xref: /openbmc/linux/mm/vmscan.c (revision d1d8a3b4d06d8c9188f2b9b89ef053db0bf899de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 
60 #include "internal.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64 
65 struct scan_control {
66 	/* How many pages shrink_list() should reclaim */
67 	unsigned long nr_to_reclaim;
68 
69 	/*
70 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 	 * are scanned.
72 	 */
73 	nodemask_t	*nodemask;
74 
75 	/*
76 	 * The memory cgroup that hit its limit and as a result is the
77 	 * primary target of this reclaim invocation.
78 	 */
79 	struct mem_cgroup *target_mem_cgroup;
80 
81 	/*
82 	 * Scan pressure balancing between anon and file LRUs
83 	 */
84 	unsigned long	anon_cost;
85 	unsigned long	file_cost;
86 
87 	/* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 	unsigned int may_deactivate:2;
91 	unsigned int force_deactivate:1;
92 	unsigned int skipped_deactivate:1;
93 
94 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
95 	unsigned int may_writepage:1;
96 
97 	/* Can mapped pages be reclaimed? */
98 	unsigned int may_unmap:1;
99 
100 	/* Can pages be swapped as part of reclaim? */
101 	unsigned int may_swap:1;
102 
103 	/*
104 	 * Cgroup memory below memory.low is protected as long as we
105 	 * don't threaten to OOM. If any cgroup is reclaimed at
106 	 * reduced force or passed over entirely due to its memory.low
107 	 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 	 * result, then go back for one more cycle that reclaims the protected
109 	 * memory (memcg_low_reclaim) to avert OOM.
110 	 */
111 	unsigned int memcg_low_reclaim:1;
112 	unsigned int memcg_low_skipped:1;
113 
114 	unsigned int hibernation_mode:1;
115 
116 	/* One of the zones is ready for compaction */
117 	unsigned int compaction_ready:1;
118 
119 	/* There is easily reclaimable cold cache in the current node */
120 	unsigned int cache_trim_mode:1;
121 
122 	/* The file pages on the current node are dangerously low */
123 	unsigned int file_is_tiny:1;
124 
125 	/* Always discard instead of demoting to lower tier memory */
126 	unsigned int no_demotion:1;
127 
128 	/* Allocation order */
129 	s8 order;
130 
131 	/* Scan (total_size >> priority) pages at once */
132 	s8 priority;
133 
134 	/* The highest zone to isolate pages for reclaim from */
135 	s8 reclaim_idx;
136 
137 	/* This context's GFP mask */
138 	gfp_t gfp_mask;
139 
140 	/* Incremented by the number of inactive pages that were scanned */
141 	unsigned long nr_scanned;
142 
143 	/* Number of pages freed so far during a call to shrink_zones() */
144 	unsigned long nr_reclaimed;
145 
146 	struct {
147 		unsigned int dirty;
148 		unsigned int unqueued_dirty;
149 		unsigned int congested;
150 		unsigned int writeback;
151 		unsigned int immediate;
152 		unsigned int file_taken;
153 		unsigned int taken;
154 	} nr;
155 
156 	/* for recording the reclaimed slab by now */
157 	struct reclaim_state reclaim_state;
158 };
159 
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field)			\
162 	do {								\
163 		if ((_page)->lru.prev != _base) {			\
164 			struct page *prev;				\
165 									\
166 			prev = lru_to_page(&(_page->lru));		\
167 			prefetchw(&prev->_field);			\
168 		}							\
169 	} while (0)
170 #else
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172 #endif
173 
174 /*
175  * From 0 .. 200.  Higher means more swappy.
176  */
177 int vm_swappiness = 60;
178 
179 static void set_task_reclaim_state(struct task_struct *task,
180 				   struct reclaim_state *rs)
181 {
182 	/* Check for an overwrite */
183 	WARN_ON_ONCE(rs && task->reclaim_state);
184 
185 	/* Check for the nulling of an already-nulled member */
186 	WARN_ON_ONCE(!rs && !task->reclaim_state);
187 
188 	task->reclaim_state = rs;
189 }
190 
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
193 
194 #ifdef CONFIG_MEMCG
195 static int shrinker_nr_max;
196 
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
199 {
200 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201 }
202 
203 static inline int shrinker_defer_size(int nr_items)
204 {
205 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206 }
207 
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 						     int nid)
210 {
211 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 					 lockdep_is_held(&shrinker_rwsem));
213 }
214 
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 				    int map_size, int defer_size,
217 				    int old_map_size, int old_defer_size)
218 {
219 	struct shrinker_info *new, *old;
220 	struct mem_cgroup_per_node *pn;
221 	int nid;
222 	int size = map_size + defer_size;
223 
224 	for_each_node(nid) {
225 		pn = memcg->nodeinfo[nid];
226 		old = shrinker_info_protected(memcg, nid);
227 		/* Not yet online memcg */
228 		if (!old)
229 			return 0;
230 
231 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 		if (!new)
233 			return -ENOMEM;
234 
235 		new->nr_deferred = (atomic_long_t *)(new + 1);
236 		new->map = (void *)new->nr_deferred + defer_size;
237 
238 		/* map: set all old bits, clear all new bits */
239 		memset(new->map, (int)0xff, old_map_size);
240 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 		/* nr_deferred: copy old values, clear all new values */
242 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 		memset((void *)new->nr_deferred + old_defer_size, 0,
244 		       defer_size - old_defer_size);
245 
246 		rcu_assign_pointer(pn->shrinker_info, new);
247 		kvfree_rcu(old, rcu);
248 	}
249 
250 	return 0;
251 }
252 
253 void free_shrinker_info(struct mem_cgroup *memcg)
254 {
255 	struct mem_cgroup_per_node *pn;
256 	struct shrinker_info *info;
257 	int nid;
258 
259 	for_each_node(nid) {
260 		pn = memcg->nodeinfo[nid];
261 		info = rcu_dereference_protected(pn->shrinker_info, true);
262 		kvfree(info);
263 		rcu_assign_pointer(pn->shrinker_info, NULL);
264 	}
265 }
266 
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
268 {
269 	struct shrinker_info *info;
270 	int nid, size, ret = 0;
271 	int map_size, defer_size = 0;
272 
273 	down_write(&shrinker_rwsem);
274 	map_size = shrinker_map_size(shrinker_nr_max);
275 	defer_size = shrinker_defer_size(shrinker_nr_max);
276 	size = map_size + defer_size;
277 	for_each_node(nid) {
278 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 		if (!info) {
280 			free_shrinker_info(memcg);
281 			ret = -ENOMEM;
282 			break;
283 		}
284 		info->nr_deferred = (atomic_long_t *)(info + 1);
285 		info->map = (void *)info->nr_deferred + defer_size;
286 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
287 	}
288 	up_write(&shrinker_rwsem);
289 
290 	return ret;
291 }
292 
293 static inline bool need_expand(int nr_max)
294 {
295 	return round_up(nr_max, BITS_PER_LONG) >
296 	       round_up(shrinker_nr_max, BITS_PER_LONG);
297 }
298 
299 static int expand_shrinker_info(int new_id)
300 {
301 	int ret = 0;
302 	int new_nr_max = new_id + 1;
303 	int map_size, defer_size = 0;
304 	int old_map_size, old_defer_size = 0;
305 	struct mem_cgroup *memcg;
306 
307 	if (!need_expand(new_nr_max))
308 		goto out;
309 
310 	if (!root_mem_cgroup)
311 		goto out;
312 
313 	lockdep_assert_held(&shrinker_rwsem);
314 
315 	map_size = shrinker_map_size(new_nr_max);
316 	defer_size = shrinker_defer_size(new_nr_max);
317 	old_map_size = shrinker_map_size(shrinker_nr_max);
318 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
319 
320 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 	do {
322 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 					       old_map_size, old_defer_size);
324 		if (ret) {
325 			mem_cgroup_iter_break(NULL, memcg);
326 			goto out;
327 		}
328 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
329 out:
330 	if (!ret)
331 		shrinker_nr_max = new_nr_max;
332 
333 	return ret;
334 }
335 
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337 {
338 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 		struct shrinker_info *info;
340 
341 		rcu_read_lock();
342 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 		/* Pairs with smp mb in shrink_slab() */
344 		smp_mb__before_atomic();
345 		set_bit(shrinker_id, info->map);
346 		rcu_read_unlock();
347 	}
348 }
349 
350 static DEFINE_IDR(shrinker_idr);
351 
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353 {
354 	int id, ret = -ENOMEM;
355 
356 	if (mem_cgroup_disabled())
357 		return -ENOSYS;
358 
359 	down_write(&shrinker_rwsem);
360 	/* This may call shrinker, so it must use down_read_trylock() */
361 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
362 	if (id < 0)
363 		goto unlock;
364 
365 	if (id >= shrinker_nr_max) {
366 		if (expand_shrinker_info(id)) {
367 			idr_remove(&shrinker_idr, id);
368 			goto unlock;
369 		}
370 	}
371 	shrinker->id = id;
372 	ret = 0;
373 unlock:
374 	up_write(&shrinker_rwsem);
375 	return ret;
376 }
377 
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
379 {
380 	int id = shrinker->id;
381 
382 	BUG_ON(id < 0);
383 
384 	lockdep_assert_held(&shrinker_rwsem);
385 
386 	idr_remove(&shrinker_idr, id);
387 }
388 
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 				   struct mem_cgroup *memcg)
391 {
392 	struct shrinker_info *info;
393 
394 	info = shrinker_info_protected(memcg, nid);
395 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396 }
397 
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 				  struct mem_cgroup *memcg)
400 {
401 	struct shrinker_info *info;
402 
403 	info = shrinker_info_protected(memcg, nid);
404 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405 }
406 
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408 {
409 	int i, nid;
410 	long nr;
411 	struct mem_cgroup *parent;
412 	struct shrinker_info *child_info, *parent_info;
413 
414 	parent = parent_mem_cgroup(memcg);
415 	if (!parent)
416 		parent = root_mem_cgroup;
417 
418 	/* Prevent from concurrent shrinker_info expand */
419 	down_read(&shrinker_rwsem);
420 	for_each_node(nid) {
421 		child_info = shrinker_info_protected(memcg, nid);
422 		parent_info = shrinker_info_protected(parent, nid);
423 		for (i = 0; i < shrinker_nr_max; i++) {
424 			nr = atomic_long_read(&child_info->nr_deferred[i]);
425 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 		}
427 	}
428 	up_read(&shrinker_rwsem);
429 }
430 
431 static bool cgroup_reclaim(struct scan_control *sc)
432 {
433 	return sc->target_mem_cgroup;
434 }
435 
436 /**
437  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438  * @sc: scan_control in question
439  *
440  * The normal page dirty throttling mechanism in balance_dirty_pages() is
441  * completely broken with the legacy memcg and direct stalling in
442  * shrink_page_list() is used for throttling instead, which lacks all the
443  * niceties such as fairness, adaptive pausing, bandwidth proportional
444  * allocation and configurability.
445  *
446  * This function tests whether the vmscan currently in progress can assume
447  * that the normal dirty throttling mechanism is operational.
448  */
449 static bool writeback_throttling_sane(struct scan_control *sc)
450 {
451 	if (!cgroup_reclaim(sc))
452 		return true;
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
455 		return true;
456 #endif
457 	return false;
458 }
459 #else
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461 {
462 	return -ENOSYS;
463 }
464 
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
466 {
467 }
468 
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 				   struct mem_cgroup *memcg)
471 {
472 	return 0;
473 }
474 
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 				  struct mem_cgroup *memcg)
477 {
478 	return 0;
479 }
480 
481 static bool cgroup_reclaim(struct scan_control *sc)
482 {
483 	return false;
484 }
485 
486 static bool writeback_throttling_sane(struct scan_control *sc)
487 {
488 	return true;
489 }
490 #endif
491 
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 			     struct shrink_control *sc)
494 {
495 	int nid = sc->nid;
496 
497 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 		nid = 0;
499 
500 	if (sc->memcg &&
501 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 		return xchg_nr_deferred_memcg(nid, shrinker,
503 					      sc->memcg);
504 
505 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506 }
507 
508 
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 			    struct shrink_control *sc)
511 {
512 	int nid = sc->nid;
513 
514 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 		nid = 0;
516 
517 	if (sc->memcg &&
518 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 		return add_nr_deferred_memcg(nr, nid, shrinker,
520 					     sc->memcg);
521 
522 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523 }
524 
525 static bool can_demote(int nid, struct scan_control *sc)
526 {
527 	if (!numa_demotion_enabled)
528 		return false;
529 	if (sc) {
530 		if (sc->no_demotion)
531 			return false;
532 		/* It is pointless to do demotion in memcg reclaim */
533 		if (cgroup_reclaim(sc))
534 			return false;
535 	}
536 	if (next_demotion_node(nid) == NUMA_NO_NODE)
537 		return false;
538 
539 	return true;
540 }
541 
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
543 					  int nid,
544 					  struct scan_control *sc)
545 {
546 	if (memcg == NULL) {
547 		/*
548 		 * For non-memcg reclaim, is there
549 		 * space in any swap device?
550 		 */
551 		if (get_nr_swap_pages() > 0)
552 			return true;
553 	} else {
554 		/* Is the memcg below its swap limit? */
555 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
556 			return true;
557 	}
558 
559 	/*
560 	 * The page can not be swapped.
561 	 *
562 	 * Can it be reclaimed from this node via demotion?
563 	 */
564 	return can_demote(nid, sc);
565 }
566 
567 /*
568  * This misses isolated pages which are not accounted for to save counters.
569  * As the data only determines if reclaim or compaction continues, it is
570  * not expected that isolated pages will be a dominating factor.
571  */
572 unsigned long zone_reclaimable_pages(struct zone *zone)
573 {
574 	unsigned long nr;
575 
576 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
581 
582 	return nr;
583 }
584 
585 /**
586  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
587  * @lruvec: lru vector
588  * @lru: lru to use
589  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
590  */
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
592 				     int zone_idx)
593 {
594 	unsigned long size = 0;
595 	int zid;
596 
597 	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
599 
600 		if (!managed_zone(zone))
601 			continue;
602 
603 		if (!mem_cgroup_disabled())
604 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
605 		else
606 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
607 	}
608 	return size;
609 }
610 
611 /*
612  * Add a shrinker callback to be called from the vm.
613  */
614 int prealloc_shrinker(struct shrinker *shrinker)
615 {
616 	unsigned int size;
617 	int err;
618 
619 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 		err = prealloc_memcg_shrinker(shrinker);
621 		if (err != -ENOSYS)
622 			return err;
623 
624 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
625 	}
626 
627 	size = sizeof(*shrinker->nr_deferred);
628 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
629 		size *= nr_node_ids;
630 
631 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 	if (!shrinker->nr_deferred)
633 		return -ENOMEM;
634 
635 	return 0;
636 }
637 
638 void free_prealloced_shrinker(struct shrinker *shrinker)
639 {
640 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 		down_write(&shrinker_rwsem);
642 		unregister_memcg_shrinker(shrinker);
643 		up_write(&shrinker_rwsem);
644 		return;
645 	}
646 
647 	kfree(shrinker->nr_deferred);
648 	shrinker->nr_deferred = NULL;
649 }
650 
651 void register_shrinker_prepared(struct shrinker *shrinker)
652 {
653 	down_write(&shrinker_rwsem);
654 	list_add_tail(&shrinker->list, &shrinker_list);
655 	shrinker->flags |= SHRINKER_REGISTERED;
656 	up_write(&shrinker_rwsem);
657 }
658 
659 int register_shrinker(struct shrinker *shrinker)
660 {
661 	int err = prealloc_shrinker(shrinker);
662 
663 	if (err)
664 		return err;
665 	register_shrinker_prepared(shrinker);
666 	return 0;
667 }
668 EXPORT_SYMBOL(register_shrinker);
669 
670 /*
671  * Remove one
672  */
673 void unregister_shrinker(struct shrinker *shrinker)
674 {
675 	if (!(shrinker->flags & SHRINKER_REGISTERED))
676 		return;
677 
678 	down_write(&shrinker_rwsem);
679 	list_del(&shrinker->list);
680 	shrinker->flags &= ~SHRINKER_REGISTERED;
681 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 		unregister_memcg_shrinker(shrinker);
683 	up_write(&shrinker_rwsem);
684 
685 	kfree(shrinker->nr_deferred);
686 	shrinker->nr_deferred = NULL;
687 }
688 EXPORT_SYMBOL(unregister_shrinker);
689 
690 /**
691  * synchronize_shrinkers - Wait for all running shrinkers to complete.
692  *
693  * This is equivalent to calling unregister_shrink() and register_shrinker(),
694  * but atomically and with less overhead. This is useful to guarantee that all
695  * shrinker invocations have seen an update, before freeing memory, similar to
696  * rcu.
697  */
698 void synchronize_shrinkers(void)
699 {
700 	down_write(&shrinker_rwsem);
701 	up_write(&shrinker_rwsem);
702 }
703 EXPORT_SYMBOL(synchronize_shrinkers);
704 
705 #define SHRINK_BATCH 128
706 
707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
708 				    struct shrinker *shrinker, int priority)
709 {
710 	unsigned long freed = 0;
711 	unsigned long long delta;
712 	long total_scan;
713 	long freeable;
714 	long nr;
715 	long new_nr;
716 	long batch_size = shrinker->batch ? shrinker->batch
717 					  : SHRINK_BATCH;
718 	long scanned = 0, next_deferred;
719 
720 	freeable = shrinker->count_objects(shrinker, shrinkctl);
721 	if (freeable == 0 || freeable == SHRINK_EMPTY)
722 		return freeable;
723 
724 	/*
725 	 * copy the current shrinker scan count into a local variable
726 	 * and zero it so that other concurrent shrinker invocations
727 	 * don't also do this scanning work.
728 	 */
729 	nr = xchg_nr_deferred(shrinker, shrinkctl);
730 
731 	if (shrinker->seeks) {
732 		delta = freeable >> priority;
733 		delta *= 4;
734 		do_div(delta, shrinker->seeks);
735 	} else {
736 		/*
737 		 * These objects don't require any IO to create. Trim
738 		 * them aggressively under memory pressure to keep
739 		 * them from causing refetches in the IO caches.
740 		 */
741 		delta = freeable / 2;
742 	}
743 
744 	total_scan = nr >> priority;
745 	total_scan += delta;
746 	total_scan = min(total_scan, (2 * freeable));
747 
748 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
749 				   freeable, delta, total_scan, priority);
750 
751 	/*
752 	 * Normally, we should not scan less than batch_size objects in one
753 	 * pass to avoid too frequent shrinker calls, but if the slab has less
754 	 * than batch_size objects in total and we are really tight on memory,
755 	 * we will try to reclaim all available objects, otherwise we can end
756 	 * up failing allocations although there are plenty of reclaimable
757 	 * objects spread over several slabs with usage less than the
758 	 * batch_size.
759 	 *
760 	 * We detect the "tight on memory" situations by looking at the total
761 	 * number of objects we want to scan (total_scan). If it is greater
762 	 * than the total number of objects on slab (freeable), we must be
763 	 * scanning at high prio and therefore should try to reclaim as much as
764 	 * possible.
765 	 */
766 	while (total_scan >= batch_size ||
767 	       total_scan >= freeable) {
768 		unsigned long ret;
769 		unsigned long nr_to_scan = min(batch_size, total_scan);
770 
771 		shrinkctl->nr_to_scan = nr_to_scan;
772 		shrinkctl->nr_scanned = nr_to_scan;
773 		ret = shrinker->scan_objects(shrinker, shrinkctl);
774 		if (ret == SHRINK_STOP)
775 			break;
776 		freed += ret;
777 
778 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 		total_scan -= shrinkctl->nr_scanned;
780 		scanned += shrinkctl->nr_scanned;
781 
782 		cond_resched();
783 	}
784 
785 	/*
786 	 * The deferred work is increased by any new work (delta) that wasn't
787 	 * done, decreased by old deferred work that was done now.
788 	 *
789 	 * And it is capped to two times of the freeable items.
790 	 */
791 	next_deferred = max_t(long, (nr + delta - scanned), 0);
792 	next_deferred = min(next_deferred, (2 * freeable));
793 
794 	/*
795 	 * move the unused scan count back into the shrinker in a
796 	 * manner that handles concurrent updates.
797 	 */
798 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
799 
800 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
801 	return freed;
802 }
803 
804 #ifdef CONFIG_MEMCG
805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 			struct mem_cgroup *memcg, int priority)
807 {
808 	struct shrinker_info *info;
809 	unsigned long ret, freed = 0;
810 	int i;
811 
812 	if (!mem_cgroup_online(memcg))
813 		return 0;
814 
815 	if (!down_read_trylock(&shrinker_rwsem))
816 		return 0;
817 
818 	info = shrinker_info_protected(memcg, nid);
819 	if (unlikely(!info))
820 		goto unlock;
821 
822 	for_each_set_bit(i, info->map, shrinker_nr_max) {
823 		struct shrink_control sc = {
824 			.gfp_mask = gfp_mask,
825 			.nid = nid,
826 			.memcg = memcg,
827 		};
828 		struct shrinker *shrinker;
829 
830 		shrinker = idr_find(&shrinker_idr, i);
831 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
832 			if (!shrinker)
833 				clear_bit(i, info->map);
834 			continue;
835 		}
836 
837 		/* Call non-slab shrinkers even though kmem is disabled */
838 		if (!memcg_kmem_enabled() &&
839 		    !(shrinker->flags & SHRINKER_NONSLAB))
840 			continue;
841 
842 		ret = do_shrink_slab(&sc, shrinker, priority);
843 		if (ret == SHRINK_EMPTY) {
844 			clear_bit(i, info->map);
845 			/*
846 			 * After the shrinker reported that it had no objects to
847 			 * free, but before we cleared the corresponding bit in
848 			 * the memcg shrinker map, a new object might have been
849 			 * added. To make sure, we have the bit set in this
850 			 * case, we invoke the shrinker one more time and reset
851 			 * the bit if it reports that it is not empty anymore.
852 			 * The memory barrier here pairs with the barrier in
853 			 * set_shrinker_bit():
854 			 *
855 			 * list_lru_add()     shrink_slab_memcg()
856 			 *   list_add_tail()    clear_bit()
857 			 *   <MB>               <MB>
858 			 *   set_bit()          do_shrink_slab()
859 			 */
860 			smp_mb__after_atomic();
861 			ret = do_shrink_slab(&sc, shrinker, priority);
862 			if (ret == SHRINK_EMPTY)
863 				ret = 0;
864 			else
865 				set_shrinker_bit(memcg, nid, i);
866 		}
867 		freed += ret;
868 
869 		if (rwsem_is_contended(&shrinker_rwsem)) {
870 			freed = freed ? : 1;
871 			break;
872 		}
873 	}
874 unlock:
875 	up_read(&shrinker_rwsem);
876 	return freed;
877 }
878 #else /* CONFIG_MEMCG */
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 			struct mem_cgroup *memcg, int priority)
881 {
882 	return 0;
883 }
884 #endif /* CONFIG_MEMCG */
885 
886 /**
887  * shrink_slab - shrink slab caches
888  * @gfp_mask: allocation context
889  * @nid: node whose slab caches to target
890  * @memcg: memory cgroup whose slab caches to target
891  * @priority: the reclaim priority
892  *
893  * Call the shrink functions to age shrinkable caches.
894  *
895  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896  * unaware shrinkers will receive a node id of 0 instead.
897  *
898  * @memcg specifies the memory cgroup to target. Unaware shrinkers
899  * are called only if it is the root cgroup.
900  *
901  * @priority is sc->priority, we take the number of objects and >> by priority
902  * in order to get the scan target.
903  *
904  * Returns the number of reclaimed slab objects.
905  */
906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 				 struct mem_cgroup *memcg,
908 				 int priority)
909 {
910 	unsigned long ret, freed = 0;
911 	struct shrinker *shrinker;
912 
913 	/*
914 	 * The root memcg might be allocated even though memcg is disabled
915 	 * via "cgroup_disable=memory" boot parameter.  This could make
916 	 * mem_cgroup_is_root() return false, then just run memcg slab
917 	 * shrink, but skip global shrink.  This may result in premature
918 	 * oom.
919 	 */
920 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
921 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
922 
923 	if (!down_read_trylock(&shrinker_rwsem))
924 		goto out;
925 
926 	list_for_each_entry(shrinker, &shrinker_list, list) {
927 		struct shrink_control sc = {
928 			.gfp_mask = gfp_mask,
929 			.nid = nid,
930 			.memcg = memcg,
931 		};
932 
933 		ret = do_shrink_slab(&sc, shrinker, priority);
934 		if (ret == SHRINK_EMPTY)
935 			ret = 0;
936 		freed += ret;
937 		/*
938 		 * Bail out if someone want to register a new shrinker to
939 		 * prevent the registration from being stalled for long periods
940 		 * by parallel ongoing shrinking.
941 		 */
942 		if (rwsem_is_contended(&shrinker_rwsem)) {
943 			freed = freed ? : 1;
944 			break;
945 		}
946 	}
947 
948 	up_read(&shrinker_rwsem);
949 out:
950 	cond_resched();
951 	return freed;
952 }
953 
954 static void drop_slab_node(int nid)
955 {
956 	unsigned long freed;
957 	int shift = 0;
958 
959 	do {
960 		struct mem_cgroup *memcg = NULL;
961 
962 		if (fatal_signal_pending(current))
963 			return;
964 
965 		freed = 0;
966 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
967 		do {
968 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
969 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
970 	} while ((freed >> shift++) > 1);
971 }
972 
973 void drop_slab(void)
974 {
975 	int nid;
976 
977 	for_each_online_node(nid)
978 		drop_slab_node(nid);
979 }
980 
981 static inline int is_page_cache_freeable(struct page *page)
982 {
983 	/*
984 	 * A freeable page cache page is referenced only by the caller
985 	 * that isolated the page, the page cache and optional buffer
986 	 * heads at page->private.
987 	 */
988 	int page_cache_pins = thp_nr_pages(page);
989 	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
990 }
991 
992 static int may_write_to_inode(struct inode *inode)
993 {
994 	if (current->flags & PF_SWAPWRITE)
995 		return 1;
996 	if (!inode_write_congested(inode))
997 		return 1;
998 	if (inode_to_bdi(inode) == current->backing_dev_info)
999 		return 1;
1000 	return 0;
1001 }
1002 
1003 /*
1004  * We detected a synchronous write error writing a page out.  Probably
1005  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1006  * fsync(), msync() or close().
1007  *
1008  * The tricky part is that after writepage we cannot touch the mapping: nothing
1009  * prevents it from being freed up.  But we have a ref on the page and once
1010  * that page is locked, the mapping is pinned.
1011  *
1012  * We're allowed to run sleeping lock_page() here because we know the caller has
1013  * __GFP_FS.
1014  */
1015 static void handle_write_error(struct address_space *mapping,
1016 				struct page *page, int error)
1017 {
1018 	lock_page(page);
1019 	if (page_mapping(page) == mapping)
1020 		mapping_set_error(mapping, error);
1021 	unlock_page(page);
1022 }
1023 
1024 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1025 {
1026 	int reclaimable = 0, write_pending = 0;
1027 	int i;
1028 
1029 	/*
1030 	 * If kswapd is disabled, reschedule if necessary but do not
1031 	 * throttle as the system is likely near OOM.
1032 	 */
1033 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1034 		return true;
1035 
1036 	/*
1037 	 * If there are a lot of dirty/writeback pages then do not
1038 	 * throttle as throttling will occur when the pages cycle
1039 	 * towards the end of the LRU if still under writeback.
1040 	 */
1041 	for (i = 0; i < MAX_NR_ZONES; i++) {
1042 		struct zone *zone = pgdat->node_zones + i;
1043 
1044 		if (!populated_zone(zone))
1045 			continue;
1046 
1047 		reclaimable += zone_reclaimable_pages(zone);
1048 		write_pending += zone_page_state_snapshot(zone,
1049 						  NR_ZONE_WRITE_PENDING);
1050 	}
1051 	if (2 * write_pending <= reclaimable)
1052 		return true;
1053 
1054 	return false;
1055 }
1056 
1057 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1058 {
1059 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1060 	long timeout, ret;
1061 	DEFINE_WAIT(wait);
1062 
1063 	/*
1064 	 * Do not throttle IO workers, kthreads other than kswapd or
1065 	 * workqueues. They may be required for reclaim to make
1066 	 * forward progress (e.g. journalling workqueues or kthreads).
1067 	 */
1068 	if (!current_is_kswapd() &&
1069 	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1070 		cond_resched();
1071 		return;
1072 	}
1073 
1074 	/*
1075 	 * These figures are pulled out of thin air.
1076 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1077 	 * parallel reclaimers which is a short-lived event so the timeout is
1078 	 * short. Failing to make progress or waiting on writeback are
1079 	 * potentially long-lived events so use a longer timeout. This is shaky
1080 	 * logic as a failure to make progress could be due to anything from
1081 	 * writeback to a slow device to excessive references pages at the tail
1082 	 * of the inactive LRU.
1083 	 */
1084 	switch(reason) {
1085 	case VMSCAN_THROTTLE_WRITEBACK:
1086 		timeout = HZ/10;
1087 
1088 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1089 			WRITE_ONCE(pgdat->nr_reclaim_start,
1090 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1091 		}
1092 
1093 		break;
1094 	case VMSCAN_THROTTLE_CONGESTED:
1095 		fallthrough;
1096 	case VMSCAN_THROTTLE_NOPROGRESS:
1097 		if (skip_throttle_noprogress(pgdat)) {
1098 			cond_resched();
1099 			return;
1100 		}
1101 
1102 		timeout = 1;
1103 
1104 		break;
1105 	case VMSCAN_THROTTLE_ISOLATED:
1106 		timeout = HZ/50;
1107 		break;
1108 	default:
1109 		WARN_ON_ONCE(1);
1110 		timeout = HZ;
1111 		break;
1112 	}
1113 
1114 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1115 	ret = schedule_timeout(timeout);
1116 	finish_wait(wqh, &wait);
1117 
1118 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1119 		atomic_dec(&pgdat->nr_writeback_throttled);
1120 
1121 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1122 				jiffies_to_usecs(timeout - ret),
1123 				reason);
1124 }
1125 
1126 /*
1127  * Account for pages written if tasks are throttled waiting on dirty
1128  * pages to clean. If enough pages have been cleaned since throttling
1129  * started then wakeup the throttled tasks.
1130  */
1131 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1132 							int nr_throttled)
1133 {
1134 	unsigned long nr_written;
1135 
1136 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1137 
1138 	/*
1139 	 * This is an inaccurate read as the per-cpu deltas may not
1140 	 * be synchronised. However, given that the system is
1141 	 * writeback throttled, it is not worth taking the penalty
1142 	 * of getting an accurate count. At worst, the throttle
1143 	 * timeout guarantees forward progress.
1144 	 */
1145 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1146 		READ_ONCE(pgdat->nr_reclaim_start);
1147 
1148 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1149 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1150 }
1151 
1152 /* possible outcome of pageout() */
1153 typedef enum {
1154 	/* failed to write page out, page is locked */
1155 	PAGE_KEEP,
1156 	/* move page to the active list, page is locked */
1157 	PAGE_ACTIVATE,
1158 	/* page has been sent to the disk successfully, page is unlocked */
1159 	PAGE_SUCCESS,
1160 	/* page is clean and locked */
1161 	PAGE_CLEAN,
1162 } pageout_t;
1163 
1164 /*
1165  * pageout is called by shrink_page_list() for each dirty page.
1166  * Calls ->writepage().
1167  */
1168 static pageout_t pageout(struct page *page, struct address_space *mapping)
1169 {
1170 	/*
1171 	 * If the page is dirty, only perform writeback if that write
1172 	 * will be non-blocking.  To prevent this allocation from being
1173 	 * stalled by pagecache activity.  But note that there may be
1174 	 * stalls if we need to run get_block().  We could test
1175 	 * PagePrivate for that.
1176 	 *
1177 	 * If this process is currently in __generic_file_write_iter() against
1178 	 * this page's queue, we can perform writeback even if that
1179 	 * will block.
1180 	 *
1181 	 * If the page is swapcache, write it back even if that would
1182 	 * block, for some throttling. This happens by accident, because
1183 	 * swap_backing_dev_info is bust: it doesn't reflect the
1184 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1185 	 */
1186 	if (!is_page_cache_freeable(page))
1187 		return PAGE_KEEP;
1188 	if (!mapping) {
1189 		/*
1190 		 * Some data journaling orphaned pages can have
1191 		 * page->mapping == NULL while being dirty with clean buffers.
1192 		 */
1193 		if (page_has_private(page)) {
1194 			if (try_to_free_buffers(page)) {
1195 				ClearPageDirty(page);
1196 				pr_info("%s: orphaned page\n", __func__);
1197 				return PAGE_CLEAN;
1198 			}
1199 		}
1200 		return PAGE_KEEP;
1201 	}
1202 	if (mapping->a_ops->writepage == NULL)
1203 		return PAGE_ACTIVATE;
1204 	if (!may_write_to_inode(mapping->host))
1205 		return PAGE_KEEP;
1206 
1207 	if (clear_page_dirty_for_io(page)) {
1208 		int res;
1209 		struct writeback_control wbc = {
1210 			.sync_mode = WB_SYNC_NONE,
1211 			.nr_to_write = SWAP_CLUSTER_MAX,
1212 			.range_start = 0,
1213 			.range_end = LLONG_MAX,
1214 			.for_reclaim = 1,
1215 		};
1216 
1217 		SetPageReclaim(page);
1218 		res = mapping->a_ops->writepage(page, &wbc);
1219 		if (res < 0)
1220 			handle_write_error(mapping, page, res);
1221 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1222 			ClearPageReclaim(page);
1223 			return PAGE_ACTIVATE;
1224 		}
1225 
1226 		if (!PageWriteback(page)) {
1227 			/* synchronous write or broken a_ops? */
1228 			ClearPageReclaim(page);
1229 		}
1230 		trace_mm_vmscan_writepage(page);
1231 		inc_node_page_state(page, NR_VMSCAN_WRITE);
1232 		return PAGE_SUCCESS;
1233 	}
1234 
1235 	return PAGE_CLEAN;
1236 }
1237 
1238 /*
1239  * Same as remove_mapping, but if the page is removed from the mapping, it
1240  * gets returned with a refcount of 0.
1241  */
1242 static int __remove_mapping(struct address_space *mapping, struct page *page,
1243 			    bool reclaimed, struct mem_cgroup *target_memcg)
1244 {
1245 	int refcount;
1246 	void *shadow = NULL;
1247 
1248 	BUG_ON(!PageLocked(page));
1249 	BUG_ON(mapping != page_mapping(page));
1250 
1251 	if (!PageSwapCache(page))
1252 		spin_lock(&mapping->host->i_lock);
1253 	xa_lock_irq(&mapping->i_pages);
1254 	/*
1255 	 * The non racy check for a busy page.
1256 	 *
1257 	 * Must be careful with the order of the tests. When someone has
1258 	 * a ref to the page, it may be possible that they dirty it then
1259 	 * drop the reference. So if PageDirty is tested before page_count
1260 	 * here, then the following race may occur:
1261 	 *
1262 	 * get_user_pages(&page);
1263 	 * [user mapping goes away]
1264 	 * write_to(page);
1265 	 *				!PageDirty(page)    [good]
1266 	 * SetPageDirty(page);
1267 	 * put_page(page);
1268 	 *				!page_count(page)   [good, discard it]
1269 	 *
1270 	 * [oops, our write_to data is lost]
1271 	 *
1272 	 * Reversing the order of the tests ensures such a situation cannot
1273 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1274 	 * load is not satisfied before that of page->_refcount.
1275 	 *
1276 	 * Note that if SetPageDirty is always performed via set_page_dirty,
1277 	 * and thus under the i_pages lock, then this ordering is not required.
1278 	 */
1279 	refcount = 1 + compound_nr(page);
1280 	if (!page_ref_freeze(page, refcount))
1281 		goto cannot_free;
1282 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1283 	if (unlikely(PageDirty(page))) {
1284 		page_ref_unfreeze(page, refcount);
1285 		goto cannot_free;
1286 	}
1287 
1288 	if (PageSwapCache(page)) {
1289 		swp_entry_t swap = { .val = page_private(page) };
1290 		mem_cgroup_swapout(page, swap);
1291 		if (reclaimed && !mapping_exiting(mapping))
1292 			shadow = workingset_eviction(page, target_memcg);
1293 		__delete_from_swap_cache(page, swap, shadow);
1294 		xa_unlock_irq(&mapping->i_pages);
1295 		put_swap_page(page, swap);
1296 	} else {
1297 		void (*freepage)(struct page *);
1298 
1299 		freepage = mapping->a_ops->freepage;
1300 		/*
1301 		 * Remember a shadow entry for reclaimed file cache in
1302 		 * order to detect refaults, thus thrashing, later on.
1303 		 *
1304 		 * But don't store shadows in an address space that is
1305 		 * already exiting.  This is not just an optimization,
1306 		 * inode reclaim needs to empty out the radix tree or
1307 		 * the nodes are lost.  Don't plant shadows behind its
1308 		 * back.
1309 		 *
1310 		 * We also don't store shadows for DAX mappings because the
1311 		 * only page cache pages found in these are zero pages
1312 		 * covering holes, and because we don't want to mix DAX
1313 		 * exceptional entries and shadow exceptional entries in the
1314 		 * same address_space.
1315 		 */
1316 		if (reclaimed && page_is_file_lru(page) &&
1317 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1318 			shadow = workingset_eviction(page, target_memcg);
1319 		__delete_from_page_cache(page, shadow);
1320 		xa_unlock_irq(&mapping->i_pages);
1321 		if (mapping_shrinkable(mapping))
1322 			inode_add_lru(mapping->host);
1323 		spin_unlock(&mapping->host->i_lock);
1324 
1325 		if (freepage != NULL)
1326 			freepage(page);
1327 	}
1328 
1329 	return 1;
1330 
1331 cannot_free:
1332 	xa_unlock_irq(&mapping->i_pages);
1333 	if (!PageSwapCache(page))
1334 		spin_unlock(&mapping->host->i_lock);
1335 	return 0;
1336 }
1337 
1338 /*
1339  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
1340  * someone else has a ref on the page, abort and return 0.  If it was
1341  * successfully detached, return 1.  Assumes the caller has a single ref on
1342  * this page.
1343  */
1344 int remove_mapping(struct address_space *mapping, struct page *page)
1345 {
1346 	if (__remove_mapping(mapping, page, false, NULL)) {
1347 		/*
1348 		 * Unfreezing the refcount with 1 rather than 2 effectively
1349 		 * drops the pagecache ref for us without requiring another
1350 		 * atomic operation.
1351 		 */
1352 		page_ref_unfreeze(page, 1);
1353 		return 1;
1354 	}
1355 	return 0;
1356 }
1357 
1358 /**
1359  * putback_lru_page - put previously isolated page onto appropriate LRU list
1360  * @page: page to be put back to appropriate lru list
1361  *
1362  * Add previously isolated @page to appropriate LRU list.
1363  * Page may still be unevictable for other reasons.
1364  *
1365  * lru_lock must not be held, interrupts must be enabled.
1366  */
1367 void putback_lru_page(struct page *page)
1368 {
1369 	lru_cache_add(page);
1370 	put_page(page);		/* drop ref from isolate */
1371 }
1372 
1373 enum page_references {
1374 	PAGEREF_RECLAIM,
1375 	PAGEREF_RECLAIM_CLEAN,
1376 	PAGEREF_KEEP,
1377 	PAGEREF_ACTIVATE,
1378 };
1379 
1380 static enum page_references page_check_references(struct page *page,
1381 						  struct scan_control *sc)
1382 {
1383 	int referenced_ptes, referenced_page;
1384 	unsigned long vm_flags;
1385 
1386 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1387 					  &vm_flags);
1388 	referenced_page = TestClearPageReferenced(page);
1389 
1390 	/*
1391 	 * The supposedly reclaimable page was found to be in a VM_LOCKED vma.
1392 	 * Let the page, now marked Mlocked, be moved to the unevictable list.
1393 	 */
1394 	if (vm_flags & VM_LOCKED)
1395 		return PAGEREF_ACTIVATE;
1396 
1397 	if (referenced_ptes) {
1398 		/*
1399 		 * All mapped pages start out with page table
1400 		 * references from the instantiating fault, so we need
1401 		 * to look twice if a mapped file page is used more
1402 		 * than once.
1403 		 *
1404 		 * Mark it and spare it for another trip around the
1405 		 * inactive list.  Another page table reference will
1406 		 * lead to its activation.
1407 		 *
1408 		 * Note: the mark is set for activated pages as well
1409 		 * so that recently deactivated but used pages are
1410 		 * quickly recovered.
1411 		 */
1412 		SetPageReferenced(page);
1413 
1414 		if (referenced_page || referenced_ptes > 1)
1415 			return PAGEREF_ACTIVATE;
1416 
1417 		/*
1418 		 * Activate file-backed executable pages after first usage.
1419 		 */
1420 		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1421 			return PAGEREF_ACTIVATE;
1422 
1423 		return PAGEREF_KEEP;
1424 	}
1425 
1426 	/* Reclaim if clean, defer dirty pages to writeback */
1427 	if (referenced_page && !PageSwapBacked(page))
1428 		return PAGEREF_RECLAIM_CLEAN;
1429 
1430 	return PAGEREF_RECLAIM;
1431 }
1432 
1433 /* Check if a page is dirty or under writeback */
1434 static void page_check_dirty_writeback(struct page *page,
1435 				       bool *dirty, bool *writeback)
1436 {
1437 	struct address_space *mapping;
1438 
1439 	/*
1440 	 * Anonymous pages are not handled by flushers and must be written
1441 	 * from reclaim context. Do not stall reclaim based on them
1442 	 */
1443 	if (!page_is_file_lru(page) ||
1444 	    (PageAnon(page) && !PageSwapBacked(page))) {
1445 		*dirty = false;
1446 		*writeback = false;
1447 		return;
1448 	}
1449 
1450 	/* By default assume that the page flags are accurate */
1451 	*dirty = PageDirty(page);
1452 	*writeback = PageWriteback(page);
1453 
1454 	/* Verify dirty/writeback state if the filesystem supports it */
1455 	if (!page_has_private(page))
1456 		return;
1457 
1458 	mapping = page_mapping(page);
1459 	if (mapping && mapping->a_ops->is_dirty_writeback)
1460 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1461 }
1462 
1463 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1464 {
1465 	struct migration_target_control mtc = {
1466 		/*
1467 		 * Allocate from 'node', or fail quickly and quietly.
1468 		 * When this happens, 'page' will likely just be discarded
1469 		 * instead of migrated.
1470 		 */
1471 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1472 			    __GFP_THISNODE  | __GFP_NOWARN |
1473 			    __GFP_NOMEMALLOC | GFP_NOWAIT,
1474 		.nid = node
1475 	};
1476 
1477 	return alloc_migration_target(page, (unsigned long)&mtc);
1478 }
1479 
1480 /*
1481  * Take pages on @demote_list and attempt to demote them to
1482  * another node.  Pages which are not demoted are left on
1483  * @demote_pages.
1484  */
1485 static unsigned int demote_page_list(struct list_head *demote_pages,
1486 				     struct pglist_data *pgdat)
1487 {
1488 	int target_nid = next_demotion_node(pgdat->node_id);
1489 	unsigned int nr_succeeded;
1490 
1491 	if (list_empty(demote_pages))
1492 		return 0;
1493 
1494 	if (target_nid == NUMA_NO_NODE)
1495 		return 0;
1496 
1497 	/* Demotion ignores all cpuset and mempolicy settings */
1498 	migrate_pages(demote_pages, alloc_demote_page, NULL,
1499 			    target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1500 			    &nr_succeeded);
1501 
1502 	if (current_is_kswapd())
1503 		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1504 	else
1505 		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1506 
1507 	return nr_succeeded;
1508 }
1509 
1510 /*
1511  * shrink_page_list() returns the number of reclaimed pages
1512  */
1513 static unsigned int shrink_page_list(struct list_head *page_list,
1514 				     struct pglist_data *pgdat,
1515 				     struct scan_control *sc,
1516 				     struct reclaim_stat *stat,
1517 				     bool ignore_references)
1518 {
1519 	LIST_HEAD(ret_pages);
1520 	LIST_HEAD(free_pages);
1521 	LIST_HEAD(demote_pages);
1522 	unsigned int nr_reclaimed = 0;
1523 	unsigned int pgactivate = 0;
1524 	bool do_demote_pass;
1525 
1526 	memset(stat, 0, sizeof(*stat));
1527 	cond_resched();
1528 	do_demote_pass = can_demote(pgdat->node_id, sc);
1529 
1530 retry:
1531 	while (!list_empty(page_list)) {
1532 		struct address_space *mapping;
1533 		struct page *page;
1534 		enum page_references references = PAGEREF_RECLAIM;
1535 		bool dirty, writeback, may_enter_fs;
1536 		unsigned int nr_pages;
1537 
1538 		cond_resched();
1539 
1540 		page = lru_to_page(page_list);
1541 		list_del(&page->lru);
1542 
1543 		if (!trylock_page(page))
1544 			goto keep;
1545 
1546 		VM_BUG_ON_PAGE(PageActive(page), page);
1547 
1548 		nr_pages = compound_nr(page);
1549 
1550 		/* Account the number of base pages even though THP */
1551 		sc->nr_scanned += nr_pages;
1552 
1553 		if (unlikely(!page_evictable(page)))
1554 			goto activate_locked;
1555 
1556 		if (!sc->may_unmap && page_mapped(page))
1557 			goto keep_locked;
1558 
1559 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1560 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1561 
1562 		/*
1563 		 * The number of dirty pages determines if a node is marked
1564 		 * reclaim_congested. kswapd will stall and start writing
1565 		 * pages if the tail of the LRU is all dirty unqueued pages.
1566 		 */
1567 		page_check_dirty_writeback(page, &dirty, &writeback);
1568 		if (dirty || writeback)
1569 			stat->nr_dirty++;
1570 
1571 		if (dirty && !writeback)
1572 			stat->nr_unqueued_dirty++;
1573 
1574 		/*
1575 		 * Treat this page as congested if the underlying BDI is or if
1576 		 * pages are cycling through the LRU so quickly that the
1577 		 * pages marked for immediate reclaim are making it to the
1578 		 * end of the LRU a second time.
1579 		 */
1580 		mapping = page_mapping(page);
1581 		if (((dirty || writeback) && mapping &&
1582 		     inode_write_congested(mapping->host)) ||
1583 		    (writeback && PageReclaim(page)))
1584 			stat->nr_congested++;
1585 
1586 		/*
1587 		 * If a page at the tail of the LRU is under writeback, there
1588 		 * are three cases to consider.
1589 		 *
1590 		 * 1) If reclaim is encountering an excessive number of pages
1591 		 *    under writeback and this page is both under writeback and
1592 		 *    PageReclaim then it indicates that pages are being queued
1593 		 *    for IO but are being recycled through the LRU before the
1594 		 *    IO can complete. Waiting on the page itself risks an
1595 		 *    indefinite stall if it is impossible to writeback the
1596 		 *    page due to IO error or disconnected storage so instead
1597 		 *    note that the LRU is being scanned too quickly and the
1598 		 *    caller can stall after page list has been processed.
1599 		 *
1600 		 * 2) Global or new memcg reclaim encounters a page that is
1601 		 *    not marked for immediate reclaim, or the caller does not
1602 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1603 		 *    not to fs). In this case mark the page for immediate
1604 		 *    reclaim and continue scanning.
1605 		 *
1606 		 *    Require may_enter_fs because we would wait on fs, which
1607 		 *    may not have submitted IO yet. And the loop driver might
1608 		 *    enter reclaim, and deadlock if it waits on a page for
1609 		 *    which it is needed to do the write (loop masks off
1610 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1611 		 *    would probably show more reasons.
1612 		 *
1613 		 * 3) Legacy memcg encounters a page that is already marked
1614 		 *    PageReclaim. memcg does not have any dirty pages
1615 		 *    throttling so we could easily OOM just because too many
1616 		 *    pages are in writeback and there is nothing else to
1617 		 *    reclaim. Wait for the writeback to complete.
1618 		 *
1619 		 * In cases 1) and 2) we activate the pages to get them out of
1620 		 * the way while we continue scanning for clean pages on the
1621 		 * inactive list and refilling from the active list. The
1622 		 * observation here is that waiting for disk writes is more
1623 		 * expensive than potentially causing reloads down the line.
1624 		 * Since they're marked for immediate reclaim, they won't put
1625 		 * memory pressure on the cache working set any longer than it
1626 		 * takes to write them to disk.
1627 		 */
1628 		if (PageWriteback(page)) {
1629 			/* Case 1 above */
1630 			if (current_is_kswapd() &&
1631 			    PageReclaim(page) &&
1632 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1633 				stat->nr_immediate++;
1634 				goto activate_locked;
1635 
1636 			/* Case 2 above */
1637 			} else if (writeback_throttling_sane(sc) ||
1638 			    !PageReclaim(page) || !may_enter_fs) {
1639 				/*
1640 				 * This is slightly racy - end_page_writeback()
1641 				 * might have just cleared PageReclaim, then
1642 				 * setting PageReclaim here end up interpreted
1643 				 * as PageReadahead - but that does not matter
1644 				 * enough to care.  What we do want is for this
1645 				 * page to have PageReclaim set next time memcg
1646 				 * reclaim reaches the tests above, so it will
1647 				 * then wait_on_page_writeback() to avoid OOM;
1648 				 * and it's also appropriate in global reclaim.
1649 				 */
1650 				SetPageReclaim(page);
1651 				stat->nr_writeback++;
1652 				goto activate_locked;
1653 
1654 			/* Case 3 above */
1655 			} else {
1656 				unlock_page(page);
1657 				wait_on_page_writeback(page);
1658 				/* then go back and try same page again */
1659 				list_add_tail(&page->lru, page_list);
1660 				continue;
1661 			}
1662 		}
1663 
1664 		if (!ignore_references)
1665 			references = page_check_references(page, sc);
1666 
1667 		switch (references) {
1668 		case PAGEREF_ACTIVATE:
1669 			goto activate_locked;
1670 		case PAGEREF_KEEP:
1671 			stat->nr_ref_keep += nr_pages;
1672 			goto keep_locked;
1673 		case PAGEREF_RECLAIM:
1674 		case PAGEREF_RECLAIM_CLEAN:
1675 			; /* try to reclaim the page below */
1676 		}
1677 
1678 		/*
1679 		 * Before reclaiming the page, try to relocate
1680 		 * its contents to another node.
1681 		 */
1682 		if (do_demote_pass &&
1683 		    (thp_migration_supported() || !PageTransHuge(page))) {
1684 			list_add(&page->lru, &demote_pages);
1685 			unlock_page(page);
1686 			continue;
1687 		}
1688 
1689 		/*
1690 		 * Anonymous process memory has backing store?
1691 		 * Try to allocate it some swap space here.
1692 		 * Lazyfree page could be freed directly
1693 		 */
1694 		if (PageAnon(page) && PageSwapBacked(page)) {
1695 			if (!PageSwapCache(page)) {
1696 				if (!(sc->gfp_mask & __GFP_IO))
1697 					goto keep_locked;
1698 				if (page_maybe_dma_pinned(page))
1699 					goto keep_locked;
1700 				if (PageTransHuge(page)) {
1701 					/* cannot split THP, skip it */
1702 					if (!can_split_huge_page(page, NULL))
1703 						goto activate_locked;
1704 					/*
1705 					 * Split pages without a PMD map right
1706 					 * away. Chances are some or all of the
1707 					 * tail pages can be freed without IO.
1708 					 */
1709 					if (!compound_mapcount(page) &&
1710 					    split_huge_page_to_list(page,
1711 								    page_list))
1712 						goto activate_locked;
1713 				}
1714 				if (!add_to_swap(page)) {
1715 					if (!PageTransHuge(page))
1716 						goto activate_locked_split;
1717 					/* Fallback to swap normal pages */
1718 					if (split_huge_page_to_list(page,
1719 								    page_list))
1720 						goto activate_locked;
1721 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1722 					count_vm_event(THP_SWPOUT_FALLBACK);
1723 #endif
1724 					if (!add_to_swap(page))
1725 						goto activate_locked_split;
1726 				}
1727 
1728 				may_enter_fs = true;
1729 
1730 				/* Adding to swap updated mapping */
1731 				mapping = page_mapping(page);
1732 			}
1733 		} else if (unlikely(PageTransHuge(page))) {
1734 			/* Split file THP */
1735 			if (split_huge_page_to_list(page, page_list))
1736 				goto keep_locked;
1737 		}
1738 
1739 		/*
1740 		 * THP may get split above, need minus tail pages and update
1741 		 * nr_pages to avoid accounting tail pages twice.
1742 		 *
1743 		 * The tail pages that are added into swap cache successfully
1744 		 * reach here.
1745 		 */
1746 		if ((nr_pages > 1) && !PageTransHuge(page)) {
1747 			sc->nr_scanned -= (nr_pages - 1);
1748 			nr_pages = 1;
1749 		}
1750 
1751 		/*
1752 		 * The page is mapped into the page tables of one or more
1753 		 * processes. Try to unmap it here.
1754 		 */
1755 		if (page_mapped(page)) {
1756 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1757 			bool was_swapbacked = PageSwapBacked(page);
1758 
1759 			if (unlikely(PageTransHuge(page)))
1760 				flags |= TTU_SPLIT_HUGE_PMD;
1761 
1762 			try_to_unmap(page, flags);
1763 			if (page_mapped(page)) {
1764 				stat->nr_unmap_fail += nr_pages;
1765 				if (!was_swapbacked && PageSwapBacked(page))
1766 					stat->nr_lazyfree_fail += nr_pages;
1767 				goto activate_locked;
1768 			}
1769 		}
1770 
1771 		if (PageDirty(page)) {
1772 			/*
1773 			 * Only kswapd can writeback filesystem pages
1774 			 * to avoid risk of stack overflow. But avoid
1775 			 * injecting inefficient single-page IO into
1776 			 * flusher writeback as much as possible: only
1777 			 * write pages when we've encountered many
1778 			 * dirty pages, and when we've already scanned
1779 			 * the rest of the LRU for clean pages and see
1780 			 * the same dirty pages again (PageReclaim).
1781 			 */
1782 			if (page_is_file_lru(page) &&
1783 			    (!current_is_kswapd() || !PageReclaim(page) ||
1784 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1785 				/*
1786 				 * Immediately reclaim when written back.
1787 				 * Similar in principal to deactivate_page()
1788 				 * except we already have the page isolated
1789 				 * and know it's dirty
1790 				 */
1791 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1792 				SetPageReclaim(page);
1793 
1794 				goto activate_locked;
1795 			}
1796 
1797 			if (references == PAGEREF_RECLAIM_CLEAN)
1798 				goto keep_locked;
1799 			if (!may_enter_fs)
1800 				goto keep_locked;
1801 			if (!sc->may_writepage)
1802 				goto keep_locked;
1803 
1804 			/*
1805 			 * Page is dirty. Flush the TLB if a writable entry
1806 			 * potentially exists to avoid CPU writes after IO
1807 			 * starts and then write it out here.
1808 			 */
1809 			try_to_unmap_flush_dirty();
1810 			switch (pageout(page, mapping)) {
1811 			case PAGE_KEEP:
1812 				goto keep_locked;
1813 			case PAGE_ACTIVATE:
1814 				goto activate_locked;
1815 			case PAGE_SUCCESS:
1816 				stat->nr_pageout += thp_nr_pages(page);
1817 
1818 				if (PageWriteback(page))
1819 					goto keep;
1820 				if (PageDirty(page))
1821 					goto keep;
1822 
1823 				/*
1824 				 * A synchronous write - probably a ramdisk.  Go
1825 				 * ahead and try to reclaim the page.
1826 				 */
1827 				if (!trylock_page(page))
1828 					goto keep;
1829 				if (PageDirty(page) || PageWriteback(page))
1830 					goto keep_locked;
1831 				mapping = page_mapping(page);
1832 				fallthrough;
1833 			case PAGE_CLEAN:
1834 				; /* try to free the page below */
1835 			}
1836 		}
1837 
1838 		/*
1839 		 * If the page has buffers, try to free the buffer mappings
1840 		 * associated with this page. If we succeed we try to free
1841 		 * the page as well.
1842 		 *
1843 		 * We do this even if the page is PageDirty().
1844 		 * try_to_release_page() does not perform I/O, but it is
1845 		 * possible for a page to have PageDirty set, but it is actually
1846 		 * clean (all its buffers are clean).  This happens if the
1847 		 * buffers were written out directly, with submit_bh(). ext3
1848 		 * will do this, as well as the blockdev mapping.
1849 		 * try_to_release_page() will discover that cleanness and will
1850 		 * drop the buffers and mark the page clean - it can be freed.
1851 		 *
1852 		 * Rarely, pages can have buffers and no ->mapping.  These are
1853 		 * the pages which were not successfully invalidated in
1854 		 * truncate_cleanup_page().  We try to drop those buffers here
1855 		 * and if that worked, and the page is no longer mapped into
1856 		 * process address space (page_count == 1) it can be freed.
1857 		 * Otherwise, leave the page on the LRU so it is swappable.
1858 		 */
1859 		if (page_has_private(page)) {
1860 			if (!try_to_release_page(page, sc->gfp_mask))
1861 				goto activate_locked;
1862 			if (!mapping && page_count(page) == 1) {
1863 				unlock_page(page);
1864 				if (put_page_testzero(page))
1865 					goto free_it;
1866 				else {
1867 					/*
1868 					 * rare race with speculative reference.
1869 					 * the speculative reference will free
1870 					 * this page shortly, so we may
1871 					 * increment nr_reclaimed here (and
1872 					 * leave it off the LRU).
1873 					 */
1874 					nr_reclaimed++;
1875 					continue;
1876 				}
1877 			}
1878 		}
1879 
1880 		if (PageAnon(page) && !PageSwapBacked(page)) {
1881 			/* follow __remove_mapping for reference */
1882 			if (!page_ref_freeze(page, 1))
1883 				goto keep_locked;
1884 			/*
1885 			 * The page has only one reference left, which is
1886 			 * from the isolation. After the caller puts the
1887 			 * page back on lru and drops the reference, the
1888 			 * page will be freed anyway. It doesn't matter
1889 			 * which lru it goes. So we don't bother checking
1890 			 * PageDirty here.
1891 			 */
1892 			count_vm_event(PGLAZYFREED);
1893 			count_memcg_page_event(page, PGLAZYFREED);
1894 		} else if (!mapping || !__remove_mapping(mapping, page, true,
1895 							 sc->target_mem_cgroup))
1896 			goto keep_locked;
1897 
1898 		unlock_page(page);
1899 free_it:
1900 		/*
1901 		 * THP may get swapped out in a whole, need account
1902 		 * all base pages.
1903 		 */
1904 		nr_reclaimed += nr_pages;
1905 
1906 		/*
1907 		 * Is there need to periodically free_page_list? It would
1908 		 * appear not as the counts should be low
1909 		 */
1910 		if (unlikely(PageTransHuge(page)))
1911 			destroy_compound_page(page);
1912 		else
1913 			list_add(&page->lru, &free_pages);
1914 		continue;
1915 
1916 activate_locked_split:
1917 		/*
1918 		 * The tail pages that are failed to add into swap cache
1919 		 * reach here.  Fixup nr_scanned and nr_pages.
1920 		 */
1921 		if (nr_pages > 1) {
1922 			sc->nr_scanned -= (nr_pages - 1);
1923 			nr_pages = 1;
1924 		}
1925 activate_locked:
1926 		/* Not a candidate for swapping, so reclaim swap space. */
1927 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1928 						PageMlocked(page)))
1929 			try_to_free_swap(page);
1930 		VM_BUG_ON_PAGE(PageActive(page), page);
1931 		if (!PageMlocked(page)) {
1932 			int type = page_is_file_lru(page);
1933 			SetPageActive(page);
1934 			stat->nr_activate[type] += nr_pages;
1935 			count_memcg_page_event(page, PGACTIVATE);
1936 		}
1937 keep_locked:
1938 		unlock_page(page);
1939 keep:
1940 		list_add(&page->lru, &ret_pages);
1941 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1942 	}
1943 	/* 'page_list' is always empty here */
1944 
1945 	/* Migrate pages selected for demotion */
1946 	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1947 	/* Pages that could not be demoted are still in @demote_pages */
1948 	if (!list_empty(&demote_pages)) {
1949 		/* Pages which failed to demoted go back on @page_list for retry: */
1950 		list_splice_init(&demote_pages, page_list);
1951 		do_demote_pass = false;
1952 		goto retry;
1953 	}
1954 
1955 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1956 
1957 	mem_cgroup_uncharge_list(&free_pages);
1958 	try_to_unmap_flush();
1959 	free_unref_page_list(&free_pages);
1960 
1961 	list_splice(&ret_pages, page_list);
1962 	count_vm_events(PGACTIVATE, pgactivate);
1963 
1964 	return nr_reclaimed;
1965 }
1966 
1967 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1968 					    struct list_head *page_list)
1969 {
1970 	struct scan_control sc = {
1971 		.gfp_mask = GFP_KERNEL,
1972 		.may_unmap = 1,
1973 	};
1974 	struct reclaim_stat stat;
1975 	unsigned int nr_reclaimed;
1976 	struct page *page, *next;
1977 	LIST_HEAD(clean_pages);
1978 	unsigned int noreclaim_flag;
1979 
1980 	list_for_each_entry_safe(page, next, page_list, lru) {
1981 		if (!PageHuge(page) && page_is_file_lru(page) &&
1982 		    !PageDirty(page) && !__PageMovable(page) &&
1983 		    !PageUnevictable(page)) {
1984 			ClearPageActive(page);
1985 			list_move(&page->lru, &clean_pages);
1986 		}
1987 	}
1988 
1989 	/*
1990 	 * We should be safe here since we are only dealing with file pages and
1991 	 * we are not kswapd and therefore cannot write dirty file pages. But
1992 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
1993 	 * change in the future.
1994 	 */
1995 	noreclaim_flag = memalloc_noreclaim_save();
1996 	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1997 					&stat, true);
1998 	memalloc_noreclaim_restore(noreclaim_flag);
1999 
2000 	list_splice(&clean_pages, page_list);
2001 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2002 			    -(long)nr_reclaimed);
2003 	/*
2004 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2005 	 * they will rotate back to anonymous LRU in the end if it failed to
2006 	 * discard so isolated count will be mismatched.
2007 	 * Compensate the isolated count for both LRU lists.
2008 	 */
2009 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2010 			    stat.nr_lazyfree_fail);
2011 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2012 			    -(long)stat.nr_lazyfree_fail);
2013 	return nr_reclaimed;
2014 }
2015 
2016 /*
2017  * Attempt to remove the specified page from its LRU.  Only take this page
2018  * if it is of the appropriate PageActive status.  Pages which are being
2019  * freed elsewhere are also ignored.
2020  *
2021  * page:	page to consider
2022  * mode:	one of the LRU isolation modes defined above
2023  *
2024  * returns true on success, false on failure.
2025  */
2026 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
2027 {
2028 	/* Only take pages on the LRU. */
2029 	if (!PageLRU(page))
2030 		return false;
2031 
2032 	/* Compaction should not handle unevictable pages but CMA can do so */
2033 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
2034 		return false;
2035 
2036 	/*
2037 	 * To minimise LRU disruption, the caller can indicate that it only
2038 	 * wants to isolate pages it will be able to operate on without
2039 	 * blocking - clean pages for the most part.
2040 	 *
2041 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
2042 	 * that it is possible to migrate without blocking
2043 	 */
2044 	if (mode & ISOLATE_ASYNC_MIGRATE) {
2045 		/* All the caller can do on PageWriteback is block */
2046 		if (PageWriteback(page))
2047 			return false;
2048 
2049 		if (PageDirty(page)) {
2050 			struct address_space *mapping;
2051 			bool migrate_dirty;
2052 
2053 			/*
2054 			 * Only pages without mappings or that have a
2055 			 * ->migratepage callback are possible to migrate
2056 			 * without blocking. However, we can be racing with
2057 			 * truncation so it's necessary to lock the page
2058 			 * to stabilise the mapping as truncation holds
2059 			 * the page lock until after the page is removed
2060 			 * from the page cache.
2061 			 */
2062 			if (!trylock_page(page))
2063 				return false;
2064 
2065 			mapping = page_mapping(page);
2066 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
2067 			unlock_page(page);
2068 			if (!migrate_dirty)
2069 				return false;
2070 		}
2071 	}
2072 
2073 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
2074 		return false;
2075 
2076 	return true;
2077 }
2078 
2079 /*
2080  * Update LRU sizes after isolating pages. The LRU size updates must
2081  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2082  */
2083 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2084 			enum lru_list lru, unsigned long *nr_zone_taken)
2085 {
2086 	int zid;
2087 
2088 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2089 		if (!nr_zone_taken[zid])
2090 			continue;
2091 
2092 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2093 	}
2094 
2095 }
2096 
2097 /*
2098  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2099  *
2100  * lruvec->lru_lock is heavily contended.  Some of the functions that
2101  * shrink the lists perform better by taking out a batch of pages
2102  * and working on them outside the LRU lock.
2103  *
2104  * For pagecache intensive workloads, this function is the hottest
2105  * spot in the kernel (apart from copy_*_user functions).
2106  *
2107  * Lru_lock must be held before calling this function.
2108  *
2109  * @nr_to_scan:	The number of eligible pages to look through on the list.
2110  * @lruvec:	The LRU vector to pull pages from.
2111  * @dst:	The temp list to put pages on to.
2112  * @nr_scanned:	The number of pages that were scanned.
2113  * @sc:		The scan_control struct for this reclaim session
2114  * @lru:	LRU list id for isolating
2115  *
2116  * returns how many pages were moved onto *@dst.
2117  */
2118 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2119 		struct lruvec *lruvec, struct list_head *dst,
2120 		unsigned long *nr_scanned, struct scan_control *sc,
2121 		enum lru_list lru)
2122 {
2123 	struct list_head *src = &lruvec->lists[lru];
2124 	unsigned long nr_taken = 0;
2125 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2126 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2127 	unsigned long skipped = 0;
2128 	unsigned long scan, total_scan, nr_pages;
2129 	LIST_HEAD(pages_skipped);
2130 	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
2131 
2132 	total_scan = 0;
2133 	scan = 0;
2134 	while (scan < nr_to_scan && !list_empty(src)) {
2135 		struct page *page;
2136 
2137 		page = lru_to_page(src);
2138 		prefetchw_prev_lru_page(page, src, flags);
2139 
2140 		nr_pages = compound_nr(page);
2141 		total_scan += nr_pages;
2142 
2143 		if (page_zonenum(page) > sc->reclaim_idx) {
2144 			list_move(&page->lru, &pages_skipped);
2145 			nr_skipped[page_zonenum(page)] += nr_pages;
2146 			continue;
2147 		}
2148 
2149 		/*
2150 		 * Do not count skipped pages because that makes the function
2151 		 * return with no isolated pages if the LRU mostly contains
2152 		 * ineligible pages.  This causes the VM to not reclaim any
2153 		 * pages, triggering a premature OOM.
2154 		 *
2155 		 * Account all tail pages of THP.  This would not cause
2156 		 * premature OOM since __isolate_lru_page() returns -EBUSY
2157 		 * only when the page is being freed somewhere else.
2158 		 */
2159 		scan += nr_pages;
2160 		if (!__isolate_lru_page_prepare(page, mode)) {
2161 			/* It is being freed elsewhere */
2162 			list_move(&page->lru, src);
2163 			continue;
2164 		}
2165 		/*
2166 		 * Be careful not to clear PageLRU until after we're
2167 		 * sure the page is not being freed elsewhere -- the
2168 		 * page release code relies on it.
2169 		 */
2170 		if (unlikely(!get_page_unless_zero(page))) {
2171 			list_move(&page->lru, src);
2172 			continue;
2173 		}
2174 
2175 		if (!TestClearPageLRU(page)) {
2176 			/* Another thread is already isolating this page */
2177 			put_page(page);
2178 			list_move(&page->lru, src);
2179 			continue;
2180 		}
2181 
2182 		nr_taken += nr_pages;
2183 		nr_zone_taken[page_zonenum(page)] += nr_pages;
2184 		list_move(&page->lru, dst);
2185 	}
2186 
2187 	/*
2188 	 * Splice any skipped pages to the start of the LRU list. Note that
2189 	 * this disrupts the LRU order when reclaiming for lower zones but
2190 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2191 	 * scanning would soon rescan the same pages to skip and put the
2192 	 * system at risk of premature OOM.
2193 	 */
2194 	if (!list_empty(&pages_skipped)) {
2195 		int zid;
2196 
2197 		list_splice(&pages_skipped, src);
2198 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2199 			if (!nr_skipped[zid])
2200 				continue;
2201 
2202 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2203 			skipped += nr_skipped[zid];
2204 		}
2205 	}
2206 	*nr_scanned = total_scan;
2207 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2208 				    total_scan, skipped, nr_taken, mode, lru);
2209 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2210 	return nr_taken;
2211 }
2212 
2213 /**
2214  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2215  * @folio: Folio to isolate from its LRU list.
2216  *
2217  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2218  * corresponding to whatever LRU list the folio was on.
2219  *
2220  * The folio will have its LRU flag cleared.  If it was found on the
2221  * active list, it will have the Active flag set.  If it was found on the
2222  * unevictable list, it will have the Unevictable flag set.  These flags
2223  * may need to be cleared by the caller before letting the page go.
2224  *
2225  * Context:
2226  *
2227  * (1) Must be called with an elevated refcount on the page. This is a
2228  *     fundamental difference from isolate_lru_pages() (which is called
2229  *     without a stable reference).
2230  * (2) The lru_lock must not be held.
2231  * (3) Interrupts must be enabled.
2232  *
2233  * Return: 0 if the folio was removed from an LRU list.
2234  * -EBUSY if the folio was not on an LRU list.
2235  */
2236 int folio_isolate_lru(struct folio *folio)
2237 {
2238 	int ret = -EBUSY;
2239 
2240 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2241 
2242 	if (folio_test_clear_lru(folio)) {
2243 		struct lruvec *lruvec;
2244 
2245 		folio_get(folio);
2246 		lruvec = folio_lruvec_lock_irq(folio);
2247 		lruvec_del_folio(lruvec, folio);
2248 		unlock_page_lruvec_irq(lruvec);
2249 		ret = 0;
2250 	}
2251 
2252 	return ret;
2253 }
2254 
2255 /*
2256  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2257  * then get rescheduled. When there are massive number of tasks doing page
2258  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2259  * the LRU list will go small and be scanned faster than necessary, leading to
2260  * unnecessary swapping, thrashing and OOM.
2261  */
2262 static int too_many_isolated(struct pglist_data *pgdat, int file,
2263 		struct scan_control *sc)
2264 {
2265 	unsigned long inactive, isolated;
2266 	bool too_many;
2267 
2268 	if (current_is_kswapd())
2269 		return 0;
2270 
2271 	if (!writeback_throttling_sane(sc))
2272 		return 0;
2273 
2274 	if (file) {
2275 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2276 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2277 	} else {
2278 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2279 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2280 	}
2281 
2282 	/*
2283 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2284 	 * won't get blocked by normal direct-reclaimers, forming a circular
2285 	 * deadlock.
2286 	 */
2287 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2288 		inactive >>= 3;
2289 
2290 	too_many = isolated > inactive;
2291 
2292 	/* Wake up tasks throttled due to too_many_isolated. */
2293 	if (!too_many)
2294 		wake_throttle_isolated(pgdat);
2295 
2296 	return too_many;
2297 }
2298 
2299 /*
2300  * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2301  * On return, @list is reused as a list of pages to be freed by the caller.
2302  *
2303  * Returns the number of pages moved to the given lruvec.
2304  */
2305 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2306 				      struct list_head *list)
2307 {
2308 	int nr_pages, nr_moved = 0;
2309 	LIST_HEAD(pages_to_free);
2310 	struct page *page;
2311 
2312 	while (!list_empty(list)) {
2313 		page = lru_to_page(list);
2314 		VM_BUG_ON_PAGE(PageLRU(page), page);
2315 		list_del(&page->lru);
2316 		if (unlikely(!page_evictable(page))) {
2317 			spin_unlock_irq(&lruvec->lru_lock);
2318 			putback_lru_page(page);
2319 			spin_lock_irq(&lruvec->lru_lock);
2320 			continue;
2321 		}
2322 
2323 		/*
2324 		 * The SetPageLRU needs to be kept here for list integrity.
2325 		 * Otherwise:
2326 		 *   #0 move_pages_to_lru             #1 release_pages
2327 		 *   if !put_page_testzero
2328 		 *				      if (put_page_testzero())
2329 		 *				        !PageLRU //skip lru_lock
2330 		 *     SetPageLRU()
2331 		 *     list_add(&page->lru,)
2332 		 *                                        list_add(&page->lru,)
2333 		 */
2334 		SetPageLRU(page);
2335 
2336 		if (unlikely(put_page_testzero(page))) {
2337 			__clear_page_lru_flags(page);
2338 
2339 			if (unlikely(PageCompound(page))) {
2340 				spin_unlock_irq(&lruvec->lru_lock);
2341 				destroy_compound_page(page);
2342 				spin_lock_irq(&lruvec->lru_lock);
2343 			} else
2344 				list_add(&page->lru, &pages_to_free);
2345 
2346 			continue;
2347 		}
2348 
2349 		/*
2350 		 * All pages were isolated from the same lruvec (and isolation
2351 		 * inhibits memcg migration).
2352 		 */
2353 		VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2354 		add_page_to_lru_list(page, lruvec);
2355 		nr_pages = thp_nr_pages(page);
2356 		nr_moved += nr_pages;
2357 		if (PageActive(page))
2358 			workingset_age_nonresident(lruvec, nr_pages);
2359 	}
2360 
2361 	/*
2362 	 * To save our caller's stack, now use input list for pages to free.
2363 	 */
2364 	list_splice(&pages_to_free, list);
2365 
2366 	return nr_moved;
2367 }
2368 
2369 /*
2370  * If a kernel thread (such as nfsd for loop-back mounts) services
2371  * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2372  * In that case we should only throttle if the backing device it is
2373  * writing to is congested.  In other cases it is safe to throttle.
2374  */
2375 static int current_may_throttle(void)
2376 {
2377 	return !(current->flags & PF_LOCAL_THROTTLE) ||
2378 		current->backing_dev_info == NULL ||
2379 		bdi_write_congested(current->backing_dev_info);
2380 }
2381 
2382 /*
2383  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2384  * of reclaimed pages
2385  */
2386 static unsigned long
2387 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2388 		     struct scan_control *sc, enum lru_list lru)
2389 {
2390 	LIST_HEAD(page_list);
2391 	unsigned long nr_scanned;
2392 	unsigned int nr_reclaimed = 0;
2393 	unsigned long nr_taken;
2394 	struct reclaim_stat stat;
2395 	bool file = is_file_lru(lru);
2396 	enum vm_event_item item;
2397 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2398 	bool stalled = false;
2399 
2400 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2401 		if (stalled)
2402 			return 0;
2403 
2404 		/* wait a bit for the reclaimer. */
2405 		stalled = true;
2406 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2407 
2408 		/* We are about to die and free our memory. Return now. */
2409 		if (fatal_signal_pending(current))
2410 			return SWAP_CLUSTER_MAX;
2411 	}
2412 
2413 	lru_add_drain();
2414 
2415 	spin_lock_irq(&lruvec->lru_lock);
2416 
2417 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2418 				     &nr_scanned, sc, lru);
2419 
2420 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2421 	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2422 	if (!cgroup_reclaim(sc))
2423 		__count_vm_events(item, nr_scanned);
2424 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2425 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2426 
2427 	spin_unlock_irq(&lruvec->lru_lock);
2428 
2429 	if (nr_taken == 0)
2430 		return 0;
2431 
2432 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2433 
2434 	spin_lock_irq(&lruvec->lru_lock);
2435 	move_pages_to_lru(lruvec, &page_list);
2436 
2437 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2438 	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2439 	if (!cgroup_reclaim(sc))
2440 		__count_vm_events(item, nr_reclaimed);
2441 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2442 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2443 	spin_unlock_irq(&lruvec->lru_lock);
2444 
2445 	lru_note_cost(lruvec, file, stat.nr_pageout);
2446 	mem_cgroup_uncharge_list(&page_list);
2447 	free_unref_page_list(&page_list);
2448 
2449 	/*
2450 	 * If dirty pages are scanned that are not queued for IO, it
2451 	 * implies that flushers are not doing their job. This can
2452 	 * happen when memory pressure pushes dirty pages to the end of
2453 	 * the LRU before the dirty limits are breached and the dirty
2454 	 * data has expired. It can also happen when the proportion of
2455 	 * dirty pages grows not through writes but through memory
2456 	 * pressure reclaiming all the clean cache. And in some cases,
2457 	 * the flushers simply cannot keep up with the allocation
2458 	 * rate. Nudge the flusher threads in case they are asleep.
2459 	 */
2460 	if (stat.nr_unqueued_dirty == nr_taken)
2461 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2462 
2463 	sc->nr.dirty += stat.nr_dirty;
2464 	sc->nr.congested += stat.nr_congested;
2465 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2466 	sc->nr.writeback += stat.nr_writeback;
2467 	sc->nr.immediate += stat.nr_immediate;
2468 	sc->nr.taken += nr_taken;
2469 	if (file)
2470 		sc->nr.file_taken += nr_taken;
2471 
2472 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2473 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2474 	return nr_reclaimed;
2475 }
2476 
2477 /*
2478  * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2479  *
2480  * We move them the other way if the page is referenced by one or more
2481  * processes.
2482  *
2483  * If the pages are mostly unmapped, the processing is fast and it is
2484  * appropriate to hold lru_lock across the whole operation.  But if
2485  * the pages are mapped, the processing is slow (page_referenced()), so
2486  * we should drop lru_lock around each page.  It's impossible to balance
2487  * this, so instead we remove the pages from the LRU while processing them.
2488  * It is safe to rely on PG_active against the non-LRU pages in here because
2489  * nobody will play with that bit on a non-LRU page.
2490  *
2491  * The downside is that we have to touch page->_refcount against each page.
2492  * But we had to alter page->flags anyway.
2493  */
2494 static void shrink_active_list(unsigned long nr_to_scan,
2495 			       struct lruvec *lruvec,
2496 			       struct scan_control *sc,
2497 			       enum lru_list lru)
2498 {
2499 	unsigned long nr_taken;
2500 	unsigned long nr_scanned;
2501 	unsigned long vm_flags;
2502 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2503 	LIST_HEAD(l_active);
2504 	LIST_HEAD(l_inactive);
2505 	struct page *page;
2506 	unsigned nr_deactivate, nr_activate;
2507 	unsigned nr_rotated = 0;
2508 	int file = is_file_lru(lru);
2509 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2510 
2511 	lru_add_drain();
2512 
2513 	spin_lock_irq(&lruvec->lru_lock);
2514 
2515 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2516 				     &nr_scanned, sc, lru);
2517 
2518 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2519 
2520 	if (!cgroup_reclaim(sc))
2521 		__count_vm_events(PGREFILL, nr_scanned);
2522 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2523 
2524 	spin_unlock_irq(&lruvec->lru_lock);
2525 
2526 	while (!list_empty(&l_hold)) {
2527 		cond_resched();
2528 		page = lru_to_page(&l_hold);
2529 		list_del(&page->lru);
2530 
2531 		if (unlikely(!page_evictable(page))) {
2532 			putback_lru_page(page);
2533 			continue;
2534 		}
2535 
2536 		if (unlikely(buffer_heads_over_limit)) {
2537 			if (page_has_private(page) && trylock_page(page)) {
2538 				if (page_has_private(page))
2539 					try_to_release_page(page, 0);
2540 				unlock_page(page);
2541 			}
2542 		}
2543 
2544 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2545 				    &vm_flags)) {
2546 			/*
2547 			 * Identify referenced, file-backed active pages and
2548 			 * give them one more trip around the active list. So
2549 			 * that executable code get better chances to stay in
2550 			 * memory under moderate memory pressure.  Anon pages
2551 			 * are not likely to be evicted by use-once streaming
2552 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2553 			 * so we ignore them here.
2554 			 */
2555 			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2556 				nr_rotated += thp_nr_pages(page);
2557 				list_add(&page->lru, &l_active);
2558 				continue;
2559 			}
2560 		}
2561 
2562 		ClearPageActive(page);	/* we are de-activating */
2563 		SetPageWorkingset(page);
2564 		list_add(&page->lru, &l_inactive);
2565 	}
2566 
2567 	/*
2568 	 * Move pages back to the lru list.
2569 	 */
2570 	spin_lock_irq(&lruvec->lru_lock);
2571 
2572 	nr_activate = move_pages_to_lru(lruvec, &l_active);
2573 	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2574 	/* Keep all free pages in l_active list */
2575 	list_splice(&l_inactive, &l_active);
2576 
2577 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2578 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2579 
2580 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2581 	spin_unlock_irq(&lruvec->lru_lock);
2582 
2583 	mem_cgroup_uncharge_list(&l_active);
2584 	free_unref_page_list(&l_active);
2585 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2586 			nr_deactivate, nr_rotated, sc->priority, file);
2587 }
2588 
2589 unsigned long reclaim_pages(struct list_head *page_list)
2590 {
2591 	int nid = NUMA_NO_NODE;
2592 	unsigned int nr_reclaimed = 0;
2593 	LIST_HEAD(node_page_list);
2594 	struct reclaim_stat dummy_stat;
2595 	struct page *page;
2596 	unsigned int noreclaim_flag;
2597 	struct scan_control sc = {
2598 		.gfp_mask = GFP_KERNEL,
2599 		.may_writepage = 1,
2600 		.may_unmap = 1,
2601 		.may_swap = 1,
2602 		.no_demotion = 1,
2603 	};
2604 
2605 	noreclaim_flag = memalloc_noreclaim_save();
2606 
2607 	while (!list_empty(page_list)) {
2608 		page = lru_to_page(page_list);
2609 		if (nid == NUMA_NO_NODE) {
2610 			nid = page_to_nid(page);
2611 			INIT_LIST_HEAD(&node_page_list);
2612 		}
2613 
2614 		if (nid == page_to_nid(page)) {
2615 			ClearPageActive(page);
2616 			list_move(&page->lru, &node_page_list);
2617 			continue;
2618 		}
2619 
2620 		nr_reclaimed += shrink_page_list(&node_page_list,
2621 						NODE_DATA(nid),
2622 						&sc, &dummy_stat, false);
2623 		while (!list_empty(&node_page_list)) {
2624 			page = lru_to_page(&node_page_list);
2625 			list_del(&page->lru);
2626 			putback_lru_page(page);
2627 		}
2628 
2629 		nid = NUMA_NO_NODE;
2630 	}
2631 
2632 	if (!list_empty(&node_page_list)) {
2633 		nr_reclaimed += shrink_page_list(&node_page_list,
2634 						NODE_DATA(nid),
2635 						&sc, &dummy_stat, false);
2636 		while (!list_empty(&node_page_list)) {
2637 			page = lru_to_page(&node_page_list);
2638 			list_del(&page->lru);
2639 			putback_lru_page(page);
2640 		}
2641 	}
2642 
2643 	memalloc_noreclaim_restore(noreclaim_flag);
2644 
2645 	return nr_reclaimed;
2646 }
2647 
2648 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2649 				 struct lruvec *lruvec, struct scan_control *sc)
2650 {
2651 	if (is_active_lru(lru)) {
2652 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2653 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2654 		else
2655 			sc->skipped_deactivate = 1;
2656 		return 0;
2657 	}
2658 
2659 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2660 }
2661 
2662 /*
2663  * The inactive anon list should be small enough that the VM never has
2664  * to do too much work.
2665  *
2666  * The inactive file list should be small enough to leave most memory
2667  * to the established workingset on the scan-resistant active list,
2668  * but large enough to avoid thrashing the aggregate readahead window.
2669  *
2670  * Both inactive lists should also be large enough that each inactive
2671  * page has a chance to be referenced again before it is reclaimed.
2672  *
2673  * If that fails and refaulting is observed, the inactive list grows.
2674  *
2675  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2676  * on this LRU, maintained by the pageout code. An inactive_ratio
2677  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2678  *
2679  * total     target    max
2680  * memory    ratio     inactive
2681  * -------------------------------------
2682  *   10MB       1         5MB
2683  *  100MB       1        50MB
2684  *    1GB       3       250MB
2685  *   10GB      10       0.9GB
2686  *  100GB      31         3GB
2687  *    1TB     101        10GB
2688  *   10TB     320        32GB
2689  */
2690 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2691 {
2692 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2693 	unsigned long inactive, active;
2694 	unsigned long inactive_ratio;
2695 	unsigned long gb;
2696 
2697 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2698 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2699 
2700 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2701 	if (gb)
2702 		inactive_ratio = int_sqrt(10 * gb);
2703 	else
2704 		inactive_ratio = 1;
2705 
2706 	return inactive * inactive_ratio < active;
2707 }
2708 
2709 enum scan_balance {
2710 	SCAN_EQUAL,
2711 	SCAN_FRACT,
2712 	SCAN_ANON,
2713 	SCAN_FILE,
2714 };
2715 
2716 /*
2717  * Determine how aggressively the anon and file LRU lists should be
2718  * scanned.  The relative value of each set of LRU lists is determined
2719  * by looking at the fraction of the pages scanned we did rotate back
2720  * onto the active list instead of evict.
2721  *
2722  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2723  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2724  */
2725 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2726 			   unsigned long *nr)
2727 {
2728 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2729 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2730 	unsigned long anon_cost, file_cost, total_cost;
2731 	int swappiness = mem_cgroup_swappiness(memcg);
2732 	u64 fraction[ANON_AND_FILE];
2733 	u64 denominator = 0;	/* gcc */
2734 	enum scan_balance scan_balance;
2735 	unsigned long ap, fp;
2736 	enum lru_list lru;
2737 
2738 	/* If we have no swap space, do not bother scanning anon pages. */
2739 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2740 		scan_balance = SCAN_FILE;
2741 		goto out;
2742 	}
2743 
2744 	/*
2745 	 * Global reclaim will swap to prevent OOM even with no
2746 	 * swappiness, but memcg users want to use this knob to
2747 	 * disable swapping for individual groups completely when
2748 	 * using the memory controller's swap limit feature would be
2749 	 * too expensive.
2750 	 */
2751 	if (cgroup_reclaim(sc) && !swappiness) {
2752 		scan_balance = SCAN_FILE;
2753 		goto out;
2754 	}
2755 
2756 	/*
2757 	 * Do not apply any pressure balancing cleverness when the
2758 	 * system is close to OOM, scan both anon and file equally
2759 	 * (unless the swappiness setting disagrees with swapping).
2760 	 */
2761 	if (!sc->priority && swappiness) {
2762 		scan_balance = SCAN_EQUAL;
2763 		goto out;
2764 	}
2765 
2766 	/*
2767 	 * If the system is almost out of file pages, force-scan anon.
2768 	 */
2769 	if (sc->file_is_tiny) {
2770 		scan_balance = SCAN_ANON;
2771 		goto out;
2772 	}
2773 
2774 	/*
2775 	 * If there is enough inactive page cache, we do not reclaim
2776 	 * anything from the anonymous working right now.
2777 	 */
2778 	if (sc->cache_trim_mode) {
2779 		scan_balance = SCAN_FILE;
2780 		goto out;
2781 	}
2782 
2783 	scan_balance = SCAN_FRACT;
2784 	/*
2785 	 * Calculate the pressure balance between anon and file pages.
2786 	 *
2787 	 * The amount of pressure we put on each LRU is inversely
2788 	 * proportional to the cost of reclaiming each list, as
2789 	 * determined by the share of pages that are refaulting, times
2790 	 * the relative IO cost of bringing back a swapped out
2791 	 * anonymous page vs reloading a filesystem page (swappiness).
2792 	 *
2793 	 * Although we limit that influence to ensure no list gets
2794 	 * left behind completely: at least a third of the pressure is
2795 	 * applied, before swappiness.
2796 	 *
2797 	 * With swappiness at 100, anon and file have equal IO cost.
2798 	 */
2799 	total_cost = sc->anon_cost + sc->file_cost;
2800 	anon_cost = total_cost + sc->anon_cost;
2801 	file_cost = total_cost + sc->file_cost;
2802 	total_cost = anon_cost + file_cost;
2803 
2804 	ap = swappiness * (total_cost + 1);
2805 	ap /= anon_cost + 1;
2806 
2807 	fp = (200 - swappiness) * (total_cost + 1);
2808 	fp /= file_cost + 1;
2809 
2810 	fraction[0] = ap;
2811 	fraction[1] = fp;
2812 	denominator = ap + fp;
2813 out:
2814 	for_each_evictable_lru(lru) {
2815 		int file = is_file_lru(lru);
2816 		unsigned long lruvec_size;
2817 		unsigned long low, min;
2818 		unsigned long scan;
2819 
2820 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2821 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2822 				      &min, &low);
2823 
2824 		if (min || low) {
2825 			/*
2826 			 * Scale a cgroup's reclaim pressure by proportioning
2827 			 * its current usage to its memory.low or memory.min
2828 			 * setting.
2829 			 *
2830 			 * This is important, as otherwise scanning aggression
2831 			 * becomes extremely binary -- from nothing as we
2832 			 * approach the memory protection threshold, to totally
2833 			 * nominal as we exceed it.  This results in requiring
2834 			 * setting extremely liberal protection thresholds. It
2835 			 * also means we simply get no protection at all if we
2836 			 * set it too low, which is not ideal.
2837 			 *
2838 			 * If there is any protection in place, we reduce scan
2839 			 * pressure by how much of the total memory used is
2840 			 * within protection thresholds.
2841 			 *
2842 			 * There is one special case: in the first reclaim pass,
2843 			 * we skip over all groups that are within their low
2844 			 * protection. If that fails to reclaim enough pages to
2845 			 * satisfy the reclaim goal, we come back and override
2846 			 * the best-effort low protection. However, we still
2847 			 * ideally want to honor how well-behaved groups are in
2848 			 * that case instead of simply punishing them all
2849 			 * equally. As such, we reclaim them based on how much
2850 			 * memory they are using, reducing the scan pressure
2851 			 * again by how much of the total memory used is under
2852 			 * hard protection.
2853 			 */
2854 			unsigned long cgroup_size = mem_cgroup_size(memcg);
2855 			unsigned long protection;
2856 
2857 			/* memory.low scaling, make sure we retry before OOM */
2858 			if (!sc->memcg_low_reclaim && low > min) {
2859 				protection = low;
2860 				sc->memcg_low_skipped = 1;
2861 			} else {
2862 				protection = min;
2863 			}
2864 
2865 			/* Avoid TOCTOU with earlier protection check */
2866 			cgroup_size = max(cgroup_size, protection);
2867 
2868 			scan = lruvec_size - lruvec_size * protection /
2869 				(cgroup_size + 1);
2870 
2871 			/*
2872 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2873 			 * reclaim moving forwards, avoiding decrementing
2874 			 * sc->priority further than desirable.
2875 			 */
2876 			scan = max(scan, SWAP_CLUSTER_MAX);
2877 		} else {
2878 			scan = lruvec_size;
2879 		}
2880 
2881 		scan >>= sc->priority;
2882 
2883 		/*
2884 		 * If the cgroup's already been deleted, make sure to
2885 		 * scrape out the remaining cache.
2886 		 */
2887 		if (!scan && !mem_cgroup_online(memcg))
2888 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2889 
2890 		switch (scan_balance) {
2891 		case SCAN_EQUAL:
2892 			/* Scan lists relative to size */
2893 			break;
2894 		case SCAN_FRACT:
2895 			/*
2896 			 * Scan types proportional to swappiness and
2897 			 * their relative recent reclaim efficiency.
2898 			 * Make sure we don't miss the last page on
2899 			 * the offlined memory cgroups because of a
2900 			 * round-off error.
2901 			 */
2902 			scan = mem_cgroup_online(memcg) ?
2903 			       div64_u64(scan * fraction[file], denominator) :
2904 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2905 						  denominator);
2906 			break;
2907 		case SCAN_FILE:
2908 		case SCAN_ANON:
2909 			/* Scan one type exclusively */
2910 			if ((scan_balance == SCAN_FILE) != file)
2911 				scan = 0;
2912 			break;
2913 		default:
2914 			/* Look ma, no brain */
2915 			BUG();
2916 		}
2917 
2918 		nr[lru] = scan;
2919 	}
2920 }
2921 
2922 /*
2923  * Anonymous LRU management is a waste if there is
2924  * ultimately no way to reclaim the memory.
2925  */
2926 static bool can_age_anon_pages(struct pglist_data *pgdat,
2927 			       struct scan_control *sc)
2928 {
2929 	/* Aging the anon LRU is valuable if swap is present: */
2930 	if (total_swap_pages > 0)
2931 		return true;
2932 
2933 	/* Also valuable if anon pages can be demoted: */
2934 	return can_demote(pgdat->node_id, sc);
2935 }
2936 
2937 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2938 {
2939 	unsigned long nr[NR_LRU_LISTS];
2940 	unsigned long targets[NR_LRU_LISTS];
2941 	unsigned long nr_to_scan;
2942 	enum lru_list lru;
2943 	unsigned long nr_reclaimed = 0;
2944 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2945 	struct blk_plug plug;
2946 	bool scan_adjusted;
2947 
2948 	get_scan_count(lruvec, sc, nr);
2949 
2950 	/* Record the original scan target for proportional adjustments later */
2951 	memcpy(targets, nr, sizeof(nr));
2952 
2953 	/*
2954 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2955 	 * event that can occur when there is little memory pressure e.g.
2956 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2957 	 * when the requested number of pages are reclaimed when scanning at
2958 	 * DEF_PRIORITY on the assumption that the fact we are direct
2959 	 * reclaiming implies that kswapd is not keeping up and it is best to
2960 	 * do a batch of work at once. For memcg reclaim one check is made to
2961 	 * abort proportional reclaim if either the file or anon lru has already
2962 	 * dropped to zero at the first pass.
2963 	 */
2964 	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2965 			 sc->priority == DEF_PRIORITY);
2966 
2967 	blk_start_plug(&plug);
2968 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2969 					nr[LRU_INACTIVE_FILE]) {
2970 		unsigned long nr_anon, nr_file, percentage;
2971 		unsigned long nr_scanned;
2972 
2973 		for_each_evictable_lru(lru) {
2974 			if (nr[lru]) {
2975 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2976 				nr[lru] -= nr_to_scan;
2977 
2978 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2979 							    lruvec, sc);
2980 			}
2981 		}
2982 
2983 		cond_resched();
2984 
2985 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2986 			continue;
2987 
2988 		/*
2989 		 * For kswapd and memcg, reclaim at least the number of pages
2990 		 * requested. Ensure that the anon and file LRUs are scanned
2991 		 * proportionally what was requested by get_scan_count(). We
2992 		 * stop reclaiming one LRU and reduce the amount scanning
2993 		 * proportional to the original scan target.
2994 		 */
2995 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2996 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2997 
2998 		/*
2999 		 * It's just vindictive to attack the larger once the smaller
3000 		 * has gone to zero.  And given the way we stop scanning the
3001 		 * smaller below, this makes sure that we only make one nudge
3002 		 * towards proportionality once we've got nr_to_reclaim.
3003 		 */
3004 		if (!nr_file || !nr_anon)
3005 			break;
3006 
3007 		if (nr_file > nr_anon) {
3008 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
3009 						targets[LRU_ACTIVE_ANON] + 1;
3010 			lru = LRU_BASE;
3011 			percentage = nr_anon * 100 / scan_target;
3012 		} else {
3013 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
3014 						targets[LRU_ACTIVE_FILE] + 1;
3015 			lru = LRU_FILE;
3016 			percentage = nr_file * 100 / scan_target;
3017 		}
3018 
3019 		/* Stop scanning the smaller of the LRU */
3020 		nr[lru] = 0;
3021 		nr[lru + LRU_ACTIVE] = 0;
3022 
3023 		/*
3024 		 * Recalculate the other LRU scan count based on its original
3025 		 * scan target and the percentage scanning already complete
3026 		 */
3027 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
3028 		nr_scanned = targets[lru] - nr[lru];
3029 		nr[lru] = targets[lru] * (100 - percentage) / 100;
3030 		nr[lru] -= min(nr[lru], nr_scanned);
3031 
3032 		lru += LRU_ACTIVE;
3033 		nr_scanned = targets[lru] - nr[lru];
3034 		nr[lru] = targets[lru] * (100 - percentage) / 100;
3035 		nr[lru] -= min(nr[lru], nr_scanned);
3036 
3037 		scan_adjusted = true;
3038 	}
3039 	blk_finish_plug(&plug);
3040 	sc->nr_reclaimed += nr_reclaimed;
3041 
3042 	/*
3043 	 * Even if we did not try to evict anon pages at all, we want to
3044 	 * rebalance the anon lru active/inactive ratio.
3045 	 */
3046 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3047 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3048 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3049 				   sc, LRU_ACTIVE_ANON);
3050 }
3051 
3052 /* Use reclaim/compaction for costly allocs or under memory pressure */
3053 static bool in_reclaim_compaction(struct scan_control *sc)
3054 {
3055 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3056 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3057 			 sc->priority < DEF_PRIORITY - 2))
3058 		return true;
3059 
3060 	return false;
3061 }
3062 
3063 /*
3064  * Reclaim/compaction is used for high-order allocation requests. It reclaims
3065  * order-0 pages before compacting the zone. should_continue_reclaim() returns
3066  * true if more pages should be reclaimed such that when the page allocator
3067  * calls try_to_compact_pages() that it will have enough free pages to succeed.
3068  * It will give up earlier than that if there is difficulty reclaiming pages.
3069  */
3070 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3071 					unsigned long nr_reclaimed,
3072 					struct scan_control *sc)
3073 {
3074 	unsigned long pages_for_compaction;
3075 	unsigned long inactive_lru_pages;
3076 	int z;
3077 
3078 	/* If not in reclaim/compaction mode, stop */
3079 	if (!in_reclaim_compaction(sc))
3080 		return false;
3081 
3082 	/*
3083 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3084 	 * number of pages that were scanned. This will return to the caller
3085 	 * with the risk reclaim/compaction and the resulting allocation attempt
3086 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3087 	 * allocations through requiring that the full LRU list has been scanned
3088 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3089 	 * scan, but that approximation was wrong, and there were corner cases
3090 	 * where always a non-zero amount of pages were scanned.
3091 	 */
3092 	if (!nr_reclaimed)
3093 		return false;
3094 
3095 	/* If compaction would go ahead or the allocation would succeed, stop */
3096 	for (z = 0; z <= sc->reclaim_idx; z++) {
3097 		struct zone *zone = &pgdat->node_zones[z];
3098 		if (!managed_zone(zone))
3099 			continue;
3100 
3101 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3102 		case COMPACT_SUCCESS:
3103 		case COMPACT_CONTINUE:
3104 			return false;
3105 		default:
3106 			/* check next zone */
3107 			;
3108 		}
3109 	}
3110 
3111 	/*
3112 	 * If we have not reclaimed enough pages for compaction and the
3113 	 * inactive lists are large enough, continue reclaiming
3114 	 */
3115 	pages_for_compaction = compact_gap(sc->order);
3116 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3117 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3118 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3119 
3120 	return inactive_lru_pages > pages_for_compaction;
3121 }
3122 
3123 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3124 {
3125 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3126 	struct mem_cgroup *memcg;
3127 
3128 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3129 	do {
3130 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3131 		unsigned long reclaimed;
3132 		unsigned long scanned;
3133 
3134 		/*
3135 		 * This loop can become CPU-bound when target memcgs
3136 		 * aren't eligible for reclaim - either because they
3137 		 * don't have any reclaimable pages, or because their
3138 		 * memory is explicitly protected. Avoid soft lockups.
3139 		 */
3140 		cond_resched();
3141 
3142 		mem_cgroup_calculate_protection(target_memcg, memcg);
3143 
3144 		if (mem_cgroup_below_min(memcg)) {
3145 			/*
3146 			 * Hard protection.
3147 			 * If there is no reclaimable memory, OOM.
3148 			 */
3149 			continue;
3150 		} else if (mem_cgroup_below_low(memcg)) {
3151 			/*
3152 			 * Soft protection.
3153 			 * Respect the protection only as long as
3154 			 * there is an unprotected supply
3155 			 * of reclaimable memory from other cgroups.
3156 			 */
3157 			if (!sc->memcg_low_reclaim) {
3158 				sc->memcg_low_skipped = 1;
3159 				continue;
3160 			}
3161 			memcg_memory_event(memcg, MEMCG_LOW);
3162 		}
3163 
3164 		reclaimed = sc->nr_reclaimed;
3165 		scanned = sc->nr_scanned;
3166 
3167 		shrink_lruvec(lruvec, sc);
3168 
3169 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3170 			    sc->priority);
3171 
3172 		/* Record the group's reclaim efficiency */
3173 		vmpressure(sc->gfp_mask, memcg, false,
3174 			   sc->nr_scanned - scanned,
3175 			   sc->nr_reclaimed - reclaimed);
3176 
3177 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3178 }
3179 
3180 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3181 {
3182 	struct reclaim_state *reclaim_state = current->reclaim_state;
3183 	unsigned long nr_reclaimed, nr_scanned;
3184 	struct lruvec *target_lruvec;
3185 	bool reclaimable = false;
3186 	unsigned long file;
3187 
3188 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3189 
3190 again:
3191 	/*
3192 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
3193 	 * lruvec stats for heuristics.
3194 	 */
3195 	mem_cgroup_flush_stats();
3196 
3197 	memset(&sc->nr, 0, sizeof(sc->nr));
3198 
3199 	nr_reclaimed = sc->nr_reclaimed;
3200 	nr_scanned = sc->nr_scanned;
3201 
3202 	/*
3203 	 * Determine the scan balance between anon and file LRUs.
3204 	 */
3205 	spin_lock_irq(&target_lruvec->lru_lock);
3206 	sc->anon_cost = target_lruvec->anon_cost;
3207 	sc->file_cost = target_lruvec->file_cost;
3208 	spin_unlock_irq(&target_lruvec->lru_lock);
3209 
3210 	/*
3211 	 * Target desirable inactive:active list ratios for the anon
3212 	 * and file LRU lists.
3213 	 */
3214 	if (!sc->force_deactivate) {
3215 		unsigned long refaults;
3216 
3217 		refaults = lruvec_page_state(target_lruvec,
3218 				WORKINGSET_ACTIVATE_ANON);
3219 		if (refaults != target_lruvec->refaults[0] ||
3220 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3221 			sc->may_deactivate |= DEACTIVATE_ANON;
3222 		else
3223 			sc->may_deactivate &= ~DEACTIVATE_ANON;
3224 
3225 		/*
3226 		 * When refaults are being observed, it means a new
3227 		 * workingset is being established. Deactivate to get
3228 		 * rid of any stale active pages quickly.
3229 		 */
3230 		refaults = lruvec_page_state(target_lruvec,
3231 				WORKINGSET_ACTIVATE_FILE);
3232 		if (refaults != target_lruvec->refaults[1] ||
3233 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3234 			sc->may_deactivate |= DEACTIVATE_FILE;
3235 		else
3236 			sc->may_deactivate &= ~DEACTIVATE_FILE;
3237 	} else
3238 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3239 
3240 	/*
3241 	 * If we have plenty of inactive file pages that aren't
3242 	 * thrashing, try to reclaim those first before touching
3243 	 * anonymous pages.
3244 	 */
3245 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3246 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3247 		sc->cache_trim_mode = 1;
3248 	else
3249 		sc->cache_trim_mode = 0;
3250 
3251 	/*
3252 	 * Prevent the reclaimer from falling into the cache trap: as
3253 	 * cache pages start out inactive, every cache fault will tip
3254 	 * the scan balance towards the file LRU.  And as the file LRU
3255 	 * shrinks, so does the window for rotation from references.
3256 	 * This means we have a runaway feedback loop where a tiny
3257 	 * thrashing file LRU becomes infinitely more attractive than
3258 	 * anon pages.  Try to detect this based on file LRU size.
3259 	 */
3260 	if (!cgroup_reclaim(sc)) {
3261 		unsigned long total_high_wmark = 0;
3262 		unsigned long free, anon;
3263 		int z;
3264 
3265 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3266 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3267 			   node_page_state(pgdat, NR_INACTIVE_FILE);
3268 
3269 		for (z = 0; z < MAX_NR_ZONES; z++) {
3270 			struct zone *zone = &pgdat->node_zones[z];
3271 			if (!managed_zone(zone))
3272 				continue;
3273 
3274 			total_high_wmark += high_wmark_pages(zone);
3275 		}
3276 
3277 		/*
3278 		 * Consider anon: if that's low too, this isn't a
3279 		 * runaway file reclaim problem, but rather just
3280 		 * extreme pressure. Reclaim as per usual then.
3281 		 */
3282 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3283 
3284 		sc->file_is_tiny =
3285 			file + free <= total_high_wmark &&
3286 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
3287 			anon >> sc->priority;
3288 	}
3289 
3290 	shrink_node_memcgs(pgdat, sc);
3291 
3292 	if (reclaim_state) {
3293 		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3294 		reclaim_state->reclaimed_slab = 0;
3295 	}
3296 
3297 	/* Record the subtree's reclaim efficiency */
3298 	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3299 		   sc->nr_scanned - nr_scanned,
3300 		   sc->nr_reclaimed - nr_reclaimed);
3301 
3302 	if (sc->nr_reclaimed - nr_reclaimed)
3303 		reclaimable = true;
3304 
3305 	if (current_is_kswapd()) {
3306 		/*
3307 		 * If reclaim is isolating dirty pages under writeback,
3308 		 * it implies that the long-lived page allocation rate
3309 		 * is exceeding the page laundering rate. Either the
3310 		 * global limits are not being effective at throttling
3311 		 * processes due to the page distribution throughout
3312 		 * zones or there is heavy usage of a slow backing
3313 		 * device. The only option is to throttle from reclaim
3314 		 * context which is not ideal as there is no guarantee
3315 		 * the dirtying process is throttled in the same way
3316 		 * balance_dirty_pages() manages.
3317 		 *
3318 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3319 		 * count the number of pages under pages flagged for
3320 		 * immediate reclaim and stall if any are encountered
3321 		 * in the nr_immediate check below.
3322 		 */
3323 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3324 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3325 
3326 		/* Allow kswapd to start writing pages during reclaim.*/
3327 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3328 			set_bit(PGDAT_DIRTY, &pgdat->flags);
3329 
3330 		/*
3331 		 * If kswapd scans pages marked for immediate
3332 		 * reclaim and under writeback (nr_immediate), it
3333 		 * implies that pages are cycling through the LRU
3334 		 * faster than they are written so forcibly stall
3335 		 * until some pages complete writeback.
3336 		 */
3337 		if (sc->nr.immediate)
3338 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3339 	}
3340 
3341 	/*
3342 	 * Tag a node/memcg as congested if all the dirty pages were marked
3343 	 * for writeback and immediate reclaim (counted in nr.congested).
3344 	 *
3345 	 * Legacy memcg will stall in page writeback so avoid forcibly
3346 	 * stalling in reclaim_throttle().
3347 	 */
3348 	if ((current_is_kswapd() ||
3349 	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3350 	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3351 		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3352 
3353 	/*
3354 	 * Stall direct reclaim for IO completions if the lruvec is
3355 	 * node is congested. Allow kswapd to continue until it
3356 	 * starts encountering unqueued dirty pages or cycling through
3357 	 * the LRU too quickly.
3358 	 */
3359 	if (!current_is_kswapd() && current_may_throttle() &&
3360 	    !sc->hibernation_mode &&
3361 	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3362 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3363 
3364 	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3365 				    sc))
3366 		goto again;
3367 
3368 	/*
3369 	 * Kswapd gives up on balancing particular nodes after too
3370 	 * many failures to reclaim anything from them and goes to
3371 	 * sleep. On reclaim progress, reset the failure counter. A
3372 	 * successful direct reclaim run will revive a dormant kswapd.
3373 	 */
3374 	if (reclaimable)
3375 		pgdat->kswapd_failures = 0;
3376 }
3377 
3378 /*
3379  * Returns true if compaction should go ahead for a costly-order request, or
3380  * the allocation would already succeed without compaction. Return false if we
3381  * should reclaim first.
3382  */
3383 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3384 {
3385 	unsigned long watermark;
3386 	enum compact_result suitable;
3387 
3388 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3389 	if (suitable == COMPACT_SUCCESS)
3390 		/* Allocation should succeed already. Don't reclaim. */
3391 		return true;
3392 	if (suitable == COMPACT_SKIPPED)
3393 		/* Compaction cannot yet proceed. Do reclaim. */
3394 		return false;
3395 
3396 	/*
3397 	 * Compaction is already possible, but it takes time to run and there
3398 	 * are potentially other callers using the pages just freed. So proceed
3399 	 * with reclaim to make a buffer of free pages available to give
3400 	 * compaction a reasonable chance of completing and allocating the page.
3401 	 * Note that we won't actually reclaim the whole buffer in one attempt
3402 	 * as the target watermark in should_continue_reclaim() is lower. But if
3403 	 * we are already above the high+gap watermark, don't reclaim at all.
3404 	 */
3405 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3406 
3407 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3408 }
3409 
3410 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3411 {
3412 	/*
3413 	 * If reclaim is making progress greater than 12% efficiency then
3414 	 * wake all the NOPROGRESS throttled tasks.
3415 	 */
3416 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3417 		wait_queue_head_t *wqh;
3418 
3419 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3420 		if (waitqueue_active(wqh))
3421 			wake_up(wqh);
3422 
3423 		return;
3424 	}
3425 
3426 	/*
3427 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3428 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3429 	 * under writeback and marked for immediate reclaim at the tail of the
3430 	 * LRU.
3431 	 */
3432 	if (current_is_kswapd() || cgroup_reclaim(sc))
3433 		return;
3434 
3435 	/* Throttle if making no progress at high prioities. */
3436 	if (sc->priority == 1 && !sc->nr_reclaimed)
3437 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3438 }
3439 
3440 /*
3441  * This is the direct reclaim path, for page-allocating processes.  We only
3442  * try to reclaim pages from zones which will satisfy the caller's allocation
3443  * request.
3444  *
3445  * If a zone is deemed to be full of pinned pages then just give it a light
3446  * scan then give up on it.
3447  */
3448 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3449 {
3450 	struct zoneref *z;
3451 	struct zone *zone;
3452 	unsigned long nr_soft_reclaimed;
3453 	unsigned long nr_soft_scanned;
3454 	gfp_t orig_mask;
3455 	pg_data_t *last_pgdat = NULL;
3456 	pg_data_t *first_pgdat = NULL;
3457 
3458 	/*
3459 	 * If the number of buffer_heads in the machine exceeds the maximum
3460 	 * allowed level, force direct reclaim to scan the highmem zone as
3461 	 * highmem pages could be pinning lowmem pages storing buffer_heads
3462 	 */
3463 	orig_mask = sc->gfp_mask;
3464 	if (buffer_heads_over_limit) {
3465 		sc->gfp_mask |= __GFP_HIGHMEM;
3466 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3467 	}
3468 
3469 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3470 					sc->reclaim_idx, sc->nodemask) {
3471 		/*
3472 		 * Take care memory controller reclaiming has small influence
3473 		 * to global LRU.
3474 		 */
3475 		if (!cgroup_reclaim(sc)) {
3476 			if (!cpuset_zone_allowed(zone,
3477 						 GFP_KERNEL | __GFP_HARDWALL))
3478 				continue;
3479 
3480 			/*
3481 			 * If we already have plenty of memory free for
3482 			 * compaction in this zone, don't free any more.
3483 			 * Even though compaction is invoked for any
3484 			 * non-zero order, only frequent costly order
3485 			 * reclamation is disruptive enough to become a
3486 			 * noticeable problem, like transparent huge
3487 			 * page allocations.
3488 			 */
3489 			if (IS_ENABLED(CONFIG_COMPACTION) &&
3490 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3491 			    compaction_ready(zone, sc)) {
3492 				sc->compaction_ready = true;
3493 				continue;
3494 			}
3495 
3496 			/*
3497 			 * Shrink each node in the zonelist once. If the
3498 			 * zonelist is ordered by zone (not the default) then a
3499 			 * node may be shrunk multiple times but in that case
3500 			 * the user prefers lower zones being preserved.
3501 			 */
3502 			if (zone->zone_pgdat == last_pgdat)
3503 				continue;
3504 
3505 			/*
3506 			 * This steals pages from memory cgroups over softlimit
3507 			 * and returns the number of reclaimed pages and
3508 			 * scanned pages. This works for global memory pressure
3509 			 * and balancing, not for a memcg's limit.
3510 			 */
3511 			nr_soft_scanned = 0;
3512 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3513 						sc->order, sc->gfp_mask,
3514 						&nr_soft_scanned);
3515 			sc->nr_reclaimed += nr_soft_reclaimed;
3516 			sc->nr_scanned += nr_soft_scanned;
3517 			/* need some check for avoid more shrink_zone() */
3518 		}
3519 
3520 		if (!first_pgdat)
3521 			first_pgdat = zone->zone_pgdat;
3522 
3523 		/* See comment about same check for global reclaim above */
3524 		if (zone->zone_pgdat == last_pgdat)
3525 			continue;
3526 		last_pgdat = zone->zone_pgdat;
3527 		shrink_node(zone->zone_pgdat, sc);
3528 	}
3529 
3530 	if (first_pgdat)
3531 		consider_reclaim_throttle(first_pgdat, sc);
3532 
3533 	/*
3534 	 * Restore to original mask to avoid the impact on the caller if we
3535 	 * promoted it to __GFP_HIGHMEM.
3536 	 */
3537 	sc->gfp_mask = orig_mask;
3538 }
3539 
3540 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3541 {
3542 	struct lruvec *target_lruvec;
3543 	unsigned long refaults;
3544 
3545 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3546 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3547 	target_lruvec->refaults[0] = refaults;
3548 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3549 	target_lruvec->refaults[1] = refaults;
3550 }
3551 
3552 /*
3553  * This is the main entry point to direct page reclaim.
3554  *
3555  * If a full scan of the inactive list fails to free enough memory then we
3556  * are "out of memory" and something needs to be killed.
3557  *
3558  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3559  * high - the zone may be full of dirty or under-writeback pages, which this
3560  * caller can't do much about.  We kick the writeback threads and take explicit
3561  * naps in the hope that some of these pages can be written.  But if the
3562  * allocating task holds filesystem locks which prevent writeout this might not
3563  * work, and the allocation attempt will fail.
3564  *
3565  * returns:	0, if no pages reclaimed
3566  * 		else, the number of pages reclaimed
3567  */
3568 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3569 					  struct scan_control *sc)
3570 {
3571 	int initial_priority = sc->priority;
3572 	pg_data_t *last_pgdat;
3573 	struct zoneref *z;
3574 	struct zone *zone;
3575 retry:
3576 	delayacct_freepages_start();
3577 
3578 	if (!cgroup_reclaim(sc))
3579 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3580 
3581 	do {
3582 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3583 				sc->priority);
3584 		sc->nr_scanned = 0;
3585 		shrink_zones(zonelist, sc);
3586 
3587 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3588 			break;
3589 
3590 		if (sc->compaction_ready)
3591 			break;
3592 
3593 		/*
3594 		 * If we're getting trouble reclaiming, start doing
3595 		 * writepage even in laptop mode.
3596 		 */
3597 		if (sc->priority < DEF_PRIORITY - 2)
3598 			sc->may_writepage = 1;
3599 	} while (--sc->priority >= 0);
3600 
3601 	last_pgdat = NULL;
3602 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3603 					sc->nodemask) {
3604 		if (zone->zone_pgdat == last_pgdat)
3605 			continue;
3606 		last_pgdat = zone->zone_pgdat;
3607 
3608 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3609 
3610 		if (cgroup_reclaim(sc)) {
3611 			struct lruvec *lruvec;
3612 
3613 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3614 						   zone->zone_pgdat);
3615 			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3616 		}
3617 	}
3618 
3619 	delayacct_freepages_end();
3620 
3621 	if (sc->nr_reclaimed)
3622 		return sc->nr_reclaimed;
3623 
3624 	/* Aborted reclaim to try compaction? don't OOM, then */
3625 	if (sc->compaction_ready)
3626 		return 1;
3627 
3628 	/*
3629 	 * We make inactive:active ratio decisions based on the node's
3630 	 * composition of memory, but a restrictive reclaim_idx or a
3631 	 * memory.low cgroup setting can exempt large amounts of
3632 	 * memory from reclaim. Neither of which are very common, so
3633 	 * instead of doing costly eligibility calculations of the
3634 	 * entire cgroup subtree up front, we assume the estimates are
3635 	 * good, and retry with forcible deactivation if that fails.
3636 	 */
3637 	if (sc->skipped_deactivate) {
3638 		sc->priority = initial_priority;
3639 		sc->force_deactivate = 1;
3640 		sc->skipped_deactivate = 0;
3641 		goto retry;
3642 	}
3643 
3644 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3645 	if (sc->memcg_low_skipped) {
3646 		sc->priority = initial_priority;
3647 		sc->force_deactivate = 0;
3648 		sc->memcg_low_reclaim = 1;
3649 		sc->memcg_low_skipped = 0;
3650 		goto retry;
3651 	}
3652 
3653 	return 0;
3654 }
3655 
3656 static bool allow_direct_reclaim(pg_data_t *pgdat)
3657 {
3658 	struct zone *zone;
3659 	unsigned long pfmemalloc_reserve = 0;
3660 	unsigned long free_pages = 0;
3661 	int i;
3662 	bool wmark_ok;
3663 
3664 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3665 		return true;
3666 
3667 	for (i = 0; i <= ZONE_NORMAL; i++) {
3668 		zone = &pgdat->node_zones[i];
3669 		if (!managed_zone(zone))
3670 			continue;
3671 
3672 		if (!zone_reclaimable_pages(zone))
3673 			continue;
3674 
3675 		pfmemalloc_reserve += min_wmark_pages(zone);
3676 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3677 	}
3678 
3679 	/* If there are no reserves (unexpected config) then do not throttle */
3680 	if (!pfmemalloc_reserve)
3681 		return true;
3682 
3683 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3684 
3685 	/* kswapd must be awake if processes are being throttled */
3686 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3687 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3688 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3689 
3690 		wake_up_interruptible(&pgdat->kswapd_wait);
3691 	}
3692 
3693 	return wmark_ok;
3694 }
3695 
3696 /*
3697  * Throttle direct reclaimers if backing storage is backed by the network
3698  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3699  * depleted. kswapd will continue to make progress and wake the processes
3700  * when the low watermark is reached.
3701  *
3702  * Returns true if a fatal signal was delivered during throttling. If this
3703  * happens, the page allocator should not consider triggering the OOM killer.
3704  */
3705 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3706 					nodemask_t *nodemask)
3707 {
3708 	struct zoneref *z;
3709 	struct zone *zone;
3710 	pg_data_t *pgdat = NULL;
3711 
3712 	/*
3713 	 * Kernel threads should not be throttled as they may be indirectly
3714 	 * responsible for cleaning pages necessary for reclaim to make forward
3715 	 * progress. kjournald for example may enter direct reclaim while
3716 	 * committing a transaction where throttling it could forcing other
3717 	 * processes to block on log_wait_commit().
3718 	 */
3719 	if (current->flags & PF_KTHREAD)
3720 		goto out;
3721 
3722 	/*
3723 	 * If a fatal signal is pending, this process should not throttle.
3724 	 * It should return quickly so it can exit and free its memory
3725 	 */
3726 	if (fatal_signal_pending(current))
3727 		goto out;
3728 
3729 	/*
3730 	 * Check if the pfmemalloc reserves are ok by finding the first node
3731 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3732 	 * GFP_KERNEL will be required for allocating network buffers when
3733 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3734 	 *
3735 	 * Throttling is based on the first usable node and throttled processes
3736 	 * wait on a queue until kswapd makes progress and wakes them. There
3737 	 * is an affinity then between processes waking up and where reclaim
3738 	 * progress has been made assuming the process wakes on the same node.
3739 	 * More importantly, processes running on remote nodes will not compete
3740 	 * for remote pfmemalloc reserves and processes on different nodes
3741 	 * should make reasonable progress.
3742 	 */
3743 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3744 					gfp_zone(gfp_mask), nodemask) {
3745 		if (zone_idx(zone) > ZONE_NORMAL)
3746 			continue;
3747 
3748 		/* Throttle based on the first usable node */
3749 		pgdat = zone->zone_pgdat;
3750 		if (allow_direct_reclaim(pgdat))
3751 			goto out;
3752 		break;
3753 	}
3754 
3755 	/* If no zone was usable by the allocation flags then do not throttle */
3756 	if (!pgdat)
3757 		goto out;
3758 
3759 	/* Account for the throttling */
3760 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3761 
3762 	/*
3763 	 * If the caller cannot enter the filesystem, it's possible that it
3764 	 * is due to the caller holding an FS lock or performing a journal
3765 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3766 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3767 	 * blocked waiting on the same lock. Instead, throttle for up to a
3768 	 * second before continuing.
3769 	 */
3770 	if (!(gfp_mask & __GFP_FS))
3771 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3772 			allow_direct_reclaim(pgdat), HZ);
3773 	else
3774 		/* Throttle until kswapd wakes the process */
3775 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3776 			allow_direct_reclaim(pgdat));
3777 
3778 	if (fatal_signal_pending(current))
3779 		return true;
3780 
3781 out:
3782 	return false;
3783 }
3784 
3785 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3786 				gfp_t gfp_mask, nodemask_t *nodemask)
3787 {
3788 	unsigned long nr_reclaimed;
3789 	struct scan_control sc = {
3790 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3791 		.gfp_mask = current_gfp_context(gfp_mask),
3792 		.reclaim_idx = gfp_zone(gfp_mask),
3793 		.order = order,
3794 		.nodemask = nodemask,
3795 		.priority = DEF_PRIORITY,
3796 		.may_writepage = !laptop_mode,
3797 		.may_unmap = 1,
3798 		.may_swap = 1,
3799 	};
3800 
3801 	/*
3802 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3803 	 * Confirm they are large enough for max values.
3804 	 */
3805 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3806 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3807 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3808 
3809 	/*
3810 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3811 	 * 1 is returned so that the page allocator does not OOM kill at this
3812 	 * point.
3813 	 */
3814 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3815 		return 1;
3816 
3817 	set_task_reclaim_state(current, &sc.reclaim_state);
3818 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3819 
3820 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3821 
3822 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3823 	set_task_reclaim_state(current, NULL);
3824 
3825 	return nr_reclaimed;
3826 }
3827 
3828 #ifdef CONFIG_MEMCG
3829 
3830 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3831 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3832 						gfp_t gfp_mask, bool noswap,
3833 						pg_data_t *pgdat,
3834 						unsigned long *nr_scanned)
3835 {
3836 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3837 	struct scan_control sc = {
3838 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3839 		.target_mem_cgroup = memcg,
3840 		.may_writepage = !laptop_mode,
3841 		.may_unmap = 1,
3842 		.reclaim_idx = MAX_NR_ZONES - 1,
3843 		.may_swap = !noswap,
3844 	};
3845 
3846 	WARN_ON_ONCE(!current->reclaim_state);
3847 
3848 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3849 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3850 
3851 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3852 						      sc.gfp_mask);
3853 
3854 	/*
3855 	 * NOTE: Although we can get the priority field, using it
3856 	 * here is not a good idea, since it limits the pages we can scan.
3857 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3858 	 * will pick up pages from other mem cgroup's as well. We hack
3859 	 * the priority and make it zero.
3860 	 */
3861 	shrink_lruvec(lruvec, &sc);
3862 
3863 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3864 
3865 	*nr_scanned = sc.nr_scanned;
3866 
3867 	return sc.nr_reclaimed;
3868 }
3869 
3870 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3871 					   unsigned long nr_pages,
3872 					   gfp_t gfp_mask,
3873 					   bool may_swap)
3874 {
3875 	unsigned long nr_reclaimed;
3876 	unsigned int noreclaim_flag;
3877 	struct scan_control sc = {
3878 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3879 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3880 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3881 		.reclaim_idx = MAX_NR_ZONES - 1,
3882 		.target_mem_cgroup = memcg,
3883 		.priority = DEF_PRIORITY,
3884 		.may_writepage = !laptop_mode,
3885 		.may_unmap = 1,
3886 		.may_swap = may_swap,
3887 	};
3888 	/*
3889 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3890 	 * equal pressure on all the nodes. This is based on the assumption that
3891 	 * the reclaim does not bail out early.
3892 	 */
3893 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3894 
3895 	set_task_reclaim_state(current, &sc.reclaim_state);
3896 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3897 	noreclaim_flag = memalloc_noreclaim_save();
3898 
3899 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3900 
3901 	memalloc_noreclaim_restore(noreclaim_flag);
3902 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3903 	set_task_reclaim_state(current, NULL);
3904 
3905 	return nr_reclaimed;
3906 }
3907 #endif
3908 
3909 static void age_active_anon(struct pglist_data *pgdat,
3910 				struct scan_control *sc)
3911 {
3912 	struct mem_cgroup *memcg;
3913 	struct lruvec *lruvec;
3914 
3915 	if (!can_age_anon_pages(pgdat, sc))
3916 		return;
3917 
3918 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3919 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3920 		return;
3921 
3922 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3923 	do {
3924 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3925 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3926 				   sc, LRU_ACTIVE_ANON);
3927 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3928 	} while (memcg);
3929 }
3930 
3931 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3932 {
3933 	int i;
3934 	struct zone *zone;
3935 
3936 	/*
3937 	 * Check for watermark boosts top-down as the higher zones
3938 	 * are more likely to be boosted. Both watermarks and boosts
3939 	 * should not be checked at the same time as reclaim would
3940 	 * start prematurely when there is no boosting and a lower
3941 	 * zone is balanced.
3942 	 */
3943 	for (i = highest_zoneidx; i >= 0; i--) {
3944 		zone = pgdat->node_zones + i;
3945 		if (!managed_zone(zone))
3946 			continue;
3947 
3948 		if (zone->watermark_boost)
3949 			return true;
3950 	}
3951 
3952 	return false;
3953 }
3954 
3955 /*
3956  * Returns true if there is an eligible zone balanced for the request order
3957  * and highest_zoneidx
3958  */
3959 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3960 {
3961 	int i;
3962 	unsigned long mark = -1;
3963 	struct zone *zone;
3964 
3965 	/*
3966 	 * Check watermarks bottom-up as lower zones are more likely to
3967 	 * meet watermarks.
3968 	 */
3969 	for (i = 0; i <= highest_zoneidx; i++) {
3970 		zone = pgdat->node_zones + i;
3971 
3972 		if (!managed_zone(zone))
3973 			continue;
3974 
3975 		mark = high_wmark_pages(zone);
3976 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3977 			return true;
3978 	}
3979 
3980 	/*
3981 	 * If a node has no populated zone within highest_zoneidx, it does not
3982 	 * need balancing by definition. This can happen if a zone-restricted
3983 	 * allocation tries to wake a remote kswapd.
3984 	 */
3985 	if (mark == -1)
3986 		return true;
3987 
3988 	return false;
3989 }
3990 
3991 /* Clear pgdat state for congested, dirty or under writeback. */
3992 static void clear_pgdat_congested(pg_data_t *pgdat)
3993 {
3994 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3995 
3996 	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3997 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3998 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3999 }
4000 
4001 /*
4002  * Prepare kswapd for sleeping. This verifies that there are no processes
4003  * waiting in throttle_direct_reclaim() and that watermarks have been met.
4004  *
4005  * Returns true if kswapd is ready to sleep
4006  */
4007 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
4008 				int highest_zoneidx)
4009 {
4010 	/*
4011 	 * The throttled processes are normally woken up in balance_pgdat() as
4012 	 * soon as allow_direct_reclaim() is true. But there is a potential
4013 	 * race between when kswapd checks the watermarks and a process gets
4014 	 * throttled. There is also a potential race if processes get
4015 	 * throttled, kswapd wakes, a large process exits thereby balancing the
4016 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
4017 	 * the wake up checks. If kswapd is going to sleep, no process should
4018 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
4019 	 * the wake up is premature, processes will wake kswapd and get
4020 	 * throttled again. The difference from wake ups in balance_pgdat() is
4021 	 * that here we are under prepare_to_wait().
4022 	 */
4023 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
4024 		wake_up_all(&pgdat->pfmemalloc_wait);
4025 
4026 	/* Hopeless node, leave it to direct reclaim */
4027 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
4028 		return true;
4029 
4030 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
4031 		clear_pgdat_congested(pgdat);
4032 		return true;
4033 	}
4034 
4035 	return false;
4036 }
4037 
4038 /*
4039  * kswapd shrinks a node of pages that are at or below the highest usable
4040  * zone that is currently unbalanced.
4041  *
4042  * Returns true if kswapd scanned at least the requested number of pages to
4043  * reclaim or if the lack of progress was due to pages under writeback.
4044  * This is used to determine if the scanning priority needs to be raised.
4045  */
4046 static bool kswapd_shrink_node(pg_data_t *pgdat,
4047 			       struct scan_control *sc)
4048 {
4049 	struct zone *zone;
4050 	int z;
4051 
4052 	/* Reclaim a number of pages proportional to the number of zones */
4053 	sc->nr_to_reclaim = 0;
4054 	for (z = 0; z <= sc->reclaim_idx; z++) {
4055 		zone = pgdat->node_zones + z;
4056 		if (!managed_zone(zone))
4057 			continue;
4058 
4059 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4060 	}
4061 
4062 	/*
4063 	 * Historically care was taken to put equal pressure on all zones but
4064 	 * now pressure is applied based on node LRU order.
4065 	 */
4066 	shrink_node(pgdat, sc);
4067 
4068 	/*
4069 	 * Fragmentation may mean that the system cannot be rebalanced for
4070 	 * high-order allocations. If twice the allocation size has been
4071 	 * reclaimed then recheck watermarks only at order-0 to prevent
4072 	 * excessive reclaim. Assume that a process requested a high-order
4073 	 * can direct reclaim/compact.
4074 	 */
4075 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4076 		sc->order = 0;
4077 
4078 	return sc->nr_scanned >= sc->nr_to_reclaim;
4079 }
4080 
4081 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4082 static inline void
4083 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4084 {
4085 	int i;
4086 	struct zone *zone;
4087 
4088 	for (i = 0; i <= highest_zoneidx; i++) {
4089 		zone = pgdat->node_zones + i;
4090 
4091 		if (!managed_zone(zone))
4092 			continue;
4093 
4094 		if (active)
4095 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4096 		else
4097 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4098 	}
4099 }
4100 
4101 static inline void
4102 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4103 {
4104 	update_reclaim_active(pgdat, highest_zoneidx, true);
4105 }
4106 
4107 static inline void
4108 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4109 {
4110 	update_reclaim_active(pgdat, highest_zoneidx, false);
4111 }
4112 
4113 /*
4114  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4115  * that are eligible for use by the caller until at least one zone is
4116  * balanced.
4117  *
4118  * Returns the order kswapd finished reclaiming at.
4119  *
4120  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
4121  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4122  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4123  * or lower is eligible for reclaim until at least one usable zone is
4124  * balanced.
4125  */
4126 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4127 {
4128 	int i;
4129 	unsigned long nr_soft_reclaimed;
4130 	unsigned long nr_soft_scanned;
4131 	unsigned long pflags;
4132 	unsigned long nr_boost_reclaim;
4133 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4134 	bool boosted;
4135 	struct zone *zone;
4136 	struct scan_control sc = {
4137 		.gfp_mask = GFP_KERNEL,
4138 		.order = order,
4139 		.may_unmap = 1,
4140 	};
4141 
4142 	set_task_reclaim_state(current, &sc.reclaim_state);
4143 	psi_memstall_enter(&pflags);
4144 	__fs_reclaim_acquire(_THIS_IP_);
4145 
4146 	count_vm_event(PAGEOUTRUN);
4147 
4148 	/*
4149 	 * Account for the reclaim boost. Note that the zone boost is left in
4150 	 * place so that parallel allocations that are near the watermark will
4151 	 * stall or direct reclaim until kswapd is finished.
4152 	 */
4153 	nr_boost_reclaim = 0;
4154 	for (i = 0; i <= highest_zoneidx; i++) {
4155 		zone = pgdat->node_zones + i;
4156 		if (!managed_zone(zone))
4157 			continue;
4158 
4159 		nr_boost_reclaim += zone->watermark_boost;
4160 		zone_boosts[i] = zone->watermark_boost;
4161 	}
4162 	boosted = nr_boost_reclaim;
4163 
4164 restart:
4165 	set_reclaim_active(pgdat, highest_zoneidx);
4166 	sc.priority = DEF_PRIORITY;
4167 	do {
4168 		unsigned long nr_reclaimed = sc.nr_reclaimed;
4169 		bool raise_priority = true;
4170 		bool balanced;
4171 		bool ret;
4172 
4173 		sc.reclaim_idx = highest_zoneidx;
4174 
4175 		/*
4176 		 * If the number of buffer_heads exceeds the maximum allowed
4177 		 * then consider reclaiming from all zones. This has a dual
4178 		 * purpose -- on 64-bit systems it is expected that
4179 		 * buffer_heads are stripped during active rotation. On 32-bit
4180 		 * systems, highmem pages can pin lowmem memory and shrinking
4181 		 * buffers can relieve lowmem pressure. Reclaim may still not
4182 		 * go ahead if all eligible zones for the original allocation
4183 		 * request are balanced to avoid excessive reclaim from kswapd.
4184 		 */
4185 		if (buffer_heads_over_limit) {
4186 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4187 				zone = pgdat->node_zones + i;
4188 				if (!managed_zone(zone))
4189 					continue;
4190 
4191 				sc.reclaim_idx = i;
4192 				break;
4193 			}
4194 		}
4195 
4196 		/*
4197 		 * If the pgdat is imbalanced then ignore boosting and preserve
4198 		 * the watermarks for a later time and restart. Note that the
4199 		 * zone watermarks will be still reset at the end of balancing
4200 		 * on the grounds that the normal reclaim should be enough to
4201 		 * re-evaluate if boosting is required when kswapd next wakes.
4202 		 */
4203 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4204 		if (!balanced && nr_boost_reclaim) {
4205 			nr_boost_reclaim = 0;
4206 			goto restart;
4207 		}
4208 
4209 		/*
4210 		 * If boosting is not active then only reclaim if there are no
4211 		 * eligible zones. Note that sc.reclaim_idx is not used as
4212 		 * buffer_heads_over_limit may have adjusted it.
4213 		 */
4214 		if (!nr_boost_reclaim && balanced)
4215 			goto out;
4216 
4217 		/* Limit the priority of boosting to avoid reclaim writeback */
4218 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4219 			raise_priority = false;
4220 
4221 		/*
4222 		 * Do not writeback or swap pages for boosted reclaim. The
4223 		 * intent is to relieve pressure not issue sub-optimal IO
4224 		 * from reclaim context. If no pages are reclaimed, the
4225 		 * reclaim will be aborted.
4226 		 */
4227 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4228 		sc.may_swap = !nr_boost_reclaim;
4229 
4230 		/*
4231 		 * Do some background aging of the anon list, to give
4232 		 * pages a chance to be referenced before reclaiming. All
4233 		 * pages are rotated regardless of classzone as this is
4234 		 * about consistent aging.
4235 		 */
4236 		age_active_anon(pgdat, &sc);
4237 
4238 		/*
4239 		 * If we're getting trouble reclaiming, start doing writepage
4240 		 * even in laptop mode.
4241 		 */
4242 		if (sc.priority < DEF_PRIORITY - 2)
4243 			sc.may_writepage = 1;
4244 
4245 		/* Call soft limit reclaim before calling shrink_node. */
4246 		sc.nr_scanned = 0;
4247 		nr_soft_scanned = 0;
4248 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4249 						sc.gfp_mask, &nr_soft_scanned);
4250 		sc.nr_reclaimed += nr_soft_reclaimed;
4251 
4252 		/*
4253 		 * There should be no need to raise the scanning priority if
4254 		 * enough pages are already being scanned that that high
4255 		 * watermark would be met at 100% efficiency.
4256 		 */
4257 		if (kswapd_shrink_node(pgdat, &sc))
4258 			raise_priority = false;
4259 
4260 		/*
4261 		 * If the low watermark is met there is no need for processes
4262 		 * to be throttled on pfmemalloc_wait as they should not be
4263 		 * able to safely make forward progress. Wake them
4264 		 */
4265 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4266 				allow_direct_reclaim(pgdat))
4267 			wake_up_all(&pgdat->pfmemalloc_wait);
4268 
4269 		/* Check if kswapd should be suspending */
4270 		__fs_reclaim_release(_THIS_IP_);
4271 		ret = try_to_freeze();
4272 		__fs_reclaim_acquire(_THIS_IP_);
4273 		if (ret || kthread_should_stop())
4274 			break;
4275 
4276 		/*
4277 		 * Raise priority if scanning rate is too low or there was no
4278 		 * progress in reclaiming pages
4279 		 */
4280 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4281 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4282 
4283 		/*
4284 		 * If reclaim made no progress for a boost, stop reclaim as
4285 		 * IO cannot be queued and it could be an infinite loop in
4286 		 * extreme circumstances.
4287 		 */
4288 		if (nr_boost_reclaim && !nr_reclaimed)
4289 			break;
4290 
4291 		if (raise_priority || !nr_reclaimed)
4292 			sc.priority--;
4293 	} while (sc.priority >= 1);
4294 
4295 	if (!sc.nr_reclaimed)
4296 		pgdat->kswapd_failures++;
4297 
4298 out:
4299 	clear_reclaim_active(pgdat, highest_zoneidx);
4300 
4301 	/* If reclaim was boosted, account for the reclaim done in this pass */
4302 	if (boosted) {
4303 		unsigned long flags;
4304 
4305 		for (i = 0; i <= highest_zoneidx; i++) {
4306 			if (!zone_boosts[i])
4307 				continue;
4308 
4309 			/* Increments are under the zone lock */
4310 			zone = pgdat->node_zones + i;
4311 			spin_lock_irqsave(&zone->lock, flags);
4312 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4313 			spin_unlock_irqrestore(&zone->lock, flags);
4314 		}
4315 
4316 		/*
4317 		 * As there is now likely space, wakeup kcompact to defragment
4318 		 * pageblocks.
4319 		 */
4320 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4321 	}
4322 
4323 	snapshot_refaults(NULL, pgdat);
4324 	__fs_reclaim_release(_THIS_IP_);
4325 	psi_memstall_leave(&pflags);
4326 	set_task_reclaim_state(current, NULL);
4327 
4328 	/*
4329 	 * Return the order kswapd stopped reclaiming at as
4330 	 * prepare_kswapd_sleep() takes it into account. If another caller
4331 	 * entered the allocator slow path while kswapd was awake, order will
4332 	 * remain at the higher level.
4333 	 */
4334 	return sc.order;
4335 }
4336 
4337 /*
4338  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4339  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4340  * not a valid index then either kswapd runs for first time or kswapd couldn't
4341  * sleep after previous reclaim attempt (node is still unbalanced). In that
4342  * case return the zone index of the previous kswapd reclaim cycle.
4343  */
4344 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4345 					   enum zone_type prev_highest_zoneidx)
4346 {
4347 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4348 
4349 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4350 }
4351 
4352 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4353 				unsigned int highest_zoneidx)
4354 {
4355 	long remaining = 0;
4356 	DEFINE_WAIT(wait);
4357 
4358 	if (freezing(current) || kthread_should_stop())
4359 		return;
4360 
4361 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4362 
4363 	/*
4364 	 * Try to sleep for a short interval. Note that kcompactd will only be
4365 	 * woken if it is possible to sleep for a short interval. This is
4366 	 * deliberate on the assumption that if reclaim cannot keep an
4367 	 * eligible zone balanced that it's also unlikely that compaction will
4368 	 * succeed.
4369 	 */
4370 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4371 		/*
4372 		 * Compaction records what page blocks it recently failed to
4373 		 * isolate pages from and skips them in the future scanning.
4374 		 * When kswapd is going to sleep, it is reasonable to assume
4375 		 * that pages and compaction may succeed so reset the cache.
4376 		 */
4377 		reset_isolation_suitable(pgdat);
4378 
4379 		/*
4380 		 * We have freed the memory, now we should compact it to make
4381 		 * allocation of the requested order possible.
4382 		 */
4383 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4384 
4385 		remaining = schedule_timeout(HZ/10);
4386 
4387 		/*
4388 		 * If woken prematurely then reset kswapd_highest_zoneidx and
4389 		 * order. The values will either be from a wakeup request or
4390 		 * the previous request that slept prematurely.
4391 		 */
4392 		if (remaining) {
4393 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4394 					kswapd_highest_zoneidx(pgdat,
4395 							highest_zoneidx));
4396 
4397 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4398 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4399 		}
4400 
4401 		finish_wait(&pgdat->kswapd_wait, &wait);
4402 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4403 	}
4404 
4405 	/*
4406 	 * After a short sleep, check if it was a premature sleep. If not, then
4407 	 * go fully to sleep until explicitly woken up.
4408 	 */
4409 	if (!remaining &&
4410 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4411 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4412 
4413 		/*
4414 		 * vmstat counters are not perfectly accurate and the estimated
4415 		 * value for counters such as NR_FREE_PAGES can deviate from the
4416 		 * true value by nr_online_cpus * threshold. To avoid the zone
4417 		 * watermarks being breached while under pressure, we reduce the
4418 		 * per-cpu vmstat threshold while kswapd is awake and restore
4419 		 * them before going back to sleep.
4420 		 */
4421 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4422 
4423 		if (!kthread_should_stop())
4424 			schedule();
4425 
4426 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4427 	} else {
4428 		if (remaining)
4429 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4430 		else
4431 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4432 	}
4433 	finish_wait(&pgdat->kswapd_wait, &wait);
4434 }
4435 
4436 /*
4437  * The background pageout daemon, started as a kernel thread
4438  * from the init process.
4439  *
4440  * This basically trickles out pages so that we have _some_
4441  * free memory available even if there is no other activity
4442  * that frees anything up. This is needed for things like routing
4443  * etc, where we otherwise might have all activity going on in
4444  * asynchronous contexts that cannot page things out.
4445  *
4446  * If there are applications that are active memory-allocators
4447  * (most normal use), this basically shouldn't matter.
4448  */
4449 static int kswapd(void *p)
4450 {
4451 	unsigned int alloc_order, reclaim_order;
4452 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4453 	pg_data_t *pgdat = (pg_data_t *)p;
4454 	struct task_struct *tsk = current;
4455 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4456 
4457 	if (!cpumask_empty(cpumask))
4458 		set_cpus_allowed_ptr(tsk, cpumask);
4459 
4460 	/*
4461 	 * Tell the memory management that we're a "memory allocator",
4462 	 * and that if we need more memory we should get access to it
4463 	 * regardless (see "__alloc_pages()"). "kswapd" should
4464 	 * never get caught in the normal page freeing logic.
4465 	 *
4466 	 * (Kswapd normally doesn't need memory anyway, but sometimes
4467 	 * you need a small amount of memory in order to be able to
4468 	 * page out something else, and this flag essentially protects
4469 	 * us from recursively trying to free more memory as we're
4470 	 * trying to free the first piece of memory in the first place).
4471 	 */
4472 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4473 	set_freezable();
4474 
4475 	WRITE_ONCE(pgdat->kswapd_order, 0);
4476 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4477 	atomic_set(&pgdat->nr_writeback_throttled, 0);
4478 	for ( ; ; ) {
4479 		bool ret;
4480 
4481 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4482 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4483 							highest_zoneidx);
4484 
4485 kswapd_try_sleep:
4486 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4487 					highest_zoneidx);
4488 
4489 		/* Read the new order and highest_zoneidx */
4490 		alloc_order = READ_ONCE(pgdat->kswapd_order);
4491 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4492 							highest_zoneidx);
4493 		WRITE_ONCE(pgdat->kswapd_order, 0);
4494 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4495 
4496 		ret = try_to_freeze();
4497 		if (kthread_should_stop())
4498 			break;
4499 
4500 		/*
4501 		 * We can speed up thawing tasks if we don't call balance_pgdat
4502 		 * after returning from the refrigerator
4503 		 */
4504 		if (ret)
4505 			continue;
4506 
4507 		/*
4508 		 * Reclaim begins at the requested order but if a high-order
4509 		 * reclaim fails then kswapd falls back to reclaiming for
4510 		 * order-0. If that happens, kswapd will consider sleeping
4511 		 * for the order it finished reclaiming at (reclaim_order)
4512 		 * but kcompactd is woken to compact for the original
4513 		 * request (alloc_order).
4514 		 */
4515 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4516 						alloc_order);
4517 		reclaim_order = balance_pgdat(pgdat, alloc_order,
4518 						highest_zoneidx);
4519 		if (reclaim_order < alloc_order)
4520 			goto kswapd_try_sleep;
4521 	}
4522 
4523 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4524 
4525 	return 0;
4526 }
4527 
4528 /*
4529  * A zone is low on free memory or too fragmented for high-order memory.  If
4530  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4531  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
4532  * has failed or is not needed, still wake up kcompactd if only compaction is
4533  * needed.
4534  */
4535 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4536 		   enum zone_type highest_zoneidx)
4537 {
4538 	pg_data_t *pgdat;
4539 	enum zone_type curr_idx;
4540 
4541 	if (!managed_zone(zone))
4542 		return;
4543 
4544 	if (!cpuset_zone_allowed(zone, gfp_flags))
4545 		return;
4546 
4547 	pgdat = zone->zone_pgdat;
4548 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4549 
4550 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4551 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4552 
4553 	if (READ_ONCE(pgdat->kswapd_order) < order)
4554 		WRITE_ONCE(pgdat->kswapd_order, order);
4555 
4556 	if (!waitqueue_active(&pgdat->kswapd_wait))
4557 		return;
4558 
4559 	/* Hopeless node, leave it to direct reclaim if possible */
4560 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4561 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4562 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4563 		/*
4564 		 * There may be plenty of free memory available, but it's too
4565 		 * fragmented for high-order allocations.  Wake up kcompactd
4566 		 * and rely on compaction_suitable() to determine if it's
4567 		 * needed.  If it fails, it will defer subsequent attempts to
4568 		 * ratelimit its work.
4569 		 */
4570 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4571 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4572 		return;
4573 	}
4574 
4575 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4576 				      gfp_flags);
4577 	wake_up_interruptible(&pgdat->kswapd_wait);
4578 }
4579 
4580 #ifdef CONFIG_HIBERNATION
4581 /*
4582  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4583  * freed pages.
4584  *
4585  * Rather than trying to age LRUs the aim is to preserve the overall
4586  * LRU order by reclaiming preferentially
4587  * inactive > active > active referenced > active mapped
4588  */
4589 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4590 {
4591 	struct scan_control sc = {
4592 		.nr_to_reclaim = nr_to_reclaim,
4593 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4594 		.reclaim_idx = MAX_NR_ZONES - 1,
4595 		.priority = DEF_PRIORITY,
4596 		.may_writepage = 1,
4597 		.may_unmap = 1,
4598 		.may_swap = 1,
4599 		.hibernation_mode = 1,
4600 	};
4601 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4602 	unsigned long nr_reclaimed;
4603 	unsigned int noreclaim_flag;
4604 
4605 	fs_reclaim_acquire(sc.gfp_mask);
4606 	noreclaim_flag = memalloc_noreclaim_save();
4607 	set_task_reclaim_state(current, &sc.reclaim_state);
4608 
4609 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4610 
4611 	set_task_reclaim_state(current, NULL);
4612 	memalloc_noreclaim_restore(noreclaim_flag);
4613 	fs_reclaim_release(sc.gfp_mask);
4614 
4615 	return nr_reclaimed;
4616 }
4617 #endif /* CONFIG_HIBERNATION */
4618 
4619 /*
4620  * This kswapd start function will be called by init and node-hot-add.
4621  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4622  */
4623 void kswapd_run(int nid)
4624 {
4625 	pg_data_t *pgdat = NODE_DATA(nid);
4626 
4627 	if (pgdat->kswapd)
4628 		return;
4629 
4630 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4631 	if (IS_ERR(pgdat->kswapd)) {
4632 		/* failure at boot is fatal */
4633 		BUG_ON(system_state < SYSTEM_RUNNING);
4634 		pr_err("Failed to start kswapd on node %d\n", nid);
4635 		pgdat->kswapd = NULL;
4636 	}
4637 }
4638 
4639 /*
4640  * Called by memory hotplug when all memory in a node is offlined.  Caller must
4641  * hold mem_hotplug_begin/end().
4642  */
4643 void kswapd_stop(int nid)
4644 {
4645 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4646 
4647 	if (kswapd) {
4648 		kthread_stop(kswapd);
4649 		NODE_DATA(nid)->kswapd = NULL;
4650 	}
4651 }
4652 
4653 static int __init kswapd_init(void)
4654 {
4655 	int nid;
4656 
4657 	swap_setup();
4658 	for_each_node_state(nid, N_MEMORY)
4659  		kswapd_run(nid);
4660 	return 0;
4661 }
4662 
4663 module_init(kswapd_init)
4664 
4665 #ifdef CONFIG_NUMA
4666 /*
4667  * Node reclaim mode
4668  *
4669  * If non-zero call node_reclaim when the number of free pages falls below
4670  * the watermarks.
4671  */
4672 int node_reclaim_mode __read_mostly;
4673 
4674 /*
4675  * Priority for NODE_RECLAIM. This determines the fraction of pages
4676  * of a node considered for each zone_reclaim. 4 scans 1/16th of
4677  * a zone.
4678  */
4679 #define NODE_RECLAIM_PRIORITY 4
4680 
4681 /*
4682  * Percentage of pages in a zone that must be unmapped for node_reclaim to
4683  * occur.
4684  */
4685 int sysctl_min_unmapped_ratio = 1;
4686 
4687 /*
4688  * If the number of slab pages in a zone grows beyond this percentage then
4689  * slab reclaim needs to occur.
4690  */
4691 int sysctl_min_slab_ratio = 5;
4692 
4693 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4694 {
4695 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4696 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4697 		node_page_state(pgdat, NR_ACTIVE_FILE);
4698 
4699 	/*
4700 	 * It's possible for there to be more file mapped pages than
4701 	 * accounted for by the pages on the file LRU lists because
4702 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4703 	 */
4704 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4705 }
4706 
4707 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4708 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4709 {
4710 	unsigned long nr_pagecache_reclaimable;
4711 	unsigned long delta = 0;
4712 
4713 	/*
4714 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4715 	 * potentially reclaimable. Otherwise, we have to worry about
4716 	 * pages like swapcache and node_unmapped_file_pages() provides
4717 	 * a better estimate
4718 	 */
4719 	if (node_reclaim_mode & RECLAIM_UNMAP)
4720 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4721 	else
4722 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4723 
4724 	/* If we can't clean pages, remove dirty pages from consideration */
4725 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4726 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4727 
4728 	/* Watch for any possible underflows due to delta */
4729 	if (unlikely(delta > nr_pagecache_reclaimable))
4730 		delta = nr_pagecache_reclaimable;
4731 
4732 	return nr_pagecache_reclaimable - delta;
4733 }
4734 
4735 /*
4736  * Try to free up some pages from this node through reclaim.
4737  */
4738 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4739 {
4740 	/* Minimum pages needed in order to stay on node */
4741 	const unsigned long nr_pages = 1 << order;
4742 	struct task_struct *p = current;
4743 	unsigned int noreclaim_flag;
4744 	struct scan_control sc = {
4745 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4746 		.gfp_mask = current_gfp_context(gfp_mask),
4747 		.order = order,
4748 		.priority = NODE_RECLAIM_PRIORITY,
4749 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4750 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4751 		.may_swap = 1,
4752 		.reclaim_idx = gfp_zone(gfp_mask),
4753 	};
4754 	unsigned long pflags;
4755 
4756 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4757 					   sc.gfp_mask);
4758 
4759 	cond_resched();
4760 	psi_memstall_enter(&pflags);
4761 	fs_reclaim_acquire(sc.gfp_mask);
4762 	/*
4763 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4764 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4765 	 * and RECLAIM_UNMAP.
4766 	 */
4767 	noreclaim_flag = memalloc_noreclaim_save();
4768 	p->flags |= PF_SWAPWRITE;
4769 	set_task_reclaim_state(p, &sc.reclaim_state);
4770 
4771 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4772 		/*
4773 		 * Free memory by calling shrink node with increasing
4774 		 * priorities until we have enough memory freed.
4775 		 */
4776 		do {
4777 			shrink_node(pgdat, &sc);
4778 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4779 	}
4780 
4781 	set_task_reclaim_state(p, NULL);
4782 	current->flags &= ~PF_SWAPWRITE;
4783 	memalloc_noreclaim_restore(noreclaim_flag);
4784 	fs_reclaim_release(sc.gfp_mask);
4785 	psi_memstall_leave(&pflags);
4786 
4787 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4788 
4789 	return sc.nr_reclaimed >= nr_pages;
4790 }
4791 
4792 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4793 {
4794 	int ret;
4795 
4796 	/*
4797 	 * Node reclaim reclaims unmapped file backed pages and
4798 	 * slab pages if we are over the defined limits.
4799 	 *
4800 	 * A small portion of unmapped file backed pages is needed for
4801 	 * file I/O otherwise pages read by file I/O will be immediately
4802 	 * thrown out if the node is overallocated. So we do not reclaim
4803 	 * if less than a specified percentage of the node is used by
4804 	 * unmapped file backed pages.
4805 	 */
4806 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4807 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4808 	    pgdat->min_slab_pages)
4809 		return NODE_RECLAIM_FULL;
4810 
4811 	/*
4812 	 * Do not scan if the allocation should not be delayed.
4813 	 */
4814 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4815 		return NODE_RECLAIM_NOSCAN;
4816 
4817 	/*
4818 	 * Only run node reclaim on the local node or on nodes that do not
4819 	 * have associated processors. This will favor the local processor
4820 	 * over remote processors and spread off node memory allocations
4821 	 * as wide as possible.
4822 	 */
4823 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4824 		return NODE_RECLAIM_NOSCAN;
4825 
4826 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4827 		return NODE_RECLAIM_NOSCAN;
4828 
4829 	ret = __node_reclaim(pgdat, gfp_mask, order);
4830 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4831 
4832 	if (!ret)
4833 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4834 
4835 	return ret;
4836 }
4837 #endif
4838 
4839 /**
4840  * check_move_unevictable_pages - check pages for evictability and move to
4841  * appropriate zone lru list
4842  * @pvec: pagevec with lru pages to check
4843  *
4844  * Checks pages for evictability, if an evictable page is in the unevictable
4845  * lru list, moves it to the appropriate evictable lru list. This function
4846  * should be only used for lru pages.
4847  */
4848 void check_move_unevictable_pages(struct pagevec *pvec)
4849 {
4850 	struct lruvec *lruvec = NULL;
4851 	int pgscanned = 0;
4852 	int pgrescued = 0;
4853 	int i;
4854 
4855 	for (i = 0; i < pvec->nr; i++) {
4856 		struct page *page = pvec->pages[i];
4857 		struct folio *folio = page_folio(page);
4858 		int nr_pages;
4859 
4860 		if (PageTransTail(page))
4861 			continue;
4862 
4863 		nr_pages = thp_nr_pages(page);
4864 		pgscanned += nr_pages;
4865 
4866 		/* block memcg migration during page moving between lru */
4867 		if (!TestClearPageLRU(page))
4868 			continue;
4869 
4870 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
4871 		if (page_evictable(page) && PageUnevictable(page)) {
4872 			del_page_from_lru_list(page, lruvec);
4873 			ClearPageUnevictable(page);
4874 			add_page_to_lru_list(page, lruvec);
4875 			pgrescued += nr_pages;
4876 		}
4877 		SetPageLRU(page);
4878 	}
4879 
4880 	if (lruvec) {
4881 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4882 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4883 		unlock_page_lruvec_irq(lruvec);
4884 	} else if (pgscanned) {
4885 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4886 	}
4887 }
4888 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4889