1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/swap.h> 19 #include <linux/pagemap.h> 20 #include <linux/init.h> 21 #include <linux/highmem.h> 22 #include <linux/vmstat.h> 23 #include <linux/file.h> 24 #include <linux/writeback.h> 25 #include <linux/blkdev.h> 26 #include <linux/buffer_head.h> /* for try_to_release_page(), 27 buffer_heads_over_limit */ 28 #include <linux/mm_inline.h> 29 #include <linux/pagevec.h> 30 #include <linux/backing-dev.h> 31 #include <linux/rmap.h> 32 #include <linux/topology.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/notifier.h> 36 #include <linux/rwsem.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/freezer.h> 40 #include <linux/memcontrol.h> 41 #include <linux/delayacct.h> 42 43 #include <asm/tlbflush.h> 44 #include <asm/div64.h> 45 46 #include <linux/swapops.h> 47 48 #include "internal.h" 49 50 struct scan_control { 51 /* Incremented by the number of inactive pages that were scanned */ 52 unsigned long nr_scanned; 53 54 /* This context's GFP mask */ 55 gfp_t gfp_mask; 56 57 int may_writepage; 58 59 /* Can pages be swapped as part of reclaim? */ 60 int may_swap; 61 62 /* This context's SWAP_CLUSTER_MAX. If freeing memory for 63 * suspend, we effectively ignore SWAP_CLUSTER_MAX. 64 * In this context, it doesn't matter that we scan the 65 * whole list at once. */ 66 int swap_cluster_max; 67 68 int swappiness; 69 70 int all_unreclaimable; 71 72 int order; 73 74 /* Which cgroup do we reclaim from */ 75 struct mem_cgroup *mem_cgroup; 76 77 /* Pluggable isolate pages callback */ 78 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, 79 unsigned long *scanned, int order, int mode, 80 struct zone *z, struct mem_cgroup *mem_cont, 81 int active); 82 }; 83 84 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) 85 86 #ifdef ARCH_HAS_PREFETCH 87 #define prefetch_prev_lru_page(_page, _base, _field) \ 88 do { \ 89 if ((_page)->lru.prev != _base) { \ 90 struct page *prev; \ 91 \ 92 prev = lru_to_page(&(_page->lru)); \ 93 prefetch(&prev->_field); \ 94 } \ 95 } while (0) 96 #else 97 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 98 #endif 99 100 #ifdef ARCH_HAS_PREFETCHW 101 #define prefetchw_prev_lru_page(_page, _base, _field) \ 102 do { \ 103 if ((_page)->lru.prev != _base) { \ 104 struct page *prev; \ 105 \ 106 prev = lru_to_page(&(_page->lru)); \ 107 prefetchw(&prev->_field); \ 108 } \ 109 } while (0) 110 #else 111 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 112 #endif 113 114 /* 115 * From 0 .. 100. Higher means more swappy. 116 */ 117 int vm_swappiness = 60; 118 long vm_total_pages; /* The total number of pages which the VM controls */ 119 120 static LIST_HEAD(shrinker_list); 121 static DECLARE_RWSEM(shrinker_rwsem); 122 123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 124 #define scan_global_lru(sc) (!(sc)->mem_cgroup) 125 #else 126 #define scan_global_lru(sc) (1) 127 #endif 128 129 /* 130 * Add a shrinker callback to be called from the vm 131 */ 132 void register_shrinker(struct shrinker *shrinker) 133 { 134 shrinker->nr = 0; 135 down_write(&shrinker_rwsem); 136 list_add_tail(&shrinker->list, &shrinker_list); 137 up_write(&shrinker_rwsem); 138 } 139 EXPORT_SYMBOL(register_shrinker); 140 141 /* 142 * Remove one 143 */ 144 void unregister_shrinker(struct shrinker *shrinker) 145 { 146 down_write(&shrinker_rwsem); 147 list_del(&shrinker->list); 148 up_write(&shrinker_rwsem); 149 } 150 EXPORT_SYMBOL(unregister_shrinker); 151 152 #define SHRINK_BATCH 128 153 /* 154 * Call the shrink functions to age shrinkable caches 155 * 156 * Here we assume it costs one seek to replace a lru page and that it also 157 * takes a seek to recreate a cache object. With this in mind we age equal 158 * percentages of the lru and ageable caches. This should balance the seeks 159 * generated by these structures. 160 * 161 * If the vm encountered mapped pages on the LRU it increase the pressure on 162 * slab to avoid swapping. 163 * 164 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. 165 * 166 * `lru_pages' represents the number of on-LRU pages in all the zones which 167 * are eligible for the caller's allocation attempt. It is used for balancing 168 * slab reclaim versus page reclaim. 169 * 170 * Returns the number of slab objects which we shrunk. 171 */ 172 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 173 unsigned long lru_pages) 174 { 175 struct shrinker *shrinker; 176 unsigned long ret = 0; 177 178 if (scanned == 0) 179 scanned = SWAP_CLUSTER_MAX; 180 181 if (!down_read_trylock(&shrinker_rwsem)) 182 return 1; /* Assume we'll be able to shrink next time */ 183 184 list_for_each_entry(shrinker, &shrinker_list, list) { 185 unsigned long long delta; 186 unsigned long total_scan; 187 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); 188 189 delta = (4 * scanned) / shrinker->seeks; 190 delta *= max_pass; 191 do_div(delta, lru_pages + 1); 192 shrinker->nr += delta; 193 if (shrinker->nr < 0) { 194 printk(KERN_ERR "%s: nr=%ld\n", 195 __func__, shrinker->nr); 196 shrinker->nr = max_pass; 197 } 198 199 /* 200 * Avoid risking looping forever due to too large nr value: 201 * never try to free more than twice the estimate number of 202 * freeable entries. 203 */ 204 if (shrinker->nr > max_pass * 2) 205 shrinker->nr = max_pass * 2; 206 207 total_scan = shrinker->nr; 208 shrinker->nr = 0; 209 210 while (total_scan >= SHRINK_BATCH) { 211 long this_scan = SHRINK_BATCH; 212 int shrink_ret; 213 int nr_before; 214 215 nr_before = (*shrinker->shrink)(0, gfp_mask); 216 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); 217 if (shrink_ret == -1) 218 break; 219 if (shrink_ret < nr_before) 220 ret += nr_before - shrink_ret; 221 count_vm_events(SLABS_SCANNED, this_scan); 222 total_scan -= this_scan; 223 224 cond_resched(); 225 } 226 227 shrinker->nr += total_scan; 228 } 229 up_read(&shrinker_rwsem); 230 return ret; 231 } 232 233 /* Called without lock on whether page is mapped, so answer is unstable */ 234 static inline int page_mapping_inuse(struct page *page) 235 { 236 struct address_space *mapping; 237 238 /* Page is in somebody's page tables. */ 239 if (page_mapped(page)) 240 return 1; 241 242 /* Be more reluctant to reclaim swapcache than pagecache */ 243 if (PageSwapCache(page)) 244 return 1; 245 246 mapping = page_mapping(page); 247 if (!mapping) 248 return 0; 249 250 /* File is mmap'd by somebody? */ 251 return mapping_mapped(mapping); 252 } 253 254 static inline int is_page_cache_freeable(struct page *page) 255 { 256 return page_count(page) - !!PagePrivate(page) == 2; 257 } 258 259 static int may_write_to_queue(struct backing_dev_info *bdi) 260 { 261 if (current->flags & PF_SWAPWRITE) 262 return 1; 263 if (!bdi_write_congested(bdi)) 264 return 1; 265 if (bdi == current->backing_dev_info) 266 return 1; 267 return 0; 268 } 269 270 /* 271 * We detected a synchronous write error writing a page out. Probably 272 * -ENOSPC. We need to propagate that into the address_space for a subsequent 273 * fsync(), msync() or close(). 274 * 275 * The tricky part is that after writepage we cannot touch the mapping: nothing 276 * prevents it from being freed up. But we have a ref on the page and once 277 * that page is locked, the mapping is pinned. 278 * 279 * We're allowed to run sleeping lock_page() here because we know the caller has 280 * __GFP_FS. 281 */ 282 static void handle_write_error(struct address_space *mapping, 283 struct page *page, int error) 284 { 285 lock_page(page); 286 if (page_mapping(page) == mapping) 287 mapping_set_error(mapping, error); 288 unlock_page(page); 289 } 290 291 /* Request for sync pageout. */ 292 enum pageout_io { 293 PAGEOUT_IO_ASYNC, 294 PAGEOUT_IO_SYNC, 295 }; 296 297 /* possible outcome of pageout() */ 298 typedef enum { 299 /* failed to write page out, page is locked */ 300 PAGE_KEEP, 301 /* move page to the active list, page is locked */ 302 PAGE_ACTIVATE, 303 /* page has been sent to the disk successfully, page is unlocked */ 304 PAGE_SUCCESS, 305 /* page is clean and locked */ 306 PAGE_CLEAN, 307 } pageout_t; 308 309 /* 310 * pageout is called by shrink_page_list() for each dirty page. 311 * Calls ->writepage(). 312 */ 313 static pageout_t pageout(struct page *page, struct address_space *mapping, 314 enum pageout_io sync_writeback) 315 { 316 /* 317 * If the page is dirty, only perform writeback if that write 318 * will be non-blocking. To prevent this allocation from being 319 * stalled by pagecache activity. But note that there may be 320 * stalls if we need to run get_block(). We could test 321 * PagePrivate for that. 322 * 323 * If this process is currently in generic_file_write() against 324 * this page's queue, we can perform writeback even if that 325 * will block. 326 * 327 * If the page is swapcache, write it back even if that would 328 * block, for some throttling. This happens by accident, because 329 * swap_backing_dev_info is bust: it doesn't reflect the 330 * congestion state of the swapdevs. Easy to fix, if needed. 331 * See swapfile.c:page_queue_congested(). 332 */ 333 if (!is_page_cache_freeable(page)) 334 return PAGE_KEEP; 335 if (!mapping) { 336 /* 337 * Some data journaling orphaned pages can have 338 * page->mapping == NULL while being dirty with clean buffers. 339 */ 340 if (PagePrivate(page)) { 341 if (try_to_free_buffers(page)) { 342 ClearPageDirty(page); 343 printk("%s: orphaned page\n", __func__); 344 return PAGE_CLEAN; 345 } 346 } 347 return PAGE_KEEP; 348 } 349 if (mapping->a_ops->writepage == NULL) 350 return PAGE_ACTIVATE; 351 if (!may_write_to_queue(mapping->backing_dev_info)) 352 return PAGE_KEEP; 353 354 if (clear_page_dirty_for_io(page)) { 355 int res; 356 struct writeback_control wbc = { 357 .sync_mode = WB_SYNC_NONE, 358 .nr_to_write = SWAP_CLUSTER_MAX, 359 .range_start = 0, 360 .range_end = LLONG_MAX, 361 .nonblocking = 1, 362 .for_reclaim = 1, 363 }; 364 365 SetPageReclaim(page); 366 res = mapping->a_ops->writepage(page, &wbc); 367 if (res < 0) 368 handle_write_error(mapping, page, res); 369 if (res == AOP_WRITEPAGE_ACTIVATE) { 370 ClearPageReclaim(page); 371 return PAGE_ACTIVATE; 372 } 373 374 /* 375 * Wait on writeback if requested to. This happens when 376 * direct reclaiming a large contiguous area and the 377 * first attempt to free a range of pages fails. 378 */ 379 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) 380 wait_on_page_writeback(page); 381 382 if (!PageWriteback(page)) { 383 /* synchronous write or broken a_ops? */ 384 ClearPageReclaim(page); 385 } 386 inc_zone_page_state(page, NR_VMSCAN_WRITE); 387 return PAGE_SUCCESS; 388 } 389 390 return PAGE_CLEAN; 391 } 392 393 /* 394 * Same as remove_mapping, but if the page is removed from the mapping, it 395 * gets returned with a refcount of 0. 396 */ 397 static int __remove_mapping(struct address_space *mapping, struct page *page) 398 { 399 BUG_ON(!PageLocked(page)); 400 BUG_ON(mapping != page_mapping(page)); 401 402 write_lock_irq(&mapping->tree_lock); 403 /* 404 * The non racy check for a busy page. 405 * 406 * Must be careful with the order of the tests. When someone has 407 * a ref to the page, it may be possible that they dirty it then 408 * drop the reference. So if PageDirty is tested before page_count 409 * here, then the following race may occur: 410 * 411 * get_user_pages(&page); 412 * [user mapping goes away] 413 * write_to(page); 414 * !PageDirty(page) [good] 415 * SetPageDirty(page); 416 * put_page(page); 417 * !page_count(page) [good, discard it] 418 * 419 * [oops, our write_to data is lost] 420 * 421 * Reversing the order of the tests ensures such a situation cannot 422 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 423 * load is not satisfied before that of page->_count. 424 * 425 * Note that if SetPageDirty is always performed via set_page_dirty, 426 * and thus under tree_lock, then this ordering is not required. 427 */ 428 if (!page_freeze_refs(page, 2)) 429 goto cannot_free; 430 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 431 if (unlikely(PageDirty(page))) { 432 page_unfreeze_refs(page, 2); 433 goto cannot_free; 434 } 435 436 if (PageSwapCache(page)) { 437 swp_entry_t swap = { .val = page_private(page) }; 438 __delete_from_swap_cache(page); 439 write_unlock_irq(&mapping->tree_lock); 440 swap_free(swap); 441 } else { 442 __remove_from_page_cache(page); 443 write_unlock_irq(&mapping->tree_lock); 444 } 445 446 return 1; 447 448 cannot_free: 449 write_unlock_irq(&mapping->tree_lock); 450 return 0; 451 } 452 453 /* 454 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 455 * someone else has a ref on the page, abort and return 0. If it was 456 * successfully detached, return 1. Assumes the caller has a single ref on 457 * this page. 458 */ 459 int remove_mapping(struct address_space *mapping, struct page *page) 460 { 461 if (__remove_mapping(mapping, page)) { 462 /* 463 * Unfreezing the refcount with 1 rather than 2 effectively 464 * drops the pagecache ref for us without requiring another 465 * atomic operation. 466 */ 467 page_unfreeze_refs(page, 1); 468 return 1; 469 } 470 return 0; 471 } 472 473 /* 474 * shrink_page_list() returns the number of reclaimed pages 475 */ 476 static unsigned long shrink_page_list(struct list_head *page_list, 477 struct scan_control *sc, 478 enum pageout_io sync_writeback) 479 { 480 LIST_HEAD(ret_pages); 481 struct pagevec freed_pvec; 482 int pgactivate = 0; 483 unsigned long nr_reclaimed = 0; 484 485 cond_resched(); 486 487 pagevec_init(&freed_pvec, 1); 488 while (!list_empty(page_list)) { 489 struct address_space *mapping; 490 struct page *page; 491 int may_enter_fs; 492 int referenced; 493 494 cond_resched(); 495 496 page = lru_to_page(page_list); 497 list_del(&page->lru); 498 499 if (TestSetPageLocked(page)) 500 goto keep; 501 502 VM_BUG_ON(PageActive(page)); 503 504 sc->nr_scanned++; 505 506 if (!sc->may_swap && page_mapped(page)) 507 goto keep_locked; 508 509 /* Double the slab pressure for mapped and swapcache pages */ 510 if (page_mapped(page) || PageSwapCache(page)) 511 sc->nr_scanned++; 512 513 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 514 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 515 516 if (PageWriteback(page)) { 517 /* 518 * Synchronous reclaim is performed in two passes, 519 * first an asynchronous pass over the list to 520 * start parallel writeback, and a second synchronous 521 * pass to wait for the IO to complete. Wait here 522 * for any page for which writeback has already 523 * started. 524 */ 525 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) 526 wait_on_page_writeback(page); 527 else 528 goto keep_locked; 529 } 530 531 referenced = page_referenced(page, 1, sc->mem_cgroup); 532 /* In active use or really unfreeable? Activate it. */ 533 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && 534 referenced && page_mapping_inuse(page)) 535 goto activate_locked; 536 537 #ifdef CONFIG_SWAP 538 /* 539 * Anonymous process memory has backing store? 540 * Try to allocate it some swap space here. 541 */ 542 if (PageAnon(page) && !PageSwapCache(page)) 543 if (!add_to_swap(page, GFP_ATOMIC)) 544 goto activate_locked; 545 #endif /* CONFIG_SWAP */ 546 547 mapping = page_mapping(page); 548 549 /* 550 * The page is mapped into the page tables of one or more 551 * processes. Try to unmap it here. 552 */ 553 if (page_mapped(page) && mapping) { 554 switch (try_to_unmap(page, 0)) { 555 case SWAP_FAIL: 556 goto activate_locked; 557 case SWAP_AGAIN: 558 goto keep_locked; 559 case SWAP_SUCCESS: 560 ; /* try to free the page below */ 561 } 562 } 563 564 if (PageDirty(page)) { 565 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) 566 goto keep_locked; 567 if (!may_enter_fs) 568 goto keep_locked; 569 if (!sc->may_writepage) 570 goto keep_locked; 571 572 /* Page is dirty, try to write it out here */ 573 switch (pageout(page, mapping, sync_writeback)) { 574 case PAGE_KEEP: 575 goto keep_locked; 576 case PAGE_ACTIVATE: 577 goto activate_locked; 578 case PAGE_SUCCESS: 579 if (PageWriteback(page) || PageDirty(page)) 580 goto keep; 581 /* 582 * A synchronous write - probably a ramdisk. Go 583 * ahead and try to reclaim the page. 584 */ 585 if (TestSetPageLocked(page)) 586 goto keep; 587 if (PageDirty(page) || PageWriteback(page)) 588 goto keep_locked; 589 mapping = page_mapping(page); 590 case PAGE_CLEAN: 591 ; /* try to free the page below */ 592 } 593 } 594 595 /* 596 * If the page has buffers, try to free the buffer mappings 597 * associated with this page. If we succeed we try to free 598 * the page as well. 599 * 600 * We do this even if the page is PageDirty(). 601 * try_to_release_page() does not perform I/O, but it is 602 * possible for a page to have PageDirty set, but it is actually 603 * clean (all its buffers are clean). This happens if the 604 * buffers were written out directly, with submit_bh(). ext3 605 * will do this, as well as the blockdev mapping. 606 * try_to_release_page() will discover that cleanness and will 607 * drop the buffers and mark the page clean - it can be freed. 608 * 609 * Rarely, pages can have buffers and no ->mapping. These are 610 * the pages which were not successfully invalidated in 611 * truncate_complete_page(). We try to drop those buffers here 612 * and if that worked, and the page is no longer mapped into 613 * process address space (page_count == 1) it can be freed. 614 * Otherwise, leave the page on the LRU so it is swappable. 615 */ 616 if (PagePrivate(page)) { 617 if (!try_to_release_page(page, sc->gfp_mask)) 618 goto activate_locked; 619 if (!mapping && page_count(page) == 1) { 620 unlock_page(page); 621 if (put_page_testzero(page)) 622 goto free_it; 623 else { 624 /* 625 * rare race with speculative reference. 626 * the speculative reference will free 627 * this page shortly, so we may 628 * increment nr_reclaimed here (and 629 * leave it off the LRU). 630 */ 631 nr_reclaimed++; 632 continue; 633 } 634 } 635 } 636 637 if (!mapping || !__remove_mapping(mapping, page)) 638 goto keep_locked; 639 640 unlock_page(page); 641 free_it: 642 nr_reclaimed++; 643 if (!pagevec_add(&freed_pvec, page)) { 644 __pagevec_free(&freed_pvec); 645 pagevec_reinit(&freed_pvec); 646 } 647 continue; 648 649 activate_locked: 650 SetPageActive(page); 651 pgactivate++; 652 keep_locked: 653 unlock_page(page); 654 keep: 655 list_add(&page->lru, &ret_pages); 656 VM_BUG_ON(PageLRU(page)); 657 } 658 list_splice(&ret_pages, page_list); 659 if (pagevec_count(&freed_pvec)) 660 __pagevec_free(&freed_pvec); 661 count_vm_events(PGACTIVATE, pgactivate); 662 return nr_reclaimed; 663 } 664 665 /* LRU Isolation modes. */ 666 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ 667 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ 668 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ 669 670 /* 671 * Attempt to remove the specified page from its LRU. Only take this page 672 * if it is of the appropriate PageActive status. Pages which are being 673 * freed elsewhere are also ignored. 674 * 675 * page: page to consider 676 * mode: one of the LRU isolation modes defined above 677 * 678 * returns 0 on success, -ve errno on failure. 679 */ 680 int __isolate_lru_page(struct page *page, int mode) 681 { 682 int ret = -EINVAL; 683 684 /* Only take pages on the LRU. */ 685 if (!PageLRU(page)) 686 return ret; 687 688 /* 689 * When checking the active state, we need to be sure we are 690 * dealing with comparible boolean values. Take the logical not 691 * of each. 692 */ 693 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) 694 return ret; 695 696 ret = -EBUSY; 697 if (likely(get_page_unless_zero(page))) { 698 /* 699 * Be careful not to clear PageLRU until after we're 700 * sure the page is not being freed elsewhere -- the 701 * page release code relies on it. 702 */ 703 ClearPageLRU(page); 704 ret = 0; 705 } 706 707 return ret; 708 } 709 710 /* 711 * zone->lru_lock is heavily contended. Some of the functions that 712 * shrink the lists perform better by taking out a batch of pages 713 * and working on them outside the LRU lock. 714 * 715 * For pagecache intensive workloads, this function is the hottest 716 * spot in the kernel (apart from copy_*_user functions). 717 * 718 * Appropriate locks must be held before calling this function. 719 * 720 * @nr_to_scan: The number of pages to look through on the list. 721 * @src: The LRU list to pull pages off. 722 * @dst: The temp list to put pages on to. 723 * @scanned: The number of pages that were scanned. 724 * @order: The caller's attempted allocation order 725 * @mode: One of the LRU isolation modes 726 * 727 * returns how many pages were moved onto *@dst. 728 */ 729 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 730 struct list_head *src, struct list_head *dst, 731 unsigned long *scanned, int order, int mode) 732 { 733 unsigned long nr_taken = 0; 734 unsigned long scan; 735 736 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { 737 struct page *page; 738 unsigned long pfn; 739 unsigned long end_pfn; 740 unsigned long page_pfn; 741 int zone_id; 742 743 page = lru_to_page(src); 744 prefetchw_prev_lru_page(page, src, flags); 745 746 VM_BUG_ON(!PageLRU(page)); 747 748 switch (__isolate_lru_page(page, mode)) { 749 case 0: 750 list_move(&page->lru, dst); 751 nr_taken++; 752 break; 753 754 case -EBUSY: 755 /* else it is being freed elsewhere */ 756 list_move(&page->lru, src); 757 continue; 758 759 default: 760 BUG(); 761 } 762 763 if (!order) 764 continue; 765 766 /* 767 * Attempt to take all pages in the order aligned region 768 * surrounding the tag page. Only take those pages of 769 * the same active state as that tag page. We may safely 770 * round the target page pfn down to the requested order 771 * as the mem_map is guarenteed valid out to MAX_ORDER, 772 * where that page is in a different zone we will detect 773 * it from its zone id and abort this block scan. 774 */ 775 zone_id = page_zone_id(page); 776 page_pfn = page_to_pfn(page); 777 pfn = page_pfn & ~((1 << order) - 1); 778 end_pfn = pfn + (1 << order); 779 for (; pfn < end_pfn; pfn++) { 780 struct page *cursor_page; 781 782 /* The target page is in the block, ignore it. */ 783 if (unlikely(pfn == page_pfn)) 784 continue; 785 786 /* Avoid holes within the zone. */ 787 if (unlikely(!pfn_valid_within(pfn))) 788 break; 789 790 cursor_page = pfn_to_page(pfn); 791 /* Check that we have not crossed a zone boundary. */ 792 if (unlikely(page_zone_id(cursor_page) != zone_id)) 793 continue; 794 switch (__isolate_lru_page(cursor_page, mode)) { 795 case 0: 796 list_move(&cursor_page->lru, dst); 797 nr_taken++; 798 scan++; 799 break; 800 801 case -EBUSY: 802 /* else it is being freed elsewhere */ 803 list_move(&cursor_page->lru, src); 804 default: 805 break; 806 } 807 } 808 } 809 810 *scanned = scan; 811 return nr_taken; 812 } 813 814 static unsigned long isolate_pages_global(unsigned long nr, 815 struct list_head *dst, 816 unsigned long *scanned, int order, 817 int mode, struct zone *z, 818 struct mem_cgroup *mem_cont, 819 int active) 820 { 821 if (active) 822 return isolate_lru_pages(nr, &z->active_list, dst, 823 scanned, order, mode); 824 else 825 return isolate_lru_pages(nr, &z->inactive_list, dst, 826 scanned, order, mode); 827 } 828 829 /* 830 * clear_active_flags() is a helper for shrink_active_list(), clearing 831 * any active bits from the pages in the list. 832 */ 833 static unsigned long clear_active_flags(struct list_head *page_list) 834 { 835 int nr_active = 0; 836 struct page *page; 837 838 list_for_each_entry(page, page_list, lru) 839 if (PageActive(page)) { 840 ClearPageActive(page); 841 nr_active++; 842 } 843 844 return nr_active; 845 } 846 847 /* 848 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 849 * of reclaimed pages 850 */ 851 static unsigned long shrink_inactive_list(unsigned long max_scan, 852 struct zone *zone, struct scan_control *sc) 853 { 854 LIST_HEAD(page_list); 855 struct pagevec pvec; 856 unsigned long nr_scanned = 0; 857 unsigned long nr_reclaimed = 0; 858 859 pagevec_init(&pvec, 1); 860 861 lru_add_drain(); 862 spin_lock_irq(&zone->lru_lock); 863 do { 864 struct page *page; 865 unsigned long nr_taken; 866 unsigned long nr_scan; 867 unsigned long nr_freed; 868 unsigned long nr_active; 869 870 nr_taken = sc->isolate_pages(sc->swap_cluster_max, 871 &page_list, &nr_scan, sc->order, 872 (sc->order > PAGE_ALLOC_COSTLY_ORDER)? 873 ISOLATE_BOTH : ISOLATE_INACTIVE, 874 zone, sc->mem_cgroup, 0); 875 nr_active = clear_active_flags(&page_list); 876 __count_vm_events(PGDEACTIVATE, nr_active); 877 878 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active); 879 __mod_zone_page_state(zone, NR_INACTIVE, 880 -(nr_taken - nr_active)); 881 if (scan_global_lru(sc)) 882 zone->pages_scanned += nr_scan; 883 spin_unlock_irq(&zone->lru_lock); 884 885 nr_scanned += nr_scan; 886 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); 887 888 /* 889 * If we are direct reclaiming for contiguous pages and we do 890 * not reclaim everything in the list, try again and wait 891 * for IO to complete. This will stall high-order allocations 892 * but that should be acceptable to the caller 893 */ 894 if (nr_freed < nr_taken && !current_is_kswapd() && 895 sc->order > PAGE_ALLOC_COSTLY_ORDER) { 896 congestion_wait(WRITE, HZ/10); 897 898 /* 899 * The attempt at page out may have made some 900 * of the pages active, mark them inactive again. 901 */ 902 nr_active = clear_active_flags(&page_list); 903 count_vm_events(PGDEACTIVATE, nr_active); 904 905 nr_freed += shrink_page_list(&page_list, sc, 906 PAGEOUT_IO_SYNC); 907 } 908 909 nr_reclaimed += nr_freed; 910 local_irq_disable(); 911 if (current_is_kswapd()) { 912 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); 913 __count_vm_events(KSWAPD_STEAL, nr_freed); 914 } else if (scan_global_lru(sc)) 915 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); 916 917 __count_zone_vm_events(PGSTEAL, zone, nr_freed); 918 919 if (nr_taken == 0) 920 goto done; 921 922 spin_lock(&zone->lru_lock); 923 /* 924 * Put back any unfreeable pages. 925 */ 926 while (!list_empty(&page_list)) { 927 page = lru_to_page(&page_list); 928 VM_BUG_ON(PageLRU(page)); 929 SetPageLRU(page); 930 list_del(&page->lru); 931 if (PageActive(page)) 932 add_page_to_active_list(zone, page); 933 else 934 add_page_to_inactive_list(zone, page); 935 if (!pagevec_add(&pvec, page)) { 936 spin_unlock_irq(&zone->lru_lock); 937 __pagevec_release(&pvec); 938 spin_lock_irq(&zone->lru_lock); 939 } 940 } 941 } while (nr_scanned < max_scan); 942 spin_unlock(&zone->lru_lock); 943 done: 944 local_irq_enable(); 945 pagevec_release(&pvec); 946 return nr_reclaimed; 947 } 948 949 /* 950 * We are about to scan this zone at a certain priority level. If that priority 951 * level is smaller (ie: more urgent) than the previous priority, then note 952 * that priority level within the zone. This is done so that when the next 953 * process comes in to scan this zone, it will immediately start out at this 954 * priority level rather than having to build up its own scanning priority. 955 * Here, this priority affects only the reclaim-mapped threshold. 956 */ 957 static inline void note_zone_scanning_priority(struct zone *zone, int priority) 958 { 959 if (priority < zone->prev_priority) 960 zone->prev_priority = priority; 961 } 962 963 static inline int zone_is_near_oom(struct zone *zone) 964 { 965 return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE) 966 + zone_page_state(zone, NR_INACTIVE))*3; 967 } 968 969 /* 970 * Determine we should try to reclaim mapped pages. 971 * This is called only when sc->mem_cgroup is NULL. 972 */ 973 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone, 974 int priority) 975 { 976 long mapped_ratio; 977 long distress; 978 long swap_tendency; 979 long imbalance; 980 int reclaim_mapped = 0; 981 int prev_priority; 982 983 if (scan_global_lru(sc) && zone_is_near_oom(zone)) 984 return 1; 985 /* 986 * `distress' is a measure of how much trouble we're having 987 * reclaiming pages. 0 -> no problems. 100 -> great trouble. 988 */ 989 if (scan_global_lru(sc)) 990 prev_priority = zone->prev_priority; 991 else 992 prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup); 993 994 distress = 100 >> min(prev_priority, priority); 995 996 /* 997 * The point of this algorithm is to decide when to start 998 * reclaiming mapped memory instead of just pagecache. Work out 999 * how much memory 1000 * is mapped. 1001 */ 1002 if (scan_global_lru(sc)) 1003 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) + 1004 global_page_state(NR_ANON_PAGES)) * 100) / 1005 vm_total_pages; 1006 else 1007 mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup); 1008 1009 /* 1010 * Now decide how much we really want to unmap some pages. The 1011 * mapped ratio is downgraded - just because there's a lot of 1012 * mapped memory doesn't necessarily mean that page reclaim 1013 * isn't succeeding. 1014 * 1015 * The distress ratio is important - we don't want to start 1016 * going oom. 1017 * 1018 * A 100% value of vm_swappiness overrides this algorithm 1019 * altogether. 1020 */ 1021 swap_tendency = mapped_ratio / 2 + distress + sc->swappiness; 1022 1023 /* 1024 * If there's huge imbalance between active and inactive 1025 * (think active 100 times larger than inactive) we should 1026 * become more permissive, or the system will take too much 1027 * cpu before it start swapping during memory pressure. 1028 * Distress is about avoiding early-oom, this is about 1029 * making swappiness graceful despite setting it to low 1030 * values. 1031 * 1032 * Avoid div by zero with nr_inactive+1, and max resulting 1033 * value is vm_total_pages. 1034 */ 1035 if (scan_global_lru(sc)) { 1036 imbalance = zone_page_state(zone, NR_ACTIVE); 1037 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1; 1038 } else 1039 imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup); 1040 1041 /* 1042 * Reduce the effect of imbalance if swappiness is low, 1043 * this means for a swappiness very low, the imbalance 1044 * must be much higher than 100 for this logic to make 1045 * the difference. 1046 * 1047 * Max temporary value is vm_total_pages*100. 1048 */ 1049 imbalance *= (vm_swappiness + 1); 1050 imbalance /= 100; 1051 1052 /* 1053 * If not much of the ram is mapped, makes the imbalance 1054 * less relevant, it's high priority we refill the inactive 1055 * list with mapped pages only in presence of high ratio of 1056 * mapped pages. 1057 * 1058 * Max temporary value is vm_total_pages*100. 1059 */ 1060 imbalance *= mapped_ratio; 1061 imbalance /= 100; 1062 1063 /* apply imbalance feedback to swap_tendency */ 1064 swap_tendency += imbalance; 1065 1066 /* 1067 * Now use this metric to decide whether to start moving mapped 1068 * memory onto the inactive list. 1069 */ 1070 if (swap_tendency >= 100) 1071 reclaim_mapped = 1; 1072 1073 return reclaim_mapped; 1074 } 1075 1076 /* 1077 * This moves pages from the active list to the inactive list. 1078 * 1079 * We move them the other way if the page is referenced by one or more 1080 * processes, from rmap. 1081 * 1082 * If the pages are mostly unmapped, the processing is fast and it is 1083 * appropriate to hold zone->lru_lock across the whole operation. But if 1084 * the pages are mapped, the processing is slow (page_referenced()) so we 1085 * should drop zone->lru_lock around each page. It's impossible to balance 1086 * this, so instead we remove the pages from the LRU while processing them. 1087 * It is safe to rely on PG_active against the non-LRU pages in here because 1088 * nobody will play with that bit on a non-LRU page. 1089 * 1090 * The downside is that we have to touch page->_count against each page. 1091 * But we had to alter page->flags anyway. 1092 */ 1093 1094 1095 static void shrink_active_list(unsigned long nr_pages, struct zone *zone, 1096 struct scan_control *sc, int priority) 1097 { 1098 unsigned long pgmoved; 1099 int pgdeactivate = 0; 1100 unsigned long pgscanned; 1101 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1102 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ 1103 LIST_HEAD(l_active); /* Pages to go onto the active_list */ 1104 struct page *page; 1105 struct pagevec pvec; 1106 int reclaim_mapped = 0; 1107 1108 if (sc->may_swap) 1109 reclaim_mapped = calc_reclaim_mapped(sc, zone, priority); 1110 1111 lru_add_drain(); 1112 spin_lock_irq(&zone->lru_lock); 1113 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, 1114 ISOLATE_ACTIVE, zone, 1115 sc->mem_cgroup, 1); 1116 /* 1117 * zone->pages_scanned is used for detect zone's oom 1118 * mem_cgroup remembers nr_scan by itself. 1119 */ 1120 if (scan_global_lru(sc)) 1121 zone->pages_scanned += pgscanned; 1122 1123 __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved); 1124 spin_unlock_irq(&zone->lru_lock); 1125 1126 while (!list_empty(&l_hold)) { 1127 cond_resched(); 1128 page = lru_to_page(&l_hold); 1129 list_del(&page->lru); 1130 if (page_mapped(page)) { 1131 if (!reclaim_mapped || 1132 (total_swap_pages == 0 && PageAnon(page)) || 1133 page_referenced(page, 0, sc->mem_cgroup)) { 1134 list_add(&page->lru, &l_active); 1135 continue; 1136 } 1137 } 1138 list_add(&page->lru, &l_inactive); 1139 } 1140 1141 pagevec_init(&pvec, 1); 1142 pgmoved = 0; 1143 spin_lock_irq(&zone->lru_lock); 1144 while (!list_empty(&l_inactive)) { 1145 page = lru_to_page(&l_inactive); 1146 prefetchw_prev_lru_page(page, &l_inactive, flags); 1147 VM_BUG_ON(PageLRU(page)); 1148 SetPageLRU(page); 1149 VM_BUG_ON(!PageActive(page)); 1150 ClearPageActive(page); 1151 1152 list_move(&page->lru, &zone->inactive_list); 1153 mem_cgroup_move_lists(page, false); 1154 pgmoved++; 1155 if (!pagevec_add(&pvec, page)) { 1156 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); 1157 spin_unlock_irq(&zone->lru_lock); 1158 pgdeactivate += pgmoved; 1159 pgmoved = 0; 1160 if (buffer_heads_over_limit) 1161 pagevec_strip(&pvec); 1162 __pagevec_release(&pvec); 1163 spin_lock_irq(&zone->lru_lock); 1164 } 1165 } 1166 __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); 1167 pgdeactivate += pgmoved; 1168 if (buffer_heads_over_limit) { 1169 spin_unlock_irq(&zone->lru_lock); 1170 pagevec_strip(&pvec); 1171 spin_lock_irq(&zone->lru_lock); 1172 } 1173 1174 pgmoved = 0; 1175 while (!list_empty(&l_active)) { 1176 page = lru_to_page(&l_active); 1177 prefetchw_prev_lru_page(page, &l_active, flags); 1178 VM_BUG_ON(PageLRU(page)); 1179 SetPageLRU(page); 1180 VM_BUG_ON(!PageActive(page)); 1181 1182 list_move(&page->lru, &zone->active_list); 1183 mem_cgroup_move_lists(page, true); 1184 pgmoved++; 1185 if (!pagevec_add(&pvec, page)) { 1186 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); 1187 pgmoved = 0; 1188 spin_unlock_irq(&zone->lru_lock); 1189 __pagevec_release(&pvec); 1190 spin_lock_irq(&zone->lru_lock); 1191 } 1192 } 1193 __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); 1194 1195 __count_zone_vm_events(PGREFILL, zone, pgscanned); 1196 __count_vm_events(PGDEACTIVATE, pgdeactivate); 1197 spin_unlock_irq(&zone->lru_lock); 1198 1199 pagevec_release(&pvec); 1200 } 1201 1202 /* 1203 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 1204 */ 1205 static unsigned long shrink_zone(int priority, struct zone *zone, 1206 struct scan_control *sc) 1207 { 1208 unsigned long nr_active; 1209 unsigned long nr_inactive; 1210 unsigned long nr_to_scan; 1211 unsigned long nr_reclaimed = 0; 1212 1213 if (scan_global_lru(sc)) { 1214 /* 1215 * Add one to nr_to_scan just to make sure that the kernel 1216 * will slowly sift through the active list. 1217 */ 1218 zone->nr_scan_active += 1219 (zone_page_state(zone, NR_ACTIVE) >> priority) + 1; 1220 nr_active = zone->nr_scan_active; 1221 zone->nr_scan_inactive += 1222 (zone_page_state(zone, NR_INACTIVE) >> priority) + 1; 1223 nr_inactive = zone->nr_scan_inactive; 1224 if (nr_inactive >= sc->swap_cluster_max) 1225 zone->nr_scan_inactive = 0; 1226 else 1227 nr_inactive = 0; 1228 1229 if (nr_active >= sc->swap_cluster_max) 1230 zone->nr_scan_active = 0; 1231 else 1232 nr_active = 0; 1233 } else { 1234 /* 1235 * This reclaim occurs not because zone memory shortage but 1236 * because memory controller hits its limit. 1237 * Then, don't modify zone reclaim related data. 1238 */ 1239 nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup, 1240 zone, priority); 1241 1242 nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup, 1243 zone, priority); 1244 } 1245 1246 1247 while (nr_active || nr_inactive) { 1248 if (nr_active) { 1249 nr_to_scan = min(nr_active, 1250 (unsigned long)sc->swap_cluster_max); 1251 nr_active -= nr_to_scan; 1252 shrink_active_list(nr_to_scan, zone, sc, priority); 1253 } 1254 1255 if (nr_inactive) { 1256 nr_to_scan = min(nr_inactive, 1257 (unsigned long)sc->swap_cluster_max); 1258 nr_inactive -= nr_to_scan; 1259 nr_reclaimed += shrink_inactive_list(nr_to_scan, zone, 1260 sc); 1261 } 1262 } 1263 1264 throttle_vm_writeout(sc->gfp_mask); 1265 return nr_reclaimed; 1266 } 1267 1268 /* 1269 * This is the direct reclaim path, for page-allocating processes. We only 1270 * try to reclaim pages from zones which will satisfy the caller's allocation 1271 * request. 1272 * 1273 * We reclaim from a zone even if that zone is over pages_high. Because: 1274 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 1275 * allocation or 1276 * b) The zones may be over pages_high but they must go *over* pages_high to 1277 * satisfy the `incremental min' zone defense algorithm. 1278 * 1279 * Returns the number of reclaimed pages. 1280 * 1281 * If a zone is deemed to be full of pinned pages then just give it a light 1282 * scan then give up on it. 1283 */ 1284 static unsigned long shrink_zones(int priority, struct zonelist *zonelist, 1285 struct scan_control *sc) 1286 { 1287 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1288 unsigned long nr_reclaimed = 0; 1289 struct zoneref *z; 1290 struct zone *zone; 1291 1292 sc->all_unreclaimable = 1; 1293 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1294 if (!populated_zone(zone)) 1295 continue; 1296 /* 1297 * Take care memory controller reclaiming has small influence 1298 * to global LRU. 1299 */ 1300 if (scan_global_lru(sc)) { 1301 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1302 continue; 1303 note_zone_scanning_priority(zone, priority); 1304 1305 if (zone_is_all_unreclaimable(zone) && 1306 priority != DEF_PRIORITY) 1307 continue; /* Let kswapd poll it */ 1308 sc->all_unreclaimable = 0; 1309 } else { 1310 /* 1311 * Ignore cpuset limitation here. We just want to reduce 1312 * # of used pages by us regardless of memory shortage. 1313 */ 1314 sc->all_unreclaimable = 0; 1315 mem_cgroup_note_reclaim_priority(sc->mem_cgroup, 1316 priority); 1317 } 1318 1319 nr_reclaimed += shrink_zone(priority, zone, sc); 1320 } 1321 1322 return nr_reclaimed; 1323 } 1324 1325 /* 1326 * This is the main entry point to direct page reclaim. 1327 * 1328 * If a full scan of the inactive list fails to free enough memory then we 1329 * are "out of memory" and something needs to be killed. 1330 * 1331 * If the caller is !__GFP_FS then the probability of a failure is reasonably 1332 * high - the zone may be full of dirty or under-writeback pages, which this 1333 * caller can't do much about. We kick pdflush and take explicit naps in the 1334 * hope that some of these pages can be written. But if the allocating task 1335 * holds filesystem locks which prevent writeout this might not work, and the 1336 * allocation attempt will fail. 1337 * 1338 * returns: 0, if no pages reclaimed 1339 * else, the number of pages reclaimed 1340 */ 1341 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 1342 struct scan_control *sc) 1343 { 1344 int priority; 1345 unsigned long ret = 0; 1346 unsigned long total_scanned = 0; 1347 unsigned long nr_reclaimed = 0; 1348 struct reclaim_state *reclaim_state = current->reclaim_state; 1349 unsigned long lru_pages = 0; 1350 struct zoneref *z; 1351 struct zone *zone; 1352 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); 1353 1354 delayacct_freepages_start(); 1355 1356 if (scan_global_lru(sc)) 1357 count_vm_event(ALLOCSTALL); 1358 /* 1359 * mem_cgroup will not do shrink_slab. 1360 */ 1361 if (scan_global_lru(sc)) { 1362 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1363 1364 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1365 continue; 1366 1367 lru_pages += zone_page_state(zone, NR_ACTIVE) 1368 + zone_page_state(zone, NR_INACTIVE); 1369 } 1370 } 1371 1372 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1373 sc->nr_scanned = 0; 1374 if (!priority) 1375 disable_swap_token(); 1376 nr_reclaimed += shrink_zones(priority, zonelist, sc); 1377 /* 1378 * Don't shrink slabs when reclaiming memory from 1379 * over limit cgroups 1380 */ 1381 if (scan_global_lru(sc)) { 1382 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); 1383 if (reclaim_state) { 1384 nr_reclaimed += reclaim_state->reclaimed_slab; 1385 reclaim_state->reclaimed_slab = 0; 1386 } 1387 } 1388 total_scanned += sc->nr_scanned; 1389 if (nr_reclaimed >= sc->swap_cluster_max) { 1390 ret = nr_reclaimed; 1391 goto out; 1392 } 1393 1394 /* 1395 * Try to write back as many pages as we just scanned. This 1396 * tends to cause slow streaming writers to write data to the 1397 * disk smoothly, at the dirtying rate, which is nice. But 1398 * that's undesirable in laptop mode, where we *want* lumpy 1399 * writeout. So in laptop mode, write out the whole world. 1400 */ 1401 if (total_scanned > sc->swap_cluster_max + 1402 sc->swap_cluster_max / 2) { 1403 wakeup_pdflush(laptop_mode ? 0 : total_scanned); 1404 sc->may_writepage = 1; 1405 } 1406 1407 /* Take a nap, wait for some writeback to complete */ 1408 if (sc->nr_scanned && priority < DEF_PRIORITY - 2) 1409 congestion_wait(WRITE, HZ/10); 1410 } 1411 /* top priority shrink_caches still had more to do? don't OOM, then */ 1412 if (!sc->all_unreclaimable && scan_global_lru(sc)) 1413 ret = nr_reclaimed; 1414 out: 1415 /* 1416 * Now that we've scanned all the zones at this priority level, note 1417 * that level within the zone so that the next thread which performs 1418 * scanning of this zone will immediately start out at this priority 1419 * level. This affects only the decision whether or not to bring 1420 * mapped pages onto the inactive list. 1421 */ 1422 if (priority < 0) 1423 priority = 0; 1424 1425 if (scan_global_lru(sc)) { 1426 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1427 1428 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1429 continue; 1430 1431 zone->prev_priority = priority; 1432 } 1433 } else 1434 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); 1435 1436 delayacct_freepages_end(); 1437 1438 return ret; 1439 } 1440 1441 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 1442 gfp_t gfp_mask) 1443 { 1444 struct scan_control sc = { 1445 .gfp_mask = gfp_mask, 1446 .may_writepage = !laptop_mode, 1447 .swap_cluster_max = SWAP_CLUSTER_MAX, 1448 .may_swap = 1, 1449 .swappiness = vm_swappiness, 1450 .order = order, 1451 .mem_cgroup = NULL, 1452 .isolate_pages = isolate_pages_global, 1453 }; 1454 1455 return do_try_to_free_pages(zonelist, &sc); 1456 } 1457 1458 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 1459 1460 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, 1461 gfp_t gfp_mask) 1462 { 1463 struct scan_control sc = { 1464 .may_writepage = !laptop_mode, 1465 .may_swap = 1, 1466 .swap_cluster_max = SWAP_CLUSTER_MAX, 1467 .swappiness = vm_swappiness, 1468 .order = 0, 1469 .mem_cgroup = mem_cont, 1470 .isolate_pages = mem_cgroup_isolate_pages, 1471 }; 1472 struct zonelist *zonelist; 1473 1474 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 1475 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 1476 zonelist = NODE_DATA(numa_node_id())->node_zonelists; 1477 return do_try_to_free_pages(zonelist, &sc); 1478 } 1479 #endif 1480 1481 /* 1482 * For kswapd, balance_pgdat() will work across all this node's zones until 1483 * they are all at pages_high. 1484 * 1485 * Returns the number of pages which were actually freed. 1486 * 1487 * There is special handling here for zones which are full of pinned pages. 1488 * This can happen if the pages are all mlocked, or if they are all used by 1489 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 1490 * What we do is to detect the case where all pages in the zone have been 1491 * scanned twice and there has been zero successful reclaim. Mark the zone as 1492 * dead and from now on, only perform a short scan. Basically we're polling 1493 * the zone for when the problem goes away. 1494 * 1495 * kswapd scans the zones in the highmem->normal->dma direction. It skips 1496 * zones which have free_pages > pages_high, but once a zone is found to have 1497 * free_pages <= pages_high, we scan that zone and the lower zones regardless 1498 * of the number of free pages in the lower zones. This interoperates with 1499 * the page allocator fallback scheme to ensure that aging of pages is balanced 1500 * across the zones. 1501 */ 1502 static unsigned long balance_pgdat(pg_data_t *pgdat, int order) 1503 { 1504 int all_zones_ok; 1505 int priority; 1506 int i; 1507 unsigned long total_scanned; 1508 unsigned long nr_reclaimed; 1509 struct reclaim_state *reclaim_state = current->reclaim_state; 1510 struct scan_control sc = { 1511 .gfp_mask = GFP_KERNEL, 1512 .may_swap = 1, 1513 .swap_cluster_max = SWAP_CLUSTER_MAX, 1514 .swappiness = vm_swappiness, 1515 .order = order, 1516 .mem_cgroup = NULL, 1517 .isolate_pages = isolate_pages_global, 1518 }; 1519 /* 1520 * temp_priority is used to remember the scanning priority at which 1521 * this zone was successfully refilled to free_pages == pages_high. 1522 */ 1523 int temp_priority[MAX_NR_ZONES]; 1524 1525 loop_again: 1526 total_scanned = 0; 1527 nr_reclaimed = 0; 1528 sc.may_writepage = !laptop_mode; 1529 count_vm_event(PAGEOUTRUN); 1530 1531 for (i = 0; i < pgdat->nr_zones; i++) 1532 temp_priority[i] = DEF_PRIORITY; 1533 1534 for (priority = DEF_PRIORITY; priority >= 0; priority--) { 1535 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 1536 unsigned long lru_pages = 0; 1537 1538 /* The swap token gets in the way of swapout... */ 1539 if (!priority) 1540 disable_swap_token(); 1541 1542 all_zones_ok = 1; 1543 1544 /* 1545 * Scan in the highmem->dma direction for the highest 1546 * zone which needs scanning 1547 */ 1548 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 1549 struct zone *zone = pgdat->node_zones + i; 1550 1551 if (!populated_zone(zone)) 1552 continue; 1553 1554 if (zone_is_all_unreclaimable(zone) && 1555 priority != DEF_PRIORITY) 1556 continue; 1557 1558 if (!zone_watermark_ok(zone, order, zone->pages_high, 1559 0, 0)) { 1560 end_zone = i; 1561 break; 1562 } 1563 } 1564 if (i < 0) 1565 goto out; 1566 1567 for (i = 0; i <= end_zone; i++) { 1568 struct zone *zone = pgdat->node_zones + i; 1569 1570 lru_pages += zone_page_state(zone, NR_ACTIVE) 1571 + zone_page_state(zone, NR_INACTIVE); 1572 } 1573 1574 /* 1575 * Now scan the zone in the dma->highmem direction, stopping 1576 * at the last zone which needs scanning. 1577 * 1578 * We do this because the page allocator works in the opposite 1579 * direction. This prevents the page allocator from allocating 1580 * pages behind kswapd's direction of progress, which would 1581 * cause too much scanning of the lower zones. 1582 */ 1583 for (i = 0; i <= end_zone; i++) { 1584 struct zone *zone = pgdat->node_zones + i; 1585 int nr_slab; 1586 1587 if (!populated_zone(zone)) 1588 continue; 1589 1590 if (zone_is_all_unreclaimable(zone) && 1591 priority != DEF_PRIORITY) 1592 continue; 1593 1594 if (!zone_watermark_ok(zone, order, zone->pages_high, 1595 end_zone, 0)) 1596 all_zones_ok = 0; 1597 temp_priority[i] = priority; 1598 sc.nr_scanned = 0; 1599 note_zone_scanning_priority(zone, priority); 1600 /* 1601 * We put equal pressure on every zone, unless one 1602 * zone has way too many pages free already. 1603 */ 1604 if (!zone_watermark_ok(zone, order, 8*zone->pages_high, 1605 end_zone, 0)) 1606 nr_reclaimed += shrink_zone(priority, zone, &sc); 1607 reclaim_state->reclaimed_slab = 0; 1608 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, 1609 lru_pages); 1610 nr_reclaimed += reclaim_state->reclaimed_slab; 1611 total_scanned += sc.nr_scanned; 1612 if (zone_is_all_unreclaimable(zone)) 1613 continue; 1614 if (nr_slab == 0 && zone->pages_scanned >= 1615 (zone_page_state(zone, NR_ACTIVE) 1616 + zone_page_state(zone, NR_INACTIVE)) * 6) 1617 zone_set_flag(zone, 1618 ZONE_ALL_UNRECLAIMABLE); 1619 /* 1620 * If we've done a decent amount of scanning and 1621 * the reclaim ratio is low, start doing writepage 1622 * even in laptop mode 1623 */ 1624 if (total_scanned > SWAP_CLUSTER_MAX * 2 && 1625 total_scanned > nr_reclaimed + nr_reclaimed / 2) 1626 sc.may_writepage = 1; 1627 } 1628 if (all_zones_ok) 1629 break; /* kswapd: all done */ 1630 /* 1631 * OK, kswapd is getting into trouble. Take a nap, then take 1632 * another pass across the zones. 1633 */ 1634 if (total_scanned && priority < DEF_PRIORITY - 2) 1635 congestion_wait(WRITE, HZ/10); 1636 1637 /* 1638 * We do this so kswapd doesn't build up large priorities for 1639 * example when it is freeing in parallel with allocators. It 1640 * matches the direct reclaim path behaviour in terms of impact 1641 * on zone->*_priority. 1642 */ 1643 if (nr_reclaimed >= SWAP_CLUSTER_MAX) 1644 break; 1645 } 1646 out: 1647 /* 1648 * Note within each zone the priority level at which this zone was 1649 * brought into a happy state. So that the next thread which scans this 1650 * zone will start out at that priority level. 1651 */ 1652 for (i = 0; i < pgdat->nr_zones; i++) { 1653 struct zone *zone = pgdat->node_zones + i; 1654 1655 zone->prev_priority = temp_priority[i]; 1656 } 1657 if (!all_zones_ok) { 1658 cond_resched(); 1659 1660 try_to_freeze(); 1661 1662 goto loop_again; 1663 } 1664 1665 return nr_reclaimed; 1666 } 1667 1668 /* 1669 * The background pageout daemon, started as a kernel thread 1670 * from the init process. 1671 * 1672 * This basically trickles out pages so that we have _some_ 1673 * free memory available even if there is no other activity 1674 * that frees anything up. This is needed for things like routing 1675 * etc, where we otherwise might have all activity going on in 1676 * asynchronous contexts that cannot page things out. 1677 * 1678 * If there are applications that are active memory-allocators 1679 * (most normal use), this basically shouldn't matter. 1680 */ 1681 static int kswapd(void *p) 1682 { 1683 unsigned long order; 1684 pg_data_t *pgdat = (pg_data_t*)p; 1685 struct task_struct *tsk = current; 1686 DEFINE_WAIT(wait); 1687 struct reclaim_state reclaim_state = { 1688 .reclaimed_slab = 0, 1689 }; 1690 node_to_cpumask_ptr(cpumask, pgdat->node_id); 1691 1692 if (!cpus_empty(*cpumask)) 1693 set_cpus_allowed_ptr(tsk, cpumask); 1694 current->reclaim_state = &reclaim_state; 1695 1696 /* 1697 * Tell the memory management that we're a "memory allocator", 1698 * and that if we need more memory we should get access to it 1699 * regardless (see "__alloc_pages()"). "kswapd" should 1700 * never get caught in the normal page freeing logic. 1701 * 1702 * (Kswapd normally doesn't need memory anyway, but sometimes 1703 * you need a small amount of memory in order to be able to 1704 * page out something else, and this flag essentially protects 1705 * us from recursively trying to free more memory as we're 1706 * trying to free the first piece of memory in the first place). 1707 */ 1708 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 1709 set_freezable(); 1710 1711 order = 0; 1712 for ( ; ; ) { 1713 unsigned long new_order; 1714 1715 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 1716 new_order = pgdat->kswapd_max_order; 1717 pgdat->kswapd_max_order = 0; 1718 if (order < new_order) { 1719 /* 1720 * Don't sleep if someone wants a larger 'order' 1721 * allocation 1722 */ 1723 order = new_order; 1724 } else { 1725 if (!freezing(current)) 1726 schedule(); 1727 1728 order = pgdat->kswapd_max_order; 1729 } 1730 finish_wait(&pgdat->kswapd_wait, &wait); 1731 1732 if (!try_to_freeze()) { 1733 /* We can speed up thawing tasks if we don't call 1734 * balance_pgdat after returning from the refrigerator 1735 */ 1736 balance_pgdat(pgdat, order); 1737 } 1738 } 1739 return 0; 1740 } 1741 1742 /* 1743 * A zone is low on free memory, so wake its kswapd task to service it. 1744 */ 1745 void wakeup_kswapd(struct zone *zone, int order) 1746 { 1747 pg_data_t *pgdat; 1748 1749 if (!populated_zone(zone)) 1750 return; 1751 1752 pgdat = zone->zone_pgdat; 1753 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) 1754 return; 1755 if (pgdat->kswapd_max_order < order) 1756 pgdat->kswapd_max_order = order; 1757 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) 1758 return; 1759 if (!waitqueue_active(&pgdat->kswapd_wait)) 1760 return; 1761 wake_up_interruptible(&pgdat->kswapd_wait); 1762 } 1763 1764 #ifdef CONFIG_PM 1765 /* 1766 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages 1767 * from LRU lists system-wide, for given pass and priority, and returns the 1768 * number of reclaimed pages 1769 * 1770 * For pass > 3 we also try to shrink the LRU lists that contain a few pages 1771 */ 1772 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, 1773 int pass, struct scan_control *sc) 1774 { 1775 struct zone *zone; 1776 unsigned long nr_to_scan, ret = 0; 1777 1778 for_each_zone(zone) { 1779 1780 if (!populated_zone(zone)) 1781 continue; 1782 1783 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) 1784 continue; 1785 1786 /* For pass = 0 we don't shrink the active list */ 1787 if (pass > 0) { 1788 zone->nr_scan_active += 1789 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1; 1790 if (zone->nr_scan_active >= nr_pages || pass > 3) { 1791 zone->nr_scan_active = 0; 1792 nr_to_scan = min(nr_pages, 1793 zone_page_state(zone, NR_ACTIVE)); 1794 shrink_active_list(nr_to_scan, zone, sc, prio); 1795 } 1796 } 1797 1798 zone->nr_scan_inactive += 1799 (zone_page_state(zone, NR_INACTIVE) >> prio) + 1; 1800 if (zone->nr_scan_inactive >= nr_pages || pass > 3) { 1801 zone->nr_scan_inactive = 0; 1802 nr_to_scan = min(nr_pages, 1803 zone_page_state(zone, NR_INACTIVE)); 1804 ret += shrink_inactive_list(nr_to_scan, zone, sc); 1805 if (ret >= nr_pages) 1806 return ret; 1807 } 1808 } 1809 1810 return ret; 1811 } 1812 1813 static unsigned long count_lru_pages(void) 1814 { 1815 return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE); 1816 } 1817 1818 /* 1819 * Try to free `nr_pages' of memory, system-wide, and return the number of 1820 * freed pages. 1821 * 1822 * Rather than trying to age LRUs the aim is to preserve the overall 1823 * LRU order by reclaiming preferentially 1824 * inactive > active > active referenced > active mapped 1825 */ 1826 unsigned long shrink_all_memory(unsigned long nr_pages) 1827 { 1828 unsigned long lru_pages, nr_slab; 1829 unsigned long ret = 0; 1830 int pass; 1831 struct reclaim_state reclaim_state; 1832 struct scan_control sc = { 1833 .gfp_mask = GFP_KERNEL, 1834 .may_swap = 0, 1835 .swap_cluster_max = nr_pages, 1836 .may_writepage = 1, 1837 .swappiness = vm_swappiness, 1838 .isolate_pages = isolate_pages_global, 1839 }; 1840 1841 current->reclaim_state = &reclaim_state; 1842 1843 lru_pages = count_lru_pages(); 1844 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); 1845 /* If slab caches are huge, it's better to hit them first */ 1846 while (nr_slab >= lru_pages) { 1847 reclaim_state.reclaimed_slab = 0; 1848 shrink_slab(nr_pages, sc.gfp_mask, lru_pages); 1849 if (!reclaim_state.reclaimed_slab) 1850 break; 1851 1852 ret += reclaim_state.reclaimed_slab; 1853 if (ret >= nr_pages) 1854 goto out; 1855 1856 nr_slab -= reclaim_state.reclaimed_slab; 1857 } 1858 1859 /* 1860 * We try to shrink LRUs in 5 passes: 1861 * 0 = Reclaim from inactive_list only 1862 * 1 = Reclaim from active list but don't reclaim mapped 1863 * 2 = 2nd pass of type 1 1864 * 3 = Reclaim mapped (normal reclaim) 1865 * 4 = 2nd pass of type 3 1866 */ 1867 for (pass = 0; pass < 5; pass++) { 1868 int prio; 1869 1870 /* Force reclaiming mapped pages in the passes #3 and #4 */ 1871 if (pass > 2) { 1872 sc.may_swap = 1; 1873 sc.swappiness = 100; 1874 } 1875 1876 for (prio = DEF_PRIORITY; prio >= 0; prio--) { 1877 unsigned long nr_to_scan = nr_pages - ret; 1878 1879 sc.nr_scanned = 0; 1880 ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); 1881 if (ret >= nr_pages) 1882 goto out; 1883 1884 reclaim_state.reclaimed_slab = 0; 1885 shrink_slab(sc.nr_scanned, sc.gfp_mask, 1886 count_lru_pages()); 1887 ret += reclaim_state.reclaimed_slab; 1888 if (ret >= nr_pages) 1889 goto out; 1890 1891 if (sc.nr_scanned && prio < DEF_PRIORITY - 2) 1892 congestion_wait(WRITE, HZ / 10); 1893 } 1894 } 1895 1896 /* 1897 * If ret = 0, we could not shrink LRUs, but there may be something 1898 * in slab caches 1899 */ 1900 if (!ret) { 1901 do { 1902 reclaim_state.reclaimed_slab = 0; 1903 shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages()); 1904 ret += reclaim_state.reclaimed_slab; 1905 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); 1906 } 1907 1908 out: 1909 current->reclaim_state = NULL; 1910 1911 return ret; 1912 } 1913 #endif 1914 1915 /* It's optimal to keep kswapds on the same CPUs as their memory, but 1916 not required for correctness. So if the last cpu in a node goes 1917 away, we get changed to run anywhere: as the first one comes back, 1918 restore their cpu bindings. */ 1919 static int __devinit cpu_callback(struct notifier_block *nfb, 1920 unsigned long action, void *hcpu) 1921 { 1922 int nid; 1923 1924 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 1925 for_each_node_state(nid, N_HIGH_MEMORY) { 1926 pg_data_t *pgdat = NODE_DATA(nid); 1927 node_to_cpumask_ptr(mask, pgdat->node_id); 1928 1929 if (any_online_cpu(*mask) < nr_cpu_ids) 1930 /* One of our CPUs online: restore mask */ 1931 set_cpus_allowed_ptr(pgdat->kswapd, mask); 1932 } 1933 } 1934 return NOTIFY_OK; 1935 } 1936 1937 /* 1938 * This kswapd start function will be called by init and node-hot-add. 1939 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 1940 */ 1941 int kswapd_run(int nid) 1942 { 1943 pg_data_t *pgdat = NODE_DATA(nid); 1944 int ret = 0; 1945 1946 if (pgdat->kswapd) 1947 return 0; 1948 1949 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 1950 if (IS_ERR(pgdat->kswapd)) { 1951 /* failure at boot is fatal */ 1952 BUG_ON(system_state == SYSTEM_BOOTING); 1953 printk("Failed to start kswapd on node %d\n",nid); 1954 ret = -1; 1955 } 1956 return ret; 1957 } 1958 1959 static int __init kswapd_init(void) 1960 { 1961 int nid; 1962 1963 swap_setup(); 1964 for_each_node_state(nid, N_HIGH_MEMORY) 1965 kswapd_run(nid); 1966 hotcpu_notifier(cpu_callback, 0); 1967 return 0; 1968 } 1969 1970 module_init(kswapd_init) 1971 1972 #ifdef CONFIG_NUMA 1973 /* 1974 * Zone reclaim mode 1975 * 1976 * If non-zero call zone_reclaim when the number of free pages falls below 1977 * the watermarks. 1978 */ 1979 int zone_reclaim_mode __read_mostly; 1980 1981 #define RECLAIM_OFF 0 1982 #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */ 1983 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 1984 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ 1985 1986 /* 1987 * Priority for ZONE_RECLAIM. This determines the fraction of pages 1988 * of a node considered for each zone_reclaim. 4 scans 1/16th of 1989 * a zone. 1990 */ 1991 #define ZONE_RECLAIM_PRIORITY 4 1992 1993 /* 1994 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 1995 * occur. 1996 */ 1997 int sysctl_min_unmapped_ratio = 1; 1998 1999 /* 2000 * If the number of slab pages in a zone grows beyond this percentage then 2001 * slab reclaim needs to occur. 2002 */ 2003 int sysctl_min_slab_ratio = 5; 2004 2005 /* 2006 * Try to free up some pages from this zone through reclaim. 2007 */ 2008 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2009 { 2010 /* Minimum pages needed in order to stay on node */ 2011 const unsigned long nr_pages = 1 << order; 2012 struct task_struct *p = current; 2013 struct reclaim_state reclaim_state; 2014 int priority; 2015 unsigned long nr_reclaimed = 0; 2016 struct scan_control sc = { 2017 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 2018 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), 2019 .swap_cluster_max = max_t(unsigned long, nr_pages, 2020 SWAP_CLUSTER_MAX), 2021 .gfp_mask = gfp_mask, 2022 .swappiness = vm_swappiness, 2023 .isolate_pages = isolate_pages_global, 2024 }; 2025 unsigned long slab_reclaimable; 2026 2027 disable_swap_token(); 2028 cond_resched(); 2029 /* 2030 * We need to be able to allocate from the reserves for RECLAIM_SWAP 2031 * and we also need to be able to write out pages for RECLAIM_WRITE 2032 * and RECLAIM_SWAP. 2033 */ 2034 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 2035 reclaim_state.reclaimed_slab = 0; 2036 p->reclaim_state = &reclaim_state; 2037 2038 if (zone_page_state(zone, NR_FILE_PAGES) - 2039 zone_page_state(zone, NR_FILE_MAPPED) > 2040 zone->min_unmapped_pages) { 2041 /* 2042 * Free memory by calling shrink zone with increasing 2043 * priorities until we have enough memory freed. 2044 */ 2045 priority = ZONE_RECLAIM_PRIORITY; 2046 do { 2047 note_zone_scanning_priority(zone, priority); 2048 nr_reclaimed += shrink_zone(priority, zone, &sc); 2049 priority--; 2050 } while (priority >= 0 && nr_reclaimed < nr_pages); 2051 } 2052 2053 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2054 if (slab_reclaimable > zone->min_slab_pages) { 2055 /* 2056 * shrink_slab() does not currently allow us to determine how 2057 * many pages were freed in this zone. So we take the current 2058 * number of slab pages and shake the slab until it is reduced 2059 * by the same nr_pages that we used for reclaiming unmapped 2060 * pages. 2061 * 2062 * Note that shrink_slab will free memory on all zones and may 2063 * take a long time. 2064 */ 2065 while (shrink_slab(sc.nr_scanned, gfp_mask, order) && 2066 zone_page_state(zone, NR_SLAB_RECLAIMABLE) > 2067 slab_reclaimable - nr_pages) 2068 ; 2069 2070 /* 2071 * Update nr_reclaimed by the number of slab pages we 2072 * reclaimed from this zone. 2073 */ 2074 nr_reclaimed += slab_reclaimable - 2075 zone_page_state(zone, NR_SLAB_RECLAIMABLE); 2076 } 2077 2078 p->reclaim_state = NULL; 2079 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 2080 return nr_reclaimed >= nr_pages; 2081 } 2082 2083 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 2084 { 2085 int node_id; 2086 int ret; 2087 2088 /* 2089 * Zone reclaim reclaims unmapped file backed pages and 2090 * slab pages if we are over the defined limits. 2091 * 2092 * A small portion of unmapped file backed pages is needed for 2093 * file I/O otherwise pages read by file I/O will be immediately 2094 * thrown out if the zone is overallocated. So we do not reclaim 2095 * if less than a specified percentage of the zone is used by 2096 * unmapped file backed pages. 2097 */ 2098 if (zone_page_state(zone, NR_FILE_PAGES) - 2099 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages 2100 && zone_page_state(zone, NR_SLAB_RECLAIMABLE) 2101 <= zone->min_slab_pages) 2102 return 0; 2103 2104 if (zone_is_all_unreclaimable(zone)) 2105 return 0; 2106 2107 /* 2108 * Do not scan if the allocation should not be delayed. 2109 */ 2110 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) 2111 return 0; 2112 2113 /* 2114 * Only run zone reclaim on the local zone or on zones that do not 2115 * have associated processors. This will favor the local processor 2116 * over remote processors and spread off node memory allocations 2117 * as wide as possible. 2118 */ 2119 node_id = zone_to_nid(zone); 2120 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 2121 return 0; 2122 2123 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) 2124 return 0; 2125 ret = __zone_reclaim(zone, gfp_mask, order); 2126 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); 2127 2128 return ret; 2129 } 2130 #endif 2131