero call node_reclaim when the number of free pages falls below
3562  * the watermarks.
3563  */
3564 int node_reclaim_mode __read_mostly;
3565 
3566 #define RECLAIM_OFF 0
3567 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3568 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3569 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3570 
3571 /*
3572  * Priority for NODE_RECLAIM. This determines the fraction of pages
3573  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3574  * a zone.
3575  */
3576 #define NODE_RECLAIM_PRIORITY 4
3577 
3578 /*
3579  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3580  * occur.
3581  */
3582 int sysctl_min_unmapped_ratio = 1;
3583 
3584 /*
3585  * If the number of slab pages in a zone grows beyond this percentage then
3586  * slab reclaim needs to occur.
3587  */
3588 int sysctl_min_slab_ratio = 5;
3589 
3590 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3591 {
3592 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3593 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3594 		node_page_state(pgdat, NR_ACTIVE_FILE);
3595 
3596 	/*
3597 	 * It's possible for there to be more file mapped pages than
3598 	 * accounted for by the pages on the file LRU lists because
3599 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3600 	 */
3601 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3602 }
3603 
3604 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3605 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3606 {
3607 	unsigned long nr_pagecache_reclaimable;
3608 	unsigned long delta = 0;
3609 
3610 	/*
3611 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3612 	 * potentially reclaimable. Otherwise, we have to worry about
3613 	 * pages like swapcache and node_unmapped_file_pages() provides
3614 	 * a better estimate
3615 	 */
3616 	if (node_reclaim_mode & RECLAIM_UNMAP)
3617 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3618 	else
3619 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3620 
3621 	/* If we can't clean pages, remove dirty pages from consideration */
3622 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3623 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3624 
3625 	/* Watch for any possible underflows due to delta */
3626 	if (unlikely(delta > nr_pagecache_reclaimable))
3627 		delta = nr_pagecache_reclaimable;
3628 
3629 	return nr_pagecache_reclaimable - delta;
3630 }
3631 
3632 /*
3633  * Try to free up some pages from this node through reclaim.
3634  */
3635 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3636 {
3637 	/* Minimum pages needed in order to stay on node */
3638 	const unsigned long nr_pages = 1 << order;
3639 	struct task_struct *p = current;
3640 	struct reclaim_state reclaim_state;
3641 	int classzone_idx = gfp_zone(gfp_mask);
3642 	struct scan_control sc = {
3643 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3644 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3645 		.order = order,
3646 		.priority = NODE_RECLAIM_PRIORITY,
3647 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3648 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3649 		.may_swap = 1,
3650 		.reclaim_idx = classzone_idx,
3651 	};
3652 
3653 	cond_resched();
3654 	/*
3655 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3656 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3657 	 * and RECLAIM_UNMAP.
3658 	 */
3659 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3660 	lockdep_set_current_reclaim_state(gfp_mask);
3661 	reclaim_state.reclaimed_slab = 0;
3662 	p->reclaim_state = &reclaim_state;
3663 
3664 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3665 		/*
3666 		 * Free memory by calling shrink zone with increasing
3667 		 * priorities until we have enough memory freed.
3668 		 */
3669 		do {
3670 			shrink_node(pgdat, &sc);
3671 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3672 	}
3673 
3674 	p->reclaim_state = NULL;
3675 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3676 	lockdep_clear_current_reclaim_state();
3677 	return sc.nr_reclaimed >= nr_pages;
3678 }
3679 
3680 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3681 {
3682 	int ret;
3683 
3684 	/*
3685 	 * Node reclaim reclaims unmapped file backed pages and
3686 	 * slab pages if we are over the defined limits.
3687 	 *
3688 	 * A small portion of unmapped file backed pages is needed for
3689 	 * file I/O otherwise pages read by file I/O will be immediately
3690 	 * thrown out if the node is overallocated. So we do not reclaim
3691 	 * if less than a specified percentage of the node is used by
3692 	 * unmapped file backed pages.
3693 	 */
3694 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3695 	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3696 		return NODE_RECLAIM_FULL;
3697 
3698 	if (!pgdat_reclaimable(pgdat))
3699 		return NODE_RECLAIM_FULL;
3700 
3701 	/*
3702 	 * Do not scan if the allocation should not be delayed.
3703 	 */
3704 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3705 		return NODE_RECLAIM_NOSCAN;
3706 
3707 	/*
3708 	 * Only run node reclaim on the local node or on nodes that do not
3709 	 * have associated processors. This will favor the local processor
3710 	 * over remote processors and spread off node memory allocations
3711 	 * as wide as possible.
3712 	 */
3713 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3714 		return NODE_RECLAIM_NOSCAN;
3715 
3716 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3717 		return NODE_RECLAIM_NOSCAN;
3718 
3719 	ret = __node_reclaim(pgdat, gfp_mask, order);
3720 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3721 
3722 	if (!ret)
3723 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3724 
3725 	return ret;
3726 }
3727 #endif
3728 
3729 /*
3730  * page_evictable - test whether a page is evictable
3731  * @page: the page to test
3732  *
3733  * Test whether page is evictable--i.e., should be placed on active/inactive
3734  * lists vs unevictable list.
3735  *
3736  * Reasons page might not be evictable:
3737  * (1) page's mapping marked unevictable
3738  * (2) page is part of an mlocked VMA
3739  *
3740  */
3741 int page_evictable(struct page *page)
3742 {
3743 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3744 }
3745 
3746 #ifdef CONFIG_SHMEM
3747 /**
3748  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3749  * @pages:	array of pages to check
3750  * @nr_pages:	number of pages to check
3751  *
3752  * Checks pages for evictability and moves them to the appropriate lru list.
3753  *
3754  * This function is only used for SysV IPC SHM_UNLOCK.
3755  */
3756 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3757 {
3758 	struct lruvec *lruvec;
3759 	struct zone *zone = NULL;
3760 	int pgscanned = 0;
3761 	int pgrescued = 0;
3762 	int i;
3763 
3764 	for (i = 0; i < nr_pages; i++) {
3765 		struct page *page = pages[i];
3766 		struct zone *pagezone;
3767 
3768 		pgscanned++;
3769 		pagezone = page_zone(page);
3770 		if (pagezone != zone) {
3771 			if (zone)
3772 				spin_unlock_irq(zone_lru_lock(zone));
3773 			zone = pagezone;
3774 			spin_lock_irq(zone_lru_lock(zone));
3775 		}
3776 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
3777 
3778 		if (!PageLRU(page) || !PageUnevictable(page))
3779 			continue;
3780 
3781 		if (page_evictable(page)) {
3782 			enum lru_list lru = page_lru_base_type(page);
3783 
3784 			VM_BUG_ON_PAGE(PageActive(page), page);
3785 			ClearPageUnevictable(page);
3786 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3787 			add_page_to_lru_list(page, lruvec, lru);
3788 			pgrescued++;
3789 		}
3790 	}
3791 
3792 	if (zone) {
3793 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3794 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3795 		spin_unlock_irq(zone_lru_lock(zone));
3796 	}
3797 }
3798 #endif /* CONFIG_SHMEM */
3799